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Abstract 

The antibiotic pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite that plays an 

important role in the biocontrol of plant diseases due to its broad-spectrum of antimicrobial 

activities. The PRN biosynthetic gene cluster remains to be characterized in Serratia 

plymuthica, though it is highly conserved in PRN-producing bacteria. To better understand 

PRN biosynthesis and its regulation in Serratia, the prnABCD operon from S. plymuthica G3 

was cloned, sequenced and expressed in Escherichia coli DH5α. Furthermore, an engineered 

strain prnind which is a conditional mutant of G3 prnABCD under the control of the Ptac 

promoter was constructed. This mutant was able to overproduce PRN with 

isopropylthiogalactoside (IPTG) induction by over-expressing prnABCD, whilst behaving as a 

conditional mutant of G3 prnABCD in the absence of IPTG. These results confirmed that 

prnABCD is responsible for PRN biosynthesis in strain G3. Further experiments involving 
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lux-/dsRed-based promoter fusions, combined with site-directed mutagenesis of the putative 

σS extended -10 region in the prnA promoter, and liquid chromatography-mass spectrometry 

(LC-MS) analysis extended our previous knowledge about G3, revealing that quorum sensing 

(QS) regulates PRN biosynthesis through cross talk with RpoS, which may directly activated 

prnABCD transcription. These findings suggest that PRN in S. plymuthica G3 is produced in a 

tightly controlled manner, and has diverse functions, such as modulation of cell motility, in 

addition to antimicrobial activities. Meanwhile, the construction of inducible mutants could be a 

powerful tool to improve PRN production, beyond its potential use for the investigation of the 

biological function of PRN.  

Keywords: Serratia plymuthica G3, the prnABCD operon, a conditional mutant, 

over-expressing, pyrrolnitrin biosynthesis and regulation 
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Introduction 

The antibiotic pyrrolnitrin [3-chloro-4-(2’-nitro-3’-chloro-phenyl) pyrrole, PRN] is a secondary 

metabolite derived from tryptophan that was originally isolated from Burkholderia pyrrocinia 

(Pseudomonas pyrrocinia) (Arima et al., 1964). PRN displays a broad-spectrum of 

antimicrobial activities against a number of plant and human pathogenic bacteria and fungi 

(Chernin et al., 1996; Di Santo et al., 1998; Kirner et al., 1998), in addition to its nematicidal 

activity which was reported recently (Nandi et al., 2015). Additionally, PRN biosynthesis in 

rhizobacteria is known to play a key role in bacterial survival (Costa et al., 2009), and in 

biological control and induced systemic resistance in plants (Kim et al., 2014). Therefore, 

natural derivative products of PRN can be used as synthetic lead compounds for the 

production of novel agricultural fungicides, such as fludioxonil and fenpiclonil as promising 

alternatives to synthetic pesticides in sustainable agricultural practices (Keum et al., 2009).  

The prnABCD gene cluster, first described in Pseudomonas fluorescens BL915, encodes four 

enzymes PrnA, PrnB, PrnC and PrnD, which are responsible for PRN biosynthesis (Hammer 

et al., 1997). Previous studies have established that the bacterial ability to produce PRN 

greatly affects their biocontrol activity against plant pathogens; thus, a number of studies have 

been carried out to elucidate PRN production and its regulatory mechanisms in bacteria 

(Costa et al., 2009; Mozes-Koch et al., 2012). For example, comparative analysis of DNA and 

protein sequences of the prnABCD gene cluster in PRN-producing bacteria revealed that it is 

highly conserved among strains of the genera Pseudomonas, Burkholderia and Serratia 

(Hammer et al., 1999; Costa et al., 2009).  

Apart from nutritional clues which are known to affect PRN biosynthesis in Burkhoderia spp. 

O33 and Pseudomonas chlororaphis O6 (Keum et al., 2009; Park et al., 2011), PRN 

production in bacteria has been well documented to be modulated by several global regulators. 

For instance, quorum sensing (QS) is a cell-to-cell communication system that allows bacteria 

to coordinate gene expression and therefore the behavior, of the entire community in a 

population-dependent manner using small diffusible signal molecules, such as N-acyl 

homoserine lactones (AHLs) in gram-negative bacteria (Rutherford and Bassler, 2012). AHL 

signalling has been proven to control PRN biosynthesis in S. plymuthica (Liu et al., 2007) and 
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the B. cepacia complex (Schmidt et al., 2009). Several other global regulators, including the 

master regulator of the general stress response RpoS (σS) and the GacS/GacA 

two-component system (TCS) are also involved in controlling PRN biosynthesis in S. 

plymuthica IC1270 (Ovadis et al., 2004) and Pseudomonas protegens (P. fluorescens) Pf-5, 

although this strain is unable to produce AHLs (Sarniguet et al., 1995). However, whether this 

type of regulation applies generally, as well as the interactions among these regulators are still 

poorly understood. Furthermore, it is well known that the bacterial RpoD (σ70) subclass of 

promoters contains two conserved sequence elements where the -10 TATACT box is 

absolutely essential to start transcription in prokaryotes, whilst the -35 TTGACA box affects the 

transcription rate. Although the σS and σ70 subunits recognize very similar promoter sequences, 

there is no clear -35 box for the σS-dependent promoters, which instead have an extended -10 

consensus sequence KCTATACT (K=G/T, conserved positions in bold) where a T/GC motif at 

the -14/-13 positions is very important (Becker and Hengge-Aronis 2001; Weber et al., 2005; 

Umarov and Solovyev, 2017). This raises the question of whether RpoS directly controls the 

promoter activity of prnABCD, as well as interactions with QS. This remains to be investigated 

to better understand the mechanisms behind the integrated networks modulating PRN 

biosynthesis. 

S. plymuthica has been used as a biocontrol agent (BCA) against several phytopathogenic 

fungi due to its ability to produce multiple antifungal factors, including the antibiotic PRN (de 

Vleeschauwer and Höfte, 2007). We isolated the strain S. plymuthica G3 from wheat stem (Liu 

et al., 2010, and identified two LuxI homologues, SplI and SpsI, which are responsible for 

synthesis of various AHL signal molecules. Interestingly, both AHL signalling and 

stationary-phase RpoS are implicated in controlling biofilm formation and cell motility in G3 

(Liu et al., 2011; Liu et al., 2016). Analysis of the 5'-flanking region of prnABCD using the 

CNNPromoter (Umarov and Solovyev, 2017) allowed us to identify a putative σ70 -10 box 

TAATCT overlapping with a potential σS extended -10 element TCTAACAT (conserved 

positions in bold), similar to that found in E. coli (Weber et al., 2005), located at a position 

approximately 30 nucleotides upstream from the prnA start codon ATG. This finding implies 

that prnABCD might have an RpoS-dependent promoter, but this remains to be verified. In this 
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study, the prnABCD operon from S. plymuthica was characterized for the first time, and the 

results show that it is responsible for PRN biosynthesis in strain G3. Assay of lux-based 

promoter fusions, combined with LC-MS suggested that PRN biosynthesis is tightly controlled 

through interactions between AHL signalling and RpoS. Further site-directed mutagenesis of 

the putative extended -10 region in the prnA promoter revealed that RpoS may directly activate 

prnABCD transcription. In addition, a conditional mutant prnind of G3 prnABCD was 

constructed using a gene replacement strategy under the control of the inducible Ptac 

promoter to improve PRN yield along with exploring the role of PRN in bacterial biology. 

 

Materials and methods 

 

Bacterial strains, plasmids, and growth conditions The bacterial strains, plasmids and 

primers used in this study are listed in Table 1. S. plymuthica G3 (CGMCC no. 4134) and its 

derivatives were grown at 30°C, and Escherichia coli strains were grown at 37°C in 

Luria-Bertani broth (LB) or on LB agar plates. Antibiotics, when required, were added to the 

growth media at the following concentrations: ampicillin, 100 µg/ml; gentamicin, 20 µg/ml; 

kanamycin, 50 µg/ml; and tetracycline, 25 µg/ml. The pathogenic fungus Cryphonectria 

parasitica (ATCC 38755), the causal agent of chestnut blight, was routinely grown on potato 

dextrose agar (PDA) at 25°C. 

 

DNA preparation and manipulations Standard methods were used for plasmid and genomic 

DNA isolation, restriction enzyme digestion, agarose gel electrophoresis, ligation, and 

transformation (Ausubel et al., 1994), or the manufacturer’s instructions were followed. 

 

Cloning and heterologous expression of the G3 prnABCD operon S. plymuthica G3 is 

able to produce the antibiotic PRN (Liu et al., 2010). Searches within the G3 genome (Liu and 

Chan, unpublished data) identified a prnABCD operon. To clone the prnABCD gene cluster, 

PCR was performed using the primer pair prnA-F and prnD-R (Table 2), the G3 genomic DNA 

as template and LA-Taq (TaKaRa, Dalian, China) for amplification of the entire prnABCD 
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operon with its promoter region including 574 nucleotides upstream of the start codon. The 

following program was used for thermal cycling: 94°C for 6 min; followed by 30 cycles at 94°C 

for 1 min, 55°C for 1 min, and extension at 72°C for 5 min; and a final extension at 72°C for 10 

min. After purification, the resulting ca.6-kb PCR product was cloned into the vector pMD19-T 

(TaKaRa) to generate the plasmid pPRN, and transformed into E. coli DH5α for heterologous 

expression of the G3 prnABCD operon. Positive clones carrying the recombinant plasmid 

pPRN were selected by PCR and sequencing (Sangon Co. Ltd., Shanghai, China). The 

GenBank accession no. for the G3 prnABCD operon is JF274257. 

Further phylogenetic analyses of 20 complete prnABCD sequences from Pseudomonas, 

Serratia and Burkholderia spp. currently available in the GenBank database, along with G3 

prnABCD sequenced in this study, were carried out with prnBCDA from Myxococcus fulvus as 

the outgroup. A nucleic acid-based neighbour-joining tree was constructed, and a bootstrap 

test (1000 repetitions) was performed as previously described (Liu et al., 2011). 

 

Construction of a conditional mutant prnind of G3 prnABCD To verify the biological role of 

the prnABCD gene loci, and obtain an engineered strain of S. plymuthica G3 with the ability to 

over-produce PRN, a G3 prnind conditional mutant was first constructed by replacing the 

native promoter of the prnABCD operon in the G3 chromosome with the lacIQ repressor gene, 

along with the Ptac inducible promoter as described by Rampioni et al., with minor 

modifications (Rampioni et al, 2010). The primers used are listed in Table 2. Briefly, the 

construction of the conditional mutant was performed as follows (Fig. 1-a ): (a) a 662 bp 

fragment prn-LA, using as the left homologous arm from the upstream region of prnABCD was 

amplified by PCR using the primer pair prnind1-F/R, and included the SacI/BamHI sites for 

double digestion, (b) the 1264 bp fragment prn-RA, using as the right homologous arm 

carrying part of the prnA ORF was amplified by PCR using the primer pair prnind2-F/R and 

included the EcoRI site to allow cloning into pMD19-T for digestion with EcoRI, (c) the 853 bp 

Gm cassette was excised from plasmid p34S-Gm with BamHI (Dennis and Zylstra, 1998) and 

inserted into the BamHI site between the two fragments prn-LA and prn-RA, and (d) the 1.5 kb 

lacIQ Ptac inducible promoter fragment was excised from pME6032 with BamHI/ EcoRI and, 
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then inserted into the same sites of pBluescript II SK(-) between the Gm cassette and the right 

arm prn-RA. These fragments mentioned above were assembled into pBluescript II SK(-) 

sequentially to generate pSK-YX. After being digested pSK-YX with SacI/EcoRI, followed by 

Klenow blunting, the ca. 4300 bp fragment was ligated into the SmaI site of pDM4 to generate 

the suicide plasmid pDM4-YX, which was then conjugated into the parent strain G3. The 

inducible mutant prnind was obtained through crossover of the insert carried by this 

recombinant vector pDM4-YX into the G3 chromosome, followed by a second crossover 

triggered upon 5-15% sucrose selection and the isolation of GmR clones. The correct 

chromosomal insertion was verified by PCR and sequencing. Growth rates of the wild-type G3 

and its inducible mutant, prnind, in the absence or presence of 0.5 mmol IPTG were monitored 

every three hours at OD600 nm. 

 

PRN identification PRN was extracted from five-day-old bacterial cultures growing on PDA 

+1% glycerol and incubated at 30°C, followed by thin-layer chromatography (TLC) detection 

as previously described (Zhou et al., 2012) or LC-MS2 analysis as follows: an Agilent 

Technologies 1200 Series LC system (Waldbronn, Germany) was used for high-performance 

liquid chromatography (HPLC) analysis. The column oven was maintained at 50°C. The HPLC 

column used was a Phenomenex Gemini C18 column (3.0 µm, 100 x 3.0 mm) with an 

appropriate guard column. Mobile phase A was water, and mobile phase B was acetonitrile. 

The flow rate throughout the chromatographic separation was 450 µl/min. The binary gradient 

began initially at 10% B and increased linearly to 99% B in 4.5 min. This composition was 

maintained for a further 1.5 min, rapidly decreased to 10% B over 0.1 min, and stayed at this 

composition for 2.9 min. The total run time per sample was 10 min. In total, 10 µl of samples 

were injected per analysis. The MS system used was a Bruker HCT Plus ion trap mass 

spectrometer equipped with an electrospray ionisation (ESI) interface. The electrospray 

settings were as follows: nebuliser gas, 50 psi; drying gas, 9 L/min; and, drying temperature, 

365°C. MS analysis was conducted under negative electrospray conditions (-ES) with the MS 

in MRM (multiple reaction monitoring) mode to screen the LC eluent specifically for PRN by 

comparing LC retention time of detected peaks with the available synthetic standard. The 
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precursor-product ion mass transition used for MRM detection was m/z 254.8-189.7.  

 

Antifungal activity and cell motility Bioassays of the antifungal activity were performed in 

dual cultures on plates by measuring the diameter of the inhibition zone of bacterial strains 

against the chestnut blight pathogen C. parasitica as previously described (Liu et al., 2010). 

The bacterial swimming motility was assayed as described previously (Liu et al., 2016).  

 

Construction and assay of lux-based promoter fusions To determine whether RpoS or the 

QS system also regulates G3 prnABCD expression, a prnA::lux transcriptional fusion was 

constructed and assayed as described previously (Zhou et al., 2012). Briefly, a ca. 550 bp 

PCR fragment including the promoter region of the prnABCD operon was first cloned into 

pMD19-T, digested with XbaI/SalI, and ligated into the SmaI site of pBluelux (Atkinson et al., 

2008) after Klenow blunting. Positive clones were selected according to bioluminescence and 

sequencing. Next, the plasmid pBluelux/prnA::lux was digested with PstI and ligated into the 

same site of the broad-host-range vector pUCP26 to generate pPprnA::lux, which was used to 

transform E.coli /S17-1 to enable conjugation with the wild-type or the ΔrpoS mutant. A similar 

strategy was used to construct the lux-based promoter fusions pPrpoS::lux ( ca. 580 bp EcoRI 

fragment), pPsplI::lux ( ca. 520 bp XbaI/SalI fragment) and pPspsI::lux ( ca. 590 bp XbaI/SalI 

fragment) using the pair of primers rpoS-luxF/R, splI-luxF/R and spsI-luxF/R, respectively 

(Table 2). 

 

Site-direct mutagenesis To unravel whether RpoS may directly control the transcription of 

prnABCD in strain G3, site-directed mutagenesis of four nucleotide positions conserved in the 

extended -10 region in the prnABCD promoter was conducted. All primers used below are 

listed in Table 2. Briefly, PCR amplification of the shorter prnA promoter PprnS (61 bp 

upstream from ATG) from G3 genomic DNA, and the fluorescent reporter DsRed from plasmid 

pDsRed2 (Clontech) was performed with the primer pairs Ps-F/R and dsRed-F/R, followed by 

digested with EcoRI/BamHI and BamHI/HindIII, respectively. For site-directed mutagenesis, 

the primer pair Pm-F/R exchanging TCTAACAT into CGAAACAA within the extended -10 
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region (Fig. 1-b) was synthesized, followed by annealing 10 µM Pm-F and Pm-R at a 

temperature gradient from 95°C to 20°C gradually using a Biometra Thermocycler to obtain 

dsDNA with 5’-overhanging EcoRI and 3’- overhanging BamHI. After validation by PCR and 

sequencing, both reporter fusions PprnS::dsRed and PprnM::dsRed were generated through 

triple ligation into pUCP26 which was first digested with EcoRI/HindIII, and then transformed 

into E.coli S17-1. Next, both plasmids pUCP26/prnS::dsRed and pUCP26/prnM::dsRed were 

separately conjugated into the wild-type G3 and ΔrpoS mutant. The promoter activities were 

monitored as red fluorescence signals at 535 nm excitation/ 595 nm emission, and the cell 

density OD 600 was measured using micro-plate reader.  

 

Statistical analysis All data were subjected to one-way-ANOVA analysis using SPSS 

Statistics 21 to compare treatment mean values. Each treatment was tested in at least 

triplicate. Experiments were performed at least two times independently. 

 

Results 

 

Cloning and phylogenetic analysis of the prnABCD operon from S. plymuthica G3 The 

complete prnABCD operon with its promoter region was PCR amplification from G3 

chromosome DNA and cloned into pMD19-T as described in the Material and Methods. The 

resulting recombinant plasmid pPRN was sequenced, which carries ca. 6130 bp insert 

including a 475 bp upstream sequence from the prnA start codon (the GenBank accession no. 

JF274257).The BLAST program was used to identify homologues of prnABCD in the GenBank 

databases.  

Phylogenetic analysis of the whole prnABCD sequence from S. plymuthica G3 and 20 

representatives of PRN-producing strains retrieved from GenBank was performed. The results 

(Figure S1) showed that the prnABCD operons from strain G3 and other Serratia strains are 

closely related to Pseudomonas spp., clustering into one clade belonging to 

Gammaproteobacteria, but not with Burkholderia which is a member of Betaproteobacteria. 

This finding suggests that the clustering pattern of prnABCD among Serratia, Pseudomonas 
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and Burkholderia species reflects their taxonomic relationships. 

 

Expression of G3 prnABCD operon and PRN identification To determine whether the G3 

prnABCD operon is responsible for PRN production, two strategies were used:  (a) 

heterologous expression of G3 prnABCD operon in E. coli DH5α, and (b) construction of a G3 

conditional mutant of prnABCD under the control of the inducible Ptac promoter. For 

heterologous expression, the plasmid pPRN harbouring G3 prnABCD with its native promoter 

was introduced into E. coli DH5α competent cells by heat shock. TLC analysis showed that 

positive clones of the recombinant E.coli DH5α (Fig. 2, Lane 2) expressed  prnABCD 

successfully and synthesized the end product, PRN, as indicated by the presence of a purple 

spot after staining with 2% Ehrlich’s reagent. Synthetic PRN was used as a positive control 

(Fig. 2, Lane S). As expected, no PRN production was observed for the negative control E. coli 

DH5α/pMD19-T with the empty plasmid (data not shown). Furthermore, to genetically 

manipulate the PRN production levels in strain G3, an IPTG-inducible prnABCD mutant, prnind 

was constructed and selected, where the native promoter of the G3 prnABCD was replaced 

with the lacIQ Ptac inducible promoter through gene replacement and homologous 

recombination, which was validated by PCR and sequencing (data not shown). In the absence 

of the inducer IPTG, the mutant prnind should function as a prnABCD mutant. Conversely, 

IPTG induction should over-express prnABCD to produce higher levels of PRN than the 

wild-type. As expected, the TLC assay verified the above scenario by showing that the mutant 

prnind was defective in PRN production without IPTG induction (Fig. 2, Lane 3), but   

accumulated PRN when induced with 0.5 mmol IPTG (Fig. 2, Lane 4).The wild-type G3 was 

used as a positive control (Fig. 2, Lane 2).  

 

PRN is required for antifungal activity Dual culture bioassays of antifungal activity with C. 

parasitica on PDA plates showed a positive correlation between the PRN production levels 

and their antifungal activity among the different strains (Fig. 3). The recombinant E. coli 

DH5α/pPRN expressed prnABCD from G3, and secreted high levels of the end product PRN 

into PDA media generating an obvious inhibition zone compared with the E. coli 
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DH5α/pMD19-T as a negative control (Fig. 3-a). Meanwhile, the prnind mutant in the presence 

of 0.5 mmol IPTG (Fig. 3-b) exhibited higher antifungal activity due to PRN overproduction 

than the treatment in the absence of IPTG as a control (Fig. 3-c), where the expression of 

prnABCD was inhibited, no inhibition zone was observed. These findings suggest that PRN 

plays a central role in the suppression of the pathogenic fungus C. parasitica by strain G3.    

 

PRN modulated swimming motility In addition to antimicrobial activity, PRN was found to 

modulate cell motility in strain G3. As shown in Fig. 4, in the conditional mutant prnind, 0.5 

mmol IPTG induction greatly stimulated swimming ability, but the absence of IPTG decreased 

the swimming zone compared to the wild-type G3. Synthetic PRN at final concentration of 200 

ng/ml was used as a positive control also stimulated the swimming motility of both wild-type 

G3 and the inducible mutant prnind, but 0.5 mmol IPTG had no effect on the swimming motility 

of the wild-type.Furthermore, no obvious difference in bacterial growth was observed between 

the wild type and the prnind mutant in the presence or absence of IPTG (Fig. S2), indicating 

that the impacts on cell motility by PRN are not due to differences in growth rate. These 

findings indicate that PRN, apart from being a secondary metabolite (antibiotic) with 

broad-spectrum antimicrobial activity, could also function as a signal molecule regulating 

bacterial behaviours. 

 

Interplay between QS and RpoS regulates G3 prnABCD expression The global regulators 

QS and RpoS have been reported to affect PRN production in strains of S. plymuthica (Ovadis 

et al., 2004; Liu et al., 2007) or P. protegens (Sarniguet et al., 1995). To determine if this 

regulation generally applies, TLC or LC-MS assay was carried out to compare PRN production 

between the wild-type G3 and a quorum quenching strain expressing the lactonase AiiA or a 

ΔrpoS mutant. The results suggested that quorum quenching significantly reduced PRN 

production in strain G3 (Figure S3), which agrees with previous observations on the 

rhizospheric S. plymuthica HRO-C48 (Liu et al., 2007). Similarly, LC-MS2 analysis (Fig. 5) 

showed that the mutation in RpoS (peak area: 9.58 ×104) also greatly decreased the PRN 

yield compared to the wild-type G3 (peak area: 2.28 ×106) as observed in P. protegens Pf-5. 
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This shows that both QS and RpoS positively regulated PRN biosynthesis in S. plymuthica G3. 

The PRN MS2 spectra are shown in Figure S4. To better understand the mechanisms behind 

RpoS and AHL-mediated control of PRN biosynthesis, the expression of a prnA::lux promoter 

fusion in strain G3 supplemented with its major types of AHL signal molecules, 

3-oxo-N-hexanoyl-homoserine lactone (3OC6-HSL, OHHL), the unsubstituted 

N-butyryl-homoserine lactone (C4-HSL, BHL) and N-hexanoyl-homoserine lactone (C6-HSL, 

HHL) (Liu et al., 2010) at a final concentration of 0.5 μm was performed (5 mM AHLs dissolved 

in methanol as stock solutions).1µl methanol added to 10 ml LB was used as a control, no 

bioluminescence difference was observed when compared with LB alone (data not shown). 

The results showed that AHL signalling positively modulated prnABCD transcription, and the 

maximum activity was induced by a mixture of three types of AHLs (1: 1: 1). 3OC6-HSL was 

the optimum single AHL signal for prnABCD transcriptional activity (Fig. 6-a). Similarly, the 

transcription of rpoS::lux promoter fusion was also stimulated by AHL signals, and the mixture 

of AHLs induced the highest level of activity. In contrast to the prnA::lux fusion, C4-HSL, not 

3OC6-HSL, was the optimum single signal molecule for the transcription of rpoS (Fig. 6-a). 

Reciprocally, RpoS also has an impact on the transcription of the luxI homologous gene splI, 

but not spsI (Fig. 6-b), which is known to encode the AHL synthase SpsI to produce the 

unsubstituted AHLs only (Liu et al., 2010).  

 

Expression of the prnABCD operon is RpoS-dependent The expression of the prnA::lux 

promoter fusion (~500 bp prnA upstream sequence) in the wild-type or the ΔrpoS mutant 

background was also measured. As shown in Fig. 7-a, the relative bioluminescence unit (RLU) 

of the prnA::lux reporter fusion significantly decreased in the ΔrpoS mutant compared to the 

wild-type G3, suggesting that prnABCD transcription might be RpoS-dependent. To validate 

this hypothesis, the fluorescent reporter dsRed was fused, in combination with site-directed 

mutagenesis of the conserved nucleotides in the extended -10 region (TCT….T replaced with 

CGA….A) to the shorter (~60 bp) prnA upstream sequence. Assays of the dsRed-based 

reporter fusions demonstrated the ca. 60 bp prnA upstream sequence (prnS::dsRed) does 

have promoter activity, but its activity decreased in the ΔrpoS mutant compared to the 
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wild-type (Fig.7-b), the same trend as the prnA::lux promoter fusion (Fig. 7-a). Meanwhile, the 

relative fluorescent unit (RFU) of prnM::dsRed promoter fusion in both wild-type and the ΔrpoS 

mutant was also greatly reduced due to mutation in the conserved nucleotide positions 

compared to the native prnS::dsRed (Fig. 7-b). The results indicated the prnABCD upstream 

sequence includes the σS-selective promoter, revealing that RpoS could directly control the 

transcription of prnABCD, in addition to affecting PRN yield. Taken together, these findings 

suggest that RpoS may play a key role in fine tuning both transcription and translation of the 

prnABCD loci through cross talk with QS, which could also have impacts on the antifungal 

activity and cell motility of S. plymuthica G3 (Fig. 8). 

 

Discussion 

 

PRN-producing strains have been described mainly in a narrow range of gram-negative 

bacteria of the genera Burkholderia, Pseudomonas, and Serratia, and are key players in the 

biocontrol of plant diseases (Hill et al., 1994; Kalbe et al., 1996; Hammer et al., 1999; Ligon et 

al., 2000; Costa et al., 2009). For example, PRN production from S. plymuthica was required 

for the suppression of a broad range of fungal pathogens, such as soil-borne Rhizoctonia 

solani and Pythium aphanidermatum in vegetables (Ovadis et al., 2004), airborne Botrytis 

cinerea and Sclerotinia sclerotiorum (Kamensky et al., 2003), and post-harvest diseases 

caused by Penicillium spp. in peaches and apples (de Vleeschauwer and Höfte, 2007). To 

improve its biocontrol efficacy, we sought to gain a better insight into PRN biosynthesis and 

regulation in S. plymuthica by cloning the prnABCD loci from S. plymuthica G3 into E. coli. TLC 

detection confirmed that the four genes prnA, prnB, prnC and prnD are sufficient for the 

production of the antibiotic PRN without the need for the surrounding genes, similar to P. 

fluorescens BL915 (Hammer et al., 1997). This finding was further verified by constructing a 

G3 conditional mutant prnind under the control of the inducible Ptac promoter, which behaved 

like a prnABCD mutant in the absence of IPTG by barely producing PRN (Fig. 2 Lane 3). More 

importantly, the prnind mutant induced with 0.05 mmol IPTG also behaved like an 

over-expressing strain of the prnABCD operon, which has potential for PRN overproduction 
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(Fig. 2, Lane 4). Correspondingly, PRN contents secreted by the wild-type G3 and its 

derivatives are positively correlated with their antifungal activity against C. parasitica (Fig. 3), 

consistent with previous studies in various biocontrol strains of Pseudomonas (Hill et al., 1994; 

Sarniguet et al., 1995), Burkhoderia (Hwang et al., 2002) and Serratia (Ovadis et al., 2004). 

Recently, the entire prnABCD operon from P. protegens Pf-5 was expressed successfully in 

tomato plants through the plant universal vector IL-60, resulting in the appearance of a unique 

plant phenotype with resistance to damping-off disease caused by R. solani (Mozes-Koch et 

al., 2012).These findings indicate that the role played by PRN in biological control of plant 

diseases is important and conserved in bacteria. 

Apart from their antimicrobial activities, the antibiotics phenazine (Dietrich et al., 2006; Pierson 

et al., 2010) and 2,4-diacetylphloroglucinol (DAPG) (Maurhofer et al., 2004; Combes-Meynet 

et al., 2011) both serve as signal molecules to induce cross-talk among rhizoplane bacterial 

communities and have impacts on bacterial behaviours. Similarly, our investigation of 

swimming motility of the conditional mutant prnind with or without IPTG induction showed that 

PRN also affected cell motility which was confirmed by using a synthetic PRN standard as a 

positive control (Fig. 4). Thus, PRN may also function as a signal molecule, beyond its role as 

an antibiotic to suppress fungal pathogens. However, the non-IPTG-induced prnind could still 

swim; one possible explanation may be due to PRN-mediated alteration of gene expression 

such as motility-related genes encoding chemotaxis, flagellar etc., and/or their regulatory 

genes, but still to be investigated. For instance, RNA-seq based transcriptomic studies, 

together with qRT-PCR and phenotypic analyses could shed light on the molecular basis for 

PRN-driven regulation of gene expression, and unravel the reasons why PRN can affect cell 

motility on a whole genome scale. Altogether, the construction of the inducible mutant could be 

a powerful tool that can be used not only for improving the PRN yield, but also for exploring the 

role of PRN in bacterial physiology and behaviour. It is worth noting that the target gene or 

operon suitable for the construction of the Ptac inducible mutant must be a single copy with no 

polar effects. Fortunately, sequencing the whole genome of G3 (Liu and Chan unpublished 

data) allowed us to discover only one copy of the prnABCD loci in strain G3, further analysis of 

its genomic context by Virtual Footprint 3.0 (Münch et al., 2005) predicted a 171 bp ORF 
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encoding hypothetical protein flanked the prnABCD operon, but with its own promoter 

approximately 50 bp upstream from the start codon ATG, and within prnD ORF. Therefore, we 

do not expect any polar effect on surrounding genes.  

Increasing our knowledge of regulatory mechanisms governing the biosynthesis of antibiotics 

may help in the construction of strains with enhanced biocontrol activity (Chet and Chernin, 

2002). The manipulation of bacterial regulatory systems, such as GacS/GacA TCS or 

alternative sigma factors in P. fluorescens has resulted in a significant improvement of the 

biocontrol potential of this organism (Schnider et al., 1995; Haas et al., 2000). QS or RpoS 

positively regulate PRN biosynthesis in the rhizospheric S. plymuthica HRO-C48 (Liu et al., 

2007), the Burkholderia cepacia complex (Schmidt et al., 2009), and P. protegens Pf-5 

(Sarniguet et al., 1995). We have provided evidence that both AHL signalling and the sigma 

factor RpoS can stimulate prnABCD transcription and the secretion of the end product PRN in 

S. plymuthica G3. Bioluminescence assay of the lux-based promoter fusions suggest that the 

transcription of both prnABCD and rpoS from G3 is significantly induced by the mixture of AHL 

signals in a cell density-dependent manner under the control of QS systems (Fig. 6-a). 

Interestingly, mutation in RpoS also had a considerable impact on the transcription of the luxI 

homologue splI, but not spsI (Fig. 6-b), which is responsible for the synthesis of unsubstituted 

AHLs, especially C4-HSL in strain G3 (Liu et al., 2011). These findings indicate that RpoS 

selectively controls the expression of SplI/SpsI QS regulators, besides the cross-link between 

the QS systems and RpoS, which is similar to previous reports in several Pseudomonas spp. 

For instance, there are two AHL-mediated QS systems, LasIR/RhlIR, in P. aeruginosa, and 

RpoS negatively regulates QS through repression of the transcription of rhlI, but not lasI; on 

the other hand, QS activates rpoS expression through RhlIR (Venturi 2006). Further sequence 

comparison revealed a potential σS extended -10 region approximately 30 bp upstream of the 

prnA start codon which was verified through site-directed mutagenesis together with 

dsRed-based promoter fusion assays (Fig. 7-b). To the best of our knowledge, this is the first 

experimental evidence showing that prnABCD is an RpoS-dependent operon; therefore, QS 

may at least indirectly affect PRN biosynthesis via RpoS-driven direct control of the 

transcription of prnABCD since no lux box-like element was found in the upstream sequence of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 
 

prnA (data not shown), which is the binding site for the AHL/LuxR complex to activate/repress 

the transcription of target genes (Rutherford and Bassler, 2012). 

In summary, PRN biosynthesis in S. plymuthica could be controlled at multiple levels through 

an integrated hierarchical network of several global regulators. For example, the interplay 

between QS and RpoS was involved in controlling the transcription of prnABCD and PRN 

production in strain G3. Similarly, in strain IC1270 where the GrrS/GrrA TCS is required for 

AHL accumulation, besides PRN production (Ovadis et al. 2004), showing the link between QS 

and GacS/GacA, which is known to regulate the transcription of small RNAs of RsmB family in 

bacteria. On the other hand, the RNA chaperon Hfq of S. plymuthica is a post-transcriptional 

regulator to positively modulate PRN production, in addition to stimulating RpoS translation 

(Zhou et al., 2012). All these findings in S. plymuthica implicate that RpoS as a central player 

in the control of PRN biosynthesis at both transcriptional and translational levels through 

integrated multiple regulators into a complex network, whilst the tightly regulated PRN may 

play a more important role in bacterial physiology and adaption to the environment, which is far 

beyond our current knowledge. 
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Tables and Figures’ Legends  

 

Table 1 Bacterial strains and plasmids used in this study 

 

Table 2 Primers used in this study 

 

Fig. 1 Schematic representation of the prnABCD loci in S. plymuthica G3 wild-type and 

its IPTG-inducible mutant prnind (A); and the prnA upstream DNA sequence (B)  

Panel a: The gentamycin (Gm) cassette is excised with BamHI from plasmid p34S-Gm, and the lacIQ 

repressor with the Ptac promoter is derived from plasmid pME6032. The organization of the prnABCD 

operon is shown, which is followed by a 171 bp hypothetical protein (hp) with its own promoter Php 

located in the prnD ORF. Panel b: The putative σ70 -10 box is indicated by a black bar, and the putative σS 

extended -10 region in grey box, and the conserved nucleotides in bold are replaced (short vertical lines) 

through site-directed mutagenesis, the primer pairs Ps-F/R are underlined. The proposed ribosome 

binding site (RBS) and the ATG start codon are in grey box.  
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Fig. 2 TLC detection of PRN production  

Lane S：synthetic PRN standard (4 μg from Sigma); Lane 1: wild-type G3; Lane 2: E. coli DH5α/pPRN 

carrying pMD19-T-prnABCD; Lane 3: non-IPTG induced mutant prnind ; Lane 4: prnind + 0.5 mmol IPTG  

 

Fig. 3 Effects of the PRN production on antifungal activity in dual cultures with the 

pathogenic C. parasitica.  

Panel a: the recombinant E. coli DH5α/pPRN carrying the G3 prnABCD operon (A); E.coli 

DH5α/pMD19-T with the empty plasmid as a negative control (B); and the wild-type G3 as a positive 

control. Panel b: IPTG induced mutant prnind. Panel C: non-IPTG induced mutant prnind. 

 

Fig. 4 Effects of the PRN production on swimming motility 

0.5 mmol IPTG was used for induction of the Ptac promoter expression ; 2 µl of overnight bacterial 

suspension was inoculated on swimming plates containing 0.2 µg/ml concentration of synthetic PRN and 

incubated at 30 °C for 16 h. 2 µl methanol (MeOH) as the solvent control. 

 

Fig. 5 LC-MS2 identification of PRN production  

Panel a: HPLC profile of 10 μm synthetic PRN as a positive control. Panel b: HPLC profiles of PRN 

extracts from the wild-type G3 in black and the mutant ΔrpoS in grey, respectively. 

 

Fig.6 Assay of lux-based promoter fusions  

Panel a: Impacts of 0.5 µM AHLs on the transcription of prnABCD and rpoS in strain G3. Panel b: 

Impacts of RpoS on the transcription of the luxI homologues splI and spsI in strain G3. 5 mM AHLs 

dissolved in MeOH were used as stock solutions, 1µl MeOH diluted with 10 ml LB as a control. BHL: 

N-butyryl-homoserine lactone (C4-HSL); HHL: N-hexanoyl-homoserine lactone (C6-HSL); OHHL: 

3-oxo-N-hexanoyl-homoserine lactone (3OC6-HSL); Mix: the mixture of BHL, HHL and OHHL (1:1:1). 

 

Fig. 7 RpoS-dependent transcription of the prnABCD operon   

Panel a: Assay of lux-based promoter fusion to prnA. Panel b: RpoS directly activates the prnA 
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transcription determined by site-directed mutagenesis. 

Fig. 8 Schematic model describing the interplay between AHL signaling and RpoS 

involved in regulation of PRN biosynthesis in S. plymuthica G3 

 

Supplementary materials (Figure S1-S4) 
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Table 1 Bacterial strains, plasmids and primers used in this study 

Strain or plasmid  Description Reference 

S. plymuthica G3 Wild type, Rif R Liu et al. 2011 

prnind 

 

ΔrpoS 

G3 derivative in which prnABCD expression is under the control of 

lacIq Ptac inducible promoter, GmR 

A rpoS::Km mutant of G3, KmR 

This study 

 

Liu et al., 2016 

E. coil DH5α A host strain for cloning Ausubel et al., 1994 

E. coil S17-1 Pro thi hsdR recA¯Tpr Smr; chromosome::RP4-2 Tc::Mu-Km::Tn7 Ausubel et al., 1994 

pMD19-T Cloning vector, AmpR Takara 

pPRN 

pME6032 

Plasmid pMD19-T harboring G3 prnABCD operon 

Shuttle vector with lacIQ Ptac inducible promoter; TcR 

This study 

Heeb et al., 2002 

p34S-Gm Source of GmR cassette Dennis et al., 1998 

pBluescript II SK(-) Cloning vector, AmpR
 Stratagene 

pDM4 

pDM4-YX 

Suicide vector; sacBR, oriR6K; CmR 

pDM4 carrying lacIQ Ptac-prnA, GmR, CmR 

Milton et al. 1996 

This study 

pUCP26 Broad-host-range cloning vector; Tc R West et al., 1994 

pBluelux a promoter-less luxCDABE cassette in pBluescript II, AmpR Atkinson et al., 2008 

pPprnA::lux 

pPrpoS::lux 

pPsplI::lux 

pPspsI::lux 

pDsRed2 

pPprnS::dsRed 

pPprnM::dsRed 

pUCP26 with a prnABCD promoter fusion to luxCDABE, TcR 

pUCP26 with a rpoS promoter fusion to luxCDABE, TcR 

pUCP26 with a splI promoter fusion to luxCDABE, TcR 

pUCP26 with a spsI promoter fusion to luxCDABE, TcR 

pDsRed-express2 vector, AmpR 

pUCP26 carrying a shorter prnA promoter with a – 10 box, TcR 

pUCP26 carrying mutation in -10 box of the prnA promoter, TcR 

Zhou et al., 2012 

This study 

This study 

This study 

Clontech 

This study 

This study 

 

Table 1



Table 2 Primers used in this study 

Primer        5’-3’ sequences 

prnA-F 

prnD-R 

prnind1-F 

prnind1-R 

prnind2-F 

prnind2-R 

prn-luxF 

prn-luxR 

rpoS-luxF 

rpoS-luxR 

splI-luxF 

splI-luxR 

spsI-luxF 

spsI-luxR 

Ps-F 

Ps-R 

Pm-F 

Pm-R 

dsRed-F 

dsRed-R 

         GGTGTTCGATTTATAGGGT 

         CGCCATGATGACAGTGA 

         CGAGCTCTTTCCGAATGTTGTTGA (SacI) 

         CGGGATCCTTGCTCATGACACTCT (BamHI) 

         GGGAATTCATGAGCAAACCGATC (EcoRI) 

         TTGATGGAGTCAGAGAG  

         CGTAAGTAACGAATGAATC  

         CAGGCTAGACTCTCGTCT 

         GAATTCACTGCAACGGTTGATTCT (EcoRI) 

         ATACCGCGAGCAGAATATC 

         CAGCGACTTCGACAGCAT  

         TTGGCGCAAATATATAGCG 

         TGTATTGGTCGGTGGTGA  

         GTCTTTCGGTATTGGTGAGT 

        GAATTCAGAGTCTAGCCTGATTAGAAC (EcoRI) 

        GGATCC ATAGGAGGATAGTGGAGATG (BamHI) 

        AATTCAGAGTCTAGCCTGATTAGAACCTAACGAAACAACTCCACTATCCTCCTATG (EcoRI) 

        GATCCATAGGAGGATAGTGGAGTTGTTTCGTTAGGTTCTAATCAGGCTAGACTCTG (BamHI) 

        GGATCCAGGAAACAGATGGATAGCACTGAGAACGT (BamHI, RBS) 

        AAGCTTCTACTGGAACAGGTGGTG(HindIII) 

* Restriction sites are underlined, Ribosome binding site RBS in bold. Annealing the primer pair Pm-F/Pm-R was 

completed from 95 to 20°C gradually in Biometra gradient PCR apparatus to obtain dsDNA with 5’-EcoRI and 

3-BamHI cohesive end (in shade), respectively for triple ligation. 
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