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OBJECTIVE. Corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, is a
noninvasive and objective imaging biomarker for identifying small nerve fiber damage. We
have evaluated the diagnostic performance of previously established CCM parameters to a
novel automated measure of corneal nerve complexity called the corneal nerve fiber fractal
dimension (ACNFrD).

METHODS. A total of 176 subjects (84 controls and 92 patients with type 1 diabetes) with and
without diabetic sensorimotor polyneuropathy (DSPN) underwent CCM. Fractal dimension
analysis was performed on CCM images using purpose-built corneal nerve analysis software,
and compared with previously established manual and automated corneal nerve fiber
measurements.

RESULTS. Manual and automated subbasal corneal nerve fiber density (CNFD) (P < 0.0001),
length (CNFL) (P < 0.0001), branch density (CNBD) (P < 0.05), and ACNFrD (P < 0.0001)
were significantly reduced in patients with DSPN compared to patients without DSPN. The
areas under the receiver operating characteristic curves for identifying DSPN were
comparable: 0.77 for automated CNFD, 0.74 for automated CNFL, 0.69 for automated CNBD,
and 0.74 for automated ACNFrD.

CONCLUSIONS. ACNFrD shows comparable diagnostic efficiency to identify diabetic patients
with and without DSPN.

Keywords: corneal confocal microscopy, diabetic neuropathy, image segmentation, nerve
fiber quantification

Diabetic sensorimotor polyneuropathy (DSPN) affects at
least 50% of patients with diabetes.1 Earlier diagnosis and

timely intervention to prevent progression to costly outcomes
like foot ulceration could reduce not only morbidity but also
mortality.2–4

DSPN can be quantified by assessing neuropathic symptoms
and deficits, quantitative sensory testing, and neurophysiology.5

Neurophysiology is objective and reproducible and considered
to be the most reliable method to confirm the diagnosis of
DSPN, but it assesses only large nerve fiber damage, which may
be preceded by small fiber damage.6,7 Small fiber dysfunction
can be quantified by evaluating thermal thresholds,8 and small
fiber pathology can be evaluated from a skin biopsy by deriving
the intraepidermal nerve fiber density (IENFD).9–11 However,
skin biopsy is invasive9 and therefore not easily amenable to

repeat evaluation, and there are limited studies on the
diagnostic reliability of IENFD in DSPN.12

Corneal confocal microscopy (CCM) can be used to image
small nerve fiber damage. Previous studies13–18 have shown
that corneal nerve loss can be detected in diabetic patients
without diabetic neuropathy. This reflects the ability of CCM to
capture early small fiber pathology, which cannot be detected
using conventional tests such as diabetic neuropathic symp-
toms, deficits, and neurophysiology. This suggests that CCM
may act as a surrogate endpoint for early DSPN.6,19–21 We have
previously shown that CCM and IENFD correlate with each
other14 and that the diagnostic ability of CCM is comparable to
that of IENFD for the diagnosis of DSPN.18,22 In 2003, we
originally established that quantification of subbasal corneal
nerve fiber density (CNFD), corneal nerve branch density
(CNBD), and corneal nerve fiber length (CNFL) was a reliable
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means to quantify corneal nerve damage and repair in diabetic
neuropathy.13 Since then multiple studies have shown that
these parameters also identify nerve fiber degeneration and
repair in a range of peripheral neuropathies including amyloid
neuropathy,23 Charcot-Marie-Tooth disease type 1A,24 chronic
inflammatory demyelinating polyneuropathy,25,26 and human
immunodeficiency virus (HIV)–induced sensory neuropathy,27

as well as central neurodegenerative conditions including
motor neuron disease,28 Parkinson’s disease,29 and multiple
sclerosis.30,31 However, while corneal nerve fiber density,
branch density, and length can quantify nerve fiber damage and
repair, they cannot differentiate specific neurodegenerative
conditions. We propose a novel metric of corneal nerve
morphology, the fractal dimension (FD),32 to measure the
spatial loss of nerve fibers, which may help to identify specific
neurodegenerative conditions and augment the diagnosis of
DSPN.

METHODS

Study Subjects

This research adhered to the tenets of the Declaration of
Helsinki and was approved by the North Manchester Research
Ethics Committee. Age between 14 and 85 years and a history
of type 1 diabetes were used as the inclusion criteria. Exclusion
criteria were a positive history of malignancy, connective tissue
or infectious disease, deficiency of vitamin B12 or folate, liver
failure, chronic renal failure, active diabetic foot ulceration and
family history of peripheral neuropathy, active ocular disease,
and systemic disease known to affect the cornea other than
diabetes or chronic corneal pathologies. Informed written
consent was obtained from all participants. Ninety-two
patients with type 1 diabetes mellitus and 84 age-matched
controls were recruited for the study. All subjects were
assessed for the presence and severity of DSPN based on the
updated Toronto consensus criteria.33All participants under-
went assessment of body mass index, glycated hemoglobin
(HbA1c), total cholesterol, high-density lipoprotein cholesterol
(HDL), triglycerides, and systolic and diastolic blood pressure.

Peripheral Neuropathy Assessment

Neurologic deficits (Neuropathy Disability score)34 and neuro-
pathic symptoms (Diabetic Neuropathy Symptom score)35

were evaluated. Vibration perception threshold (VPT) was
tested using a neurothesiometer (Horwell, Scientific Laborato-
ry Supplies, Wilford, Nottingham, UK), and cold and warm
thresholds were evaluated on the dorsolateral aspect of the left
foot, using the TSA-II NeuroSensory Analyser (Medoc Ltd.,
Ramat-Yishai, Israel). Electrodiagnostic studies were performed

using a Dantec Keypoint system (Dantec Dynamics Ltd, Bristol,
UK) equipped with a DISA temperature regulator to keep limb
temperature constantly between 328C and 358C. Sural sensory
nerve conduction velocity (SSNCV), sural sensory nerve
amplitude (SSNamp), peroneal motor nerve conduction
velocity (PMNCV), and peroneal motor nerve amplitude
(PMNamp) were assessed by a consultant neurophysiologist.

The Toronto Diabetic Neuropathy Expert Group33 recom-
mendation was used to identify clinically detectable DSPN: (1)
abnormal nerve conduction—a PMNCV of <42 m/s; (2) a
symptom or sign of neuropathy, defined as one of the
following: diabetic neuropathy symptom score of 1 or more
out of 4 or neuropathy disability score of 3 or more out of 10.

Manual and Automated Corneal Nerve
Quantification

CCM images were captured using the Heidelberg Retina
Tomograph III Rostock Cornea Module (Heidelberg Engineer-
ing GmbH, Heidelberg, Germany),21,36 as shown in Figure 1.
Each image is 384 3 384 pixels with a pixel size of 1.0417 lm.
Six images of the subbasal nerve plexus from the right and left
eyes were selected for analysis using purpose-written, propri-
etary software. CNFD (number of main fibers per mm2), CNFL
(total length of main fibers and branches per mm2), and CNBD
(number of branches per mm2)21,36 were quantified using
manual (CCMetrics; M.A. Dabbah, Imaging Science, University
of Manchester) and automated (ACCMetrics) software.19 The
FD measurement is fully automated and consists of a nerve
fiber detection step based on a machine-learning method37

(Fig. 1). As shown in Figure 1, most of the nerve fibers can be
robustly detected, even with a noisy background, and a
previous study has validated the utility of this method.37 The
nerve fiber FD measures the structure complexity as a ratio of
the change in detail to the change in scale.32 For the
implementation of FD in this study, it is calculated using a
box-counting method based on the detected nerve fibers from
the CCM images.38 Different-sized boxes (size of 1 3 1, 2 3 2, 4
3 4. . .28 3 28) are used to check each pixel location in the
image. If any part of the detected nerve fiber is within a box,
the number of boxes for this particular size box increases by 1.
A set of points can be plotted based on the number of boxes
against the corresponding box sizes. A line is then fitted to
these points using the least square method, where the slope of
the line is the FD value. Intuitively, the slope of the line is larger
when a larger number of small boxes are counted, indicating a
more complicated structure. A high FD value corresponds to
an evenly distributed complex nerve fiber structure that likely
belongs to a healthy subject. In contrast, fewer distorted nerve
fibers results in a lower FD value that may reflect abnormality.
The automated corneal nerve fiber fractal dimension (ACNFrD)
measurement is now included in our automated nerve fiber
quantification software, which is freely available from a
dedicated Web site via the University of Manchester portal.39

To assess the diagnostic ability of the standard corneal nerve
metrics (CNFD, CNBD, CNFL) with ACNFrD for DSPN, we
compared control subjects to diabetic subjects with and
without DSPN.

Statistical Analysis

Statistical analysis and the receiver operating characteristic
(ROC) curves were performed and generated using MATLAB
(version R2012a, The MathWorks, Inc., Natick, MA, USA). One-
way ANOVA (nonparametric Kruskal-Wallis) was used to
evaluate within- and between-group differences (control versus
no DSPN versus DSPN). A P < 0.05 was considered significant.
Area under the ROC curve (AUC) values, 95% confidence

FIGURE 1. (a) Original CCM image. (b) Automatically detected nerve
fibers.
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intervals, and sensitivity/specificity both at the equal error rate
point and at the threshold of 2 standard deviations below the
mean of the control group were calculated and compared.40

RESULTS

Demographic, Metabolic, and Anthropometric
Assessment

Demographic, anthropometric, and metabolic measurements
in patients with diabetes and control subjects are summarized
in Table 1. Age was comparable, but HbA1c was significantly
higher in diabetic patients compared with control subjects,
with no difference between patients with and without DSPN.
Body mass index was significantly higher in diabetic patients
with DSPN compared to controls. Total cholesterol was
significantly lower in diabetic patients with and without DSPN,
while HDL and triglycerides did not differ between groups.
Systolic blood pressure was significantly higher in diabetic
patients with and without DSPN, compared to control subjects.

Neurologic Assessment

The neuropathy disability score was significantly higher in
patients with DSPN compared to control subjects.

Quantitative Sensory Testing

The VPT was significantly higher in patients with DSPN
compared to patients without DSPN and control subjects.
Warm sensation threshold was significantly higher while cold

sensation threshold was lower in patients with and without
DSPN compared to control subjects.

Electrophysiology

PMNCV, SSNC, and SSNamp were significantly reduced in
diabetic patients with and without DSPN compared to
controls; PMNCV, SSMCV, PMNamp, and SSNamp were
significantly reduced in diabetic patients with and without
DSPN compared to controls and in diabetic patients with DSPN
compared to patients without DSPN.

Manual CCM

MCNFD was significantly reduced in diabetic patients with (P
< 0.0001) and without (P < 0.0001) DSPN compared to
control subjects and was reduced in patients with DSPN
compared to patients without DSPN (P < 0.0001) (Table 1).
MCNBD was significantly reduced in diabetic patients with and
without neuropathy (P < 0.0001) compared to control
subjects. MCNFL was significantly reduced in diabetic patients
with (P < 0.0001) and without (P < 0.0001) DSPN compared
to control subjects and was reduced in diabetic patients with
DSPN compared to patients without DSPN (P ¼ 0.001).

Automated CCM

Automated corneal nerve fiber density (ACNFD), automated
corneal nerve fiber length (ACNFL), and ACNFrD were all
significantly reduced in diabetic patients with (P < 0.0001) and
without (P < 0.0001) DSPN compared to control subjects and
were further reduced in diabetic patients with DSPN compared

TABLE 1. Clinical Demographic Results and Neuropathy Assessment in Control Subjects and Type 1 Diabetic Patients Without (DSPN [�]) and With
(DSPN [þ]) Neuropathy

Variable Control, n ¼ 84 DSPN(�), n ¼ 63 DSPN(þ), n ¼ 29

Age 46 6 15 44 6 15 63 6 12

Neuropathy disability score* 0.4 6 1.2 1.5 6 2.0§ 6.7 6 2.3§jj
Duration of diabetes, y N/A 20.0 6 11.1 19.9 6 11.7

Glycated hemoglobin 5.6 6 0.3 8.3 6 1.4 8.6 6 1.5

HbA1c, %/mmol/mol‡ 37.4 6 3.5 63.9 6 21.2§ 70.4 6 16.0§

Body mass index, kg/m2* 25.2 6 4.9 26.4 6 4.8 27.0 6 3.6§

Total cholesterol, mM* 5.0 6 0.9 4.3 6 0.9§ 4.5 6 0.9§

HDL, mM 1.5 6 0.4 1.6 6 0.5 1.7 6 0.4

Triglycerides, mM 1.4 6 0.7 1.3 6 0.7 1.4 6 0.8

Blood pressure systolic†/diastolic, mm Hg 126.0 6 17.8/71.4 6 9.7 130.5 6 18.6§/70.3 6 9.1 145.2 6 24.2§jj/73.7 6 10.0

Vibration perception threshold, V‡ 5.6 6 4.6 8.5 6 6.5 28.8 6 12.7§jj
Warm sensation threshold, 8C† 36.6 6 2.8 38.5 6 4.0§ 43.3 6 4.7§jj
Cold sensation threshold, 8C† 28.5 6 1.9 26.8 6 2.9§ 19.0 6 9.8§jj
Peroneal motor nerve conduction velocity, m/s‡ 49.3 6 3.3 43.7 6 3.1§ 31.5 6 8.8§jj
Sural sensory nerve conduction velocity, m/s‡ 51.1 6 4.1 45.1 6 4.7§ 36.0 6 6.9§jj
Peroneal motor nerve amplitude, mV‡ 5.4 6 2.1 5.3 6 7.0 1.2 6 1.4§jj
Sural sensory nerve amplitude, lV‡ 21.4 6 9.7 11.8 6 6.8§ 3.3 6 3.2§jj
Manual corneal nerve fiber density, no./mm2‡ 36.17 6 6.2 27.7 6 7.9§ 17.4 6 9.9§jj
Manual corneal nerve branch density, no./mm2* 87.1 6 36.7 57.4 6 31.3§ 45.6 6 31.7§

Manual corneal nerve fiber length, mm.mm2‡ 25.6 6 5.3 20.1 6 5.3§ 14.6 6 8.2§jj
Automated corneal nerve fiber density, no./mm2‡ 28.9 6 6.9 21.9 6 7.6§ 13.3 6 8.7§jj
Automated corneal nerve branch density, no./mm2‡ 38.7 6 17.7 25.9 6 17.5 § 16.0 6 15.5§jj
Automated corneal nerve fiber length, mm.mm2‡ 16.9 6 3.4 13.3 6 3.7§ 8.7 6 4.7§jj
Automated corneal nerve fractal dimension‡ 1.50 6 0.02 1.45 6 0.05§ 1.40 6 0.07§jj

Results are expressed as mean 6 SD, statistically significant differences using ANOVA/Kruskal-Wallis. N/A, not applicable for this group.
* P < 0.05.
† P < 0.001.
‡ P < 0.0001 post hoc results for DSPN(þ) significantly different from control subjects and DSPN(�).
§ Control subjects.
jj DSPN(�).
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to patients without DSPN (P < 0.0001). Automated corneal
nerve branch density (ACNBD) was significantly reduced in
diabetic patients with (P < 0.0001) and without (P < 0.0001)
DSPN compared to control subjects and was reduced in
diabetic patients with DSPN compared to patients without
DSPN (P ¼ 0.002). The box plots shown in Figure 2a indicate
FD values decreasing significantly from the control group to
the DSPN(�) group (P < 0.0001) and from the DSPN(�) group
to the DSPN(þ) group (P < 0.0001).

ROC Analysis

Diabetic patients were divided into two groups: no DSPN(�) (n
¼ 63) and DSPN(þ) (n ¼ 29). Table 2 shows the AUC values,
95% confidence intervals, and sensitivity/specificity at the
equal error rate point on the ROC curve for both manual and
automated CCM features. The highest AUC values among the
manual and automated CCM measures were obtained for
CNFD, with AUC values of 0.79 and 0.77, respectively. The
areas under the ROC curve for ACNFrD for discriminating
control from DSPN(�) and DSPN(�) from DSPN(þ) are 0.76 and
0.74, respectively (Figs. 2b, 2c). There was no significant

difference between the ROC curves comparing ACNFrD to
ACNFD (P ¼ 0.30), ACNBD (P ¼ 0.21), and ACNFL (P ¼ 0.50)
for discriminating control from DSPN(�) (Fig. 2c). There were
no statistically significant differences between the ROC curves
for ACNFrD compared to ACNFD (P ¼ 0.50), ACNBD (P ¼
0.40), and ACNFL (P ¼ 0.35) for discriminating DSPN(�) from
DSPN(þ).

DISCUSSION

Objective surrogate endpoints of diabetic neuropathy that
accurately detect early disease and quantify disease progression
and measure therapeutic response are required.2 Small fiber
neuropathy is implicated in a number of clinically relevant
outcomes including neuropathic pain,41 erectile dysfunction,42

altered gait,43 and foot ulceration.44 Although IENFD has been
proposed as a valid measure of diabetic neuropathy,12 the
invasive nature of skin biopsy limits its practical use as a
diagnostic test.

CCM is a rapid, noninvasive ophthalmic imaging technique
that can quantify small nerve fiber degeneration and regener-
ation in patients with diabetic neuropathy6,15,45–48 and that has
been related to the severity of diabetic neuropathy.14,21,22,47

Automated subbasal corneal nerve image analysis allows rapid
quantification of corneal nerve fiber degeneration,20,21,49 with
comparable diagnostic efficiency to manual quantification.50

Previous reviews have highlighted the extensive diabetes-
related complications in the cornea51–53 and have also shown
that corneal nerve loss occurs in patients without diabetic
retinopathy and significantly worsens in those with diabetic
retinopathy.54–56 Moreover, we have also recently shown that a
reduction in corneal nerve fiber length predicts worsening of
diabetic retinopathy.57 CCM has also been deployed to assess
nerve regeneration in clinical trials evaluating new therapies in
sarcoid and diabetic neuropathy58,59 and after simultaneous
pancreas and kidney transplantation.17

This is the first study to assess the diagnostic utility of
corneal nerve fractal dimension. We show that ACNFrD is
comparable to CNFD, CNBD, and CNFL in diagnosing patients
with and without diabetic neuropathy. However, we believe
that the additional utility of this measure may arise by
characterizing the structural complexity of the corneal nerves,
to provide an additional means of differentiating patients with
neuropathies of different etiologies including amyloid neurop-
athy,23 CMT1A,24 chronic inflammatory demyelinating poly-
neuropathy,26,25 and HIV.27 It may also help to identify patterns
of subbasal corneal nerve loss associated with central
neurodegenerative conditions, including motor neuron dis-
ease,28 Parkinson’s disease,29 multiple sclerosis,30 and stroke.60

A limitation of the present study is the relatively small
number of patients with established neuropathy. However, we

FIGURE 2. (a) Box plot of fractal dimension values for control,
DSPN(�), and DSPN(þ) groups. (b) ROC curves of ACNFD, ACNBD,
ACNFL, and ACNFrD for discriminating control from DSPN(�). (c) ROC
curves of ACNFD, ACNBD, ACNFL, and ACNFrD for discriminating
DSPN(�) from DSPN(þ).

TABLE 2. AUC, 95% Confidence Interval Values, and Sensitivity/Specificity for Manual and Automated CCM for the Diagnosis of DSPN(þ) From
DPSN(�)

CCM AUC

95%

Confidence

Interval

Sensitivity/Specificity

at Equal Error Rate

Sensitivity/Specificity

at Mean 6 2 SD

(Threshold)

Manual corneal nerve fiber density 0.7890 [0.68 0.89] 0.72 0.79/0.71 (23.8)

Manual corneal nerve fiber length 0.7137 [0.59 0.83] 0.65 0.55/0.86 (14.9)

Manual corneal nerve branch density 0.6136 [0.49 0.74] 0.59 0.17/0.96 (13.8)

Automated corneal nerve fiber density 0.7720 [0.65 0.87] 0.65 0.63/0.79 (15.1)

Automated corneal nerve fiber length 0.7435 [0.63 0.86] 0.62 0.62/0.83 (10.2)

Automated corneal nerve branch density 0.6901 [0.56 0.80] 0.58 0.24/0.98 (3.3)

Automated corneal nerve fractal dimension 0.7378 [0.62 0.85] 0.65 0.61/0.78 (1.45)
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have introduced and evaluated the clinical utility of ACNFrD
and shown that it is comparable to established CCM
parameters in identifying patients with and without diabetic
neuropathy. Further work is required to confirm the utility of
ACNFrD in differentiating other peripheral and central
neurodegenerative conditions.
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