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Abstract 

Biological vision and computational models of vision can be split into three 

independent components (image description, decision process, and image set). 

The thesis presented here aimed to investigate the influence of each of these 

core components on computational model’s similarity to human behaviour. 

Chapter 3 investigated the similarity of different computational image 

descriptors to their biological counterparts, using an image matching task. The 

results showed that several of the computational models could explain a 

significant amount of the variance in human performance on individual images. 

The deep supervised convolutional neural net explained the most variance, 

followed by GIST, HMAX and then PHOW. Chapter 4 investigated which 

computational decision process best explained observers’ behaviour on an 

image categorization task. The results showed that Decision Bound theory 

produced behaviour the closest to that of observers. This was followed by 

Exemplar theory and Prototype theory. Chapter 5 examined whether the 

naturally differing image set between computational models and observers 

could partially account for the difference in their behaviour. The results 

showed that, indeed, the naturally differing image set between computational 

models and observers was affecting the similarity of their behaviour. This gap 

did not alter which image descriptor best fit observers’ behaviour and could be 

reduced by training observers on the image set the computational models were 

using. Chapter 6 investigated, using computational models of vision, the impact 
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of the neighbouring (masking) images on the target images in a RSVP task. This 

was done by combining the neighbouring images with the target image for the 

computational models’ simulation for each trial. The results showed that 

models behaviour became closer to that of the human observers when the 

neighbouring mask images were included in the computational simulations, as 

would be expected given an integration period for neural mechanisms.  

This thesis has shown that computational models can show quite similar 

behaviours to human observers, even at the level of how they perform with 

individual images. While this shows the potential utility in computational 

models as a tool to study visual processing, It has also shown the need to take 

into account many aspects of the overall model of the visual process and task; 

not only the image description, but the task requirements, the decision 

processes, the images being used as stimuli and even the sequence in which 

they are presented. 
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Chapter 1 -  Literature Review 

1.1. Using computational models to understand human vision. 

Early research into human vision made promising strides forward in 

understanding the mechanisms employed by the mammalian physiology 

(Hubel & Wiesel, 1962, 1968). The sheer complexity of the human visual system 

soon revealed itself and it became apparent that new approaches needed to 

be made. Marr (1982), in his book Vision, highlighted the need to incorporate 

computer models and explicit algorithms which could be tested against human 

biology in order to gauge our understanding of the visual system. Marr (1982) 

reasons that the ideal process of using computational models to understand 

the visual system would follow three cyclical stages. First a theory needed to 

be formed based on observations of the biology, next computational 

algorithms implementing said theory need to be created, finally the fit of these 

algorithms to what is biologically implemented needed to be ascertained. 

Since Marr first proposed this theory, vision research has evolved, and a 

number of highly sophisticated computational models have been produced. In 

recent years, these models have been rapidly approaching human performance 

for certain, reasonably constrained, natural image-based tasks (Everingham, 

Van Gool, Williams, Winn, & Zisserman, 2010; Russakovsky et al., 2015). The 

current models being produced differ enormously in their implementations 

and comparisons to knowledge of human biology in their attempt to reach 
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human performance. Some of these models have been based heavily upon 

theory and understanding of human biology (Jarrett, Kavukcuoglu, Ranzato, 

Lecun, & Ieee, 2009; Krizhevsky, Sutskever, & Hinton, 2012; Serre, Oliva, & 

Poggio, 2007). On the other hand, a large number of models of image 

recognition have not limited themselves to theory and biology and have 

instead created models based on optimized mathematical algorithms which 

only loosely follow, or completely ignore, knowledge about mammalian biology 

(Lazebnik, Schmid, & Ponce, 2006; Lowe, 2004; Pass & Zabih, 1999). The 

current models provide a rich base of different ideas which can be compared 

to human observers. The fact that some of these models are based on human 

ingenuity rather than anything known about the biology provides new, out-of-

the-box avenues for investigating human biology.  

Following Marr’s approach to understanding the visual system, research is 

needed to assess the similarity of these different computational models to 

human observers. Recent research has focused on two main areas of 

comparisons; comparing computer models to human neural activity and 

comparing computer models to human behavior.  

This rest of this chapter will focus on; (1) outline a basic model of image 

processing (2) describing different image descriptors (3) outline a brief history 

of computational models of vision in the form of image database competitions, 

(3) outlining the literature comparing computer models of vision to human 
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behavior, (4) outlining the literature comparing computer models of vision to 

neurology in fMRI studies.  

1.2. Model of Visual Processing 

In order to understand the nuances of the comparisons being made between 

computational model and human observers a general framework of visual 

processing is presented here. While previous works have often referred to 

“computational models of vision”, they do not necessarily include all the steps 

that are needed for a visual task to be performed. For instance, many studies 

focus on the image descriptor (whereby input images are encoded and stored) 

with relatively little consideration to the necessary decision process that must 

be performed on that image descriptor for a task to be performed. We 

therefore present a general framework for considering the overall process in 

Figure 1.1. This framework will be referred to throughout the thesis and can be 

considered the backbone on which the various experiments presented in this 

thesis are based.  
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Figure 1.1. A basic model of visual processing based on how humans and computer models are likely 

to handle a visual processing task. Square boxes represent processes being applied. Curved arrow 

boxes represent sets of data. In this model, both the input image and the pevious set of images are 

passed through an image discriptor to describe the images. The output image descriptions and are 

then applied to the image descriptor space. A decision is then made based on the input image and 

the previous image set and is task dependent.  
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The model of visual processing presented here introduces new key words, 

which are written in italics. The model of visual processing is made up of various 

components. These components are shared between both human observers 

and computational models and thus it can be seen as a general model 

describing the processes that happen in both.  

The model of visual processing starts with the initial input of an image. For both 

the computational model and human observer this is in the form of light 

intensity values. Light intensity values are a notoriously hard format of 

information (Ghodrati, Farzmahdi, Rajaei, Ebrahimpour, & Khaligh-Razavi, 

2014) to base decisions upon and in order to produce meaningful behaviors the 

format of information needs to be changed to something more useful. In the 

model of visual processing these light intensity values get passed through an 

image descriptor to form an image description. In computational models of 

vision the image descriptor takes the form of a mathematical algorithm which 

extracts information or finds features within the image. The image description 

created by the image descriptor generally takes the form of a vector 

representing the multiple dimensions of which the image was assessed.  In the 

human brain the image descriptor takes the form of the processes which 

happen to information through the visual cortex. The image description used 

in the brain is likely localized in different visual areas; for objects the final image 

description is likely held in Area IT (Bell, Hadj-Bouziane, Frihauf, Tootell, & 

Ungerleider, 2009; Hung, Kreiman, Poggio, & DiCarlo, 2005; Kiani, Esteky, 

Mirpour, & Tanaka, 2007), while scene information is likely held in a number of 
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different areas such as the parahippocampal place area (Aguirre & Desposito, 

1997; Epstein & Kanwisher, 1998), the retrosplenial cortex (Maguire, 2001; 

Vann, Aggleton, & Maguire, 2009), and the transverse occipital sulcus (Nasr & 

Tootell, 2012). Once this image description has been made it is added to the 

image descriptor space. The image descriptor space also stores the image 

descriptions of all the images in the image set. Here the image set refers to all 

of the images that the computational model or biological system has had 

previous exposure to and has access to when making a decision. In the model 

of visual processing presented here, the last step is calculating a decision 

process by which an output is produced. This decision process is task 

dependent, a categorization task is going require different computations than 

an image similarity task, and so the decision process may take various forms.  

The model of visual processing presents the view that a computational model 

must be viewed as a complete process, from input image to behavioral output. 

Often in the previous literature a computational model of vision can be an 

ambiguous term, it can sometimes refer to an image descriptor without an 

explicit decision process attached to it. Good examples of this comes from the 

image descriptors GIST and SIFT (Lowe, 2004; Oliva & Torralba, 2001) that on 

their own they only produce an image description and lack a specified decision 

process. To clarify, in the terminology used throughout this thesis, any 

reference to a computational model refers to the general process (image 

descriptor, image set, decision process etc.). While each individual process (like 
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GIST) that calculates an image description will be referred to as an image 

descriptor. 

When comparing a computational model of vision to human observers it is 

important to consider each of these three components, as varying any one 

might affect the computational model’s similarity to human observers. A prime 

example of this comes from if the image set is not fully considered. A 

computational model could be identical to human observers in image 

description and decision process, but if the computational model uses an image 

set that differs dramatically from images that human observers have 

encountered then the output behavior is likely to differ. Thus this model of 

visual processing encourages the similarity between computer model and 

human to be examined from a more complete perspective of image descriptor, 

prior image set and also the decision process. 

In the previous literature, computational models have been compared to 

humans in terms of neural activity and behavior. At first glance it may be 

tempting to assume that these metrics measure the same thing, namely 

similarity of computer model to human vision. On closer inspection, these 

different types of comparisons are subtly different when put in the perspective 

of the model of visual processing. When neural activity is being compared to 

computational models it is assessing the similarity of the image descriptions 

being produced (e.g. if two images are close in patterns of neural activity are 

they similarly close in the computer model’s image description). Again, in the 
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more general model of this thesis, it is not that neural activity is being 

compared to computational models. Rather, it is being compared to 

computational image descriptors, ignoring the element of a decision process. 

On the other hand comparing computer models to observers’ behavior studies 

the whole process; similarity of the output of an image description paired with 

a decision process. 

Comparing computational models to human behavior has the additional 

complexity of type of task. It is likely that the image description is task invariant, 

while the decision process is highly task variant. The level of uncertainty of the 

decision process employed in humans on a task can vary. In very simple tasks, 

such as image recognition task the decision process is almost guaranteed to be 

based upon distance of images’ description in the descriptor space (Attneave, 

1957; Shepard, 1962a, 1962b, 1987). In a complex task such as image 

categorization there is a high degree of uncertainty of the decision process 

employed by humans (Ashby & Maddox, 2005, 2011). In tasks where the 

decision process is already relatively known comparing computer models to 

human behavior can be used to assess the similarity of image descriptors. On 

more complex tasks where there is a large degree of uncertainty of the decision 

process, computational models can be compared to human observers to assess 

the similarity of various decision processes.  

Comparing computational models to behavior and neural activity can work 

synergistically. They both offer an assessment of similarity between 
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computational image descriptions and neural image descriptions. If both 

produce a similar result for each computational image description then it is 

likely the true similarity is somewhere in that region. 

It is important when making these comparisons to consider exactly what these 

similarity measurements mean. In the case of comparing computational 

models to neural activity and behavior the similarity measures produced are 

with respect to the output of the process. These measures of similarity are 

blind to the underlying algorithmic calculations which calculated the output. It 

is possible to conceive of multiple methods that all produce the same output 

and would thus score the same on these measures of similarity. Therefore, it 

would be incorrect to assert that if a computational model is similar to human 

observers on these metrics that they are performing calculations in a similar 

manner. In order to assess if computational models are carrying out the same 

algorithmic calculations as human biology then cell recordings and other 

methods are more appropriate. Instead, counter intuitively, the metrics of 

similarity described here are more relevant at pulling out the differences 

between computational models and human observers. As a model becomes 

more different it is easier to assert that the computational model is processing 

information in a different way to human observers. This could either be due to 

differences in algorithm or perhaps missing components altogether. These 

metrics of similarity described here can therefore still provide a loose general 

assessment on the extent of understanding of the algorithms used in the 

human visual system in general.  
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1.3. State of the art computational models of vision 

This section focuses on providing a brief overview to common computational 

models of vision mentioned in the literature as well as those specifically used 

in this thesis. The list of models presented here are by no means exhaustive, 

but instead has been designed to provide a sweeping overview of the many 

different types of models out there. For a more complete list of models in 

greater detail there are a number of reviews which may be helpful 

(Andreopoulos & Tsotsos, 2013; Khaligh-Razavi, 2014; Mikolajczyk & Schmid, 

2005).  

The definition outlined in the previous section of a computational model was 

an image descriptor paired with a decision process. It is common in the 

literature to refer to an image descriptor, without an explicit decision process 

attached, as a “computational model”. Keeping with the definition used in the 

literature, this section can be thought of as a list of image descriptors and when 

the authors have paired the image descriptor with a specific decision process 

then that too shall also be described. Equally when a specific decision process 

is described it is usually because it has been considered to work well when 

paired with the image descriptor, but it doesn’t mean that other decision 

processes could not be applied to the image descriptor. 

Color histograms. A color histogram is an image descriptor which describes the 

image based on the number of pixels of a given color in the image. Color 

histogram algorithms come in many forms (Hsu, Chua, & Pung, 1995; Pass & 
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Zabih, 1999; Stricker & Dimai, 1996). In general color histogram algorithms 

scale the image so that it contains a standard number of pixels. The algorithm 

then takes the images pixels and convert them into a color space with a 

reduced palette of discrete colors. A histogram is then formed of the different 

colors of the image and the image is described as a vector containing the 

histogram values. Standard color histograms are unable to capture the spatial 

layout of the color information, but some have worked around this by dividing 

the image spatially into subsections and creating multiple histograms (Hsu et 

al., 1995). These regions can also be made to have slight invariance by creating 

overlapping regions (Stricker & Dimai, 1996). A popular example is the Joint 

Histogram (Pass & Zabih, 1999) which is multidimensional and takes advantage 

of the fact that other image properties can be constructed into a histogram 

similarly to color.  Four additional image properties are formed into histograms, 

edge density surrounding a pixel, a measure of texture, gradient magnitude 

and also the pixels rank within the light intensity values of its closest neighbors. 

By using additional image properties in the same way as color they have 

provided a method which in their tests Pass and Zabih, (1999) was shown to be 

superior to using color alone. Color histogram techniques are largely used in 

image data base retrieval as well as assessing image similarity. 

Geometric Blur. The Geometric Blur descriptor is designed with the concept in 

mind that object recognition is a problem solvable by deformable shape 

matching. Geometric blur is based on the observation that objects of the same 

class or category often take very similar shapes. Any variations when matching 
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objects could be solved by geometric transformations that can deform the 

object’s shape into alignment. This approach is particularly useful when objects 

are viewed from different angels or distances, such that the object’s shape can 

easily be distorted to fit the original image. Geometric blur is calculated by 

selecting points of interest of an image. This can either be uniformly done 

(Khaligh-Razavi & Kriegeskorte, 2014) or by selecting points of interest through 

the use of line detectors (Belongie, Malik, & Puzicha, 2002; Berg, Berg, & Malik, 

2005; Berg & Malik, 2001). Spatial blurring is then applied around each point 

of interest, with increasing blur for pixels further from the interest point. This 

is done with the intention of aiding point matching, as spatial blurring allows 

for detailed information to be taken directly around the interest point, while 

also allowing for some coarse context from the surrounding region. Matching 

then occurs on these points of interest between the original image and the one 

in question. Geometric blur descriptor was primarily designed with the purpose 

of image matching but has been applied to the task of image categorization 

(Zhang, Berg, Maire, & Malik, 2006). 
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Figure 1.2. Examples of the geometric blur feature points extracted from sample images (Helicopter 

and a Dog) and applied to a new image of the same image category. Illustrations taken from Berg et 

al., (2005).   

 

Local Binary Patterns. The Local binary patterns descriptor is an image 

descriptor designed using texture as the key component of forming an image 

description. It runs on the idea that different objects have different texture 

patterns and images belonging to the same category have more similar 

textures than objects belonging to a different category. Local binary patterns 

are not computationally costly and have been shown to be relatively robust to 

illumination changes (Ojala, Pietikainen, & Harwood, 1994, 1996). This 

descriptor has also been shown to be a good image descriptor for tasks that 

are not regarded as primarily a texture problem, such as face detection and 
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motion analysis (Pietikainen, Hadid, Zhao, & Ahonen, 2011). A local binary 

pattern is calculated by dividing an image into X by X windows; usually 12 x 12. 

Each pixel in the image is compared to the pixels directly surrounding it. These 

8 pixel neighbors are classified as either a 0 or a 1 depending on if their 

luminance value is greater or smaller. This gives an 8-digit binary number 

describing each pixel in the image. A histogram for each window is created 

counting the frequency of the values assigned to each pixel. These histograms 

are concatenated to produce a vector used to describe the image.  

 

Figure 1.3. A flow diagram demonstrating how the local binary pattern description is calculated. The 

illustration is adapted from an example presented in Kyrkou, (2017). 

 

GIST. The GIST image descriptor is an algorithm which bases its image 

description upon the spatial frequency information immediately available in 
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the image. GIST is modeled on the filtering transformations known to be 

performed in early visual cortex (Hubel & Wiesel, 1962, 1968), where spatial 

frequency information is extracted through Gabor-like filters. GIST is often 

referred to as a model of rapid, purely feedforward processing in humans when 

time is limited. GIST has been shown to excel as an image descriptor of scenes 

(Oliva & Torralba, 2001), categorizing scenes in a similar manner to humans on 

scales of naturalness, openness and roughness. Figure 1.4 shows how the 

spatial frequency information in an image is informative about the category it 

belongs to. 

Figure 1.4. An example of how examining the spatial frequency information of an image is 

informative as to which category the image belong. The top row displays the image examined. From 

left to right (a to h) the image categories of tall buildings, highway, urban close-up, city centre, coast, 

mountain, natural close-up views and forests are displayed. Beneath each image is the spectrogram 

of the image (energy spectra have been multiplied to enhance visibility of high spatial frequency 

information). Taken from Oliva & Torralba, (2001). 
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Scale Invariant Feature Transform (SIFT). SIFT is a popular image descriptor that 

in its original form is mainly a method of image matching (Lowe, 2004). One of 

the major advantages of SIFT is it is scale invariant and is relatively robust to 

many common image transforms as well as image rotation and affine 

distortion. It is designed to approach the task of image recognition from the 

viewpoint that an object is defined by its features and so the task of object 

recognition should focus on finding features of interest in an image and then 

describing them. These features can also be selected in another image and if 

found to be similar enough then established as the same object. SIFT can be 

thought of as a model with two sections, feature detection and feature 

description. Feature detection is usually done by detecting rapid changes in 

luminance of the image (edges).  The description is then created by calculating 

a histogram of the weighted gradients of the pixels around the feature. Due to 

SIFTs popularity there have been a number of extensions to the model. Dense 

SIFT is a modified version of the SIFT descriptor which samples uniformly across 

the image for features to describe and has been shown to have the same or 

even better performances than using interest points (Yap, Chen, Li, & Wu, 

2010). Due to SIFT’s popularity and success as an image descriptor, 

Muralidharan & Vasconcelos (2010) proposed a biologically plausible variant 

called BioSIFT. An example of SIFT’s output is displayed in  

Figure 1.5. 
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Figure 1.5. Two example images in which SIFT descriptors being found on the images on the left and 

relocated on the images on the right. Images were taken from Yu & Morel, (2011). 

 

PHOW. PHOW is a specific extension of the SIFT model which is specialized for 

scene and object categorization. PHOW employs a bag-of-words model which 

originates from text classification but has since been applied to vision. A bag-

of-words model uses the frequency of words of a document to describe the 



18 

 

document. In PHOW each SIFT feature is treated as a word describing the image 

and the frequency of each SIFT descriptor is used as the image description. 

Those images containing similar features and feature frequencies are more 

likely to belong to the same image category. The dictionary of sift features is 

created through a training set and therefore is specific to the dataset It is 

created for. The authors paired this image description with a support vector 

(Cortes & Vapnik, 1995) machine in order to perform a categorization task but, 

since the image description created by PHOW is flexible, it can also be applied 

to the task of image similarity.  

HMAX. The HMAX model is inspired by simple and complex cells found in the 

early visual cortex, initially described by Hubel & Wiesel (1962, 1968). Simple 

cells respond to orientated edges and bar gratings, while complex cells receive 

input from several simple cells and so respond to complex stimuli. HMAX 

extends the concept behind simple and complex cells to create a model of 

visual processing which alternates between layers of simple (S) and complex 

(C) cells. The original HMAX model followed the structure of layers S1, C1, S2 

and C2 (Riesenhuber & Poggio, 1999; Serre, Wolf, & Poggio, 2005). A diagram 

of the structure of the original HMAX model is seen in Figure 1.6. The cells in 

layer S1 convolve a set of Gabor filters (varying in phase, receptive field size 

and orientation) over the image to extract the initial features. Next, each cell 

in C1 pools over S1 cells of similar orientation and position, in the form of a 

max function. This creates position and size invariance of features in layer C1. 

Layer S2 performed a weighted summation over the cells in layer C2, this can 
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be thought of as combing features. The final layer C2 performs a max pooling 

operation on the cells of layer S2 which have extracted similar features but at 

different positions. By alternating between the S and C layers the model’s 

output becomes invariant to small shifts in scale or position. The original model 

proved to be very popular in image processing and several additional 

extensions to the original model have been proposed. Serre et al., (2007) 

extended the model to a total of 9 layers (sticking to alternating S and C layers), 

and adding extra pathways by which information could bypass layers. This 

information bypass pathway was inspired by the visual cortex in which 

information from low level visual areas can bypass the intermediate visual 

areas and feed directly into higher areas (Nakamura, Gattass, Desimone, & 

Ungerleider, 1993).  Support vector machines (Cortes & Vapnik, 1995) are 

usually paired with the HMAX description to perform the task of image 

categorization. HMAX offers a flexible descriptor that can also be easily applied 

to the task of image similarity.  
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Figure 1.6. A visual diagram of the stages of the HMAX model. Solid lines between layers represented 

a weighted sum (Layer S1’s convolution can also be thought of as a weighted sum). Dotted lines 

between layers represent a max operation. Figure taken from Riesenhuber & Poggio, (1999). 

 

Combination models. So far, each image descriptor has been outlined 

separately to one another. While it is useful to think of them separately, as they 

calculate their image description in different ways, image descriptors can also 

be combined in order to produce more efficient image descriptions. Recent 

research, instead of creating novel image descriptors, has discovered the 

power of combining different image descriptors together to achieve superior 

performance. These combination image descriptors are usually paired with 
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novel decision making mechanisms such as advanced support vector machines. 

There are some notable models from this category of computational models, 

such as one of the recent winners (Everingham et al., 2015) of the pascal visual 

object challenge (Everingham et al., 2010). The model was run under the name 

NUS_SCM (Q. Chen et al., 2015) used histogram of gradients (Dalal & Triggs, 

2005), local binary pattern (Ojala et al., 1996) and a color invariant model of 

SIFT (van de Sande, Gevers, & Snoek, 2010) to create its image description. This 

was paired with a context support vector machine decision process that was 

sub-class aware. Other notable models to be mentioned briefly in this thesis 

are Semantic scene attributes model  (Patterson & Hays, 2012) and Never 

Ending Image learner (X. L. Chen, Shrivastava, & Gupta, 2013).  

Convolutional Neural Networks. Convolutional neural networks were inspired 

by the hierarchical structure of human and primate vision. They are a family of 

hierarchical models with several stages of feature extraction formed by 

convolutional complemented by operations such as max pooling and output 

normalization. Convolutional networks consist of many layers and as these 

layers increase so too does the complexity of features that they extract. A 

network trained on faces may have, by its second layer, features resembling 

eyes and noses and, by its fourth layer, whole face representations might be 

seen. The main advantage of neural networks is that they typically learn from 

experience which features are informative or not. This is in contrast to other 

image descriptors that for which the informative features to be detected are 

predetermined by the creator of the model. Convolutional models showed 
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early success (Fukushima, 1980; Lecun, Bottou, Bengio, & Haffner, 1998) and 

have been applied to other tasks such as auditory or text analysis.  

Deep Supervised Convolutional Neural Net. Deep supervised convolutional 

neural nets belong to the family of convolutional neural nets. These networks 

have two key properties that make them stand out from traditional 

convolutional networks; the fact that they consist of many layers (deep) and 

that the employ supervised learning. Up until recently convolutional neural 

nets have been largely limited in size due to computing power. In recent years, 

with advancements in GPU power, as well as the algorithms that implement 

them upon multiple GPUs, convolutional networks have been able to reach 

unprecedented sizes with upwards of 19 layers (Simonyan & Zisserman, 2014). 

Convolutional networks with more than around eight layers have been labeled 

as ‘deep’ to highlight their size. Convolutional neural nets have had a number 

of different learning algorithms proposed for them over the years. Supervised 

learning algorithms have been shown to perform particularly well (LeCun, 

Bengio, & Hinton, 2015). Supervised learning is used when a set of training 

images labeled with the correct category terms are passed through the 

convolutional neural net, this allows learning to occur which allows the 

convolutional neural net to optimize itself to the features which best explain 

the differences in object categories. This is opposed to unsupervised learning 

which allows the convolutional network to decide which features are relevant 

without any categorical knowledge. Deep convolutional supervised networks 

have dominated image competitions far surpassing other methods of image 
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classification (Russakovsky et al., 2015). Deep supervised convolutional 

networks were originally described in the ImageNet competition (Krizhevsky et 

al., 2012). This neural network contained 60 million parameters with 650,000 

neurons and was comprised of eight layers; 5 convolutional layers, followed by 

3 fully connected layers. The neural network was trained on 1.2 million high-

resolution images from the ImageNet LSVRC-2010 contest (Russakovsky et al., 

2015). The original model used the output of the eighth layer to make a 

decision of an image’s category. It did this by applying a 1,000-way soft max on 

the output of layer 7. Layer 8 is, therefore, thought of as the decision process, 

with layer 7 as the primary image description.  At the time of creation this 

model set a new bench mark for convolutional models’ performance.  

1.4. Brief History of Computational Model Competitions 

Computational model competitions have originated due to a need for 

standardized testing in the performance of different computational models. 

Originally when a researcher was determining a new model’s effectiveness 

they would run the model on a number of tests. Unfortunately, different 

research labs were using different data sets to create these tests, and thus it 

was difficult to compare models across research groups. Therefore, a need 

grew for standardized tests and data sets in which many researchers could 

publish the results of their best-performing models and performances across 

models could be compared. The result has been annual computer model 

competitions with published image data sets (Everingham et al., 2010; Fei-Fei, 
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Fergus, & Perona, 2007; Russakovsky et al., 2015; Torralba, Fergus, & Freeman, 

2008; Xiao et al., 2010). Originally these image sets contained just one type of 

category image such as scenes, places or objects, but as the image sets have 

become more advanced all three have been incorporated. Computational 

models in these competitions are examined on a range of tasks, such as object 

and scene categorization as well as object segmentation and detection. These 

computational model competitions provide a history of how computational 

models have evolved in their design and performance over the years.  

One of the earliest standarsised data sets computational models were tested 

on was the Caltech 101 data set (Fei-Fei et al., 2007). This data set contained 

101 image categories. Each image category contained 40-800 images, with the 

average of around 50 images per category. Computational models were 

commonly trained on around 15-30 images per class. The competition ran from 

2003 until 2006. A number of different computational models were classified 

as the top performers, with very little difference in the top published results at 

the end of 2006, the top two having very close correct categorisation rates. The 

top performer at the end of 2006 employed a geometric blur (Berg & Malik, 

2001) image descriptor, paired with a combination of support vector machine 

and nearest neighbour algorithm (Zhang et al., 2006) as its decision process. 

This computational model performed at an accuracy rate of 66% with 30 

training examples. The second highest performance was by the PHOW 

descriptor, scoring 64% accuracy with 30 training images (Lazebnik et al., 2006). 

The majority of entries to Caltech 101 focused on creating novel image 
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descriptors which had high performances and nearly all were paired with 

support vector machines. 

The Pascal visual object classes challenge (Everingham et al., 2010) contained 

20 object classes, with 22,591 images in total. The competition ran from 2005-

2012 and was charactersised by models that combined multiple image 

descriptors in a single decision process. For example, the best performing 

model for object categorisation (Everingham et al., 2015), NUS_SCM (Q. Chen 

et al., 2015), used a number of different image discriptors in order to generate 

its image discription; histogram of gradients (Dalal & Triggs, 2005), local binary 

pattern (Ojala et al., 1996) and a color invariant model of SIFT (van de Sande et 

al., 2010). They attributed their success to a context support vector machine 

which created sub-class aware object detection and classification.  

More recent competitions have used much larger scale image databases. The 

ImageNet large scale visual recognition challenge (ImageNet) (Russakovsky et 

al., 2015) contains 1.2 million images spread across 1000 image categories; 

each image category contains 700-1300 images. The competition has run from 

2010 – present and, during this time, the most successful computational 

models have changed quite dramatically. In the first two years the winning 

computational models (Lin et al., 2011; van de Sande, Uijlings, Gevers, & 

Smeulders, 2011) consisted of variations of the SIFT descriptor (Lowe, 2004; 

Perronnin & Dance, 2007) mixed with other image descriptors (Ahonen, Hadid, 

& Pietikainen, 2006) combined with variations of support vector machines. The 
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design of these models were popular in the earlier image competitions of 

Caltech 101 and Pascal visual object class challenge. In 2012 a deep 

convolutional neural net took first prize by a considerable margin (Krizhevsky 

et al., 2012) in the field of image categorization, and in 2013 almost every entry 

used large-scale convolutional neural networks. By 2014 deep convolutional 

networks won on all three of the tasks the competition offered; image 

classification, single-object localization, and object detection. Innovations in 

convolutional neural nets came largely from the availability of such a large 

training set offered by the ImageNet competition, along with the design of 

efficient algorithmic implementation and massive computing resources offered 

by new GPUs.  

Image competitions compare computational models to a set of idealised 

responses pre-determined by the researcher. This means that computational 

models are being compared to an idealised set of human responses; human 

behavior free of any restriction. Although these competitions do not compare 

computational models to real human behavior they are still able to provide a 

general assessment. If a model has near human performance then it would 

suggest that this model would be intresting to examine further. Alternatively, 

if a model does not have near human performance then it is unlikely to be 

performing calculations in a similar manner to human observers.  
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1.5. Comparing computational models to human behaviour 

Studies which compare computational models of vision to human observers’ 

behavior come in two different flavors. Some studies compare a single 

computational model to human behavior, providing an in-depth analysis of a 

single model, akin to a “case study”. We will consider some examples of such 

studies first. Other studies, which we will move on to second, compare multiple 

models with behavior to try and determine which performs best. 

Serre, Oliva, & Poggio (2007) performed a case study for their HMAX model. 

HMAX was designed on known principles of the human visual cortex and had 

not been optimized to match human behavioral characteristics. The 

researchers were interested in examining if it was able to predict human 

behavior in terms of error rates and reaction times. They showed that the 

HMAX model was able to detect whether images contained objects such as a 

body in the distance, a body nearby etc., and that the profile of performance 

for each category was similar to that of human observers in a speeded 

perceptual task. This study was the first to demonstrate that a state of the art 

computational model of vision could predict human error rates in an image 

categorization task.  

Oliva & Torralba (2001) developed the GIST image descriptor and 

demonstrated that human observers’ ratings of scene properties such as 

naturalness, openness and roughness could be captured by the low-level 

properties of the image described by their GIST descriptor. Additionally, they 
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showed that GIST was able to retrieve images that human observers would rate 

as similar on these property ratings. This would suggest that GIST is able to 

produce image descriptions which organize images in a similar way to human 

observers. 

Several studies have investigated the relationship between scene recognition 

and object recognition. This usually takes the form of object or scene 

recognition tasks when objects and scenes are either consistent or inconsistent 

(Davenport & Potter, 2004; Henderson & Hollingworth, 1999; Joubert, 

Rousselet, Fize, & Fabre-Thorpe, 2007; Palmer, 1975). These studies show that 

objects are more easily recognized in scenes they are likely to be found in. A 

proposed mechanism for this phenomenon of scene-object interaction is a 

dual-system account (Davenport, 2007; Davenport & Potter, 2004) in which 

scene recognition and object recognition interact and can have a facilitation or 

inhibitory effect. Mack & Palmeri (2010) proposed an alternative explanation 

to the dual-system interaction theory. Using the GIST image descriptor paired 

with a linear discriminant analysis they showed that images which had objects 

consistent with the scene were further from the decision boundary than 

images which had objects inconsistent to the scene. In a linear discriminant 

analysis, the further a point is from the decision boundary the easier it is to 

categories as belonging to that category. They went on to show that an image’s 

distance from the decision boundary using the model was able to account for 

the behavioral advantage in humans in consistent vs inconsistent object-scene 

images.  
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A single scene or object can be categorised on a number of different 

dimensions. For example, a beach scene can be categorised as open or 

navigable (attribute level), it can be categorised as a beach (basic level) and 

also as outdoors (superordinate level). A number of studies have shown that 

categorising an image on these different levels reveals different reaction times; 

with attribute level having the slowest and superordinate having the fastest 

reaction times (Joubert et al., 2007; Kadar & Ben-Shahar, 2012; Loschky & 

Larson, 2010). The effect has been labeled the superordinate advantage and 

has been used to argue for a heirarchical approach to human image 

categorisation (Joubert et al., 2007; Kadar & Ben-Shahar, 2012; Loschky & 

Larson, 2010).  Sofer, Crouzet, & Serre (2015) proposed an alternative 

explanation to this effect. Using GIST, paired with a linear discriminant analysis, 

they showed that the differences in reaction times to categorizing different 

images could be attributed to the distribution of images around a decision 

boundary. If images were closer to the boundary, this had the effect of making 

the images harder to categorize, and also resulted in slower reaction times. To 

examine this theory in greater detail, the researchers went on to select pools 

of images that were either close to the decision boundary or further away and 

demonstrated the effect could be reversed by artificially selecting the pools of 

images used in the categorization task. Sofer, Crouzet, & Serre (2015) is the 

first study listed so far to examine categorization rates on a per-image bases 

irrespective of image category.  
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When determining which computational models best fit human behavioral 

data, multiple computational models need to be compared to the same 

behavioral data set. These studies focus on comparing computational models 

to invariant object recognition; the ability to recognize the same object from 

different angles. 

Ghodrati, et. al. (2014) measured the performance of human observers and a 

number of computational models in an object invariant recognition task. 

Stimuli were generated using a program that used 3D models. These allowed 

objects to be varied in rotation as well as by the background they were placed. 

In this study six different models were compared to human behavior. The 

computational models assessed were a V1-like model, HMAX (Serre et al., 

2007), GMAX (Ghodrati, Khaligh-Razavi, Ebrahimpour, Rajaei, & Pooyan, 2012), 

Stable (Rajaei, Khaligh-Razavi, Ghodrati, Ebrahimpour, & Abadi, 2012), SLF (J. 

Mutch & Lowe, 2008) and a deep convolutional neural network (Krizhevsky et 

al., 2012). All of these models, with the exception of the deep convolutional 

neural network, are variants of the HMAX model (Serre et al., 2005). As a 

control, they entered the stimulus’ raw pixel values into a support vector 

machine. They compared human behavior to the different computational 

models on the overall percentage correct and the percent correct for each 

image using a modified version of representational similarity analysis (Nili et 

al., 2014) to fit the behavioral task.  They found that under small image 

variations, such as small image rotations or background shifts, the models were 

able to perform nearly as well as human observers, in overall percent correct. 
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They also showed that at the individual image level observers and computer 

models behavior matched closely. As the size of the image variations increased 

human observers still performed remarkably well, but the computational 

models suffered greatly, in terms of overall percent correct. As would be 

expected, at the individual image level as image variations increased the 

computational models performed less similarly to the human observers. The 

results suggest that computational models perform similarly to humans in 

optimal conditions, but as the task of image categorization becomes harder 

differences in performance and behavior become apparent. 

Kheradpisheh, et. al. (2016) extended the study by Ghodrati et al., (2014), by 

examining a number of deep convolutional neural nets. They examined a total 

of eight deep convolutional models and used the HMAX model (Serre et al., 

2007) as a benchmark. All of the deep convolutional models are variants of 

Krizhevsky et al., (2012) deep convolutional network, with the exception of the 

very deep model (Simonyan & Zisserman, 2014) which consisted of 19 layers. 

All of the neural networks were trained on the ImageNet database 

(Russakovsky et al., 2015), with the exception of one model (Zhou, Lapedriza, 

Xiao, Torralba, & Oliva, 2014) which included scene images extracted from 

search engines and the SUN database (Xiao et al., 2010). Similarly to Ghodrati 

et al., (2014) they evaluated each computational model on similarity to human 

behavior on the overall percentage correct as well as the percent correct for 

each image. The result found showed that some of the deep convolutional 

neural nets were able to reach human performance even at large object 
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rotations, on overall percent correct. Generally the deeper a convolutional 

neural net was the more human-like it behaved at the individual image level 

even at large object rotations. Surprisingly some of the deep convolutional 

neural nets had a profile of correct behaviour for each individual image which 

were indiscernible from human observers at high image variations. Overall they 

showed that deep supervised convolutional neural nets provided a good fit for 

human object invariant recognition at the individual image level. 

Research investigating the similarity between computational models of vision 

and human behaviour is still a relatively new field and is thus missing a full 

scope of investigative studies. There are two main issues with this field. The 

first is that the majority of research has focused on assessing a single model’s 

fit to behavioural data, with only a few studies examining multiple models fit 

to human behaviour. This has made making comparisons between different 

models difficult. Secondly, the majority of research in this area has compared 

computational models to human behaviour at the category level, rather than 

at the individual image level. By making the comparisons more specific a 

greater amount of detail about how a computational model fits human 

behaviour can be obtained. In order to remedy this investigative studies need 

to focus on comparing multiple computational models to a single behavioural 

data set which matches computational models’ behaviour to human observers 

on a single image basis. The research, on the whole, demonstrates the story 

that computational models which base their image description on low level 

visual properties (e.g. GIST) are able to explain a significant proportion of 
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variance in observers’ behaviour when paired with a linear decision bound. 

However, deep supervised convolutional models out perform these models 

and provide the closest account of any type of computational model at 

explaining observers’ behaviour. 

1.6. Comparing computational models to neural activity 

1.6.1. Representational Similarity Analysis 

Several fMRI studies have been conducted comparing image descriptors to 

human neural activity. The main method of comparing image descriptors to 

neural activation is through representational (dis-)similarity analysis (RDA/RSA) 

(Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 2008; Nili et al., 

2014). Representational similarity analysis (RSA) is an alternative application of 

multivariate pattern analysis (Haxby et al., 2001) which allows patterns of 

neural activity in response to different stimuli to be compared to the structure 

of computational image descriptions.   
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Figure 1.7. The example (Rice, Watson, Hartley, & Andrews, 2014) presented here illustrates the process 

of representational similarity analysis. Two similarity matrices are shown, one from neurological data, as 

seen in A, and one from a computational model, as seen in B. In C the cells of the similarity matrices are 

plotted against each other and a correlation run. The result of this correlation reveals the similarity of 

how the different image categories are structure between biological vision and the image descriptor 

being examined. 

 

Performing an RSA is a 2-step process; we investigate the representation of a 

particular system (e.g. a particular image descriptor or an fMRI dataset) and 

then we investigate the similarity of those representations between systems.  

In the first step, to investigate the representation within a system, a similarity 

matrix is created across images (e.g. Khaligh-Razavi & Kriegeskorte, (2014)) or 

across categories (e.g. Watson, Hartley, & Andrews, (2014)), depending on the 

resolution of the analysis. This is essentially a correlation matrix, whereby each 

cell is the correlation between the representations in the system of two images 

(for example, the correlation between a pair of GIST vectors, or the correlation 

between a pair of fMRI response vectors). The matrix tells us, essentially, which 
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images the system considers to be “similar” and this will differ according to the 

system (is the system sensitive to scene semantics for instance, or just to low-

level properties). 

The second step is to compare how similar these representations are between 

systems. This can be measured with a single correlation of the similarity 

matrices for any pair of systems. 

An example of this approach is shown in Figure 1.7, in which a similarity matrix 

of 5 different image categories has been calculated for an image descriptor as 

well as for the neural activity observed in human participants. The similarity 

matrix for the computational image descriptor was obtaining by comparing the 

similarity of each image description in each image category against each other 

and the average similarity taken. The similarity matrix for the neural responses 

was calculated by comparing the similarity of each image’s fMRI response 

vector in each image category against each other and the average similarity 

taken. Once the similarity matrices had been constructed the values in the cells 

of each matrix are plotted against each other as each represents the same 

pairwise comparison between two images. A correlation is then run to establish 

if there is a relationship between the two matrices. Correlations with high 

variance explained show that the pattern in which images are represented are 

very similar. Correlations with a small or no variance explained would suggest 

that the structure of image descriptions are differing largely from each other.  
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In summary, RSA does not directly compare image descriptors to human neural 

activity, but instead estimates the fit of the pattern of responses of the 

computational image descriptor to the observed pattern of responses in the 

neurological activity.  

1.6.2. Which image properties best explain neural activation in the visual 

cortex 

The concept that the properties of a stimulus are key in determining evoked 

neural activation (O'Toole, Jiang, Abdi, & Haxby, 2005) has spurred research 

investigating which properties of an image best explain the observed neural 

activation. Two camps have developed, one stating that neural activation is 

largely in response to the low level visual properties of an image (Andrews, 

Watson, Rice, & Hartley, 2015). While, another camp states that along with the 

low level properties of an image, knowledge about categories is a requirement 

to explain neural activation (Khaligh-Razavi & Kriegeskorte, 2014).  

Watson et al., in a series of studies investigated the GIST image descriptor’s 

ability to predict neuronal activity using RSA. GIST is an image descriptor which 

solely uses the low level visual properties of an image in order to create its 

image description. These studies have shown that the structure of image 

descriptions produced by GIST correlates with structure of evoked neural 

activity from a variety of scene images (city, indoor, coast, forest, mountain) 

(Watson, Hymers, Hartley, & Andrews, 2016), supporting the current literature 

that scene perception is mediated though the low level properties of an image 
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(Oliva & Torralba, 2001). They have also shown that neural activity in response 

to images of objects (bottles, chairs, houses and shoes) as well as faces is 

predicted by GIST’s image descriptions (Rice et al., 2014).  

A number of studies have been conducted in which the low level image 

properties of an image have been varied to determine the extent that the 

evoked neural activation will vary based upon this. These have shown that the 

neurological activation varied with these low level visual property changes, 

even though the semantic category of the image had not changed (Coggan, 

Baker, & Andrews, 2016; Coggan, Liu, Baker, & Andrews, 2016; Watson, Young, 

& Andrews, 2016). Watson, Young, et al., (2016) later showed that alternative 

versions of the GIST descriptor (spectral and spatial) correlate with changes in 

neural activity when these low level properties were changed.  

Previous research had always viewed that the clustering of neural activity to 

the same category of objects was evidence for a ‘categorical/modular’ 

response (Kanwisher, McDermott, & Chun, 1997; Kanwisher & Yovel, 2006). A 

number of studies have been produced questioning this assumption and 

examined if grouping based on low level visual properties could explain this 

clustering effect. The cells of a RSA matrix can be broken down into two groups, 

those classified as within-category (correlations of the same category of image, 

e.g. faces against faces) and between-category (correlations of images not of 

the same category, e.g. shoes against faces) (Haxby et al., 2001; Kriegeskorte & 

Kievit, 2013). Rice et al., (2014) demonstrated that if all the within-category 
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points from the RSA correlation were removed that a significant correlation still 

remained. This shows that the similarity of neural activity between two 

categories is predicted by the similarity of the low level visual properties of the 

images. For example, the similarity of a face is to a shoe in neural activity is 

predicted by the similarity of their low level visual properties, demonstrating 

that category knowledge may not be necessary for clustering to occur. In a 

second paper investigating this clustering effect Watson, Hartley, & Andrews, 

(2017) employed a cluster analysis to organize images based on their low level 

visual properties using the GIST image descriptor. These clusters did not 

correspond directly to semantic categories, yet the clusters of images showed 

‘grouping’ of neural activity in observers. This would suggest that ‘grouping’ of 

neural activity of images of the same image category is due to shared low level 

image statistics, rather than the visual system being made up of modules 

dedicated to specific processing of categories.  

All of this research has led to the hypothesis that, similar to low level visual 

areas, high level visual areas are organized by low level visual properties, albeit 

in a more complex manner (Andrews et al., 2015). However, some research has 

shown that this may not be the total story. There is a whole class of 

computational models that are classified as supervised models. These models 

still obtain their image description from low level visual properties, but 

modulate their response based on known categorical principles. These models 

often have greater levels of performance in general visual perception tasks 

than their unsupervised counterparts (image descriptions based on low level 
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visual properties alone) (Ghodrati et al., 2014; Khaligh-Razavi & Kriegeskorte, 

2014; Kheradpisheh et al., 2016; Krizhevsky et al., 2012).  

A number of studies have examined the pattern of neurological activity in 

response to objects and scenes using a range of different computational 

models. These computational models vary from ones based purely on low level 

visual properties to those supervised by categorical knowledge. Aminoff et al., 

(2015) compared different computational models to the visual areas known to 

be responsible for scene perception; the Parahippocampal Place Area (PPA), 

Retrosplenial Cortex (RSC) and Occipital Place Area (OPA). The results found 

showed that the models Never Ending Image learner (NEIL) (X. L. Chen et al., 

2013) and Semantic scene attributes (SUN) (Patterson & Hays, 2012) explained 

the most activation of any of the models examined in the PPA and the TOS, 

while GIST best accounted for activity in the RSC. NEIL and SUN are both 

computational models which create their image description based on learned 

categorical knowledge. The results of this study suggest that although GIST is 

able to predict activation to scene images, certain areas responsible for scene 

understanding are better explained by low level visual properties supervised 

by categorical knowledge. 

A number of studies have examined which computational models best explain 

neural activation in inferior temporal (IT) cortex in response to images of 

objects. IT is considered to contain the final representation of objects used by 
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the visual cortex (Bell et al., 2009; Kiani et al., 2007; Kriegeskorte, Mur, Ruff, et 

al., 2008).  

Yamins et al., (2014) compared a number of computational models to neural 

activation to objects; SIFT (Lowe, 2004), V1-like model, V2-like model, HMAX 

(Serre et al., 2007) and a four layer deep supervised convolutional model. They 

compared these computational models using RSA to neurological activation in 

area V4 and area IT. Area V4 is thought of as the precursor to area IT. The 

results showed that the deep supervised convolutional neural network 

described the neural activation better than any other model. Comparing the 

output of each layer of the deep convolutional model to area IT showed that 

with each layer of the deep convolutional model better explained the amount 

of variance in the neural activation. It was also shown that the penultimate 

layer image description of the deep supervised convolutional neural network 

was the most similar to the activation seen in area V4, mimicking biological 

findings. Cadieu et al., (2014) performed a follow up study, comparing a 

number of deep supervised convolutional networks ability to explain neural 

activation patterns in area IT to objects. They used the deep convolutional 

networks of Yamins et al., (2014), Zeiler & Fergus, (2014) and Krizhevsky et al., 

(2012), as well as the models previously mentioned in Yamins et al., (2014). 

They again showed that the deep convolutional models performance was 

superior to models that derive their image description from the low level visual 

properties of an image. These study suggests that deep supervised 

convolutional models provide a better fit to neural activation found in the 
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visual cortex over image descriptors which solely employ low level visual 

properties.  

Khaligh-Razavi & Kriegeskorte (2014) compared a mammoth number of 

computational image descriptors to neural activity in area IT using RSA. A total 

of 37 computational image descriptors were compared in total, an almost 

exhaustive list of the state of the art image descriptors. Additionally, they used 

a bootstrap method of RSA so that they could estimate the noise celling; the 

maximum variance explained possible given the noise in the data. They found 

that computational models based on low-level visual properties, such as GIST, 

indeed did explain some of the variance in neural patterns of activation, but 

this was a long way off fully explaining the pattern of activity found in area IT. 

They showed that a deep supervised convolutional network (Krizhevsky et al., 

2012), that was linearly reweighted to fit the categories being tested, fully 

explained the structure of neural activation found in area IT to object stimuli, 

given a noise ceiling. This study shows that image descriptors that base their 

image description on the low level properties of an image do explain some of 

the variance in patterns of neural activation found, but in order to fully explain 

the activation categorical knowledge needs to be employed.  

Research comparing computational image descriptors to neurological activity 

is diverse in the different computational models which have been examined. 

The majority of these computational image descriptors have found to correlate 

in some way to with evoked neural activation. This is surprising as these image 
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descriptors have never been optimized to predict neural activity and yet the 

majority still predicted neural activity. This would suggest that, irrespective of 

their implementations, the majority of image descriptors organize objects in a 

similar manner to each other and also to biological vision. The fact that image 

descriptors based on low level visual properties readily correlated with neural 

activation can be taken as a sign that high level image representations are 

based on low level visual properties. Alternatively, this may not be the whole 

story as it has been shown that deep supervised convolutional neural nets are 

closest, out of all the models examined, to neurological patterns of activation. 

Deep supervised neural nets base their image description on low level visual 

properties, but then modulate their response with respect to categorical 

knowledge. Neural nets are based on human biology and therefore could 

provide the closest approximation to a computational model of human visual 

perception. Together from this body of research it would suggest that high level 

scene and object representations in biological vision are constructed from low-

level properties, but are then adjusted to fit categorical knowledge. 

Interestingly this body of research finds little difference between the structural 

representation of scenes and objects; categorically supervised over low level 

property image descriptor models best fit neural representations. This is 

contrary to previous literature which has viewed them as using entirely 

different mechanisms in order to create their image property representations 

(Barrow & Tenenbaum, 1978; Biederman, 1987; Marr, 1982; Potter, 1975). 
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Applying computer vision models to neural data may allow us to better 

understand how scene and object information is encoded in neural systems. 

1.7. Overview of thesis 

In this thesis, we investigate the similarity of different computational models 

to human observers’ behavior. Specifically, the aim is to investigate not only 

the image descriptors in the models, but the contributions of several other 

components of the model, such as the contribution of the decision process and 

the image set. 

Chapter 2 outlines and explains the various methods used in this thesis; the 

core components used to create the computational models, as well as the 

methods of comparison between observers’ behavioral data and the 

computational models. 

Chapter 3 investigates the similarity of different computational image 

descriptors to their counterpart employed by human observers. This is done 

through comparing the behavior of computational image descriptors to 

humans on an image recognition task.  

Chapter 4 investigates the similarity of different decision processes to human 

observers in an image categorization task. An image categorization task was 

chosen as it provides a task with which the decision process in human 

observers is hotly debated (Ashby & Maddox, 2005, 2011).  
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Chapter 5 investigates the effect of altering image set statistics of humans and 

computational models. This chapter aims to see if human observers can be 

made to respond closer to computational models of vision by over training 

them on the image set used by the computational model.  

Chapter 6 investigates the mechanism by which observers are producing image 

descriptions when image duration is small.  

Chapter 7 overviews the key findings in the thesis. Advantages of the methods 

used within this thesis are discussed as well as the direction future research 

would benefit.  
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Chapter 2 -  General Methods 

2.1. Introduction 

As outlined in Chapter 1 - Model of Visual Processing, computational models 

can be comprised of three main components; image descriptor, decision 

processes and the image set. In the studies presented in this thesis multiple 

computational models comprised of different variants of these components 

have been constructed. This section provides a list of the components used in 

the computational models as well as materials used in the experiments (e.g. 

Image set).  

2.2. Image Descriptors 

Four different image descriptors were examined; GIST (Oliva & Torralba, 2001), 

PHOW (Lazebnik et al., 2006), HMAX (Serre et al., 2007) and a deep supervised 

convolutional neural network (Krizhevsky et al., 2012). How each of these 

formed its image description is summarized here. 

GIST derives its image description by dividing the image into a 4x4 grid, giving 

16 non-overlapping windows. Oriented Gabor filters in 8 orientations and 4 

different spatial scales convolve with each of these 16 windows. The mean 

filter response intensity in each window is then measured. This generates a 

vector of 512 (32 x 16) values. This results in an output that represents the 

image in terms of spatial frequencies and orientations present at different 

positions across the image. The code used to calculate the GIST image 
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description is freely available at 

http://people.csail.mit.edu/torralba/code/spatialenvelope/ (Oliva & Torralba, 

2001).  

Figure 2.1. An illustration of the GIST descriptor on an example image.  Different Gabor filters are 

convolved with the input image generating the filtered images. These filtered images are then split 

into a 4 x 4 grid and the mean intensities taken in each window to form the GIST description. Taken 

from Rice et al., (2014). 

 

The PHOW image descriptor represents an image based on the number of SIFT 

features from a learned dictionary found in an image. As PHOW extends the 

dense SIFT image descriptor, for the use of image classification, the dense SIFT 

image descriptor will first be described and then the extension added by PHOW 

shall be explained.  
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The dense SIFT descriptor is a variant of the original SIFT descriptor. In the 

original SIFT descriptor feature points were located and then described. In 

comparison, the dense SIFT descriptor uniformly samples the image and uses 

these samples to create the SIFT features. The utility of this idea can be seen in 

the example of scene recognition, in which information about the whole image 

is useful rather than just information about specific points. This sampling of the 

image is done by splitting the image into 16 by 16 pixel patches with a spacing 

of 8 pixels to create overlap between patches. Each patch of 16 by 16 

neighborhood of pixels creates its own SIFT feature. This is done by dividing the 

patch down further into 4 by 4 blocks, and an eight bin histogram of the 

weighted orientation gradient is calculated for each block. The process by 

which a histogram of weighted orientation gradients is explained in Figure 2.2. 

This produces a 128-dimensional vector using these concatenated histogram 

of each block as the SIFT feature for that patch. The dense SIFT description is 

then the list of the SIFT features uniformly sampled through the image.  
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Figure 2.2. An example of how a weighted gradient histogram is constructed.  A) displays an image 

of a runner split into non-overlapping 8 by 8 pixel windows (a simplified version of a dense SIFT 16 
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by 16 overlapping windows). B) demonstrates a close-up of one window. Blue arrows display the 

gradient orientation scaled by the magnitude. C) shows two matrices, the left most matrix 

represents the gradient direction at each pixel and the right most matrix represents the gradient 

magnitude. Underneath is the histogram of gradients which is constructed from these two matrices. 

The bins of the histogram refer to the gradient direction, while the values which get added to the 

bins are the gradient magnitudes. The example drawn in red demonstrates a typical example, while 

the example drawn in blue demonstrates how the pixel is calculated if the pixel falls between bins. 

Images obtained from Mallick, (2016). 

 

PHOW initially trains a dictionary of the different SIFT features found in the 

image set. This is done by calculating dense SIFT descriptors on a training 

sample of images. Here 30 images were randomly chosen for each image 

category from the mask image set. The resultant SIFT features were then 

quantized using k-means clustering to a dictionary size of 200. For each image 

being described by PHOW a spatial pyramid of three levels is then created and 

the histogram of the dictionary SIFT features was calculated for each bin. This 

is illustrated in Figure 2.3. The concatenated version of the histograms was 

used as the PHOW representation of the image.  The code is available at 

http://slazebni.cs.illinois.edu/research/SpatialPyramid.zip (Lazebnik et al., 

2006).  

http://slazebni.cs.illinois.edu/research/SpatialPyramid.zip


50 

 

Figure 2.3. A visual depiction of spatial pyramiding of an image.  In the above example a dictionary 

size of three SIFT features is shown. Level 0 shows the location of each feature in the image and 

below the histogram bins for each feature. Level 1 spits the image into 4 windows and calculates 

the histogram bins for each SIFT feature in each window. Level 2 splits the image into 16 windows 

and calculates the histogram bin for each feature. The concatenated version of the histogram for 

each spatial level acts as the PHOW image description. Image taken from Lazebnik et al., (2006). 

 

The HMAX model used here is the standard model from Serre et al., (2007). The 

model is inspired by the work of Hubel & Wiesel (1962, 1968) on simple and 

complex cells. The model’s architecture will first be described and then a 

detailed analysis of the processes occurring within the layers will be described. 

The model here possesses two pathways (a main pathway and a bypass 

pathway), both consisting of alternating simple (S) and complex (C) layers. The 

main pathway starts from layer S1 and ends on layer S4 (S1, C1, S2, C2, S3, C3, 

S4). The second pathway implements a bypass pathway, in which information 

from lower layers can influence higher layers by introducing an additional S2b, 

C2b layer which feeds of layer C1 and feeds directly to S4. The bypass pathway 
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is designed to mimic biological vision, in which information from low level 

visual areas can bypass intermediate areas and feed directly into higher visual 

areas (Nakamura et al., 1993). Figure 2.4. demonstrates the architecture of the 

model as well as the area it corresponds most closely with in the visual cortex. 

Figure 2.5. shows a visual representation of the processes which are occurring 

in the first two S layers and the first C layer. In general S layers perform a 

summation operation on their inputs, while C layers perform a max operation 

on their inputs. By alternating between S and C layers the model’s output 

becomes invariant to shifts in scale or position. The S1 layer’s cells convolve a 

bank of Gabor filters across the image (can be thought of as a summation of 

pixel intensities using the weights of a Gabor filter). This filter bank consists of 

96 different filters (two different phases, four orientations and 17 receptive 

field sizes). Each of the cells in the C1 layer receives the output of a group of S1 

cells with the same preferred orientation, but at slightly different positions and 

sizes. The pooling over cells in S1 causes the cells in C1 to be invariant to small 

changes in size and position. Layer S2 pools the activity of a local neighborhood 

of C1 cells, as a result the complexity and size of their preferred stimuli is 

increased. Layer C2 pools over Layer S2 units that are tuned to prefer the same 

stimuli, but at different locations and scales. Layers S3 and C3 perform the 

same process as S2 and C2 only iterated one more time to increase in feature 

size, invariance and complexity. Layers S2b and C2b corresponding to the 

bypass layers which perform the same operations as their S2 and C2 

counterparts, yet pool two to three times as many cells from the layers before 
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them. This causes them to represent more elaborate features, but with less 

tolerant to image changes. The final layer S4 sums from all C layers to form 

complex whole image representations. The HMAX model described here 

performs unsupervised learning to decide the weights used in S layer 

summation (from layers S2 and onwards). This is done by passing training 

examples through the model, the weights of S cells are then altered according 

to the activity they perceive in their receptive field. This has the effect that 

patterns of activity which regularly occur within the model become enhanced. 

This learning adapts the model to the image statistics of the natural 

environment and its units become tuned to common image features. Here the 

model was trained on 30 images from each image category from the mask 

image training set. The code used is freely available at 

http://cbcl.mit.edu/software-datasets/pnas07/index.html (Serre et al., 2007). 

http://cbcl.mit.edu/software-datasets/pnas07/index.html
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Figure 2.4. A diagram of the architecture of the HMAX model used.  Image modified from Serre et 

al.,  (2007). 
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Figure 2.5. A visual depiction of the processes occurring in the first two S layers and the first C layer 

in the HMAX model used.  C) shows an image being processed by layer S1. The area of the image 

being examined is highlighted in blue. Three banks of cells are shown and above them with different 

receptive field sizes being convolved to the image. Each layer of the bank of cells shown in layer S1 

corresponds to an orientation of the Gabor filter convolved to the image at different X and Y 

locations. B) shows the processes occurring from Layer S1 to Layer C1. A max operation is performed 
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on cells of S1 with similar spatial location and same preferred orientation, highlighted in green. A) 

displays the process which occurs between layer C1 and S2. A weighted summation, seen in red 

highlight, of C1 cells which is across orientation and similar spatial location is occurring. The weights 

used for the summation are learned through unsupervised training, in which the weights mimic the 

activity seen in the receptive fields of the cells during training. Modified from Mutch, (2010; 2008). 

 

The deep supervised convolutional network examined here is the winner of the 

ImageNet 2012 competition (Krizhevsky et al., 2012). The neural network is 

comprised of two kinds of layers, convolutional layers and fully connected 

layers. A general explanation of the processes that happen in each of these two 

types of layers will be described, as well as the basics behind supervised 

learning in convolutional neural nets. After this explanation the basic 

architecture of the supervised convolutional network shall be described.  
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Convolutional layers, as the name suggests, perform convolution of a bank of 

filters on their inputs creating a stack of filtered images; one filtered image for 

each filter. The output images show where the filters best match the image. 

This can be seen in Figure 2.6 which displays an input image of an ‘X’ being 

convolved with 3 different filters. There are two additional operations which 

can also occur in a convolutional layer; the rectified linear unit (ReLU) and max 

pooling.   

 

Figure 2.6. Convolution of a set of three filters onto an image.  

 The first and third filter show an output which demonstrates that the filter best fits along the 

diagonal from left to right and right to left respectively. The middle filter shows an output which 

demonstrates that it best fits the centre of the image.  Taken from Rohrer, (2016). 
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ReLU is a function that turns any negative values in a stack of images into a 0. 

An example of this can be seen below in Figure 2.7. The ReLU function adds a 

nonlinearity to the system which lets it represent more complex features than 

convolution would alone. The ReLU function is used over other nonlinear 

functions, such as tanh and sigmoid, due to it allowing the network to train 

faster. 

Figure 2.7. A demonstration of a ReLU function which turns any negative value in a stack of images 

to 0. Taken from Rohrer, (2016). 

 

Max pooling is a process by which the image stack is shrunk. A window is passed 

over the image and the maximum value is taken. Shrinking through max pooling 
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is convenient to reduce the size of the stack. Max pooling creates outputs 

which care less about where the feature was located in the image and so 

invariance to feature position is created. A visual demonstration of max pooling 

is seen in Figure 2.8. 
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Figure 2.8. An example of max pooling for the first feature. A window size of 2 by 2 pixels is moved 

across the image using a stride of 2 pixels. Taken from Rohrer, (2016). 

 

The second kind of layer is the fully connected layer. These layers possess a 

number of neurons which perform a weighted sum of their inputs. The 

weighing by which each neuron sums its inputs are different and so complex 
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combinations of features are able to be represented very quickly by stacking 

multiple fully connected layers. A diagram of a fully connected layer can be 

seen in Figure 2.9. The output of a fully connected layer normally has a non-

linear operation added to it, for example the ReLU. Adding this nonlinearity to 

the output of these layers has the same purpose as in the convolutional layers, 

to an increase in the complexity of functions the network can produce. 

 

Figure 2.9. A diagram of two fully connected layers stacked on top of each other. In layer 1 each 

neuron performs a weighted sum of its 3 inputs. In layer 2 each neuron performs a weighted sum 

on each of its 4 inputs. Taken from Rohrer, (2016). 

 

Convolutional neural networks have an incredible ability to learn which 

features in a set of images are relevant to the task of image categorization. This 

learning is done through trying to minimize the output of the cost function of 
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the neural network. The cost function calculates how well a neural network 

performed on a set of images, in essence the difference between the output 

the model gave and the output that we wanted it to have. If the cost function 

returns a value that is small or 0 then the network is performing extremely well 

or optimally. The filters in the convolutional layers and the weights in the fully 

connected layers are all a set as variables which can be altered. It is possible to 

alter these variables so that the output of the cost function changes. Back 

propagation with gradient descent is the process by which the filters and the 

weights in the neural network are altered to reduce the output of the cost 

function and make the network learn about the training set of images. Gradient 

descent for a single weight in an example convolutional network is shown in 

Figure 2.10. Learning in a convolutional neural network is a slow process that 

requires many training iterations and examples. Many training examples are 

needed to stop the neural network learning rules about images which do not 

generalize from a training set of images to the test set. While, many iterations 

of training are needed as the weights and features are only altered a small 

amount at a time so they do not overshoot or miss their local minimum 

contribution to the cost function.  
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Figure 2.10. A demonstration of how changing a weight in a convolutional neural network can affect 

its cost function. By following the gradient, the weight can be altered to find its minimum 

contribution to the cost function. Taken from Rohrer, (2016). 

 

The neural network employed here came as the pre-trained winner of the 

ImageNet 2012 competition (Krizhevsky et al., 2012). The model contained 60 

million parameters with 650,000 neurons and was comprised of eight layers; 5 

convolutional layers, followed by 3 fully connected layers. Max pooling 

occurred after the first, second and fifth convolutional layer. The ReLU non-

linearity was applied to the output of every convolutional and fully connected 
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layer. An input image to the network always took the form of a 224 x 224 x3 

matrix. The first convolutional layer convolved 96 filters of size 11 x 11x 3. The 

second layer took the pooled output from the first and convolved 256 filters of 

size 5 x 5 x 48. The third layer took the pooled output of the second layer and 

convolved 384 filters of size 3 x 3 x 256. The fourth and fifth layer convolved 

the output of the layer before it and had 384 filters of size 3 x 3 x 192 and 256 

filters of size 3 x 3 x 192 respectively. The fully connected layers had 4092 

neurons each. The architecture of the model is seen in Figure 2.11. 

Figure 2.11. An illustration of the architecture of the network used here. Filter sizes are shown here 

as well as the output size of each layer. Taken from Krizhevsky et al., (2012) 

 

The neural network was trained on 1.2 million high-resolution images from the 

ImageNet LSVRC-2010 contest (Russakovsky et al., 2015). The original model 

used the output of the eighth layer to make a decision of an image’s category. 

It did this by applying a 1,000-way soft max (a method of turning the output of 

a network into probabilities) on the output of layer 8. This final layer (Layer 8) 

is, therefore, thought of as the decision process, with layer 7 as the primary 

image description. For our purposes, layer 7 was used as the image description 



64 

 

for the deep supervised convolutional model. Implementation of this model 

can be found at http://caffe.berkeleyvision.org/ (Jia et al., 2014). 

2.3. Decision Processes 

Two types of decision processes are used in this thesis, those used in the image 

recognition tasks and those used in the image categorization tasks. The 

decision processes used in the image recognition tasks, in which participants 

are asked to identify whether a stimulus was present using a match-to-sample 

procedure, are based on Euclidean distance between the images’ image 

descriptions. The image categorization task (“Was there a photograph of a 

mountain?”) explored decision processes from prototype theory, exemplar 

theory and decision boundary theory. 

A single decision process was used in the recognition tasks. This process 

produced a value that we call a Disc score (see below, Chapter 2 - 

Standardization of computational models’ outputs) which is a measure of the 

evidence for correctly discriminating the target image from all other images 

(either a single distractor image or multiple in a rapid serial visual presentation 

procedure). Disc scores were standardized to vary from 0 to 1. 

Standard Image Recognition. The decision process used for the standard image 

recognition tasks calculated the ease with which the computational model 

could tell two images apart. This was done by taking the Euclidean distance 

between the target image and the distractor image to produce the Disc score. 

http://caffe.berkeleyvision.org/
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As the Disc score (distance) gets larger the easier it is to tell the two images 

apart and so is also the evidence for a correct recognition.  

Each of the decision processes used in image categorization tasks calculated 

the strength of the evidence for an image to be placed in a particular category, 

which was called the image’s Cat score (see below, Chapter 2 - Standardization 

of computational models’ outputs). If the decision process correctly 

categorizes the image then the Cat score is positive and increases with 

confidence. Otherwise, the Cat score is negative or extremely small. Calculation 

of each decision process uses a leave-one-out cross-validation method for each 

image in each computational model. Cat scores were standardized to vary from 

-1 to 1. Further details of the calculation for each decision theory are described 

below. 

Prototype Theory. For each image being categorized, the prototype to which it 

was being compared was calculated by obtaining the mean image description 

of all of the images in its category excluding the image being categorized. The 

mean was chosen as the prototype, as each dimension of the image descriptor 

spaces is continuous. The distance between the image’s description and the 

description of the primed category prototype was calculated. For this decision 

process, larger distances suggest less evidence for a correct categorization. 

Therefore, in the normalization step to generate the Cat score for this decision 

process we also subtract the distance score for the image from the maximum 
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distance measured for that computational model, thereby flipping the 

magnitudes of the scores. 

Exemplar theory. Here we use 9-nearest neighbors in order to classify the new 

image. The choice of 9-nearest neighbors is arbitrary, but falls between 

numbers successfully employed in literature for image categorization (Kim, 

Kim, & Savarese, 2012; Zhang et al., 2006). As the question asked to observers 

was ‘Does the image belong to category X?’ the version of exemplar theory 

used here categorized images based on a one-versus-all rule. If one of the 9 

closest images was of the category primed then it was calculated as a +1, if it 

was not of that category a -1 was assigned. This value was then weighted by 

the image’s distance to the image being categorized. A weighted distance was 

used as it has been shown to aid exemplar models in predicting human 

performance (Getty, Swets, & Swets, 1980; Nosofsky, 1986). 

Decision Bound Theory. Here a Linear Discriminant Analysis (LDA) was 

employed to generate the decision bound of a category using the one-versus-

all rule; the linear boundary optimally separates the images of one category 

from all other images. The signed distance of the image from the decision 

bound was used as the evidence for categorization; if the image falls on the 

correct side of the decision bound then a positive Cat score is used, whereas a 

negative value is used for images falling on the wrong side of the bound (that 

are miss-categorized). 
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2.4. Image Set  

The image set described here was used in the experiments as stimuli as well as 

the computational models as training and testing images. All images were 

taken from the LabelMe scene database (http://cvcl.mit.edu/database.htm). 

This database was picked, because it consisted of images which were all the 

same size and there was little overlap between image categories (Oliva & 

Torralba, 2001; Watson et al., 2014). All images were converted to greyscale 

and had a resolution of 256 × 256 pixels. The luminance profiles of the images 

were normalized using the luminance histogram function of the SHINE toolbox 

(Willenbockel et al., 2010), such that very simple image differences, such as 

mean luminance, did not provide cues as to the image category. The 

computational models and the observers only ever saw the normalized images. 

Images consisted of four categories; Buildings, Mountain, Ocean and Trees. 

These image categories were chosen based on previous work (Watson et al., 

2014). The categories of Mountain, Ocean and Trees are designed to capture 

natural scenes, while the category Cities is designed to reflect man made 

scenes. There were 830 images that are referred to as mask images, 120 images 

that are referred to as targets and another 120 images referred to as 

distractors. These names denote the way in which the images were used in the 

various experiments presented in this thesis. Example images can be seen in 

Figure 2.12. 

http://cvcl.mit.edu/database.htm
javascript:void(0);
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Figure 2.12. Example scene images taken from the set of images used in the experiment that have 

been grey scaled and histogram luminance corrected. 

 

2.5. Impact of binning data during comparisons 

Representational similarity analysis (RSA) is the main method of comparison 

between computer models and human observers, in both the areas of human 

behavior (Ghodrati et al., 2014; Kheradpisheh et al., 2016) and neurological 

activation (Khaligh-Razavi & Kriegeskorte, 2014; Watson et al., 2014).  

There are two main reasons why RSA was not used in this thesis. The first is 

that RSA is limited in the number of images it can examine, as each image needs 
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to be compared to each other image. This means that, as the number of images 

examined increases, the number of trials needed to perform that analysis 

increases exponentially. As a result every study that has employed RSA has 

been limited to 100-150 images in total. Here the number of images examined 

varied from 240 to 36,000 images in the case of the temporal blurring analysis. 

The second reason is that often each image (categorization task) or image 

pairing (recognition task) varied in the number of trials presented to observers 

(this could be as low as 1 trial per image pairing in the image recognition task). 

This prevented binning for each image or image pairing. 

While RSA bins data based on either images or image categories, here we chose 

to bin data based on a set proportion of the number of trials, pooling across 

participants. A fixed-effects approach rather than a random/mixed-effects 

approach is taken since here the primary interest is in the average response of 

all participants. While it would be interesting to examine the data on the 

participant level, looking how individual participants responses differ from one 

another and the computational models, it is outside the scope of this thesis. 

In both image categorization and image recognition experiments binning of 

trials followed the same method. For each trial the computer model calculated 

an unstandardized Disc or Cat score, the estimated difficulty that the observer 

would have in producing a correct response. Trials were then ordered based 

on their Disc or Cat score and allocated to bins. For each bin the average Disc 

or Cat score was calculated and plotted against the mean of observers’ 
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behavior in that bin (e.g. reaction time and accuracy). This allowed a regression 

to be run to assess the variance in observers’ behavioral data which was 

explained by the computational model in the same manner as RSA.  

The robustness of the proposed binning method was examined in Chapter 3 - 

Experiment 1, where a number of different bin sizes were explored to examine 

the effect of bin size on the data. The results found that as the number of bins 

increased the computational models which were found to produce a significant 

fit to observers behavior did not change. The order in which the computational 

models best explained observers’ behavior also did not change suggesting that 

bin size had little effect on the overall trend of results. 

2.6. Standardization of computational models’ outputs 

As Cat and Disc scores (for categorization and recognition experiments 

respectively) are based upon image distances and as such they can vary greatly 

in magnitude on different image descriptors as well as decision processes. 

Standardization of Disc and Cat scores happened at the level of the bins. It did 

not matter whether standardization occurred pre- or post-binning, as no 

transforms occurred that would affect the results. Standardization of Disc and 

Cat scores followed a slightly different process.  

Disc scores were standardized for each computational model to range from 0 

to 1. The zero point of each computational model was the lowest value bin the 

model produced. This was achieved by taking away the lowest bin Disc score 



71 

 

away from all of the bin Disc scores the computational model produced. Next 

in order to standardize the highest point Disc scores were divided by the 

highest bin Disc score the computational model produced. Thus, the binned 

Disc scores varied from zero to one, with one being the value which indicates 

the group of images which were the easiest to tell apart by the computational 

image descriptor and zero being the hardest. This is summarized by the 

Equation 1 below.  

Disc binstandardized = (Disc binraw-Disc binMin)/Disc binMax (Equation 1) 

 

Cat scores were standardized for each computational model to vary from -1 to 

1. This was done by dividing by the greatest absolute value of either the highest 

or lowest bin the model produced.   



72 

 

Chapter 3 - Comparing computational Image descriptors to 

human behaviour. 

3.1. Introduction 

The first aspect of the Model of Visual Processing that we sought to investigate 

was the image descriptor component. The main aim was to understand which 

computational image descriptors structure their image descriptions in a similar 

manner to biological vision.  

In order to map out the structural organization of observer’s image 

descriptions, an image recognition task (a match-to-sample task) was used. This 

is a task which requires observers to pick out a target image from two images; 

one target and one distractor. This task becomes more difficult as the two 

images become closer in perceived similarity. It is therefore possible, by 

examining observers’ correct responses and reaction times, to measure how 

similar two images are in the observer’s descriptor space (Shepard, 1958, 

1962a, 1962b, 1987; Torgerson, 1952). This can be repeated over a number of 

trials for a number of images to map out the structure of observers’ image 

descriptions.  

By using an image recognition task the structure of image descriptions of 

different computational image descriptors can be mapped out in much the 

same way. Computational models, each comprising various image descriptors, 

can be used to simulate behavior on each trial. Here these computational 
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models employed a decision process that calculates the Euclidean distance of 

the target image and distractor image in descriptor space. The distance 

between the two images in descriptor space is the difficulty in which the 

computational model is able to tell apart the two images. Comparing the 

observers’ behavioural responses with the responses from the computational 

model makes it is possible to gauge the similarity the of image descriptions 

between a computational image descriptor and biological vision.  

There have already been a number of studies investigating the similarity of 

computational models to human observers in behaviour (Ghodrati et al., 2014; 

Kheradpisheh et al., 2016). These studies, however, focus on categorization 

tasks; a complex task where there is a high degree of uncertainty of the decision 

process employed by humans (Ashby & Maddox, 2005, 2011). Due to the 

degree of uncertainty of the decision process it is difficult to determine the 

similarity of image descriptor separate from that of the decision process. By 

comparison, an image recognition task is a simple task where the decision 

process is almost guaranteed to be based upon distance of images’ description 

in the descriptor space (Attneave, 1957; Shepard, 1962a, 1962b, 1987). The 

experiments presented in this chapter aim to fill the gap in the literature and 

use a behavioural approach to examine more closely the similarity between 

computational image descriptions and biological vision.  

Previous studies comparing computational models to human behaviour have 

examined the results at a categorical level and with a limited image set size 
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(around 50-100 images) (Mack & Palmeri, 2010; Serre et al., 2007). Here we 

use image set size of 240 images and compared computational models to 

human observers at the image level. By expanding the image set size and 

comparing the data at a much finer level more information can be brought out 

of the data on exactly how similar these computational models are to human 

behaviour. 

Two experiments are presented here. Both are image recognition studies but 

differ in their design. The first was an image recognition task that employed a 

Yes/No, delayed match-to-sample procedure. Examining the results of the first 

experiment indicated that the design may have influenced the observed 

similarity of computational models and human observers; computational 

models were unable to predict observers’ reaction times and observers’ correct 

responses were close to ceiling. A second experiment, using a 2AFC, match-to-

sample procedure, was used to confirm the results of the first experiment. This 

experimental design allowed observers to respond as soon as they made a 

decision and also removed the subjective nature of a Yes/No response by 

forcing observers to pick an image. Both experiments are added as they 

highlight design issues for image recognition tasks. 

Here we constructed computational models with a range of different image 

descriptors from the previous literature, GIST, HMAX, PHOW and deep 

convolutional network. Each image descriptor was chosen specifically due to 

its history in the literature. 
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3.2. Experiment 1 

3.2.1. Methods 

Observers 

41 Nottingham University students took part (25 female; range 19 – 41 years; 

mean age 23.2). All participants had normal or corrected to normal vision. 

Observers were given the option of compensation in the form of an 

inconvenience allowance or course credits. Written consent was obtained for 

all the observers, with the study being approved by the University of 

Nottingham Ethics Committee. 

Apparatus 

The experiment was programmed in PsychoPy (Peirce, 2007), and was run on 

a Lenovo desktop with 3.7 GHz, Intel Xeon E5-1620 v2 processor and NVIDIA 

NVS 310 graphics card. The viewing distance was held constant with a chin rest 

at 57cm from the monitor screen. The monitor was a Iiyama ProLite 

GB2488HSU set to a 1920 x 1080 resolution, and with a 144Hz refresh rate. To 

ensure good timing of image presentation, images for each trial were loaded 

onto the graphics card during the inter-trial interval. Timing of all briefly-

presented stimuli in the rapid serial visual presentation (RSVP) was controlled 

by presenting the stimuli for a fixed number of screen refreshes. We verified 

that the system reliably presented these stimuli within an RSVP sequence 

without dropping any frames.  
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Design and Procedure 

The experiment consisted of a block of practice trials, followed by two blocks 

of main trials, the whole experiment took around 40 minutes to complete. 

Observers were offered a break between the two blocks of main trials, this was 

done to avoid fatigue of the observers. Before the trials started a set of 

instructions were given to the observer. These instructions told the participant 

that their task was an image recognition task. They would first be presented 

with an image (the target), after which a stream of images would be displayed 

and they would have to respond, by pressing a key, if the image was in the 

stream. Participants were also told they should respond as quickly and as 

accurately as possible once the stream of images had ended.  In order to 

familiarise observers with the experiment they were given a practice block of 

trials before the main block of trials. This practice period followed the same 

task design, but the target images were taken from a different set of images 

(actually the mask image set; all the pools of images used in the practice and 

main trials are described in Chapter 2 -General Methods). The practice period 

lasted no longer than 20 trials and could be self-terminated by the observer 

once they were happy they understood the task.  

Each block of main trials consisted of 240 trials. Each trial started with a fixation 

dot which lasted 500 ms. An image prime from the target image set was then 

displayed for 1000 ms. This image prime then disappeared and was followed 

by a fixation point lasting 1000 ms. After the fixation dot disappeared an RSVP 

stream was presented. This RSVP stream consisted of a sequence of 6 pictures 
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presented for either 6, 12, 18, 24 screen refreshes (42, 83, 125, or 167 ms 

respectively with our 144 Hz monitor) per image. Image presentation times 

were varied to examine if different computational models better explained 

observers’ behavior at different presentation times. This analysis was however 

never conducted. After this stream of images had finished observers had to 

then report whether the target primed image appeared in the RSVP stream. On 

50% of trials the target image was present, on the other 50% of trials a different 

image but of the same category was present (a distractor). Primed target 

images or their distractor counterpart could appear in the serial positions of 2, 

3, 4 or 5 in the RSVP stream, the first or last position was not used to ensure 

that the target or distractor image was forward and backwards masked. Target 

and distractor image positions were balanced over the trials. The other images 

used to make the RSVP stream consisted of images that were of a different 

image category to the target image primed. Observers responded with the left 

arrow key if they thought the target image matching the prime had been 

displayed, while they used the right arrow key if they thought that the target 

image was absent. A visual explanation example of a single trial is displayed in 

Figure 3.1. 
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Figure 3.1. A diagram showing the flow of the experiment.  On the left a verbal description is given, 

while the right a visual representation is shown. The images of the RSVP sequence are displayed at 

the same location, here in the visual representation they are displayed at an angle to show the 

different images being displayed. The target image has also been made to ‘pop’ out in the visual 

representation so that is more clearly visible in the diagram of the RSVP stream. 

 

3.2.2. Results 

Trials in which the observer took longer than two seconds to respond were 

excluded from the analysis (2.8% of trials). This criterion for exclusion was 

chosen in order to limit observers’ responses to rapid feedforward response 

rapid feedforward response based on instinct rather than cognitive reasoning. 

The descriptive statistics of observer’s performance in the experiment are first 



79 

 

presented, before being compared to the image descriptors paired with a 

Euclidean distance decision process. The descriptive statistics can be seen in 

Figure 3.2.  
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Figure 3.2. Observers performance in the four different image categories as well as when they are 

all pooled together. A) Hit rate, correct rejection rate are plotted. B) Observer’s reaction time (in 

seconds) are all plotted. Error bars shown are the standard error of the mean. 
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Three separate 1x4 repeated measures ANOVAs were run for the dependent 

measures of hit rate, correct rejection rate and reaction times respectively. This 

was done to see if the dependent variables varied across image category. 

Observers’ hit rate was shown to vary significantly across image category 

(F(3,120) = 81.216, p < .001, 2

p  = .81). Observers’ correct rejection rate was 

also seen to significantly vary across image categories (F(3,120) = 11.222, p < 

.001, 2

p  = .22). Observers’ reaction times were also seen to significantly vary 

across image category (F(3,120) = 16.046, p < .001, 2

p  = .29).  

On “distractor” trials (target absent), the ability of the four image descriptors 

(GIST, HMAX, PHOW, and deep convolutional neural net) to distinguish targets 

from distractors (the Disc score, as described in Section 2.6) was calculated and 

compared with observers’ actual responses. Only “distractor” trials were 

analysed as there was a distance between the target image observers were 

primed with and the distractor image observers perceived in the RSVP. Human 

observers’ accuracy on target absent trials (correct rejection rate) was 

compared to computational models. A full explanation of how this comparison 

was made can be found in Chapter 2 - General Methods. 

For each bin the average Disc score, accuracy, and reaction time was 

calculated. Disc score was then plotted against each behavioural measure, 

accuracy, and reaction times. A number of different bin sizes were explored to 
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examine the effect of bin size on the results. Correlation coefficients for each 

image descriptor and bin size were calculated and are summarised in Table 3.1. 

Figure 3.3 plots the results of the four different image descriptors when the 

number of bins is 120. 
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Table 3.1. The results of correlating different image descriptors’ Disc scores against observers’ accuracy and reaction times. Significance values are uncorrected for multiple comparisons. Different 

bin sizes are investigated. Regressions in the direction predicted have a positive r value and are indicated by green shading. 

  

Accuracy 

 

Reaction times 

 GIST HMAX PHOW DCN GIST HMAX PHOW DCN 

Number of bins 10 

(955-956 trials per 
bin) 

p= .009 

r= .77 

p= .086 

r= .57 

p= .110 

r= -.54 

p< .001 

r= .89 

p= .132 

r= -.51 

p= .169 

r= -.47 

p= .956 

r= .02 

p= .132 

r= -.51 

Number of bins 30 

(318-319 trials per 
bin) 

p< .001 

r= .59 

p= .076 

r= .31 

p= .207 

r= -.24 

p< .001 

r= .68 

p= .095 

r= -.31 

p= .101 

r= -.31 

p= .942 

r= .01 

p= .027 

r= -.40 

Number of bins 60 

(159-160 trials per 
bin) 

p< .001 

r= .50 

p= .11 

r= .21 

p= .200 

r= -.17 

p< .001 

r= .61 

p= .066 

r= -.24 

p= .122 

r= -.20 

p= .864 

r= -.02 

p= .023  

r= -.29 

Number of bins 120 

(79-80 trials per bin) 

p< .001 

r= .37 

p= .071 

r= .17 

p= .208 

r= -.12 

p< .001 

r= .49 

p= .079 

r= -.16 

p= .153 

r= -.13 

p= .861 

r= -.02 

p= .016 

r= -.22 
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Figure 3.3. Plotting observers’ accuracy data against different models’ Disc scores.  This was done for (A) GIST, (B) HMAX (C) PHOW (D) Deep convolutional Network. Standard error of the mean 

has been plotted. The bin size used for each graph is 120. A score of .6 means 60% of distractor images were correctly rejected. 
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The results table (Table 3.1) indicates that bin size had little effect on which 

image descriptors were found to significantly fit human behaviour. Two models 

were found to have a good fit to human behaviour. The image descriptors GIST  

and the deep supervised convolutional neural net were largely able to predict 

human observer’s behaviour on a single trial basis in the image recognition 

task. These models are able to predict correct responses, but largely are unable 

to predict reaction times. This is probably due to experimental design, 

observers were unable to respond during the RSVP procedure and instead were 

told to make their response after. This means that observers could have 

already decided upon a response before they were able to execute it, indicating 

that the measured reaction times may not reflect true reaction times.  

3.2.3. Discussion 

The aim of this study was to try and determine the ability of each image 

descriptor to explain human observers’ behaviour. Out of the four 

computational image descriptors examined three produced significant fits to 

human behaviour, in terms of accuracy. The deep supervised convolutional 

neural net was the only model able to explain a significant amount of variance 

in observers’ reaction times. The deep supervised convolutional neural net 

(Krizhevsky et al., 2012) was shown to have closest fit to observers’ data, being 

able to fit observers’ accuracy and reaction times, this was then followed by 

GIST (Oliva & Torralba, 2001). The image descriptors HMAX (Thomas et al., 

2007) and PHOW (Lazebnik et al., 2006) failed to explain human performance 
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on any aspect of the task. The results support the growing evidence image 

descriptors which create their image description from the low level visual 

properties of the stimuli can account for a significant proportion of variance of 

the structure of image description in humans (Leeds, Seibert, Pyles, & Tarr, 

2013; Rice et al., 2014; Watson et al., 2014; Watson, Young, et al., 2016). 

Additionally, it has been shown that deep supervised convolutional networks 

provide the best known account the structure of human image descriptions 

(Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014).  

In the current study the main metric of interest was accuracy on target absent 

trials (correct rejection rate). Observers scored higher than expected, with their 

accuracy being around 85%. At this level behavioural responses were 

potentially being affected by the ceiling effect. This would be expected to 

reduce the overall variance of the behavioural data as the top end of the 

behavioural variance was excluded. As the computational models were not 

designed to take this into account, the true variance explained of the 

computational models may be higher than the results reported here. This is 

investigated further in Experiment 2 below. 

The analysis also examined the impact of binning trial data to turn discrete 

human responses into a more probabilistic metric. A number of different bin 

sizes of the trial data were investigated, and the data confirmed that bin size 

had no effect on which image descriptors best fit human behaviour. The 

ranking of fit of each image descriptor was preserved irrespective of bin size.  
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3.3. Experiment 2 

3.3.1. Introduction 

The main aim of this chapter was to assess the ability of different 

computational image descriptors to explain the structure of human observers’ 

image descriptions through a behavioural experiment. We wanted to replicate 

this with an additional study to check the potential impact of the ceiling effect 

and look for effects of reaction time more explicitly. 

In Experiment 1 the metric of human behaviour used to assess observers’ 

image descriptions was that of accuracy on target absent trials (correct 

rejection rate). Observers’ accuracy was much higher than expected, with 

observers scoring around 85% in Experiment 1. At this level, observers’ 

accuracy was almost at ceiling. This ceiling effect could have distorted the 

observed structure of image descriptions by eliminating the top end of variance 

in the data set. This would have affected the computational image descriptor’s 

ability to explain human behaviour as it was unable to take into account this 

ceiling effect. In Experiment 1 a Yes/No task was used (“Was the target present 

in the stream?”) whereas in this experiment we used a 2AFC task (“Which of 

the two images was present?”). The former depends on both sensitivity and 

participant’s internal thresholds (to say “yes”) whereas the latter does not. This 

internal threshold could partially explain the ceiling effect of the previous 

study, if participants were conservative and only responded “yes” when they 

were absolutely sure the target image had been seen. 
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A number of different studies have shown that reaction times can also be used 

as a measure of the structure of human image descriptions (Ashby, Boynton, & 

Lee, 1994; Mack & Palmeri, 2010; Sofer et al., 2015). Experiment 1 did not find 

this, probably due to the experimental design which restricted observers to 

respond at the end of the RSVP procedure and not when they had gathered 

enough evidence to make the decision. Experiment 2 examines the structure 

of human image descriptions based on reaction times by allowing observers to 

respond as soon as they feel appropriate. This change in experimental design 

allows reaction times to reflect visual processing demands and so letting 

reaction times reflect the structure of observers’ image descriptions. 

A difference in observers’ behavioural metrics across image categories was 

found in Experiment 1. The data from Experiment 2 allows us to further 

investigate why this may be the case. This aspect of the data is considered more 

extensively in Chapter 6 - Investigating temporal blurring. 

3.3.2. Methods 

Observers 

Seventy Nottingham University students (55 female, 15 male; age 18-31 years) 

took part in the experiment. All were volunteers who were either paid for 

participation or given course credits. All signed a consent form and all 

procedures were approved by the University of Nottingham Psychology ethics 

committee. 
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Apparatus 

The experiment was programmed in PsychoPy (Peirce, 2007), and was run on 

a Dell desktop with 4 GHz, Intel Core 2 Duo processor. The CRT monitor was set 

to a 1024 x 768 resolution, with an 85Hz refresh rate. The room was normally 

illuminated. Images were loaded before the sequence was run and were 

presented precisely on a specific number of frames. The viewing distance was 

held constant with a chin rest at 57cm. 

Design and Procedure 

The experiment consisted of a block of 20 practice trials, followed by a main 

block of 240 trials. Each trial consisted of a categorization task which lead onto 

an image recognition task. This was done so that a single experiment could 

provide two different data sets. In the current chapter we are mainly 

concerned with the results from the image recognition section of the task, 

while Chapter 4 - Experiment 1 is concerned with the results from the image 

categorization task.  

Each trial began with a fixation cross which lasted 500ms. The fixation was then 

followed by a text prime which consisted of the name of an image category 

(Ocean, Mountain, Trees, Buildings). After this prime disappeared a RSVP 

procedure was conducted. This consisted of six images presented rapidly (All 

the images used in the practice and main trials are described in Chapter 2 - 

Image Set). For main trials, images were presented for either 2, 4, 6 or 8 screen 

refreshes (24, 47, 70, or 94 ms) per image. Image presentation times were 
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varied so that it could be examined if different models better explained 

observers’ behavior at different presentation times. This analysis was however 

never conducted. On practice trials image presentation times were kept 

constant at 94 ms, to make them easier. On 50% of trials a target image 

matching the category prime could appear in any of the image positions in the 

RSVP procedure, except from the first or the last image position. Target images 

were only ever presented once (and never in the practice period). Images used 

as target images in the practice period did not come from the target pool of 

images (they came from the mask pool of images). This was done to limit the 

exposure observers had to images from the target pool of image. Once the 

RSVP procedure had ended observers then were required to respond indicating 

if they had perceived an image matching the text prime (categorization task).  

On target-present trials the experiment moved onto the image recognition 

task. The image recognition task was displayed irrespective of whether the 

observer had responded correctly. The image recognition part of each trial 

started with a centralised fixation cross which lasted 500 ms. After the fixation, 

the target image and a distractor image were presented at the same time 

equidistant apart from the fixation cross. The distractor image was of the same 

image category as the target, but was never presented in the trials as either a 

target or a mask. The target and distractor image stayed on the screen until 

observers had made a 2-alternate-forced-choice decision about which of the 

two images had been presented in the RSVP sequence. Practice trials followed 

the same format as the main trials except the distractor image was replaced 
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with a mask image matching the image category primed. On both practice and 

main trials observers had to respond by pressing the left or right arrow key to 

pick out the target image they had seen in the RSVP procedure. A visual 

representation of this experiment can be seen in Figure 3.4. 
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Figure 3.4.  A visual representation of Experiment 2. The flow of each experiment moves from top 

to bottom. The left side gives a verbal description, while the right displays a single trial.  
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3.3.3. Results 

Only trials in which the observer responded correctly in the categorization task 

were analysed. This was to make sure that observers had seen the target image 

or else they would be guessing for the image recognition task. Trials in which 

the observer took longer than two seconds to respond were also excluded from 

the analysis (2.4% of trials). This criterion for exclusion was chosen in order to 

limit observers’ responses to rapid feedforward response. The descriptive 

statistics of observer’s performance across the image categories can be seen in 

Figure 3.5. 
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Figure 3.5. Observers performance in the four different image categories as well as when they are 

all pooled together. A) plots observers’ Accuracy (a score of .6 means 60% of targets were detected), 

while B) plots observer’s reaction time (in seconds). Error bars shown are the standard error of the 

mean. 
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Two separate 1x4 repeated measures ANOVAs were run for the dependent 

measures of hit rate and reaction times respectively. This was done to see if 

the dependent variables varied across image category. Examining if observers’ 

hit rate varied across image category, Mauchly’s test indicated that the 

assumption of sphericity had been violated (χ²(5) = 33.49, p< .001, (ε = .74)). 

The results show that observers’ hit rate was shown to vary significantly across 

image category (F(2.22,153.33) = 41.115, p < .001, 2

p  = .37, Greenhouse-

Geisser corrected). Examining if observers’ reaction times vary across image 

category, Mauchly’s test indicated that the assumption of sphericity had been 

violated (χ²(5) = 69.12, p< .001, ε = .60). Observers’ reaction times were seen 

to significantly vary across image category (F(1.8,124.19) = 28.429, p < .001, 2

p  

= .29, Greenhouse-Geisser corrected).  

Computational models were constructed by pairing each image descriptor with 

the standard image recognition decision process (the Euclidean distance 

between the target image and the distractor image). For further details see 

Chapter 2 - General Methods.  

Due to the fact that there was a varying number of trial for each target 

distractor pairing trials were divided into 120 bins (36-37 trials per bin). For 

each bin the average Disc score, accuracy (hit rate as target was always 

present) and reaction time was calculated and plotted against each other. Disc 

score was then plotted against each behavioural measure and a correlation 

run. Correlation coefficients are summarised below in Table 3.2.  
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Table 3.2. The results of correlating different image descriptors Disc scores against observers’ accuracy and reaction times in both Experiment 2 and Experiment 1. These values are uncorrected for 

multiple comparisons. Regressions in the direction predicted have a positive r value and are indicated by Green shading. Number of bins is 120. 

  

Accuracy 

 

Reaction times 

 GIST HMAX PHOW DCN GIST HMAX PHOW DCN 

Experiment 1 

(79-80 trials per bin) 

p< .001 

r= .37 

p= .071 

r= .17 

p= .208 

r= -.12 

p< .001 

r= .49 

p= .079 

r= -.16 

p= .153 

r= -.13 

p= .861 

r= -.02 

p= .016 

r= -.22 

Experiment 2 

(36-37 trials per bin) 

p< .001 

r= .63 

p= .002 

r= .28 

p=.906 

r= -.01 

p< .001 

r= .62 

p< .001 

r= -.63 

p< .001 

r= -.33 

p= .284 

r= -.10 

p< .001 

r= -.79 
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Figure 3.6. Plotting observers’ accuracy data against different models’ Disc scores in Experiment 2.  This was done for (A) GIST, (B) HMAX (C) PHOW (D) Deep convolutional Network. Error bars represent 

+/- 1 SEM. The number of bins used for each graph is 120. A score of .6 means 60% of targets were detected. 
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Table 3.2 shows the correlations of the models against the human observers 

for the models, including a reiteration of the data from Experiment 1, for easy 

comparison. The image descriptors GIST, HMAX and the deep supervised 

convolutional neural net were largely able to predict human observer’s 

behaviour on a single trial basis in the image recognition task. This confirms the 

results found from Experiment 1. Additionally, Experiment 2 found significant 

correlations in the reaction time data, showing that image descriptors are able 

to predict observers’ reaction times when observers are able to respond 

without any procedural delay. 

3.3.4. Discussion 

The results of Experiment 2 replicated and extended the results from 

Experiment 1. The deep supervised convolutional neural net was shown to 

have the best performance at explaining observers’ accuracy, this was followed 

by GIST in their ability to explain the explaining observers’ accuracy. 

Additionally, Experiment 2 found that HMAX was able to explain observers 

accuracy and reaction time data. In a similar manner to Experiment 1, 

Experiment 2 failed to find evidence that the image descriptor PHOW is 

predictive of human behaviour.  

In Experiment 2 the main metric of interest (observers accuracy) was below 

ceiling; around 75% for the four image categories. Ensuring that observers’ 

accuracy were below ceiling offered an undistorted view of the structure of 

observers’ image descriptions as the top end of participants’ variance was not 
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eliminated. Since the ceiling effect was avoided it would be expected that each 

image descriptor would explain a greater amount of variance in Experiment 2 

than in Experiment 1, which potentially suffered from the ceiling effect. This 

appears to be supported by the data; the correlations between model and 

behaviour in Experiment 2 appear consistently higher than Experiment 1, 

although the pattern of results across models appears unchanged. 

Experiment 1 found little indication that the computational image descriptors 

examined could explain observer’s reaction times. This may have been because 

the experimental design limited observers to respond once the RSVP procedure 

had finished and thus stopped reaction times from reflecting the structure of 

observers’ image descriptions. In order to examine this further, Experiment 2 

employed a design which allowed observers to respond as soon as they wanted 

to. When observers were allowed to make a response when they were ready, 

reaction times were indeed predicted by the computational image descriptors. 

The results from the reaction time data show the same pattern of model 

performance as the results from observers’ accuracy. The deep convolutional 

neural net was found to explain the greatest amount of variance in the reaction 

time data, closely followed by the image descriptor GIST and HMAX 

respectively. PHOW was unable to explain a significant amount of the variance 

in observes’ reaction times.  
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3.4. General Discussion 

The main aim of this chapter was to examine the similarity of different 

computational image descriptors to biological vision in terms of how they 

structurally organise an image set. Two studies were presented with this 

purpose in mind. Both studies employed an image recognition task. The first 

study used observers’ accuracy on target absent trials and reaction times to 

estimate the structure of observers’ image descriptions. This encountered the 

problem that observers’ accuracy were close to ceiling and so the 

measurement of observers’ image descriptions could have been distorted. 

Additionally, computational models were unable to predict observers’ reaction 

times, indicating that reaction times did not reflect observers’ image 

processing requirements. A second Experiment was conducted with observers’ 

accuracy below ceiling. This Experiment found both observers’ accuracy and 

reaction time data could be explained by the computational models. 

Both the studies produced consistent results with each other. Out of the four 

image descriptors examined three produced significant fits to human 

behaviour. The image descriptor which provided the best fit to human 

observers’ behaviour was the deep supervised convolutional neural net 

(Krizhevsky et al., 2012). This is in line with both the neuroscientific literature 

(Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014) 

and the human image categorization behaviour literature (Ghodrati et al., 

2014; Kheradpisheh et al., 2016). From the results presented here and the 
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trend in the literature, deep supervised convolutional neural nets provide the 

closest account for biological image descriptions from the computational 

models presently examined.  

GIST produced the second closest fit to human behavior after the deep 

supervised convolutional model in the two Experiments. This is somewhat 

surprising as GIST is rather a simple image descriptor. GIST employs no learning 

and forms its image description based on the low level visual properties of the 

image. This finding is, however, in line with the previous literature, in which, 

GIST has been shown to predict human image descriptions (Rice et al., 2014; 

Watson et al., 2014; Watson, Young, et al., 2016), as well as being useful as an 

image descriptor for explaining human behavior in image categorization tasks 

(Mack & Palmeri, 2010; Sofer et al., 2015). 

HMAX was also found to have a significant fit to human behavior. HMAX was, 

however, found to explain less of the variance in observers’ behavior than GIST 

and the deep convolutional network model. The finding that HMAX produces 

an image description which has a significant fit to human image descriptions is 

in line with previous findings from the neurological literature (Khaligh-Razavi & 

Kriegeskorte, 2014; O'Toole et al., 2005) as well as behavioral studies 

examining image categorization rate (Ghodrati et al., 2014; Kheradpisheh et al., 

2016; Serre et al., 2007). Interestingly in studies where more than one image 

descriptor was examined, other models are usually found to produce a better 

fit to human data than HMAX.  
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PHOW was the only image descriptor which did not find a significant fit to 

human behaviour, although previous research has found it to have some 

explanatory power (Khaligh-Razavi & Kriegeskorte, 2014; Leeds et al., 2013). 

Studies in which PHOW, along with other image descriptors have been 

examined, have shown that PHOW’s variance explained is considerably lower 

than other image descriptors that produce a significant fit (Khaligh-Razavi & 

Kriegeskorte, 2014). Here, perhaps due to the experimental design, or the more 

stringent criteria of asking the model to explain human behaviour on a per trial 

basis, caused a lack of a significant finding. PHOW is based on a ‘bag of features’ 

model, where the number of different SIFT features in an image is used as the 

image description. While a ‘bag of features’ model can produce high level of 

correct categorizations (Lazebnik et al., 2006), it is possible that the ‘bag of 

features’ model is dissimilar to image description processes employed by the 

human visual system.  

In both the experiments presented here, the image descriptor space was 

represented as a simple Euclidean space. This form of measuring distances was 

chosen due to its simplicity and also its popularity in computational vision (Pass 

& Zabih, 1999) and psychophysics studies (Shepard, 1958, 1962a, 1962b, 1987; 

Torgerson, 1952). The results found show that this decision process works 

remarkable well when paired with computational image descriptors at 

explaining human behaviour, in image recognition tasks. Euclidean distance is 

not the only one way in which distance between two points can be calculated 

and there are a number of different ways distance measures can be taken. 
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There have been a number of studies examining image retrieval from large 

image databases. Some studies have found that different measures of 

similarity, other than Euclidian distance, have the best performance in 

retrieving similar images from the database (Malik & Baharudin, 2013; Sharma 

& Batra, 2014). Additionally, some psychophysics experiments have found that 

other ways of measuring distance better match observers behaviour, such as a 

weighted Euclidean distance (Getty et al., 1980; Nosofsky, 1986). Furthermore, 

some  studies have employed descriptor space transforms, such as principle 

component analysis, to better represent human observers’ behaviour (Mack & 

Palmeri, 2010). While the current research shows that Euclidean distance 

works as a way of measuring distance in descriptor space, further research 

could use the experimental paradigm presented here to investigate into the 

many different ways descriptor space could be represented in biological vision. 

Both Experiment 1 and Experiment 2 found that observers’ behavior, in terms 

of hit rate, correct rejection and reaction times, changed based on image 

category. There are a number of different possible explanations for this. A 

possible explanation is that due to experimental design different image 

categories had different masks. This category dependent masking means that 

some image categories had a harsher masking that other categories, which 

could have led to this effect. Another possible explanation for this is that the 

distribution of images in descriptor space varied across categories, some image 

categories may be more spread out than others in descriptor space. The 

changes in how tightly, or loosely, packed images are together would affect 
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their difficulty to tell them apart from one another, causing the categorical 

effect. A similar explanation to this has been used by Sofer et al. (2015) to 

explain how hit rates and reaction times can vary depending on the category 

individuals are being asked to categorize an image to (Greene & Oliva, 2009; 

Joubert et al., 2007; Kadar & Ben-Shahar, 2012; Loschky & Larson, 2010). While 

this is almost certainly a factor in the categorical change in behavior seen in 

observers, it is unlikely that these reasons are the sole reasons, as effect sizes 

were quite large ( 2

p  = .81 in Experiment 1 for hit rate). Another explanation 

for this categorical change in behavior is that due to the RSVP procedure 

observers were obtaining temporally blurred image descriptions of the target 

image. This temporal blurring was having a differing impact on different 

categories and therefore adding to this effect. This hypothesis was investigated 

using Experiment 2 presented here in Chapter 6. In this reanalysis, we added a 

temporal blur component whereby the two neighboring mask images were 

added (in a variety of weights) to the target image, prior to forming the image 

description.  
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Chapter 4 -  Investigating the decision processes in an image 

categorization task. 

4.1. Introduction 

The main aim of this chapter was to investigate the decision process observers 

were using in order to categorise images. Early research on category learning 

investigated a number of different possible mechanism by which humans could 

be categorizing images. This research found that, surprisingly, in certain 

circumstances, each theory could be supported and that no single mechanism 

could explain all of the observed data. The main contenders were prototype 

theory, exemplar theory and decision boundary theory (Ashby & Maddox, 

2005).  

This research led to the idea that observers were not using a single rule to 

categories images, but were instead using multiple rules depending on the 

circumstance (Ashby & Maddox, 1994; Ashby & Townsend, 1986; Lockhead, 

1966; Shepard, 1964). Studies employing fMRI methods looked to see if 

different brain networks active when observers are using different strategies 

(Konishi et al., 1999; Lombardi et al., 1999; Rao et al., 1997). The results of 

these studies suggest different brain areas become active depending on the 

strategy observers are employing to perform the categorization task (Ashby & 

Maddox, 2011). 
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One problem with these previous studies is that they have typically used image 

descriptions based on observable characteristics of the images, such as shape 

and light contrast (Lamberts, 2000), distortion in line patterns (Homa, Sterling, 

& Trepel, 1981), distance in dot patterns (Posner & Keele, 1968, 1970) and even 

distortion of faces (Reed, 1972). While these image descriptions seem intuitive 

and are easy to report verbally, they are unlikely to reflect neural image 

descriptions, given what we know from single-unit recordings (Hubel & Wiesel, 

1962, 1968). Potentially, the use of inappropriate image descriptions is the 

reason that the question of optimal decision process has not been resolved. 

Here we compare the ability of different categorization decision processes to 

explain human behavior when combined with a range of recent biologically-

motivated image descriptors (GIST, HMAX, PHOW, and deep supervised 

convolutional neural net). Three different decision processes are examined and 

are as follows. 

Prototype theory was one of the earliest theories of image categorization. 

Prototype theory proposes that category learning is driven by individuals 

creating a single “prototypical” representation of a category. New items are 

accepted as a member of the category if they are similar enough to the 

prototype (Homa et al. 1981; Posner and Keele 1968, 1970; Reed 1972; Rosch 

1973, 1975; Smith & Minda 1998). Prototype theory has the general prediction 

that as an image gets closer in similarity to the prototype, the easier it is to 

classify.  
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Exemplar theory proposes that category learning is driven by the exemplars of 

a category. Category decisions are based on comparing the new stimulus to the 

closest neighborhood of images to it. The stimulus is then assigned to the 

category for which it has the closest relatives (Brooks 1978; Estes 1986; 

Hintzman 1986; Lamberts 2000; Medin and Schaffer 1978; Nosofsky 1986). 

Exemplar theory would predict that the category of images closest to that new 

image would predict categorization.  

Decision bound theory proposes that subjects create a decision boundary in 

the descriptor space that splits the space into category regions. When the 

observer is presented with an unfamiliar stimulus the side of the decision 

boundary the image falls on determines the assigned category (Ashby and Gott 

1988, Ashby and Townsend 1986, Maddox and Ashby 1993; Dongjian et al., 

2010; Sofer et al., 2015). This theory makes the prediction that as an image gets 

closer to this decision line, the harder it is to categorize.  

4.2. Experiment 1 

4.2.1. Methods 

To study the impact of different decision processes we used data collected in 

the categorisation task in Chapter 3 - Experiment 2 (two tasks were conducted 

simultaneously but the analyses in that chapter focused on the recognition 

task).  
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Briefly, observers were presented with a written prime of a category (e.g. 

“ocean”).  A RSVP sequence of images was then presented, and observers were 

probed as to whether or not any image in the RSVP sequence was of that 

category. They were also probed as to which image was seen, as analysed in 

the previous Chapter. For a full description of the Observers, Apparatus as well 

as the design and procedure please see Chapter 3 - Experiment 2 - Methods. 

4.2.2. Results 

Trials in which the observer took longer than two seconds to respond were 

excluded from the analysis (4.3% of trials). This criteria for exclusion was 

chosen in order to limit observers’ responses to rapid feedforward response 

based on instinct rather than cognitive reasoning. The descriptive statistics of 

observer’s performance in the categorization task are first presented, before 

being compared to the computer models. The descriptive statistics can be seen 

in Figure 4.1. 



109 

 

 

 

Figure 4.1. Observers performance in the four different image categories as well as when they are 

all pooled together. A) observers’ hit rate, correct rejection rate are plotted, B) observers’ reaction 

time (in seconds) are all plotted. Error bars shown are the standard error of the mean. 
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Three separate 1x4 repeated measures ANOVAs were run for the dependent 

measures of hit rate, correct rejection rate and reaction times respectively. This 

was done to see if the dependent variables varied across image category. 

Observers’ hit rate was shown to vary significantly across image category 

(F(3,207) = 128.822, p < .001, 2

p  = .65). With respect to observers correct 

rejection rate, Mauchly’s test indicated that the assumption of sphericity had 

been violated (χ²(5) = 15.12, p= .010, ε = .89). Observers’ correct rejection rate 

was also seen to significantly vary across image categories (F(2.67,183.998) = 

35.387, p < .001, 2

p  = .34, Greenhouse-Geisser corrected). With respect to 

observers reaction times, Mauchly’s test indicated that the assumption of 

sphericity had been violated (χ²(5) = 26.09, p< .001, ε = .37). Observers’ reaction 

times were also seen to significantly vary across image category (F(2.49,171.67) 

= 19.764, p < .001, 2

p  = .22, Greenhouse-Geisser corrected).  

Computational models were constructed for all the different variations of 

image descriptors (GIST, HMAX, PHOW, deep convolutional neural net) and 

decision processes (prototype theory, exemplar theory, and decision bound 

theory). The output of the computational models’ Cat scores were compared 

to observers accuracy on target present trials (hit rate). Target absent trials 

could not be compared as it was uncertain as to which image the observers 

were responding to. A full explanation of the image descriptors, decision 
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process, image set, standardization and binning of computational model 

outputs are explained in Chapter 2 - General Methods. 
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Table 4.1. The results of correlating different image descriptors Cat scores against observers’ accuracy and reaction times in Experiment 1.  These values are uncorrected for multiple comparisons. 

Regressions in the direction predicted have a positive r value. Green shading indicates significant correlations in the direction expected, while red shading indicates significant correlations in the opposite 

direction expected. Number of bins is 120 with 67-68 trials in each bin. 

  

Accuracy 

 

Reaction times 

 GIST HMAX PHOW DCN GIST HMAX PHOW DCN 

Prototype Theory p = .004 

r = -.26 

p = .003 

r = -.27 

p = .195 

r = .12 

p <.001  

r = -.42 

p = .32 

r = .09 

p = .017 

r =.22 

p = .277  

r = -.10 

p = .130 

r =.14 

Exemplar Theory p = .296 

r = .10 

p = .126 

r = -.13 

p <.001  

r = .37 

p = .004 

r = .26 

p = .027 

r = -.20 

p = .678 

r = -.04 

p <.001 

r = -.31 

p <.001 

r = -.14 

Decision Bound 

Theory 

p <.001  

r = .33 

p = .436 

r = -.05 

p = .010 

r = .24 

p <.001  

r = .55 

p <.001  

r = -.33 

p = .926 

r = -.01 

p < .001 

r = -.34 

p < .001 

r = -.47 
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The results table (Table 4.1) is best examined first from the perspective of the 

decision process and then from the perspective of image descriptor. The effects 

of each decision theory were largely consistent across the different image 

descriptors in the direction of the significant effects found. Prototype theory 

only produced significant results in the reverse direction to that expected; 

images furthest from the prototype of that category were the easiest to be 

categorized. Both exemplar and decision bound theory produced significant 

positive correlations. From the perspective of the image descriptors three out 

of the four image descriptors (GIST, PHOW and deep convolutional neural net) 

were able to explain a significant proportion of human observers’ behavior, in 

terms of accuracy on target present trials and reaction times, when paired with 

either exemplar theory or decision bound theory. HMAX failed to find any 

significant correlations in the direction that was expected and this was even 

reversed in the case of combining it with prototype theory. 
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Figure 4.2. Plotting observers’ accuracy against computational model employing prototype theory 

as its decision process. The image descriptor used for each computational model was (A) GIST, (B) 

HMAX, (C) PHOW, or (D) deep convolutional model. Standard error of the mean has been plotted in 

all graphs. A score of .6 means 60% of targets were detected. Bin size is 120. 
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Figure 4.3. Plotting observers’ accuracy against computational model employing exemplar theory as 

its decision process. The image descriptor used for each computational model was (A) GIST, (B) 

HMAX, (C) PHOW, or (D) deep convolutional model. Standard error of the mean has been plotted in 

all graphs. A score of .6 means 60% of targets were detected. Bin size is 120. 
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Figure 4.4. Plotting observers’ accuracy against computational model employing decision bound 

theory as its decision process. The image descriptor used for each computational model was (A) 

GIST, (B) HMAX, (C) PHOW, or (D) deep convolutional model. Standard error of the mean has been 

plotted in all graphs. A score of .6 means 60% of targets were detected. Bin size is 120. 

 

4.3. General Discussion 

The main aim of this chapter was to examine the similarity of different 

computational decision processes to the decision process employed by 

biological vision in an image categorization task. Previous research in this area 

has traditionally applied computational decision process onto image 
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descriptions created on human interpretations (Lamberts, 2000; Posner & 

Keele, 1968, 1970; Reed, 1972). These do not reflect the known first stages of 

biological visual processing (Hubel & Wiesel, 1962, 1968). Here we test 

computational decision processes with image descriptions which are designed 

to resembling biological image descriptions, in order to determine if one 

decision process out performs the others (Khaligh-Razavi & Kriegeskorte, 2014; 

Rice et al., 2014; Watson et al., 2014).  

Three different decision processes were examined; prototype, exemplar and 

decision bound theories. These decision processes were combined with four 

computational image descriptors, GIST, HMAX, PHOW, and a deep supervised 

convolutional network.  

Each of the decision processes investigated here produced consistent trends 

across each of the image descriptors it was paired with. Prototype theory 

consistently demonstrated it was able to explain a significant proportion of the 

variance in human observer’s behavior in terms of accuracy on target present 

trials (hit rate) and reaction times. This, however, was not in the direction that 

would be expected; images that were further from the category prototype 

were easier it is to identify as belonging to that category. This finding could be 

likened to the idea that atypical images stand out and so are easier to correctly 

categorize. Additionally, this result could be because all of the images tested 

were reasonably close to the prototype; images were selected on the basis of 

clearly belonging to one category or the other. In the experiment presented we 
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examined the ease with which an image could be categorized into its own 

category. If images outside of the primed image category could be included in 

the analysis then the effect might disappear. It was not possible to test this 

hypothesis as an RSVP procedure was used and it wouldn’t be possible to 

determine which image observers were responding to when the target image 

wasn’t present.  

Exemplar theory was able to explain a significant proportion of observers’ 

behavior when paired with the majority of image descriptors. Surprisingly, 

exemplar theory performed especially well when paired with PHOW, a 

computational image descriptor which previously in this thesis had shown little 

evidence to match biological vision. Additionally, when exemplar theory was 

paired with GIST, a computational image descriptor known to match biological 

image description processes (Rice et al., 2014; Watson et al., 2014), it failed to 

explain observers’ accuracy. As previously mentioned, comparisons between 

computational models and human observers are unable to distinguish between 

a computational model which is performing the same algorithms as biological 

vision, and a model which has a reasonable performance, and so correlates 

with human behavior, but is ultimately performing calculations in a different 

way. There are a number of reasons here why the latter is the case. Chapter 3 

examined which image descriptors best fit biological vision. The order the 

image descriptors fit biological vision, from best to worse was, deep 

convolutional network, GIST, HMAX, PHOW. However, exemplar theory found 

a different trend, PHOW, deep convolutional network, GIST, HMAX, suggesting 
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that its calculations may be differing from biological visions. Examining Figure 

4.3 also demonstrates that a lot of the bins are clustered at the top end of the 

computational models’ Cat score, showing that it has a high correct 

categorization rate. Because of this relatively few bins are spread out to the 

lower end of the Cat scores showing that correlations are being driven by 

relatively few bins. This is especially highlighted in the case of the deep 

supervised convolutional neural net. Here Exemplar theory is summarized as a 

decision process which works, but it probably differing to the one employed by 

biological vision. 

Decision bound theory explained the most variance in the behavioral data, with 

a significant correlation with three out of the four image descriptors. 

Performance across the image descriptors form best to worst was deep 

supervised convolutional model, GIST, PHOW and HMAX. This followed largely 

the same trend as in Chapter 3 in which the image descriptors, rather than 

decision processes, were the focus of the study. Interestingly, decision bound 

theory produced significant correlations when paired with PHOW, which 

performed poorly in previous experiments. An explanation of this finding is that 

PHOW is an image descriptor which was originally created for the purpose of 

image classification. PHOW therefore works a lot better for the purpose of 

image classification than image recognition.  

There have been a number of studies over recent years that decision bound 

theory provides a good approximation to the mechanism biological vision is 
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using to categorize images. Two studies have used decision bound theory 

paired with GIST in order to explain observer’s behavior in image categorization 

tasks (Mack & Palmeri, 2010; Sofer et al., 2015). A number of studies have also 

tried to predict human behavior based upon measured brain activity. These 

studies have shown that decision bound theory works extremely well at 

predicting observers image categorization behavior based on MEG (Carlson, 

Tovar, Alink, & Kriegeskorte, 2013; Ritchie, Tovar, & Carlson, 2015) and fMRI 

(Carlson, Ritchie, Kriegeskorte, Durvasula, & Ma, 2014). All of this research 

supports the notion that when image descriptions approximate those used by 

biological vision decision bound theory provides a good account for image 

categorization in human observers (Ritchie & Carlson, 2016).  

While decision bound theory works well, there may be other, more complex, 

decision processes which outperform it. Zhang, Berg, Maire, & Malik, (2006) 

showed that a decision process which utilized both exemplar theory and 

decision bound theory principles had a higher categorization rate than either 

of the two theories alone. It could be possible that biological vision is 

performing a process similar to decision bound theory, but the exact nature of 

the decision process may be slightly different.  

It is also important to note that the categorization literature has shown that 

the mechanism observers are using to categories images is likely to be task 

dependent (Konishi et al., 1999; Lombardi et al., 1999; Rao et al., 1997). For 

example, this is particularly pronounced in task which use categories which can 
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be separated by verbal rules versus categories where no verbal rules exist to 

separate them. The majority of studies in the recent decade have used natural 

images and so almost all of the studies fall under the category of tasks which 

have no clear cut rules for categorization (Mack & Palmeri, 2010; Sofer et al., 

2015). It could be that decision bound theory works particularly well for these 

kinds of studies, but much simpler mechanisms are being employed in rule 

based tasks. It would be interesting to apply the methods here, image 

descriptions used which reflect biology, to rule based tasks in order to 

determine if decision bound is still the optimal strategy. 

In this study observers were restricted, until the RSVP procedure had finished, 

before they were able to respond. In previous studies when this was the case 

computational models failed to be able to explain observers’ reaction times. 

Here, however, computational models are able to explain a significant 

proportion of observers’ reaction times. The results of the reaction time data 

follow closely with the accuracy data. This would suggest that in some 

circumstances, even when observers are delayed in their responding, reaction 

times can reveal the inner processing of observers.  

Previous studies examining computational models similarity to observers have 

compared at a general level; overall accuracy for a category, examining a single 

decision process or a single image descriptor (Mack & Palmeri, 2010; Serre et 

al., 2007; Sofer et al., 2015). In this study a rigorous comparison between 

computational models and human observers was made. Multiple decision 
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processes and image descriptors were examined. Comparisons were made at 

the fine detailed level of each trial. Reaction times as well as observers’ 

accuracy were compared to the computational models. Additionally, all 

comparisons were made on a single data set, allowing comparisons between 

computational models to be straightforward. All of this had the advantage of 

painting a broad picture which reveals results which would not have been 

shown by individual studies examining small elements of the whole picture 

(e.g. although exemplar theory predicted a significant amount of observers’ 

behavior, it is unlikely to be the algorithm biological vision is using to 

categorizing images in this experiment). While studies examining single 

elements can reveal important information, studies examining multiple 

elements are crucial to understanding the puzzle that is the human visual 

system.  
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Chapter 5 - Investigating the effect of image set 

5.1. Introduction 

Computational models and human observers naturally differ in the image sets 

on which they were trained. In the current chapter, we investigated the extent 

to which this natural difference could account for differences in their behavior.  

Computational models are trained on a finite (albeit increasingly large) image 

set, which usually ranges from between 1,000 to 1.2 million images (Fei-Fei et 

al., 2007; Russakovsky et al., 2015). These are generally images that are 

photogenic; long shots including the whole object or scene. Human observers, 

on the other hand, have had a life time to accumulate their image set and so 

have access to a much larger range of images (Gibson, 1969; McGraw, Webb, 

& Moore, 2009), and environmental conditions (e.g. fog).  

The difference in image sets used by the computational models and human 

observers is likely to cause them to respond differently; they are making 

decisions based on different information. This poses a problem when trying to 

determine the similarity between a computational model and human 

observers, this is illustrated by the following example. Imagine a computational 

model which is identical to human observers in image description and decision 

process, but is using a vastly different image set. Even though the 

computational model is performing the same algorithms as the biological 

system the output behavior would be different.  
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In order to obtain a better measure of the similarity between computational 

models and human observers, the gap between the two image sets needs to 

be closed. This could be done by increasing the variety and number of images 

that computational models are trained on. This is naturally happening over 

time as image sets become larger (Russakovsky et al., 2015), but that doesn’t 

solve the problem that images taken by photographers are likely not to be the 

same as the scenes naturally encountered by the eye. An alternative approach 

could be to train the observer on the image set used by the computational 

model. This method would employ observers’ natural ability for perceptual 

learning (Goldstone & Hendrickson, 2010; Werker & Tees, 2002), in which 

human observers’ perceptual system naturally adapts to better discriminate 

stimuli categories with which it is presented. Training observers on the image 

set used by the computational model ensures that the human observers have 

had access, and a chance to optimize, to the same images the computational 

model is using. By training observers on the image set the computational model 

is using, the observers’ image statistics are likely to be steered to be more like 

the computational model. 

Here we aim to investigate if human observers can be made to respond closer 

to the computational model by training them on the image set used by the 

computational models. Additionally, by using this method it is possible to gauge 

the extent to which the intrinsic differences in image sets, between 

computational models and human observers, influence the similarity of their 

behaviour.  
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An experiment of three phases is presented here, an initial testing session (pre-

training), followed by 8 training sessions in which the participants were 

repeatedly exposed to the image set, and then a final testing session (post-

training). Pre-training sessions give an approximation of the initial similarity 

between the computational models and humans. Post-training sessions 

measure the similarity of the computational models to humans, after training. 

The results of the pre- and post-training sessions can then be compared against 

each other to determine the effect that training had on their similarity. We 

used separate experimental designs for testing sessions and training sessions 

so that any improvement in models’ ability to predict human behavior can be 

attributed to a closing of the gap between the two image sets, rather than 

familiarity with the task.  

5.2. Methods 

5.2.1. Observers 

Twelve Nottingham University students (seven female; age 18-24 years) took 

part in the experiment. All were volunteers who were given an inconvenience 

allowance. All signed a consent form and all procedures were approved by the 

University of Nottingham Psychology ethics committee. 

5.2.2. Apparatus 

The experiment was programmed in PsychoPy (Peirce, 2007), and was run on 

a Lenovo desktop with 3.7 GHz, Intel Xeon E5-1620 v2 processor and NVIDIA 
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NVS 310 graphics card. The viewing distance was held constant with a chin rest 

at 57cm from the monitor screen. The monitor was a Iiyama ProLite 

GB2488HSU set to a 1920 x 1080 resolution with an 144Hz refresh rate. Images 

for each trial were loaded onto the graphics card during the inter-trial interval. 

Timing of all briefly-presented stimuli (e.g. in the rapid serial visual 

presentation (RSVP) task) was controlled by presenting the stimuli for a fixed 

number of screen refreshes. We verified that the system reliably presented 

these stimuli within an RSVP sequence without dropping any frames.  

5.2.3. Design and Procedure 

The experiment consisted of ten sessions, each taking place on separate days 

and all of them taking place within three weeks (allowing participants a certain 

level of flexibility, while ensuring a degree of consistency in gaps between 

sessions). The ten sessions were split into three phases; Phase 1: one initial 

testing session (referred to as pre-training), Phase 2: eight training sessions and 

Phase 3: one final testing session (post-training). The task in the testing sessions 

followed a Yes/No RSVP procedure and, the task for the training sessions was 

a simple Yes/No task with single images rather than an RSVP presentation. This 

allowed us to compare the model with performance on two different tasks that 

placed quite different temporal constraints on the observers. The different 

pools of images used as the image set in this experiment are described in 

Chapter 2 - Image Set. 
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Testing Sessions (pre- and post-training). Each session consisted of 480 main 

trials. Each trial began with a fixation cross which lasted 500 ms. This was then 

followed by a text prime, which was the name of one of the four image 

categories (Buildings, Mountain, Ocean or Trees). The text prime was 

presented on the screen for one second. Participants then viewed an RSVP 

sequence of 6 pictures presented for 10 screen refreshes (69.4 ms at our 144 

Hz refresh rate) per image. Participants had to report whether any of the 

images were of the category that was primed. There was a 50% chance on any 

trial that a target image matching the prime was present. Target images could 

not appear as the first or last image in the RSVP sequences, but could appear 

in the serial positions 2, 3, 4, or 5. Target position was balanced over the trials. 

The target image came from the target pool of images, while the other images 

in the RSVP sequence were from the mask pool of images. After the RSVP 

sequence participants were presented with text, reminding them of the prime 

and asking if they saw the corresponding image. This text remained on the 

monitor until the participants responded, by pressing arrow keys on the 

keyboard to indicate if they had seen an image matching the primed image 

category. If the participant responded slower than 500 ms text was displayed 

on the screen requesting a faster response. During the first testing session 

participants were given a practice block of 20 trials, which consisted of images 

from only the mask pool of images. This initial practice session was to make 

sure that observers understood the task. A diagram illustrating the trial 

structure of testing sessions is shown in Figure 5.1. 
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Figure 5.1. A diagram showing the trial structure of the testing session. On the left a verbal 

description is given, while on the right a visual example is shown. 

 

Training Sessions. The training sessions were deliberately set up to use a 

different task, so that any effect of training would be caused by changes in 

visual perception of the images rather than procedural learning where the 

participants had improved their ability to attend to or process the RSVP 

sequences. The key difference was that there was no RSVP presentation; just a 

single image presented for a single frame (6.95 ms). Each trial began with a 

fixation cross lasting 500 ms. This was then followed by a text prime, which was 

the name of one of the four image categories (Buildings, Mountain, Ocean or 
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Trees). The prime lasted on the screen for one second. A single image was 

presented for 1 frame (6.94 ms). The screen was then left blank until the 

participant responded. If the participant responses were greater than 500 ms 

then text asking the participant to respond faster was displayed. Every 100 

trials participants received a screen showing the number of trials they 

responded to correctly and their reaction time, both of which stayed on the 

screen until they pressed a key to move on. This form of feedback was given to 

encourage performance and as a way of allowing participants optional breaks. 

Images used in this session came from the mask pool of images; the pool of 

images the computational models were using to base their decisions. Images 

from the target pool of images was not used as we wanted to limit exposure 

the observers had to these images to keep them novel; ensuring observers had 

to calculate their response rather than using memory. Each session consisted 

of 425 main trials. A diagram showing the trial structure for training sessions is 

shown in Figure 5.2. 
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Figure 5.2. A diagram showing the trial structure of training sessions. On the left a verbal description 

is given, while on the right a visual example is shown. 

 

5.3. Results 

Any trials in which observers responded slower than 500 ms were excluded 

from the analysis (4.2% of trials) and participants were warned on such trials 

that they should respond faster. This exclusion criterion was used to encourage 

participants to respond very rapidly. The results of the 3 different phases of the 

experiment (pre, training and post) are presented separately, due to the 

difference in their methodologies. The descriptive statistics of the observers’ 

performance in testing and training phases of the experiment are presented 

first, then the results are examined to see if observers’ performance increased 
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through the sessions as a result from training, finally observers’ performance 

in the different phases are compared to the output of the computational 

models. 

Figure 5.3 presents the descriptive statistics of the observers’ behavior from 

both testing sessions, while Figure 5.4 presents the descriptive statistics of the 

observers’ behavior in all the training sessions.  
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Figure 5.3. Observers performance in both the testing sessions combined in the four different image 

categories as well as when they are all pooled together. A) plots hit rate and correct rejection rate, 

while B) plots observers’ reaction time (in seconds). Error bars shown are the standard error of the 

mean. 
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Three separate 1x4 repeated measures ANOVAs were run for the dependent 

measures of hit rate, correct rejection rate and reaction times respectively in 

the pre- and post-training sessions combined. This was done to see if the 

dependent variables varied across image category. Observers’ hit rate, correct 

rejection rate and reaction times was shown to vary significantly across image 

category (F(3,33) = 45.017, p < .001, 2

p  = .80,  F(3,33) = 20.068, p < .001, 2

p  = 

.65,  F(3,33) = 14.283, p < .001, 2

p  = .57, respectively).  
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Figure 5.4. Observers performance in all the training sessions combined in the four different image 

categories as well as when they are all pooled together. A) plots observes’ hit rate and correct 

rejection rate, while B) plots observers’ reaction time (in seconds) are plotted. Error bars shown are 

the standard error of the mean. 
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Three separate 1x4 repeated measures ANOVAs were run for the dependent 

measures of hit rate, correct rejection rate and reaction times respectively in 

the training sessions combined. This was done to see if the dependent variables 

varied across image category. Observers’ hit rate, correct rejection rate and 

reaction times was shown to vary significantly across image category (F(3,33) = 

9.188, p < .001, 2

p  = .46, F(3,33) = 29.982, p < .001, 2

p  = .73, F(3,33) = 3.296, 

p = .032, 2

p  = .23, respectively).  
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Figure 5.5.  Observers’ performance in the pre-training and post-training testing sessions. Each 

image category is shown separately and also when they are all grouped together. Hit rate and correct 

rejection are plotted together on the same y-axis. Significance markers are colour coded to the lines 

and plotted next to any significant differences (p<0.05: *, p<0.01:**, p<0.001:***). Error bars shown 

are the standard error of the mean. 

To determine whether training had any impact on performance we conducted 

paired- sample T-tests comparing hit rate, correct rejection rate and reaction 

times in the pre- and post-training session. On average, observers had 

significantly better hit rates in the post-training session (M= 64.61, SE= 2.35) 

than in the pre-training session (M= 55.01, SE= 2.68), when all the image 

categories were pooled together (t(11)= -3.02, p <.05, d= 1.10). Breaking this 

down into categories reveals, on average, significantly better hit rates in the 

post-training session in the category of ocean (M= 33.96, SE= 4.36), trees (M= 

77.74, SE= 3.64) and buildings (M= 85.78, SE= 2.66) when compared to their 



137 

 

pre-training session counterparts, ocean (M= 23.23, SE= 3.22), trees (M= 59.99, 

SE= 4.99) and buildings (M= 75.30, SE= 4.22) (ocean, t(11)= -2.88, p< .05, d= 

.81; trees, t(11)= -4.84, p< .001, d= 1.17; building, t(11)= -3.33, p< .01, d= .86). 

On average, observers had significantly better correct rejection rates in the 

post-training session in the category of mountain (M= 77.58, SE= 3.33) when 

compared to the pre-training session (M= 71.01, SE= 3.86), t(11)= -2.64, p<.05, 

d= .52). No significant differences were observed in the reaction time data 

(which is therefore not plotted in Figure 5.5 or Figure 5.6).  
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Figure 5.6. Observer’s performance in the training sessions.  Each image category is shown 

separately and also when they are all grouped together. Hit rate and correct rejection rate are shown 

as significant changes are observed. Reaction times are not displayed as no significant changes were 

observed. Significant regressions are plotted as trend lines. Error bars shown are the standard error 

of the mean.  

 

Linear regressions were calculated to examine if any change in hit rate, correct 

rejection rate or reaction time occurred across the training sessions. This can 

be seen in Table 5.1. The results show that when all the image categories are 

pooled together that observers hit rate and correct rejection rate increase over 

the sessions. When this effect is dissected by image category it seems that each 

image category had its own pattern of increased performance over the training 

sessions. In some cases (trees and oceans) observers learnt to better detect 
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images that belonged to those categories. For other categories (mountains and 

buildings) observers learnt to better identify images which were not of that 

image category. In all image categories performance increased over the 

sessions. 
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Table 5.1. The linear regressions conducted on the human observers’ data in the training sessions. 

Positive regressions are highlighted in green. 

  R2 slope p Value Intercept 

Ocean Hit rate .57 .019 .031 .72 

Correct 

Rejection Rate 

.47 .0081 .061 .82 

Reaction Time .39 -.0016 .10 .35 

Mountain Hit rate .27 -.0038 .18 .86 

Correct 

Rejection Rate 

.86 .024 .0010 .61 

Reaction Time .011 0.00031 .81 .35 

Trees Hit rate .78 0.028 .0036 .66 

Correct 

Rejection Rate 

.12 0.0033 .40 .79 

Reaction Time .083 -.00065 .49 .35 

Buildings Hit rate .26 -.0026 .20 .90 

Correct 

Rejection Rate 

.59 .0096 .026 .78 

Reaction Time .091 -.00076 .47 .35 

All Hit rate .54 .0098 .038 .79 

Correct 

Rejection Rate 

.67 .011 .013 

 

.75 

Reaction Time .090 -.00073 .47 .35 
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One aspect to note is that the current study used two different tasks for the 

testing (pre-and post-training) and the training sessions. In the former an RSVP 

task was used in which the rapid presentation of stimuli result in substantial 

masking form one to the next. In the training sessions stimuli were presented 

for brief periods but not masked. This influenced hit rate, which was worse in 

both testing sessions than in the training period and varied by image category. 

Computational models were constructed for four image descriptors (GIST, 

HMAX, PHOW, deep convolutional neural net) all paired with decision bound 

theory, keeping with the findings from Chapter 4. For further details on how 

comparisons between computational models and human observers were made 

see Chapter 2 - General Methods. 

The results are presented in Table 5.2. Correlations highlighted in green are in 

the direction predicted by the model. 
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Table 5.2. The results of the various different computational models when Observers’ accuracy (on target present trials) or reaction times is regressed against them. Significance markers are presented 

next to any significant differences (all uncorrected for multiple comparisons). Green shading indicates significant correlations in the direction the computational model predicted.  

 Pre-training 

(22-23 trials in each bin) 

Training 

(174-175 trials in each bin) 

Post-training 

(23-24 trials in each bin) 

 GIST HMAX PHOW DCN GIST HMAX PHOW DCN GIST HMAX PHOW DCN 

Decision 

Bound Theory 

(Accuracy) 

p= .026 

r= .20 

p= .637 

r= .04 

p= .215 

r= .11 

p< .001 

r= .34 

p= .035 

r= .19 

p= .038 

r= .19 

p= .503 

r= .06 

p< .001 

r= .43 

p= .043 

r= .19 

p= .740 

r= .00 

p= .081 

r= .16 

p< .001 

r= .35 

Decision 

Bound Theory 

(Reaction time) 

p= .29 

r= -.10 

p= .783 

r= .00 

p= .12 

r= -.14 

p= .013 

r= -.23 

p< .001 

r= -.33 

p= .062 

r= -.17 

p= .206 

r= -.12 

p< .001 

r= -.47 

p< .001 

r= -.34 

p= .959 

r= .00 

p= .026 

r= -.21 

p< .001 

r= -.48 
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The data in Table 5.2 demonstrates a number of different computational 

models were able to significantly predict observers’ behavior within each of the 

3 phases of the experiment; pre-training, training and, post-training. 

In Figure 5.7 we examine which of the image descriptors best approximates 

human observers’ behavior. These graphs show behavioral data taken from the 

observers’ training sessions and plotted against each of the image descriptors 

paired with decision bound theory. Three of the four image descriptors were 

significantly correlated with human performance. The strongest relationship 

was seen for the deep convolutional network model descriptor.  
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Figure 5.7. Plotting observers’ behavioural data in the training sessions against different models’ 

performance comprised of a decision bound paired with different image descriptors; (A) GIST, (B) 

HMAX, (C) PHOW and (D) Deep convolutional network. Standard error of the mean has been plotted 

in all four panels. A score of .6 means 60% of targets were detected. Number of bins is 120. 

 

The comparisons which show the clearest signs that training caused the 

observers to behave closer to computational models is seen in the two best 

image descriptors (Deep convolutional model and GIST), combined with a 

decision bound method, before and after training (see Figure 5.8), correlated 

against observers’ reaction times.  
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Figure 5.8. Comparing different models’ ability to explain observers’ behavioural data between pre-

training and post-training sessions. Observers’ pre-training session behaviour plotted against a 

models’ performance comprised of a decision bound paired with (A) deep convolutional network 

and (C) GIST. Observers’ post-training session behaviour plotted against a model comprised of a 

decision bound paired with (B) deep convolutional network and (D) GIST. Standard error of the mean 

has been plotted in all four panels, but the error bars are smaller than the data points in all cases. A 

score of .6 means 60% of targets were detected. 
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5.4. General Discussion 

Here we investigated whether human observers could be made to respond 

closer to the computational models by training them on the image set the 

computational models were using. Additionally, we were interested in 

attempting to gauge the extent to which the intrinsic differences in image sets, 

between computational models and human observers, influence the 

differences of their behaviour.  

Observers’ performance (not compared to the computational models) across 

the training sessions and a comparison between pre- and post-training sessions 

indicates whether they learned during the experiment (perceptual learning). 

Observers’ performance, in terms of hit rate and correct rejection rate, was 

shown to increase during the training sessions and the comparison between 

pre- and post-training session revealed that observers’ hit rate increased 

significantly. Reaction times were seen to be stable across the training sessions 

and when the pre-training session was compared to the post-training session. 

The increase in observers’ performance, in terms of hit rate and correct 

rejection rate, is a good indicator that observers could learn the image set and 

increase their performance. The absence of any significant change in reaction 

times, may have been due to a ceiling effect caused by the experimental 

design; observers were prompted to respond faster than 500 ms. 

Comparisons over the three phases in the ability of the computational models 

to predict observers’ performance, suggests that observers’ performance 
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became closer to the computational models through training. The maximum 

significant correlation coefficient was smaller in the pre-training session than 

in training or post-training. This suggests that computational models, on the 

whole, found it easier to predict observers’ performance in the training 

sessions and the post-testing session than in pre-training. On a closer 

examination of this result, looking at pre- and post-training sessions 

specifically, the increase in models’ performance to predict observers’ behavior 

is located in the domain of reaction times and not observers’ accuracy. The 

change in computational models’ ability to explain observers’ reaction times 

are displayed in Figure 5.8. This change is moderately large, with an increase of 

around .20 correlation coefficient with the best performing image descriptors 

(GIST and the deep convolutional neural net). Observers’ accuracy, and not 

reaction times were seen to change due to training. It is therefore surprising 

that computational models showed a greater ability to explain observers’ 

reaction times and not their accuracy data after training. This result would 

suggest that although no change in average reaction times occurred due to 

training, this didn’t mean that changes were not happening at a much finer 

level in observers’ reaction times, reflected here by the computational models’ 

ability to better predict them. It is possible that due to the small participant 

size that no change in models’ ability to explain observers’ accuracy was found, 

with an increased participant sample size and a greater number of trials it is 

possible that computational models may be able to better predict observers’ 

accuracy data after training. 
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From the study presented here a slightly different message on which 

computational image descriptors best explain human behavior was observed. 

The deep supervised convolutional network still provided the closest fit to 

observers’ behavior, in terms of accuracy and reaction times. This was again 

followed by GIST, as the second-best image descriptor at explaining human 

behavior. However, HMAX and PHOW were shown to have roughly similar 

abilities to predict human behavior, both only finding one significant 

correlation in the accuracy data in training sessions and reaction times in post-

training, respectively. A possible explanation for this effect is the large 

reduction in number of participants. Previous studies presented in this thesis 

used participant sizes of 40-70, while this experiment used only 12 as it was a 

longitudinal study.   

The deep supervised convolutional neural net’s image description process has 

been trained on 1.2 million images from the ImageNet database (Russakovsky 

et al., 2015). This training has optimized its image description for performance 

on the image categorization task used in the 2012 ImageNet competition 

(Krizhevsky et al., 2012). Here, while the computational model did not have 

access to the 1.2 million images it did keep the optimization of its image 

description algorithm. The deep supervised convolutional neural net could 

explain a significant amount of observers’ behavior in the pre-training data set, 

where the other image descriptors struggled. It could be that due to the image 

descriptors’ prior exposure to a large image set it was still able to perform the 

task in a similar manner to humans. Khaligh-Razavi & Kriegeskorte, (2014) 
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showed that image descriptors which had undergone supervised learning in 

their image description process, compared to those that didn’t, better 

approximated the structure of observers’ image descriptions. Supervised 

learning offers potentially another mechanism by which the image set gap 

between image descriptors and computational models can be closed. 

The results presented here suggest that as human observers become more 

familiar with the image set the computational model is using, the closer their 

behavior is to the computational model. At first glance, this would seem to 

pose a problem to the existing literature as studies often use no training or only 

a small number of training trials before beginning the main block of trials. 

However, this may not be the case. The results here show that while observers’ 

behavior altered to become closer to that of the computational model, no 

change in which image descriptors, or the order in which model best 

approximates biological vision occurred. This would suggest that while 

researchers stand a better chance at detecting if a model is similar to human 

observers no change in the overall pattern of results is likely to occur. The 

results, and experimental design, presented here indicate that if the 

computational model has around 1000+ images it is likely to be sufficiently 

similar enough to humans to poses no major problem. However, researchers 

should still aim for larger image sets or allow for proper training of observers 

on the image sets used before conducting the experiment.  
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Chapter 6 -  Investigating temporal blurring 

6.1. Introduction 

In the current chapter, we used computational models to investigate if, in an 

RSVP task, observers were experiencing temporal blurring during their image 

description process.  

Several studies have shown that the human visual system accumulates a signal 

over time to form a single perception (Sweet, 1953; Westheimer & McKee, 

1977). Consequently, if a stimulus is flashed on and off fast enough the visual 

system will perceive it as a single object (Hecht & Smith, 1936).  

An image presented by itself needs a duration of around 20 ms to be correctly 

identified (Thorpe, Fize, & Marlot, 1996). If this image is masked in an RSVP 

sequence then the duration that each image needs to be presented increases 

to around 125 ms (Potter, 1975). Even though the minimum duration an image 

needs to be displayed in a RSVP increases due to masking, it is unclear if, at this 

duration, the visual system is able to form an image description which is not 

influenced by the masks either side of the target. It is possible that during a 

RSVP task images are temporally blurred together when forming a single image 

description.  

The current chapter has two main aims. First, to investigate if computational 

models better predict observers’ behavior when temporal blurring is included 

in their calculations. Second, if observers are experiencing temporal blurring 



151 

 

then how much more of the variance do the models explain once temporal 

blurring is included as a variable? If it is found that computational models 

better approximate observers’ behavior when temporal blurring is included 

then this, as a method, could be used to study the integration window (time 

course and profile) of the image description process. 

Here we re-analyzed behavioral data from the RSVP tasks in previous chapters; 

Chapter 3 - Experiment 2, which presented an image recognition task, and 

Chapter 4 - Experiment 1, which presented an image categorization task. In this 

reanalysis, we added a temporal blur component whereby the two neighboring 

mask images were added (in a variety of weights) to the target image, prior to 

forming the image description. 

6.2. Experiment 1 

6.2.1. Methods 

The behavioural data comes from Chapter 3 - Experiment 2 which was a 2AFC 

image recognition task. For a description of the Observers, Apparatus as well 

as the design and procedure please see Chapter 3 - Experiment 2 - Methods. 

Modeling temporal blurring 

Temporal blurring was included into the computational model by presenting 

the model with a combined image of the target image and the mask images 

presented temporally either side of it. Temporal blurring of the target image 

with the mask images followed a simple function which was defined by extent 
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of the temporal blurring of each mask image. Calculation of the temporal 

blurring took a percentage of each mask image (B) and then added to a 

percentage of the target image (1-2*B), maintaining a total of 100%. This is 

illustrated by the example of temporal blurring value of 0.1; 10% of the 

luminance values of the forward and backwards mask are taken and added to 

80% the luminance value of the target image. 

Decision Process 

Temporal Blurred Image Recognition. In the most general case the ability to 

identify which of two images looks most like a target is given by the differences 

in the distance between the sample and each of the images; if the difference 

in distances is great then the decision about which image is the target becomes 

easy. In the previous analyses the distance between the sample image and the 

target was zero (they were the same image) and so the measure here reduced 

to simply the distance between the sample and distractor. With the addition of 

blurring, which applies only to the sample (the image, as it was presented 

during the RSVP sequence) not to the target during the decision stage (it was 

presented for a prolonged duration with no masks at this point). Therefore, in 

the analysis here the predicted difficulty becomes the difference in distances 

between the target image with its blurred counterpart and the target image 

with the distractor image. 
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6.2.2. Results 

Here the four Image descriptors (GIST, HMAX, PHOW and the deep supervised 

convolutional neural net) were paired with a decision process which had been 

adapted to accommodate temporal blurring. Original analysis of this 

behavioural data, described in Chapter 3 - Experiment 2, found that PHOW did 

not produce image descriptions which fit human observers. It is still included 

in this analysis to examine if PHOW can explain human observers’ behaviour 

when temporal blurring is included.  

As with Chapter 3 - Experiment 2, only target-present trials in which the 

observer responded correctly in the categorization task were analysed. This 

was to make sure that observers had seen the target image or else they would 

presumably be guessing for the image recognition task. Trials in which the 

observer took longer than two seconds to respond were also excluded from 

the analysis (2.4% of trials).  

Several different temporal blur values were examined, ranging from 0.001 to 

0.3. These values indicate the weight each mask (B) and can be used to 

determine the weight the target image was given (1-2*B).   These values were 

chosen to cover a large proportion of the different values that were possible, 

as it was not known exactly which value would best approximate human 

observers.  



154 

 

As the blurring step introduces a new parameter into the computational model, 

we present the data in terms of both the correlation between the model’s 

performance and observers’ behavioural data and, also, in terms of the Aikaike 

Information Criterion (AIC) to account for the extra variable. AIC scores are 

used to examine if the increased number of model parameters is justified by 

the increase in variance explained (as a score becomes more negative it 

indicates a greater justification). The number of parameters used in calculation 

of AIC in the zero blur model is 2; the number of parameters for a linear 

correlation model. The number of parameters used in calculation of AIC in the 

models including temporal blur is 3; adding extent of temporal blur as another 

parameter. The results from the temporal blurring analysis are shown in Figure 

6.1 and Figure 6.2 for accuracy and reaction times respectively.  
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Figure 6.1. Plotting correlation coefficient and AIC criterion against the extent of temporal blurring 

for each computational model predicting observer’s accuracy. Graphs on the left (A, C, E, G) plot 

variance explained in observers’ accuracy data against extent of temporal blurring of the 

computational model, while graphs on the right (B, D, F, H) plot AIC criterion of observers’ accuracy 

data against extent of temporal blurring. Each row represents a different image descriptor, from top 

to bottom, GIST (A, B), HMAX (C, D), PHOW (E, F) and deep convolutional neural network (G, H).  
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Figure 6.2. Plotting correlation coefficient and AIC criterion against the extent of temporal blurring 

for each computational model predicting observer’s reaction times. Graphs on the left (A, C, E, G) 

plot variance explained in observers’ reaction times data against extent of temporal blurring of the 

computational model, while graphs on the right (B, D, F, H) plot AIC criterion of observers’ reaction 

times data against extent of temporal blurring. Each row represents a different image descriptor, 

from top to bottom, GIST (A, B), HMAX (C, D), PHOW (E, F) and deep convolutional neural network 

(G, H).  

 

The results show that computational models which include temporal blurring 

tend to better explain human observers’ behaviour. This suggests that 

observers were likely experiencing temporal blurring during the task. Almost 

all correlation coefficient (r) graphs imply an increased level of variance 

explained when blurring is considered in both observers’ accuracy and  reaction 

times. AIC further demonstrate this and show that the increase in variance 

explained at the cost of more parameters is justified.  

6.2.3. Discussion 

The results show that including temporal blurring in the computational models 

can increase their ability to explain human behaviour, in an image recognition 
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task. This is largely seen in observers’ accuracy data but can still be seen in 

observers’ reaction times. The only cases where the inclusion of temporal 

blurring did not aid computational models to better predict observers’ 

behaviour was in the case of HMAX and the deep supervised convolutional 

neural net, in the domain of observers’ reaction times. Image descriptors 

showed peaks in variance explained at different blur levels. These peaks were 

consistent in each image descriptor for both the accuracy and reaction time 

data. The deep convolutional model and GIST both showed peaks at around 

10-20% temporal blur. PHOW showed a peak at around 5% and HMAX a peak 

at around 1% blur of each mask onto the target image. PHOW originally showed 

no evidence in being able to predict human observers’ accuracy data, as 

temporal blur was added it did show a small increase in its ability to predict 

observers’ behaviour. The results would suggest that top performing models 

benefit from higher levels of temporal blurring compared to the other models.  

AIC scores were used to examine if the increase in variance explained is 

justified by the addition of an extra parameter; temporal blur. AIC results 

overall followed the trend of the correlation coefficient graphs and largely 

showed that where a peak formed in the correlation coefficient graph that the 

model is justified. The results show that the effects of temporal integration 

windows can be studied with comparisons of computational models. 
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6.3. Experiment 2 

6.3.1. Methods 

The behavioural data comes from Chapter 4 - Experiment 1, an image 

categorization task (“Was an Ocean image present?”). For a description of the 

Methods please see Chapter 3 - Experiment 2 - Methods, where the 

experiment was originally described. 

Information on how temporal blurring of the stimuli was created are found in 

Chapter 6 - Experiment 1 - Methods - Modeling temporal blurring. 

6.3.2. Results 

Here the four Image descriptors (GIST, HMAX, PHOW and the deep supervised 

convolutional neural net) are paired with decision bound theory. Only decision 

bound theory is considered as it was shown to have the closest similarity to 

human observers in Chapter 4 - Experiment 1. Decision bound theory needed 

little altering to cope with the temporally blurred stimuli. It was however 

altered to leave out the target image and both the mask images when creating 

the decision bound for each trial.  

In a similar manner to Chapter 4 - Experiment 1 trials in which the observer 

took longer than two seconds to respond were excluded from the analysis 

(4.3% of trials). This criterion for exclusion was chosen to limit observers’ 

responses to rapid feedforward response based on instinct rather than 

cognitive reasoning. 
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Several different temporal blur values were examined, ranging from 0.001 to 

0.5. A greater range of temporal blurring values was examined in than in 

Experiment 1 as it seemed observers were experiencing a greater extent of 

temporal blurring in this task.  

In a similar manner to Experiment 1 the correlation between the model’s 

performance and observers’ behavioural data, as well as the model’s AIC score 

are presented. The number of parameters used in calculation of AIC in the zero 

blur model is 2; the number of parameters for a linear correlation model. The 

number of parameters used in calculation of AIC in the models including 

temporal blur is 3; adding extent of temporal blur as another parameter. The 

results from the temporal blurring analysis are shown in Figure 6.3 and Figure 

6.4, for accuracy and reaction time data respectively.  
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Figure 6.3. Plotting correlation coefficient and AIC criterion against the extent of temporal blurring 

for each computational model predicting observer’s accuracy. Graphs on the left (A, C, E, G) plot 

variance explained in observers’ accuracy data against extent of temporal blurring of the 

computational model, while graphs on the right (B, D, F, H) plot AIC criterion of observers’ accuracy 

data against extent of temporal blurring. Each row represents a different image descriptor, from top 

to bottom, GIST (A, B), HMAX (C, D), PHOW (E, F) and deep convolutional neural network (G, H).  
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Figure 6.4. Plotting correlation coefficient and AIC criterion against the extent of temporal blurring 

for each computational model predicting observer’s reaction times. Graphs on the left (A, C, E, G) 

plot variance explained in observers’ reaction times data against extent of temporal blurring of the 

computational model, while graphs on the right (B, D, F, H) plot AIC criterion of observers’ reaction 

times data against extent of temporal blurring. Each row represents a different image descriptor, 

from top to bottom, GIST (A, B), HMAX (C, D), PHOW (E, F) and deep convolutional neural network 

(G, H).  

 

6.3.3. Discussion 

The results show that including temporal blurring in a computational models’ 

calculations can increased their ability to explain human behaviour, in an image 

categorization task. Similarly to Experiment 1, this effect is more clearly seen 

in observers’ accuracy data, but can also be seen in observers’ reaction time 

data. The only instance where the inclusion of temporal blurring did not aid 

computational models in their ability to explain observers’ behaviour was for 

HMAX in the domain of observers’ reaction times. An Image descriptors’ peaks 

in variance explained were largely consistent for both the accuracy and 

reaction time data. The peaks across each image descriptor were more 
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consistent than in Experiment 1, ranging from 15% to 30%. In Experiment 1 it 

was shown that top performing image descriptors benefitted from a larger 

amount of temporal blurring, here all the image descriptors benefit from at 

least 15%+ temporal blurring.  

AIC scores were used to examine if the increase in variance explained is 

justified by the addition of an extra parameter; temporal blur. AIC results show 

that for any clear peak in the reaction time or accuracy data that the addition 

of the extra parameter was justified by the extra variance explained. The 

results show that indeed observers are likely to be experiencing temporal 

blurring of the stimuli in the RSVP procedure which is influencing their 

behaviour. 

6.4. General Discussion 

Here we aimed to investigate if human observers were experiencing temporal 

blurring during an RSVP task. The effect of temporal blur was simulated by 

combining the target image with various weightings of the mask images 

presented on either side of the target. Computational models which either 

included, or did not include, temporal blurring in their calculations were 

created. These computational models were compared to human observers’ 

behavior, in terms of reaction times and accuracy, to examine which 

computational models best predicted observers’ performance in an image 

recognition and categorization task. The results largely show that models which 
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included temporal blurring in their calculations were better able to explain 

human behavior, in terms of accuracy data and reaction time data. 

There was a slight difference between the two experiments in the peak 

temporal blurring value which best predicted observers’ behavior. In 

Experiment 1 the top performing image descriptors (GIST and deep 

convolutional neural net) required a temporal blur value of around 10-20% to 

best predict human observers’ performance, in terms of accuracy and reaction 

times. The results of Experiment 2 suggest that, for all image descriptors 

examined, temporal blur values around 15-30% were required to optimally 

explain observers’ behavior, in terms of accuracy and reaction times. From 

these results, it appears that the categorization task required greater amounts 

of temporal blurring to best explain observers’ performance. This might be 

caused by differences in the task. Both the data sets from Experiment 1 and 

Experiment 2 were collected in the same session. Each trial consisted of three 

stages; an initial RSVP followed by the categorization task and then the 

recognition task. The extra delay observers had before they were given the 

recognition task could have allowed time for higher cognitive processes to 

occur. These processes could have consolidated the image description, 

reducing the noise from the mask images and increasing the signal of the 

target. This consolidation, although quite small, may explain the difference in 

peak temporal blurring value between the two experiments. Further studies 

investigating temporal blurring and delayed recall would be needed to answer 

this question. 
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It was possible that, once temporal blurring was included in the computational 

models, the order of which image descriptors best explained human observers’ 

behavior could have changed. This was not the case. Taking the peak variance 

explained for each image descriptor preserved the same order in which 

computational models best explained observers’ behavior. 

The analyses here provided a proof-of-principal that in, a RSVP task, the ability 

of the models’ ability to predict observers’ behavior is dependent not only on 

the target image, but on the mask images that neighbored the target. The fact 

that the fit of the computational models to behavioral data was sensitive to 

these temporal effects means that they could be used potentially to study the 

nature of temporal integration windows in biological systems. There are many 

ways the analyses could be extended. It should be noted that these analysis are 

very time-consuming analyses (for instance, computing the HMAX image 

descriptor for the 10 temporal blur values examined took 1 month of 

computing time) and, hence, went beyond the scope of the current thesis. 

The simulated temporal blur in this analysis simply added some weighted 

combination of the two neighboring images to the target. This had equal 

weighting of the forward- and backward-mask with no influence of masks more 

than one image away from the target. In reality, there are a number of masking 

profiles that could be studied. A Gaussian profile, in which influence gradually 

diminished in time, might be the first interesting addition, but also various 
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forms of non-symmetrical profiles could be used to compare the models with 

the behavioral performance. 

We might also test where in the visual system the “blurring” occurs. The 

current analysis treated it entirely as being in the image domain, suitable for 

temporal integration in low-level mechanisms such as in the photoceptors, but 

it might be that later stages could also be involved. This could be examined by 

creating weighted combinations in the descriptor space or, indeed, if the image 

descriptor examined has many layers, then at various layers in the image 

descriptor (for multi-layer descriptors such as the deep convolutional neural 

net). 

The RSVP procedure in Experiment 1 and Experiment 2 used a range of 

different image duration values. This was done so that temporal blurring would 

be more easily detectable; either the peak temporal blur value would have 

been more spread out or many peaks would have been seen. It appears that 

here, the result of using multiple image duration values, caused a single peak 

in the correlation coefficient graphs. It would be interesting to examine the 

change in peak image blur value needed at different image durations. 

The current research demonstrates the strength of computational modeling as 

a method of revealing the inner mechanisms of biological vision in a non-

invasive manner. However, the current research leaves several unanswered 

questions. Where is temporal blurring taking place within the observers’ visual 

system? If it is occurring at the early level of the eye or higher up within the 
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cortex? How does temporal blurring change with image duration? And if spatial 

blurring could also be occurring with temporal blurring? While these questions 

are partially answerable from more advanced modeling, it is likely that to fully 

understand the processes of temporal blurring cell recording studies are 

needed.  
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Chapter 7 - General Discussion 

This thesis has sought to compare human visual perception with computer 

models of visual processing with reference to three distinct components 

(image descriptor, decision process and image set). The thesis presented here 

aimed to investigate the influence of each of these core components on a 

computational model’s similarity to human behaviour. The primary aims of the 

thesis were: 

• To determine which image descriptors best approximate biological 

vision through behavioural tasks. 

• To investigate the decision processes biological vision is employing in 

an image categorization task. 

• To examine the extent the naturally differing image set between 

computational models and biological vision can explain the differences 

in their behaviour. 

• To extend current understanding of biological vision and explore 

whether observers are experiencing temporal blurring when viewing a 

rapid visual presentation of stimuli. 

Each chapter presented in this thesis aimed to answer a different one of these 

aims. 
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7.1. Summary of findings 

Chapter 3 investigated the similarity of different computational image 

descriptors to their biological counterpart. In order to focus on the image 

descriptor, minimizing the influence of the decision process, a 2AFC match-to-

sample task was used to map out the structure of observers’ image 

descriptions. The structure of observers’ image descriptions was then 

compared to those produced by different computational image descriptors. 

The results found that the deep supervised convolutional neural net created 

image descriptions which were the closest in structure to biological vision. This 

was followed by the image descriptors GIST, HMAX and then PHOW in their 

similarity to biological vision. 

Chapter 4 investigated the decision process observers were using to conduct 

an image categorization task. Computational models were constructed by 

pairing the potential decision processes with the image descriptors from 

Chapter 3. The computational models were then compared to observers’ 

behaviour. The results suggest that decision bound theory was the optimal 

decision process at explaining observers’ behaviour.  

Chapter 5 examined the extent the naturally differing image set between 

computational models and observers could explain the difference in their 

behaviour. Observers were trained on the image set the computational models 

were using. Training was done to ‘steer’ observers’ image statistics in the 

direction of the computational model. A three-phase experiment was 
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conducted. An initial testing phase (pre-training), followed by a phase where 

observers were trained on the image set used by the computational model, and 

a final testing phase (post-training). The pre- and post-training sessions’ 

performance were then compared to examine if observers’ behaviour was 

closer to the computational models. The results show that indeed human 

observers can be made to respond closer to the computational models through 

training.  

Chapter 6 investigated the mechanism by which observers were making rapid 

image descriptions. The data from Chapter 3 and 4 were re-analysed to 

examine if computational models could better predict observers’ behaviour, in 

RSVP experiments, if temporal blurring was included in their calculations. The 

results show that if computational models were performing their calculations 

on temporally blurred stimuli then their behaviour becomes closer to that of 

the observers. This potentially presents an interesting new method with which 

to study the integration window in visual processing. 

7.2. Advantages of the methods used in this thesis 

The current literature examining computational models’ similarity to observers 

consists of a limited number of studies. These studies often examine only a 

single decision process paired with a single image descriptor (Mack & Palmeri, 

2010; Serre et al., 2007; Sofer et al., 2015), with limited studies comparing a 

number of computational models to a single data set (Ghodrati et al., 2014; 

Kheradpisheh et al., 2016). This makes it hard from the current literature to 
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rank different image descriptors or decision processes in order of best fit to 

human behavior. Additionally, only a few studies have compared 

computational models to human behavior at the trial, or image level, with the 

majority focusing on comparing at the level of overall accuracy for a category 

(Mack & Palmeri, 2010; Serre et al., 2007). The level of detail of these 

comparisons makes it difficult to distinguish a computational model which has 

a decent categorization rate, and so fits observers’ behavior at the level of 

category, versus one which can match observers’ performance on a per trial or 

image level. 

In this thesis, comparisons between different computational models and 

human observers were made which goes above and beyond the existing 

literature. Multiple different tasks were considered (pervious literature only 

focusing on categorization tasks). Multiple decision processes and image 

descriptors were examined for each of these tasks. Models were compared to 

behavior on a trial by trial basis. Reaction times, as well as observers’ accuracy, 

were compared to the computational models. Additionally, many comparisons 

were made on a single data set, allowing comparisons between different 

computational models to be straightforward. No previous works had examined 

the full range of components of human visual perception in combination. 

 

Studying all the components of the model together was useful in identifying 

interactions. For instance, Chapter 4 showed that the decision process based 
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on exemplar theory predicted a significant amount of observers’ behavior. If 

this was a single study, based in isolation, one would have drawn the 

conclusion that exemplar theory provided a good account for observer’s 

categorization process. However, due to several different decision processes 

being examined, and exemplar theory being paired with a number of different 

image descriptors, with known similarity to biological vision, it was unlikely that 

human observers were using this algorithm to categorizing images in this 

experiment.  

If a single model is studied in isolation then the results could be misleading, 

even if they are positive. HMAX is an image descriptor that is explicitly designed 

to match neural processing. It has previously been shown to fit observers’ 

behavior, which was considered as evidence for the model’s similarity to 

biological vision (Serre et al., 2007). While the various experiment here also 

found HMAX to provide a significant fit to human observers’ behavior, it 

actually provides no better account to observers’ image description than other 

image descriptors. PHOW, a computational image descriptor based on 

mathematical principles of image categorization, has roughly equivalent 

similarity to human observers’ behavior in this thesis. By examining HMAX 

together with several other image descriptors on multiple data sets, the results 

suggest there are other image descriptors which, although do not primarily aim 

to mimic observers’ neurology, better approximate the visual systems’ image 

descriptions. 
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It hasn’t previously been determined whether the visual system creates a single 

image description, which it can use for all tasks (task independent), or if the 

image description it creates is based on task (task dependent). Here, two 

different tasks are presented in this thesis. The results show that the 

computational image descriptors used here had roughly equivalent 

performance across different tasks. This is shown by the top two image 

descriptors, deep convolutional network and GIST, being the same for both the 

categorization task and the image recognition task. Additionally, when 

temporal blurring was examined, although there was some difference in the 

extent of blur which best explained that data, temporal blurring was 

experienced in both tasks, suggesting they were using similar image 

descriptions. From this data, there is no reason to suggest that the visual 

system employs distinct image descriptors for different purposes. 

While studies examining single elements can reveal important information, this 

Thesis highlight the fact that examining multiple elements at once are crucial 

to understanding the puzzle that is the human visual system. 

7.3. Future research 

From the research presented in this thesis there are several different areas 

which would benefit from further investigation.  

Two different tasks were employed in this Thesis, image categorization and 

image recognition. On the spectrum of tasks that, computational models of 
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vision are being designed to perform, these tasks are relatively simple. Several 

more complex tasks have received special attention in the data science 

literature such as object detection (recognising an object irrespective of the 

scene), segmentation (being able to separate out different objects within a 

scene), and human action classification (predicting an action being performed 

in a scene, e.g. playing football, shopping, etc.). There exists a number of 

computational algorithms for these tasks. Little to no research has investigated 

the similarity of these computational algorithms to human observers’ 

performance on an image or trial by trial basis. Comparing these algorithms to 

human performance at a trial by trial level might help us to understand which 

models may be performing the task in a similar manner to biological visual 

processing. Future research would therefore benefit from focus on a greater 

breadth of tasks. Additionally, by examining many different tasks the question 

of whether observers are calculating a task dependent or independent image 

description can be more fully answered. 

The current deep supervised convolutional neural net (Krizhevsky et al., 2012) 

used in this Thesis came into popularity in 2012 when it came top of the image 

classification task in the ImageNet competition (Russakovsky et al., 2015). Since 

then several different deep supervised convolutional neural nets have been 

created which surpass, in performance, the deep supervised network used 

here. To name but a few, Simonyan & Zisserman, (2014) created a ‘very’ deep 

supervised convolutional neural net which consisted of 19 layers. Zeiler & 

Fergus, (2014) introduced a convolutional model visualising technique, this 
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allowed them to fine tune some of the errors in the deep convolutional neural 

net used in Krizhevsky et al., (2012) which led to an improved performance. As 

deep supervised convolutional neural nets have been shown to produce 

behaviour the closest to human observers, future research should focus on this 

class of models. Some interesting questions which could be asked are, does the 

size and number of layers effect their similarity to human observers? From a 

neuroimaging perspective do the image descriptions at specific layers in deep 

convolutional networks have a high correspondance to the image decriptions 

at different layers in human biology?  

The studies presented here focused on a single image set which used four 

different categories of scene images. This is a relatively simple image set and 

much larger and complicated image sets exist. Future research should aim at 

comparing these models on a variety of different image sests which uses scene 

as well as object image categories. While recently the gold standard has been 

to compare computational models to human observers on real life image sets, 

it may also be useful to examine observers and computational models 

performance on artificial stimuli, for which neither has been trained 

extensively.  

The final experimental chapter of this thesis examined if observers were 

experiencing temporal blurring in a RSVP task. Here we showed that observers 

were indeed experiencing temporal blurring during the task. There are 

however a number of unanswered questions which relate to the specifics of 
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temporal blurring. If observers are experiencing temporal blurring, then where 

is this taking place within the observers’ visual system, if it is occurring at the 

level of the eye or higher up within the cortex? How does temporal blurring 

change with image duration? 

7.4. Conclusion 

The main aim of making comparisons between computational models and 

human behavior is to reveal new information about the inner workings of 

biological vision. As such, it is important to consider, when making these 

similarity measurements, exactly what they mean and how they are useful. The 

similarity measures used here represent the similarity of the output of the 

computational models and human observers. Ideally it would be good if these 

similarity measurements reflected how similar the algorithmic calculations 

were that generated the output. This cannot truly be achieved as it is possible 

to conceive of multiple different algorithms that produce the same output and 

would thus score the same on these measures of similarity.  

The comparisons described here are perhaps more relevant when viewed from 

the perspective of the differences between computational models and human 

observers. As a model’s behavior becomes more different to that of observers 

it is easier to assert that the computational model is processing information in 

a different way, and so varying in their algorithms. While the various 

experiments and studies described here cannot directly measure the 

algorithmic similarity of the models and observers, it is possible to determine 
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the extent of their differences. The research here therefore provides a general 

assessment on the extent of differences between computational models of 

vision and the human visual system.  
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