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Abstract

A variety of techniques used to model metabolic networks are examined, both
kinetic (ODE) models and flux balance (FB) models. These models are applied
to a case study network describing CO and CO2 metabolism in Clostridium au-
toethanogenum, bacteria which can produce both ethanol and butanediol from
a source of carbon monoxide. ODE and FB methods are also used to model a
variety of simpler networks. By comparing the results from these simpler net-
works, the strengths and weaknesses of each examined method are highlighted,
and ultimately, insight is gained into the conclusions that can be drawn from each
model.

ODE models have commonly been used to model metabolism in both in vivo
and in vitro contexts, allowing the dynamic behaviour of wildtype bacteria to be
examined, as well as that of mutants. An ODE model is formed for the C. au-
toethanogenum network. By exploring a range of parameter schemes, the possible
long timescale behaviours of the model are fully determined. The model is able
to exhibit both steady states, and also states in which metabolite concentrations
grow indefinitely in time. By considering the scalings of these concentrations in
the long timescale, six different non-steady behaviours are categorised and one
steady. For a small range of parameter schemes, the model is able to exhibit
both steady and unsteady behaviours in the long timescale, depending on initial
conditions.

FB methods are also applied to the same network. First flux balance analysis
(FBA) is used to model the network in steady state. By imposing a range of
constraints on the model, limits on levels of flux in the network that are required
for a steady-state are found. In particular, boundaries on the ratio of inputs
into the network are calculated, outside of which steady states cannot exist.
Comparing the steady state regions predicted by FBA and our ODE model, it is
found that the FBA model predicts a wider range of conditions leading to steady
state. FBA is only able to observe a network in steady state, so an extension of
FBA, known as dynamic flux balance analysis (dFBA), is used to examine non-
steady-state behaviours. dFBA predicts similar long term non-steady behaviour
to the ODE models, with states in which concentrations of some metabolites are
able to grow indefinitely in time. These dFBA states do not precisely match
those found by the ODE model, and states that cannot be observed in the ODE
model are also found, suggesting that other ODE models for the same network
could exhibit different long timescale behaviours. The examples considered clarify
the strengths and weaknesses of each approach and the nature of insight into
metabolic behaviour each provides.
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log time, with parameters set to be those seen in equations (4.7.3)
and all initial concentrations equal to zero, showing the long timescale
behaviour 5 described in Table 4.5.1. . . . . . . . . . . . . . . . . 135

4.14 Plots of concentrations of metabolites in the ODE model against
log time, with parameters set to be those seen in equations (4.7.3)
and all initial concentrations equal to 0.6, showing all concentra-
tions tending to steady sate. . . . . . . . . . . . . . . . . . . . . 136

4.15 Log log plots of concentrations of metabolites in the ODE model
against time, with parameters set to be those seen in equations
(4.7.3), with initial conditions equal to those seen in 4.7.4, with
a slight increase in the concentration of CO2, we see the concen-
trations shifting from near the unstable steady-state to the stable
steady-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.16 Log-log plots of concentrations of metabolites in the ODE model
against log time, with parameters set to be those seen in equations
(4.7.3), with initial conditions equal to those seen in 4.7.4, with a
slight decrease in the concentration of CO2. We see the concen-
trations remaining close to the unstable state for a period of time,
before approaching behaviour 5, and then rapidly decreasing or
increasing as prescribed by that behaviour. . . . . . . . . . . . . 138
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c = 0.01, and d = 0.06. The second row is the mushroom pattern
seen when b = 0.002, c = 0.01, and d = 0.056. The horizontal axes
are a, and the vertical axes are u (left panels) and v (right panels).
In all graphs, red lines represent stable branches and black lines
represent unstable branches. Note the existence of multiple unsta-
ble branches at once on the isola and left half of the mushroom. In
these instances, the system also permits a stable limit cycle, so the
system can have three steady-states (one stable and two unstable)
with a stable periodic solution between the two unstable branches. 146
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Chapter 1

Introduction

1.1 Metabolism

Metabolism is, most simply, a set of chemical reactions taking place within a
living organism. These reactions include the uptake of nutrients into a system, the
processing of these nutrients into products the organism needs, and the removal
of waste products from the system. Most of these reactions are catalysed by
enzymes. Often the chemicals used in metabolic reactions are referred to as
metabolites. Metabolism can be broadly split into two categories, anabolism and
catabolism. Catabolism deals with the breaking down of larger metabolites into
smaller ones, whilst anabolism deals with the combining of smaller metabolites
into larger products a system needs, such as ATP or amino acids. Generally
catabolism produces energy an organism needs, whilst anabolism consumes it.
Metabolism is an ongoing process within living cells, with multiple reactions
occurring at any one time. In order to visualize the reactions happening in a cell,
we create metabolic networks. Metabolic networks are effectively maps we can
examine to trace the reactions that lead from an input to an output [60]. The
study of metabolism is of interest in a number of different fields. Drug metabolism
[23] is the study of how the body can metabolise compounds that are not native
to the system. This is especially useful in the study of how the human body can
metabolise different drugs, but also has relevance in non pharmaceutical contexts.
The study of metabolism in tumours is a field of much activity, with application
to identification of cancer strains [2] and the treatment of cancer [55]. Other
areas of interest, especially with regards to metabolic engineering, are genetically
modified (GM) crops, food security, and the production of biofuels.

1.2 Metabolic engineering

According to Bailey [6], metabolic engineering is the improvement of cellular ac-
tivities by manipulation of enzymatic, transport, and regulatory functions of the
cell. That is, by the modification of the DNA of an organism, we aim to improve
its metabolic function. The goals of metabolic engineering of an organism were
broadly be divided into five categories by Cameron and Tong [9]. Firstly, increas-
ing the yields of chemicals already produced by the organism, such as biofuels
naturally produced as a waste product. Secondly, introducing new metabolic
pathways to allow the organism to grow on a wider variety of food sources. Next,
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adding new pathways to allow the organism to metabolise and remove chemicals
that are toxic to it, increasing survivability. Fourth, the introduction of pathways
to the system that allow it to produce additional products that it previously did
not. This is especially useful in the production of various drugs and antibiotics.
Finally, we can also use metabolic engineering to modify the physical properties
of a cell, such as its level of growth. We are especially interested in the first goal,
the improvement of yields of already existing products, and to a lesser extent,
the fourth, in which we cause an organism to produce new products.

Whilst metabolic engineering can lead to the improvement of an organism, it
can also lead to a greater understanding of the pathways within a system. Lee et
al. [40] investigated the ATP production of Escherichia coli in a mutant strain.
This mutant had a deficiency in its TCA cycle, that caused carbon from glycolysis
to not enter into it. It was suspected that in an organism growing on glucose, the
TCA cycle was highly suppressed and was primarily used for biosynthesis. The
flux distributions for this mutant and the wildtype showed very similar amounts
of ATP production from the glycolytic pathway, despite carbon not being able to
enter the TCA cycle in the mutant type. This confirmed the idea of a repressed
TCA cycle.

Chao and Liao [11] performed an experiment in which E. coli was modified
to over express two specific enzymes, which caused a new cycle between two
metabolites. This lead to futile cycling between the two metabolites. That is,
oxygen and glucose uptakes increased suggesting a higher rate of respiration,
however growth rates of the bacteria decreased. There was also an increase in
the production of the waste products pyruvate and acetate. These effects were
not observed when only one of the enzymes was overexpressed.

The production of biofuels such as ethanol is a key area of research for
metabolic engineering. Normally, an organism that already produces the desired
product is chosen, and then further modified to increase the production of this
product. Sometimes this is done by optimizing and improving already existing
pathways, sometimes it can be done by adding in pathways that were not present
in the original wildtype. Often a mixture of the two approaches is used.

Zhang et al. [81] took an ethanol producing bacteria, Zymomonas mobilis,
and modified it to include a new pathway. This pathway allowed the bacteria to
effectively metabolise a new carbon source. In this case the new carbon source
was xylose, a pentose sugar. This new mutant strain was able to ferment xylose
to create ethanol. In addition, the modified bacteria did not lose the ability to
ferment glucose. The ability to grow on xylose, glucose, and a combination of the
two allowed it to efficiently produce ethanol.

Ethanol is not the only biofuel we may wish to increase the production of.
More complex alcohols may prove more useful as biofules due to the higher en-
ergy densities present within them. However there is no organism that natively
produces these more complex alcohols in an efficient manner. Some bacteria,
however, may produce minimal amounts of these alcohols as byproducts.

By introducing new genes into E. coli to direct metabolites usually used to
form amino acids into alcohol production, Atsumi et al. [4] were able to stimu-
late various alcohol productions in E. coli. By inserting genes associated with the
reactions, the bacteria could be made to produce various alcohols, such as isobu-
tanol, 1-butanol and 1-propanol. The pathways were then further optimized by
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inhibiting other reactions that used the metabolites required for the production
of these alcohols, by removing genes that produced enzymes associated with these
reactions. This further increased the production rates of the desired biofuels. In
the case of isobutanol, one strain managed to produce 0.35g of isobutanol per
gram of glucose uptake. This was 86 percent of the theoretical maximum. They
further examined the production of 1-butanol in E. coli [3]. In anaerobic condi-
tions production of 0.21g of 1-butanol per gram of glucose uptake was achieved,
where previously there was negligible production. In aerobic conditions with a
small amount of oxygen, this production was increased; however, large amounts
of oxygen led to the stimulation of the TCA cycle, causing the carbon to be
directed away from alcohol production.

Due to the wealth of genomic information on E. coli, Hanai et al. [29] chose
to engineer it to produce isopropanol rather than attempt to increase the yield of
other bacteria that naturally produce it, such as various members of the clostridia
family. This was achieved by first adding in genes normally found in bacteria
of the clostridia family in order to stimulate acetone production. The yields
of acetone were at a similar level to the bacteria from which the genes were
initially taken. To further produce isopropanol from this acetone another gene
was added to cause the transformation of acetone into the desired isopropanol.
The maximum yield for these genetically engineered strains was 0.43 grams of
isopropanol per gram of glucose.

E. coli has also been engineered to produce 2-methyl-1-butanol [10] and 3-
methyl-1-butanol [14] separately. E. coli is often favoured as an organism due to
the unusually complete knowledge of its genes and metabolism [29].

More recently, as knowledge and techniques have been created for the genetic
engineering of other organisms, there has been more work into the genetic engi-
neering of members of the clostridium family. Mann was able to increase butanol
production within Clostridium acetobutylicum via the overexpression of a specific
enzyme [45]. Others have found methods of changing the main production of C.
acetobutylicum from acetone, butanol and ethanol (known as ABE fermentation)
into isopropanol, butanol and ethanol (known as IBE fermentation)[?, ?, ?]. The
desire to alter metabolic activity in an organism raises some problems. Whilst
it is possible to add and delete genes to modify the DNA of a bacteria and
attempt to modify its metabolism, we may not fully understand the effects of
these changes. It may be that removing a gene causes the bacteria to no longer
be able to produce necessary biological products for survival. Alternatively, we
may find that adding in a gene boosts the creation of a specific product, but to
much lower levels that we would have hoped. This is where the ability to math-
ematically model the metabolism of an organism becomes useful. By modelling
metabolic networks, we aim to gain a greater understanding into the dynamics of
metabolism. In particular, these models help us predict the effects of any changes
we may make to metabolism through the course of metabolic engineering. We
may also be able to find and highlight specific targets for metabolic engineering,
by simulating them in the model first. An obvious choice for the modelling of
metabolism is the theory of ordinary differential equations (ODEs).
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1.3 Kinetic modelling of metabolism

When modelling metabolism, we must first consider how to model reaction rates.
Reaction rates are the rate at which a reaction occurs and are functions of the
concentrations of metabolites within the network. A simple method to model
these reaction rates would be using the law of mass action, assuming that the
reaction rates are proportional to the concentrations of metabolites consumed by
the reaction. Since the majority of reactions are enzyme catalysed, we could also
choose to model them using the standard Michaelis-Menten kinetics [48]. There
are also various transport processes that would need to be considered, as well as
uptake rates, that are also taken to be metabolic reactions in a model. Then the
rate of change of a metabolite concentration would be equal to the sum of all
reaction rates that produce that specific metabolite minus the sum of all reaction
rates that consume it, i.e.

dcn
dt

=
∑
n

fn(c)−
∑
m

gm(c), (1.3.1)

where c is a vector of all metabolite concentrations, cn is a specific element of
that vector, representing a single metabolite concentration, fn(c) are the reaction
rates of the reactions that produce the metabolite cn, and gm(c) are the reaction
rates of the reactions that consume cn.

Once an ODE model is formulated, we have a number of parameters that
must be estimated. The estimation of parameters that fit experimental data is in
itself a difficult task. Identifying best fitting parameters requires solving a non-
linear optimisation problem, with derivatives as constraints. Methods for solving
these problems often have the issue of only finding local optima, and there is no
deterministic method that finds global optima for every problem of this form in
finite time. Stochastic methods are also used, though due to the random nature
of these methods, there is still no guarantee that these methods find a global
optimum. Mole et al. [49] compared various global optimum searching methods,
and concluded that only one stochastic method, known as evolution strategies,
could reliably find solutions to parameter estimation problems for kinetic models
of metabolism.

Rodriguez-Fernandez et al. [58] proposed a hybrid method for finding best
fitting parameters. By using a stochastic global optimum searching technique ini-
tially, and then switching to a quicker local optimum searching technique when
in the basin of attraction for the global optimum, the computation time is de-
creased drastically. Whilst the point at which the methods are switched must be
tuned for each model individually, this still provides better results than a local
optimum searching method alone. This hybrid technique was also able to deal
with noisy data (due to experimental errors). However, there is still an issue with
identifiability. As examined by Audoly et al. [5], parameters may not be globally
identifiable. That is, there may be multiple combinations of parameter values
leading to the same optimum value for the optimisation problem. These parame-
ters can not then be identified uniquely and may require additional data in order
to achieve accurate parameterisations of a model. In spite of these difficulties,
full kinetic models for various organisms have been developed.

Chassagnole et al. [12] designed a model for the central carbon metabolism
of E. coli. This was the first model to link central carbon metabolism with the
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sugar transport system within the organism. The model was compared with
experimental data of intracellular concentrations of metabolites to attempt to
validate the structure. The data was used further to attempt to estimate the
kinetic parameters in the model to provide a more accurate model.

Usada et al. [73] created a more complex model, based on the one put forward
by Chassagnole et al. [12], expanding it to include the regulatory system of E.
coli, through to the production of amino acids. Using previously measured kinetic
parameters a model was formed and compared to experimental data from a cul-
ture grown on fructose. The uptake rate of fructose in the experiment agreed with
the prediction from the dynamic model, as did the CO2 excretion rate, however
the external acetate concentrations predicted by the model were somewhat higher
than the predicted values. This may be explained by the model not allowing the
uptake and reutilization of acetate.

A further model for E. coli was developed by Peskov et al. [56], in which
enzyme regulatory properties were included when formulating the reaction rates
This was done with the aim of increasing the predictive power of the model.
By including detailed biochemical properties of enzymes, both in vivo and in
vitro, experimental data were able to estimate parameters to verify the model.
The model was used to describe metabolite kinetics across a timescale of several
minutes, but beyond that enzyme production and degradation would also need
to be taken into account for an accurate model.

Kinetic modelling has also been applied to the metabolism of plants, as re-
viewed by Rohwer [59]. In particular, many models have been developed to
model the process of photosynthesis, in both C3 plants (plants which use the
C3 metabolic pathway for photosynthesis), as described by Gross et al. [28] and
Kirschbaum [37], and in C4 plants (plants which use the C4 metabolic pathway
for photosynthesis), by Chen et al. [13].

Formulating ODE models for metabolic networks containing large amounts
of reactions and metabolites is difficult. A lack of data on kinetic parameters,
and the difficulty in obtaining them has lead to the development of simplified
ODE models being developed, using approximate reaction rates, reducing the
number of parameters needing to be estimated. These approximate reaction
rates are based in the theory of metabolic control analysis (MCA) as described
by Fell [?, ?]. MCA allows us to calculate the “elasticities” of reaction rates.
These elasticities quantify how much a reaction rate increases or decreases when
a specific metabolite concentration is increased or decreased from a reference
state. Similarly, elasticities can also be calculated for the perturbation of enzyme
levels. Then using these elasticities, along with the reference concentrations,
approximate reaction rate equations are formulated. A common form for these
approximate reactions is linlog kinetics, as seen in studies by Visser et al. [76,
?], and Nikerel et al. [51]. Visser et al. [77] also presented another form of
approximate reaction rates, termed “tendency modelling”, based on generalised
mass action power laws.

Other methods aim to bypass the difficulty of estimating parameters. En-
semble modelling, developed by Tran et al. [72] and used by Tan et al. [71]
seeks to build up an ensemble of models that all reach the same steady state.
By using elementary reactions (in which chemical reactions are split into their
constituent steps), each step is modelled using the law of mass action. Then by
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screening models using a similar technique to finding elasticities in MCA, mea-
suring sensitivity of reactions to perturbations in enzyme levels, this ensemble
of models is screened down to a smaller set. Thermodynamic data can also be
added to provide extra limitations on the parameters of these models. By forming
many models with different parameters and screening down to those that match
the data, rather than building a single model and attempting to find the best
matching parameters, the computational complexity of parameterising a model
is decreased, though the data on perturbations may not be readily available.

Whilst kinetic models are able to provide information on the dynamic be-
haviour of a metabolic network, it may be cost prohibitive to generate the data
required to parameterise such a model. In other cases, we may find difficulty
finding a structure for the model. It is not uncommon that whilst we have a
great deal of information about the network of reactions forming the metabolism
in an organism, we may have very little information on the exact kinetics. In
these cases, it is useful to use techniques that only require information about the
structure of the metabolic network (known as the stoichiometry). The class of
techniques that rely on this stoichiometry data are often referred to as COBRA
(constraint based reconstruction and analysis) methods, laid out in the software
package, the COBRA toolbox [64]. Of these methods, the subset of most interest
to us are flux balance techniques.

1.4 Flux balance techniques

The modelling of metabolic networks is often a difficult task. Due to the diffi-
culty in measuring enzyme reaction rates and various other kinetic parameters,
accurate ODE models are costly to produce. In order to deal with these prob-
lems, techniques have been developed that bypass the need for kinetic parameters
entirely. Rather than focusing on dynamic models, these techniques instead ob-
serve systems in a steady state, and examine possible flux values (reaction rates)
in these steady states. In order to fix a system to its steady-state, the condition of
mass balance is imposed, requiring that the sum of fluxes producing a metabolite
balances with the sum of fluxes consuming the metabolite. These techniques are
therefore known as flux balance techniques.

This mass balance produces a set of equations, Sv = 0, where S is the
stoichiometric matrix of a metabolic network, and v is a vector containing values
for all the fluxes in a system, called the flux vector. This set of equations is often
underdetermined, meaning we have less equations than unknown elements of v.
Hence we need some technique to include additional constraints to find the most
relevant solutions from the infinitely many prescribed by Sv = 0

On such technique is stoichiometric metabolic flux analysis (MFA). MFA seeks
to fill in the gaps by fixing fluxes to experimentally measured values in order
to fully determine the system. In practice, the measuring of internal fluxes is
difficult, so often the only fluxes we are able to measure are external fluxes. As
described by Wittmann and Portais [80], by measuring these external fluxes, we
gain some idea of the internal fluxes by extension. However it is often the case
that due to internal loops and cycles, we are unable to find a unique solution for
the system of equations described, and therefore techniques for measuring the
internal fluxes are necessary.
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A commonly used method for measuring internal fluxes is 13C metabolic flux
analysis. In this, marked carbon isotopes are entered into the metabolic system,
and then using mathematical modelling techniques and concentrations of marked
carbons in different forms, we estimate the internal fluxes. Software has been
developed to perform this analysis [78]. We can then take these estimated fluxes
and include them in our system of equations to provide more accurate steady state
solutions. With enough measured fluxes, the system becomes fully determined,
and a completely unique solution is found.

The solution found in this manner is subject to experimental error in the
measurement of fluxes. In some cases, an experimental error on a flux could lead
to a large variation in an entire flux vector found by applying MFA. By finding
condition numbers for each flux in a network, Savinell and Palsson [62] were able
to find an upper bound for a networks sensitivity to perturbations in each flux.
The fluxes with the lowest condition numbers would be the best target for ex-
perimental measurement, allowing minimal sensitivity to experimental error in
the solutions. Savinell and Palsson [61] applied this technique to E. coli finding
that experimental errors could, in the worst case, be amplified up to 60 fold. In
a hybridoma cell, these amplifications of experimental error could be orders of
magnitude higher (up to 105). By measuring the fluxes with the lowest condition
numbers, the sensitivity to experimental error would be much lower, and mea-
suring additional fluxes past the number required to fully determine the MFA
system would also lower the effects of these errors.

There are other methods of extracting relevant solutions from the set of those
that solve Sv = 0. The most prevalent uses linear programming to find the
solution that maximises a specific objective function. The idea of using linear
programming to extract an optimal state for a metabolic network was first used
by Papoutsakis [54], and this idea was eventually extended into a technique known
as stoichiometric flux balancing by Varma et al. [74]. This technique later came
to be known as flux balance analysis (FBA).

FBA, as described in recent review papers by Orth et al. [53] and Kauffman
et al. [33], is a technique based on constraining the fluxes within a metabolic
network to produce biologically viable steady states. The first constraint used
in this technique is the previously described mass balance constraint, requiring
Sv = 0. We then set an objective function we wish to find an optimal solution
for. Generally, this objective function is of the form aTv, making it some linear
combination of fluxes in the network. One common choice would be maximising
biomass production. In this case, the objective function maximises the production
of metabolites that are used to produce biomass. Other possible choices include
maximising the flux into a specific product of the network (such as ethanol, in
the case of biofuel production), or ATP production. Finally we must place upper
bounds on our flux values, to prevent solutions that are infinitely large in size. To
this end all fluxes are constrained to being between a maximum and a minimum
value. Where experimentally measured fluxes exist, we constrain these fluxes to
being the measured value plus or minus an error term. In this way we find a
steady state flux vector that maximises our objective function. A basic FBA
problem is written in the form

max
v

aTv such that: Sv = 0with,
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vmin ≤ v ≤ vmax, (1.4.1)

where vmin and vmax are vectors containing the minimum and maximum values
for each flux respectively. In general if this problem has solutions it is feasible,
and if the constraints permit no possible solutions it is called infeasible. Farkas’
lemma tells us that exactly one of the problems,

Av ≤ b (1.4.2)

and

ATy = 0,bTy ≤ 0 (1.4.3)

has solutions. Our linear programming constraints can be written in this first
form, noting that our equality constraint, Sv = 0 can be rewritten as

Sv ≤ 0, Sv ≥ 0 (1.4.4)

and

vmin ≤ v⇒ −v ≤ −vmin. (1.4.5)

We can then construct a matrix A containing the left hand side of all our new
inequality constraints, and a column vector b containing the right hand side for
all of these constraints. Then if there exists some vector y that satisfies equation
(1.4.3), our linear programming problem is infeasible. We still cannot guarantee
a unique solution. Similarly to when estimating parameters, it is possible for
multiple flux vectors to optimise this objective function. We must be aware of
the possibility of multiple optimal solutions when performing FBA.

FBA is a simple and fast technique to obtain information on possible steady
state flux distributions for a metabolic network. In particular, solving a linear
programming problem is not computationally expensive, allowing even problems
with large stoichiometric matrices, such as those for genome scale models, to be
solved quickly.

1.4.1 Applications of flux balance analysis

FBA has been applied with great success to E. coli bacteria. Due to the wealth of
biochemical data, and the a completely sequenced genome, Edwards and Palsson
[18] were able to construct the entire metabolic network of the organism. In this
case, the stoichiometric matrix used was 436x720. Flux balance analysis was then
applied to this network, with upper bounds on the glucose and oxygen uptakes
to find the steady state in which growth was maximal. To find a maximal growth
state, a reaction in which the precursors to biomass were gathered and synthesized
into biomass was added, and this was then used as the objective function to be
maximised.

Continuing on from this, gene knockouts were simulated for each individual
gene in the genome by constraining flux across reactions connected to those genes
to be zero. In this way we observed which genes are essential to the continued
growth of the organism. The maximal growth rates after these deletions was
compared to that before to see if there was a significant decrease from the deletion.
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To validate the results found, the predicted results were compared to experimental
results for known mutants. Answering the question of whether or not a gene was
essential for growth, the model predictions were correct in 86 percent (68/79) of
cases.

More recently, metabolic networks have been constructed to some degree of
completion for Plasmodium falciparum. This is one of the types of parasite that
causes malaria in humans. Plata [57] constructed a model containing 1001 reac-
tions across 616 metabolites. The reactions involved include numerous metabo-
lite transformations and transport processes. As with previous studies of large
metabolic networks for known organisms, gene deletions were simulated. Also
simulated were drug inhibitions, when a drug is used to inhibit a reaction to try
and kill the organism. Whilst the data on P. falciparum is not as extensive as that
for E. coli, 14 gene deletions and 25 drug inhibitions were able to be compared
with existing data. The model correctly predicted whether or not a gene being
deleted was essential in 100 percent of cases. For drug inhibitions, the prediction
rate was lower at 70 percent. All of the cases in which FBA gave the incorrect
result were cases in which FBA predicted the organism would survive, but the
drug in question had been experimentally proven to be lethal to the organism.
In particular there were no cases of FBA predicting the organism dying when it
would actually survive.

FBA has also been applied in the field of predictive microbiology. Predic-
tive microbiology aims to describe the growth and inactivation of pathogens and
microbes within food. Osmotic shock is a state in which the concentration of a
soluble material around a cell changes rapidly, causing a rapid change in move-
ment across a cell’s membrane. Under these circumstances, there is a large change
in the growth rate of the cell. Metris et al. [47] applied FBA to cells undergoing
osmotic shock in order to explain the reason behind it. It was found that a change
in biomass composition could not explain the lowered growth rate. It would also
take a very high change in energy required for cell maintenance (both growth and
non-growth related) to explain such a growth rate decrease. In this case, it could
be said that the factors that cause the limited growth rate are those not modelled
by FBA, such as intracellular crowding (space limitations within the organism).

Beg et al. [8] provided a way to incorporate intracellular crowding into FBA
models. Here we consider how much space each enzyme takes up within a cell
and consider it a constraint on the overall flux. The first step is to constrain
the number of enzyme macromolecules present to the volume of the cell. If vi
is the volume of the enzyme present in the ith reaction, ni is the number of
macromolecules of that enzyme present, and V is the overall volume of the cell,
we have ∑

i

vini ≤ V.

Further, we divide by cell mass to instead consider the enzyme concentrations
rather than the number of macromolecules. In this way we find∑

i

viEi ≤
1

C
,

where C is the cytoplasmic density of a cell and Ei is the concentration of the
enzyme present in the ith reaction. We now have constraints on enzyme con-
centrations. If we go one step further, we consider an enzyme concentration Ei
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corresponding to a specific flux qi = biEi, where bi is a rate coefficient for the
reaction. Then our constraint is written as∑

i

aiqi ≤ 1.

Here, we have qi being the ith flux, and ai is defined as

ai =
Cvi
bi

.

In this way we have converted a constraint on the number of enzyme molecules
into a constraint on fluxes. An obvious downside to this extension is we now
need some knowledge of the rate coefficients of each reaction. It is possible to
estimate these parameters by comparing predicted results with experimental data
and fitting the parameter to the data.

1.4.2 Extensions to flux balance analysis

The strength of FBA is in its relative simplicity. It requires little prior knowledge
about the system and computing solutions via LP methods is computationally
cheap. Its simplicity is also a weakness of the technique, and many extensions and
additions to FBA have been applied successfully in order to improve the results
found and the situations it is applicable to.

In addition to mass balance constraints, we can also add energy balance con-
straints to the system. Energy balance allows us to further constrain our solution
space to only include thermodynamically feasible solutions. Beard et al. [7]
laid out two additional constraints we can add to an FBA problem in order to
incorporate energy balance. First we consider a vector ∆u of chemical poten-
tial differences associated with each reaction in a system. The first constraint
is there must exist some ∆u such that vn∆un ≤ 0, where vn is the nth flux.
This constraint corresponds to the second law of thermodynamics, and ensures
entropy production is non-negative for each reaction. For the second constraint,
we consider the stoichiometric matrix S. If we remove all columns corresponding
to outside fluxes from this matrix (those that add or remove metabolites from
the system), we have a modified stoichiometric matrix S ′. We then find the null
space of this matrix. We then store the null space vectors as rows in a ma-
trix K. It is seen that if we take all the reactions in the system and multiply
them by the elements of either of these null space vectors, and then sum them,
we obtain a perfectly balanced chemical equation. Similarly, if we multiply our
chemical potential differences by these elements and sum them, we should obtain
a perfect energy balance. That is to say that K∆u = 0. So in order to con-
strain our system so that it is balanced for energy, there must exist a ∆u such
that K∆u = 0. Combining this with the previous constraint, we require there
to exist some ∆u such that both constraints hold. This restricts our solution
space to only thermodynamically feasible solutions. This method has been seen
to improve the predictive power of the effects of gene knockouts on E. coli [7]. A
possible problem with these additional constraints is the potential for numerical
error when calculating the nullspace vectors that form the matrix K.

More recently, the idea of thermodynamic feasibility has been investigated
further. Zhu et al. [82] proposed a method to not only restrict the solution space
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to a thermodynamically feasible one, but to actively seek the most thermody-
namically optimal solution. It has previously been observed by Martyushev et
al. [46] that metabolic networks tend to end up in a steady state that maximises
entropy production (also known as the maximum entropy production principle or
MEPP), so it would be sensible to consider this in FBA. In thermodynamic opti-
mum searching, the Gibbs free energy production for each reaction must firstly be
estimated to a range. The maximum and minimum flux values for each reaction
are set based on these ranges. Then using these maxima and minima along with
mass balance, a standard FBA problem is solved to maximise biomass to find
some optimal value. The final step is another optimisation, based on a non-linear
objective function to maximise entropy production per unit energy. In this, the
mass balance constraints are maintained, but biomass production is fixed at its
optimal value observed in the previous step. In this way a thermodynamically
optimal solution is found.

For some FBA problems, there are multiple solutions corresponding to the
same maximal value for the objective function. We may not be aware of these
alternative optima by simply performing FBA. Mixed Integer Linear Program-
ming (MILP) methods have been developed to find these alternate optima. Lee et
al. [41] presented an algorithm guaranteed to find all alternative optima. These
methods are iterative and the number of steps required grow exponentially with
the number of alternate optima. Some systems may contain many alternative
optima, particularly those with internal flux loops, causing these methods to be-
come increasingly computationally intensive, to the point of infeasibility. Indeed,
many problems may have infinitely many optimal solutions, severely limiting the
usefulness of trying to find all alternative optima.

Rather than trying to find all these alternative optima, it may be of more
use to examine how much a given flux can vary whilst still maintaining the same
maximised value for the objective function. Flux variability analysis (FVA) is a
technique used to examine this. The first step is to perform FBA as usual. In
this, we obtain a maximised value for our objective function aTv = Amax, where
aTv is our objective function and Amax is the maximised value found. We then
set up two additional linear programming (LP) problems for each flux within the
system to determine their maximum and minimum values whilst maintaining the
same objective function value. The problem is

max/min
v

vn such that: Sv = 0,with

aTv = Amax, and

vmin ≤ v ≤ vmax. (1.4.6)

By performing 2n additional LP problems, where n is the number of fluxes in
the system, we find how much a flux can be varied whilst still maintaining the
same maximised objective function. Mahadevan [44] presented the effects that
these alternate solutions could have on gene knockouts within a system. Also
explored was the idea of sub-optimal flux distributions, in which the objective
function was not maximised, but was at least a certain percentage of the optimised
value. Here, the first constraint in the linear programming problem is changed to

aTv ≥ (1− δ)Amax,
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where δ is a small number. This allows us to examine the variability of fluxes
in sub-optimal cases. These may be of interest to studies after gene knockouts
or after a change of carbon source. In these situations the network may not
necessarily immediately optimise itself in its new conditions, and instead remain
in a sub-optimal flux distribution that is closer to its original state.

FBA has been used to simulate the effect of gene knockouts on a system. That
is, removing a gene from the organism causing one or more reactions to no longer
occur within it. Performing FBA on a system with a gene knockout provides a
new optimal flux distribution, however a system may not necessarily default to
this new optimal state. It is hypothesised that the system attempts to come to a
steady state that is as close to its previous steady state as possible, even if this
results in sub-optimal fluxes. To account for this, when simulating the effects of
a gene knockout, rather than setting an objective function to maximise a desired
product, we should instead set it to minimise the change between the original
steady state and the steady state of this new system. Segrè [70] found success in
minimising the Euclidean distance between the two flux distributions. Here the
new objective function is √

(
∑
i

((xi − vi)2)

and we seek to minimise this. Here, xi is the ith flux from the flux distribution
before the knockout, and vi is the ith flux in the FBA problem. Since the square
root is a monotonic function, minimising

√
x is equivalent to minimising x. We

also ignore any constant terms in this minimisation as minimising x− c where c
is constant, is the same as minimising x. Then our objective function is reduced
to ∑

i

(v2i − 2xivi).

We can no longer use linear programming methods to solve this, as our objective
function is no longer linear, however quadratic programming (QP) methods exist
for minimising a quadratic objective function with linear constraints, as described
by Frank and Wolfe[22].

One of the defining features of FBA is that it can only be used to predict the
steady states of a system. Dynamic flux balance analysis (dFBA), however, can
be used to model a system transitioning between two steady states. Mahadevan
applied two methods, both producing similar results [43] . The first is the dynamic
optimization approach, in which the entire time period is looked at as a whole,
and the rates of changes of fluxes, growth rate and metabolic concentrations are
limited by their time derivatives. Then the problem is solved as a single non-
linear programming problem. The second is the static optimization approach,
where the time period is divided into N subintervals. Rates of changes are then
constrained by limiting how much they can change from their value in the previous
subinterval. Then the system is solved as N linear programming problems. We
then have flux vectors, concentration vectors and a growth rate prediction at each
of these time intervals. We continue iterating this process until the system has
reached a new steady state. The key advantage of this technique is it allows us
not only predict how the growth of an organism changes after modification, but
also how the concentration vector does, which is normally ignored by FBA.

31



Dynamic flux balance analysis has been applied with some success to larger
scale systems. Grafahrend-Belau et al. [27] used a multiscale modelling approach
in order to produce a dFBA model on a whole plant scale. By modelling on
a large scale, they were able to present a metabolic analysis of the interactions
between both seed and stem biomass in barley, which could later allow targeted
metabolic engineering to improve crop yields.

Covert et al. [15] were also able to extend FBA to provide dynamic results.
By incorporating boolean constraints to represent regulatory networks, they were
able to examine diauxic growth of an example carbon metabolism network on
complex mediums. In particular they examined growth on a mixture of two
carbon sources, as well as a switch from aerobic to anaerobic growth. Whilst the
method used here did not provide estimates of internal concentration vectors, the
addition of temporary regulatory constraints was a useful addition to flux balance
analysis.

Biological systems generally require more than a single nutrient to grow. Com-
monly, a system requires at least a carbon source and an oxygen source. It is often
of interest to find an optimal ratio for the uptake of these multiple compounds.
Phenotype Phase Plane Analysis (PhPP analysis) as described by Edwards [19]
utilizes the results of FBA to describe the effects of different nutrient uptake rates
on the system. In order to generate the phase plane, first we must define shadow
prices. The shadow price, Yi of a metabolite ci is given by

Yi = −
dAmax

dci
,

where Amax is the value of the objective function obtained in FBA. This defines
how the addition of a metabolite affects the objective function, and suggests how
useful a metabolite is to the system. These shadow prices remain fixed for a
phenotype. That is, in each region on the phase plane they remain fixed, and
only change when the uptakes change the system from one phenotype to another.
Using this knowledge, we find critical ratios between the uptake rates of the
nutrients that cause the system to shift. Often after a shift between phenotypes,
different pathways are utilized in different ways. For example, if the system has
an excess of one nutrient, it may need to activate a pathway to get rid of it in a
different way.

We can also use isoclines to obtain qualitative information about the system.
Isoclines are lines where the objective function aTv = Amax takes the same value.
The slopes of isoclines are given by ρ = −Yi/Yj, that is the negative ratio of
shadow prices for the nutrients involved. As the slopes are found by the shadow
prices which are different in each region of the phase plane, the slopes themselves
are also different in each region. Regions with a positive ρ are said to be “futile”,
as increasing the uptake rate of one nutrient has a negative effect on the objective
function. In this way, we characterise the different possible phenotypes in a system
and see at which points the system shifts from one to another.

A key difficulty in FBA is choosing an objective function. Whilst biomass
production is a common choice, we can’t always assume it leads to the best re-
sults. Schuetz examined the results from various objective functions on an E.
coli network and compared them to actual in vivo measured fluxes [67]. Sur-
prisingly it was found when modelling batch cultures biomass production was
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not the most accurate predictor. ATP production per unit flux was found to
be the best objective function in this case. ATP production per unit flux is a
non linear objective function given as the ATP production divided by the sum of
fluxes squared. This is a non convex objective function, so it is possible that it
was only finding local optima, however this was examined by reformulating the
objective function in a convex for and found to not be the case. In continuous
chemostat cultures, it was found that ATP production and biomass production as
objective functions yielded accurate predictions of the internal fluxes. In cases for
other objective functions, it was found that adding additional constraints could
still provide accurate results, but these constraints required additional knowledge
about the organism to impose, and therefore it is preferable to avoid them when
possible. Ibarra et al. [32] showed that whilst, initially, a strain of E. coli exhib-
ited a suboptimal growth rate compared to the theoretical maximum predicted
by an FBA model, after forty generations of adaptive evolution, this same strain
exhibited the optimal rate predicted by FBA. This data provides further support
to using biomass production as an objective function.

1.5 Stochastic models

All the types of models considered so far are deterministic, however it is also
possible to use stochastic methods to model metabolism. The chemical master
equation, explicitly derived by Gillespie [24], is a system of differential equations
that describes the evolution of a metabolic network as a stochastic process. The
solution to these differential equations provides the probability density function
for the network at a given time. This is sometimes called the propensity function.
By using a method such as the stochastic simulation algorithm (SSA) proposed by
Gillespie [25], or the software package STOCHSIM, developed by Le Novere and
Shimizu [52], this stochastic process is simulated. It is seen that cases with large
quantities of metabolites, these solutions converge to those seen in deterministic
models. Stochastic models, whilst useful tools for modelling metabolism, partic-
ularly in cases where there are low concentrations of metabolites, are generally
outside the scope of this work, and will not be considered further.

1.6 Overview

There are many different methods that can be used to model metabolism, and
each has its own strengths and weaknesses. Throughout the course of this work,
we aim to model metabolic networks using a variety of techniques. In partic-
ular, we will comprehensively examine flux balance techniques, specifically flux
balance analysis, and its dynamic counterpart, dynamic flux balance analysis.
We will also examine a kinetic model of a metabolic network for Clostridium au-
toethanogenum, and seek to compare results from these methods. We will also
examine the previously mentioned technique of ensemble modelling as a method
of parameterising a kinetic model, using data from both experimental sources,
and provided by flux balance methods. By examining these methods in detail,
we are able to identify the advantages of each class of model, and determine
under which situations they might be of most use. Specifically, we determine
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what knowledge would be needed of a metabolic network to in order to use each
method, and what information could then be obtained. We also examine which
long timescale behaviours can be modelled by each method in order to further
highlight which methods would be most applicable.

In Chapter 2 we examine flux balance methods in detail. First, we apply MFA
to small networks, before moving on to applying FBA to similar small networks.
By applying FBA to these toy networks, we look to gain an understanding of
the key features of the technique, and how it behaves under a variety of circum-
stances. We will examine the links between the flux balance models and kinetic
ODE models, before also examining two variations of FBA, flux variability anal-
ysis (FVA), and elementary modes analysis (EMA). Finally we apply all these
techniques to a metabolic network for C. autoethanogenum.

In Chapter 3, we formulate an ODE model for the metabolism of C. au-
toethanogenum. We note that this model exhibits both steady states, and states
with concentrations exhibiting unbounded growth. By considering long timescale
asymptotics, we are able to quantify every long timescale behaviour this model
is able to display. We also find conditions on parameters that will lead to each
long term behaviour. In particular, we find the ratio of inputs into the network
is important for determining which behaviour is seen.

In Chapter 4, we compare the steady state results from both the FBA model
seen in Chapter 2, and the ODE model seen in Chapter 3. Further, by comparing
certain flux ratios in the FBA model, we form a steady state region that is
equivalent to the steady state region seen for the ODEs. We also consider a
slight change to the network, replacing one reaction with two others, and see
how this affects the steady state region seen in both cases. We find this leads
to a region in parameter space that permits the existence of both steady state
solutions, and a state in which concentrations grow linearly in time, allowing our
ODE model to exhibit multiple long timescale behaviours for the same parameter
set.

Chapter 5 examines the possibility of using flux balance methods to predict
the existence of multiple steady states, such as those found at the end of Chapter
4. We introduce a well studied autocatalytic network that is known to permit
multiple steady states for a range of parameter values and attempt to find the
same results using FBA.

We introduce the technique of dynamic flux balance analysis (dFBA) in Chap-
ter 6. Initially applying this technique to small networks, including the autocat-
alytic network introduced in Chapter 5, we attempt to again find the existence of
multiple steady states using this new dynamic extension to FBA. We also apply
the technique to a metabolic network analogous to the Lotka-Volterra predator
prey equations to attempt to model dynamic long term behaviour in the form of
periodic solutions. Finally we apply the technique to our C. autoethanogenum
case study, to observe the linear growing states found in Chapter 3.

In Chapter 8, we examine ensemble modelling. We apply this technique first
to a single reaction, before moving on to the ODE model for C. autoethanogenum
metabolism introduced in Chapter 3. First we attempt to parameterise the model
using data from an equivalent ODE model, before attempting to parameterise an
ODE model using data from the dFBA model presented in Chapter 7. In this
way, we aim to produce a kinetic model that matches the dFBA model, and is
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therefore optimal according to an objective function.
Our conclusions are presented in Chapter 9. In this chapter we first apply

previously examined techniques to a simple network containing a loop, to compare
the difference in the level of information each technique is able to provide. We also
examine the possibility of combining multiple techniques to provide additional
insight.
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Chapter 2

Using flux balance methods to
model metabolic networks

2.1 Introduction

2.1.1 Modelling metabolic networks

Modelling the dynamics of metabolic networks is traditionally a difficult task.
Forming complete ODE models for metabolic networks requires extensive knowl-
edge, not only of the structure of the network, but the exact dynamics of each
reaction. Knowledge of regulatory systems, and other dynamic processes can be
difficult to attain, and even if a complete model is formed, we are left with many
parameters to estimate from experimental data, which often proves highly ex-
pensive. Rather than relying on these complete dynamic models, in recent years
attention has turned to flux balancing methods. These methods rely only on the
structure of the network to provide us with information about how a metabolic
network behaves at steady-state. Where an ODE model would provide solutions
in terms of dynamic concentration profiles in time, flux balance techniques instead
provide us with rates of each reaction of a network at steady-state. These reac-
tion rates, commonly referred to as fluxes, are given in the form of flux vectors,
denoted as v. Each element of this vector contains the flux across one specific
reaction at steady-state. By using these flux balance techniques, we seek to find
information on steady-state reaction rates of a metabolic network.

2.1.2 The stoichiometric matrix

Flux balance techniques use information about the reactions within a system to
form a stoichiometric matrix. This matrix contains all the data about internal
metabolites and reactions in the system. Let us first consider a set of reactions
that describe a simple network and generate the stoichiometric matrix for this
system.

Glycolysis is a common biological process, in which glucose or other sugars,
are transformed by a series of metabolic reactions into pyruvate. Pyruvate is a
key metabolite for several other metabolic pathways, most notably the production
of ATP in the citric acid cycle. A reduced set of reactions for glycolysis, listing
only the key metabolites is given in Table 2.1 and a network diagram is shown
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Glucose
v1−→ Glucose 6-phosphate

Glucose 6-phosphate
v2−→ Fructose 6-phosphate

Fructose 6-phosphate
v3−→ Fructose 1,6-biphosphate

Fructose 1,6-biphosphate
v4−→ Phosphoglyceraldehyde

Phosphoglyceraldehyde
v5−→ Pyruvate

External input
QG−→ Glucose

Pyruvate
QP−→ External output

Table 2.1: Set of reactions used in the reduced glycolysis pathway seen in Figure
2.1. Each reaction only includes the key metabolites used, neglecting additional
metabolites such as NADH and hydrogen.

in Figure 2.1. The reactions are labelled with vn representing internal reactions,
such as the transformation of one metabolite into another, and Qn representing
the external reactions, such as the uptake of food sources and the output of
products.

Figure 2.1: Simplified network diagram for the reactions involved in glycolysis
described in Table 2.1. The diagram shows only the primary metabolites used in
the metabolic pathway.

When we form our stoichiometric matrix, each column in the matrix contains
the information for a single reaction, and each row contains the information for
a single metabolite. We have six key metabolites in this network, and, including
the uptake of glucose and output of pyruvate, seven reactions. Therefore the
stoichiometric matrix for this network should be a 6 × 7 matrix. By looking at
the reactions we are able to fill in the elements of the matrix. For example, the
first reaction, v1 consumes one glucose and produces one glucose 6-phosphate.
Therefore, the column in our stoichiometric matrix representing v1 should have a
‘−1’ on the row corresponding to glucose, and a ‘+1’ on the row corresponding to
glucose 6-phosphate. All other metabolites are not used in this reaction, so the
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elements in the v1 column representing the remaining metabolites should equal
zero. Filling in the remaining columns in the same manner provides us with the
stoichiometric matrix for the glycolysis network,

S =

v1 v2 v3 v4 v5 QG QP


−1 0 0 0 0 1 0 Glucose
1 −1 0 0 0 0 0 Glucose 6-phosphate
0 1 −1 0 0 0 0 Fructose 6-phosphate
0 0 1 −1 0 0 0 Fructose 1,6-biphosphate
0 0 0 2 −1 0 0 Phosphoglyceraldehyde
0 0 0 0 1 0 −1 Pyruvate.

(2.1.1)

We note that the reaction v4 uses one fructose 1,6-biphosphate to produce two
phosphoglyceraldehyde, so the element of the stoichiometric matrix relating to
the production of phosphoglyceraldehyde, in this case S4,5, is equal to two.

We are able to freely rearrange the rows in this stoichiometric matrix with
no effect on the network that the matrix represents. We could also rearrange
the order of the columns, however this would have an effect on our flux balance
methods. The order of the columns directly relates to the order of elements
in the flux vector. If we encoded the v1 reaction in the second column of the
stoichiometric matrix, then the second element in the flux vector would be v1. As
long as the flux vector is consistent with the stoichiometric matrix, then the order
of the columns in the stoichiometric matrix can also be freely changed whilst still
representing the same network.

2.1.3 Mass balance

In a metabolic network, for a metabolite to satisfy the condition of mass balance,
we must have that the flux in to the metabolite is equal to the flux out. That
is, the amount of the metabolite produced by various reactions in the network
is exactly equal to the amount used up by other reactions. In this way, the
concentration of the metabolite remains constant in time. If all metabolites in a
system satisfy mass balance, then the system is in steady-state. For example, from
the reactions seen in Table 2.1, we see that glucose is involved in two reactions.
One is the uptake of glucose, QG, and the other is the use of glucose to produce
glucose 6-phosphate, v1. If these two reactions balance, so that the flux in, QG,
is equal to the flux out, v1, then glucose is in mass balance, i.e. QG = v1, or
QG − v1 = 0. If we extend this concept to the rest of the metabolites in the
system, we obtain a set of six equations (one for each metabolite) that must be
true for the whole network to be in mass balance. It turns out that this set of
equations is exactly equal to Sv = 0, where S is the stoichiometric matrix seen
in equation (2.1.1), and v is the flux vector. Now that we have introduced the
concepts that are key to flux balance techniques, we seek to use these techniques
to find steady-state solutions for metabolic networks.
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2.2 Metabolic flux analysis

Metabolic flux analysis (MFA), as described by Wittmann and Portais [80], is a
simple flux balance technique, using the stoichiometric matrix to find a steady-
state solution for the fluxes in a metabolic network. Using the mass balance
equation, Sv = 0, we generate a set of simultaneous equations that must be true
for the system in steady-state. Generally there are less equations than unknown
fluxes, so the system is underdetermined, having infinitely many possible solu-
tions. In MFA, we add additional data in the form of experimentally measured
flux values in order to fully determine the system and obtain a solution.

2.2.1 Applying MFA to glycolysis

To illustrate this technique, we apply it to our previously described glycolysis
system. We use the stoichiometric matrix we have already found in equation
(2.1.1), and combine it with the mass balance condition so that Sv = 0. Here
the flux vector, v is given as

v = (v1, v2, v3, v4, v5, QG, QP ). (2.2.1)

Then we have the system of six simultaneous equations we solve to find a steady-
state solution for the flux vector, v. These equations are

QG − v1 = 0, (2.2.2)

v1 − v2 = 0, (2.2.3)

v2 − v3 = 0, (2.2.4)

v3 − v4 = 0, (2.2.5)

2v4 − v5 = 0, (2.2.6)

v5 −QP = 0. (2.2.7)

Since we have only six equations for seven unknowns, the system is underdeter-
mined, and does not have a unique solution. As this system is a simple chain of
reactions, by adding in a single measured flux value, the system becomes fully
determined and we obtain a unique solution. External fluxes are easier to ex-
perimentally measure than internal fluxes, so we should choose either the uptake
rate of glucose, or the output rate of pyruvate as our measured flux value. In
this case, we choose to include a measured value for the glucose uptake rate, such
that

QG = x. (2.2.8)

We write down expressions for each unknown in terms of this measured flux
x, so that

v1 = x, (2.2.9)

v2 = x, (2.2.10)

v3 = x, (2.2.11)

v4 = x, (2.2.12)

v5 = 2x, (2.2.13)
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QG = x, (2.2.14)

QP = 2x. (2.2.15)

Then our steady-state flux vector is v = (x, x, x, x, 2x, x, 2x), or equivalently,

v = x(1, 1, 1, 1, 2, 1, 2), (2.2.16)

and this steady-state is unique for a given value of x. In this case, we only needed
to measure one additional flux to fully determine the system, and we had two
external fluxes to choose from. If we had values for both external fluxes, then
the system would become overdetermined. In that situation, if the two measured
values were not consistent, the model would then have no valid solutions. That is,
if QG was equal to x, but QP was not equal to 2x, then the system of equations
would become inconsistent and have no solutions. This could still potentially
be a useful result, as it would tell us that there was either a problem with our
experimentally measured flux values, or perhaps with our stoichiometry.

Measuring external fluxes is easier than measuring internal fluxes, and be-
ing able to fully determine the system by only measuring these external fluxes
would be a useful property. However, whilst we were able to fully determine the
glycolysis system using only measured external flux values, this is often not the
case.

2.2.2 When external flux knowledge is not enough

Examples such as the glycolysis system seen previously, where the system is fully
determined by its external fluxes are, unfortunately, the exception rather than the
rule. In general, with larger biological networks, we are unable to fully determine
a system simply by measuring its external fluxes. We may also find a system that
behaves in a way that, even if we should have enough external fluxes measured
to theoretically fully determine the system, we are still unable to find a unique
solution. One example of such a network is that shown in Figure 2.2. This
network has an internal loop, in which A ↔ B through two separate equations,
as well as the formation of A and output of B. By analysing the reactions as
described in Section 2.1.2, we are able to find the stoichiometric matrix for this
network,

Figure 2.2: Network diagram for an example metabolic network featuring a
feedback loop. In this network, A is transformed into B in one reaction, and B is
in turn transformed back into A though another reaction.

S =

(
−1 1 1 0
1 −1 0 −1

)
. (2.2.17)

The system, Sv = 0, has two equations for four unknown fluxes. We should
be able to fully determine this system by measuring the two external fluxes. If
we find v3 = a and v4 = b, then we have the system of equations

−v1 + v2 +QA = 0 (2.2.18)
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A
v1−→ B

B
v2−→ A

External input
QA−→ A

B
QB−→ External output

Table 2.2: Set of reactions describing the example metabolic network seen in
Figure 2.2. The reactions transforming A into B, and B into A are considered
separate irreversible reactions, rather than a single reversible reaction.

v1 − v2 −QB = 0 (2.2.19)

QA = a (2.2.20)

QB = b (2.2.21)

Then we have v2 − v1 = −a and v1 − v2 = b. Since v2 − v1 = −(v1 − v2), we
have a = b. As long as a = b, these two equations are always true, and there are
infinitely many solutions. If a ̸= b then the system of equations is inconsistent
and permits no solutions. In particular, if we wish to have a fully determined
system of linear equations, we need as many linearly independent equations as we
have variables. We see that, in the case that a = b, summing equations (2.2.18)
and (2.2.19), to find QA − QB = 0, and substituting in the value QA = a from
equation (2.2.20), we have exactly equation (2.2.21). This means we only have
three linearly independent equations, and our system remains underdetermined.
With only information about the external fluxes, we are unable to fully determine
this system to find a unique solution. Specifically, we are unable to determine
the values of the fluxes in the loop. Internal loops like the one seen in this are
common in metabolic networks, so we cannot rely on MFA to fully determine
systems when we only have data for the external flux values. Either we need
to use data of internal flux values to fully determine the system, or find some
other method of extracting relevant solutions from our stoichiometric data. Since
obtaining data on internal reactions may not be feasible, we should instead look
for other methods, such as flux balance analysis.

2.3 Flux balance analysis (FBA)

2.3.1 Introduction to flux balance analysis

Flux balance analysis (FBA) follows the same principles as the previously exam-
ined MFA. We begin with a stoichiometric matrix describing a metabolic network,
and assume mass balance for this network giving us the equations Sv = 0, where
S is the stoichiometric matrix, and v is the flux vector. Since this system is,
again, likely to be underdetermined, and permitting infinitely many solutions, we
must seek some way to extract relevant possible solutions. The idea of using linear
programming to seek optimal product yields was first proposed by Papoutsakis
[54], with regards to fermentation in butyric acid producing bacteria. Later, this
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idea was also used by Fell and Small [21] to study fat synthesis. The technique
we use in the coming section was first laid out by Varma et al. [74] and was ini-
tially known as stoichiometric flux balancing, but is now known as flux balance
analysis (FBA) [33]. Whilst with MFA we sought to find a unique solution by
taking measured values of fluxes, with FBA we wish to find the solution that
maximises a specific objective function. Most commonly, this objective function
is some linear combination of fluxes from the flux vector, i.e. of the form aTv.
This combination is typically chosen to represent some specific biological process,
such as maximising the production of biomass (which leads to growth), or some
other useful product, such as ATP (used for providing energy in reactions).

2.3.2 Glycolysis example

To illustrate this method, we re-examine the glycolysis example seen in Section
2.2.1. Since the key product in the glycolysis network is pyruvate, it would make
sense to choose our objective function to be maximising the flux that produces
this, v5. Then, with v as given in equation (2.2.1), we have a = (0, 0, 0, 0, 1, 0, 0),
which we wish to maximise. Along with our mass balance constraint, Sv = 0,
we form a linear programming problem,

max
v

v5 such that: Sv = 0, (2.3.1)

where S is the stoichiometric matrix seen in equation (2.1.1), and v is the flux
vector given in equation (2.2.1). This optimisation problem, however, is not
enough to find a relevant solution. Whilst there are feasible solutions, it is not
possible to find an optimum as the problem is not bounded above. We could say
that the optimal solution is to have all fluxes be infinite, but this is not biologically
relevant. In order to restrict our optimisation problem to find relevant solutions
we require inequality constraints on some or all of our fluxes. In general, we place
constraints all our fluxes, but, when we find a solution, we often see that only a
select few take values on their boundary, meaning we do not necessarily require
inequality constraints for all our fluxes. Inequality constraints are also required
to maintain biological relevance in the case of irreversible reactions. If a reaction
is irreversible, we cannot have a negative flux through it, so we set the constraint
that it must be greater than or equal to zero.

By looking at out network, we see that for steady-state, we need all fluxes in
the same direction, so the question of reversibility is not particularly important
for this example. We consider all fluxes to be irreversible, so that they take a
minimum value of zero, and have a maximum value of one. By adding this set of
constraints to the linear programming problem seen in equation (2.3.1), we form
the full FBA problem,

max
v

v5 such that: Sv = 0,

0 ≤ v1, v2, v3, v4, v5, QG, QP ≤ 1.

As described in Chapter 1, we can use Farkas’ Lemma to determine if such an
optimisation problem has solutions. Assuming solutions exist, the problem can be
solved using simplex methods, or using numerical algorithms such as the linprog
function in Matlab leading to the solution vT = (0.5, 0.5, 0.5, 0.5, 1, 0.5, 1). In
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this solution only v5 and QP have reached their maximum possible values. We
conclude that, under these conditions, the reactions relating to these fluxes are
the rate-limiting steps in the system. As QP is simply a process by which pyruvate
is removed, and in this example, not a biological one, we discount it somewhat
and consider only v5 as the rate-limiting step. If we increased the maximum
permitted values for v5 and QP , the fluxes for the rest of the system would also
increase up until the point when they also reached their maxima and became
rate-limiting steps.

After performing FBA for this particular network with varied maximum values
for fluxes, we note that every solution is simply a linear multiple of previously
found solutions. In particular, they are all of the form seen in equation (2.2.16),
which is the solution found for MFA. In simple straight line networks lacking
branches, it is fairly obvious that this would occur. We see that the mass balance
equations for this network, (2.2.2)–(2.2.7), simply reduce to QG = v1 = v2 = v2 =
v3 = v4, and 2v4 = v5 = QP . For one-to-one reactions such as these, the mass
balance equations always reduce in this way. In a larger network it would be
possible, and in many cases beneficial, to simplify large chains like this down to
a single reaction. In this case, we would represent it as a reaction that produces
half as much pyruvate as it uptake glucose, i.e. the reaction

2Glucose→ 1 Pyruvate. (2.3.2)

We should also note that it is possible to choose our minima and maxima in
such a way as to provide the system with no solutions. For example, if we set
the minimum flux for v1 to be 1, but the maximum flux for v2 to be less than
1, there would be no way to satisfy the mass balance whilst adhering to these
constraints, yielding no viable solutions. Whilst for a simple network like this,
it would be obvious when there are conflicting constraints, with larger networks,
such conflicts could be far less obvious, so care must always be taken when placing
these constraints on fluxes. One final thing to note about this network is that
changing the objective function has very little effect on the solution provided. As
long as we attempt to maximise some flux, or positive sum of fluxes, we always
find the same solution. In the case that we attempt to minimise a flux, then we
obtain the solution in which all fluxes are zero.

2.3.3 Moving from an ODE model to an FBA model

Until now we have built our stoichiometric matrices simply from the list of reac-
tions in a system, however it is also possible to generate this matrix from an ODE
system. This is also useful to examine, as it allows us to directly compare aspects
of our FBA models with corresponding parts of an ODE model. To do this, we
first formulate an ODE model for our glycolysis network seen in Figure 2.1. We
know the reactions that are included in our model, from Table 2.1, so all we need
is some way to model the reaction rates. Since all of the reactions in this network
are enzyme catalysed, it is appropriate to use Michaelis-Menten kinetics to model
them. In this model we use cX (X ∈ [A,B,C,D,E,F]) to represent concentrations
of metabolites with the notation

[Glucose] = cA,
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[Glucose 6-phosphate] = cB,

[Fructose 6-phosphate] = cC ,

[Fructose 1,6-biphosphate] = cD,

[Phosphoglyceraldehyde] = cE,

[Pyruvate] = cF . (2.3.3)

We have several parameters in this model. Here VXmax refers to the maximum
reaction rate for the reaction involving X, whilst KXm is the Michaelis coefficient
for the reaction involving X. There are also two reactions transporting metabo-
lites in and out of the system. These are simply labelled as fin(cA) for the uptake
of glucose and fout(cF ) for the output of pyruvate. Then our ODE model is

dcA
dt

= fin(cA)−
VAmaxcA
KAm + cA

, (2.3.4)

dcB
dt

=
VAmaxcA
KAm + cA

− VBmaxcB
KBm + cB

, (2.3.5)

dcC
dt

=
VBmaxcB
KBm + cB

− VCmaxcC
KCm + cC

, (2.3.6)

dcD
dt

=
VCmaxcC
KCm + cC

− VDmaxcD
KDm + cD

, (2.3.7)

dcE
dt

= 2
VDmaxcD
KDm + cD

− VEmaxcE
KEm + cE

, (2.3.8)

dcF
dt

=
VEmaxcE
KEm + cE

− fout(cF ). (2.3.9)

For this set of ODEs, we assume that there exists a vector of concentrations,
c∗ = (c∗A, c

∗
B, c

∗
C , c

∗
D, c

∗
E, c

∗
F ) in which the system attains a steady-state. That is,

for which all time derivatives are equal to zero. By substituting these values in,
we obtain the equations

0 = fin(cA∗)−
VAmaxc

∗
A

KAm + c∗A
, (2.3.10)

0 =
VAmaxc

∗
A

KAm + c∗A
− VBmaxc

∗
B

KBm + c∗B
, (2.3.11)

0 =
VBmaxc

∗
B

KBm + c∗B
− VCmaxc

∗
C

KCm + c∗C
, (2.3.12)

0 =
VCmaxc

∗
C

KCm + c∗C
− VDmaxc

∗
D

KDm + c∗D
, (2.3.13)

0 = 2
VDmaxc

∗
D

KDm + c∗D
− VEmaxc

∗
E

KEm + c∗E
, (2.3.14)

0 =
VEmaxc

∗
E

KEm + c∗E
− fout(c

∗
F ). (2.3.15)

It would be possible, at this point, to place constraints on our parameters and
steady-state concentrations, and then perform an optimisation problem analogous
to the one used in FBA, however since these functions are non-linear, we would
require non-linear programming to find an optimal value, and this is undesirable.
Instead, we also note that each Michaelis-Menten term is a constant, and could
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be replaced by a single flux value, like those seen in our earlier mass balance
equations. For example, in equation (2.3.14), we replace the two non-linear terms
with

VDmaxc
∗
D

KDm + c∗D
= v4, (2.3.16)

VEmaxc
∗
E

KEm + c∗E
= v5, (2.3.17)

so that the equation becomes 0 = 2v4 − v5. By replacing each flux term in this
manner, we obtain exactly the set of equations (2.2.2)–(2.2.7), which is our set
of mass balance constraints.

From here, we set the minimum and maximum values for the fluxes as usual.
Notably, if we had VXmax parameters for our initial ODEs, we could use these
as the maximum values for our fluxes in FBA, as in Michaelis-Menten kinetics,
these represent the maximum possible flux value. Finally, we choose an objective
function for this optimisation. In this way, we have formed an FBA model and
it is clear now how a flux balance model relates to an ODE model for the same
network.

2.3.4 FBA in terms of the ODEs

When we perform FBA, we are finding an optimal steady-state for our metabolic
network. Having clearly illustrated the link between an ODE model and the sto-
ichiometric matrix used in FBA, it would be worth attempting to use equivalent
optimisation methods on the steady-state of our ODE model, seen in equations
(2.3.10)–(2.3.15) to try and achieve the same results. The method of Lagrange
multipliers could be used to find the concentrations that correspond to the steady-
state in which a flux (or fluxes) specified by an objective function are maximal.
For now we assume all parameters in the equations to be constant, and we max-
imize across the concentrations only. For our glycolysis example, we can set up
this problem with relative ease. First we choose an objective function to max-
imise. We choose the same objective function as in our previous flux balance
mode seen in equation (2.3.2), v5. In our ODE model, we have that v5 is equal
to VEmaxcE

KEm+cE
, so we choose that to be our objective function. For constraints, we

simply use the steady-state equations for our ODE, already derived in equations
(2.3.10)–(2.3.15). For ease of notation, from here we denote the Michaelis-Menten
functions as

gX(cX) =
VXmaxcX
KXm + cX

, (2.3.18)

for X ∈ (A,B,C,D,E, F ).
Then we wish to maximize gE(E), subject to the constraints

fin(A)− gA(cA) = 0, (2.3.19)

gA(cA)− gB(cB) = 0, (2.3.20)

gB(cB)− gC(cC) = 0, (2.3.21)

gC(cC)− gD(cD) = 0, (2.3.22)

2gD(cD)− gE(cE) = 0, (2.3.23)
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gE(cE)− fout(F ) = 0. (2.3.24)

Using the method of Lagrange multipliers, we find a solution to the problem
where

∇Λ(A,B,C,D,E, F, λ1, λ2, λ3, λ4, λ5, λ6) = 0. (2.3.25)

The lagrangian is

Λ(A,B,C,D,E, F, λ1, λ2, λ3, λ4, λ5, λ6) =

gE(cE) + λ1(fin(A)− gA(cA)) + λ2(gA(cA)− gB(cB)) + λ3(gB(cB)− gC(cC))+

λ4(gC(cC)− gD(cD)) + λ5(2gD(cD)− gE(cE)) + λ6(gE(cE)− fout(F )), (2.3.26)

and the operator, ∇, is

∇ = (∂cA, ∂cB, ..., ∂cF , ∂λ1, ∂λ2, ..., ∂λ6). (2.3.27)

This problem should theoretically lead us to the same solutions that we found
by the FBA model shown in equations (2.3.2). Without attempting to solve the
problem presented, it is clear that whilst fE(E) has a theoretical maximum of
VEmax, this is only achieved at an infinite concentration of E, regardless of all
other values, which is not biologically feasible. We would also need to consider
maximum concentration values in order to find useful solutions using this method.
We also note that the minimum solution, in which all concentrations (and there-
fore fluxes) are equal to zero would also be a valid solution to equation (2.3.25), so
we would need to be careful that we are indeed obtaining the required maximum.

In the problem formulated in equation (2.3.25), we attempt to maximise the
flux v5 by finding optimal concentrations and treating our parameters as con-
stant. Effectively we have found a steady-state for a system defined uniquely by
the parameters in the ODEs, though in this case it requires infinite concentra-
tions. It may also be of interest to perform our maximisation from an alternative
perspective. We seek optimal flux distributions whilst treating the concentrations
as constant and maximising over the parameters. We set up another Lagrange
multipliers problem to find solutions in this way, in which Λ becomes a function
of the parameters VXmax and KXm rather than the concentrations.

In the example presented, this maximisation is trivial. We have 2 parameters
for each flux, VXmax and KXm. In order to maximise a specific flux, we simply set
the VXmax to be arbitrarily high, and the KXm to be arbitrarily close to zero. As
in the previous problem, and indeed in our FBA models, we see that we would
need to set maximum values for our parameters to prevent infinite fluxes.

In actuality, it is not possible to separate the concentrations and parameters
in FBA in this way, and the optimisation would instead need to be considered
as acting on both. For our glycolysis example, this gives us ten parameters and
six concentrations to maximise over (not including any parameters that might be
included in our general functions for the input and output fluxes). This starts to
become very difficult to solve using Lagrange methods for optimisation. Indeed,
one of the strengths of FBA is that it turns these complicated non-linear maximi-
sation problems into much simpler linear programming problems that are, com-
putationally, far easier to solve. Having now thoroughly examined this straight
line glycolysis system, we next move to examine a metabolic network with two
branches.
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A
v1−→ B

A
v2−→ C

External input
QA−→ A

B
QB−→ External output

C
QC−→ External output

Table 2.3: Set of reactions describing the example metabolic network seen in
Figure 2.3. There metabolite A is transformed into either B or C in separate
reactions.

2.4 A branching network

Consider a network in which a single metabolite A, is changed into B or C, de-
pending on which reaction it undergoes, as shown in Figure 2.3, with the reactions
listed in Table 2.3. This is a simple example of a branching network. To form an

Figure 2.3: Network diagram for the branching network, in which A is trans-
formed into either B or C.

ODE model for this network, we could use Michaelis-Menten kinetics to model
the reaction rates, as we did in the prior example, or we could instead use the
law of mass action for a simpler set of ODEs. For now, we refer to the fluxes as
general functions of the concentrations, as the exact kinetics are not required to
form FBA models. The system of ODEs is given as

dcA
dt

= −v1(cA)− v2(cA) + vin, (2.4.1)

dcB
dt

= v1(cA)− vB−out, (2.4.2)

dcC
dt

= v2(cA)− vC−out, (2.4.3)

where v1 and v2 are functions that depend on the concentration of A, and vin,
vB−out and vC−out are external reactions that add A and remove the products B
and C respectively. These could be constants or also functions of concentrations.

2.4.1 FBA

To perform FBA on this network, we find the stoichiometric matrix, whether
by inspection of the network, or by converting the ODE model (2.4.1)–(2.4.3)
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through the process described in Section 2.3.3. Either method produces the same
stoichiometric matrix,

S =

−1 −1 1 0 0
1 0 0 −1 0
0 1 0 0 −1

 , (2.4.4)

for the flux vector, v = (v1, v2, QA, QB, QC). For the purposes of FBA, we con-
strain all the fluxes to be between zero and one. It is worth considering two
separate objective functions for this system. In the first we maximise flux to-
wards B and in the second we maximise flux towards C. In the first case, we
maximise v1, and in the second we maximise v2. Then we formulate our linear
programming problem

max
v

aTv such that: − v1 − v2 + v3 = 0,

v1 − v4 = 0,

v2 − v5 = 0,

0 ≤ v1, v2, QA, QB, QC ≤ 1. (2.4.5)

Here, the first three constraints are the expanded form of Sv = 0, where S is
the stoichiometric matrix given in equation (2.4.4), and v = (v1, v2, QA, QB, QC).
When maximising v1, we use aT = (1, 0, 0, 0, 0), and when maximising v2 we use
aT = (0, 1, 0, 0, 0). The unique solutions to these FBA problems are

v1 v2 QA QB QC

( )vB = 1, 0, 1, 1, 0 ,
( )vC = 0, 1, 1, 0, 1 ,

(2.4.6)

where vB is the solution maximising flux towards B, and vC is the solution max-
imising flux towards C. In the case of maximising flux towards B, we see that v2
has been completely inhibited in order to maximise flux through v1. In the case
of maximising flux towards C, the opposite has happened, and v1 has been inhib-
ited to maximise flux through v2. It is obvious to see that any flux distribution
that satisfies steady-state conditions must be some linear combination of these
two solutions. This example highlights two things. Firstly, the results are heavily
dependent on the objective function chosen by the modeler, and are subject to
their bias. To illustrate the second, we consider the ODEs, (2.4.1)–(2.4.3), again.

2.4.2 Effects on the ODEs

Let us examine in more detail the first state, in which we maximised v1 at the
expense of v2. Equation (2.4.1) tells us how the concentration of A changes in
time. If we try and fit our FBA solution into these equations, we find that in
the steady-state, we have 0 = −v1(cA) − v2(cA) + vin, where vin = 1, v1 = 1
and v2 = 0 as given by FBA. We see potential difficulties here with fluxes being
completely inhibited by FBA. We would require some value of cA such that both
v1(cA) = 1 and v2(cA) = 0. Let us first consider the law of mass action. In this
case we have v1 = k1cA = 1 and v2 = k2cA = 0. It is clear that in order for both
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these equations to hold true, we must have k2 = 0. In other words, the second
reaction must be completely inhibited at all times in order for it to have zero flux,
when the first reaction has a non-zero flux. We could also consider modelling the
fluxes with Michaelis-Menten kinetics. In this case, we would have

v1 =
Vmax1cA
K1 + cA

, (2.4.7)

v2 =
Vmax2cA
K2 + cA

. (2.4.8)

Here we find similar results. In order for the second flux, v2 to be zero when v1
is non-zero, we require Vmax2 to be equal to zero.

Flux balance analysis has the potential to provide us with solutions where
certain reactions are completely inhibited, but biologically we know that they
cannot be. They may be required to provide other products that the organism
needs to grow or survive. In cases like these, the obvious solution for FBA would
be to have a non-zero lower bound for fluxes in branching paths, but it may
be very difficult to provide one which is suitable. We also note that if we are
performing FBA and considering it to only be acting on the concentrations of
metabolite, and not on the parameters within an ODE system, we may stumble
across biologically impossible solutions. For our simple branching problem, if we
found a solution where v1 = 0.6 and v2 = 0.4, for example, there is no guarantee
that there exists a corresponding cA in an ODE system that would provide the
same solution.

Examining this branching network has provided two key points we must be
aware of when using FBA. The first is that different objective functions lead to
different solutions. Since the choice of objective function has such a large effect
on the results provided, we must be careful to choose one that provides relevant
results. Schuetz et al. [67] evaluated a range of different objective functions
for the same network in an attempt to find one that provided the results most
accurate to experimental data, however it should be noted that there is no single
objective function that provides the best results in every situation.

Secondly, we learned that the results provided by FBA may not be feasible in
an equivalent ODE model. In particular FBA provides results that would require
the complete inhibition of reactions, which may not always be biologically feasible.
In many cases, the theoretical optimum values for objective functions provided
by FBA will not be possible in a real organism.

Now that we have examined a system with a branch, we next examine a net-
work containing a loop. That is a network containing a reaction that transforms
one metabolite, A, into another metabolite B, but also contains a second reaction
transforming B back into A. We have already seen such a network in our MFA
analysis seen in Section 2.2.2. Rather than examining this same system again,
we consider a network with the additional feature of combining two metabolites.

2.5 A network with a feedback loop

Consider the network shown in Figure 2.4. Here we have a system which uptakes
a source of A. This A is then transformed into B, and B is, in turn, transformed
back into A, creating a loop. Additionally the two metabolites, A and B are
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combined to form C. Finally this C is output. These reactions are given in Table
2.4.

Figure 2.4: Network diagram for the looping network in which A is transformed
into B. The two are then combined to form C, which is then outputted through
a separate reaction.

We form an ODE model for this network. External reactions are given as
general functions, fin and fout. Whilst remaining reaction rates are modelled
using the law of mass action. As we have three metabolites, our ODE model
consists of three equations,

dcA
dt

= fin(cA)− k1cA + k2cB − k3cAcB, (2.5.1)

dcB
dt

= k1cA − k2cB − k3cAcB, (2.5.2)

dcC
dt

= k3cAcB − fout(cC). (2.5.3)

2.5.1 FBA

Suppose we wish to find the steady-state that maximises the production of C,
that is, maximising the flux v3. To do this, we perform FBA on the network.

A
v1−→ B

B
v2−→ A

A+B
v3−→ C

External input
QA−→ A

C
QC−→ External output

Table 2.4: Set of reactions describing the example metabolic network seen in
Figure 2.4.
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First we form the stoichiometric matrix

S =

−1 1 −1 1 0
1 −1 −1 0 0
0 0 1 0 −1

 . (2.5.4)

The flux vector for this matrix is v = (v1, v2, v3, QA, QC)
T . Next we define an

objective function, aTv = v3, where v3 is the flux in to C that we wish to
maximise. As in the previous examples, we constrain all fluxes to be between
zero and one. We now formulate the linear programming problem for FBA

max
v

v3 such that: − v1 + v2 − v3 +QA = 0, (2.5.5)

v1 − v2 − v3 = 0,

v3 −QC = 0,

0 ≤ v1, v2, v3, QA, QC ≤ 1. (2.5.6)

One possible solution for this optimisation problem is v = (0.75, 0.25, 0.5, 1.0.5).
However, we find that this solution is not unique. Indeed, other solutions, such
as v2 = (0.5, 0, 0.5, 1, 0.5), also satisfy the optimisation problem. The values for
v3, QA and QC remain fixed across all solutions, but there is variation in v1 and
v2. We would like to see how much these two fluxes are able to vary, or indeed,
if any of the other fluxes are variable, whilst still providing a solution to the
optimisation problem (2.5.6).

2.5.2 Flux variability analysis

Flux variability analysis (FVA), first set out by Mahadevan et al. [44], is a
technique to investigate these variations in solutions to FBA problems. By per-
forming a secondary optimisation problem, we find the range of variation in a
flux. Specifically, we learn how much a flux can be varied whilst still maintaining
an optimal steady-state (according to our objective function). FVA is a two step
process. In the first step, we solve an FBA problem to find an optimal value for
some objective function, so that aTv = Amax. In the second step, we form a new
optimisation problem, with the additional constraint that aTv = Amax. Then
all solutions of this new optimisation problem maximise the original objective
function. The objective function for the new optimisation problem is to max-
imise or minimise a specific flux, so that bTv is a single flux from our flux vector.
By repeating this step for each individual flux, we see the range of variability
allowed for each flux whilst still maintaining an optimal solution for our initial
FBA problem. This process is summarised as

Maximise aTv such that: Sv = 0,
vmin ≤ v ≤ vmax.
max

v
aTv = Amax

for All elements of v, vn do
Maximise and minimise vn such that: Sv = 0,
vmin ≤ v ≤ vmax,
aTv = Amax

end for
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For our looping network, the maximal value for our initial objective function
is v3 = 0.5. Then by forming four additional optimisation problems with v3 = 0.5
as an additional constraint, we find the maximal and minimal values that v1 and
v2 are able to take whilst still maintaining this maximal production of C. These
optimisation problems are of the form

max/min
v

v1/v2 such that: − v1 + v2 − v3 +QA = 0,

v1 − v2 − v3 = 0,

v3 −QC = 0,

v3 = 0.5,

0 ≤ v1, v2, v3, QA, QC ≤ 1. (2.5.7)

Maximising either v1 or v2 both lead to the same solution, vT = (1, 0.5, 0.5, 1, 0.5).
Similarly, minimising either v1 or v2 both lead to the same solution where vT =
(0.5, 0, 0.5, 1, 0.5). We see that v1 and v2 have a variability range of 0.5, found by
subtracting their maximal value from their minimal one. We also apply FVA for
the three other fluxes, v3, QA, and QC , but find that their range of variabilities
are all zero.

The second constraint in our optimisation problem, (2.5.6), is v1−v2−v3 = 0.
Rearranged, this gives v1 − v3 = v2. In our optimal solutions, v3 is always equal
to 0.5, so we substitute that value in to find v1 − 0.5 = v2. That is, as long as v1
is 0.5 larger than v2, we have an optimal steady-state. Combining this with the
fact that no fluxes other than v1 or v2 can vary in an optimal state, we are able
to write down the general form of a solution to the FBA problem (2.5.6),

vT = (0.5, 0, 0.5, 1, 0.5) + a(1, 1, 0, 0, 0), (2.5.8)

where 0 ≤ a ≤ 0.5 (given by the variability range of v1 and v2). FBA alone is
not able to give us a value for a, as we any solution of this form satisfies the
optimisation problem.

We find now that, even among our optimal solutions according to FBA, we still
have some degeneracy, allowing multiple solutions to attain the same maximal
value for the objective function. This means that, even with FBA, we may not
be able to find a unique steady-state solution. By applying additional techniques
to explore these alternative optimal solutions, such as FVA, we are still able to
quantify the behaviour of the network in an optimal state. In particular we are
able to write the flux vector v as some positive sum of other flux vectors, in order
to attain a general solution to the FBA problem. Every solution of this form
provides an optimal value for the objective function. We are always able to find
a general form for the optimal solution in this way, though with larger networks,
simply doing this by inspection proves difficult. In the next section we examine
a network where the general behaviour is not immediately apparent.

2.6 A network with multiple combining steps

Consider another network shown in the network diagram in Figure 2.5. This
example has some similarities to our previous looping example, where we had
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A
v1−→ B

B
v2−→ C

A+C
v3−→ D

B+D
v4−→ E

External input
QA−→ A

E
QE−→ External output

Table 2.5: Set of reactions describing the example metabolic network seen in
Figure 2.5. Here we have two reactions combining metabolites, v3 and v4.

two metabolites combining to form a product, however here there are two stages
in which metabolites combine, and no feedback loops. The reactions for this
network are given in Table 2.5. As before we shall examine the behaviour of this
system in a steady-state by performing FBA. In this case, it is not immediately
obvious how the fluxes are distributed in a steady-state, so FBA should provide
some useful insight.

The stoichiometric matrix S for this network is

S =


−1 0 −1 0 1 0
1 −1 0 −1 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 0 −1

 , (2.6.1)

corresponding to the flux vector, v = (v1, v2, v3, v4, QA, QE). Seeking to maximise
the production of E, via the flux combining C and D, we choose the objective
function aTv = v4. Combining our mass balance constraint Sv = 0 and our
usual minimum and maximum flux values (zero and one respectively) with this
objective function gives us an FBA problem,

max
v

v4 such that: − v1 − v3 +QA = 0,

v1 − v2 − v3 = 0,

v2 − v3 = 0,

Figure 2.5: Network diagram for a more complex branching network.
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v3 − v4 = 0,

v4 −QE = 0,

0 ≤ vn, Qn ≤ 1. (2.6.2)

Solving this optimisation problem, we find a solution where

v = (2/3, 1/3, 1/3, 1/3, 1, 1/3).

Performing FVA on this network, as described in Section 2.5.2, we find that
every flux has a variability range of zero. That is, we cannot vary any flux in
this network from these values whilst still maintaining a state that maximises
v4. Therefore, this solution is unique. Since this network is more complex than
previous examples, we cannot see so easily if other objective functions could
potentially yield different optimal flux vectors. For previous networks, we were
able to write down a general form of steady-state flux vectors for a network and
we would like to be able to do the same for this network.

2.6.1 Elementary Mode Analysis

In previous networks, we have found general ways of writing down possible flux
distributions for the examined networks in steady-states in terms of simpler flux
distributions. In our first FBA example in Section 2.3, we found that all solutions
were simply multiples of the first solution we found. For our system with an
internal loop, in Section 2.5, we were able to split the solutions into a path
through the system and an internal loop. In the branching example seen in
Section 2.4, flux distributions could trivially be written as the sum of the fluxes
through each branch. This is known as elementary modes analysis, as described
by Schuster et al. [68]. By decomposing solutions into these “elementary modes”,
we gain additional knowledge of how metabolic networks behave in steady-state.

In general a flux vector v categorises its elements as either reversible or ir-
reversible. Whilst reversible reactions have negative flux values, irreversible re-
actions must maintain a flux value vn ≥ 0. These are known as reversibility
conditions. Every flux vector v that satisfies these reversibility conditions is an
allowable flux state for a network. A flux vector v that satisfies these reversibility
conditions and also satisfies Sv = 0, i.e. satisfies the mass balance condition, is
known as a flux mode. Flux modes represent possible steady-state flux distribu-
tions for a network. A solution to a FBA problem is a flux mode, but not all flux
modes are solutions to FBA problems. Often a flux mode is able to be written
as the positive sum of two or more other modes that are not scalar multiples of
each other, that is, it can be written as

∑
i aivi, where vi is another flux mode,

and ai are coefficients. These coefficients must be positive, that is we must have
ai ≥ 0∀i. This is to preserve the idea of irreversibility in reactions, and allows us
to keep a biological relevance. A mode which can be written as the sum of other
modes in this way is called decomposable. Some modes are not decomposable.
These modes are referred to as “elementary modes”. In the case of the branching
network described in Section 2.4, there are two elementary modes,

m1 = (1, 0, 1, 1, 0)T , (2.6.3)

m2 = (0, 1, 1, 0, 1)T , (2.6.4)

54



in which the first mode, m1, represents the flux through the top branch, and m2

represents the flux through the second branch.

Every metabolic network has a finite set of elementary modes. For a given
stoichiometric matrix and set of reversibility conditions, we form a set of elemen-
tary modes that are found from this network. These elementary modes satisfy
both Sv = 0 and the irreversibility conditions. This set of elementary modes
forms a spanning set for the solution space of a linear programming problem
using these conditions. Every solution for any given objective function can be
written as a positive sum of these elementary modes. This minimal set of ele-
mentary modes is unique up to scalar multiples, and all the elementary modes
are called systematically independent, which means no elementary mode is able
to be written as a positive sum of the other elementary modes. If it could, it
would be considered decomposable and would, therefore, not be an elementary
mode. However, whilst the elementary modes are systemically independent, they
are not necessarily linearly independent. Whilst they do form a spanning set, it
is not a necessary requirement that this set is also a basis. Often we find more
elementary modes than would be required to form a basis. In the case of larger
biological systems, it is common for there to be more elementary modes than
there are fluxes within the network. Schuster and Hilgetag [69] showed that these
elementary modes are analogous to a concept in linear programming known as
extreme pathways. When we are performing linear programming, the constraints
we add restrict our solution space to a polyhedral cone. This cone has a set of
generating vectors called extreme pathways. These extreme pathways are the
minimal set of systemically independent vectors that are used to describe this
polyhedral cone. They are also unique up to scalar multiplication. It is more
common to refer to extreme pathways as elementary modes when dealing with
FBA.

Schilling et al. [65] described the method of using FBA to provide solutions
in terms of these elementary modes. An earlier paper also laid out an algorithm
to find the elementary modes for a network by Schilling et al. [66]. Applying
this algorithm, manually or using software packages such as CellNetAnalyzer[38],
to our current example described in equation (2.6.2) presents us with a single
elementary mode, m = (2, 1, 1, 1, 3, 1)T . As this is the only elementary mode
for this system, any solution to our flux balance analysis problem must be some
multiple of this mode. That is, v = λ(2, 1, 1, 1, 3, 1)T for some λ. Finding the
elementary mode for this network has provided us with additional insight into
how the network behaves in steady-state. We find that there is a single route
metabolites take to get through the network, and the output of the system is
only a third of the input. Looking towards optimising any flux in this network,
we see that if we increase the flux in any step, we must also increase all the other
fluxes proportionally in order to maintain our mass balance. For any objective
function, the optimal solution always takes the same form, and there is no freedom
of choice for our flux vectors.

Elementary modes analysis allows us to write general solutions to an FBA
problem in terms of other non-decomposable solutions. These elementary modes
can be seen as pathways, or routes, that flow takes through the network from
inputs to outputs. By decomposing a solution into the sum of these modes we
quickly gain an obvious physical interpretation of how the flux is distributed in
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a particular solution. A decomposition of a solution may not be unique, but still
provides a physical insight into the behaviour of a network in an optimal state.

2.7 A network with multiple branches

All the previous examples of metabolic networks we have studied share one thing
in common. Each network contained only a single elementary mode that led from
each input to each output. For the glycolysis example in Section 2.3.2, and the
combining example in Section 2.6 this was a single mode leading from input to
output. The looping example seen in Section 2.5 had a second mode containing
the reactions in the loop, allowing some freedom in flux levels for the two reactions
contained in it. Our branching example from Section 2.4 had a single mode
to each of the two outputs. Let us now instead examine a network that has
multiple inputs, multiple outputs, and multiple elementary modes leading from
each input to each output. This network is shown in the network diagram, Figure
2.6, and the reactions are listed in Table 2.6. We form an ODE model for this

Figure 2.6: Network diagram for an example with multiple branches. Here
we have two inputs, A and B, with two outputs, E, and F . Each intermediate
metabolite, C, and D, is created by both input, and used to create either output.

network, using the law of mass action to model internal reaction rates. This model
consists of six equations, where the variables cX (X ∈ [A,B,C,D,E,F]) represent
the concentrations of the metabolites,

dcA
dt

= QA − k1cA − k2cA, (2.7.1)

dcB
dt

= QB − k3cB − k4cB, (2.7.2)

dcC
dt

= k1cA + k3cB − k5cC − k6cC , (2.7.3)

dcD
dt

= k2cA + k4cB − k7cD − k8cD, (2.7.4)

dcE
dt

= k5cC + k7cD −QE, (2.7.5)

dcF
dt

= k6cC + k8cD −QF . (2.7.6)

In all the previous networks we examined, we had a single uptake flux. In this
example, we have two. If the maximum values of these uptake fluxes are con-
strained to be one, then the maximum overall uptake of the network is two. In

56



A
v1−→ C

A
v2−→ D

B
v3−→ C

B
v4−→ D

C
v5−→ E

C
v6−→ F

D
v7−→ E

D
v8−→ F

External input
QA−→ A

External input
QB−→ B

E
QE−→ External output

F
QF−→ External output

Table 2.6: Set of reactions describing the example metabolic network seen in
Figure 2.6. Here we have two inputs and two outputs, and multiple reactions
producing C, D, E, and F .

order to accommodate for this, where we would usually constrain the maximum
values of our output fluxes to be one, we instead constrain them to be two. In this
way, if we wish to maximise the production of either E or F , this optimal value
is not limited by the maximum amount the network is able to output, allowing
more freedom in our FBA solutions. Then our new maximum and minimum flux
values are

0 ≤ vn, QA, QB ≤ 1,

0 ≤ QE, QF ≤ 2. (2.7.7)

The stoichiometric matrix for this network is

S =


−1 −1 0 0 0 0 0 0 1 0 0 0
0 0 −1 −1 0 0 0 0 0 1 0 0
1 0 1 0 −1 −1 0 0 0 0 0 0
0 1 0 1 0 0 −1 −1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 −1 0
0 0 0 0 0 1 0 1 0 0 0 −1

 , (2.7.8)

for the flux vector v = (v1, v2, v3, v4, v5, v6, v7, v8, QA, QB, QE, QF ). First, we con-
sider maximising the flux in to E. Due to the symmetry of the system, we could
also consider maximising in to F , but the results would be nearly identical. In
this example, the flux towards E is the sum of two fluxes, v5 and v7, so our
objective function becomes aTv = v5 + v7. Then our FBA problem is

max
v

(v5 + v7) such that: Sv = 0,

0 ≤ vn, QA, QB ≤ 1,
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0 ≤ QE, QF ≤ 2. (2.7.9)

Using the linprog function in Matlab, we find an example solution of

v = (0.5, 0.5, 0.5, 0.5, 1, 0, 1, 0, 1, 1, 2, 0),

though we know this is not unique. In this solution, the flux between A and
B and C and D is shared equally across all v1, v2, v3 an v4, then all the flux
is directed from C and D towards E, with none of it going to F . Performing a
further flux variability analysis upon these fluxes leads us to find that it is possible
for v1, v2, v3, and v4 to be varied between zero and one whilst maintaining the
maximised steady-state, however the remaining fluxes have zero variability whilst
maintaining the maximised steady-state. Hence we see that it doesn’t matter
which route the metabolites take through the left half of the system, but in order
to achieve a maximised steady-state, as much of the flux as possible must be sent
to E rather than F in the right half.

We now examine the effects of flux balance analysis upon the ODE model
of the system. Let us continue to examine the situation in which we wish to
maximise the flux in to E. In this network, this means we wish to maximise
k5cC + k7cD.

Rearranging equations (2.7.3) and (2.7.4) and setting the time derivatives to
zero gives

k1cA + k3cB = cC(k5 + k6) (2.7.10)

k2cA + k3cB = cD(k7 + k8). (2.7.11)

From these equations we see that to increase k5cC we must either lower k6cC or
increase k1cA+k3cB to maintain mass balance. Similarly to increase k7cD we must
either lower k8cD or increase k2cA + k3cB. Decreasing k6cC or k8cD is effectively
redirecting the flux to F towards E. Increasing the other fluxes increases the
overall flow through the system, and would also require us to increase the fluxes
into the system. If we are unable to increase the uptake rates, then the only
possible optimisation is redirecting the flux to F towards E instead.

2.7.1 Elementary modes

As in our previous example, in Section 2.6.1, we find the set elementary modes
for this network using CellNetAnalyzer [38]. For the current network, seen in
Figure 2.6, we find 8 such modes, each representing a different route through the
system. Labelling these modes mn for n = 1–8, we have

m1 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0),

m2 = (0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0),

m3 = (0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0),

m4 = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0),

m5 = (1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1),

m6 = (0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1),

m7 = (0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1),
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m8 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1). (2.7.12)

Here, the first four modes are the modes that produce E as a product, and the
second four are the modes producing F . The modes taking up A are m1, m2,
m5 and m6. The rest are the modes that take up B. Any flux distribution that
satisfies the mass balance condition is a linear combination of these elementary
modes, and we examine what effects our optimisation would have on these modes.
For example, it is obvious that maximising the flux to E would require us to
increase the activity through any of m1 to m4. Increasing any of these modes
increases the flux towards E, and this is the same as simply increasing the amount
of flux throughout the network as described earlier.

To redirect flux from F to E also requires lowering the activity of another
pathway. Modes m2 and m6 direct flux from A towards D, and then from D
to either product, E or F . One way to redirect flux from F to E would be to
lower the activity of m6 and increase that of m2. Each mode, m1 to m4 has a
corresponding mode inm5 tom8 with the same relationship, where increasing the
activity in one whilst decreasing the activity in the other represents redirecting
the flux from F to E

This network has eight pathways for twelve fluxes and six metabolites, so
we still have less pathways than fluxes overall. If we were to add an additional
pair of fluxes representing a reversible reaction between C and D we would have
fourteen fluxes (assuming we model the reversible reaction as two separate irre-
versible fluxes) and six metabolites. Calculating the elementary modes for this
new network, we gives us seventeen modes. Even in a network this size, it is
entirely possible for the number of elementary modes to exceed the number of
fluxes. In a genome scale model, the number of modes becomes so large that the
complete set of elementary modes does not provide a useful basis for analysis,
and instead we would restrict ourselves to examining a specific subset of modes,
such as all the modes that produce a certain product.

2.8 More efficient routes

In the previous example there were multiple routes from an input to an output,
but each was equally efficient i.e. each mode had the same level of output flux
per unit input flux. In the network shown in Figure 2.7, with reactions given in
Table 2.7 we have an example of a network with routes of different efficiencies.
Specifically, the upper route produces two units output flux per unit input flux,
whilst the lower route only produces one unit output flux per unit input flux.
Here, A is changed into either two B or one C, then each B and C are changed
into D. In this network it is obvious that the route through B is more efficient
at producing D, but we should still check how FBA would behave with such a
system. We form an FBA problem as usual, with the stoichiometric matrix

S =


−1 −1 0 0 1 0
2 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 1 0 −1

 , (2.8.1)

for the flux vector v = (v1, v2, v3, v4, QA, QD). We choose an objective function
aTv = v3 + v4 to maximise the production of D. Initially, we constrain each flux
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A
v1−→ 2B

A
v2−→ C

B
v3−→ D

C
v4−→ D

External input
QA−→ A

D
QD−→ External output

Table 2.7: Set of reactions describing the example metabolic network seen in
Figure 2.6. Here, the upper branch produces twice as much D as the lower branch
for the same input A.

to be between zero and one. Then the FBA problem is

max
v

v3 + v4 such that: − v1 − v2 +QA = 0,

2v1 − v3 = 0,

v2 − v3 = 0,

v3 + v4 −QD = 0,

0 ≤ vn, Qn ≤ 1, (2.8.2)

which has a non unique solution, provided by linprog,

v = (0.2833, 0.4334, 0.566, 0.4334, 0.7167, 1).

Of interest here is performing flux variability analysis: we find that if we try
to minimise the input flux QA whilst maintaining a maximal steady-state, QA

has a minimal value of 0.5. In this case all the flux is sent through B, and the
flux distribution becomes (0.5, 0, 1, 0, 0.5, 1). We also try maximising the input
QA whilst maintaining the maximised steady-state. We find its maximal value is
one, and the flux distribution becomes (0, 1, 0, 1, 1, 1). We see that the pathway
through B produces twice as muchD as it takes up of A, and the pathway through

Figure 2.7: Network diagram for a network with two routes to a product. The
top route is much more efficient than the bottom route.
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C produces the same level of B as it takes up of A. In this case we would hope
that flux balance analysis would divert as much flux towards B as possible before
using the second pathway through C to provide maximal output.

We now remove entirely the upper bound on QD, to represent a much higher
capacity to remove the product D. Performing FBA again without this upper
bound we find our maximised solution becomes (0.5, 0.5, 1, 0.5, 1, 1.5). In this
case, the limiting fluxes are v3 and QA, both having reached their maxima. We
now keep the same maximum of QA, but increase the maximum value for v3 to
two, so that 0 ≤ v3 ≤ 2. This allows a greater flux to pass through the more
efficient pathway (A → B → D), providing a higher output level. We find that
under these conditions, the new flux distribution is (1, 0, 2, 0, 1, 2). Here, all of the
flux travels through the more efficient pathway, providing an output of QD = 2.

Let us examine now the FBA problem with the raised maximum for v3, and
no upper bound on QD. We consider also, a fixed value for QA = z, so we have
control over the amount of A taken up by the network. This is described by the
FBA problem

max
v

v3 + v4 such that: − v1 − v2 +QA = 0,

2v1 − v3 = 0,

v2 − v3 = 0,

v3 + v4 −QD = 0,

0 ≤ v1, v2, v4 ≤ 1,

0 ≤ QD,

0 ≤ v3 ≤ 2,

QA = z. (2.8.3)

We repeat the optimisation for multiple values of z to see how the optimal steady-
state behaviour changes as the amount of A available increases.

Starting with z = 0, we find with no uptake, there is zero activity in the
network. As we increase z up to one, all flux through the system is directed
through the more optimal route, through v1 and v3. When z is equal to one, these
two fluxes, v1 and v3 become equal to their maximum values. Further increasing
z results in flux being directed through the less efficient route, through v2 and v4.
When z reaches two, this less optimal route reaches its maximum capacity, with
v2 and v4 at their maximum values. Increasing z any further past this results
in the optimisation problem, (2.8.3) becoming infeasible, as the network cannot
utilise the amount of A being taken up, and it is not possible to achieve steady-
state. These results are summarised in Figure 2.8. We see that the network first
uses the more efficient route, until v1 or v3 reach their maximum levels, before
diverting any additional uptake down the less efficient route. In this way, we see
FBA provides solutions that utilise more efficient routes first, before using less
efficient ones, as we would expect.

Now that we have examined a number of simple networks using FBA, we
begin examining a network for the metabolism of Clostridium autoethanogenum.
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Figure 2.8: Plot of v3 and v4 in the FBA problem described in equation (2.8.3)
for increasing values of z. The solid line shows the level of flux for v3, representing
the amount of D being produced by the more efficient pathway. The dashed line
is the flux level for v2, representing the amount of D produced in the less efficient
pathway. We see v3 increases to its maximum of two, before v4 begins increasing to
its maximum of one. If z was increased further, FBA would provide no solutions,
as the optimisation problem becomes infeasible.

2.9 A metabolic network for C. autoethanogenum

Clostridium autoethanogenum (C. autoethanogenum) is a strictly anaerobic bac-
terium that is able to grow on carbon monoxide and carbon dioxide sources. The
key products it forms are acetate, ethanol and butanediol. We also have produc-
tion of lactate, valine, and a reaction leading to biomass production. A metabolic
network for C. autoethanogenum is shown in Figure 2.9. For now, when form-
ing our stoichiometric matrix, we only consider the key metabolites used in each
reaction, and neglect additional metabolites such as ATP and water.

2.9.1 An ODE model

Let c be the vector of concentrations of metabolites within the network. Then the
network is described by system of differential equations given in the generalised
form of ċ = f(c) where f is some vector operator. We further specify the system
by defining f(c) = Sv(c) where S is the stoichiometric matrix for the network
and v(c) is another vector operator. Using the law of mass action to define our
v(c), we formulate a system of 21 ODEs to define this network, given as

dcCO

dt
=QCO − k1cCO, (2.9.1)

dcCO2

dt
=QCO2 + k1cCO − k2cCO2 − k8cCO2 , (2.9.2)

dcFormate

dt
=k2cCO2 − k3cFormate − k15cFormatecAcetyl−CoA, (2.9.3)

dcFormyl−THF

dt
=k3cFormate − k4cFormyl−THF , (2.9.4)

dcMethenyl−THF

dt
=k4cFormyl−THF − k5cMethenyl−THF , (2.9.5)
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dcMethelyne−THF

dt
=k5cMethenyl−THF − k6cMethylene−THF , (2.9.6)

dcMethyl−THF

dt
=k6cMethylene−THF − k7cMethyl−THF , (2.9.7)

dcMethyl−CoFeSp

dt
=k7cMethyl−THF − k9cMethyl−CoFeSpcCOc , (2.9.8)

dcCOc

dt
=QCOc + k8cCO2 − k9cMethyl−CoFeSpcCOc , (2.9.9)

dcAcetyl−CoA

dt
=k9cMethyl−CoFeSpcCOc − k10cAcetyl−CoA

−k13cAcetyl−CoA − k15cFormatecAcetyl−CoA

−k16cAcetyl−CoAcPyruvate, (2.9.10)

dcAcetyl−P

dt
=k10cAcetyl−CoA − k11cAcetyl−P , (2.9.11)

dcAcetate

dt
=k11cAcetyl−P − k12cAcetate − outAcetate, (2.9.12)

dcAcetaldehyde

dt
=k12cAcetate + k13cAcetyl−CoA − k14cAcetaldehyde, (2.9.13)

dcEthanol

dt
=k14cAcetaldehyde − outEthanol, (2.9.14)

dcPyruvate

dt
=k15cFormatecAcetyl−CoA − k16cAcetyl−CoAcPyruvate

−k17cPyruvate − 2k18cPyruvate, (2.9.15)

dcBiomass

dt
=k16cAcetyl−CoAcPyruvate − outBiomass, (2.9.16)

dcLactate
dt

=k17cPyruvate − outLactate, (2.9.17)

dcAcetolactate

dt
=k18cPyruvate − k19cAcetolactate − k20cAcetolactate, (2.9.18)

dcV aline

dt
=k19cAcetolactate − outV aline, (2.9.19)

dcAcetoin

dt
=k20cAcetolactate − k21cAcetoin, (2.9.20)

dc2,3−Butanediol

dt
=k21cAcetoin − out2,3−Butanediol, (2.9.21)

where the kn are rate coefficients for their associated reactions, and the cn are
variables for the concentration of each metabolite. It is important to note that
CO and COc are treated as separate pools, so that reactions using CO do not
access the pool of COc and vice versa. In this model we have 21 unknown rate
coefficients, and nine other external fluxes representing the addition of the gases
CO and CO2 and the removal of products which would also require some con-
sideration in how we choose to model them. Due to these unknowns, rather
than trying to model this system dynamically using ODEs, we shall consider the
system in a steady-state using the previously described FBA method.
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2.9.2 A Simplified System

First we consider the generalised system ċ = 0. As before, we use ċ = Sv(c),
so that in a steady-state Sv(c) = 0. We then consider v to simply be a vector
of fluxes, neglecting any dependence on c. Then we have the basis for our flux

Figure 2.9: Network diagram for part of the metabolism of C. autoethanogenum.
We have the uptake of both carbon dioxide and carbon monoxide (including a
secondary carbon monoxide pool, labelled as COc. These two gases are then used
to produce acetyl-CoA, which is used to produce on the left, acetate and ethanol,
or on the right, biomass, lactate, valine, or butanediol.
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balance analysis Sv = 0. In this case, we have 21 metabolites, and 30 fluxes,
including nine external fluxes. This is much larger than any stoichiometric ma-
trix we examined earlier in the chapter. To simplify the problem we consider a
reduced network that keeps the same general structure as the larger one. To do
this we model long chains of one-to-one reactions as single reactions. We keep
only reactions that combine multiple metabolites or branch out into multiple
metabolites. In this example we reduce the network seen in Figure 2.9 to the one
shown in Figure 2.10, represented by the stoichiometric matrix

Figure 2.10: Simplified network diagram for C. autoethanogenum, in which long
chains of reactions are simplified into single reactions.
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(2.9.22)

The reactions for this simplified network are given in Table 2.8. This has reduced
our stoichiometric matrix from 21× 30 to 8× 16, which is simpler to work with.

For now, let us apply FBA in the usual manner, using maximising the produc-
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CO2
v1−→ Formate

CO2
v2−→ COc

COc + Formate
v3−→ Acetyl-CoA

Formate + Acetyl-CoA
v4−→ Pyruvate

2 Pyruvate
v5−→ Acetolactate

Acetyl-CoA
v6−→ Acetaldehyde

Acetyl-CoA
v7−→ Acetate

Acetaldehyde
v8−→ Acetate

External input
QCO2−→ CO2

External input
QCOc−→ COc

Acetyl-CoA + Pyruvate
outbio−→ Biomass output

Pyruvate
outlac−→ Lactate output

Acetolactate
outval−→ Valine output

Acetolactate
outbut−→ Butanediol output

Acetaldehyde
outeth−→ Ethanol output

Acetate
outace−→ Acetate output

Table 2.8: Set of reactions for the simplified C. Autoethanogenum network, seen
in Figure 2.10, described by the stoichiometric matrix, (2.9.22).
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tion of biomass as our objective function. In our reduced network, maximising
the flux towards biomass is the same as maximising the external flux that com-
bines acetyl-CoA and pyruvate. In this notation, this flux is referred to as outbio.
As in previous examples, we set the upper bound on all fluxes to be one, and the
lower bound to be zero. Then our FBA problem is

max
v

outbio such that: Sv = 0,

0 ≤ vn, Qn, outn ≤ 1. (2.9.23)

This optimisation problem has a solution,

v = (1, 0, 2/3, 1/3, 0, 0, 0, 0, 1, 2/3, 1/3, 0, 0, 0, 0, 0).

In this case, the biomass production we are optimising takes a value of 1/3. The
inputs of carbon dioxide and carbon monoxide are 1 and 2/3 respectively. We see
the optimal biomass production in this network uses 5/3 total input of carbon
dioxide and carbon monoxide to produce 1/3 units of biomass. We also see that
in order to maximise biomass production all other output fluxes have become
zero. This causes any pathway not leading to biomass to be inhibited completely
so that the internal fluxes v4, v5, v6, v7, and v8 are also set to zero.

Raising the upper bounds on the input flux for CO2, QCO2 , and performing
flux variability analysis shows us that we could maintain this optimal biomass
production with a sole input of CO2, provided the uptake rate was high enough.
On the other hand, this model says it would not be possible to grow solely on the
pool of COc, as the system would be unable to produce any acetyl-CoA required
for any of the products to form.

This particular steady-state predicted by using biomass as our objective func-
tion has led to all other products not being formed at all. Biologically we know
this is not possible, as the system is producing other products. There are many
methods by which our model could be refined to provide more accurate results.

First, we consider changing the objective function. Since we wish to move the
system towards ethanol production, we could set that as our objective function.
It is clear to see that merely setting the objective function to the production of
ethanol shuts off biomass production entirely. We alleviate this by also raising
the lower bound on biomass production to 0.15, which is a little less than half the
optimal value. This provides us with a new solution to the optimisation problem

v = (1, 0, 0.85, 0.15, 0, 0.2488, 0.3012, 0.3012, 1, 0.85, 0.15, 0, 0, 0.55, 0).

This tells us that whilst maintaining a biomass production of 0.15, it is possible
to also make up to 0.55 units of ethanol. We also see that the carbon monoxide
and carbon dioxide uptakes, QCOc and QCO2 , have both increased. However, we
still have no formation of other products, as there is not enough flux through the
system as a whole to maximise production of either ethanol or biomass whilst
still maintaining production of another product.

In both these examples, the limiting factor for production has been v1, as it
is the only internal flux which attained its maximum value. v1 represents the
production of formate. In this network formate is used to both produce acetyl-
CoA, which in turn combines with another formate to make pyruvate. Then
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pyruvate and acetyl-CoA combine to form biomass. This means three units of
formate are required to make one unit of biomass. We note that in our optimal
biomass producing state, we had a maximum input of CO2 equal to one, allowing
us to produce one unit of formate. This in turn limited our biomass production to
be 1/3 unit. In the second example we also have a higher COc intake, approaching
its limit. This is explained by the production of ethanol requiring less formate,
so we are able to approach the full capacity of the uptakes into system as it shifts
towards ethanol production rather than biomass.

2.9.3 Weighted objective functions

Rather than considering only objective functions for single products, we instead
consider objective functions for multiple products. When doing this, we also
weight the products in the objective function to make one more important than
the other. We consider a weighted objective function of two products; biomass
and ethanol. The flux towards biomass is outbio, and the flux towards ethanol is
outeth. Then we consider objective functions of the form

f =
d

10
outbio +

10− d

10
outeth

for d = 0 to 10. We perform flux balance analysis for each value of d with the
usual constraints of mass balance all fluxes being between zero and one. Then
we have the flux balance analysis problem

max
v

d

10
outbio +

10− d

10
outeth such that: Sv = 0,

0 ≤ vn, Qn, outn ≤ 1. (2.9.24)

By solving this problem for values of d between zero and ten, we observe the point
at which the system switches from ethanol production to biomass production.
Table 2.9 shows these results. We note that there is an ethanol producing state
and a biomass producing state. All other output fluxes were equal to zero across
the entire range of d. This allows us to plot the feasible region for this linear
programming problem in 2D, with one axis being biomass production, and the
other being ethanol production. This feasible region is shown in Figure 2.11 We
also see that the critical value for d at which the system chances from ethanol
production to biomass production is somewhere between seven and eight. These
correspond to objective functions of 0.7outbio +0.3outeth and 0.8outbio +0.2outeth
respectively. We see that the system is able to maintain a production of one unit
of ethanol whilst maximising its uptake rates. Whilst in the biomass producing
state, the network showed a lower uptake flux for COc, lowering from one in the
ethanol producing state, to 2/3 in the biomass producing state.

2.9.4 CO2 production within the system

Up until now we have only been considering the main metabolites used in the
metabolic reactions; however, we know there are additional chemicals produced
and utilised within the system. In particular there is additional production and
utilization of CO2 within the internal fluxes, specifically v4, v5 and outbut shown
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d QCO2 QCOc Biomass out Ethanol out
0 1 1 0 1
1 1 1 0 1
2 1 1 0 1
3 1 1 0 1
4 1 1 0 1
5 1 1 0 1
6 1 1 0 1
7 1 1 0 1
8 1 0.6667 0.3333 0
9 1 0.6667 0.3333 0
10 1 0.6667 0.3333 0

Table 2.9: Solutions to the FBA problem seen in equation (2.9.24) for values
of d between zero and ten. We see for d ≤ 7 we have the same result in which
ethanol is produced, whilst for d ≥ 8 there is a second state in which biomass is
produced.

in Figure 2.10. We now include these additional CO2 terms in our network by
replacing the first row of our stoichiometric matrix with(

−1 −1 0 −1 1 0 0 0 1 0 0 0 0 1 0 0
)
. (2.9.25)

We now perform flux balance analysis with the same weighted objective functions
as before using this new stoichiometric matrix, for d between zero and ten. The
results are shown in Table 2.10. Interestingly we see that including these addi-
tional CO2 requirements lowers the amount of biomass produced in the biomass
producing state, however ethanol production remains at the same level. We also
see at d = 8, we have an intermediate steady-state between the optimal biomass

Figure 2.11: Feasible region in two dimensions for the linear programming prob-
lem, (2.9.24). We see the two vertices are the points at which ethanol production
is one and biomass production is zero, and the point at which ethanol production
is zero and biomass production is 1/3.
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d QCO2 QCOc Biomass out Ethanol out
0− 7 1 1 0 1
8 1 0.6904 0.1548 0.3809

9− 10 1 0.5 0.25 0

Table 2.10: Table showing the results of FBA problem (2.9.24), where the first
row of S is replaced by (2.9.25) to include internal CO2 production. For d between
zero and seven, we have the ethanol producing state, whilst for d between nine
and ten, we have the biomass producing state. For d = 8 there is production of
both biomass and ethanol.

d QCO2 QCOc Biomass out Ethanol out
7.999 1 1 0 1
8 1 0.6904 0.1548 0.3809

8.001 1 0.5 0.25 0

Table 2.11: As in Table 2.10, with d chosen close to the critical value of eight.
We see the switch from producing ethanol to producing biomass.

production state and the optimal ethanol production state. We examine values of
d close to eight, to see if this exists as a separate steady-state for certain values of
d, or if it is coincidentally the exact critical value at which the states switch. The
results, shown in Table 2.11, show that d = 8 is indeed the critical value. When
the optimal state for the objective function produces biomass, it produces 0.25
units, whilst when it produces one unit of ethanol. With the objective function set
as 0.8outbio + 0.2outeth, we find that a steady-state in which biomass production
is 0.25 and ethanol production is zero gives us the same value for the objective
function as one in which ethanol production is one and biomass production is
zero, showing that this is the critical value at which the optimisation problem
switches from one solution type to another. By plotting the feasible region for
this new FBA problem, with the production of ethanol and biomass, shown in
Figure 2.12, we see that the optimal point for our objective function when d < 8
is the upper vertex, when ethanol production is one, and biomass production is
zero. When d > 8, the optimal point is the lower vertex, when biomass pro-
duction is 0.25, and ethanol production is zero. When d = 8, the optimal point
becomes any point along the line between the two vertices, permitting infinitely
many solutions.

2.9.5 Hydrogen Balance

Another key metabolite to consider in a refined model is hydrogen. Hydrogen is
used in many of the reactions within the system as seen in Figure 2.9, and it is
worthwhile to consider including it in our model. In order to include hydrogen
reactions properly, we must move to a slightly more complex model seen in Figure
2.13. The stoichiometric matrix for this new model considers the initial CO pool
as well as the COc pool, and includes a new hydrogen balance row. We also have
two additional fluxes representing the uptake into the CO pool, and an uptake of
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CO + H2O
v1−→ CO2 + 2H

CO2 + 2H
v2−→ Formate

CO2 + 2H
v3−→ COc

COc + Formate + 4H
v4−→ Acetyl-CoA

CO2 + Formate + Acetyl-CoA + 2H
v5−→ Pyruvate

2 Pyruvate
v7−→ Acetolactate + CO2

Acetyl-CoA + 2H
v8−→ Acetaldehyde

Acetyl-CoA
v9−→ Acetate

Acetate
v10−→ Acetaldehyde

External input
QCO−→ CO

External input
QCO2−→ CO2

External input
QCOc−→ COc

External input
QH−→ H

Acetyl-CoA + Pyruvate
outbio−→ Biomass output

Pyruvate + 2H
outlac−→ Lactate output

Acetolactate
outval−→ Valine/Leucine output

Acetolactate + 2H
outbut−→ Butanediol output + CO2

Acetaldehyde + 2H
outeth−→ Ethanol output

Acetate
outace−→ Acetate output

Table 2.12: The set of reactions for the network seen in Figure 2.13.
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hydrogen. We also include the internal CO2 production and usage added in by
equation (2.9.25). This new stoichiometric matrix, T , can be split into two parts.
The part containing the internal reactions is

Tin =

v1 v2 v3 v4 v5 v6 v7 v8 v9



CO −1 0 0 0 0 0 0 0 0
CO2 1 −1 −1 0 −1 1 0 0 0
COc 0 0 1 −1 0 0 0 0 0

Formate 0 1 0 −1 −1 0 0 0 0
Acetyl − CoA 0 0 0 1 −1 0 −1 −1 0

Pyruvate 0 0 0 0 1 −2 0 0 0
Acetolactate 0 0 0 0 0 1 0 0 0
Acetaldehyde 0 0 0 0 0 0 1 0 1

Acetate 0 0 0 0 0 0 0 1 −1
Hydrogen 2 −2 −2 −4 −2 0 −2 0 0

,

(2.9.26)

Figure 2.12: Feasible region in two dimensions for the linear programming
problem, (2.9.24) with the first row of the stoichiometric matrix replaced with
(2.9.25. We see the two vertices are the points at which ethanol production is
one and biomass production is zero, and the point at which ethanol production
is zero and biomass production is 0.25.
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Figure 2.13: C. autoethanogenum network, as seen before in Figure 2.10, with
the addition of hydrogen and a second separate uptake of carbon monoxide.

and the part containing the external reactions is

Tex =

QCO QH outbio outlac outval outbut outeth outace



CO 1 0 0 0 0 0 0 0
CO2 0 0 0 0 0 1 0 0
COc 0 0 0 0 0 0 0 0

Formate 0 0 0 0 0 0 0 0
Acetyl − CoA 0 0 −1 0 0 0 0 0

Pyruvate 0 0 −1 −1 0 0 0 0
Acetolactate 0 0 0 0 −1 −1 0 0
Acetaldehyde 0 0 0 0 0 0 −1 0

Acetate 0 0 0 0 0 0 0 −1
Hydrogen 0 1 0 −2 0 −2 −2 0

.

(2.9.27)
So that

T = (Tin|Tex), (2.9.28)

where QH represents the hydrogen uptake, and the last row represents the hydrogen
balance. There are two ways to approach the flux balance analysis here. Firstly we
could treat the hydrogen uptake as we treat all the other fluxes in the system, however
it should be clear that the hydrogen requirements for this system are higher than
everything else, so limiting the uptake to be between zero and one would limit activity
in the system quite heavily. Instead we consider QH to have no upper bound. In this
way we observe what level of hydrogen the system requires to maintain its optimal
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d QCO QCO2 in QCOc in QH Biomass out Ethanol out
0 0.5901 0.7924 0.6174 8.7612 0 1
1 0.5891 0.7936 0.6174 8.7776 0 1
2 0.5881 0.7952 0.6167 8.8046 0 1
3 0.5877 0.7970 0.6153 8.8513 0 1
4 0.5877 0.7995 0.6128 8.9064 0 1
5 0.5884 0.8016 0.6100 8.9157 0 1
6 0.5881 0.8046 0.6072 8.9239 0 1
7 0.5872 0.8067 0.6060 8.9022 0 1
8 0.6700 0.8586 0.4714 4.3838 0.3333 0
9 0.6728 0.8608 0.4664 4.3882 0.3333 0
10 0.6742 0.8614 0.4644 4.3894 0.3333 0

Table 2.13: Results for the FBA problem described in equation (2.9.29) for
integer values of d between zero and ten. We have an ethanol producing state for
d ≤ 7, and a biomass producing state for d ≥ 8. Where previously all ethanol
producing states were the same, we now have some variation in CO and CO2

inputs.

steady-states. We use the same weighted objective functions as the previous section
again. Then we set up the linear programming problem

max
v

d

10
outbio +

10− d

10
outeth such that: Tv = 0,

0 ≤ vn, outn, QCO, QCO2 , QCOc ≤ 1,

−∞ ≤ QH ≤ ∞. (2.9.29)

We solve this optimisation problem for d in the range 0–10. The results are summarised
in Table 2.13 Here we again have two distinct steady-states for the ethanol production
and the biomass production, however unlike in our previous examples, we also see some
minimal variation within those steady-states on the uptake rates. This shows there is
some freedom of choice in which ratio of gases are utilized within the system whilst still
maintaining an optimal steady-state. Another interesting result from this table is the
hydrogen usage. The amount of hydrogen used in the system halves when switching
from an ethanol producing state to a biomass producing state. This suggests that a
way to stimulate the system to produce more ethanol and other products may be to
increase the amount of hydrogen within the system. In biological terms, this might
suggest that the bacteria growing in an environment with a lowered pH might produce
more ethanol and other products than one in an environment with a higher pH, as the
bacteria in the low pH environment is likely to uptake more hydrogen due to the higher
concentration in the environment.

2.9.6 The ratio of hydrogen input to carbon source input

As we have seen that different products require different amounts of hydrogen to pro-
duce, we could further consider which ratios of hydrogen:carbon source inputs produce
which products. We examine this using FBA. We do this by setting up an optimization
problem in which all internal fluxes and output fluxes are only constrained to be above
zero, and we fix our input fluxes at specific values. We then vary the hydrogen input
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QCO QH QH/QCO Biomass Ethanol
6 8 1.3333 1 0
6 9 1.5 0.9375 0.1875
6 10 1.6667 0.875 0.375
6 11 1.8333 0.8125 0.5625
6 12 2 0.75 0.75
6 13 2.1667 0.6875 0.9375
6 14 2.3333 0.625 1.125
6 15 2.5 0.5625 1.3125
6 16 2.6667 0.5 1.5
6 17 2.8333 0.4375 1.6875
6 18 3 0.375 1.875
6 19 3.1667 0.3125 2.0625
6 20 3.3333 0.25 2.25
6 21 3.5 0.1875 2.4375
6 22 3.6667 0.125 2.625
6 23 3.8333 0.0625 2.8125
6 24 4 0 3

Table 2.14: Table of solutions to the FBA problem (2.9.30) with a = 6, and
b = c = 0 for a range of values of d. With a = 6, we see the maximum biomass
production is one. We have the input ratio, and the levels of product formation
for biomass and ethanol. No other products are formed.

whilst keeping the carbon source input constant. For now, we keep biomass production
as the objective function.

max
v

outbio such that: Sv = 0,

vn, outn ≥ 0,

QCO = a,

QCO2 = b,

QCOc = c,

QH = d. (2.9.30)

We only examine the system with a single carbon source of either CO or CO2. First
we examine the system with only a CO carbon source. For this we set a = 6, b = c = 0
and then vary d. The results are given in Table 2.14.

The only two products that are formed in this are biomass and ethanol. All other
possible products have zero output fluxes at all values of hydrogen input. The hydrogen
input has been varied between eight and 24. If the hydrogen input is set to any value
less than eight, or higher than 24, then the FBA problem cannot be solved. The
system cannot reach a steady-state if there is a higher or lower hydrogen input whilst
still maintaining the same CO input.

Peak biomass production is achieved when the hydrogen input flux is eight. At
this value, the only product formed is Biomass. As we have no internal loops in our
system, we are confident that there is no way to have a higher biomass production with
this level of CO input. This is confirmed by setting up another FBA problem in which
we maximise biomass production, whilst allowing the linear programming algorithm to
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QCO2 QH QH/QCO2 in Biomass Ethanol
6 20 3.3333 1 0
6 21 3.5 0.9375 0.1875
6 22 3.6667 0.875 0.375
6 23 3.8333 0.8125 0.5625
6 24 4 0.75 0.75
6 25 4.1667 0.6875 0.9375
6 26 4.3333 0.625 1.125
6 27 4.5 0.5625 1.3125
6 28 4.6667 0.5 1.5
6 29 4.8333 0.4375 1.6875
6 30 5 0.375 1.875
6 31 5.1667 0.3125 2.0625
6 32 5.3333 0.25 2.25
6 33 5.5 0.1875 2.4375
6 34 5.6667 0.125 2.625
6 35 5.8333 0.0625 2.8125
6 36 6 0 3

Table 2.15: As in Table 2.14 except a = c = 0, and b = 6.

vary the hydrogen input. The problem

max
v

outbio such that: Sv = 0,

vn, outnQH ≥ 0,

QCO = 6,

QCO2 = 0,

QCOc = 0, (2.9.31)

gives us a maximised biomass production when QH = 8, that is, when the hydrogen
input is eight. Above this peak value, we see that the change in product formation rates
is linear. As the hydrogen input rises from eight to 24, the biomass production drops
linearly from one to zero, and the ethanol production rises linearly from zero to three.
We therefore split this into three sections dependant on the value of k = QH

QCO
. For

k < 4/3, the system cannot be at a steady-state. For 4/3 ≤ k ≤ 4, the system produces
some combination of biomass and ethanol, with ∆k ∝ −∆outbio and ∆k ∝ ∆outeth.
Then for k > 4 the system again cannot be at a steady-state. At the critical points
of k = 4/3 and k = 4, the steady-states are maximised towards producing a single
product. for k = 4/3, this product is biomass whilst at k = 4 the sole product is
ethanol.

We perform the same analysis for a system where CO2 is the only carbon source.
We use the FBA setup from equation (2.9.30) with a = 0, b = 6, c = 0 and varying
d. The results are shown in Table 2.15 The results seen for a system with CO2 as its
only carbon source are very similar to those for the system with CO only. The patterns
are exactly the same, only shifted to a higher hydrogen input value. If k = QH

QCO
and

l = QH
QCO2

, then the system is split into the same three sections with l = k + 2. We see

that the system growing only on CO2 requires a higher hydrogen input to have steady-
state solutions. If the system is grown only on CO, then the first reaction using the
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CO transforms it into CO2, which produces another two units of hydrogen. Without
this reaction, the hydrogen levels required are higher overall.

Next we examine what happens when we allow the system to use both CO and CO2,
as long as the sum of those input fluxes remains fixed at six, and we allow hydrogen to
vary as before. First we define the FBA problem

max
v

outbio such that: Sv = 0,

vn, outn ≥ 0,

QCO +QCO2 = 6,

QCOc = 0,

QH = d, (2.9.32)

where we again let d vary.

Table 2.16 shows the results. We see similar patterns to the previous two sets of
simulations, where for the low input ratios we see production of biomass, and as the
hydrogen input increases, the network switches from producing biomass to ethanol.
We note that between QH = 8 and QH = 20 the network manages to maintain its
maximised level of biomass production by shifting from using CO to using CO2. This
shows the network dealing with the higher hydrogen input by using more CO2, so less
hydrogen is produced within the network. We therefore split this network in to five
sections. Let m = QH

QCO+QCO2
. Then for m < 4/3 the network cannot achieve a steady-

state. For 4/3 ≤ m ≤ 10/3, the network maintains maximised production of biomass,
using a mixture of both the CO and CO2 carbon sources. For 10/3 ≤ m ≤ 6 the
network produces a mixture of ethanol and biomass using only the CO2 carbon source.
Finally, for m > 6 the network again cannot achieve a steady-state. At the critical
value of m = 6 the network only produces ethanol.

2.9.7 Elementary modes analysis for the simplified system

When examining the weighted objective functions in the previous section, we saw some
variation of the carbon sources, CO and CO2 whilst maintaining the same biomass
or ethanol production levels. One way to examine this variation further is to explore
whether or not there are specific ratios of input gases, or if the cell could grow and
maintain a steady-state on either gas. We do this by returning to elementary modes
analysis, and calculating the set of elementary modes for this system. These modes are
shown in Table 2.17. Each mode only produces a single product, with a flux of one.
The output flux shows which product is formed by that mode, where outbio is biomass,
outlac is lactate, outval is valine, outbut is butanediol, outeth is ethanol and outace is
acetate.

We split these elementary modes into four groups of seven, based on active uptake
fluxes for carbon, QCO, QCO2 , and QCOc . The hydrogen uptake flux, QH , is active in
all four groups. Within each group, there is a single mode producing each biomass,
lactate, valine, butanediol, and acetate, and two modes that produce ethanol, one
utilizing acetyl-CoA to produce acetaldehyde through v8, and one using acetate to
produce acetaldehyde through v10.

The first group of seven modes use only the standard carbon monoxide input, QCO.
In this group, the modes use two units of CO and four of hydrogen to create one unit of
acetyl-CoA. Any further uptake of carbon or hydrogen are required only for a specific
product and unique to the mode. We see specifically that production of biomass, valine,
and butanediol all require two units of acetyl-CoA to be produced. We see this in the
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QCO QCO2 QH QH/(QCO +QCO2) Biomass Ethanol
6 0 8 1.3333 1 0
5.5 0.5 9 1.5 1 0
5 1 10 1.6667 1 0
4.5 1.5 11 1.8333 1 0
4 2 12 2 1 0
3.5 2.5 13 2.1667 1 0
3 3 14 2.3333 1 0
2.5 3.5 15 2.5 1 0
2 4 16 2.6667 1 0
1.5 4.5 17 2.8333 1 0
1 5 18 3 1 0
0.5 5.5 19 3.1667 1 0
0 6 20 3.3333 1 0
0 6 21 3.5 0.9375 0.1875
0 6 22 3.6667 0.875 0.375
0 6 23 3.8333 0.8125 0.5625
0 6 24 4 0.75 0.75
0 6 25 4.1667 0.6875 0.9375
0 6 26 4.3333 0.625 1.125
0 6 27 4.5 0.5625 1.3125
0 6 28 4.6667 0.5 1.5
0 6 29 4.8333 0.4375 1.6875
0 6 30 5 0.375 1.875
0 6 31 5.1667 0.3125 2.0625
0 6 32 5.3333 0.25 2.25
0 6 33 5.5 0.1875 2.4375
0 6 34 5.6667 0.125 2.625
0 6 35 5.8333 0.0625 2.8125
0 6 36 6 0 3

Table 2.16: Table of solutions to the FBA problem (2.9.32) for a range of values
of d. We have the input ratio, and the levels of product formation for biomass
and ethanol. No other products are formed.
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Mode v1 v2 v3 v4 v5 v6 v7 v8 v9 QCO QCO2 QCOc QH Output
1 2 1 1 1 0 0 1 0 0 2 0 0 8 outeth
2 2 1 1 1 0 0 0 1 1 2 0 0 6 outeth
3 6 3 2 2 1 0 0 0 0 6 0 0 8 outbio
4 4 2 1 1 1 0 0 0 0 4 0 0 6 outlac
5 7 4 2 2 2 1 0 0 0 7 0 0 10 outval
6 6 4 2 2 2 1 0 0 0 6 0 0 14 outbut
7 2 1 1 1 0 0 0 1 0 2 0 0 4 outace
8 1 1 0 1 0 0 1 0 0 1 0 1 8 outeth
9 1 1 0 1 0 0 0 1 1 1 0 1 6 outeth
10 4 3 0 2 1 0 0 0 0 4 0 2 8 outbio
11 3 2 0 1 1 0 0 0 0 3 0 1 6 outlac
12 5 4 0 2 2 1 0 0 0 5 0 2 10 outval
13 4 4 0 2 2 1 0 0 0 4 0 2 14 outbut
14 1 1 0 1 0 0 0 1 0 1 0 1 4 outace
15 0 1 1 1 0 0 1 0 0 0 2 0 12 outeth
16 0 1 1 1 0 0 0 1 1 0 2 0 10 outeth
17 0 3 2 2 1 0 0 0 0 0 6 0 20 outbio
18 0 2 1 1 1 0 0 0 0 0 4 0 14 outlac
19 0 4 2 2 2 1 0 0 0 0 7 0 24 outval
20 0 4 2 2 2 1 0 0 0 0 6 0 26 outbut
21 0 1 1 1 0 0 0 1 0 0 2 0 8 outace
22 0 1 0 1 0 0 1 0 0 0 1 1 10 outeth
23 0 1 0 1 0 0 0 1 1 0 1 1 8 outeth
24 0 3 0 2 1 0 0 0 0 0 4 2 16 outbio
25 0 2 0 1 1 0 0 0 0 0 3 1 12 outlac
26 0 4 0 2 2 1 0 0 0 0 5 2 20 outval
27 0 4 0 2 2 1 0 0 0 0 4 2 22 outbut
28 0 1 0 1 0 0 0 1 0 0 1 1 6 outace

Table 2.17: Table of elementary modes for the C. autoethanogenum network
described by the stoichiometric matrix, (2.9.28). Each mode includes a single
output flux which is listed in the final column. Every mode is scaled so it produces
exactly one unit of its associated product.
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modes, as v4 is equal to two for those modes and one for all other pathways in this
group. Then we write the input requirements for a mode in this group as

v4(2CO + 4[H]) + anCO + bn[H],

where the an and bn are found by subtracting the CO and hydrogen used in the creation
of acetyl-CoA from the overall input requirements of the system. This gives us the CO
and hydrogen requirements unique to each pathway.

The second group of modes are modes 8-14. These modes use two inputs, QCO

and QCOc , representing the CO and COc inputs, which are treated as separate in this
model. The only change in these modes compared to those in the first group is that
rather than taking two CO, and then changing one of them to COc via CO2, they
directly take up one unit of COc. We see that acetyl-CoA production requires one CO,
one COc and four hydrogen. As before, the modes producing either biomass, valine,
or butanediol all require two units of acetyl-CoA. We split the input requirements as
before into

v4(CO + COc + 4[H]) + anCO + bn[H].

Here the coefficients an and bn are the same as those for the first group.
The third group of modes are pathways 15-21. These modes use only QCO2 , which is

the CO2 input. This group has higher hydrogen requirements. In the previous groups,
CO was used to create CO2, producing some of the hydrogen required by the system.
With the system using CO2 directly from the input, this hydrogen producing reaction
no longer occurs, causing the hydrogen input requirements to increase. This group uses
two units of CO2 and eight of hydrogen to produced a unit of acetyl-CoA. Biomass,
valine and butanediol production all still require two units of acetyl-CoA. The input
requirements are split as

v4(2CO2 + 8[H]) + cnCO2 + dn[H].

We find that the cns, representing the additional CO2 requirements for each pathway
are the same as the ans used in the previous two groups. However the additional
hydrogen requirements, dn are distinct from the hydrogen requirements bn from the
previous two groups.

The fourth and final group of modes are modes 22-28. These modes use both QCO2

and QCOc , which are the CO2 and COc inputs. Similarly to the difference between
groups one and two, the difference between the third and fourth groups are the usage
of COc rather than a second unit of CO2 in the production of acetyl-CoA. In this case,
this change also lowers the hydrogen requirement of the system. The group then uses
one unit of CO2, one unit of COc and six units of hydrogen (rather than eight) to
produce a unit of acetyl-CoA. We split the input requirements as before to

v4(CO2 + COc + 6[H]) + cnCO2 + dn[H],

where the cn and dn are the same as in group three.
These modes also provide insight into the results of our analysis of input ratios

in Section 2.9.6. Table 2.18 shows us the hydrogen/carbon input ratio for each mode
in the system. We see that the modes with the lowest ratio are m3 and m10. These
modes are in groups one and two respectively, meaning m3 has only QCO active, whilst
m10 also has QCOc active. Neither have QCO2 active. This shows that the network
has steady-states for lower input ratios if the sole carbon source is carbon monoxide,
and not carbon dioxide. Both of these modes produce biomass, as shown in Table 2.17.
Similarly, we see that the mode that has the highest input ratio is mode m15, which
produces ethanol. This mode is in group three, meaning the only active carbon uptake
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flux is QCO2 . This shows that the network maintains steady-state for higher input
ratios, if the sole carbon source is carbon dioxide. In particular, we note that for group
one, where the sole carbon uptake flux is QCO the lowest input ratio is 4/3, whilst
the highest is four, which agrees with the range shown by the results in Table 2.14.
Similarly in group 3, the range is between 10/3 and six, which agrees with the range
shown by the results in Table 2.15 These results are exactly in line with those seen
in Section 2.9.6. Examining our elementary modes has allowed us to draw additional
insight into the range of input ratios our C. autoethanogenum network is able to attain
a steady-state in.

Group 1
Mode 1 2 3 4 5 6 7

Hydrogen uptake 8 6 8 6 10 14 4
Total carbon uptake 2 2 6 4 7 6 2

Ratio 4 3 4/3 3/2 10/7 7/3 2

Group 2
Mode 8 9 10 11 12 13 14

Hydrogen uptake 8 6 8 6 10 14 4
Total carbon uptake 2 2 6 4 7 6 2

Ratio 4 3 4/3 3/2 10/7 7/3 2

Group 3
Mode 15 16 17 18 19 20 21

Hydrogen uptake 12 10 20 14 24 26 8
Total carbon uptake 2 2 6 4 7 6 2

Ratio 6 5 10/3 7/2 24/7 13/3 4

Group 4
Mode 22 23 24 25 26 27 28

Hydrogen uptake 10 8 16 12 20 22 6
Total carbon uptake 2 2 6 4 7 6 2

Ratio 5 4 8/3 3 20/7 11/3 3

Table 2.18: Table of input ratios for each elementary mode of the C. au-
toethanogenum network described by the stoichiometric matrix (2.9.28).

2.10 Conclusions

We have applied FBA to a wide variety of networks in order to find steady-state flux
vectors for each of them, according to specific objective functions. These simple ex-
amples illustrated several key points of FBA, namely the dependence of solutions on
the choice of objective function, the ability of FBA to predict biologically infeasible
solutions, the possibility of multiple optimal solutions for an objective function, and in
particular, the ability to write FBA solutions as a sum of elementary modes in order to
provide a physical representation of solutions. We then formed a simplified metabolic
network for C. autoethanogenum, and applied FBA to this. By using a weighted ob-
jective function, and altering the weightings, we observed the solution switching from
producing one product to another, with no intermediate period of producing both,
except for in the case of the critical value. Then by adding more features back in
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to this network, specifically balancing hydrogen, and including internal reactions that
produced CO2, we observed how these changes to the network modified the solutions
provided by FBA. We also employed FVA and elementary modes analysis to draw
further insight into the behaviour of these steady-states. Elementary modes analysis
allowed us to find a biologically relevant set of flux modes that form a spanning set for
solutions to the set of equations Sv = 0. Whilst for genome-scale metabolic networks,
the size of this set becomes unwieldy, by focusing on specific subsets of modes that
share common properties, we are still able to identify key properties of the network
that are required for the production of certain products. In the C. autoethanogenum
case, we explored the range of hydrogen/carbon input ratios that permitted steady-
state solutions to exist. By examining the elementary modes, we found that this range
was between 4/3 and six, as the lowest input ratio on an elementary mode was 4/3,
and the highest was six. There cannot exist solutions that utilize a higher or lower
input ratio, as every steady-state solution for this network must be some positive sum
of these modes. In particular for the group of modes which used carbon monoxide as
their sole input, the maximum input ratio was four, as modes in this group had lower
input ratios than those which used carbon dioxide.

Now that we have used FBA to examine this C. autoethanogenum network in steady-
state, it would be worth looking at an ODE model for the same network to see if we
similar results are obtained. We will form a model for the network seen in Figure 2.13,
as the bulk of our FBA was performed on this network. In the next chapter this ODE
model will be explored and we will analyse the dynamic behaviour. In particular, we
consider what happens when we have a hydrogen/carbon input ratio outside of those
where we are able to find FBA solutions. We expect to find steady-state solutions
within the bounds predicted by FBA, but outside we expect to see non-steady long
timescale behaviours.
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Chapter 3

An ODE Model, and asymptotic
analysis, for C. autoethanogenum

3.1 Introduction

In Chapter 2, we used FBA methods to examine our C. autoethanogenum network. We
found that there was a specific ratio for the carbon monoxide and hydrogen inputs that
was required for steady-states to exist (namely 4/3 ≤ QH/QCO ≤ 4). Outside of this
ratio we knew that steady-states could not exist, but FBA is not able to provide any
insight into the behaviour of the model in these regions. By forming a full ODE model
for this network, we seek to examine the long term behaviour seen when the system is
unable to maintain a steady-state. Additionally, an ODE model is also able to model
the short term dynamic behaviour that FBA is also unable to predict.

ODE models, sometimes called kinetic models with reference to metabolism, have
been formulated for numerous different organisms, including E. coli, as studied by Chas-
sagnole et. al [12], Penicillium chrysogenum, in particular the pathway the produces
penicillin, by de Noronha Pissara et. al [17], and the pentose phosphate pathway of
Saccharomyces cerevisiae by Vaseghi et. al [75].

In this chapter we form an ODE model for C. autoethanogenum. This model is
simplistic, using the law of mass action to model reaction rates, allowing us to keep
the number of parameters to a minimum. Rather than attempting to estimate these
parameters, we instead use asymptotic analysis to quantify the possible long timescale
behaviours of this system. We already found from FBA that there is a range of input
ratios that permit the existence of steady-states, but outside this range we find non-
steady long term behaviours. By using asymptotic analysis to reduce the ODE models
in each region, we seek parameter values that are required for a long term behaviour to
exist. In particular, we examine the ratio of inputs, QH/QCO found to be important by
FBA, and a second ratio of parameters identified to have a large effect on which long
term behaviour the model displays. By performing this analysis, we are able to provide
insight into the behaviour of the model, without requiring estimates of parameters.

3.2 Forming an ODE model

First, let us formulate an ODE model for the network seen in Figure 3.1 of the form

ċ = Sv(c), (3.2.1)

where c is the vector of concentrations and S is the 10 × 19 stoichiometric matrix
described in Chapter 2, seen in equation (2.9.28). For simplicity we use the law of mass
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Figure 3.1: Network diagram for the metabolism of clostridium au-
toethanogenum

action to model reaction rates, leading to the system of ten ODEs

dcCO

dt
= k10(cCO

∗ − cCO)− k1cCO, (3.2.2)

dcCO2

dt
= k11(cCO2

∗ − cCO2) + k1cCO − k2cCO2cH
2 − k3cCO2cH

2

− k5cCO2cF cACAcH
2 + k6cPy

2 + k17cAlcH
2, (3.2.3)

dcCOc

dt
= k12(cCOc

∗ − cCOc) + k3cCO2cH
2 − k4cCOccF cH

4, (3.2.4)

dcF
dt

= k2cCO2cH
2 − k4cCOccF cH

4 − k5cCO2cF cACAcH
2, (3.2.5)

dcACA

dt
= k4cCOccF cH

4 − k5cCO2cF cACAcH
2 − k7cACAcH

2

− k8cACA − k14cACAcPy, (3.2.6)

dcPy

dt
= k5cCO2cF cACAcH

2 − 2k6cPy
2 − k14cACAcPy − k15cPycH

2, (3.2.7)

dcAl

dt
= k6cPy

2 − k16cAl − k17cAlcH
2, (3.2.8)

dcAd

dt
= k7cACAcH

2 + k9cA − k18cAdcH
2, (3.2.9)

dcA
dt

= k8cACA − k9cA − k19cA, (3.2.10)

dcH
dt

= k13(cH
∗ − cH) + 2k1cCO − 2k2cCO2cH

2 − 2k3cCO2cH
2

− 4k4cCOccF cH
4 − 2k5cCO2cF cACAcH

2 − 2k7cACAcH
2

− 2k15cPycH
2 − 2k17cAlcH

2 − 2k18cAdcH
2, (3.2.11)

with the initial conditions of all concentrations being equal to zero,

c(0) = 0. (3.2.12)

Whilst all internal reactions and output reactions are modelled using the law of mass
action, uptake rates are instead modelled as proportional to the difference between the
concentration within the cell and the concentration outside the cell. Table 3.1 explains
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which variables represent which concentrations, and Table 3.2 explains the parameters
within the system. Whilst these parameters are not dimensionless, due to the lack of
an example set of parameters, the choice of units is arbitrary.

Variable Metabolite Chemical Composition
cCO Carbon monoxide CO
cCO2 Carbon dioxide CO2

cCOc Carbon monoxide (Carbonyl branch) CO
cF Formate HCO−

2

cACA Acetyl-CoA C23H38N7O17P3S
cPy Pyruvate C3H4O3

cAl Acetolactate C5H8O4

cAd Acetaldehyde C2H4O
cA Acetate C2H3O

−
2

cH Hydrogen H

Table 3.1: Table of variables within the system, the key metabolite they repre-
sent the concentration of, and the chemical composition of the metabolite.

Parameter Description Dimensions

k1 Rate coefficient for CO being transformed into CO2 Time−1

k2 Rate coefficient for CO2 being transformed into formate Concentration−2Time−1

k3 Rate coefficient for CO2 being transformed into COc Concentration−2Time−1

k4 Rate coefficient for formate combining with COc to make acetyl-CoA Concentration−5Time−1

k5 Rate coefficient for acetyl-CoA combining with formate to make pyruvate Concentration−4Time−1

k6 Rate coefficient for two pyruvates combining to make acetolactate Concentration−1Time−1

k7 Rate coefficient for acetyl-CoA being transformed into acetaldehyde Concentration−2Time−1

k8 Rate coefficient for acetyl-CoA being transformed into acetate Concentration−1Time−1

k9 Rate coefficient for acetate being transformed into acetaldehyde Concentration−1Time−1

k10 Rate coefficient for the uptake of CO Time−1

k11 Rate coefficient for the uptake of CO2 Time−1

k12 Rate coefficient for the uptake of COc Time−1

k13 Rate coefficient for the uptake of hydrogen Time−1

k14 Rate coefficient for the combining of acetyl-CoA and pyruvate to output biomass Concentration−1Time−1

k15 Rate coefficient for the creation and output of lactate from pyruvate Concentration−2Time−1

k16 Rate coefficient for the creation and output of valine from acetolactate Concentration−1Time−1

k17 Rate coefficient for the creation and output of butanediol from acetolactate Concentration−2Time−1

k18 Rate coefficient for the creation and output of ethanol from acetaldehyde Concentration−2Time−1

k19 Rate coefficient for the output of acetate Time−1

cCO
∗ Concentration of CO outside the cell Concentration

cCO2
∗ Concentration of CO2 outside the cell Concentration

cCOc
∗ Concentration of COc outside the cell Concentration

cH
∗ Concentration of hydrogen outside the cell Concentration

Table 3.2: Table of parameters in the system of (3.2.2)–(3.2.11).

Having formed an ODE model for our C. autoethanogenum network, we begin simu-
lating it with various parameter schemes to observe the long term behaviour. Since we
lack an example set of parameters to use, and there are no relevant parameters available
in the literature, we start by choosing all parameters setting all parameters to equal
one. Whilst this allows us to examine the possible behaviours of the model, it is impor-
tant to note that different parameter choices may lead to different results, so whilst the
different behaviours we find may be more generally applicable, the exact steady-state
values will not be. Figure 3.2 shows the log time plots of concentrations with the choice
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Figure 3.2: Plots of concentrations of metabolites in the ODE model in equa-
tions (3.2.2)–(3.2.11) with all parameters set to one, and initial condition c = 0.

of all parameters equal to one. We see all metabolites increasing from their initial con-
dition of zero to their final steady-state over a short time period. Most concentrations
are monotonically increasing until this point, except for those of COc and hydrogen,
which increase past their final steady-state values before decaying slightly again. These
steady-state metabolite concentrations are summarised in Table 3.3. We also calculate
the values for the fluxes in each steady-state from these concentration. Table 3.4 shows
these steady-state flux values for each flux.

In particular, Table 3.4 shows us the output fluxes for the system, representing
product formation rates. We see that the biomass production rate, given by outbio =
k14cACAcPy, is 0.0076, from a net carbon input of 0.3752. This means that the system
is producing 0.02 units of biomass per unit of carbon. Our FBA models predicted that
this network could produce up to 1/6 = 0.1667 units of biomass per unit of carbon taken
up, suggesting that, with a different choice of parameters, the system could produce a
much larger amount of biomass. Similarly, it would be possible to choose parameters
to maximise the formation of other products.

Also of note are the values of QCO2 and QCOc , the uptakes of carbon dioxide and
the secondary carbon monoxide source respectively. These have both taken negative
values, indicating that the system is actually removing CO2 and COc in these reactions
rather than taking them up. Since the internal concentrations of these metabolites are
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Metabolite Concentration
CO 0.5000
CO2 1.0712
COc 1.0536

Formate 4.0521
Acetyl-CoA 0.0678
Pyruvate 0.1127

Acetolactate 0.0107
Acetaldehyde 0.2542

Acetate 0.0339
Hydrogen 0.4266

Table 3.3: Steady-state concentrations of the metabolites seen in the simulation
in Figure 3.2

Flux v1 v2 v3 v4 v5 v6 v7 v8 v9
Value 0.5000 0.1950 0.1950 0.1414 0.0536 0.0127 0.0123 0.0678 0.0339

Flux QCO QCO2 QCOc QH outbio outlac outval outbut outeth outace
Value 0.5000 -0.0712 -0.0536 0.5734 0.0076 0.0205 0.0107 0.0020 0.0463 0.0339

Table 3.4: Values of fluxes for each reaction in the network shown in Figure 3.1
in the steady-state from the simulation shown in Figure 3.2.

greater than the external concentrations, the net flux through these reactions is nega-
tive, representing an output flux, rather than an uptake flux. In FBA, we constrained
all our fluxes to be positive, so this result could not occur in our FBA simulations.
Since these results could not occur directly in our FBA model, we should change our
ODE model to correspond more closely to the FBA model, to find results that are
directly comparable.

3.3 Constant Inputs

When examining the C. autoethanogenum network using FBA, we had fixed input fluxes
of CO and hydrogen (QCO and QH respectively). We also neglected the CO2 and COc

input reactions entirely. By using only two input reactions we were able to examine
how extreme the ratio of these two input fluxes could be before the system was unable
to maintain steady-state. If there was no solution to the FBA problem for a given set
of inputs, we deduced that the network would be unable to tend to a steady-state. In
Section 2.9.6, it was found that a steady-state is only reached if the hydrogen input
is greater than 4

3 of the CO input and less than four times the CO input, that is if
4
3QCO ≤ QH ≤ 4QCO. Equivalently, we say 4/3 ≤ QH/QCO ≤ 4. We now modify
the ODE model to see if these FBA results hold true for our ODE model. First, we
completely inhibit the uptake rates for CO2 and COc, by setting k11 and k12 to equal
zero. Secondly, we replace the uptake fluxes for CO and hydrogen with the constant
values from FBA, so that the ODEs (3.2.2) and (3.2.11) become

dcCO

dt
= QCO − k1cCO, (3.3.1)
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dcH
dt

= QH + 2k1cCO − 2k2cCO2cH
2 − 2k3cCO2cH

2 − 4k4cCOccF cH
4

− 2k5cCO2cF cACAcH
2 − 2k7cACAcH

2 − 2k15cPycH
2

− 2k17cAlcH
2 − 2k18cAdcH

2. (3.3.2)

Then the ODE model, with k11 and k12 equal to zero, becomes

dcCO

dt
= QCO − k1cCO, (3.3.3)

dcCO2

dt
= k1cCO − k2cCO2cH

2 − k3cCO2cH
2 − k5cCO2cF cACAcH

2

+ k6cPy
2 + k17cAlcH

2, (3.3.4)

dcCOc

dt
= k3cCO2cH

2 − k4cCOccF cH
4, (3.3.5)

dcF
dt

= k2cCO2cH
2 − k4cCOccF cH

4 − k5cCO2cF cACAcH
2, (3.3.6)

dcACA

dt
= k4cCOccF cH

4 − k5cCO2cF cACAcH
2 − k7cACAcH

2 − k8cACA

− k14cACAcPy, (3.3.7)

dcPy

dt
= k5cCO2cF cACAcH

2 − 2k6cPy
2 − k14cACAcPy − k15cPycH

2, (3.3.8)

dcAl

dt
= k6cPy

2 − k16cAl − k17cAlcH
2, (3.3.9)

dcAd

dt
= k7cACAcH

2 + k9cA − k18cAdcH
2, (3.3.10)

dcA
dt

= k8cACA − k9cA − k19cA, (3.3.11)

dcH
dt

= QH + 2k1cCO − 2k2cCO2cH
2 − 2k3cCO2cH

2 − 4k4cCOccF cH
4

− 2k5cCO2cF cACAcH
2 − 2k7cACAcH

2 − 2k15cPycH
2

− 2k17cAlcH
2 − 2k18cAdcH

2, (3.3.12)

and initial conditions

c(0) = 0. (3.3.13)

To test the predictions of our FBA models, we now simulate this ODE model with
various values of QH/QCO. We fix all remaining rate coefficients, kn to equal one. We
also set the carbon monoxide input, QCO = 0.1. Then by choosing a range of values
for QH , we examine the behaviour of the network for a range of values of QH/QCO and
see if the steady-state is reached as predicted by FBA. Figures 3.3, 3.4, and 3.5 show
simulations of this model with QH equal to 0.2, 0.3, and 0.4. FBA predicts that all
three of these choices of QH/QCO would lead to steady-state, however in all cases for
our ODE model this is not the case and we find one or more of the metabolites showing
unbounded growth. The nonlinearities within the system cause the behaviour to be
different to the behaviour predicted by the linear equations used in FBA. It turns out
that with all rate parameters kn equal to one, the ODE model (3.3.3)–(3.3.12) cannot
reach a steady-state for any value of QH/QCO. We would expect the network to be
able to obtain steady-state for some values within the range predicted by FBA, so there
must be some other conditions on our parameters that must be satisfied in order for
the ODE model to reach steady-state that could not be deduced from FBA alone. We
would like to find these conditions.
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Figure 3.3: Log time plot of the constant input ODE model seen in equations
(3.3.3)–(3.3.12), with all parameters set to equal one, except QH = 0.2. The
simulation was ran until the long timescale behaviour was established, and there
are no further changes in behaviour past the times shown in this simulation.

3.4 Long timescale asymptotics

One way to find these conditions would be to simply set all time derivatives in the
ODEs (3.3.3)–(3.3.12) to zero and analyse the resulting equations. In this way we
could find relationships between parameters that must be true in order for this steady-
state to exist with non negative concentrations. Due to the large number of parameters
within these equations, this proves infeasible. Since we have already seen that we have
non steady-states, we instead analyse these states in the long timescale. In the long
timescale, some reactions become negligible, and the terms representing them in the
ODEs can therefore be discarded. By discarding these terms from the ODEs, we aim to
simplify them down to a more easily analysed form. From these simplified forms, we are
able to find critical values for parameters which lead the system to switch from one long
timescale behaviour to another. By comprehensively examining these long timescale
behaviours, we seek the critical parameter values which border the steady-state region,
allowing us to quantify the parameter values required for steady-state, without having
to directly examine the steady-state equations themselves.

Let us first consider the state shown in Figure 3.4, in which QH = 0.3. In this
state we find the concentration of COc tending to infinity, whilst the concentrations of
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Figure 3.4: As in Figure 3.3, except QH = 0.3

formate, pyruvate and acetolactate tend towards zero. All other concentrations have
a non-zero steady-state. Log-log plots of the four metabolites not tending to a non-
zero steady-state are shown in Figure 3.6. Since these log-log plots appear linear, we
know that the concentrations of these metabolites behave proportionally to tx in the
long time scale. Measuring the gradients of these log-log plots allows us to numerically
obtain values of x for these metabolites. We also know that metabolites that tend to a
non zero steady-state scales like t0 in the long timescale. In this way we obtain scalings
for every metabolite in the system,

cCO ∼ cCOt
0,

cCO2 ∼ cCO2t
0,

cCOc ∼ cCOct
0.5,

cF ∼ cF t
−0.5,

cACA ∼ cACAt
0,

cPy ∼ cPyt
−0.5,

cAl ∼ cAlt
−1,

cAd ∼ cAdt
0,

cA ∼ cAt
0,

cH ∼ cHt0.

(3.4.1)

These scalings are substituted back into the ODEs (3.3.3)–(3.3.12), so that each
metabolite concentration cn is replaced by c̄nt

x, where c̄n is some unknown coeffi-
cient, and x is chosen according to equation (3.4.1). Since our concentrations are
non-negative, these coefficients, c̄n must also be non negative. The equations with
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Figure 3.5: As in Figure 3.3, except QH = 0.4

these scalings substituted in are

0 = QCO − k1c̄COt
0, (3.4.2)
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Figure 3.6: Log-log plots of metabolites not tending to nonzero steady-states
when QH = 0.3
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0 = k1c̄COt
0 − k2c̄CO2t

0(c̄Ht0)2 − k3c̄CO2t
0(c̄Ht0)2

− k5c̄CO2t
0c̄F t

−0.5c̄ACAt
0(c̄Ht0)2 + k6(c̄Pyt

−0.5)2 + k17c̄Alt
−1(c̄Ht0)2,

(3.4.3)

0.5c̄COct
−0.5 = k3c̄CO2t

0(c̄Ht0)2 − k4c̄COct
0.5c̄F t

−0.5(c̄Ht0)4, (3.4.4)

−0.5c̄F t−1.5 = k2c̄CO2t
0(c̄Ht0)2 − k4c̄COct

0.5c̄F t
−0.5(c̄Ht0)4

− k5c̄CO2t
0c̄F t

−0.5c̄ACAt
0(c̄Ht0)2, (3.4.5)

0 = k4c̄COct
0.5c̄F t

−0.5(c̄Ht0)4 − k5c̄CO2t
0c̄F t

−0.5c̄ACAt
0(c̄Ht0)2

− k7c̄ACAt
0(c̄Ht0)2 − k8c̄ACAt

0 − k14c̄ACAt
0c̄Pyt

−0.5, (3.4.6)

−0.5c̄Pyt
−1.5 = k5c̄CO2t

0c̄F t
−0.5c̄ACAt

0(c̄Ht0)2 − 2k6(c̄Pyt
−0.5)2 − k14c̄ACAt

0c̄Pyt
−0.5

− k15c̄Pyt
−0.5(c̄Ht0)2, (3.4.7)

−c̄Alt
−2 = k6(c̄Pyt

−0.5)2 − k16c̄Alt
−1 − k17c̄Alt

−1(c̄Ht0)2, (3.4.8)

0 = k7c̄ACAt
0(c̄Ht0)2 + k9c̄At

0 − k18c̄Adt
0(c̄Ht0)2, (3.4.9)

0 = k8c̄ACAt
0 − k9c̄At

0 − k19c̄At
0, (3.4.10)

0 = QH + 2k1c̄COt
0 − 2k2c̄CO2t

0(c̄Ht0)2 − 2k3c̄CO2t
0(c̄Ht0)2

− 4k4c̄COct
0.5c̄F t

−0.5(c̄Ht0)4 − 2k5c̄CO2t
0c̄F t

−0.5c̄ACAt
0(c̄Ht0)2

− 2k7c̄ACAt
0(c̄Ht0)2 − 2k15c̄Pyt

−0.5(c̄Ht0)2 − 2k17c̄Alt
−1(c̄Ht0)2

− 2k18c̄Adt
0(c̄Ht0)2. (3.4.11)

We combine the powers of t in each term. Terms which do not contain the highest
power of t in each equation are discarded, as for large t, each equation is dominated
by the terms with the highest powers of t, and all other terms become negligible. In
this case, all terms on the left hand side of the equations are found to be insignificant,
along with several terms on the right. Powers of t are then cancelled, as all remaining
terms in each equation have the same power of t, leaving us with a set of simultaneous
equations for the coefficients c̄n and the parameters kn. For our current set of scalings,
these equations are

0 = QCO − k1c̄CO, (3.4.12)

0 = k1c̄CO − k2c̄CO2(c̄H)2 − k3c̄CO2(c̄H)2, (3.4.13)

0 = k3c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4, (3.4.14)

0 = k2c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4, (3.4.15)

0 = k4c̄COc c̄F (c̄H)4 − k7c̄ACA(c̄H)2 − k8c̄ACA, (3.4.16)

0 = k5c̄CO2 c̄F c̄ACA(c̄H)2 − k14c̄ACAc̄Py − k15c̄Py(c̄H)2, (3.4.17)

0 = k6(c̄Py)
2 − k16c̄Al − k17c̄Al(c̄H)2, (3.4.18)

0 = k7c̄ACA(c̄H)2 + k9c̄A − k18c̄Ad(c̄H)2, (3.4.19)

0 = k8c̄ACA − k9c̄A − k19c̄A, (3.4.20)

0 = QH + 2k1c̄CO − 2k2c̄CO2(c̄H)2 − 2k3c̄CO2(c̄H)2

− 4k4c̄COc c̄F (c̄H)4 − 2k7c̄ACA(c̄H)2 − 2k18c̄Ad(c̄H)2. (3.4.21)

We see immediately, by equating (3.4.14) and (3.4.15), that one condition for the ex-
istence of this particular state is k3 = k2. This means our parameter scheme of all
kn equalling one is a critical value for the system. We find that when we set k3 to be
slightly lower than k2, still with QH = 0.3 the system tends to a steady-state. If k3 is
set to be slightly higher than k2, the system instead tends to another distinct state in
which some concentrations grow linearly in time. This second behaviour is examined
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more closely in Section 3.5.2. In biological terms, this means if the reaction transform-
ing CO2 into COc happens at a greater or equal to rate as the reaction transforming
CO2 into formate, the system does not achieve steady-state with these constant CO
and hydrogen inputs. If the reaction to formate happens at a greater rate, the system
achieves a steady-state.

This set of equations, (3.4.12)–(3.4.21), can be analytically solved for the coeffi-
cients, c̄n. We write c̄CO and c̄H strictly in terms of the rate parameters kn and the
input fluxes QCO and QH . We then further write c̄CO2 and c̄ACA in terms of the pa-
rameters and c̄H . We then write c̄Ad and c̄A in terms of the parameters, c̄ACA and c̄H ,
so that we have

c̄CO =
QCO

k1
, (3.4.22)

c̄CO2 =
QCO

c̄H(k2 + k3)
, (3.4.23)

c̄ACA =
k2QCO

(k2 + k3)(k2(c̄H)2 + k8)
, (3.4.24)

c̄Ad = c̄ACA

(
k7
k18

+
k8k9

k18(c̄H)2(k9 + k19)

)
, (3.4.25)

c̄A = c̄ACA
k8

k9 + k19
, (3.4.26)

c̄H =

√
−k8(QH −QCO(2 + k9/(k9 + k19)))

k7(QH − 4QCO)
. (3.4.27)

However, since equations (3.4.14) and (3.4.15) simplify into a single equation, k2 = k3,
we only have nine equations for the ten coefficients. We need to find some other
balance in order to find explicit equations for all of the coefficients. To obtain another
equation, we return to the full set of ODEs with scalings substituted in, (3.4.2)–(3.4.11)
and subtract (3.4.4) from (3.4.5) to obtain the equation

0.5c̄COct
−0.5 + 0.5c̄F t

−1.5 = k5c̄CO2t
0c̄F t

−0.5c̄ACAt
0(c̄Ht0)2. (3.4.28)

This difference allows us to identify a secondary balance. All terms which scale like t0

have been cancelled out, leaving us only with terms of a lower order. The dominant
power of t in this new balance is t−0.5, and we cancel out all terms with a lower power
of t to find

0.5c̄COc = k5c̄CO2 c̄F c̄ACA(c̄H)2. (3.4.29)

Now using equations (3.4.12)–(3.4.21) and (3.4.29), we are able to determine expressions
for the remaining coefficients,

c̄COc =
2k5QCO c̄F c̄ACA(c̄H)2

k2 + k3
, (3.4.30)

c̄F =

√
k2

2k4c̄ACA(c̄H)2
, (3.4.31)

c̄Py =
k5QCO c̄F c̄ACA

(k2 + k3)(k14c̄ACA + k15(c̄2H))
, (3.4.32)

c̄Al = (c̄Py)
2 k6
k16 + k17(c̄H)2

. (3.4.33)

We have now found equations for all ten of our coefficients. As noted previously,
these coefficients must be positive, since our concentrations must be positive, and they
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must also be real. Of note is the equation for c̄H , (3.4.21). We see that in order for c̄H
to be real, the expression inside the square root must be positive. We also have that
as the denominator tends to zero, then c̄H tends to infinity. We find that if

QH

QCO
< 2 +

k9
k9 + k19

, (3.4.34)

then the numerator is positive, but the denominator is negative. Similarly, if

QH

QCO
> 4, (3.4.35)

then the numerator is negative, but the denominator is positive, both cases leading to
a complex value for c̄H . If QH/QCO remains in the range

2 +
k9

k9 + k19
≤ QH

QCO
≤ 4, (3.4.36)

then c̄H is positive and real, so this set of scalings exists. As QH/QCO tends the upper
bound, c̄H tends to infinity, whilst as QH/QCO tends towards the lower bound, c̄H
tends towards zero. At these boundary values, the system switches from one long term
behaviour to another, and our scalings are no longer applicable.

As we have found a bifurcation that depends only on the value of QH/QCO, it is
of interest to observe how the remaining coefficients vary with this ratio. By fixing
QCO and varying QH , we see how these coefficients behave as this ratio is varied. We
also compare our analytically found values for the coefficients of the metabolites in
steady-state with their numerical values to see if they match up as we would expect.

As seen in Figure 3.7, the numerically computed steady-states match up exactly
with the coefficients found.

3.5 Off the bifurcation

We found that the parameter regime, k2 = k3, was a bifurcation. As such the behaviour
examined in the previous section is only observable for that specific set of parameters.
This behaviour is non generic so we should instead consider parameter regimes where
k2 < k3 and k3 < k2 separately.

3.5.1 Region 1, k3 < k2

The region in which QCO/QH fits the limits shown in equation (3.4.36) with k3 < k2
is the region in which the concentrations of all metabolites tend to nonzero steady-
states. If we were to apply the same techniques to this region, we would find that all
metabolites would scale like t0 in the long timescale, and the resulting simultaneous
equations would be the equivalent to the full set of ODEs with derivatives set to zero.
Since the equations are not simplified at all in this case, we do not examine it any more
rigorously.

3.5.2 Region 2, k3 > k2

To examine the system in this region, we keep hydrogen and CO inputs fixed at QH =
0.3 and QCO = 0.1. All other coefficients are set to unity except k2 = 0.9. Plots
for the coefficients with these values are seen in Figure 3.8. In this region COc shows
unbounded growth, the concentrations of formate, pyruvate and acetolactate decay to
zero, and all other concentrations tend to nonzero steady-states.
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Figure 3.7: Coefficients of the six metabolites in steady-state plotted on the
same axis as the numerically computed steady-states of those metabolites as we
vary QH for the full ODEs. These two lines overlap exactly.

Scalings are obtained for this region in the same way as in Section 3.4, by measur-
ing the gradient of the log-log plots for metabolites not tending to zero. From these
measured gradients we find the scalings

cCO ∼ cCOt
0,

cCO2 ∼ cCO2t
0,

cCOc ∼ cCOct
1,

cF ∼ cF t
−1,

cACA ∼ cACAt
0,

cPy ∼ cPyt
−1,

cAl ∼ cAlt
−2,

cAd ∼ cAdt
0,

cA ∼ cAt
0,

cH ∼ cHt0.

(3.5.1)

Substituting these scalings into the original system of ODEs and dropping non-
dominant terms gives us the new set of ten simultaneous equations

0 = QCO − k1c̄CO, (3.5.2)

0 = k1c̄CO − k2c̄CO2(c̄H)2 − k3c̄CO2(c̄H)2, (3.5.3)

c̄COc = k3c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4, (3.5.4)

0 = k2c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4, (3.5.5)

0 = k4c̄COc c̄F (c̄H)4 − k7c̄ACA(c̄H)2 − k8c̄ACA, (3.5.6)
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Figure 3.8: Plots of metabolite concentrations against log time inside region 2,
with QH = 0.3, QCO = 0.1, and k2 = 0.9. All other parameters set to equal one.

0 = k5c̄CO2 c̄F c̄ACA(c̄H)2 − k14c̄ACAc̄Py − k15c̄Py(c̄H)2, (3.5.7)

0 = k6(c̄Py)
2 − k16c̄Al − k17c̄Al(c̄H)2, (3.5.8)

0 = k7c̄ACA(c̄H)2 + k9c̄A − k18c̄Ad(c̄H)2, (3.5.9)

0 = k8c̄ACA − k9c̄A − k19c̄A, (3.5.10)

0 = QH + 2k1c̄CO − 2k2c̄CO2(c̄H)2 − 2k3c̄CO2(c̄H)2

− 4k4c̄COc c̄F (c̄H)4 − 2k7c̄ACA(c̄H)2 − 2k18c̄Ad(c̄H)2. (3.5.11)

We solve these equations analytically to find expressions for each of the coefficients
c̄n in terms of the parameters kn, QH and QCO. For ease of notation we write the
coefficients in terms of these parameters and also c̄H and c̄ACA. c̄Py also uses c̄CO2 , c̄F
and c̄Al is given in terms of c̄Py. Then the expressions are

c̄CO =
QCO

k1
, (3.5.12)

c̄CO2 =
QCO

(c̄H)2(k2 + k3)
, (3.5.13)

c̄COc =
(k3 − k2)QCO

k2 + k3
, (3.5.14)

c̄F =
k2

(k2 + k3)k4(c̄H)2
, (3.5.15)

97



c̄ACA =
k2QCO

(k2 + k3)(k7c̄2H + k8)
, (3.5.16)

c̄Py =
k5c̄CO2 c̄F c̄ACA(c̄H)2

k14c̄ACA − k15(c̄H)2
, (3.5.17)

c̄Al =
k6(c̄Py)

2

k16 + k17(c̄H)2
, (3.5.18)

c̄Ad = c̄ACA

(
k7
k18

+
k8k9

k18(c̄H)2(k9 + k19)

)
, (3.5.19)

c̄A = c̄ACA
k8

k9 + k19
, (3.5.20)

c̄H =

√
−k8(QH −QCO(2k2/k2 + k3)(2 + k9/(k9 + k19)))

k7(QH − 8(k2/k2 + k3)QCO)
. (3.5.21)

We note from equation (3.5.14) that in order for a positive coefficient for COc, we
require k3 > k2 which is the restriction we have already placed on our parameter
scheme. This shows that k2 = k3 is a critical value for this region as we would expect.
As with the previous behaviour, by examining the expression for c̄H , we find conditions
on QH/QCO that are required for this behaviour to exist. We find that in order for cH
to take a positive, real, finite value, we must have

2k2
k2 + k3

(
2 +

k9
k9 + k19

)
<

QH

QCO
<

8k2
k2 + k3

. (3.5.22)

If k2 = k3 then this restriction takes the same values as it would on the bifurcation line
explored in Section 3.4. Rather than the bifurcations only depending on the ratio of
hydrogen and CO inputs, it also depends on the parameters k2 and k3. We now explore
further regions to see if there are other bifurcations.

3.6 Region 3, low Hydrogen

In the behaviour examined in Section 3.4 we found a bifurcation at

QH

QCO
= 2 +

k9
k9 + k19

. (3.6.1)

We now explore the system below this bifurcation at lower values of the input ratio,
QH/QCO. As before we find numerical solutions for the system of equations (3.3.3)–
(3.3.12) with all rate coefficients set to equal one, the CO input QCO = 0.1 and the
hydrogen input QH = 0.2. With these parameter values, we have QH/QCO = 2, and
k9/(k9+k19)+2 = 2.5, so we have our input ratio, QH/QCO lower than the critical value.
This choice of parameter values was simulated previously and is shown in Figure 3.3.
We see for this set of parameters, we have CO2, COc and acetaldehyde concentrations
tending to infinity in the long timescale whilst the hydrogen concentration tends to zero.
All other metabolites tend towards non zero steady-states. We again obtain possible
scalings for these variables by measuring the gradients of the log-log plots, seen in
Figure 3.9 From these measured gradients we obtain scalings for the metabolites in the
long timescale.

cCO ∼ cCOt
0,

cCO2 ∼ cCO2t
0.5,

cCOc ∼ cCOct
1,

cF ∼ cF t
0,

cACA ∼ cACAt
0,

cPy ∼ cPyt
0,

cAl ∼ cAlt
0,

cAd ∼ cAdt
0.5,

cA ∼ cAt
0,

cH ∼ cHt−0.25.

(3.6.2)
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Figure 3.9: Log-log plots of metabolites not tending to non zero steady-states
when QH = 0.2 enlarged to show the relevant long timescale

Substituting these into the ODEs and discarding terms of non dominant powers
gives us a new set of ten simultaneous equations.

0 = QCO − k1c̄CO, (3.6.3)

0 = k1c̄CO − k2c̄CO2(c̄H)2 − k3c̄CO2(c̄H)2 − k5c̄CO2 c̄F c̄ACA(c̄
2
H) + k6(c̄Py)

2,
(3.6.4)

c̄COc = k3c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4, (3.6.5)

0 = k2c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4 − k5c̄CO2 c̄F c̄ACA(c̄
2
H), (3.6.6)

0 = k4c̄COc c̄F (c̄H)4 − k5c̄CO2 c̄F c̄ACA(c̄
2
H)− k8c̄ACA − k14c̄ACAc̄Py, (3.6.7)

0 = k5c̄CO2 c̄F c̄ACA(c̄H)2 − 2k6c̄
2
Pyk14c̄ACAc̄Py, (3.6.8)

0 = k6(c̄Py)
2 − k16c̄Al, (3.6.9)

0 = k9c̄A − k18c̄Ad(c̄H)2, (3.6.10)

0 = k8c̄ACA − k9c̄A − k19c̄A, (3.6.11)

0 = QH + 2k1c̄CO − 2k2c̄CO2(c̄H)2 − 2k3c̄CO2(c̄H)2

− 4k4c̄COc c̄F (c̄H)4 − k5c̄CO2 c̄F c̄ACA(c̄H)2 − 2k18c̄Ad(c̄H)2. (3.6.12)

Unlike the equations seen for region 2, these equations are not solvable analytically,
however it is possible to solve them numerically. We solve them across a range of QH

with rate coefficients set to equal one and QCO = 0.1 as in our numerical solution. This
allows us to check that the computed coefficients agree with the ODEs. Since we know
that this behaviour only exists when

QH

QCO
< 2 +

k9
k9 + k19

, (3.6.13)

we only need to test the ranges where this is true, in this case when QH < 0.25. We find
solutions for the range 0.12 < QH < 0.25. Figure 3.10 shows the coefficient for formate,
c̄F and the coefficient for CO2, c̄CO2 rapidly increasing as the hydrogen input decreases.
We also see a rapid drop in the coefficient for Acetaldehyde, c̄Ad. When a coefficient
drops to zero, the scaling becomes invalid (as we would have a concentration scaling
like 0tx). Similarly, when a coefficient tends to infinity, we have a concentration scaling
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like∞tx, suggesting the concentration will scale faster than our current behaviour. The
rapidly increasing and decreasing coefficients seen on the lower bound of QH suggest
the existence of another critical value somewhere close to QH/QCO = 1.2, proving the
existence of further behaviour for even lower values for QH .
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Figure 3.10: Numerical solutions for equations (3.6.3)-(3.6.12) with all rate
coefficients, kn = 1, and QCO = 0.1, for QH varying between 0.1 and 0.25.

3.7 Region 4, lower hydrogen levels

To check for the existence of another behaviour at even lower hydrogen levels, we
simulate the system with a hydrogen input QH = 0.1. This gives us a input ratio of
QH/QCO = 1, lower than the approximate value suggested in the previous section.
Figure 3.11 shows the plots for this simulation. We see that there is indeed a behaviour
separate to the ones seen previously. Here we have the concentrations of CO2, COc

and formate tending towards infinity, whilst those of hydrogen, acetyl-CoA and acetate
tend to zero. All other metabolites tending to non zero steady-states. This behaviour
is different to behaviour three, suggesting there is indeed a critical value for the input
ratio somewhere in the range 1 < QH/QCO < 1.2.

We examine this behaviour in the same way as the previous two examples, first
taking the gradients of the log-log plots to find how the concentrations are scaling in
the long time scale. Figure 3.12 shows the log-log plots of the concentrations that tend
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Figure 3.11: Numerical simulation of the ODE system, (3.3.3)–(3.3.12) in region
4 with rate coefficients set to one and an input ratio of QH/QCO = 1.

to infinity or zero. Then the scalings are

cCO ∼ cCOt
0,

cCO2 ∼ cCO2t
1,

cCOc ∼ cCOct
1,

cF ∼ cF t
1,

cACA ∼ cACAt
−1,

cPy ∼ cPyt
0,

cAl ∼ cAlt
0,

cAd ∼ cAdt
0,

cA ∼ cAt
−1,

cH ∼ cHt−0.5.

(3.7.1)

Comparing these scalings to the previous scalings, we see that whilst CO2 and hydrogen
are tending to the same limits as they did in the previous behaviour (infinity and zero
respectively), they are scaling much faster than before. COc still scales at the same rate
as it did previously. We see acetaldehyde now tends to a steady-state, where before
it grew in time. Formate now grows in time, whilst before it tended to steady-state,
and acetyl-CoA and acetate both now decay to zero where before they had tended to
steady-state. As before we substitute in these scalings to the ODEs and then drop the
non-dominant terms to find a set of simultaneous equations,

0 = QCO − k1c̄CO, (3.7.2)

c̄CO2 = k1c̄CO − k2c̄CO2(c̄H)2 − k3c̄CO2(c̄H)2 − k5c̄CO2 c̄F c̄ACA(c̄
2
H) + k6(c̄Py)

2,
(3.7.3)
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Figure 3.12: Log-log plots of metabolites not tending to non zero steady-states
when QH = 0.1 zoomed on the relevant long timescale

c̄COc = k3c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4, (3.7.4)

c̄F = k2c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4 − k5c̄CO2 c̄F c̄ACA(c̄H)2, (3.7.5)

0 = k4c̄COc c̄F (c̄H)4 − k5c̄CO2 c̄F c̄ACA(c̄H)2, (3.7.6)

0 = k5c̄CO2 c̄F c̄ACA(c̄H)2 − 2k6(c̄Py)
2, (3.7.7)

0 = k6(c̄Py)
2 − k16c̄Al, (3.7.8)

0 = k9c̄A − k18c̄Ad(c̄H)2, (3.7.9)

0 = k8c̄ACA − k9c̄A − k19c̄A, (3.7.10)

0 = QH + 2k1c̄CO − 2k2c̄CO2(c̄H)2 − 2k3c̄CO2(c̄H)2

− 4k4c̄COc c̄F (c̄H)4 − k5c̄CO2 c̄F c̄ACA(c̄H)2. (3.7.11)

As with the equations for behaviour 3, seen in Section 3.6, these are not solvable
analytically. Instead we solve these equations numerically across a range of QH , with
other parameters fixed to equal one as in the previous example. Figure 3.13 shows the
values of the coefficients for the range of hydrogen input 0 ≤ QH ≤ 1. Since we are
only considering a positive hydrogen input, we do not need to examine negative values,
though since no coefficient appears to decay to zero or tend to infinity at QH = 0, there
is evidence to suggest that these equations would hold with negative values.

We see that as QH increases, the coefficients for multiple metabolites start to in-
crease rapidly, also suggesting the bifurcation somewhere between

1 < QH/QCO < 1.2.

We could either examine the region in which we know the bifurcation exists in more
detail to try and narrow down where it is, or try to find the bifurcation point analytically
with one of the sets of equations (3.6.3)–(3.6.12) or (3.7.2)–(3.7.11).
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Figure 3.13: Numerical solutions for equations (3.7.2)-(3.7.11) with all kn = 1,
QCO = 0.1, and QH varying between zero and 0.1

3.8 Higher Levels of Hydrogen

We also have interest in the case where they hydrogen input is much higher than
the CO input, that is when QH/QCO > 4. Figure 3.5 shows plots for the ODEs,
(3.3.3)–(3.3.12), when QH = 0.4 and QCO = 0.1. We see that the transient behaviour
happens on a very small timescale, with most metabolites experiencing a slight spike in
concentration before rapidly decaying to zero, whilst the concentration of CO maintains
a non-zero steady-state and the concentration of hydrogen increases rapidly. Examining
the behaviour of the metabolites on the long timescale and substituting scalings in as
before leads us to find that, as for behaviours 1 and 2, the parameter scheme in which
k2 = k3 is a bifurcation. Rather than examining this specific behaviour more closely,
we instead examine the behaviours when k3 < k2, and k3 > k2 separately.

3.8.1 Region 5, k2 > k3

By setting QH = 0.41 and k3 = 0.9, with all other parameters set to one as before,
we are able to examine the system with high hydrogen input. Here the system favours
formate production over COc production. Figure 3.14 shows the numerical simulation
of the system in this parameter regime. We see the concentrations of most metabolites
tend to zero, but we have the concentrations of formate and hydrogen growing indef-
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initely in time. Through a combination of balancing and numerically measuring the
gradients of the log-log plots in the long timescale, we obtain a set of scalings for this
behaviour,

cCO ∼ cCOt
0,

cCO2 ∼ cCO2t
−2,

cCOc ∼ cCOct
−5,

cF ∼ cF t
1,

cACA ∼ cACAt
−2,

cPy ∼ cPyt
−3,

cAl ∼ cAlt
−8,

cAd ∼ cAdt
−2,

cA ∼ cAt
−2,

cH ∼ cHt1.

(3.8.1)

Figure 3.14: Numerical simulation of the ODE system in region 5, with rate
coefficients set to one except k3 set to 0.9, QCO = 0.1 and QH = 0.41

Examining the system with these scalings, we see COc is decreasing much more
rapidly than before, and acetolactate is also decreasing at a much higher rate than in
any previous system. This quicker decrease for COc balances the increasing formate
and hydrogen in the reaction that creates acetyl-CoA from hydrogen, COc and formate,
maintaining a constant production level in the long timescale.

As before, we now substitute these scalings back into the original set of differ-
ential equations (3.3.3)–(3.3.12) and drop the non-dominant terms to give the set of
simultaneous equations

0 = QCO − k1c̄CO, (3.8.2)
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0 = k1c̄CO − k2c̄CO2(c̄H)2 − k3c̄CO2(c̄H)2 (3.8.3)

0 = k3c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4, (3.8.4)

c̄F = k2c̄CO2(c̄H)2)− k4c̄COc c̄F (c̄H)4, (3.8.5)

0 = k4c̄COc c̄F (c̄H)4 − k7c̄ACA(c̄H)2, (3.8.6)

0 = k5c̄CO2 c̄F c̄ACA(c̄H)2)− k15c̄Py(c̄H)2, (3.8.7)

0 = k6(c̄Py)
2 − k17c̄Al(c̄H)2, (3.8.8)

0 = k7c̄ACA(c̄H)2 − k18c̄Ad(c̄H)2, (3.8.9)

0 = k8c̄ACA − k9c̄A − k19c̄A, (3.8.10)

c̄H = QH + 2k1c̄CO − 2k2c̄CO2(c̄H)2 − 2k3c̄CO2(c̄H)2 − 4k4c̄COc c̄F (c̄H)4

− 2k7c̄ACA(c̄H)2 − 2k18c̄Ad(c̄H)2. (3.8.11)

Unlike the equations found for the two low hydrogen input behaviours seen in
Sections 3.6 and 3.7, these equations are relatively easy to solve analytically, allowing
us to write down values for all of them in terms of only the parameters. For ease of
notation, we show them in terms of the parameters, QCO, QH , kn, and the coefficient
c̄H . The coefficients are

c̄CO =
QCO

k1
, (3.8.12)

c̄CO2 =
QCO

(k2 + k3)
, (3.8.13)

c̄COc =
k3

(k2 − k3)k4(c̄H)4
, (3.8.14)

c̄F =
QCO(k2 − k3)

k2 + k3
, (3.8.15)

c̄ACA =
k3QCO

(k2 + k3)k7(c̄H)2
, (3.8.16)

c̄Py =
(k2 − k3)k3k5QCO

3

(k2 + k3)3k7k15(c̄H)4
, (3.8.17)

c̄Ad =
(k2 − k3)

2k23k
2
5k6QCO

6

(k2 + k3)6k27k
2
15k17(c̄H)10

, (3.8.18)

c̄Al =
k3QCO

(k2 + k3)k18(c̄H)2
, (3.8.19)

c̄A =
k3k8QCO

(k2 + k3)k7(k9 + k19)(c̄H)2
, (3.8.20)

c̄H = QH −
8k3QCO

k2 + k3
. (3.8.21)

In our first set of equations, (3.4.12)–(3.4.21) we found a bifurcation at
QH/QCO = 4. However, this was on the bifurcation k2 = k3, so for k2 ̸= k3 the
bifurcation may occur at other values of QH/QCO. In the region where k3 < k2, the
expression for c̄H , equation (3.8.21) tells us the critical value is actually

QH

QCO
=

8k3
k2 + k3

. (3.8.22)

When k2 = k3, this agrees with the previously found critical value seen in equation
3.4.35. In addition, since k3 < k2, k3/(k2 + k3) < 0.5, so the bifurcation point for
QH/QCO is never greater than four. We also note that from the expression for c̄COc ,
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Figure 3.15: Graph of solutions to equations (3.8.12)–(3.8.21) with kn = 1,
QCO = 0.1, and QH in the range 0.45 < QH ≤ 0.65

equation (3.8.14), k2 = k3 is a bifurcation again, since as k3 tends to k2, c̄COc tends to
infinity.

We plot these equations for varying QH with a fixed k3. Plots for k3 = 0.9 are
shown in Figure 3.15. We see that many coefficients tend to infinity as c̄H tends
to zero. This is expected as the next region past this bifurcation is the previously
observed steady-state region, so we expect the metabolites that tend to zero in this
region to have coefficients that tend to infinity towards the bifurcation to allow for a
steady-state. However we notice that c̄F does not tend to zero. If the region past the
critical value was the steady-state region, we would expect this coefficient to tend to
zero, allowing the concentration of formate to scale to like a lower power of t. Since
it does not, formate should continue scale proportionally to t1 past this critical value.
This suggests a further region between the steady-state region and this high hydrogen
region in which most metabolites tend to either steady-state or at least scale like a
higher power of t than in this region, but where formate still scales like t1, and we
will examine this region in Section 3.9. First however, we examine the region in which
k3 > k2.
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Figure 3.16: Numerical simulation of the ODE system in region 6, with rate
coefficients set to one except k2 set to 0.9, QCO = 0.1 and QH = 0.41

3.8.2 Region 6, k3 > k2

To examine this region, we set QH = 0.41 as before and all other parameters to equal
one except k2 = 0.9. This represents a regime in which the system favours COc pro-
duction over formate production. Figure 3.16 shows the simulations for this parameter
scheme. We notice that in this regime, we have COc tending to infinity, whilst formate
decays to zero which is the opposite of the previous regime. As the system is biased
towards producing COc, it makes sense that there is an excess of this, whereas when
the system was biased towards formate production, there was an excess of formate. As
before we examine the long timescale behaviour and find scalings for the metabolites
with a combination of asymptotic balancing and numerical measurement. The scalings
for this parameter regime are

cCO ∼ cCOt
0,

cCO2 ∼ cCO2t
−2,

cCOc ∼ cCOct
1,

cF ∼ cF t
−5,

cACA ∼ cACAt
−2,

cPy ∼ cPyt
−9,

cAl ∼ cAlt
−20,

cAd ∼ cAdt
−2,

cA ∼ cAt
−2,

cH ∼ cHt1.

(3.8.23)

We see that acetolactate has an even sharper decline than before. This is shown
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on the graphs as acetolactate undergoes a very rapid decrease (within t = 100). We
also notice that the scalings for COc and formate have swapped as we crossed the
bifurcation k2 = k3. By substituting these scalings into the ODEs and dropping non-
dominant terms, we find the set of simultaneous equations

0 = QCO − k1c̄CO, (3.8.24)

0 = k1c̄CO − k2c̄CO2(c̄H)2 − k3c̄CO2(c̄H)2, (3.8.25)

c̄COc = k3c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4, (3.8.26)

0 = k2c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4, (3.8.27)

0 = k4c̄COc c̄F (c̄H)4 − k7c̄ACA(c̄H)2, (3.8.28)

0 = k5c̄CO2 c̄F c̄ACA(c̄H)2 − k15c̄Py(c̄H)2, (3.8.29)

0 = k6(c̄Py)
2 − k17c̄Al(c̄H)2, (3.8.30)

0 = k7c̄ACA(c̄H)2 − k18c̄Ad(c̄H)2, (3.8.31)

0 = k8c̄ACA − k9c̄A − k19c̄A, (3.8.32)

c̄H = QH + 2k1c̄CO − 2k2c̄CO2(c̄H)2 − 2k3c̄CO2(c̄H)2 − 4k4c̄COc c̄F (c̄H)4

− 2k7c̄ACA(c̄H)2 − 2k18c̄Ad(c̄H)2. (3.8.33)

Interestingly, these equations are nearly the same as the previous set of equations,
(3.8.2)–(3.8.11), but we have kept a c̄COc on the left hand side of the third equations,
rather than a c̄F on the left hand side of the fourth. The resulting expressions for
the coefficients will therefore also likely be similar. Solving equations (3.8.24)–(3.8.33)
analytically gives us

c̄CO =
QCO

k1
, (3.8.34)

c̄CO2 =
QCO

(k2 + k3)
, (3.8.35)

c̄COc =
QCO(k3 − k2)

k2 + k3
, (3.8.36)

c̄F =
k2

(k3 − k2)k4(c̄H)4
, (3.8.37)

c̄ACA =
k2QCO

(k2 + k3)k7(c̄H)2
, (3.8.38)

c̄Py =
k22k5QCO

2

(k2 + k3)2(k3 − k2)k15(c̄H)8
, (3.8.39)

c̄Ad =
k42k

2
5k6QCO

4

(k2 + k3)4(k3 − k2)2k215k17(c̄H)18
, (3.8.40)

c̄Al =
k2QCO

(k2 + k3)k18(c̄H)2
, (3.8.41)

c̄A =
k2k8QCO

(k2 + k3)k7(k9 + k19)(c̄H)2
, (3.8.42)

c̄H = QH −
8k2QCO

k2 + k3
. (3.8.43)

Most of these expressions are the same as in region 5, with k3 and k2 swapped. The
quantities c̄COc and c̄F have also swapped, whilst c̄Py and c̄Al differ more. We see from
the equation for c̄F that k2 = k3 is still a bifurcation. We also see from the equation
for c̄H a bifurcation when QH/QCO = 8k2

k2+k3
. What we originally though was a single
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bifurcation at QH/QCO = 4 is actually a piecewise function of k2 and k3, that is written
as

QH/QCO =


8k3

k2 + k3
k2 > k3

4 k2 = k3
8k2

k2 + k3
k2 < k3

(3.8.44)

Whilst the region where QH is greater than this bifurcation has been referred to as
the high hydrogen region, if k3 ≪ k2 or k2 ≪ k3, this region extends well into levels of
hydrogen that are much lower.
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Figure 3.17: Graph of solutions to equations (3.8.34)–(3.8.43) with kn = 1,
QCO = 0.1, and QH in the range 0.45 < QH ≤ 0.65

We plot the coefficients for a fixed value of k2 across varying QH , with all other
parameters set to one. Figure 3.17 shows these plots for k2 = 0.9. We see again
the majority of coefficients tending to infinity as c̄H tends to zero. We observe c̄COc

remaining constant and not tending to zero. This is not a problem as c̄F was in the
previous example, as the next region past the bifurcation as QH decreases was not
identified to be a steady-state.
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3.9 Region 7. A region between high hydrogen

and steady-state

We have deduced that there is another region in the parameter space between the high
hydrogen region where k2 > k3 examined in Section 3.8.1, and the steady-state region
seen when k2 > k3 and QH/QCO < 8k2

k2+k3
. However, as we are able to describe the

shape of the steady-state region analytically, it is not clear how large this intermediate
region may be. We investigate the area near the boundary of the region and try to find
a new behaviour that is different to that seen in Section 3.8.1. A set of parameters that
provides us with this new behaviour is QH = 0.34, QCO = 0.1, k3 = 0.8, and all other
parameters set to one. Plots for the system with these parameter values are given in
Figure 3.18. We obtain scalings for this behaviour in the usual way. The scalings are

cCO ∼ cCOt
0,

cCO2 ∼ cCO2t
−1,

cCOc ∼ cCOct
−3,

cF ∼ cF t
1,

cACA ∼ cACAt
−1,

cPy ∼ cPyt
−1,

cAl ∼ cAlt
−3,

cAd ∼ cAdt
−1,

cA ∼ cAt
−1,

cH ∼ cHt0.5.

(3.9.1)

Figure 3.18: Numerical simulation of the ODE system in the region 7, with
rate coefficients set to one except k3 set to 0.8, QCO = 0.1 and QH = 0.34)
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We see that whilst the same metabolites are tending to zero or infinity as in be-
haviour 5, their exponents are closer to zero. In particular we observe hydrogen now
scales like t0.5 rather than t1. Formate still scales like t1, as predicted by equation
(3.8.14) for behaviour 5. We substitute these scalings into the original ODEs, (3.3.3)–
(3.3.12), and drop non dominant terms to find the set of simultaneous equations for
this region,

0 = QCO − k1c̄CO, (3.9.2)

0 = k1c̄CO − k2c̄CO2(c̄H)2 − k3c̄CO2(c̄H)2 − k5c̄CO2 c̄F c̄ACA(c̄H)2, (3.9.3)

0 = k3c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4, (3.9.4)

c̄F = k2c̄CO2(c̄H)2 − k4c̄COc c̄F (c̄H)4 − k5c̄CO2 c̄F c̄ACA(c̄H)2, (3.9.5)

0 = k4c̄COc c̄F (c̄H)4 − k5c̄CO2 c̄F c̄ACA(c̄H)2 − k7c̄ACA(c̄H)2, (3.9.6)

0 = k5c̄CO2 c̄F c̄ACA(c̄H)2 − k15c̄Py(c̄H)2, (3.9.7)

0 = k6(c̄Py)
2 − k17c̄Al(c̄H)2, (3.9.8)

0 = k7c̄ACA(c̄H)2 − k18c̄Ad(c̄H)2, (3.9.9)

0 = k8c̄ACA − k9c̄A − k19c̄A, (3.9.10)

0 = QH + 2k1c̄CO − 2k2c̄CO2(c̄H)2 − 2k3c̄CO2(c̄H)2 − 4k4c̄COc c̄F (c̄H)4

− 2k5c̄CO2 c̄F c̄ACA(c̄H)2 − 2k7c̄ACA(c̄H)2 − 2k15c̄Py(c̄H)2 − 2k18c̄Ad(c̄H)2. (3.9.11)

These equations are not solvable analytically, but we are able to solve them numer-
ically. We keep k3 fixed whilst varying the hydrogen input QH to obtain some idea of
the boundaries of this region as QCO/QH changes. Figure 3.19 shows the numerical
solutions between QH = 0.32 and QH = 0.355. The upper boundary was chosen as it
is just below the known bifurcation point at QH/QCO = 8k3

k2+k3
for k3 = 0.8 and k2 = 1.

The lower boundary is where the solver stopped converging. We see from the graphs
that as we approach the lower boundary, both c̄H and c̄F tend to zero as we would
hope, and the remaining coefficients other than c̄CO tend to infinity. This suggests that
the state past this bifurcation is indeed be the steady-state, and there is no evidence
to suggest further possible behaviour between the two.

3.10 Conclusions

We have found and identified seven behaviours of the system that arise from different
parameter regimes, characterised by different long timescale scalings for the concen-
trations. These scalings are summarised in Table 3.5. We have found four possible
parameters which heavily influence which long timescale behaviour the model displays.
These parameters are QCO, QH , k2, and k3. In particular, the values of the ratios
QCO/QH and k3/k2 have been found to have critical values where the model switches
from one long timescale behaviour to another. For each behaviour we have described a
set of ten equations that are true in the long timescale e.g. equations (3.9.2)–(3.9.11) for
behaviour seven. By attempting to solve these sets of equations for a variety of values
of QCO/QH and k3/k2, we find approximations of the critical values for these param-
eter ratios for each behaviour. Whilst the equations have solutions with coefficients
greater than or equal to zero, then the behaviour exists, otherwise it does not. When
solutions cease to exist, we have found an approximate boundary. We have performed
this numerical analysis for all behaviours to build up a complete 2D representation of
where in parameter space each behaviour exists. A diagram showing these regions is
given in Figure 3.20. We were also able to obtain a number of boundaries analytically
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from these equations, those of behaviours 2, 5, and 6, therefore numerical estimates
were not required for these behaviours.

3.10.1 Behaviour 1

Behaviour 1 is a steady-state behaviour. The concentrations of all metabolites tend to
nonzero steady-states in the long timescale. As a result, we find production of all six
key products from the system. All reactions remain active. The network diagram for
this region in the long timescale is the same as the full network in Figure 3.1.

3.10.2 Behaviour 2

This behaviour exists with moderate hydrogen input, and is in the area where k2 >
k3. This represents a bias in production towards COc over formate, which causes the
concentration of COc to tend to infinity whilst the concentration of formate decays
to zero. We see in the long timescale the production of pyruvate tending to zero due
the lack of formate, which causes no production of the lower fours products in the
system. The upper branch remains active however, and both acetate and acetaldehyde
are produced, leading to the production of ethanol with this behaviour. Figure 3.21
shows the effective long timescale metabolism for this behaviour.
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Figure 3.19: Numerical solutions to equations (3.9.2)–(3.9.11) over the range
0.32 ≤ QH ≤ 0.355 with k3 = 0.8, QCO = 0.1, and all other kn = 1.
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Metabolite Time-scaling by behaviour
1 2 3 4 5 6 7

CO t0 t0 t0 t0 t0 t0 t0

CO2 t0 t0 t0.5 t1 t−2 t−2 t−1

COc t0 t1 t1 t1 t−5 t1 t−3

Formate t0 t−1 t0 t1 t1 t−5 t1

Acetyl-CoA t0 t0 t0 t−1 t−2 t−2 t−1

Pyruvate t0 t−1 t0 t0 t−3 t−9 t−1

Acetolactate t0 t−2 t0 t0 t−8 t−20 t−3

Acetaldehyde t0 t0 t0.5 t0 t−2 t−2 t−1

Acetate t0 t0 t0 t−1 t−2 t−2 t−1

Hydrogen t0 t0 t−0.25 t−0.5 t1 t1 t0.5

Table 3.5: Table of scalings for each metabolite as t → +∞ in each regime.
A scaling of t0 represents a metabolite tending to a nonzero steady-state. An
exponent greater than zero represents a metabolite showing unbounded growth.
A negative exponent represents a concentration decaying to zero.

Figure 3.20: The regions in parameter space for the system of ODEs (3.3.3)–
(3.3.12) with regions numbered by observed behaviour. The boundaries with solid
lines are known analytically, whilst the dotted ones are obtained numerically. The
horizontal axis is QH/QCO, with QH being varied, and the vertical axis is k3. All
other parameters are fixed to be one.

3.10.3 Behaviour 3

This behaviour has a lower hydrogen input than behaviours 1 or 2. With this behaviour
we find the concentrations of CO2, COc and acetaldehyde tending to infinity in the long
timescale whilst the concentration of hydrogen decays to zero. It is obvious the decay
in concentration of hydrogen is due to the reduced input, however, due to the increase
of multiple other metabolite concentrations, even in the long timescale the majority of
reactions remain active. The production of acetaldehyde from acetyl-CoA is not present
but acetaldehyde is still formed from acetate, so there is still an ethanol production.
The only product not formed in this region is butanediol. The network diagram for
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Figure 3.21: Network diagram for the effective long timescale metabolism of
behaviour 2. Only reactions which are present in the long timescale are included
on the diagram.

this behaviour is seen in Figure 3.22

Figure 3.22: As in Figure 3.21, but for behaviour 3.

3.10.4 Behaviour 4

Behaviour 4 is present when there is a very low hydrogen input. For this behaviour,
CO2, COc, and formate have concentrations that tend to infinity. The concentrations of
hydrogen, acetyl-CoA, and acetate decay to zero. The top branch is shut off completely
in this region, and there is only production of valine in the lower branch. This is because
valine does not require any additional hydrogen to produce, whilst both lactate and
butanediol do. The decay in concentration of acetyl-CoA prevents the production of
biomass in the long timescale. The network diagram for this behaviour is given in
Figure 3.23
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Figure 3.23: As in figure 3.21, but for behaviour 4.

3.10.5 Behaviour 5

Behaviour 5 is present in a high hydrogen input region with k3 < k2. Here, the
majority of concentrations of metabolites decay to zero in the long timescale. Only
the concentration of CO remains at a nonzero steady-state, whilst the concentrations
of hydrogen and formate tend to infinity. The system in this region favours formate
production over COc production which explains the boundless growth of formate. The
growth of hydrogen is also obviously due to the high constant hydrogen input in the
region. Due to the majority of concentrations tending to zero, the majority of reactions
also become inactive in the long timescale. Only the production of ethanol remains in
this region, with the flux taking a direct route from acetyl-CoA through acetaldehyde
into ethanol, which is the route using the most hydrogen. There is no activity in the
lower branch, and no production of acetate. The network diagram for this behaviour
is shown in Figure 3.24

Figure 3.24: As in Figure 3.21, but for behaviours 5 and 6.
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3.10.6 Behaviour 6

Behaviour 6 is found in the high hydrogen input region with k2 < k3. Here, the
network has similar behaviour to that seen in region 5, with the majority of metabolite
concentrations decaying to zero in the long timescale. We have a switch in the long
term behaviours of COc and formate. In this region COc has unbounded growth whilst
the concentration of formate decays to zero. This is due to the system now having a
bias towards the production of COc rather than formate. This was also observed in
behaviour 2. Despite the switch in behaviours of the two metabolites, we find that,
as in behaviour 5, only ethanol production remains active in the long timescale. The
network diagram for this behaviour is the same as the diagram for behaviour 5, seen
in Figure 3.24

3.10.7 Behaviour 7

Behaviour 7 is found in a region in the parameter space between behaviours 5 and
1. The concentrations of metabolites behave in the same way as in behaviour 5, with
the majority of concentrations decaying to zero, while CO remains constant and the
concentrations of hydrogen and formate tend to infinity. The decays and growths
however are slower than in region 5, which allows the system to maintain a production
of pyruvate in the lower branch. We still have no biomass production, however lactate
is produced in this region. The top branch remains with only ethanol production active.
The network diagram for this behaviour is shown in 3.25

Figure 3.25: As in Figure 3.21, but for behaviour 7.

3.10.8 Conclusions

Our asymptotic analysis has allowed us to find and quantify seven different long term
behaviours for this network. Of these behaviours, 6 are non-steady. Only behaviour
1 is a steady-state. We note that the range of parameter schemes that lead to this
behaviour were relatively small. We also note that only behaviours 1 and 3 have
a biomass production in the long timescale. In all other states the organism would
stagnate and die due to a lack of biomass production required for growth. We have
also found that there is butanediol production in the steady-state behaviour but no
production in any other regions. It is also observed that in behaviours with extreme
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hydrogen inputs, whether high or low, the ODEs predict only a single product being
formed. In the high hydrogen case this is ethanol, and the network reduces to the
first steps in which acetyl-CoA is formed, and then a single route to ethanol through
acetaldehyde. In the low hydrogen case this single product is valine, and the network
reduces to the first steps in which acetyl-CoA is formed, and then a single route to
valine through pyruvate.

Within these non-steady behaviours, there are some reactions that become insignifi-
cant in the long timescale, which we are able to identify using power laws. By neglecting
the terms that correspond to these insignificant reactions we are able to form sets of
ODEs that approximate these behaviours in the long timescale. In particular, in Figure
3.7, we showed that we are able to compute exact values for the steady-state concentra-
tions using these simplified ODEs. We use these simplified ODEs to find relationships
in parameters that lead to each specific long timescale behaviour. We find that the
input ratio QH/QCO and the ratio of rate parameters k3/k2, relating to the utilization
of CO2 within the network, were key to predicting which behaviour would be exhibited
by the ODEs for a given parameter set. Whilst the boundaries between behaviours
do not always have explicit analytic representations, we are always able to numerically
approximate them.

By examining the behaviours that surround the steady-state region, we are able
to find approximate bounds on parameter values that lead to the network tending to
steady-state. This steady-state region is comparable to the steady-state region pre-
dicted by flux balance analysis. Whilst we are not able to directly compare the non-
steady-state behaviours from ODEs with FBA, we are able to compare the boundaries
of the steady-state region, to see if FBA predicts non-steady long timescale behaviours
for the same parameter schemes.
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Chapter 4

Comparing steady-state
predictions of FBA and ODE
models.

4.1 Introduction

We have now analysed our C. autoethanogenum network using both FBA and ODE
models. We now compare the results from these two different models. FBA is only able
to describe systems in steady-state. It does not allow us to examine the dynamics of the
network prior to reaching steady-state, nor does it allow us to observe the behaviour of
the network when it does not tend to a steady-state. Hence, we are only able to compare
steady-state results. In particular, in section 2.9.6, we used FBA to predict bounds on
the ratio of inputs to the network, QH/QCO that were required for the network to
reach steady-state. We were able to describe similar bounds on our ODE model in
Chapter 3. In addition, for our ODE model, we were able to describe conditions on an
additional parameter ratio, k3/k2 that also determined whether the network was able
to reach steady-state, allowing us to describe a 2D region in parameter space where
steady-states were possible. In this chapter, we extend our FBA analysis to build up
an equivalent region in flux space where steady-states are possible. In the second half
of the chapter, we modify the network to examine how this affects the steady-state
region predicted by FBA. By comparing the results of this steady-state region with the
results for non-steady-state regions from our ODE models, we are able to find parameter
schemes in which the ODE model exhibits multiple long timescale behaviours.

4.2 Steady-states in FBA

Using FBA in section 2.9.6, we determined a range of input ratios, QH/QCO, that allow
the system to reach a steady-state. This range is

4

3
≤ QH

QCO
≤ 4. (4.2.1)

For input ratios that lay outside this range, the constraints for our optimisation problem
become infeasible, and steady-state solutions cannot be found. Outside this range we
expect there to no longer be possible steady-states. In particular, using elementary
modes analysis, in section 2.9.7, we showed that it was not possible for steady-states to
exist outside this range, as there were no elementary modes that utilised input ratios
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outside of this range. We overlay this range on the bifurcation diagram produced for
the ODE models in Figure 3.20. This overlayed range is shown in Figure 4.1

We produced an equivalent range for the input ratios in our ODE model, (3.3.3)–
(3.3.12). By numerically solving these equations in steady-state for a range of input
ratios, QH/QCO, we find a numerical estimate for this range. We see from Figure 4.1
that this range is about

2.2 ≤ QH

QCO
≤ 4. (4.2.2)

In section 3.4, we analysed the bifurcation between the steady-state region, region 1,
and a linear growth state region, region 2, where k2 = k3. We found the behaviour on
this bifurcation required the input ratio to be within the range

2 +

(
k9

k9 + k19

)
≤ QH

QCO
≤ 4. (4.2.3)

The lower bound for this range takes values between 2 and 2.5 depending on the values
of k9 and k19, generally agreeing with our numerical observation.

Figure 4.1: The bifurcation diagram seen in Figure 3.20, with the range of
QH/QCO values for which FBA predicts steady-states existing marked. The re-
gion between the thick vertical lines is the region where FBA predicts steady-
states, whilst outside this region FBA predicts no steady-states can be found.

The range of possible values predicted by FBA is significantly larger than those we
have found by analysing the ODEs. Whilst the two methods agree exactly on the upper
bound, the lower bound predicted by FBA is 4/3, whilst the lower bound predicted by
the ODE model is approximately 2.2. It is possible that our particular ODEs are not
able to attain a steady-state in the lower input region due to the specific choices for
modelling reaction rates, but it is also possible that specific parameter choices could
lead to steady-states being found in this region.

Whilst our ODE steady-state region shown in Figure 4.1 is 2D, we have so far only
produced a 1D range of flux ratios that must be satisfied for steady-states to exist. We
now consider an additional flux ratio in order to create an equivalent 2D region in flux
space that is required for the existence of steady-states in FBA.

4.2.1 The ratio of v2 and v3

From our analysis in Chapter 3, we determined that the values of the parameters k2 and
k3 have an effect on which long term behaviour the ODE model exhibits. In particular,
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we found for steady-states to be possible, we must have k2 > k3, that is k3/k2 > 1.
The fluxes governed by these parameters are v2 = k2cCO2c

2
H and v3 = k3cCO2c

2
H . We

see that the ratio of these two fluxes is

v3
v2

=
k3cCO2c

2
H

k2cCO2c
2
H

=
k3
k2

. (4.2.4)

This tells us that constraining the ratio of fluxes, v3
v2
, in our FBA model is exactly

equivalent to constraining the ratio of the rate parameters, k3
k2
, in our ODE model. As

we can directly compare these two ratios, we can test our results from the ODE model
about k2 and k3 with flux balance analysis to see if the same behaviour is observed
with FBA.

We wish to find the minimum and maximum values for v3
v2

across different input

ratios QH
QCO

. To do this we set up a new FBA problem. We include the original
constraints of Sv = 0, where S is the stoichiometric matrix presented in equation
(2.9.28), and vmin ≤ v ≤ vmax, but we also include a new constraint fixing QH

QCO
= r

for some r within the range that permits the existence of steady-states. Rearranging
this constraint gives QH − rQCO = 0. In order to find the maximum and minimum
values for the ratio v2/v3, we add the constraint v2 = 1, and set our objective function
to be maximising or minimising v3. We set minimum values for all fluxes to be zero,
but we do not need to set maximum values, as the overall flux through the system is
constrained by the constraint v2 = 1. We continue to assume that the carbon dioxide
and secondary carbon monoxide inputs QCO2 and QCOc are equal to zero. Then our
FBA problem is

max
v

/min
v

v3 such that: Sv = 0,

vn, outn ≥ 0,

QH − rQCO = 0,

QCO2 = 0,

QCOc = 0,

v2 = 1. (4.2.5)

for 4/3 ≤ r ≤ 4. Since we have v2 = 1, the maximum and minimum values of v3
provided by this linear programming are the same as the maximum and minimum
values of v3

v2
. The results are shown in Table 4.1 and plotted in Figure 4.2.

We see that the maximum value for v3/v2 is one. This matches our findings from
the ODEs, where a steady-state could only exist if k3 < k2. We also see a clear lower
bound at v3/v2 = 0.5. For higher ratios of QH/QCO, the lower bound for v3/v2 is
higher. Similarly, as we approach the lower bound of QH/QCO, the lower and upper
bound for v3/v2 converge to 2

3 .
By examining the network, and the stoichiometric matrix (2.9.28) we are able to

determine why the upper bound of one and the lower bound of 0.5 exist. In steady-state,
we have

v3 = v4, (4.2.6)

v2 = v4 + v5, (4.2.7)

v4 = v5 + v7 + v8 + outbio. (4.2.8)

If we have v3/v2 > 1, so that v3 > v2, then we have v4 > v2, and equation (4.2.7)
cannot be satisfied, as all fluxes are positive. Since all fluxes are positive, equations
(4.2.8) tells us that v4 ≥ v5, and substituting this into equation (4.2.7) tells us that
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QH/QCO Minimum v3/v2 Maximum v3/v2
1.3333 0.6667 0.6667
1.5 0.5 0.75

1.6667 0.5 0.8333
1.8333 0.5 0.9167

2 0.5 1
2.1667 0.5 1
2.3333 0.5 1
2.5 0.5385 1

2.6667 0.5789 1
2.833 0.6216 1
3 0.6667 1

3.1667 0.7143 1
3.3333 0.7647 1
3.5 8182 1

3.6667 0.8750 1
3.8333 0.9355 1

4 1 1

Table 4.1: Minimum and maximum possible values for v3/v2 in the flux balance
analysis problem described in (4.2.5) for different values of r = QH/QCO .

1 1.5 2 2.5 3 3.5 4
0.4
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Figure 4.2: Plot of the values from Table 4.1. The x axis is QH/QCO, and the
y axis is v3/v2. The upper line is the maximum possible values for v3/v2 and the
lower line is the minimum. The region between these two lines is the area where
steady-states are possible.

v2 ≥ 2v4. Finally substituting in equation (4.2.6) gives us v2/2 ≥ v3, giving us exactly
the lower bound, v3/v2 ≥ 1/2.

We see from Figure 4.2, if the ratio ofQH/QCO is close to the maximum or minimum
values allowing steady-states, the possible range for v3/v2 is lower than these maximum
and minimum values of one and 0.5. As QH/QCO tends to four, the lower bound for
v3/v2 tends to one, whilst the upper bound stays the same. As QH/QCO decreases
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Pathway v1 v2 v3 v4 v5 v6 v7 v8 v9 in1 in2 in3 in4 Output
1 2 1 1 1 0 0 1 0 0 2 0 0 8 outeth
2 2 1 1 1 0 0 0 1 1 2 0 0 6 outeth
3 6 3 2 2 1 0 0 0 0 6 0 0 8 outbio
4 4 2 1 1 1 0 0 0 0 4 0 0 6 outlac
5 7 4 2 2 2 1 0 0 0 7 0 0 10 outval
6 6 4 2 2 2 1 0 0 0 6 0 0 14 outbut
7 2 1 1 1 0 0 0 1 0 2 0 0 4 outace

Table 4.2: Table of elementary modes for FBA when there are only CO and
hydrogen inputs. Each mode produces only a single output which is listed in the
last column. All other outputs are equal to zero.

past two, the upper and lower bounds converge to 2
3 as QH/QCO reaches 4

3 . In section
2.9.7, we generated a set of elementary modes for this network. Initially we found 28
possible modes, however only seven of these use only the QCO and QH inputs, with the
other 21 also using QCO2 and QCOc . Hence, only the first seven could be active in these
simulations, and these are reproduced in Table 4.2. When the input ratio, QH/QCO

is in the middle of its range then we have some freedom in generating a solution from
combinations of these modes. As the input ratio tends to more extreme values the
choices become more restricted, until finally at the most extreme points the solution
has to be some multiple of a single mode. When the ratio is equal to four, only the
first mode in Table 4.2 can be active, as all other modes have a lower input ratio. So
for the highest possible input ratio, the network can only produce ethanol if it is in
a steady-state. When the input ratio is equal to 4

3 , then only the third mode can be
active, as all other modes have a higher input ratio. We also see looking at the table
that modes with v2/v3 = 1 have an input ratio between two (mode seven) and four
(mode one). If our input ratio is less than two, then we must include modes in our
solution that have v2/v3 < 1 in order to have a solution. Similarly, the modes that
have v2/v3 = 0.5 have input ratios between 1.5 (mode three) and 7

3 (mode six), so
outside of the range 1.5 ≤ QH/QCO ≤ 7/3, we must include other modes to have a
valid steady-state solution leading to a higher ratio, v2/v3. This matches the results
seen in Table 4.1 and Figure 4.2.

4.2.2 k9 and k19

In our ODE model, k9 is the rate parameter for the production of acetaldehyde from
acetate and k19 is the rate parameter for the removal of acetate as a product from the
system. The two fluxes, v9 = k9cA, and outace = k19cA, have the same property as
v2 and v3, in that analysing their ratios is the same as analysing the ratio of the rate
coefficients in the ODE system. However, we cannot examine k9 and k19 in the same
way. For v2 and v3, we were able to find a maximum and minimum ratio, but for v9
and outace, there is no equivalent maximum. In particular, the ratio v9/outace can take
any value greater than or equal to zero. Rather than examining this ratio on its own,
we instead constrain it to take specific values, and then produce the same 2D regions
of flux space that permit the existence of steady-states, as generated by equation 4.2.5,
seen in Figure 4.2. We constrain the v9/outace ratio in the same way we constrain the
input ratio, so that we have v9 − r2outace = 0 for various values of r2. Then the new
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FBA problem is

max
v

/min
v

v3 such that: Sv = 0,

vn, outn ≥ 0,

QH − r1QCO = 0,

QCO2 = 0,

QCOc = 0,

v2 = 1,

v9 − r2outace = 0. (4.2.9)

We solve this FBA problem for the range 4/3 ≤ r1 ≤ 4, and various values of r2.
Figure 4.3 shows these steady-state regions for r2 equal to 0, 0.5, 1, and 1000. This
ratio, v9/outace has no effect on the lower bound for v3/v2. We see that it does affect
the upper bound, particularly for low input ratios where the maximum ratio of v3/v2
becomes lower. Specifically, the minimum input ratio QH/QCO required for v3/v2 = 1
to allow steady-states increases. In our ODE models, we have always used k9 = k19, so
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Figure 4.3: Plots of the boundaries of the region in which FBA solutions exist
with v9/outace set to 0, 0.5, 1, and 1000.

the ratio of the two is equal to one. In FBA, this is equivalent to adding the constraint
v9−outace = 0. This is shown in the third graph in Figure 4.3. For v9 = outace, we find
that the input ratio required for v3/v2 = 1 to allow steady-states is QH/QCO = 2.5.
This matches the results found from our ODE model. Specifically equation (4.2.3) told
us that the minimum value for QH/QCO required was QH/QCO = 2 + k9

k9+k19
= 2.5

when k9 = k19. In fact, comparing our results from the FBA model, (4.2.9), we find
that range of values QH/QCO that allow a steady-state when v3/v2 = 1 for a given
v9/outace ratio match exactly the range predicted by equation (4.2.3).
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4.3 Comparing the steady-state regions of the

two models

We compare the steady-state region predicted by FBA from (4.2.5) with the steady-
state region predicted by our ODE model, (3.3.3)–(3.3.12). Figure 4.4 shows both these
regions. We note that the region of steady-states predicted by FBA is much larger than
the region predicted by ODEs. The upper boundary on k3/k2 matches exactly, with
both methods predicting no steady-states when k3 > k2. The lowest possible values of
k3/k2 predicted by the ODE model is quite close to the lowest possible value predicted
by FBA, however for most values of QH/QCO these boundaries are not in agreement. In
particular, we note that whilst larger values ofQH/QCO give a closer agreement between
the two methods, for lower values of QH/QCO there is much more variation between
the two methods. Indeed, we see that our ODEs do not predict states at all for values
of QH/QCO less than near 2.3, whilst FBA predicts them as low as QH/QCO = 4/3.
The upper bound of QH/QCO for both methods, however, is in agreement, with the
maximum value allowed for the existence of steady-states being QH/QCO = 4. We
see that the steady-state region predicted by FBA extends into regions where our
ODE model predicts non-steady-states. In particular, it extends into the regions where
we see behaviours 3 and 7. Figure 4.5 shows the region in which our ODE model
predicts the behaviour 3, whilst the FBA model predicts the possibility of steady-
states, and Figure 4.6 shows the region in which the ODE model predicts behaviours
7, whilst FBA predicts steady-state. This latter region is of particular interest, as it
allows us to provide an upper bound on values of k3/k2 that lead to behaviour 7 in
the long timescale. The lower bound for region 7 is analytically calculated from the
long timescale asymptotics for region 5, seen in section 3.8.1, but the upper bound is
only numerically estimated for a specific parameter set. The lower bound of the FBA
steady-state region provides a general upper bound for behaviour 7.

Figure 4.4: Comparison of regions predicting steady-state by the ODE model,
(3.3.3)–(3.3.12), and the FBA, as found using equation (4.2.5). The region en-
closed by the solid line is the steady-state region predicted by FBA, whilst the
region enclosed by the dashed line shows the steady-state region calculated by
ODEs.

Now that we have compared the steady-state regions predicted by our ODE model,
and those predicted by our FBA model, it would be worth examining how these regions
would react to a slight modification to the network. We next examine a network for
the same organism, C. autoethanogenum, in which one reaction has been modified.
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Figure 4.5: Plot of steady-state region predicted by FBA from equation (4.2.5),
and the region numerically calculated from the ODE mode, (3.3.3)–(3.3.12), to
exhibit behaviour 3. The region enclosed by the solid line is the FBA steady-state
region, and the region enclosed by the dashed line is the region where behaviour
3 is exhibited by the ODEs.

Figure 4.6: Plot of steady-state region predicted by FBA from equation (4.2.5),
and the region numerically calculated from the ODE mode, (3.3.3)–(3.3.12), to
exhibit behaviour 7. The region enclosed by the solid line is the FBA steady-state
region, and the region enclosed by the dashed line is the region where behaviour
7 is exhibited by the ODEs.

4.4 A modified C.autoethanogenum network

A closer inspection of our C. autoethanogenum network reveals a problem. The reaction

Carbon dioxide + Formate + Acetyl-CoA + 2H
v5−→ Pyruvate + CoA

CO2 + HCO2- + C23H38N7O17P3S + 2H
v5−→ C3H4O3 + C21H36N7O16P3S,

which produces pyruvate does not balance. In particular, the carbon balance is incor-
rect, with 25 carbon on the left hand side, and only 24 on the right hand side. It turns
out that this reaction is actually an approximation of two different reactions that both
produce pyruvate. To make the model more biologically accurate, we split this one
reaction into the two separate reactions. The first combines carbon dioxide and hy-
drogen with acetyl-CoA, the second combines formate with acetyl-CoA, both creating
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pyruvate as the result, so that we have

Carbon dioxide + Acetyl-CoA + 2H
v5−→ Pyruvate + CoA,

Formate + Acetyl-CoA
v6−→ Pyruvate + CoA.

Both of these equations balance carbon (1 carbon + 23 carbon −→ 3 carbon +
21 carbon in both cases), and the new network should be more biologically correct
than the previous one. A network diagram for this new modified network is given
in Figure 4.7. We form a new stoichiometric matrix for this modified network. This
matrix is very similar to the previous one seen in Chapter 2, equation (2.9.28), but
the column representing v5 is changed, with an additional column inserted after it to
represent the new v6 reaction combining formate and acetyl-CoA. The stoichiometric
matrix concerning the internal reactions for our C. autoethanogenum is

Sin =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10



CO −1 0 0 0 0 0 0 0 0 0
CO2 1 −1 −1 0 −1 0 1 0 0 0
COc 0 0 1 −1 0 0 0 0 0 0

Formate 0 1 0 −1 0 −1 0 0 0 0
Acetyl − CoA 0 0 0 1 −1 −1 0 −1 −1 0

Pyruvate 0 0 0 0 1 1 −2 0 0 0
Acetolactate 0 0 0 0 0 0 1 0 0 0
Acetaldehyde 0 0 0 0 0 0 0 1 0 1

Acetate 0 0 0 0 0 0 0 0 1 −1
Hydrogen 2 −2 −2 −4 −2 0 0 −2 0 0

,

(4.4.1)
and the stoichiometric matrix for the uptake and output reactions is

Sext =

QCO QH outbio outlac outval outbut outeth outace



1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 −1 −1 0 0 0 0
0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 1 0 −2 0 −2 −2 0

. (4.4.2)

Then the complete stoichiometric matrix is the augmented matrix

S = (Sin|Sext) . (4.4.3)

This new modified network allows us to examine the effects of slightly modifying a
network on our previous analysis. By performing both our long timescale asymptotic
analysis from Chapter 3, and our FBA from Chapter 2 again, we are able to see the
differences between the long timescale behaviours of both networks. To begin, we
perform the long timescale asymptotic analysis on an ODE model for this new network.
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Figure 4.7: Full network diagram for the metabolism of C. autoethanogenum.
Note the new second reaction directly from acetyl-CoA to pyruvate, representing
the new reaction combining CO2, acetyl-CoA and hydrogen.

4.5 The new model

We first form an ODE model for the modified network. We base this on the ODE
model used in the Chapter 3, with constant inputs of hydrogen and carbon monoxide.
This new model is again formed of ten ODEs,

dcCO

dt
= QCO − k1cCO, (4.5.1)

dcCO2

dt
= k1cCO − k2cCO2cH

2 − k3cCO2cH
2

− k5cCO2cACAcH
2 + k7cPy

2 + k18cAlcH
2, (4.5.2)

dcCOc

dt
= k3cCO2cH

2 − k4cCOccF cH
4, (4.5.3)

dcF
dt

= k2cCO2cH
2 − k4cCOccF cH

4 − k6cF cACA, (4.5.4)

dcACA

dt
= k4cCOccF cH

4 − k5cCO2cACAcH
2 − k6cF cACA − k8cACAcH

2

− k9cACA − k15cACAcPy, (4.5.5)

dcPy

dt
= k5cCO2cACAcH

2 + k6cF cACA − 2k7cPy
2 − k15cACAcPy

− k16cPycH
2, (4.5.6)

dcAl

dt
= k7cPy

2 − k17cAl − k18cAlcH
2, (4.5.7)

dcAd

dt
= k8cACAcH

2 + k10cA − k19cAdcH
2, (4.5.8)

dcA
dt

= k9cACA − k10cA − k20cA, (4.5.9)

dcH
dt

= QH + 2k1cCO − 2k2cCO2cH
2 − 2k3cCO2cH

2 − 4k4cCOccF cH
4

− 2k5cCO2cACAcH
2 − 2k8cACAcH

2 − 2k16cPycH
2 − 2k18cAlcH

2

− 2k19cAdcH
2. (4.5.10)
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We renumber the rate coefficients kn, so that the rate coefficients for the two new
reactions are k5 and k6, and the rate coefficients k7 to k20 are the equivalent of k6 to
k19 in the old model. The parameters for this new model are described in Table 4.3.

Parameter Description Equivalent from previous model

k1 Rate coefficient for CO being transformed into CO2 k1
k2 Rate coefficient for CO2 being transformed into formate k2
k3 Rate coefficient for CO2 being transformed into COc k3
k4 Rate coefficient for formate combining with COc to make acetyl-CoA k4
k5 Rate coefficient for acetyl-CoA combining with CO2 to make pyruvate k5
k6 Rate coefficient for acetyl-CoA combining with formate to make pyruvate –

k7 Rate coefficient for two pyruvates combining to make acetolactate k6
k8 Rate coefficient for acetyl-CoA being transformed into acetaldehyde k7
k9 Rate coefficient for acetyl-CoA being transformed into acetate k8
k10 Rate coefficient for acetate being transformed into acetaldehyde k9

QCO Constant uptake rate for carbon monoxide QCO

QH Constant uptake rate for hydrogen QH

k15 Rate coefficient for the combining of acetyl-CoA and pyruvate to output biomass k14
k16 Rate coefficient for the creation and output of lactate from pyruvate k15
k17 Rate coefficient for the creation and output of valine from acetolactate k16
k18 Rate coefficient for the creation and output of butanediol from acetolactate k17
k19 Rate coefficient for the creation and output of ethanol from acetaldehyde k18
k20 Rate coefficient for the output of acetate k19

Table 4.3: Table of parameters in the system of equations (4.5.1)–(4.5.10).
Where parameters have an equivalent in the old model, this is listed.

4.5.1 Asymptotic analysis

Now that we have an ODE model, we repeat the asymptotic analysis from Chapter 3.
Rather than finding new scalings from scratch, we instead check the old scalings in the
new model to see if they are still consistent. Since we have only changed one reaction
into two, we only need to examine balances for the ODEs that contain those reactions.
In this case, the ODEs we need to check are those for CO2, COc, formate, acetyl-CoA,
pyruvate, and hydrogen. If these equations still balance with the old scalings, then
the scalings are still consistent across the entire system, and do not need changing. If
there is a problem, then we must find a new set of scalings for that region, whether by
running an ODE simulation, or by inspection.

The steady-state region is trivially verified, we see that when all concentrations
tend to a constant, all equations balance. For the second behaviour, in which k3 > k2,
we find a problem with the equation for pyruvate. With the previous scalings we find
equation (4.5.6) becomes

−c̄Pyt
−2 = k5c̄CO2 c̄ACAc̄

2
Ht0 + k6c̄F c̄ACAt

−1 − 2k7c̄
2
Pyt

−2

− k15c̄ACAc̄Pyt
−1 − k16c̄Py c̄

2
Ht−1. (4.5.11)

where we see there is a single term of order t0 with nothing to balance it. Previously, the
pyruvate creating reaction combining CO2, formate, acetyl-CoA and hydrogen would
disappear in the long timescale, and the amount of pyruvate in the system decayed
because of this. Now that we have a pyruvate-creating reaction that is active in the
long timescale, it is possible that the concentration of pyruvate tends to a steady-state
rather than decaying to zero. Indeed, if we take pyruvate to be tending to a steady-
state in the long timescale, so that cPy ∼ cPyt

0, the k7, k15, and k16 reactions now
balance with the k5 reaction. By doing this, however, we introduce an imbalance in
the acetolactate reaction (4.5.7), where the k7 reaction, which was before of the order
t−2 is now of order t0. This is rectified in the same way, by setting the long timescale
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behaviour of acetolactate to be tending to a steady-state, i.e. cAl ∼ cAlt
0, rather

than decaying to zero. Changing the scalings of pyruvate and acetolactate to be t0 is
the only way to modify the set of scalings so that they maintain balances across all
reactions, and this is backed up by the simulation shown in Figure 4.8. Here we have
set parameters so that we are simulating the network in the region where behaviour
two exists, as seen in Figure 4.9, and the concentrations scale exactly as predicted by
our modifications, with cPy ∼ cPyt

0 and cAl ∼ cAlt
0. With our new scalings, we obtain
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Figure 4.8: Metabolite concentration plots against log time of the ODEs (4.5.1)–
(4.5.10), with all parameters set to equal one, with the exception of k3 = 0.9, and
QH = 3, so that the model resides in the region where we expect to find behaviour
2.

the set of simultaneous equations for our coefficients,

k1c̄CO = QCO, (4.5.12)

k2c̄CO2 c̄
2
H + k3c̄CO2 c̄

2
H = k1c̄CO − k5c̄CO2 c̄ACAc̄

2
H

+ k7c̄
2
Py + k18c̄Alc̄

2
H , (4.5.13)

c̄COc = k3c̄CO2 c̄
2
H − k4c̄COc c̄F c̄

4
H , (4.5.14)

k4c̄COc c̄F c̄
2
H = k2c̄CO2 , (4.5.15)

k4c̄COc c̄F c̄
4
H = k5c̄CO2 c̄ACAc̄

2
H + k8c̄ACAc̄

2
H + k9c̄ACA, (4.5.16)

k5c̄CO2 c̄ACAc̄
2
H = k7c̄

2
Py + k15c̄ACAc̄Py + k16c̄Py c̄

2
H , (4.5.17)
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k7c̄
2
Py = k17c̄Al + k18c̄Alc̄

2
H , (4.5.18)

k19c̄Adc̄
2
H = k8c̄ACAc̄

2
H + k10c̄A, (4.5.19)

k9c̄ACA = k10c̄A + k20c̄A, (4.5.20)

QH + 2k1c̄CO = 2k2c̄CO2 c̄
2
H + 2k3c̄CO2 c̄

2
H + 4k4c̄COc c̄F c̄

4
H

+ 2k5c̄CO2 c̄ACAc̄
2
H + 2k8c̄ACAc̄

2
H + 2k16c̄Py c̄

2
H

+ 2k18c̄Alc̄
2
H − 2k19c̄Adc̄

2
H . (4.5.21)

These equations differ from those seen in section 3.5.2 for behaviour two in the old
network. Whilst we were able to analytically solve those equations to obtain expressions
for the coefficients in terms of the parameters, we are unable to do the same for these
equations; however, numerically solving these equations for a range of parameter values
suggests that the region in which this behaviour is observable remains largely the same.

Both behaviours 3 and 4 are consistent in the new network, with no modifications
needing to be made. In behaviour 3, we have the concentrations of CO2, the secondary
carbon monoxide source, COc and acetaldehyde growing in time, with the concentration
of hydrogen decaying. In behaviour 4 we have the concentrations of CO2, COc, and
formate growing in time, with the concentrations of acetyl-CoA, acetate and hydrogen
decaying. For the old network, these behaviours both maintained production of pyru-
vate in the long timescale, and in the new network they are both able to maintain at
least one of the pyruvate producing k5 or k6 reactions in the long timescale. Notably,
in behaviour 3, both of these reactions are active in the long timescale, whilst with
behaviour 4, only the k6 reaction is maintained.

Behaviour 5, in which the concentrations of formate and COc grow in time, and
all other concentrations except that of CO decay to zero, maintains consistency with
this new network. Previously, the pyruvate producing reaction was not active in the
long timescale, decaying to zero with order t−1. In the new network, the k6 reaction
combining formate and acetyl-CoA also decays to zero with order t−1, whilst the k5
reaction decays more quickly, with order t−2. Since we still have a t−1 reaction and the
other additional reaction is of lower order, the balance is maintained with no differences.

Behaviour 6, like behaviour 2, also encounters problems with the pyruvate reaction.
In behaviour 6, we have the concentrations of COc and hydrogen growing in time,
with all other concentrations except that of CO decaying to zero. In the previous
network, the sole pyruvate creating reaction used formate, which decays very quickly
in this behaviour (scaling like cF ∼ cF t

−5), meaning the production of pyruvate decayed
rapidly, and therefore so did the concentration of pyruvate. In the new network, the
k5 reaction does not use formate, causing it to decay more gradually (to the order of
t−2). With the previous scalings, the ODE for pyruvate becomes

−9c̄Pyt
−10 = k5c̄CO2 c̄ACAc̄

2
Ht−2 + k6c̄F c̄ACAt

−7 − 2k7c̄
2
Pyt

−18

− k15c̄ACAc̄Pyt
−11 − k16c̄Py c̄

2
Ht−7. (4.5.22)

We see the k5 reaction is the leading order and does not balance with any other terms.
As in behaviour two, the correction we make is changing the scaling of pyruvate to be
higher. To have a term that balances with the k5 reaction, we change the pyruvate
scaling to cPy ∼ cPyt

−4, so that the k16 reaction is of the order t−2 (as the concentration
of hydrogen grows linearly in time), and balances with the k5 reaction. This in turn
causes problems with the ODE for acetolactate, necessitating a change in the scaling
of that concentration too. The equation for acetolactate with the new pyruvate scaling
is

−20c̄Alt
−21 = k7c̄

2
Pyt

−8 − k17c̄Alt
−20 − k18c̄Alc̄

2
Ht−18. (4.5.23)
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We see the k7 reaction that produces acetolactate does not balance with any other
terms in the equation. By changing the scaling of acetolactate so that cAl ∼ cAlt

−10,
the k18 reaction balances with the k7 reaction, allowing this behaviour to exist. Despite
the change in the scalings for pyruvate and acetolactate, there are no other changes in
reactions which remain active in the long timescale, unlike behaviour 2, which had the
production of pyruvate, acetolactate, and their related products in the new network
that were not present in the old network.

Finally, behaviour 7, in which we have the same concentrations growing and decay-
ing in time as behaviour 5, remains consistent with the new network, as the k6 reaction
remains active in the long timescale, allowing all reactions to maintain balance. Overall,
with this slight change to the network, only two behaviours have changed their scalings,
and only one of those has caused any further difference to the reactions that remain
active in the long timescale. The scalings that describe the possible long timescale
behaviours for this new modified network are summarised in Table 4.4.

Metabolite Time-scaling by behaviour
1 2 3 4 5 6 7

CO t0 t0 t0 t0 t0 t0 t0

CO2 t0 t0 t0.5 t1 t−2 t−2 t−1

COc t0 t1 t1 t1 t−5 t1 t−3

Formate t0 t−1 t0 t1 t1 t−5 t1

Acetyl-CoA t0 t0 t0 t−1 t−2 t−2 t−1

Pyruvate t0 t0 t0 t0 t−3 t−4 t−1

Acetolactate t0 t0 t0 t0 t−8 t−10 t−3

Acetaldehyde t0 t0 t0.5 t0 t−2 t−2 t−1

Acetate t0 t0 t0 t−1 t−2 t−2 t−1

Hydrogen t0 t0 t−0.25 t−0.5 t1 t1 t0.5

Table 4.4: Table of scalings for each metabolite as t → +∞ in each regime.
A scaling of t0 represents a metabolite tending to a nonzero steady-state. An
exponent greater than zero represents a metabolite showing unbounded growth.
A negative exponent represents a concentration decaying to zero. Scalings which
have changed with the new network are in bold.

It is notable that when answering the question of whether or not a set of scalings
is still consistent, we only needed to consider the new pyruvate producing reactions,
k5, and k6. The behaviours of these pyruvate producing reactions in both the old and
new models are summarised in Table 4.5. For most behaviours, if the previous models
k5 reaction was active in the long timescale, then one or both of the new reactions
was active. If this was the case, then the set of scalings would generally be consistent,
otherwise (in the case of behaviour 2), changes needed to be made. The only exception
is behaviour 6, in which two scalings (pyruvate and acetaldehyde) need to be changed,
despite neither of the new reactions being present in the long timescale. However, this
did not lead to a change in which reactions were active in the long timescale. This is
in contrast to behaviour 2, where the k5 reaction being present in the long timescale
caused a difference to the effective metabolism in the long timescale, allowing it to
produce all the networks products rather than just acetate and ethanol. The change to
the network has not caused any change to the regions in parameter space that exhibit
these behaviours, as shown in Figure 4.9.
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Figure 4.9: The regions in parameter space for the system of ODEs (4.5.1)–
(4.5.10) with regions numbered by observed behaviour. The boundaries with solid
lines are known analytically, whilst the dotted ones are obtained numerically. The
horizontal axis is QH/QCO, with QH being varied, and the vertical axis is k3. All
other parameters are fixed to be one. The only difference between this diagram
and that of the previous network, shown in Figure 3.20 is the boundary between
behaviours 2 and 3 is now numerically estimated.

Behaviour Reaction producing pyruvate in original model Reaction producing pyruvate in modified model

1 k5 k5, k6
2 None k5
3 k5 k5, k6
4 k5 k6
5 None None

6 None None

7 k5 k6

Table 4.5: Table listing which reactions in the long timescale produce pyru-
vate for each behaviour. We see that the only behaviour that switches from no
production of pyruvate to some production of pyruvate in the long timescale is
behaviour 2. There is no behaviour which switches from some production to no
production.

4.6 Flux balance analysis

In section 4.2, we constructed a two dimensional section of parameter space where
steady-states exist. The two key values we considered were the input ratio, QH/QCO,
and the ratio of two other fluxes, v3/v2. These two ratios have both been seen in ODE
analysis to have an effect on the long term behaviour of the model. In particular, every
boundary that was analytically derived uses some or all of the rate coefficients for these
fluxes. The v3/v2 ratio is especially useful to observe because, as shown in the previous
chapter, v3/v2 = k3/k2, so the ratio of these two fluxes is exactly equal to the ratio
of the two rate coefficients. We also examined the effects of the v9/v19 ratio (now the
v10/v20 ratio after renumbering for the new model), though this was less significant in
determining the boundaries of steady-state regions.

We now build up an equivalent region for our new network where steady-states exist.
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By using the same FBA problem described in equation (4.2.5), finding a maximum and
minimum value of v3/v2 for a range of QH/QCO ratios, we find a complete 2D section
where steady-states exist. Figure 4.10 shows this region, along with the region found for
the old network for comparison. First we note that the new network requires a higher
input ratio, QH/QCO than the previously examined network for the existence of steady-
states. The previous network attained steady-state with an input ratio QH/QCO ≥ 4/3,
however this new modified network does not reach steady-state unless the input ratio
is at least 1.6. The maximum input ratio remains the same at 4. Whilst there is a
slight decrease in the input ratios, QH/QCO that allow steady-states to exist, there
is generally much more freedom in the value of v3/v2. Whilst the overall maximum
and minimum values for this ratio remain the same, the range for the new network is
always at least as high as the old network. In particular, the full range 0.5 ≤ v3/v2 ≤ 1
is possible for input ratios in the range 2 ≤ QH/QCO ≤ 3.5, where previously the
maximum input ratio for this full range was QH/QCO = 7/3. In general, the new
network allows higher values of v3/v2 for low input ratios, and lower values for high
input ratios. The old network, on the other hand, allows a lower overall input ratio,
and lower values of v3/v2 for low input ratios.
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Figure 4.10: Diagram showing the region where FBA predicts the existence of
steady-states. The solid line encloses the region permitting steady-states for the
old network, shown in Figure 3.1, discussed in Chapters 2 and 3. The dashed
line encloses the region where the new network, shown in Figure 4.7, permits the
existence of steady-states.

Previously we also considered the effects of the v10/outace ratio on the boundaries
of the steady-state region. This ratio also had the property of being exactly equal to
a ratio of rate coefficients in the ODE model, making it a useful ratio to examine. By
fixing the value v20/outace = k10/k20 and generating the 2D region where steady-states
exist for each value, we investigate whether this ratio has an effect on the steady-state
region. In the old network, whilst the range of input ratios allowed did not change,
the maximum values for the v3/v2 ratio did change. As the v10/v20 ratio increased, a
higher input ratio was required in order for the v3/v2 ratio to take its maximum value
of one. Interestingly, in the new network, this effect completely vanishes. The network
is always able to reach the highest value for v3/v2 (assuming the input ratio is within
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Figure 4.11: Plot of the difference between the minimum and maximum v3/v2
ratios for both networks i.e., the height of the region shown in Figure 4.10. The
solid line corresponds to the old network, seen in Figure 3.1 and the dashed
line corresponds to the new network, seen in Figure 4.7. The range for the new
network, whilst it exists, is always at least as high as the range for the old network.

its required bounds) regardless of the value of v10/v20. Indeed, one of the key points
of the new network is that FBA predicts that steady-states are always be achievable
with v3/v2 = 1 and 1.6 ≤ QH/QCO ≤ 4. This was a feature that was lacking in our
previous network, with low input ratios requiring a lower value for v3/v2 in order to
achieve steady-state.

4.7 Multiple steady-state regions

In section 4.3, we considered the region on our bifurcation diagram between the region
where FBA predicted the possibility of steady-states, and the region where the ODEs
exhibit behaviour 5. For our old network, this is the region where the ODEs exhibit
behaviour 7 in the long timescale. For our new network, FBA predicts a larger region
where steady-states could potentially exist, which leads to the shrinking of the region
for behaviour 7. In fact, when we plot the FBA steady-state region on the same axes as
the analytically-obtained boundary for behaviour 5, QH

QCO
= 8k3

k2+k3
, we find that there is

an overlap. Figure 4.12 shows this overlapping region. Since this boundary for region
5 is independent of all rate parameters except k2, or k3, this means it is possible for us
to pick a parameter set that satisfies the condition for behaviour 5, namely

QH

QCO
≥ 8k3

k2 + k3
(4.7.1)

yet also shows a steady-state behaviour, as predicted by FBA. This suggests that one
set of parameters could exhibit multiple long term behaviours. Specifically, it could
show both the steady-state behaviour, or behaviour 5 depending on initial conditions.

To test this possibility, we choose a point in the overlapping region, and then use
FBA to generate a set of steady-state fluxes for that region. The point we choose
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Figure 4.12: Diagram showing the crossover region between the steady-state
region predicted by FBA (shown by the solid line) and the region that exhibits
behaviour 5 found by analysing the ODEs (shown by the dashed line). The area
contained by the solid line that is also under the dashed line is the crossover
region, in which multiple long term behaviours exist. The star represents the
point use to generate the FBA state described in equation (4.7.3)

is marked on Figure 4.12, and is a point when QH/QCO = 3.5, and k3/k2 = 0.6.
Rearranging equation (4.7.1) gives

QH

QCO
≥ 8k3/k2

1 + k3/k2
. (4.7.2)

By inserting these values for QH/QCO and v3/v2 into equation (4.7.2), we see clearly
that the condition for behaviour 5 is met; but according to FBA, a steady-state should
also exist. By performing FBA we obtain a possible steady-state,

v1 = 1.2152, v2 = 1, v3 = 0.6, v4 = 0.6,

v5 = 0.0513, v6 = 0.4, v7 = 0.2203, v8 = 0.1240,

v9 = 0.0215, v10 = 0.0192, QCO = 1.2152, v12 = 0,

v13 = 0, QH = 4.2532, outbio = 0.0032, outlac = 0.0075,

outval = 0.0045, outbut = 0.2158, outeth = 0.1432, outace = 0.0023. (4.7.3)

If we were to fix all the concentrations in our ODEs to equal one, then our reaction
rates, vn would be equal to the parameters, kn. This means that by setting our rate
coefficients, kn to equal these vn calculated by FBA, we are able to guarantee at least
one steady-state, the case when all concentrations are equal to one. We have also shown
that this set of parameters matches the conditions for behaviour 5, and both behaviours
should be possible.
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To test this, we simulate the system of ODEs with parameters as described by
equation (4.7.3) for different initial conditions. Figure 4.13 shows the evolution of
the system with all initial concentrations set to equal zero. We see here that the
concentrations do not tend to a steady-state in the long timescale. This long timescale
behaviour is behaviour 5, as described in Table 4.4. On the other hand, if we set all
initial concentrations to equal 0.6, we obtain the behaviour seen in Figure 4.14. This
behaviour is the steady-state behaviour, in which all concentrations tend to one.

Figure 4.13: Plots of concentrations of metabolites in the ODE model against
log time, with parameters set to be those seen in equations (4.7.3) and all initial
concentrations equal to zero, showing the long timescale behaviour 5 described
in Table 4.5.1.

By testing a variety of initial conditions, we see that most initial conditions tend
to either behaviour 5, or the steady-state in which all concentrations are equal to one.
This suggests that both of these states are stable. Since they are both stable, it is likely
there is a third unstable state between these two, where a small perturbation causes
the system to either converge to the steady-state in which all concentrations equal one,
or switch into a linearly growing state. By taking equations (4.5.1) – (4.5.10), using
parameters from equation (4.7.3), and by fixing the time derivatives to equal zero,
we numerically solve the ODEs in steady-state. Obviously, one such solution to the
steady-state equations is all concentrations equal to one, as we have already seen. We
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Figure 4.14: Plots of concentrations of metabolites in the ODE model against
log time, with parameters set to be those seen in equations (4.7.3) and all initial
concentrations equal to 0.6, showing all concentrations tending to steady sate.

also obtain a second solution

c
(0)
CO = 1, c

(0)
CO2

= 0.198, c
(0)
COc

= 0.0116, c
(0)
F = 3.4517

c
(0)
ACA = 0.2847, c

(0)
Py = 0.9194, c

(0)
Acl = 0.1731, c

(0)
Acd = 0.2542

c
(0)
A = 0.2847, c

(0)
H = 2.2279, (4.7.4)

where c
(0)
n represents a steady-state concentration. This state is shown to be unstable

by subjecting it to small perturbations. Figures 4.15 and 4.16 show the system starting
very close to this unstable state, and converging to the stable steady-state or the
unsteady-state respectively.

We note that if a concentration tends to infinity in the non-steady behaviour, its
concentration in the unstable state is higher than one. If the concentration tends to
zero in the non-steady behaviour, then its concentration in the unstable state is lower
than one. In other words, every concentration for the unstable state lies between the
concentration for the stable steady-state (equal to one), and that of the stable non-
steady-state. Interestingly, the concentration of carbon monoxide, cCO, tends towards
one in all three states.

We have theoretical bounds on where this multistable behaviour occurs, but it is
worth numerically analysing this case to find the exact boundaries. Using xppaut [20],
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Figure 4.15: Log log plots of concentrations of metabolites in the ODE model
against time, with parameters set to be those seen in equations (4.7.3), with initial
conditions equal to those seen in 4.7.4, with a slight increase in the concentration
of CO2, we see the concentrations shifting from near the unstable steady-state to
the stable steady-state.

we plot a bifurcation diagram for the system, seen in Figure 4.17. We choose to plot
the concentration of formate for this diagram, because in the non-steady behaviour 5,
it tends to infinity whilst in the steady-state behaviour it tends to a non-zero steady-
state. We also expect that as k3 increases towards one, the concentration of formate
tends towards zero as it decays to zero in behaviour two, which we would expect the
system to switch to as k3 becomes greater than one. In Figure 4.17 we observe that
for high values of k3 we have a single stable steady-state behaviour. We also note
the concentration of formate tending to zero as k3 tends to one, as expected. As k3
decreases past k3 = 0.8463, we find the introduction of a second unstable steady-state.
Then as k3 decreases even further, past k3 = 0.5706, both steady-states are lost via a
saddle-node bifurcation, leaving the system only with the non-steady-state behaviour
5. We note that with the value k3 = 0.8463,

8k3
k2 + k3

> 3.5. (4.7.5)

This means the condition, (4.7.1), for behaviour five is not met, but we still have
multistable behaviour. By examining the long time scale asymptotics for the unsteady-
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Figure 4.16: Log-log plots of concentrations of metabolites in the ODE model
against log time, with parameters set to be those seen in equations (4.7.3), with
initial conditions equal to those seen in 4.7.4, with a slight decrease in the concen-
tration of CO2. We see the concentrations remaining close to the unstable state
for a period of time, before approaching behaviour 5, and then rapidly decreasing
or increasing as prescribed by that behaviour.

state with these parameters, we see that the unsteady behaviour is actually behaviour 7.
When k3 >

7
9 , the unsteady behaviour is behaviour 7. We now have a complete picture

of how the system behaves with these parameters as we vary k3. For k3 < 0.5706, we
have only the non-steady-state behaviour 5. For 0.5706 < k3 <

7
9 , we have two steady-

states, one stable and one unstable, and the stable non steady-state behaviour 5. For
7
9 < k3 < 0.8463 we have the same two steady-states, and the stable non steady-state
behaviour 7. Finally for 0.8463 < k3 < 1 we only have the steady-state behaviour.

4.8 Conclusions

We have constructed and compared steady-state regions for an FBA model and an
ODE model for the same network. By comparing these regions, we found that the
steady-state region predicted by FBA is larger than that predicted by the ODE model.
In general, this always proves to be the case, as our FBA model is defined by the
equations Sv = 0. The ODE model is based on the same stoichiometry, but also has
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Figure 4.17: Bifurcation diagram for the system (4.5.1)–(4.5.10) using param-
eters described in 4.7.3. On the horizontal axis, the parameter k3 is varied, and
the vertical axis represents the concentration of formate. The lower branch is the
stable steady-state, the upper branch is the unstable steady-state, leading to the
stable non-steady-state above it, in which formate tends to infinity.

the additional set of relationships, v = v(c), in which the values of the fluxes are
also dependent on concentrations. Adding additional constraints such as these cannot
increase the region in which Sv = 0.

We then made a modification to the network we were examining, so it became
the network shown in Figure 4.7. Modifying the network in this way allowed it to
correctly balance carbon throughout, and is therefore more biologically accurate. We
then performed our asymptotic analysis on a new ODE model (4.5.1)–(4.5.10), to see
if the set of behaviours seen in the old model, (3.3.3)–(3.3.12), were still applicable to
this new network. We found that only two behaviours were no longer applicable, but
equivalent behaviours existed for similar parameter schemes.

We also constructed a new region in parameter space in which FBA predicted the
existence of steady-states. By comparing this to the predictions of our new ODE model,
(4.5.1)–(4.5.10), we found that this region extended across multiple regions where the
ODE models predicted the existence of non-steady-states. In particular, the FBA region
extended past the analytically known boundary of region 5, suggesting that there could
exist a parameter scheme where the ODE model, (4.5.1)–(4.5.10), could exhibit either
steady or non-steady behaviours depending on initial conditions. We found that there
was a region in which we saw two steady-states, one stable and one unstable, and the
non-steady long term behaviour 5. By analysing these behaviours using xppaut, we
were also able to find a region in which we had the two steady-states, and a non-steady
long term behaviour 7, and a saddle node bifurcations leading to the regions where we
only had steady-state behaviour, or the non-steady behaviour 5.

We were able to find this region of multiple long-term behaviour using a combination
of asymptotic analysis on our ODE model, and FBAs predicted steady-state region
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simply by comparing the analytically found boundaries from asymptotic analysis of the
ODE model, with the computed steady-state boundaries from FBA. Finding this region
using only the ODE model would have been challenging, but we do not yet know if it
is possible to use FBA to predict the existence of multiple steady-states. It would be
useful to look more closely at networks that permit multiple steady-state behaviours
to see if these behaviours, and the bifurcations that lead to them, are found using
solely flux balance methods. Whilst we could not observe the states with non-steady
behaviour, as FBA requires mass balance and only provides steady-state solutions, it
would be useful if the method could provide information on the possibility of multiple
steady-states in a network.
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Chapter 5

Using metabolic models to
predict multiple steady-state
behaviour

5.1 Introduction

In the previous chapter we found the model for our C. autoethanogenum network,
under certain parameter schemes, could permit the existence of multiple steady-states.
This model presented a system which is able to take one of three states depending on
initial conditions, one stable steady-state, one unstable steady-state, and a non-steady-
state in which several concentrations grow linearly in time. A more common form of
multiple steady-states would be characterised by three steady-states, two stable, and
one unstable state separating the two or vice versa.

It is not uncommon for biological systems to have the ability to exist in multiple
different states, such as high flux or low flux states. In practice, even in a single
bacterial colony, it is possible for different cells to be in different metabolic states. It is
important for our models to be able to capture some of this behaviour. Mulukutla et al.
[50] investigated a model for glycolysis and examined the role of fructose-6 Phosphate
in the regulation of potential multiple steady-states. It was found that by including
certain feedback loops in the model, the system could have multiple steady-states.
Indeed, it was shown in some situations to have up to five different steady-states, three
stable with two unstable separating them. Examination of the conditions required for
the steady-states to exist suggested that the system would, under normal physiological
conditions, exist in a high flux state. If there was a sudden and sustained lack of glucose
however, the system would switch to a low flux state. This is interesting because it
shows models can not only capture the multistable dynamics of metabolism, but also
show the system switching from one state to another in response to external conditions,
such as a lack of a particular nutrient.

Multistability in organisms is also linked to the study of antibiotic resistance in
organisms, as shown by Amato et al. [1]. The switch from bacteria growing on one food
source to another different food source (thus undergoing a switch from one metabolic
steady-state to another) was linked to the creation of “persisters” [1], which are bacterial
phenotypes that have developed an antibacterial resistance as a stress response.

We would like to examine systems that exhibit multiple steady-states, and analyse
the differences between the states. We would also like to observe bifurcations, when
a system switches from only allowing only one steady-state to a position where it
permits multiple steady-states. Finally, we wish to find if other methods of modelling
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X + 2Y
k1−→ 3Y

X
k2−→ Y

Y
k3−→ Catalyst decay

External concentration
k4←→ X

External concentration
k5←→ Y

Table 5.1: The set of chemical reactions in our network as illustrated in Figure
5.1.

metabolism, such as FBA, are able to capture this multistable behaviour. To do this
we first introduce a new network to analyse.

5.2 Autocatalysis system

A simple and well studied network that is known to exhibit multiple steady-states is
an autocatalysis system. In this system there are two metabolites, X and Y , where
Y is a catalyst. There are two reactions that transform X into Y , a direct uncatal-
ysed reaction, and a reaction that uses two Y s as a catalyst. The system also has
uptake/output reactions for both X and Y . Finally there is a second output reaction
for Y representing it decaying into something not used by the system. The reactions
of the system are fully shown in Table 5.1. A network diagram is also shown in Figure
5.1.

Figure 5.1: Network diagram for the autocatalysis network described by the
equations in Table 5.1. Rate coefficients for each reaction and assumed directions
are labelled.

Using the law of mass action to model the reaction rates, we formulate a set of two
ODEs to model the dynamics of the network

dX

dt
= k4(X

∗ −X)− k1XY 2 − k2X, (5.2.1)

dY

dt
= k5(Y

∗ − Y ) + k1XY 2 + k2X − k3Y, (5.2.2)

with initial conditions

X(0) = X0, Y (0) = Y0. (5.2.3)
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Here, the kn, n ∈ [1, 2, 3, 4, 5] are the rate coefficients for the reactions, and X∗ and
Y ∗ represent the external concentrations of X and Y respectively, which are assumed
to be constant. When examining this model, k5 is commonly set to equal k4, so that
k4 represents a rate coefficient for transport in and out of the cell. We also use this
simplification in our analysis. We further simplify the model by non-dimensionalising
it. A possible non-dimensionalisation for the system is

u =
X

X∗ , v =
Y

X∗ , τ = tk1X
∗2, (5.2.4)

which leads to the non-dimensional parameters

a =
k4

k1X∗2 , b =
k2

k1X∗2 , c =
Y ∗

X∗ , d =
k3

k1X∗2 . (5.2.5)

In this, we scale all our reaction rates by the rate for the catalysed reaction k1. Since
this reaction is catalysed, we assume it is the quickest reaction in the system. Con-
centrations (including the constant external concentrations) are scaled by the external
concentration of X, X∗.

Taking this non-dimensionalisation, we reduce the system down to a simpler form
with only four parameters, a, b, c, and d for the two non-dimensional variables, u and
v. The dynamics of this system are governed by the ODEs

du

dτ
= a(1− u)− uv2 − bu, (5.2.6)

dv

dτ
= a(c− v) + uv2 + bu− dv. (5.2.7)

with initial conditions

u(0) = u0, v(0) = v0. (5.2.8)

By setting the time derivatives to zero, we obtain the nullclines for the system. By
combining these two equations, we find a steady-state condition for u

F (u, a, b, c, d) = u3 − 2(1 + c)u2 +

(
(1 + c)2 +

(a+ d)2

a
+ b

(a+ d)2

a2

)
u

− (a+ d)2

a
= 0. (5.2.9)

This equation is a cubic, so for a fixed set of parameters, a, b, c, and d, there are up
to three values of u that satisfy the equation to provide a steady-state. In fact, by
Descartes’ rule of sign, there are up to three positive values of u. This means there can
exist up to three steady-states for this system. By fixing three of our parameters and
varying the fourth, we are able to cause the system to undergo bifurcations from one
steady-state to three steady-states. In our case, we choose a as our parameter to vary,
and fix b, c, and d.

5.3 Bifurcation analysis

To begin, we choose a set of parameters that is known to allow multiple steady-states
for a certain range of a, that is

b = 1× 10−3, c = 0.1, d = 0.05.
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Using xppaut [20] we plot a bifurcation diagram using a as our varied parameter. This
bifurcation diagram is shown in Figure 5.2. We see a bifurcation pattern where as a
increases, we move from one steady-state, to three steady-states, and then back to one
again. This pattern shows two saddle nodes, one at a = 0.2524 and the second at
a = 0.2694. This pattern is also sometimes referred to as a ”breaking wave” pattern.
When a < 0.2524 we have a single steady-state with a low u concentration. For a in the
range 0.2524 < a < 0.2694 we have three steady-states, a low u state, a high u state,
and an unstable state with u between the high and low concentrations. At the saddle
nodes, the unstable state converges to one of the stable steady-states (the high u state
for a = 0.2524, and the low u state for a = 0.2694). For a > 0.2694, we have a single
steady-state with a high u concentration. Also shown on the diagram for very low values
of a is another region of unstable states for a in the range 0.006271 < a < 0.01388.
The values of a correspond to Hopf bifurcations, which give rise to periodic solutions.
A periodic solution for a = 0.01 is shown in Figure 5.3

Figure 5.2: Bifurcation diagram for the bifurcation pattern with two saddle
nodes observed for b = 1 × 10−3, c = 0.1, and d = 0.05. The horizontal axes
are a, and the vertical axis are u and v respectively. The red branches are stable
steady-states, whilst the black branch is the unstable steady-state.

5.3.1 Other bifurcation patterns

The pattern seen in Figure 5.2 with two saddle nodes is a commonly seen bifurcation
pattern, but it is not the only one possible for this network. It can be shown that there
are up to five different bifurcation patterns that this network can exhibit. Three of
these patterns are found when b = 0, completely inhibiting the uncatalysed reaction.
Using singularity theory it is possible to find the boundaries on c and d that lead to
each different pattern, as shown by D’Anna et al. [16]. To do this, we need our steady-
state condition, equation (5.2.9), which we call F (u, a, b, c, d). In steady-state we have
F (u, a, b, c, d) = 0. If we also require certain partial derivatives of this to equal zero,
we find the boundaries in parameter space for each type of bifurcation diagram. If we
require

F (u, a, b, c, d) = Fu(u, a, b, c, d) = Fuu(u, a, b, c, d) = 0 (5.3.1)

then we have a set of three equations. Two of these are used to eliminate u and a,
then the third gives us an equation for b, c, and d that defines one of these regions in
parameter space. The same method allows us to find a region for the set of equations

F (u, a, b, c, d) = Fu(u, a, b, c, d) = Fa(u, a, b, c, d) = 0. (5.3.2)

Since in this situation we have b = 0, the solutions to both these equations can be
plotted on a plane to show the regions that lead to each bifurcation diagram. In one
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Figure 5.3: Numerical simulation for the ODEs (5.2.6)–(5.2.7) with parameters
a = 0.01, b = 1×10−3, c = 0.1, d = 0.05 and initial conditons u(0) = 0, v(0) = 0.
The system with these parameters exhibits a stable periodic solution.

region we find mushroom patterns, in which there are four saddle nodes. In the second
we find isola patterns where there are two saddle nodes, but the unstable state converges
to the same stable state at both bifurcation points. Finally, in the third we find a single
steady-state for all values of a with no bifurcations.

Allowing a value of b that is greater than zero allows use to observe two additional
bifurcation patterns, as well as the three seen with b = 0. Again using singularity
theory, Kay et al. [34] were able to plot the regions in parameter space that lead to
each bifurcation pattern. In this, since there is a non-zero b, there is a third parameter
to plot. Rather than plotting a 3D diagram to show this, instead they plotted several 2D
(c,d) planes for various values of b. In this way they were able to observe five different
regions leading to five different bifurcation patterns. Including the three already seen
when b = 0, there are the breaking wave pattern shown earlier, and a pattern containing
both a breaking wave pattern and an isola pattern. It was also shown that for b > 1/27
there is only ever a single steady-state regardless of other parameter values. Examples
of the mushroom and isola patterns are shown in Figure 5.4, and example parameters
leading to those patterns are given in the caption. The pattern which is a combination
of both isola and breaking wave patterns is only found in a very small set of parameters,
and is not shown here. Observing the patterns for isola and mushrooms in Figure 5.4
we see that when there are three steady-states, these also seem to be a stable high u
state (with low v), a stable high v state (with low u), and an unstable state in between
the two. For both isola and mushrooms, we find that for both high and low values
of a, we only attain a high u, low v state, with the high v, low u state only being
attainable by choosing values of a between bifurcation points. For the isola, we require
0.02558 ≤ a ≤ 0.1134. For the mushroom, the range is a little larger, with a needing
to be in the range 0.01885 ≤ a ≤ 0.1281. There are also some values of a that lead
to two unstable states and a single stable state in both the isola and the mushroom.
These are again due to Hopf bifurcations, and the existence of stable periodic solutions.
Therefore we are also able to find stable periodic solutions existing with other unstable
and stable steady solutions.
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Figure 5.4: Bifurcation diagrams for the mushroom and isola patterns observed.
The first row is the isola pattern seen when b = 0.002, c = 0.01, and d = 0.06.
The second row is the mushroom pattern seen when b = 0.002, c = 0.01, and
d = 0.056. The horizontal axes are a, and the vertical axes are u (left panels) and
v (right panels). In all graphs, red lines represent stable branches and black lines
represent unstable branches. Note the existence of multiple unstable branches at
once on the isola and left half of the mushroom. In these instances, the system
also permits a stable limit cycle, so the system can have three steady-states (one
stable and two unstable) with a stable periodic solution between the two unstable
branches.

Here, we have characterised the different steady-states as high or low concentration
states, however often biological systems are though of in terms of high or low flux
states. In addition, some techniques for modelling metabolism refer only to the fluxes
in the system rather than the concentrations. In experiments, it may also be difficult
to measure the concentrations of metabolites, whereas measuring certain flux values
may prove to be much easier. For greater applicability it would be useful to consider
the flux vector of the steady-states. That is, rather than characterising the states by
their concentrations, we instead consider the reaction rates.

5.4 A flux perspective

In order to examine the flux vector of a steady-state, we must first calculate the reaction
rates in our system. Our autocatalysis network has five reactions, listed in Table 5.1.
The reaction rates for these are calculated from the set of ODEs (5.2.6)–(5.2.7) as

Qu = a(1− u), Qv = a(c− v), q1 = uv2,

q2 = dv, q3 = bu. (5.4.1)

The external transport reactions Qu and Qv are both reversible, since for high u and v
respectively, they transport the metabolites out of the system rather than in. All other
reactions are irreversible. A diagram for the network with the fluxes labelled is given
in Figure 5.5

First, let us examine the three states seen in the breaking wave shown in Figure
5.2. We choose a = 0.26 to give us three steady-states to analyse. Figure 5.6 shows
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Figure 5.5: Network diagram for the autocatalysis system. Fluxes and direc-
tions are labelled for each reaction.

Description u v q1 q2 q3 Qu Qv

High u steady-state 0.8933 0.1733 0.0268 0.0087 0.0009 0.0277 −0.0191
Low u steady-state 0.5389 0.4706 0.1193 0.0235 0.0005 0.1199 −0.0964

Unstable steady-state 0.7678 0.2787 0.0596 0.0139 0.0008 0.0604 −0.0465

Table 5.2: Concentrations and reaction fluxes for the ODEs (5.2.6)–(5.2.7) in
steady-state with parameters a = 0.26, b = 1× 10−3, c = 0.1, and d = 0.05. The
first two listed states are stable, whilst the third is unstable

the numerical solutions of the ODEs (5.2.6)–(5.2.7) starting close to the unstable state
and eventually converging to one of the stable steady-states. This demonstrates the
existence of all three steady-states with this parameter scheme. We calculate values for
the concentrations u and v for all three steady-states. We then substitute these values
into the equations for the fluxes seen in equation (5.4.1). This allows us to calculate
the flux for each reaction in every steady-state. Concentrations and fluxes for each
steady-state are given in Table 5.2.

From these results, we see that the flux taking up v, Qv, is negative for each of
the three potential steady-states. For these parameters, the system always outputs v
through Qv, rather than taking it up. In fact, for every value of a that leads to these
multiple steady-states in the breaking wave pattern we find that in steady-state the
system always outputs v i.e. Qv < 0. This is because the catalyst decay level, q2 is low,
so the system has an excess of v. Interestingly, the periodic solution seen in Figure 5.3
cycles between taking up v and outputting v.

The first state shown in Table 5.2 is the high u state. In this state we see the highest
flux through the uncatalysed reaction q3. We also see the lowest levels of catalyst decay,
q2, and the lowest overall levels of uptake of u and output of v. The second state is
the low u state. In this state we see a higher flux through the system overall and
greater output of v. It has the lowest overall use of the uncatalysed reaction, q3, and
the highest levels of catalyst decay, q2. The third (unstable) state has concentrations
somewhere between the two stable states, and the fluxes observed are also between the
two previous stable states.

Whilst the overall levels of flux through the system are useful, it is perhaps more
instructive to examine the relative levels of flux to understand the differences between
the three states. For example, we see from the overall levels of flux that the low u state
is the most effective for producing larger quantities of v in a short time, but this state
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Figure 5.6: Numerical simulations for equations (5.2.6)–(5.2.7) with parameters
a = 0.26, b = 1 × 10−3, c = 0.1, and d = 0.05 and initial conditions close to
u(0) = 0.77, v(0) = 0.28. The top row shows u and v starting near the unstable
steady-state, and tending towards the high u steady-state. The bottom row shows
u and v starting near the unstable steady-state and tending towards the low u
steady-state.

State q1
Qu

q2
Qu

q3
Qu

Qv

Qu

High u steady-state 0.9678 0.3125 0.0322 −0.6875
Low u steady-state 0.9955 0.1963 0.0045 −0.8037

Unstable steady-state 0.9873 0.2307 0.0127 −0.7693

Table 5.3: Relative reaction fluxes for the ODEs (5.2.6)–(5.2.7) in steady-state,
with parameters a = 0.26, b = 1× 10−3, c = 0.1, and d = 0.05.

may be less efficient overall due to the increase in catalyst decay. Table 5.3 shows us
the fluxes in steady-state scaled by Qu. This enables us to see which reactions are more
active in each state.

From the relative fluxes in Table 5.3 we find that, relative to Qu, the most efficient
production of v is from the low u state. The relative levels of catalyst decay are much
smaller in this case. In fact, the relative levels of catalyst decay in the low u case are
around 60% of those in the high u case. Therefore, over a long period of time, the low
u state is actually more efficient at outputting v through Qv. By examining the fluxes,
rather than just the concentrations, we are able to see that whilst the high u state has
a lower level of catalyst decay in a short time period, the lower u state is actually more
efficient at output v through Qv over a longer time scale.
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Mode q1 q2 q3 Qu Qv

1 1 0 0 1 -1
2 0 0 1 1 -1
3 0 1 0 0 1

Table 5.4: The set of elementary modes for the autocatalysis system.

5.4.1 Elementary modes

Flux vectors are only one way of visualising the flux data. Another method of this
would be using elementary modes. We decompose our steady-state flux vectors into
positive sums of elementary modes. In this way, rather than considering the values
of the fluxes themselves, we analyse how much flux there is through certain pathways
within the system. In a larger network, this could help us determine which pathways
are highly active in a steady-state, and which pathways are less active, and therefore
could potentially be inhibited with little effect to the overall behaviour of the system.

To calculate the elementary modes, we first require the stoichiometric matrix of the
network. The stoichiometric matrix for the system defined by the reactions in Table
5.1 is

S =

( )
−1 0 −1 1 0
1 −1 1 0 1 . (5.4.2)

We remember that both Qu and Qv are considered to be reversible. Using CellNe-
tAnalyzer [38], we compute the elementary modes for this system. There are three
modes, which are shown in Table 5.4. The first two are routes with input through Qu

and output through Qv (a negative flux). The third is a route from Qv to q2. These
fluxes are illustrated in Figure 5.7. Each diagram shows the reactions active for each
elementary mode, with directions shown. We note that none of the pathways lead to
an output of u from the system, which tells us that if these reversibility conditions are
correct, it is impossible for the system to exist in a steady-state that produces u. We
also note that the elementary modes consider any flux from Qu to q2 to be a sum of
one of the modes leading from Qu to Qv and the mode leading from Qv to q2. This
does not necessarily mean that the system is outputting v via Qv and then taking it
up again, it is just how the elementary modes have come out in the simplest form.

Though in practice this is generally not the case, our elementary modes form a
basis for the nullspace of the stoichiometric matrix S shown in equation (5.4.2). As
our modes form a basis, we are able to uniquely decompose our steady-state flux vector
into a positive sum of these elementary modes. We decompose our steady-state flux
vectors found in Section 5.4 for a = 0.26. First, we write our modes as column vectors
mn, where n is the mode number shown in Table 5.4. We have








1 0 0
0 0 1

m1 = 0 m2 = 1 m3 = 0
1 1 0
−1 −1 1 .

(5.4.3)

The high u state can be written as

qhi = 0.0268m1 + 0.0009m2 + 0.0087m3. (5.4.4)
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Figure 5.7: Network diagrams for each elementary mode in the system. For
each mode only the active reactions are shown, along with their directions.

Similarly the low u state can be written as

qlow = 0.1193m1 + 0.0005m2 + 0.0235m3, (5.4.5)

and the unstable state can be written as

qunst = 0.0596m1 + 0.0008m2 + 0.0139m3. (5.4.6)

As before it is clear that the low u state has a much higher utilization of the first mode
and the catalyst decay mode m3. For clarity, we scale these sums so that the coefficient
for m1 is equal to one. Then the high u state is

qhi = 1m1 + 0.0333m2 + 0.3229m3, (5.4.7)

the low u state is
qlow = 1m1 + 0.0045m2 + 0.1972m3, (5.4.8)

and the unstable state is

qunst = 1m1 + 0.0129m2 + 0.2337m3. (5.4.9)
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These scaled sums provide similar results to those seen by just examining the flux.
The absolute flux leaving the system is less clear, but we clearly see that the relative
catalyst decay is much lower in the low u state, and the catalysed reaction in the m1

mode is heavily favoured over the uncatalysed reaction in the m2 mode. In this case,
we see the information more clearly by simply looking at the active fluxes, however in
other cases it may be more clear that alternative pathways are being used by different
steady-states by looking directly at these elementary modes rather than the fluxes.

All the analysis so far has been performed on steady-states obtained from a full ODE
model. Often it is the case for biological systems that such a model is not available.
Obtaining parameters is difficult and accurate modelling of kinetics may also require
more data than we have access to. Conversely, data for the structure of the system may
be readily available. We would like to be able to observe and analyse these multiple
steady-states using optimisation methods such as FBA.

5.5 Optimisation methods

Before moving directly to using flux balance analysis and linear constraints for optimi-
sation, it would be useful to check that we are able to obtain information about the
existence of steady-states of ODE models using optimisation methods. The simplest
way to observe multiple steady-states via optimisation would be to optimise a system
with one parameter we vary across a range. If we plot the optimised values of the con-
centrations against the value of the varied parameter, we would expect to see a “jump”
in the solutions, representing a switch from a high u or v solution to a lower one, or vice
versa. This would be a clear sign of the existence of multiple steady-states. In some
cases the same solution may be the optimal solution for all values of the parameter. For
example if we examined the maximum value for u in the isola case seen in Figure 5.4,
we would find a continuous solution for all values of a. By searching for both minima
and maxima we avoid this problem, since it is highly unlikely that one solution could
take both the minimum and maximum values over the entire range of a.

A good choice of optimisation technique for this purpose is the method of Lagrange
multipliers, which allows us to find both minimum and maximum solutions using the
same set of equations. This technique also requires complete knowledge of the system,
including kinetic parameters.

5.5.1 Lagrange multipliers

For Lagrange multipliers we require a function to maximise or minimise and some
conditions to place on the variables. An obvious choice for the conditions is requiring
mass balance. That is, we require the ODEs of our metabolic system to be in steady-
state. We know that one of the key differences between states was the rate of catalyst
decay, dv, so we choose this as our objective function that we wish to minimise or
maximise. Then the initial setup for an optimisation problem is

max/min
u,v

dv such that: a(1− u)− uv2 − bu = 0,

a(c− v) + uv2 + bu− dv = 0. (5.5.1)

To solve this optimisation problem, we introduce additional variables, λn, known
as Lagrange multipliers. Since we have two constraints, we require two multipliers. We
write the Lagrangian,

L = dv − λ1[a(1− u)− uv2 − bu]− λ2[a(c− v) + uv2 + bu− dv]. (5.5.2)
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To solve this problem we take partial derivatives with respect to u, v, λ1, and λ2. In
order to find a minimum or a maximum, we require that these partial derivatives are
all equal to zero. This gives a set of four equations for four unknowns which can be
solved analytically or numerically. The four equations are

∂L

∂u
= 0 = −λ1(−a− v2 − b)− λ2(v

2 + b), (5.5.3)

∂L

∂v
= 0 = d− λ1(−2uv)− λ2(−a+ 2uv − d), (5.5.4)

∂L

∂λ1
= 0 = a(1− u)− uv2 − bu, (5.5.5)

∂L

∂λ2
= 0 = a(c− v) + uv2 + bu− dv. (5.5.6)

We note that equations (5.5.5) and (5.5.6) simply recover the steady-state conditions.
These two equations permit only one, two, or three solutions so we are sure there is
a maximum and a minimum solution to these equations. We choose our parameters
b, c, and d so that we observe a bifurcation as a is varied. Here we take b = 0.002,
c = 0.01, and d = 0.06, which recovers the isola pattern seen in Figure 5.4. We
then solve the equations (5.5.3)–(5.5.6) over a range of a. For most values of a, the
steady-state conditions only permit one solution, which is both the minimum and the
maximum. When the system permits multiple steady-states, we find two of those states,
a maximum and a minimum. Figure 5.8 shows all solutions to these equations plotted
on the same graph. In the range 0.02558 ≤ a ≤ 0.1134 there are two solutions. Since
we are trying to maximise or minimise the catalyst decay, dv, the solution with the
highest v maximises dv, and the lower v solution minimises dv. This means, where it
exists, we take the solution on the isola to be the maximised value for dv. We note that
the maximum solution persists even in the region of the isola where both steady-states
are unstable due to the Hopf bifurcation. The minimum solution is the continuous
solution not on the isola. If we take another set of parameters b, c, and d, we find
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Figure 5.8: Solutions to the set of simultaneous equations (5.5.3)–(5.5.6) with
b = 0.002, c = 0.01, d = 0.06, and a varied in the range 0 ≤ a ≤ 0.3. Where
two solutions exist, the dotted lines represent the second solution, which has a
discontinuity to the areas with only a single solution.

another bifurcation pattern, such as pattern with two saddle nodes, seen in Figure
5.2 or the mushroom, seen in Figure 5.4. Both of these bifurcation patterns give rise
to a discontinuity in both the minimum and maximum solutions, as shown in Figure
5.9. Here, for 0 ≤ a < 0.2524, the minimum and maximum solutions are equal. As
a increases past the point a = 0.2524, the minimum solution jumps to the branch of
steady-state solutions with a lower value of v. Then in the region 0.2524 ≤ a ≤ 0.2694
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the two solutions are separate. Finally as a increases past a = 0.2694, the maximum
value solution jumps down to the lower v branch, as the higher v branch ceases to
exist. In this way we have observed the discontinuous behaviour we hoped to find in
an optimisation problem.
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Figure 5.9: Solutions to the set of simultaneous equations (5.5.3)–(5.5.6) with
b = 1 × 10−3, c = 0.1, d = 0.05, and a varied in the range 0.2 ≤ a ≤ 0.3. On
the left is the solution corresponding to the minimum of dv and on the right
is the solution corresponding to the maximum of dv. Both solutions exhibit
discontinuities.

In our examination of the relative fluxes in the steady-state in Section 5.4, we found
that the lower v solution had the smaller overall catalyst decay. However, when the
system was scaled so that Qu = 1, the catalyst decay was lower in the high v solution.
This shows the limitations of linear objective functions such as dv. Whilst Lagrange
multipliers have provided the overall maximum or minimum, it may be more useful to
use a more complicated objective function such as the ratio of catalyst decay to flux in

F (u, v) =
dv

a(1− u)
,

though for nonlinear objective functions, care must be taken as they may turn out to
be non-convex. With a non convex objective function, we may find our optimisation
methods producing local minima rather than global minima.

We now know that it is possible to identify the existence of multiple steady-states
of ODE models using optimisation methods. Now we would like to apply the same
principle to flux balance analysis and identify the existence of multiple steady-states of
flux models using FBA.

5.5.2 Flux balance analysis

Before specifically looking into FBA, it is worth noting that we can examine a metabolic
structure and determine whether or not it could potentially contain unstable steady-
states. Without unstable steady-states we cannot have multiple stable states, and we
are unlikely to see any periodic solutions and limit cycles. Wilhelm [79] presented a
technique to identify whether a system could potentially exhibit unstable states. By
taking the system Sv = 0, and applying the Routh-Hurwitz stability criterion, we
find whether or not the system could have an unstable state. If the system satisfies
the criterion, it does not contain an instability causing structure, and therefore all
steady-states will be stable.

Our stoichiometric matrix S is given in equation (5.4.2). For both Qu and Qv we
set minimum values of −∞ since the reactions are reversible. All other reactions take
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a minimum value of zero. We allow the maximum internal reaction and catalyst decay
rates to be infinite. The overall rate of flux through the system is largely governed by
the rate of uptake, so we do not impose any maximal rates on the internal reactions
so as to not unnecessarily stifle the uptake rates. Next we set the maximum uptake
rates; for Qu, we set this to equal a, which is the same parameter seen in the ODEs
(5.2.6)–(5.2.7). Since we are looking for bifurcations, we vary a across a range of values
to observe the bifurcations we already know to be there. We also set the maximum
of Qv to equal ac, where c is also the same parameter seen in (5.2.6)–(5.2.7). As c is
an external concentration, measuring it should not be difficult in practice. Finally we
choose an objective function. We continue to use dv = q2 as our objective function, as
we know it to be a key difference between the multiple steady-states observed in the
ODE model.

Then we have the flux balance problem,

max/min
q1,q2,q3,Qu,Qv

q2 such that: Sq = 0,

0 ≤ q1, q2, q3 ≤ ∞,

−∞ ≤ Qu ≤ a,

−∞ ≤ Qv ≤ ac. (5.5.7)

We set c = 0.1 as in our breaking wave example, and vary a across the range 0 ≤ a ≤ 10
to attempt to observe a switch in the system. Figure 5.10 shows the results of this
FBA. In this case the minimum value is given when q2 = 0. Unfortunately, the desired
behaviour is not observed. Since FBA picks the optimal steady-state, it is likely that the
parameters required to achieve the state are not those that allow us to observe multiple
steady-state behaviour. In fact, we see all the flux into the system directed towards
catalyst decay, so the maximum value for q2 is equal to 1.1a (that is, the maximum value
for Qu plus the maximum value for Qu). It is worth noting that neither the minimum
nor maximum flux vectors satisfying the optimisation 5.5.7 are unique. The maximum
flux vector maintains one degree of freedom, and the minimum has two. In the case of
the maximum solution, both external fluxes equal their maxima, so we end up with a
system of four equations for five unknowns, leaving one degree of freedom. In the case
of the minimum solution, q2 is equal to its minimum value, so we have three equations
for five unknowns, leaving two degrees of freedom. In metabolic systems, non-unique
optimum solutions are common, due to the structure of stoichiometric matrices. Many
metabolites are only used in one or two reactions, and most reactions only use a few
metabolites, leading to sparse matrices with a large degree of degeneracy.

We have seen that our simple flux balance solution does not lead to results resem-
bling the results we have seen from our ODEs, especially our Qv flux which is generally
used as an output in our ODE solutions, but is used as input for the flux balance solu-
tions. We add more constraints to the system in order to restrict it to solutions more
accurate to the ODE model.

In order to make our FBA model behave more like the ODE solutions, we must use
some of our knowledge of the kinetics and reaction rates in that model. Specifically
by examining the kinetics of Qu, Qv, q3 and q2, we construct an additional set of two
linear constraints for our FBA. Using these additional constraints comes at a cost of
needing to know more about the kinetics of the system and values of the parameters
involved.

For the first constraint we have, from equation (5.4.1), Qu = a(1−u), and q3 = bu.
We rearrange both of these to write u in terms of fluxes and parameters, and equate
them to find

1− Qu

a
= u =

q3
b

(5.5.8)
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Figure 5.10: Maximum and minimum values for q2 for the FBA problem de-
scribed in equation (5.5.7) across a range of values for a. We see a linear growth
in the maximum value for q2 as a increases, whilst the minimum remains at zero.

leading to the constraint
Qu

a
+

q3
b

= 1. (5.5.9)

The second constraint is found in the same way, using the equations from equations
(5.4.1) for Qv and q2. We have Qv = a(c− v), and q2 = dv. We rearrange these in the
same way, writing u in terms of fluxes and parameters, leading to the equality

c− Qv

a
= v =

q2
d
, (5.5.10)

which is then rearranged to find the constraint

Qv

a
+

q2
d

= c. (5.5.11)

These linear constraints are added to the optimisation problem described in equation
(5.5.7) to give the new optimisation problem

max/min
q1,q2,q3,Qu,Qv

q2 such that : Sv = 0,

Qu

a
+

q3
b

= 1,

Qv

a
+

q2
d

= c,

0 ≤ q1, q2, q3 ≤ ∞,

−∞ ≤ Qu ≤ a,

−∞ ≤ Qv ≤ ac. (5.5.12)

(5.5.13)
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Figure 5.11: Maximum values for q2 for the FBA problem described in equation
(5.5.7) with the additional constraints (5.5.9), and (5.5.11) across a range of values
for a. The solid line represents the maximum solution for q2, whilst the dashed
line represents the minimum solution. We see the both minimum and maximum
values for q2 asymptotically approaching maximum values as a increases.

Minimum and maximum values of q2 plotted against a are given in Figure 5.11. Unfor-
tunately, this still does not provide us with results similar to the multiple steady-states
seen from Lagrange multipliers, seen in Figure 5.9. With the additional constraints
we still see the optimal value of q2 increasing as a increases, though this time it ap-
pears to approach a limit rather than growing linearly with a, however this limit does
not appear to match the values for q2 = dv observed in the steady-states seen in the
ODE. Contrary to our previous FBA results without the additional constraints given
in equations (5.5.9) and (5.5.11), these optimal minimum and maximum solutions are
unique. Here we have four constraints to begin with, and with optimisation at least one
of our inequality constraints takes its extreme value, leading to at least a fifth equality
governing five unknowns, guaranteeing a unique solution for a given objective function,
however these unique solutions persist for all values of a, and unlike our ODE analysis
(Section 5.3), we never see the maximum solution becoming equal to the minimum
solution or vice versa (except in the trivial case where a = 0).

By examining the flux vectors for our FBA solutions and comparing them with
those found via Lagrange multipliers (or simply those found via the ODEs), we see
where FBA is going wrong in its predictions for steady-state flux modes, or rather,
where FBA differs most from the predicted steady-states of the ODE system. Table
5.5 shows the minimum and maximum flux values given by each method for a = 0.26.

It is clear from this table that our flux balance solutions are allowing lower minimum
and higher maximum values of q2, though they remain on the same order of magnitude
as those found via Lagrange multipliers. Interestingly we see that the minimum FBA
solution actually uses Qv as an input flux again. In our ODEs, this would indicate an
extremely low concentration of v in the system, leading to Qv = a(c− v) > 0. Whilst
it may seem counter intuitive for the system to be taking up additional v whilst trying
to minimise the flux out of v via q2, it makes sense that a positive Qv corresponds to
a low concentration of v, which would then lead to a lower value for q2 = dv.
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Method Minimum/maximum q1 q2 q3 Qu Qv

FBA Minimum 0 0.0044 0.001 0.001 0.0034
FBA Maximum 0.26 0.0461 0 0.26 -0.2139

Lagrange multipliers Minimum 0.0268 0.0087 0.0009 0.0277 -0.0191
Lagrange multipliers Maximum 0.1193 0.0235 0.0005 0.1199 -0.0964

Table 5.5: Flux vectors that minimise or maximise q2 obtained by either La-
grange multipliers or flux balance analysis. The Lagrange multipliers results are
obtained by solving the system of equations (5.5.3)–(5.5.6). The FBA solutions
are obtained from the linear programming problem equation (5.5.7) with the
additional constraints from equations (5.5.9) and (5.5.11).

5.6 Discussion

The major difference between the FBA and the Lagrange multiplier solutions is the
values for q1 and Qu. FBA allows a maximal input value for Qu, whilst still allowing
large fluxes out via v1 and v3. In our ODE system, this would not be permitted,
as maximal input values for Qu correspond to a zero concentration of u, which in
turn would lead to zero flux out of u (and a non-steady-state). FBA does not have
this limitation, even with our additional constraints, and this allows it to record much
higher flux through the system than is allowed by the full ODE system seen in equations
(5.2.6)–(5.2.7). Similarly in the minimum case, FBA allows a low input which would
correspond to a high u and therefore higher q1 and q3 in our ODE system. Without an
additional constraint linking these two fluxes to have some kind of inverse proportional
relationship the system will never be in full agreement with the ODEs. A suitable
constraint for this would have to be non linear in nature, for example Quq1 = w for some
estimated w, and would therefore take away from the linearity of FBA. It would also
require even more knowledge about the system than we may not have suitable access
to. It would also add a fifth constraint to the system, which only has five unknowns,
and the system would become fully determined, removing the need for optimisation
methods. Indeed if we had all the information to form these constraints in the first
place, it would be more instructive to create a full ODE model to determine the kinetics
rather than using FBA to examine the potential steady-states.

From this, we see that whilst we are able to determine the possibility of multiple
steady-states just by examining the structure of a metabolic network, it is unlikely
that we will be able to examine and analyse when these multiple steady-states arise
simply from this structure. In particular, it is not possible to produce an example of
these multiple steady-states with only this structural data and flux balance analysis.
Even if we add additional linear constraints by assuming extra knowledge about the
dynamics of the system and values for the parameters that govern it, we are still unable
to accurately replicate the steady-states from an ODE system. We cannot identify a
discontinuity in our FBA solution that would typically be seen when looking at multiple
steady-states. It may be possible to add additional non-linear constraints to find the
behaviour we seek, but if possible we wish to avoid that in order to keep the computation
simplicity of FBA as a linear programming technique. Even if we did add non linear
constraints, we may find ourselves requiring more information than we have access to
in order to observe the discontinuity in the solution. We observe multiple steady-states
through optimisation methods such as Lagrange multipliers which requires a full ODE
model of the system along with values for parameters; however, it seems that more
simplistic methods are not able to recover the same results.
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We have observed systems that exhibit multiple steady-states in a number of dif-
ferent bifurcation structures such as isolas and mushrooms. We have also seen that an
organism’s metabolism can have multiple steady-states, depending on external condi-
tions and other stimuli [50]. Finally we also observed metabolic networks exhibiting
non-steady-state long timescale behaviour, such as periodic solutions, seen in Figure
5.3. We also saw, in Chapter 3, our C. autoethanogenum network showing states in
which concentrations grew indefinitely in time. The FBA model we have used up until
now has is inadequate for modelling networks displaying these behaviours, as it relies
on mass balance to provide solutions in steady-state. Instead we now look to an ex-
tension of FBA, dynamic flux balance analysis, which is able to model the dynamic
behaviour of networks. By applying this to previously examined networks, we will
consider whether it can predict these non-steady-states seen until now, as well as the
multiple steady-state behaviours that FBA was unable to predict in Section 5.5.2.
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Chapter 6

Dynamic flux balance analysis

6.1 Introduction

A key limitation of flux balance analysis is that it only models networks that are in
steady-state, specifically when concentrations do not change in time, i.e. when Sv = 0,
where S is the stoichiometric matrix, and v is a vector of fluxes. As we have seen
with our C. autoethanogenum model however, not all metabolic networks tend to a
steady-state. Sometimes they exhibit dynamic behaviour, such as the linear growth
we have seen in Chapter 3, and even periodic solutions which were also seen for the
autocatalysis model discussed in Section 5.2. All our models until now have also focused
on continuous models, in which there is a continuous input into the system, whether by
assuming a constant uptake rate, or by having a constant external concentration. In
the case of a batch model, in which there is a limited amount of substrate for the model
to uptake in the first place, much of the relevant behaviour will be transient behaviour.
In order to observe this behaviour, we need methods which model the dynamics of these
systems outside of steady-state. We have already used ODE systems to describe this
kind of non-steady-state behaviour, but we would like to extend flux balance analysis to
model dynamic behaviour. In extending FBA to describe dynamic behaviours, we use
many of its strengths, such as not needing to estimate parameters, whilst removing one
of its main weaknesses, the requirement for steady-state. This extension, as initially
set out by Mahadevan et al. [43], is known as dynamic flux balance analysis (dFBA).

6.1.1 Forming a dFBA model

In FBA, the key constraint is Sv = 0, which forces the system to be in a steady-state.
If we wish to model a network outside of steady-state, we must change this constraint.
We change it to

dc

dt
= Sv, (6.1.1)

where c is a vector of the concentrations of the metabolites in the network. It is worth
noting now that whilst we write this derivative as a constraint, when we later come to
solve this model, this derivative is instead considered as a numerical approximation,
with the previous time step known, so that this instead becomes a constraint on the
concentrations, c, based on the values of v, and c at the previous time step. We now
include these concentrations as variables in our optimisation problem. We now have
an ODE system for concentrations (c) that depends on the fluxes (v). These fluxes
do not explicitly depend on the concentrations, however, so it is not like the full ODE
models seen previously. When it comes to simulating the dFBA model, we find that
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we are still able to use linear programming, but first we must create some additional
constraints to account for the addition of the concentration variables, and the fact that
both concentrations and fluxes vary in time.

Firstly, we add some physical constraints to the system. In addition to our usual
FBA constraints providing maximum and minimum flux values, we should also consider
adding equivalent constraints for the new concentration variables. Obviously, we must
not have concentrations going below zero, since this is physically impossible, so we add
the constraint

c ≥ 0. (6.1.2)

We can also add maximum values for these concentrations, however it is unlikely that
these are necessary. Since we have previously seen unbounded growth in an ODE model
for the concentrations in our C. autoethanogenum model, it may even be beneficial to
not include maxima, to allow for states when concentrations grow linearly in time.

If we solve the optimization problem, max
v

aTv) as in FBA, with only constraints

(6.1.1) and (6.1.2) and the usual FBA constraints for any of our previous networks,
we do not find useful results. The system immediately jumps to a state in which the
objective function is maximised. As long as this state doesn’t cause a concentration to
drop below zero, then the system remains in this state indefinitely. This does not tell
us anything about the transient behaviour we wish to investigate, instead only showing
us the long term behaviour we have already investigated. Whilst we are now able
to see linear growth states, we still do not observe the transient behaviour with only
these constraints. The problem is that, whilst concentrations depend on the fluxes,
the fluxes have no dependency on the concentrations, other than not allowing elements
of c to drop below zero. In order for the concentrations to be relevant, we add new
concentration-based constraints to the model.

Whilst with FBA we attempted to avoid requiring the knowledge of any parameters
at all, for dFBA, we require some in order to observe transient behaviour. In general,
the constraints we add to the model are described by

vn ≤ g(c), (6.1.3)

where vn is some flux, and g(c) is some function dependent on the concentrations. This
function is often non-linear. This g(c) takes the form of some function describing the
rate of flux in terms of the concentrations. For example, in a metabolic network, this
could be Michaelis-Menten kinetics, or first order kinetics, as seen in our ODE models
examined in Chapter 3. We add as many or as few of these constraints as we have
information for. Generally, since we are using these flux balance methods to attempt
to avoid having to obtain detailed kinetics for flux rates, we attempt to use as few of
these concentration based constraints as possible. We also note that whilst this has
been described as an inequality, it is also fine to use equality constraints here, which in
some cases may be more useful.

Now that we have some fluxes depending on concentrations we will be able to see
transient behaviour, as some of our fluxes now require concentrations to grow before
they also grow. Often we see this happening much faster than we would see in a more
detailed model and faster than we would expect in a real organism. We can choose to
add an additional constraint on the rate of change of fluxes to slow down the overall
system. Whilst this is not necessary, it may prove useful for some networks, so we will
use it in all the models described in this chapter. A maximum rate of change for the
fluxes is described as

−vdt−max ≤
dv

dt
≤ vdt−max, (6.1.4)
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where vdt−max is a vector of maximum values for the rate of change of flux. Effectively,
this constraint limits the steepness of the flux changes. This slows the evolution of
the fluxes, helping to account for some of the fluxes which may not have concentration
based constraints.

Finally, since the concentrations are now variables, we are able to include them in
the objective function. This means we generalise an objective function that is simply
a linear combination of fluxes, max/min

v
aTv, to one that is a combination of both

fluxes and concentrations, given by

max/min
c,v

aTv + bT c (6.1.5)

By combining all our constraints from equation (6.1.1) to (6.1.4), along with our FBA
maximum and minimum flux values, our new objective function, and some initial con-
ditions for both c and v, we have a full dFBA model,

max/min
c,v

aTv + bT c such that:
dc

dt
= Sv,

vmin ≤ v ≤ vmax,

0 ≤ c,

vn ≤ g(c),

−vdt−max ≤
dv

dt
≤ vdt−max,

v(0) = v0, c(0) = c0. (6.1.6)

Unlike for regular FBA, there is no way to know if a dFBA problem will have a well
defined solution prior to attempting to solve it. This is especially problematic for large
systems that take a long time to solve, as it is possible for the solver to fail after a large
amount of time has already been invested in finding a solution. This must be kept in
mind when forming dFBA models.

6.1.2 Growth rate

It is possible, and often useful, to consider the growth rate in a dFBA model. Some
fluxes in the network may lead to the production of biomass, which in turn leads to
growth. To do this, we introduce an additional variable, X, which describes the overall
biomass concentration. The flux vector v specifically becomes the flux per unit of
biomass. The rate of growth is given by the equation

dX

dt
= µX, (6.1.7)

where µ is some weighted some of the fluxes vn that produce biomass,
∑

nwnvn, where
the weight wn describes how many units of biomass are produced per unit flux through
the reaction vn. We must also modify the ODE constraint slightly, becoming

dc

dt
= SvX, (6.1.8)

so that the rate of change of concentrations is now proportional to the overall biomass
concentration.

Since we may wish to keep track of growth rate, and it may prove a useful choice as
an objective function it is useful to add this extra variable and constraint to the dFBA
model. In previous models, however, we have neglected to consider growth rate in this
way, so in order to keep our dFBA models directly comparable with previous chapters,
we do not consider the growth rate and overall biomass concentration in our models in
this chapter.
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6.1.3 Solving the model

Now that we have a full dFBA model, we must now consider how to solve it. Whilst
the model (6.1.6) is presented as an optimization problem with an ODE constraint,
when it comes to solving the model, it is more useful to think of it as the set of ODEs
given by equation (6.1.1), where the values of the fluxes, v, are determined by the
optimization problem (6.1.6) without the ODE constraint. Then we approximate the
ODEs, ċ = Sv, numerically, and at each time point solve the optimization problem to
generate a new v which then determines the concentrations. The usual method to do
this in dFBA is known as the static optimization approach. We discretise time into a
number of time points, the difference between them being ∆t, and for each time step
solve the optimization problem

max/min
C,v

aTvt+∆t + bT ct+∆t such that: ct+∆t = ct +∆tSvt+∆t,

vmin ≤ vt+∆t ≤ vmax,

0 ≤ ct+∆t,

vt+∆t,n ≤ g(ct),

−vdt−max ≤
vt+∆t − vt

∆t
≤ vdt−max. (6.1.9)

where vt and ct are the flux and concentration vectors at time t respectively. It must be
noted that the concentration based coefficients have the flux at time t+∆t depending
on the concentrations at time t, i.e. from the previous time point. This is done because
when the function g(c) is nonlinear in c, we will be unable to use linear programming to
solve the model if we use g(ct+∆t). By using g(ct), we are able to simply calculate the
value of this function from the previous time point, allowing us to maintain linearity
in our constraints (as the constraint then becomes vt ≤ some constant calculated from
the previous time steps results). This induces a slight lag in the maximum values of
some fluxes, so we must choose a small ∆t in order for this to have minimal effect on
the system. The first time point is given as some initial condition, often one in which
fluxes and concentrations are zero, however we could choose any initial condition that
did not violate any of the known constraints.

Now that we are able to solve dFBA models, we model some metabolic networks
using this technique.

6.2 Straight line system

Rather than jumping straight in to a full metabolic network, it is useful to first see
how dFBA behaves on a simpler network. We start by examining a simple straight line
network in which a metabolite is taken up, transformed into something else via some
chemical reactions, and then outputted. Consider a network of three metabolites, A,
B, and C. These metabolites are linked by a reaction that transforms A into B, and a
reaction that transforms B into C. We also have an uptake of A and an output of C.
In this way, there is a flow through the system into A, through B, and finally out of
C. This network is summarised as

QA−→ A
q1−→ B

q2−→ C
QC−→, (6.2.1)

We form the stoichiometric matrix for this network

S =

( )−1 0 1 0
1 −1 0 0
0 1 0 −1 .

(6.2.2)
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Intuitively, we see that a steady-state solution for this network is one in which q1 =
q2 = QA = QC . If we performed regular FBA on this network, all our solutions would
take the form vss = λ(1, 1, 1, 1), where λ is some scalar, and the elements of the vector
represent one on the fluxes in the network. As it is a simple straight line network, we
would not expect its long term behaviour to be non-steady, and therefore, we would
expect our dFBA model to provide a solution that tends to a steady-state of this form.

6.2.1 The dFBA model

We now formulate a dFBA model to describe the dynamic behaviour of the network
(6.2.1). Since we have three metabolites, we need to add three variables to the model
to represent these concentrations: CA, CB, and CC , then our vector of concentrations,
C = (CA, CB, CC). Combined with our vector of fluxes, v = (q1, q2, QA, QC)

T , and our
stoichiometric matrix from equation (6.2.2), we have the ODE constraint,

dC

dt
= Sv. (6.2.3)

For the network (6.2.1), we also impose constraints for the uptake flux, QA, and
the output flux, QC , that depend on the concentrations. In this case, we limit the
maximum value of the output flux, QC , to be proportional to the concentration of C,
and the maximum value of the input to be proportional to the difference between the
internal concentration of A, and some external concentration that remains constant.
In this way we create two additional constraints:

QA ≤ k1(C
∗
A − CA), (6.2.4)

QC ≤ k2CC , (6.2.5)

where k1 and k2 are rate coefficients and C∗
A is the constant external concentration of

A. In addition to these concentration-dependent constraints, we also set minimum and
maximum values for fluxes as in regular FBA. In this case, all fluxes except QA take
a minimum value of zero, signifying that they are irreversible. We do not impose a
minimum value for QA, as we see from equation (6.2.4), high internal concentrations
of A causes QA to be negative. For this example, we see that the overall flux through
the system is limited by the external concentration of A, C∗

A, so we do not need to set
maximum values for any fluxes. We also limit concentrations to be greater than zero
as usual. The final constraint for this model is the rate of change constraint on fluxes,

−vdt−max ≤
dv

dt
≤ vdt−max. (6.2.6)

for some vector v̇max. Then by combining all these constraints along with some ob-
jective function that can depend on both fluxes and concentrations, we form the full
dFBA model for this network,

max
C,v

aTv + bTC such that:
dC

dt
= Sv,

QA ≤ k1(C
∗
A − CA),

QC ≤ k2CC ,

C ≥ 0,

q1, q2, QC ≥ 0,

−vdt−max ≤
dv

dt
≤ vdt−max,
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v(0) = v0, C(0) = C0. (6.2.7)

Then all that must be done to run a simulation is choose values for the parameters k1,
k2, and C∗

A, an objective function, a maximum rate of change vector for our fluxes, and
an initial condition. For now, we set the output flux QC to be our objective function
by choosing b = 0, and a = (0, 0, 0, 1). We set all the parameters k1, k2, and C∗

A equal
to one for simplicity, and we also take all elements in our maximum rate of change
vector to be equal to one. For our initial condition we start with all concentrations
and fluxes set to equal zero. Then we simulate our model (6.2.7). The results of this
simulation are shown in Figure 6.1. We see that very rapidly q1, q2, and QA all reach
maximum values of one. From here the concentration Cc increases steadily, allowing
the output flux, QC to increase too, also increasing towards a maximum value of one.
We note that the concentrations of A and B remain at zero throughout the simulation.
In particular CA remains at zero, allowing the input flux QA to reach its maximum
allowed value according to the constraint (6.2.4), which takes its maximum value when
CA is equal to zero.
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Figure 6.1: Plot of fluxes and concentrations against time in the simulation of
equation (6.2.7) with all parameters and maximum flux rate of changes equal to
one, and the objective function max QC . We have initial conditions CA(0) =
cB(0) = CC(0) = 0 . The first row shows plots for the fluxes vn, whilst the second
row shows those of the concentrations, Cn.

We now modify some parts of our model to see whether it continues behaving as
we expect. First we try different initial conditions. For maximum flux through the
system, we require CA to equal zero, as previously mentioned. We start with a non-
zero initial condition for CA. We would expect this to decay to zero to allow as much
input as possible. Figure 6.2 shows this simulation, with the initial concentration of A,
CA = 0.5. As expected, this concentration decays to zero, with the system attaining
the same steady-state as before. We see that q1 and q2 both initially increase to values
above one, before dropping back down below one, finally settling exactly on one as the
network reaches steady-state. The initial increase of QA is slower than the previous
simulation, as it is limited by the initial concentration. Despite this change in the initial
condition, the network still tends to the same steady-state, as expected. Raising the
initial condition of CA even higher produces the same effect but more pronounced, in
some cases causing the output QC to increase past one, before decreasing back down
to the same long term behaviour.

We next consider starting with an initial concentration of C. Figure 6.3 shows a
simulation with an initial concentration of C, CC = 0.5. We see that output flux QC
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Figure 6.2: As in Figure 6.1, except we have initial conditions v(0) = 0, CA(0) =
0.5, CB(0) = 0, and CC(0) = 0. The first row shows the graphs for the fluxes,
whilst the second row shows those of the concentrations.

starts increasing rapidly, but after reaching the point where it is equal to the decreasing
concentration of C, it also drops slightly, until the value of q2 becomes high enough to
allow CC to increase again. The remaining fluxes, q1, q2, and QA also do not increase
smoothly or constantly as they did in previous simulations. There is also a minor build
up of A early on, which is quickly removed. In the long term, the network still tends
to the same steady-state.
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Figure 6.3: As in Figure 6.1, except we have initial conditions v(0) = 0, CA(0) =
0, CB(0) = 0, and CC(0) = 0.5. The first row shows the graphs for the fluxes,
whilst the second row shows those of the concentrations.

Finally, let us consider the effect of modifying the rate of change constraints on
the fluxes. Decreasing the values of vdt−max uniformly causes the system to behave in
the same way, simply over a longer timescale, as seen in Figure 6.4. Interestingly, the
time taken does not increase exactly in line with the maximum rate of change decrease.
In the simulation shown in Figure 6.4, the maximal rate of change is set to equal 0.1,
which is one tenth of the previous value, however the output flux QC only takes twice
as long to increase to its maximum state. The remaining fluxes, q1, q2, and QA do,
however, take ten times as long to reach their steady-state values.

Rather than changing the maximum rate of change for all fluxes, we now instead
consider different maximum rates of change for each flux. We might expect the overall
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Figure 6.4: Plot of fluxes and concentrations against time in the simulation of
equation (6.2.7) with all parameters equal to one, and the objective function max
QC . The initial condition has v(0) = C(0) = 0. The maximum rates of change
are vdt−max = (0.1, 0.1, 0.1, 0.1). The first row shows the graphs for the fluxes,
whilst the second row shows those of the concentrations.

behaviour of the system to be limited by the slowest changing flux, but the remaining
fluxes could behave in different ways, depending on which flux is the “slow” flux. By
setting a single fluxes maximum rate of change to 0.1 whilst keeping the rest at one, we
consider if different slow fluxes have different effects on the overall behaviour. Figure
6.5 shows a simulation with q1 as the slow flux. We see the input QA tries to increase
as quickly as possible, but since q1 increases slower, this leads to a build up of the
concentration CA, which limits the uptake rate. As q1 increases, the system is able to
remove the excess concentration of A, allowing QA to increase again. The remaining
fluxes q1, q2, and QC behave in the same way as they did for the simulation when all
fluxes were “slow”. If we set q2 to be our slow flux, we see a similar behaviour, shown
in Figure 6.6. Both QA and q1 increase quickly early on, but with the slow flux not
able to match them, this causes an increase in concentrations of both A and B, which
eventually decay to zero as the system tends back to the same steady-state.
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Figure 6.5: As in Figure 6.4, except the maximum rates of change are given by
vdt−max = (0.1, 1, 1, 1).

Throughout these simulations, the concentration of B has been largely inconse-
quential, only showing temporary increases before decaying back down to the zero
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Figure 6.6: As in Figure 6.4, except the maximum rates of change are given by
vdt−max = (1, 0.1, 1, 1).

steady-state. In general, we have also seen the fluxes in and out of B, q1 and q2 re-
spectively, being equal. This metabolite has almost always been in steady-state, with
the flux in equal to the flux out. Since there are no concentration based constraints
that rely on CB, it could take any value at all with no consequence on the long term
behaviour. If we extend this chain further, and include another intermediary metabo-
lite between B and C (or between A and B), this additional metabolite exhibits the
same behaviour, with its concentration being inconsequential. This suggests that for
dFBA, when reactions are sequential, intermediates can be neglected unless there are
constraints that are based on their concentrations. In this case rather than having
A −→ B −→ C, we could simplify the network to A −→ C. This simplifies our model,
including two fewer variables, with very little loss of detail.

6.3 An autocatalytic system

In the previous chapter we examined the possibility of using flux balance analysis to
observe the existence of multiple steady-states. Whilst we were not able to do this with
regular FBA methods, dFBA may be able to show the existence of multiple steady-
states. To examine this possibility, we return to examining the autocatalysis network
described in Section 5.2. This network has been shown to exhibit multiple steady-states
under certain parameter conditions.

To reintroduce the network, we have two metabolites: X, the primary metabolite,
and Y , the catalyst. The uptake rates for these metabolites are Qx, and Qy. We have
two reactions that transform X into Y , the first a reaction using Y as a catalyst in
which one X and two Y are used to create three Y , and an uncatalysed reaction in
which X is changed into Y . Finally we also have an output reaction for Y , representing
the decay of the catalyst. These reactions are summarised in Chapter 5, in Table 5.1.

As in previous examples, we begin creating our dFBA model by formulating the
stoichiometric matrix for this network. This network has five reactions for two metabo-
lites, resulting in the 2× 5 stoichiometric matrix,

S =

( )
−1 0 −1 1 0
1 −1 1 0 1 . (6.3.1)

Together with the vector of concentrations, c = (x, y), where x and y are the concen-
trations of X and Y respectively, and the vector of fluxes,
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v = (v1, v2, v3, Qx, Qy) this forms the ODE constraint,

dc

dt
= Sv. (6.3.2)

Next we consider constraints based on concentrations. We use the dimensionless
form of the ODE model for this network, presented in equations (5.2.6)–(5.2.7), as a
basis for these constraints. First our uptake fluxes, Qx and Qy are given in the ODE
model as Qx = a(1 − x) and Qy = a(c − y). Normally for dFBA, we would set these
constraints to be inequalities, so that Qx ≤ a(1−x) and Qy ≤ a(c−y), however, in this
case we are looking for evidence of multiple steady-states. Since we have previously
seen a to be an important parameter when determining if multiple steady-states exist,
we keep these as equality constraints to allow us more control over how the dFBA
model behaves. We also add two additional constraints that depend on concentrations,
in the form of v2 ≤ dy and v3 ≤ bx. These parameters, b and d, are less important for
determining the existence of multiple steady-states, so we allow these constraints to be
inequality constraints as usual. This gives us the four constraints

Qx = a(1− x), (6.3.3)

Qy = a(c− y), (6.3.4)

v2 ≤ dy, (6.3.5)

v3 ≤ bx. (6.3.6)

Next we add maximum and minimum values on our fluxes and concentrations. As
usual, all concentrations must be greater than or equal to zero, that is, c ≥ 0. We also
have three fluxes which are irreversible, v1, v2, and v3, which must also have a minimum
value of zero. The uptake fluxes Qx and Qy are reversible, and indeed the reversibility
of Qy is known to be important for the multiple steady-state behaviour. The overall flux
through the system is constrained by the external concentrations, allowing a maximum
value for Qx of a, and a maximum value for Qy of ac. We choose maximum values
for all fluxes and concentrations to be 100, though this is likely to prove unnecessarily
high.

Finally we add in our usual maximum rate of change for flux values,

−vdt−max ≤
dv

dt
≤ vdt−max,

and now formulate the entire model as

max/min
c,v

xT c+ yTv such that :
dc

dt
= Sv,

Qx = a(1− x),

Qy = a(c− y),

v2 ≤ dy,

v3 ≤ bx,

0 ≤ c,

0 ≤ v1, v2, v3,

v, c ≤ 100,

−vdt−max ≤
dv

dt
≤ vdt−max,

v(0) = v0, c(0) = c0. (6.3.7)
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It is important to note that if we wish to observe multiple steady-states, we must
pick a set of parameters, (a, b, c, d), that permit their existence. From our previous
analysis of the ODE model for this network in Section 5.3, we know that if we choose
b = 0.001, c = 0.01, and d = 0.05, then for values of a within the bounds 0.2524 <
a < 0.2694, there are three possible steady-states, two stable and one unstable. We
choose a value for a which is safely within that range, a = 0.26. Whilst it may not be
possible to find the unstable state, we expect to be able to find some equivalent to the
two stable steady-states.

In order to observe multiple steady-states, we set our parameters to those described
in the previous paragraph and perform dFBA from two different initial conditions. First
from a starting point with low concentrations and once from a state with higher starting
concentrations. For our low initial conditions, we choose x = 0.1 and y = 0.1. We also
set our initial fluxes according to the flux rates described in the dimensionless ODE
system, so that we have

Qx = a(1− x) = 0.234, (6.3.8)

Qy = a(c− y) = 0, (6.3.9)

v1 = xy = 0.01, (6.3.10)

v2 = dy = 0.005, (6.3.11)

v3 = bx = 0.0001, (6.3.12)

For our higher starting concentration, we choose x = 0.65 and y = 0.38. Then our
initial flux state for this higher condition is

Qx = 0.091, (6.3.13)

Qy = −0.0728, (6.3.14)

v1 = 0.247, (6.3.15)

v2 = 0.019, (6.3.16)

v3 = 0.00065. (6.3.17)

We run the simulation with the objective function being maximising the rate of
catalyst decay, that is maximising the flux v2. When we previously examined the
system, we found that one key difference between the three states was the level of
catalyst decay, so it makes sense to use this flux as our objective function. If dFBA is
able to predict the existence of multiple steady-states, we would expect them to appear
even with the same objective function. That is, despite trying to maximise v2, we
would expect under some initial condition for the model to provide the low v2 state.
Similarly, we expect a higher v2 state from some other initial condition, with the same
objective function. Finally, we select a relatively small maximum rate of change of flux
of 0.1.

The results of the two simulations are shown in Figures 6.7 and 6.8. We see that from
the same model, we are able to achieve two qualitatively different results depending on
the initial conditions. When we start in the low initial condition state, we tend towards
a low y state, in which the concentration of X is near one, and the concentration of Y
is near 0.1. However, when we start from the higher initial condition, the system tends
towards a high y state, with the concentration of X near 0.25, and the concentration
of Y near 0.7.

Here, dFBA has been able to predict the existence of multiple steady-states for a
network. These states do not align exactly with the states provided by the ODE model
for the same network. Table 6.1 shows the steady-state concentrations of x and y from
both high and low y states from the ODE model as well as those found from dFBA.
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Figure 6.7: Plots of the concentrations of x and y against time in a simulation of
the dFBA model described in equation (6.3.7) with a = 0.26, b = 0.001, c = 0.1,
and d = 0.05, and a maximum rate of change of flux of 0.1. The initial condition
for this simulation are x = 0.1, y = 0.1.

t
0 20 40 60 80

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t
0 20 40 60 80

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.8: Plots of the concentrations of x and y against time in a simulation of
the dFBA model described in equation (6.3.7) with a = 0.26, b = 0.001, c = 0.1,
and d = 0.05, and a maximum rate of change of flux of 0.1. The initial condition
for this simulation are x = 0.65, y = 0.38.

We notice that the low y states are in closer agreement than the high y states. This
may be due to our objective function trying to maximise y. It is possible that if we
choose to maximise x, we would obtain a high y state that is closer to the one seen in
the ODE model. This proves to not be the case, however. By choosing our objective
function to maximise x, we lose the high y state entirely and the system again tends to
the low y state, regardless of initial conditions, as seen in Figure 6.9. For one objective
function we were able to observe the existence of multiple steady-states using dFBA,
however for another, this was not possible.

It is worth noting that the steady-state concentrations for the low y state are not
the same across the two objective functions. The steady-state concentrations for this
state with the objective function maximising x are x = 1, y = 0.0907. Even though
the two steady-states are qualitatively similar, there is some variation between the two
that we wouldn’t expect to see in an ODE model. Since the difference between the
steady-states for the two objective functions is so small, and the difference between the

171



State Low y High y
Method dFBA ODE dFBA ODE

x 0.9973 0.8933 0.2437 0.5389
y 0.0861 0.1733 0.7182 0.4705

Table 6.1: Steady-state concentrations of x and y in the high and low y states,
predicted by dFBA and ODE models.
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Figure 6.9: Plots of the concentrations of x and y against time in a simulation of
the dFBA model described in equation (6.3.7) with a = 0.26, b = 0.001, c = 0.1,
and d = 0.05, and a maximum rate of change of flux of 0.1. The initial condition
for this simulation are x = 0.65, y = 0.38. In this case, the objective function is
maximising the concentration of X, rather than that of Y.

high and low y states is so big, it does not matter too much in this situation. If we
were to examine other systems, these slight variations could have much larger effects
on the overall behaviour of the system, so it is worth examining these slight variations
more closely, to see if there is some way to avoid them if possible, or if this is just a
consequence of a different objective function.

6.3.1 The effects of multiple optimal solutions

To closer examine these slight variations, we modify the model slightly. We keep the
network as described in Table 5.1, so the stoichiometric matrix remains as in equations
(6.3.1). We also keep the parameters and concentration-based constraints the same.
The slight variation we introduce is changing the maximum values of the flux which
previously were all set to 100. We now increase these maxima, so that all elements
of vmax are equal to 1000. Theoretically, this should not cause any difference to the
behaviour of the system, as the fluxes are not able to attain such high values; however,
we find that increasing the maximum values of the fluxes leads to a change in the
steady-state concentrations, as shown in Table 6.2. This steady-state has a higher
concentration of y than the base state, and therefore, a higher value of the objective
function, v2. This steady-state also persists across all initial conditions. To understand
why two models which are fundamentally the same have two different behaviours we
need to more closely examine what happens at each time step.

At each time point in the system, we solve a linear programming problem. In this
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Baseline Objective function maximising Y Maximum flux increase
x 0.9973 1.0000 0.7547
y 0.0861 0.0907 0.2896

Table 6.2: Steady-state concentrations of x and y for the model described in
equation (6.3.7), using the initial condition x = 0.1, y = 0.1, with different
variations in the model.

example, the problem at each time point is

max
ct+∆t,vt+∆t

v2,t+∆t such that : ct+∆t = ct +∆tSvt,

Qx,t+∆t = 0.26(1− xt),

Qy,t+∆t = 0.26(0.1− yt),

v2,t+∆t ≤ 0.05yt,

v3,t+∆t ≤ 0.001xt,

0 ≤ ct+∆t,

0 ≤ v1,t+∆t, v2,t+∆t, v3,t+∆t,

vt+∆t, ct+∆t ≤ 1000,

−vdt−max ≤ |
vt+∆t − vt

∆t
| ≤ vdt−max, (6.3.18)

where ct is the vector of concentrations at time t, (xt, yt), vt is the vector of fluxes
at time t, (v1,t, v2,t, v3,t, Qx,t, Qy,t) and ∆t is the size of the time steps. Starting
from an initial condition of x = 0.5, y = 0.5, we have an initial flux vector of
(v1, v2, v3, Qx, Qy) = (0.25, 0.025, 0.0005, 0.13,−0.104). Taking ∆t = 1 and all ele-
ments of vdt−max to equal 0.1, we solve the optimisation problem for this single time
step.

One solution to (6.3.18) is

ct+∆t = (0.48, 0.521),

and
vt+∆t = (0.15, 0.025, 0, 0.13,−0.104),

however this solution is not unique, there are multiple solutions that satisfy the con-
straints and maintain a maximised value for v2. In Section 2.5.2, we introduced flux
variability analysis, to characterise how much an individual flux in a FBA problem
could vary whilst still maintaining an optimal solution. By applying the same tech-
niques to this single dFBA time-step, we aim to characterise the variability of fluxes
and concentrations at each time-step for this dFBA problem.

By adding the additional constraint v2,t+∆t = 0.025, and using the objective func-
tion to find the solution that minimises or maximises each flux or concentration in turn,
we find the variability ranges for the fluxes and concentrations. We find that whilst
v2, Qx, and Qy have no range of variability, v1, v3, and the concentrations x and y
are all able to be varied whilst still maintaining the optimal value for v2. Specifically,
v1 has the range of variability, 0.15 ≤ v1 ≤ 0.35, v3 has the range 0 ≤ 0.005, the
concentration x has the range 0.2895 ≤ 0.48, and the concentration y has the range
0.521 ≤ y ≤ 0.7215.

This range of y is notable, because the concentration of y directly effects the max-
imum value of v2 in the next time-step. If y takes its minimum value according to the
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variability analysis, at the next time step, the maximum value of v2 is 0.01303, whilst
if y took its maximum value, the maximum value for v2 would instead be 0.01804.
This possible difference becomes more pronounced in subsequent time-steps, splitting
the solutions into the high and low y steady-states seen in Figures 6.7 and 6.8. These
results suggest that the multiple steady-state behaviour seen for this network, rather
than being due to differing initial conditions, is a result of the variability allowed in v1,
v2, Qx and Qy at each time-step.

In order to limit the effects of these variabilities, we introduce secondary objective
functions, as set out by Gomez et al. [26]. For each time step, we solve an optimisation
problem, like the one described in equation (6.3.18). This provides an optimal value
for our primary objective function, aTv + bT c = Amax, in this case, v2 = v2,max.
Next we form another optimisation problem with all the constraints of the first, but
also includes the additional constraint, aTv + bT c = Amax. We choose a secondary
objective function of the same form for this new optimisation problem, and solve again.
In this way, dFBA chooses from the set of states that optimise the primary objective
function, the state that optimises the secondary objective function. We could continue
adding more objective functions in this way until we a unique solution that is optimal
according to all the objective functions. Since we must perform all these optimisations
in sequence, this means for n objective functions, we must form n optimisation problems
and solve them. This could prove quite time consuming for larger systems, which are
also the ones more at risk of these multiple objective functions, especially those with a
high level of degeneracy.

As an example, we apply this method to our model in equation (6.3.7), with the first
objective function of maximising v2, and the second as described, maximising v1 + v3
to maximise the flux from x to y. Figure 6.10 shows the results of this model with two
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Figure 6.10: Graph of concentrations against time for the dFBA model de-
scribed in equation (6.3.7) for the primary objective function of maximising v2,
and the secondary of maximising v1+ v3, for two different initial conditions. The
top row shows the behaviour with the initial condition x = 0.5, y = 0.5, and the
second row for x = 0.1, y = 0.1. Both initial conditions lead to the same long
term behaviour with x decaying to zero and y increasing.
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different initial conditions. We see that both models tend towards a high v2 state, with
the concentration of x decaying to zero, and y growing to a maximum.

By adding a secondary objective function to our model, we force the model to have
only one final steady-state that depends on both objective functions. After eliminating
the problem of these alternative optimal solutions, were are unable to observe these
multiple steady-states for different initial conditions. Whilst dFBA is able to show the
existence of both a high y and a low y state as expected, after including secondary
objective functions, we are not able to observe the same dFBA model (including the
same objective function) tending to two different states depending on the initial condi-
tions. dFBA is able to provide some insight into the existence of multiple steady-states,
however it is not able to predict differing initial conditions leading to these two different
states.

6.4 Systems with periodic solutions

Until now, we have only used dFBA to examine systems with steady-state behaviour.
Ideally, we wish to use dFBA to model a system exhibiting non-steady-state behaviour,
such as periodic oscillations. To do this, it would be useful to analyse a system which
exhibits these behaviours for all parameter values, unlike the autocatalytic system
analysed in the previous section, which only exhibits periodic solutions for a small
range of parameters. By choosing a system which observes these oscillations for any
given set of parameter values, we are more likely to observe them in our dFBA.

Though flux balance techniques are normally only used for metabolic networks, it is
possible to use them for any system that follows the correct structure, i.e. networks that
can be written in the form ẋ = Sv(x). One such system of equations that follows this
structure and exhibits periodic solutions is the Lotka-Volterra predator-prey equations

dx

dt
= αx− βxy, (6.4.1)

dy

dt
= δxy − γy, (6.4.2)

with some initial conditions, x(0) = x0 and y(0) = y0. This system of equations has
two steady-states, an extinction state, where x = y = 0, and an equilibrium state,
x = γ/δ, y = α/β. The extinction state (0, 0) is unstable, whilst the equilibrium state
is marginally stable. All other points belong to periodic orbits about the equilibrium
point, examples of which are shown in Figure 6.11. Due to this, it is a good candidate
for testing the ability of dFBA to observe periodic solutions to a network.

6.4.1 Forming the model

The Lotka-Volterra system can be considered as a metabolic network with three reac-
tions, an input of X, an output of Y, and a third reaction that transforms X into Y.
These reactions are given in Table 6.3. From these reactions we form the stoichiometric
matrix

S =

( )
−β α 0
δ 0 −γ . (6.4.3)

This stoichiometric matrix, (6.4.3), is similar to the one used in Section 6.2.1. Indeed
the network is effectively a straight line system with no intermediary metabolites. In
order for our new model behave differently from the previous one, we use different
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Figure 6.11: Plot of two separate periodic solutions for the Lotka-Volterra
equations, (6.4.1)–(6.4.2) in the xy plane.

β X
v1−→ δ Y

External concentration
v2−→ α X

γ Y
v3−→ External concentration

Table 6.3: The metabolic network that is equivalent to the Lotka-Volterra
predator-prey system.

concentration-based constraints. Before, the input flux was constrained by equation
(6.2.4) but we now use

v2 ≤ x. (6.4.4)

Similarly, we set the output of y to be constrained by

v3 ≤ y. (6.4.5)

As usual, we set maximum and minimum values for our fluxes. In this example, all
fluxes are irreversible, having minimum values of zero. Unlike previous examples, there
is no factor limiting the input rate or overall flow through the network, so we impose
maximum flux values of 100. We also add the usual constraints for concentrations
(limiting their minimum value to be zero), and a maximum rate of change vector for
the fluxes, vdt−max. As in our autocatalysis model, we set all the values of this vector
to be equal for simplicity. By combining all our constraints with an objective function,
we again formulate a dFBA model. In this case, we take the objective function to be
maximising the output of y, v3, so our model is

max/min
c,v

v3 such that :
dc

dt
= Sv,

v1 ≤ x,

v3 ≤ y,

c ≥ 0,
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0 ≤ vn ≤ 100,

−vdt−max ≤
dv

dt
≤ vdt−max,

v(0) = v0, c(0) = c0. (6.4.6)

Now that we have our model, we choose values for α, β, γ, and δ in (6.4.1)–(6.4.2)
. For simplicity, we take them to all equal one. This means the equilibrium state for
the ODE model is x = 1, y = 1, and the equivalent equilibrium state for our dFBA
model would be vss = λ(1, 1, 1), for some scalar λ. This requires concentrations of at
least x = λ, and y = λ. Now that we have a complete model, we simulate it.

We start by testing the system using the two known steady-states as initial condi-
tions, that is the extinction state of x = 0 and y = 0, and the equilibrium population,
where x = 1 and y = 1, or rather, some linear multiple of this. It is obvious to see that
if the system starts with the initial condition of x = 0, y = 0 then the system is unable
to take up any additional x, and remains in the extinction state with all concentrations
and fluxes equal to zero. If the system starts at the maximal point, that is the point
at which all fluxes and concentrations take their assigned maximum value (in this case,
100), the system remains at this point. We see that this is indeed the optimal value
for our objective function, and it is also an equilibrium state. Taking initial conditions
that aren’t either one of these points, however, leads to a problem. As seen in Figure
6.12 one of the concentrations tends towards zero with a sharp gradient. At this point
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Figure 6.12: Graph of concentrations and fluxes against time for the dFBA
model described in equation (6.4.6) with all fluxes and concentrations initially
equal to five. The model fails at t = 1, as the concentration of x will decrease
past zero at this time point.

the fluxes are such that in the next time step, this decreasing concentration will drop
below zero. Due to the maximum rate of change that we have enforced on our fluxes,
the system is unable to choose a point in the next time step that does not cause this
concentration to drop below zero, and the system becomes infeasible at this time step.
We need some way to deal with a system that is crashing in this manner in order to
prevent concentrations below zero being recorded.
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6.4.2 Dealing with crashes

There are a few methods to deal with these “crashes” in concentration. The easiest
way is to relax or entirely remove the rate of change constraints on the fluxes at points
when the system has become infeasible. In this way, we allow the fluxes to change
enough to avoid a concentration decreasing below zero. However, the choice of how
much we relax these constraints is rather arbitrary. Removing the constraints entirely
may lead to different results than if we doubled the maximum rates of changes. We aim
to give the system only as much freedom as it needs. Using the technique described by
Gomez et al. [26], we introduce a new set of variables to the system, labelled s. These
variables represent how much the flux rate of change constraints are relaxed at each
time step. The flux rate of change constraints now become

dv

dt
≤ vdt−max + s, (6.4.7)

where v is the flux vector, vdt−max is a vector containing their maximum allowed values,
and s is the vector of variables chosen by the linear programming, showing how much
these rate of change constraints are being violated in a given time step. The elements
of s are constrained to be positive. By changing our single linear programming problem
into a two step linear programming, we assure that these additional variables, s are as
small as possible whilst still maintaining our usual objective function. In the first step,
we set our objective function to be minimising the sum of the elements of s. In the
case of the original system being feasible, this minimum value is zero (as each element
cannot take a value less than zero). If the original system would be infeasible, then the
sum of the elements takes a non-zero minimum value. In the second step, we fix the sum
of these s elements to take its minimum value as found in the first step as an additional
constraint, and then optimise for our usual objective function. In this way, we are
able to ensure the flux rate of change conditions are violated as little as possible, and
only when necessary. This allows us to run simulations that would otherwise become
infeasible and thus have no solution.

Now that we are able to find solutions in situations we previously couldn’t, we
examine our Lotka-Volterra model outside of the two previously observed steady-state
points. First we examine the system on other points of the dFBA equilibrium state,
where x = y and v2 = v3. As seen in Figure 6.13 despite starting in what is a steady-
state (where the concentrations would not change in time), the method attempts to
choose points off this line in order to attain a more optimal state of the objective
function, that is, increasing v1, with v3 increasing later. This leads to a rapid decrease
in the concentration of x, which in turn eventually leads to a sharp decline in v1, and
eventually the decay of the concentration of y, leading to the extinction state. This
behaviour persists outside of the equilibrium vector, with almost all initial conditions
(with the exception of the previously mentioned optimal state) tending towards this
state.

6.4.3 An initial condition from the ODE model

We now attempt to use dFBA to predict periodic behaviour in a metabolic network.
The Lotka-Volterra ODE system has two steady-states, and any other point in the
(x, y) plane lies on a periodic orbit around the equilibrium point. In order to see if
this periodic behaviour is observed with dFBA, we choose an initial condition that
corresponds to a state taken by the ODE model. Given a point (x, y), we calculate the
values of the fluxes at this point, and use that as our initial condition. We choose the
point x = 1.107 and y = 0.284. We then calculate the values of each flux according to

178



t
0 5 10

v 1

0

2

4

6

8

10

t
0 5 10

v 2

0

2

4

6

8

10

t
0 5 10

v 3

0

2

4

6

8

10

t
0 5 10

x

0

2

4

6

8

10

t
0 5 10

y

0

2

4

6

8

10

t
0 5 10

s

0

2

4

6

8

10

Figure 6.13: Graph of concentrations and fluxes against time for the dFBA
model described in equation (6.4.6) with all fluxes and concentrations initially
equal to five. We see a spike in the s variables at about t = 1, to prevent the
system from becoming infeasible. After this happens, the concentration of x
becomes zero, and the system decays to the extinction state.

the ODE model for these concentrations, to find v1 = xy = 0.3144, v2 = x = 1.107,
and v3 = y = 0.284. We also set s = 0 for our initial condition, leading to the initial
condition vector,

(v1, v2, v3, x, y, s1, s2, s3) = (0.3144, 1.107, 0.284, 1.107, 0.284, 0, 0, 0). (6.4.8)

Using this initial condition, with the model given in equation (6.4.6), we obtain the
solution shown in Figure 6.14. At first, this solution behaves similarly to the ODE
model, with the increase in the concentration x up to a peak before it starts to decrease,
followed by a peak in the concentration of y. However, unlike the ODE system, the
concentration of x continues decreasing until it reaches zero. At this point, there is
a “crash”, which necessitates a non-zero value for s. After this point, the system is
unable to increase the concentration of x, and the concentration of y decreases towards
the extinction state. In this case, the amplitude of the periodic oscillations in the ODE
system was large, so it is worth examining a solution with a smaller amplitude, where
we do not expect the concentration of x to decrease as rapidly. An initial condition for
a state with lower amplitude oscillations is

(v1, v2, v3, x, y, s1, s2, s3) = (0.7310, 0.9352, 0.7816, 0.9352, 0.7816, 0, 0, 0). (6.4.9)

However, as seen in Figure 6.15 the model shows similar behaviour even with this
different initial condition. Once the concentration of x starts decaying, the system is
not able to increase it again, so it crashes towards the extinction state. This is due to
the objective function prioritising the output of y over everything else. In order for the
system to start accumulating x again, it would require v1 to be lowered, which would
in turn lower the concentration of y, allowing for less output though v2. We see that
the dFBA model is not able to predict the existence of periodic oscillatory solutions
for this network.
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Figure 6.14: Graph of concentrations and fluxes and s variables for the model
in equation (6.4.6), with initial condition from equation (6.4.8. We see a peak
in one concentration before it starts to decay, and the other concentration then
peaks and also decays. Rather than becoming periodic, the system crashes, and
eventually decays to the extinction state seen previously.
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Figure 6.15: As in Figure 6.14, except with initial condition given by equation
(6.4.9).

6.5 The C. Autoethanogenum network

Now that we have examined smaller systems and identified the potential problems, we
apply dFBA to a larger metabolic network, such as the modified C. autoethanogenum
network seen in Section 4.4. As before, we first form the stoichiometric matrix. The
stoichiometric matrix concerning the internal reactions for our C. autoethanogenum
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network is

Sin =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10



CO −1 0 0 0 0 0 0 0 0 0
CO2 1 −1 −1 0 −1 0 1 0 0 0
COc 0 0 1 −1 0 0 0 0 0 0

Formate 0 1 0 −1 0 −1 0 0 0 0
Acetyl − CoA 0 0 0 1 −1 −1 0 −1 −1 0

Pyruvate 0 0 0 0 1 1 −2 0 0 0
Acetolactate 0 0 0 0 0 0 1 0 0 0
Acetaldehyde 0 0 0 0 0 0 0 1 0 1

Acetate 0 0 0 0 0 0 0 0 1 −1
Hydrogen 2 −2 −2 −4 −2 0 0 −2 0 0

,

(6.5.1)
and the stoichiometric matrix for the uptake and output reactions is

Sex =

QCO QH outbio outlac outval outbut outeth outace



CO 1 0 0 0 0 0 0 0
CO2 0 0 0 0 0 1 0 0
COc 0 0 0 0 0 0 0 0

Formate 0 0 0 0 0 0 0 0
Acetyl − CoA 0 0 −1 0 0 0 0 0

Pyruvate 0 0 −1 −1 0 0 0 0
Acetolactate 0 0 0 0 −1 −1 0 0
Acetaldehyde 0 0 0 0 0 0 −1 0

Acetate 0 0 0 0 0 0 0 −1
Hydrogen 0 1 0 −2 0 −2 −2 0

.

(6.5.2)
Then the complete stoichiometric matrix is the augmented matrix

S = (Sin|Sex). (6.5.3)

We fix constraints on the uptake and output fluxes depending on concentrations. We
have two uptake fluxes, QCO and QH . In our previous examination of this network,
using both ODEs and FBA, we fixed these fluxes to be constants. To provide fair
comparison, we continue fixing these fluxes to take constant values,

QH = Hin, QCO = COin. (6.5.4)

We constrain our output fluxes as in the ODE model, so that

outbio = k15cACAcPy, (6.5.5)

outlac = k16cPyc
2
H , (6.5.6)

outval = k17cAl, (6.5.7)

outbut = k18cAlc
2
H , (6.5.8)

outeth = k19cAdc
2
H , (6.5.9)

outace = k20cA. (6.5.10)

We require, as usual, the concentrations and irreversible fluxes to be positive. We
choose not to add maximum values for concentrations and fluxes in this case, so

c ≥ 0, v ≥ 0. (6.5.11)
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Finally, we continue to enforce constraints on how much the fluxes v are allowed to
change in a single time step. For our simulations, we allow these to be relatively relaxed,
and fix the maximum change in a flux in a single unit of time to be one, so that

−1 ≤ dvn
dt

,
dQn

dt
,
doutn
dt

≤ 1. (6.5.12)

By combining these constraints with as objective function, in this case maximising
the production of biomass, outbio, we form a dFBA model for C. autoethanogenum.
This is the same objective function we used in previous FBA analysis. Then our dFBA
model is

max
c,v

outbio such that :
dc

dt
= Sv,

QH = Hin,

QCO = COin,

outbio = k15cACAcPy,

outlac = k16cPyc
2
H ,

outval = k17cAl,

outbut = k18cAlc
2
H ,

outeth = k19cAdc
2
H ,

outace = k20cA,

c ≥ 0,

v ≥ 0,

−1 ≤ dvn
dt

,
dQn

dt
,
doutn
dt

≤ 1,

v(0) = v0, c(0) = c0. (6.5.13)

6.5.1 Steady-state regions

First, to check that the model is producing the results we expect, we investigate whether
it tends to a steady-state in parameter regimes where steady-states exist. In Section 4.6
we determined the region in which steady-states exist using FBA. We fix our parameters
so that the model (6.5.13) resides in this region. We set kn = 1 for 15 ≤ n ≤ 20. To
maintain the QH/QCO ratio that permits steady-states, we set QH = 3 and QCO = 1.
Using these parameters along with the objective function of maximising biomass, we
simulate the dFBA model (6.5.13). The results of this simulation are shown in Figure
6.16. We see that our concentrations all tend to steady-states, as expected, though
some concentrations remain very low. We also note there is an initial growth and
decay in the concentrations of hydrogen and carbon monoxide. This is likely due to
both metabolites having constant input rates, QCO andQH , which dominate the system
early on, before other fluxes and concentrations grow to steady-state. After this initial
decay, the system levels out to the steady-state that we expect to see.

6.5.2 Linearly growing states

In some regions of parameter space, our ODE model tends to a non-steady-state in
which one or more concentrations grows linearly or sublinearly in time, with others
decaying to zero. It is worth examining whether dFBA predicts the existence of these
non-steady-state regions. We would also like to see if it predicts concentrations growing
linearly in time, as well as the products formed in these cases.
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Figure 6.16: Simulation of the model described in equation (6.5.13), with all
kn = 1, COin = 1, and Hin = 3.

Our asymptotic analysis of the ODE system led to seven qualitatively different
long term behaviours. A diagram of regions in parameter space where these behaviours
are found is shown in Figure 6.17. Behaviour 1 is the steady-state behaviour, whilst
the remaining six refer to various states with concentrations experiencing linear, or
sublinear growth, and others decaying to zero. The long timescale behaviour of the
concentrations is summarised in Table 6.4.

In our dFBA model, (6.5.13), we have direct control over the input levels for hy-
drogen and CO, so we are able to vary the input ratio to force the dFBA model into a
state that corresponds to one of the behaviours found in our ODE model. As noted in
Section 4.2.1, the ratio of two fluxes, v2/v3, is equal to the ratio of the two parameters,
k2/k3, so by constraining the ratio of those two fluxes, as well as the input fluxes, we
are able to force the dFBA model to act in any of the regions shown in Figure 6.17.
The ratio v2/v3 is especially important for distinguishing between behaviours 5 and 6
since, when there is a high hydrogen input, our ODE model determines whether it is
in behaviour 5 or 6 based on this ratio. To force this ratio to behave in the way we
wish, we add one of two constraints. In the cases where we want v2 < v3, we add the
constraint

v2 − v3 < 0, (6.5.14)
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Figure 6.17: The regions in parameter space for the system of ODEs with
regions numbered by observed behaviour. The horizontal axis is QH/QCO, with
QH being varied, and the vertical axis is k3. All other parameters are fixed to be
one.

Metabolite Regions of parameter space
1 2 3 4 5 6 7

CO t0 t0 t0 t0 t0 t0 t0

CO2 t0 t0 t0.5 t1 t−2 t−2 t−1

COc t0 t1 t1 t1 t−5 t1 t−3

Formate t0 t−1 t0 t1 t1 t−5 t1

Acetyl-CoA t0 t0 t0 t−1 t−2 t−2 t−1

Pyruvate t0 t0 t0 t0 t−3 t−4 t−1

Acetolactate t0 t0 t0 t0 t−8 t−10 t−3

Acetaldehyde t0 t0 t0.5 t0 t−2 t−2 t−1

Acetate t0 t0 t0 t−1 t−2 t−2 t−1

Hydrogen t0 t0 t−0.25 t−0.5 t1 t1 t0.5

Table 6.4: Scalings for each metabolite as t→ +∞ in each regime, illustrated in
Figure 6.17. A scaling of t0 represents a metabolite tending to a nonzero steady-
state. An exponent greater than zero represents a metabolite showing unbounded
growth. A negative exponent represents a concentration decaying to zero.

and in the cases where we want v3 < v2, we add the constraint

v3 − v2 < 0. (6.5.15)

Then by combining our dFBA problem described in equation (6.5.13) with one of either
(6.5.14) or (6.5.15) for various values of COin and Hin, we force our system to be in
one of the regions seen in Figure 6.17.

We have already observed steady-state behaviour in Section 6.5.1, but it is worth
noting that in this behaviour we have v3 < v2, despite equation (6.5.15) not being
included as a constraint in the dFBA model. We now consider other input ratios and
constraints on v2 and v3 to try and observe the behaviours seen in other regions.
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We start with the regions in which v3 < v2, that is, with equation (6.5.15) as
an additional constraint to the dFBA model described in equation (6.5.13). As when
observing the steady-state region, parameters k15 to k20, and COin are all set to equal
one. We then choose a range of values of Hin to observe how the input ratio affects the
behaviour of the model. First we choose Hin = 3.5 to represent a high hydrogen level.

Figure 6.18 shows the results of the simulation with these constraints. With the
hydrogen input Hin set to equal 3.5, and the constraint from equation (6.5.14), the
dFBA should be modelling the region of parameter space in which the ODEs exhibited
behaviour 5. We expect to see a linear growth in hydrogen and formate, with the
decay to zero of all other concentrations. Whilst we do see the expected increase in
hydrogen, formate does not increase as expected, and most concentrations stay at very
low steady-states rather than decaying entirely. We have a decay of acetolactate and
acetaldehyde, and to a lesser extent, carbon dioxide and acetate. Examining some of
these low steady-states in more detail, we see that they aren’t actually steady, and
instead exhibit random spiking with a low amplitude, as seen for the concentration of
acetyl-CoA in Figure 6.19
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Figure 6.18: Plot of the concentrations of metabolites for the model given in
equation (6.5.13), with Hin = 3.5 and v3 < v2.

We next examine a lower hydrogen case, withHin = 1. Figure 6.20 shows the results
of the dFBA simulation in this case. With this lower hydrogen input, we expect the
system to exhibit either behaviour 3 or behaviour 4 from the ODEs. Instead we observe
a combination of the two. We have the growth in carbon dioxide and formate from
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Figure 6.19: Plot of the concentration of acetyl-CoA for the model in equa-
tion (6.5.13), with Hin = 3.5 and v3 < v2, showing the random spiking in the
metabolite concentration.
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Figure 6.20: Plot of the concentrations of metabolites for the model given in
equation (6.5.13), with Hin = 1 and v3 < v2.

behaviour 4, but also the growth in acetaldehyde from behaviour 3. Interestingly, there
is no growth in the secondary source of carbon monoxide, COc, that was observed in
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the ODEs for both behaviours. We note that the concentration of acetyl-CoA exhibits
random spiking of a higher amplitude, but there is still a slow decay in the concentration
as time goes on, which matches behaviour 4. However, we see a non-zero steady-
state in the concentration of acetate, which is expected in behaviour 3. Pyruvate and
acetolactate maintain steady-states as expected in both behaviours. It is interesting
that our dFBA has provided us a set of balances that is a mixture of two of the states
observed in our ODE model. It may be that dFBA has found a possible linear growth
state for this ODE model that was not found in our asymptotic analysis. It turns out,
however, that this is not the case. If these growth and decay results were seen in our
ODE model, there is no leading balance in the equation for acetate. Discarding the
non-leading terms would give us the equation

0 = −(k9 + k20)cA, (6.5.16)

where cA is the concentration of acetate. This could only hold true if the concentration
of acetate decayed to zero, since all of k9, k20, and cA are positive, however in this case
there is a non zero steady-state for the concentration of acetate. Whilst this balance
might be possible for a different set of ODEs modelling the same network, it is not
possible for the our model.

We next examine regions in which v3 > v2, that is, when equation (6.5.14) is added
included as a constraint in the dFBA model (6.5.13). As before, we begin with the
high hydrogen level, where Hin = 3.5. Figure 6.21 shows the results of the dFBA
simulation. Here, we expect to observe behaviour similar to behaviour 6 on the Table
6.4. The observed behaviour is closely matches the behaviour from our ODE models,
with growth in the secondary carbon dioxide, COc and in hydrogen as expected. We
also have carbon dioxide, acetolactate, acetaldehyde and acetate all decaying in time.
Acetyl-CoA maintains a low concentration with low amplitude spiking, as seen in Figure
6.19). We also observe these low amplitude concentration spikes in formate.

Next, we model the system with a moderate level of hydrogen, with Hin = 2.5.
With this level of hydrogen, we expect the system to behave as in behaviour 2 from
Table 6.4. Figure 6.22 shows the results of our dFBA simulation in this case. We
find almost every concentration tending to a non zero steady-state. There is linear
growth in the concentration of the secondary source of carbon monoxide, COc, and
the concentration of formate remains close to zero for the entire time frame. The long
timescale behaviour here is close to the long timescale behaviour exhibited by the ODEs
in this region of parameter space.

Finally, we examine the system with a low level of hydrogen, where Hin = 1.
The results of the dFBA simulation in this low hydrogen case are shown in Figure
6.23. We have growth in carbon dioxide, COc, and acetaldehyde. It appears that the
concentration of hydrogen is decaying, though in a non smooth way, as we see some
spiking at around t = 23. Other concentrations, other than acetolactate, also exhibit
these spikes, though the amplitude of these does not appear to change in time. Whilst
these concentrations are not steady, they might be considered such, as the average value
appears to be constant. Acetolactate exhibits a regular steady-state. If we take the
oscillating concentrations to be nearly steady, we do find that the behaviour matches
that of behaviour 3 for our ODE model. We do have the same concentrations growing
indefinitely in time, and an overall decay in the levels of hydrogen in the long timescale.

Running the low hydrogen simulation again with neither equations (6.5.15) or
(6.5.14) added as constraints, we find the results seen in Figure 6.24. These are similar
to those seen in Figure 6.20, where we had equation (6.5.15) included as a constraint
in the dFBA model, but we also have growth in the secondary carbon monoxide source

187



t
0 2 4 6 8

C
on

ce
nt

ra
tio

n

0

0.2

0.4

0.6
CO

t
0 2 4 6 8

C
on

ce
nt

ra
tio

n

0

0.02

0.04

CO
2

t
0 2 4 6 8

C
on

ce
nt

ra
tio

n

0

0.5

1
CO

C

t
0 2 4 6 8

C
on

ce
nt

ra
tio

n

0

5

10
Hydrogen

t
0 2 4 6 8

C
on

ce
nt

ra
tio

n

0

0.05
Formate

t
0 2 4 6 8

C
on

ce
nt

ra
tio

n

0

0.05
Acetyl-CoA

t
0 2 4 6 8

C
on

ce
nt

ra
tio

n

0

0.05
Pyruvate

t
0 2 4 6 8

C
on

ce
nt

ra
tio

n

0

0.05
Acetolactate

t
0 2 4 6 8

C
on

ce
nt

ra
tio

n

0

0.02

0.04

0.06
Acetaldehyde

t
0 2 4 6 8

C
on

ce
nt

ra
tio

n

0

0.02

0.04

Acetate

Figure 6.21: Plot of the concentrations of metabolites for the model given in
equation (6.5.13), with Hin = 3.5 and v3 > v2.

that was expected from Table 6.4. This is also similar to the results with equation
(6.5.14) with an additional growth in formate, seen in Figure 6.23.

It is interesting to note that even with the hydrogen input to equal zero, we cannot
find behaviour that matches behaviour 4 in Table 6.4 perfectly. Specifically, we cannot
prevent the unbounded growth in acetaldehyde seen in both of our low hydrogen dFBA
models. Our ODE models predict that the creation of acetaldehyde is limited by the
concentrations of acetate, acetyl-CoA and hydrogen. In behaviours 4 for the ODEs, all
three of these metabolites decay to zero, however we see in our low hydrogen dFBA
simulations, all three of these concentrations maintain steady-states, allowing for a
constant production of acetaldehyde.

Across all of these behaviours we note that whilst linearly growing concentrations
are generally predicted in agreement with the ODE results, dFBAs ability to predicted
concentrations decaying to zero is more limited. In some cases, we find the previously
observed problem with concentration “crashing” at zero, and the system struggling to
change fluxes to avoid negative concentrations, whilst in other we see random spiking
of the metabolite concentration, allowing the fluxes related to the concentration to
maintain activity. As an example we observe the concentration of hydrogen in the low
hydrogen regions. In our ODE model, we observe the concentration of hydrogen de-
caying smoothly to zero, but in the dFBA model, we see the concentration of hydrogen
fluctuates at a low level, as shown in Figure 6.25.

Overall, there is a general agreement between the dFBA predictions for linearly
growing concentrations, and those observed in the ODE model. All behaviours, except
behaviours 2 and 4, are observed in the dFBA model, though on some occasions they
may appear in regions we do not expect them to (such as behaviour 3 being observed
when we have a near zero input of hydrogen, where we would expect to find behaviour
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Figure 6.22: Plot of the concentrations of metabolites for the model given in
equation (6.5.13), with Hin = 2.5 and v3 > v2.

4). We find problems with predicting concentrations decaying to zero, allowing potential
behaviours that would not be permitted by our previous ODE model. The ability of
dFBA to capture this non-steady-state behaviour is interesting because it suggests that
the linear and sublinear growth behaviours observed in the ODE models from Chapter
4 may not be necessarily tied to the specific choices we make for modelling reaction
rates, but may instead be more generic to the structure of the metabolic network. In
particular we see a broad pattern of high hydrogen input leading to an unbounded
growth for hydrogen, and low hydrogen regions leading to an unbounded growth of
acetaldehyde. We also see in regions with v3 > v2 a growth in COc and CO2, and in
regions with v2 > v3 a growth in formate. These predictions are generally in line with
those of our ODE model, in particular the switch between CO2 growth and formate
growth.

For the straight line model examined in Section 6.2, we noted that internal con-
centrations were largely irrelevant to the steady-state behaviour of the dFBA model,
however, in our non-steady-state simulations we find the internal concentrations to be
relevant and similar to those observed in the ODEs. It should be noted that this net-
work has already been simplified by reducing long chains of reactions down into single
reactions, as suggested at the end of Section 6.2.

6.6 Conclusions

Dynamic flux balance analysis is a powerful tool for examining a metabolic network
in non-steady-states. We have been able to model systems tending to both steady-
state and linear growth states. However, we were not able to use it to model systems
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Figure 6.23: Plot of the concentrations of metabolites for the model given in
equation (6.5.13), with Hin = 1 and v3 > v2.

with periodic oscillations, and we were unable to find multiple steady-states using the
same objective function after addressing the issue of multiple optimal solutions. The
technique has found use in modelling batch cultures, as seen in studies of E. coli by
Hanly and Henson [30], and S. cerevisiae by Hjersted and Henson [31], in which dFBA
was used to optimise fermentation in batch cultures. In particular, they were able to
find medium conditions that optimised these processes. The technique is still relevant
to continuous cultures. In Section 6.5, we showed the ability of dFBA to predict the
linear growth states of a metabolic network with constant inputs. The results were
comparable to those observed from our previous ODE model for the same system. The
results obtained from dFBA are notable, because they have less restrictions on the flux
values than our original ODE models. It may be that the growth states seen in our
dFBA model represent behaviours more generic to the network, whilst those seen from
our ODE model are more specific to that exact set of kinetics. We note that the state
seen in Figure 6.20 would be impossible in our previously seen ODE system, but might
be possible for a different set of kinetics matching the network.

dFBA models are able to predict and model the dynamics of a metabolic network.
However, since they rely on only the stoichiometry of the network, and a small number
of kinetic parameters, it is difficult to quantify exactly how a network is behaving
through them. We are able to see the dynamic flux and concentration profiles, but we
have little insight into the mechanical properties of the reactions. It would be useful
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Figure 6.24: Plot of the concentrations of metabolites for the model given in
equation (6.5.13), with Hin = 1 and no constraint on v3 or v2.
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Figure 6.25: Plot of the concentration of hydrogen against time given by our
dFBA model (6.5.13), with Hin = 1 and v3 > v2.

if we could produce an ODE model that behaves similarly to the dFBA model, and
use this as an additional tool for analysis. One method that is able to parameterise
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ODE models using experimental data is ensemble modelling. In the next chapter we
look to use ensemble models in order to produce an ODE model that exhibits similar
behaviour to a dFBA model.
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Chapter 7

Ensemble modelling

7.1 Introduction

When modelling metabolism, one of the largest problems we encountered was finding
parameter values. Through flux balance analysis and its extensions, we have attempted
to circumvent this problem by using techniques that treat fluxes as variables in a linear
system that do not rely on additional parameters. In Chapters 2 and 6 we found some
success in analysing a metabolic network with these techniques, but we have struggled
to observe key behaviours, such as multiple steady-states. If we wish to reliably find
such behaviours, we are forced to return to non-linear ODE models. In order to do this
we must have some method to choose parameters for our model. Experimental data
to estimate these parameters can be difficult to generate, so we try and find methods
that use as little data as possible to achieve the most useful possible results. One such
technique is known as Ensemble modelling.

Ensemble modelling, as set out by Tran et al. [72] seeks to construct a set (or
ensemble) of ODE models that all tend towards the same steady-state. Then, by
perturbing the parameters in the model and performing a sensitivity analysis, the
models are compared to existing data in order to find the ones that match. In this
way, the ensemble of models is screened and filtered to find a smaller set of models that
match the data, and hopefully, down to a single model that matches the data.

7.1.1 Building an ensemble

Building this ensemble of models involves two key steps. The first is deciding on a
structure for our model, the second is parameterising that model. In its original form,
ensemble modelling seeks to expand enzymatic reactions into their elementary steps,
and model each step as a reversible reaction using the law of mass action. For example,
the reaction

A+ E ↔ B + E, (7.1.1)

where A and B are metabolites, and E is an enzyme will often be expanded into the
set of three reactions

A+ E
k1↔ AE

k2↔ BE
k3↔ B + E. (7.1.2)

Here, A attaches to the enzyme E, is changed into B whilst still attached, and then
separates. All of these separate steps are considered reversible. This is not the only
possible set of steps for a reaction, but it is a commonly seen one. We assume a
fixed amount of enzyme E, TE , which is considered the sum of the free enzyme and the
complexes, i.e. TE = E+AE+BE. The proportion of enzyme in each state is expressed
by eF = E/TE , eA = AE/TE , and eB = BE/TE . Then we have a conservation law,
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eF + eA + eB = 1. We use these proportions as variables in our ODE models, along
with our metabolite concentrations cA and cB respectively, and form a model of five
equations for the reaction described in equation (7.1.2),

dcA
dt

= vin − k1cAeFTE + k−1eATE , (7.1.3)

dcB
dt

= k3eBTE − k−3cBeFTE − vout, (7.1.4)

deF
dt

= −k1cAeFTE + k−1eATE + k3eBTE − k−3cBeFTE , (7.1.5)

deA
dt

= k1cAeFTE − k−1eATE − k2eATE + k−2eBTE , (7.1.6)

deB
dt

= k2eATE − k−2eBTE − k3eBTE + k−3cBeFTE , (7.1.7)

with some initial conditions

c(0) = c0, e(0) = e0, (7.1.8)

where c = (cA, cB) and e = (eF , eA, eB).
Here, vin and vout represent some uptake and output fluxes for A and B respectively.

kn are the rate coefficients for reactions in the forward direction, assumed to be left
to right, whilst k−n are the rate coefficients for reactions in the backwards direction.
The enzyme proportions have been scaled by a reference value for the total amount
of enzyme in the system, and are therefore dimensionless. Assuming we have such
data, we also scale the concentrations by some reference state, Aref and Bref , so that
these variables also become dimensionless. This reference state is generally taken to be
the steady-state the ODE tends to, so that in steady-state, the scaled concentrations,
cA/Aref and cB/Bref both equal one.

Now that we have formulated a model for our reaction, we must now parameterise
it. The key here is we wish to choose parameters that lead the model to tend to some
specific steady-state. For this method, we specifically wish to have the reactions rates
(fluxes) tending to some specific steady-state, the value of which we have determined
from experimental data, or alternatively, using FBA. It is unlikely we would have
specific flux data for the forward and backwards reactions (indeed, if we did, this
method would be unnecessary), rather we would have some value for the net flux
across the reaction, vnet. This net flux would be equal to the difference between the
forward and backwards reactions, i.e. vnet = vn − v−n, where vn is the flux in the
forward direction, and v−n is the flux in the backwards direction. Since each reaction
is a chain of steps in sequence, in steady-state the net flux across each step is equal to
the net flux across the entire reaction, due to mass balance. Then, in steady-state, we
have

k1cAeF − k−1eA = Vnet, (7.1.9)

k2eA − k−2eB = Vnet, (7.1.10)

k3eB − k−3cBeF = Vnet. (7.1.11)

Then for a given set of steady-state concentrations, cn, and enzyme proportions,
en, we generate sets of parameters, kn and k−n that satisfy these equations, and lead to
models that are included in our ensemble. We also have the condition on our enzyme
proportions, eA + eB + eF = 1, so we must choose proportions that match these condi-
tions. Finally, we generate parameters, kn to satisfy the conditions (7.1.9)–(7.1.11). To
multiple sets of kn that lead to the same steady-state, we use the idea of reversibilities.
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The reversibility of a reaction is the ratio of the fluxes in the forward and backwards
directions. Explicitly, the reversibility, Rv is defined as

Rv =

{
vF
vB

if vF < vB
vB
vF

if vB ≤ vF .
(7.1.12)

Since the flux in the dominant direction is always the denominator, the reversibility
takes values between zero (in the case the reaction is completely irreversible), and one
(in the case that the reaction happens at equal rates in each direction). In the case of
Rv = 1, then the net flux across the reaction is equal to zero. In general, we ignore the
possibility of Rv being equal to one. We select a range of reversibilities for each step
in the reaction, and then use those to generate values for the forwards and backwards
fluxes. For a given Rv and positive vnet, we find values for the forward and backwards
fluxes, vF and vB,

vF =
vnet

1−Rv
, vB =

vnetRv

1−Rv
. (7.1.13)

in the case of a negative vnet, we instead have

vF =
−vnetRv

1−Rv
, vB =

−vnet
1−Rv

. (7.1.14)

By generating forward and backwards fluxes for a range of reversibilities, we are then
able to generate rate parameters, kn and k−n. With metabolite concentrations cA in
steady-state equal to one, and for a given steady-state set of enzyme proportions, en,
we calculate our rate coefficients. For example, for the first reaction in (7.1.2), we find
that

k1 =
vF
eF

, k−1 =
vB
eA

. (7.1.15)

We determine the rest of the parameters in the same way. By repeating this step for
different reversibility values, we form multiple models that tend to the same steady-
state, with different parameters and steady-state enzyme proportions. This set of
models is our ensemble.

7.1.2 Generating perturbation data

Now that we have an ensemble of models, we want to narrow them down to find a
subset which react to perturbations in the same way as our experimental data. The
data we have to compare to is flux values from mutant strains, which either over-
or under-express a particular enzyme. We generate similar data for our ensemble by
perturbing the models in such a way as to represent this over- or under-expression of a
given enzyme. To do this, we introduce new parameters into our ensemble of models.
For each enzyme, we include an ep parameter, representing the new total concentration
of enzyme relative to the previous concentration. Specifically, if TE represents the
original total concentration of enzyme, and PE represents the concentration of enzyme
in the perturbed state, we have

ep =
PE

TE
. (7.1.16)

For an over-expressed state, this parameter is greater than one, and for an under-
expressed state it is less than one. We multiply any terms in our ODEs that rely on
this enzyme by our new parameter eP . For example, equation 7.1.3 would become

dcA
dt

= vin − k1cAeF eP + k−1eAeP . (7.1.17)
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We see that the vin term, which is assumed to not rely on the enzyme E remains the
same, however, the k1 and k−1 terms are multiplied by the parameter, pe, changing their
values. In this way, we are able to represent a perturbed level of flux in the reaction,
but our enzyme proportion variables, eA, eB, and eF remain the same, and still adhere
to the conservation relationship,

∑
n en = 1. We construct these perturbations for each

flux in the network, and each model in the ensemble. Then, using the steady-state from
the unperturbed model (with cA = cB = 1, and enzyme proportions as prescribed) as
our initial condition, we simulate these perturbed ODEs until the concentrations reach
a new steady-state. The flux values in these new steady-states should be different for
each model in the ensemble, allowing us to compare these new states to the experimental
data from mutant strains to see which models in our ensemble match. Generally, this
perturbation data is given relative to the original flux. For a net flux in the system vn,
and a given enzyme Em, let the relative change in the flux be given as pn,m, where

pn,m =
vn,m,perturbed

vn,m,reference
(7.1.18)

where vn,m,perturbed is the net flux after perturbation, and vn,m,reference is the net flux
before the perturbation, used to generate our ensemble model parameters initially.

7.1.3 Screening the ensemble for matches

Having generated the perturbation data, we now have to decide what models count as
matching. With experimental data from a real organism, it is highly unlikely that we
have a model that matches the data perfectly, but we still wish to narrow down our
number of models to those that match closely enough. To do this, we score our data
found by perturbing the enzyme levels. Our perturbation data gives the relative value
of each net flux after a specific enzyme level has been perturbed, which we have called
pn,m, where n tells us which reaction in the network we are looking at, and m tells us
which enzyme was perturbed. We then score them by how large this change is, and in
which direction. Tran et al. [72] used five levels when scoring this data,

Scoren,m =



2, if 1.2 < pn,m,

1, if 1.05 < pn,m ≤ 1.2,

0, if 0.95 ≤ pn,m ≤ 1.05,

−1, if 0.8 ≤ pn,m < 0.95,

−2, if pn,m < 0.8,

(7.1.19)

though this is just one possible choice. It is possible to widen or shrink these categories,
or include more or less of them, as would be more relevant to specific data. In the case
of relatively small fluxes, for example, it may be wise to choose larger category sizes,
as a large pn,m may still only relate to a very small change in flux if vn,m,reference is
small in equation (7.1.18). We score the experimental data we wish to find a model
to match in the same way. Then it is a simple matter of comparing the scores of the
experimental data with that from the ensemble of models to pick out those that match.
In this way, we reduce the large ensemble down to a much smaller set of possible models.
Specifically we hope to obtain a single model from this method, though often we may
find ourselves with a small set of models, as in the case of Khazaei et al. [35] who used
ensemble modelling to attempt to derive a model for a cancer cell. They were able to
reduce their ensemble to a set of four models, using perturbation data for only four
enzymes. They found high variation in the some parameters in their four remaining
models, suggesting that with more data, some of these models could further be screened
out.
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Now that we have laid out the steps for ensemble modelling, we start applying it to
metabolic networks, including the C. autoethanogenum network examined in previous
chapters.

7.2 A single step reaction

Let us first consider a single metabolic reaction. We consider the simplest possible
reaction, which is a reaction in which A is transformed to B in a single step. We also
have an uptake reaction for A and an output reaction for B. The enzyme catalysing
this reaction is E. The network for this single reactions is

QA→ A ; A+ E
k1←→ B + E ; B

QB→

We form the ODEs to represent this reaction,

dcA
dt

= vin − k1cAeF + k−1cBeF , (7.2.1)

dcB
dt

= k1cAeF − k−1cBeF − vout, (7.2.2)

deF
dt

= −k1cAeF + k1cAeF + k−1cBeF − k−1cBeF , (7.2.3)

with initial conditions cA(0) = cA(0), cB(0) = cB(0) and eF (0) = eF (0). cA and cB are
the concentrations of A and B respectively, and eF is the concentrations of free enzyme.
Since E is used and produced in both forward and backward reactions, and is never
stored in any complexes, its concentration remains constant in time, and does not need
an ODE. In fact, since E is a constant, we combine it with the parameters, k1 and k−1,
giving us the simpler model

dcA
dt

= vin − kF cA + kBcB, (7.2.4)

dcB
dt

= kF cA − kBcB − vout, (7.2.5)

(7.2.6)

with initial conditions cA(0) = cA(0) and cB(0) = cB(0) Here, kF = k1eF and kB =
k−1eF . Finally, let us specify vin and vout. We let the uptake flux vin be proportional to
the internal concentration of A, cA, and some constant external concentration A∗, and
QB be proportional to cB, so that QA = kin(A

∗−cA) = A∗∗−kincA where A∗∗ = kinA
∗,

and QB = koutcB. We consider these reactions to be known to be irreversible, and do
not generate ensembles that vary the reversibilities of these two reactions so that we
are only considering the backwards and forwards k1 reactions in our ensemble. Then
the general form of our model is

dcA
dt

= A∗∗ − kincA − kF cA + kBcB, (7.2.7)

dcB
dt

= kF cA − kBcB − koutcB, (7.2.8)

with initial conditions cA(0) = cA(0) and cB(0) = cB(0) For simplicity, let us set all
parameters to one, and take initial conditions cA(0) = cB(0) = 0. A simulation for this
is shown in Figure 7.1. Our steady-state concentrations are cssA = 2/3 and cssB = 1/3.
The net flux across each reaction is equal to 1/3. It is obvious to see that the net flux
across all reactions must be the same in steady-state, due to mass balance.
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Figure 7.1: Simulation of the ODE model given in equations (7.2.7)–(7.2.8)
with all parameters set to equal one and initial concentrations equal to zero.

Reversibility kF kB
0 0.3333 0
0.1 0.3704 0.0370
0.2 0.4167 0.0833
0.3 0.4762 0.1429
0.4 0.5556 0.2222
0.5 0.6667 0.3333
0.6 0.8333 0.5
0.7 1.1111 0.7778
0.8 1.6667 1.3333
0.9 3.3333 3

Table 7.1: Parameters generated by equation (7.1.13) for the ensemble of models
described by equations (7.2.7)–(7.2.8). We see that for each kB/kF is equal to
the reversibility, and kF − kB is equal to the reference net flux, in this case, 1/3.

Let us consider a range of reversibilities for the k1 reaction. We form an ensemble
consisting of 10 models, in which we consider reversibilities between 0 and 0.9 in incre-
ments of 0.1. Each model has the same values for kin and kout, where kin = cssA = 2/3
and kout = cssB = 1/3, so that the steady-state is attained when cA = 1 and cB = 1. We
then use equations (7.1.13) to generate kF and kB, which is also scaled by the relevant
cssn , for our range of reversibilities. These parameters are shown in Table 7.1. Every
model with these parameters has the same steady-state, and in each case the net flux
across all reactions is 1/3.

We now generate the perturbation data from our models. For now, we only perturb
the k1 reaction. Since we have lumped the (constant) enzyme concentration in with
the rate coefficients kF and kB, in order to simulate a change in the enzyme levels, we
multiply both kF and kB by the same factor. We simulate an increase in enzyme levels
by doubling the rate coefficients, to simulate twice as much available enzyme. After
doubling kF and kB, we simulate the ODEs for a time period long enough for the model
to tend to a new steady-state. We then find the net flux values for this new steady-state
and divide through by the original flux values, to find the relative change pn, given by
equation (7.1.18), in a given flux vn. In particular, we find relative change for v1 using

the equation p1 = (kF cA−kBcB)
1/3 , where kF and kB are the perturbed parameters, and

cA and cB are the new steady-state concentrations. Table 7.2 gives the relative change
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Reversibility Relative change, p
0 1.5
0.1 1.4286
0.2 1.3636
0.3 1.3043
0.4 1.25
0.5 1.2
0.6 1.1538
0.7 1.1111
0.8 1.0714
0.9 1.0345

Table 7.2: Perturbation data for the single step reaction, generated by using
the parameters in 7.1, and doubling them to simulate an increase in enzyme
concentration. The ODE system seen in equations (7.2.7)–(7.2.8) is then run to
find a new steady-state, and the relative change in flux for v1 is found.

in net flux for the k1 reaction for each model in our ensemble.

We apply the same perturbation to our original ODE model, equations (7.2.7)–
(7.2.8), which has parameters set to equal one. We double kF and kB, so that we have
the parameter set A∗∗ = 1, kin = 1, kF = 2, kB = 2, and kout = 1. A simulation
with these parameters, and initial conditions set to equal zero is shown in Figure 7.2.
We see that the new steady-state concentrations are cA = 0.6 and cB = 0.4. The new
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Figure 7.2: Simulation of the ODE model given in equations (7.2.7)–(7.2.8)
after perturbation, so that A∗∗ = kin = kout = 1, and kF = kB = 2 with initial
concentrations set to equal zero.

relative change across the k1 reaction is p1 = 2cA − 2cB = 0.4. Dividing through by
the original net flux of 1/3 gives us a relative change of 1.2. We see immediately from
Table 7.2 that this corresponds to a reversibility of 0.5. We could rank our data as
described in Section 7.1.3, but since we have already found an exact match for the
data, this is unnecessary. From Table 7.1, we see the scaled parameters that relate
to this reversibility are kF = 0.6667 and kB = 0.3333. To find the true unscaled
parameters, we divide through by the original steady-state concentrations for cssA = 2/3
and cssB = 1/3, so that kF = 1 and kB = 1 as originally prescribed. Using ensemble
modelling, we have been able to recover the original parameters used in the model for
a single step reaction.
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7.3 Matching a full metabolic model

7.3.1 A fully irreversible model

Now we turn our attention to a full metabolic network. For simplicity we continue to
assume all reactions are single-step, meaning that free enzyme concentrations continue
to be constant, and therefore the enzyme concentrations are incorporated into rate
coefficients. This conveniently allows us to refer directly to the ODE model for C.
autoethanogenum described in Chapter 4. First we examine the network in the case
that all reactions are irreversible, and later we add additional reactions to our ODE
model to simulate reversibility.

The ODE model we use remains unchanged from Chapter 4, consisting of ten equa-
tions, one for each important concentration, using the law of mass action to model
reaction rates with constant input values for carbon monoxide and hydrogen. The
model is

dcCO

dt
= QCO − k1cCO, (7.3.1)

dcCO2

dt
= k1cCO − k2cCO2cH

2 − k3cCO2cH
2

− k5cCO2cACAcH
2 + k7cPy

2 + k18cAlcH
2, (7.3.2)

dcCOc

dt
= k3cCO2cH

2 − k4cCOccF cH
4, (7.3.3)

dcF
dt

= k2cCO2cH
2 − k4cCOccF cH

4 − k6cF cACA, (7.3.4)

dcACA

dt
= k4cCOccF cH

4 − k5cCO2cACAcH
2 − k6cF cACA

− k8cACAcH
2 − k9cACA − k15cACAcPy, (7.3.5)

dcPy

dt
= k5cCO2cACAcH

2 + k6cF cACA − 2k7cPy
2 − k15cACAcPy − k16cPycH

2, (7.3.6)

dcAl

dt
= k7cPy

2 − k17cAl − k18cAlcH
2, (7.3.7)

dcAd

dt
= k8cACAcH

2 + k10cA − k19cAdcH
2, (7.3.8)

dcA
dt

= k9cACA − k10cA − k20cA, (7.3.9)

dcH
dt

= QH + 2k1cCO − 2k2cCO2cH
2 − 2k3cCO2cH

2

− 4k4cCOccF cH
4 − 2k5cCO2cACAcH

2 − 2k8cACAcH
2 − 2k16cPycH

2

− 2k18cAlcH
2 − 2k19cAdcH

2. (7.3.10)

with initial conditions c(0) = c0. We set all parameters to equal one, except QH = 3,
and k3 = 0.8. This is so that we know the ODE model tends to a steady-state, which
is required for ensemble modelling. A simulation of the model with these parameters
is shown in Figure 7.3. From this simulation we are able to draw the two pieces of
information we need, the steady-state concentrations, given in Table 7.3, and the flux
values calculated from these concentrations, given in Table 7.4.

We generate the set of ODE models that tend to this steady-state. We do not have
any thermodynamic data to bound the reversibilities of our reactions, so instead we
choose a spread of reversibilities for each reversible reaction. We choose four different
levels for each reaction, 0, 0.25, 0.5 and 0.75 to cover a wide range of possibilities, from
completely irreversible (R = 0), to highly reversible (R = 0.75). We do not examine
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Figure 7.3: Simulation of the ODE model given in equations (7.3.1)–(7.3.10)
with all parameters set to equal one, except k3 = 0.8 and QH = 3 and initial
concentrations of zero.

reversibilities of R = 1, as this would indicate a completely reversible reaction, which
has a net flux of zero, meaning the reaction has no effect at steady-state. If we con-
sidered every reaction to be potentially reversible, we would have 418 different models,
which is of the order of 109 models. This would be prohibitively expensive to compute,
so instead we assume some of the reactions in the model are always irreversible. Since
the input reactions QH and QCO are constants in the model, we consider these two to
be irreversible. We also consider all output reactions to be irreversible. This limits us
to only considering ten reactions. This still gives us over 106 models to consider, so
we would like to reduce this further still. The reactions producing carbon monoxide
and formate from carbon dioxide often dictate whether or not the model is able to
achieve steady-state. It is sensible to consider these two reactions as irreversible, as if
we change the rate parameters for those equations k2 and k3, we may find the ODE

cCO cCO2 cCOc cF cACA cPy cAl cAd cA cH
1 0.1286 0.0127 1.9231 0.0561 0.032 0.0002 0.0628 0.0281 2.0488

Table 7.3: Steady-state concentrations for the simulation seen in Figure 7.3.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
1 0.5398 0.4318 0.4318 0.0303 0.1080 0.0010 0.2356 0.0561 0.0281

QCO QH outbio outlac outval outbut outeth outace
1 3 0.0018 0.1344 0.0002 0.0008 0.2637 0.0281

Table 7.4: Steady-state fluxes calculated from the concentrations from Table
7.3.

no longer tending to steady-state, which limits the effectiveness of ensemble modelling.
Similarly, if we were to add a backwards reaction for the reaction in which carbon
monoxide is changed into carbon dioxide (k1), it would take the same form as the for-
ward reactions for k2 and k3, which could lead to the same problems with the models
not tending to steady-state. We therefore consider all three of these reactions to also
be irreversible. Then we have only seven reactions remaining, represented by the rate
coefficients k4–k10, which we vary the reversibilities of, leading to a large, but much
more manageable, ensemble consisting of 47 models. Thus we write the general form
of a model in our ensemble

dcCO

dt
= QCO − k1cCO, (7.3.11)

dcCO2

dt
= k1cCO − k2cCO2cH

2 − k3cCO2cH
2 − k5cCO2cACAcH

2 + k−5cPy

+ k7cPy
2 − k−7cCO2cAl + k18cAlcH

2, (7.3.12)

dcCOc

dt
= k3cCO2cH

2 − k4cCOccF cH
4 + k−4cACA, (7.3.13)

dcF
dt

= k2cCO2cH
2 − k4cCOccF cH

4 + k−4cACA − k6cF cACA + k−6cPy, (7.3.14)

dcACA

dt
= k4cCOccF cH

4 − k−4cACA − k5cCO2cACAcH
2 + k−5cPy

− k6cF cACA + k−6cPy − k8cACAcH
2 + k−8cAd

− k9cACA + k−9cA − k15cACAcPy, (7.3.15)

dcPy

dt
= k5cCO2cACAcH

2 − k−5cPy + k6cF cACA − k−6cPy − 2k7cPy
2

+ 2k−7cCO2cAl − k15cACAcPy − k16cPycH
2, (7.3.16)

dcAl

dt
= k7cPy

2 − k−7cCO2cAl − k17cAl − k18cAlcH
2, (7.3.17)

dcAd

dt
= k8cACAcH

2 − k−8cAd + k10cA − k−10cAd − k19cAdcH
2, (7.3.18)

dcA
dt

= k9cACA − k−9cA − k10cA + k−10cAd − k20cA, (7.3.19)

dcH
dt

= QH + 2k1cCO − 2k2cCO2cH
2 − 2k3cCO2cH

2 − 4k4cCOccF cH
4

+ 4k−4cACA − 2k5cCO2cACAcH
2 + 2k−5cPy − 2k8cACAcH

2

+ 2k−8cAd − 2k16cPycH
2 − 2k18cAlcH

2 − 2k19cAdcH
2. (7.3.20)

with the initial conditions c(0) = c0 Here, the kn represent the forward rate coefficients,
and the k−n represent the backwards rate coefficients. These are generated in pairs
using the reversibility values. The kn rate coefficients without a matching k−n are
the rate coefficients for irreversible reactions. These are generated from the flux and
concentration data provided from our original ODE models steady-state. If all the

202



k1 k2 k3 k4 k5 k6 k7 k8 k9 k10
1 0.5398 0.4318 0.4318 0.0303 0.1080 0.0010 0.2356 0.0561 0.0281

QCO QH k15 k16 k17 k18 k19 k20
1 3 0.0018 0.1344 0.0002 0.0008 0.2637 0.0281

Table 7.5: Parameter values for the ODEs (7.3.11)–(7.3.20) in our ensemble in
which all reactions are fully irreversible.

reversibilities are zero (k−n = 0 ∀n) the model reduces to (7.3.1)–(7.3.10), which we
use to generate the data. Therefore, there is at least one model in our ensemble that
matches the data we use to screen the ensembles. We wish to see if only this model is
found, or if there are others that match the data.

Now that we have our ensemble of models, we generate the perturbation data. As in
previous examples, this is done by perturbing enzyme levels in the ensemble of ODEs.
As in our single step reaction in Section 7.2, we consider the enzyme concentrations to
be combined with the rate coefficients, so by increasing the forward and backward rate
coefficients, we simulate an increase in enzyme. For this example, we simulate doubling
the amount of free enzyme for each reaction in turn, by doubling the kn parameter for
that reaction and, for the reversible reactions, doubling the k−n at the same time.

Compared to our single reaction from Section 7.2, this C. autoethanogenum model
has many more ensembles and reactions, so we score the perturbation data, data, pn,m,
as described in Section 7.1.3. We use the scoring described in equation (7.1.19) for this.
Then all of our scored data, Scoren,m, take values between −2 and 2, describing how
large of a change they have undergone.

Since the model we aim to match is the case in which all reactions are irreversible,
we have already generated the perturbation data for our ODE model as part of the
ensemble. We extract the pn,m for this model, convert it to a Scoren,m as described
in equations (7.1.19) and compare it to the data for all other models in the ensemble
to see if any others match. Since we have the pn,m values for all fluxes, n, we include
them all in the comparison. In this case, with this full data set, there are no other
models in our ensemble that match the behaviour of the irreversible case. This shows
the scored perturbation data, Scoren,m, allows us to extract a single model out of many
in the ensemble that tend to the same steady-state. The forward parameters of the
matched model in our ensemble are given in Table 7.5, whilst all backwards parameters
are equal to zero. We note that these parameters from Table 7.5 do not match those
used in our initial ODE model, but they are equal to the flux values given in Table
7.4. By dividing these values by the relevant concentrations from Table 7.3, we obtain
exactly the parameters used in our ODE model. For example, by dividing k8 k8 by
cACAcH

2, we recover the original parameters used, namely k8 = 1. Doing this to all
parameters from Table 7.5) we obtain exactly the original used in our ODE model,
with all equal to one, except k3 = 0.8, and QH = 3.

With perturbation data for all fluxes, we have been able to find exactly the parame-
ters used in our ODE model. However, what if we cannot obtain data for all the fluxes?
In some cases, we may not have experimental data for all of our internal fluxes, as these
often prove difficult to find. In these cases, it may be that we have data for certain
fluxes, such as the outputs. Interestingly, in the case where we screen using only the
perturbation data for the output fluxes, i.e. using pn,m, for n = 15–20, we are unable
to narrow down the ensemble to a single model. Specifically, we reduce the ensemble
down to a set of sixteen models. Every model in this set has the same reversibilities for
v5, v7, v8, v9, and v10, however, for v4 and v6, all reversibilities remain in the set. If we
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cCO cCO2 cCOc cF cACA cPy cAl cAd cA cH
1 0.1215 0.0138 1.5909 0.0674 0.0316 0.0002 0.0591 0.0225 2.1011

Table 7.6: Steady-state concentrations for the ODE model with reversible reac-
tions, seen in 7.4.

only have the perturbation data for the reactions that output a product, we are, in this
case, unable to find any bounds on the reversibilities for v4 and v6. It is worth noting
from this, that when using this method, it is entirely possible that it is not possible
to narrow down the ensemble to a single model. In future, if we were to only use the
perturbation data for the outputs on this model, it would not be worth generating
models for each level of reversibility for k4 and k6, as we are not able to determine their
reversibility this way. By doing this, we could reduce the number of models we have to
test by a factor of sixteen, which would save us computation time, though we should
remain aware that these reactions could still take any level of reversibility, and if we
have additional perturbation data, we should still include them, as it may be possible to
eliminate some of these models from the ensemble. For the rest of the chapter, we only
consider the perturbation data for the outputs, and reduce our ensemble of models, so
that we only consider the reversibilities of v5, v7, v8, v9, and v10.

We have now examined a case where all reactions are irreversible, however we should
also examine a case when some of the reactions in our ODE are reversible. It would also
be useful to consider a case when the exact model we use is not in the ensemble. If the
true model we are trying to match is not also contained exactly within the ensemble,
there may not be a model that matches our perturbation data exactly, so we should
find some way of determining the closest fit model.

7.3.2 A model with reversible reactions

The general form of our ensemble models, given in equations (7.3.11)–(7.3.20) is useful
for this purpose, as it already has backwards reactions included. By choosing a set of
parameters for this network, including some non-zero backwards parameters, we form a
new network with some reversible reactions to match our ensemble data to. We keep the
same rate coefficients as in the completely irreversible case, with all forward parameters
equal to one, except k3 = 0.8, and QH = 3. Choosing the k8 and k9 reactions as our
reversible reactions, we set the backwards rate coefficients k−8 and k−9 to equal one,
with all other k−n set to equal zero. This model is our reference model. We simulate this
reference model with the described parameters to find a new steady-state to construct
an ensemble of models from. The results of this simulation are seen in Figure 7.4. We
again use the concentrations of metabolites in these steady-states, seen in Table 7.6, to
generate the steady-state fluxes. Since we use the net flux across a reaction for ensemble
modelling, we note that v8 = k8cACAcH

2 − k−8cAd and v9 = k9cACA − k−9cA. The
reversibility of a reaction is calculated from the values of these forward and backwards
fluxes too, and are worth noting now for later comparison. Most reactions are still
irreversible and hence have a reversibility of zero. The reversibilities of v8 and v9 are

Rv8 =
k−8cAd

k8cACAcH2
= 0.1986, Rv9 =

k−9cA
k9cACA

= 0.3333. (7.3.21)

We note that by using the same four levels of reversibility (0, 0.25, 0.5, and 0.75) to
generate our ensemble, there is not an exact match in the set of models. This allows
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Figure 7.4: Simulation of the ODE model (7.3.11)–(7.3.20) with reversible re-
actions k8 and k9. All forward parameters are set to equal one, except k3 = 0.8
and QH = 3. We also have non-zero backwards parameters, k−8 = 1 and k−9 = 1.

us to see if the method is able to find close models that match the perturbation data,
or if there is not a model that matches exactly.

As usual, we generate our ensemble of models, and then perform a sensitivity anal-
ysis by perturbing the parameters in the model one reaction at a time to generate our
pn,m values. We generate the perturbation data, pn,m for our reference model, convert
them to Scoren,m values, and compare these results with those from our ensembles to
find a model from the ensemble that matches. In this instance we find that no model in
our ensemble is able to match the scored perturbation data from our reference model
exactly. There are two possibilities for why an exact match can’t be found. The first is
the structure we are using to generate our ensemble of models is incorrect. Since our
reference model follows this structure exactly, we know this is not the case here. The
other possibility is that we simply don’t have a model in the ensemble close enough to
match this scored perturbation data, which is true in this case. This could be fixed
by generating more models in the ensemble for different levels of reversibility. This is
not desirable, as we already have a large ensemble to examine. Rather than generating
many more models, most of which we already know do not match, we should look in
our current ensemble the find the “closest” fitting models. From these models we seek
to gain some understanding of approximate levels of reversibility for the reactions, and
use this information to generate a more targeted ensemble.

205



We must now decide on what constitutes a “close” fitting model. There are a few
options here. First we could consider the raw perturbation data, pn,m. We find the
absolute differences between the perturbation data for each model in the ensemble, and
the perturbation data from the reference model. Taking p ref

n,m to be the perturbation
data for our reference model, and p x

n,m to be the perturbation data for the xth model
in the ensemble, we let

E(1)(x) =
∑
n

∑
m

|p x
n,m − p ref

n,m|, (7.3.22)

and then choose the model x that minimises E(1)(x). For our data, this gives a single
model where this minimum E(x) is equal to 1.1014. This model has reversibilities of
0.25 for both v8 and v9, with all other reversibilities equal to zero. We see by comparing
to the true reversibilities seen in equation (7.3.21) that this approximate model from
the ensemble is close. Indeed, in terms of absolute difference, these are the closest
reversibilities that could be chosen from our ensemble.

Rather than using the pure perturbation data, we could instead use the scored data,
Scoren,m we have been using to eliminate models from the ensemble. We calculate a
similar sum to that seen in equation (7.3.22), only using Scoren,m rather than pn,m.
Then we generate the sum for each model,

E(2)(x) =
∑
n

∑
m

|Score x
n,m − Score ref

n,m|, (7.3.23)

and select the model x that minimises E(2)(x). For our data, we are able to find a
model where E(x) = 1. The minimum value being one means there is a model in the
ensemble that only differs from the reference data for a single metabolite in a single
perturbation, and this difference is only at a level of one. Interestingly, the model x
that minimises E(2)(x) is not the same model that minimises E(1)(x). The model that
minimises E(2)(x) has reversibilities of zero for v5 and v7, with reversibilities of 0.25 for
v8, v9, and v10. This model is further away from the reference model, as it sets v10 to be
reversible, whereas in the reference model it is not. The model that minimises the raw
data has a sum of two when looking at the levelled data. It has a second perturbation
where it differs greatly enough from the reference data to take a different level. The
difference in results suggests that whilst the model that minimises E(1)(x) may vary
less from the reference data overall, it has more large Scoren,m values that cause the
ensemble modelling process to screen it out.

This process has found two potential closest models, which are similar, differing in
only a single reaction. We could repeat the entire ensemble modelling process using
a more targeted set of reversibilities, rather than some that evenly span the entire
possible space between zero and one. In doing so we would hope to find a model, or
set of models, that match the data exactly. If we were to then still find no model that
matched exactly, we could again find a closest fitting model, and create a new set of
reversibilities around that model, and repeat the process more times.

7.4 Matching a dFBA model

It is a trivial matter to match an ODE model which we know has the same structure
as those generated during our ensemble modelling, as we are always able to find a
model to match by refining our choice of reversibilities. In reality, however, our data
will not come from such clear sources. It is worth examining data from a source which
does not have a fixed ODE structure. In Chapter 6 we examined dynamic flux balance
analysis (dFBA) as a technique for modelling dynamic behaviour in metabolic networks.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
1 0.6072 0.4843 0.4843 0.0807 0.1229 0.0930 0.0874 0.1933 0.1876

QCO QH outbio outlac outval outbut outeth outace
1 3.2 0.0000 0.0176 0.0138 0.0792 0.2750 0.0057

Table 7.7: Steady-state fluxes for the dFBA model simulated in Figure 7.5.

Whilst this technique uses a set of ODEs for modelling concentrations in a metabolic
network, the ODEs do not follow a fixed mass action structure as seen in our ensemble
modelling. The dFBA model should also produce dynamics that are in some sense
optimal (according to a prescribed objective function), so it would be interesting to
see if we could generate an ODE model from the data that behaves in this optimal
manner. In particular, the model generated from this method could be considered to
behave optimally in the presence of the small perturbations in parameter values used
in the sensitivity analysis that screens the ensemble.

The first step is to run a dFBA simulation to steady-state, and then generate a
set of ODE models that tend towards the same steady-state. To do this, we return to
the dFBA model in Section 6.5. The general dFBA model for the C. autoethanogenum
model is

max
c,v

aTv + bT c such that
dc

dt
= Sv,

QH = Hin,

QCO = COin,

outbio ≤ k15cACAcPy,

outlac ≤ k16cPyc
2
H ,

outval ≤ k17cAl,

outbut ≤ k18cAlc
2
H ,

outeth ≤ k19cAdc
2
H ,

outace ≤ k20cA,

c ≥ 0,

v ≥ 0,

−vdt−max ≤
dv

dt
≤ vdt−max,

c(0) = c0, v(0) = v0. (7.4.1)

Here S is the stoichiometric matrix defined by equations (6.5.1)–(6.5.3), v is the vector
of fluxes, and c is the vector of concentrations. In order for this model to tend to a
steady-state, we must be careful in our choice of parameters. We choose Hin = 3.2,
COin = 1, all kn = 1, and all elements of vdt−max equal to one. We also choose our
objective function to be maximising the production of biomass, i.e. maximising the
flux, outbio. Plots of the concentrations for this simulation are shown in Figure 7.5.
This model also directly gives values for the net fluxes which we need to generate the
parameters for our ensemble of models. The net flux values in this steady-state are
given in Table 7.7 From these flux values we generate the parameters for our ensemble
of ODE models. Since this is the same metabolic network as our ODE models, we
construct the ensemble in the same way. We consider v1, v2, and v3 to be irreversible
reactions, to prevent the system from switching to non-steady-state behaviour. The
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Figure 7.5: Simulation of the dFBA model described in equation (7.4.1). The
objective function for this simulation is maximising biomass production. All kn
parameters are set to equal one, with COin = 1, and Hin = 3, initial concen-
trations equal to zero, and initial fluxes equal to zero except QCO(0) = 1 and
QH(0) = 3 .

output fluxes, outn are fixed to be irreversible by the dFBA model. As in Section 7.3.2,
we only consider the scored perturbation data, Scoren,m for the output fluxes so we are
unable to determine the reversibility of v4 and v6, and do not include reversibilities for
these reactions. By considering the reversibilities of v5, v7, v8, v9, and v10 at four levels,
0, 0.25, 0.5 and 0.75, we generate an ensemble of 45 = 1024 models. We generate the
perturbation data for this ensemble using the same method as usual, but generating
perturbations in the dFBA model is more difficult.

Most fluxes in the dFBA model do not have associated rate parameters. We could
perturb the model by simply increasing the levels of a specific flux, but there is little
to stop the model from simply reducing the flux back to its initial level and eventu-
ally settling to the same steady-state. Indeed, since the dFBA steady-state is optimal
according to its objective function, in most cases it returns to its original state in the
presence of perturbations. In some cases, these perturbations could lead to a different
state, such as the Lotka-Volterra dFBA model examined in Section 6.4, in which per-
turbing the network from its optimal state lead to the extinction state, but in general
we cannot rely on this. It would also not be possible impose useful restrictions on the
perturbed flux, to prevent the model returning to its original state, without also impos-
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Perturbed parameter
Flux k15 k18 k19 k20
outbio 2 0.5775 0.9859 0.9197
outlac 1 0.2333 0.8787 1.1988
outval 1 1.2791 1.0297 0.7684
outbut 1 0.9379 0.9267 1.0121
outeth 1 1.0749 1.0527 0.9844
outace 1 0.9815 0.8743 1.8914

Table 7.8: Perturbation data for the dFBA model, (7.4.1). Output fluxes were
perturbed by doubling the flux and associated parameter, then the dFBA model
was simulated until it reached a new steady-state.

Perturbed parameter
Flux k15 k18 k19 k20
outbio 2 -2 0 -1
outlac 0 -2 -1 1
outval 0 2 0 -2
outbut 0 -1 -1 0
outeth 0 1 1 0
outace 0 0 -1 2

Table 7.9: Perturbation data from Table 7.8 ranked according to equations
(7.1.19)

ing a specific reversibility on it, which we do not wish to do. Instead, we perturb the
parameters for the output fluxes, which are prescribed by the model. These reactions
are assumed to be irreversible. As in Section 7.2, we assume the enzyme concentrations
are combined with the rate coefficient, so we simulate an increase in enzyme levels by
doubling these rate coefficients one at a time. We also double the relevant flux in the
initial condition for dFBA, and run the simulation until it reaches a new steady-state.
The steady-state flux values after perturbation divided by steady-state flux values prior
to perturbation, pn,m for the output fluxes for each perturbed parameter are given in
Table 7.8. Two perturbations out of six (namely k16 and k17) cause the dFBA model to
stop tending to a steady-state, instead moving to a linear growth state, and therefore
cannot be used for screening the ensemble of models. This reduces us to only consider
four perturbations. We note that outlac undergoes a relatively large decrease when k18
is increased, suggesting that we should score our data as described in equation (7.1.19)
so as to not specifically search for models from our ensemble with such a large decrease.
Table 7.9 shows the data after this scoring. Of these 4 sets of ranked perturbation data,
every model in our ensemble matches the set for the increase of k15, 8 models match the
data for k19, and no models exactly match the data for k18 and k20. The reversibilities
of the eight models that match the perturbation data for k19 are shown in Table 7.10.
Since no model matches all our data exactly, we need to find some model that matches
our observed behaviour closest. It would be desirable for it to be one of the models that
matches the data for k19, so we restrict ourselves to choosing one of these models. We
use the two methods described in Section 7.3.2 to find a closest fitting model. First,
we find the model that minimizes the difference in the scored data, Scoren,m, between
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Flux
Model number v5 v7 v8 v9 v10

683 0.5 0.5 0.5 0.5 0.5
747 0.5 0.75 0.5 0.5 0.5
767 0.5 0.75 0.75 0.75 0.5
939 0.75 0.5 0.5 0.5 0.5
942 0.75 0.5 0.5 0.75 0.25
959 0.75 0.5 0.75 0.75 0.5
1003 0.75 0.75 0.5 0.5 0.5
1023 0.75 0.75 0.75 0.75 0.5

Table 7.10: Reversibilities of models from the ensemble that match the pertur-
bation data for k19 seen in Table 7.9

k1 k2 k3 k4 k−4 k5 k−5 k6 k−6 k7
1 0.6072 0.4843 0.4843 0 0.1614 0.0807 0.1229 0 0.3719

k−7 k8 k−8 k9 k−9 k10 k−10 QCO QH k15
0.2789 0.1748 0.0874 0.3866 0.1933 0.3751 0.1876 1 3.2 0.0000

k16 k17 k18 k19 k20
0.0176 0.0138 0.0792 0.2750 0.0057

Table 7.11: Parameter values for the ODEs (7.3.11)–(7.3.20) in our ensemble
in which all reactions are fully irreversible.

its own data and that seen in 7.9. That is, we find the model x that minimises E(2)(x)
as described in equation (7.3.23). There are five models that minimize this difference,
models 747, 767, 959, 1003, and 1023. These models all have the reversibility for v10
equal to 0.5, and all other reversibilities are either 0.5 or 0.75. We could use this as a
base to construct a more targeted ensemble of models. It seems that in order to match
the data for dFBA, we must have high reversibilities for these reactions. We also find
the model that minimises E(1)(x) as described in equation (7.3.22). In this case, the
model that minimises E(1)(x) is model 747. This model was also included in the set
that minimises E(2)(x). This suggests that the best model to pick would be model 747,
and the parameters for this model are given in Table 7.11.

7.5 Conclusions

We have been able to use ensemble modelling to match data from both reference ODE
models and dFBA models with some success. In the case of the ODEs, we successfully
reduced an ensemble of 47 = 16384 models to a single model that matched the data
in the case that the model was exactly contained in the ensemble. We did, however,
find that when the model is not exactly contained in the ensemble, there is the possi-
bility of no model matching the reference ODE exactly. In this case, we had to find
another method to find the closest matching model. We did this by selecting the model
whose perturbation data had the minimal difference from the perturbation data of the
reference model.

When using ensemble modelling to try and match data from the dFBA model, we
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reduced a set of 45 = 1024 models to eight models that matched one set of perturbation
data. Unfortunately, we again found that no model in the ensemble matched all of the
perturbation data we generated. We turned to finding the model that minimised the
difference in overall perturbation data again. This technique has also been used by
Khodayari et al. [36], who formalised a method for finding the model that minimised
the difference from the reference data. By adding one set of data at a time, and solving
a minimisation at each step, they were able to reduce a large ensemble into a single
closest fitting model. The found model was then validated by testing against a final
set of mutant data, and it was found that 74% of fluxes in the closest fitting model
were within experimental ranges, with the remaining 26% being within three standard
deviations.

For our models, we have only simulated reaction rates using first order kinetics.
This method has benefits of allowing us consider enzyme levels and proportions, as
well as easily manipulate them algebraically to generate perturbation data. However
many kinetic models of metabolism are not based on these structures. We could also
use other ways of describing reactions rates, such as Michaelis-Menten, as described by
Lee et al. [42]. Here, we have only used ensemble modelling for parameter estimation;
however, the technique of building an ensemble of models has also been used to fit
other features of a network, such as cell signalling networks, as explored by Schaber et
al. [63], or other cellular feedback systems demonstrated by Kuepfer et al. [39].

Ensemble modelling is be a useful tool for dealing with uncertainty in a metabolic
model. It allows us to find best fitting models for data sets, but also provides us with
a set of other models that may also be of interest. In the case where screening does
not reduce an ensemble to a single model, we look for similarities in the remaining
models to provide a more general overview of how a network may behave. Building up
a relevant ensemble of models is relatively simple, as data on metabolic networks are
often available; however, the data required to reduce this large ensemble may not be
complete. Indeed, we have seen that even for our network, it is not possible to reduce
an ensemble to a single model without knowledge of internal fluxes after perturbation,
as two pairs of rate coefficients (those of k4 and k6) cannot be determined using only
the product formation rates. We may also struggle to build an ensemble that suffi-
ciently spans the space of reversibilities, especially in the case of large networks with
multiple steps included in reactions. This can be somewhat alleviated by incorporating
thermodynamic data to limit possible values for the rate coefficients, as described by
Tran et al. [72]. Overall, the method has proved useful for providing information on
models without the need to estimate kinetic parameters exactly.
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Chapter 8

Comparison of methods for
modelling metabolism

8.1 Introduction

We have attempted to model metabolic networks using both kinetic models, and flux
balance techniques. These techniques have been used to model a variety of networks,
most prominently a metabolic network for C. autoethanogenum. We have examined net-
works with a variety of long term behaviours, including steady-states, linearly growing
states, and oscillatory solutions. To conclude this work, we introduce one final simple
network to test each method, and compare the results provided by each method. We
will then also consider more complex long timescale behaviours, such as periodic so-
lutions, and examine what effect these could have on the methods and in particular
which methods could predict their existence. Finally we present our conclusions.

8.2 A simple loop network

Figure 8.1: Network diagram for an example metabolic network featuring a
loop. In this network, A is transformed into B in one reaction, and B is in turn
transformed back into A though another reaction.

For the final network, we return to a network seen earlier in Chapter 2, shown again
in Figure 8.1. In this network we have two metabolites, A and B. There is an uptake
flux for A, QA, and an output flux for B, QB. Linking the two metabolites, we include
a reversible reaction transforming A into B. Stoichiometrically, this reversible reaction
is considered as two separate reactions, a forward reaction, vA, transforming A into
B, and a second backward reaction, vB, transforming B back into A, however with a
kinetic model we would have the option of modelling it using a single reversible term, or
two irreversible terms. We examined this network in Chapter 2 in relation to metabolic
flux analysis, showing that the internal fluxes, vA and vB, cannot be determined only
with knowledge of the two external fluxes, giving only the condition that if

QA = QB = vA − vB, (8.2.1)
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then a steady-state is formed. As part of our comparison, we aim to see how much
information about the internal reactions of the network can be found through each
method.

8.2.1 A flux balance model

Let us begin by forming a flux balance model for this network. First we must generate
the stoichiometric matrix for the network. This network is fairly simple, with only four
reactions for two metabolites. The stoichiometric matrix is

S =

vA vB QA QB( )
−1 1 1 0 A
1 −1 0 −1 B.

(8.2.2)

For a basic flux balance model, with a flux vector v = (vA, vB, QA, QB)
T , the mass

balance constraint Sv = 0 expands out to two equations,

QA − vA + vB = 0, (8.2.3)

vA − vB −QB = 0. (8.2.4)

From these two equations we are able to recover the condition for steady-state previ-
ously mentioned, i.e. QA = vA − vB = QB. All solutions provided by FBA satisfy
this condition, as it is derived directly from the mass balance constraint. We form a
general optimisation problem for this network that provides steady-state solutions via
flux balance analysis. This general form is

max
v

aTv such that: QA − vA + vB = 0,

vA − vB −QB = 0,

vmin ≤ v ≤ vmax, (8.2.5)

where vmin and vmax are vectors containing maximum and minimum values of each
flux, and a is some vector of coefficients, such that aTv = a1vA+ a2vB + a3QA+ a4QB

is some linear sum of the fluxes forming an objective function. As vA and vB are
two fluxes representing one reversible reaction, these are both irreversible and take
minimum values of zero. Both external fluxes (the uptake and output fluxes) are
considered reversible. For now, let us set every maximum flux to be equal to one, and
the minimum fluxes for reversible reactions to be equal to negative one. We take our
objective function to be maximising the output flux, QB, with aT = aT1 = (0, 0, 0, 1).
Then the optimisation problem becomes

max
v

QB such that: QA − vA + vB = 0,

vA − vB −QB = 0,

0 ≤ vA, vB ≤ 1,

−1 ≤ QA, QB ≤ 1, (8.2.6)

and our solution is the flux vector vT
1 = (1, 0, 1, 1). We have maximum values for QA,

QB, and vA, and a minimum value for vB. This solution corresponds to a flux from
the uptake of A, through vA to the output of B, with no feedback through vB at all.

Interestingly, if we change our objective function to be minimising the output flux,
QB, i.e. maximising −QB, with aT = aT2 = (0, 0, 0,−1), we find the solution vT

2 =
(0, 1,−1,−1). Here, the solution has been reversed, with minimum values for QA, QB,
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and vA, and a maximum values for vB. The network is instead taking up B, carrying it
through the backward reaction vB and outputting A. The network is able to operate in
both directions due to the reversibility of both QA and QB. If either external reaction
was irreversible, the second state could not exist. We refer to steady-states of the first
kind, i.e. in which A is taken up and B is output as being in the forward direction,
whilst steady-states in which B is taken up and A is output is considered the backwards
direction.

Both states, v1 and v2, are unique optimal solutions for their respective optimi-
sation problems, a = a1 or a = a2 but relaxing the maximum value constraints for
the internal fluxes, vA and vB, allows alternate optimal solutions. As we have already
stated, any steady-state solution for this network satisfies QA = vA − vB = QB. This
means we can increase vA to arbitrarily high values whilst still maintaining a steady-
state, as long as we also increase vB to compensate. For an optimal solution in FBA,
for example maximising QB, as long as we maximise the flux through to QB first, we
are free to choose a flux as large or small as we like for vA, so long as any remaining
flux to B that is not output through QB is fed back into A through vB.

To do this, we note that there are two elementary modes for this system,

mT
1 = (1, 0, 1, 1), andmT

2 = (0, 1,−1,−1), (8.2.7)

representing the network in a forward state, and a backwards state. Whilst not an
elementary mode, it is also useful to consider a third solution, which is the sum of the
elementary modes,

m3 = m1 +m2 = (1, 1, 0, 0). (8.2.8)

This solution is one in which the internal loop is active. Stoichiometrically, this is
indistinguishable from a state in which the forward and backwards states both show
the same level of activity, but it is useful to consider it as a separate state here. This
allows us to write down a general solution for the flux balance problem seen in equation
(8.2.5),

v = λ1(1, 0, 1, 1) + λ2(0, 1,−1,−1) + λ3(1, 1, 0, 0), (8.2.9)

for λn ≥ 0 In general, we would expect to only have flux in one direction, so that
either λ1 or λ2 are equal to zero, but there is still some freedom of choice for the level
of activity in the loop, λ3. Often in FBA, we form a secondary optimisation problem
when we have a non-unique solution to the original optimisation problem, in which we
try to maximise or minimise a secondary objective function across the solutions that
maximised or minimised the initial objective function. For our optimisation problem
seen in equation (8.2.6) we form a secondary problem,

max
v

aTv such that: QA − vA + vB = 0,

vA − vB −QB = 0,

0 ≤ vA, vB ≤ vmax,

−1 ≤ QA, QB ≤ 1,

QB = Qmax
B , (8.2.10)

where Qmax
B is the maximised value of the primary objective function. A common

choice for this secondary objective function is minimising the overall flux through the
system. In this case, since QA and QB are fixed by the primary objective function,
we only need to minimise the sum of vA and vB. This objective function chooses the
solution in which λ3 = 0, shutting off the internal loop entirely. Whilst this is one way
of dealing with the freedom in solutions, it may not be accurate and does not provide us
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with any information about the activity in the loop. Using only the first optimisation
problem, (8.2.6), we are unable to find a unique steady-state flux for the network. By
incorporating a second optimisation problem, such as the one in (8.2.10) allows us to
find a single unique solution, however this relies on us choosing a secondary objective
function. FBA has been able to provide us information on how a network can behave in
steady-state, in the form of the elementary modes seen in equation (8.2.7), but finding
a unique optimal flux vector requires multiple objective functions.

8.2.2 ODE models

Let us next examine an ODE model for the same network. This model consists of two
ODEs, one for each concentration of A and B. Let the concentration of A be denoted
by the variable cA, and the concentration of B similarly be the variable cB. Then we
form the ODEs,

dcA
dt

= k1(A
∗ − cA)− kAcA + kBcB, (8.2.11)

dcB
dt

= k2(B
∗ − cB) + kAcA − kBcB, (8.2.12)

with initial conditions cA(0) = cB(0) = 0. We have six parameters for this network,
where k1 and k2 are rate coefficients for the transfer of A and B in and out of the
network, A∗, and B∗ are constant external concentrations of A and B, and kA and kB
are rate coefficients for the forward and backwards internal reactions. In terms of the
fluxes used in the previous flux balance model, we have

vA = kAcA, (8.2.13)

vB = kBcB, (8.2.14)

QA = k1(A
∗ − cA), (8.2.15)

QB = −k2(B∗ − cB). (8.2.16)

We note that in the expression for QB, a positive k2(B
∗−cB) corresponds to a negative

QB, since the forwards direction for QB is taken to be an output.
We already see an immediate disadvantage in our ODE model, in that it would

require the values for six parameters to simulate. Two of these parameters are external
concentrations that should be easily measurable; however, the remaining four could be
difficult to estimate, especially the two internal parameters, kA and kB.

For now we use example sets of parameters to display different behaviours of the
network. In particular, we are able to force this ODE network to behave identically to
the three different behaviours predicted by FBA. For now, to simplify the model, let
us assume that k1 = k2 = 1, so that the reversible input and output fluxes are simply
equal to the difference between the internal and external concentrations. For our first
behaviour, let us inhibit the backwards reaction entirely by setting kB = 0. Then for
any choice of A∗ and B∗, the ODE model predicts a steady-state in which all flux in
the network goes in the forward direction, corresponding to the elementary mode m1

seen in equation (8.2.7). A simulation with A∗ = B∗ = 1 is shown in Figure 8.2.
If, instead, we were to choose to inhibit the forward reaction by fixing kA to equal

zero, but allowing a non zero kB, then any choice of A∗ and B∗ would lead us a steady-
state solution with all flux in the backwards direction corresponding to the m2 mode
from equation (8.2.7). A simulation for this state with A∗ = B∗ = 1 is shown in Figure
8.3.

If we allow non zero values for both kA and kB, we are able to produce solutions with
an overall flux in either direction depending on our choices of A∗ and B∗, though these
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Figure 8.2: Plots of the simulation of the ODEs (8.2.11)–(8.2.12), with param-
eters, k1 = k2 = kA = A∗ = B∗ = 1, and kB = 0. The first two plots show
the concentrations of metabolites in time, whilst the remaining four show the
reaction rates (fluxes) in time. We see both QA and QB taking positive values,
representing an uptake through QA and an output through QB. In this case, the
fluxes in steady-state are (vA, vB, QA, QB) = (0.5, 0, 0.5, 0.5) = 0.5m1, where m1

is the elementary mode defined in equation (8.2.7).

t
0 5 10

C
on

ce
nt

ra
tio

n

0

0.5

1

1.5

c
A

t
0 5 10

C
on

ce
nt

ra
tio

n

0

0.2

0.4

0.6
c

B

t
0 5 10

R
at

e

-0.1

-0.05

0

0.05

0.1
v

A

t
0 5 10

R
at

e

0

0.2

0.4

0.6
v

B

t
0 5 10

R
at

e

-0.5

0

0.5

1

Q
A

t
0 5 10

R
at

e

-1

-0.8

-0.6

-0.4
Q

B

Figure 8.3: As in Figure 8.2, instead with kA = 1 and kB = 0. Here we
have negative fluxes for QA and QB, showing an uptake through QB and an
output through QA. In this case the steady-state fluxes are (vA, vB, QA, QB) =
(0, 0.5,−0.5,−0.5) = 0.5m2, where m2 is the elementary mode defined in equa-
tions (8.2.7).

solutions do not correspond exactly to an elementary mode, as they are characterised
as either λ1m1 + λ3m3 for a net flux in the forward direction, or λ2m2 + λ3m3 for a
net flux in the negative direction, where mn is a mode described in equation (8.2.7).
In particular, for specific choices of A∗, B∗, kA, and kB we see the model predicting
a steady-state that corresponds with the behaviour described by m3, in which neither
QA or QB are active, and the network simply cycles flux across the loop. By choosing
A∗ = B∗ = kA = kB = 1, we see this behaviour, shown in Figure 8.4.
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Figure 8.4: As in Figure 8.2, instead with both kA = 1 and kB = 1. We see
zero values for the fluxes QA and QB, whilst vA and vB remain active, corre-
sponding to only the internal loop being active. Here, the steady-state fluxes are
(va, vB, QA, QB) = (1, 1, 0, 0). This is equivalent to m1 +m2 = m3, as defined in
(8.2.9).

Interestingly, if we completely inhibit both forwards and backwards fluxes by set-
ting kA = kB = 0, we find another solution in which no flux is active, i.e. v =
(vA, vB, QA, QB) = (0, 0, 0, 0). This solution corresponds to the general form of the
steady-state seen in equation (8.2.9) in which all λn are equal to zero, i.e. a zero flux
solution. In general, these four described steady-state behaviours are the only ones that
are exhibited by this system, confirming that the elementary modes generated in Sec-
tion 8.2.1 are indeed the only steady-state behaviours possible, though FBA provided
this same analysis with a great deal less work.

We now analyse the two ODEs, (8.2.11)–(8.2.12) in steady-state, in order to de-
termine conditions on the parameters of the ODE that lead to each steady-state. We
continue assuming that k1 = k2 = 1. Summing equations (8.2.11)–(8.2.12) give us

d(cA + cB)

dt
= A∗ − cA +B∗ − cB.

Then setting time derivatives to equal zero gives the condition

A∗ +B∗ = cA − cB. (8.2.17)

This tells us that in steady-state, the sum of the internal concentrations are equal to
the sum of the external concentrations. Rearranging this equation to give cB in terms
of cA, A

∗, and B∗, and combining it with one of our initial ODEs in steady-state, we
derive an expression for the value of cA in steady-state. Then, by substituting this
expression for cA back into equation (8.2.17), we obtain a similar expression for the
concentration cB in steady-state. These expressions are

cssA =
A∗ + kB(A

∗ +B∗)

1 + kA + kB
, (8.2.18)

cssB =
B∗ + kA(A

∗ +B∗)

1 + kA + kB
, (8.2.19)

where cssA and cssB are the steady-state values of cA and cB respectively. We know that
if we have a positive value for QA in steady-state, then we have flux in the forward

217



direction, whilst if QA takes a negative values, we have flux in the backwards direction.
In the case that QA is equal to zero, the backwards and forwards fluxes are balanced,
and there is activity only in the internal loop. If we wish to have QA > 0, then we have

QA = A∗ − A∗ + kB(A
∗ +B∗)

1 + kA + kB
=

kAA
∗ − kBB

∗

1 + kA + kB
> 0, (8.2.20)

leading to the condition
A∗

B∗ >
kB
kA

. (8.2.21)

We find the same results for QA = 0 and QA < 0. We are now able to predict which
direction the flux flows in steady-state based on the parameters A∗, B∗, kA, and kB.
If A∗

B∗ > kB
kA

the flux is in the forward direction, if A∗

B∗ < kB
kA

the flux is in the backwards

direction, and if A∗

B∗ = kB
kA

, then there is no net production of A or B, and only the
internal loop of the network is active. We find similar results if we start from QB

instead of QA.
Whilst FBA was able to inform us of the different behaviours the network shows in

steady-state, as it does not use any rate parameters, we would not be able to have any
physical reference as to what conditions are required for the network to achieve that
state. The ODE model has helped us see exactly how the network would react to dif-
ferent conditions, although knowledge of the parameters is required. These parameter
values may not be known, which would limit the predictive power of our ODE model,
limiting its overall usefulness.

8.2.3 dFBA models

We have now examined this network with flux balance and ODE models. The next tech-
nique we use to examine metabolic networks is dynamic flux balance analysis (dFBA).
This method is an extension to the FBA that allows us to use flux balance techniques
to predict dynamic behaviour in a model. It also uses some parameters from an ODE
model to provide more accurate solutions. We now form a dFBA to try to observe
these steady-state behaviours shown by flux balance analysis. As described in Chapter
6, we add the concentrations, cA and cB, as variables in our original FBA problem, and
include two additional sets of constraints. The first is some constraints that depend on
the concentrations. In this case we use our knowledge of the input and output fluxes
from our ODEs (8.2.11)–(8.2.12), still with k1 = k2 = 1, to find

QA = A∗ − cA, (8.2.22)

QB = cB −B∗. (8.2.23)

Rather than fixing these fluxes to be equal to their values in the ODEs, we allow
some additional freedom to the method by setting these constraints to be inequality
constraints, so that

QA ≤ A∗ − cA, (8.2.24)

QB ≤ cB −B∗. (8.2.25)

We note, however, that these constraints are only useful when the overall network flux
is in the forward direction. In the backward direction this would not prevent us from
having very large negative fluxes without the required concentrations to make up for
it. In simulations where we expect to find a large negative flux through QA and QB,
we would instead use the set of constraints

−QA ≤ cA −A∗, (8.2.26)
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−QB ≤ B∗ − cB. (8.2.27)

The second constraint we add is the rate of change constraint, limiting how fast fluxes
can change in a single time step. Finally, by replacing the FBA constraint Sv = 0 with
the dFBA constraint ċ = Sv, where c = (cA, cB) is the vector of concentrations, we
write down the general dFBA model for this network

max
c,v

aTv + bT c such that: ˙cA = QA − vA + vB,

˙cB = vA + vB −QB,

0 ≤ c ≤ cmax,

vmin ≤ v ≤ vmax,

vdt−min ≤
dv

dt
≤ vdt−max,

QA ≤ A∗ − cA, QB ≤ cB −B∗,

or

−QA ≤ cA −A∗, −QB ≤ B∗ − cB,

c(0) = 0, v(0) = 0 (8.2.28)

where cT = (cA, cB) and vT = (vA, vB, QA, QB). In every simulation of this model,
we fix our initial concentrations to be c = (0, 0). These concentrations mean we need
QA = A∗ and QB = −B∗ for our initial flux state, whilst vA and vB are free. We take
them to both equal zero, so that our initial flux vector is v = (0, 0, A∗,−B∗).

First, let us consider solutions in the forward direction. To do this, we seek to
maximise the output of B, that is maximising QB. As in previous examples in Chapter
6, the overall flux through the network is determined largely by the uptake flux, so we
do not need to set any maximum values for flux or concentrations. Since we expect
solutions in the forward direction, we use the first set of concentration based constraints,
equations (8.2.22)–(8.2.23). Initially we take A∗ = B∗ = 1 as our choice of external
concentrations. The results of this simulation are shown in Figure 8.5. We see the
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Figure 8.5: Simulation for the dFBA model described in equation (8.2.28).
External concentrations are fixed so that A∗ = B∗ = 1, and the objective function
is maximising QB. The first plot shows the concentrations, where the solid line
is cA, and the dashed line is cB. The second plot is of the internal fluxes, where
the solid line is vA, and the dashed line is vB. The final plot shows the external
reaction rates, where the solid line is QA, and the dashed is QB.

concentration of B, cB, smoothly increasing to a maximum value of two, allowing QB

to rise to a maximum value whilst the concentration of A, cA, increases slightly, before
decreasing back down to zero to maintain the maximum value of QA. The internal
reaction vA increases linearly, before decreasing down to a value just higher than one,
with vB becoming slightly higher than zero, so that vA − vB = 1 = QA, matching the
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condition for steady-state. We also note that cA+cB = 2 = A∗+B∗ in the steady-state,
as predicted by equation (8.2.17), though cA = 0, so all of the internal concentration
is stored in B.

Next we increase B∗ to see if this leads to the expected switch from the forward
behaviour to the backward behaviour. Figure 8.6 shows one such simulation with
B∗ = 5. We see that the overall flux is still in the forward direction in steady-state,
and again we have vA − vB = 1 = QA and cA + cB = 6 = A∗ + B∗, matching the two
previously derived steady-state equations. We see in this case, cB increases far past its
steady-state value. This is because we begin with a large uptake of B (since we have
a negative QB), and due to the maximum rate of change constraint, this flux does not
increase quickly enough to prevent the large build up of B. When QB becomes positive,
the network starts to output B. Eventually this excess of B is used up, and the system
settles into the expected steady-state. We find that this behaviour continues no matter
how much we increase the external concentration, B∗. In a dFBA model, it is possible
to observe the forward behaviour for any ratio of external concentrations.
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Figure 8.6: As in Figure 8.5, except B∗ = 5.

We now seek states in which the overall flux through the network is in the backwards
direction. To do this, we set a new objective function to be minimising QA, so that
we maximise the output of A. We use the model (8.2.28) with the second set of
constraints, (8.2.24)–(8.2.25). The results of this simulation are shown in Figure 8.7.
They are very similar to those of the initial simulation where we attempted to maximise
QB, but cA and vA increase to maximum values, rather than cB and vB. We also
have QA decreasing to its minimum value, whilst QB starts off with its minimum
value, increasing slightly as the concentration of B increases, before dropping back
down to its minimum. We have vB slightly greater than one, with vA slightly greater
than zero, so that vA − vB = −1 = QA as required for steady-state. We also have
cA + cB = 2 = A∗ +B∗, though in contrast to the previous simulations where the flux
was in the forward direction all of the internal concentration is stored in cA, whilst
before it was all in cB.

Time
0 2 4 6

C
on

ce
nt

ra
tio

n

0

0.5

1

1.5

2
Concentrations

Time
0 2 4 6

R
ea

ct
io

n 
ra

te

0

0.5

1

1.5
Internal fluxes

Time
0 2 4 6

R
ea

ct
io

n 
ra

te

-1.5

-1

-0.5

0

0.5

1
External fluxes

Figure 8.7: As in Figure 8.5, except the objective function is minimising QA.

As in the forward case, we can increase A∗ arbitrarily, whilst still maintaining
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this backwards state as long as the objective function is maximising the backwards
flux. We see that, whilst for the ODEs there was a specific point, determined by
equation (8.2.21), at which the solution switches from the forward behaviour to the
backwards behaviour, this point does not exist in our dFBA model. The condition
(8.2.21) determining whether the network exhibits forward or backward behaviour tells
us that if kB

kA
is low enough, the ODEs are able to maintain the forward behaviour in

the presence of a high B∗. That is to say, if the reactions in the loop are sufficiently
biased in the forward direction, the overall forward behaviour is maintained even with
high external concentrations of B. Since the dFBA model (8.2.28) does not offer any
estimates of these two parameters, vA and vB do not depend on the concentrations,
cA and cB, at all. This means that in the dFBA model, we can assume the value kB

kA
is as high or as low as required in order for the network to exhibit behaviour in either
direction. In fact, we see that for dFBA, the objective function is the sole factor that
decides whether the net flux through the network is forward or backwards. In regular
FBA we see the same effect, the direction of the flux in the steady-state given by FBA
is determined solely by the objective function. By not having fixed values for kA or kB,
dFBA is able to show us that it is possible to have forward or backwards behaviour for
any non-zero external concentrations A∗ and B∗.

We note that in all our dFBA simulations, one of our metabolites tends to a con-
centration of zero in the steady-state. This was required for the uptake flux constrained
by that concentration to take its maximum value. In our ODE model, a concentration
of zero would also lead to one of the internal fluxes also being zero. This is not the case
in the dFBA models, in which we maintain flux across the internal reactions despite
having a concentration equal to zero. This allows the dFBA model to predict solutions
in which we have the maximum possible flux through the system. These solutions are
optimal, in that they maximise the objective function provided, however they could
not explicitly be seen in the ODE model for the same network, unless we removed the
dependence of the flux vA on the concentration of A in the forward states, or the de-
pendance of the flux vB on the concentration of B in the case of the backwards states.
Alternatively, if we let kA in the ODEs (8.2.11)–(8.2.12) become arbitrarily large, our
ODE steady-states would tend to the state seen in Figure 8.5. We could force our dFBA
model to behave similarly to the ODE model by introducing concentration based con-
straints on vA and vB, but in doing this, we would fully determine the model, leaving
no freedom of choice for the optimisation problem.

Finally, the dFBA model has predicted a small amount of activity in the internal
loop in all cases. If we consider our steady-state flux vectors to be of the form v =
λ1m1 + λ2m2 + λ3m3, where mn refer to the modes descried in equation (8.2.7), then
all of our dFBA solutions have a small, but non-zero, λ3. There is still some freedom in
this, and choosing a secondary objective function to increase the activity in this loop to
a certain level, we could have λ3 as small, or as large as we chose. This dFBA model,
much like the FBA model, only informs us that there is could be some undetermined
level activity in this loop. Without the addition of constraints to describe this loop, it
is not possible to find a unique solution for this level of activity.

8.2.4 Ensemble modelling

Both flux balance methods, examined in Sections 8.2.1 and 8.2.3, have been unable to
reasonably estimate the activity of the internal loop in the network. We need to find
some estimate of the internal rate parameters in order to do this. In Chapter 7, we used
ensemble modelling to find estimates of parameter values from perturbing parameters
in a network. Specifically, by perturbing reactions to simulate a change in enzyme
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levels, and measuring the response of each of the models in the ensemble, we are able
to find parameterised ODEs that respond to these perturbations in the same way as a
reference state. In particular, this method allows us to find reversibilities of reactions.
If we were able to find an estimate of the reversibility of the internal reaction, we could
use this reversibility to further tune our flux balance models.

Let us first write down a general model in our ensemble

dcA
dt

= A∗∗ − k1cA − kAcA + kBcB, (8.2.29)

dcB
dt

= B∗∗ − k2cB + kAcA − kBcB, (8.2.30)

with initial conditions cA(0) = cA(0), and cB(0) = cB(0). Here A∗∗ = k1A
∗, and

B∗∗ = k2B
∗. As before we assume that the true values of k1 and k2 are both one,

but we need to include the parameters in our ensemble to scale the fluxes correctly
so that the steady-state is achieved when cA = cB = 1. This is similar to the single
reaction we studied earlier in Section 7.2, but our output flux QB is now reversible.
Let us treat A∗ and B∗ as known parameters. In this way, whilst both QA and QB are
reversible reactions, we instead consider them each as two irreversible reactions. For
QA we have an irreversible uptake with rate A∗∗, and an irreversible output with rate
k1cA. Similarly for QB we have an irreversible uptake of rate B∗∗, and an irreversible
output with rate k2cB. We have considered vA − vB to be a single reversible reaction.
We could consider both vA = kAcA − k−AcB and vB = kBcB − k−BcA, but there is no
structural difference in the model if we do this, since we would have

vA − vB = kAcA − k−AcB − kBcB + k−BcA = (kA + k−B)cA − (k−A + kB)cB

, which is the same model as described, with kA = kA + k−B and kB = k−A + kB.
We choose a reference state from our ODEmodel, (8.2.11)–(8.2.12), with parameters

k1 = 1, k2 = 1,

kA = 1, kB = 1,

A∗ = 2, B∗ = 1. (8.2.31)

Simulating the ODEs with these parameters gives us a reference flux state with QA =
vnet = QB = 1/3, where vnet = vA−vB is the net flux across the loop. In our ensemble,
this gives us parameters of A∗∗ = B∗∗ = 1, k1 = 5/3, and k2 = 4/3, with kA and kB
are chosen such that

kA =
1

3

1

1−R
, kB =

1

3

R

1−R
, (8.2.32)

where R is the reversibility of the reaction.
In previous examples through Chapter 7, we sought data on the networks response

to perturbations of internal enzyme levels. For this example, we have a simpler method
to check which value of R produces a model that matches our reference ODE. We
know that if we decrease the external concentration of A, A∗, or increase the external
concentration of B, B∗ past a threshold level, the network switches from forwards
behaviour to backwards. By increasing the equivalent external concentration for our
ensembles B∗∗ incrementally, and seeing which model in the ensemble switches direction
at a similar external concentration value, we find an estimate for the reversibility of this
reaction. In this case, using an ensemble of ten models, with reversibilities evenly spaced
between 0 and 0.9, we find the closest matching model has a reversibility of R = 0.8 this
for this reaction. This R value indicates a relatively high level of reversibility, which
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is expected given that our reference model has vA = vB. If we had values for cA and
cB from our reference model, (8.2.11)–(8.2.12), we could then use this reversibility to
calculate estimates for the parameters of our reference model (in this case, we would
obtain exactly the parameters used for the reference model, given in (8.2.31)), but
even without being able to calculate the parameters, the reversibility of a reaction is
still useful information. A high reversibility means the backwards flux is close to the
forwards flux, suggesting the net flux is small. In a biological network, a high backwards
flux and small net flux would be unlikely, unless there was some necessity for it, such as
the backwards reaction producing a useful secondary metabolic compound. If we find
high reversibilities in a metabolic network, it is worth closely examining the backwards
reaction, to discern any benefit for the organism.

Whilst neither flux balance method, from Sections 8.2.1 and 8.2.3, was able to find
quantitative estimates on the individual internal fluxes, ensemble modelling has been
able to provide a value for the ratio of the backward and forward fluxes in steady-
state. Given estimates of internal concentrations, this method could further estimate
values for the parameters of an ODE model modelling this network, which would allow
us to model the full dynamics of this system. In this case, we achieved this simply
by modifying an external concentration, though in some cases we may also require
perturbing some internal reactions to narrow the ensemble down, as seen in our initial
examples in Chapter 7.

8.3 Combining information from multiple meth-

ods

8.3.1 Ensemble modelling and FBA

Whilst each examined method gives different amounts of information on the behaviour
of the network, if we are unable to form a complete ODE model, we are unlikely to be
able to observe the full dynamic behaviour of a network. Often we are not able to form
such a model, due to a lack of knowledge of the parameters involved in the reaction
kinetics. In these cases we instead combine the techniques that we have to provide
additional information about the network.

In Section 8.2.1, we used FBA to predict the steady-state behaviour of our simple
loop network. We obtained general information about the steady-states this network
could exhibit in the form of two elementary modes, m1 and m2 seen in equation (8.2.7).
We also took a third mode (which was not elementary), m3 = m1 +m2. We were able
to describe any steady-state as a sum of these modes, seen in equation (8.2.9), but we
were unable to uniquely determine the λn in this situation. In particular, we may be
able to fix λ1 or λ2 through our maximum flux values and objective function, but the
value of λ3 remained free in these situations.

Ensemble modelling provides us with the reversibilities of a given reaction. In
particular, for a specific reference state for our loop network, we find an estimate for
the value of vB/vA in the forward case, or vA/vB in the backwards case. If we restrict
ourselves to the forward direction, this means we have a value for vB/vA. By using
this result as a constraint in our FBA model, we are able to refine our FBA solutions
to uniquely determine the behaviour inside this internal loop. If ensemble modelling
provides us with the result vB/vA = R, we have vB −RvA = 0, so our new FBA model
for maximising the forward flux becomes

max
v

QB such that: QA − vA + vB = 0,
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vA − vB −QB = 0,

vmin ≤ v ≤ vmax,

vB −RvA = 0, (8.3.1)

where vmin and vmax are minimum and maximum values for the fluxes in the network
respectively. In the forward case, we have λ1 determined by the maximum values, vmax,
and λ3 given by the vB − RvA = 0 constraint. Specifically, we find vA = λ1 + λ3 and
vB = λ3, which combined with vB − RvA = 0 gives us λ3 = R(λ1 + λ3), which is then
rearranged to give

λ3 =
Rλ1

1−R
. (8.3.2)

In Section 8.2.4 we found an estimate of R for our reference ODE model to be R = 0.8.
Using this value of R in our FBA model described in equation (8.3.1), with vmin =
(0, 0,−∞,−∞) and vmax = (∞,∞, 1, 1) gives us the result

v = (vA, vB, QA, QB) = (5, 4, 1, 1). (8.3.3)

This flux vector is a linear multiple of the flux vector for the reference model used in
ensemble modelling, seen in equations (8.2.11)–(8.2.12), with parameters k1 = k2 =
kA = kB = B∗ = 1, and A∗ = 2. We could further refine our FBA model by lowering
the maximum value of QA to be 1/3, which would cause our FBA model to be an exact
match.

Thus by combining results from ensemble modelling, in Section 8.2.4, with those
from FBA, in Section 8.2.1 we are able to refine our FBA model further in order to
choose more biologically relevant steady-state solutions. Sometimes this could lead to
a uniquely determined solution for the internal fluxes, that could not be found using
FBA alone.

8.3.2 Ensemble modelling and dFBA

In Section 7.4, we discussed the use of ensemble modelling to fit data from a dFBA
model to an ODE model that behaved similarly in the presence of perturbations. Whilst
we were unable to find a perfect fit, we were able to obtain estimates for the reversibil-
ities of some reactions in our network in an “optimal” model. By applying the same
methodology, we are able to draw similar conclusions as to what an “optimal” ODE
model of the network pictured in Figure 8.1 would look like.

First, we need to produce a reference steady-state from our dFBA model seen in
equation (8.2.28). We first consider an optimal flux in the forward direction. We
choose our objective function to be maximising the flux in the forwards direction,
that is maximising QB. As before, we do not need to set maximum values for our
fluxes, since the overall level of flux through the network is constrained by the external
concentrations, A∗, and B∗ which we choose to both equal one in our reference state.
This model has already been simulated and the results are seen in Figure 8.5. We have
already seen from our dFBA analysis in Section 8.2.3 that the model does not switch
direction regardless of how high we set B∗. By increasing B∗∗ incrementally for each set
of ODEs in our ensemble, we search for the model that maintains flux in the forwards
direction for the highest values of B∗∗. This model would be the best fit for our dFBA
data, and would be the model that maximises QB across all values of B∗∗. Using the
same ensemble as in Section 8.2.4, we have ten models varying the reversibility of the
internal loop between 0 and 0.9, we find that the lower the reversibility, the higher a
value of B∗ required for the network to switch direction. In particular, the irreversible
case (when the reversibility is equal to zero) matches the dFBA model and does not
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switch direction for any external concentration B∗. This corresponds to the parameters
kA = vB/cB and kB = 0. This result is somewhat obvious; the network would be most
optimal at outputting B through QB when there is no backwards reaction, but it is still
a useful result that has been provided by combining our dFBA model with an ensemble
modelling method.

If we use the dFBA model (8.2.28) with the objective function of minimising QA

rather than maximising QB, we obtain a reference state for a model that is most optimal
in the reverse direction. A simulation of this model was shown in Figure 8.7. We form
a new ensemble spanning the same range of reversibilities (0 to 0.9) for the internal
loop reaction, but now the reference state is in the backwards direction, so rather
than the reversibility being vB/vA as it was in the forward case, it is now vA/vB. To
generate perturbation data we wish to match the ensemble to, we increase the external
concentration of A, A∗, stepwise, to see when the model switches directions. As in
the forwards case, we find that the dFBA model does not switch direction even in the
presence of a very high external concentration A∗. This behaviour again matches the
irreversible case, in which vA = 0 implying kA = 0.

For this single reaction, both the optimal forward direction model and the opti-
mal backwards direction model require the internal reaction to be irreversible, with
either the forward or backwards reaction being inhibited completely. Whilst for this
simple network, these results are fairly obvious, in a larger network such behaviour
might be more complex and difficult to understand. Whilst moderate values for re-
versibilities may not provide us with much information, extreme values (close to zero,
or close to one) may give us useful insight into how an optimal version of a network
might behave. A reversibility close to zero suggests that there is a very small back-
wards flux, which suggests that if there are any additional products produced by this
backwards reaction, they are not vital for an optimal network. A reversibility close
to one suggests that the overall net flux through a reaction is relatively low compared
to the individual directions. As already suggested, a large reversibility may suggest
the backwards reaction produces a useful additional product that the network needs.
In the case of a dFBA model, this high reversibility with low net flux might suggest
that the reaction itself is unnecessary for the optimal network, and provide a target
for future metabolic engineering, such as trying to heavily inhibit that reaction. Such
results could also be checked in our dFBA model, checking that solutions are still able
to be found even without the presence of that reaction. This could also be checked in
the simpler FBA version, checking that steady-state solutions still exist after the high
reversibility reaction is removed.

Combining multiple techniques in this way allows us to draw more information out
of a network, and even with a small amount of information on the kinetic behaviour
of a network, we are able to draw interesting conclusions about the behaviour of the
network, and even find potential targets for metabolic engineering.

8.4 More complex long term behaviour

8.4.1 Multiple steady-states

The loop network examined through the course of this chapter has only one long term
behaviour, that of a single steady-state. In Chapter 5, we examined networks that
permitted the existence of multiple steady-states for the same sets of parameters. In
particular we analysed an autocatalysis system, shown in Figure 8.8, that permitted
up to three steady-states for a given set of parameters, two stable and one unstable.
The first stable state had a high concentration of x, and a low concentration of y. The
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Figure 8.8: Network diagram for the autocatalysis network. We have two
metabolites, X and Y , each with their own uptake reactions. We also have a
separate output of Y , representing it decaying. There are two reactions trans-
forming X into Y . The first, with rate k1, is an autocatalysed reaction in which
we have X+2Y → 3Y . The second, with rate k3, is a simple uncatalysed reaction
in which we simply have X → Y .

other stable state had a lower concentration of x, and a higher concentration of y. The
unstable state had intermediate concentrations of x and y between the concentrations
of the stable states. We attempted to use various optimisation methods to find the
existence of these multiple steady-states using FBA, without requiring full detail of the
kinetics of the network. Unfortunately, we found that FBA was unable to predict these
multiple steady-states effectively, as seen in Section 5.5. We also applied dFBA to this
network find the multiple steady-state behaviours, as seen in Section 6.3. Whilst we
were not able to predict the multiple states for different initial conditions as hoped,
dFBA was able to predict the existence of both a state with a high concentration of
x, and a state with a low concentration of x, though the low x state did not match up
with the low x state predicted by the ODEs, and included a much higher value of the
reaction representing the decay of y.

We did not apply the technique of ensemble modelling to this autocatalytic network,
though the existence of multiple steady-states could provide an additional opportunity
for use when screening models. In Chapter 7, we screened models by determining
models in the ensemble that had the same response to perturbations in parameters the
models we were using to provide reference data (in some cases another ODE model, and
later a dFBA model). In Section 8.2.4, rather than perturbing each parameter in turn,
we perturbed a single parameter multiple times to find the model from the ensemble
that switched direction at the same time as our reference model. We could apply
this same idea to multiple steady-states, screening our ensemble by seeking models
that switch from one steady-state to another with the modification of parameters, or
even initial conditions. The multiple steady-states could also prove problematic in the
screening of models. If the reference model has parameters close to a bifurcation, there
might exist a model in the ensemble that has the closest possible reversibilities, but
resides on the other side of the bifurcation. This could lead to a model with similar
parameters exhibiting a different behaviour after perturbation, causing it to be screened
out, despite being a good match. When performing ensemble modelling, we should be
aware of the possibility of multiple steady-states, and bifurcations in parameter space.

Overall we found that only an ODE model was able to adequately capture the
behaviour of multiple steady-states, with dFBA being able to predict the existence of
multiple states for the same parameter set, though not the initial conditions that lead
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to them. We also found that the states predicted by dFBA were more extreme than
those predicted by ODEs. In the case of the autocatalytic model, the high X state had
a higher concentration of X in the dFBA model, and the low X state had a much lower
concentration of X in the dFBA model than in the ODE model.

8.4.2 Dynamic long term behaviours

There are other long term behaviours that can be exhibited by an ODE model of
metabolism. With our C. autoethanogenum ODE model, we saw multiple different
states in which one or more metabolite concentrations grew linearly in time, whilst
others decayed to zero. Another behaviour we saw was periodic solutions, most com-
monly oscillatory solutions in which the same concentrations increase to a maximum,
and then decrease to a minimum, before increasing back to the maximum and repeating.
Periodic behaviour was seen for specific parameter values of the examined autocatal-
ysis network, but also for the adapted Lotka-Volterra model examined with dFBA in
Section 6.4. Whilst this model is not strictly a metabolic network, it follows a similar
structure.

Since the growth and oscillatory behaviours are dynamic, they cannot be described
FBA, since FBA assumes steady-state behaviour.

The long term behaviour of the Lotka-Volterra network is interesting in that it has
an infinite number of periodic solutions as well as two steady-state points. The model
is

dx

dt
= αx− βxy, (8.4.1)

dy

dt
= δxy − γy. (8.4.2)

with initial conditions x(0) = x0, and y(0) = y0. These ODEs are normally used to
model predator-prey populations, where x is the prey population, and y is the predator
population. The two steady-state points are (x, y) = (0, 0), i.e. an extinction state,
and (x, y) = (γ/δ, α/β), the equilibrium state. Every other point in the (x, y) plane,
where neither x or y are equal to zero, are part of a periodic solution.

Whilst this model is a population model, we see that if we take

v = (v1, v2, v3) = (xy, x, y),

this model has the structure of a metabolic model with stoichiometric matrix

S =

v1 v2 v3( )
−β α 0 x
δ 0 −γ y.

(8.4.3)

In Section 6.4, we saw that we were unable to obtain periodic solutions for this network
using dFBA. The dFBA model was able to accurately predicted the extinction state,
and an equilibrium state (that was unique up to scalar multiples). However for all
initial conditions, the model predicts the network tending to a steady-states rather
than the periodic solutions we expect. In the Lotka-Volterra system, for all parameter
choices, every point on the (x, y) plane that is not a steady-state and has neither x
nor y equal to zero is part of a periodic solution, however dFBA is unable to find or
maintain periodic solutions here. Hence we are unlikely to observe periodic solutions in
other networks using dFBA. Other networks may require specific parameters in order
to observe these periodic solutions, making it less likely that dFBA is able to predict
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the existence of these solutions. In general, though we may be able to see periodic
solutions using dFBA, we cannot expect dFBA to reliably find and describe them.

In Section 6.5, we used dFBA to successfully predict the existence and behaviour
of states in which one or more metabolites increase linearly in time. By fixing certain
fluxes to take certain values, we were able to predict linear growth in some cases. We
compared these states in dFBA to those predicted by our ODEs and found that of the
six linear growth states observed by our ODE model, we were able to match two exactly,
and two more partially with a dFBA model. These states were independent of objective
function choice, suggesting that they were general behaviour in the network, and the
states found solely in our ODE model, and not in dFBA, may be a consequence of our
specific choice of how we modelled flux dependence in the ODE system, and not directly
on the structure of the network itself. We did note that the method had problems
with metabolite concentrations decaying to zero, sometimes instead maintaining a very
low steady-state, rather than a concentration of zero. Overall dFBA was useful for
modelling some linear growth states, but not useful for modelling periodic behaviour.

Ensemble modelling also struggles with non-steady-state behaviours. We may not
be able to reliably construct an ensemble of models that all tend to a specific periodic
solution, certainly we could not guarantee that they even approach a solution with the
same period, which would make automatically screening models impossible, and man-
ually screening models would be prohibitively difficult for large ensembles. Similarly,
with linearly growing states, we could not reliably construct an ensemble of models
that grow at the same speed, especially after perturbation of parameters. We applied
ensemble modelling to our C. autoethanogenum, but had to take special care when
constructing the ensemble to not choose reversibilities for reactions that would lead to
parameter schemes that caused the ODE model to tend to non-steady-states. In par-
ticular, it is possible to have a steady flux vector, whilst concentrations grow linearly
in time. In this case, ensemble modelling may select a model that has the correct flux
vector for a given perturbation, but with concentrations behaving completely differ-
ently to the reference state. As with multiple steady-states, linear growth states could
lead to ensemble modelling choosing incorrect models, so where possible, we must avoid
parameter choices that lead to non-steady-states.

Whilst FBA cannot be used to predict the specific dynamics of a non-steady-state
behaviour, we are able to use it to predict the existence of non-steady-state behaviours.
In Chapters 2 and 4, we applied FBA to our C. autoethanogenum network, and were
able to predict the range of parameters for which steady-states exist. In particular, in
Chapter 4 we determined a 2D region of flux space in which steady-states could exist.
These fluxes were directly comparable to parameters in our ODE model, allowing us to
provide strict bounds on these parameters that would lead to steady-state behaviour.
Whilst FBA cannot be used to predict how the system behaves outside of these steady-
state bounds, we can predict the existence of non-steady-state behaviour, which could
then be examined further with a dynamic technique, such as dFBA. We also note in
Chapter 4, we found the modified C. autoethanogenum model exhibiting two different
steady-states for the same parameters, combined with a third linear growth state.
Again, whilst this behaviour could not have been predicted by FBA alone, the behaviour
was easily found to exist by combining the FBA results showing where steady-states
exist, with a dynamic result from our ODE analysis in Chapter 3, showing that for the
same parameters, a linear growth state would also exist.

It seems, again, that only a full ODE model is able to completely capture long term
dynamic behaviour. In particular neither flux balance method is able to predict periodic
solutions, though dFBA was able to predict linear growth states. Ensemble modelling
becomes difficult in the presence of long term dynamic behaviours and care must be
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Method Data required Information provided
FBA Stoichiometry of the network Steady state flux vectors
dFBA Stoichiometry of the network Dynamic flux and concentration vectors

Partial kinetic data
Ensemble Stoichiometry of the network Ensemble of models,

Elementary reactions of the network and estimates of parameters within
Flux response to perturbations

ODEs Stoichiometry of the network Dynamic concentration vectors,
Complete kinetic data from which flux vectors are calculated
Estimates of parameters

Table 8.1: Data required by each model to be formed, and the information
provided by each model.

Method
Long timescale behaviour FBA dFBA Ensemble ODE

Steady state X X X X
States with unbounded growth X X X

Periodic solutions X X
Multiple long timescale behaviours X X X

Table 8.2: Long timescale behaviours able to be predicted by each method.
Note for dFBA, multiple long timescale behaviours can be predicted; however,
we cannot consider different initial conditions leading to them. For ensemble
modelling, all long term behaviours could be predicted, as it forms an ODE model,
however non-steady-state behaviours can lead to problems with the method, as
noted in Section 8.4.

taken when applying it to networks that we know could exhibit these behaviours.

8.5 Conclusions

We have now compared each method on a single model, to consider the data each model
is able to provide. A summary of this is provided in Table 8.1. In general, it is clear
that the more data we have to use to form a model, the more complete information we
are able to get back from the model. FBA relies on only the stoichiometry of a network
to form a model, but as a trade off, it only gives us steady-state flux vectors for the
network. As we have seen in Section 8.2.1, these steady-state flux vectors may not be
unique, instead providing us with a range of potential flux vectors that are all optimal
according to a specific objective function. On the other end of the scale, a complete
ODE model is able to provide a complete overview of the dynamics of a metabolic
network. Unfortunately, forming a complete ODE model like this is difficult, requiring
a vast knowledge of the kinetic properties of each given reaction, along with estimate
of parameters, which we may not readily have access to. Our other two methods,
dFBA and ensemble modelling allow us to gain information on the dynamic behaviour
of a network whilst only requiring partial knowledge of these kinetics. dFBA allows us
to observe the dynamics of the network with knowledge of the kinetics of only a few
reactions, filling in the rest using the stoichiometry of the network, whilst ensemble
modelling uses elementary reactions and data of response to perturbations in order to
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estimate parameters, providing us with, in the best case, a single ODE model, or a
small set of models that all behave in a similar manner.

Throughout this work we have also considered what types of long term behaviour
can be predicted by each model. Table 8.2 summarises these behaviours. We note that
only full ODE models have been seen to predict every type of long term behaviour
seen by our metabolic networks. The models provided by ensemble modelling could
exhibit all these long term behaviours, but non-steady behaviours can cause problems
when constructing these models, as noted in Section 8.4. dFBA was able to pre-
dict unbounded growth and steady-states, and indicate the possibility of multiple long
timescale behaviours, however we found it was not reliably able to predict periodic so-
lutions. FBA, whilst able to indicate the possibility of non-steady behaviours in general
by telling us when steady-states cannot exist, is not able to provide any information
on how a network may behave when steady-states cannot exist.

Whilst we have seen that only ODE models are able to fully predict all kinds of
dynamic behaviour that a metabolic network could exhibit, these models are not often
feasible to produce. Full genome scale models for metabolism can contain hundreds of
metabolites and even more reactions. Forming and simulating an ODE model on this
scale would be highly challenging. In these cases, we are able to instead use FBA to
quickly gain insight into the steady-state behaviour of such a model. A key strength of
FBA is how the method is able to be scaled up to networks of this size and still provide
results. In Chapter 4 we were able to determine a region of flux space in which steady-
states could exist for our C. autoethanogenummodel. Similar analysis can be performed
even on larger networks. In particular we could consider the effects of a variety of ratios
of input fluxes on the product formation rates within the network. In this way, even
for large and complex networks, we are still able to draw insight into possible optimal
product yields. We are also able to simulate gene knockouts with an FBA model. By
inhibiting each reaction in turn, we find which reactions are necessary for the growth
and survival of an organism, and which are unnecessary, providing potential targets for
metabolic engineering, as seen by Edwards and Palsson [18] with regards to E. coli.
Such analysis is performed very rapidly with FBA models, and provides a high degree
of accuracy when compared to experimental data.

dFBA models have been applied with success to optimising product formation rates
in batch cultures. Hjersted and Henson [31] used dFBA to model the production of
ethanol in a fed-batch reactor by S. cerevisiae. By using dFBA to predict the maximal
yields of ethanol, and performing a non-linear optimisation problem treating a variety
of physical parameters as variables, such as feed flow rate, and initial glucose level, an
optimal set of conditions for this batch culture was found. It is possible to efficiently
simulate dFBA models multiple times with variations to physical parameters such as
these, highlighting dFBA as a useful tool for this kind of optimisation. It is possible
to form an ODE model to perform this analysis, however the difficulty in forming such
a model makes it undesirable. Our own analysis of dFBA found use in its ability to
predict states of unbounded growth in a metabolic network, seen in Section 6.5. FBA
allowed us to determine which conditions would lead to steady-state solutions, but
dFBA allowed us to quantify possible behaviours of the network outside of this steady-
state region. By combining the information from the two techniques, we were able to
build up a more complete picture of the behaviour of the network under all conditions,
particularly those of the input ratio, QH/QCO.

Both FBA and dFBA have been useful in providing general information about
whether a network attains steady-state in a long timescale, however there are questions
about its ability to accurately predict these steady-states. In particular, both methods
rely on an objective function which is chosen by the modeler. We have seen for both
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FBA, in Section 2.4, and dFBA, as in Section 6.3, these objective functions have a strong
effect on the solutions provided. Different objective functions often lead to completely
different solutions for a network, and, whilst there are common choices for objective
functions, there is no universal best choice objective function that provides a best fitting
solution. We can examine a range of different objective functions, and compare them
to experimental data, but there is no guarantee that the best objective function fitting
for a specific organism is the best fitting objective function for a different organism.
Indeed, there is no guarantee that the best fitting objective function applies to the same
organism in different environmental conditions. Whilst FBA is useful for predicting the
existence of steady-states, and survival in the presence of gene knockouts, the specific
steady-state flux vectors provided by the model may not be a good representation of
how the metabolic network actually behaves in biological conditions.

We also saw the problem of multiple optimal solutions. Whilst with FBA, we are
able to quantify these multiple optimal solutions, using methods such as flux variability
analysis [44], when it comes to dFBA, alternative optima found on early time points
have large effects on the flux vectors and concentrations at the end time point. In
particular, in Section 6.3, we showed that these alternative optima lead to completely
different states. We applied dFBA to the autocatalytic network seen in Figure 8.8.
The same model could tend to a state in which we had a high internal concentration
of X and a near zero concentration of Y , or a near zero concentration of X and a high
concentration of Y . This is evidence of multiple steady-states being possible within
the network, however due to the multiple optimal solutions at each time step, it was
not possible to determine which of the two states would be exhibited by the model
in the long timescale. We found that minimal changes to the model, such as raising
maximum flux values, led to the model switching between the two behaviours, which
is not desirable. The problem of these alternative optima can be bypassed by using
secondary objective functions, to choose a unique solution out of those that maximise
the primary objective function. The choice of these secondary objective functions
will also affects the solutions found by dFBA, just as the primary objective function
does. As with the primary objective function, choice of secondary objective functions is
arbitrary, and the problems only magnify as additional objective functions are added.

Ideally, when modelling a metabolic network, we would form a complete ODE model
for the network, and attain full information on the dynamics of that network. Indeed,
if we wish to have such information on the dynamics, we must attempt to form an
ODE model, whether attempting to fully model the reactions, as seen by Chassagnole
et al. [12], or by using a simplified model, such as the linlog kinetics used by Visser
and Heijnen [76], or indeed, parameterising a model consisting of elementary reactions
via ensemble modelling [72]. Sometimes these models may be infeasible to generate, or
we may not even wish to model the dynamics of the network in such detail. In these
cases, it is worth considering the flux balance methods presented in Chapters 2 and 6.
If we wish to produce a genome scale model, this is an area in which FBA excels. If
we want to examine how a particular network may respond to different food sources,
FBA can provide insight. dFBA has been shown to be useful in optimising yields in
batch cultures, and also in providing general insight into non-steady-state behaviours,
though not in the case of periodic solutions. Whilst the exact steady-state solutions
provided by FBA should not be considered perfect, its ability to provide conditions on
fluxes that are required for steady-states, in particular the networks response to gene
knockouts, with little computational effort is highly useful. Whilst a complete ODE
model for metabolism is desirable, in some cases, it may prove unnecessary to form
such a model. The information that can be provided by these simpler methods may be
sufficient for a modelers purposes, and even in cases where it isn’t, the benefits of not
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needing to construct a full ODE model may outweigh the disadvantages presented by
flux balance models.
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[84] Wiechert, W., Möllney, M., Petersen, S., and de Graaf, A. A. A
universal framework for 13 c metabolic flux analysis. Metabolic Engineering 3
(2001), 265–283.

[85] Wilhelm, T. Analysis of structures causing instabilities. Phys. Rev. E 76 (2007),
011911.

[86] Wittmann, C., and Portais, J.-C. Metabolic Flux Analysis. Wiley-VCH Verlag
GmbH and Co. KGaA, Weinheim, Germany, 2013, pp. 285–312.

[87] Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio,
S. Metabolic engineering of a pentose metabolism pathway in ethanologenic zy-
momonas mobilis. Science 267 (1995), 240–243.

238



[88] Zhu, Y., Song, J., Xu, Z., Sun, J., Zhang, Y., Li, Y., and Ma, Y. De-
velopment of thermodynamic optimum searching (tos) to improve the prediction
accuracy of flux balance analysis. Biotechnology and Bioengineering 110 (2013),
914–923.

239



Glossary

ATP/ADP Adenosine triphosphate (ATP) is a chemical used in many metabolic reac-
tions to provide additional energy. Upon consumption, this chemical is generally
converted into adenosine diphosphate (ADP). The cycling of these two chemicals
is important in the overall behavior of a metabolic network.

Autocatalytic An autocatalytic reaction is one in which a reaction is catalysed by
one of its products.

Biomass Biomass is the mass of a living biological organism. In a metabolic network,
reactions that create biomass are those induce growth in the organism.

C3 and C4 metabolic pathways The C3 and C4 metabolic pathways are used in
plants to processing CO2 into usable forms. The C3 pathway uses CO2 directly
in a reaction with water and ribulose bisphophate (a sugar molecule) to produce
phosphoglycerate, whilst the C4 pathway first processes CO2 into malate before
using it in this reaction.

CoA Coenzyme A (CoA) as an additional enzyme used in the synthesis of fatty acid.
It is sometimes bound to other chemicals, such as in the form of acetyl-CoA.

Diauxic growth Diauxic growth is growth in two phases, generally in which an or-
ganism switches from one food source to another.

Flux The flux of a metabolic reaction is a measure of the activity across it.

Gibbs free energy Gibbs free energy is a measure of how much reversible work can be
performed by a thermodynamic system. The change in Gibbs free energy through
a reaction is a measure of how much energy has been lost to the environment
and is no longer contained in the system.

Glycolysis Gylcolysis is a common biological process in which glucose is transformed
into pyruvate for use in the TCA cycle.

MILP Mixed integer linear programming (MILP) is a modification of linear program-
ming in which some vectors must take integer values.

Nullspace The nullspace, also known as the kernel, of a matrix, M, is the set of vectors
v that satisfy Mv = 0.

ODE Ordinary differential equations (ODEs) are equations that include include func-
tions with a single independent variable, and its derivatives.
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Stoichimetric matrix The stoichiometric matrix of a metabolic network is a matrix
containing information on the usage of metabolites with the network.

TCA Cycle The tricarboxylic acid (TCA) cycle, also known as the citric acid cycle
or the Krebs cycle, is a series of chemical reactions found in all aerobic organisms
to release energy stored in carbohydrates into the form of ATP.

Wildtype A wildtype bacteria is one as found in nature, prior to any genetic mutation
in a lab.
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