
QUOTIENTS OF ORDERS IN ALGEBRAS OBTAINED FROM SKEW
POLYNOMIALS WITH APPLICATIONS TO CODING THEORY

S. PUMPLÜN

Abstract. We describe families of nonassociative finite unital rings that occur as quo-

tients of natural nonassociative orders in generalized nonassociative cyclic division alge-

bras over number fields. These natural orders have already been used to systematically

construct fully diverse fast-decodable space-time block codes. We show how the quo-

tients of natural orders can be employed for coset coding. Previous results by Oggier

and Sethuraman involving quotients of orders in associative cyclic division algebras are

obtained as special cases.

Introduction

Let S be a unital ring, σ an injective endomorphism of S and δ a left σ-derivation of S.
Take a monic skew polynomial f ∈ R = S[t;σ, δ] of degree m greater than one. Then the
additive subgroup {h ∈ S[t;σ, δ] |deg(h) < m} of R = S[t;σ, δ] becomes a nonassociative
unital ring via the multiplication g ◦ h = gh modrf , using right division by f [10], [12].

This nonassociative ring is denoted by Sf = R/Rf and is an algebra over the subring
S0 = {a ∈ S | ah = ha for all h ∈ Sf} of S. If f is an invariant skew polynomial, meaning
Rf is a two-sided ideal, we obtain the usual associative quotient ring R/Rf . We call Sf a
Petit algebra, as the construction goes back to Petit [10].

Adapting the approach from [6] and [9], we work with monic skew polynomials f with
coefficients either in the rings of integers OK of a number field K, or in a natural OF -order
of a cyclic division algebra over a number field F . We define a natural nonassociative order
Λ in Sf and investigate the nonassociative quotient rings of Λ by a two-sided ideal I in Λ.
These quotient rings are isomorphic to the direct sum of Petit algebras over a finite ring.
We thus generate a large class of finite nonassociative rings which can be viewed as quotient
rings of natural orders Λ, and which includes the class of associative rings described in [9] as
a special case. We put a strong emphasis on algebras obtained for δ = 0 and f = tm−d, since
these algebras are behind the design of recent fast-decodable fully diverse space-time block
codes (cf. [15], [19], [8], see [16]). Moreover, due to the connection between the algebras Sf
and cyclic (f, σ, δ)-codes [3], these particular algebras define σ-cyclic codes if f is reducible.

The finite nonassociative rings we obtain can be employed for the coset encoding of space-
time block codes, analogously as described in [9, Section 8] for the associative case, but also
for the coset encoding of linear (f, σ, δ)-codes as described in [6, Section 5.2, 5.3] and [11].
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In this paper, we will focus on the coset encoding of space-time block codes. Space-time
block codes are used for reliable high rate transmission over wireless digital channels with
multiple antennas transmitting and receiving the data. A space-time block code (STBC) is
a set C of complex n × m matrices that satisfies a number of properties which determine
how well the code performs. We consider a model representing slow multiple antenna fading
channels, which means that the channel is constant over nL channel uses, so the code
contains n× nL codewords of the type X = (X1, . . . , XL), with the Xi matrices in some C.

We proceed as follows: In Section 1 we collect the terminology and results needed later and
explain how to get coset codes using quotients of natural orders in generalized nonassociative
cyclic division algebras. In Sections 2 and 3 we define natural orders in certain Sf and look
at their quotients. We recall how fully diverse space-time codes are obtained from an order
in a nonassociative division algebra Sf over a number field and then give examples of coset
codes.

The different structures of the quotients of a natural order are then investigated in Section
4. We put particular emphasis on generalized nonassociative cyclic division algebras and
their natural orders, because of their role in designing both linear σ-constacyclic codes and
in building fast-decodable space-time block codes. We prove that we can restrict ourselves
to the case when the two-sided ideal that is factored out has the form qsΛ, where q is a prime
ideal in a suitable subring of integers, and then again limit our investigation to generalized
nonassociative cyclic algebras. The lower bound for the determinant of a sum of positive-
definite matrices given in (15) needed for coding gain estimates and established in [9] holds
analogously in our setting. Sections 5 and 6 look at different choices for the prime ideal q,
with Section 5 focusing on the case when q is an inertial ideal.

We do not strive for completeness and refrain from investigating all possible cases of
nonassociative finite rings which can be obtained as quotients of natural orders. It is clear
how to proceed after seeing the selected cases highlighted here. Potential future applications
to coding theory are briefly considered in Section 7.

1. Preliminaries

1.1. Nonassociative algebras. Let R be a unital commutative ring and let A be an R-
module. We call A an algebra over R if there exists an R-bilinear map A × A → A,
(x, y) 7→ x · y, denoted simply by juxtaposition xy, the multiplication of A. An algebra A is
called unital if there is an element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A.
We will only consider unital algebras.

For an R-algebra A, associativity in A is measured by the associator [x, y, z] = (xy)z −
x(yz). The left nucleus of A is defined as Nucl(A) = {x ∈ A | [x,A,A] = 0}, the middle
nucleus as Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus as Nucr(A) = {x ∈
A | [A,A, x] = 0}. Their intersection Nuc(A) = {x ∈ A | [x,A,A] = [A, x,A] = [A,A, x] = 0}
is the nucleus of A. Nucl(A), Nucm(A) and Nucr(A) are associative subalgebras of A
containing R1. The commuter of A is defined as Comm(A) = {x ∈ A |xy = yx for all y ∈ A}
and the center of A is C(A) = Nuc(A) ∩ Comm(A) [18].
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Let R be a Noetherian integral domain with quotient field F and A a finite-dimensional
unital F -algebra. Then an R-lattice in A is a finitely generated submodule Γ of A which
contains an F -basis of A. An R-order Γ in A is a multiplicatively closed R-lattice containing
1A (note that the multiplication need not be associative). An R-order will be called maximal
if Γ′ ⊂ Γ implies Γ′ = Γ for every R-order Γ′ in A.

A non-trivial algebra A over a field F is called a division algebra if for any a ∈ A, a 6= 0,
the left multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa,
are bijective maps. Any division algebra is simple, that means has only trivial two-sided
ideals. A finite-dimensional algebra A is a division algebra over F if and only if A has no
zero divisors.

1.2. Skew polynomial rings. Let S be a unital associative ring, σ an injective ring endo-
morphism of S and δ : S → S a left σ-derivation, i.e. an additive map such that

δ(ab) = σ(a)δ(b) + δ(a)b

for all a, b ∈ S, implying δ(1) = 0. The skew polynomial ring R = S[t;σ, δ] is the set of skew
polynomials

∑n
i=0 ait

i with ai ∈ S, where addition is defined term-wise and multiplication
by

ta = σ(a)t+ δ(a) (a ∈ S).

Define Fix(σ) = {a ∈ S |σ(a) = a} and Const(δ) = {a ∈ S | δ(a) = 0} and put S[t;σ] =
S[t;σ, 0] and S[t; δ] = S[t; id, δ].

For f =
∑n
i=0 ait

i with an 6= 0 define the degree of f as deg(f) = n and deg(0) = −∞.
Then deg(fg) ≤ deg(f)+deg(g) (with equality if f or g has an invertible leading coefficient,
if S is a domain or if S is a division ring). A skew polynomial f ∈ R is irreducible in
R if it is no unit and it has no proper factors, i.e if there do not exist g, h ∈ R with
deg(g),deg(h) < deg(f) such that f = gh. f ∈ R is a (right)-invariant (also called two-
sided) skew polynomial if fR ⊂ Rf . In the following, we drop the right when we talk about
invariant polynomials. If f is invariant then Rf is a two-sided ideal in R and conversely,
every two-sided ideal in R is generated by an invariant polynomial.

1.3. The algebras Sf . Let R = S[t;σ, δ], σ be injective and δ a left σ-derivation. Suppose
that f =

∑m
i=0 dit

i ∈ R has an invertible leading coefficient dm. Then for all g ∈ R there
exist uniquely determined r, q ∈ R with deg(r) < deg(f), such that

g(t) = q(t)f(t) + r(t).

Let modrf denote the remainder of right division by such an f . Let Rm = {g ∈ R |deg(g) <
m}. Then the additive group Rm together with the multiplication

g ◦ h = gh modrf

becomes a unital nonassociative ring Sf = (Rm, ◦) also denoted by R/Rf [12]. Sf is a
unital nonassociative algebra over S0 = {a ∈ S | ah = ha for all h ∈ Sf}. This construction
was introduced by Petit [10] for unital division rings S. We call Sf a Petit algebra. Sf

is associative if and only if Rf is a two-sided ideal in R. We will only consider monic f ,
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since monic f are the ones used in code constructions. Moreover, Sf = Saf for all invertible
a ∈ S.

If Sf is not associative then S ⊂ Nucl(Sf ) and S ⊂ Nucm(Sf ), Nucr(Sf ) = {g ∈ R | fg ∈
Rf} and S0 is the center of Sf . It is easy to see that

C(S) ∩ Fix(σ) ∩ Const(δ) ⊂ S0.

Right multiplication with 0 6= h ∈ Sf , Rh : Sf −→ Sf , p 7→ ph, is an S-module en-
domorphism [10]. By expressing the map Rh in matrix form with respect to the S-basis
1, t, . . . , tm−1 of Sf , the map

γ : Sf → EndK(Sf ), h 7→ Rh

induces an injective S-linear map

γ : Sf → Matm(S), h 7→ Rh 7→ Y.

This special characteristic of Sf is exploited when designing space-time block codes. It uses
the fact that S ⊂ Nucl(Sf ) and S ⊂ Nucm(Sf ).

If S is a division algebra and Sf is a finite-dimensional vector space over S0, then Sf is
a division algebra if and only if f is irreducible in R [10, (9)].

For f =
∑m
i=0 dit

i ∈ S[t;σ], t is left-invertible if and only if d0 is invertible by a simple
degree argument. Thus if f is irreducible (hence d0 6= 0) and S a division ring then t is
always left-invertible and S0 = Fix(σ) ∩ C(S), which also is the center of Sf [12].

We highlight two special cases that are particularly relevant for our coding applications
later:

Definition 1. (i) Let S/S0 be an extension of commutative unital rings and σ an automor-
phism of S of order m such that S0 ⊂ Fix(σ). For any c ∈ S (it may even be zero),

Sf = S[t;σ]/S[t;σ](tm − c)

is called a nonassociative cyclic algebra (S/S0, σ, c) of degree m. For c ∈ S0, this is an
associative cyclic algebra, cf. [6], [9]. For c ∈ S \ S0, (S/S0, σ, c) has nucleus containing
S and center containing S0. Over fields, these algebras were studied for instance in [17] or
[20].
(ii) Let D be a finite-dimensional central division algebra over F = Cent(D) of degree n and
σ ∈ Aut(D) such that σ|F has finite order m. A (generalized) nonassociative cyclic algebra of
degree m is an algebra Sf = D[t;σ]/D[t;σ]f over F0 = F ∩Fix(σ) with f = tm−d ∈ D[t;σ].
We denote this algebra by (D,σ, d).

Example 1. Let F and L be fields, F0 = F ∩L, and let K be a cyclic field extension of both
F and L such that Gal(K/F ) = 〈ρ〉 and [K : F ] = n, Gal(K/L) = 〈σ〉 and [K : L] = m, and
such that ρ and σ commute. Let D = (K/F, ρ, c) be an associative cyclic division algebra
over F of degree n, c ∈ F0 and d ∈ D×. For x = x0 + x1e + x2e

2 + · · · + xn−1e
n−1 ∈ D,

extend σ to an automorphism σ ∈ AutL(D) of order m via

σ(x) = σ(x0) + σ(x1)e+ σ(x2)e2 + · · ·+ σ(xn−1)en−1.
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For all d ∈ D×,

Sf = D[t;σ]/D[t;σ](tm − d)

is the generalized nonassociative cyclic algebra (D,σ, d) of dimension m2n2 over F0. The
algebra is associative if and only if d ∈ F0. For all d ∈ F×,

(D,σ, d) ∼= (L/F0, γ, c)⊗F0 (F/F0, σ, d),

i.e. it is the tensor product of an associative and a nonassociative cyclic algebra [13]. For
f ∈ F0[t] this algebra appears in the classical literature on associative central simple algebras
as a generalized cyclic algebra of degree m in [7, Section 1.4].

The algebras (D,σ, d) with d ∈ L× or d ∈ F× are used to construct fast-decodable
space-time block codes, the matrix representing their right multiplication with entries in K,
i.e. computed with respect to the canonical basis of Sf as a left K-vector space, yields the
codebooks in this case, cf. for instance [14], [16], [19].

1.4. STBCs and coset coding. A space-time block code (STBC) is a set C of complex
n × m matrices that satisfies a number of properties which determine how well the code
performs. C is called fully diverse if the difference of any two code words has full rank, so
that det(X −X ′) 6= 0 for all matrices X 6= X ′, X,X ′ ∈ C. Since our codes C will be based
on the matrix representing right multiplication in an algebra, they are linear and thus their
minimum determinant is given by

δ(C) = inf
0 6=X∈C

|det(X)|2.

If δ(C) is bounded below by a constant, even if the codebook C is infinite, the code C has
non-vanishing determinant (NVD). If C is fully diverse, δ(C) defines the coding gain δ(C) 1

n ,
and the larger δ(C) is, the better the error performance of the code is expected to be.

We consider a model representing slow multiple antenna fading channels, which means
that the channel is constant over nL channel uses, so the code contains n × nL codewords
of the type X = (X1, . . . , XL), with the Xi matrices in some C.

To construct a coset space-time block code we take the following approach: we take
a space-time block code C which corresponds to a natural order Λ inside a generalized
nonassociative cyclic division algebra, this code is automatically fully diverse. A generalized
nonassociative cyclic division algebra is a Petit algebra Sf = K[t;σ]/K[t;σ](tm − d) with
K a number field, or a Petit algebra Sf = D[t;σ]/K[t;σ](tm − d) with D = (K/F, ρ, c) a
cyclic division algebra of degree n over a number field, each time f = tm − d an irreducible
polynomial chosen suitably as explained in the next section. Then C consists of the square
matrices with entries in OK which represent the right multiplication in Sf by a non-zero
element, computed with respect to the canonical basis of Sf as a left OK-module. This
is the inner code. The quotient of Λ by a suitably chosen two-sided ideal J generated by
an ideal I of OF as in Section 2 (or by an ideal I of a suitable subring of OF in case we
work with f ∈ D[t;σ] as in Section 3) yields a finite nonassociative unital algebra Λ/J ,
over which we design a code C of length L. This code C is the outer code and is an additive
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subgroup of
L⊕
i=1

Mats(OK/IOK),

with s = m or s = mn. Its codewords are of the type X = (X1, . . . , XL), with the Xi

matrices representing the right multiplication in the algebra Λ/J .
In order to obtain the Xi, we take the entries in the matrices representing the right

multiplication in Λ, i.e. the entries of the matrices of C, and read them modulo IOK , which
gives the outer space-time block code C. The coset code is obtained as the additive subgroup
C′ of matrices in

⊕L
i=1 Mats(OK) satisfying π(C′) = C, where π :

⊕L
i=1 Mats(OK) −→⊕L

i=1 Mats(OK/IOK). By construction, C′ has length L and is contained in the inner code
C. The goal is to design a well performing code C′, so that for instance it has a large
minimum determinant, or is fast-decodable. The later is guaranteed automatically if the
outer code is fast-decodable.

2. Quotients of natural orders in Sf , I

When S is a field, every skew polynomial ring S[t;σ, δ] can be made into either a twisted
or a differential polynomial ring by a linear change of variables. When constructing linear
codes, however, it can be an advantage to consider general skew polynomial rings. For
instance, cyclic (f, σ, δ)-codes constructed from natural order algebras Sf obtained from
some monic f ∈ S[t;σ, δ] can produce better distance bounds than cyclic (f, σ, δ)-codes
constructed only with an automorphism, i.e. with δ = 0, as noted in [2]. Therefore we keep
a more general skew polynomial setup in Sections 2.1 and 2.2, although when applying the
results to space-time codes later in this paper, we always assume that δ = 0.

2.1. Let K/F be a Galois extension of number fields of degree n. Let OF and OK be the
rings of integers of F and K. Let I be an ideal of OF and π : OK −→ OK/IOK be the
canonical projection. Let σ ∈ Gal(K/F ). We have σ(IOK) ⊂ IOK since σ|F = id. Thus σ
induces a ring homomorphism

σ : OK/IOK −→ OK/IOK

with σ = σ ◦ π and Fix(σ) = OF /I.
Suppose that δ is an F -linear left σ-derivation on K such that δ(OK) ⊂ OK . Then δ

induces a left σ-derivation

δ : OK/IOK −→ OK/IOK .

Since OF is a Dedekind domain,

I = qs11 · · · q
st
t

for suitable prime ideals qi of OF and so

OF /I = OF /qs11 · · · q
st
t
∼= OF /qs11 × · · · × OF /q

st
t ,

OK/IOK = OK/qs11 · · · q
st
t OK ∼= OK/q

st
t OK × · · · × OK/q

st
t OK ,

by the Chinese Remainder Theorem. On each ring OK/qsi
i OK there is a canonical induced

action of σ, and a canonical derivation induced by δ.
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2.2. Suppose

f =
m∑
i=0

dit
i ∈ OK [t;σ, δ]

is a monic skew polynomial, irreducible in K[t;σ, δ]. Consider the division algebra

Sf = K[t;σ, δ]/K[t;σ, δ]f

over S0. Since σ ∈ Gal(K/F ) and δ is F -linear, Sf is an algebra over S0 = F . The
nonassociative OF -algebra

Λ = OK [t;σ, δ]/OK [t;σ, δ]f

is an OF -order in Sf called the natural order. Λ is uniquely determined whenever f is not
invariant, since then K is the left nucleus of Sf which uniquely determines OK and in turn
Λ. Since f is irreducible in K[t;σ, δ], Λ does not have any zero divisors. Since OF lies in
the center of Λ [11], for every ideal I in OF , IΛ is a two-sided ideal of Λ. We have

(1) IΛ = {al | a ∈ I, l ∈ Λ} =

{
m−1∑
i=0

ait
i | ai ∈ IOK

}
.

The surjective homomorphism of nonassociative rings

Ψ : Λ −→ (OK/IOK)[t;σ, δ]/(OK/IOK)[t;σ, δ]f

g 7→ g

has kernel IΛ and induces an isomorphism between the two unital nonassociative algebras
given by

(2) Λ/IΛ −→ (OK/IOK)[t;σ, δ]/(OK/IOK)[t;σ, δ]f = Sf ,

g + IΛ 7→ g.

These are algebras over OF /I. The algebra Sf is associative if and only if Rf is a two-sided
ideal in R = (OK/IOK)[t;σ, , δ]. The associative orders from [6] appear here for invariant
polynomials f and δ = 0.

2.3. Let K/F be a Galois extension of degree m, Gal(K/F ) = 〈σ〉 and A = Sf with
f = tm − d ∈ OK [t;σ] irreducible in K[t;σ]. Then A = (K/F, σ, d) is a nonassociative
cyclic division algebra of degree m over F . A natural order of A is given by the OF -algebra
Λ = OK [t;σ]/OK [t;σ]f , and as a left OK-module,

Λ = OK ⊕OKt⊕ · · · ⊕ OKtm−1.

The right multiplication in Λ with a = am−1t
m−1 + · · · + a1t + a0 is given by the m ×m

matrix

(3) γ(a) =



a0 dσ(am−1) dσ2(am−2) · · · dσm−1(a1)
a1 σ(a0) dσ2(am−1) · · · dσm−1(a2)
a2 σ(a1) σ2(a0) · · · dσm−1(a3)
...

...
...

. . .
...

am−1 σ(am−2) σ2(am−3) · · · σm−1(a0)

 .
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with entries in OK . If d ∈ OK \ OF , A is not associative and Λ is uniquely determined.
Since OF lies in the center of Λ, for any ideal I of OF , IΛ is a two-sided ideal of Λ. We
have the following (OF /IOF )-algebra isomorphism:

(4) Λ/IΛ ∼= ((OK/IOK)/(OF /IOF ), σ, d̄) = Sf

with d̄ = d+ I, σ(a+ IOK) = σ(a) + IOK for all a ∈ OK , and

f(t) = tm − d̄ ∈ (OK/IOK)[t;σ].

If d ∈ OF is non-zero, A is an associative cyclic division algebra, Sf is an associative
generalized cyclic algebra (and if d̄ 6= 0, a classical associative cyclic algebra), and Λ depends
on the choice of the maximal subfield K in A. This case is covered in [6] and [9] and these
associative algebras were employed in the code constructions in [21].

Equation (1) and the isomorphism in (4) mean that the right multiplication in Λ/IΛ is
given by the m × m matrix in (3) where the entries now are read modulo IOK . We call
this matrix γ(a). Therefore we can obtain coset codes by taking the pre-image of codewords
(γ(x1), . . . , γ(xL)) under

π :
L⊕
i=0

Matm(OK) −→
L⊕
i=0

Matm(OK/IOK).

3. Quotients of natural orders in Sf , II

3.1. Let K/F be a cyclic Galois extension of number fields of degree n with Gal(K/F ) = 〈ρ〉.
Let OF and OK be the corresponding rings of integers. Let D = (K/F, ρ, c) be a cyclic
division algebra over F such that c ∈ O×F . Let D = (OK/OF , ρ, c) be the generalized
associative cyclic algebra over OF of degree n such that D⊗OF

F = (K/F, ρ, c) = D. Then

D = OK ⊕OKe⊕ · · · ⊕ OKen−1

is a natural OF -order of D, cf. 2.2 or [6].
Let σ ∈ Aut(D) and δ be a σ-derivation on D, satisfying the following criteria:

• F0 = F ∩ Fix(σ) ∩ Const(δ) is a number field.
• σ(D) ⊂ D and δ(D) ⊂ D.
• S0 = OF ∩Fix(σ)∩Const(δ) is the ring of integers of F0 where here σ and δ denote

the restrictions of σ and δ to D.

Suppose

f =
m∑
i=0

dit
i ∈ D[t;σ, δ]

is a monic skew polynomial, irreducible in D[t;σ, δ]. Consider the division algebra

Sf = D[t;σ, δ]/D[t;σ, δ]f

over F0. Then the S0-order

Λ = D[t;σ, δ]/D[t;σ, δ]f = OK ⊕OKe⊕ · · · ⊕ OKen−1tm−1

is the natural order of Sf . The center of Λ contains S0. Since f is irreducible in D[t;σ, δ],
Λ does not have zero divisors [11].
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Let I be an ideal in S0. S0 is contained in the center of D and the center of Λ, thus ID
is a two-sided ideal of D and IΛ is a two-sided ideal of Λ. We have

(5) IΛ = {al | a ∈ I, l ∈ Λ} =

{
m−1∑
i=0

ait
i | ai ∈ IOK

}
.

Let π : D −→ D/ID be the canonical projection. We have σ(ID) ⊂ ID since I ⊂ Fix(σ)
and σ(D) ⊂ D by assumption. Therefore σ induces a ring homomorphism

σ : D/ID −→ D/ID

with

Fix(σ) = Fix(σ)/IFix(σ)

and σ = σ ◦ π. We also have δ(ID) ⊂ ID by assumption. That means δ induces a left
σ-derivation

δ : D/ID −→ D/ID

with field of constants

Const(δ) = Const(δ)/I.

The surjective homomorphism of nonassociative rings

Ψ : Λ −→ (D/ID)[t;σ, δ]/(D/ID)[t;σ, δ]f, g 7→ g

has kernel IΛ and induces an isomorphism of unital nonassociative algebras

(6) Λ/IΛ ∼= (D/ID)[t;σ, δ]/(D/ID)[t;σ, δ]f, g + IΛ 7→ g

over

S0 = Fix(σ) ∩ Const(δ) ∩ F

with F = OF /IOF .

3.2. Example. Let F , L and K be number fields and let K be a cyclic extension of both
F and L such that

(1) Gal(K/F ) = 〈ρ〉 and [K : F ] = n,
(2) Gal(K/L) = 〈σ〉 and [K : L] = m,
(3) ρ and σ commute

as in Example 1. Let F0 = F ∩L. Let D = (OK/OF , ρ, c), c ∈ OF0 , be an associative cyclic
algebra over OF of degree n such that D = (K/F, ρ, c) = D⊗OF

F is a division algebra over
F . For x = x0 + ex1 + e2x2 + · · ·+ en−1xn−1 ∈ D where 1, e, . . . , en−1 is the standard basis
of D, define σ ∈ AutL(D) via

σ(x) = σ(x0) + σ(x1)e+ σ(x2)e2 + · · ·+ σ(xn−1)en−1.

Since c ∈ OF0 , σ ∈ AutL(D) has order m and restricts to σ ∈ AutOL
(D). Let f = tm − d ∈

D[t;σ] be irreducible in D[t;σ]. Then the F0-algebra Sf = (D,σ, d) is a division algebra.
For coding purposes, usually d ∈ O×F or d ∈ O×L .

A natural order of (D,σ, d) is given by the algebra Λ = D[t;σ]/D[t;σ]f , and

Λ = OK ⊕OKe⊕ · · · ⊕ OKen−1tm−1
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written as a left OK-module. Let I be an ideal in OF0 . Then there is an algebra isomorphism

Λ/IΛ ∼= (D/ID)[t;σ]/(D/ID)[t;σ]f, g + IΛ 7→ g.

These are algebras over F0 = OF0/I. This means that the quotient Λ/IΛ is isomorphic to
the F0-algebra (D,σ, d), where D = D/ID is a generalized associative cyclic algebra over
Fix(ρ).

Note that we will restrict our considerations to d ∈ O×F or d ∈ O×L as we are dealing with
applications to space-time block codes from now on.

The right multiplication in Λ with a non-zero x ∈ Λ is given by the mn × mn matrix
M(x) with entries in OK obtained by taking the right regular representation γ(x) in D of
each entry in the m×m-matrix

Y = γ(x) =



x0 dσ(xm−1) dσ2(xm−2) · · · dσm−1(x1)
x1 σ(x0) dσ2(xm−1) · · · dσm−1(x2)
x2 σ(x1) σ2(x0) · · · dσm−1(x3)
...

...
...

. . .
...

xm−1 σ(xm−2) σ2(xm−3) · · · σm−1(x0)


which has entries in D. Thus M(x) is given by

(7) M(x) =


γ(x0) γ(d)σ(γ(xm−1)) · · · γ(d)σm−1(γ(x1))
γ(x1) σ(γ(x0)) · · · γ(d)σm−1(γ(x2))

...
...

. . .
...

γ(xm−1) σ(γ(xm−2)) · · · σm−1(γ(x0))


where σ(γ(x)) means we apply σ to each entry of the m × m-matrix γ(x). The matrices
M(x) induce a fully diverse linear space-time block code. If d ∈ OF , then in particular
det(M(x)) ∈ OF ([8], [16, Remark 5]). And if d ∈ OL, then

(8) M(x) =



γ(x0) dσ(γ(xn−1)) dσ2(γ(xn−2)) · · · dσm−1(γ(x1))
γ(x1) σ(γ(x0)) dσ2(γ(xn−1)) · · · dσm−1(γ(x2))
γ(x2) σ(γ(x1)) σ2(γ(x0)) · · · dσm−1(γ(x3))

...
...

...
. . .

...
γ(xn−1) σ(γ(xn−2)) σ2(γ(xn−3)) · · · σm−1(γ(x0))


with dσ(γ(xn−1)) etc. denoting the scalar multiplication of the matrix with d and det(γ(M(x))) ∈
L ∩ OK = OL ([19], [16, Lemma 19]).

The algebras A = (D,σ, d) are behind the fast-decodable iterated codes in [14], [16], [8]
[19].

Equation (5) and the isomorphism in (6) imply that the right multiplication in Λ/IΛ
is given by the mn ×mn matrix in (7) where the entries are read modulo IOK . We call
this matrix M(x). Therefore we obtain coset codes by taking the pre-image of codewords
(M(x1), . . . ,M(xL)) under

π :
L⊕
i=0

Matnm(OK) −→
L⊕
i=0

Matnm(OK/IOK).
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4. The structure of quotients of natural orders

From now on we will only consider the generalized nonassociative cyclic algebras intro-
duced in Sections 2.3 and 3.2, as these play an important role in coding theory, both for
σ-constant cyclic linear codes and for space-time block coding. The setup from [9] is obtained
as a special case whenever f is invariant.

If desired, all the results can be generalized verbatim or with slight adjustments to the
general cases considered up to now.

We look at our two setups separately:

4.1. Quotients of orders in a nonassociative cyclic algebra. Let D = (K/F, σ, d) be
a nonassociative cyclic division algebra of degree m with d ∈ O×K and Λ a natural order of
D.

Unlike in the associative setting we cannot simply limit ourselves to the study of non-zero
two-sided ideals J of Λ using a correspondence between them and non-zero ideals of OF ,
since we do not know whether J ∩ OF is a non-zero ideal, instead we only have that for
every non-zero two-sided ideal J in Λ, I = J ∩ OK is a non-zero ideal of OK :

Lemma 2. (i) Every a ∈ Λ is the zero of the characteristic polynomial of γ(a), which is a
polynomial over OK . In particular, if D is associative, the elements of Λ are integral over
OF .
(ii) Let J be a non-zero two-sided ideal in Λ. Then J ∩ OK 6= 0.

Proof. (i) Since K ⊂ Nucr(D), left multiplication La with any a ∈ D× is a linear endomor-
phism of the right K-module D, so that La ∈ EndK(D) and thus γ : D −→ EndK(D) −→
Matm(K), a 7→ La 7→ γ(a) is a K-linear embedding of K-vector spaces, where γ(a) is the
matrix representing right multiplication in D defined in Example 2.3.

For a ∈ Λ, the entries of the matrix γ(a) are all in OK and the characteristic polynomial
of the matrix of γ(a) is a polynomial over OK . By the Theorem of Cayley-Hamilton, the
matrix γ(a) inserted into its own characteristic polynomial gives the zero matrix. Since
the embedding of D into Matm(K) is K-linear, or respectively, the embedding of Λ into
Matm(OK) is OK-linear, thus a also is a zero of the characteristic polynomial of γ(a), a
polynomial over OK . Therefore any a ∈ Λ is the zero of the characteristic polynomial of
γ(a). The second assertion is [9, Lemma 2].
(ii) The proof is similar to the one of [9, Lemma 3]: Let j ∈ J , j 6= 0, then j is the zero of
the characteristic polynomial of γ(a) by (i), which is a polynomial over OK . Hence there are
bi ∈ OK such that js + bs−1j

s−1 + · · ·+ b1j+ s0 = 0. Suppose that b0 = b1 = · · · = bi−1 = 0
and bi = 0, then js + bs−1j

s−1 + · · ·+ b1j + s0 = ji(js−i + · · ·+ bs−1j
s−i−1 + bi) = 0. Since

D is division, Λ has no non-trivial zero divisors. Thus js−i + · · ·+ bs−1j
s−i−1 + bi = 0 and

bi 6= 0, implying that bi = −(js−i + · · ·+ bs−1j
s−i−1) ∈ J ∩ OK . �

Remark 3. Note that, contrary to the situation for associative division algebras studied in
[9], the embedding D −→ Matm(K) only embeds D into Matm(K) as a K-vector space.
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What we can still say is that any non-zero ideal I of OF lies in the center of Λ and
generates the two-sided ideal IΛ where

IΛ ∩ OF = I.

From now on let I be a non-zero two-sided ideal of OF , i.e I = qs11 · · · q
st
t for suitable prime

ideals of OF , and

OF /I = OF /qs11 · · · q
st
t
∼= OF /qs11 × · · · × OF /q

st
t ,

(9) OK/IOK = OK/qs11 · · · q
st
t OK ∼= OK/q

st
t OK × · · · × OK/q

st
t OK .

We immediately obtain from Equation (4):

Theorem 4. For

σ(u+ IOK) = σ(u) + IOK
and d̄ = d+ IOK ,

(10) Λ/IΛ ∼= ((OK/IOK)/(OF /I), σ, d̄)

is a generalized nonassociative cyclic algebra over OF /I.

The map Ψ defined in Section 2.2 together with the isomorphism from Equation (9)
implies that the nonassociative algebra Λ/IΛ decomposes into a product of generalized
nonassociative cyclic algebras Di = (Si/Ri, σ, d) where all the rings Ri and Si are finite:

Lemma 5. The generalized nonassociative cyclic algebra Λ/IΛ of Theorem 4 can be de-
scribed as a direct sum of generalized nonassociative cyclic algebras, i.e.

(11) Λ/IΛ ∼= ((OK/qs11 OK)/(OF /qs11 ), σ, d+qs11 )×· · ·×((OK/qst
t OK)/(OF /qst

t ), σ, d+qst
t )

where the respective maps σ are defined via

σ(u+ q
sj

j OK) = σ(u) + q
sj

j OK .

This canonically generalizes [9, Lemma 4] to the nonassociative setting. The proof is
analogous only that here we are working with nonassociative rings and thus homomorphisms
between nonassociative rings. Any non-zero two-sided ideal in Λ/IΛ (i.e. of the form J /IΛ
with IΛ ⊂ J ) corresponds to a non-zero two-sided ideal in the algebra on the right-hand
side. By classical ideal theory, every ideal of such a product of nonassociative algebras is of
the form I1 × · · · × It with Ij an ideal of Rj . W.l.o.g., it therefore suffices to look at the
ideals in a generalized nonassociative cyclic algebra

((OK/qsOK)/(OF /qs), σ, d+ qs)

(note that d + qs = 0 is a possibility). Such an algebra is a nonassociative finite ring with
m|OK/qsOK | elements and OF /qs contained in its center. This observation canonically
generalizes [9, Lemma 4] and its proof.

Let m = efg with g the number of primes in the factorization of qOK , e the ramification
index and f the inertial degree. In this paper we will only look at the unramified case, where
e = 1.
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Remark 6. If x̄ ∈ Λ/IΛ is the image of x ∈ Λ then we can take the matrix representing
right multiplication with x and mod the entries by IOK and if we use the algebra for coset
coding, a codeword in our coset code (γ(x1), . . . , γ(xL)) is a preimage of (γ(x̄1), . . . , γ(x̄L))
under

π :
L⊕
i=0

Matm(OK) −→
L⊕
i=0

Matm(OK/IOK),

respectively, a codeword in a linear coset code (x1, . . . , xL) is a preimage of (x̄1, . . . , x̄L)
under

π :
L⊕
i=0

Λ −→
L⊕
i=0

Λ/IΛ.

[9, Remark 3] holds analogous for our nonassociative setting, i.e. any ideal I in OK/qsOK
such that σ(I) = I yields an ideal

m−1⊕
i=0

Iti

in the nonassociative cyclic algebra

((OK/qsOK)/(OF /qs), σ, c+ qs).

4.2. Quotients of orders in algebras used for iterated space-time block codes.
Let D = (K/F, ρ, c) with c ∈ O×F0

, A = (D,σ, d) be a division algebra as in Section 3.2,
d ∈ O×L or d ∈ O×F , and Λ a natural order in A.

Let I be a non-zero two-sided ideal of OF0 , then I lies in the center of A = (D,σ, d) and
generates the two-sided ideal IΛ of Λ with

IΛ ∩ OF0 = I.

Write I = qs11 · · · q
st
t for suitable prime ideals of OF0 , and observe that then

OF0/I = OF0/q
s1
1 · · · q

st
t
∼= OF0/q

s1
1 × · · · × OF0/q

st
t ,

(12) OK/IOK = OK/qs11 · · · q
st
t OK ∼= OK/q

st
t OK × · · · × OK/q

st
t OK .

Theorem 7. Let

σ(u+ IOK) = σ(u) + IOK , ρ(u+ IOK) = ρ(u) + IOK

and c̄ = c+ IOK , d ∈ O×L , d̄ = d+ IOK . Then

(13) Λ/IΛ ∼= (D/ID)[t;σ]/(D/ID)[t;σ]f,

i.e. the right-hand side is the generalized nonassociative cyclic algebra

(D/ID, σ, d̄)

over F 0 = OF0/pOF0 with the algebra

D/ID ∼= ((OK/IOK)/(OF /I), ρ, c̄)

decomposing into a product of generalized associative cyclic algebras by Lemma 5.



14 S. PUMPLÜN

Proof. Equation (6) yields the isomorphism Λ/IΛ ∼= (D/ID)[t;σ, δ]/(D/ID)[t;σ, δ]f, g +
IΛ 7→ g. Moreover, D/ID decomposes into a product of generalized associative cyclic alge-
bras as described in Lemma 5. �

Let f(t) = tn − d ∈ D[t;σ], d ∈ O×L or d ∈ O×F and

Dj = ((OK/q
sj

j OK)/(OF /q
sj

j ), ρ, c+ q
sj

j )

for 1 ≤ j ≤ t, where the respective maps σ, ρ are canonically defined via

σ(u+ q
sj

j OK) = σ(u) + q
sj

j OK ,

ρ(u+ q
sj

j OK) = ρ(u) + q
sj

j OK

(note that here and later we omit the index j and just write σ, ρ for better readability). We
now get the following isomorphism of algebras:

Theorem 8. In the situation of Theorem 7, if

D/ID ∼= D1 × · · · ×Dl

is a product of generalized associative cyclic algebras, then the nonassociative ring Λ/IΛ can
be described as

Λ/IΛ ∼= D1[t;σ]/D1[t;σ](tn − d)× · · · ×Dl[t;σ]/Dl[t;σ](tn − d)

or alternatively, as

(14) Λ/IΛ ∼= (D1, σ, d+ qs11 )× · · · × (Dl, σ, d+ qst

l ).

Hence the nonassociative ring Λ/IΛ decomposes into a product of generalized nonasso-
ciative cyclic algebras

Rj = (Dj , σ, d+ q
sj

j ).

These are finite nonassociative rings with

nm|OK/q
sj

j OK |

elements.
Any non-zero two-sided ideal in Λ/IΛ (i.e. of the form J /IΛ with IΛ ⊂ J ) corresponds

to a non-zero two-sided ideal in the algebra on the right-hand side of (14) in Theorem 8.
Every ideal of such a product of nonassociative algebras is of the form I1×· · ·×It with Ij

an ideal of Rj . W.l.o.g., it thus suffices to look at the ideals in a generalized nonassociative
cyclic algebra

(Ds, σ, d+ qs) = Ds[t;σ]/Ds[t;σ](tm − d).

with f = tm − d = tm − d + qs ∈ (OK/qsOK)[t;σ], m the order of σ. This observation
canonically generalizes [9, Lemma 4] to the nonassociative setting. Let mn = efg with g

being the number of primes in the factorization of qOK , e the ramification index and f the
inertial degree.

We again only look at the unramified case, where e = 1.



QUOTIENTS OF ORDERS 15

Remark 9. Analogously as described in Remark 6, if x̄ ∈ Λ/IΛ is the image of x ∈ Λ then
we can take the matrix representing right multiplication with x and mod the entries by IOK
and if we use the algebra for coset coding, a codeword in our space-time block coset code
(M(x1), . . . ,M(xL)) is a preimage of (M(x̄1), . . . ,M(x̄L)) under

π :
L⊕
i=0

Matnm(OK) −→
L⊕
i=0

Matnm(OK/IOK),

respectively, a codeword in our linear coset code (x1, . . . , xL) is a preimage of (x̄1, . . . , x̄L)
under

π :
L⊕
i=0

Λ −→
L⊕
i=0

Λ/IΛ.

Any ideal I in OK/qsOK such that σ(I) = I and ρ(I) = I yields an ideal

I ⊕ Ie⊕ · · · ⊕ Ien−1 ⊕ · · · ⊕ Ien−1tm−1

(we denote the canonical basis of any Di by 1, e, . . . , en−1 for ease of notation) in the algebra

(Di, σ, d+ qs) = Di[t;σ]/Di[t;σ](tm − d).

We note that [9, (11)] also holds for the codes obtained in our nonassociative setting: For
Xi = M(xi) and J = (α), α ∈ OF0 , we obtain a lower bound for the minimum determinant
∆min of C:

(15) ∆min ≥ min0 6=Xi
|det(Xi)|2min(dH(C)2, |α|2n),

where dH(C) is the Hamming distance of C.

4.3. Codes with prescribed minimum distance. The construction mentioned in [9,
Example 5] works here as well and designs a code C such that C has prescribed minimum
distance: suppose K = OK/IOK is a field. Choose a code B of desired minimum distance
dH and length L over K and incorporate the entries of the code into the first summand of
the right hand side of a generalized nonassociative cyclic algebra as in (10):

Λ/IΛ ∼= ((OK/IOK)/(OF /I), σ, d̄)) =
m−1⊕
i=0

(OK/IOK)ti,

or into the first summand of the right hand side of a generalized nonassociative cyclic algebra
as in (13):

Λ/IΛ ∼= (D/ID, σ, d̄) ∼=
i=m−1,j=n−1⊕

i,j=0

(OK/IOK)eitj

(with 1, e, . . . , em−1 denoting the canonical basis of D/ID).
The matrices representing the right multiplication in Λ/IΛ form a subset of Matm(K)

(respectively, of Matmn(K)) and are obtained by taking the matrices representing the right
multiplication in Λ and then modding out the entries of each matrix by IOK . Choose as
outer code C the L-tuples of matrices coming from Λ/IΛ such that (x1,0, . . . , xL,0) belong
to B as explained in [9, Example 5], since the fact that we might be dealing also with
nonassociative algebras here is not relevant in the argument.
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5. The inertial case, where g = e = 1 and I = q

5.1. Nonassociative cyclic division algebras. In the terminology of Section 2.3, let
g = e = 1. Then I = q ⊂ OF remains a prime ideal in OK and qOK = Q for a prime Q of
OK with inertial degree f = m. The finite field K = OK/qOK = OK/Q is a cyclic Galois
field extension of degree m of F = OF /q with Gal(K/F ) = 〈σ〉.

Let A = (K/F, σ, c) be a nonassociative cyclic division algebra of degree m, c ∈ OK \OF ,
with natural order Λ and

Λ/IΛ ∼= (K/F, σ, c)

with c = c+ q. Since c 6∈ OF it is clear that c 6∈ q.

Theorem 10. Let I = q be a prime ideal in OF which is inert in OK , and qOK = Q, Q a
prime ideal in OK . Then

Λ/IΛ ∼= (K/F, σ, c)

is a nonassociative cyclic algebra of degree m over the finite field F . If m is prime or if
1, c̄, . . . , c̄m−1 are linearly independent over F , then this is a central simple division algebra
and hence the only proper two-sided ideal J of Λ that contains I = q is

IΛ =
m−1⊕
j=0

qOKtj .

Proof. Since c 6∈ q, c̄ ∈ F×, Λ/IΛ ∼= (K/F, σ, c) is a nonassociative cyclic algebra of degree
m over F . If m is a prime or if 1, c̄, . . . , c̄m−1 are linearly independent over F , it is a division
algebra [20] and therefore has only trivial two-sided ideals. Thus the only proper two-sided
ideal J of Λ that contains I is IΛ =

⊕m−1
j=0 qOKtj . �

Example 11. Let ω7 be a primitive 7th root of unity, K = Q(ω3, ω7 + ω−1
7 ), F = Q(ω3),

and let A = (Q(ω3, ω7 + ω−1
7 )/Q(ω3), σ, c) with c ∈ OK \ OF be a nonassociative cyclic

division algebra of degree 3. Then

Λ = Z[ω3, ω7 + ω−1
7 ]⊕ Z[ω3, ω7 + ω−1

7 ]t⊕ Z[ω3, ω7 + ω−1
7 ]t2

is the natural order in A. Let I = 〈2〉, which is a prime ideal in OF = Z[ω3], then this ideal
remains prime in OK = Z[ω3, ω7 +ω−1

7 ] and Z[i]/I ∼= F4. Since I is inert in Q(ω3, ω7 +ω−1
7 ),

we have by Theorem 10,

Λ/IΛ ∼= (F64/F4, σ, c)

is a nonassociative cyclic division algebra of degree 3 over F4 for all c 6= 0. It follows that J =
〈2〉Λ is the only proper two-sided ideal of Λ that contains 〈2〉Λ and Λ/J ∼= (F64/F4, σ, c).

Example 12. Let ω15 be a primitive 15th root of unity, K = Q(i, ω15 + ω−1
15 ), F = Q(i),

and let D = (Q(i, ω15 +ω−1
15 )/Q(i), σ, c) with c ∈ OK \OF be a nonassociative cyclic division

algebra of degree 4 (i.e., we choose c such that 1, c, c2, c3 are linearly independent). Then

Λ = Z[i, ω15 + ω−1
15 ]⊕ Z[i, ω15 + ω−1

15 ]t⊕ Z[i, ω15 + ω−1
15 ]t2 ⊕ Z[i, ω15 + ω−1

15 ]t3

is the natural order in D.
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Let 〈2〉 ⊂ Z, which is the square of the ideal 〈1 + i〉 in OF = Z[i]. That is, 〈2〉 is totally
ramified in Q(i) and Z[i]/〈1 + i〉 ∼= F2. Let I = q = 〈1 + i〉. Then 〈1 + i〉 is unramified in
Q(i, ω15 + ω−1

15 ). By Theorem 10, we have

Λ/IΛ ∼= (F16/F2, σ, c)

is a nonassociative cyclic algebra of degree 4 over F4 which is never a division algebra, since
1, c, c2, c3 are always linearly dependent over F2. Hence

Λ/IΛ ∼= (F16/F2, σ, c)

is a nonassociative cyclic algebra with zero divisors and f = t4 − c is reducible in F16[t;σ].

Remark 13. In the nonassociative case, it is very easy to make sure the algebra employed
is division. Space-time block codes designed using cyclic division algebras which are not
associative are fully diverse, however, a non-vanishing determinant cannot be achieved in
most cases. For scenarios like the multiple-input double-output code design, it can be worth
trading the non-vanishing determinant for fast-decodability, however [21].

Example 14. Let K = Q(i,
√

5), F = Q(i), D = (Q(i,
√

5)/Q(i), σ, c) with c ∈ OK \OF be
a nonassociative quaternion algebra. The automorphism σ : K → K is defined by σ(i) = −i.
Then

Λ = Z[i, (1 +
√

5)/2]⊕ Z[i, (1 +
√

5)/2]t

is the natural order in D. Let I = q = 〈1 + i〉 ⊂ Z[i], then Z[i]/I ∼= F2. Since I is inert in
Q(i,
√

5), we have

Λ/IΛ ∼= (F4/F2, σ, c)

is a nonassociative quaternion algebra over F2 for all c 6= 0. It follows that J = 〈1 + i〉Λ is
the only proper two-sided ideal of Λ that contains 〈1 + i〉Λ and Λ/J ∼= (F4/F2, σ, c).

As in [9, Example 4], we can choose the coset code C′ = {(γ(x0), γ(x1), γ(x2)) ∈ Mat2(OK) | γ(x2) =
γ(x0) + γ(x1)} as preimage from the space-time codeword

(γ(x0), γ(x1)γ(x0) + γ(x1)).

Recall that a coset code constructed from this nonassociative cyclic algebra however would
not have non-vanishing determinant.

5.2. Generalized nonassociative cyclic division algebras. In the terminology of Sec-
tion 3.2, let g = e = 1. Then I = q ⊂ OF0 remains a prime ideal in OK and qOK = Q for
a prime Q of OK with inertial degree f = m. The finite field K = OK/qOK = OK/Q is a
cyclic Galois field extension of degree m of F = OF /q with Gal(K/F ) = 〈ρ〉. The finite field
K = OK/qOK = OK/Q is a cyclic Galois field extension of the field L = OL/q of degree n
with Gal(K/F ) = 〈σ〉.

Let A = (D,σ, d) with D = (K/F, ρ, c), c ∈ O×F0
, d ∈ O×L or d ∈ O×F , be a division algebra

as in Section 3.2, and Λ be a natural order in A.
From Proposition 8 we know that

D/ID ∼= D1 × · · · ×Dt
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is a product of generalized associative cyclic algebras and

Λ/IΛ ∼= D1[t;σ]/D1[t;σ](tn − d)× · · · ×Dl[t;σ]/Dl[t;σ](tn − d),

i.e.,

(16) Λ/IΛ ∼= (D1, σ, d+ qs11 )× · · · × (Dl, σ, d+ qsl

l ).

Here, the

Di
∼= (K/F, ρ, c), 1 ≤ i ≤ l,

are generalized associative cyclic algebras of degree n over the finite field F . By [9, Propo-
sition 1, Proposition 2], if c 6∈ q then

Di
∼= (K/F, ρ, c) ∼= Matn(F ),

and the only proper two-sided ideal Ji in the natural order of Di that contains I = q is

n−1⊕
j=0

qOKej .

If c ∈ q then

Di
∼= (K/F, ρ, 0) ∼= K[t; ρ]/(en),

and the only two-sided ideals Ji in the natural order of Di that contain I = q are the ideals
(ej), 1 ≤ j ≤ n− 1. The two-sided ideals of Λ/I thus have the form J1 × · · · × Jl with the
Jk of the corresponding type.

Example 15. Let ω = ω3 denote the primitive third root of unity, θ = ω7 +ω−1
7 = 2 cos(2π

7 )
where ω7 is a primitive 7th root of unity and let F = Q(θ).

Let K = F (ω) = Q(ω, θ) and take the quaternion division algebra D = (K/F, σ,−1),
where σ : i 7→ −i. In particular, this means σ(ω) = ω2. Let L = Q(ω) so that K/L is a
cubic cyclic field extension whose Galois group is generated by the automorphism

τ : ω7 + ω−1
7 7→ ω2

7 + ω−2
7 .

Note that ω ∈ OL = Z[ω]. The algebra A = (D, τ, ω) is used in the codes employed in [19]
(cf. [15]). Since ω 6= zτ̃(z)τ̃2(z) for all z ∈ D, A is division [19].

Here

Λ = Z[ω, ω7 + ω−1
7 ]⊕ Z[ω, ω7 + ω−1

7 ]e⊕ Z[ω, ω7 + ω−1
7 ]e2 ⊕ . . .

is the natural order in A.
Let I = 〈2〉, which is also a prime ideal in OF = Z[ω] and this ideal remains prime in

OK = Z[ω, ω7 + ω−1
7 ] and Z[i]/I ∼= F4. I is inert in K = Q(ω, ω7 + ω−1

7 ). We have that

Λ/IΛ ∼= ((F64/F8, σ,−1), τ , ω)

is a generalized nonassociative cyclic algebra employing the split quaternion algebra

(F64/F8, σ,−1) ∼= Mat2(F8)

over F8 in its construction, where ω ∈ Z[ω, ω7 + ω−1
7 ] \ Z[ω7 + ω−1

7 ].
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6. Some more case studies

Without striving to cover all cases, we proceed to give some more examples of the nonas-
sociative rings we obtain as quotients Λ/IΛ of Λ.

6.1. A = (K/F, σ, d) and I = qs. Let A = (K/F, σ, d) be a nonassociative cyclic division
algebra, c ∈ OK \OF , with the natural order Λ. Let I = qs be a power of a prime ideal q in
OF , s > 1. We assume that q is inert in OK , i.e. q ⊂ OF stays prime in OK , so g = e = 1,
f = m. Define qOK = Q, with Q a prime ideal in OK . Then

OK/qsOK ∼= OK/Qs

and

Λ/IΛ ∼= ((OK/Qs)/(OF /qs), σ, c)

with c = c+Qs,

σ(x+Qs) = σ(x) +Qs,

is a generalized nonassociative cyclic algebra over OF /qs. Since d ∈ OK \OF , we know that
d 6∈ q.

6.2. A = (D,σ, d), I = qs and c 6∈ q. Let A = (D,σ, d) as in Section 3.2, and assume
d ∈ OL invertible (if d ∈ OF invertible a similar argument applies). Let D = (K/F, σ, c),
c ∈ OF0 , and take a natural order Λ in A.

Let I = qs be a power of a prime ideal q in OF0 , s > 1. We assume that q is inert in OK ,
i.e. q stays prime in OK . Define qOK = Q, F = OF /q, with Q a prime ideal in OK and

OK/qsOK ∼= OK/Qs.

Then

Λ/IΛ ∼= (D,σ, d+ qs) = D[t;σ]/D[t;σ](tm − d)

with

D = D/ID = ((OK/qsjOK)/(OF /qs), ρ, c+ qst ),

f = tm − d+ qs ∈ (OL/qsOL)[t;σ],

m the order of σ.
Suppose that c 6∈ q, then we know by [9, Proposition 3] that

D/ID ∼= Matn(OF /qs)

splits.
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6.3. A = (K/F, σ, d), the split case. Let A = (K/F, σ, d) be a nonassociative cyclic
division algebra, d ∈ OK \ OF , with the natural order Λ.

Suppose that I = q ⊂ OF is a prime ideal that factors as

qOK = Q1 . . .Qg

for some g > 1. Define the field F = OF /q and let K = OK/qOK , then the Chinese
Remainder Theorem tells us that

K ∼= K
(1) × · · · ×K(g)

and consequently this isomorphism induces an automorphism σ on K ∼= K
(1) × · · · ×K(g)

.
Analogously as in [9, (15)] we thus have an isomorphism, this time of generalized nonasso-
ciative cyclic algebras over the field F , given by

Λ/IΛ ∼= ((K
(1) × · · · ×K(g)

)/F , σ, d).

As proved in [9, Lemma 5], here

K
(i)
/F

is a cyclic field extension with Galois group generated by σg, and

K
(i) ∼= K

(1)
for all i ∈ {2, . . . ,m− 1}.

Moreover, after suitably reordering the primes Q1, . . . ,Qg we can assume the action of σj

on (k, 0, . . . , 0) ∈ K(1) × · · · ×K(g)
is given by (0, . . . , σj(k), . . . , 0) with σj(k) being in the

slot j + 1, read modulo g.
We have d 6∈ q.

6.4. A = (D,σ, d), the split case. Let A = (D,σ, d) as in Section 3.2, and assume d ∈ OL
invertible (if d ∈ OF invertible a similar argument applies). Let D = (K/F, σ, c), c ∈ OF0 ,
and take a natural order Λ in A.

Suppose that q ⊂ OF is still a prime ideal, but that I = q ⊂ OF0 factors as qOK =
Q1 . . .Qg for some g > 1. Define the fields F0 = OF0/q and F = OF /qOF . The Chinese
Remainder Theorem tells us that for K = OK/qOK , we have

K ∼= K
(1) × · · · ×K(g)

and consequently this induces an automorphism σ on K ∼= K
(1) × · · · ×K(g)

. By [9, (15)]
we thus have an isomorphism

D/ID ∼= ((K
(1) × · · · ×K(g)

)/(OF /I), ρ, c)

of cyclic algebras over the field F . As proved in [9, Lemma 5], after suitably reordering the
primes Q1, . . . ,Qg we can assume that the action of ρj on (k, 0, . . . , 0) ∈ K(1) × · · · ×K(g)

is given by (0, . . . , ρj(k), . . . , 0) with ρj(k) being in the slot j + 1, read modulo g. There are
two cases to consider:
If c 6∈ q then

D/ID ∼= Matn(F )

[9, Proposition 4] and hence
Λ/IΛ ∼= (Matn(F ), σ, d).
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If c ∈ q then
D/ID ∼= ((K

(1) × · · · ×K(g)
)/F , ρ, c)

[9, Proposition 5] and thus
Λ/IΛ ∼= (D/ID, σ, d).

Note that both times d 6∈ q since we look at algebras which are not associative.

7. Conclusion and future work

Our approach canonically generalizes and unifies the ones of [5] and [6]: the situation
considered there only deals with natural orders in associative cyclic division algebras, i.e.
where f = tm − d ∈ OK [t;σ] is irreducible and K/F is a cyclic number field extension of
degree m with Galois group generated by σ.

We leave it to coding specialists to find well performing codes over the nonassociative
finite rings we have presented here, and to decide to which coding scenarios they can be
best applied. We suspect there are applications to wiretap coding, similarly as outlined in
[9, Section 8] using the way to design the wiretap lattice codes presented in [1].

It also suggests that future work might look at the different possible constructions of
linear codes over finite chain rings which arise from nonassociative algebras obtained from
a skew polynomial ring, as it can be seen as yet another generalization of Construction A of
lattices from linear codes which are defined using the quotient Λ/p for some suitable prime
ideal p.
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