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Visual tracking aims to detect the location of a possibly moving target by extracting

local appearance features and matching them between consecutive images to obtain ac-

curate estimates of target location. Tracking of generic objects is one of the most active

topics in computer vision. Despite the large body of work addressing this problem, ro-

bust visual tracking of generic objects is still a challenging problem, as the performance

of a visual tracking algorithm is affected by many factors, such as non-rigid object de-

formation, partial or full occlusion of the target, illumination variation, scale variation,

etc. Especially, many objects in the real world have a complex appearance and artic-

ulated structure. The combination of rigid motion and non-rigid object deformation

results in complex appearance changes, making general object tracking a particularly

hard problem.

Recently, part-based trackers are preferred in tracking with occlusion and non-rigid

deformation because part-based models, which represent the target as a connected set

of components, each describing a section of the object, can provide more flexible and

robust object appearance models. However, there are four main problems with current

part-based trackers: 1) current part-based trackers rely on a response map estimating

the likelihood that any given location in an image represents the target (part); 2) the

spatial information utilised by current part-based models is limited and inflexible; 3)

there is no way of jointly learning shape and appearance for current part-based trackers;

4) a more complex motion model is required, with parts’ motion having separate factors.

To address these four problems, this thesis proposes a novel approach to part-based

tracking by replacing local matching of an appearance model by direct prediction of the

displacement between local image patches and part locations. This thesis proposes to use

cascaded regression (SDM) with incremental learning on deeply learned features to track

generic objects without any prior knowledge of an object’s structure or appearance. This

thesis exploits the spatial constraints between individual parts and those between parts

and the object as a whole by implicitly learning the shape and deformation parameters

of the object in an online fashion. A multiple temporal scale motion model is integrated

to initialise the cascaded regression search close to the target and to allow it to cope

with occlusions. Experimental results clearly demonstrate the value of the method’s

components, and comparison with the state-of-the-art techniques in the CVPR 2013

Visual Tracker Benchmark shows that the proposed TRIC-track tracker ranks first on

the full dataset.

To address the problems of low efficiency and limited samples in SDM in TRIC-track,

this thesis introduces Continuous Regression to model-free visual tracking. It is found

that the Taylor expansion is not able to accurately approximate image features of sample

space with a high variance in visual tracking. This problem is alleviated by introducing



Locally Continuous Regression strategy, proposed in this thesis. It unifies sampling-

based regression with Continuous Regression in an efficient manner by running Contin-

uous Regression on a few sample locations spread around the target, and relating those

sampled locations to each other. Locally Continuous Regression is integrated into the

main framework of TRIC-track and shows six times computational cost improvement

without sacrificing the performance, compared to its sampling-based counterpart.
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Chapter 1

Introduction

Tracking of generic objects is one of the most active topics in computer vision. The

visual object tracking (VOT) challenge, which has been held from 2013 to 2016, has

received results of many trackers evaluated on the benchmark every year (Kristan et al.,

2013, 2014, 2015, 2016b). For example, VOT2015 presents results of 62 state-of-the-art

trackers. It aims to detect the location of a possibly moving target by extracting local

appearance features and matching them between consecutive images to obtain accurate

estimates of the target location, often helped by similar estimates of the object’s motion.

The parameters describing a target object can vary, but often include position, size,

orientation and velocity. Tracking information can subsequently be used to reason about

the target’s behaviour or complete other tasks that require knowledge of the object’s

state. Visual tracking technology is related to image processing, pattern recognition,

artificial intelligence, automatic control and many other areas (Maggio & Cavallaro,

2011).

It has extensive applications in areas such as visual (robot) navigation (Davison, Reid,

Molton, & Stasse, 2007), surveillance (Hampapur et al., 2005; Anjum & Cavallaro, 2008;

Chen, Lin, & Chen, 2011), traffic monitoring (J. Zhou, Gao, & Zhang, 2007; Morris

& Trivedi, 2008), medical imaging (Notomi et al., 2005; Mountney & Yang, 2008),

human-machine interfaces (K. S. Huang & Trivedi, 2003; Poole & Ball, 2005; Hayashi,

Agamanolis, & Karau, 2008), etc.

Visual tracking methods are extensively applied in the area of robotics. Robots use the

information obtained from cameras mounted on their bodies to interact with or navigate

in the environment. Visual tracking technology is the basis for human-robot interaction

via gesture recognition, environment exploration and mapping. 3D localisation informa-

tion can be generated by tracking the position of salient image features such as corners

1
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and edges (see Figure 1.1). Information of 3D position can be used to construct the

structure of surrounding environment.

Figure 1.1: An example of a camera tracker that uses the information obtained by
tracking image patches. The figure is from (Maggio & Cavallaro, 2011).

In automated video surveillance systems, tracking can work as a pre-processing stage

which facilitates subsequent behaviour classification algorithms. It can also work as a

forensic tool in post-processing of videos. The IBM Smart Surveillance System (S3) is

shown in Figure 1.2 as an example of video surveillance systems (Maggio & Cavallaro,

2011).

Figure 1.2: An example of object tracking in surveillance applications. The figure is
from (Maggio & Cavallaro, 2011).

Visual tracking has been extensively applied to medical systems to aid the diagnosis and

to speed up the operation (Maggio & Cavallaro, 2011). Tracking human motion can be

used in analysing the gait of a patient to assess the condition of their joints (see Figure

1.3(a)) and in analysing the motion of athletes to improve athletes’ performances. Visual

tracking can also estimate the position of specific soft tissues or of instruments such as

needles and bronchoscopes during surgery. In biological research, one can analyse the

influence of particular drugs through tracking the motion of non-human organisms (see

Figure 1.3(b)).
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(a) (b)

Figure 1.3: Examples of visual tracking for medical and sport analysis applications.
(a) Automated tracking of the position of Escherichia coli bacteria. (b) Motion capture
is used to analyse the gait of a patient. This figure is from (Maggio & Cavallaro, 2011).

In video conference, webcams can be shipped with tracking software to localise and

follow the face of a user. In lecture room, PTZ cameras can be combined with visual

tracking technology to follow the position of a lecturer. The trajectory information in

real-time is used to guide the pan, tilt and zoom parameters of the camera. Visual

tracking is also changing the way how we control machines. Players used to press a

button on the controller to play games. Nowadays, users can perform more intuitive

gestures in front of a camera to play interactive games.

Figure 1.4: The example of visual tracking in an interactive game. The camera uses
tracking technology to capture the gestures that are converted into gaming actions.

This figure is from (Maggio & Cavallaro, 2011).

During recent decades, visual tracking has been deeply studied and there are many algo-

rithms proposed to resolve this problem. Many of them have made great contributions

to the field of visual tracking (Ross, Lim, Lin, & Yang, 2008; Mei & Ling, 2009; Kalal,

Matas, & Mikolajczyk, 2010; Babenko, Yang, & Belongie, 2011; Hare, Saffari, & Torr,

2011). Despite the large body of computer vision work addressing this problem, robust

visual tracking of generic objects is still a challenging problem (H. Yang, Shao, Zheng,

Wang, & Song, 2011; Kristan et al., 2015, 2016a). The performance of a visual tracking
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algorithm is affected by many factors (Yilmaz et al., 2006), such as non-rigid object de-

formation, partial or full occlusion of the target, illumination variation, scale variation,

viewpoint change, motion blur, background clutter, etc. Especially, many objects in the

real world have a complex appearance and articulated structure. The combination of

rigid motion and non-rigid object deformation results in complex appearance changes,

making general object tracking a particularly hard problem.

According to Yilmaz, a tracking system contains three main components (Yilmaz et

al., 2006): (1) an appearance model which describes image information of the target

and gives the likelihood that the target is located at a particular location, (2) a motion

model to transmit previous target state to current processing time step, and (3) a search

strategy to find the target location from its hypotheses.

Traditional tracking methods (Ross et al., 2008; Mei & Ling, 2009; Babenko, Yang, &

Belongie, 2009; Kwon & Lee, 2010; Kalal, Mikolajczyk, & Matas, 2012) tend to define a

tracking target using a bounding-box and then extract features within the bounding box

to represent the target’s appearance (template). The target location is obtained through

searching the image and finding the image information which is the most similar to the

template. These methods model the holistic appearance of the target, and they lose

local spatial information of targets which leads to a lack of flexibility when handling

non-rigid objects. Recently, part-based trackers are preferred in tracking with occlusion

and non-rigid deformation because part-based models (Adam et al., 2006; M. Yang et

al., 2007; Kwon & Lee, 2009; L. Zhang & van der Maaten, 2013), which represent the

target as a connected set of components, each describing a section of the object, can

provide more flexible and robust object appearance models. The appearance of a part

is usually more consistent and specific than the appearance models defined by a simple

bounding box around the whole. In addition, parts can exhibit their own modes of

variation over time in appearance as well as motion. For example, the legs of a walking

person will exhibit their own motion patterns. Besides, part-based tracking methods are

capable of handling (self)-occlusions which make object detection and tracking much

harder for traditional methods. When the target is partially hidden from view by other

objects, tracking can proceed using the visible parts. Part-based models are flexible in

describing the structure of the target and how it changes over time, which facilitates

tracking objects with articulated motion.
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1.1 Observations

Part-based models have been successfully applied to object detection and recognition

(L. Zhu, Chen, Yuille, & Freeman, 2010; Felzenszwalb, Girshick, McAllester, & Ra-

manan, 2010; Lin, Hua, & Davis, 2009; Amit & Trouvé, 2007; Schnitzspan, Roth, &

Schiele, 2010; Pedersoli, Vedaldi, & Gonzlez, 2011). However, it is hard to apply the

part-based models proposed for object detection and recognition to visual tracking. Ob-

ject detection and recognition usually work on the image information in a single frame

while tracking needs to update appearance models online. In addition, explicitly track-

ing each part would require individual training and initialisation for each part (Yao et

al., 2013). Thus, applying part-based models directly to visual tracking will increase

the complexity of the appearance model and exponentially increase time cost. Recently,

some researchers have proposed several part-based tracking methods. However, there

are four main problems with current part-based trackers, which are explained as follows:

• Current part-based trackers rely on a response map estimating the likelihood that

any given location in an image represents the target (part) (Adam et al., 2006;

Shahed Nejhum et al., 2008; Kwon & Lee, 2009; L. Zhang & van der Maaten, 2013;

T. Zhang et al., 2014; Liu et al., 2015). While approaches to the computation

of this fitness vary from simple template matching to complex machine-learning-

based methods, all assign a single scalar value to a queried location. Tracking then

becomes a problem of determining what area(s) to search in, often guided by some

motion model(s), how to construct an appearance model that can capture changes

in the object’s image properties, and how to deal with local optima.

While a template likelihood strategy may appear to be the logical solution to the

part-based visual tracking problem, its view of the image as a set of independent,

identically distributed target locations introduces a number of inherent drawbacks.

Firstly, incorrect optima occur when changes in the target’s appearance make it

look less like the original template than some background image patch(es), or when

there are multiple identical objects (parts) in the scene. Secondly, for the template

strategy to work, an entire region of interest needs to be searched. This can be

computationally intensive, but methods (e.g. gradient descent) introduced to speed

up the search can also converge to local optima. Thirdly, in a template likelihood

strategy local information (be it part of the object foreground or the background)

only serves to inform the tracker whether it is the target or not. Once the optimal

location has been sampled, sampling additional non-optimal local patches does not

improve the confidence that this is indeed the target location. It can only make

matters worse: increasing the size of the search area only increases the likelihood

of encountering an incorrect optimum.
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• In recent years, some researchers have attempted to apply part-based or fragment-

based appearance models to capture the spatial information of the object (Adam

et al., 2006; Shahed Nejhum et al., 2008) in tracking. However, the spatial infor-

mation utilised with their models is limited and inflexible. Thus, they still cannot

handle non-rigid object tracking situations which have severe or complex move-

ments. An extra component, shape, is necessary for general object tracking. This

would effectively extend Yilmaz’s description of tracking systems to four main

components, when speaking of part-based tracking.

• Another major issue is that there is no way of jointly learning shape and appearance

for current part-based trackers. Template likelihood approaches to part-based

tracking cannot directly use the appearance of one part to determine the location

of another. Although an explicit shape model can be learned to constrain the

expected relative positions of parts, such a shape fitting step is effectively bolted-

on on top of independent, individual local part trackers.

• Parts can have separate motions over time. For example, the legs of a walking

person will exhibit their own motion patterns. This situation is not considered

in current part-based trackers. Thus, more complex motion models are required,

with parts’ motion having separate factors.

1.2 Contribution

The main objective of this PhD project is to develop a part-based general tracking

method, which is able to correctly track an object of interest without the need to train

a specific model offline, i.e., we seek an online method. In light of the work in (Adam et

al., 2006; Kwon & Lee, 2009; Martinez et al., 2013; Xiong & De la Torre, 2013), this PhD

project builds a robust part-based appearance model for visual tracking. It is comprised

of a few local parts and flexible and inter-constrained topological relationships among

the parts. The part contains the local information of tracked target appearance. The

topological relationships can accurately represent the spatial distribution of the parts.

Thus, this model can keep the spatial information by using the topological relationships

among them. In conclusion, this thesis makes the following contributions:

• The thesis exploits the potential benefits of the part-based appearance model and

verifies the advantages of the part-based model over the global appearance model.

Also, the thesis explores the structure of the parts to seek a structure which is able

to model the geometric relationship between parts.
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• The thesis proposes a visual tracking method in which the local fitness-based ap-

proach is replaced by direct displacement-based tracking. Specifically, the tracker

predicts the two-dimensional displacement vector between the centre of a sampled

image patch and the target (part) location using regressors (see Figure 1.5). In

doing so, local patches contribute to the solution by directly ‘voting’ for the target

(part) location.

• This thesis implicitly models the shape of a target using local evidence from multi-

ple parts and global information from a bounding box part. While template-based

approaches need to model part appearance and shape fitness separately, this di-

rect displacement prediction by regression tracker implicitly learns the shape and

possible deformations of an object. It does so by tracking each part using not only

the local evidence for that part, but also evidence provided by neighbouring parts

and the object as a whole.

• The thesis adapts the framework of the supervised descent method (SDM) (Xiong

& De la Torre, 2013) to the problem of online tracking of generic objects. While

SDM has been used for what is essentially structured object detection, it has never

been used for online model-free tracking. The key difference between detection of

a known object and generic object tracking is that the appearance and structure

models of the former can be learned offline on potentially hundreds of thousands

of images, while the models for the latter must be initialised on a single frame. It

is shown that it is possible to learn the cascade models on-the-fly without strong

supervision.

• This thesis introduces Continuous Regression (Sánchez-Lozano, Tzimiropoulos,

Martinez, De la Torre, & Valstar, 2016) to replace the sampling-based regression,

i.e. the supervised descent method (SDM), in model-free tracking. With Con-

tinuous Regression, the shape displacement is regarded as a continuous variable,

the feature space is approximated by its first-order Taylor expansion. Only the

feature in the ground truth target location needs to be sampled. However, it is

then observed that the Taylor expansion is only a good feature approximation in

a relatively small region around the target. This region is too small to enable

tracking. Therefore, this thesis proposes Locally Continuous Regression, which

unifies sampling-based regression with continuous regression by repeating Contin-

uous Regression in a few regions around the target in an efficient manner. It shows

six times speed improvement without sacrificing performance of the tracker.
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(a) (b) (c) (d)

Figure 1.5: (a) Training a direct displacement regressor with four examples. (b)
Testing a regressor. Four test patches sampled around the initial location (blue dot)
provide predictions (purple dots). (c) Evidence aggregation map. (d) Location-based

initialisation and implicit shape model.

1.3 Thesis Organisation

The rest of the thesis is organised as follows. The related literature review is introduced

in Chapter 2, in which the related concepts and main challenges of visual tracking

are introduced in Section 2.1; the main components of visual tracking are described in

Section 2.2, Section 2.3 and Section 2.4; tracking methods with structured part-based

models are presented in Section 2.5. Preliminary experiments exploring the ability of

part-based tracking mechanism are presented in Chapter 3. A stick figure initialisation

is introduced in Section 3.1 and followed by experiments assessing its effectiveness. The

direct displacement prediction method and point-based initialisation are explained in

Section 3.2 and followed by experimental research on the regression technique which is

able to directly predict the point’s location. The simple direct displacement prediction

tracker is introduced and evaluated in Section 3.3. The proposed part-based tracking

method, TRIC-track, is introduced in Chapter 4. The overview of the TRIC-track is

presented in Section 4.1. The limitations of previous methods and their relation to

TRIC-track are explained in Section 4.2. The technical details of different algorithm

components of TRIC-track are explicitly described in Section 4.3. The TRIC-track is

evaluated in Section 4.4. The proposed tracking framework is further improved by re-

placing sampling-based regression with proposed Locally Continuous Regression, which

is explained in Chapter 5. Section 5.1 presents the motivation of Continuous Regression

(CR) and its limitations. Section 5.2 explains the proposed Locally Continuous Regres-

sion which overcomes the problem of CR. Section 5.3 explicitly explains the integration

of Locally Continuous Regression into the main framework of TRIC-track. The pro-

posed tracker is evaluated in Section 5.4. Chapter 6 concludes the thesis and proposes

the possible future work.
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1.4 Related Publications

Based on the work of the thesis, I have published four papers as follows:

1. Xiaomeng Wang, Michel Valstar, Brais Martinez, Muhammad Haris Khan, Tony

Pridmore, “TRIC-track: Tracking by Regression with Incrementally Learned Cascades”,

2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp.

4337-4345.

2. Matej Kristan, Xiaomeng Wang, Michel Valstar, Brais Martinez, Muhammad Haris

Khan, Tony Pridmore et al., “The Visual Object Tracking VOT2015 Challenge Results”,

2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago,

2015, pp. 564-586.

3. Matej Kristan, Xiaomeng Wang, Michel Valstar, Brais Martinez, Muhammad Haris

Khan, Tony Pridmore et al., “The Visual Object Tracking VOT2016 Challenge Re-

sults”, 2016 European Conference on Computer Vision Workshop (ECCVW), Amster-

dam, 2016, pp. 777-823.

4. Xiaomeng Wang, Michel Valstar, Wout Elferink, Brais Martinez, Tony Pridmore,

“Part-based Tracking with Cascaded Regression of Neighbours Using Learned Features”,

(submitted to TPAMI).



Chapter 2

Related Work

2.1 The Visual Tracking Problem

With the development of high-powered computers, the emergence and extensive appli-

cation of video cameras and the demand for artificial intelligence, visual tracking has

attracted a great deal of interest from researchers all over the world. It is the fundamen-

tal problem in video analysis, which includes detection of the target of interest, tracking

the target, identifying its state frame by frame, analysis of its state and understanding

its behaviour. Thus, the visual tracking problem is the basis of many tasks (Maggio

& Cavallaro, 2011), such as vehicle navigation (Davison et al., 2007), intelligent traf-

fic monitoring (J. Zhou et al., 2007; Morris & Trivedi, 2008), automated surveillance

(Anjum & Cavallaro, 2008; Hampapur et al., 2005; Chen et al., 2011), human-computer

interaction (K. S. Huang & Trivedi, 2003; Poole & Ball, 2005; Hayashi et al., 2008),

motion-based recognition (Saleemi, Shafique, & Shah, 2009; Monti & Regazzoni, 2010;

Xu et al., 2012), and a variety of medical applications (Notomi et al., 2005; Mountney

& Yang, 2008).

Given a target state in the first frame of a video sequence, either automatically or man-

ually, a visual tracking problem is usually to identify the target state in the subsequent

frames by estimation. The target state may include location, size, orientation, scale,

velocity, shape and so on. Although the video sequence could be the combination of the

output of multiple cameras, the scope of this dissertation will be limited to scenarios

captured by a single camera.

10
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Figure 2.1: The differences of available information for offline, online and delayed
online tracking. For example, the current tracking process is at time t for offline tracking
and online tracking. The available information for offline tracking includes the whole
image sequence while the available information for online tracking is all the information
up to current process time t. For delayed online tracking, although current tracking
process is at time t-2, the tracker has access to the information up to time t+1 obtained

by adding the time delay to current process time t-2.

2.1.1 Online and Offline Tracking

Tracking approaches can be divided into online and offline tracking. The online methods

are only be able to process the image information of the current and the tracked frames

of a video sequence to estimate the current target state, and the tracking process is

sequential; while offline methods have the access of all the image information of a video

sequence and the tracking process is usually non-sequential. Please note that real-time

tracking is one specific class of online tracking methods which is able to process available

image information to estimate the target state before the next frame arrives.

Offline methods are not able to perform tracking in real time based on their nature. For

interactive applications and those which have a requirement for high processing speed,

real-time tracking would be necessary. For applications where the videos are collected

for later processing, offline methods are more preferable for the reason that all the video

information is available to offline methods and the additional information, future data,
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can be utilised to improve the robustness of tracking. By allowing a delay of a short

time between image acquisition and estimation of target state, online tracking methods

can have access to a small number of future frames which is similar to the property

of offline methods to a degree. The differences in available image information among

online, offline and delayed online tracking methods are illustrated in Figure 2.1.

2.1.2 The General Framework of Tracking

The general framework for visual tracking is to represent the appearance of a tracked

target in the given frame, usually referred to as the appearance model, then search from

the target candidate space given the previous target states. A similarity measure is used

to determine the candidate which matches the appearance model most as the current

target state. Thus, there are three main components included in a tracking framework,

appearance model, motion model and search strategy.

The appearance model usually takes two roles. One is the target representation, which

emphasises the construction of a robust target descriptor. The other is statistical mod-

elling, applying statistical learning strategies, to establish a mathematical model to

predict how likely the target is located at a specific position based on the local image

information. The motion model is to propagate the target state over time or provide

prior probability that the target is located at a specific position, and is usually based

on the tracked states of the target. The search strategies decide the way of finding the

optimal target hypothesis, and can be roughly split into deterministic and stochastic

approaches (S. K. Zhou, Chellappa, & Moghaddam, 2004).

2.1.3 Some Challenges

Visual tracking remains a challenging problem because it is influenced by a number

of factors. Firstly, the target appearance can experience significant variations due to

photometric factors such as illumination change. Secondly, geometric changes, such as

pose variation, non-rigid deformation and scale variation, can lead to complex variations

of target appearance as well. Other factors include partial or full occlusion, motion blur,

non-linear motion, in-plane rotation and out-of-plane rotation, background clutter, low

resolution, etc.

Nowadays, tracking algorithms mainly work on real world videos which have complex

conditions for tracking. It’s natural that a real world scene has several challenging

factors at the same time. For example, in a basketball match scene, a basketball player

would display articulated deformation frequently and it’s very likely that the player will
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be fully or partially occluded by other players. There are many other players, who

are in the same team of the tracked player, wearing the similar basketball shirt. They

are background distractors when tracking a specific basketball player. The player would

probably perform out-of-plane rotation during the match. In a surveillance video, usually

in low resolution, a person walks across the street. The camera is fixed for surveillance,

thus the person would show scale variation in his or her appearance. Again, a person

is articulated and would display non-rigid deformation. The light changes in the street

may lead to illumination variation in the person’s appearance. In a car driving scene,

with the camera monitoring the car, the car moves fast which would produce motion

blur. The car may go up and down because of the road condition, leading to in-plane

rotation. Other cars or bridges over the road would occlude the tracked car either fully

or partially. The appearance of the car could display scale variation when the camera

is fixed. It is obvious that the real world videos always have a combination of many

challenging conditions for visual tracking problem.

(a) (b)

(c) (d)

Figure 2.2: The influence on a target’s appearance due to illumination variations. (a)
The target is diffusely lit from above. (b) The target passes through the shadow. (c)
The target is strongly lit from the side. (d) The target is in a darker region. (Kale &

Jaynes, 2006)

.

Illumination variation is one of the most common problems in visual tracking. The

object’s colour is frequently affected by illumination changes in the real-world because of

the properties of the incident light, e.g. colour temperature and intensity. For example,

a target under sunlight may look really different than it does under strip lighting or

moonlight. This brings problems to tracking as colour is the most common feature
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used when representing a target’s appearance. In addition to fixed light sources, there

are some moving light sources, such as car headlights. Relative movement between

the light sources and the target can change the direction of illumination and reflection.

An example of the influence of illumination changes on a target’s appearance (Kale &

Jaynes, 2006) is shown in Figure 2.2.

(a) (b)

Figure 2.3: The influence on a target’s appearance due to scale variations. (a) The
car looks smaller when it’s far away from the camera. (b) The car looks bigger when

it’s close to the camera. These images are from (Wu et al., 2013).

Scale variation is another common reason for poor tracking performance. Changes in

relative distance between the camera and the target result in scale variation of the target.

An example of how scale change affects the appearance of a target is shown in Figure

2.3.

(a) (b) (c)

Figure 2.4: The influence on a target’s appearance due to non-rigid deformations.
The shape of the basketball player changes significantly because of the non-rigid defor-

mation. These images are from (Wu et al., 2013)

.

Non-rigid deformation significantly affects the appearance of the target. Unlike rigid

objects, such as cars, non-rigid objects, such as humans and animals, are prone to

display complex shape variations, which introduces great difficulties to the modelling of

target appearance, especially for traditional bounding box representations of a target.

It is common to define a target using a bounding box, which means the image within the

bounding box is the target while the outside area is the background. A non-rigid object

is often articulated as well. The rigid bounding box representation lacks the flexibility
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of modelling the non-rigid deformation of the target within it. Even for part-based

representations of the target, the modelling of the non-rigid deformation, such as the

relative positions of the parts, remains challenging. As an example, Figure 2.4 shows

how non-rigid deformation affects the target appearance.

(a) (b) (c)

Figure 2.5: The example of in-plane rotations of a target. These images are from
(Wu et al., 2013)

.

(a) (b) (c)

Figure 2.6: The example of out-plane rotations of a target. These images are from
(Wu et al., 2013)

.

In-plane rotation and out-of-plane rotation are another two major reasons of complex

variations of the target appearance. The plane refers to the plane of the image. In-

plane rotation means that the rotation of a target happens in the image plane while

the out-of-plane rotation of a target occurs across the image plane. In-plane rotation

is relatively easy to solve because the target is still visible and can be matched by an

appearance template processed with the same rotation transformation. Out-of-plane

rotation makes tracking hard because the original appearance of the target can be par-

tially or totally invisible. Figure 2.5 and Figure 2.6 provide examples of in-plane and

out-of-plane rotations of a target.

A common factor which affects the appearance significantly is occlusion, which includes

self-occlusion and inter-occlusion. Self-occlusion is that a target can be occluded by a

part of itself, usually partially, due to articulated deformation. Inter-occlusion is that a

target can be partially or fully occluded by other moving or stationary object(s). Thus,
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(a) (b) (c)

Figure 2.7: The example of occasions when a target is occluded. (a) A face is occluded
due to the movement of the hand. (b) A running woman is occluded by a lamppost.
(c) A football player is occluded by another player. These images are from (Wu et al.,

2013)

.

the target can be fully or partially invisible for a period of time. The abilities to use

the available target information when partial occlusion happens and to recover tracking

when full occlusion ends are critical for a robust tracker. Figure 2.7 illustrates how a

target could be occluded by itself or another object.

(a) Frame 42 (b) Frame 43

(c) Frame 90 (d) Frame 91

Figure 2.8: The example of the smooth and abrupt motion variations of a target. (a)
Frame 42. (b) A smooth motion happens between frame 42 and frame 43. (c) Frame 90.
(d) An abrupt motion happens between frame 90 and frame 91. The yellow rectangle
shows the target location of the previous frame while the red one shows the current

target location. These images are from (Wu et al., 2013)

.

A target’s movements in a scene can be complex so that its motion is an important com-

ponent that should be considered in tracking. Basically, the target can move smoothly
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or abruptly. Smooth movement enables a tracker to search the target state from a local

space while abrupt movement usually needs the tracker to enlarge the search space to

locate the target, which introduces difficulty and time consumption to tracking. Besides,

the camera’s movement can cause abrupt motion variation of a target in an image. An

example of smooth and abrupt motion variations of a target is demonstrated in Figure

2.8.

Figure 2.9: The example of the background clutter in tracking. The red one shows
the target while the yellow rectangle shows the distractor. The image is from (Wu et

al., 2013)

.

Background clutter is another circumstance that degrades tracking. Background clutter

occurs when a part or several parts of the background bear similar appearance, colour

or texture, to the target. These parts of the background are called distractors, causing

the confusion between the distracting background and the real target during tracking.

Distractors appear frequently when the similar objects are in the background or the

texture of the background is complex. Figure 2.9 shows an example of background

clutter in tracking.

Figure 2.10: The example of the motion blur in tracking. The image is from (Wu et
al., 2013)

.

Motion blur introduces difficulty to tracking by making the target appearance blurry.

It occurs due to high speed movement of the camera or the target itself. An example of

motion blur is illustrated in Figure 2.10.
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A robust tracking algorithm should take all of the factors into account and try to find

a balance among them to achieve decent tracking performance. Generally, a tracking

system should be robust to complex context variation and adaptive to the change of

the target(H. Yang et al., 2011). Specifically, to be robust, a tracking system should

successfully trace the target even when experiencing various and complex conditions such

as illumination variation, partial or full occlusion, cluttered backgrounds and so on; while

adaptability means that the tracking algorithm is able to adapt to the variation of the

target itself, such as articulated deformation, scale variation and out-of-plane rotation.

High efficiency also needs to be considered for visual tracking application processing live

videos. Although for general online tracking methods real-time processing ability is not

required, high processing speed is preferable.

The main issues for the state-of-the-art tracking algorithms include but are not limited

to: the initialisation of tracking, occlusion handling and the drifting problem produced

by an insufficient or wrong update of the target model. As the initialisation of tracking,

it is usually essential to establish an appropriate descriptor to represent the target, which

is vital to the following processes as it directly relates to tracking performance (X. Li

et al., 2013). The descriptor ranges from the simple histogram to complex features

such as HOG and Haar-like features. The use of convolutional neural network (CNN)

features has become a recent trend. Occlusion in visual tracking is nearly inevitable.

A part of a target could be occluded by other parts of the target or other objects.

As part-based modelled object appearance (Adam et al., 2006; Shahed Nejhum et al.,

2008; Godec, Roth, & Bischof, 2011; Cehovin, Kristan, & Leonardis, 2011) is robust to

partial occlusion by its property, it becomes a natural way of addressing the occlusion

problem. Because of the continuously changing target appearance and environmental

conditions, the initial target appearance model can be reliable for only a short period

of time. Keeping using the original model would not be able to handle the variations of

appearance, which leads to the drift problem. However, incorrect updating of the model

may bring background information into the template, resulting in drift as well.

2.2 Object Representation

Because of the challenging factors described above, establishing a robust representation

of the target is critical. It should be discriminative enough to distinguish between the

target and the background, and it should be robust enough to handle the variability

of the target, such as illumination change, pose variation, scale variation and partial

occlusion. Objects are usually represented by their shapes and appearances (Yilmaz et

al., 2006). This section will introduce the typical methods of shape representation in
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tracking first, and then describe the common methods of appearance representation of

the object, which are usually combined with shape representation.

2.2.1 Shape Representation

It is necessary to give a brief introduction to the ways of describing the target shape. The

representation of appearance features is usually related to the shape representation of

the object, which means the appearance features are calculated based on the area defined

by the shape representation or these two kinds of representations are usually combined

together in tracking. The classical methods for shape representation are shown in Figure

2.11.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2.11: Object representations (Yilmaz et al., 2006). (a) Centroid. (b) Multiple
points. (c) Rectangular patch. (d) Elliptical patch. (e) Part-based multiple patches.
(f) Object skeleton. (g) Control points on object contour. (h) Complete object contour.

(i) Object silhouette.

• Points. A single point, the centroid (Figure 2.11(a)) (Veenman, Reinders, &

Backer, 2001), or multiple points (Figure 2.11(b)) (Serby, Meier, & Gool, 2004)

are used to represent the target when the target covers a small area of the image.

• Basic geometric shapes. The object is represented by a basic geometric shape,

mostly is a bounding box (Figure 2.11(c)), i.e. rectangle, or eclipse (Figure 2.11(d))

(Comaniciu, Ramesh, & Meer, 2003). Basic geometric shapes can represent rigid
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objects. However, they are frequently used to represent non-rigid objects as well,

which either inevitably introduces background information into the target repre-

sentation or would not be able to fully cover the target. Currently, the bounding

box is still the most common object representation method.

• Object contour and silhouette. Articulated objects can be represented either by

the object contour (Figure 2.11(g), 2.11(h)), the boundary of the object, or the

object silhouette (Figure 2.11(i)), the area within the boundary (Yilmaz, Li, &

Shah, 2004). The contour and silhouette can be obtained by segmentation.

• Articulated models. Articulated objects can also be represented by articulated

models (Figure 2.11(e)), which consist of several rigid parts and relations among

the parts. The rigid parts can be described by small basic geometric shapes,

such as rectangles or eclipses. The relations among the parts are usually relative

geometric positions between them. Most articulated models are used to track

humans (Ramanan, Forsyth, & Zisserman, 2007). Recently, the part-based models

are applied to general visual tracking (L. Zhang & van der Maaten, 2013; Liu et

al., 2015) as well.

• Skeletal models. Both rigid and non-rigid objects can be represented by skeletal

models (Yilmaz et al., 2006), which are obtained through applying medial axis

transformation to the target silhouette (Ballard & Brown, 1982).

2.2.2 Appearance Description

Object appearance can be affected by many conditions, such as illumination variations,

occlusion, deformation and viewpoint changes, which has motivated the design of dif-

ferent image features to cover target appearance properties under different conditions.

The features employed for appearance description are critical to visual tracking because

a discriminative feature usually facilitates the identification of the target, while a less

discriminative feature may confuse other objects (similar to the target) with the real

target. Feature selection is usually associated with the object representation (Yilmaz

et al., 2006). For instance, for histogram-based appearance representations, colour is

usually selected as the feature.

• Colour features. The apparent colour of the target is affected mainly by two

physical factors (Yilmaz et al., 2006): (1) the spectral power distribution of the

illuminant and (2) the surface reflectance properties of the object. A colour space

represents the visual perceptions of the human mathematically, which allows us

to analyse and manage the colour (Maggio & Cavallaro, 2011). The RGB (red,
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green, blue) colour space is commonly used to represent colour in image processing.

Other colour spaces applied in visual tracking include L∗u∗v∗, L∗a∗b∗ and HSV

(hue, saturation and value) colour space.

• Gradient features. Local intensity changes hold important information about the

target appearance (Maggio & Cavallaro, 2011). These changes happen within

the object area and at the boundary between the object and the background.

Gradient features describe the statistical summarisation of the gradients (H. Yang

et al., 2011). For instance, Lowe et al. (Lowe, 2004) present the famous scale-

invariant feature transform (SIFT) descriptor for object recognition. Bay et al.

(Bay, Ess, Tuytelaars, & Van Gool, 2008) introduce speeded up robust features

(SURF) used as an interest point descriptor. It is scale and rotation invariant and

several times faster than the SIFT. Dalal and Triggs (Dalal & Triggs, 2005) propose

the histogram of oriented gradient (HOG) descriptor for pedestrian detection. Zhu

et al. (Q. Zhu, Yeh, Cheng, & Avidan, 2006) present a speeded-up algorithm for

human detection based on HOG descriptor.

• Texture features. Texture measures the intensity variation of an image patch

and quantifies properties such as smoothness and regularity (Yilmaz et al., 2006).

Gabor wavelet (Manjunath & Ma, 1996) is a common texture feature. Frequency

and orientation representations of Gabor filters are considered appropriate for

texture representation and discrimination. Ojala et al. (Ojala, Pietikainen, &

Maenpaa, 2002) propose the local binary patterns (LBP) descriptor which is an

efficient texture descriptor. LBP is tolerant of illumination variations and simple

to calculate.

• Deep learned features. Feature learning (Bengio, Courville, & Vincent, 2013) tech-

niques can be applied to make a system automatically discover the representations

needed for computer vision tasks. This replaces hand-crafting of features and al-

lows a machine to learn the features which suits a specific problem. In recent

papers it is shown that features learned through Convolutional Neural Networks

(CNN) are more discriminative than conventional features such as HOG and SIFT

(Fischer, Dosovitskiy, & Brox, 2014; Hou, Zhang, & Zhou, 2015; Zagoruyko &

Komodakis, 2015). The CNN features are usually extracted from a specific layer

after passing and processing the raw data through several layers in a deep network

(Ma, Huang, Yang, & Yang, 2015; L. Wang, Ouyang, Wang, & Lu, 2015).

As described in Section 2.1.2, the appearance model takes two roles. One is to represent

the target, the other is to predict the likelihood of a target candidate locating at a

specific position. Next, this thesis is going to introduce the most common appearance
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models in tracking. There are two main categories of appearance models, generative

models and discriminative models. As the most common manner of shape representation

of the object is the basic geometric shape, the following section will mainly introduce

appearance models established based on a basic geometric shape, i.e. the rectangle or

eclipse, which is usually called the bounding box.

2.2.3 Appearance Models

2.2.3.1 Generative Models

Generative models focus on the object itself and only model the appearance of the

target, ignoring the background information (Black & Jepson, 1998; Balan & Black,

2006; Ross et al., 2008). Tracking is then interpreted as finding the object which is

most similar to the appearance model. However, the correctness of the learned model

is very hard to verify in practice (X. Li et al., 2013). Moreover, when trying to find

global optima in parameter estimation e.g. by expectation maximisation, local optima

are often obtained instead (X. Li et al., 2013). To handle variations in target appearance

over time, generative models are usually updated online, by incrementally learning visual

information from the object, i.e. the foreground, to adapt a generative model learned

at the beginning of tracking to the current tracking state.

Some generative methods are based on templates (Lucas & Kanade, 1981; Comaniciu

et al., 2003; Matthews, Ishikawa, & Baker, 2004; Adam et al., 2006; Kwon & Lee,

2010). The template is learned at the beginning of tracking while the target appearance

usually varies significantly over time during tracking. Thus, a fixed template is not able

to handle the variations, which leads to the drift problem. Updating the template is

critical for tracking; however, incorrect updating could bring background information

into the template, so that the template would degrade gradually and drift away from the

real target. To handle the updating problem, Matthews et al. (Matthews et al., 2004)

propose a strategy of updating the template when necessary or re-using the pre-learned

templates to reduce the drift. Kwon et al. (Kwon & Lee, 2010) propose a decomposition

model which consists of several basic appearance models, each of which is responsible

for a kind of variation.

Subspace learning (Black & Jepson, 1998; Ross et al., 2008) is also common in generative

models. (Black & Jepson, 1998) proposes a method of encoding the known appearance

of the target into an offline learned appearance model using the eigenbasis. (Ross et

al., 2008) develops a low-dimensional subspace learned incrementally during tracking to

prove its robustness to appearance changes of the target.
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Inspired by the recent advances in sparse representations (Donoho, 2006; Wright, Yang,

Ganesh, Sastry, & Ma, 2009), many corresponding applications have been proposed in

tracking (Mei & Ling, 2009; H. Li, Shen, & Shi, 2011). (Mei & Ling, 2009) represents the

target sparsely using a linear combination of target templates and trivial templates. The

target is then found by solving an `1-minimisation problem, and is the candidate with

the smallest projection error. The proposed tracker demonstrates robustness in scenarios

with occlusions, illumination changes and pose variations. However, this tracker shows

high computational complexity, which limits its application in real-time scenarios. To

solve this problem, (H. Li et al., 2011) adopts an orthogonal matching pursuit algorithm

to achieve real-time processing with competitive tracking accuracy.

As generative models are established without taking the appearance of the background

into account, they are prone to failure when coming across background clutter or similar

objects moving around (L. Zhang & van der Maaten, 2013); while discriminative mod-

els are capable of handling these cases because of their classifiers learned to separate

the target with the background. (Kalal et al., 2010) indicates that the performance of

discriminative trackers are better than generative trackers’. (Avidan, 2004; Cristinacce

& Cootes, 2008) have obtained similar results. (Minka, 2005) has provided theoretical

support for this statement which is, in a discriminative task such as object tracking, the

discriminative models always have better performance over their corresponding genera-

tive models (L. Zhang & van der Maaten, 2013).

2.2.3.2 Discriminative Models

Discriminative models model the appearance of both the target (the foreground) and

the background to best separate the target from the background, and can be interpreted

as a binary classification process, i.e. tracking-by-detection. The classifier is trained

with positive and negative training samples either online or offline, which means that

the performance of discriminative models is mainly determined by the training samples

and the method of training. Many discriminative trackers then work on discovering the

more informative features which can better distinguish the object from the background.

Collins et al. (Collins, Liu, & Leordeanu, 2005) develop a method by adaptively select-

ing the colour features which are the most discriminative, and so can best distinguish

the target from the background. Avidan (Avidan, 2007) trains an ensemble of weak

classifiers online and combines them into a strong classifier to do tracking. Grabner and

Bischof (Grabner & Bischof, 2006) propose an online feature selection method based on

Adaboost, which selects and maintains the best discriminative features from a pool of

feature candidates.
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All the methods described above show robustness to target variations and high efficiency;

however, every time the classifier is updated there is a chance that the updating may

introduce irrelevant information into the classifier, which would cause drift and tracking

failure over time. It happens because that the errors brought in by updating gradually

degrade the discriminative ability of the classifier trained before the start of tracking.

To deal with the updating problem, the basic idea is to assist an online learning classifier

with a reliable classifier: the one trained at the beginning of tracking. Grabner et al.

(Grabner, Leistner, & Bischof, 2008) make the attempt by proposing a semi-supervised

method based on online boosting to handle the drift problem. Specifically, the fixed

classifier and the online classifier are combined to decide when to update.

Label noise is considered to be another reason for drift problem. The establishment of

discriminative classifiers relies heavily on the training samples. Besides, the classifier

uses the positive and negative samples associated with the current tracking state to

update itself. Thus, imperfect tracking can generate poorly labelled training examples,

which gradually corrupts the classifier and causes drift. Bakenko et al. (Babenko et al.,

2009) propose an algorithm using online multiple-instance learning (MIL) to overcome

the samples’ ambiguity. Compared with traditional supervised learning, the classifier is

updated with a positive bag consisting of several positive samples. As is known to all, the

objective of classification is to correctly label the samples, while the objective of tracking

is to accurately locate the target. Based on the understanding that the objectives for

classification and tracking are not consistent, Hare et al. (Hare et al., 2011) present

a structured output prediction method to predict the target transformation instead of

predicting the labels, which eliminates the influence of intermediate classification.

To reduce the drift problem, Kalal et al. (Kalal et al., 2012) develop a framework which

divides the tracking problem into tracking, learning and detection. In addition, they

propose a P-N learning method to exploit the underlying structure of the unlabelled

data to train a binary classifier, which is able to estimate and then correct the errors of

the tracker to alleviate the drifting. Wang et al. (S. Wang, Lu, Yang, & Yang, 2011)

seek an effective image representation by applying superpixels to build a discriminative

appearance model. The robust object representation allows the tracker to identify the

target from the background. Zhang and Van der Maaten (L. Zhang & van der Maaten,

2013) present an online structured support vector machine (SVM) framework to learn

the appearance model and the spatial constraints of the target jointly.
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2.3 Motion Models

Methods of object representation are reviewed in the previous section, and this section

is going to introduce motion models. The motion model restricts the search space for

the target. Specifically, when an unknown frame is acquired, the motion model provides

hypotheses of the possible target location, which can also be the prior probability that

the object is present at a certain location. Effective motion models can guide the search

towards the correct state of the target.

2.3.1 Single Motion Models

As visual tracking covers tracking of a great range of objects, it is difficult to constrain the

motion too much in practice, and simpler motion models are usually used. The common

motion models are a random-walk (RW) (Chang & Ansari, 2005; Perez, Vermaak, &

Blake, 2004) model or a nearly constant velocity (NCV) model (Shan, Tan, & Wei,

2007; Pernkopf, 2008). Assuming that the target’s velocity is a white noise sequence,

the RW model characterises the target’s motion as temporally completely uncorrelated.

On the contrary, the NCV model is based on the assumption that velocity is temporally

strongly correlated and the variations in velocity occur due to the white noise of the

acceleration. The RW model works in describing abrupt motion of the target, while the

NCV model describes correctly the target’s motion when the target moves towards a

certain direction and the target is shot with a fixed camera (Kristan, Kovacic, Leonardis,

& Pers, 2010).

However, the target usually shows complex movement variations over time due to artic-

ulated deformation, rotation, fast movement, camera movement, etc. A single motion

model (RW or NCV) is not able to cover the complex motion variation of the target in

general visual tracking. This situation can be improved by increasing the process noise

of a RW or a NCV model. An obvious drawback is that this approach is computationally

expensive, and increases the search space, making it more likely that the tracker will be

affected by clutter.

2.3.2 Improved Single Motion Models

To handle the increasing variance of the estimation when using a simple motion model

(RW or NCV) with large process noise, the approach of providing an efficient and

informed proposal distribution was proposed. Specifically, Okuma et al. (Okuma,
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Taleghani, De Freitas, Little, & Lowe, 2004) introduced a method to guide a parti-

cle filter by Adaboost detection models. The proposal distribution is composed of in-

formation from Adaboost detectors and a standard autoregressive motion model. By

combining the two methods together, their framework is able to quickly detect and track

targets against a dynamically changing background (Okuma et al., 2004). Kristan et al.

(Kristan et al., 2010) proposed a two-stage dynamic model to cover common motions

observed in tracking persons. This dynamic model is composed of two models: a liberal

and a conservative model. The liberal model covers larger perturbations of the target,

while the conservative model covers smaller perturbations of the target and constrains

the liberal model. This method fails when the target exhibits frequent non-constant

motions (Khan, 2015), which happens frequently.

2.3.3 Multiple Motion Models

To cover different kinds of target motion during tracking, an interacting multiple model

(IMM) was proposed by (Bar-Shalom, Kirubarajan, & Li, 2002). The idea is that

multiple trackers, each with a different motion model, are used at the same time to track

the target. After the determination of how accurately each model describes the target’s

current motion, predictions from different trackers are combined accordingly (Kristan et

al., 2010). The implementation of IMM based on particle filtering can be found in papers

(McGinnity & Irwin, 2000; Blom & Bloem, 2007). This approach, however, significantly

increases the complexity of the tracker, as the tracking process has to be performed over

each of the motion models. Kwon and Lee (Kwon & Lee, 2011) proposed to construct

the motion model distribution from the recent sampling history and the motion models

are then randomly sampled from the distribution. Recent sampling history needs to be

clustered and each tracker sample needs to be evaluated by the recent tracking history,

which is a cumbersome mechanism for a real-time visual tracking method. To capture the

complex motion variation of the target in visual tracking, Khan et al. (Khan, Valstar, &

Pridmore, 2015) proposed to learn motion models over multiple temporal scales (MTS).

The predictions from the motion models are pooled over multiple prediction scales,

which provides a sufficient and efficient search space for tracking. Additionally, this

MTS motion model is online learned for general tracking.

2.3.4 Approaches not Considering a Motion Prior

The straightforward tracking method without motion models usually adopts an exhaus-

tive sliding window. In this case, the target is searched from the whole image frame,

without any assumption made about the motion of the target. Full search makes the
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tracker robust to abrupt motion of the target and camera movement. The obvious draw-

back of this method is its heavy computational consumption. Instead of considering the

full search space of a frame, a smaller local region around the previous target’s location

can be fully searched, which is a local sliding-window approach (Babenko et al., 2011;

Hare et al., 2011). This mechanism makes a balance between computational efficiency

and robustness to abrupt motion of the target. However, it may stop at the local optima

and lead to poor performance.

2.4 Search Strategies

The methods of motion models are reviewed in the previous section, and this section

is going to introduce search strategies. The search strategy aims at inferring a solution

to the tracking problem using the appearance models and/or any other available image

information. Usually, it is conducted by searching the space of possible hypotheses to

find the most likely configuration for the current target.

Search strategies are generally classified as probabilistic or non-probabilistic. Proba-

bilistic search strategies utilise probability distributions of random variables to model

the uncertainty within the models (e.g. the target state) and the measurements (e.g.

the observation). The target state is then inferred through estimation of the probabil-

ity distributions. Non-probabilistic search strategies are usually deterministic, but can

share some characteristics of probabilistic models (Smith, 2007).

2.4.1 Non-probabilistic Search Strategies

In most cases, non-probabilistic search strategies formulate tracking as an optimisation

problem, in which the tracking problem is then represented by a cost or error function

and solved by maximising or minimising the function. The main benefits of using non-

probabilistic methods are good convergence properties and computational efficiency.

EigenTracking (Black & Jepson, 1998) is a famous early tracking method applying op-

timisation. The target is described by a small set of primitive ‘basis images’ and the

target is located by minimising an error function with least-squares approximation. The

error function measures the dissimilarity between the basis vectors and the image data.

Mean shift is probably the most widely known optimisation algorithm in tracking. It

was proposed by Fukunaga and Hostetler (Fukunaga & Hostetler, 1975) in 1975 working

as a general method to find the mode of a density function, then it is introduced into

tracking task by Comaniciu et al. (Comaniciu, Ramesh, & Meer, 2000). Specifically, in
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their work, the target is located by seeking the most probable target state which matches

the target model best through mean shift iterations, in which the matching function is

defined by a metric derived from the Bhattacharyya coefficient.

2.4.2 Probabilistic Search Strategies

Probabilistic search strategies show three main advantages over the non-probabilistic

techniques. First, probabilistic methods demonstrate flexibility. Probabilistic models

used to track one specific class of objects can be adapted to track another. The flexibility

is also because one component of the probabilistic model can be replaced with another

without influencing the whole design. Second, they display generality, as an inference

method designed to track a single target can be applicable to other problems related

to sequential data. Last but not least, probabilistic models are able to systematically

process the unpredictable target configurations and noise which occur frequently in real-

world, through the maintenance of multiple hypotheses.

The most popular probabilistic method in tracking is recursive Bayesian estimation,

also known as Bayes filter, which obtains the solution of the tracking problem by recur-

sively predicting with previous information and correcting with incoming measurements.

Specifically, in this algorithm, the target states and observations are represented by ran-

dom variables, for example, noted with X and Y separately. Given previous observations

up to time t, denoted with Y1:t = {y1, ..., yt}, and the previous tracked target state at

time t− 1, Xt−1, the predicted current target state Xt at time t can be defined by:

p(Xt|Y1:t) =
p(Yt|Xt)

∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1

p(Yt|Y1:t−1)
, (2.1)

where p(Yt|Xt) represents the observation model and the p(Xt|Xt−1) is known as the

state evolution or motion model. p(Xt−1|Y1:t−1) is the posterior distribution at time

t− 1. Tracking at time t is started by transferring the posterior distribution of the pre-

vious time step p(Xt−1|Y1:t−1) to the current time step with state evolution p(Xt|Xt−1).

This step forms a prior distribution of target state Xt. When the current observation Yt

arrives, the prior distribution is corrected with the observation model p(Yt|Xt), produc-

ing the posterior distribution p(Xt|Y1:t). p(Yt|Y1:t−1) can be replaced with a constant C

to guarantee that the posterior probability sums to one over the state space.

If the state evolution is linear with additive Gaussian noise and the observation model is

Gaussian, the recursive Bayesian estimation can be resolved directly by a Kalman filter.

This was proposed by R.E.Kalman (Kalman, 1960) in 1960, offering an optimal solution

to the state estimation problem when the above assumptions are satisfied. However,
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the assumption is typically not true in visual tracking. For example, the likelihood

distribution arising from image features are usually non-Gaussian. To handle these sit-

uations, the particle filter is presented to solve the state estimation problem overcoming

the limitations.

The particle filter, also known as the sequential Monte Carlo (SMC) methodology, can

approximate the recursive Bayesian estimation of Equation 2.1 by a set of weighted

particles. The prediction and update steps of recursive Bayesian estimation, Equation

2.1, are transferred to be propagation and weighting of particles separately. Please refer

to (Arulampalam, Maskell, Gordon, & Clapp, 2002) for more details. Generally, the

particle filter is able to give a good and efficient approximation of the Bayesian filtering.

However, with the increase of the dimension of the state space, it turns out that seeking

a good proposal distribution is difficult. The particle filter method would acquire an

exponentially large number of samples to cover the high-dimensional space. To handle

the efficiency problem, Markov chain Monte Carlo approaches are proposed.

Markov chain Monte Carlo (MCMC) methods are basically sampling algorithms which

construct a Markov chain and then sample from its probability distribution. MCMC

methods are used to approximate Bayesian filtering in tracking. During sampling, struc-

tural knowledge of the state space is incorporated so that the particles are generated

more frequently in important regions of the underlying posterior to improve the effi-

ciency.

2.5 Tracking Methods with Structured Part-based Models

There are many successful applications of part-based models in the field of object detec-

tion and recognition (Mohan, Papageorgiou, & Poggio, 2001; Agarwal, Awan, & Roth,

2004; Mikolajczyk, Schmid, & Zisserman, 2004; Schmid & Mohr, 1997). However, di-

rectly applying these part-based models in visual tracking still faces some issues. To

achieve accurate tracking with part-based models, each part should be trained and ini-

tialised explicitly, which is complicated and hard to handle in an online manner (Sigal,

Bhatia, Roth, Black, & Isard, 2004). Part-based models have prominent advantages

over global appearance models on self-occlusion and inter-object occlusion. They are

able to model both flexible and articulated targets. In terms of visual tracking, part-

based models mostly have been applied to human body tracking where the models are

already trained or built for this specific purpose (Sigal et al., 2004; Andriluka, Roth,

& Schiele, 2008; Ramanan et al., 2007). The research of this thesis focuses on tracking

with model-free part-based models. The term ’model-free’ means that the model is not
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predefined for a specific class of objects, e.g. eyes, nose and mouth for face tracking and

hands for hand tracking.

Imposing shape structure on a part-based object model is typically done by combin-

ing a part-based appearance model with a global shape model. Given a set of location

hypotheses for each part (e.g. particles in particle filtering or a region of interest in a

sliding-window search), the appearance model gives the likelihood of each hypothesis.

The final hypothesis finds a compromise between maximising the individual responses

and minimising the penalties imposed by the shape model. Since the number of possible

configurations grows exponentially with the number of parts and part hypotheses, it

is common to resort to an efficient shape model, e.g. deformable part models (DPM)

(Felzenszwalb et al., 2010), which allows exact inference. These models are often ex-

tended for tracking-specific purposes, most commonly using temporal consistency or

online/incremental adaptation of the models.

2.5.1 State-of-the-art Part-based Tracking Methods

Figure 2.12: The patches used in (Adam et al., 2006).

To address model-free tracking with a part-based model, Adam et al. (Adam et al., 2006)

propose ’FragTrack’, in which vertical and horizontal patches decompose the target

template in a grid, as shown in Figure 2.12. The location of each patch is defined

by a vector linked to the target centre. Horizontal patches are of one tenth of the

template’s height and half the template width. Vertical patches are similarly defined.

FragTrack utilises around 36 patches in total. In this case, the appearance model is a

generative template model represented by multiple image fragments. The feature used is

the histogram of an image fragment. Patch hypotheses are obtained through exhaustive

search of a local region based on the previous target location within a radius r. The

search strategy is a non-probabilistic search strategy using an error function. Specifically,

the dissimilarity between the histogram of a patch template and the histogram of each

patch hypothesis provides a voting-map of target position corresponding to the patch.

The voting-maps from all the patches are then combined to form a single voting-map to



Chapter 2. Related Work 31

locate the target. The spatial relationships between fragments and the target template

centre are fixed and not updated, though, so that the fragments are not able to model

non-rigid targets, which can move flexibly, well.

(a) (b)

Figure 2.13: Early election of the attentional region pool (M. Yang et al., 2007).
(a)Initialisation. (b) The pool of attentional regions (ARs).

(a) (b) (c)

Figure 2.14: Examples of late selection of discriminative ARs of different frames
(M. Yang et al., 2007).

Yang et al. (M. Yang et al., 2007) propose an attentional visual tracking (AVT) method

using spatially attentional patches (as shown in Figure 2.13). Recently, research indicates

that selective attention may be performed in both the early and late stages of visual pro-

cessing, but it works with the different perceptual load in the two stages (Palmer, 1999).

The evolution may determine innate principles for early selection while learning through

experiences determines the late selection. In the AVT approach, there is a two-stage ap-

pearance model, including the attentional regions (ARs) and discriminative attentional

regions (D-ARs). The ARs form a generative appearance model of the target, while

the D-ARs obtained through a discriminative learning form a discriminative appearance

model of the target. Because the prior knowledge of the dynamics of the ARs is gen-

erally unavailable, an exhaustive search of the motion parameter space is used, during

which locality-sensitive hashing (LSH) (Datar, Immorlica, Indyk, & Mirrokni, 2004) is

used to reduce the computation. So the search strategy is a non-probabilistic matching

approach. Specifically, based on the two rules of the selective attention in human visual

processing, AVT extracts a few attentional regions (ARs) representing the target area

in the early selection process. The ARs are selected with the condition number to have

properties for good localisation, which means they must be both informative and stable.

All the ARs are of the same size and shape, which are 30×30 squares in this paper. The



Chapter 2. Related Work 32

matching set of each AR is then obtained by examining motion hypotheses within its

candidate region, which represents the probability distribution of target location given

the relationship between current AR and the target. The target location is then voted

for by fusing the probability distribution of all ARs. After that, by discriminative learn-

ing on the historical data, a subset of discriminative attentional regions (D-ARs) are

obtained in the late selection stage, as shown in Figure 2.14. These D-ARs are allocated

larger weights in voting in the next frame and reflect the dynamical update ability to

adapt to the environment change. The patches (ARs and D-ARs) obtained by this way

can contain salient and discriminative regions of the targets. Representing the target

with a pool of attentional regions makes the AVT method robust to appearance varia-

tions due to small deformation, lighting changes and partial occlusions. However, the

ARs have significant overlaps and spatial relations among ARs are not utilised. AVT

needs a large number of ARs to make a reliable prediction, so it is only suitable for track-

ing large targets. Also, it inevitably includes the background in the target information

and tends to be problematic when handling non-rigid objects.

(a) (b)

Figure 2.15: (a) An articulated target. (b) The blocks representing its shape (red
rectangles). The black rectangle is the tracking window W (Shahed Nejhum et al.,

2008).

Neihum et al. (Shahed Nejhum et al., 2008) propose a more flexible structure using

multiple rectangular blocks to model the constantly changing shape of the target (as

shown in Figure 2.15). Given the contour of the object, the initial window W defining

the target area, K rectangular blocks Bi(1 6 i 6 K) and the weights λi of blocks

are determined. The union of blocks covers most of the target, which may have small

overlaps, and they inevitably include foreground and some background pixels at the same

time, especially when the target is articulated. Higher λi is allocated to the block which

contains more foreground pixels, and vice versa. In this case, the appearance model of

the target is the template represented by the union of the blocks. The motion prior is

not considered and the target is searched for in the entire image. The search strategy

is a non-probabilistic method using a similarity function. Specifically, the weighted sum
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of histogram similarities of blocks between the template and the candidate are used to

locate the target. The number of blocks K and the size of each block are fixed during

tracking. After locating the target, its contour is segmented and then the position of

each block is adjusted locally on-the-fly based on the updated contour to maximally

cover the moving target. By this configuration, spatial information of the target is

loosely encoded in this block structure. Nevertheless, the fixed size and number of the

block are quite limited in tracking articulated targets.

(a) (b) (c)

Figure 2.16: Example of patch initialisation process in (Kwon & Lee, 2009). (a) Given
bounding box. (b)Good points with small condition number. (c)Chosen patches.

Kwon and Lee (Kwon & Lee, 2009) propose a patch-based appearance model. All the

patches within the bounding box are connected with the centre of the bounding box

enclosing the target. The position of patches are initialised by the condition number

of the Hessian matrix to be good for image alignment and the size is set randomly.

Each local patch is only dependent on the centre of the target in this model. Given

the bounding box, the first local patch’s centre position is selected as the point with

the lowest condition number K value, which means the Hessian matrix is the most

numerically stable. The centre position of the second patch is determined by the point

with the second lowest K value. Applying the criterion that new patches are non-

overlapping with existing patches, initialisation of patches is repeated until there is

no space to add a new patch or the number of patches reaches a predefined value.

The whole initialisation process of patches is shown in Figure 2.16. In this method,

the appearance model is a generative appearance model represented by an assembly of

patches. The motion model is basically a proposal density given by a transition model.

The search strategy is a probabilistic search strategy, Bayesian filter. Specifically, they

(Kwon & Lee, 2009) incorporate the star model into a Bayesian filtering framework

and an MCMC-based search, in which the likelihood is defined by the product of the

photometric and geometric likelihood of all patches. Patches can be flexibly moved,

deleted or added in an online update step, which is determined by landscape analysis

of the patch. The patches have no relationships between each other and the patch

doesn’t relate to a specific target area. All the patches are only dependent on the centre

position of the target, which constitutes a loose target structure and doesn’t represent
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the target’s geometric information clearly. Thus this model, though robust to a certain

degree, tends to suffer the part drifting problem during tracking.

(a) (b)

Figure 2.17: The configuration used in (L. Zhang & van der Maaten, 2013). (a) I(B)
is the image within the bounding box and x is the centre of each bounding box. (b)
Φ(I,B) is the HOG feature extracted from previous configuration and the red solid

lines represent the relative location between tracked objects.

Alternatively, Zhang et al. (L. Zhang & van der Maaten, 2013) propose the structure

preserving object tracking method, i.e. the SPOT tracker, verifying the importance of

structural constraints between objects or within an object in tracking. The appearance

model in their method is a classifier trained on HOG features. The motion prior is

not considered and a sliding window approach is used. The search strategy is a non-

probabilistic optimisation method minimising the structured SVM loss. Specifically,

the initial configuration is a set of bounding boxes, defining the tracked objects, and

the spatial constraints among them, as shown in Figure 2.17. The size and number of

bounding boxes are fixed during tracking. They use a star model (Felzenszwalb et al.,

2010) and a minimum spanning tree model (X. Zhu & Ramanan, 2012) to represent

the spatial relations among the tracked objects separately. The star model is defined

by allocating a dummy object centred on the area covered by all the objects and the

spatial constraints are displacements from this dummy object to other objects. In the

minimum spanning tree model, the spatial constraints are defined by the tree model

minimising the sum of weights of all edges of the tree obtained through searching from

all possible tree models. Experimental results (L. Zhang & van der Maaten, 2013) show

that the SPOT tracker with the minimum spanning tree model has better performance.

The SPOT tracker utilises an online structured SVM framework to find a configuration

best matching the appearance model without stretching or compressing the ’springs’

between the tracked objects too much. The weight of each bounding box and the spatial

structure are updated every frame after locating the tracked objects. The SPOT tracker

is designed for tracking multiple objects at the same time. The paper also shows that

the SPOT tracker can improve the performance of tracking the single target by adding

object parts, and the number of parts is fixed to 2. This paper shows that spatial

constraints are crucial for model-free tracking.
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Figure 2.18: An example of tracking result of parts and the bounding box in (Yao et
al., 2013). The yellow rectangle shows the bounding box of the object and four small

rectangles show the bounding box of parts.

Yao et al. (Yao et al., 2013) propose a structured learning method with the unknown

parts of a tracked target modelled using latent variables. The part-based appearance

model in this paper is to use a structured SVM with latent variables. The motion model

is only based on the previous target location. The search strategy is an optimisation

approach. Specifically, a target is represented with a few parts, each of which has a

weight. An online structured support vector machine method with latent variables is

adopted to learn the weight parameters of a target and its parts. The target is then

discriminated from the background with the weight parameters. The target location

is given by maximising the classification score in the vicinity around the prediction of

the target from the previous frame. A two-stage training method is employed in their

tracking approach, in which the parts parameters are predicted in the first stage and

the total object and correlation parameter are estimated in the second stage. The whole

object is defined by the bounding box. A part is represented by a smaller box, a part box,

similarly. The parts of the object are defined heuristically based on the ratio of width

and height of the object. If the ratio is larger than 0.5, the object is divided into four

parts equally (two rows and two columns), or else it’s three parts. This method shows

the flexibility of the appearance representation using part-based models to a certain

degree. Figure 2.18 shows an example of a tracking result from one video frame (Yao et

al., 2013).

Cehovin et al. (Cehovin et al., 2013) present a coupled-layer visual model to handle the

rapid and significant variations of target appearance. The coupled-layer model consists

of a local layer and a global layer. The local layer is a geometrical constellation of visual

patches representing local visual properties of the target, while the global layer describes

the visual information of the whole target using a probabilistic model. The appearance

model in this tracker is a coupled-layer model containing both global and local target

appearance information. The motion model is a Kalman filter with a NCV dynamic

model. The search strategy is a Bayesian filter. Specifically, the target’s velocity is

estimated by the Kalman filter and the local-layer patches are initialised with the NCV
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Figure 2.19: Illustration of the configuration of the proposed coupled-layer visual
model in (Cehovin et al., 2013). The white dashed rectangle shows the global layer of

the object, and the small white rectangles show the patches.

model. The locations of local-layer patches are adapted through the Bayesian framework.

The target’s centre is then calculated from the locations of local-layer patches. The

patches which do not respond to the target are removed from the local visual model.

The remaining stable patches are used to update the visual features of the global layer.

After that, the allocation of the new patches is determined by the global layer when

necessary. The couple-constrained updating of the visual model realised by feedback

loops between the global and the local layer increases the robustness of the proposed

tracker. Figure 2.19 demonstrates the configuration of the coupled-layer visual model in

(Cehovin et al., 2013).

Figure 2.20: The correspondences of parts are established from multiple frames in
(T. Zhang et al., 2014). The blue cross marks denote the positions of parts, and the
blue lines represent their correspondences. The final tracking results are denoted with

red bounding boxes.

Zhang et al. (T. Zhang et al., 2014) propose a robust part matching method to handle the

partial occlusion problem through the exploitation of the confidence score of individual

parts. The appearance model is a template represented by a low-rank matrix formed by

intensity vectors of corresponding parts in multiple frames (see Figure 2.20). The motion

model is a particle filter sampling at and around the parts of the previous tracking results.

The search strategy is a matching approach. Different from other matching methods,

the matching of parts in this paper is conducted among multiple frames, which enables a

globally consistent property through the sequence. Specifically, the part correspondences
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in multiple frames are obtained through a locality-constrained low-rank sparse learning

approach using optimisation of partial permutation matrices, during which the parts

are matched jointly to cover the occlusion of part appearance caused by occlusion. The

parts are obtained through dividing each template into regular grids, from which the

number of parts is 3× 2 or 2× 3 depending on the target’s aspect ratio. The number of

incoming frames to be tracked is set to be 3. This method displays robustness to partial

occlusion.

(a) (b) (c)

Figure 2.21: The framework of (Liu et al., 2015). (a) The parts’ configuration of
a target. Each part is tracked individually. (b) The corresponding confidence map of
each part. (c) The combined confidence map and Bayesian framework are applied to
locate the target. The yellow windows are candidate windows and the solid one is the

tracking result.

Recently, research on correlation filters has attracted much attention and has been fre-

quently applied in tracking (Bolme, Beveridge, Draper, & Lui, 2010; Rodriguez, Bod-

deti, Kumar, & Mahalanobis, 2013; Danelljan, Khan, Felsberg, & v. d. Weijer, 2014;

J. F. Henriques, Caseiro, Martins, & Batista, 2015) because of its high efficiency and

competitive performance. Liu et al. (Liu et al., 2015) propose a part-based real-time

tracker based on the kernelized correlation filter (KCF) (J. F. Henriques et al., 2015) as

the part classifier, as shown in Figure 2.21. The number of parts is fixed to 5 in this

paper. The size of the part is defined between 1/4 and 1/6 of the object size. Each

part is tracked separately using the KCF tracker, i.e. the part classifier, which is the

discriminative appearance model in this paper. The motion parameter space is a larger

search window based on previous target location. The target is tracked by correlat-

ing the filter over the search space, and the location with the maximum value in the

correlation response map would be the new predicted target location. Specifically, a

correlation response map is obtained for each part to locate the part and the confidence

maps of parts are combined to infer the target location. When combining the response

maps for all the parts, the peak-to-sidelobe ratio (PSR) and temporal smoothness of the

confidence map are considered to decide the weight of each map, which is to make sure

the reliable parts are given more weight and to reduce the influence of occluded parts.

Similarly, when updating the classifier coefficients and the learned target appearance,

the same rule is followed so that each part tracker is updated adaptively based on its

weight. The robust part tracker would be updated more with higher learning rate. To
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locate the target, a Bayesian framework is applied to the combined confidence map dur-

ing which the spatial constraint mask is applied to enforce the structural relationships

between parts. After that, the candidate window which has the highest likelihood within

the confidence map is selected as the target location. The size of each part tracker is

fixed while the target size is determined by the Bayesian framework to enable variation

of scale and rotation. This method is proved to perform competitively, which relies on

its multiple part configuration and adaptive updating.

2.6 Datasets for Evaluation of Visual Tracking Methods

It has become a standard of evaluating trackers on publicly-available sequences with a

standard ground truth labelling (Wu et al., 2013; Kristan et al., 2013, 2014, 2015, 2016b)

which provide convenience for comparison. The datasets which are used most extensively

include the CVPR2013 Benchmark (Wu et al., 2013) and the VOT2015 Benchmark

(Kristan et al., 2015). ‘Amsterdam Library of Ordinary Videos(ALOV)’ is another very

large dataset. However, some sequences contain ambiguously defined targets such as

fireworks, which makes the dataset inappropriate for tracking evaluation.

2.6.1 CVPR2013 Benchmark

To provide a benchmark to evaluate the state-of-the-art tracking methods Wu et al.

proposed a benchmark in the 2013 IEEE Conference on Computer Vision and Pattern

Recognition(Wu et al., 2013). It includes 50 video sequences (including 51 tracking

instances, see Figure 2.22) and 29 state-of-the-art trackers. This benchmark provides

videos with challenging conditions such as scale variation, occlusion, deformation, fast

motion, illumination variation, in-plane rotation, out-of-plane rotation, background clut-

ter and so on. Thus, this tracker can avoid over-fitting to a small subset or one specific

attribute. All videos are manually tagged with what the main challenges of the video

are. Usually, each sequence is annotated with several visual attributes. The benchmark

can report tracker performance with respect to each attribute separately. The list of the

attributes is shown in Figure 2.23.

The ground truth provided by this benchmark is the bounding box. The performance of

the various trackers is measured using precision (Babenko et al., 2011; J. a. F. Henriques,

Caseiro, Martins, & Batista, 2012; Wu et al., 2013) and success plots in this benchmark.

The precision plot measures the percentage of frames whose estimated location is within

the given threshold distance of the ground truth (Wu et al., 2013). The success plot

measures the percentage of frames for which the overlap divided by the union of the
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Figure 2.22: Tracking sequences for evaluation. The first frame with the bounding
box of the target object is shown for each sequence. The sequences are ordered based
on the ranking results (See (Wu et al., 2013)): the ones on the top left are more difficult
for tracking than the ones on the bottom right. Note that two targets are annotated

for the jogging sequence. This figure is from (Wu et al., 2013).

Figure 2.23: List of the attributes annotated to test sequences. The threshold values
used in this benchmark are also shown. This figure is from (Wu et al., 2013).
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predicted and ground truth bounding boxes exceeds a given threshold ratio which varies

from 0 to 1. This benchmark reports on one-pass evaluation (OPE), i.e. the tracker is

run throughout the whole video initialised only with the ground truth in the first frame.

To rank the performance, this benchmark uses the precision obtained for a location error

threshold of 20 pixels as the precision score for precision plot. For success plot, the area

under curve (AUC) is used as the success score.

2.6.2 VOT2015 Benchmark

The dataset consists of 60 sequences (see Figure 2.24) which are selected from a large

pool of sequences combined from existing datasets CVPR2013 benchmark (Wu et al.,

2013) (50 sequences) and ALOV (Smeulders et al., 2014) (315 sequences), PTR (Vojir,

Noskova, & Matas, 2014) and other sources, which makes sure that the Visual Object

Tracking 2015 (VOT2015) (Kristan et al., 2015) dataset is a representative set of chal-

lenging sequences. The ground truth provided by the dataset is slightly more flexible;

rotated bounding boxes described by the coordinates of their four corner points. How-

ever, the bounding boxes are still not able to fully exclude background pixels. The

dataset tries to make the bounding box contain at most about 30% background pixels.

Each frame of the dataset is labelled with five visual attributes, which are occlusion,

illumination change, motion change, size change and camera motion. Any frame which

doesn’t show any of these five attributes is labelled as unassigned.

(a) (b) (c)

(d) (e)

Figure 2.24: Examples of tracking sequences in (Kristan et al., 2015).

The main difference between the evaluation mechanism of the VOT2015 and that of

the CVPR2013 benchmark is that VOT2015 allows for re-initialisation. In VOT2015,

re-initialisation happens when the overlap between the estimated bounding box and the

ground truth bounding box of the target reduces to zero.
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Performance on the VOT2015 dataset is measured by two weakly correlated measure-

ments, accuracy and robustness (Kristan et al., 2015). The accuracy represents how

well the predicted bounding box overlaps with the groundtruth bounding box. While

robustness means the number of tracking failures when the tracker loses the target.

Each tracker evaluated on the VOT2015 dataset is performed on each sequence 15 times

to guarantee good statistics. The VOT2015 benchmark (Kristan et al., 2015) also in-

troduces the expected average overlap as a new metric to rank tracking algorithms; it

combines the raw values of per-frame accuracies and failures in a principled manner

and it provides a clear interpretation of the accuracy and the robustness. The expected

average overlap estimates how accurate the estimated bounding box is after a certain

number of frames are processed since initialisation.

2.7 Conclusion

This section has reviewed the main concepts and challenges in visual tracking, and then

explained the three main components of tracking: appearance model, motion model

and search strategy. Especially, this section has analysed the algorithm components,

advantages and drawbacks of the state-of-the-art tracking methods with structured part-

based models (Adam et al., 2006; M. Yang et al., 2007; Shahed Nejhum et al., 2008;

Kwon & Lee, 2009; L. Zhang & van der Maaten, 2013; Yao et al., 2013; Cehovin et al.,

2013; T. Zhang et al., 2014; Liu et al., 2015).

• These part-based methods rely on a template likelihood strategy to estimate tar-

get location. Background is often included in the target template, which tends

to deteriorate the template when continuously varied background appear during

tracking.

• It is found that these part-based methods are capable of handling partial occlu-

sions to a degree, and they are robust to small deformations. However, they still

cannot handle non-rigid objects with severe or complex movements. Most of these

methods adopt rigid structures or a star model, and there are no spatial constraints

between adjacent parts. Rigid structures and the star model are sub-optimal in

modelling target structure when the target is deformable and articulated, as ad-

jacent parts of a target are more likely to move toward the same direction with

the same speed. Utilising the spatial relations between parts will be beneficial to

tracking. It means that an extra component, shape, is necessary for general object

tracking.
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• Among these methods, the part-based model proposed by (Kwon & Lee, 2009) has

the most flexible shape, and it includes the least background in target. It can be

used as a starting point to design an improved part-based model in this thesis.



Chapter 3

Potential Benefits of Part-based

Models

After theoretical analysis of the advantages and problems of current part-based models in

tracking, the next step is to perform practical analysis of part-based models in tracking.

According to the literature review on part-based visual tracking, the part-based model

of the tracker Adaptive Basin Hopping Monte Carlo(A-BHMC)(Kwon & Lee, 2009), has

the most flexible model and is closest to this research’s goal. A-BHMC is different from

the rigid definitions of other part-based models used in tracking (Adam et al., 2006;

M. Yang et al., 2007; Shahed Nejhum et al., 2008; L. Zhang & van der Maaten, 2013;

Yao et al., 2013). The part-based model of A-BHMC consists of small rectangles, only

containing a little background, and the shape of the part-based model of A-BHMC tends

to vary with the whole target shape. Thus, the A-BHMC tracker was used as a starting

point for further comparative experimental research.

3.1 Initialising Part-based Trackers

When designing a part-based model, the first issue is how to initialise the parts, which

defines the parts used during tracking. The initialisation of parts is crucial, because

it is the first step in tracking and all the information used in the following automatic

tracking is obtained in this step. Any error introduced during the initialisation stage

will significantly affect the accuracy of subsequent tracking.

As shown in Figure 2.16(c), the parts initialised in the A-BHMC tracker are many

distributed small rectangles (Kwon & Lee, 2009). Their initial positions are decided

based on the condition number K of the Hessian matrix, as described in Section 2.5.

43
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This makes it hard to decide the number of parts, and the parts are very likely to include

background areas that do not provide target information.

Boykov and Jolly (Boykov & Jolly, 2001) propose an initialisation method in which

the user manually draws strokes with the mouse to label the pixels of the object and

the background as clues for image segmentation. Moschini and Fusiello (Moschini &

Fusiello, 2008) and Guo et al. (Guo, Xu, & Tsuji, 1994) use a stick figure for tracking

human bodies. The stick figure comprises stick components representing human body

parts and joints linking these components together (as shown in Figure 3.1 (Moschini &

Fusiello, 2008)).

Inspired by these works, this thesis proposes an initialisation method for model-free

online tracking using stick figures. This method allows the automatic growth of parts

from key points which are selected from skeleton lines drawn by the user. The parts

obtained by this initialisation method are shown in Figure 3.2(e).

Figure 3.1: The stick figure body model employed in (Moschini & Fusiello, 2008).

Parts are grown based on the stick figure as follows:

• The user draws free-form lines to label the tracking target, forming a stick figure

of the target, which is similar to giving it a skeleton structure (shown as the red

lines in Figure 3.2(a)).

• Given the stick figure, the intensity gradient values of all pixels on the stick figure

are calculated. The point with the highest gradient value is then selected as the

first base point. The point with the second highest gradient value is selected as the

second base point. In total 30 base points are chosen in this way. These base points

should keep a certain distance between each other because they are intended to

form the centres of potential parts. When examining a point with a high gradient

value, the distances from the point to all existing base points are measured. If

the minimum of these distances is less than 10 pixels, the examined point will be

skipped. The base points selected are the yellow dots shown in Figure 3.2(b).
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(a) Drawing lines (b) Base points (c) Extended points

(d) Base lines (e) Grown parts

Figure 3.2: The initialisation of parts using the proposed stick figure method. (a)
The drawing lines are in red. (b) The yellow points are the base points with a high
gradient value. (c) The green points located at both sides of a yellow point are the
extended points. (d) The blue lines linking two extended points of a yellow base point

are the base lines. (e) The blue parts are grown from the base lines.

• Along the stick figure, for each base point, find a pair of points which are each

four pixels away from that base point in opposite directions along the skeleton.

These pairs of points are called extended points, shown as the green dots in Figure

3.2(c).

• Link each pair of extended points with a line segment. These line segments are

base lines (shown as the blue line segments in Figure 3.2(d)).

• For each base line, examine its neighbouring parallel line segments, and check their

HSV histograms, as shown in Figure 3.3. If the HSV histogram similarity (mea-

sure by the Bhattacharyya distance) between a neighbouring line segment and the

base line is higher than a predefined threshold σ (σ = 0.65 in this experiment,

determined empirically and fixed during the whole experiment), the line segment

is regarded as a section of the part being grown from the base line. Only neigh-

bouring parallel line segments located at most ten pixels away from the base line

are considered.

Thus every part grows to be a small rectangle gradually, as shown in Figure 3.2(e). After

growing the parts, initialisation is finished.
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Figure 3.3: The illustration of searching similar line segments of a base line.

3.1.1 Tightly Initialised Targets Improve Tracking Performance

The traditional way of initialisation in tracking is that a user draws a bounding box to

locate the target area in the first frame. The ground truth of existing datasets for visual

tracking (such as the CVPR2013 benchmark (Wu et al., 2013), VOT2014 and VOT2015

benchmark (Kristan et al., 2014, 2015)) is presented as parameters of the bounding

box. Bounding-box-based initialisation is accepted as a proper initialisation method for

visual tracking. It is however claimed in this thesis that stick figure initialisation is more

appropriate, as the target initialised through the proposed stick figure method includes

less background and represents target appearance information more accurately.

To examine the benefit of this stick figure initialisation method, a comparative experi-

ment is designed to compare the performance of three different initialisation methods;

bounding box initialisation, the part-based initialisation used in the A-BHMC tracker

and the proposed stick figure initialisation.

Inspired by A-BHMC (Kwon & Lee, 2009), which is a part-based improvement of the

MCMC method, a standard MCMC method was implemented using Matlab. The differ-

ent initialisation methods would then be added on top of the standard MCMC method

and tested separately.

Parts were initialised with either the Hessian matrix method of A-BHMC or the proposed

stick figure method. The target location is the centre of the smallest bounding box

enclosing all parts. Note that the part’s location only depend on the target location.

The proposals made by MCMC are based on the target location as well. The width and

height of the distributed parts are several pixels, usually less than the width or height

of the whole object.
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Centre errors of MCMC-tracker with different initialisations (pixels)

Videos Bounding box Hessian matrix Stick figure

Diving 34.6539 26.9265 20.0078
Gymnastics 14.4942 27.3005 14.9493
High Jump 44.0417 42.9666 42.3133
Boy 7.9611 8.3652 6.0101
MountainBike 14.3928 15.0809 11.9879
MotorRolling 171.7854 165.0882 134.4405
Ironman 214.8088 281.9014 56.2587

Table 3.1: The centre errors of standard MCMC method with bounding box, Hessian
matrix and the proposed stick figure initialisation over seven videos. The values in bold

are the best result for each video.

The three methods were applied to seven video sequences and their centre errors of

whole objects were compared. The centre error is the Euclidean distance between the

predicted target location (the centre location of the bounding box enclosing a whole

object) and the manually labelled real location, namely ground truth, of the whole

object. Each method was run for five times on each video. Results are shown in Table

3.1. In Table 3.1, bold figures represent the best results. It shows that, the tracker

with the proposed stick figure initialisation method achieved the best results for six test

videos. The proposed method also achieved second best performance on the remaining

video sequence.

The experimental results clearly show that the initialisation method, indeed has an

effect on tracking performance. The MCMC with stick figure initialisation has shown

the best performance in the comparative experiment. One hypothesis is that the stick

figure initialisation method focuses on the target area and includes little background as

foreground, while bounding box and Hessian matrix initialisation methods usually treat

some background areas as target. Given the common bounding-box-based ground truth,

although the proposed stick figure requires a little extra effort to initialise the target,

the improvement in tracking performance is unignorable. This initialisation method has

been improved to be automatic, based on a segmentation technique, which is explained

in section 4.4. It is also shown in section 3.2 and Chapter 4 that a direct displacement

prediction technique works best in areas relatively close to the target, which verifies that

it is critical the initialised tracking target focuses on the foreground area. It is confirmed

that the stick figure initialisation method, which focuses on the target area, improves

tracking performance.
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3.1.2 Exploration Advantages and Disadvantages of the Target Parts

Initialised by Stick Figure

Having examined the effect of stick figure initialisation on a standard MCMC tracker,

we now explore the performance of the bounding box initialisation working with a non-

part-based tracker (MCMC) and a part-based tracker (A-BHMC) , and the performance

of stick figure initialisation working with the above two trackers. The advantages and

disadvantages of a part-based representation determined by the stick figure initialisation,

can be concluded from the experiment.

As for concrete experiment, it is conducted to compare four methods which are examin-

ing the bounding box and the stick figure initialisation with MCMC and the part-based

tracker A-BHMC (Kwon & Lee, 2009), respectively. The four methods are noted with

B-MCMC, SF-MCMC, B-A-BHMC and SF-A-BHMC, where B stands for bounding box

and SF stands for stick figure.

This experiment tests 35 video sequences from the CVPR2013 tracking benchmark(Wu

et al., 2013), namely the Baseketball, Bolt, Boy, CarDark, CarScale, Coke, Couple,

Crossing, David, David3, Deer, Doll, FaceOcc1, Football1, Girl, Ironman, Jogging,

Lemming, Liquor, Matrix, MotorRolling, MountainBike, Shaking, Singer1, Singer2,

Skating1, Skiing, Soccer, Subway, Tiger1, Tiger2, Trellis, Walking, Walking2 and

Woman sequences. There are two targets in video Jogging, which are actually two

running persons located at the left side and right side respectively in each frame of the

video sequence. The Jogging video can be denoted as JoggingLeft and JoggingRight

to describe different tracked target. It is equivalent to 36 videos in total. Every method

is run on the 36 videos respectively. For each video, each method is run for five times.

This research follows the conventional way of evaluating a tracker’s performance, which

is to run the tracker on the test video sequence given the initialisation of the ground truth

target position in the first frame. The initialisation in bounding box form is provided

by the CVPR2013 benchmark dataset. Initialisation by the stick figure method needs

to be generated as explained in Section 3.1.

As standard datasets in visual tracking give bounding box ground truth, the bounding

box ground truth is used in this experiment. Specifically, this experiment adopts centre

position of the bounding box as the tracking result. For part-based tracker, the track-

ing result is also based on bounding box which is the minimal rectangle covering all

distributed parts of the whole object. Table A.1, Table A.2, Table A.3 and Table A.4

show the centre error averaged over a whole video sequence for each video each run. The

figure in bold is the best tracking result of the corresponding method for each video. µ

is the mean of the average centre error of different runs for each video. σ is the standard
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Figure 3.4: The values of y-axis correspond to means of the average centre error of
four trackers, B-MCMC, SF-MCMC, B-A-BHMC and SF-A-BHMC, running five times

on each video.

deviation of the average centre error of different runs for each video. The means (µs)

of the results of four methods corresponding to different videos in above four tables are

compared and shown in Figure 3.4.

According to experimental results, B-MCMC achieves the best results for 18 video se-

quences, and SF-MCMC obtains the best results for 16 video sequences. SF-A-BHMC

achieves the best results for remaining 2 videos. It has shown that the stick figure initiali-

sation method has competitive performance compared to the bounding box initialisation

method.

In SF-MCMC, parts can rotate based on a Gaussian model, as the real target may

rotate. When starting tracking using MCMC, in each frame, proposals of the position of

target’s centres are made based on the best prediction of the target location in previous

frame. Similarly, the rotation α of all samples of a part are sampled based on the

corresponding part of the best sample of the whole object in the previous frame via a

Gaussian distribution:

α(i, t+ 1) = α(i, t) + 30 ∗ π/180 ∗G(0, 1), (3.1)

where G(0, 1) randomly generates a number from 0 to 1 following a Gaussian distri-

bution. i is the part index and t is the frame index. Although the part can rotate

based on the corresponding part of the best sample following a Gaussian distribution, in

SF-MCMC, each part’s position is only dependent on the centre of the target, like the

star model (Fergus, Perona, & Zisserman, 2005; Leibe, Schindler, Cornelis, & Van Gool,

2008).

Thus, in SF-MCMC, parts cannot constrain or communicate with each other. Adopting

the star model to describe spatial relationships among parts does not allow us to repre-

sent the structure of the target. The flexibility of a star model leads to a very loose part
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structure, so that SF-MCMC sometimes performed worse than the traditional method

B-MCMC. Also, as parts are grown utilising histogram similarity, the part cannot be

grown to be an appropriate size when the histogram similarity is not that high locally.

Thus the parts initialised would be sparsely distributed over the target area and thus

not enough target information can be obtained for tracking, as shown in Figure 3.5.

Figure 3.5: The initialised parts (green rectangles) for video basketball by the pro-
posed stick figure method.

(a) Frame #54 (b) Frame #55 (c) Frame #56

(d) Frame #57 (e) Frame #58 (f) Frame #59

Figure 3.6: Illumination variation leads to loss of target in tracking. This is the result
of SF-A-BHMC tracker for Shaking video. The green rectangle is the ground truth,

while the red rectangle is the predicted target area.

The part-based methods, B-A-BHMC and SF-A-BHMC, perform worse than the other

two methods except on two videos, Walking2 and Woman. MCMC does not update

the template while A-BHMC has the strategy of updating the template in every frame.

However, in most of the test videos, tracking has problems with occlusion or illumina-

tion variation, which would introduce error to the template after updating. Once the

template is updated to be a new one with a small error, the error will be accumulated

and the tracker will never find the correct target again. Figure 3.6 shows the result of
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SF-A-BHMC for the Shaking video sequence, which illustrates that illumination varia-

tion leads to loss of target in tracking because of incorrect updating. Note that there

are no spatial relationships between the parts in SF-A-BHMC either.

3.1.3 Conclusion

The first comparative experiment was performed to verify the benefit of the proposed

stick figure initialisation method, which determines the parts. It has confirmed that the

stick figure initialisation method, which is less likely to include background in the fore-

ground information, has better performance than bounding box initialisation and the

part-based initialisation method used in A-BHMC. Both of the last two methods (bound-

ing box initialisation and part-based initialisation method used in A-BHMC) include

the background in the foreground model to different degrees. The second experiment

was performed by combining the stick figure initialisation and bounding box initiali-

sation with MCMC and A-BHMC separately. The similar performances of B-MCMC

and SF-MCMC have shown that stick figure initialisation has competitive performance.

However, from the experimental results, some problems which need to be addressed can

be identified as well.

Firstly, the parts are not initialised properly. As shown in Figure 3.5, parts do not include

background but are not grown to be an appropriate size which can fully cover the target’s

prior information. Secondly, the parts lack an explicit relationship between each other.

Non-rigid objects usually have a flexible but connective structure. One part’s movement

will lead to its neighbours’ movements. When one part rotates, its related parts are likely

to rotate to a similar degree. Therefore, parts which are only dependent on the centre

tend to move too flexibly, which may lead to drift. Thirdly, updating the appearance

model sometimes introduces error to the template. The template is critical in tracking

using a template likelihood strategy. Templates with even a small error are highly

likely to lead to incorrect optima. In addition, the target usually changes appearance

constantly throughout the video. Many factors, such as illumination, movement and

scale variations, will cause appearance transformations. Thus, seeking an appearance

model which is robust to the variation of target’s appearance and accurate to describe

the target is critical to correct tracking.
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3.2 Preliminary Experiments on Direct Displacement Pre-

diction Strategies

It is necessary to generate an approach which can effectively model the target’s appear-

ance and shape as well as correctly predict parts location. A successful method, Local

Evidence Aggregation based on regression (LEAR) (Martinez et al., 2013), has shown

competitive performance on facial point detection. This method relies on the ability of

a local image patch evaluated by a pre-learned regressor to provide an estimate of the

displacement from it to the target location, which is the Direct Displacement Predic-

tion. In doing so, local image patches contribute to the solution by directly voting for

the target (part) location.

More precisely, given a test location in an image, a feature descriptor is extracted from an

image patch centred at it. The feature descriptor is evaluated by a regression method

to estimate the relative position of the target facial point with respect to the image

patch. The regression is performed on the image patch to predict the horizontal and

vertical components ∆x and ∆y of the displacement vector pointing from the test loca-

tion to the true target location. LEAR uses Support Vector Regression (SVR) as the

regression algorithm. This algorithm learns a separate regressor for each facial point to

estimate the point location of the target face. Stochastically selected local appearance

information is evaluated by the regressor to give estimates of potential target location.

These estimates are aggregated to form a single robust prediction of target location. In

addition, LEAR (Martinez et al., 2013) uses the facial point definitions commonly used

for facial expression recognition, as shown in Figure 3.7. Representing the face with

facial points instead of a bounding box avoids background information. Facial points

can also provide a more accurate face localisation and capture the shape of the face.

Adopting this point-based definition of parts in tracking has the potential benefits of

avoiding background noise and defining the target shape using points locations directly

without extra effort.

LEAR is able to detect an arbitrary set of facial points with the requirement that the

target points must have a distinctive local texture. This requirement is easy to achieve

in facial point detection as local areas around facial points usually contain identifiable

texture. Variations in the appearance of faces are also typically smaller than those of

the general objects considered in visual tracking. Regressors for all the facial points in

LEAR, and the facial shape model, are pre-learned from approximately 1000 manually

annotated images. However, offline training is not an option for model-free visual track-

ing. The research question addressed here is whether LEAR’s approach can be extended



Chapter 3. Potential Benefits of Part-based Models 53

Figure 3.7: The twenty facial points used in LEAR (Martinez et al., 2013) (blue) and
the centre points for the eyes and nose (orange). The inter-ocular distance diod is the

Euclidean distance between the centre eye points.

to model-free tracking. This chapter now presents preliminary experiments to explore

the performance of the direct displacement prediction technique in visual tracking.

Figure 3.8: The part-based representation of a target. Yellow rectangles are different
parts and red dots are their centres.

Since this research’s goal is to track general (usually deformable) objects, the human

is selected as an example target in preliminary experiments, as it is one of the most

common classes of deformable objects. Note that the models used are not trained for

any specific class of object. Specifically, the target is divided into three meaningful

parts; three parts are used as a simple part-based representation of the whole target.

As shown in Figure 3.8, the first part covers the head, the second part covers the upper

body and the third part covers the lower body. The centres of these three parts are

target points in tracking and they are tracked separately. The test videos in preliminary

experiments are selected from the CVPR 2013 benchmark (Wu et al., 2013), and this

benchmark provides bounding-box-based ground truth for targets. The ground truth

of the target points are obtained from the bounding box ground truth using the parts’

definition shown in Figure 3.8.
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3.2.1 Qualitative Experiments

The initial experiment is designed to test whether the position of a general target point

can be decided by predicting the direction vector of samples around the point. The idea

is to train a regressor modelling the relationship between local image information and

relative displacement to the target, and then examine the image information used for

training to see whether the predicted displacement is consistent with the displacement

used for training (see Figure 3.9). If they are consistent, it means that the target point’s

location can be predicted by the estimation of displacement vector through a regression

technique. If not, the estimation of the displacement vector is not reliable in visual

tracking.

Figure 3.9: The flowchart of the initial experiment.
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(a) (b) (c)

Figure 3.10: The samples around a target point and their corresponding displace-
ments. (a) The random sampling locations around a target point. The red dot repre-
sents the target point and blue dots are sample locations. (b) Blue rectangles are image
patches centred at sample locations. (c) Blue dots are centres of samples (sample lo-
cations) and green arrows represent ground truth displacements from sample locations

to target.

(a) (b) (c)

Figure 3.11: Training sample locations (blue dots) of different parts of the target.
The red dots are centres of three parts of the target.

The video used in qualitative experiments is video Woman. The difficulty of this video

is classed as mid-level, based on the ranking in the CVPR 2013 benchmark (Wu et al.,

2013). Given the ground truth of the three target points in the first frame of a video

sequence, for every target point, N sample locations are obtained through uniform ran-

dom sampling within a circular area of radius r centred on the target point, as shown

in Figure 3.10(a) and Figure 3.11. The sampling radius r is 20 pixels and the number of

samples N is 100 in the initial experiment, which are decided empirically. Features are

extracted from the image patch (as shown in Figure 3.10(b)) centred at every sample

location. The image patch is in the same size as its corresponding target part. The fea-

ture used in the preliminary experiments is the intensity histogram. The displacement
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is a vector from the sample location (the centre of the image patch) to the target. The

features and the displacements are used for training. Support Vector Regression (SVR)

is used as the regression technique, as in LEAR, although other regression algorithms are

also applicable. Taking a feature vector as input, an SVR can predict a 1-dimensional

real-valued prediction as the output. To predict the displacement vector, which is a

2-dimensional vector, two regressors are trained separately for each point. Sample loca-

tions are then treated as test locations and their features are evaluated by the learned

regressor to estimate displacement vectors, which ideally will point from test locations to

the target point. This process is done for the three target points separately. Estimation

and ground truth of displacement vectors are then compared. Comparative results of

three parts of a target are shown in Figure 3.12. The results are promising, and have

shown that, for all three parts, most estimated displacement vectors are consistent with

their ground truth in direction and distance. The qualitative results in Figure 3.12 show

that predictions from sample locations which are relatively close to the target tend to

be more consistent with the ground truth than the predictions from the farther sample

locations.

Further experiments are designed to assess the performance of the displacement-based

technique. Specifically, in Experiment 3.1 the regressor is trained in the first frame,

and then it is tested in frames 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40 and 50 (see

Figure 3.13). This is to explore the robustness of the regressor without re-training. In

Experiment 3.2 the regressor is trained in one frame and is tested in the next frame.

Specifically, the regressor is trained in frames 1, 9, 14, 19, 24, 29 and 49, and tested in

frames 2, 10, 15, 20, 25, 30, 50 (see Figure 3.14). This is to investigate the robustness

of the regressor with correct re-training every frame.

Each evaluation is run five times to reduce random effects. The method and parameters

of training the regressor are the same as the initial experiment described at the beginning

of Section 3.2.1. After training, the regressor is tested at grid locations (with the grid

spacing of four pixels) spanning the whole frame. The qualitative results of Experiment

3.1 and Experiment 3.2 , the predicted displacements and the ground truth displacements

for the second part of the target, are illustrated in Figure 3.15 and Figure 3.16 for a

single run of the experiment.

In Figure 3.15, it can be seen that, with the regressor trained in the first frame, most

predictions from frames 2-10 are consistent with the corresponding ground truth. In

frames 15, 20, 25, 30, 40, 50, fewer and fewer estimated displacements are consistent

with their ground truth. Please note that, there are some estimated displacement vectors

from the target area which are always consistent with their ground truth, as they are

located on the central part of the foreground whose appearance variation is relatively
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(a) The first part

(b) The second part

(c) The third part

Figure 3.12: Comparison between predictions from regressor and the ground truth
of displacements from sample locations to target location. Yellow rectangles are three
parts of the human. Blue dots are centres of parts, i.e. target points. Green arrows are
ground truth displacements from sample locations to target location. Red arrows are

predicted displacements. For clarity, arrows are scaled for display.
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Figure 3.13: The flowchart of Experiment 3.1. The differences between the initial
experiment and Experiment 3.1 are labelled with yellow background.

small. In Figure 3.16, with the regressor trained in the previous frame, most predictions

near the target in each frame are consistent with their ground truth.

Experimental results show that the direct displacement prediction technique possesses

a reasonable level of robustness over time. Especially with correct updating, the direct-

displacement-based regression has the potential to work for a long time. However, in

practice, update processes do not always have access to perfect ground truth. It is

clear that predictions degrade as the test locations go further away from the target,

but it is unclear how far they can go; this needs to be explored in the quantitative

experiments. Test locations in the foreground can consistently give correct predictions

over time. Most test locations in the background close to the target can provide correct
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Figure 3.14: The flowchart of Experiment 3.2. The differences between the initial
experiment and Experiment 3.2 are labelled with yellow background. Please note that
the regressor trained in one frame is tested in the next frame. For example, the regressor

trained in frame 14 is tested in frame 15.

predictions, but become less reliable without proper updating. While the test locations

in the background far away from the target give random predictions. Thus, to make the

direct-displacement prediction work, it is critical to make sure that the test locations

are close to the target and updated properly. This is an important motivation for the

implicit shape model proposed in this thesis (explained in Chapter 4), which samples

from the region around a target point and its two neighbouring points to make sure that

most test samples are from the foreground.
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(a) Frame #2 (b) Frame #3

(c) Frame #4 (d) Frame #5

(e) Frame #6 (f) Frame #7

(g) Frame #8 (h) Frame #9
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(i) Frame #10 (j) Frame #15

(k) Frame #20 (l) Frame #25

(m) Frame #30 (n) Frame #40
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(o) Frame #50

Figure 3.15: The comparison between ground truth and estimated displacements
from test locations to target location. The regressor is trained in the first frame and
tested in various subsequent frames. For example, (a) shows the result in frame 2 and
its regressor is trained in frame 1. The blue circle is the ground truth target location.
Green arrows are ground truth displacement vectors pointing from test locations to
target location. Red arrows are predictions given by the regressor trained in the first

frame. Both kinds of arrows are scaled for clarity of display.

(a) Frame #2 (b) Frame #10

(c) Frame #15 (d) Frame #20
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(e) Frame #25 (f) Frame #30

(g) Frame #50

Figure 3.16: The comparison between ground truth and estimated displacements
from test locations to target location. The regressor is trained in one frame and tested
in its next frame. For example, (a) shows the result in frame 2 and its regressor is
trained in frame 1. The blue circle is the ground truth target location. Green arrows
are ground truth displacement vectors pointing from test locations to target location.
Red arrows are predictions given by the regressor trained in the first frame. Both kinds

of arrows are scaled for clarity of display.

3.2.2 Quantitative Experiments

After qualitative analysis of the direct-displacement-based regression technique, to ob-

tain full insight into the working of the regressor, quantitative research needs to be

performed as well.

There are three goals to achieve in the quantitative research:

1. Explore the relation between the number of training samples and the accuracy of

the direct displacement prediction.
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2. Discover the relation between the sampling radius used in training, i.e. the radius

from which training patches are sampled, and accuracy of the direct displacement

prediction.

3. Investigate the relation between the sampling radius used in testing, i.e. the dis-

tance from test location to the target location, and accuracy of the direct displace-

ment prediction.

The three goals can be achieved through two experiments. Experiment 3.3 and Ex-

periment 3.4 are designed for the first two goals separately, and the third goal can be

achieved by analysing certain experimental results selected from Experiment 3.3 and

Experiment 3.4.

The designs of Experiment 3.3 and Experiment 3.4 are explained in Section 3.2.2.1.

Section 3.2.2.2 gives a example of the result of one test (testing a regressor on one

frame). The experimental results related to the three research goals are illustrated and

analysed in Section 3.2.2.3, Section 3.2.2.4 and Section 3.2.2.5, respectively.

3.2.2.1 Design of the Quantitative Experiments

The video sequences used in the quantitative experiments are selected from the CVPR

2013 benchmark. The videos are labelled with properties they have. OCC is occlusion;

DEF is non-rigid deformation; OPR is out-of-plane rotation; BC is background clutter;

IV is illumination variation; SV is scale variation; MB is motion blur; FM is fast motion.

Specifically, the video sequences used in the quantitative experiments and the proper-

ties they have are: David3 (OCC, DEF, OPR, BC), Basketball (IV, OCC, DEF, OPR,

BC), Jogging (OCC, DEF, OPR), Woman (IV, SV, OCC, DEF, MB, FM, OPR) and

Crossing (SV, DEF, FM, OPR, BC) from CVPR 2013 benchmark (Wu et al., 2013).

These five videos are selected as the video set for three reasons. First, these five videos

include nearly all the challenging aspect found in visual tracking. Second, the difficul-

ties of these videos are classed as mid-level, based on the ranking in the CVPR 2013

benchmark (Wu et al., 2013). They are not too difficult and not too easy for tracking,

which is suitable for the investigative experiments. Last but not least, the targets in

these videos are articulated, and all of them have the most challenging properties for

part-based tracking, either non-rigid deformation or occlusion. Results obtained from

these videos are expected to give insight into the problems of part-based tracking.

The general idea of the experiment is, for each video sequence, to test the prediction

accuracy of the regressor, which is trained in a frame (usually the first frame in a video
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sequence), with one variable (either sampling radius or sample number used in training)

varying.

Based on the three research goals, two experiments are designed. The general framework

is shown in Figure 3.17. Specifically, in Experiment 3.3, the sample number for training

is changed to be 50, 100, 200, 300, 400 separately, while the sampling radius for training

is fixed to 20 pixels. In Experiment 3.4, the sampling radius for training is changed to

be 20, 30, 40, 50, 60 pixels respectively, while the sample number for training is fixed

to 100. The third goal can be achieved by analysing results obtained with the specific

sample number 100 and sampling radius 20 pixels.

Figure 3.17: The general framework for Experiment 3.3 and Experiment 3.4. Specif-
ically, in Experiment 3.3, the sampling radius for training is fixed while the number
of samples is varying. In Experiment 3.4, the number of samples is fixed while the

sampling radius for training is varying.
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In both of these experiments, the first 110 frames of each video are used. The regressor

is trained on every tenth frame, which are frames 1, 10, 20, 30, ..., 90. The regressor is

then tested at grid locations (with the grid spacing of four pixels) spanning the whole

frame (as shown in Figure 3.18) in the following 20 frames. For example, the regressor

trained in frame 1 is tested in frame 2, 3, 4, 5, ..., 19, 20, 21; the model trained in frame

40 is tested in frame 41, 42, 43, 44, ..., 58, 59, 60. In this way, each video is utilised as 10

video segments, and each segment contains 21 frames in total. For each video segment,

the training is performed in the frame 1 of each video segment, and the test is performed

in the frames from 2-21.

The prediction accuracy is measured as the Euclidean distance between the estimated

displacement vector and the ground truth displacement vector. More precisely, the

root-mean-square error (RMSE) is used to evaluate the accuracy of predictions within

a certain distance from the ground truth target location, as the grid test locations are

used. The RMSE can be calculated by:

xrms =

√
1

n
(x2

1 + x2
2 + ...+ x2

j + ...+ x2
n), (3.2)

where xrms is the RMSE measurement and xj is the Euclidean distance between the

predicted displacement and the ground truth displacement of jth test location within a

circular area. For each test (testing one model, a regressor, on one frame), the RMSE of

the predictions within circles with radii 5, 10, 15, 20, 25, ..., 90, 95, 100 pixels (as shown

in Figure 3.18) are calculated. Figure 3.18 gives an example of the map of estimated

displacement vectors from grid locations to target location.

3.2.2.2 Sample Results

This section gives an example of the result of one test (testing one model on one frame).

Further experimental results shown in Section 3.2.2.3, Section 3.2.2.4 and Section 3.2.2.5

are derived from the results of multiple tests.

Figure 3.19 shows the RMSE and its deviation of estimated displacement vectors within

circles with different radii in the three displacement maps in Figure 3.18. The variation

of the slope of the RMSE (thick black curve) shows that the increase in RMSE grows

with the increase of the test radius. The variation of the deviation (the shaded area)

shows that the deviation increases with the increase of the test radius. Both of these

figures illustrate that patches sampled from farther test locations tend to be less reliable.

Especially, compared with the other two parts, the deviation of part 1 within radius 20

pixels is bigger than those of the other two parts, which is because the image patch

samples of the head part contain more background, so that the samples are less reliable.
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(a) Part 1

(b) Part 2



Chapter 3. Potential Benefits of Part-based Models 68

(c) Part 3

Figure 3.18: The estimated displacement maps of different parts of a target. (a) The
displacement map for the head part; (b) The displacement map for the upper body
part; (c) The displacement map for the lower body part. Green arrows are ground
truth displacement vectors from test locations to target location while red arrows are
estimated displacement vectors. The arrows are scaled for clarity of display. The RMSE
of the predictions from sample located within circles with the radii 5, 10, 15, 20, 25, ...,
90, 95, 100 pixels are calculated. For clarity of display, only circles with radii 10, 20,

30, ..., 80, 90, 100 pixels are displayed.

Note that only the results of the part 2 of the video Basketball are displayed in Section

3.2.2.3, Section 3.2.2.4 and Section 3.2.2.5 to save space. The results of other videos are

very similar to the results obtained from Basketball. A specific video will not affect the

conclusion derived from the experimental results. More importantly, results obtained

from all videos were analysed, and the properties of the direct displacement prediction

technique obtained through the analysis are as described in Section 3.2.2.3, Section

3.2.2.4 and Section 3.2.2.5.
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(a) Part 1 (b) Part 2 (c) Part 3

Figure 3.19: An example of the the RMSE and its deviation of predicted displacement
vectors within circles with different radii. The middle black curve describes the RMSE
values of different radii. The grey area above and below the black curve shows the
deviation of the RMSE value. These are the corresponding results of the estimated
displacement maps of three target parts in Figure 3.18. The regressor(model) is trained

in the first frame and tested in the second frame.

3.2.2.3 Results and Discussions of Experiment 3.3

To explore the relation between the number of samples used in training and the predic-

tion accuracy of the regressor, Experiment 3.3 was performed.

Figure 3.20 shows the averaged RMSE results obtained from part 2 of the videoBasketball

in Experiment 3.3. The averaged results are obtained by averaging the results of 10 video

segments from video Basketball. The averaged results can provide a more reliable de-

scription of the relation than the result of a single test. Note that one test is defined

as testing one model on one frame. The result of each test will be similar to the result

of Figure 3.19, but with different values. Although 20 frames were tested after each

training, the results of first 10 frames are displayed in Figure 3.20 to save space, which

has already shown a clear relation between the number of training examples and the

prediction accuracy of the regressor.

(a) Averaged results over all 1st frames after training (b) Averaged results over all 1st frames after training
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(c) Averaged results over all 2nd frames after training (d) Averaged results over all 2nd frames after training

(e) Averaged results over all 3rd frames after training (f) Averaged results over all 3rd frames after training

(g) Averaged results over all 4th frames after training (h) Averaged results over all 4th frames after training

(i) Averaged results over all 5th frames after training (j) Averaged results over all 5th frames after training
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(k) Averaged results over all 6th frames after training (l) Averaged results over all 6th frames after training

(m) Averaged results over all 7th frames after training (n) Averaged results over all 7th frames after training

(o) Averaged results over all 8th frames after training (p) Averaged results over all 8th frames after training

(q) Averaged results over all 9th frames after training (r) Averaged results over all 9th frames after training
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(s) Averaged results over all 10th frames after training (t) Averaged results over all 10th frames after training

Figure 3.20: The mean and deviation of average RMSEs of different sample number.
The x-axis is the test radius and the y-axis is the average RMSE. The RMSEs are

averaged over 10 video segments. These results are for part 2 of video Basketball.

Figure 3.20(a), 3.20(c), 3.20(e), 3.20(g), 3.20(i),t 3.20(k), 3.20(m), 3.20(o), 3.20(q), and

3.20(s) show the mean RMSEs of different sample numbers in different frames after

training. It can be seen that the mean RMSEs obtained using different sample numbers

are very similar in each frame after training. This means that the sample number ranging

from 50 to 400 does not have much affection on the prediction accuracy of the regressor

when the training radius is 20 pixels. This situation holds for all frames (from the first to

the tenth) used for testing. The mean RMSE has a relatively small increase rate with the

test radius from 5 pixels to 20 pixels in the first frame after training. Although, in further

frames, the radius range over which this low increase rate is observed (corresponding

to a relatively flat curve in the figures of mean RMSE) gradually becomes smaller and

smaller. In all frames during test, the mean RMSEs which are smaller than 10 pixels

are at test locations sampled within a circular area with the radius around 20 pixels.

Figure 3.20(b), 3.20(d), 3.20(f), 3.20(h), 3.20(j), 3.20(l), 3.20(n), 3.20(p), 3.20(r), and

3.20(t) show the deviation of RMSEs of different sample numbers in different frames after

training. The deviation of RMSEs obtained using larger sample numbers is generally

bigger than that of RMSEs of smaller sample numbers. This holds for test locations at

different distances from the target and also for different frames. In most situations, the

deviation of the RMSE of the sample number 100 is consistently less than the deviations

of RMSEs of other sample numbers. This is because large sample numbers (i.e. high

sampling density) can cause over-fitting, so that the regressor will be less robust to

unseen samples. In all test frames, with the test radius varying from 5 pixels to 20 pixels,

the standard deviations of RMSEs generally decrease when the test radius increases.

With the test radius varying from 20 pixels to 40 pixels, the standard deviations of

RMSEs generally increase when the test radius increases. With the test radius varying
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from 40 pixels to 100 pixels, the standard deviations of RMSEs generally decrease when

the test radius increases.

These results show that the regressor, trained with less than 100 samples and a training

radius of 20 pixels, can effectively give predictions with RMSE lower than 10 pixels,

within a test radius of 20 pixels. This holds for about 5 or 6 frames after the initial

training.

3.2.2.4 Results and Discussions of Experiment 3.4

To explore the relation between the sampling radius used in training and the prediction

accuracy of the regressor, Experiment 3.4 was performed. Specifically, the sampling

radius for training is changed to be 20, 30, 40, 50, 60 pixels respectively, while the

sample number for training is fixed to 100. The regressor is trained in frame 1 and

tested in the following 20 frames in 10 video segments of each video sequence. 5 video

sequences are used in total.

Figure 3.21 shows the averaged results of part 2 of the video Basketball in Experiment

3.4. Similarly to Experiment 3.3, the averaged results are obtained by averaging the

results of 10 video segments. Each sub-figure of Figure 3.21 shows the cumulative mean

RMSE results for different training radii and a specific test radius. The mean RMSE

is averaged over 10 video segments. Specifically, for example, Figure 3.21(a) shows the

cumulative results of mean RMSEs averaged over 10 video segments (each is from frame

2 to frame 21), with test radius equal to 5 pixels and training radius varying from 20 to

60 pixels. Figure 3.21(d) shows the cumulative results of mean RMSE averaged over 10

video segments (each is from frame 2 to frame 21), with test radius equal to 20 pixels

and training radius varying from 20 to 60 pixels.

Figure 3.21 clearly shows that with the smaller test radius, the RMSEs of larger sam-

pling radius for training have bigger errors than those of smaller sampling radius. The

difference between RMSEs of different sampling radii for training becomes smaller when

the test radius increases. It is obvious in sub-figures, Figure 3.21(a) - Figure 3.21(d),

that the difference between RMSEs of different sampling radius for training becomes

bigger over time. In these sub-figures, the slopes of the red curves is nearly the same at

different frames. This shows that the samples at test locations with test radius smaller

than 20 pixels are able to give correct predictions over time, given the training radius is

20 pixels. Usually 20 pixels covers a small area, which focuses on the target in most cases.

It confirms that the initialisation of the target area is important for direct displacement

prediction. It can be seen from Figure 3.21(e), 3.21(f) and 3.21(g), that the difference

between mean RMSEs of different sampling radius gradually decreases. Figure 3.21(h),
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3.21(h), and 3.21(j) show that the larger sampling radii have better performance than

the smaller sampling radii when the test radius is more than 40 pixels. It’s reasonable

that samples at locations which are outside the training area are not able to give reliable

predictions over time.

(a) Test Radius = 5 pixels (b) Test Radius = 10 pixels

(c) Test Radius = 15 pixels (d) Test Radius = 20 pixels

(e) Test Radius = 25 pixels (f) Test Radius = 30 pixels
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(g) Test Radius = 35 pixels (h) Test Radius = 40 pixels

(i) Test Radius = 45 pixels (j) Test Radius = 50 pixels

Figure 3.21: The mean of cumulative RMSE result of different sampling radius. The
regressor is trained in frame 1 and tested in the following 20 frames (2-21) in 10 video
segments. The x-axis is the frame index and the y-axis is the average RMSE. The
RMSEs are averaged over 10 video segments. These results are for part 2 of video

Basketball.

3.2.2.5 Results and Discussions Related to the Research Goal 3

To derive the relation between the sampling radius used in testing, i.e. the distance from

test location to the target location, and prediction accuracy of the regressor, which is

the Research Goal 3 (see the beginning of Section 3.2.2), some results are selected from

experimental results of either Experiment 3.3 or Experiment 3.4. Specifically, the third

goal of the quantitative research can be achieved by analysing experimental results with

the specific sample number 100 and sampling radius 20 pixels, as Experiment 3.3 and

Experiment 3.4 have shown that the regressor, trained with 100 samples and a training

radius of 20 pixels, can effectively predict target location.

Figure 3.22 shows cumulative results of mean of RMSEs of three parts in five videos

(Basketball, Crossing, David3, Jogging and Woman ) with training radius equal to
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20 pixels and sample number equal to 100. Results are averaged over 10 video segments

in each video sequence and each video segment contains 21 frames in total. The regressor

is trained in frame 1 and tested in the following 20 frames in each video segment.

Each sub-figure shows the cumulative results for different test radii averaged over 10

video segments, with the training radius being 20 pixels and sample number being 100.

For example, Figure 3.22(a) shows the cumulative result of RMSE of the first part of the

target in the video Basketball, averaged over 10 video segments, with the test radius

varying from 5 pixels to 50 pixels, training radius equal to 20 pixels and sample number

equal to 100. Figure 3.22(d) shows the corresponding result of the first part of the target

in video Crossing. The naive error is displayed in each sub-figure for reference. The

naive error measures the difference between the naive result and the ground truth of the

target location. The naive result of the target location is the target location without

performing tracking, which means that the target location in the training frame is used

as the target locations through all test frames. Results confirm that test locations far

away tend to give less reliable predictions and a higher rate of increase of RMSE.

3.2.3 Conclusion

The conclusions related to the three research goals introduced at the beginning of 3.2.2

are as follows:

• Given a training radius equal to 20 pixels, a regressor trained with sample numbers

less than 100 is able to give reliable predictions. Regressors trained on larger

sample numbers tend to have an over-fitting problem.

• The samples at test locations with test radius smaller than 20 pixels are able to

give correct predictions over time, given the training radius is 20 pixels. To handle

larger test areas, the training radius has to be increased as well. However, when

training with a larger sampling radius, the robustness of prediction increases while

the accuracy of prediction decreases.

• Test locations far away tend to give less reliable predictions and have higher in-

crease rates of prediction error.
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3.3 A Simple Direct Displacement Prediction Tracker

In the previous two sections, preliminary experiments on the potential benefits and

problems of part-based models as well as an exploration of the direct displacement

prediction technique are introduced. After confirmation of the potential of the direct

displacement prediction technique, this section further develops point-based initialisation

and direct displacement prediction to form a basic tracker, which is named the simple

direct displacement prediction (DDP) tracker.

Adopting direct displacement prediction in tracking belongs to the area of regression-

based tracking. A literature review on regression-based model-free tracking is introduced

in Section 3.3.1. The simple DDP tracker is explained and evaluated in Section 3.3.2.

Section 3.3.4 concludes by discussing the limitations of the simple DDP tracker.

3.3.1 Literature Review on Regression-based Model-free Tracking

Since Cootes et al. (Cootes, Edwards, & Taylor, 2001) proposed in the active appear-

ance model (AAM) to learn the relationship between image intensity difference and

model parameter displacements, which requires an offline learning stage to obtain a

linear regressor numerically approximating the Jacobian, researchers have realised that

discriminatively-trained regressors could be effectively used for object localisation.

Inspired by the work of Cootes et al. (Cootes et al., 2001), traditional template-based

tracking, which minimises the difference between a reference template and a image region

to locate the target, can be posed as a regression-based tracking problem, which is to

find the set of parameters’ values which can best describe the motion and deformation

of the target through the sequence (Jurie & Dhome, 2002). The parameter variations

can be written as a linear function of a difference image which describes the difference

between the reference target image and the current image. Specifically, in (Jurie &

Dhome, 2002) which is proposed to track rigid objects, the template is represented by a

pyramid of sub-templates and each of them is tracked separately. Local motions provide

a robust estimation of the target.

Several methods, such as (Williams et al., 2005), (Patras & Hancock, 2010) and (Ellis

et al., 2011), proposed to exploit discriminatively-trained regressors to predict new ob-

ject states, while a classifier is incorporated to validate the predictions. Williams et

al. (Williams et al., 2005) propose a real-time tracker using a relevance vector ma-

chine (RVM) which extends the linear predictors to non-linear regression. Specifically, a

training set is obtained by perturbation using Gaussian distribution and the probabilis-

tic RVM is learned based on the training set to directly estimate displacement from the
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(a) (b)

Figure 3.23: An example of a training set for a face tracking case in (Williams et
al., 2005), which describes the process of generating examples from a single seed image.
(a) A labelled seed image in which the clear part is the foreground and the blurred
part is the background. (b) Some typical examples used to train the relevance vector
machines including images after deformation and their corresponding displacements in

translation, rotation and scaling (Williams et al., 2005).

target region. This paper demonstrated the real-time tracking of cars, faces and hands.

As an example, Figure 3.23 shows the generation of training samples from a single image

in (Williams et al., 2005).

Figure 3.24: The image is perturbed by the motion parameters, creating the set of
synthesised examples of observed intensities Ii of perturbed support set and motions

ti (Zimmermann et al., 2009).

Zimmermann et al. (Zimmermann et al., 2009) propose to learn a sequence of linear

regressors (referred to as predictors), each of increased precision but lower robustness.

It has been shown that this step is essential for producing accurate results, as a single

regressor can be trained to be either robust or precise, but not both simultaneously.

The object is modelled by a collection of local motion predictors, which makes the

estimation of object translation robust. Because of the simplicity of the linear predictor

and the number of the predictors used, the algorithm is able to make very efficient motion

estimations. The mapping between intensities of the perturbations of the support set and

the corresponding motions is illustrated in Figure 3.24. How the estimation is generated
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Figure 3.25: The working mechanism of sequential linear predictor in (Zimmermann
et al., 2009). The sequential predictor Φ = (ϕ1, ϕ2, ..., ϕm) estimates a vector of motion
parameters t (denoted by red arrow) in m steps by m different predictors ϕ1...ϕm.
Particular predictors and the number of steps are the subject of learning (Zimmermann

et al., 2009).

through the sequential linear predictor is presented in Figure 3.25 The selection of an

optimal sequence of predictors from a set of learned predictors is performed by searching

for the cheapest path in a graph, which is determined by the complexity and ranges of

the predictors.

Figure 3.26: The configuration of a rigid flock of linear predictors in (Ong & Bowden,
2011). The position of the flock is defined by reference point P and the flock consists
of separate linear predictors, denoted as (L1, L2, L3, L4). Each of the linear predictor

has a rigid offset from point P , which are O1, O2, O3, O4 separately.

Ong and Bowden (Ong & Bowden, 2011) use flocks of linear predictors (LP) for facial

feature tracking, in which the related visual context for tracking any facial point needs

an offline learning stage. Specifically, each linear predictor maps the template difference

to the displacement vector of a tracked facial feature. The multiple LPs are then grouped

into rigid flocks (as shown in Figure 3.26) to track a single facial point, which improves

the accuracy and robustness of general facial feature tracking. Ong and Bowden (Ong

& Bowden, 2011) also introduce a bias factor into the linear predictor to make it a full

linear regressor. It is known from (Zimmermann et al., 2009) that increasing the range

of training displacements brings more robustness but reduces the accuracy of estimation.
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(a) (b) (c)

Figure 3.27: The linear predictor flocks of decreasing sizes in (Ong & Bowden, 2011).
The feature displacement is predicted with a cascade of linear predictor flock from the

largest (a) to smallest (c).

To solve this problem, Ong and Bowden (Ong & Bowden, 2011) employ a chain of LPs

of decreasing sizes, as shown in Figure 3.27.

Figure 3.28: The generic algorithm framework of (Ellis et al., 2011). An appearance
model stores all aspects of a target. A tracker bank includes all linear predictors, which

are associated with the aspects of the target by an association matrix.

To address the problem that regression-based tracking tends to require an offline training

stage, Ellis et al. (Ellis et al., 2011) propose an online linear predictor tracker. Identify-

ing the target location in the first frame is the only supervision required in this paper.

Specifically, the templates are stored and clustered incrementally to identify the modes

or aspects of the target appearance, which means that the appearance model with mul-

tiple model templates is adaptively learned on-the-fly. Sets of spatially localised linear

displacement predictors are employed to associate with various modes of the appearance

model. Figure 3.28 illustrates the generic algorithm framework of (Ellis et al., 2011).

Furthermore, the successful cascade of linear regressors, popularised by Xiong and Torre

(Xiong & De la Torre, 2013) for face alignment, can be traced back to the model-free

tracking work of (Zimmermann et al., 2009). Instead of employing the linear regressor



Chapter 3. Potential Benefits of Part-based Models 84

(a) (b)

Figure 3.29: An image example used for training and an example of initialisation in
(Xiong & De la Torre, 2013). (a) An image manually labelled with 66 landmarks, x∗.
Blue outline indicates the face detector. (b) Mean landmarks, x0, initialised using the

face detector.

(a) (b)

Figure 3.30: The illustration of the comparison between Newton’s method and the
supervised descent method (SDM) in (Xiong & De la Torre, 2013), where the goal is to
minimize a nonlinear least squares (NLS) function, f(x) = (h(x)− y)2, where h(x) is a
nonlinear function , x is the vector of parameters to optimize, and y is a known scalar.
The z-axis is reversed for visualisation purposes. (a) Newton’s method to minimise
f(x). The traditional Newton update has to compute the Hessian and the Jacobian at
each step. (b) SDM learns a sequence of generic descent maps Rk from the optimal
optimisation trajectories (indicated by the dotted lines). Each parameter update ∆xi

is the product of Rk and a sample-specific component (y − h(xik)).

introduced above, Xiong and Torre (Xiong & De la Torre, 2013) propose a supervised

descent method (SDM) to solve a non-linear optimisation problem for face alignment,

which learns a sequence of descent directions mapping the motion parameters and ap-

pearance differences without calculating the Jacobian or the Hessian. In detail, during

offline training, the SDM learns a sequence of descent directions sampled at different

points. During testing, the predictions given by each level are used directly as the initial

test locations for the next level, which is the cascaded regression. The prediction of last

cascade level is determined as the final result of a frame. Figure 3.29 gives an example of

the image and labels used for offline training of SDM in (Xiong & De la Torre, 2013) and

the initialisation of the task of face alignment using cascaded regression. The difference

between Newton’s method and the SDM is illustrated in Figure 3.30.
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Previous regression-based tracking methods tend to use models (regressors) of high com-

plexity to address planar or rigid object tracking (Jurie & Dhome, 2002; Williams et al.,

2005). For example, Williams et al. (Williams et al., 2005) adopted RVM to provide

displacement predictions when tracking faces, hands and cars. Most previous regression-

based tracking methods are based on the linear predictor (Jurie & Dhome, 2002; Zim-

mermann et al., 2009; Ong & Bowden, 2011; Ellis et al., 2011), which models a linear

mapping from the intensity difference between the sparse base support pixels and those

from the current target to a displacement vector space (the motion of the feature point).

LP trackers require the selection of the reference point and the support piexels or sup-

port regions. They usually need an offline learning stage or a hard coded model to

find out the optimal support sets. Ellis et al. (Ellis et al., 2011) avoid this problem

by evaluating the performance of a predictor online and allowing poor performers to

be replaced. However, the method has to maintain a tracker bank of linear predictors

associated with various modes of target appearance. These requirements make tracking

complicated and limit applications. While cascaded regression (Xiong & De la Torre,

2013) has been used for what is essentially structured object detection, it has never been

applied to online general object tracking.

The direct displacement prediction strategy directly models the relationship between

image features and displacements. There is no template required in the framework.

Aggregation of multiple predictions of the target location from different test samples

cancels out random outliers and aggregates correct predictions, which removes the need

for selection of support regions. In addition, the DDP method has the potential of

integration into the SDM framework, which can be expected to further improve accuracy

of DDP.

3.3.2 Simple Direct Displacement Prediction Tracker

After research on the power of the direct displacement prediction technique of LEAR

(Martinez et al., 2013) in tracking, we now consider a simple direct displacement pre-

diction tracker (see Figure 3.31), in which point-based initialisation and support vector

regression (SVR) techniques are the main components. As in the preliminary experi-

ments of the DDP technique described in Section 3.2, the aggregation method in LEAR

is used to aggregate all predictions given by a regressor to achieve a single robust pre-

diction of target. The SVR is used as the regression method here. As stated in LEAR

(Martinez et al., 2013), other regression algorithms are also applicable. As the direct

displacement prediction directly predicts the locations of a number of parts of the object,

the tracker is initialised by defining part locations instead of a set of bounding boxes.

The tracked target object is initialised with the ground truth locations of three points
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Figure 3.31: The framework of the simple Direct Displacement Prediction tracker.
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centred at three target parts in the first frame, shown as red dots in Figure 3.32. The

initialisation is the same as that used in preliminary experiments (Figure 3.8) exploring

the potential ability of the direct displacement prediction. Each target point is tracked

separately. To test the performance of the DDP, in real tracking, the tracker is trained

in the first frame and tested through the whole video. This means that three regressors

are trained for three target points separately in the first frame of a video sequence.

Figure 3.32: The part-based representation of a target. Yellow rectangles are different
parts and red dots are their centres.

Specifically, the location of a target point is denoted as L∗ and ∗ means ground truth.

L∗ = (x∗, y∗) is the ground truth location of a part. Given the image I, the ground

truth part location L∗, and the sample location S = {sj , j ∈ [1, Ns]} (which is obtained

by randomly sampling around L∗ in training and around initial target location Linit in

testing ), the direct displacement prediction problem is then to estimate the displacement

vector D∗ = L∗ − S. Regressors rx and ry are responsible for the estimation of ∆x and

∆y respectively, and D̂ = (∆x,∆y). Each sample is a local image descriptor Φ(I, sj , ps)

extracted from a square image patch centred at a sample location sj with size ps × ps,
j ∈ [1, Ns] and Ns is the number of the samples. Both regressors, rx and ry use the

image descriptor Φ(I, S, ps) as their input. The output of the regressor is the estimate

of D∗ defined as:

D̂ = (rx(Φ(I, S, ps)), ry(Φ(I, S, ps))). (3.3)

The estimated target location obtained by evaluation of the regressor is defined by

l̂ = S + D̂. The estimated target location obtained by the full simple DDP tracker

is denoted by L̂, obtained through the aggregation method in LEAR (Martinez et al.,

2013).

The evaluation of every sample gives an estimate of the target location. Multiple esti-

mates of the target location are gathered to form a single robust prediction of the target

location, as shown in Figure 3.33. Specifically, the multiple estimates are denoted as

{l̂j}j=1:Ns . The estimates are combined and summarised to form an unnormalised mix-

ture of Gaussian distribution A by adding a component to it with predefined covariance
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(a) (b)

Figure 3.33: The illustration of how the confidence of the estimated target location is
obtained. (a) Purple points represent different predictions of target location. At each
of these points, a Gaussian unit is gathered. (b) After summarising the Gaussian units
at different predicted locations, a heat map is obtained and the peak location is selected
as the final robust estimation of target location. The peak value (after normalisation
by the number of predictions gathered) is used as the confidence of the estimated target

location.

as:

A(x) =

Ns∑
j=1

N(x; l̂j ,Σev), (3.4)

where Σev is set to be 3, the same as used in LEAR (Martinez et al., 2013). The target

location of the full tracker is then obtained as:

L̂ = arg max
x

A(x). (3.5)

A measure of confidence on the prediction L̂ can be computed as:

p(L̂) = max(A)/Ns. (3.6)

By taking the sum of multiple estimates of the target location in Eq. 3.4, it is unlikely

that a single wrong estimate will have an impact on the peak location (the final predicted

target location of the full tracker). This is in contrast to a multiplicative relation, where

the effect of a wrong estimate can be dramatic (Martinez et al., 2013).

The target is defined by three target points, and the output of each regressor is a 1-

dimensional vector. To estimate the displacement vector, two regressors have to be

trained, for every target point. In total, 3× 2 = 6 regressors are used to estimate target

location by evaluating local appearance descriptors. The relation between the image

descriptor and the target location is learned by SVR. Epsilon-SVRs with a histogram

intersection kernel are employed, as in LEAR (Martinez et al., 2013). rx and ry are

learned in the same way. Training is performed in the first frame of video sequence
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without updating in the following frames. The number of samples, Ns, is 50. The image

sample size ps is decided by the size of the target part, defined as ps = (H + W )/2,

where H and W are the height and width of a target part. The definition is to make

sure that the image sample can cover most of the target part area. The sampling radius

is 15 pixels. The initial target location, except for the first frame, is the predicted target

location in previous frame. There is no motion model considered in the simple DDP

tracker.

To increase the regressor’s predictive power, the intensity histogram is replaced with

HOG features (Dalal & Triggs, 2005) to represent the image samples. The advantages

of HOG features include (1) more edge orientations beyond horizontal and/or vertical

ones are considered, (2) HOG features pool over relatively small image regions, and (3)

HOG features are robust to illumination variations of the target. These characteristics

also make HOG features more sensitive to the spatial location of the target than, e.g.

the intensity histogram, which is especially useful when tracking. This property is also

important when updating in model-free tracking, because the predicted target location

is used to update the appearance model or shape model of the target, in which small

localisation error may propagate over time and accumulate, causing the tracker to drift.

3.3.3 Evaluation of the Simple Direct Displacement Prediction Tracker

The simple DDP tracker is evaluated on five videos from CVPR2013 benchmark (Wu et

al., 2013), including Basketball, Crossing, David3, Jogging and Woman. The mea-

surements for the evaluation include the quality of prediction and the root square error

(RSE) of the prediction. The quality of prediction is the confidence on the prediction

calculated by Eq. 3.6, while the root square error is the Euclidean distance between

the estimated target location and its ground truth. Experimental results of evaluation

of the simple DDP tracker using HOG features are as shown in Figure 3.34. Figure

3.34(a) shows the result obtained from video Basketball. In the beginning of the video,

the target player is occluded by another player. The regressor of Part 1 loses its target

very quickly. The regressors of Part 2 and Part 3 are more robust to the occlusion. At

around frame 300, the target player bypasses a player with the same basketball uniform.

The regressor of Part 2 and Part 3 mistakenly treat that player as the target. Figure

3.34(b) shows the result obtained from video Crossing. It shows that the regressor for

Part 2 is able to track the target through the whole video, while regressors of Part 2

and 3 lose the target because of background clutter and scale variation. Figure 3.34(c)

shows the result of video David3. At around frame 20, the target is partially occluded

by a road sign post, causing tracking of Part 1 to fail. The background of the target is

significantly changed around frame 40, causing failures in tracking Part 2 and 3. Figure
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3.34(d) shows the result of video Jogging. Around frame 60, the target is fully occluded

for several frames, which causes the failure. Before that, the target is correctly tracked.

Figure 3.34(e) shows the result of video Woman. At around frame 30, the background

of Part 2 changes significantly, causing tracking failure of Part 2, while other two parts

are tracked correctly. At around frame 90, the target is half occluded, then only Part

1 is still correctly tracked for a number of frames. Experimental results show that, in

a simple tracking situation, e.g., when the target is not occluded or has no fast move-

ment, the tracker can track the target successfully through a number of frames without

updating. When tracking failure of one part happens, it is often found that other parts

are still correctly tracked. It is expected that explicit spatial constrains between parts

would give more robust performance. Quality of prediction measures also show that the

quality is positively related to the accuracy of the prediction. The experimental results

have confirmed the ability of the direct displacement prediction tracker to handle easy

tracking scenes, and have also shown proof of concept of the simple DDP tracker and

its potential to be improved. The DDP tracker takes about 0.2s to process a frame

and provide predictions. 25% of the time is used to calculate HOG features of image

samples. 40% of the time is used to predict target location using SVR. The remaining

time is used to do all other processing in the algorithm.
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Figure 3.34: Experimental results of evaluation of estimated three target parts loca-
tions from the simple DDP tracker on videos (Basketball, Crossing, David3, Jogging

and Woman).
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3.3.4 Limitations of the Simple DDP Tracker

A simple direct displacement prediction tracker, which is able to handle easy tracking

scenes, has been built. However, there are a large number of challenging conditions in

tracking, such as illumination changes, occlusion, non-rigid deformation, rigid deforma-

tion, etc.

To perform successful tracking in more complex conditions, the regressor trained in

the first frame has to be updated to adapt to variations of the target over time. As

explained in Chapter 2, updating is critical in visual tracking, updating with inaccurate

image information will accumulate over time and cause a drift problem in the end.

Before adopting a strategy to decide when to update, the more important issue is to

improve the accuracy of the predicted target location. If the predicted target location is

accurate, then it is less possible for the tracker to include incorrect target information

during updating.

Until now, the proposed tracker tracks all three parts of the target separately. Experi-

mental results in Figure 3.34 show that, in many cases, one part or two parts are traced

correctly while the remaining part(s) has/have already drifted away. In visual tracking,

the background variations are complex and the variations of background of different

parts may not be consistent over time. It happens that the regressor for one part is

reliable while the regressor for another part is not working due to the significant appear-

ance variation of the part, which might be caused by illumination variation, occlusion,

background clutter or other factors. Based on the literature review on the part-based

tracker SPOT (L. Zhang & van der Maaten, 2013), it is known that spatial information

is critical for tracking. The shape model of a target would provide spatial constraints

to the prediction of target location, making the prediction more robust in tracking with

challenging conditions.

In addition, currently, there is no motion model in the simple DDP tracker. It has been

shown that the direct displacement prediction strategy works well when test locations

are sampled relatively close to the target. A flexible and robust motion model would

be able to provide good initial target location which can facilitate the direct displace-

ment prediction. Also, a motion model will make the proposed a full tracker instead of

’tracking by detection’.

Based on experimental results and the above analysis, the advantages of the simple

direct displacement prediction tracker can be concluded:
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• The point-based initialisation avoids background in representing the target. It

brings convenience in establishing shape model implicitly by considering the dis-

placements between different points.

• Training a regressor modelling the relationship between image patches and dis-

placements (from the image patches to target location) using SVR provides an

opportunity of estimating target location directly rather than tracking by match-

ing.

• The aggregation method used in the simple DDP tracker gives a single robust

estimation of target location by aggregating correct predictions and cancelling out

random predictions.

• The proposed simple DDP tracker is able to handle easy tracking scenes without

illumination changes, occlusion, non-rigid deformation, rigid deformation, etc.

The disadvantages of the simple direct displacement prediction tracker can be sum-

marised as well:

• The accuracy of prediction given by the simple direct displacement prediction

tracker can be further improved to assist correct updating.

• An updating strategy, which is necessary for handling varied tracking scenarios

with different challenging conditions, is missing in the simple DDP tracker.

• Spatial constraints are not utilised in the simple DDP tracker. It can be expected

that spatial relations can help estimate the location of the whole target robustly

when the target is partly occluded and the available part is tracked correctly.

• A proper motion model is not considered in the simple DDP tracker. A proper

motion model can provide initial location which is closer to the real target location,

which is beneficial for further estimation by regression.



Chapter 4

Tracking by Regression with

Incrementally Learned Cascades

Based on the work on the simple DDP tracker presented in Chapter 3, this chapter

will present the main contribution of this thesis, a part-based tracking method coined

Tracking by Regression with Incrementally Learned Cascades (TRIC-track). TRIC-track

(see Figure 4.1) combines cascaded regression, a novel implicit shape model, incremental

learning and integrates a multiple temporal scale motion model on top of the simple DDP

tracker. Finally, TRIC-track is evaluated using both hand-crafted and state-of-the-art

deep-learned features.

4.1 TRIC-track: An Overview

Four main problems with current part-based trackers are identified in Chapter 1, and

this thesis proposes to address all these issues with one method. The local fitness-

based approach is replaced by direct displacement-based tracking in which the proposed

tracker predicts the two dimensional displacement vector between the centre of a sampled

image patch and the target (part) location using regressors (see Figure 4.2). In doing

so, local patches contribute to the solution by directly ‘voting’ for the target (part)

location. In addition, while template-based approaches need to model part appearance

and shape fitness separately, the proposed direct displacement prediction by regression

tracker implicitly learns the shape and possible deformations of an object. It does so

by tracking each part using not only the local evidence for that part, but also evidence

provided by neighbouring parts and the object as a whole.

95
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Figure 4.1: The framework of the TRIC-track tracker.
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(a) (b) (c) (d)

Figure 4.2: (a) Training a direct displacement regressor with four examples. (b)
Testing a regressor. Four test patches sampled around the initial location (blue dot)
provide predictions (purple dots). (c) Evidence aggregation map. (d) Location-based

initialisation and implicit shape model.

The proposed TRIC-track adopts cascaded regression (Cootes et al., 2001; Xiong &

De la Torre, 2013), specifically the Supervised Descent Method (SDM) (Xiong & De la

Torre, 2013), which has been successfully applied to the localisation of facial points.

Cascaded regression makes increasingly smaller steps towards the target location, each

regressor in the cascade being trained on a smaller region around the ground truth and

thus having a smaller expected error. While SDM has been used for what is essentially

structured object detection, it has never been used for online model-free tracking. The

key difference between detection of a known object and generic object tracking is that

appearance and structure models of the former can be learned offline on potentially

hundreds of thousands of images, while the models for the latter must be initialised on

a single frame.

To learn the appearance changes of parts over time, this thesis takes inspiration from

the incremental learning of cascaded regression proposed by Asthana et al. (Asthana,

Zafeiriou, Cheng, & Pantic, 2014). That work personalises SDM for facial point locali-

sation, initialising the SDM offline on a large database of faces, and using newly tracked

faces to incrementally update it. In the TRIC-track approach the SDM is initialised

on the first frame only, and it uses Local Evidence Aggregation (Martinez et al., 2013)

of the separate regression contributions to provide a confidence level, which is used to

decide whether the tracker can use the tracking result to update the trained regressors.

Moreover, this thesis adopts deep learned features to replace hand crafted features to

maximise the performance of the proposed TRIC-track tracker. A shape correction step

is conducted when outlier predictions appear.
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4.2 Limitations of Previous Methods

Previous regression-based tracking methods tend to use models (regressors) of high com-

plexity to address planar or rigid object tracking. For example, Williams et al. (Williams

et al., 2005) adopted Relevance Vector Machine (RVM) to provide displacement predic-

tions when tracking faces, hands and cars. Zimmermann et al. (Zimmermann et al.,

2009) trained a number of independent linear predictors from which the optimal sequen-

tial predictor for tracking planar objects is selected. As a single motion prediction is

made by the linear predictor of each level, the selection of the support set which contains

the image intensity is important as well. All of these requirements make the tracking

complicated and limit its application.

Some regression-based approaches are similar to the proposed TRIC-track in some as-

pects. For example, Williams et al. (Williams et al., 2005) proposed to use perturba-

tions of a seed image to train a RVM, which is a routine similar to TRIC-track for online

learning of the regressors. Furthermore, Zimmermann et al. (Zimmermann et al., 2009)

proposed the use of a linear cascade of predictors instead of a single regressor, which is

a similar idea to SDM. The main differences are however that 1) TRIC-track does part-

based structured object tracking, 2) TRIC-track uses the novel techniques developed

for structured regression of (Xiong & De la Torre, 2013) instead of more cumbersome

techniques such as structured SVM, 3) TRIC-track combines predictions in a robust

manner using evidence aggregation (Martinez et al., 2013) rather than resorting to a

classifier to validate the predictions, and 3) TRIC-track integrates a multiple temporal

scale motion model to initialise the search in subsequent frames.

Furthermore, TRIC-track does not require an explicit shape model (Xiong & De la Torre,

2013) but rather imposes spatial consistency implicitly. It is interesting to note that, for

face alignment (at its core a structured object alignment problem), the introduction of

discriminatively-trained regression has revolutionised the state-of-the-art.

Finally, TRIC-track shows that CNN features can be efficiently and effectively used for

direct-displacement based tracking. CNN features have been used in tracking before

for classifying foreground versus background (Nam & Han, 2016) or to create saliency

maps (Ma et al., 2015; L. Wang et al., 2015; Hong, You, Kwak, & Han, 2015). The

proposed TRIC-track approach, however, does not need a direct prediction of target

and background, but rather uses the features as a way to obtain very distinct patch

descriptions. The discriminative power of these CNN patch descriptors over conventional

descriptors like HOG and SIFT have recently been shown in several works (Fischer et

al., 2014; Hou et al., 2015; Zagoruyko & Komodakis, 2015).
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4.3 TRIC-Track

This section describes the proposed method of tracking by regression with incrementally

learned cascades (TRIC-track). This section first explains direct displacement prediction

by regression in 4.3.1. The implicit structure model with the global part is illustrated in

4.3.2. The section then introduces the adopted framework of cascaded linear regression

(Xiong & De la Torre, 2013) in 4.3.3. The cascaded incremental learning and multiple

temporal motion modelling are explained in 4.3.4 and 4.3.6. The feature adopted is

introduced in 4.3.5.

In the simple DDP tracker described in Section 3.3, the target is represented with three

parts, as shown in Figure 3.8, and the centres of parts are tracked separately in every

frame. The parts used in the simple DDP tracker are meaningful, for example, the

first part covers the head area, while the second part covers the upper body area. This

representation is not flexible enough when handling general deformable object tracking,

as it’s hard to automatically detect meaningful parts representing an object. In TRIC-

track the target is therefore described by N parts of equal size, actually N equally spaced

points, instead of the previous non-general representation of a target.

In the simple DDP tracker, SVR is used as the regression method. As stated in LEAR

(Martinez et al., 2013), other regression algorithms are also applicable. Updating the

cascaded SVR incrementally needs re-training during each cascade level of regression,

which is cumbersome. Thus, SVR is replaced with linear regression as used in SDM

(Xiong & De la Torre, 2013), which is simpler, more efficient and allows easier imple-

mentation of incremental updating.

4.3.1 Direct Displacement-based Prediction

As the proposed tracker directly predicts the locations of a number of parts of the object

by modelling the displacements from local image patches to those parts (targets), the

tracker is initialised by defining part locations as 2D points instead of a set of bounding

boxes (see Figure 4.4). N initial points representing corresponding part locations are

used to model the target’s structure in the first frame of an image sequence. The

locations are denoted as L∗ = [l∗1, ...l
∗
i , ...l

∗
N ], where N is the number of parts and l∗i =

(x∗i , y
∗
i ) is the ground truth location of part i.

In the training stage, given an image I and part locations L∗, a set of training sample

locations S is obtained by randomly sampling around L∗, where each l∗i is sampled

independently. Each training sample is a local image descriptor Φ(I, S, ps) extracted
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from a square image patch centred at sample location S with size ps × ps. Φ(I, S, ps)

and the displacement D∗ (D∗ = L∗−S) between S and the target’s location L∗ are then

used to train the regressor R, which uses image information to predict the displacement

to the part location.

Similarly, in the test stage, a number of test samples Stest are selected around an ini-

tial candidate target location Linit. The location Linit is determined by the multiple

temporal scale motion model described in Section 4.3.6. The regressor R then predicts

the displacement D from these samples’ locations Stest to the target using local image

feature Φ(Itest, Stest, ps) by:

L̂ = Stest +RΦ(Itest, Stest, ps), (4.1)

where D = RΦ(Itest, Stest, ps) and L̂ is the optimal estimation of target location (L̂ = L∗

in frame 0). As there is no means of determining the quality of a single prediction, a

number of predictions are combined to determine where the target is, as explained in

Section 3.3.2 and the last paragraph of Section 4.3.3. The rationale behind this is that

correct predictions will aggregate around the same location, reinforcing each other, but

erroneous predictions will be more or less random (Martinez et al., 2013).

4.3.2 Implicit Shape Model with Global Part

The shape models employed by previous part-based online tracking methods can be

categorised as the independent model (Shahed Nejhum et al., 2008; Liu et al., 2015),

the star model (Adam et al., 2006; M. Yang et al., 2007; Kwon & Lee, 2009; L. Zhang

& van der Maaten, 2013), the tree model (L. Zhang & van der Maaten, 2013) and the

hierarchical model (Cehovin et al., 2013), as shown in Figure 4.3. With the independent

shape model (Figure 4.3(a)), all parts are tracked independently. The star model (Figure

4.3(b)) connects each part with the centre of the target. In a tree model (Figure 4.3(c)),

each part’s location is only dependent on the location of its parent. A hierarchical

model (Figure 4.3(e)) contains a global layer describing the whole target and a local

layer containing a geometrical constellation of parts. Each part is connected with its

nearest neighbours and also guided by the global layer.

The direct displacement prediction method provides a unique opportunity to combine

local information from multiple parts, something not possible with local fitness methods.

Consider part i and its neighbours part i−1 and part i+1 (see Figure 4.4). When seeking

to locate part i, three separate regressors are trained using image information from Si−1,

Si and Si+1 respectively (conforming to Figure 4.3(d) and see Figure 4.4). Similarly,

in the testing stage samples around initial candidate locations of part i− 1, part i and



Chapter 4. Tracking by Regression with Incrementally Learned Cascades 101

(a) (b) (c)

(d) (e) (f)

Figure 4.3: (a) The independent shape model. The black dots represent different
parts. (b) The star shape model. The dashed rectangle represents the target area.
The black cross represents the target centre. Green edges represent the spatial relation
between parts and the target centre. (c) The tree shape model. (d) The proposed
implicit shape model. (e) The hierarchical model. The dashed rectangle is the global

layer. (f) The proposed implicit shape model with the global part.

part i+ 1 are used to predict the location of part i. In this way, the spatial relationships

between neighbouring parts are implicitly learned and applied by TRIC-track.

Modelling groups of three parts in this way balances local and global shape. A given

part’s movements are closely correlated with its neighbours’, while state changes in

far away parts are less likely to affect the given part’s. By combining target parts in

overlapping groups of three (including a part and its two neighbouring parts), these

local shape relations effectively create a global shape model (see Figure 4.4). Using

image information from multiple parts also helps to avoid over-fitting. This embedding

of an implicit shape model in a set of regressors is only possible because TRIC-track

uses direct displacement prediction for tracking. Template matching approaches require

target shape to be made explicit in the appearance model.

In preliminary experiments, a star shape model, with one part as the root and other

parts directly connected with the root, was also tried , but the spatial constraints of the

star shape model were found to be very loose, so that parts tend to drift easily. In the

common shape definition in facial points localisation (Martinez et al., 2013), features

sampled around different target points are concatenated to train one regressor to predict
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the whole shape of the face. Preliminary experiments found this shape model to be less

robust than the proposed implicit shape model, as it loses the spatial constraints from

neighbouring parts. Concatenating features together is not a strong shape model for

general object tracking.

Although linking the parts together with the implicit shape model forms a global shape,

global image information is not applied, which would be a lost opportunity. In the

same way that the direct displacement prediction mechanism provides the opportunity

to combine local information from multiple parts, it can also add global image infor-

mation to the local image information. Similar to utilising the image information from

neighbouring local parts, global features are made use of by adding a global part, the

(N+1)th part (conforming to Figure 4.3(f) and see Figure 4.5). It is the third neighbour

of each local part and its location is initialised at the centre of the bounding box given

in frame 0. Thus, for part i, its neighbours are part i − 1, part i + 1 and part N + 1,

as shown in Figure 4.5(a). To locate part i with the global feature, an extra regressor is

trained, modelling the relationship between image information from SN+1 and displace-

ment from SN+1 to the location of part i. The difference is that the size of the sample

patch extracted from SN+1, noted with gs, is much bigger than the sample size of local

parts, noted with ps, to include global target information. When the image information

from local part neighbours is not able to predict the location of target part correctly, for

example when three consecutive parts are occluded, the global image information can

provide compensation. The neighbours of the global part are all the other parts, and

the location of the global part is determined by prediction from all other parts.

(a) (b) (c)

Figure 4.4: (a) Parts initialisation. (b) Training samples obtained around each part.
(c) Implicit shape model. Three regressors estimate one part’s location, each trained

using features from samples around a different part.
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(a) (b)

Figure 4.5: (a) Parts initialisation with the global part (the black star). The samples
extracted around the global part will include global information, as shown with the
black rectangle. (b) Predictions from the global part (black arrows). The black dots

are sample locations around the global part.

4.3.3 Cascaded Linear Regression Tracker

In the implementation of displacement prediction by regression, this thesis adopts a

cascaded linear regression framework, Supervised Descent Method (SDM) (Xiong &

De la Torre, 2013), which was originally proposed to locate facial landmarks. This

thesis adopts the SDM method to seek the optimal prediction of the target location.

Newton’s method and its variants are accepted as the classical way of solving nonlinear

optimisation problems. It calculates or estimates the Hessian matrix and Jacobian

matrix to update the minimum. Newton’s method requires the function being optimised

to be twice differentiable, which is often not the case in computer vision problems.

Thus, numerical estimation of the Hessian matrix would be computationally expensive.

The Hessian matrix could be large and non-positive definite when applying Newton’s

method to computer vision applications. SDM was proposed to solve these drawbacks

by minimising a Non-linear Least Squares (NLS) function without calculation of the

Jacobian or the Hessian matrix. Specifically, a sequence of average descent directions

(regressors) is learned by minimising the mean of NLS functions sampled at different

points where the corresponding minimums are known. During testing, using the learned

sequential average descent directions, SDM is able to minimise the NLS function. When

an unseen test location appears, a corresponding minimum would be given by applying

the learned generic directions (regressors) to that test location.

The idea of SDM is basically to use several levels of regression. The test samples are

evaluated by the first cascade level of regressor, then the predictions obtained are con-

sidered as the test samples for the second cascade level of regressor. This process is

conducted over all the following cascades. In SDM (Xiong & De la Torre, 2013), the R
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is learned with nearly a thousand images offline (to be reliable) and only one prediction

is performed to estimate the facial landmark location. See (Xiong & De la Torre, 2013)

for more details.

Crucially, as offline learning is not available for model-free visual tracking, only ground-

truth information in the first frame is given. The proposed method is not trained

offline as in (Xiong & De la Torre, 2013), but is initialised based on the part locations

automatically obtained in frame 0 (explained in Section 4.4) and learned and updated

on the fly. In order to handle the larger variability of objects, the set of parts are split

into overlapping sub-groups of three parts plus a global part, as stated in Section 4.3.2.

Each part’s location is predicted by local parts from its related sub-group and the global

part. Then, all of these predictions are combined in a robust manner using aggregation.

The cascaded linear regression framework used in the proposed tracker is presented as

follows.

When training for a given image I and initial part locations L∗ including the global

part location l∗N+1, l∗N+1 = (x∗N+1, y
∗
N+1), K samples are obtained for each part by

randomly sampling from a local area around the part’s location l∗i , i ∈ (1, N + 1).

With preliminary experiments presented in Chapter 3, it was found that image patches

within a close area around the target, where image patches can cover some target (i.e.

foreground) information, can reliably predict target location while those further away

cannot, as there is no consistent relation between background data and the position of a

moving object. Sampling locations around part i are denoted as Si = [si1, ...sij , ...siK ]T

where sij is a 2D location in the image, sij = (xij , yij). The local features Φ(I, Si, ps)

are extracted from square image patches centred at Si.

The displacement vector (the learning goal) is defined to be the vector d∗ij from sij to

l∗i with d∗ij = (x∗i − xij , y∗i − yij). The set of all displacement vectors corresponding to

K samples in Si is D∗i = [d∗i1, ..., d
∗
ij , ...d

∗
iK ]T . D∗i is the set of displacements from Si to

l∗i . This notation is extended to D∗i,i′ to allow samples S′i of another point i′ to predict

displacements to point i, so that D∗i,i+1 represents the displacements from Si+1 to l∗i .

This is how local shape is learned. To avoid confusion, this thesis uses D∗i as shorthand

for D∗i,i.

As described in Section 4.3.2, four groups of samples are combined to predict part i’s

location, which means the features from Si−1, Si, Si+1 and SN+1 and their corresponding

displacements D∗i,i−1, D∗i,i, D
∗
i,i+1 and D∗i,N+1 are used to train four regressors Ri,1, Ri,2,

Ri,3 and Ri,4 (descent directions) for a local part i. The regressors for the global part

are trained in the same way. The only difference is its neighbours are all local parts. For

simplicity, this thesis uses the situation of a local part i as an example to explain the

mechanism of training and testing of regressors. The trained regressors are able to map
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the samples’ local features Φ(I, Si−1, ps), Φ(I, Si, ps), Φ(I, Si+1, ps) and Φ(I, SN+1, gs)

to the ground truth displacement vectors D∗i,i−1, D∗i,i, D
∗
i,i+1 and D∗i,N+1, which means

that the local evidence of all three sets of samples and the global evidence of the fourth

set of samples can be used to predict a single target part’s location.

The regressor is obtained by minimising the difference between the predictions and the

ground truth. For example, the loss functions for Ri,1, Ri,2, Ri,3 and Ri,4 of part i are:

||D∗i,i−1 −Ri,1Φ(I, Si−1, ps)||, (4.2)

||D∗i,i −Ri,2Φ(I, Si, ps)||, (4.3)

||D∗i,i+1 −Ri,3Φ(I, Si+1, ps)||, (4.4)

||D∗i,N+1 −Ri,4Φ(I, SN+1, gs)||, (4.5)

and the regressors are obtained by minimising these loss functions. In the following text,

we refer to the group of Ri,1, Ri,2, Ri,3 and Ri,4 as Ri. It is hard to find the optimal

prediction of the direct displacement in one step (Xiong & De la Torre, 2013). Therefore,

the displacement is learned in a cascade of steps with decreasing distance to the target.

The cascaded linear regression method (Xiong & De la Torre, 2013) first learns R0
i ,

where 0 denotes the first level of the cascaded regression. Similarly, D0∗
i denotes the

displacements used for training R0
i . R

0 is obtained by:

arg min
R0

i,1

||D0∗
i,i−1 −R0

i,1Φ(I, S0
i−1, ps)||+ ||ω||2, (4.6)

arg min
R0

i,2

||D0∗
i,i −R0

i,2Φ(I, S0
i , ps)||+ ||ω||2, (4.7)

arg min
R0

i,3

||D0∗
i,i+1 −R0

i,3Φ(I, S0
i+1, ps)||+ ||ω||2, (4.8)

arg min
R0

i,4

||D0∗
i,N+1 −R0

i,4Φ(I, S0
N+1, gs)||+ ||ω||2, (4.9)

where ||ω||2 is the regularisation term. Please note that each regressor is trained with

its corresponding samples and displacements. Eqs. (4.6)-(4.9) are minimised to obtain

R0
i,1, R0

i,2, R0
i,3 and R0

i,4. For brevity X0
i−1 is used to denote Φ(I, S0

i−1, ps). R0
i,1, R0

i,2,

R0
i,3 and R0

i,4 can be estimated by Ridge Regression (Hoerl & Kennard, 1970):

R0
i,1 = [(X0

i−1)T (X0
i−1) + λE]−1(X0

i−1)TD0∗
i,i−1, (4.10)

R0
i,2 = [(X0

i )T (X0
i ) + λE]−1(X0

i )TD0∗
i,i , (4.11)

R0
i,3 = [(X0

i+1)T (X0
i+1) + λE]−1(X0

i+1)TD0∗
i,i+1, (4.12)

R0
i,4 = [(X0

N+1)T (X0
N+1) + λE]−1(X0

N+1)TD0∗
i,N+1, (4.13)

where E is the identity matrix and λE is added to make XTX numerically stable. After
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one cascade level, R0 is obtained and first level predictions of part i’s location can be

obtained by uniting neighbouring parts’ predictions as follows:

S1
i = (S0

i−1 +R0
i,1Φ(I, S0

i−1, ps)) ∪ (S0
i +R0

i,2Φ(I, S0
i , ps))

∪ (S0
i+1 +R0

i,3Φ(I, S0
i+1, ps)) ∪ (S0

N+1 +R0
i,4Φ(I, S0

N+1, gs)), (4.14)

where S1
i is the first cascade level prediction of part i. First level predictions of all other

parts are obtained similarly.

Like the first level of cascaded regression, R1
i,1, R1

i,2, R1
i,3 and R1

i,4 are obtained by min-

imising equations 4.6, 4.7, 4.8, 4.9 with S1
i−1, S1

i , S1
i+1 and S1

N+1 and their corresponding

displacements D1∗
i,i−1, D1∗

i,i , D
1∗
i,i+1 and D1∗

i,N+1. The R2,R3,... are learned in the same

way.

In the test stage, the same number of cascaded regressors contribute to the final target

location prediction Sntesti of part i, in which n is the number of cascade levels and

fixed to 4 in the experiments. Local Evidence Aggregation for Regression (LEAR)

(Martinez et al., 2013) is used as a principled way of combining the individual evidences.

In LEAR, each prediction contributes a unit two-dimensional Gaussian with a fixed

standard deviation. LEAR then aggregates all these predictions into an un-normalised

likelihood map of the target’s location. The peak value of this likelihood distribution

determines part i’s position.

4.3.4 Cascaded Incremental Updating

One of the challenges of visual tracking is that ground truth templates, or in TRIC-

track’s case ground truth direct displacements, are available only for the first frame.

The appearance of tracked parts and the shape of the whole object are, however, likely

to change over time, especially for deformable objects. The problem is then to decide

when and how to update the appearance model (i.e. regressors) without succumbing to

the model drift problem.

To avoid drift, the proposed tracker should only update the regressors with a new pre-

diction when it is confident of that prediction. For example, when a part is occluded,

although its estimated location is correct because of the shape constraints, the proposed

tracker should not update its regressor. Thus, the tracker only updates a part’s regres-

sors when the confidence of the part’s predicted location is higher than an empirically

determined threshold δv. As described in 4.3.3, the prediction of cascaded regression

results in a summation of unit Gaussians, one for every prediction made. To estimate

the confidence in the final prediction, the peak value of the likelihood map of each part
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is divided by the total number of predictions. The new peak value is used to evalu-

ate the goodness of predicted target location. The theory behind this is that correct

predictions tend to point to the real target location, so that the aggregation map is

condensed. Wrong predictions tend to be random and the aggregated distribution is

sparse. If the new peak value is greater than δv, the predictions are densely distributed.

Thus, predictions are reliable and this tracking result can be used to update regressors.

δv is decided by observing the aggregation maps of different videos in preliminary exper-

iment (presented in Chapter 3), which shows the value of δv when the target is located

correctly. As δv is a normalised peak value of aggregated Gaussian units (corresponding

to predictions of target location), it is irrelevant to video content and the empirically

determined value of δv is the same across all experiments.

The proposed tracker incrementally updates its regressor by adding new training data

(Asthana et al., 2014), samples and corresponding displacements from sample location

to target location, after estimating the target location in every frame. Turning the

update of cascaded regression into cascaded incremental updating is non-trivial due to

the inter-relationships between the cascades: if the top-level regressor improves, this

would change the training of all subsequent steps in the cascade. Specifically, given the

initial D0 and X0, first cascade level regressor R0 is calculated. D0 and X0 are then

propagated through R0, the D1 and X1 are obtained and regressor R1 is computed.

Similarly, the tracker computes R2 with D2 and X2 obtained by propagating D1 and

X1 through R1. The process is continued until the predefined number of cascade levels is

reached. Please note that the tracker learns the cascade models on the fly and combines

the method with the implicit shape model to update the image information and the

shape model at the same time.

For face alignment, Asthana et al. proposed a Parallel Cascade of Linear Regression

method to address the problem of sequential incremental updating described above

(Asthana et al., 2014). The work reported in this thesis however found that, in tracking,

using a sequential incremental update provides better results than the parallel incre-

mental updating approach of (Asthana et al., 2014). This is because, in (Asthana et al.,

2014), the statistics of shape parameters of the face are trained on an offline database.

The perturbations for training the cascade of regression functions are covered by the

learned statistics, without relying on the previous iteration. However, offline training is

not available in visual tracking and the limited image information is not able to model

the variations of regressors. Thus, the training of each cascade level must rely on the

regression predictions made by the previous level.
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Given the feature matrix X(A) and displacement matrix D(A), where A is the number

of training samples, R(A) is obtained by:

R(A) = V (A)X(A)TD(A), (4.15)

V (A) = [X(A)TX(A) + λE]−1, (4.16)

then with B new training samples X(B) and corresponding displacement matrix D(B)

obtained from the local neighbours and a given part tracked with high confidence, as

derived in (Asthana et al., 2014), the updated regressor R(A+B) can be found as:

R(A+B) = R(A)−QR(A) + V (A+B)X(B)TD(B), (4.17)

where,

V (A+B) = V (A)−QV (A), (4.18)

Q = V (A)X(B)TUX(B), (4.19)

U = [E +X(B)V (A)X(B)T ]−1. (4.20)

Note that the new samples added for the update of each part during incremental up-

dating are collected around four parts (the part itself, its two neighbouring parts and

the global part) at each cascade level. In this way the shape and appearance aspects

of the regressors models are jointly updated, making the proposed tracker robust to the

non-rigid deformation of articulated objects.

4.3.5 CNN Features

4.3.5.1 Tracking with Convolutional Neural Networks

Instead of hand-crafted features, Convolutional Neural Network (CNN) features are

currently being adopted in tracking algorithms (Ma et al., 2015; L. Wang et al., 2015;

Hong et al., 2015; Nam & Han, 2016), showing state-of-the-art performance (Kristan et

al., 2015). Most algorithms make use of a network pre-trained on ImageNet from which

they extract features (Ma et al., 2015; L. Wang et al., 2015; Hong et al., 2015). The

features are extracted from the convolutional layers (Ma et al., 2015; L. Wang et al.,

2015), the fully connected layers (Hong et al., 2015) or a combination of multiple layers

(Ma et al., 2015; L. Wang et al., 2015; Nam & Han, 2016). The lower convolutional layers

(closer to the input layer) give more spatial information and the higher convolutional

and fully connected (FC) layers encode more semantic information (Ma et al., 2015).
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For better tracking results the networks can be pre-trained or fine-tuned on the first

frame and (partially) updated during tracking (Ma et al., 2015; Nam & Han, 2016),

although this is not necessary for all networks (L. Wang et al., 2015; Hong et al., 2015).

Wang et al. (L. Wang et al., 2015) use the features of the 10th (4-3) and 13th (5-3)

convolutional layers of the VGG-16 network (Simonyan & Zisserman, 2014) to produce

two heatmaps of the target , capturing both higher level semantic and lower level selective

features. The most discriminating heatmap is then used to localize the target.

Ma et al. (Ma et al., 2015) use the VGG-19 network (Simonyan & Zisserman, 2014)

from which they extract feature maps from the 8th (3-4), 12th (4-4) and 16th (5-4)

convolutional layers. The feature maps are then used for tracking using a correlation-

filter-based approach with a coarse to fine search.

Hong et al. (Hong et al., 2015) use the pre-trained R-CNN network (Girshick, Don-

ahue, Darrell, & Malik, 2014) to produce saliency maps. The saliency map is obtained

by training a SVM on the output of the first convolutional layer in the first frame

and backpropagating the output features, which are predicted to belong to the target,

through the network. The target is then found in the saliency map using sequential

Bayesian filtering, as in (Felzenszwalb et al., 2010).

MDNet (Nam & Han, 2016) makes use of a novel CNN architecture, including shared

layers with video-specific branches, pre-trained on positive and negative patches from

frames of all sequences in a tracking dataset to obtain a generic representation of the

target. In the tracking phase the video-specific branches are replaced by a single fully

connected layer, and positive and negative samples from the first frame are used to train

this new network.

Wang et al. (L. Wang, Ouyang, Wang, & Lu, 2016) propose a sequential training

method for convolutional neural networks (CNNs) to effectively transfer pre-trained

deep features for online applications. A CNN is regarded as an ensemble with each

channel of the convolutional feature map is treated as a base learner. Each base learner

is updated using a different loss criterion to avoid over-fitting. Online fine-tuning of the

CNN is then formulated as a sequential ensemble learning problem. To build the best

ensemble, the base learners are sequentially selected by importance sampling. Online

tracking is conducted as foreground/background separation by the sequentially learned

ensemble.

Qi et al. (Qi et al., 2016) propose a CNN-based tracking framework which takes full

advantage of features from different CNN layers and uses an adaptive Hedge method to

hedge several CNN based trackers into a single stronger one. Man steps of the proposed

algorithm include: 1) extracting CNN features from different convolutional layers using
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the pre-trained VGG-Net; 2) constructing weak trackers using correlation filters where

each one is trained with CNN features from one layer; 3)hedging weak trackers into a

stronger one using an improved Hedge algorithm.

Teng et al. (Teng et al., 2017) present a deep architecture which combines the tempo-

ral and spatial information to improve the tracking performance. The deep architecture

contains three networks, a Feature Net, a Temporal Net, and a Spatial Net. The Feature

Net extracts general feature representations of the target. With these feature representa-

tions, the Temporal Net encodes the trajectory of the target and directly learns temporal

correspondences to estimate the object state from a global perspective. The Spatial Net

further refines the object tracking state using local spatial object information.

Huang et al. (C. Huang, Lucey, & Ramanan, 2017) propose to improve the speed of

deep trackers without losing accuracy. The idea is to take an adaptive approach, where

easy frames are processed with cheap features (such as pixel values), while challenging

frames are processed with invariant but expensive deep features. The adaptive tracking

problem is formulated as a decision-making process, and an agent learnt is used to decide

whether to locate objects with high confidence on an early layer, or continue processing

subsequent layers of a network.

Yun et al. (Yun, Choi, Yoo, Yun, & Choi, 2017) propose to track the target by repetitive

actions learned by the proposed action-decision network (ADNet). The ADNet learns

to selects the optimal actions to track the target from its current state. During training,

the input is an image patch cropped at the position of the previous state and the output

is the probability distribution of actions including translation and scale changes.

Han et al. (Han, Sim, & Adam, 2017) propose a visual tracking algorithm which adopts

a convolutional neural network (CNN) with multiple branches to represent the target.

The target state is estimated by an ensemble of all branches while online model up-

date is performed by the standard error back-propagation. The network has a different

number of fully connected layers in individual branches and maintains multi-level target

representations based on a CNN using the branches.

4.3.5.2 CNN Features in TRIC-track

In the earlier work of this thesis, HOG features are used as a descriptor of the image

patch. In recent papers it is however shown that CNN features are more discriminative

than conventional features such as HOG, SIFT and DAISY (Fischer et al., 2014; Hou et

al., 2015; Zagoruyko & Komodakis, 2015). Therefore CNN features are adopted in the

TRIC-track framework.
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The image patch size in TRIC is much smaller than the image size in deep neural

networks. A complex and deep structure is not suitable for the image with a limited

size. Based on the literature review in Section 4.3.5.1, the VGG-16 network (Simonyan

& Zisserman, 2014) has the simplest structure. As an initial setup the 16-layer deep

convolutional neural network pre-trained on ImageNet is used (called VGG-16D in the

paper). Since the image patch size of the samples from local parts is 24 × 24 pixels,

determined by the re-scaled image size, which is relatively small and results in a shallower

neural network, only the first four convolutional layers are chosen to use, reducing the

network to the architecture as shown in Table 4.1. Earlier convolutional layers already

show discriminative behaviour (Hou et al., 2015) without giving too much semantic

meaning and thus being too specific (L. Wang et al., 2015). Furthermore, using only

four convolutional layers is beneficial in terms of processing speed.

Features are generated by passing a patch through the network and extracting the output

of the last convolutional layer, which results in a 128 dimensional feature vector for input

patches of 14× 14. For patches larger than 14× 14 pixels, the 128 output feature maps

are reduced to a 128 dimensional vector by applying max pooling to the feature maps,

which keeps the most distinct values in the feature vector and guarantees the calculation

efficiency.

Table 4.1: The CNN architecture

Size Stride Padding

Input Image 24x24x3 0
Conv1-1 3x3x64 1 0

ReLU
Conv1-2 3x3x64 1 0

ReLU
Max Pool 2x2 2 0

Conv2-1 3x3x128 1 0
ReLU

Conv2-2 3x3x128 1 0

4.3.6 Multiple Temporal Scale Motion Model

This thesis adds a multiple temporal scale (MTS) motion model, proposed by Khan

et al. (Khan et al., 2015), to the proposed regression based tracker, which makes the

method a full tracker instead of ‘tracking by detection’. As shown in the results section,

displacement based regression works well when test locations are sampled relatively close

to the target. A good initial estimation of the target position is expected to significantly

help provide accurate final predictions of target position.
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To counter occlusions and abrupt motion variations, Khan et al. proposed a visual

tracker operating over multiple temporal scales (MTS) (Khan et al., 2015). This frame-

work learns motion models from different temporal scales of the target tracking history

(i.e. already tracked frames), and applies those models at different temporal scales in

the future (see Figure 4.6). Here, a temporal scale is a specific sequence of moments

in time, e.g. [t − 4 : t]. The construction of motion models over different temporal

scales provides a much richer description of the target’s recent path across the image

plane. When making predictions, the model set represents variations in target motion

better than any single model of this set. The application of these models over multiple

temporal scales in the future allows a tracker to overcome periods of occlusion of the

object.

0-order motion 
model

tt-4 t+1 t+T

Prediction scale

Model scale

Figure 4.6: Multiple motion models are learned from the recent tracking history at
different temporal scales, and each model is applied over multiple temporal scales in

the future.

Simple motion models M are learned over multiple model-scales and are used to make

state predictions over multiple prediction-scales, by fitting a first-order polynomial func-

tion. M is learned at a given model-scale separately for the x-location, and y-location

of the target’s state. For instance, an M learned at model-scale m, predicts a target’s

x-location at time t as:

x̃t = βmo + βm1 t, (4.21)

where β1 is the slope, and βo the intercept. Model parameters can be learned inexpen-

sively via weighted least squares.

A set of learnt motion models at time t is denoted as [M2
t , ...,M

|Mt|
t ], where |.| is the

number of model scales. Model scales of 2, 3, 4 and 5 are used, as in (Khan et al., 2015).

Each model predicts target state l(x̃, ỹ) at T prediction-scales. After applying the |Mt|



Chapter 4. Tracking by Regression with Incrementally Learned Cascades 113

models over T prediction-scales, T sets of motion predictions are available at time t.

This thesis refers to (Khan et al., 2015) for more details.

In the proposed part-based tracking approach, a separate MTS motion model is learned

independently for each part. The T × |Mt| motion predictions together with the pre-

diction of the 0-order motion model, i.e. the predicted location at time t − 1, are

available at time t. The top ranking motion prediction is used to initialise the regression

search, where the ranking is determined by a Support Vector Machine (SVM) trained

to distinguish between foreground and background patches. The tracker does not adopt

regression method to determine the best motion prediction for two reasons: first, the

motion predictions obtained with a multiple temporal scale motion model can cover a

relatively large area meaning that regression needs a big training area which is time

consuming and regression may not work well; second, the selected motion prediction is

only used to initialise the search, which does not have a high accuracy requirement, and

the simple classifier is sufficient.

4.4 Evaluation

This thesis evaluates the proposed method of part-based tracking by regression with

incrementally learned cascades (TRIC) on the CVPR2013 benchmark with six exper-

iments: four internal experiments designed to optimise the parameters for TRIC, one

investigation experiment exploring the function of different algorithm components, and

one external experiment comparing TRIC with the state-of-the-art trackers. More recent

benchmarks, VOT2014 and VOT2015, evaluate the trackers by allowing re-initialisation;

however, these benchmarks only provide bounding box ground truth for re-initialisation,

part-based ground truth is not available to correctly re-initialise the tracker. Evaluation

on the VOT2014/15 would therefore be an unfair comparison for the proposed tracker.

The dataset used for evaluation of the TRIC tracker in the external experiment is the

full dataset of (Wu et al., 2013). It includes 50 video sequences (including 51 track-

ing instances) and 29 state-of-the-art trackers. This benchmark provides videos with

challenging conditions such as scale variation, occlusion, deformation, fast motion, illu-

mination variation, in-plane rotation, out-of-plane rotation, background clutter and so

on. Thus, this tracker can avoid over-fitting to a small subset or one specific attribute.

All videos are manually tagged with what the main challenges of the video are. For ex-

ample, DEF is a subset containing all videos with the attribute ‘deformation - non-rigid

object deformation’ (Wu et al., 2013). OCC is a subset including all videos with the

attribute ‘occlusion’. SV is the subset in which the videos have ‘scale variation’. The



Chapter 4. Tracking by Regression with Incrementally Learned Cascades 114

internal studies are performed on 19 videos of the DEF set. The parameters are tuned

with the subset and then tested on the full dataset to avoid over-fitting.

The performance of the various trackers is measured using precision (Babenko et al.,

2011; J. a. F. Henriques et al., 2012; Wu et al., 2013) and success plots. The precision

plot measures the percentage of frames whose estimated location is within the given

threshold distance of the ground truth (Wu et al., 2013). The success plot measures the

percentage of frames for which the overlap divided by the union of the predicted and

ground truth bounding boxes exceeds a given threshold ratio which varies from 0 to 1.

This thesis reports on one-pass evaluation (OPE), i.e. the tracker is run throughout

the whole video initialised only with the ground truth in the first frame. To rank the

performance, as (Wu et al., 2013), this thesis uses the precision obtained for a location

error threshold of 20 pixels as the precision score for precision plot. For success plot,

the area under curve (AUC) is used as the success score.

Because TRIC predicts the location of the target directly, and TRIC is a part-based

tracker, for the comparison with the state-of-the-art trackers or TRICs with different

parameters, the tracker retro-fits a bounding box. Specifically, this study retro-fits a

bounding box by performing a linear transformation, found by the transformation of

the part location, on the bounding box of the first frame.

Initialisation: In the absence of manually labelled part locations, the parts can be

automatically initialised given a bounding box enclosing the global object, which is

illustrated in Figure 4.7. Specifically, given the bounding box, an eroded bounding box

with a margin 4d is treated as foreground mask while the area outside is treated as

background mask. The learning based digital matting (Zheng & Kambhamettu, 2009)

segmentation method is adopted to obtain the contour of whole target with the masks.

Then the skeleton of a whole target is found by morphological operation on the target

contour and the tracker initialises the part locations with N equidistant points along

the skeleton in the first frame. N is fixed to 6 for all experiments.

Please note that the masks for segmentation are hard to define automatically as many of

the tracking targets are articulated and the given bounding box ground truth inevitably

includes background, which leads to a poor foreground mask. An accurate target contour

requires proper segmentation method which is out of the current research scope, and

explicit initialisation which needs extra manual interaction of the expert. Thus, given

only a bounding box ground truth and the totally automatic initialisation method, it is

impossible for now to have perfect initial part locations for the proposed tracker, which

deteriorates the tracker’s performance accordingly.
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(a) (b)

Figure 4.7: (a) The given bounding box is green while the eroded box with the
margin 4d is red. A mask, using the area within the red rectangle as the foreground
and the area outside the green rectangle as the background, for segmentation could be
obtained. (b) Applying the segmentation method (Zheng & Kambhamettu, 2009) to the
mask generates the target contour (yellow). The skeleton found through morphological

operation is the red line and the initialised part locations are the blue circles.

Parameters: For calculation efficiency, the tracker re-scales images using the initial

frame as the reference to make every tracked whole target’s scale approximately equal

to 50× 50 pixels. Specifically, the ratio is determined by (50× 2)/(w+ h), where w and

h are the bounding box groundtruth of the target in the first frame. The tracker adopts

CNN features extracted from location Si with sample size ps×ps for local part or gs×gs
for global part to represent image information of sample patch. Each sample’s feature

is represented by Φ(I, sij , ps, b) or Φ(I, sij , gs, b) in which b is the bias.

As the object is expected to move, the background is not correlated with the target

movement. Image information acquired from the background will only give approxi-

mately correct predictions in the recent future, while image information derived from

the object itself is expected to remain accurate over time. Thus, image patches should

ideally always capture part of the foreground, which means the size of image patch

should be approximately equal to the implicit target part’s size. The image patch size

ps is therefore defined by: ps = (ws + hs)/(N − 1), in which ws and hs are scaled w and

h. This definition ensures that the patch size is directly related to the density of target

parts. The sample patch size for global part is gs defined by: gs = (ws + hs)/2.

N = 6 parts are used, representing a balance between shape expressivity and compu-

tational complexity. All experiments use fixed δv = 0.01, determined empirically, and

K = 200. The sampling radius is set to 30 pixels and the number of cascade levels is 4.

In my case, ps is 24 pixels and gs is 48 pixels. λ = 0.001 (see Figure 4.8(d)) is set in the

Eq. 4.13 in Section 4.3.3.

Shape Correction: It is noticed that occasionally prediction of some of the parts are

completely off target while others are still on target, which affects the performance for
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three reasons. Firstly, since the tracker retrofits a bounding box to the final prediction

of parts, the bounding box would be much larger than it should be. Secondly, the

predictions provided by the motion model are based on located part position in each

frame, so that outliers would affect the accuracy of a motion model. Finally, the update

step also uses information based on the predicted part location, making the regressor

learn on faulty data when there are outliers.

To reduce the impact of outlier predictions, they are detected and removed using a shape

correction process. This is built on the assumption that the arrangement of parts as

initialised in the first frame does not change much during tracking, while allowing for

changes in scale and rotation. A measure which is able to check these constraints is the

relative length between parts defined by Eq. 4.23.

These relative lengths are calculated for the ground truth parts locations in the first

frame and compared against the relative lengths calculated in the current frame. The

deviation between the ground truth relative lengths of a part and the current frame’s is

then calculated as follows:

DEVi =

∑
j=1..N

∑
k=1..N |Qcr(i, j, k)−Qsr(i, j, k)|

N2
, (4.22)

Qr(i, j, k) =
max(||l∗i − l∗j ||, ||l∗i − l∗k||)
min(||l∗i − l∗j ||, ||l∗i − l∗k||

, (4.23)

where DEVi is the deviation of part i, N is the total number of local parts, Qcr(i, j, k) is

the relative length for part i among part i, part j and part k in the current frame and

Qsr(i, j, k) is the same but then for the initial frame.

The outlier parts can now easily be filtered from the set of located parts. This is done by

calculating the median of the deviation of all parts and removing those parts which have

a deviation more than twice the median deviation. The set of non removed parts can

then be matched with their corresponding parts in the initial set and an affine transform

is calculated between these corresponding parts. Finally the affine transform can be used

to calculate the most likely true position of the removed parts.

4.4.1 Parameter Optimisation

Internal tests are performed to optimise the internal parameters of the cascaded regres-

sors. The first internal study examines the influence of the sampling density used in

the training and test stages. The second investigates the effect of the sampling radius.

The third internal study compares the performance of direct-displacement prediction by

regression with a template based tracker using the same features and motion model, to
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investigate the cascaded regression’s advantage over the template based method. The

fourth internal study evaluates the effect of lambda in the ridge regression. The first,

second and fourth experiments are performed with the full TRIC tracker. For the third

experiment, this thesis compares the TRIC tracker, not using the multi-temporal scale

motion model and updating, with the template-based tracker which uses the same fea-

tures and motion model (a 0-order motion model). In all internal experiments, each

frame is rescaled to make the tracked target be approximately 30 × 30 using the same

method explained in ’Initialisation’ part.
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Figure 4.8: (a) The effect of number of samples on the tracking accuracy of TRIC
(sampling radius = 20 pixels). (b) Effect of sampling radius of TRIC. (c) Comparison
between template-based tracker and regression-based tracker. (d) Effect of regularisa-
tion parameter in ridge regression. The metric in (a), (b), (c) and (d) is the precision

plot.

First, this thesis investigates the effect of sampling density by setting the number of

samples to 60, 90, 120, and 240 with the sampling radius fixed to 20 pixels. The results

are shown in Figure 4.8(a). The general trend clearly shows that there is not a large

difference in the performance of TRIC with sample number either 60 or 90. 90 is chosen

as the sample number because it is more accurate within a smaller error threshold.

Second, the effect of the sampling radius is determined by varying its value in the range

of 15, 20 and 25 pixels (see Figure 4.8(b)). The results clearly show that a large sampling
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area is more likely to include poor samples and small one is not robust enough. 20 pixels

is selected to balance the accuracy and robustness of the tracker.

Third, for the comparison between the regression-based tracking method and the template-

based method, this thesis allows the latter to perform a full search in the same area from

which the former samples its test locations, i.e. a circular area of radius 20 pixels. Figure

4.8(c) clearly shows the gain achieved by adopting a regression-based approach.

Fourth, this thesis exploits the effect of λ in the Ridge Regression by setting the value

of λ to 0 and 10k, k = −4 : 3. Following examination of the results shown in Figure

4.8(d), λ = 0.001 is chosen as the optimal value.

4.4.2 Investigation of Algorithm Components

This thesis also investigates the impact of different algorithm components in the TRIC

tracker. TRIC-S refers to the TRIC tracker without the implicit shape model. TRIC-I is

the TRIC tracker without incremental learning, i.e. learning only from the first frame of

the video while TRIC-M denotes the TRIC tracker without the multiple temporal scale

motion model (i.e. assuming 0-order motion). As explained in Section 4.4, this thesis

reports on one-pass evaluation (OPE), i.e. the tracker is run throughout the whole video

initialised only with the ground truth in the first frame. To rank the performance, as

(Wu et al., 2013), this thesis uses the precision obtained for a location error threshold

of 20 pixels as the precision score for precision plot. For success plot, the area under

curve (AUC) is used as the success score. The precision score is shown in the legend

of the precision plot, while the success score is shown in the legend of the success

plots. Considering the time consumption, the calculation of image features is most time

consuming, as the calculation of HOG or CNN features of image samples is expensive

and the integration of the implicit shape model makes the number of image samples

increase by three times after every cascade of regression. The TRIC-S is more efficient

than the TRIC as the number of image samples in TRIC-S is 1/3 of the number in TRIC

because of the lack of the shape model. Similarly, TRIC-I runs faster than TRIC as the

number of image samples nearly reduces by 50% without incremental learning. As the

motion model is a linear model, the time consumed is limited. TRIC-M has nearly the

same efficiency as the TRIC.

Table 4.2 shows the precision score, as well as the precision plot ranking obtained, for

TRIC, TRIC-S, TRIC-I, and TRIC-M. This clearly shows the value of the implicit shape

model. For DEF, without the implicit shape model, performance decreases by 58%. This

shows that the implicit shape model is a key algorithm component in TRIC-track. For

OCC, performance decreases by 22.9% without incremental learning, indicating that



Chapter 4. Tracking by Regression with Incrementally Learned Cascades 119

Table 4.2: Performance of TRIC, without implicit shape model (TRIC-S), without
incremental learning (TRIC-I), and without motion model (TRIC-M), on the DEF,
OCC, SV and full dataset of the CVPR 2013 benchmark data. # is the rank obtained
against the 29 trackers in the benchmark (Wu et al., 2013), while Score is the precision

score.

Trackers TRIC TRIC-S TRIC-I TRIC-M

Dataset # Score # Score # Score # Score
ALL 1 0.796 25 0.357 4 0.626 2 0.756
DEF 1 0.817 25 0.343 2 0.676 2 0.721
OCC 1 0.786 26 0.332 3 0.606 2 0.726
SV 1 0.747 25 0.347 7 0.553 2 0.738

the incremental learning is crucial for scenarios with occlusions, and 7.6% without the

motion model, as the motion model employed by TRIC predicts multiple frames ahead,

thus overcoming brief occlusions.
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Figure 4.9: Precision plots and success plots of TRIC using HOG features with
automatic initialisation and TRIC using HOG features with manual initialisation. OPE
means one-pass evaluation. The values shown in the legend of precision plots are the
precision scores, while the values shown in the legend of success plots are the success

scores.
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Figure 4.10: Precision plots and success plots of TRIC and TRIC without the global
part.
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Figure 4.11: Comparison of CNN vs HOG features.
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Figure 4.12: Precision plots and success plots of TRIC and TRIC without shape
correction.

In addition to the experiments on the main algorithm components, this thesis also

performs experiments to compare TRIC with manual initialisation and TRIC with au-

tomatic initialisation, see Figure 4.9, which shows that similar results with automatic

initialisation and with manual initialisation are obtained. The segmentation method

provides relatively reliable initialisation of parts’ locations. The global part is added to

extend the proposed implicit shape model to be implicit shape model with the global

part. A corresponding experiment is executed to verify the advantage of bringing global

information, see Figure 4.10. Experimental results show that adding the global part

increases the precision score by 6.4% and the success score by 6.5%. When the image

information from local parts is not able to give a confident prediction, the image infor-

mation from the global part can make a confident prediction of target location, because

the spatial relationship between global part and target part is less flexible. Comparison

between HOG features and CNN features adopted in TRIC-track is also conducted, see

Figure 4.11, which clearly shows that with the more discriminative power of CNN fea-

tures, the precision score increases by 11% and the success score increases by 10.6%. A

shape correction model is also added to remove the outliers of predicted parts locations,

see Figure 4.12, which shows that the shape correction model improves the performance.
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4.4.3 Comparison to the State of the Art

To evaluate the TRIC tracker’s performance, the TRIC tracker is tested on the whole

dataset and compared with the results of all the 29 state-of-the-art trackers included in

the benchmark (Wu et al., 2013).

Results are shown in Figure 4.13 (precision plot) and Figure 4.14 (success plot). For

clarity, only the top ten trackers are displayed. The values of the precision score and the

success score for the corresponding state-of-the-art methods are included in the legends

of Figure 4.13 and Figure 4.14.
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Figure 4.13: Precision plot of OPE for all 50 sequences.

The precision plot of TRIC is approximately equal to the third-highest ranked tracker

(SCM (Zhong, 2012)) for a threshold up to 5 pixels, and for higher thresholds it signifi-

cantly outperforms all other trackers. Struck (Hare et al., 2011) comes second. Similarly,

TRIC clearly outperforms all other trackers for overlap thresholds up to 0.61, and is ap-

proximately equal to SCM after that. One interpretation of these results is that TRIC is

a robust tracker, never making very large errors, but not particularly precise. I present

another interpretation, and this is that the retro-fitting of a bounding box onto the

tracked parts of an articulated deformable object is unsuitable for direct comparison

with bounding box trackers, as deformations of extremities (e.g. someone extending



Chapter 4. Tracking by Regression with Incrementally Learned Cascades 122

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap threshold

S
uc

ce
ss

 r
at

e

Success plots of OPE

 

 

TRIC [0.544]
SCM [0.499]
Struck [0.474]
TLD [0.437]
ASLA [0.434]
CXT [0.426]
VTS [0.416]
VTD [0.416]
CSK [0.398]
LSK [0.395]

Figure 4.14: Success plot of OPE for all 50 sequences.

their arm) causes the mean location of the parts to move away from where the bounding

box ground truth would be.

4.4.4 Conclusion

This thesis proposes a part-based tracker employing direct displacement prediction

rather than the traditional local matching of an appearance model. The method em-

ploys cascaded regression to directly predict parts’ locations from local image informa-

tion described by deep learned features, learning the inference models on-the-fly. Spatial

relationships between parts and spatial relationships between local parts and the global

part are captured implicitly by a set of regressors. This thesis integrates a multiple tem-

poral scale motion model to initialise the cascaded regression search close to the target

and to cope with occlusions. Automatic initialisation and shape correction are added

to complete the proposed tracker. Experimental results clearly demonstrate the value

of the method’s component parts, and comparison with the state-of-the-art techniques

in the CVPR 2013 Visual Tracker Benchmark shows that TRIC ranks first on the full

dataset.



Chapter 5

Tracking by Locally Continuous

Regression with Incrementally

Learned Cascades

Chapter 4 has shown that the framework of SDM (Xiong & De la Torre, 2013) can be suc-

cessfully adapted to the problem of online tracking of generic objects and that cascaded

regression (SDM) improves the accuracy of direct displacement prediction compared to

ordinary linear regression. It also showed how the incremental updating of cascaded

regression proposed by (Asthana et al., 2014), which uses newly tracked faces to incre-

mentally update the offline trained regressor for facial point localisation, can be adapted

to the incremental update of the regressor in general object tracking by adding new

training data.

SDM has avoided calculation of the Hessian matrix or Jacobian matrix, when solv-

ing nonlinear optimisation problems in the context of computer vision, by learning a

sequence of descent directions. However, there are three major drawbacks of sampling-

based regression (i.e. SDM) within the TRIC-track framework, which are as follows:

• The samples used for training SDM are obtained through random sampling of

starting points for cascaded prediction from a circular area centred at the ground

truth target location. The sampling process is computationally expensive as it

needs to be conducted at every cascade level for each target point.

• Similarly to training, the samples used for updating SDM are obtained through

random sampling. The sampling process needs to be conducted at every cascade

level for each target point and thus is time consuming.

123
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• Each regressor is learned by minimising the least squares error on a limited set

of training image patches and their corresponding displacements. The regressor is

updated with a limited set of samples as well. Not all available image information

and displacements within a sample space can be utilised to train and update a

regressor.

An alternative to sampling-based linear regression is Continuous Regression (Sánchez-

Lozano et al., 2016), which can cope with the above three problems. With Continuous

Regression, the shape displacement is regarded as a continuous variable, and the feature

space is approximated by its first-order Taylor expansion. Only the feature at the ground

truth target location needs to be sampled, and all displacements are handled in a very

efficient manner.

In this chapter, Continuous Regression is introduced to the task of model-free tracking.

However, it is then observed that the Taylor expansion in itself is not a good feature

approximation when dealing with scenarios with such a high variance in target appear-

ance. To alleviate this problem, this chapter proposes Locally Continuous Regression,

which unifies sampling-based regression with continuous regression in an efficient man-

ner. The proposed strategy is then applied to training and incremental updating in

the main framework of TRIC-track, which shows a six-fold speed improvement without

sacrificing performance of the tracker.

5.1 Continuous Regression

5.1.1 Motivation of Continuous Regression

In both facial landmark tracking and general object tracking problems, SDM is used

in the same way. Specifically, both problems require one to learn a mapping matrix R

between image features, extracted at the sample locations, and the displacements δs,

from ground truth target location s∗ to the sample locations (s∗+ δs). The samples can

be obtained through a random sampling around the ground truth target location. The

mapping can be described as: δs = RΦ(I, s∗ + δs). The difference between these two

problems is that, the learning of R is performed only in the first frame of a video sequence

in general object tracking, while the learning is performed offline over thousands of

images in facial landmark tracking. Moreover, the kind of targets can be various in visual

tracking, while the target in facial landmark tracking is the face only. Thus, variations

in appearance and shape of target in visual tracking tend to be more complex. This

difference limits direct application of Continuous Regression to general object tracking,

which will be explained in Section 5.1.4.
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The least squares problem in a general form in visual tracking can be formulated as1:

arg min
R

K∑
k=1

||δsk −RΦ(I, s∗ + δsk)||22, (5.1)

where s∗ is the ground truth target location, i.e. the ground truth shape. K is the

number of perturbations, i.e. the number of patches sampled for the top-level cascade.

As shown above, sampling-based regression has the following three limitations (Sánchez-

Lozano et al., 2016):

• Training an SDM model is computationally expensive as it requires the data to be

sampled per cascade level in training regressor for each target point (part), with

both the memory and the time needed for training increasing dramatically with

the number of samples.

• Similarly to training, updating an SDM model is time consuming because of the

need of sampling per cascade level for each target point, which limits the capacity

of SDM and its extensions for learning on-line and in real-time.

• SDM uses a limited set of samples to train and update a regressor instead of using

all available image information and the corresponding displacements.

5.1.2 Overview of Continuous Regression

To overcome these limitations, Sanchez-Lozano et al. (Sánchez-Lozano et al., 2016)

proposed Continuous Regression, and incorporated it into facial landmark tracking. The

proposed Continuous Regression is a solution to the least squares problem, generating

the first face tracking method with real-time incremental learning capabilities.

With Continuous Regression, the shape displacement is regarded as a continuous vari-

able. The feature space is approximated by its first-order Taylor expansion, so that the

feature space becomes linear with respect to shape displacement, yielding a closed-form

solution for the continuous domain of displacements.

With this approximation, Continuous Regression only needs the data to be sampled

at the ground-truth locations, which means that no sampling at perturbations of the

ground truth location is required. Thus, one can sample and store the ground-truth

data only once, and then train each cascade level, or even a new model under a different

configuration extremely quickly.

1The parameter ps (size of sampled image patch) is removed from Φ for the sake of simplicity.
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Sanchez-lozano et al. have incorporated Continuous Regression into the cascaded regres-

sion framework (Sánchez-Lozano et al., 2016) and demonstrated that Cascaded Contin-

uous Regression (CCR) has notable computational advantage over the standard SDM,

without sacrificing performance. A graphical overview of the Continuous Regression is

shown in Figure 5.1.

Figure 5.1: Difference between sampling-based regression and continuous regression.
The continuous regression accounts for all the samples within a neighbourhood, whereas
sampling-based needs to sample the data from a given distribution. The figure is from

(Sánchez-Lozano et al., 2016).

5.1.3 Formulation and Solution of Continuous Regression

The complete formulation and solution of Continuous Regression is briefly presented as

follows. Regarding the shape displacement as a continuous variable, the least squares

problem is extended to the continuous domain of the shape displacement. The extension

of the least squares problem is then defined as (Sánchez-Lozano et al., 2016):

arg min
R

∫
δs
||δs−RΦ(I, s∗ + δs)||22p(δs)dδs, (5.2)

where p(δs) describes the pdf of the sampling distribution, which is parameterised by

its mean µ and covariance Σ. Instead of using the discrete samples of a sample space

only, p(δs) models a whole sample space around a target point. The relation between

discrete samples, used in the sampling-based regression, and the sample distribution,

used in Continuous Regression, is shown in Figure 5.2.

To allow us to replace a set of discrete samples with a continuous sample distribution,

Sanchez-Lozano et al. propose to approximate the feature space by its first-order Taylor

expansion:

Φ(I, s∗ + δs) ≈ Φ(I, s∗) + J∗δs, (5.3)

where J∗ = ∂Φ(I,s)
∂s |(s=s∗), evaluated at s = s∗, is the Jacobian of the feature represen-

tation of image I, with respect to shape coordinates (target location) s, at s∗. Utilising
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Figure 5.2: The relation between discrete samples and the continuous sample space.

Eq. 5.3, the least squares problem can be described as:

arg min
R

∫
δs
p(δs)||δs−RΦ(I, s∗ + δs)||22dδs ≈ (5.4)

arg min
R

∫
δs
p(δs)||δs−R

(
Φ(I, s∗) + J∗δs

)
||22dδs = (5.5)

arg min
R

∫
δs
p(δs)[δsT δs− 2δsTR(X∗ + J∗δs)+

(X∗ + J∗δs)TRTR(X∗ + J∗δs)]dδs,

(5.6)

where X∗ = Φ(I, s∗) is the feature vector extracted at the ground-truth point s∗. The

solution for R is obtained by minimising Eq. 5.6 and R is then calculated by:

R =
(
µX∗T + (Σ + µµT )J∗T

)(
X∗X∗T + 2X∗µTJ∗T + J∗(Σ + µµT )J∗T

)−1
. (5.7)

The reader is referred to (Sánchez-Lozano et al., 2016) for more details of the derivation

of R. Note that the solution of R is not determined by the actual sampling pdf, but

rather by its mean and covariance.

Although there is no analytical form solution for the Jacobian of image features, their

gradients can be approximated. In particular, the derivatives of the image features with

respect to the x coordinate are obtained by:

∇Φx =
∂Φ(I, x)

∂x
≈ Φ(I, x+ ∆x)− Φ(I, x−∆x)

2∆x
. (5.8)

Similarly, the empirical derivative of the image features with respect to the y coordinate

can be obtained. The ∆x is set to the minimum displacement, 1 pixel, in (Sánchez-

Lozano et al., 2016), and J∗ = [∇Φx,∇Φy].

To help calculate Eq. 5.7, a matrix form is adopted in (Sánchez-Lozano et al., 2016).

The shorthand notations are: M = [µ,Σ + µµT ], B =
( 1 µT

µ Σ + µµT

)
, D∗ = [X∗, J∗].
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Eq. 5.7 then can be defined by:

R = MD∗T (D∗BD∗T )−1. (5.9)

In addition to the theoretical contribution, Continuous Regression formulation has im-

portant computational benefits compared to sampling-based methods (such as SDM).

Eq. 5.7 clearly shows that the calculation of R only needs the ground truth feature

X∗, its Jacobian J∗ and the sampling statistics. That is to say, within the cascaded

regression framework, an image frame only needs to be sampled once in the first cascade

level. For the following cascaded levels, there is no need to repeat the sampling process,

and the only need is to change the sampling statistics with respect to the ground truth

target location. Thus, it is only needed to sample the image once for training regressors

under different configurations in all cascade levels, which is time efficient compared with

the sampling-based SDM.

5.1.4 Limitation of Continuous Regression

The main limitation of Continuous Regression is that the smoothness of features must

be satisfied when approximating image features using the first-order Taylor expansion.

The smoothness of features means that the image features must have similar appearance.

In the face alignment case, in which local information on a face is used to infer a facial

point location, the smoothness of features has been shown to be sufficiently satisfied.

However, it is not the case in visual tracking, and especially within the framework of

TRIC-track, as explained as follows:

• First, most objects in visual tracking have more complex appearance. The varia-

tion in target appearance between two adjacent frames in visual tracking is usually

higher than that in facial landmark tracking. To increase the robustness of the

appearance model (regressor) in TRIC-track, the samples used in training are not

obtained from a local area close to the target point. The samples should cover

a relatively large area, compared with the sampling area in facial point localisa-

tion, centred at the target location. These samples are at most 30 pixels away

from the target in TRIC-track. For example, to estimate the centre location of a

human head, the samples from the whole head are included in the search region,

and must thus be approximated by the Taylor expansion. In contrast, for face

alignment only the local samples around the nose are used to detect a facial point

on the nose.
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• Second, in the implicit shape model proposed in TRIC-track, a target part location

is predicted not only by the image features around the current part, but also the

image features around its two neighbouring parts. In this case, the ground truth

location is the current part location, and the image features can come from its

neighbouring part and are relatively far away from the ground truth location. In

this case, Taylor expansion is not able to correctly approximate the image features,

around the neighbouring parts, using just the image feature and its Jacobian at

the current part location.

Despite the impressive results shown in face tracking (Sánchez-Lozano et al., 2016), the

high variance of model-free tracking makes Continuous Regression much less accurate

than sampling-based regression. Continuous Regression is limited by the Taylor expan-

sion. This problem is explored by an experiment testing Continuous Regression on visual

tracking scenarios.

Specifically, in a video frame, given a ground truth target location, shown as the cyan

dot in Figure 5.3, two kinds of regression methods, Continuous Regression (CR) and

sampling-based regression (SR), were used to train a regressor to predict the target

location, respectively. The same sample space with zero mean and a certain covariance

Σ is used for both methods during training and testing. More precisely, sample statistics

are used to train a regressor by Continuous Regression, while the samples acquired from

the same sample statistics are used to train a regressor by sampling-based regression.

The test samples from the same sample statistics are then evaluated by the above two

regressors. The image feature used is the HOG feature. The Euclidean distances between

the ground truth target location and test samples, predictions from CR, predictions

from SR are measured respectively. The lower Euclidean distances between the ground

truth target location and the predictions, the higher accuracy of the predictions. This

experiment is performed on every frame of five videos, which are Shaking, David3,

Woman, Skating1 and MotorRolling. They are of different levels of difficulty for

tracking and selected from the CVPR2013 benchmark (Wu et al., 2013) as the test

videos in this evaluation.

In every frame, both of these methods are applied to the sample space with a range of

covariances Σ, from 10 to 60, to explore how accurate the predictions from Continuous

Regression can be, i.e. how accurately Taylor expansion can approximate image features,

in visual tracking scenarios. Figure 5.3 shows the experiment with a lower covariance Σ1

and a higher covariance Σ2. The test sample space in Figure 5.3(a) and Figure 5.3(c) are

obtained by random sampling from a bivariate normal distribution with zero mean and a

specified covariance matrix Σ1. The test sample space in Figure 5.3(b) and Figure 5.3(d)
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are obtained in the same way with zero mean and covariance Σ2. Σ1 =
( 10 0

0 10

)
and

Σ2 =
( 30 0

0 30

)
.

Figure 5.3(a) shows the visualised result of the regressor Ra trained by Continuous Re-

gression with lower variance Σ1. Figure 5.3(b) shows the visualised result of the regressor

Rb trained by Continuous Regression with higher variance Σ2. The test locations are

shown as green crosses. The target locations estimated by the regressor are shown as

blue crosses. The number of test locations is 100.

Figure 5.3(c) shows the visualised result of the regressor Rc trained by sampling-based

regression with lower variance Σ1. Figure 5.3(d) shows the visualised result of the

regressor Rd trained by sampling-based regression with higher variance Σ2. The test

locations are shown as green crosses. The target locations estimated by the regressor

are shown as magenta crosses.

Figure 5.3(e) and 5.3(f) show the proportion of samples whose Euclidean distances to

the target location is lower than a certain value. The Euclidean distance from a sample

location to the target location is normalised by the maximum distance from the initial

test location to the target location.

The distributions of locations predicted by Continuous Regression (blue crosses) in Fig-

ure 5.3(a) and Figure 5.3(b) are less dense than those of sampling-based regression

(magenta crosses) in Figure 5.3(c) and Figure 5.3(d). More importantly, the difference

in distribution density of estimated target location between Figure 5.3(b) and 5.3(d) is

much bigger than that between Figure 5.3(a) and 5.3(c), which is quantitatively illus-

trated in Figure 5.3(e) and 5.3(f). The green curve represents the sample locations (test

locations), and the sample locations are the same for Continuous Regression and the

sampling-based regression. The image features extracted at sample locations are used

as input of a regressor. The regressor then predicts one target location based on each of

these sample locations.

Figure 5.4 shows the sample proportion vs Euclidean distance result of two regressors

(CR and SR) with the covariance which ranges from 10 to 60. It shows the result of all

frames (in total 252) of video David3. The results of other videos are very similar to

the result of this video. With the increase of the covariance, the number of test samples,

which is also the number of training samples used in the sampling-based regression

method, increases accordingly. Specifically, it is empirically calculated by Σ2. Figure 5.4

shows that, with the increase of the covariance, the proportion of SR predictions whose

scaled Euclidean distance to the ground truth target location is lower than 0.1 decreases
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(a) Continuous Regression with lower vari-
ance Σ1

(b) Continuous Regression with higher vari-
ance Σ2

(c) Sampling-based regression with lower
variance Σ1

(d) Sampling-based regression with higher
variance Σ2

(e) Result of the lower variance Σ1 (f) Result of the higher variance Σ2

Figure 5.3: (a), (c) and (e) show the result of the lower variance Σ1. (b), (d) and (f)
show the result of the higher variance Σ2. (a) and (b) show the result of Continuous
Regression. (c) and (d) show the result of the sampling-based regression. The cyan
dot is the ground truth target location. Green crosses are the initial test locations,
while blue and magenta crosses are the predicted locations by the regressor. The x-axis
of (e) and (f) is the Euclidean distance between the sample location and the ground
truth target location. The x-coordinate of (e) and (f) are normalised by the maximum
distance between the target and the test sample location, for clear comparison. The
y-axis of (e) and (f) is the proportion of the samples whose Euclidean distances to the

target location is lower than a certain value.
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Figure 5.4: Results of Euclidean distances from the ground truth target location to
the test samples, CR predictions and SR predictions in every frame in video David3.
X axis shows the scaled Euclidean distance. Y axis shows the proportion of samples
whose Euclidean distance to the ground truth target location is lower than a certain

value. Every curve is the result of a frame in video David3.

slightly, shown as magenta curves in Figure 5.4. The proportion of predictions from CR,

whose scaled Euclidean distance to the ground truth target location is lower than 0.2 or

0.3, significantly decreases with the increase of the covariance of the sample space, shown

as blue curves in Figure 5.4. The difference between the initial test locations and the

predictions from CR becomes increasingly small with the increase of the variance of the

sample space. It clearly illustrates that Continuous Regression is not able to accurately

predict target location, i.e. the Taylor expansion is not able to accurately approximate

image features of a sample space with a high variance.

Figure 5.5 shows average results of Figure 5.4 over all frames of video David3. Espe-

cially, Figure 5.5(b) shows that the performance of CR becomes worse as the covariance

increases. Mean and variation of curves, similar to the curves in Figure 5.4, of five videos

are shown in Figure 5.6.

It can be seen from the experimental results that the regressor trained by Continuous

Regression with a higher variance tends to give much less accurate predictions, compared

with its corresponding sampling-based regression. It means that the first order Taylor
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(b) CR predictions
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Figure 5.5: Results of average Euclidean distances from the ground truth target loca-
tion to the test samples, CR predictions and SR predictions averaged over all frames in
video David3. X axis shows the scaled Euclidean distance. Y axis shows the proportion
of samples whose Euclidean distance to the ground truth target location is lower than
a certain value. (a) The average Euclidean distances from test samples to the ground
truth target location. (b) The average Euclidean distances from CR predictions to the
ground truth target location. (c) The average Euclidean distances from SR predictions

to the ground truth target location. (d) The legend of (a),(b) and (c).

10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

M
ea

n 
of

 A
U

C
 p

er
 fr

am
e

Covariance
10 15 20 25 30 35 40 45 50 55 60

0

0.5

1

1.5

2

2.5

3
x 10

−3

V
ar

ia
nc

e 
of

 A
U

C
 p

er
 fr

am
e

Covariance

 

 

Samples
CR predictions
SR predictions

(a) David3



Chapter 5. Tracking by Continuous Regression based on Taylor Expansion 135

10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

M
ea

n 
of

 A
U

C
 p

er
 fr

am
e

Covariance
10 15 20 25 30 35 40 45 50 55 60

0

0.5

1

1.5

2

2.5

3
x 10

−3

V
ar

ia
nc

e 
of

 A
U

C
 p

er
 fr

am
e

Covariance

 

 

Samples
CR predictions
SR predictions

(b) MotorRolling
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(c) Shaking
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(d) Skating1
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Figure 5.6: Mean and variation of curves, another form of descriptions of the curves
in Figure 5.4, of five videos.
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expansion is not able to accurately approximate image features with a higher variance,

as the smoothness of image features is not satisfied in the situation where the variation

of image features is high. As a result, the first-order Taylor expansion of the original

Continuous Regression can not be directly used in TRIC-track to approximate image

feature space.

5.2 Locally Continuous Regression

We can alleviate the problem of Taylor expansion by applying a two-step displacement.

An intermediate sampling can be applied first and the first-order Taylor expansion can

be applied locally at each sample.

In particular, s + δs can be split into s + δs = s + δsD + δsC , where s + δsD will

be the linearisation point, and δsC will be the continuous variable to integrate over.

We can generate N perturbations (linearisation points), and then integrate over all the

subspaces centred around them. In particular, the relations between these variables are

illustrated in Figure 5.7. Then Eq. 5.3 is extended to:

Φ(I, s∗ + δsDl
+ δsC) ≈ Φ(I, s∗ + δsDl

) + Φ′(I, s∗ + δsDl
)δsC , (5.10)

where l ∈ [1, N ]. Eq. 5.10 can be written as:

Φ(I, s∗ + δsDl
+ δsC) ≈ X∗l + J∗l δsC , (5.11)

where J∗l =
∂Φ(I,s∗+δsDl

)

∂sC
, and X∗l = Φ(I, s∗ + δsDl

). Note that the cardinality of the

subspace, N , depends on the size of the whole sample space which is intended to be

modelled. For a smaller sample space, the cardinality of the subspace can be less.

Figure 5.7: The illustration of the relation between a ground truth part location s∗

and a subspace.
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With this strategy, Eq. 5.2 is then extended to be:

arg min
R

N∑
l=1

∫
δsC

||δsDl
+ δsC −RΦ(I, s∗ + δsDl

+ δsC)||22p(δsC)dδsC . (5.12)

Applying the approximation in Eq. 5.11 to Eq. 5.12, then the least squares problem

can be described by:

arg min
R

N∑
l=1

∫
δsC

p(δsC)||δsDl
+ δsC −RΦ(I, s∗ + δsDl

+ δsC)||22dδsC ≈

arg min
R

N∑
l=1

∫
δsC

p(δsC)||δsDl
+ δsC −R

(
X∗l + J∗l δsC

)
||22dδsC =

arg min
R

N∑
l=1

∫
δsC

p(δsC)[δsTDl
δsDl

+ δsTCδsC + (X∗l + J∗l δsC)TRTR(X∗l + J∗l δsC)

+ 2δsTDl
δsC − 2δsTCR(X∗l + J∗l δsC)− 2δsTDl

R(X∗l + J∗l δsC)]dδsC . (5.13)

After grouping independent, linear and quadratic terms, with respect to δsC , Eq 5.12 is

represented by:

arg min
R

N∑
l=1

∫
δsC

p(δsC)||δsDl
+ δsC −RΦ(I, s∗ + δsDl

+ δsC)||22dδsC ≈

arg min
R

N∑
l=1

∫
δsC

p(δsC)[δsTCAδsC + 2δsTCb+ 2δsTDl
(1−RJ∗l )δsC+

X∗Tl RTRX∗l + δsTDl
δsDl

− 2δsTDl
RX∗l ]dδsC , (5.14)

where X∗l = Φ(I, s∗ + δsDl
), A = (E − RJ∗l )T (E − RJ∗l ) (in which E is the identity

matrix) and b = J∗Tl RTRX∗l − RX∗l . The pdf p(δsC) is described by its mean µl and

covariance Σl. By minimising Eq. 5.14, the closed-form solution of R is obtained as

follows:

R =

(
N∑
l=1

(
µlX

∗T
l + (Σl + µlµ

T
l )J∗Tl + δsDl

(X∗Tl + µTl J
∗T
l )
))
·

(
N∑
l=1

(
X∗l X

∗T
l + 2X∗l µ

T
l J
∗T
l + J∗l (Σl + µlµ

T
l )J∗Tl

))−1

. (5.15)

Comparing Eq. 5.15 with Eq. 5.7, it is straightforward to see that Eq. 5.15 holds

all combinations between sampling-based (only) regression and continuous regression.

When N = 1, with δsDl
= 0, the solution of R in Eq. 5.15 is exactly Eq. 5.7, the

continuous regression. Moreover, this equation holds for the sampling-based regression
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as well. When µl = 0 and Σl = 0, then δsC = 0, the continuous space will then be the

vacuum. Eq. 5.15 will be transferred to:

R =

(
N∑
l=1

δsDl
X∗Tl

)
·

(
N∑
l=1

X∗l X
∗T
l

)−1

, (5.16)

which is exactly the discrete linear regression explained in Chapter 4.

As previously, the matrix form can be used to help the computation of R: Ml = [µl,Σl+

µlµ
T
l ], Bl =

( 1 µTl

µl Σl + µlµ
T
l

)
, D∗l = [X∗l , J

∗
l ]. Eq. 5.15 then can be calculated by:

R =

(
N∑
l=1

(
MlD

∗T
l + Yl

))( N∑
l=1

(
D∗l BlD

∗T
l

))−1

, (5.17)

where Yl = δsDl
(X∗Tl + µTl J

∗T
l ).

The main idea of the proposed approach will then be to partition the space into regions

of similar appearance, that can be further integrated. The region of similar appearance,

a subspace, is a local area, which can be found empirically. A subspace can be defined

by the sampling distribution (parametrised by its mean and covariance). Then the first-

order Taylor expansion can be applied to a subspace to approximate the image features

of the subspace. Image features and sample distribution of multiple subspaces can be

aggregated respectively to obtain the image information and the sample distribution of

the whole sample space.

It is expected that, the higher the variance of image features, the more regions will need

sampling. In the CCR/SDM framework, this means that the upper cascade levels will

need higher-partitioning N , whereas lower levels will need less. This will be empirically

studied and shown in Section 5.4. Figure 5.8 shows results similar to Figure 5.4. The

only difference is the Continuous Regression (CR) is replaced with Locally Continuous

Regression (LCR) and the number of clusters used is 16. It can be seen from the com-

parison between Figure 5.4 and 5.8, LCR has alleviated the problem of Taylor expansion

and provided much more accurate predictions compared to original CR method. LCR

has shown similar performance to the sampling-based regression.
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Figure 5.8: Results of Euclidean distances from the ground truth target location to
the test samples, LCR predictions and SR predictions in every frame in video David3.
X axis shows the scaled Euclidean distance. Y axis shows the proportion of samples
whose Euclidean distance to the ground truth target location is lower than a certain

value. Every curve is the result of a frame in video David3.

5.3 Integration of Locally Continuous Regression into TRIC-

track

The methodology which integrates the proposed Locally Continuous Regression into

the main framework of TRIC-track is explained in this section. This main framework

of TRIC-track consists of cascaded regression, the implicit shape model and cascaded

incremental updating. This methodology is named LC-TRIC (Tracking by Locally Con-

tinuous Regression with Incrementally Learned Cascades). It contains Cascaded Locally

Continuous Regression, the implicit shape model and Cascaded Locally Continuous In-

cremental Updating (see Figure 5.9). The Cascaded Locally Continuous Regression

tracker is explained in Section 5.3.1, and the Cascaded Locally Continuous Incremental

Updating is explained in Section 5.3.2.
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Figure 5.9: The framework of the LC-TRIC tracker.
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5.3.1 Cascaded Locally Continuous Regression with the Implicit Shape

Model

In the context of TRIC-track, the methodology centres on generating perturbations ac-

cording to the method described in Chapter 4. However, instead of extracting features

over the generated perturbations, the initial positions will be assigned to different par-

titions, and only the centre of each will require the feature extraction (δsD will be the

distance between the ground-truth and the partition centre). The way to assign the

perturbed locations to partitions will be through clustering (e.g. using k-means) on the

locations of the perturbations, as shown in Figure 5.10, where the number of clusters

N will be a parameter to tune. Figure 5.10 also shows that the sample space becomes

increasingly small, resulting in fewer clusters in lower cascade levels. Once the perturbed

locations have been assigned to a cluster, the inner statistics for each of them (µl,Σl)

can be computed by measuring the distance (δsC) between the points assigned to the

cluster and their corresponding centre. Each of the clusters will have a different set of

statistics, which are used to integrate over each of the regions.

Specifically, given image I (usually the first frame of a video sequence) and the initial part

location s∗i , i ∈ [1, Np], K samples are obtained for each part by randomly sampling from

a circular area around the part’s location, as in TRIC-track. Np is the total number of

the target parts. Sample locations around part i are denoted as Pi = [pi1, ...pij , ...piK ]T

where pij is a 2D location in the image, pij = (xij , yij). Note that there is no need to

calculate the image features of all these sample locations. The partitions around each

part location s∗i are obtained by clustering the K samples around the part based on

their locations. Each cluster has a centre. The displacement from the target location s∗i

to the centre of lth cluster is denoted as δsDil
. Only the features and their Jacobian at

the centres of clusters need to be computed. The image feature and its Jacobian at the

lth cluster centre around part i is denoted as X∗il and J∗il separately. The inner statistics

of the cluster can be modelled by its mean µil and covariance Σil, which are obtained by

measuring the displacement, δsC , from the centre of the cluster to the samples assigned

to the cluster.

The implicit shape configuration of the target is shown in Figure 5.11. Because of

the implicit shape model structure of TRIC-track, three regressors are trained for each

part using image features and displacement distributions from three parts separately.

Specifically, for part i, its neighbours are part i − 1 and part i + 1, as shown in Figure

5.11. When seeking to locate part i, three separate regressors (Ri,i−1 Ri,i and Ri,i+1)

are trained using image features, from part i−1, part i and part i+ 1, and the statistics

of displacements, from s∗i to the samples from sample space around part i − 1, part i

and part i+ 1, respectively.
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(a) (b)

(c) (d)

(e) (f)
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(g)

Figure 5.10: The illustration of modelling more sample regions with Locally Contin-
uous Regression by clustering. Continuous Regression are applied to these subspaces.
(a) The red dots are sample locations around a ground truth part location (the blue
dot). (b) The green dots are means of different subspaces which are obtained through
clustering on sample locations. (c) The yellow arrows represent the displacements from
the ground truth part location to the local subspaces centres. (d) Dots in separate
colourful areas represent 16 subspaces modelling the sample space in the first cascade
level. (e) 8 subspaces model the sample space in the second cascade level. (f) 4 sub-
spaces model the sample space in the third cascade level. (g) 2 subspaces model the

sample space in the fourth cascade level.

Figure 5.11: The implicit shape structure in TRIC-track. Part i’s location is con-
strained by the information from its two neighbouring parts, part i+ 1 and part i− 1,

and itself.
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The regressor Ri,i+1, which models the relationship between image features around part

i + 1 and the distribution of displacements from part i to samples around part i + 1,

then can be calculated by:

Ri,i+1 =

(
N∑
l=1

(
Mi+1,lD

∗T
i+1,l + Yi+1,l

))( N∑
l=1

(
D∗i+1,lBi+1,lD

∗T
i+1,l

))−1

, (5.18)

where Mi+1,l = [µi+1,l,Σi+1,l + µi+1,lµ
T
i+1,l], Bi+1,l =

( 1 µTi+1,l

µi+1,l Σi+1,l + µi+1,lµ
T
i+1,l

)
,

D∗i+1,l = [X∗i+1,l, J
∗
i+1,l], and Yi+1,l = (s∗i+1 + δsDi+1,l

− s∗i )(X∗Ti+1,l + µTi+1,lJ
∗T
i+1,l).

The regressor Ri,i−1 and Ri,i are trained following the same method as training Ri,i+1.

Ri,i−1 models the relationship between image features around part i − 1 and the dis-

tribution of displacements from part i to samples around part i − 1. Ri,i models the

relationship between image features around part i and the distribution of displacements

from part i to samples around part i. The training process of the three regressors for part

i is then finished. The regressors for Np parts are all trained using Locally Continuous

Regression similarly.

In TRIC-track, a cascade of regressors is learned to make increasingly smaller steps

towards the target. Similarly, the Cascaded Locally Continuous Regression method first

learns R0
i , where 0 denotes the first level of the cascaded regression. Ri,i−1, Ri,i, and

Ri,i+1 are then noted as R0
i,i−1, R0

i,i, and R0
i,i+1 respectively.

After training the first cascade level, the statistics of the sample space can be updated

by testing the regressor. When testing, the use of the regressor is the same as SDM

in TRIC-track. Utilising the first-order Taylor expansion to approximate the image

features of the training samples does not work during testing, as the regressors are over-

fit to these features. K samples around each part i are obtained by random sampling in

the beginning of the test stage. Similarly to Eq. 4.14, the sample locations around part

i can be updated by applying the first cascaded regression and uniting neighbouring

parts’ predictions as follows:

P 1
i = (P 0

i−1−R0
i,i−1Φ(I, P 0

i−1, ps))∪(P 0
i −R0

i,iΦ(I, P 0
i , ps))∪(P 0

i+1−R0
i,i+1Φ(I, P 0

i+1, ps)),

(5.19)

where P 1
i is the updated sample locations around part i, which is the first cascade level

prediction of part i actually. As the P 1
i contains predictions from samples around three

parts, the number of instances within P 1
i is three times as much as P 0

i . A weighted ran-

dom sampling without replacement strategy is used to reduce the number of predictions

(updated samples) within the P 1
i . Specifically, the distances between each sample with
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all other samples are calculated and the reciprocal of the sum of the distances is used

as the weight of this sample. Samples with larger weights are given higher probability

of being sampled. After this sampling process, the number of samples retained around

each part is still K. First level predictions of all other parts are obtained similarly.

The statistics of the sample space around each part can be updated by clustering the

P 1 around each part. As the samples around each part become closer to the part than

those in the previous cascade level, the whole sample space around each part can be

modelled by fewer partitions again obtained by clustering on the sample locations. New

partitions of this cascade level are found by clustering and capture the new statistics of

the updated sample space. The image features and their Jacobians at the centres of the

updated partitions are calculated. The statistics of δsC of each subspace is updated as

well. Like the first level of cascaded continuous regression, R1
i,i−1, R1

i,i and R1
i,i+1 are

obtained by equation 5.18. The R2, R3,... are learned in the same way.

As with TRIC-track, in the test stage, the same number of cascaded regressors contribute

to the final prediction Pn−1
i , in which n is the number of cascade levels and fixed to 4 in

the experiments. The aggregation technique, Local Evidence Aggregation for Regression

(LEAR) (Martinez et al., 2013), is again used to determine the part i’s position from

the last cascade level prediction Pn−1
i .

5.3.2 Cascaded Locally Continuous Incremental Updating

In TRIC-track, the incremental updating, inspired by Asthana et al. (Asthana et al.,

2014), is used to update the regressor, trained in the first frame of a video sequence,

by adding new data (image features and corresponding displacements) in the current

frame. With the incremental updating, there is no need to retrain the regressor in every

frame. However, the cascaded incremental update used in TRIC-track, as explained

in 4.3.4, is time consuming, because the updating of the cascaded regression model

requires the data to be sampled per cascade level for each target part. Another drawback

is that the updating in TRIC-track is performed with a limited set of samples. The

incremental Cascaded Continuous Regression (iCCR) in (Sánchez-Lozano et al., 2016)

can be introduced to TRIC-track to cope with the above two problems. Nevertheless,

similarly to Cascaded Continuous Regression (CCR), iCCR has its limitation because

of the Taylor expansion. The Cascaded Locally Continuous Incremental Updating is

proposed and introduced into TRIC-track in Section 5.3.2.2.
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5.3.2.1 Incremental Cascaded Continuous Regression

To update the Cascaded Continuous Regression (CCR) model using a new set of im-

ages and estimated shapes, Sanchez-Lozano et al. (Sánchez-Lozano et al., 2016) propose

incremental CCR (iCCR) achieving real-time updating in the cascaded regression frame-

work. An overview of the incremental learning process is illustrated in Figure 5.12.

Figure 5.12: Overview of the incremental cascaded continuous regression algorithm
(iCCR). The originally model RT learned offline is updated with each new frame, thus

sequentially adapting to the target face (Sánchez-Lozano et al., 2016).

Specifically, given a regressor RT trained using Eq. 5.9, on a training set T . The

covariance matrix for the training data is denoted as VT := Cov(X,X) = D∗T B(D∗T )T .

The incremental online learning is to update RT with a set of S new images, from which

the ground truth image features and Jacobians are extracted. Let D∗S be the data (image

features and Jacobians) corresponding to the new added samples for updating. The new

regressor would be computed as:

RT ∪S = M
(
D∗ +D∗S

)T
(VT ∪S)−1, (5.20)

where

(VT ∪S)−1 = (VT +D∗SBD
∗T
S )−1. (5.21)

Applying the Woodbury identity (Brookes, 2011) to Eq. 5.21:

(VT ∪S)−1 = V −1
T − V −1

T D∗S(B−1 +D∗TS V −1
T D∗S)−1D∗TS V −1

T . (5.22)

The updating with iCCR does not require the sampling process in each cascade level for

each part. Only the image features and their Jacobians at ground truth locations are

needed, which is time efficient.
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5.3.2.2 Cascaded Locally Continuous Incremental Updating

Similarly to Continuous Regression, incremental Cascaded Continuous Regression (iCCR)

can not be directly applied to the general visual tracking problem because the smooth-

ness requirement of the image feature space is usually not satisfied in general object

tracking, especially within the implicit shape model of TRIC-track. The iCCR is then

extended and the Cascaded Locally Continuous Incremental Updating is proposed and

integrated into TRIC-track’s framework in this section.

As in TRIC-track, a part’s regressors in LC-TRIC are updated only when the confidence

of the part’s predicted location is higher than an empirically determined threshold δv.

After obtaining the prediction of the target part location in every frame, the regressor is

incrementally updated by adding new training data, image features and corresponding

displacement distributions, using Cascaded Locally Continuous Incremental Updating

strategy.

Similarly to the Locally Continuous Regression in training, given the prediction of the

target part location in current frame, instead of generating perturbations around each

part, a few initial centres of different partitions are generated. A partition can be called

a cluster as well. The centres of the clusters around a part are assumed to have the same

displacements to the target part location in the current frame as those in the first frame.

The statistics of each partition is also kept the same as that in the first frame. Only the

centres of clusters require the calculation of the image features and the Jacobians. The

inner statistics, the image feature and its Jacobian of the centre of a new partition are

used to update the regressor trained in the first frame.

Specifically, given the regressor trained using Eq. 5.18 in the first frame of a video

sequence, RT , T is the training set, and RT is obtained by:

RT = UT (V T )−1, (5.23)

UT =
N∑
l=1

(
MlD

∗T
l + Yl

)
, (5.24)

VT =
N∑
l=1

(
D∗l BlD

∗T
l

)
, (5.25)
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then with new training data from a cluster Ca, RT ∪Ca is calculated by:

RT ∪Ca = (UT +MaD
∗T
a + Ya)(VT +D∗aBaD

∗T
a )−1, (5.26)

(VT +D∗aBaD
∗T
a )−1 = V −1

T − V −1
T D∗a(B

−1
a +D∗Ta V −1

T D∗a)
−1D∗Ta V −1

T , (5.27)

Ya = δsDa(X∗Ta + µTa J
∗T
a ), (5.28)

where Ma = [µa,Σa + µaµ
T
a ], D∗a = [X∗a , J

∗
a ] and Ba =

( 1 µTa

µa Σa + µaµ
T
a

)
. The

predicted target part location in frame t is denoted as s(t)∗. The centre of the cluster

a(t) in current frame t can be calculated by: a(t) = s(t)∗+ a(1)− s(1)∗, where a(1) and

s(1)∗ are the corresponding cluster centre and the ground truth target location in the

first frame respectively. With Continuous Regression, only the image features X∗a and

the Jacobian J∗a at the updated cluster centre need to be calculated. The mean µa and

covariance Σa are the same as the mean and the covariance of the corresponding cluster

in the first frame. There are the same number N clusters around a target part as the

training stage. The RT ∪C1∪C2∪...∪CN
can be calculated by:

RT ∪C1∪C2∪...∪CN
=
(
UT +

N∑
j=1

(MjD
∗T
j + Yj)

)(
VT +

N∑
j=1

D∗jBjD
∗T
j

)−1
(5.29)

After adding all training data from N clusters for each regressor using Eq. 5.29, the

incremental updating of the regressor is finished. It is worth highlighting that the updat-

ing of different cascade levels can be performed in parallel. The mean and covariance of

the sample distribution are obtained in training and available for incremental updating,

making parallel updating of different cascade levels possible.

5.4 Evaluation

The proposed Tracking by Locally Continuous Regression with Incrementally Learned

Cascades (LC-TRIC) is evaluated in this section. First, three studies are performed to

optimise three parameters of LC-TRIC in Section 5.4.1 using the CVPR2013 dataset.

Second, LC-TRIC is assessed with the recently published VOT2015 benchmark, and

compared with its corresponding sampling-based regression in Section 5.4.2. Experi-

mental results show that LC-TRIC improves the speed by six times compared to the

sampling-based regression, without sacrificing the performance.
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5.4.1 Internal Evaluation

The internal evaluation is performed to optimise three internal parameters of the pro-

posed LC-TRIC tracker. The internal parameters include: 1) the number of clusters,

N , in each cascade level, 2) the regularisation term in regression, lambda λ, and 3) the

updating threshold δv. The image feature used is the HOG feature. Other features are

also applicable and this can be explored in future work. Other parameters are set the

same values as those in TRIC-track. The first internal study investigates the effect of

the number of clusters in each cascade level on LC-TRIC without and with incremental

updating, respectively. This experiment concludes the optimal value of the number of

the clusters. The second examines the influence of the regularisation term λ in regres-

sion. The third studies the impact of the updating threshold. The first experiment is

performed on the LC-TRIC tracker with and without incremental learning separately.

The second and third experiments are performed on the full LC-TRIC tracker. Five

videos of different levels of difficulty for tracking are selected from CVPR2013 bench-

mark (Wu et al., 2013) as the test videos in the internal evaluation. The videos are

Shaking, David3, Woman, Skating1 and MotorRolling, which are in order of increas-

ing difficulty. The measurements used in the internal evaluation are the same as those

adopted in CVPR2013 benchmark, explained in Section 4.4, which are precision and

success plots.

First, the number of clusters in each cascade level is investigated. There are in total four

cascade levels used, as TRIC-track explained in Chapter 4. The number of perturbations

in TRIC-track is 203 when sampling radius is equal to 20 pixels, which is determined

by the optimal sample density - 90 samples with sampling radius equal to 15 pixels (see

Figure 4.8(a)). Cascaded Locally Continuous Regression with N = [203, 203, 203, 203]

is equal to sampling-based regression. N = [203, 203, 203, 203] is the highest value of

the number of clusters for four cascade levels. It is expected that the number of clus-

ters depends on the range of a sample space. Fewer clusters are expected to be needed

in further cascade levels because of the increasingly small sample space. Specifically,

in total there are 13 combinations of cluster numbers N for four cascade levels eval-

uated in this study, which are [203, 203, 203, 203], [203, 203, 101, 101], [203, 101, 50, 25],

[128, 128, 64, 64], [128, 64, 32, 16], [64, 64, 32, 32], [64, 32, 16, 8], [32, 32, 16, 16], [32, 16, 8, 4],

[16, 16, 8, 8], [16, 8, 4, 2], [8, 8, 4, 4] and [8, 4, 2, 1]. Framework 1 is Cascaded Locally Con-

tinuous Regression with concatenating features, which means only training one regressor

for a part by concatenating the features from three parts. Framework 2 is Cascaded

Locally Continuous Regression with the implicit shape model, which is to train three

regressors for a part using image features and corresponding displacements from three

parts. The 13 combinations are tested on Framework 1 and Framework 2, and the results
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are shown in Figure 5.13 and Figure 5.14 respectively. Both Framework 1 and Frame-

work 2 are run on the five test videos given the initial target location. The experimental

results show that the performance of Framework 2 is much better than that of Frame-

work 1, as shown in Figure 5.13, Figure 5.14 and Figure 5.15, which further confirms

the advantage of the implicit shape model. It can be seen from the result of Framework

2, the combinations of N which achieve the top two performance are [32, 16, 8, 4] and

[16, 8, 4, 2]. This proves that further cascade levels need less clusters to represent the

whole sample space, as the sample variation becomes less and less with the increase

of the cascade level. To further find the optimal combination of cluster number N ,

the two combinations, [32, 16, 8, 4] and [16, 8, 4, 2], are tested on the proposed LC-TRIC

tracker, in which the Cascaded Locally Continuous Incremental Updating is added, the

experimental result is shown in Figure 5.16. It is shown in Figure 5.14 that the two

combinations have similar performance when tested on Locally Continuous Regression.

When testing the two combinations with LC-TRIC tracker, which includes the incre-

mental updating, [16, 8, 4, 2] shows better performance than [32, 16, 8, 4], as shown in

Figure 5.16. It shows that the optimal combination of cluster number is N = [16, 8, 4, 2]

for four cascade levels in the LC-TRIC tracker.

Second, the regularisation parameter lambda λ is determined by varying its value in

the range of 100, 1, 0.01, 0.001, 0.0001, with the number of clusters fixed to N =

[16, 8, 4, 2]. This experiment is tested with LC-TRIC tracker on five test videos for

internal evaluation. The results are shown in Figure 5.17. The results show that λ = 0.01

is the optimal value for LC-TRIC.

Third, the updating threshold is exploited by setting its value to 0.0065, 0.0075, 0.0085,

0.0095, 0.0100, 0.0105, 0.0115, 0.0125, 0.0135, 0.0145. The experiment is performed

on the LC-TRIC tracker with the regularisation term set to 0.01 and cluster number

N = [16, 8, 4, 2]. This study is performed on the full dataset of CVPR2013 benchmark.

The experimental results are shown in Figure 5.18 and 5.19. The precision and the

success plots in Figure 5.18 show that updating threshold of 0.0115, 0.0065 and 0.0100

display the top three performance and their performance are very close to each other.

Area under the curve (AUC) of precision plot and success plot are shown in Figure 5.19.

It shows that the update thresholds (ranging from 0.0100 to 0.0115) show steady higher

performance than other values of update threshold. As in the success plots in Figure

5.18, updating threshold 0.0100 has higher performance than the other two values in

the range with larger overlap threshold from 0.3 to 0.7, 0.0100 is selected as the optimal

value of updating threshold for LC-TRIC.
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Figure 5.13: Precision and Success Plots of evaluation of different combinations of
cluster numbers on Framework 1. Framework 1 is to use the Cascaded Locally Con-
tinuous Regression to train one regressor for a part by concatenating features of three

parts.



Chapter 5. Tracking by Continuous Regression based on Taylor Expansion 153

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location error threshold

P
re

ci
si

on

Precision plots of OPE

 

 

N(32,16,8,4)−LCR(3regs) [0.474]
N(16,8,4,2)−LCR(3regs) [0.462]
N(64,64,32,32)−LCR(3regs) [0.447]
N(64,32,16,8−LCR(3regs) [0.437]
N(16,16,8,8)−LCR(3regs) [0.423]
N(8,4,2,1)−LCR(3regs) [0.406]
N(128,64,32,16)−LCR(3regs) [0.400]
N(203,203,101,101)−LCR(3regs) [0.386]
N(128,128,64,64)−LCR(3regs) [0.379]
N(8,8,4,4)−LCR(3regs) [0.362]
N(203,203,203,203)−LCR(3regs) [0.359]
N(203,101,50,25)−LCR(3regs) [0.329]
N(32,32,16,16)−LCR(3regs) [0.313]

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Overlap threshold

S
uc

ce
ss

 r
at

e

Success plots of OPE

 

 
N(32,16,8,4)−LCR(3regs) [0.340]
N(16,8,4,2)−LCR(3regs) [0.330]
N(64,32,16,8−LCR(3regs) [0.326]
N(64,64,32,32)−LCR(3regs) [0.309]
N(16,16,8,8)−LCR(3regs) [0.298]
N(8,8,4,4)−LCR(3regs) [0.296]
N(128,64,32,16)−LCR(3regs) [0.287]
N(8,4,2,1)−LCR(3regs) [0.279]
N(203,203,101,101)−LCR(3regs) [0.279]
N(128,128,64,64)−LCR(3regs) [0.275]
N(203,203,203,203)−LCR(3regs) [0.266]
N(203,101,50,25)−LCR(3regs) [0.251]
N(32,32,16,16)−LCR(3regs) [0.218]

(b)

Figure 5.14: Precision and Success Plots of evaluation of different combinations of
cluster numbers on Framework 2. Framework 2 is the Cascaded Locally Continuous

Regression with the implicit shape model, generating three regressors for a part.
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Figure 5.15: The comparison between Locally Continuous Regression with one re-
gressor and Locally Continuous Regression with three regressors using different cluster
number combinations. The y axis shows the AUC of the success plot of a tracker with

a specific cluster number combination.
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Figure 5.16: Precision and Success Plots of N = [32, 16, 8, 4] and N = [16, 8, 4, 2]
tested on Locally Continuous Regression and the LC-TRIC tracker, respectively.
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Figure 5.17: The effect of regularisation parameter in regression on LC-TRIC.
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Figure 5.18: Effect of updating threshold on LC-TRIC.
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Figure 5.19: AUC of precision plot and AUC of success plot of LC-TRIC tracker vs
its update threshold, respectively.
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5.4.2 External Evaluation

LC-TRIC, which integrates the proposed Locally Continuous Regression into the main

framework of TRIC-track and thus contains Cascaded Locally Continuous Regression,

the implicit shape model and Cascaded Locally Continuous Incremental Updating, is

evaluated on the recently published VOT2015 dataset (Kristan et al., 2015). LC-TRIC

is compared with its sampling-based counterpart. The sampling-based counterpart of

LC-TRIC is the same framework of LC-TRIC, as explained in the last fourth paragraph

from the end of Section 5.2, with zero mean and zero covariance of clusters of sample

space, i.e. N = [203, 203, 203, 203]. It is the same as the main framework of TRIC-track,

which includes Cascaded Regression, the implicit shape model and Cascaded Incremental

Updating.

The dataset consists of 60 sequences which are selected from a large pool of sequences

combined from existing datasets CVPR2013 benchmark (Wu et al., 2013) (50 sequences)

and ALOV (Smeulders et al., 2014) (315 sequences), PTR (Vojir et al., 2014) and other

sources, which makes sure that the VOT2015 dataset is a representative set of challenging

sequences. The ground truth provided by the dataset is slightly more flexible; rotated

bounding boxes described by the coordinates of their four corner points. However, the

bounding boxes are still not able to fully exclude background pixels. The dataset tries

to make the bounding box contain at most about 30% background pixels. Each frame

of the dataset is labelled with five visual attributes, which are occlusion, illumination

change, motion change, size change and camera motion. Any frame which doesn’t show

any of these five attributes is labelled as unassigned.

The main difference between the evaluation mechanism of the VOT2015 and that of

the CVPR2013 benchmark is that VOT2015 allows for re-initialisation. Specifically, in

CVPR2013 benchmark, given the initial target position in the first frame, the tracker

must run through the whole video without re-initialisation. It may cause bias in per-

formance when a tracker loses the target at an early stage of the video. In this case,

even though the tracker is able to track the target in the late frames of a video, because

of the loss of the target in an earlier frame, the tracker usually does not have a chance

to get back to the target. In VOT2015, to avoid this kind of bias in performance, re-

initialisation happens when the overlap between the estimated bounding box and the

ground truth bounding box of the target reduces to zero. In practice, to reduce the bias

in the robustness measure, the tracker is re-initialised five frames after the overlap be-

comes zero. Ten frames after re-initialisation are ignored in the computation of accuracy

scores to further reduce the bias in accuracy measure (Kristan et al., 2015).
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Performance on the VOT2015 dataset is measured by two weakly correlated measure-

ments, accuracy and robustness (Kristan et al., 2015). The accuracy represents how

well the predicted bounding box overlaps with the groundtruth bounding box. While

robustness means the number of tracking failures when the tracker loses the target. Each

tracker evaluated on the VOT2015 dataset is performed on each sequence 15 times to

guarantee good statistics. A per-frame accuracy is acquired as an average over these

runs. A per-sequence accuracy is obtained by averaging the per-frame accuracy. A per-

sequence robustness is acquired by averaging the failure rates over different runs. The

failure rate is obtained by dividing the length of video frames into the number of failures

in a video sequence.

The VOT2015 benchmark (Kristan et al., 2015) also introduces the expected average

overlap as a new metric to rank tracking algorithms; it combines the raw values of per-

frame accuracies and failures in a principled manner and it provides a clear interpretation

of the accuracy and the robustness. The expected average overlap estimates how accu-

rate the estimated bounding box is after a certain number of frames are processed since

initialisation. Specifically, consider a short-term tracking example on a video with Ns

frames. A tracker is initialised in the beginning of the sequence and performs tracking

till the end of the sequence. If a tracker drifts off the target, it will remain off the target

till the end of the sequence. In this situation, the tracker’s performance can be measured

by calculating the average of per-frame overlaps, Oi, which includes the zero overlaps

after the failure, i.e.:

ONs =
1

Ns

∑
i=1:Ns

Oi, Oi ∈ [0, 1]. (5.30)

By averaging the average overlaps on a very large set of Ns frames long sequences, the

expected average overlap ÔNs = 〈ONs〉 is obtained (Kristan et al., 2015). This measure

is evaluated for various sequence lengths ( Ns = 1 : Nmax), which results in the expected

average overlap curve. In practice, as the VOT protocol re-initialises a tracker after

each failure, a set of tracking segments are generated per sequence. The segments of

all sequences are used to estimate the ÔNs . All segments which have less than Ns

frames and do not finish with a failure are removed, and the remaining segments are

then converted into Ns-frame-long tracking instances by trimming or padding with zero

overlaps to the size Ns (Kristan et al., 2015). An average overlap on each segment is

computed and the average over all segments is the estimate of ÔNs . Performing this

process for different values of Ns gives an estimate of the expected average overlap curve.

The expected average overlap measure, Ô, is calculated by averaging the expected average

overlap curve values over an interval [Nlo, Nhi] of typical short-term sequence lengths in
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the VOT2015 dataset. Specifically, it is computed by:

Ô =
1

Nhi −Nlo

∑
Ns=Nlo:Nhi

ÔNs . (5.31)

A batch kernel density estimate (KDE) (Kristan, 2013) is applied to estimate the se-

quence length pdf from the lengths of sixty sequences of the VOT2015 dataset, generating

the range values [Nlo = 108, Nhi = 371] (Kristan et al., 2015).

For the VOT2015 benchmark, 62 state-of-the-art trackers are measured. The results

are shown in Table 5.1. In the table, the raw values of weighted mean accuracy A, the

weighted mean robustness R and the expected average overlap Ô are displayed. The

weighted mean accuracy is calculated by:

A =

∑60
i=1(Ai ∗ Li)∑60

i=1 Li
, (5.32)

where Ai is per-sequence accuracy and Li is the length of the ith video. The weighted

mean robustness is computed following the same method.

The expected average overlap curves of the proposed LC-TRIC tracker and its corre-

sponding sampling-based tracker are shown in Figure 5.20(a). The expected average

overlap Ô is shown in Figure 5.20(b). The results show that the performance of both

trackers are very close to each other. The AR raw plots of LC-TRIC tracker and its

sampling-based counterpart are shown in Figure 5.21. The value in ’Accuracy’ dimen-

sion is the weighted mean accuracy A, and the value in ’Robustness’ dimension is the

weighted mean of per-sequence failure rate scaled by 100 as in VOT2015 benchmark

(Kristan et al., 2015). Specifically, the value in ’Robustness’ dimension is calculated by:

exp(−100 ∗ (
60∑
i=1

Ri/
60∑
i=1

Li)), (5.33)

where Ri is the per-sequence robustness value and Li is the length of the ith video. The

results in AR plots show that both the robustness and the accuracy of the LC-TRIC are

very close to those of its sampling-based counterpart.

In addition to the accuracy, robustness and expected average overlap measurements

for tracking, the tracking speed is also measured in VOT2015 benchmark (Kristan et

al., 2015). The tracking speed is measured in equivalent filter operations (EFO) units.

Specifically, the tracking speed is reported by dividing the measured tracking time with

the time required for a filtering operation. The filter operation is to perform a maximum

pixel value filter on a grayscale image of size 600 × 600 with a 30 × 30 pixel window.

This operation can reduce the influence of hardware on tracking speed measurement.
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Table 5.1: The table shows raw weighted mean accuracy (A), weighted mean robust-
ness (R), expected average overlap (Φ), tracking speed (in EFO) and implementation
details (M is Matlab, C is C or C++, G is GPU). ‘LC-TRIC’ is the proposed tracker.

‘Sampling’ is the sampling-based counterpart of LC-TRIC.

Trackers A R Φ Speed Impl.

MDNet* 0.6 0.69 0.38 0.87 M C G
DeepSRDCF* 0.56 1.05 0.32 0.38 M C

EBT 0.47 1.02 0.31 1.76 M C
SRDCF* 0.56 1.24 0.29 1.99 M C

LDP* 0.51 1.84 0.28 4.36 M C
sPST* 0.55 1.48 0.28 1.01 M C

SC-EBT 0.55 1.86 0.25 0.8 M C
NSAMF* 0.53 1.29 0.25 5.47 M
Struck* 0.47 1.61 0.25 2.44 C
RAJSSC 0.57 1.63 0.24 2.12 M
S3Tracker 0.52 1.77 0.24 14.27 C
SumShift 0.52 1.68 0.23 16.78 C
SODLT 0.56 1.78 0.23 0.83 M C G

DAT 0.49 2.26 0.22 9.61 M
LC-TRIC 0.48 2.29 0.22 0.44 M C

MEEM* 0.5 1.85 0.22 2.7 M
RobStruck 0.48 1.47 0.22 1.89 C

OACF 0.58 1.81 0.22 2 M C
MCT 0.47 1.76 0.22 2.77 C

HMMTxD* 0.53 2.48 0.22 1.57 C
Sampling 0.48 2.46 0.22 0.07 M C

ASMS* 0.51 1.85 0.21 115.09 C
MKCF+ 0.52 1.83 0.21 1.23 MC

AOG 0.51 1.67 0.21 0.97 binary
SME 0.55 1.98 0.21 4.09 M C

MvCFT 0.52 1.72 0.21 2.24 binary
SRAT 0.47 2.13 0.2 15.23 MC

Dtracker 0.5 2.08 0.2 10.43 C
SAMF* 0.53 1.94 0.2 2.25 M

G2T 0.45 2.13 0.2 0.43 M C
MUSTer 0.52 2 0.19 0.52 M C
TGPR* 0.48 2.31 0.19 0.35 M C

HRP 0.48 2.39 0.19 1.01 M C
KCFv2 0.48 1.95 0.19 10.9 M
CMIL 0.43 2.47 0.19 5.14 C
ACT* 0.46 2.05 0.19 9.84 M

MTSA-KCF 0.49 2.29 0.18 2.83 M
LGT* 0.42 2.21 0.17 4.12 M C
DSST* 0.54 2.56 0.17 3.29 M C
MIL* 0.42 3.11 0.17 5.99 C

KCF2* 0.48 2.17 0.17 4.6 M
sKCF 0.48 2.68 0.16 66.22 C
BDF 0.4 3.11 0.15 200.24 C

KCFDP 0.49 2.34 0.15 4.8 M
PKLTF 0.45 2.72 0.15 29.93 C

HoughTrack* 0.42 3.61 0.15 0.87 C
FCT 0.43 3.34 0.15 83.37 C

MatFlow 0.42 3.12 0.15 81.34 C
SCBT 0.43 2.56 0.15 2.68 C
DFT* 0.46 4.32 0.14 3.33 M
FoT* 0.43 4.36 0.14 143.62 C

LT-FLO 0.44 4.44 0.13 1.83 M C
L1APG* 0.47 4.65 0.13 1.51 M C

OAB* 0.45 4.19 0.13 8 C
IVT* 0.44 4.33 0.12 8.38 M
STC* 0.4 3.75 0.12 16 M
CMT* 0.4 4.09 0.12 6.72 C
CT* 0.39 4.09 0.11 12.9 M

FragTrack* 0.43 4.85 0.11 2.08 C
ZHANG 0.33 3.59 0.1 0.21 M

LOFT-Lite 0.34 6.35 0.08 0.75 M
NCC* 0.5 11.34 0.08 154.98 C

PTZ-MOSSE 0.2 7.27 0.03 18.73 C
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Figure 5.20: (a) Expected average overlap curves. (b) Expected average overlap
graph with trackers ranked from right to left.
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Figure 5.21: AR raw plots of LC-TRIC tracker and its sampling-based counterpart.

The tracking speed in EFO units of LC-TRIC and its sampling-based counterpart are

shown in Figure 5.22. It shows that the tracking speed of LC-TRIC is six times higher

than that of sampling-based counterpart of LC-TRIC.
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Figure 5.22: Expected average overlap scores vs the tracking speed in EFO units.

5.4.3 Conclusion

To address the problems of SDM in TRIC-track, this Chapter has introduced Continuous

Regression to visual tracking. However, it is found that the Taylor expansion is not able
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to accurately approximate image features of sample space with a high variance in visual

tracking. This problem is alleviated by Locally Continuous Regression strategy, pro-

posed in this Chapter. It unifies sampling-based regression with Continuous Regression

in an efficient manner. The Locally Continuous Regression is integrated into the main

framework of TRIC-track (explained in Chapter 4) and shows six-fold speed improve-

ment without sacrificing the performance, compared to its sampling-based counterpart.



Chapter 6

Conclusion

This thesis proposed an online part-based visual tracking system, based on direct dis-

placement prediction technique rather than the traditional local matching of an appear-

ance model. The method employs cascaded regression to directly predict parts’ locations

from local image features, learning the inference models on-the-fly. Spatial relationships

between parts are implicitly captured by linking regressors in groups of parts. The

proposed tracker is further improved by replacing the sampling-based regression with

proposed Locally Continuous Regression, which brings about a computational efficiency

without sacrificing the tracker’s performance.

This chapter is organised as follows: Section 6.1 summarises contributions made in

this thesis; Section 6.2 gives a complete summary of the work presented in this thesis;

Section 6.3 presents some limitations of the proposed tracker and suggests future work

to improve the tracker’s performance.

6.1 Contributions

This thesis makes the following contributions:

• The thesis proposes a visual tracking method in which the local fitness-based ap-

proach is replaced by direct displacement-based tracking. Specifically, the tracker

predicts the two-dimensional displacement vector between the centre of a sampled

image patch and the target (part) location using regressors (see Figure 1.5). In do-

ing so, local patches around a target contribute to the solution by directly ‘voting’

for the target (part) location.

166
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• This thesis implicitly models the shape of a target using local evidence from mul-

tiple neighbouring parts and global information from a bounding box part. While

template-based approaches need to model part appearance and shape fitness sep-

arately, this direct displacement prediction by regression tracker implicitly learns

the shape and possible deformations of an object. It does so by tracking each

part using not only the local evidence for that part, but also evidence provided by

neighbouring parts and the object as a whole.

• The thesis adapts the framework of the supervised descent method (SDM) (Xiong

& De la Torre, 2013) to the problem of online tracking of generic objects. While

SDM has been used for what is essentially structured object detection, it has never

been used for online model-free tracking. The key difference between detection of

a known object and generic object tracking is that the appearance and structure

models of the former can be learned offline on potentially hundreds of thousands

of images, while the models for the latter must be initialised on a single frame. It

is shown that it is possible to learn the cascade models on-the-fly without strong

supervision.

• This thesis introduces Continuous Regression (Sánchez-Lozano et al., 2016) to

replace sampling-based regression (SDM) in model-free tracking. With Continuous

Regression, the shape displacement is regarded as a continuous variable, the feature

space is approximated by its first-order Taylor expansion. Only the feature in the

ground truth target location needs to be sampled. However, it is then observed

that the Taylor expansion is only a good feature approximation in a relatively small

region around the target. This region is too small to enable tracking. Therefore,

this thesis proposes Locally Continuous Regression, which unifies sampling-based

regression with continuous regression by repeating Continuous Regression in a

few regions around the target in an efficient manner. It shows six times speed

improvement without sacrificing performance of the tracker.

6.2 Summary

The goal of this thesis is to develop a robust part-based visual tracking method, which

can address four main problems of current part-based trackers. The four problems

addressed are as follows:

• Current part-based trackers rely on a response map estimating the likelihood that

any given location in an image represents the target (part) (Adam et al., 2006;

Shahed Nejhum et al., 2008; Kwon & Lee, 2009; L. Zhang & van der Maaten,
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2013; T. Zhang et al., 2014; Liu et al., 2015). A template likelihood strategy’s

view of the image as a set of independent, identically distributed target locations

introduces a number of inherent drawbacks (explained in Chapter 1).

• The spatial information utilised with the part-based models is limited and inflexi-

ble. Thus, they still cannot handle non-rigid object tracking situations which have

severe or complex movement. An extra component, shape, is necessary for general

object tracking.

• Another major issue is that there is no way of jointly learning shape and appearance

for current part-based trackers. Template likelihood approaches to part-based

tracking cannot directly use the appearance of one part to determine the location

of another.

• Parts can have separate motions over time. This situation is not considered in

current part-based trackers. Thus, more complex motion models are required,

with parts’ motion having separate factors.

In Chapter 2, the related concepts and main challenges of visual tracking were intro-

duced. It explained three main components of tracking, including appearance model,

motion model and search strategy. Especially, the state-of-the-art part-based model-free

tracking methods were presented in Section 2.5, which gave a theoretical analysis of the

algorithm components, advantages and drawbacks of current part-based methods.

After theoretical analysis of the advantages and problems of current part-based mod-

els in tracking, practical experiments on part-based models were performed in Chapter

3. Specifically, two experiments were introduced in Section 3.1. First, three differ-

ent initialisation methods, including bounding-box, Hessian matrix and the stick figure

initialisation methods, were combined with a standard MCMC method and evaluated.

This experiment confirmed the benefit of the stick figure initialisation which defined the

parts used in tracking. The second experiment was performed by examining the stick

figure initialisation and bounding box initialisation with MCMC and A-BHMC (part-

based tracker) respectively. The similar performances of B-MCMC and SF-MCMC had

shown that stick figure initialisation had competitive performance. However, from the

experimental results, some problems which needed to be addressed were identified as

well. First, the parts were not initialised to be a proper size. Second, the parts lacked

an explicit relationship between each other. Thirdly, the updating of the appearance

model sometimes introduced error to the template. It was concluded that seeking an

appearance model, which is robust to the variation of target’s appearance and accurate

to describe the target, is critical to correct tracking.
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In Section 3.2, inspired by LEAR, the direct displacement prediction (DDP) method

was explored by qualitative and quantitative experiments. This technique was further

evaluated in real tracking scenes (Section 3.3), which showed proof of concept of the

simple DDP tracker and its potential to be improved. First, the accuracy of the DDP

tracker needed to be improved. If the predicted target location is more accurate, it will

be less possible for the tracker to include incorrect target information during updating.

Second, the DDP tracker tracked all three parts of the target separately. It happened

frequently that the regressor for one part was reliable while the regressor for another

part was not working. The shape model of a target would provide spatial constraints

to the prediction of target location, making the prediction more robust in tracking with

challenging conditions. Third, there was no motion model in the simple DDP tracker.

Based on the work of the simple DDP tracker, Chapter 4 gave a detailed introduction

of the proposed part-based tracking method, Tracking by Regression with Incrementally

Learned Cascades (TRIC-track). It is a part-based tracker employing direct displace-

ment prediction rather than the traditional local matching of an appearance model. The

method employed cascaded regression (SDM) to directly predict parts’ locations from lo-

cal image information described by deep learned features, learning the inference models

on-the-fly. Spatial relationships between parts and spatial relationships between local

parts and the global part were captured implicitly by a set of regressors. This thesis

integrated a multiple temporal scale motion model to initialise the cascaded regression

search close to the target and to cope with occlusions. Automatic initialisation and

shape correction were added to complete the proposed tracker. Experimental results

clearly demonstrated the value of the method’s components, and comparison with the

state-of-the-art techniques in the CVPR 2013 Visual Tracker Benchmark showed that

TRIC ranks first on the full dataset.

TRIC has successfully adapted the framework of SDM (Xiong & De la Torre, 2013) to

the problem of online tracking of generic objects and the cascaded regression (SDM) has

optimised the accuracy of the direct displacement prediction compared to ordinary lin-

ear regression avoiding calculation of the Hessian matrix or Jacobian matrix. However,

there are three major drawbacks of the sampling-based regression (i.e. SDM). First, the

samples used for training SDM were obtained through random sampling, whichs is com-

putationally expensive as it needs to be conducted at every cascade level for each target

point. Second, similarly to training, the updating of SDM is time consuming. Third,

each regressor is learned and updated with a limited set of training image patches and

their corresponding displacements. Not all available image information and displace-

ments within a sample space can be utilised to train and update a regressor. To address

the problems of SDM in TRIC-track, Chapter 5 introduced Continuous Regression to vi-

sual tracking. It found that the Taylor expansion was not able to accurately approximate
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image features of sample space with a high variance in visual tracking. This problem was

alleviated by Locally Continuous Regression strategy, proposed in this Chapter. It uni-

fied sampling-based regression with Continuous Regression in an efficient manner. The

Locally Continuous Regression was integrated into the main framework of TRIC-track

(explained in Chapter 4), and showed six-fold speed improvement without sacrificing

performance, compared to its sampling-based counterpart.

6.3 Limitations and Future Work

This thesis has proposed a robust part-based visual tracking method, which addresses

four main problems of current part-based trackers and yields state-of-the-art results.

However, the current proposed tracker still has some limitations within its different

algorithm components. This section discusses these limitations and potential work that

could be done to improve the tracker’s performance.

• Currently target parts are automatically initialised by a segmentation method

given a bounding box enclosing the whole target object. Imperfect segmentation

result of target may introduce unnecessary branches to the target skeleton, which

further leads to uneven parts. In this case, the initialised parts are not able to

completely cover the whole object. This problem might be solved by the following

approaches: 1) improve the segmentation result by removing unnecessary small

target areas and retaining the main target shape only; 2) instead of locating equally

distant points along the skeleton as the target parts’ locations, a feature detection

technique can be utilised in the selection of target parts. Both these methods

intend to provide a better representation of target parts of a whole object, which

is robust for tracking throughout a video.

• In this thesis, target parts are represented by six target points forming an implicit

shape model. The number six is used to balance flexibility of target shape and

tracking efficiency. However, six points are limited when representing a target

shape with a high degree of freedom in its movement. For example, when tracking

human, six points usually just represent the main body’s movement rather than

cover the movements of all arms and legs. The obvious method to improve the

flexibility of the shape model is to increase the number of target points and use the

original implicit shape model. However, the kind of targets in visual tracking can

be diverse and their structures can be various accordingly. The original implicit

shape model, in which one part is constrained by its two adjacent parts, may not

be flexible enough to describe different degrees of freedom of more different parts.
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In this case, a hierarchical implicit shape model, which determines the constraint

relationship of a target part based on the level of the target part located at in the

target skeleton, may provide more practical spatial constrains than the proposed

implicit shape model.

• During updating in LC-TRIC, the centres of the clusters around a part are assumed

to have the same displacements to the target part location in the current frame as

those in the first frame. The statistics of each partition are also kept the same as

that in the first frame. It can be expected that target appearance keeps changing

over time, and the statistics of each partition might change as well. However,

the target variation between two adjacent frames is not given. Updating with a

changeable statistics of each partition needs to be very careful, as it may introduce

incorrect updating which would deteriorate the regressor rather than improve the

regressor based on current frame information. This problem can be explored in

future work.

• The top ranking motion prediction is used to initialise the regression search, where

the ranking is determined by a Support Vector Machine (SVM) trained to dis-

tinguish between foreground and background patches currently. As SVM is a

template-based approach, it has the drawbacks of a template-based method. It

can happen that a local optima is found instead of a global optima. The multiple

temporal motion model provides a rich description of target motion, which usually

includes a good initial position (the closest position to the target). However, this

optimal position is not selected sometimes. We have shown that displacement-

based regression works well when test locations are sampled relatively close to the

target. If the optimal initial position would always be selected, the tracker’s per-

formance will be improved accordingly. Given the confidence map of the predicted

target location in the previous frame, the problem of motion model selection in

current frame might be improved by considering the likelihood of motion predic-

tions. A high likelihood means the motion prediction is likely to be close to the

target.

• There is no failure detection system in the proposed tracker. Occlusion is a major

challenge in visual tracking. A target can be partially or fully occluded for a

period of time in a video. Moreover, a target may be out of view and re-appear

over time. These two problems can be addressed by a failure detection mechanism

of a target. When the target is out of view or fully occluded, this situation can be

detected, and the regressors should stop updating. Although the target is out of

view, the target motion should be predicted or the search of the target should be

maintained. When the target re-appears, it can then be re-captured.
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Table A.1: Average centre error over a whole video sequence of B-MCMC tracker for
each video each run. The figure in bold is the best tracking result of the corresponding
method for each video. µ is the mean of the average centre error of different runs for
each video. σ is the standard deviation of the average centre error of different runs for

each video.

B-MCMC

1st 2nd 3rd 4th 5th µ σ
Basketball 18.4846 60.6795 81.7335 15.967 53.2302 46.01896 56.60144
Bolt 27.2266 101.5059 61.4204 15.0166 111.4539 63.32468 86.10805
Boy 34.9404 57.961 44.4395 48.9357 42.0318 45.66168 17.07654
CarDark 22.3263 24.7789 28.2403 24.0145 29.6763 25.80726 6.105551
CarScale 34.7037 38.7559 40.8635 41.0105 35.2129 38.1093 6.033897
Coke 62.4238 54.9384 51.4838 91.2753 99.4141 71.90708 43.89468
Couple 111.6141 135.5933 106.2408 19.3326 21.0535 78.76686 109.2074
Crossing 15.1708 14.4431 14.26 13.7706 13.4282 14.21454 1.335722
David 16.3985 16.6949 15.5634 16.0205 16.2418 16.18382 0.849851
David3 29.4512 136.9427 98.4663 96.7945 90.615 90.45394 77.37548
Deer 93.1164 82.1981 108.1672 76.7905 96.0482 91.26408 24.57053
Doll 30.9306 29.5039 35.3735 29.9704 28.9586 30.9474 5.155986
FaceOcc1 19.1253 19.1404 19.0874 19.0907 18.9106 19.07088 0.184797
Football1 25.022 34.9512 26.0263 16.7196 23.352 25.21422 13.08173
Girl 29.7838 30.6349 25.5819 30.3749 22.8906 27.85322 6.900018
Ironman 126.8892 168.9442 136.0867 162.9487 153.7576 149.7253 35.60875
JoggingLeft 21.2818 84.606 20.4446 22.0449 22.2676 34.12898 56.45316
JoggingRight 129.6905 128.1224 106.639 109.3512 115.9544 117.9515 21.14657
Lemming 121.3249 106.4191 132.2415 133.0117 134.6712 125.5337 23.82207
Liquor 96.9188 85.8126 95.3124 80.0362 84.741 88.5642 14.50009
Matrix 58.2867 54.4839 90.1259 56.9744 75.6391 67.102 30.69978
MotorRolling 137.2827 135.9162 138.1016 141.3464 139.1714 138.3637 4.095899
MountainBike 15.6451 15.7463 15.4108 15.4308 19.6608 16.37876 3.680438
Shaking 119.7842 62.6358 76.816 79.9077 46.1249 77.05372 54.75914
Singer1 71.6088 75.4469 74.8296 81.7254 78.5853 76.4392 7.710894
Singer2 191.9331 36.4459 182.4991 110.2354 36.8293 111.5886 150.734
Skating1 84.4211 212.7842 83.6129 146.6898 103.2833 126.1583 109.5489
Skiing 210.3809 239.3093 232.7703 273.8673 187.9734 228.8602 64.52384
Soccer 46.7028 50.3568 46.8675 38.9799 89.1747 54.41634 39.74155
Subway 139.8743 139.064 139.617 139.2792 139.728 139.5125 0.666214
Tiger1 59.8304 62.5591 60.2633 57.2751 59.2214 59.82986 3.812302
Tiger2 154.9796 76.547 71.3427 77.7805 74.9583 91.12162 71.5591
Trellis 50.0117 47.726 52.4292 52.1405 44.666 49.39468 6.501804
Walking 60.5319 62.8038 78.2871 83.9751 60.9007 69.29972 22.03985
Walking2 45.0868 45.2324 45.55 46.9965 45.4249 45.65812 1.537851
Woman 21.169 112.1144 135.0117 134.3214 131.3234 106.788 97.54812
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Table A.2: Average centre error over a whole video sequence of SF-MCMC tracker for
each video each run. The figure in bold is the best tracking result of the corresponding
method for each video. µ is the mean of the average centre error of different runs for
each video. σ is the standard deviation of the average centre error of different runs for

each video.

SF-MCMC

1st 2nd 3rd 4th 5th µ σ
Basketball 84.8935 166.3467 68.2097 78.9165 63.8932 92.45192 84.2856
Bolt 13.013 115.7899 136.7623 38.0169 21.3796 64.99234 114.2931
Boy 88.857 52.5968 54.6677 66.0338 72.588 66.94866 29.4858
CarDark 39.7756 17.8251 24.1061 20.8609 24.226 25.35874 16.96126
CarScale 34.0069 34.1215 34.0551 39.4509 38.7322 36.07332 5.534491
Coke 58.4316 57.5099 49.4714 52.3069 55.4454 54.63304 7.444378
Couple 112.6306 25.0979 24.1675 140.0794 139.5617 88.30742 118.3568
Crossing 18.7313 32.2215 16.3689 18.2451 18.2796 20.76928 12.93213
David 19.8659 17.582 19.3333 18.0245 19.7191 18.90496 2.072471
David3 30.5921 75.4512 48.5581 25.9338 85.9985 53.30674 53.35645
Deer 73.4214 74.8745 75.0062 76.3677 69.3692 73.8078 5.383082
Doll 76.0404 73.5744 53.5193 56.6152 51.2235 62.19456 23.40858
FaceOcc1 30.8877 26.2668 22.6731 25.7221 30.2861 27.16716 6.831224
Football1 41.4841 45.7104 32.1659 35.0626 29.6254 36.80968 13.31555
Girl 36.8572 36.4226 32.2576 28.8745 32.7083 33.42404 6.584006
Ironman 133.9112 102.5302 118.3444 122.6917 158.3687 127.1692 41.5195
JoggingLeft 64.2378 85.9324 22.3909 24.0203 52.7429 49.86486 54.20786
JoggingRight 125.9981 16.2301 132.1738 78.8589 100.8631 90.8248 93.56933
Lemming 173.423 241.47 178.6136 253.4667 267.0308 222.8008 87.38367
Liquor 139.8184 107.1641 98.4066 153.4594 127.901 125.3499 45.4165
Matrix 85.3967 64.0553 71.0317 63.8054 64.2215 69.70212 18.56833
MotorRolling 63.6356 82.6643 86.1868 87.3711 89.7842 81.9284 21.08646
MountainBike 15.3911 225.8138 17.6017 15.6871 15.9328 58.0853 187.534
Shaking 48.7236 57.8763 34.4329 66.8908 36.5658 48.89788 27.67135
Singer1 29.3255 34.2897 31.6106 29.0599 32.0934 31.27582 4.310225
Singer2 48.7547 70.4801 66.2133 51.3812 74.4683 62.25952 23.08642
Skating1 117.9823 67.6742 49.2576 27.5364 57.194 63.9289 67.23702
Skiing 91.4363 95.6357 166.5596 135.9009 146.8982 127.2861 65.48445
Soccer 39.1201 33.915 47.0522 75.8335 59.9074 51.16564 33.83078
Subway 125.8455 132.5902 136.4878 12.4142 119.8322 105.434 104.7779
Tiger1 58.6392 58.1118 61.8734 90.5025 60.9387 66.01312 27.55762
Tiger2 154.8936 85.0203 155.0346 157.6439 164.3499 143.3885 65.70725
Trellis 61.4361 73.2032 61.1932 52.4055 55.2917 60.70594 15.97383
Walking 37.7149 106.1706 101.3048 84.1239 100.2198 85.9068 56.3757
Walking2 42.8824 45.5097 74.9279 48.3863 41.3009 50.60144 27.72531
Woman 21.2191 110.0145 29.3871 21.6879 21.9043 40.84258 77.63133
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Table A.3: Average centre error over a whole video sequence of B-A-BHMC tracker for
each video each run. The figure in bold is the best tracking result of the corresponding
method for each video. µ is the mean of the average centre error of different runs for
each video. σ is the standard deviation of the average centre error of different runs for

each video.

B-A-BHMC

1st 2nd 3rd 4th 5th µ σ
Basketball 47.2744 116.3922 137.1747 121.6937 157.0405 115.9151 82.99659
Bolt 386.9082 380.9612 381.5772 374.5496 376.6567 380.1306 9.588219
Boy 228.6845 404.6215 89.3345 119.3385 108.3595 190.0677 263.3451
CarDark 107.6977 114.1419 112.6988 103.0551 113.7218 110.2631 9.564354
CarScale 62.5438 89.8404 91.5702 88.4637 61.5865 78.80092 30.64187
Coke 401.2142 127.3548 121.386 410.8237 394.7506 291.1059 304.6599
Couple 159.6823 200.4391 193.5125 196.4922 211.2073 192.2667 38.81603
Crossing 49.9284 46.0147 26.8428 30.5913 41.2061 38.91666 19.79828
David 58.7542 56.8149 60.775 59.5937 59.7454 59.13664 2.966556
David3 155.0191 195.5001 154.8645 55.8486 162.5313 144.7527 104.895
Deer 503.5028 500.1 485.0268 505.4001 506.3112 500.0682 17.477
Doll 63.8934 65.4454 54.3458 55.4511 57.0211 59.23136 10.16825
FaceOcc1 122.8012 135.7861 136.849 122.4742 139.4441 131.4709 16.3469
Football1 65.1079 104.6995 35.834 35.7239 65.6911 61.41128 56.74408
Girl 28.6603 81.4054 81.5621 81.6394 81.2896 70.91136 47.2389
Ironman 488.8336 489.8076 486.2054 481.7316 406.6089 470.6374 71.85883
JoggingLeft 214.171 211.6945 212.0694 209.8648 211.4854 211.857 3.087566
JoggingRight 180.6425 182.2148 158.1556 182.754 180.5372 176.8608 21.0023
Lemming 289.589 277.4688 263.493 297.0474 226.433 270.8062 55.7517
Liquor 129.4573 138.4843 147.4829 149.3731 193.2855 151.6166 49.2129
Matrix 231.7625 201.1329 207.7641 211.596 113.9352 193.2381 91.56104
MotorRolling 319.0109 330.7999 311.3682 321.8526 335.6286 323.732 19.23977
MountainBike 44.5147 42.1508 45.8017 44.3148 43.4538 44.04716 2.704976
Shaking 402.5567 399.5986 400.0365 401.2248 403.2857 401.3405 3.164011
Singer1 303.5629 162.8304 323.2581 301.9572 303.6145 279.0446 131.1121
Singer2 296.0887 298.3344 298.528 297.0243 295.3361 297.0623 2.774098
Skating1 109.5981 120.8071 116.9329 110.1522 127.483 116.9947 15.0357
Skiing 406.2431 410.6545 288.2744 404.4536 424.2314 386.7714 111.2076
Soccer 312.5294 345.4795 345.331 333.0382 342.0731 335.6902 27.80238
Subway 165.4007 165.7532 162.8838 165.2913 169.5176 165.7693 4.768697
Tiger1 453.1909 455.145 455.0304 421.3588 444.719 445.8888 28.73423
Tiger2 546.9368 544.191 543.1877 496.3426 543.0496 534.7415 43.04482
Trellis 181.5162 170.8577 169.4938 176.831 188.6214 177.464 15.76312
Walking 30.69 216.5838 225.3359 39.1251 40.7379 110.4945 201.9203
Walking2 46.464 56.9481 40.9571 43.5991 40.2433 45.64232 13.55623
Woman 149.5206 185.0621 141.26 124.1749 179.1081 155.8251 51.48324
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Table A.4: Average centre error over a whole video sequence of SF-A-BHMC tracker
for each video each run. The figure in bold is the best tracking result of the correspond-
ing method for each video. µ is the mean of the average centre error of different runs
for each video. σ is the standard deviation of the average centre error of different runs

for each video.

SF-A-BHMC

1st 2nd 3rd 4th 5th µ σ
Basketball 149.8325 195.3529 171.4725 330.8565 128.3531 195.1735 159.6635
Bolt 32.6316 169.1653 276.9514 172.0363 164.9751 163.1519 173.5059
Boy 411.4192 404.1092 385.5584 415.0583 416.5147 406.532 25.33769
CarDark 225.474 90.1548 80.3433 74.1866 156.4107 125.3139 129.8906
CarScale 37.3593 63.5929 37.0882 167.3969 181.264 97.34026 142.5414
Coke 406.3599 396.9097 402.4861 404.1892 401.9851 402.386 7.014557
Couple 180.4316 156.3013 141.702 185.1192 173.315 167.3738 36.08801
Crossing 16.7707 18.1739 18.2924 18.6338 94.9966 33.37348 68.91143
David 58.4518 70.4043 55.11 58.3463 59.1723 60.29694 11.72764
David3 210.2453 262.8496 264.0817 154.5532 262.3541 230.8168 96.78109
Deer 129.2965 122.8748 103.5247 132.3766 133.937 124.4019 24.83265
Doll 65.286 56.7438 58.4684 66.5776 55.2826 60.4717 10.26142
FaceOcc1 69.8404 70.0733 76.6306 70.8803 82.0963 73.90418 10.71812
Football1 144.5192 21.0013 140.5107 45.8859 142.0186 98.78714 120.6251
Girl 73.442 80.2422 38.4857 80.6707 82.0218 70.97248 36.92641
Ironman 409.6376 443.7865 493.2135 475.3752 502.8597 464.9745 76.49842
JoggingLeft 209.8278 220.0015 217.4724 264.3414 214.68 225.2646 44.33671
JoggingRight 174.6023 173.7487 174.125 143.4866 173.3894 167.8704 27.27677
Lemming 263.8233 187.952 293.4402 252.8347 262.5945 252.1289 77.9236
Liquor 183.4837 193.3745 151.2871 195.0397 147.3667 174.1103 46.1858
Matrix 575.478 574.3926 576.1731 571.9042 572.2366 574.0369 3.81525
MotorRolling 333.6467 322.1649 316.2831 318.3486 342.8908 326.6668 22.56586
MountainBike 34.967 30.1088 27.0054 29.69 34.5597 31.26618 6.820664
Shaking 397.573 396.7803 403.9986 399.6514 399.3354 399.4677 5.602884
Singer1 57.5251 56.9495 56.8678 57.0715 57.2086 57.1245 0.516606
Singer2 296.3571 294.763 295.6037 198.4253 95.8147 236.1928 178.0794
Skating1 106.3341 84.3954 105.5664 76.4398 91.23 92.79314 26.20899
Skiing 403.3579 436.2899 429.7671 439.8668 192.9714 380.4506 211.5505
Soccer 321.3901 343.5014 333.5409 307.9258 310.8809 323.4478 30.11829
Subway 158.5811 149.2787 160.1787 142.6239 151.9939 152.5313 14.28662
Tiger1 456.115 455.5111 446.3521 451.7226 482.41 458.4222 27.92462
Tiger2 544.9616 540.2377 544.5434 544.8145 547.6543 544.4423 5.330481
Trellis 154.5482 168.3249 113.8191 135.621 165.4487 147.5524 45.61808
Walking 30.0867 26.0456 21.8904 31.3223 23.9137 26.65174 8.009226
Walking2 30.7862 27.1731 28.5749 28.6241 27.8029 28.59224 2.729797
Woman 198.6427 193.1436 40.1001 196.996 198.3648 165.4494 140.2135
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