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Abstract

Recent experimental progress in the preparation and control of quantum systems
has brought to light the importance of Quantum State Tomography (QST) in
validating the results. In this thesis we investigate several aspects of QST,
whose central problem is to devise estimation schemes for the recovery of
an unknown state, given an ensemble of n independent identically prepared
systems.

The key issues in tackling QST for large dimensional systems is the con-
struction of physically relevant low dimensional state models, and the design
of appropriate measurements. Inspired by compressed sensing tomography, in
chapters 4, 5 we consider the statistical problem of estimating low rank states
(r≪ d) in the set-up of Multiple Ions Tomography (MIT), where r and d are
the rank and the dimension of the state respectively. We investigate how the es-
timation error behaves with a reduction in the number of measurement settings,
compared to ‘full’ QST in two setups - Pauli and random bases measurement
designs. We study the estimation errors in this ‘incomplete’ measurement
setup in terms of a concentration of the Fisher information matrix. For the
random bases design we demonstrate that O(r logd) settings suffice for the
mean square error w.r.t the Frobenius norm to achieve the optimal O(1/n)
rate of estimation.

When the error functions are locally quadratic, like the Frobenius norm,
then the expected error (or risk) of standard procedures achieves this optimal
rate. However, for fidelity based errors such as the Bures distance we show
that no ‘compressive’ recovery exists for states close to the boundary, and
it is known that even with conventional ‘full’ tomography schemes the risk
scales as O(1/

√
n) for such states and error functions. For qubit states this

boundary is the surface of the Bloch sphere. Several estimators have been
proposed to improve this scaling with ‘adaptive’ tomography. In chapter 6 we
analyse this problem from the perspective of the maximum Bures risk over
all qubit states. We propose two adaptive estimation strategies, one based on
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local measurements and another based on collective measurements utilising the
results of quantum local asymptotic normality. We demonstrate a scaling of
O(1/n) for the maximum Bures risk with both estimation strategies, and also
discuss the construction of a minimax optimal estimator.

In chapter 7 we return to the MIT setup and systematically compare several
tomographic estimators in an extensive simulation study. We present and
analyse results from this study, investigating the performance of the estimators
across various states, measurement designs and error functions. Along with
commonly used estimators like maximum likelihood, we propose and evaluate
a few new ones. We finally introduce two web-based applications designed as
tools for performing QST simulations online.
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Chapter 1

Introduction

Quantum information tasks such as the ones involved in quantum computation,
cryptography and communication, require the preparation, control, evolution
and transformation of individual quantum systems. An important element
in such tasks is the validation or determination of the resulting quantum
systems. Complete information about a system is encoded in the mathematical
description of the ‘state’ of the system. The process of determining this state
by performing multiple measurements on the quantum system is known as
Quantum State Tomography (QST). A key feature of QST arises from the fact
that a measurement performed on a quantum system ‘disturbs’ the original
state, thereby restricting the information that can be gained from subsequent
measurements. This is unlike the classical case, where it is possible to perform
multiple measurements without disturbing the state of the system. Thus,
complete information about the state of a generic quantum system can only
be determined from measurements performed on several identical copies of the
original state.

The importance of QST has become more evident in recent times, as
remarkable experimental progress in the preparation and control of large
dimensional systems has required experimentalists to deal with the challenges
of validating such prepared states. The example most relevant to the work
in this thesis is that of the ion-trap experiments, where large scale entangled
states of multiple ions are created and manipulated. The validation of such
states using full tomography is challenging due to the exponential increase in
the dimensionality of the estimation problem. As an example, the landmark
experiment in 2005 that successfully generated an 8-ion entangled state, used
full tomography to characterise the prepared state. This involved more than
656,100 measurements and a total measurement time of 10 hours [62]. The
final estimation of the state from the raw experimental data is reported to
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have required several weeks of post processing [54]. A more recent experiment
has demonstrated the successful creation of entangled states of 14 ions [90],
and the complete characterisation of such large dimensional systems is not
computationally feasible.

Therefore the main challenge of QST is to devise efficient state estimation
strategies that best utilise the available resources. This involves addressing the
difficulties of both choosing an optimum measurement design, and implementing
a robust estimator that reconstructs the state from the measurement outcomes.
In practice, choice in measurement designs is limited by the difficulties in
experimental implementation, and is therefore prescribed by the current state
of technology. On the other hand, for a given measurement design there are
often several estimators that can be implemented to recover the state from
the data. The recovery of states from measurement outcomes is essentially a
classical parameter estimation problem, and therefore the various estimation
strategies employed in QST can be studied using the statistical tools and
methodologies typically used in such investigations. Of course, some additional
caveats might need to be considered to account for certain features of quantum
states such as positivity.

This thesis is composed of two parts. Part I serves as a mathematical
introduction and motivates the results presented in part II. We begin in chapter
2 by introducing QST with a brief review of the mathematical representation
of quantum states and measurements. We consider examples of QST in both
finite and infinite dimensional quantum systems. This chapter also introduces
some commonly used tomographic estimators such as the Maximum Likelihood
Estimator (MLE). Chapter 2 also serves as a toolbox that introduces and
defines the various statistical techniques that find repeated use through the rest
of the thesis. It is worth highlighting some of the key concepts. We introduce
the classical Fisher Information Matrix (FIM) which characterises the variance
of certain ‘efficient’ estimators when the number of copies of the state is large,
and the related Cramér-Rao Lower Bound (CRLB) which describes their errors.
The Quantum Fisher Information (QFI) which is an analogue of the classical
Fisher information is introduced. Another key tool of asymptotic theory is
also introduced - Local Asymptotic Normality (LAN). Its quantum quantum
equivalent (qLAN) finds extensive use in chapter 6. Chapter 2 ends with
an introduction to ‘Bayesian’ and ‘frequentist’ approaches to quantifying the
performance of state estimators. We list the various loss functions which
serve to define the relevant figures of merit, such as the Frobenius norm, trace
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norm and the various fidelity based loss functions (square Bures distance and
infidelity). Chapter 3 involves a more detailed discussion of the motivation
behind the work presented in part II, and places the results of this thesis in its
broader context.

We present the main results of the thesis in part II. In chapters 4 and
5, inspired by ‘compressed sensing’ tomography [54, 45, 98] we consider the
problem of QST with incomplete measurements. The primary motivation for
considering a reduced measurement design is that full QST becomes challenging
for large dimensional systems. The key idea here is that it is possible to exploit
some underlying ‘sparsity’ of the state for more efficient estimation. The nature
of sparsity we consider in these chapters is the low rank (r≪ d) structure of
states, where r and d are the rank and dimension of the state respectively.
Several states that are of interest in quantum information processing tasks are
pure (examples include the GHZ state [90] and the W states [62]). Therefore
these states when prepared experimentally are likely to be low-rank or close
to it. In chapter 4 we consider the statistical problem of estimating such low
rank states in the setup of Multiple Ions Tomography. We investigate how
the estimation error behaves with a reduction in the number of measurement
settings, compared with the standard full ion tomography setup. We present
extensive simulation results showing that the error is robust with respect to
the choice of states of a given rank, the random selection of settings, and
that the number of settings can be significantly reduced with only a negligible
increase in error. We present an argument to explain these findings based on a
concentration inequality for the Fisher information matrix (FIM). In the more
general setup of random basis measurements we use this argument to show that
for certain rank-r states it suffices to measure in O(r logd) bases to achieve the
average Fisher information over all bases.

In chapter 5 we extend these results to hold for all rank-r states. We
generalise and extend previous results, and show that the Mean Square Error
(MSE) associated with the Frobenius norm attains the optimal estimation
rate of O(1/n) with only O(r logd) random basis measurements for all states,
where n is the number of copies of the state available as a resource for the
tomographic experiment. As in chapter 4, an important tool in the analysis is
the concentration of the FIM. We demonstrate that although a concentration
of the MSE follows from a concentration of the FIM for most states, the FIM
fails to concentrate for states with eigenvalues close to zero. We analyse this
phenomenon in the case of a single qubit and demonstrate a concentration
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of the MSE about its optimum despite a lack of concentration of the FIM
for states close to the boundary of the Bloch sphere. We also consider the
estimation error in terms of a different metric - the quantum infidelity. We show
that a concentration in the mean infidelity (MINF) does not exist uniformly
over all states, highlighting the importance of loss function choice. Specifically,
we show that for states that are nearly pure, the MINF scales as 1/

√
n but

the constant converges to zero as the number of settings is increased. This
demonstrates a lack of ‘compressive’ recovery for nearly pure states with this
loss function.

This poor O(1/
√
n) scaling of the MINF is in general observed for states

that are close to the boundary of the positive semi-definite cone of density
matrices, i.e, for states that have very small eigenvalues. However, the poor
scaling is not observed for states away from this boundary. As long as the
loss function is locally quadratic in the neighbourhood of the true state, the
expected loss (or risk) of standard tomographic procedure achieves the O(1/n)
scaling. The failure of standard tomography in achieving this scaling for states
near the boundary is due to the fact that loss functions like the infidelity and
the square Bures distance - which are defined only over the space of states -
are not locally quadratic near the boundary, while other loss functions like the
Frobenius norm continue to be quadratic in this region. Several estimators
have been proposed in the literature to improve this poor scaling of the fidelity
based loss functions [105, 9, 89, 70].

In chapter 6 we analyse this problem from the perspective of the maximum
Bures risk of estimators over all qubit states. We propose two qubit estimation
strategies; one based on local measurements, and a second based on collective
measurements. In the case of local measurements, we consider a two-step
adaptive strategy that is similar to already proposed estimators [9, 89]. The
estimator based on collective measurements extensively utilises the results of
quantum LAN results [57, 59]. We demonstrate that the maximum Bures risk
of both these estimation strategies achieve the O(1/n) scaling. In this chapter
we also discuss the construction of a minimax optimal estimator for the Bures
risk. Finally, we consider Quantum Relative Entropy (QRE) and show that
the risk of the estimator based on collective measurements achieves a rate
O(n−1 logn) under this loss function. Furthermore, we show that no estimator
can achieve faster rates, in particular the ‘standard’ rate O(1/n).

In chapter 7 we return to QST in the MIT setup, and present results from
an extensive simulation study comparing the performance of several estimators
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across a range of states, ranks, number of copies n and number of qubits N ,
as well for several loss functions - the Frobenius norm, trace norm, the square
Bures distance and the square Hellinger distance. We consider the commonly
used estimators like the MLE, and also introduce and define a few new ones.
The simulation study offers further insight into questions considered in previous
chapters, such as the behaviour of the risk of estimators for multi-qubit states
that are near the boundary, and also the suitability of asymptotic theory
for values of n that are typical in tomographic experiments. In addition to
these results, this chapter also introduces two web-based applications that are
designed for performing tomographic simulations online. These applications
make available all of the estimators studied in this chapter, and allow the user
to both reproduce the results of the study and more importantly, to perform
simulations for arbitrary multi-qubit states.



Chapter 2

Quantum State Tomography

2.1 Notations and mathematical background

In this chapter we introduce Quantum State Tomography (QST), along with
the necessary mathematical and statistical tools that will be used through the
rest of this thesis. We begin first with the mathematical representation of
quantum states and measurements.

2.1.1 Quantum states and measurements

Associated with every closed quantum system is a complex Hilbert space H,
known as the state space of the system. The Hilbert space is a complex inner
product space that is complete with respect to the norm induced by the inner
product. The state of a quantum system is described by a unit vector in Hilbert
space, represented in ket notation as |ψ⟩ ∈ H. A more general description of
the state is in terms of the density matrix ρ which is a positive semi-definite
matrix of unit trace and acts as an operator on H. A quantum state that is
described by a single ket vector |ψ⟩ is known as a pure state, and its associated
density matrix is the one dimensional projector ρ = |ψ⟩⟨ψ|. General density
matrices are called mixed states, and can be thought of as statistical mixtures
of pure states

ρ=
∑

i

pi|ψi⟩⟨ψi|, (2.1)

where the weights pi can be thought of as probabilities associated with the
pure states |ψi⟩. As the density matrix is positive semi-definite and of trace
one, the weights p1, . . . ,pr sum to one and do constitute a probability density.
The above decomposition of a density matrix is however not unique. In infinite-
dimensional Hilbert space, the density matrix belong to the space of trace-class



2.1 Notations and mathematical background 8

operators on H defined as

T (H) :=
{
σ ∈ B(H) : ∥σ∥1 := Tr

[√
σ∗σ

]
<∞

}
(2.2)

where B(H) is the space of bounded operators on H.
A measurement on a quantum system is described by a set of measurement

operators {Em} that satisfy the completeness relation

∑
m
E∗

mEm = 1, (2.3)

where E∗
m is the Hermitian adjoint, and 1 is the identity matrix. The index m

represents the various possible measurement outcomes that could occur. Given
a state ρ, the probability of obtaining an outcome indexed by m is

Pρ(m) := Tr[ρE∗
mEm] , (2.4)

and the post-measurement state of the system is

EmρE
∗
m

Tr[ρE∗
mEm] . (2.5)

The completeness relation imposed on the measurement operators Em follows
from the fact that the probabilities need to sum to one ∑mPρ(m) = 1. A
common formalism used to describe these general measurements applies when
the post-measurement state is of little interest and does not need to be described.
Defining the positive operators

Mm ≡ E∗
mEm, (2.6)

the probability of obtaining an outcome m is simply Pρ(m) = Tr[ρMm], and the
completeness relation is ∑mMm = 1. As the operators Mm are positive, the
measurement defined by the set {Mm} is known as a Positive Operator-Valued
Measure (POVM), and each operator Mm is called a POVM element.

More generally POVMs may also be defined in cases where the outcomes of
the measurements are not discrete as above but take values in some continuous
space, and the Hilbert space is infinite dimensional. In this case we define
POVMs as follows [74, 69].

Definition 1. A POVM over a measure space (Ω,A) is a set {M(A)}A∈A of
bounded operators on H such that:
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• M(Ω) = 1

• M(A) is positive

• for any countable family {Ai}∞i=1 of mutually disjoint sets, we have
M(⋃∞

i=1Ai) =∑∞
i=1M(Ai)

Here, each M(A) is a POVM element, and the probability distribution of the
outcomes for each POVM element is Pρ(A) = Tr[ρM(A)].

If the measurement operators M(A) are taken to be orthogonal projectors
for each A ∈A, then this special class of measurements is known as ‘Projection
Valued Measure’ (PVMs). A measurement of this kind, where all the POVM
elements are projectors, is associated with an observable. In quantum mechan-
ics observables are described by self-adjoint operators on H, and represent
measurable physical quantities such as energy, position etc. Although by this
token, POVMs might not seem to be valid physical measurements, they can be
thought of as observables on a larger multipartite system, and are therefore
also called generalised observables [111].

2.1.2 Composite systems, entanglement and collective measurements

Composite quantum systems are made up of several distinct physical systems
and have an associated state space that is the tensor product of the individual
Hilbert spaces. Consider n individual systems, with an isolated state in each
system denoted |ψi⟩ from i= 1, . . . ,n. The composite state the total system is
given by |ψ1⟩⊗ . . .⊗|ψn⟩, and the associated state space is H =H1⊗ . . .⊗Hn.
Such composite systems also allows for states that cannot be written as a
tensor product of isolated states in each system. Consider as an example the
composite Hilbert space H =H1⊗H2 of a bipartite system. If we fix {|i⟩1} as
the basis for H1 and {|j⟩2} as the basis for H2, then any pure state in H can
be expressed in the form

|ψ⟩=
∑
i,j

cij |i⟩1⊗|j⟩2. (2.7)

If there exist vectors c1 and c2 such that cij = c1i c
2
j ∀ i, j, then the vector |ψ⟩

is seperable and can be written as |ψ⟩=∑
i c

1
i |i⟩1⊗

∑
j c

2
j |j⟩2. However, if no

such vectors c1 and c2 exist, then the composite state cannot be decomposed
into a tensor product of individual pure states, and is said to be entangled. In
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terms of the density matrix ρ, a mixed state is separable if and only if it can
be expressed in the form

ρ=
∑

i

ciρ
1
i ⊗ρ2

i , (2.8)

where ci are positive valued and sum to one, and ρ1
i and ρ2

i are individual
density matrices on the subsystems.

This concept also applies to measurements. In the example of the bipartite
system, a measurement {Em} is said to be separable if each measurement
operator Em can be expressed as

Em =
∑

i

E1
m,i⊗E2

m,i, (2.9)

where E1
m,i and E2

m,i are positive operators on the individual subsystems. A
simple instance of separable measurements are independent measurements

Em = E1
m1⊗E

2
m2 , (2.10)

where E1
m1 and E2

m2 are measurement operators acting on each of the subsystems
independently, and m1, m2 index the pair of outcomes from each subsystem
constituting m, while all independent measurements are necessarily separable,
the converse is not true. A measurement on the composite system that cannot
be expressed in either of the above forms is called a collective measurement
[66].

2.2 Example: Continuous variable systems

In order to illustrate an infinite dimensional quantum system we consider the
example of a continuous variable (cv) system [1, 83, 115] . A single mode
cv system has a Hilbert space H = L2(R) that is infinite dimensional and is
spanned by a special orthonormal basis {|n⟩}∞n=0 called the Fock (or number
state) basis. Associated with the system are a pair of operators {a,a∗} called the
annihilation and creation operator respectively. The action of these operators
on the Fock basis states is given by

a∗|n⟩=
√
n+1|n+1⟩, a|n⟩=

√
n|n−1⟩ (2.11)
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with a|0⟩ = 0. Another pair of operators P,Q that describe the one mode
system are called the quadratures, defined as

Q= 1√
2

(a+a∗), P = −i√
2

(a−a∗). (2.12)

The quadrature operators represent the canonical observables of the system
and satisfy the commutation relation [Q,P ] = i1. The operators Q and P can
represent the position and momentum of a particle in the case of the quantum
harmonic oscillator, or the electric and magnetic fields of a light pulse in Bosonic
systems [83]. Let |p⟩ and |q⟩ denote the eigenstates of the observables such that

Q|q⟩= q|q⟩, P |p⟩= p|p⟩, (2.13)

with q,p ∈ R being continuous eigenvalues. These quadrature states are orthog-
onal ⟨q|q′⟩= δ(q− q′), ⟨p|p′⟩= δ(p−p′), and complete

∫
|q⟩⟨q|dq =

∫
|q⟩⟨q|dq = 1. (2.14)

We introduce another important operator called the displacement operator,
defined as

D(α) := exp(αa∗−αa), (2.15)

where α = (q+ ip)/2 is a complex number. The displacement operator acts
on the vacuum state |0⟩ to generate a coherent state |α⟩ = D(α)|0⟩. These
coherent states are the eigenstates of the annihilation operator a|α⟩ = α|α⟩,
and can be expanded in the Fock basis as

|α⟩= exp
(
−1

2 |α|
2
) ∞∑

n=0

αn

√
n!
|n⟩. (2.16)

An arbitrary density operator ρ in such a cv system is an infinite dimensional
matrix. However, density matrices also admit an equivalent representation in
terms of quasi-probability distribution called the Wigner Function. We define
the Weyl operator

W̃ (u,v) := exp(−iuQ− ivP ), (2.17)

where (u,v) ∈ R2. Then, a density operator ρ is equivalent to its quantum
characteristic function

W̃ρ(u,v) = Tr[ρexp(−iuQ− ivP )] , (2.18)
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and by a Fourier transform to the Wigner function

Wρ(q,p) = 1
(2π)2

∫ +∞

−∞

∫ +∞

−∞
W̃ρ(u,v)exp(iuq+ ivp) du dv, (2.19)

which is normalised to one like a true probability distribution is. However the
Wigner function in not strictly positive and can take negative values, which is
why it is called a quasi-probability distribution. The Wigner function contains
information about the statistical moments of the quantum states. In particular,
the first moment or mean of the quadratures

⟨P ⟩ρ = Tr[ρP ] , ⟨Q⟩ρ = Tr[ρQ] (2.20)

and the second moment or the covariance matrix V ,

V :=
 ⟨Q2⟩ρ ⟨Q◦P ⟩ρ
⟨P ◦Q⟩ρ ⟨P 2⟩ρ

−
 ⟨Q⟩2ρ ⟨Q⟩ρ⟨P ⟩ρ
⟨P ⟩ρ⟨Q⟩ρ ⟨P ⟩2ρ

 (2.21)

where Q◦P = (QP +PQ)/2.
With these definitions in place, we now define an important class of states

called Gaussian states. These states are completely characterised by the first
two moments, and their Wigner representation is

Wρ(p,q) = 1
(2π)2

√
detV

exp
[
−(w−⟨w⟩)TV −1(w−⟨w⟩)

]
(2.22)

where w = (q,p)T ∈R2 and ⟨w⟩= (⟨Q⟩ρ,⟨P ⟩ρ)T is the mean vector. Clearly this
is of the form of a multivariate Gaussian distribution. The simplest example of
a Gaussian state is the vacuum state |0⟩⟨0|, which can be shown to have a mean
zero vector and a covariance matrix proportional to identity. The coherent
state |α⟩⟨α| being a displaced vacuum state D(α)|0⟩⟨0|D(−α), is also Gaussian
with mean proportional to the displacement and an unchanged variance. We
define a zero mean thermal equilibrium state as

ϕ0 := (1−p)
∞∑

k=0
pk|k⟩⟨k| (2.23)

with p≤ 1. The zero photon state is seen to be a special case with p= 1. These
states are displaced by the action of the displacement operator

ϕα :=D(α)ϕ0D(−α), (2.24)
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and are called displaced thermal equilibrium states.

Homodyne and Heterodyne detection

The most common measurements on cv systems are of the Homodyne and
Heterodyne detection schemes. A homodyne detection consists of the measure-
ments of the Q, P (or other) quadratures of the single mode. Its measurement
operators are the projectors |q⟩⟨q| and |p⟩⟨p| of the corresponding quadrature
basis. The probability distributions of the outcomes are given by the marginal
probability densities [115]

Pρ(q) =
∫
Wρ(q,p) dp, Pρ(p) =

∫
Wρ(q,p) dq (2.25)

The heterodyne detection corresponds to a projection onto coherent states
(2.16), and has POVM elements given by [74]

M(A) := 1
π

∫
A
|α⟩⟨α| dα, (2.26)

where the outcomes α ∈ C contain information about both q,p ∈ R. The
probability distribution of the outcomes is a convolution of the Wigner function
of ρ with a Gaussian.

2.3 Estimation of finite-dimensional quantum states

Through most of this thesis we shall be interested in finite dimensional quantum
systems. The states of such systems exist in a finite dimensional Hilbert space
Hd ≡Cd, where d is the dimension of the space. The density matrix ρ is a d×d
positive-semidefinite matrix of trace one, and let Sd ⊂M(Cd) denote the space
of density matrices. One of the simplest and most familiar examples of a finite
dimensional quantum system is that of a two level system of a ‘quantum bit’
or ‘qubit’. There are many different physical systems that are used to realise
and prepare qubits for tasks such as quantum computing [5, 65, 11, 86]. The
Hilbert space associated with a qubit system is H2 ≡ C2, where the dimension
d= 2. The density matrix of an arbitrary qubit state is given by

ρ= 1
2 (1+r ·σ) , (2.27)
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where σ = (σx,σy,σz)T is a vector of the standard Pauli observables, and r ∈R3

is the Bloch vector associated with the state. The components of the Bloch
vector are given by ri = Tr(ρσi) for i= (x,y,z). A pure state has a Bloch vector
of length |r|= 1, while mixed states have 0≤ |r|< 1. A more general example
is a quantum system of multiple qubits. The joint Hilbert space of N ions is
given by the tensor product

(
C2
)⊗N

= Cd, where d= 2N .
Given a ‘true’ and unknown state associated with a quantum system, the

aim of quantum tomography is to statistically reconstruct its density matrix
ρ ∈ Sd from the outcomes of measurements performed on the system. We can
describe a measurement in general terms as a POVM with elements {Mm}km=1,
such that Mm ∈M(Cd), and m indexes the various possible outcomes. The
probability distribution of the outcomes is given by the map

M : ρ 7→ {Pρ(m) := Tr[ρMm] ;m= 1, . . . ,k}. (2.28)

However, as the measurement necessarily ‘disturbs’ the state of the system
with some back-action, it is generally impossible to gain further information
about the true state with subsequent measurements. It is due to this limitation
that multiple identical copies of the quantum state are necessary. Suppose that
we have available n identical copies of the state available as a resource. The
POVM measurement is repeated on each copy of the state and therefore we have
the model of n independent and identically distributed (iid) random variables
X1, . . .Xn with probability distributions given by (2.28). Let x1, . . . ,xn be the
observed measurement data, then the aim of quantum tomography is to build
an estimator ρ̂n = ρ̂(x1, . . . ,xn) of the true state ρ.

It is often convenient to model the tomographic problem as a classical
parameter estimation problem. Let the state ρθ be parameterised by a finite
dimensional vector of parameters θ ∈ Θ. The parameters can, for example,
simply be the elements of the density matrix, or for qubit states the Bloch
vector components in (2.27). Additionally, when some prior information about
the state is available θ can parameterise a lower dimensional model. For the
given POVM {Mm}km=1, the distribution of the outcomes is also dependent on
the parameter, and is given by the model

PM := {Pθ := Pρθ
;θ ∈Θ}. (2.29)
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Therefore the aim is to construct an estimator θ̂n of the unknown parameter
from the outcomes of the iid random variables X1, . . . ,Xn, and to thereby arrive
at an estimator ρ̂θ̂n

of the true state.
In this section we consider the state estimation problem in greater detail,

and consider the specific instance of Multiple Ions Tomography (MIT). We will
introduce the measurement procedure and statistical model of the MIT setup,
and review some estimators such as the Least Squares Estimator (LSE) and
the Maximum Likelihood Estimator (MLE).

2.3.1 Multiple Ions Tomography

In the MIT setup as in the ion-trap experiments [90, 62, 82], the aim is to esti-
mate an unknown joint state of N ions (modelled as qubits) from the outcomes
of measurements performed on identically prepared systems. Let ρ ∈ Sd be the
d×d density matrix of the unknown state, where d= 2N is the dimension of
the Hilbert space. We consider measurements of two types - the standard to-
mographic measurements in the Pauli basis, and measurements that are drawn
randomly from the uniform measure over orthonormal bases (ONB). In the
case of the Pauli basis, one measures an arbitrary Pauli observable σx,σy,σz on
each of the N ions simultaneously. Therefore, each measurement is labelled by
a sequence s = (s1, . . . , sN ) ∈ {x,y,z}N , and there are 3N possible measurement
bases. In the uniformly random measurement set up, a measurement can be
implemented by first rotating the state ρ by a random unitary U ∈M(Cd),
after which each ion is measured in the σz eigenbasis.
Let S = {s1, . . . ,sk} be the measurement design consisting of k measurement
settings. In the case of the Pauli set up the total number k = 3N , while in the
random measurement setup the number of settings measured can be chosen
freely. A measurement in a particular setting produces a ±1 outcome from
each ion, and we let o ∈ {+1,−1}N be a vector record of outcomes from each
of the N ions. The probability of obtaining a particular outcome o is given by
pρ(o|s) := Tr(ρP s

o), where the one-dimensional projection matrix is given by

P s
o = |es1

o1⟩⟨e
s1
o1|⊗ . . .⊗|e

sN
oN
⟩⟨esN

oN
|

For each setting s, measurements are repeated on m identical copies of the
state, and the counts of the outcomes N(o|s) are recorded, where N(o|s)
represents the number of times a given outcome record o is observed given
that measurements were performed in a chosen setting s. The total number
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of quantum samples used is therefore n=m×k. The resulting dataset D of
counts is a 2N ×k table whose columns are independent and contain all the
counts in a given setting. The probability of observing a given dataset of counts
is given by the product of multinomials

pρ(D|S) =
∏
s

m!∏
oN(o|s)!

∏
o
pρ(o|s)N(o|s) (2.30)

The goal is the statistical reconstruction of the density matrix from this dataset
of counts. There are several estimators known in the literature for this purpose,
but here we introduce one of the simplest estimators - the Least Squares
Estimator (LSE).

2.3.2 The Least Squares Estimator

In order to specify the LSE, we need to first establish a choice of parametrisation,
thereby converting the tomographic problem into a problem of parameter
estimation. To better describe the linear estimation problem, we consider the
true probability vector

y = (pρ(o1|s1), . . . ,pρ(od|s1), . . . . . . ,pρ(od|sk))T ∈ Rkd (2.31)

In the standard basis, each element of this vector can be expressed in terms of
the density matrix elements and the corresponding one-dimensional projections
as

pρ(o|s) = 2
∑
j>i

Re(ρij)Re(P s
o)i,j +2

∑
j>i

Im(ρij)Im(P s
o)i,j +

d∑
i

ρii(P s
o)i,i (2.32)

We now choose to parameterise the state by the elements of the density matrix
ρ that appear in the above equation. Let θ ∈ Rd2 be a vector of parameters
defined as

θ :=
(
Reρ1,2, . . . ,Reρd−1,d, Imρ1,2, . . . , Imρd−1,d,ρ1,1, . . . ,ρd,d

)T
. (2.33)
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With this choice of parameterisation, equation (2.32) can be expressed as an
inner product between vectors pρ(o|s) =X(o|s)T θ, where

X(o|s)T :=
(
2Re(P s

o)1,2, . . . ,2Re(P s
o)d−1,d,2Im(P s

o)1,2, . . . ,

2Im(P s
o)d−1,d,(P s

o)1,1, . . . ,(P s
o)d,d

)
.

This notion allows us to express the tomographic system of equations in matrix
form as

y =Xθ, (2.34)

where X is a kd×d2 matrix whose rows are given by X(o|s)T for each pair
of outcome o and setting s. Of course, in reality, we do not have access to
the true probability vector. Instead from the d×k dataset of counts, we have
access to the empirical probabilities f(o|s) :=N(o|s)/m, whose expectations
are Ef(o|s) = pρ(o|s). Replacing the probability vector y by the vector of
empirical frequencies we have

f =Xθ +ϵ (2.35)

where ϵ ∈ Rdk is a mean zero vector of statistical noise. The least-squares
solution to the above system of equations is defined as the minimiser of the
following optimisation problem

θ̂ := arg min
τ∈Rd2

∥f −Xτ∥2 (2.36)

and has the well known explicit form θ̂ = (XTX)−1 ·XT ·f . The final estimate
of the density matrix ρ̂LS is then constructed from the estimated parameter
vector θ̂.

Although the LS estimator is computationally simple, and can prove to
be good starting point for several other refinements and estimation methods,
it suffers from a number of drawbacks. The most serious of which is that LS
estimate is not necessary a density matrix, i.e, it often produces estimates
that are neither positive semi-definite nor of trace one. In other words, the LS
estimator is blind to the physical properties of the state. On the other hand
estimators such as the extensively used Maximum Likelihood Estimator (MLE)
produce an estimate which is a density matrix.
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2.3.3 Maximum Likelihood Estimator

The Maximum Likelihood Estimator (MLE) is one of the most commonly used
estimation methods in statistics. It estimates the unknown parameters from
the measurement data by finding values for the parameter that maximise the
likelihood of having obtained the measurement outcomes. Let X1, . . . ,Xn be n
iid random variables with the joint distribution that depends on an unknown
parameter θ ∈Θ

Pn
θ(X1 = x1, . . . ,Xn = xn) =

n∏
i=1

Pθ(Xi = xi) (2.37)

Given the observations (x1, . . . ,xn), we construct the likelihood function which
has the same form as the joint distribution

L(θ;xi, . . . ,xn) =
n∏

i=1
Pθ(Xi = xi) (2.38)

except that this function varies with the parameter θ, and the outcomes are
taken to be fixed. The MLE θ̂n is obtained by maximising this likelihood
function over the entire parameter space

θ̂n = argmax
τ∈Θ
L(τ ;xi, . . . ,xn). (2.39)

It is more common and convenient to maximise the natural logarithm of
the likelihood function. In the MIT setup, the probability distribution over
outcomes is given by (2.30); discarding the constant factorial term, we arrive
at the following form of the MLE

ρ̂ML := argmax
τ∈Sd

∑
o,s
N(o|s) logpτ (o|s), (2.40)

where the maximum is taken over the space of states (τ ≥ 0,Tr[τ ] = 1). The
maximum likelihood can be seen to be independent of the choice of parameterisa-
tion. The MLE is commonly used in quantum tomography [13, 19, 71, 101, 50],
with several methods proposed in the literature such as the iterative algorithm
proposed by Hradil [101]. Unlike estimators like the LS estimator, The MLE
is guaranteed to produce a quantum state. It additionally satisfies certain
desirable statistical properties in the asymptotic regime such as attaining the
Cramér-Rao lower bound. However, as we shall point out in the following
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section, the asymptotic theory does not apply when the parameter θ lies at
the boundary of the parameter space Θ. Along with this, the MLE also suffers
from the drawback that it has a tendency to produce rank deficient estimates
when the true state has some small eigenvalues.

2.4 Fisher Information and Local Asymptotic Normality

2.4.1 Classical Fisher Information

Consider the problem of estimating an unknown single parameter θ ∈Θ from
the outcomes of n independent and identically distributed (iid) random variables
X = (X1, . . . ,Xn) with the joint distribution (dependent on θ)

Pn
θ (X1 = x1, . . . ,Xn = xn) =

n∏
i=1

Pθ(Xi = xi). (2.41)

As the random variables are assumed to be iid, they all have the same depen-
dence on the parameter θ. A simple example of such an estimation problem
is the task of determining the bias of a coin from n coin flips. Let Xi be the
ith trial of such an experiment. There are two possible outcomes xi = 0 for
tails and xi = 1 for heads. The probabilities of the outcomes are given by the
Bernoulli distribution with parameter θ

pθ(x) = θx(1− θ)1−x x ∈ {0,1} (2.42)

In this case the parameter θ ∈ [0,1]. Let θ̂n be an estimator constructed as
some function of the outcomes of the n trials, such that

E
[
θ̂n

]
=
∑
x
pθ(x)θ̂n(x) = θ, (2.43)

where x is a vector of n outcomes. An estimator that recovers the true value of
the parameter in expectation is said to be unbiased. In order to quantify how
‘good’ such an estimator is, we may consider the variance of θ̂n. Certainly an
unbiased estimator with small variance is preferable to one with a large variance.
We may also wish to know how small this value can be irrespective of the
particular choice of estimator. This question is answered by the Cramér-Rao
Lower Bound (CRLB), which bounds the variance of all possible unbiased
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Figure 2.1 The Fisher information I(θ) = 1
θ(1−θ) for a single trial of the coin

flip experiment, plotted for the range of θ ∈ [0,1].

estimators θ̂n from below
Var

[
θ̂n

]
≥ 1
nI(θ) , (2.44)

where the quantity I(θ) is called the Fisher information, and is defined as

I(θ) = E

( ∂

∂θ
logPθ(Xi)

)2=
∑
xi

1
pθ(xi)

(
∂pθ(xi)
∂θ

)2
. (2.45)

The quantity logPθ(Xi) is the log-likelihood function and its derivative is known
as the score. The Fisher information represents the average ‘sensitivity’ of
the score to the variation of the parameter θ, and can be thought of as being
related to the mean curvature of the log-likelihood function. The greater this
curvature, the larger the fisher information will be. Notice that while the Fisher
information has no dependence on a particular estimator, it is a function of θ
and also depends on the choice of ‘measurements’, i.e, the random variable Xi.

In the example of the coin flip experiment, Xi are independent coin tosses
with pθ(xi = 1) = θ, and the associated Fisher information is easily evaluated
to be I(θ) = 1

θ(1−θ) . The CRLB for n iid trails is therefore θ(1− θ)/n. The
standard unbiased estimator

θ̂n = 1
n

n∑
i=1

Xi, (2.46)
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has variance Var(θ̂n) = θ(1− θ)/n, and therefore achieves the CRLB. Looking
at the plot in figure 2.1, we see that Fisher information has its lowest value
at θ = 1/2. This implies that random variables X = (X1, . . . ,Xn) carry less
information about the parameter when θ = 1/2 than when it is away from
from this midpoint. Notice however that the Fisher information diverges at
the boundary of the parameter space θ ∈ [0,1]. This is explained by the fact
that the CRLB applies only for values of θ in the interior of the parameter
space. Additionally, the parameter and the log-likelihood function need to
satisfy certain regularity and ‘smoothness’ conditions for the CRLB to hold.

In the multi-parameter case, the aim is to estimate an unknown vector of
parameters θ = (θ1, . . . θp) ∈ Θ from the outcomes of n iid random variables
X = (X1, . . . ,Xn) with distribution Pn

θ . In this case the Fisher information is
not a single number but is given by a p×p positive matrix whose elements are
defined as

I(θ)k,l = E
[(

∂

∂θk
logPθ(Xi)

)(
∂

∂θl
logPθ(Xi)

)]
. (2.47)

The multi-parameter CRLB is expressed as a matrix inequality

nE
[
(θ̂n−θ)T (θ̂n−θ)

]
≥ I(θ)−1. (2.48)

Often it is more convenient to express the bound in terms of a single number
such as the Mean Square Error (MSE)

nE
[
(θ̂n−θ)G(θ̂n−θ)T

]
≥ Tr

[
I(θ)−1G

]
(2.49)

where G is a p×p positive weight matrix that depends on the parameters, so
that the overall MSE is independent of the choice of parametrisation.

In general, there may not be any unbiased estimators θ̂n(X) that achieve
the CRLB for a finite number of iid trials n. However, it is known that certain
‘efficient’ estimators (such as the MLE under some regularity conditions [114])
are normally distributed

√
n(θ̂n−θ)→N (0, I(θ)−1), (2.50)

in the limit n→∞, where N (0, I(θ)−1) is the multivariate normal distribution
with zero mean vector and a covariance matrix given by the inverse of the Fisher
information matrix. Such estimators therefore achieve the CRLB asymptotically.
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It is important to note however, that the CRLB does not hold for values of θ

that are at the boundary of the parameter space. Hence the above definition
of efficiency of estimators holds only when θ is within the parameter space Θ.

2.4.2 Classical Local Asymptotic Normality

Returning once again to the example of the coin toss experiment, we know that
the standard unbiased estimator (2.46) is a ‘good’ estimator of the probability
θ of getting heads as it achieves the CRLB for values of θ not at the boundary
of the parameter space. From both this fact and the central limit theorem
(CLT) we have that the error θ̂n− θ has the following Gaussian distribution in
the asymptotic limit

√
n(θ̂n− θ)→N (0, θ(1− θ)) . (2.51)

as n→∞ [59]. Also the mean square error is easily seen to be E
[
(θ− θ̂n)2

]
=

θ(1−θ)/n. Imagine that instead of estimating θ over the entire parameter space
[0,1], we had some prior knowledge of the unknown parameter. Namely that it
lies in a local neighbourhood of size 1√

n
around a known value θ0. Let u ∈ R

be a local parameter, such that we may redefine θ = θ0 + u√
n
, and denote the

distributions of the random variables Xi as Pθ0+u/
√

n(Xi = xi). The estimator
ûn of the local parameter is such that

ûn =
√
n(θ̂n− θ0)→N (u,θ0(1− θ0)) (2.52)

as n→∞. This means that the estimator ûn is asymptotically distributed
as a random Gaussian variable with the above mean and variance. Therefore
in the asymptotic limit, the problem of estimating the local parameter u ∈ R
from n iid random variables X = (X1, . . . ,Xn) is statistically equivalent to
the problem of estimating the mean of a Gaussian distribution from a single
random variable Y ∼N (u,1/I(θ0)). This asymptotic property is termed Local
Asymptotic Normality (LAN).

LAN essentially means that in the limit of large n, the iid statistical exper-
iment is approximated by Gaussian experiments after a re-parameterisation.
Let

(
Pn

θ0+u/
√

n
: u ∈ Rp

)
be a sequence of experiments consisting of observing

n iid random variables X = (X1, . . . ,Xn) with distribution Pn
θ0+u/

√
n
, where

u∈Rp is a vector of unknown local parameters. Provided that the map θ 7→ Pθ
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is sufficiently ‘smooth’, we have that the experiments

{Pn
θ0+u/

√
n : u ∈ Rp} and {N (u, I(θ0)−1) : u ∈ Rp} (2.53)

have the same statistical properties in the limit n→∞ [75]. That is, the iid
experiment asymptotically converges to the limit experiment where a single
sample is observed from a multivariate Gaussian distribution with unknown
mean u ∈ Rp and a fixed covariance matrix I(θ0)−1.

We shall not formulate LAN in precise terms here, but note that there
are two notions of convergence, and two corresponding formulations of the
LAN principle. The weak version is based on the CLT as in the binomial
example above, and is a convergence in distribution of the finite dimensional
marginals of the likelihood ratio process [114, 112], while the strong version is a
convergence in norm rather than in distribution and is with respect to the Le
Cam distance [75, 58].

2.4.3 Quantum Fisher Information

We now introduce the quantum analogue of the classical Fisher information
and the CRLB for unbiased estimators. In the quantum case the probability
distribution Pθ with its dependence on the underlying unknown parameter
vector θ ∈ Rp is replaced by a density matrix ρθ that depends ‘smoothly’ on
the unknown parameter.

The classical Fisher information was defined by the derivatives of the log-
likelihood known as the score ∂

∂θk
logpθ(xi), for k = 1, . . . ,p. In the quantum

case the density matrix ρθ in general does not commute with its derivates,
and therefore the definition of the quantum score is not a straightforward
extension of the classical one. In fact there are several definitions of the
quantum score [69, 15, 21], and here we introduce the most common version
called the Symmetric Logarithmic Derivative (SLD) Lθ,k which is defined as
the solution to the equation

∂ρθ

∂θk
= Lθ,k ◦ρθ k = 1, . . . ,p, (2.54)

where we define A◦B = (AB+BA)/2. Analogous to the definition of classical
Fisher information in (2.47), the Quantum Fisher information (QFI) is defined
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as the p×p positive matrix with elements

F (θ)k,l = Tr
[
ρθLθ,k ◦Lθ,l

]
. (2.55)

The quantum Fisher matrix F (θ) does not depend on the measurement choice,
and only depends on the parameterisation chosen. This is unlike the classical
fisher information I(θ) which depends on both the parameters and the mea-
surements. Consider a POVM with elements {Mm}km=1, and outcomes indexed
by m. The probability distribution of the m outcomes is Pθ(m) = Tr[ρθMm].
Let IM (θ) be the classical Fisher information associated with this POVM
measurement. Then we have the following matrix inequality [69, 67]

IM (θ)≤ F (θ). (2.56)

If θ̂ is an unbiased estimator of the unknown parameter vector, then we have
the Quantum CRLB

Var
[
θ̂
]
≥ IM (θ)−1 ≥ F (θ)−1. (2.57)

The inequality on the right establishes an absolute lower bound on the variance
for any unbiased estimator and any measurement. One may wonder if the
quantum CRLB is achievable by any estimator-measurement pair. In the case
of multi-parameter estimation problems this lower bound is asymptotically
attainable if and only if the SLDs satisfy certain commutation relations [48].
However it can be shown that the quantum CRLB is asymptotically achievable
for one dimensional parameters θ ∈ R [21].

2.4.4 Quantum Local Asymptotic Normality

The classical principle of LAN establishes the following: given n iid random
variables X1, . . . ,Xn with distribution Pn

θ0+u/
√

n
depending ‘smoothly’ on the

local parameter u∈Rp, then in the asymptotic limit, this model is equivalent to
a single draw Y ∈ Rp from a multivariate Gaussian distribution with unknown
mean u and with fixed variance I(θ0)−1.

In the quantum case, we have n identical copies of the true state ρθ. Consider
that the unknown parameter θ lies in a local neighbourhood of size n−1/2+η

around a fixed θ0. That is, let u ∈ Rp be a vector of local parameters such
that ∥u∥ ≤ nη, and let ρθ be parameterised locally as ρθ0+u/

√
n. The quantum
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version of LAN demonstrates that the joint state ρ⊗n
θ0+u/

√
n

converges in the
asymptotic limit to a displaced Gaussian state of a continuous variable system.

We now make this convergence more concrete and consider the quantum
LAN results for qubit states. Let ρ0 be a fixed qubit state that is away from
the boundary of the Bloch sphere

ρ0 :=
 1−λ0 0

0 λ0

 , (2.58)

where 0< λ0 ≤ 1/2 is the minimum eigenvalue of the state. We parameterise
states in a local neighbourhood of ρ0 as ρu/

√
n, where u = (ux,uy,uz) ∈ R3,

∥u∥ ≤ nη is a vector of local parameters. Of the three parameters the first two
w = (ux,uy) ∈R2 account for unitary rotations around ρ0 and uz ∈R accounts
for changes in the eigenvalues

ρu/
√

n := U

(
w√
n

) 1−λ0− uz√
n

0
0 λ0 + uz√

n

U ( w√
n

)∗
(2.59)

where the unitary U(w) := exp[i(uxσx +uyσy)]. Now consider n identical copies
of the true state, each of which is known to be in the local neighbourhood of
size n−1/2+η around the fixed state ρ0. Then in the limit of large n, the joint
state ρ⊗n

u/
√

n
approaches a Gaussian state ϕw⊗Nu, where Nu is the classical

one-dimensional Gaussian distribution

Nu :=N (uz,λ0(1−λ0)), (2.60)

centred around uz, and ϕw is a displaced thermal equilibrium state with
displacement proportional to w = (ux,uy). Let H= L2(R) be the Hilbert space
of a one mode cv system, and let

ϕ0 := (1−p)
∞∑

k=0
pk|k⟩⟨k|, p= λ0

1−λ0
(2.61)

be the centred thermal equilibrium state of a quantum harmonic oscillator,
where {|k⟩}∞k=0 is the Fock basis. The state ϕw is then defined as

ϕw :=D(
√

1−2λ0αw)ϕ0D(−
√

1−2λ0αw) (2.62)
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where αw =−uy + iux ∈C, and the operator D(α) is the displacement operator
(2.15). We now state the convergence precisely in the following theorem.

Theorem 1. (Theorem 3.1 of [57]). Let ρ⊗n
u/

√
n

be a family of states defined

by (2.59) on the Hilbert space
(
C2
)⊗n

, let Nu be the family of Gaussian
distributions (2.60), and let ϕw be the family of displaced thermal equilibrium
states of a quantum harmonic oscillator (2.62) on the Hilbert space H= L2(R).
Then for each n and ∥u∥ ≤ nη there exists quantum channels (trace preserving
CP maps)

Tn : T ((C2)⊗n)→ L1(R)⊗T (H) (2.63)
Sn : L1(R)⊗T (H)→T ((C2)⊗n) (2.64)

with T (H) being the trace-class operators on H such that for any 0≤ η < 1/6

lim
n→∞ sup

∥u∥≤nη
∥Nu⊗ϕw−Tn

(
ρ⊗n

u/
√

n

)
∥1 = 0 (2.65)

lim
n→∞ sup

∥u∥≤nη
∥ρ⊗n

u/
√

n
−Sn(Nu⊗ϕw)∥1 = 0. (2.66)

The above theorem shows that statistically the joint qubit state is asymp-
totically equivalent to the limit Gaussian system. The information about the
eigenvalue is encoded in the classical Gaussian distribution, while information
about the eigenvectors is contained in the state ϕw.

Although the LAN principle might seem to involve some prior assumptions
about the state, namely that it exists in a local neighbourhood around a fixed
and known state, it is possible to localise a completely unknown state in this
manner. The idea is to perform measurements on a small and vanishing fraction
ñ <<n of the total resource in order to construct a rough estimate ρ0 of the true
state. It can then be established – using standard concentration inequalities –
that true state is is within the required local neighbourhood of ρ0 with high
probability [57]. A detailed study of quantum LAN and its applications can be
found in these references [57, 59, 60, 58, 56, 35, 75, 74].

2.5 The Minimax estimator

Let us return once again the problem of estimating an unknown parameter
θ ∈Θ for the outcomes of n iid random variables X = (X1, . . .Xn). Typically
there might be several possible estimators θ̂n to choose from. We may wish to
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judge and compare the quality of these estimators in a way that is independent
of the particular realisation of outcomes of the random variables (x1, . . . ,xn).
Therefore, instead of considering something like the mean square error (MSE)-
which is evaluated for a particular estimate - we look to the risk of the estimators.
Given an estimator θ̂n of the true parameter θ, the risk is defined as

R(θ, θ̂n) = E
[
D(θ̂n,θ)

]
(2.67)

where the expectation is over all possible outcomes of the random variable
X. The function D(θ̂n,θ) is called the loss function, and examples for such
loss functions are the L2 norm, L1 norm and the Hellinger distance. We shall
return to a discussion of loss functions later in this section.

Estimators with a smaller risk might be considered ‘better’, and preferred
over others. However, the risk R(θ, θ̂n) is a function of the true parameter,
and in general there will be no single estimator whose risk will be uniformly
lower than all other possible estimators over all values of θ ∈Θ. Additionally,
as the true parameter is taken to be unknown, it is impossible to compare
the risk of the various estimators at this value. How then can estimators be
compared in a meaningful way? We could restrict our attention to estimators
that satisfy certain desirable properties such as unbiasedness and from among
all such estimators prefer ones that have the least variance over all values
of θ, or achieve the CRLB. However, it might not always be preferable to
consider only unbiased estimators, and estimators achieving the CRLB may not
exist. Also, as we have seen the CRLB is not defined at the boundary of the
parameter space. Another way to choose the ‘best’ estimator is to convert the
risk into a single quantity instead of studying it as a function over the entire
parameter space Θ. There are two methods that do precisely this, and the
resulting estimators are called the Bayes estimator and the Minimax estimator.

The idea behind the Bayes principle is to assume that the parameter θ

is a random variable with a prior distribution π over the parameter space Θ.
Then the Bayes risk with respect to the prior distribution π is defined as the
expected risk

RB(π, θ̂n) :=
∫

Θ
R(θ, θ̂n) π(dθ). (2.68)

The provides a ‘summary’ of the risk function, and a meaningful quantity with
which to compare the various estimators. The estimator θ̂n that minimises the
Bayes risk for a given prior π is called the Bayes estimator. In the frequen-
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tist model the true parameter is not considered to come from an underlying
distribution, and in this case the risk is ‘summarised’ by the maximum risk

Rmax(θ̂n) := sup
θ∈Θ

R(θ, θ̂n). (2.69)

An estimator that achieves the smallest possible maximum risk over all es-
timators is called the Minimax estimator. That is, such an estimator θ̂n

satisfies
sup
θ∈Θ

R(θ, θ̂n) = inf
θ̃n

sup
θ∈Θ

R(θ, θ̃n). (2.70)

The term on the right in the above equation is called the minimax risk. The
two estimators, Minimax and Bayes are linked through the notion of the least
favourable prior. If θ̂n is the Bayes estimator for some prior π such that

R(θ, θ̂n)≤RB(π, θ̂n) ∀ θ ∈Θ, (2.71)

then π is called a least favourable prior, and for some well-behaved models the
estimator θ̂n is minimax [17, 99].

The challenge in statistical decision theory is to both determine the minimax
risk (2.70) and to determine an estimator that achieves this risk. For ‘good’
estimators and certain choices of the loss function, the minimax risk decreases
at a rate of 1/n, uniformly over all θ ∈ Θ. However, it may not be possible
to determine an exact minimax estimator for a fixed and finite n, instead we
consider the rescaled asymptotic minimax risk

limsup
n→∞

inf
θ̃n

nRmax(θ̃n), (2.72)

and determine the estimator that achieves this rescaled risk. Such an estimator
is said to be asymptotically minimax.

Let us now consider the quantum statistical model, where the aim is to
determine an unknown density matrix ρ ∈ Sd. Given n identically prepared
copies of the state, we estimate the state from the outcomes of measurements
performed on the copies. Given a measurement design M and the observed
outcomes, the risk of the measurement-estimator pair is

R(M,ρ) := E [D(ρ̂n,ρ)] . (2.73)
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The minimax risk for a given measurement design M , in keeping with (2.70),
is defined as

Rminimax(M,ρ) = inf
ρ̂n

sup
ρ∈Sd

E [D(ρ̂n,ρ)] , (2.74)

where the supremum is taken over the space of all density matrices and the loss
function D(ρ̂n,ρ) is defined over complex matrices. Since the risk is defined for
a given choice of loss function, the corresponding minimax and Bayes estimators
may differ according to this choice.

2.5.1 Loss functions and quadratic approximations

The simplest choice for the loss function is perhaps the square Frobenius or L2

matrix norm. The Frobenius distance between the density matrix ρ and its
estimate ρ̂n (not necessarily a state) is defined as

∥ρ− ρ̂n∥2F := Tr[(ρ− ρ̂n)(ρ− ρ̂n)∗] =
d∑

i=1

d∑
j=1
|(ρ− ρ̂n)i,j |2. (2.75)

The right most equality in the above equation gives us a quadratic expansion of
the Frobenius norm. More concretely, if we choose to parameterise the matrix
ρ ∈ Sd by its matrix elements as in (2.33)

θ =
(
θ(r),θ(i),θ(d)

)
:=
(
Reρ1,2, . . . ,Reρd−1,d, Imρ1,2, . . . , Imρd−1,d,ρ1,1, . . . ,ρd,d

)T
∈ Rd2

(2.76)

and denote its estimate as θ̂n, then the distance between the true state and
the estimated state ρθ̂n

can be expressed as

∥ρθ−ρθ̂n
∥2F = 2∥θ(r)− θ̂(r)

n ∥2 +2∥θ(i)− θ̂(i)
n ∥2 +∥θ(d)− θ̂(d)

n ∥2

= (θ− θ̂n)TGF (θ− θ̂n) (2.77)

where the matrix weight matrix GF is the constant and diagonal GF = Diag(2 ·
1d(d−1)/2,2 ·1d(d−1)/2,1d), with 1(·) specifying an identity matrix of dimension
(·)× (·). A different choice of parameterisation will lead to a different form of
the weight matrix. With this quadratic expansion, we can express the Frobenius
risk as

E
[
∥ρ− ρ̂n∥2F

]
= E

[
(θ− θ̂n)TGF (θ− θ̂n)

]
, (2.78)
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which we recognise from (2.49) to be the mean square error MSE. In general, for
any given choice of parameterisation θ ∈Θ, if a loss function admits a quadratic
expansion then it is seen to be equivalent to the MSE of the estimate, with a
corresponding weight matrix that is defined by the choice of parametrisation.
However, in general a loss function might not be quadratic over the entire
parameter space Θ, but could be expanded quadratically for a choice of local
parameterisation.

Let us consider the case where the state ρ is in a local neighbourhood
around a fixed and known state ρ0, and let us choose a parameterisation of
states ρ0 = ρθ0 . The unknown parameter θ of the true state ρ is taken to lie
in a local neighbourhood of size 1/

√
n around the fixed parameter θ0, and we

define the local parameters u :=
√
n(θ−θ0). A loss function is locally quadratic

if its risk can be approximated as

nR(M,ρ) = E
[
(u− ûn)TG(u− ûn)

]
+O

(
∥u− ûn∥3

)
. (2.79)

As long as the fixed parameter θ0 does not lie at the boundary of the parameter
space, we know from classical LAN that the experiment is asymptotically
equivalent to the Gaussian limit model of estimating the local parameter u

from a single observation of the random variable Y ∼N
(
u, IM (θ0)−1

)
. This

implies that the rescaled local asymptotic risk is

limsup
n→∞

nR(M,ρ) = Tr
[
IM (θ0)−1G

]
+O

(
∥u− ûn∥3

)
. (2.80)

In the limit Gaussian model the minimum variance estimator is the observed
value of Y itself. Therefore, the right side of the above equation gives us
the rescaled local asymptotic minimax risk for the given measurement design
M . As efficient estimators like the MLE achieve this rate asymptotically for
parameters that lie away from the boundary of the parameter space, such
estimators are asymptotically and locally minimax for locally quadratic loss
functions.

We now introduce the common distance measures that will be used through-
out this thesis. We have already introduced the Frobenius norm ∥A∥2F :=
Tr[A∗A] for all matrices A ∈ M(Cd). We also consider the Trace norm
∥A∥1 := Tr

[√
AA∗

]
, and the operator norm ∥A∥ :=

√
λmax(A∗A) = σmax(A)

which is the maximum singular value of the matrix. We also consider the
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several commonly used measures of distance based on the fidelity between
quantum states.

Fidelity based loss functions

The fidelity in itself is not a proper metric on the space of density matrices, but
gives rise to a useful metric [120, 92]. The fidelity between two states ρ,σ ∈ Sd

is defined as
F (ρ,σ) := Tr

[√√
ρσ
√
ρ
]2
. (2.81)

The infidelity is then defined as 1−F (ρ,σ). It is easy to see that 0≤F (ρ,σ)≤ 1,
∀σ,ρ ∈ Sd. The fidelity for pure states ρ = |ψ⟩⟨ψ| and σ = |ϕ⟩⟨ϕ| is simply
F (ρ,σ) = |⟨ψ|ϕ⟩|2. The fidelity is used to define a proper metric on the space
of density matrices, the square Bures distance

DB(ρ,σ)2 := 2
(

1−
√
F (ρ,σ)

)
. (2.82)

For states ρ and σ that are diagonal in the same basis, i.e

ρ=
d∑
i

ri|i⟩⟨i|, σ =
d∑
i

si|i⟩⟨i| (2.83)

for some orthonormal basis {|i⟩}, the square Bures distance is simply the
classical square Hellinger distance between two probability distributions

DB(ρ,σ)2 = 2
1−

d∑
i

√
risi

 (2.84)

=
d∑
i

(√ri−
√
si)2 =DH(r,s)2

where r,s ∈ Rd are the eigenvalue (or probability) vectors.



Chapter 3

Thesis rationale

This chapter is intended to briefly explain the motivation behind the work
presented in part II of this thesis. We begin with a brief review of the compressed
sensing paradigm employed in the estimation of low-rank states. This will
serve as a good starting point from which to introduce the research questions
investigated in chapters 4 and 5. A discussion related to the work in chapters
6 and 7 follows in sections 3.4 and 3.5 respectively.

3.1 Quantum tomography via compressed sensing

Imagine that we have an experimentally prepared quantum state of N qubits
that we wish to estimate. The density matrix corresponding to this unknown
state is a d×d density matrix ρ ∈ Sd, where d = 2N is the dimension of the
Hilbert space Hd. Simple parameter counting informs us that there are d2−1
unknown parameters that completely specify the state. In the MIT setup
(section 2.3.1) the standard measurements involve measuring one of the three
Pauli observables {σx,σy,σz} on each individual qubit simultaneously. We
index the set of all such measurement by the settings

{s = (s1, . . . sN ) ∈ {x,y,z}N}. (3.1)

As there are 3N settings in total, this gives a total set of 3N ×2N projectors,
which is far larger than the number of unknown parameters d2−1. Thus this
measurement design is highly over-complete in M(C2). The state can therefore
be estimated from the outcomes of repeated measurements in the 3N settings,
and as we have briefly seen in the previous chapter, several estimators such as
the MLE or the LSE could be used to recover the state.
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We see that this is a general method. There are no assumptions made
about the unknown state, nor has any prior information been incorporated. If
however, we have prior knowledge that the prepared state is likely to be pure, or
close to pure, then we know that the unknown state ρ is has low rank. A simple
counting of parameters tells us that a state of rank r is completely specified
by O(rd) parameters, and for low rank states this is a much smaller number
than d2−1. This implies that in principle a smaller number of measurements
would be sufficient to recover the unknown low-rank state. It is easy to see
that if we knew the structure of the density matrix beforehand (for example
the subspace on which ρ is supported), this is certainly true. However, this
begs the question of how a general tomographic technique is to be implemented
when we do not know the structure of the density matrix, but only that it is of
low rank. Inspired by the techniques and results of classical compressed sensing
(CS) [29, 88, 30, 40, 14, 31] and matrix recovery problems [27, 97, 28], the
results in [45, 54, 85] first demonstrated such a general tomographic technique
based on the idea that the low rank (or sparsity) of states can be exploited to
estimate them with a reduced number of ‘measurements’.

The CS tomographic setup as in [45, 54, 85], involves the measurement of
the Pauli observables

σb := σb1⊗ . . .⊗σbN
bi ∈ {0,x,y,z}, (3.2)

where σ0 := 1 is the identity matrix. There are 4N such observables in total, and
in the CS setup only a fraction of these observables are measured. Anticipating
the discussion that follows, only O(rd poly logd) randomly chosen observables
are sufficient to robustly reconstruct an unknown and arbitrary rank-r density
matrix. Let k denote the number of observables that are chosen randomly
from the full set of 4N . Measurements of each observable is repeated on m

identical copies of the state, producing a binary outcome {+1,−1} on each
measurement. The outcomes are then averaged to approximate the expected
value ⟨σb⟩ := Tr[σbρ]. The essential problem in the CS setup is to solve the
following under-determined system of linear equations

f =A(ρ)+ϵ (3.3)

where f ∈ Rk is a vector of the estimated expected values, and ϵ ∈ Rk is a
statistical noise vector. The linear map A :Hd 7→ Rk is defined for a particular



3.1 Quantum tomography via compressed sensing 34

choice of Pauli observable as

(A(ρ))b := ⟨σb⟩ρ. (3.4)

The key idea here is that it is possible to recover a low-rank state from
k≪ 4N Pauli observables as the operator A embeds the manifold of rank-r
matrices in M(Cd) into a lower dimensional vector space, while preserving
distances between matrices in the lower dimensional space of vectors [45]. This
property of the map is called the restricted isometry property (RIP).

Definition 2. (see [45, 85]) The operator A is said to satisfy the rank-r
restricted isometry property if there exists some constant 0≤ δr < 1 such that,
for all X ∈M(Cd) with rank r

(1− δr)∥X∥F ≤ ∥A(X)∥ ≤ (1+ δr)∥X∥F (3.5)

In [85], it has been show that with high probability the RIP property holds
for the randomly chosen Pauli observables described above, provided that
the number of observables measured is of the order O(rd poly logd). The
randomness in the choice of observables is a necessary component of the proof.
In particular it has been shown that if the map A satisfies the RIP, then
the intersection between the space of all solutions to linear system y =A(ρ)
(noiseless scenario), and the space of rank-r density matrices is unique [54].

Given the vector f ∈ Rk of the estimated expected values, and the map
A satisfying the RIP with k ≈O(rd poly logd), how is the unknown low-rank
state recovered? The CS literature proposes the following estimator, also called
the matrix Dantzig selector [45]

ρ̂DS := argmin
X
∥X∥1 s.t ∥A∗(A(X)−f)∥ ≤ c (3.6)

where c is a set upper-bound on the noise, and A∗ is the adjoint of the operator
A. The choice of minimising the trace norm is a very particular one. Since the
unknown state ρ is known to be sparse, in that it is of low-rank, one might
imagine estimating ρ by implementing a search over all low-rank matrices that
best fit the data. However, this search is known to be NP-hard, and the closest
convex relaxation is the programme above (3.6) [104]. An intuition for why
this might be is gained by remembering that the trace norm is the sum of the
singular values of a matrix. As the rank of a matrix equals the number of
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non-zero singular values, the problem of rank minimisation is well approximated
by the trace norm minimisation.

The performance of the Dantzig selector has been shown to be robust in the
presence of noise, and bounds for the error in the trace norm are obtained in
[45]. Closely related work in [34], proposes an iterative thresholding estimator
that uses a computationally efficient, explicit algorithm instead of the convex
optimisation problem (3.6). This method imposes a property, closely related
to the RIP, on the linear map A. This estimator is also shown to perform
well, and bounds for both the entry-wise error of the resulting estimate and its
Frobenius error are derived.

3.1.1 Coarse grained statistics

As it turns out, the CS model as described above does not make the most efficient
use of the outcome statistics produced from the tomographic experiment. To
consider this in more detail, let us compare the measurement of the Pauli
observables

σb = σb1⊗ . . .⊗σbN
bi ∈ {0,x,y,z}, (3.7)

to the standard Pauli settings defined earlier

s = (s1, . . . sN ) ∈ {x,y,z}N . (3.8)

There are 3N such settings in total, and clearly the set of all observables σs,
indexed by the settings s, is a subset of the set of all 4N Pauli observables
σb. However, it is possible to estimate the expectation values ⟨σb⟩ρ of all 4N

Pauli observables by measuring the full 3N settings. To see this, recall that
the outcome of a measurement in setting s is a vector record o = (o1, . . . ,oN ) ∈
{+1,−1}N of the ±1 outcomes from each of the N ions, while the outcomes in
the CS setup are simply binary {±1}, and do not keep a record of the individual
outcomes from each of the ions. In fact from single setting s, it is possible to
compute the expectations

⟨σb⟩ρ = Tr(ρσb) =
∑
o

 ∏
i:bi ̸=0

oi

 pρ(o|s). (3.9)

for all Pauli observables in the set {σb| ∀i : bi ̸= 0, bi = si}, by simply estimating
the probabilities pρ(o|s) from the data. It is easy to see that a single setting s
therefore generates information about d such expectation values. The Pauli
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expectations are a ‘coarse graining’ of the ‘raw’ statistical data that is obtained
from measuring the Pauli settings. This raises the question if ‘compressive
behaviour’ can be demonstrated in the standard MIT setup with measurements
in the standard Pauli settings. In a sense this is certainly true as one could
randomly pick O(rd poly logd) Pauli observables σb, and estimate their ex-
pectations from a (possibly) smaller set of settings s. However this procedure
would still involve the coarse-graining of data and relies on the map A satisfying
the RIP. The question is to determine if compressive behaviour exists with the
raw data as is.

3.2 The projection estimator

In this section we propose a simple estimator that demonstrates ‘compressive
recovery’ of low-rank states with incomplete measurements in the MIT setup.
This estimator uses the LSE of the true state as a starting point, and we therefore
begin by defining the linear regression model for incomplete measurements. As
before (section 2.3.1), let us consider an unknown state ρ ∈ Sd of N qubits, and
we define S := (s1, . . . ,sk) as the set of k randomly chosen settings s∈ {x,y,z}N

from the full 3N settings. Let n be the total number of copies of the state, and
we let m= n/k be the number of times a measurement is repeated in a given
setting s. The measurement outcomes are collected in a dataset D of counts
N(o|s). We would like to describe the linear estimation problem in terms of the
basis formed by the Pauli observables σb (3.2), and we follow the convention in
[25]. Consider the expansion of ρ in the Pauli tensor product basis in M(Cd)

ρ=
∑
b
ρbσb, ρb = 1

d
Tr[ρσb] . (3.10)

In this basis, the probabilities of obtaining a given outcome o in a setting s are
expressed as

pρ(o|s) =
∑
b
ρbTr[σbP

s
o ] =

∑
b
ρbAb(o|s), (3.11)

where,

Ab(o|s) =
∏

j ̸∈Eb

oj 1(bj = sj), with Eb := {j : bj = 0}, (3.12)

with 1(bj = sj) being the indicator function. We let θ ∈ R4n be a parameter
vector of the coefficients ρb, and y ∈R2n×k be the vector of probabilities. This
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allows us to express the equations (3.11) in matrix notation as

y = Aθ, (3.13)

where A is a (2n×k)×4n design matrix. In an experimental set up, instead of
the probabilities pρ(o|s) , we have access to the empirical frequencies f(o|s) :=
N(o|s)

m . Therefore, replacing y by the vector of frequencies f the problem of
determining an unknown quantum state can be cast as

f = Aθ +ϵ (3.14)

where, ϵ is a mean zero vector of statistical noise. When all 3N measurements
are made, i.e (k = 3n), the above equation admits the usual least squares
solution (section (2.3.2))

θ̂ = (ATA)−1AT f (3.15)

The estimate ρ̂LS of the density matrix is then reconstructed using the Pauli
basis expansion (3.10). The matrix ATA is invertible and diagonal when all
3N settings are measured. However, in the incomplete measurement setup, this
matrix is not invertible and has a number of its diagonal entries equal to zero.
To see this, we note that for a given σb, the term Ab(o|s) is non-zero for 3|Eb|

settings s. If all of these 3|Eb| setting are not measured then the diagonal entries
(ATA)b,b are seen to be zero. Let us define the set B := {b|(ATA)b,b = 0}.

Since the matrixATA is non-invertible for k < 3N , we may instead implement
a pseudo-inverse in (3.15), and invert only the non-zero diagonal elements of
the matrix. With this, it can be shown that the estimate ρ̂LS constructed from
the estimated parameter vector θ̂ is such that

Tr[ρ̂LSσb] = 0 ∀ b ∈ B. (3.16)

Therefore the LSE in the reduced measurement setup is not an estimate of
the whole state, and lies in a subspace orthogonal to the one spanned by the
observables {σb|b ∈ B}. Following this, the Frobenius error of the LSE can be
expressed as the sum

∥ρ̂LS−ρ∥2F = ∥
∑
b∈B

ρbσb∥2F +∥
∑
b̸∈B

ρbσb− ρ̂LS∥2F . (3.17)
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Figure 3.1 The average Frobenius error of the projection estimator for a random
4-qubit pure state, and total sample size n=m ·34 = 8100. For each number of
settings k (horizontal axis) we chose 30 random sets of settings S, and each
plotted point is the average of the 30 different resulting estimates. The red line
is the Frobenius error of the full LSE with 3N settings measured.

As fewer settings s are measured, the contribution to the error from the
first term on the right increases as a greater number of coefficients will not
be estimated. The problem now becomes one of estimating the remaining
coefficients ρb = ⟨σb⟩/d of the observables {σb|b ∈ B}. Although this is similar
to the CS problem of estimating an unknown state from the incomplete set of
expectations ⟨σb⟩ of Pauli observables, there are a few key differences that are
worth keeping in mind.

1. Even though we expand the LSE in terms of the coefficients ρb and
therefore in terms of the expectations ⟨σb⟩, there is no ‘coarse graining’
of the outcome statistics in the actual estimation. This is seen from
the system of linear equations (3.15), where the vector f is a vector of
frequencies N(o|s)/m and not a vector of estimated expected values as
in (3.3). In fact, in chapter 4 we shall demonstrate that any estimator
using the Pauli expectations will have a significantly larger estimation
error than if the ‘fine grained’ outcome statistics are used.
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2. In the CS setup we have seen that low-rank states can be compressively
recovered provided that O(rd poly logd) randomly chosen expectation
values are estimated accurately. These expectation values are picked
randomly and uniformly from a set of all 4N such expectations, whereas
in the MIT setup with incomplete measurements, the coefficients ρb that
are estimated are not picked randomly from the full set. Instead, we
pick uniformly from the set of 3N measurable settings s, and each setting
generates information about d coefficients. Therefore the randomness
over the coefficients ρb here is different than the randomness employed
in the CS setup.

3. Because we use ‘fine grained’ outcome statistics and each setting s gener-
ates information about several coefficients, we may reasonably expect the
minimum number of ‘measurements’ needed to be smaller than in the CS
setup.

3.2.1 Alternating projections

We now introduce the following projection estimator that uses ρ̂LS to build an
estimate of the whole state ρ. The procedure involves repeated, alternating
projections - starting from the estimate ρ̂LS - onto the subspace of rank-r
density matrices. The following algorithm outlines the basic procedure, where
L is taken to be the number of iterations of the procedure.

Algorithm 1: The Projection Estimator
Input : The least squares estimator ρ̂LS, the rank r of the state ρ, and

the number of iterations L.
Output : The projection estimate ρ̂proj

1 l← 1
2 ρ̂l=1← ρ̂LS
3 while l ≤ L do
4 Project the estimate ρ̂l onto a rank-r dimensional subspace by

retaining only its r-largest eigenvalues, and setting the rest to zero
ρ̂r

l ←
∑r

i=1 λ̂i|λ̂i⟩⟨λ̂i|
5 ρ̂l+1← ρ̂LS +∑

b∈B
1
dTr[ρ̂r

l σb]σb
6 l← l+1
7 end
8 ρ̂proj← ρ̂l=L
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Figure 3.1 plots the average Frobenius error ∥ρ̂proj− ρ∥2F for a random
4-qubit pure state. The number of repetitions in each setting is m = n/k,
where n= 8100 is the total number of copies of the state. The total number
of iterations L = 10, and we chose 30 random sets of settings S for each k.
The plotted points correspond to the Frobenius error averaged over the 30
different estimates. We note that the estimator defined in Algorithm 1 assumes
knowledge of the true rank of the state, and is therefore an ‘oracle’ estimator.
Its performance, even with incomplete measurements, remains better than
the LSE obtained with full measurement settings (red line). Additionally the
estimation errors remain fairly constant, and this shows that a 4-qubit pure
state can be estimated by using only 10-15 settings, out of a total of 81. This
demonstrates ‘compressive’ recovery with the Pauli settings, and although the
true rank is typically unknown, this can be estimated from the outcome data
itself. This is done with techniques like Cross-Validation [25].

3.3 Compressive tomography with fine grained statistics

Numerical simulations with the projection estimator demonstrates the possibil-
ity of ‘compressively’ recovering a low-rank state in the MIT setup. However, as
this estimator was proposed only as an illustrative example, we do not provide
any bounds for the estimation error, nor derive any rate for the minimum
number of settings s that need to be measured. In chapters 4 and 5 we study
this ‘compressive’ behaviour in more general terms. Instead of considering a
particular estimator (like the Dantzig selector or the projection estimator), we
would like to consider the estimation errors of the general class of ‘efficient’
estimators, i.e, ones which achieve the CRLB asymptotically. The two central
questions that need to be answered are as follows. Can we demonstrate the
recovery of low-rank states with an incomplete measurement design and such
‘efficient’ estimators? Secondly, can we say something meaningful about the
scaling of the minimum number of settings that need to be measured?

As we have seen in chapter 2, in the asymptotic regime efficient estimators
ρ̂n achieve the CRLB, and their MSE is given by

E∥ρ̂n−ρ∥2F ≈
1
n

Tr
[
I(ρ|S)−1GF

]
, (3.18)

where the classical Fisher information matrix I(ρ|S) depends on both the true
state and the measurement design S, and the constant weight matrix GF is
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particular to the choice of the Frobenius norm. Since the asymptotic MSE
depends only on the local properties of the model, the Fisher information above
is defined by a choice of local parameterisation of rank-r states.

From (3.18) we see that in the asymptotic regime, the problem of studying
the MSE of efficient estimators can be converted into one of studying the
behaviour of the Fisher information matrix. In chapters 4 and 5, we do
precisely this and find that even as the number of settings k are reduced, the
asymptotic MSE for low-rank states remains robust. In order to explain this
‘compressive’ behaviour of the MSE, we look to derive a concentration bound
for the Fisher information matrix, and to show that I(ρ|S) remains close to its
optimal value even when the number of settings k making up the measurement
design S is small k << 3N .

However, deriving such a concentration bound requires knowledge of cer-
tain spectral properties of the Fisher information matrix. This proves to be
challenging for the Pauli settings case, and remains an open problem. Instead
we relax the Pauli settings setup and consider random basis measurements as
introduced in section 2.3.1. In this setup the necessary spectral properties of
the Fisher information are derived and we show that certain “least sparse”
rank-r states can be estimated with only O (r logd) measurements, with the
resulting MSE demonstrating only a small increase relative to the setup where
a large number of random bases are measured.

3.3.1 A problem at the boundary

This concentration bound of the Fisher information matrix is a powerful tool, in
that similar ‘compressive’ results can immediately be derived for any distance
measure that admits a locally quadratic expansion. We simply replace the
GF in (3.18) with the weight matrix that corresponds to the chosen distance
measure. However, in chapter 5 we show that for states that have very small
eigenvalues, the Fisher information I(ρ|S) does not concentrate. In fact, we
extend the results in chapter 4 to show that for states with arbitrary spectrums,
the minimum number of settings scales as O

(
1

λmin(ρ)
r+1

r logd
)
. This would

suggest that as λmin(ρ)→ 0 the minimum number of measurements required
for the Fisher information to concentrate tends to infinity k→∞ ! It is natural
to wonder if this lack of concentration in the Fisher information also implies a
lack of concentration in the MSE for states that have very small eigenvalues.



3.4 Adaptive protocols and the minimax rate 42

We show that even at the boundary of the parameter space, the asymptotic
MSE (3.18) for an arbitrary rank-r state scales as O(1/n), with a constant that
is bounded by roughly the number of unknown parameters given that O(r logd)
random bases are measured. In the case of a single qubit, we show that the
MSE concentrates as λmin→ 0, even if the Fisher information does not.

However, not all distances show a similar concentration in the mean error
as λ→ 0. We consider a simple illustration of the problem. Let ρ0 = Diag(1−
λ0,λ0) be a qubit state diagonal in its own eigenbasis, and let θ := (λ,u,v)∈R3

be a local parameterisation of states such that any state ρθ in this local
neighbourhood is given by

ρθ = U (u,v)
 1−λ 0

0 λ

U (u,v)∗ , (3.19)

and is obtained by small changes in the eigenvalues and a small rotation of the
eigenbasis of ρ0. In this parameterisation let us consider the infidelity between
states 1−F (ρθ,ρθ+δθ), and perform a one sided Taylor expansion (with δλ > 0)
around λ= 0. We get

1−F (ρθ,ρθ+δθ) = δλ+O(∥δθ∥2). (3.20)

This shows that the distance is no longer quadratic near the boundary of
the Bloch sphere. This is true not just for the infidelity but also for the
Bures distance. This illustrates the fact that the infidelity (and the Bures
distance) are sensitive to the misestimation of small eigenvalues. In chapter 5
we demonstrate that due to this linearity in the parameters near the boundary,
a concentration in the mean infidelity does not hold. Additionally, since in
general the parameters are estimated with uncertainty of the order O(1/

√
n),

(3.20) implies that the mean infidelity for states near the boundary scales only as
O(1/

√
n). We will also demonstrate that in general one can always significantly

decrease the estimation error by measuring more random bases, and this means
a lack of ‘compressive’ behaviour for low-rank states with eigenvalues close to
zero.

3.4 Adaptive protocols and the minimax rate

The work in chapters 4 and 5 focuses on questions of ‘compressive’ recovery. In
chapter 6, we do not consider a reduced measurement setup, but instead study
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Figure 3.2 The standard deviation ellipses for several rebit states (blue di-
amonds). The red ellipses represent the uncertainly ‘balls’ as determined
by (3.22) for large values of n. The four rebit states we consider are the
fully mixed state (rx, rz) = (0,0), the state (rx, rz) = ( 1√

2 ,
1√
2) and the states

(rx, rz) = (0,1−n−1/2), (rx, rz) = (1−n−1/2,0).

the problem of estimating nearly pure qubit states with full tomography. As
briefly hinted at in the previous section, the infidelity and Bures distance are no
longer quadratic close to the surface of the Bloch sphere, and this has important
implications for the rate at which nearly pure states can be estimated.

To better illustrate this behaviour at the boundary, let us continue with the
qubit example and consider an arbitrary mixed state ρ ∈ S2. For the purposes
of this discussion let us fix the parametrisation θ = (rx, ry, rz) with the Bloch
vector components. The standard tomographic measurement procedure involves
the repeated measurement of a Pauli observable in each setting s ∈ {x,y,z}
on m = n/3 copies of the state. The classical Fisher information for this
measurement design and parametrisation can be easily evaluated to be

I(θ) :=


1

1−⟨σx⟩2 0 0
0 1

1−⟨σy⟩2 0
0 0 1

1−⟨σz⟩2

 . (3.21)
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We have seen that the distribution of efficient estimators is asymptotically
Gaussian, i.e,

√
m(θ̂− θ)→ N (0, I(θ)−1). This implies that the standard

deviation matrix for such estimators is given by

√
Σ =

√
3
n


√

1−⟨σx⟩2 0 0
0

√
1−⟨σy⟩2 0

0 0
√

1−⟨σz⟩2

 . (3.22)

This standard deviation matrix gives us the distribution of the estimates around
the true state, and in figure 3.2 we plot the standard deviation ellipses around
rebit states (setting ⟨σy⟩= 0) for large n and different values of ⟨σx⟩, ⟨σz⟩. We
mention the following points about the three regions in figure 3.2.

1. When the state is well within the Bloch sphere, the standard deviation
‘ball’ is of the order O(1/

√
n). This implies that the estimates ρ̂n = ρθ̂n

lie in a region of uncertainty of O(1/
√
n) around the true state. This

together with the fact that distance measures such as the infidelity and
the Bures distance (along with several other norms) are locally quadratic
in this region, gives us the standard rate of estimation O(1/n) from the
CRLB.

2. When the state is nearly pure but is not aligned along one of the measure-
ment axis, then the standard deviation ‘ball’ is still of the order O(1/

√
n)

as both rx, rz ̸≈ 1, however some of the estimates are seen to lie outside
the Bloch sphere and do not represent physical states. This fact has
important consequences.

We first note that the Fisher information matrix is still defined in this
region. This is because we have not constrained the parameters to
represent states (∥r∥ ≤ 1), and secondly the parameters rx, rz are not
close to the boundary of the parameter space. Along with the fact that
distances such as the squared Frobenius norm –which are valid even for
unphysical estimates– are locally quadratic in this region, this implies that
the corresponding MSE of certain ‘efficient’ estimators asymptotically
achieves the CRLB with the standard O(1/n) scaling.

However there are implications for estimators such as the MLE that
produce only certifiable states [102]. We shall return to this point in a
later section. For now, we note that the CRLB is not meaningful for
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distance measures such as the infidelity or the Bures distance which are
defined only over the space of density matrices. In fact, these distances
are no longer quadratic close to the boundary (3.20), and this results in
the poor O(1/

√
n) scaling for nearly pure states.

3. When the state is nearly pure and its Bloch vector is aligned along one of
the measurement axes, then the standard deviation is no longer O(1/

√
n)

in all directions. This can easily be seen by considering a state along the
σz direction with |r|= rz = 1−O(1/

√
n). Evaluating the corresponding

terms in the matrix (3.22), we see that E
[
(r̂z− rz)2

]
= O(n−3/2). As

we shall shortly explain, this fact makes it possible to improve the poor
scaling of the fidelity based metrics, and recover the standard O(1/n)
scaling (at least in the asymptotic limit).

We also note that the Fisher information is only defined for values of the
parameter within the parameter space. Therefore the Fisher information
matrix and the CRLB are not valid in the limit rx, rz→ 1, and certainly
not for values of rx, rz > 1.

The above discussion shows that for states near the boundary of the Bloch
sphere and fidelity based distances, the CRLB does not hold. In fact, the
estimation error scales as O(1/

√
n) for nearly pure states. However for regions

within the Bloch sphere where the distances are locally quadratic, we have
the standard scaling of O(1/n) from the CRLB. This poor scaling of the rate
for states near the boundary is true not only of the standard tomographic
procedure, but holds for all fixed bases measurement designs. We recommend
the papers [89, 102] for a further discussion of this problem, and the work in
[42] which considers a classical analogue in the estimation of the bias of a noisy
coin.

We also see that if the state is along one of the measurement axes then
the corresponding Bloch vector component is estimated more accurately and
with smaller uncertainty. This suggests a method to recover the O(1/n) scaling
for all nearly pure states; instead of the standard tomographic measurements
we measure along the eigenbasis of the state. It can be shown that for such
measurements the infidelity scales as O(1/n) even for states at the boundary [89].
Clearly this measurement protocol is impossible to implement in practice as the
state and its eigenbasis is unknown. However, based on this idea several papers
propose two-step adaptive protocols that work by first producing a preliminary
estimate with a fraction of the copies of the state n1, and then performing
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measurements along the estimated eigenbasis on the remaining n−n1 copies
[49, 100, 9, 89, 70]. Adaptive protocols involving collective measurements have
also been proposed [8, 7, 57, 59]. For a good review of the theoretical and
experimental results with such adaptive schemes see [105].

In chapter 6, we consider this problem from the perspective of the maximum
risk over all qubit states. Specifically, we consider the following asymptotic
rescaled maximum Bures risk

rmax(ρ̂n) := limsup
n→∞

sup
ρ∈S2

nE
[
DB(ρ, ρ̂n)2

]
. (3.23)

We propose and analyse two adaptive estimation strategies, one based on
separable adaptive measurements, and the other based on collective measure-
ments which uses results of quantum LAN. For both estimation methods, we
demonstrate a scaling of O(1/n) of the maximum Bures risk. We also discuss
how to construct a minimax optimal estimator in the setup with the collective
measurements. Finally, we consider another distance measure, the quantum
relative entropy, and show that no estimator can have maximum risk converging
faster than O(n−1 logn) under this loss function.

3.5 A simulation study

As discussed in the previous section, the Fisher information matrix I(θ) is
defined even for states near the boundary as long as the parameters θ are
well within the parameter space Θ. In the qubit case this boundary is at the
‘surface’ of the Bloch sphere, and we saw the Fisher information is defined as
long as the Bloch vector parameters rx, ry, rz are away from 1.

Since I(θ) is defined even for states near the boundary (under certain
conditions), we may expect the variance of certain unbiased and ‘efficient’
estimators to be given by the inverse I(θ)−1 for suitably large n. As we have
seen in the previous section, if the state is close enough to the boundary this
implies that some of the estimates of such estimators will lie outside the space
of states. However, this cannot reflect the distribution of estimators such as
the MLE, since its estimates are constrained by positivity to produce states.
Therefore the MLE is not an unbiased estimator of states near the boundary.
In fact, for such states the constraint of positivity provides more information
than encoded by the Fisher matrix, and it is reasonable to expect the risk of
the MLE to break the CRLB, while for states away from the boundary, the risk
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of the MLE is approximated by the asymptotic value Tr
[
I(θ)−1G

]
for large n.

This discussion is of course meaningful only when the loss function continues to
be quadratic at the boundary (e.g the square Frobenius norm), as the CRLB is
not meaningful at the boundary for distances that are defined only over the
space of states.

This non-applicability of the asymptotic theory at the boundary is an
important feature of the MLE. The above discussion however suggests that the
asymptotic theory should apply to an ‘unconstrained’ version of the MLE, where
the estimates are not required to be positive. In chapter 7 we shall investigate
this behaviour of the MLE and its ‘unconstrained’ version for multi-qubit states
near the boundary, in an extensive numerical simulation study.

The aim of the study is however far more general- to systematically compare
and analyse the performance of several tomographic estimation methods across
a range of different multi-qubit states, ranks, measurement designs, number
of copies n, and the number of qubits N . We also consider the risk of the
estimators in terms of several different loss functions, such as the square
Frobenius norm, trace norm, square Bures and Hellinger distances. Apart
from the several commonly used and studied estimators such as the MLE and
the linear regression estimators, we also introduce and define estimators such
as the Generalised Least Squares (GLS) and the Generalised Positive Least
Squares (PGLS). We show that for sufficiently large n the ‘unconstrained’ MLE
is equivalent to the GLS estimator, and that both the PGLS and the ML
estimates can be obtained by projecting the GLS estimate onto the space of
density matrices.

In addition to the results of the simulation study, we also introduce two
web-based applications that are designed as tools for performing tomographic
simulations online. These applications make available all of the estimators
studied in chapter 7, and thus enable a user to perform their own simulations
with arbitrary multi-qubit states. These applications also serve to complement
the results presented in chapter 7.



Part II



Chapter 4

Statistically efficient tomography of low rank
states with incomplete measurements

4.1 Introduction

Recent years have witnessed great experimental progress in the study and
control of individual quantum systems [64, 116]. A common feature of many
experiments is the use of Quantum State Tomography (QST) methods as a
key tool for validating the results [62, 47]. The aim of QST is to statistically
reconstruct an unknown state from the outcomes of repeated measurements
performed on identical copies of the state. Among the proposed estimation
methods we mention, e.g. variations of maximum likelihood [13, 19, 71, 101, 50],
linear inversion [113], Bayesian inference [8, 6], estimation with incomplete
measurements [51, 108, 109], and continuous variables tomography [87].

However, for composite systems such as trapped ions, full state tomography
becomes challenging due to the exponential increase in dimension [90]. There-
fore, there has been a significant interest in developing tomography methods
that are efficient for certain lower dimensional families of physically relevant
states. For instance, the estimation of low rank states has been considered in
the context of compressed sensing (CS) [45, 54, 34, 33, 76] (chapter 3), model
selection [61], and spectral thresholding [3, 25]. The estimation of the permu-
tationally invariant part of the density matrix as an approximation to the true
state is also relevant in certain physical models [110, 91, 103]. Similarly, the
estimation of matrix product states [39] is particularly relevant for many-body
systems, but also for estimating dynamical parameters of open systems [35, 60].

In this chapter we build on the fruitful CS idea that the sparsity of low
rank states can be exploited in order to identify and estimate the state with
a reduced number of ‘measurements’, in contrast to standard, informationally
complete QST. Recall that a rank-r joint state of N qubits can be characterised
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by O(rd) parameters, where d= 2N is the dimension of the associated Hilbert
space. In the original CS proposal it is shown that such a state can be recovered
from the expectation values of O(rd logd) randomly chosen Pauli observables.
More recent work concentrates on error bounds [34, 45] and confidence intervals
[33] of CS estimators.

However as briefly explained in section 3.1.1, from a statistical and experi-
mental viewpoint the estimation based on Pauli expectations does not make the
most efficient use of the measurement data available in ion trap experiments.
Indeed, the Pauli expectations can be seen as ‘coarse grained’ statistics of the
‘raw data’ which consists of counts for individual outcomes of a measurement
in an orthonormal basis. This coarse graining leads to loss of information and
a significant increase in estimation error, as shown in section 4.5.

In contrast, here we consider the statistical problem of estimating low rank
states in the set-up of multiple ions tomography (MIT), where the input is
the counts dataset provided by the experiment. The goal is to investigate the
possibility of using a reduced number of measurement settings (Pauli bases),
without a significant loss of statistical accuracy, in comparison to standard,
full settings MIT. For this, we consider the behaviour of the Mean Square
Error (MSE) with respect to the Frobenius distance between the true state
and the estimator E∥ρ̂− ρ∥2F , in the limit of large number of measurement
samples. According to asymptotic theory [118], in this regime the MSE of
efficient estimators (e.g. maximum likelihood) ρ̂ takes the following expression

E∥ρ̂−ρ∥2F = 1
n

Tr(I(ρ|S)−1G)+o(n−1). (4.1)

Above, I(ρ|S) is the classical Fisher information associated with the chosen
measurement design S and a local parametrisation of rank-r states, and n is
the total number of quantum samples available as a resource. G is the positive
weight matrix associated with the quadratic approximation of the Frobenius
distance in the local parameters.

In the following section we review the MIT set-up, and formulate the
‘reduced settings hypothesis’ in statistical terms. After this, we present the
results of extensive numerical simulations testing this hypothesis, which are
summarised in Figure 4.1. We find that the asymptotic MSE given by (4.1) is
very robust with respect to a reduction the number of settings, with a random
choice of settings making up the measurement design S. For instance, 4 ion
states of rank 3 can be estimated by using 20 settings (out of a total of 81)
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Figure 4.1 Asymptotic MSE for 4 ion states with ranks r = 1, . . . ,5, and total
sample size n=m ·34 = 8100. For each rank we chose 10 random states, and
for each number of settings k (horizontal axis) we chose 10 random sets of
settings S. The MSE for each such combination is represented with a circle,
and the lines are the average values.

with a negligible increase in estimation error. Also, to test the validity of the
asymptotic theory for low rank states, we compared the theoretical prediction
(4.1) with the actual MSE of the maximum likelihood estimator and found a
very good agreement for m= 100 repetitions per setting, a typical value used
in experiments [62].

To explain the observed robustness, we outline an argument based on a
concentration inequality [2] for the Fisher information matrix of an experi-
ment with randomly chosen Pauli settings. Transforming the argument into
a mathematical proof requires control over certain spectral properties of the
Fisher information matrix, and remains an open problem. However, by relaxing
the Pauli measurement setup, and allowing for measurements with respect to
random bases, we can prove that states of rank r can be estimated by using
O(r logd) settings, with only a small increase in the MSE, relative to the setup
in which a large number of settings is probed, cf. Theorem 2. For Pauli
measurements we present numerical evidence on the lowest eigenvalue of the
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Fisher information matrix, which strongly suggests that the MSE of random
low rank states concentrates for a small number of measurement settings.

From a CS viewpoint, our question is closely related to the work [81, 73]
inspired by the PhaseLift problem [32, 53] which considers the case where the
incomplete ‘measurements’ are expectations of rank-one projections sampled
randomly from a Gaussian distribution, or a projective t-design. In [80] the
analysis is extended to the physically relevant case of random orthonormal
basis measurements, and it is shown that rank-r states become identifiable
with a large probability for only O(r log3 d) ‘sufficiently random’ measurements.
These results are in broad agreement with our findings, calling for a better
understanding of the connections between the CS estimators and statistical
approaches considered here.

4.2 Multiple Ions Tomography with Incomplete Measure-
ments

In this chapter we shall consider the multiple ions tomographic (MIT) setup as
in the ion-trap experiments [62]. In MIT the goal is to statistically reconstruct
the joint state of N ions (modelled as two-level systems), from counts data
generated by performing a large number of measurements on identically prepared
systems. The unknown state ρ is a d× d density matrix (complex, positive
trace-one matrix) where d = 2N is the dimension of the Hilbert space of N
ions. The experimenter can measure an arbitrary Pauli observable σx,σy or σz

of each ion, simultaneously on all N ions. Thus, each measurement setting is
labelled by a sequence s = (s1, . . . , sN ) ∈ {x,y,z}N out of 3N possible choices.
The measurement produces an outcome o = (o1, . . . ,oN ) ∈ ON := {+1,−1}N ,
whose probability is

pρ(o|s) := Tr(ρP s
o ) = ⟨λs

o|ρ|λs
o⟩, (4.2)

where P s
o is the one dimensional projection P s

o = |λs1
o1⟩⟨λ

s1
o1 |⊗ . . .⊗|λ

sN
oN
⟩⟨λsN

oN
|,

and, |λs
±⟩ is an eigenvector of the Pauli matrix σs, with a corresponding ±1

eigenvalue.
The measurement procedure and statistical model can be summarised as

follows. For each setting s the experimenter performs m repeated measurements
and collects the counts of different outcomes N(o|s), so that the total number
of quantum samples used is n :=m×3N . The resulting dataset is a 2N ×3N
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table whose columns are independent and contain all the counts in a given
setting. The overall measurement is informationally complete, and the state
can be estimated by using a number of methods proposed in the literature
[101, 25, 3].

Now, there are several reasons to consider a set-up in which a smaller
number of measurement settings are used for estimating the state; switching
measurement settings may be more costly than repeating a measurement in the
same setting, and smaller datasets may be easier to handle computationally.
However, by removing even a single setting, the state becomes unidentifiable.
This is because the corresponding tensor of Pauli operators is linearly indepen-
dent from all the one dimensional projections of the remaining settings, and
therefore its expectation value cannot be estimated. This can be remedied if
some prior information about the state is available. The relevant example here
is from compressed sensing [45, 54, 34, 33, 76] which shows that low rank states
are uniquely determined by the Pauli expectations associated with a reduced
number of settings. However, the existing compressed sensing literature does
not address the statistical problem of estimating the state directly from the
raw measurement data (i.e. the counts N(o|s)), as it typically employs coarse
grained statistics such as Pauli expectations. Our goal is to investigate the
statistical efficiency of estimating low rank states with reduced measurement
settings. We will consider an asymptotic scenario in which the number m of
measurement repetitions per setting is large and the mean square error can be
characterised in terms of the classical Fisher information, as discussed above.
As we show below this regime is already attained for m= 100, which is of the
order of repetitions cycles used in experiments [62].

As stated above, we assume that the prepared state ρ belongs to the space
of rank r states Sr ⊂M(Cd), for a fixed rank r < d. Since the asymptotic mean
square error depends only on the local properties of the statistical model, it
suffices to consider a parametrisation θ 7→ ρθ of a neighbourhood of ρ in Sr,
which can be chosen as follows. In its own eigenbasis ρ is the diagonal matrix of
eigenvalues Diag(λ1, . . . ,λr,0, . . . ,0), and any sufficiently close state is uniquely
determined by its matrix elements in the first r rows (or columns). Intuitively
this can be understood by noting that any rank-r state ρ′ in the neighbourhood of
ρ can be obtained by perturbing the eigenvalues and performing a small rotation
of the eigenbasis; in the first order of approximation, these transformations
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leave the (d− r)× (d− r) lower-right corner unchanged so

ρ′ =


Diag(λ1, . . . ,λr) 0

0 0

+


∆diag ∆off

∆†
off O(∥∆∥2)

 . (4.3)

We therefore choose the (local) parametrisation ρ′ = ρθ with

θ :=
(
θ(d);θ(r);θ(i)

)
(4.4)

= (ρ′
2,2, . . . ,ρ

′
r,r ;Reρ′

1,2, . . . ,Reρ′
r,d; Imρ′

1,2, . . . , Imρ′
r,d) ∈ R2rd−r2−1

where, in order to enforce a trace-one normalisation, we constrain the first
diagonal matrix element to be ρ′

1,1 = 1−∑d
i=2 ρ

′
i,i. In this parametrisation we

denote ρ= ρθ0 , with θ0 := (λ2, . . . ,λr;0 . . .0;0 . . .0). The Frobenius distance is
locally quadratic in θ so that

∥ρθ1−ρθ2∥
2
F = (θ1−θ2)TG(θ1−θ2)+o(∥θ1−θ2∥2) (4.5)

where
Ga,b = Tr

[
∂ρθ

∂θa
· ∂ρθ

∂θb

]
(4.6)

is a constant weight matrix whose expression can be found in the appendix
to this chapter, below equation (4.19). After fixing the parametrisation, we
now define the statistical model of multiple ions tomography with incomplete
settings. Let S ⊂ {x,y,z}N be a set of k randomly chosen settings, and
consider the modified scenario in which ions prepared in the unknown state ρ
are repeatedly measured m= n/k times for all settings in S, so that the overall
number of quantum samples is always n. The classical Fisher information
associated with a single chosen setting s is defined as

I(ρ|s)a,b :=
∑
o

1
pρ(o|s)

∂pρ(o|s)
∂θa

· ∂pρ(o|s)
∂θb

. (4.7)

For a set S of k settings the Fisher information matrix associated with a
single measurement sample from each setting s ∈ S is given by the sum of the
individual Fisher matrices I(ρ|s), and for later purposes we will denote the
average I(ρ|S) = 1

k

∑
s∈S I(ρ|s). The individual matricies can be computed by

using definition (4.7) together with equation (4.2) and the parametrisation
(4.4).
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Since the outcomes from m repeated measurements in a setting s are i.i.d,
when the number of repetitions m is sufficiently large, efficient estimators
of θ (and hence of ρ) from these outcomes have an asymptotically Gaussian
distribution [118]

√
m(θ̂−θ)≈N (0, I(ρ|S)−1) (4.8)

where the covariance matrix I(ρ|S)−1 is the Fisher information associated with
a single measurement sample of the set S. From this behaviour and the local
expansion of the Frobenius distance, we see that for (reasonably) large m, the
mean square error of an efficient estimator (e.g. maximum likelihood) scales as

MSE := E(∥ρ̂−ρ∥2F )≈ 1
n

Tr(I(ρ|S)−1G). (4.9)

Compare this equation with (4.1) in the introduction. The trace expression
is a measure of the sensitivity of the chosen set of settings S at ρ. Since the
settings are chosen randomly we need to study the fluctuations of Tr(I(ρ|S)−1G).
In the next section we present extensive simulation results which essentially
show that one can significantly reduce the number of settings without affecting
the MSE.

4.3 Numerical Simulations

In Figure 4.1 we plot the values of the asymptotic MSE Tr(I(ρ|S)−1G)/n for
various ranks, choices of 4 ion states, and choices of measurement designs S
(sets of settings). For each rank r = 1, . . . ,5 we generated 10 states by using
the Cholesky decomposition ρ= T ∗T , cf. [18]. For each state, the MSE values
are calculated over a range of measurements with reduced settings, starting
from the ‘full’ measurement with 3N settings, as follows. For a given number
of reduced measurements k, we generated 10 independent sets S of randomly
chosen settings. For each pair (ρ,S) we evaluated the Fisher information
I(ρ|S) and the weight matrix G in the parametrisation described above. In
these simulations, the total number of copies of the state is kept constant as a
resource. Therefore, a smaller number of measurement settings k leads to a
larger number of repetitions m= n/k per setting. The simulations show that
asymptotic risk for low rank states demonstrates only a gradual increase even
over a significant reduction in the number of settings measured. For example,
for states of rank 3, one can reduce the number of settings from 81 to 20 with
a negligible increase in the MSE. Moreover, for a given k, the fluctuations
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Figure 4.2 The error of the (estimated) MSE of the Maximum Likelihood
estimate relative to the asymptotic Fisher MSE (see 4.10), for a 4 ion pure
state. The circles plot the RE for 20 random sets S chosen for each k number
of settings, and the line plots the average relative error. The total sample size
is n= 8100.

of the MSE over choices of states and settings are rather small, showing the
robustness of the procedure.

In the previous section we argued that the theoretical value (4.9) is close
to the actual error of an efficient estimator, when the number of samples is
reasonably large. To verify this we have computed the Maximum Likelihood
(ML) estimator and studied its performance in this reduced measurement
settings MIT setup. The ML estimator implemented is a modified form of the
iterative RρR method in [101] - for the estimates generated at each iteration
of the algorithm, only the r largest eigenvalues are retained. This modification
ensures that the ML estimator has knowledge about the rank of the density
matrix. The results of the comparison with the Fisher prediction (4.9) are
shown in Figure 4.2, and show a very good agreement between the two. For
a given random set S of k settings, the MSE of the MLE E∥ρ̂ML− ρ∥2F is
estimated by averaging the square error over 30 ML estimates. The relative



4.4 A Concentration Bound for the MSE 57

error ∣∣∣∣∣1− n ·E∥ρ̂ML−ρ∥22
Tr(I(ρ|S)−1G)

∣∣∣∣∣ (4.10)

is then plotted for each choice of S as a single circle. On average, the relative
error is of order of 5%. In conclusion, the simulations indicate that low rank
states can be estimated with a significantly smaller number of measurement
settings than the total of 3N currently used in experiments, with a negligible
loss of statistical accuracy.

4.4 A Concentration Bound for the MSE

Why is the MSE robust with respect to the reduction of the number of measured
settings? In this section we provide an intuitive explanation based on a
concentration bound for the asymptotic MSE, i.e. the random function S 7→
Tr(I(ρ|S)−1G). Analysing the observed MSE concentration for MIT with
Pauli measurements is difficult due to the special, discrete set of bases which
contribute to the average. Much like the problem of proving the RIP property in
compressed sensing [85, 45], it is easier to analyse a more random set-up, namely
one where the measurement bases making up the design S are drawn randomly
from the uniform measure over orthonormal bases (ONB). We therefore begin
by considering this general setup of random measurements and return to the
Pauli measurements later in the section.

Physically, this random setup could be implemented by first rotating the
state ρ by a random unitary U , after which each atom is measured in the
σz eigenbasis. We therefore let S = {s1, . . . ,sk} be the altered design with
randomly, uniformly distributed measurement bases. Since the settings in S
are independent, the Fisher information matrices I(ρ|s) are independent, and
for k large enough the average information per setting approaches the mean
information over all random settings

I(ρ|S) = 1
k

∑
s∈S

I(ρ|s)≈ Ī := Es [I(ρ|s)] . (4.11)

Since we are interested in the behaviour of the MSE for the randomly chosen
designs S, we look at the relative error

RE(ρ|S) := Tr(I(ρ|S)−1G)/Tr(Ī−1G). (4.12)



4.4 A Concentration Bound for the MSE 58

and would like to determine the number of settings k required for the MSE to
be concentrated close the optimal value of Tr(Ī−1G).
To investigate this MSE concentration for states of rank r in this setup, we focus
our attention on states with equal eigenvalues, i.e. ρ0 := Diag

(
1
r , . . . , 1

r ,0, . . . ,0
)
,

with respect to its eigenbasis; due to the unitary symmetry of the random
settings design, the eigenbasis can be chosen to be the standard basis. The
reason for choosing this particular spectrum is that such states represent the
‘least sparse’ state of rank r. Indeed, rank-r states which have some eigenvalues
close to zero can be approximated by states of lower ranks, and we expect
that they require even smaller number of measurement settings. The following
Theorem shows that in order to keep the relative error (4.12) close to 1 it
suffices to take a number of random settings k which scales as O(r log(2rd)) with
respect to the rank and Hilbert space dimension. Taking into account that one
setting provides d probabilities, the total number of expectations is of the order
O(rd log(2rd)) which roughly agrees with the number of Pauli expectations
required in compressed sensing. We will come back to this comparison in the
following section.

Theorem 2. Let S = {s1, . . . ,sk} be a design with randomly, uniformly dis-
tributed measurement bases. Let IS := I(ρ0|S) be the associated Fisher infor-
mation, and let I be the mean Fisher information over all possible bases, both
calculated at ρ0 (as defined above). For a sufficiently small ϵ≥ 0, the following
inequality holds

(1− ϵ)Tr
[
I

−1
G
]
≤ Tr

[
I−1

S G
]
≤ (1+ ϵ)Tr

[
I

−1
G
]

(4.13)

with probability 1− δ, provided that the number of measurements performed is
k = C(r+ 1)log(2D/δ), with D = 2rd− r2− 1 the dimension of the space of
rank-r states.

The proof of this theorem is detailed in the appendix, and uses a matrix
Chernoff bound [2], to bound the deviation of G−1/2ISG

−1/2 from the mean
G−1/2IG−1/2. This is then recast in terms of a bound on the MSE as in the
theorem above. The two bounds show that with probability 1− δ, the relative
error RE(ρ0|S) is in the interval [1− ϵ,1+ ϵ], so using design S induces at most
an ϵ increase of MSE. Similar results can be derived along the lines of the
proof for states with arbitrary spectrum, and we shall consider this in detail in
chapter 5.
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Figure 4.3 illustrates this concentration in two ways; by plotting the relative
error RE(ρ0|S) and by plotting the eigenvalues of G−1/2ISG

−1/2, for various
values of k. The concentration in the spectrum of the eigenvalues demonstrates
the rate at which IS approximates the mean Fisher information I. We see
that for pure states all eigenvalues concentrate around 1, this is because
G−1/2IG−1/2 is an identity matrix for pure states, while for ranks 2 and 3 this
matrix is no longer identity and has eigenvalues that are either 1 or r/(r+1).
We see in the plots for these ranks that the lower band in the eigenvalues
spectrum approaches the minimum eigenvalue of r/(r+1), while the remaining
eigenvalues concentrate around 1. The explicit form of the G−1/2IG−1/2 matrix
is detailed in the appendix.

The above theorem guarantees that for a 4 ion pure state, the MSE is
within 5% of the optimal, with a probability of failure δ = 0.1, provided that
we measure k ≈ 7100 settings. However, the bottom-right plot in Figure 4.3
shows that the MSE concentrates much earlier, well within k = 100 settings.
This indicates that studying the concentration of G−1/2ISG

−1/2 to bound the
MSE provides a highly pessimistic estimate for k. Note however, that although
the value k ≈ 7100 is much larger than the full set of measurements for a 4 ion
state in the MIT setup, the theorem demonstrates a significant reduction in
the number of settings needed when we consider larger states of N ≥ 9 ions.

In Figure 4.4, we plot the relative error RE(ρ0|S) for random pure states
of differing dimensions. Interestingly, we see that the error does not seem to
depend on the dimension of the state. Whereas from the above theorem, we
would expect a dependence because of the log(2D/δ) term that appears in
the concentration. An explanation for this has been suggested in [10], where
the authors conjecture that measuring only a few random bases correspond to
strictly complete POVMs for low rank quantum states. Meaning that states of a
given low rank can be recovered by measuring a small number of random bases,
independent of dimension. This special feature of the random measurements
suggests that a better scaling in the number of measurement settings is possible
in the concentration bound for this setup.

4.4.1 Pauli settings

We now return to the more physical set-up in which the settings are chosen from
the set {x,y,z}N of Pauli measurements. Figure 4.5 plots the error RE(ρ|S)
of the MSEs for the reduced settings, relative to the MSE of the average
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Figure 4.3 Plots of the eigenvalues of G−1/2ISG
−1/2 for k random settings. For

a given rank r, we chose a random 4 ion state ρ0 with r equal eigenvalues.
We observe a concentration of the eigenvalues as IS approximates the mean
information I (See Thm.2). The bottom right plot graphs the relative error
RE(ρ0|S) for the different ranks.

information for all 3N settings Ī = (3N )−1∑
s∈{x,y,z}N I(ρ|s). The numerical

simulations show that even for k = 20 settings, the average MSE is only 5%
higher than the MSE of the full settings experiment, while when the variance
is taken into account, most MSEs are less that 10% higher. We note that
in the simulations, the different settings making up the measurement design
S are chosen without replacement, while an application of the concentration
bound in the theorem would use a slightly altered setup in which the different
settings are chosen independently and with equal probabilities (drawing with
replacement). For a discussion on the relation between the two set-ups we refer
to [55].

The key step in establishing a concentration bound as in Theorem 2 is to
control the ratio

µmax
µmin

:= maxsλmax(G−1/2I(ρ0|s)G−1/2)
λmin(G−1/2ĪG−1/2)

(4.14)
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Figure 4.4 Relative error RE(ρ0|S) for the random settings, and pure states
of 3-6 qubits. The coloured thick lines plot the mean relative error over 10
different random states of a given dimension. The light coloured circles plot
the errors for a particular state and a given k number of random settings.

between the largest maximum eigenvalue of G−1/2I(ρ0|s)G−1/2 over all mea-
surements and the minimum eigenvalue of G−1/2ĪG−1/2. In the case of the
uniformly distributed settings, Ī can be computed explicitly by using analytic
expressions for moments of random unitaries [37], which gives µmin = r

r+1 for
r > 1, and µmin = 1 for pure states, while µmax can be upper bounded by using
the inequality between the quantum and classical Fisher informations [24], as
µmax ≤ 2r for r > 1 and µmax ≤ 4 for r= 1. Together these give a µmax

µmin
= 2(r+1)

which determines the number of measurement settings k in Theorem 2.
For the Pauli measurements set-up, the same upper bound holds for the

maximum eigenvalue, but at the moment we do not have a similar lower
bound for λmin(G−1/2ĪG−1/2), where Ī is the average Fisher information over
Pauli settings. However, there is strong numerical evidence that the smallest
eigenvalue of λmin(G−1/2ĪG−1/2) for random states remains well bounded away
from zero. Figure 4.6 plots the minimum eigenvalues for 100 such states of 4 to
8 ions, over three different ranks. The boxes in the plot mark the interquartile
range, with whiskers extending to extreme points which are no more than
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Figure 4.5 Relative Error RE(ρ|S) for the Pauli settings, for a randomly chosen
4 ion pure state. The thick line plots the mean relative error over 100 different
choices of k settings, with the light grey circles plotting the relative errors for
different choices of the settings.

1.5 times the interquartile range. We notice that the minimum eigenvalue
for each rank is well concentrated away from zero and for ranks r > 1 clearly
demonstrates an increase with the dimension of the space. While the full
dependence of µmin on r and d is unclear, the simulations strongly suggest that
for any fixed rank, µmin is larger than a fixed constant with high probability
for random states of rank r, of arbitrarily many ions. If this was true, it would
imply that random states of fixed rank r can be estimated efficiently with
O(logd) settings.

For now, as a step in the direction of proving and demonstrating the
concentration as in Theorem 2 for reduced settings, we will prove a weaker
result based on a rough lower bound for µmin. From Theorem 2 in [25] we have
that for full 3N settings, the MSE of an optimal estimator ρ̂ is upper bounded
as

E∥ρ̂−ρ∥2F ≤ C ′ rd

n
log (2d), (4.15)

with C ′ > 0 being an absolute constant. Asymptotically, the MSE is lower
bounded by 1/n ·Tr(I−1

G) which implies 1/µmin ≤ C ′rd log (2d). This gives us
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Figure 4.6 Box-plots of the minimum eigenvalues of G−1/2IG−1/2 for the Pauli
settings. For a given rank and ion number, we chose randomly 100 different
states ρ0 with r equal eigenvalues.

a rough lower bound on the minimum eigenvalue. Plugging this value into
the concentration bound of Theorem 2 gives us that the minimum number
of settings k scales as O(r2d log2 (2D)), which despite being far from optimal,
demonstrates a better scaling than the 3N of the ‘full settings’ setup.

4.5 Coarse vs Fine Grained Models

As mentioned in the introduction, a similar reduction in the number of ‘measure-
ments’ has been found in compressed sensing (CS) estimators [45, 54, 34, 33, 76],
which use O(rd logd) expectations of Pauli operators to recover the unknown
state. CS techniques provide computationally efficient estimators whose es-
timation errors scale optimally with the number of parameters and with the
errors in the estimation of the Pauli expectations. However, from the statistical
viewpoint the Pauli expectations are not the most efficient starting point in
estimation, as they are ‘coarse grained’ statistics of the ‘raw’, or ‘fine grained’
measurement data given by the counts N(o|s).
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Figure 4.7 The plot of Tr(I−1G) for the ‘coarse grained’ model for multiple
ranks, with 4 ions and 256 total measured Paulis b. The total number of copies
of the states is 8100. The experiment is repeated over 10 different states, and
10 random choices of Pauli measurements for each state.

A single measurement in the ‘coarse grained’ model is defined by a Pauli
observable σb := (σb1⊗ . . .⊗σbn) with bi ∈ {0,x,y,z}, where σ0 is the identity
matrix. To compute its expectation one needs to measure σb to obtain a
binary outcome {±1} and average over the results. The outcomes probabilities
are pρ(±1|b) = Tr(ρPb

±) where Pb
± are the two spectral projections of σb, and

the Fisher information of this model can be computed in much the same
way as that of the Pauli bases measurements. In Figure 4.7 the asymptotic
MSE Tr(I(ρ|B)−1G)/n is plotted for different sets of randomly chosen Pauli
observables B := {b1, . . . ,bk}. On comparison with Figure 4.1 we see that the
minimum number of measurements that need to be measured in the Pauli bases
model is much smaller. Additionally, the risk for a full set of measurements is
an order of magnitude larger in the ‘coarse grained’ model. This increase in
the asymptotic risk has also been pointed out in [61].

The discrepancy can be explained by noting that the measurement of σb is
a coarse graining of a finer, ONB measurement of a setting such that si = bi

whenever bi ≠ 0. Indeed, using the spectral decomposition of σb, we can



4.6 Conclusions 65

compute its expectation as

⟨σb⟩ρ = Tr(ρσb) =
∑
o

 ∏
i:bi ̸=0

oi

 pρ(o|s). (4.16)

By replacing the probabilities pρ(o|s) in the above formula by the empirical fre-
quencies N(o|s)/m we obtain the estimate of the Pauli expectations. However,
by constructing this statistic we loose a large amount of information contained
in the frequencies, which explains the increase in the MSE.

4.6 Conclusions

In this chapter we investigated the statistical performance of reduced settings
measurements in ion tomography. We did not focus on a particular estimation
method but rather on how the accuracy of efficient estimators (which achieve the
asymptotic scaling (4.1) of the MSE) depends on the state and the measurement
design. We found that for low rank states, the experimenter can measure a small
proportion of randomly selected settings without a significant increase in the
MSE. Furthermore we presented a possible line of argument for a mathematical
proof based on concentration inequality for the Fisher information. In the case
of measurements with respect to random bases we showed that certain states
of rank r can be estimated with O(r logd) settings with an ϵ increase in MSE
compared with designs with a large number of settings. It remains an open
question whether the same scaling of the size of the measurement design holds
for the Pauli measurements, but we presented strong numerical evidence that
for random states the Fisher information may satisfy the required spectral
properties.
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4.7 Appendix

4.8 Proof of Theorem 2

As briefly mentioned in the main text of the chapter, the proof of the theorem
utilises the following matrix Chernoff bound [2], where the random matrices
Xi are given by G−1/2I(ρ0|si)G−1/2, with si random bases.

Theorem 3. (Matrix Chernoff) Consider a finite sequence X1, . . . ,Xk of
independent, random, positive matrices with dimension D, such that λmax(X)≤
R. For EX =M ≥ µ1 and 0≤ ϵ≤ 1

2 ,

P

1
k

k∑
i=1

Xi ̸∈
[
(1− ϵ)M,(1+ ϵ)M

]≤ 2D · exp
(
−k · ϵ2µ

2R · log2

)
(4.17)

We note that G−1/2ISG
−1/2 is a sum of k independent, random, positive

matrices. In order to apply the above bound, we need to upper bound the
largest eigenvalue of G−1/2I(ρ0|s)G−1/2 over all measurements. We also need
to lower bound the smallest eigenvalue of the expected Fisher information
G−1/2I(ρ0)G−1/2. We will first derive these bounds and then derive the result
by applying the Chernoff bound.

As in the text, we work with the local parametrisation

θ =
(
θ(d),θ(r),θ(i)

)
=
(
ρ2,2, . . . ,ρr,r;Reρ1,2, . . . ,Reρr,d;Imρ1,2, . . . , Imρr,d

)
where ρ1,1 is constrained to enforce the trace-one normalisation. The Fisher
information therefore, has the following block structure

I(ρ) =



Idd(ρ) Idr(ρ) Idi(ρ)

Ird(ρ) Irr(ρ) Iri(ρ)

Iid(ρ) Iir(ρ) Iii(ρ)


(4.18)

with the superscripts identifying the parameters considered; diagonal, real
and imaginary. The weight matrix G also has the same block structure with
elements

Ga,b = Tr
[
∂ρθ

∂θa
· ∂ρθ

∂θb

]
(4.19)
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In the parametrisation described above, the weight matrix G has the fol-
lowing block diagonal form:

1. The diagonal-diagonal block:

(a) Gdd
a,b = 1+ δa,b

2. The real-real and imaginary-imaginary block:

(a) G
rr/ii
a,b = 2 · δa,b

with the other blocks being zero. We note that both the Fisher, and the weight
matrix are of dimension D := 2rd− r2−1.

Bound on the largest eigenvalue—We use the inequality I(ρ0|s) ≤ F

between the classical and quantum Fisher informations to bound the largest
eigenvalue ofG−1/2I(ρ0|s)G−1/2 over all measurements by the largest eigenvalue
of G−1/2F (ρ0)G−1/2. The derivation of the quantum Fisher matrix presented
here follows [72]. We calculate the quantum Fisher information in the local
parametrisation described above, and evaluate it at the diagonal state ρ0.

We begin by considering a state ρθ locally around some arbitrary rank-r
state ρ′, and write the spectral decomposition as:

ρθ =
r∑

i=1
pi|ψi⟩⟨ψi| (4.20)

The quantum Fisher information matrix is defined as:

Fa,b = Tr
[
ρθ(La

θ ◦Lb
θ)
]

= 1
2Tr

[
ρθ

(
La

θL
b
θ +Lb

θL
a
θ

)]
(4.21)

where the symmetric logarithmic derivatives are defined through the equation:

∂θaρθ = La
θ ◦ρθ = 1

2 (La
θρθ +ρθL

a
θ) (4.22)

We determine the elements of this matrix in the ONB formed by the eigenbasis
set {|ψi⟩}

⟨ψi|∂θaρθ|ψj⟩= 1
2⟨ψi|La

θρθ|ψj⟩+
1
2⟨ψi|ρθL

a
θ|ψj⟩

= 1
2(pj +pi)⟨ψi|La

θ|ψj⟩ (4.23)
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As pointed out in [72], La
θ (and Lb

θ) is in principle supported on the full space,
but its entries for i, j > r are arbitrary. However, the Fisher information does
not use values for which i, j > r. This can be seen by expanding (4.21) in the
following way

Fa,b = 1
2Tr

[∑
i

pi|ψi⟩⟨ψi|(La
θL

b
θ)+

∑
i

pi|ψi⟩⟨ψi|(Lb
θL

a
θ)
]

= 1
2

r∑
i

d∑
j

pi

(
La

θ;i,jL
b
θ;j,i +Lb

θ;i,jL
a
θ;j,i

)
(4.24)

Since the index i≤ r, (4.23) can be inverted inside the expansion of the Fisher
information as

La
θ;i,j = 2(∂θaρθ)i,j

pi +pj
(4.25)

The quantum Fisher matrix therefore becomes

Fa,b =
r∑
i

d∑
j

4pi

(pi +pj)2Re

[
(∂θaρθ)i,j(∂θb

ρθ)j,i

]
(4.26)

where we used the fact that ∂θa/b
ρθ is self-adjoint. Since ρθ is parameterised

by its matrix elements in the eigenbasis {|λi⟩} of the state ρ′, we can use this
to write the partial derivatives out explicitly. Using the notation that ra, ca

represents the row and column indices for the parameter θa, the quantum Fisher
matrix now becomes:

F d,d
a,b =

r∑
i

d∑
j

4pi

(pi +pj)2Re

⟨ψi|
(
|λra⟩⟨λra|− |λ1⟩⟨λ1|

)
|ψj⟩

⟨ψj |
(
|λrb
⟩⟨λrb

|− |λ1⟩⟨λ1|
)
|ψi⟩

 (4.27)

for the diagonal-diagonal block, and for the rest

Fa,b =
r∑
i

d∑
j

4pi

(pi +pj)2Re

⟨ψi|
(
|λra⟩⟨λca|+ |λca⟩⟨λra|

)
|ψj⟩

⟨ψj |
(
|λrb
⟩⟨λcb

|+ |λcb
⟩⟨λrb

|
)
|ψi⟩

 (4.28)
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We now evaluate these last two equations at θ = θ0, for our special state
that is diagonal with entries given by 1/r. At this state |ψi⟩ = |λi⟩. The
diagonal-diagonal block of the Fisher matrix has elements:

F d,d
a,b

∣∣∣
θ=θ0

= r (1+ δra,rb
) , (4.29)

while the real-real and imaginary-imaginary blocks are diagonal with elements

Fa,b

∣∣∣
θ=θ0

= 4
pra +pca

(δra,rb
· δca,cb

) (4.30)

It is easy to see that the real-diagonal, identity-diagonal blocks are all zero. The
real-imaginary blocks are zero since we consider only Re

[
(∂θaρθ)i,m(∂θb

ρθ)m,i

]
.

Therefore, the elements of the quantum Fisher matrix are:

1. For the Diagonal-Diagonal block with r > 1,

(a) F dd
a,a

∣∣∣
θ=θ0

= 2r when ra ≤ r

(b) F dd
a,b

∣∣∣
θ=θ0

= r when ra, rb ≤ r, and a ̸= b

2. For the Real-Real and Imaginary-Imaginary blocks:

(a) F
rr/ii
a,a

∣∣∣∣
θ=θ0

= 2r when ra < ca ≤ r

(b) F
rr/ii
a,a

∣∣∣∣
θ=θ0

= 4r when ra ≤ r,ca > r

On comparing this with the weight matrix G, we notice that both G and F

have the same block diagonal structure, with the off-diagonal blocks being zero.
So we can write

G−1/2FG−1/2 =Gdd−1/2
F ddGdd−1/2⊕

Grr−1/2F rrGrr−1/2⊕Gii−1/2
F iiGii−1/2

We notice that F dd = r ·Gdd, which gives us

G−1/2FG−1/2 = r1(r−1)
⊕ 1

2F
rr
⊕ 1

2F
ii (4.31)

The maximum eigenvalue of this matrix comes from the diagonal block matrices
F rr/ii/2, and is 2r for r > 1, and 4 for r = 1.
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Bound on the smallest eigenvalue— We are now interested in evaluating
the smallest eigenvalue of the average Fisher information G−1/2I(ρ0)G−1/2. As
in [25] we let

BU :=
{
|o;U⟩ := U |o⟩ : o = 1, . . . ,2N

}
(4.32)

denote the ONB basis obtained by rotating the standard basis by a random
unitary U. With this notation, we get that for randomly chosen basis

G−1/2I(ρ0)G−1/2 :=G−1/2 ·
∫
µ(dU)I(ρ0|BU ) ·G−1/2 (4.33)

where µ(dU) is the Haar measure over unitaries used for generating the random
basis. The integral in the above equation has been evaluated in [25], and
we do not reproduce the calculation here. However, we point out that the
integral in [25] has been evaluated for a slightly different parametrisation of
the state. Since we constrain the ρ1,1 element, the partial derivatives in our
parametrisation become

∂pρ(o|BU )
∂ρi,i

= |⟨o,U |i⟩|2−|⟨o,U |1⟩|2 (4.34)
∂pρ(o|BU )

∂Reρi,j
= 2Re(⟨i|o,U⟩⟨o,U |j⟩) (4.35)

∂pρ(o|BU )
∂Imρi,j

= 2Im(⟨i|o,U⟩⟨o,U |j⟩) (4.36)

Going through the calculation with this change gives us

1. The Diagonal-Diagonal block with r > 1:

(a) I
dd
a,a

∣∣∣∣
θ=θ0

= 2r
r+1 when ra ≤ r

(b) I
dd
a,b

∣∣∣∣
θ=θ0

= r
r+1 when ra, rb ≤ r, and a ̸= b

2. The Real-Real and Imaginary-Imaginary blocks are diagonal with:

(a) I
rr/ii
a,a

∣∣∣∣
θ=θ0

= 2r
r+1 when ra < ca ≤ r

(b) I
rr/ii
a,a

∣∣∣∣
θ=θ0

= 2 when ra ≤ r,ca > r

On comparing this with the weight matrix G, we once again notice that both G
and I(ρ0) have the same block diagonal structure, with the off-diagonal blocks
being zero. So we can write

G−1/2IG−1/2 =Gdd−1/2
I

dd
Gdd−1/2⊕

Grr−1/2I
rr
Grr−1/2⊕Gii−1/2

I
ii
Gii−1/2



4.8 Proof of Theorem 2 71

We notice that Idd = r
r+1 ·G

dd, which gives us

G−1/2IG−1/2 = r

r+11(r−1)
⊕ 1

2I
rr⊕ 1

2I
ii (4.37)

The minimum eigenvalue of this matrix is r/r+1 for r > 1 and 1 for pure states.

Putting it all together– We can now substitute these values into the matrix
Chernoff bound. While the value of the minimum eigenvalue differs for r > 1
and r = 1, the final bound remains the same because the upper bounds are
different in these cases. Therefore here we calculate the bound for the case
when r > 1. Writing PS =G−1/2ISG

−1/2 and P =G−1/2IG−1/2 for notational
simplicity, we have for r > 1

P
{
PS ̸∈

[
(1− ϵ)P ,(1+ ϵ)P

]}
≤ 2D · exp

(
−k ϵ2

4(r+1) · log2

)
:= δ (4.38)

Therefore, with probability 1− δ we have that

(1− ϵ)P ≤ PS ≤ (1+ ϵ)P (4.39)

This can be re-written in the form of inequalities of Mean Square Errors with
ϵ > 0 sufficiently small

(1− ϵ)Tr
(
P

−1)≤ Tr
[
P−1

S
]
≤ (1+ ϵ)Tr

(
P

−1) (4.40)

For a fixed value of ϵ and δ, we see that the minimum number of settings k
required for the above abound to hold with probability greater than 1− δ is

k = C · (r+1)log
(2D
δ

)
(4.41)

where C := 4(log2/ϵ2) and D := 2rd− r2−1.



Chapter 5

Statistical analysis of compressive low rank
tomography with random measurements

5.1 Introduction

In chapters 3 and 4 we have seen that the compressed sensing (CS) paradigm
is motivated by the fact that full tomography often becomes challenging for
large dimensional states. There is significant interest in addressing this chal-
lenge posed by dimensionality and as a result, extensive work has been done
in developing tomography methods for certain lower dimensional families of
physically relevant states. Including CS tomography of low rank states with
incomplete measurements, pertinent examples include model selection [61],
spectral thresholding [3, 25] and the estimation of matrix product states [39]
which is relevant for many-body systems and also for estimating dynamical
parameters of open systems [35, 60].

Similar to the work presented in chapter 4, several papers [81, 73] consider
the problem of estimating low rank states from random measurements. Inspired
by the PhaseLift problem, the papers [81, 32, 53] consider the case of estimating
low rank states from expectations of rank-one projections sampled randomly
from a Gaussian distribution, or a projective t-design, and demonstrate stable
compressive recovery with estimation errors of the order of the number of
unknown parameters. Compressive quantum process tomography has been
considered in this context for unitary 2-designs [77]. In [80] the analysis is
extended to the physically relevant case of random orthonormal basis mea-
surements, and it is shown that a rank-r state can be identified with a large
probability for only O(r log3 d) such random measurements. Related to this
question of low-rank state estimation, work in [10] conjectures that only a
few random bases correspond to strictly complete POVMs for low rank states,
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implying that states of a given low rank can be compressively recovered by
measuring a small number of random bases, independent of dimension.

In this chapter we build on the work in chapter 4, and consider the statistical
problem of estimating low-rank states in the set up of random basis measure-
ments. Instead of choosing a particular estimator, the idea is to investigate the
statistical efficiency of an arbitrary optimal estimator, and find whether rank-r
states can be estimated from only a few random bases measurements. For this,
we consider the behaviour of the Mean Square Error (MSE) with respect to
the Frobenius distance between the true state and the estimator ∥ρ̂−ρ∥2F in
the limit of large numbers of measurement samples. According to asymptotic
theory [118], in the regime of large number of repetitions the MSE of efficient
estimators (e.g. maximum likelihood) ρ̂ takes the following expression

E∥ρ̂−ρ∥2F = 1
n

Tr(I(ρ|S)−1GF )+o(n−1). (5.1)

Above, I(ρ|S) is the classical Fisher information associated with the chosen
measurement design S and a local parametrisation of rank-r states, n is the
total number of measured systems, and GF is the positive weight matrix
associated with the quadratic approximation of the Frobenius distance in the
local parameters.

In chapter 4 we showed that the asymptotic MSE (5.1) remains robust
even with only a few random basis measurements making up the design S.
This robustness was explained using an argument based on a concentration
inequality [2] for the Fisher information matrix. We also demonstrated that
certain ‘least sparse’ states of rank-r can be estimated by using only O(r logd)
settings with only a small increase in the MSE, relative to the setup in which
a large number of settings is probed. In this chapter the argument using the
concentration of the Fisher information is extended to hold for all rank-r states
(Theorem 4), incorporating the results in the previous chapter. However, we
discuss drawbacks of using a concentration in the Fisher information to derive
a corresponding concentration in the MSE. Specifically, for rank-r states that
are close to pure with small eigenvalues, we show that such a concentration of
the Fisher information does not hold. This difficulty is overcome by proving
an upper bound on the MSE that holds for all states independently of their
spectrum. We show that Tr(I(ρ|S)−1GF ) is bounded from above by roughly the
number of unknown parameters given that O(r logd) random bases constitute
the measurement design S. As an illustrative example, we consider a single
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qubit state and analyse the failure of the Fisher concentration for states that
are close to pure. We argue that despite a lack of concentration in the Fisher
information for such states, the MSE demonstrates the necessary concentration.

The lack of concentration of the Fisher information occurs as the elements of
the matrix corresponding to the small eigenvalues of the state diverge. However
for states that are known to be pure and have d−1 eigenvalues exactly zero, the
Fisher information matrix contains entries that correspond only to the ‘rotation’
parameters. Therefore it concentrates following Theorem 4, and Theorem 2 in
chapter 4 given that O(logd) random basis are measured. Related work in a
different context [84] shows that (local) informationally complete measurements
for pure states require the number of outcomes to scale linearly with the
dimension d, specifically 2d−1. In our measurement design, the total number
of outcomes is O(d logd) for pure states.

For the single qubit case, we also investigate the problem of ‘compressive’
state estimation using the quantum infidelity 1−F (ρ̂,ρ) = 1−Tr

(√√
ρρ̂
√
ρ
)2

as the error metric. For this we consider the asymptotic mean infidelity (MINF),

E[1−F (ρ̂,ρ)] = 1
n

Tr(I(ρ|S)−1GINF ), (5.2)

with the Fisher information as defined in (5.1), and GINF being the weight
matrix corresponding to the quadratic approximation of the infidelity. Unlike
the Frobenius distance, the quantum infidelity is very sensitive to the misesti-
mation of small eigenvalues. In particular, for states that are close to pure with
small eigenvalues, the local expansion of the infidelity in the asymptotic regime
is linear in the estimation error of these eigenvalues [89]. This means that the
MINF is no longer given by quadratic expression (5.2) for such states. We show
that for states with eigenvalues well away from zero, a concentration in the
MINF given by (5.2) can be demonstrated using a concentration of the Fisher
information matrix, while for nearly pure states and random measurements
both the Fisher information and the MINF demonstrate a lack of concentration.
For such states the MINF scales as O(1/

√
n), and additionally there is no finite

number of settings such that the state can be estimated ‘compressively’.
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5.2 Quantum tomography with random basis measure-
ments

In this chapter we consider the problem of estimating an unknown quantum
state represented by a d× d density matrix ρ (complex, positive trace-one
matrix), where d is the dimension of the associated Hilbert space Hd. The
unknown state is reconstructed from the outcomes of projective measurements
on identical copies of the state. The measurement settings are chosen by
randomly drawing an orthonormal basis (ONB) from the uniform measure,
or equivalently by rotating a fixed (standard) ONB with a random unitary U
drawn from the Haar measure over the unitaries onHd. We denote measurement
settings by s and the corresponding ONBs by {|eo

s ⟩} where o ∈ {1, . . . ,d} is
the label of a measurement outcome. Its probability is pρ(o|s) := Tr(ρP s

o),
where P s

o = |eo
s ⟩⟨eo

s | is the one-dimensional projection corresponding to the
outcome o, in the measurement setting s. Because of the cyclicity of the trace,
this measurement design is mathematically equivalent to fixing a particular
measurement basis and rotating the state ρ with a known random unitary
corresponding to the measurement design.

This design is motivated by the multiple ion tomography (MIT) set up of
ion-trap experiments [62] considered in the previous few chapters. The aim of
MIT is to determine the unknown density matrix ρ ∈Hd of the joint state of
a system of N ions, where d= 2N is the dimension of the associated Hilbert
space. A random measurement setting s in the MIT setup can be thought of
as a rotation of the fixed σ⊗N

z basis by a random unitary drawn from the Haar
measure over the whole Hilbert space H2N .

The measurement procedure and statistical model are summarised below,
following the notation in the previous chapter. For each given setting, the
measurement is repeated on m copies of the state. This is repeated for all k
settings, and the total number of copies of the state utilised as a resource is
n=m×k. This procedure results in information about the number of times a
particular outcome was observed for a given setting N(o|s). This information
can be thought of as a d×k dataset of counts whose columns are independent.
In this chapter we investigate the statistical efficiency of estimating low rank
states from such measurement outcomes. We work in the asymptotic regime in
which the number of repetitions m in each setting is large, and characterise
the estimation errors in terms of the classical Fisher information matrix as
explained below.
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We first introduce a parametrisation of the state ρ, and assume that the
state has rank r ≤ d, and therefore belongs to the space of rank r states
Sr ⊂M(Cd). In the asymptotic scenario the estimation error is characterised
by a local statistical model. Therefore, we consider a local parametrisation
θ→ ρθ of the state ρ in the space Sr. In this space, any rank-r state ρ′ in the
local neighbourhood of ρ can be obtained by a perturbation of the eigenvalues
of ρ, along with a small rotation of the eigenbasis. In the first order this
transformation leaves the (d−r)× (d−r) lower-right corner unchanged, so that
in the eigenbasis of the state ρ we have

ρ′ =


Diag(λ1, . . . ,λr) 0

0 0

+


∆diag ∆off

∆†
off O(∥∆∥2)

 . (5.3)

We therefore choose to parametrise such a state ρ′ = ρ′
θ with

θ :=
(
θ(d);θ(r);θ(i)

)
(5.4)

= (ρ′
2,2, . . . ,ρ

′
r,r ;Reρ′

1,2, . . . ,Reρ′
r,d; Imρ′

1,2, . . . , Imρ′
r,d) ∈ R2rd−r2−1

where, the first diagonal matrix element does not appear in the parametrisation
as it is fixed by the trace normalisation of density matrices. We can now
describe the statistical model in this parametrisation, and define the classical
Fisher information matrix associated with a given setting s as

I(ρ|s)a,b :=
∑

o:pρ(o|s)>0

1
pρ(o|s)

∂pρ(o|s)
∂θa

· ∂pρ(o|s)
∂θb

, (5.5)

where θa,b are labelled elements of the parameter vector θ. Following the
measurement procedure described above, we define the set of k measurement
settings as S. The Fisher information matrix associated with a single mea-
surement from each setting s ∈ S is given by the sum of the individual Fisher
matrices above. The average Fisher information for the measurement design
S is denoted as I(ρ|S) = 1

k

∑
s∈S I(ρ|s). The individual matrices are computed

using definition (5.5) together with parametrisation (5.4).
The measurement in each setting is repeated m times on identical copies

of the state, and the outcomes are i.i.d. When this number m is sufficiently
large, efficient estimators of θ (and hence of ρ) from these outcomes have an
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asymptotically Gaussian distribution [118]

√
m(θ̂−θ)≈N (0, I(ρ|S)−1) (5.6)

where the covariance matrix I(ρ|S)−1 is the Fisher information associated
with a single measurement sample of the set S. In the following section, this
asymptotic behaviour of the estimate θ̂ is combined with local expansions of
the Frobenius distance in order to characterise the MSE in terms of the classical
Fisher information matrix. In section 5.4.1 the asymptotic mean infidelity
(MINF) is investigated using similar techniques.

5.3 Bounds for the MSE

We now consider the Frobenius distance, and characterise the efficiency of any
efficient estimator (such as maximum likelihood) in its terms. This distance
has a locally quadratic expansion around the state ρ, given by

∥ρθ−ρθ+δθ∥2F = (δθ)TGF (δθ)+o(∥δθ∥2), (5.7)

where GF is a constant weight matrix that reproduces the Frobenius norm. The
explicit form of this weight matrix can be found in the appendix. From this and
the asymptotic behaviour of efficient estimators, we see that for (reasonably)
large m, the mean square error scales as

MSE := E(∥ρ̂−ρ∥2F )≈ 1
n

Tr(I(ρ|S)−1GF ). (5.8)

The expression of the right side of the above equation is a measure of the
sensitivity of the chosen set of settings S at ρ. We therefore consider the
behaviour of the MSE in terms of this trace expression, and study the effect of
the measurement design S and the number of settings k on the error. We first
present a preliminary concentration bound for this quantity Tr(I(ρ|S)−1GF ),
which extends the results in chapter 4.

The bound determines the number of settings k required for the MSE
Tr(I(ρ|S)−1GF ) to be concentrated close its optimal value. This result is
derived from a concentration of the Fisher information matrix around the mean
Fisher information, where the main ingredient is a matrix Chernoff bound
for sums of bounded random Hermitian matrices. Since the settings in S are
independent, the Fisher information matrices I(ρ|s) are independent and this



5.3 Bounds for the MSE 78

bound is applicable. The Chernoff bound determines how quickly the average
information per setting 1

k

∑
k∈S I(ρ|s) approaches the mean information I over

all random settings. In terms of the MSE, this translates to determining the
number of settings k required for the MSE Tr(I(ρ|S)−1GF ) to be concentrated
close the optimal value of Tr(Ī(ρ)−1GF ). We consider states with arbitrary
spectrums ρ := Diag(λ1, . . . ,λr, . . . ,0), diagonal with respect to its eigenbasis.
Due to the unitary symmetry of the random settings design, the eigenbasis can
be chosen to be the standard basis.

Theorem 4. Let S = {s1, . . . ,sk} be a design with randomly, uniformly dis-
tributed measurement bases. Let IS := I(ρ|S) be the associated Fisher infor-
mation, and let I be the mean Fisher information over all possible bases, both
calculated at the true state ρ. For a sufficiently small ϵ ≥ 0, the following
inequality holds

(1− ϵ)Tr
[
I

−1
GF

]
≤ Tr

[
I−1

S GF

]
≤ (1+ ϵ)Tr

[
I

−1
GF

]
with probability 1− δ, provided that the number of measurements performed is
k = C1

λmin(ρ)
(r+1)

r log(2D
δ ), with D = 2rd− r2−1 the dimension of the space of

rank-r states, and C1 = 4(log2/ϵ2).

The proof of this theorem and further details can be found in the appendix.
As mentioned earlier, the main ingredient is a matrix Chernoff bound [2],
which is used to bound the deviation of G−1/2

F I(ρ|S)G−1/2
F from the mean

G
−1/2
F Ī(ρ)G−1/2

F . The number of uniformly random settings k required in the
theorem above depends on the following ratio

µmax
µmin

:=
maxsλmax

(
G

−1/2
F I(ρ|s)G−1/2

F

)
λmin

(
G

−1/2
F Ī(ρ)G−1/2

F

) (5.9)

between the largest maximum eigenvalue of G−1/2
F I(ρ|s)G−1/2

F over all possible
measurements and the minimum eigenvalue of G−1/2

F Ī(ρ)G−1/2
F . Details of the

explicit values of this ratio is left to the appendix. The numerator µmax is
upper bounded by using the inequality between the quantum and classical
Fisher informations [24], as µmax ≤ 2/λmin(ρ) for r > 1 and µmax ≤ 2 for r = 1,
while the minimum eigenvalue of G−1/2

F Ī(ρ)G−1/2
F is lower bounded using the

following lemma.
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Lemma 1. For any rank-r state ρ with an arbitrary spectrum, and the rank-r
state ρ0 which has equal non-zero eigenvalues 1/r and the same eigenvectors
as ρ, the following inequality holds between their average Fisher information
matrices, evaluated over all possible random measurement settings.

Ī(ρ0)≤ Ī(ρ) (5.10)

The proof is left to the appendix. The matrix Ī(ρ0) for the equal eigenvalue
state has been computed explicitly by using analytic expressions for moments
of random unitaries [37], which gives µmin ≥ r

r+1 for r > 1, and µmin ≥ 1 for
pure states. Together these give µmax

µmin
≤ 2 (r+1)

r
1

λmin(ρ) which determines the
number of measurement settings in the theorem above. When the state ρ is
the equal eigenvalue state ρ0, we get λmin(ρ0) = 1/r and we recover the rate
presented in the previous chapter.

We noted in chapter 4 that deriving a concentration in the MSE via a
concentration of Fisher average I(ρ|S) provides a pessimistic estimate of the
number of settings needed. Simulations in chapter 4 demonstrated that the
MSE concentrates for a much smaller number of settings k than predicted. In
the theorem presented above, we note that the dependence of the number of
settings on the minimum eigenvalue of ρ suggests a lack of concentration as
λmin(ρ) is made arbitrarily small. The number of required settings k→∞ in
the limit that λmin(ρ)→ 0. This is because the maximum eigenvalue of the
Fisher information I(ρ|s) over all settings s becomes arbitrarily large when
the rank-r state ρ is arbitrarily close to being pure. However, as we shall
demonstrate, this does not reflect the behaviour of the MSE concentration.
Instead of deriving a concentration about Ī(ρ) as in the above theorem, we
derive a useful upper bound for the MSE that is independent of the spectrum
of the state.

Theorem 5. Let S = {s1, . . . ,sk} be a design with randomly, uniformly dis-
tributed measurement bases. Let IS := I(ρ|S) be the associated Fisher infor-
mation evaluated at ρ. For a sufficiently small ϵ≥ 0, the following inequality
holds

Tr[I(ρ|S)−1GF ] ≤ 2(1+ ϵ)r+1
r

D

with probability 1− δ, provided that the number of measurements performed is
k = C1(r+1)log(2D/δ), with D = 2rd− r2−1 the dimension of the space of
rank-r states, and C1 = 4(log2/ϵ2).
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The upper bound is roughly twice the number of unknown parameters, and
although not optimal, it demonstrates that the MSE concentrates below a
meaningful threshold given a fixed O(r logD) scaling in the number of settings.
The proof of this theorem follows now. A key element in the proof is to overcome
the potential unboundedness of the maximum eigenvalue of I(ρ|s). This is
done by bounding I(ρ|s) from below over all possible settings s by matrices
whose spectrums are well behaved. This in turn gives us an upper bound for
the inverse of the sum I(ρ|S)−1.

To this end, we define a new state ρ̃ such that over all possible settings s,
we have the following inequality in the Fisher matrices

I(ρ|s)≥ 1
2I(ρ̃|s). (5.11)

The state ρ̃ is defined to be ρ̃ := (ρ+ ρ0)/2, where ρ0 is the rank-r state
with equal 1/r eigenvalues, and the same eigenvectors as ρ. It is easy to see
that ρ̃ has eigenvalues bounded between (1 + 1/r)/2 and 1/2r, and has the
same eigenvectors as ρ by construction. The above inequality then follows
from the fact that ρ≤ 2ρ̃, and from the definition of the Fisher information
matrix (5.5). For any given measurement design S = {s1, . . .sk}, this inequality
in the Fisher matrices implies that I(ρ|S)≥ I(ρ̃|S)/2. Since the matrix I(ρ̃|s)
has eigenvalues that are well behaved over all possible settings s, we can use
Theorem 4 to meaningfully bound the deviation G

−1/2
F I(ρ̃|S)G−1/2

F from its
mean. In fact, we get that for a sufficiently small ϵ≥ 0, the following inequality
holds

(1− ϵ)Tr
[
Ī(ρ̃)−1GF

]
≤ Tr

[
I(ρ̃|S)−1GF

]
≤ (1+ ϵ)Tr

[
Ī(ρ̃)−1GF

]
(5.12)

with probability 1−δ, provided that the number of settings k = C1(r +1)log(2D/δ).
The upper bound in the equation above, combined with the inequality I(ρ|S)≥
I(ρ̃|S)/2 gives the stated upper bound

Tr[I(ρ|S)−1GF ] ≤ 2(1+ ϵ)Tr[Ī(ρ̃)−1GF ] ≤ 2(1+ ϵ)r+1
r

D. (5.13)

Theorem 5 derives a uniform upper bound for all rank-r states irrespective
of the eigenvalue spectrum. This demonstrates that sensible bounds exist in
the limit of λmin(ρ)→ 0 for a finite number of measurement settings k. It
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Figure 5.1 Plots of the eigenvalues of G−1/2
F I(ρ|S)G−1/2

F for various k random
settings. We chose 40 random single qubit states for each of the four values of
λ2. The red line indicates the eigenvalues of I(ρ)/2, with the green marking
the (1± ϵ)I/2 deviations (ϵ= 0.1). We observe that as the state becomes purer,
the number of settings needed for concentration increases, and in the limit
λ2→ 0 there is a lack of concentration of the largest eigenvalue.

is clear that the divergence of the maximum eigenvalue maxsλmax (I(ρ|s)) as
λmin(ρ)→ 0 does not cause a similar divergence in the MSE. Therefore Theorem
4 does not sensibly define a rate for the required number of measured settings
k in the limit λmin(ρ)→ 0.

Although Theorem 5 derives a uniform upper bound for the MSE, it does
not demonstrate a concentration in the MSE. However, for the simplified model
for a rank-2 qubit state, we show that a concentration in the MSE does in fact
hold in the limit λmin(ρ)→ 0.
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5.4 The Single Qubit Model

In this section we work with the simple model of a rank-2 qubit state to
show that a concentration in the MSE about its optimal holds in the limit
λmin(ρ)→ 0 without requiring the sum I(ρ|S) to concentrate about I.

Lemma 2. Let ρ be a single qubit rank−2 state, and let S = {s1, . . . ,sk} be
a uniformly random measurement design. Let IS := I(ρ|S) be the associated
Fisher information, and let Ī(ρ) be the mean Fisher information over all possible
measurement bases. For any ϵ > 0, there exists a finite k such that the following
inequality holds for all ρ with high probability

Tr[I(ρ|S)−1GF ]≤ (1+ ϵ)Tr[Ī(ρ)−1GF ]. (5.14)

In order to investigate the behaviour of the MSE concentration as the
spectrum is varied, we consider the generic state ρ := λ1|0⟩⟨0|+λ2|1⟩⟨1| diagonal
in its eigenbasis. We consider the same local parametrisation as in the previous
sections and denote θ := (λ2,Reρ1,2, Imρ1,2). The measurement design consists
of random, uniformly distributed measurement bases, and without loss of
generality we set the projection vector corresponding to the +1 outcome for a
given setting s as:

|e+1
s ⟩ := cos ϕ2 |0⟩+ eiω sin ϕ2 |1⟩ 0≤ ϕ≤ π , 0≤ ω ≤ 2π (5.15)

The orthogonal vector corresponds to the −1 outcome. Therefore, the probabil-
ities pρ(o|s) corresponding to the two outcomes are pρ(+1|s) = (1−λ2)cos2 ϕ

2 +
λ2 sin2 ϕ

2 and pρ(−1|s) = (1−λ2)sin2 ϕ
2 +λ2 cos2 ϕ

2 . From equation (5.5), we
evaluate the elements of the Fisher information matrix for a given random
measurement setting s.

I(ρ|s) =


Idd(ρ|s) Ird(ρ|s) Iid(ρ|s)
Ird(ρ|s) Irr(ρ|s) Iri(ρ|s)
Iid(ρ|s) Iri(ρ|s) Iii(ρ|s)

 (5.16)

= 2
1− cos2(ϕ)(1−2λ2)2

 2cos2(ϕ) −cos(ω)sin(2ϕ) sin(ω)sin(2ϕ)
−cos(ω)sin(2ϕ) 2cos2(ω)sin2(ϕ) −sin(2ω)sin2(ϕ)
sin(ω)sin(2ϕ) −sin(2ω)sin2(ϕ) 2sin2(ω)sin2(ϕ)


As before S is the set of k randomly chosen settings s, and as the settings in S
are independent, the Fisher information matrices I(ρ|s) are independent.
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Figure 5.2 Plots of the MSE Tr[I(ρ|S)−1GF ] for various k random settings. We
chose 40 random single qubit states for each of the four values of λ2. The red
line indicates the theoretical optimal MSE Tr[Ī−1GF ], with the green marking
the (1± ϵ)Tr[Ī−1GF ] deviations (ϵ= 0.1). It is easier to observe concentration
in the MSE, despite a lack of concentration of I(ρ|S) (see Figure 5.1). Although
the number of settings needed for concentration within a prescribed relative
error increases with a decrease in λ2, there is a limiting value of k as λ2→ 0
(see text).

The concentration of the quantity I(ρ|S) := 1
k

∑
s∈S I(ρ|s) around the mean

Fisher matrix I(ρ) is given by Theorem 4. We recall that the number of settings
k required to bound the deviation from its mean Ī(ρ) depends on the ratio of
the eigenvalues

µmax
µmin

:=
maxsλmax

(
G

−1/2
F I(ρ|s)G−1/2

F

)
λmin

(
G

−1/2
F I(ρ)G−1/2

F

) . (5.17)

For the simple qubit model these can be explicitly evaluated. For settings with
ϕ= 0, the maximum eigenvalue is 1

2λ2(1−λ2) . This implies that µmax ≥ 1
4λ2(1−λ2) .

This value is a contribution from the Idd element of the Fisher matrix, and
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Fisher Element Mean Range
Idd 2ln [2(1−λ2)]−2ln [2λ2]

(1−2λ2)3 −
4

(1−2λ2)2

[
0,

1
λ2(1−λ2)

]

Ird, Iid 0
[

−2√
λ2(1−λ2)

,
2√

λ2(1−λ2)

]
Iri 0 [−2,2]

Irr, Iii ln [2(1−λ2)]− ln [2λ2]
(1−2λ2) − I

dd

2 [0,4]

Table 5.1 The mean and range of the elements of the Fisher matrix I(ρ|s) as
functions of λ2. Note that the expressions for the means in the table above are
valid for all λ2 < 0.5. When λ2 = 0.5, then all diagonal elements Īrr/dd/ii have
the same value of 4/3.

tends to infinity as λ2→ 0. The minimum eigenvalue µmin is a contribution
from the Īrr and the Īii term, and tends to a limiting value of 1 when λ2→ 0.
The explicit expressions can be found in Table 5.1. Taken together this implies
that the ratio becomes unbounded as λ2→ 0. This is precisely the difficulty
characterised in the previous section, and is illustrated in Figure 5.1, where we
plot the eigenvalues of the sum G

−1/2
F I(ρ|S)G−1/2

F for various values of λ2 and
choices of measurement designs S.

However we are not interested in the concentration of the Fisher matrix
itself, but rather the quantity Tr[I(ρ|S)−1GF ], and in Figure 5.2 it is seen that
the MSE exhibits clear concentration about the optimal. Although the number
of settings needed for the MSE to be within (1± ϵ) of the optimal is seen to
increase for smaller values of λ2, we shall show that there exists a limiting
value of k as λ2→ 0. To demonstrate this, we consider the concentration of the
individual Fisher elements, and directly bound the deviation of Tr[I(ρ|S)−1GF ]
from its optimal.

It is clear from Table 5.1 that the Fisher matrix elements Irr, Iii, Iri have
bounded means and spread even in the limit λ2→ 0. Their sums can therefore
be shown to concentrate around their means using one of several concentration
inequalities. For example, we apply Hoeffding’s inequality below.

Fact 1. Let X1, . . . ,Xk be independent random variables such that each Xi is
bounded as a≤Xi ≤ b, and let µ := E[X]. Let Sk := 1

k

∑k
i Xi, and C := b−a,

then for any t≥ 0 and τ > 0 the following inequalities hold,

1. Hoeffding’s inequality : P(|Sk−µ|)≥ t)≤ 2e−2kt2/C2
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2. Markov’s Inequality : P(|Sk| ≥ τ)≤ E|X|
τ

3. Chebyshev’s Inequality : P(|Sk−µ| ≥ τ)≤ Var(X)
τ2

From Table 5.1 we see that C = 4 for the Irr, Iii, Iri matrix elements. Thus
we derive that for any t≥ 0, their empirical means are within ±t of the true value
with probability (1−δ), provided that the number of settings k≥ (8/t2) ln(2/δ).
Therefore the concentration for these elements is well behaved in the limit
λ2→ 0. While the same inequality can be applied to Ird, Iid matrix elements
when λ2 is away from zero, it fails in the limit λ2→ 0 because their ranges
become infinite. However, we make a ‘weak law of large numbers’ argument to
show that even in this limit, there exists a finite but ‘sufficiently large’ k, such
that Ird(ρ|S) and Iid(ρ|S) concentrate around their mean.

The key point is that the random variables Ird, Iid remain absolutely inte-
grable in limit λ2→ 0. This is combined with a truncation trick, to show that
although the range of these variables in unbounded in the limit, for ‘sufficiently
large’ k their empirical means converge in probability to their expected value.
We follow the argument presented in [107] to demonstrate this. The idea of
the truncation method is to split the random variable Ird as

Ird := Ird
≤T + Ird

>T (5.18)
= Ird

1(|Ird|≤ T )+ Ird
1(|Ird|> T ),

with T being a ‘truncation parameter’ that is chosen appropriately. We shall
not be interested in the actual value of T , but endeavour only to show that
such a method demonstrates the existence of a finite k for which Ird converges
in probability to zero. We similarly split the sum

Ird(ρ|S) = 1
k

k∑
i=1

[
Ird

≤T (ρ|si)+ Ird
>T (ρ|si)

]
=: Ird

≤T (ρ|S)+ Ird
>T (ρ|S) (5.19)

We now bound these two sums using different inequalities. Since the random
variable is absolutely integrable even in the limit λ2→ 0, we can always choose
the truncation parameter T such that E|Ird

>T | is made small, say some δ2 > 0,
so that from Markov’s inequality (Fact 1) we get

P
(∣∣∣Ird

>T (ρ|S)
∣∣∣≥ τ)≤ δ2

τ
. (5.20)
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The variable Ird
≤T has bounded spread by construction, and therefore has

bounded variance. This allows us to use Chebyshev’s inequality (Fact 1), from
which we see that

P
(∣∣∣Ird

≤T (ρ|S)
∣∣∣≥ τ)≤ Var(Ird

≤T )
kτ2 , (5.21)

where we use the fact that E(Ird
≤T ) = 0, since the distribution is symmetric

about zero. Clearly Var(Ird
≤T ) is bounded, and there exists a finite k such that

(5.20) and (5.21) together imply

P
(
|Ird(ρ|S)| ≥ τ

)
≤ δ2
τ

+ 1
τ2 . (5.22)

The term δ2 can be made arbitrarily small by choosing T appropriately, which
demonstrates that the sum converges in probability to zero for some finite, but
‘sufficiently large’ k. Although the above argument was demonstrated with
Ird(ρ|S), the same holds for Iid(ρ|S). This leaves the term Idd(ρ|S), which
due to the non-integrability, infinite mean and range of Idd in the limit λ2→ 0,
does not concentrate around any finite value. The term Idd contributes the
maximum eigenvalue of the Fisher matrix over all settings s, and as mentioned
earlier its divergence in the limit λ2→ 0 is why a concentration inequality of
the form of Theorem 4 does not hold. Collecting the individual bounds for the
other matrix elements, we have that for any value of λ2 there exists a finite k
for which, with large probability, the matrix sum I(ρ|S) has elements


∑k

i=1 I
dd
i /k [−τ,+τ ] [−τ,+τ ]

[−τ,+τ ] [µ− t,µ+ t] [−t,+t]
[−τ,+τ ] [−t,+t] [µ− t,µ+ t]

 , (5.23)

where µ := E(Irr/ii). We can now explicitly evaluate Tr[I(ρ|S)−1GF ], making
the simplifying assumption that k is large enough to ignore terms quadratic in
the off-diagonal elements, i.e, in τ and t. Going through the calculation, we
get that provided ∑k

i=1 I
dd
i /k > 1,

Tr[I(ρ|S)−1GF ]≤ 2k∑k
i=1 I

dd
i

+ 4
µ− t

. (5.24)

In order to show that the MSE is close to optimal as in Lemma 2, we
require that the term on the right in the above equation is smaller than
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(1+ ϵ)Tr[Ī(ρ)−1GF ]. That is, for some ϵ > 0,

k∑k
i=1 I

dd
i

+ 2
µ− t

≤ (1+ ϵ)
[

1
I

dd
+ 2
µ

]
. (5.25)

When λ2 is sufficiently large, the random variable Idd is bounded and
therefore the sum ∑k

i=1 I
dd
i /k concentrates about its mean. In the limit λ2→ 0

however, 1/Idd→ 0, which implies that the sum ∑k
i=1 I

dd
i /k does not need to

concentrate about its (infinite) mean, but only needs to be larger than a value
dependent on ϵ and t. In the limit λ2→ 0, the Fisher element Idd has a limiting
distribution which can be explicitly evaluated. Setting λ2 = 0 in (5.16) we have
that Idd = 4cot2ϕ. Inverting this we get ϕ = cot−1(

√
Idd(ϕ)/2), and as the

projection vectors are drawn uniformly over the unit sphere, ϕ is distributed as
fΦ(ϕ) dϕ= sinϕ dϕ. Performing a change of variables then gives the limiting
distribution fI(Idd) dIdd = 2√

Idd(Idd+4)3/2dI
dd. From this distribution and the

truncation method it is easy to show that for any value C, there exists a finite
number of settings k such that ∑Idd/k > C. This implies that for a given
ϵ > 0, and for all values of λ2 ∈ (0,0.5] there always exists a finite number of
settings k such that the required concentration holds.

5.4.1 Estimation Error in Terms of Quantum Infidelity

In this section we consider the problem of ’compressive’ state estimation in
terms of a different metric, the quantum infidelity

1−F (ρ̂,ρ) = 1−Tr
(√√

ρρ̂
√
ρ
)2
. (5.26)

As briefly hinted at in the introduction, a local expansion of this metric is
not quadratic uniformly over all states. In particular for states that are well in
the interior of the state space the expansion is locally quadratic, while for states
with eigenvalues that are close to zero, the infidelity becomes linear [89]. This
linear expansion highlights the sensitivity of the infidelity to misestimation of
small eigenvalues, and we show that in our setup with uniformly random basis
measurements, ‘compressive’ estimation for all states in the sense of Lemma
2 does not hold for this metric. To demonstrate this we continue considering
the single qubit model from the previous section. We derive a theorem for the
concentration of the mean infidelity (MINF) for states well within the Bloch
sphere, and then demonstrate a lack of concentration for nearly pure states.
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As before, we consider the state ρ= Diag(1−λ2,λ2) diagonal in its eigenbasis.
For qubits, the infidelity can be expressed as [16]

1−F (ρ̂,ρ) = 1−Tr(ρ̂ρ)−2
√

detρ̂ ·detρ. (5.27)

A Taylor expansion of the infidelity about ρ demonstrates that for states within
the Bloch sphere (i.e. λ2 is well away from zero), the infidelity is locally
quadratic in the (local) parameters

1−F (ρθ,ρθ+δθ) = (δθ)TGINF (δθ)+O(∥δθ∥3), (5.28)

where GINF = Diag(1/2λ2(1−λ2),2,2) is the weight matrix reproducing the
infidelity. In general for states of arbitrary dimension that have eigenvalues
away from zero, the local expansion remains quadratic [89], and a concentration
of the MINF is readily established using the techniques in the previous sections.
Here we formulate this concentration for the single qubit state considered.
Combining the above local expansion with the asymptotic normality of efficient
estimators (5.6), the MINF is given by an expression similar to (5.8)

MINF := E(1−F (ρ̂,ρ))≈ 1
n

Tr(I(ρ|S)−1GINF ). (5.29)

A concentration of this error term can be demonstrated using the same tools
used to establish Theorem 4. Concretely, we derive the following theorem.

Lemma 3. Let S = {s1, . . . ,sk} be a design with randomly, uniformly distributed
measurement bases. Let IS := I(ρ|S) be the associated Fisher information, and
let I be the mean Fisher information over all possible bases, both calculated at
the single qubit state ρ. For a sufficiently small ϵ≥ 0, the following inequality
holds

(1− ϵ)Tr
[
I

−1
GINF

]
≤ Tr

[
I−1

S GINF

]
≤ (1+ ϵ)Tr

[
I

−1
GINF

]
with probability 1− δ, provided that the number of measurements performed is
k = C2

λ2(1−λ2) log(2D
δ ), with D = 3 the dimension of the space of rank-2 qubit

states, and C2 being a constant depending on ϵ that can be arbitrarily set.

Due to the dependence of the number of settings k on the minimum eigenvalue
of the true state, the above lemma sensibly demonstrates concentration only
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Figure 5.3 Plots of the MINF and MSE of the maximum likelihood estimate
of a randomly chosen single qubit pure state and random basis measurements.
The total number of samples of the state is n= k×m, where k is the number
of settings measured and m = 1000 is the number of repetitions per setting.
The number of random basis measured k is varied between 10 and 300. The
expected error is approximated over 300 different choices of k randomly chosen
settings. The MSE demonstrates a O(1/n) scaling, while for the same estimates
the MINF scales as O(1/

√
n).

when λ2 is away from zero. This is similar to the dependence of the number of
settings on λmin(ρ) in Theorem 4.

In the case of the MSE we demonstrated that for qubits, concentration does
occur as λ2→ 0, even if Theorem 4 does not hold in this limit. However, a
similar concentration of the MINF for qubits in this limit does not occur. To
show this, we first notice that in the limit λ2→ 0 the local expansion of the
infidelity becomes linear in the leading order

1−F (ρθ,ρθ+δθ) = |δθd|+O(∥δθ∥2). (5.30)

Clearly, for estimates ρ̂ in the local neighbourhood of the pure state ρ= |0⟩⟨0|,
the MINF is no longer given by the quadratic expression as in (5.29), but is
E(1−F (ρ̂,ρ)) = E(θ̂d) = E(⟨1|ρ̂|1⟩). Since the dominant error term is linear
in the diagonal element of the estimate (in the eigenbasis of the true state),
we note that the infidelity is highly sensitive to the misestimation of small
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eigenvalues [89]. The errors in the estimation of the ‘rotation parameters’
θr, θi however remain quadratic, and therefore exhibit a O(1/n) scaling as
in the previous sections. As the interesting contribution to the infidelity is
from the estimation errors of the eigenvalue, we consider a simplified single
parameter model and assume that only θd is unknown. When the number
of repetitions m in a setting s is sufficiently large, efficient estimators of θd

from the outcomes of these measurements have an asymptotically Gaussian
distribution

√
m(θ̂d− θd)≈N (0,Var(θ̂d)). Therefore, in this asymptotic limit

the MINF E(1−F (ρ̂,ρ)) is given by

E(θ̂d) = 1√
2σ2π

∫ ∞

0
θ̂d · exp

−(θ̂d)2

2σ2

dθ̂d =
√

2
π
σ, (5.31)

where negative estimates of the parameter are set to zero to ensure that ρ̂
is a density matrix, and the standard deviation σ = Var(θ̂d)1/2. From this
asymptotic behaviour of efficient estimators we see that for a large number of
repetitions m, the MINF scales as

E(1−F (ρ̂,ρ))≈
√

2
πn

√
Idd(ρ|S)−1, (5.32)

where the Fisher information Idd corresponding to the diagonal parameter is
found in the previous section. From Table 5.1 and the discussion in the previous
section, we know that in the limit λ2→ 0 the mean Fisher information Īdd

diverges. The Fisher information I(ρ|S) for any finite sample of random mea-
surements will therefore not concentrate within 1± ϵ of the optimal, implying
a lack of concentration in the MINF. In the case of the Frobenius norm, in the
limit λ2→ 0 the dominant error terms contributing to the MSE correspond to
the rotation parameters, and this fact ensures a concentration of the MSE even
in the pure state limit, while for the infidelity we see that the dominant error
terms comes from the estimation of the small eigenvalues, and a concentration
of the MINF does not exist in the sense of Lemma 2. In general, the local
expansion of the infidelity around any rank-r state that is close to pure is linear
in the diagonal terms of the estimate [89]. The MINF for such states therefore
demonstrates a similar lack of concentration in the corresponding diagonal
elements of the Fisher information matrix.

Furthermore, from (5.32) it is clear that with uniform random measurements
the MINF scales as O(1/

√
n) for states that are close to pure, while for states
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well within the Bloch sphere, Lemma 3 demonstrates a scaling of O(1/n). This
poor scaling is observed in Figure 5.3, which plots the expected error in terms
of the MINF and the MSE for pure states. As discussed in the previous sections,
it is seen that the MSE scales as O(1/n) for all states, while it is clear from
Figure 5.3 that the MINF demonstrates a O(1/

√
n) scaling for pure states.

This scaling has also been demonstrated for the closely related Bures distance
error metric. In [78, 117], the minimax Bures error for estimators based on
Pauli expectations is shown to scale as O(1/

√
n). This poor scaling along

with a lack of concentration is important as many quantum information tasks
utilise states that are pure [89]. Several adaptive measurement protocols have
been suggested and implemented [89, 96, 79, 52] to improve this scaling. The
aim of such adaptive strategies is to make measurements that are close to the
eigenbasis of the true state. In our qubit model, for measurements with angle
ϕ smaller than O(1/

√
n) the Fisher information Idd(ρ) scales as O(n). From

(5.32), this gives a O(1/n) scaling of the infidelity even in the limit λ2→ 0.

5.5 Conclusions

In this chapter we investigated the asymptotic behaviour of the error for an
arbitrary optimal estimator in the random measurement setup. Specifically we
looked at how the accuracy of efficient estimators depends on the measurement
design and the state. We considered two distance measures, the Frobenius
norm and the quantum infidelity. In the case of the Frobenius norm, we
extended the concentration results in chapter 4, and demonstrated that the
MSE attains the optimal rate (up to a constant) with only O(r logD) random
basis measurements for all states of rank r. Furthermore, to investigate the
behaviour of the MSE concentration for states that are close to pure, we
considered the model of a single qubit. We presented an argument to show
that concentration in the MSE occurs for all qubit states, despite a lack of
concentration in the Fisher information matrix for states close to the surface of
the Bloch sphere.

It remains an open problem if a similar scaling of the MSE exists in the
Pauli measurement setup used in standard multiple ions tomography. The
application of the tools in the chapter to the Pauli setup requires control of
the eigenvalues in equation (5.9), specifically a lower bound on the minimum
eigenvalue λmin(Ī). Strong numerical evidence in chapter 4 suggests that for
random measurements the Fisher information may satisfy the required spectral
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properties. Concentration results for distances other than the Frobenius norm
can be in principle derived using similar arguments as long as their local
expansions are quadratic in the parameters (see (5.7)). However, for the
infidelity (an important measure of error for quantum tomography), it is known
that while the scaling is quadratic for states deep in the Bloch sphere, for states
close to pure this scaling is linear in the parameters [89]. We demonstrated with
a single qubit model that for such nearly pure states and random measurements,
the mean infidelity (MINF) does not concentrate around the optimal for any
finite number of settings. This implies a lack of ‘compressive’ recovery of
such low rank states, and therefore by increasing the number of measurement
settings one can always significantly decrease the corresponding estimation
error.

The FIM has been an important tool in our investigation of both the MINF
and the MSE. We noticed that the FIM fails to concentrate when one of the
eigenvalues of the state approaches zero. Related work in establishing and
using continuity relations of the Quantum Fisher information (QFI) [94, 4]
also shows a dependence on the smallest eigenvalues of the state, and therefore
interesting behaviour occurs when eigenvalues approach zero. It is a possible
direction for future research to see if our results about the concentration failure
of the FIM are more deeply connected to the work in [94, 4].
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5.6 Appendix

5.6.1 Proof of Lemma 1

Lemma. For any rank-r state ρ with an arbitrary spectrum, and the rank-r
state ρ0 which has equal non-zero eigenvalues 1/r and the same eigenvectors
as ρ, the following inequality holds between their average Fisher information
matrices, evaluated over all possible random measurement settings.

Ī(ρ0)≤ Ī(ρ) (5.33)

Proof. For a given random measurement setting s, the probabilities of occur-
rence of an outcome o for the two states ρ0 and ρ are given by

p0(o|s) =
r∑

i=1

1
r
|⟨eo

s |λi⟩|2 ; pρ(o|s) =
r∑

i=1
λi|⟨eo

s |λi⟩|2 (5.34)

where λi and |λi⟩ are the eigenvalues and the eigenvectors of the state ρ

respectively. We now consider states ρ′, that are constructed by permuting the
r non-zero eigenvalues λi of the state ρ, while keeping the eigenvectors fixed.
Let P denote the set of r! such permuted states. Averaging the probabilities
pρ′(o|s) over all the permuted states ρ′ ∈ P recovers the probability p0(o|s)
corresponding to the state with the uniform spectrum. That is,

1
|P|

∑
ρ′∈P

pρ′(o|s) = p0(o|s). (5.35)

From the convexity of the function f(x) = 1/x in the interval (0,+∞), the
above equation together with Jensen’s inequality implies,

1
p0(o|s) ≤

1
|P|

∑
ρ′∈P

1
pρ′(o|s) (5.36)

where we assumed that pρ′(o|s) > 0 for all o. From 5.5, we see that for a
setting s, the Fisher matrix in our parametrisation can be written as a sum of
d matrices

I(ρ′|s) =
∑

o:pρ′(o|s)>0

1
pρ′(o|s) |V

o
s ⟩⟨V o

s | (5.37)

where |V o
s ⟩ ∈ RD, with D = 2rd− r2−1, are vectors that depend only on the

measurement vectors |eo
s ⟩, and the eigenvectors |λi⟩ of the state. Since by
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construction the eigenvectors for all the states considered above are the same,
together with 5.36, we get for all settings s

I(ρ0|s) =
∑

o:p0(o|s)>0

1
p0(o|s) |V

o
s ⟩⟨V o

s | ≤
1
|P|

∑
o

∑
ρ′∈P

1
pρ′(o|s) |V

o
s ⟩⟨V o

s |

= 1
|P|

∑
ρ′∈P

I(ρ′|s). (5.38)

The inequality holds for settings s such that pρ′(o|s) > 0 for all “permuted”
states ρ′ and all outcomes o, which holds with probability one under the Haar
measure over settings. Since each ρ′ is an unitary rotation of the state ρ, we
arrive at the required inequality of the average Fisher matricies by integrating
both sides of the above equation over all possible random measurement settings
s.

5.6.2 Proof of Theorem 4

The proof of this theorem is similar to the one presented in chapter 4. Here we
present the important elements of the proof, and refer to appendix in chapter
4 for details. As briefly mentioned in the main text of the chapter, the proof of
the theorem utilises the following matrix Chernoff bound [2], where the random
matrices Xi are given by G−1/2

F I(ρ|si)G−1/2
F , with si random bases.

Theorem 6. (Matrix Chernoff Bound) Consider a finite sequence X1, . . . ,Xk

of independent, random, positive matrices with dimension D, such that λmax(X)≤
R. For EX =M ≥ µ1 and 0≤ ϵ≤ 1

2 ,

P

1
k

k∑
i=1

Xi ̸∈
[
(1− ϵ)M,(1+ ϵ)M

]≤ 2D · exp
(
−k · ϵ2µ

2R · log2

)
(5.39)

We note that G−1/2
F ISG

−1/2
F is a sum of k independent, random, positive

matrices. In order to apply the above bound, we need to upper bound the
largest eigenvalue of G−1/2

F I(ρ|s)G−1/2
F over all measurements, denoted µmax.

We also need to lower bound the smallest eigenvalue of the expected Fisher
information G

−1/2
F I(ρ)G−1/2

F , denoted µmin. We will first derive these bounds
and then obtain the result by applying the Chernoff bound. As in the text, we
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work with the local parametrisation

θ =
(
θ(d),θ(r),θ(i)

)
=
(
ρ2,2, . . . ,ρr,r;Reρ1,2, . . . ,Reρr,d;Imρ1,2, . . . , Imρr,d

)
(5.40)

where ρ1,1 is constrained to enforce the trace-one normalisation. The Fisher
information therefore, has the following block structure

I(ρ) =



Idd(ρ) Idr(ρ) Idi(ρ)

Ird(ρ) Irr(ρ) Iri(ρ)

Iid(ρ) Iir(ρ) Iii(ρ)


(5.41)

with the superscripts identifying the parameters considered; diagonal, real and
imaginary. The weight matrix GF also has the same block structure with
elements

GFa,b
= Tr

[
∂ρθ

∂θa
· ∂ρθ

∂θb

]
(5.42)

In the parametrisation described above, the weight matrix GF has the
following block diagonal form:

1. The diagonal-diagonal block:

(a) Gdd
Fa,b

= 1+ δa,b

2. The real-real and imaginary-imaginary block:

(a) G
rr/ii
Fa,b

= 2 · δa,b

with the other blocks being zero. We note that both the Fisher, and the weight
matrix are of dimension D := 2rd− r2−1.
Lower bound on the smallest eigenvalue—As mentioned in the main
text, we use Lemma 1 to bound the the smallest eigenvalue from below as

G
−1/2
F Ī(ρ0)G−1/2

F ≤G−1/2
F Ī(ρ)G−1/2

F , (5.43)

where ρ0 is the state with r equal eigenvalues and the same eigenvectors as
the state ρ. The explicit form of Ī(ρ0) is known, and has been evaluated in
chapter 4, and from it, we see that the minimum eigenvalue is lower bounded
as µmin ≥ r/r+1 for r > 1 and µmin ≥ 1 for pure states.
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Upper bound on the largest eigenvalue—We use the inequality I(ρ|s)≤
F (ρ) between the classical and quantum Fisher informations to bound the
largest eigenvalue of G−1/2

F I(ρ|s)G−1/2
F over all measurements by the largest

eigenvalue of G−1/2
F F (ρ)G−1/2

F . The quantum Fisher information is calculated
in the local parameterisation described above and evaluated at the state ρ=
Diag(λ1, . . . ,λr, . . . ,0), diagonal in its eigenbasis. The details of this calculation
can be found in the appendix of chapter 4, and we therefore avoid the repetition
and merely state the elements of the matrix. Denoting ra, ca to be the row and
column positions of the element a of the parameter vector θ, we have

1. For the Diagonal-Diagonal block with r > 1,

(a) F dd
a,a

∣∣∣
θ

= 1
λra

+ 1
λ1

when ra ≤ r

(b) F dd
a,b

∣∣∣
θ=θ0

= 1
λ1

when ra, rb ≤ r, and a ̸= b

2. For the Real-Real and Imaginary-Imaginary blocks:

(a) F
rr/ii
a,a

∣∣∣∣
θ=θ0

= 4
λra+λca

when ra < ca ≤ r

(b) F
rr/ii
a,a

∣∣∣∣
θ=θ0

= 4
λra

when ra ≤ r,ca > r

The off-diagonal blocks are zero. It is easy to see that the quantum Fisher
matrix is upper bounded by the matrix 1

λmin(ρ)G
dd
F

⊕ 2
λmin(ρ)G

rr
F

⊕ 2
λmin(ρ)G

ii
F .

So we can write

G
−1/2
F FG

−1/2
F ≤ 1

λmin(ρ)1(r−1)
⊕ 2

λmin(ρ)1(2rd−r2+r)
⊕ 2

λmin(ρ)1(2rd−r2+r)

(5.44)
The maximum eigenvalue µmax is therefore upper bounded by 2/λmin(ρ) for
r > 1, and 2 for r = 1.
Combining the bounds to prove concentration– We can now substitute
these values into the matrix Chernoff bound. While the value of the mini-
mum/maximum eigenvalues differ for r > 1 and r = 1, we calculate the bound
for the case when r > 1, as this will provide a general bound for the num-
ber of settings required that holds even in the case of pure states. Writing
PS =G

−1/2
F ISG

−1/2
F and P =G

−1/2
F IG

−1/2
F for notational simplicity, we have

for r > 1

P
{
PS ̸∈

[
(1− ϵ)P ,(1+ ϵ)P

]}
≤ 2D · exp

(
−k rϵ2λmin(ρ)

4(r+1) · log2

)
:= δ (5.45)



5.6 Appendix 97

Therefore, with probability 1− δ we have that

(1− ϵ)P ≤ PS ≤ (1+ ϵ)P (5.46)

This can be re-written in the form of inequalities of the MSE with ϵ > 0
sufficiently small

(1− ϵ)Tr
(
P

−1)≤ Tr
[
P−1

S
]
≤ (1+ ϵ)Tr

(
P

−1) (5.47)

For a fixed value of ϵ and δ, we see that the minimum number of settings k
required for the above abound to hold with probability greater than 1− δ is

k = C1
λmin(ρ) ·

(r+1)
r

log
(2D
δ

)
(5.48)

where C1 := 4(log2/ϵ2) and D := 2rd− r2−1.



Chapter 6

Minimax estimation of qubit states with Bu-
res risk

6.1 Introduction

The aim of state tomography is the estimation of an unknown density matrix ρ
from the outcomes of measurements performed on n identical copies of the state
available as a resource. The quality of the resulting estimate ρ̂n is quantified
in terms of its average error, or risk. Given a measurement design M , and the
corresponding set of outcomes X, the risk of the measurement-estimator pair is

R(ρ, ρ̂n) := E [D(ρ̂n(X),ρ)] , (6.1)

where the expectation is taken with respect to the measurement outcomes X,
given the unknown state ρ. The risk depends on the choice of the error, or loss
function D(ρ̂n,ρ), which is a measure of the deviation of the estimated state
from the true state ρ. Examples of commonly used loss functions are square
Frobenius (norm-two) distance, infidelity, the trace-norm distance, and the
Bures distance. The risk is a function of the resource size n, and one is interested
in its behaviour in the limit of large n. Typically, for a ‘good’ estimator and
particular choices of loss functions, (e.g. locally quadratic functions) the optimal
risk exhibits a rate of O(1/n) uniformly over all states ρ.

However, as pointed out in chapter 5 for certain loss functions (e.g. square
Bures distance, or infidelity) , the risk is known to behave differently for states
of unknown purity [89]. This is readily illustrated in the qubit case, where
the fidelity between the state ρ and its estimate ρ̂n is defined as F (ρ, ρ̂n) :=
[Tr(

√√
ρρ̂n
√
ρ)]2 and can be expressed as

F (ρ, ρ̂n) := 1
2(1+

√
1−|r|

√
1−|r̂|+r · r̂), (6.2)
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where r, r̂ ∈ R3 are the Bloch vectors of the two states. For ρ within the
Bloch sphere, the fidelity is locally quadratic in the components δi := ri− r̂i,
with i= x,y,z. However, for states close to the boundary of the Bloch sphere,
the fidelity becomes linear in |δi|. Standard tomographic estimation of the
Bloch vector components by measuring the spin operators σx,σy,σz gives
an accuracy of the order of n−1/2 in estimating δi. This implies that for a
loss function such as the infidelity 1−F (ρ̂n,ρ), or the square Bures distance
DB(ρ, ρ̂n)2 := 2(1−

√
F (ρ, ρ̂n)), the risk scales as O(1/n) for states within the

Bloch sphere, but only as O(1/
√
n) for nearly pure states.

This poor scaling for nearly pure states is significant as the preparation and
estimation of pure states is ubiquitous in quantum information processing tasks.
Although many papers discuss the issues surrounding quantum tomography for
Bures risk, we consider the problem in the context of minimax estimation (see
also [42, 43]), i.e. where the figure of merit is the maximum risk over all states

Rmax(ρ̂n) := sup
ρ
R(ρ, ρ̂n) = sup

ρ
E
[
DB(ρ, ρ̂n)2

]
. (6.3)

Our aim is to show that adaptive, separable measurement strategies can achieve
the n−1 scaling of the maximum risk. We also consider collective measurements,
and derive an upper bound to the asymptotic constant of the maximum risk. Our
analysis shows that the problem of finding minimax estimators, i.e. estimators
with smallest possible asymptotic constant, reduces to that of finding minimax
estimator for the ‘classical’ problem of estimating the coin toss probability with
respect to the square Hellinger distance risk.

Several estimation methods have been proposed in the literature, involving
both global and local measurement strategies, with the aim of improving
the poor scaling of fidelity based risks for nearly pure states. However, to
the best of our knowledge a scaling of n−1 of the maximum risk has not
been demonstrated for any of these estimators. Two-steps adaptive quantum
tomography [49, 100, 9, 89, 70] involves using a fraction n1 of the available
resource n to obtain a preliminary estimate of the eigenbasis of ρ, and then
performing measurements along the estimated eigenbasis on the remaining
n−n1 copies of the state. In [9] it is shown that using a vanishing fraction
n1 = nα, with 1/2<α< 1 for the preliminary estimate gives a rate of O(1/n) for
the average infidelity with respect to certain distributions over states. However,
it has been pointed out in [89], that for certain states a vanishing fraction
is insufficient, and that for almost pure states the worst case infidelity scales



6.1 Introduction 100

as O(n−5/6). Numerical results in [89] suggest that using a fixed fraction
n0 = βn instead gives the O(1/n) scaling for nearly pure states. The two step
adaptive protocols have been experimentally implemented [89, 70], showing
a quadratic improvement in scaling for nearly pure states. The extension of
the two-step adaptive protocol to a fully adaptive one has been considered
in [100, 93, 46, 41], where the measurement basis is aligned according to a
current estimate after every measurement step. In the Bayesian framework,
‘self-learning’ measurement protocols have been considered in [44, 52, 63, 79].
A detailed review of various adaptive protocols and experimental results is
found in [105].

Protocols considering collective (or joint rather than separable) measure-
ments have also been considered [8, 7, 57, 59]. It is known that joint measure-
ments perform better than separable measurements in the case of mixed states
[7]. In a Bayesian framework, [8] showed that with certain optimal joint mea-
surements, the asymptotic infidelity averaged over a prior distribution achieved
a value of 3+2⟨r⟩

4n for mixed qubit states, where ⟨r⟩ is the mean purity over
the prior distribution. Work in [57] proposes a two-step adaptive estimation
strategy that is shown to be locally optimal, achieving an infidelity risk of
1+4λmax(ρ)

4n for mixed qubit states, where λmax(ρ) is the maximum eigenvalue of
ρ. However these theoretical results cannot be directly used to derive the n−1

scaling of the minimax risk.
We propose two different estimators, one based on adaptive local measure-

ments similar to [9, 89], and a second based on global collective measurements
and Local Asymptotic Normality (LAN) as in [57, 59]. In terms of local mea-
surements, we consider a two step adaptive strategy much in line with already
proposed estimators [49, 100, 9, 89, 70]. A fixed fraction of the total sample size
n is used to obtain a preliminary estimate r̃ of the Bloch vector r of the state,
by performing standard tomographic measurements of the spin observables.
The remaining copies of the state are used to estimate the eigenvalues of the
state by performing measurements along the estimated direction r̃/|̃r|. The
final estimate ρ̂n of the state is then constructed from the estimated eigenvalues
in the adaptive step and the preliminary estimate. For this estimator, we
upper-bound the maximum Bures risk 6.3 and demonstrate a scaling of n−1.

The estimator based on global collective measurements uses established LAN
results for qubit states [57, 59]. The measurement strategy involves two stages.
The first stage involves the standard tomographic measurements of the spin
components on a vanishing number of copies of the state ñ≪ n. A preliminary
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estimate ρ̃ is constructed from the outcomes. The second measurement stage
depends on this preliminary estimate, and for technical purposes related to the
asymptotic analysis we consider the following two cases: |r̃|< δ and |r̃| ≥ δ for
some small constant δ > 0.

When ρ̃ is close to the fully mixed state, the standard tomographic mea-
surements are performed on the remaining copies of the state. When the
preliminary estimate ρ̃ is away from the fully mixed state, a joint measurement
is performed on the remaining copies of the state. The joint state ρθ

n := ρ⊗n
θ

has a block-diagonal form following the Weyl decomposition of the underlying
space (C2)⊗n. Information about the eigenvalue parameter λ is encoded in a
probability distribution over the different blocks of the decomposition, while
information about the local parameters (u,v) is encoded in the block states.
We consider a parameterisation of states ρθ, with θ = (λ,u,v) ∈ R3, where λ
parametrises the smallest eigenvalue of the states and w = (u,v) are certain
local rotation parameters around a fixed state ρ0. The parameter λ is then
estimated from the outcomes of a “which-block” measurement, while the local
parameters u,v are optimally estimated by exploiting the local asymptotic
normality of the block states. The LAN results in [57] establish that in the limit
n→∞, the block states converge to Gaussian states ϕw, with displacement
proportional to parameters (u,v) (Theorem 7). The optimal estimator of u,v is
then the optimal estimator of the displacement of a Gaussian state ϕw, which
is known to be the heterodyne measurement. We derive minimax upper and
lower bounds for the risk (6.3), and demonstrate that the maximum Bures risk
for the estimator ρ̂n scales as C/n, with C being a constant. We obtain lower
bound of 5/4 for this constant, and an upper bound of 3/2.

An important element in the derivation of the upper-bounds for the maxi-
mum risk of both estimators is the fact that square Bures distance can locally
approximated as a sum of contributions from the eigenvalue parameter and the
‘rotation’ parameters. More explicitly, we have that

DB(ρ, ρ̂n)2 ≈DH(λ, λ̂)2 + 1
4

(1−2λ)(1−2λ̂)√
(1−λ)(1− λ̂)+

√
λλ̂

Φ2, (6.4)

where DH(λ, λ̂)2 := ∥
√

λ−
√

λ̂∥2 with λ = (λ,1−λ) is the classical square
Hellinger distance, and Φ is the angle between the Bloch vectors of the two
states. The optimal rate of estimation of the ‘rotation’ parameters is easily
shown to be 1/n for all states. The problem of establishing minimax results for
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the square Bures distance therefore converts a problem of establishing minimax
results for the Hellinger risk of estimating the eigenvalue parameter. To the
best of our knowledge such minimax results for the Hellinger risk are not known.
Instead, we upper-bound this risk by the Kullback-Leibler risk, and use known
results about the minimax estimator in this case. However, in section 6.5 we
propose that a minimax optimal estimator of the classical parameter λ under
the Hellinger risk gives a minimax optimal estimator ρ̂n for qubit states.

The chapter is organised as follows. In section 6.2 we consider an estimator
based on local measurements and detail a two step adaptive measurement
strategy. We demonstrate that the proposed estimator achieves a minimax
rate of 1/n. In section 6.3 we propose a second estimator based on global
collective measurements. We begin in section 6.3.1 by describing the preliminary
measurement stage and introduce our parametrisation of states. In section
6.3.2, we describe the second measurement stage, and overview the block
decomposition of the joint state and results of LAN. The minimax bounds for
this estimator are derived in section 6.4, and in section 6.5 we discuss and
state the proposition that a minimax estimator for the Hellinger loss function
implies a minimax optimal estimator for qubit states. Finally in section 6.6
we consider the quantum relative entropy and establish that the minimax rate
under this loss function scales as O(n−1 logn).

6.2 Estimator based on local adaptive measurements

We let ρ be an arbitrary density matrix associated with a single qubit state.
Given n identical copies of the state as a resource, we wish to construct an
estimator of the state. As briefly discussed in the introduction, in this section we
propose a two-step adaptive measurement strategy based on local measurements.
While the idea of an adaptive local measurement strategy is not new and has
been treated in various instances in the literature [49, 100, 9, 89, 70], we are
interested in analysing the performance of the proposed estimator ρ̂n in terms
of the maximum risk with respect to the square Bures distance defined in
equation (6.3) and its asymptotic rescaled version

rmax(ρ̂) = lim sup
n→∞

sup
ρ
nE

[
DB(ρ, ρ̂)2

]
= limsup

n→∞
nRmax(ρ̂n). (6.5)

We will derive an upper bound for the latter risk, thereby demonstrating a
n−1 scaling for maximum risk over all states ρ. Since the maximum risk of
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any estimation procedure cannot scale faster than n−1, this implies that the
existence of a non-trivial scaling constant for the minimax risk given by

Rminmax := limsup
n→∞

inf
ρ̂n

nRmax(ρ̂n). (6.6)

Finding the value of the minimax constant remains an open problem. We will
come back to this problem in section 6.5 where it is shown that the minimax
qubit estimation problem reduces to that of minimax estimation of a coin
probability with respect to the square Hellinger distance risk.

The estimator we propose is constructed as follows. The first stage is a
preliminary localisation step involving standard projective measurements of
Pauli observables σx,σy,σz on a fixed fraction n1 of the total number of qubits
n. An estimate of the direction vector r̃/|̃r| is constructed from the outcomes
of these measurements. The following lemma shows that with high probability
the estimated directional vector is within an angle of O(n−1/2+ϵ1

1 ) of the true
vector, where ϵ1 is a fixed (small) positive constant.

Lemma 4. Let Xi,Yi,Zi be the outcomes of measurements of σx,σy,σz per-
formed on independent qubits in state ρ with Bloch vector r, where i= 1, . . . ,n1/3.
Let r̃ be the estimate of the Bloch vector, where each Bloch vector component is
obtained by averaging the outcome results, e.g r̃x := 3

n1

∑
iXi. Then we have

that for ϵ1 > 0,

P
(
∥r− r̃∥22 > 6n−1+2ϵ1

1
)
≤ 6exp

(
−2n2ϵ1

1
3

)
. (6.7)

The proof of this lemma follows directly from Hoeffding’s inequality applied
to the binomial distribution corresponding to each of the Bloch vector com-
ponents. The concentration inequality implies that when |r| is bounded away
from zero, the magnitude of the angle Φ between the directional vectors r/|r|
and r̃/|̃r| is of the order O(n−1/2+ϵ1

1 ) with high probability.
The second adaptive stage involves preforming measurements along this

estimated direction. That is, projective measurements of the observable Ξ :=
σ⃗ · r̃/|̃r| are performed on the remaining n2 := n− n1 copies of the state.
Let k be the total number of +1 outcomes from these measurements. It is
easy to see that k is distributed binomially Bn2,p(k) with binomial parameter
p := (1+ |r|cosΦ)/2. We estimate this parameter as p̂ from the measurement
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outcomes using the ‘add-beta’ estimator [22, 23] defined as follows,

p̂n2 =



1/2
n2+5/4 , k = 0,

2
n2+7/4 , k = 1,
k+3/4
n2+3/2 , k = 2, . . . ,n2−2,
n2−1/4
n2+7/4 , k = n2−1,
n2+3/4
n2+5/4 , k = n2.

(6.8)

While this estimator is not in any sense optimal, it is known to be the minimax
estimator for the Kulback-Leibler risk, which will be used below in deriving
the upper bound for qubit tomography.

The final estimate of the state puts together the estimate p̂ and the estimated
Bloch vector r̃ as follows

ρ̂n = 1
2

(
I+ 2p̂n2−1

|̃r|
r̃ · σ⃗

)
. (6.9)

It is easy to see that p̂n2 = λ̂ by construction, where λ̂ is the eigenvalue of the
estimate ρ̂n.

6.2.1 An n−1 scaling upper bound scaling

We now look at deriving an upper bound for the Bures risk of this estimator,
and demonstrate that the maximum over all states scales as n−1. Recall that
the square Bures distance between the final estimate ρ̂n and the true state
ρ is defined as DB(ρ, ρ̂n)2 := 2

[
1−

√
F (ρ, ρ̂n)

]
, where F (ρ, ρ̂n) is the fidelity,

expressed in terms of the Bloch vectors r̂ and r as

F (ρ, ρ̂n) = 1
2

(
1+

√
1−|r|2

√
1−|r̂|2 + r · r̂

)
= 1

2

(
1+

√
1−|r|2

√
1−|r̂|2 + |r||r̂|cosΦ

)
, (6.10)

where Φ is the angle between the Bloch vectors, or equivalently the angle
between the vectors r̃ and r by construction. From Lemma 4, this angle is
known to be small and of the order O(n−1/2+ϵ1) with high probability. This
implies that the cosine term in (6.10) can be expanded to leading order in Φ.
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In this case, the square Bures distance is expressed as

DB(ρ, ρ̂n)2 =DH(λ, λ̂)2 + 1
4

(1−2λ)(1−2λ̂)√
(1−λ)(1− λ̂)+

√
λλ̂

Φ2 +O(Φ4), (6.11)

where λ = (1−|r|)/2, λ̂ = (1−|r̂|)/2 are the smallest eigenvalues of ρ and ρ̂,
respectively, and

DH(λ, λ̂)2 :=
(√

λ−
√
λ̂
)2

+
(√

1−λ−
√

1− λ̂
)2

(6.12)

is the square Hellinger distance between the probability distributions λ =
(λ,1−λ) and λ̂ = (λ̂,1− λ̂). The proof of this approximation can be found
in Appendix 6.8.2. Identifying λ̂ = (p̂n2 ,1− p̂n2), we upper bound the square
Bures distance as

DB(ρ, ρ̂n)2 ≤DH(λ, p̂n2)2 + 1
4Φ2 +O(Φ4)

≤ 2DH(λ,p)2 +2DH(p, p̂n2)2 + 1
4Φ2 +O(Φ4), (6.13)

where the second inequality is established using the fact that the square Hellinger
distance satisfies the triangle inequality. Using the inequality D2

H(λ,p) ≤
2|λ−p| and p= (1−|r|cosΦ)/2 we further upper bound the risk as

DB(ρ, ρ̂n)2 ≤ 2DH(p, p̂n2)2 +
(1

4 + |r|
)

Φ2 +O(Φ4). (6.14)

Taking expectation with respect to the measurement outcomes given the true
state ρ, we have

E
[
DB(ρ, ρ̂n)2

]
≤ 2E

[
DH(p, p̂n2)2

]
+ 5

4E
[
Φ2
]
+O(n−2+4ϵ1

1 ). (6.15)

The maximum risk of the estimator is therefore bounded from above as

sup
ρ

E
[
DB(ρ, ρ̂n)2

]
≤ sup

ρ
2E
[
DH(p, p̂n2)2

]
+O(n−1

1 )+O(n−2+4ϵ1
1 )

≤ sup
ρ

2E [DKL(p, p̂n2)]+O(n−1
1 )+O(n−2+4ϵ1

1 )(6.16)

In the first inequality we upped bounded E[Φ2] as O(n−1
1 ); this follows from the

concentration inequality of Lemma 4. The second step employs the inequality
between the square Hellinger distance and the Kullback-Leibler (KL) distance,
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defined as DKL(p̂,p) := p̂ log p̂/p+ (1− p̂) log(1− p̂)/(1−p). The reason for
employing this inequality is that to the best of the authors’ knowledge the
asymptotic minimax optimal Hellinger risk of estimating the binomial parameter
p is not known in the literature. A discussion related to the difficulty in obtaining
the asymptotic minimax Hellinger risk is left to section 6.5. However, the
minimax optimal rate for the KL loss function under the binomial distribution
is known. The minimax optimal estimator is precisely the ‘add beta’ estimator
defined in (6.8) , and is known to achieve the asymptotic rate 1

2n2
(1 + o(1))

[22, 23]. Choosing n1 to be constant fraction of the total number of samples n
establishes an overall rate of O(1/n), for example by choosing n1 = n2 = n/2.

6.3 Irreducible representations, collective measurements
and local asymptotic normality

In this section we propose a two stage estimator of the qubit state, which uses
collective rather than separable measurements. The first stage, much like in
the pervious section, is a preliminary localisation stage. However, this stage
does not use a fixed fraction of the total number of copies of the state, but a
vanishing fraction ñ of the overall ensemble of identical qubits n. The second
measurement stage involves performing joint measurements of the remaining
n− ñ copies of the state, and is based on the techniques of Local Asymptotic
Normality (LAN) established in [57, 59]. This section is structured as follows.
In subsection 6.3.1 we describe the preliminary measurement stage, and define
a choice of parameterisation of states. In subsection 6.3.2 we describe the
joint measurement strategy. In subsection 6.3.3 we provide a brief review of
established LAN results and techniques which can be used to derive asymptotic
estimation bounds. Minimax results for the proposed estimator are then
established in section 6.4.

6.3.1 Preliminary localisation and parametrisation

The first stage is a preliminary localisation step that involves performing
standard projective measurements of the Pauli observables σx,σy,σz on a
vanishing fraction ñ of the overall ensemble of n identically prepared qubits. An
estimate ρ̃ of the state is constructed from the outcomes of these measurements.
The following lemma shows that with high probability the true state ρ lies within
a ball of radius O(n−1/2+ϵ2) of this estimate ρ̃. This allows us to restrict our
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attention to a local neighbourhood of the preliminary estimator in the second
stage of the estimation.

Lemma 5. Let Xi,Yi,Zi be independent outcomes of measurements of σx,σy,σz

performed on independent qubits in state ρ with Bloch vector r, where i =
1, . . . , ñ/3. Let ρ̃ be the estimator with Bloch vector r̃ obtained by averaging
the outcome results, e.g. r̃x := 3

ñ

∑
iXi. In order to obtain a physical state, the

final estimate of the state is constructed as

ρ̃ := argmin
τ∈S2

∥τ − (1+ r̃ ·σ)/2∥21 (6.17)

where the minimisation is over all the space of all 2×2 density matrices S2.
For this estimator ρ̃, we have that for all ϵ2 > 0,

P
(
∥ρ̃−ρ∥21 > 3n2ϵ2−1

)
≤ 6exp

(
−2ñn2ϵ2−1

3

)
, for all ρ ∈ S2. (6.18)

The proof of this lemma follows from an application of Hoeffding’s inequality,
and can be found in Appendix 6.8.1. Setting ñ= n1−κ, with 0< κ < 2ϵ2, the
probability of failure is exponentially small. The preliminary measurement
stage therefore places the estimate ρ̃ in a local neighbourhood around the true
state. Since ∥ρ̃−ρ∥21 = ∥r̃−r∥2, the angle between the two normalised Bloch
vectors r/|r| and r̃/|r̃| is of the order O(n−1/2+ϵ2) with high probability.

For technical reasons related to local asymptotic normality theory and the
derivation of certain error bounds, the subsequent measurement depends on ρ̃,
and we distinguish the following two cases.

i) If ρ̃ is within a fixed but small ball of radius δ > 0 around the fully mixed
state (i.e, |r̃| ≤ δ), the secondary measurement stage consists of the standard
tomographic measurements in the σi, i= x,y,z bases. For each i, measurements
of σi are performed on (n− ñ)/3 identical copies of the state. The final estimate
of the state ρ̂n is constructed from the outcomes of these measurements, and is
detailed in section 6.4.

ii) If ρ̃ is away from the fully mixed state, we can apply the tools of LAN.
The remaining n− ñ copies of the state available for the second stage are
rotated such that the estimated Bloch vector r̃ is pointing along the z-axis.
From Lemma 5, the angle between the directional vectors r/|r| and r̃/|r̃| is
known to be of the order O(n−1/2+ϵ2) with high probability. This allows us to
consider a restricted parametrisation of states which we describe now for an
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arbitrary but fixed state ρ0 (which plays the role of ρ̃) with its Bloch vector
along the z-axis

ρ0 =
 1−λ0 0

0 λ0

 , (6.19)

with 0< λ0 < 1/2. We consider a parametrisation θ→ ρθ of states obtained
by small unitary rotations of ρ0, and different choices of the eigenvalue. We
choose the parameter vector θ := (λ,w), where w = (u,v) ∈ R2 corresponds to
the small unitary rotations of the eigenvectors, and λ is the smallest eigenvalue.
That is, any state ρ described by θ = (λ,u,v) is of the form

ρθ := U

(
w√
n

) 1−λ 0
0 λ

U ( w√
n

)∗
, (6.20)

where the unitary U
(

w√
n

)
is given by

U

(
w√
n

)
:= exp

(
i√
n

(uσx +vσy)
)

(6.21)

=
 cos |w|/

√
n −exp(−iφ)sin |w|/

√
n

exp(iφ)sin |w|/
√
n cos |w|/

√
n

 ,
with φ= Arg(−v+ iu). Note that in this parametrisation we have ρ0 = ρθ0 with
θ0 = (λ0,0,0). The aim of the second measurement stage is then to estimate
the unknown parameter vector θ = (λ,u,v) = (λ,w) corresponding to the true
state ρ.

6.3.2 The ‘which block’ measurement stage

The second measurement stage involves a joint measurement on the n− ñ
remaining copies of the state. We therefore consider the joint states ρθ

n := ρ⊗n
θ

on n identical qubits, with the parametrisation around the preliminary estimator
ρ0 = ρ̃ described above. It is known that the states ρθ

n have a block-diagonal
form with respect to the decomposition of the underlying space (C2)⊗n in
irreducible representations of the groups SU(2) and S(n) [57, 8, 36]. The
representation πn of SU(2) is given by π(n)(u) = u⊗n for any u ∈ SU(2), and
the representation π̃n of the symmetric group S(n) is given by the permutation
of factors

π̃(n)(τ) : v1⊗ . . .⊗vn→ vτ−1(1)⊗ . . .⊗vτ−1(n), τ ∈ S(n). (6.22)
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The Hilbert space can be decomposed in the form

(C2)⊗n =
n/2⊕

j=0,1/2
Hj⊗Hj

n, (6.23)

where the lower limit in the direct sum is 0 for even n and 1/2 for odd n. The two
group representations decompose into direct sums of irreducible representations
as π(n)(u) =⊕jπj(u)⊗1 and π̃(n)(τ) =⊕j1⊗ π̃j(τ) where πj is the irreducible
representation of SU(2) with total angular momentum J2 = j(j+1) which acts
on Hj

∼= C2j+1, and π̃j is the irreducible representation of the symmetric group
S(n) acting on Hj ∼= Cnj with

nj =
(

n

n/2− j

)
−
(

n

n/2− j−1

)
. (6.24)

The density matrix ρθ
n is invariant under permutations and can be decom-

posed as

ρθ
n =

n/2⊕
j=0,1/2

pn,λ(j)ρw
j,n⊗

1
nj
, (6.25)

where the probability distribution pn,λ(j) is given by [57, 59, 8]

pn,λ(j) := nj

1−2λλ
n/2−j(1−λ)n/2+j+1(1−p2j+1), (6.26)

with p= λ
1−λ . The above distribution can be written in the form

pn,λ(j) :=Bn,λ(n/2− j)×K(j,n,λ), (6.27)

where Bn,λ(k) =
(

n
k

)
λk(1−λ)n−k is the binomial distribution and the term

K(j,n,λ) is given by

K(j,n,λ) := (1−p2j+1)n+(2(j− jn)+1)/(1−2λ)
n+(j− jn +1)/(1−λ) , jn := n(1/2−λ).

(6.28)
The binomially distributed variable n/2− j concentrates around its mean value
of nλ with high probability

P
[
nλ−n1/2+ϵ3 ≤ n/2− j ≤ nλ+n1/2+ϵ3

]
≥ 1−2exp(−2n2ϵ3), (6.29)
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where ϵ3 > 0 is an arbitrary constant. This follows from a straightforward
application of Hoeffding’s inequality (6.68) to the binomial distribution. The
mass of the distribution Bn,λ(n/2− j) therefore concentrates over values of j
in the interval

Jn := {j| jn−n1/2+ϵ3 ≤ j ≤ jn +n1/2+ϵ3}. (6.30)

For all j ∈ Jn, the factor K(j,n,λ) = 1 +O(n−1/2+ϵ3) provided that λ is
bounded away from 1/2, which is one of the reasons we chose to treat the two
cases above separately. Additionally we note that the factor K(j,n,λ) remains
bounded over all values of j as long as λ < 1/2. From the concentration of the
binomial distribution over values of j ∈ Jn, and the value of K(j,n,λ) in this
interval it follows that

pn,λ(Jn) = 1−O(n−1/2+ϵ3). (6.31)

A “which block" measurement corresponds to an output of a particular value
of j from the distribution (6.27), and an associated posterior state ρw

j,n. This
value of j lies in the set Jn with high probability. The eigenvalue parameter λ
is estimated from this value of j. As in the case of the local adaptive estimator
in section 6.2, in order to derive a minimax upper bound, we shall define λ̂
as the ‘add-beta’ estimator, identifying n/2− j with k in (6.8). However a
discussion regarding this choice for the estimator λ̂ is discussed later in section
6.5. We note that a possible physical implementation of such a measurement is
detailed in [57], and involves coupling the joint states to different bosonic field
and performing a homodyne measurement.

Information about the ‘rotation’ parameters are contained in the block state
ρw

j,n. These parameters are estimated using established LAN results [57] which
we recall in section 6.3.3 below.

6.3.3 Local asymptotic normality

The block state ρw
j,n encodes information about the rotation parameters w =

(u,v). The optimal estimation strategy for these parameters has been estab-
lished using results about the LAN of qubit states [57]. This shows that for
large n, the block states ρw

j,n approach a Gaussian state ϕw of a one-mode
continuous variables system uniformly over all j ∈ Jn and ∥w∥ ≤ nη. The
rotation parameters (u,v) are encoded linearly into the mean of the Gaussian
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state ϕw. So the problem of the optimal estimation of these parameters for
the block state can be translated into one of estimating the displacement of
ϕw. These ideas have been treated in detail in [57], and we only include a brief
overview here. The block states ρw

j,n depend on the parameters (u,v) in the
following way

ρw
j,n = Uj

(
w√
n

)
ρ0

j,nUj

(
w√
n

)∗
, (6.32)

where the unitaries are defined as Uj(w) := exp(i(uJj,x +vJj,y), with Jj,l being
the generators of rotations in the irreducible representation πj of SU(2). The
state ρ0

j,n is expressed as

ρ0
j,n = 1−p

1−p2j+1

j∑
m=−j

pj−m|j,m⟩⟨j,m, | (6.33)

with p= λ/(1−λ) as before. The set {|j,m⟩ :m=−j, . . . , j} is an orthonormal
basis on Hj such that Jj,z|j,m⟩=m|j,m⟩. It has been demonstrated [57] that
the family of states Fn := {ρw

j,n,∥w∥ ≤ nη, j ∈ Jn} is asymptotically Gaussian.
This mean that as n→∞ the family of states ρw

j,n “converges” to a family of
Gaussian states ϕw of a one-mode continuous variables system, for all j ∈ Jn

and ∥w∥ ≤ nη. In order to make this convergence more precise, we let

ϕ0 := (1−p)
∑
k=0

pk|k⟩⟨k| (6.34)

be a centred Gaussian state of a one mode continuous variables system, with
{|k⟩ : k ≥ 0} denoting the Fock basis. The states ϕw are defined as

ϕw :=D(
√

1−2λαw)ϕ0D(−
√

1−2λαw), (6.35)

where αw =−v+ iu ∈ C. The operator D(α) := exp(αa∗−αa) is the displace-
ment operator that for every α ∈C maps the vacuum vector |0⟩ to the coherent
state |α⟩, with a∗,a being the creation and annihilation operators satisfying
[a,a∗] = 1. The convergence of the block state ρw

n,j to the Gaussian state ϕw is
formalised in the following theorem.

Theorem 7. Let Vj :Hj → L2(R) be the isometry

Vj : |j,m⟩ → |j−m⟩ (6.36)
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that maps the orthonormal basis of Hj into the Fock basis of L2(R). Then for
the family of block states ρw

n,j defined by (6.32), and the family of Gaussian
states ϕw defined by (6.35), the following convergence holds for any 0≤ η ≤ 1/6
and 0< ϵ3 < 1/2

sup
∥w∥≤nη

max
j∈Jn

∥Vjρ
w
j,nV

∗
j −ϕw∥1 =O(n−1/4+η+ϵ3) (6.37)

over the set Jn = {j | jn−n1/2+ϵ3 ≤ j ≤ jn +n1/2+ϵ3}. The convergence is
uniform over λ≥ 1/2(1+ δ) for an arbitrary fixed δ > 0.

The interpretation is that the block state ρw
j,n can be mapped by means

of physical transformations (in this case an isometric embedding) into the
Gaussian state ϕw with vanishing norm-one error, uniformly over the unknown
parameter w and over the block index j. A possible physical implementation
is detailed in [57]; the ensemble of qubits is coupled with a Bosonic field such
that the state is transferred to the field after some time.

In order to estimate the rotation parameters ŵ = (û, v̂), one first maps the
qubit state via the isometry Vj , and then performs a heterodyne measurement,
which is optimal for estimating displacement. In the next section we discuss
the Bures risk of the estimation procedure described above.

6.4 Minimax upper and lower bounds

The overall measurement procedure we propose can be briefly summarised as
consisting of a preliminary localisation stage, where a vanishing number ñ of
copies of the state is used to localise the state ρ. This estimate ρ̃ informs the
choice of measurements in the second stage. When ρ̃ is within a fixed ball of
radius δ > 0 around the fully mixed state, standard tomographic measurements
are performed on the remaining copies of the state. However, if ρ̃ lies outside
this ball, the measurements performed in second stage uses techniques based
on the principle of LAN to estimate the parameter vector θ = (λ,u,v). In
this section we look at the Bures risk of the measurement estimator pair
R(ρ, ρ̂n) := E

[
DB(ρ, ρ̂n)2

]
. As we will show below, the risk of a good estimator

scales as 1/n, and we would like to find asymptotic upper and lower bounds
for the rescaled maximum risk

Rmax(ρ̂) = limsup
n→∞

sup
ρ∈S2

nR(ρ, ρ̂n). (6.38)
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6.4.1 The upper bound

We now make concrete our final estimator for the state ρ. The first stage
involves using a vanishing number of copies ñ := n1−κ (with κ > 0) to get
a rough estimate ρ̃. This estimate informs the second measurement stage.
The subsequent measurement stage differs depending on whether the state is
estimated to be close to the fully mixed state.

If the estimate ρ̃ lies in a small ball of radius δ > 0 around the fully mixed
state, then measurements in the standard σi, i = x,y,z basis are performed
on (n− ñ)/3 copies of the state. The outcomes of each measurement ±1,
and the associated probabilities are pρ(±1|σi) = pi(±1) := Tr(ρP±1

i ), where
the projectors P±1

i are defined via σi = P+1
i −P−1

i . The total number ni of
+1 outcomes obtained by n/3 measurements of σi is binomially distributed
Bn/3,pi(+1)(ni). The final estimate of the state is constructed as the maximum
likelihood (ML) estimate from these measurement outcomes

ρ̂n = argmax
τ∈S2

∑
i=x,y,z

ni logTr(τP+1
i )+(n/3−ni) logTr(τP−1

i ), (6.39)

where the maximisation is over the space of all 2×2 density matrices S2.
On the other hand, if the preliminary estimate ρ̃ lies away from the fully

mixed state, we perform the following measurements to estimate the parameter
vector θ = (λ,u,v). A ‘which block’ measurement outputs a value of j from
which the eigenvalue λ is estimated, cf. section 6.3.2. Similarl to the separable
measurements strategy, we consider the following ‘add-beta’ estimator for the
eigenvalue λ [22, 23]

λ̂n =



1/2
n+5/4 ,

n
2 − j = 0,

2
n+7/4 ,

n
2 − j = 1,

n/2−j+3/4
n+3/2 , n

2 − j = 2, . . . ,n−2,
n−1/4
n+7/4 ,

n
2 − j = n−1,

n+3/4
n+5/4 ,

n
2 − j = n

(6.40)

The range of possible values of j is [0,n/2], and therefore only some of the
rules of the estimator described above are used. However, we describe the
estimator over the range [0,n] as this will be used shortly to upper bound the
minimax risk.
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Conditional on j, we are left with the block state ρw
j,n. Using Theorem 7

we can isometrically map this state onto the Fock space, close to the Gaussian
state ϕw. In order to estimate the displacement parameter w we perform a
heterodyne measurement with outcome ŵn. The final estimate of our the state
ρ̂n is constructed from the estimated parameter vector θ̂n = (λ̂n,ŵn) as

ρ̂n = U

(
ŵn√
n

) 1− λ̂n 0
0 λ̂n

U ( ŵn√
n

)∗
. (6.41)

We now state precisely the an upper bound for the minimax risk of the square
Bures distance for the measurement strategy described above.

Theorem 8. Let ρ̂n be the estimator described above. The asymptotic rescaled
maximum risk is bounded from above as

limsup
n→∞

sup
ρ

nR(ρ, ρ̂n)≤ 3
2 . (6.42)

The proof of this theorem is detailed in the appendix (6.8.3), and here we only
provide an outline for the arguments employed. The choice of measurements in
the second stage depend on whether the preliminary estimate ρ̃ lies inside or
outside a small ball of radius δ > 0 around the fully mixed state. In keeping
with this, let us therefore denote ρ̂1

n as the estimator (6.39) chosen when |r̃| ≤ δ,
and let ρ̂2

n be the LAN based estimator (6.41), when |r̃|> δ. The minimax risk
can then be bounded from above as follows

limsup
n→∞

sup
ρ

nR(ρ, ρ̂n)≤max
{

limsup
n→∞

sup
ρ∈B1

nE
[
DB(ρ, ρ̂1

n)2∣∣ |r̃| ≤ δ
]
,

limsup
n→∞

sup
ρ̸∈B2

nE
[
DB(ρ, ρ̂2

n)2∣∣ |r̃|> δ
]}

,

(6.43)

where B1 and B2 are balls of radius δ+n−1/2+ϵ2 and δ−n−1/2+ϵ2 respectively.
The two terms are evaluated explicitly in section (6.8.3) of the appendix.
The term corresponding to the estimator ρ̂1

n is straightforward to evaluate
as the square Bures distance is locally quadratic for states in B1. From this
quadratic expansion and the efficiency of the maximum likelihood estimator in
the asymptotic regime, the risk can be expressed as

E
[
DB(ρ, ρ̂1

n)2
]
≈ 1
n

Tr
(
I(ρ)−1G

)
, (6.44)
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where G is the weight matrix reconstructing the quadratic approximation of
the square Bures distance, and I is the Fisher information matrix. From the
explicit form of G and I, the asymptotic risk can be bounded as

limsup
n→∞

sup
ρ∈B1

nE
[
DB(ρ, ρ̂1

n)2
]
≤ 3

4

(
1+ δ

1− δ

)
. (6.45)

The other term in (6.43) corresponding to the estimator ρ̂2
n uses the local

parameterisation of states θ = (λ,w), and the approximation of the square
Bures distance used in section 6.2, and detailed in the appendix (6.8.2). We
therefore get that the risk can be bounded as

E
[
DB(ρ, ρ̂2

n)2
]
≤ E

[
DH(λ, λ̂n)2 + 1

4Φ2
]

+O(Φ4) (6.46)

≤ E
[
DH(λ, λ̂n)2

]
+ 1
n
E
[
(u− ûn)2 +(v− v̂n)2

]
+O(n−2)

(6.47)

The term corresponding to the rotation parameters has been evaluated
in [57] using LAN based techniques. Since LAN holds in the limit of large
n, the problem of estimating the rotation parameters is translated to one
of determining the displacement of a Gaussian state ϕw. The heterodyne
measurement is known to be the optimal measurement in this case [57, 59].
The first term corresponding to the Hellinger risk is bounded from above by
the Kullback-Leibler (KL) risk of estimating a binomial parameter λ from
outcomes k distributed as Bn,λ(k). The ‘add-beta’ estimator is known to be
minimax optimal in this case, and its rate is known in the literature. Together
with the LAN results for the rotation parameters, we bound risk as

limsup
n→∞

sup
ρ ̸∈B2

nR(ρ, ρ̂2
n)≤ limsup

n→∞
sup

λ
nEBinom

[
DKL(λ, λ̂n)

]
+1≤ 3

2 . (6.48)

Comparing this bound with (6.45), we arrive at the stated upper bound of 3/2
in Theorem 8 provided δ < 1/2.

6.4.2 The lower bound

In this section we derive a lower bound on the asymptotic rescaled risk with
respect to the square Bures distance. The key idea is to restrict the attention
to a smaller state space region where the state is “hardest” to estimate, and
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evaluate the minimax risk over this region, thus obtaining a lower bound for
the overall minimax risk.

Let us consider that the true state ρ lies in a local neighbourhood of size
n−1/2+ϵ around an arbitrary but fixed state ρ0 as defined in equation (6.19),
whose smallest eigenvalue satisfies 0< λ0 < 1/2. For any estimation procedure
ρ̂n we have the lower bound for the maximum risk

limsup
n→∞

sup
ρ∈S2

nR(ρ, ρ̂n) ≥ limsup
n→∞

sup
∥ρ−ρ0∥1≤n−1/2+ϵ

nR(ρ, ρ̂n)

≥ limsup
n→∞

inf
ρ̂n

sup
∥ρ−ρ0∥1≤n−1/2+ϵ

nR(ρ, ρ̂n)

:= Rminmax(ρ0), (6.49)

where the right side is the local minimax risk at ρ0.
Since the state ρ0 is taken to be away from the boundary of the Bloch

sphere, we can parametrise its local neighbourhood using the local parameter
θ = (h,u)

ρ= ρθ := U

(
w√
n

) 1−λ0−h/
√
n 0

0 λ0 +h/
√
n

U ( w√
n

)∗
. (6.50)

The square Bures distance is locally quadratic

DB(ρθ,ρθ′)2 = 1
n

(θ−θ′)T Γ0(θ−θ′)+O(n−3/2), (6.51)

where Γ0 is the weight matrix

Γ0 =


1

4λ0(1−λ0) 0 0
0 (1−2λ0)2 0
0 0 (1−2λ0)2

 . (6.52)

In this case we can apply the LAN theory [57] to obtain the local minimax
risk for the square Bures distance. The upshot of the theory is that the classical
statistical model given by the distribution over blocks (cf. equation (6.26))
can be approximated by a one-dimensional Gaussian model N(h,v0) with fixed
variance v0 = λ0(1−λ0) and mean equal to the unknown local parameter h.
Additionally, the quantum statistical model described by the quantum state of
the irreducible block can be approximated by a quantum Gaussian shift model
(independent of the classical one), as described in Theorem 7. The optimal
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measurement here is the heterodyne, and after rescaling by a constant factor
we obtain the unbiased estimator û which has a two-dimensional Gaussian
distribution û ∼ N(u,w0 · I2) with w0 = (1− λ0)/(2(1− 2λ0)2). The local
minimax risk is the sum of the contribution from the classical and respectively
the quantum part of the Gaussian model, weighted with the matrix Γ0

Rminmax(ρ0) = Γ00E[(ĥ−h)2]+Γ11E[(û−u)2]+Γ22E[(v̂−v)2]

= 1
4λ0(1−λ0)v0 +2(1−2λ0)2w0

= 1
4 +(1−λ0) = 5

4 −λ0. (6.53)

As the state ρ0 defining the local neighbourhood is chosen arbitrarily, we see
that the right side of the above equation achieves its maximum as λ0→ 0, and
we therefore get the asymptotic lower bound for the rescaled maximum risk of
any estimator.

limsup
n→∞

sup
ρ∈S2

nR(ρ, ρ̂n)≥ 5
4 . (6.54)

As expected, the above lower bound is smaller than the 3/2 upper bound
derived in section 6.4.1.

6.5 The minimax optimal estimator

In deriving the minimax bounds for both the proposed estimators, the key
observation was that the Bures risk decomposes locally into contributions from
the Hellinger risk of estimating the eigenvalue parameter λ and a quadratic
risk corresponding to the estimation of the rotation parameters (see (6.11)
and appendix 6.8.2). The Hellinger risk was then bounded from above by
the Kullback-Leibler (KL) risk of estimating the binomial parameter. The
estimator of the binomial parameter achieving the minimax rate for the KL risk
is known to be ‘add-beta’ estimator, and both the local and global estimators
for the state ρ proposed using this estimator for the eigenvalue parameter
(6.40,6.8).

The reason why we were not able to prescribe an asymptotically minimax
estimator is that we could not devise a minimax estimator for the binomial
parameter λ, with respect to the square Hellinger distance. The following
proposition follows immediately from the asymptotic analysis of section 6.4
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and shows that the original optimal state estimation problem reduces to the
‘classical’ one of estimating the binomial parameter λ.

Proposition 1. Let λ̂opt be an asymptotically minimax estimator of the bi-
nomial parameter λ under the square Hellinger loss function. The estimators
defined by replacing the ‘add-beta’ estimators for λ in equation (6.40) with λ̂opt

will then be asymptotically minimax optimal for qubit states.

Although we were not able to devise a minimax estimator under the square
Hellinger distance, we would like to make some comments on this problem,
emphasising that it is crucial to study what happens at the boundary when λ≈ 0.
Indeed, for values of λ away from this boundary, the local asymptotic minimax
rate is easily derived as the square Hellinger distance is locally quadratic and
the classical asymptotic efficiency theory [118] applies. The standard estimator
λ̂= k/n is a natural first choice as it is unbiased and achieves the Cramer Rao
lower bound with variance Var(λ̂) = (nI)−1, where I = 1

λ(1−λ) is the Fisher
information. In the region where λ> 0, using a locally quadratic approximation
for the Hellinger risk, we have

EBinom
[
DH(λ, λ̂)2

]
= 1

4λ(1−λ)Var(λ̂)+o(n−1) = 1
4n +o(n−1). (6.55)

This holds for every fixed λ ∈ (0,1/2], and gives the same rate as the one in
the lower bound (6.53). However the convergence is not uniform over λ close
to the zero, which affects the constant in the asymptotic maximum risk. To see
this, consider the case when λ is n dependent such that nλ→ µ, with µ > 0
being a fixed constant. The Hellinger risk is given by

EBinom
[
DH(λ, λ̂)2

]
= EBinom

[(
λ̂1/2−λ1/2

)2
]

+EBinom

[(
(1− λ̂)1/2− (1−λ)1/2

)2
]

.

(6.56)
The second term in the above equation is bounded as

EBinom

[(
(1− λ̂)1/2− (1−λ)1/2

)2]
≤EBinom

[
(λ− λ̂)2

]
/(1−λ) =µ/n2. (6.57)

Substituting (6.57) in (6.56), we have

EBinom
[
DH(λ, λ̂)2

]
= EBinom

[
(λ̂1/2−λ1/2)2

]
+O(n−2) (6.58)

= 1
n
EPo(µ)

[(
K1/2−µ1/2

)2]
+O(n−2) (6.59)
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Figure 6.1 Plots of the Hellinger risk functions R(µ) and RB(µ) for various
values of the ‘true’ Poisson parameter µ. The horizontal blue line marks a
value of 1/4. See main text for details.

In the last equality we used the fact that under the scaling nλ→ µ, the Bino-
mial random variable converges to a Poisson random variable K ∼Po(µ). There-
fore the risk in this case is given by the function R(µ) =EPo(µ)

[(
K1/2−µ1/2

)2]
,

where the expectation is taken with respect to the Poisson distribution with
parameter µ. If this function was bounded such that R(µ) ≤ 1/4, then it
would suggest that the standard estimator λ̂ might be globally asymptotically
minimax. However, plotting the function R(µ) numerically, we see from Figure
6.1 that it attains a maximum value of maxR(µ)≈ 0.455 around µ= 1.11, and
converges to 1/4 for large values of µ which corresponds to λ away from zero.
This shows that the standard estimator doesn’t achieve a minimax constant of
1/4 for all λ, and illustrates that the difficulty in deriving a minimax rate for
the square Hellinger distance lies in the Poisson range, i.e for values of λ such
that nλ→ µ.

As an alternative, we consider the Bayes estimator µ̂1/2
B for µ1/2, and plot

numerically the function RB(µ) :=EPo(µ)

[
(µ̂1/2

B (K)−µ1/2)2
]
. We now describe

the Bayes estimator µ̂1/2
B of the Poisson parameter. It is known that a conjugate
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family for the Poisson model is the Gamma family of priors, i.e

fα,β(t) = tα−1 exp(−t/β)
βαΓ(α) , t > 0, (6.60)

where α,β are the shape and scale parameters respectively. Given an outcome
K = k from the Poisson distribution Po(µ), the posterior distribution is easily
calculated to be Gamma(α+ k, β

β+1). Then the Bayes estimator is of the
following form

µ̂
1/2
B := Γ(k+α+1/2)

Γ(k+α)

(
β

β+1

)1/2
. (6.61)

In Figure 6.1, we plot the ‘frequentist’ risk RB(µ) of the Bayes estimator
for a particular prior with α= 0.41 and β = 200, and a range of ‘true’ values
for µ. We see that the risk remains upper-bounded by a value only slightly
greater than 1/4, and for large values of µ the risk tends to a limiting value of
1/4. This supports the conjecture that the minimax constant for the square
Hellinger distance is 1/4.

6.6 Quantum Relative Entropy

In our derivation of the minimax upper bounds, we bounded the Hellinger
risk of estimating the eigenvalues by the Kullback-Leibler (KL) risk for which
the asymptotic minimax rate is known. As the KL distance is the classical
analogue of the quantum relative entropy S(ρ∥ρ′) = Tr[ρ(logρ− logρ′)], a
question naturally arises - can the techniques used in this chapter be applied
to derive the minimax rate for the Quantum Relative Entropy (QRE)? A key
element would be to decompose the QRE locally. Similar to decomposition of
the Bures distance in (6.11), the QRE risk can be shown to locally decompose
into a sum of contributions from the KL risk and a term involving the ‘rotation
parameters’ . For qubit states, the QRE between the state ρ and the estimate
ρ̂n is represented in terms of the Bloch vectors as [38]

S(ρ∥ρ̂n) = 1
2

[
log (1−|r|2)− log (1−|r̂n|2)+ |r| log

(
1+ |r|
1−|r|

)
(6.62)

−|r|cosΦlog
(

1+ |r̂n|
1−|r̂n|

)]
,
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where Φ is the angle between the Bloch vectors of the two states. This can be
rewritten as

S(ρ∥ρ̂n) = DKL(λ, λ̂n)+ 1−2λ
2 (1− cosΦ)log

1− λ̂n

λ̂n


= DKL(λ, λ̂n)+ 1−2λ

4 (Φ2 +O(Φ4)) log
1− λ̂n

λ̂n

, (6.63)

where DKL(λ, λ̂) is the Kullback-Leibler distance between the two distributions
λ = (λ,1−λ) and λ̂ = (λ̂,1− λ̂), and in the second equality we expanded the
cosine term to leading order in Φ. The proof of this decomposition can be
found in appendix 6.8.4.

We will show that the global estimator discussed in section 6.4 achieves
the rate O(n−1 logn) and no estimator can achieve faster rates, in particular
the ‘standard’ rate n−1. Consider the estimator defined by equations (6.40)
and (6.41), and note that the classical component estimator λ̂n is the minimax
optimal estimator for the binomial model and is always larger than c/n for
some fixed constant c > 0. Using the same arguments as in Theorem 8 we find

sup
ρ

E[DKL(λ, λ̂n)] =O(n−1). (6.64)

On the other hand, since λ̂n ≥ c/n, the second term in equation (6.63) is
bounded by c′ logn(Φ2 +O(Φ4)); since Φ is estimated at standard rate, the
second term is therefore upper bounded as

sup
ρ

E

1−2λ
4 (Φ2 +O(Φ4)) log

1− λ̂n

λ̂n

=O(n−1 logn), (6.65)

which determines the rate.
We will now show that no estimator can have maximum risk converging

faster that n−1 logn. Since we are interested in the maximum risk, we will set
λ= 0 (pure states), and show that the risk cannot decrease faster that n−1 logn
even if we know that the state is pure! As a consequence of local asymptotic
normality, any estimator will have the property that P[1− cosΦ≥ c/n]≥ ϵ for
some constants c,ϵ. Therefore we will consider the contribution to the risk
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conditional on 1− cosΦ≥ c/n. By expanding the DKL(λ, λ̂) term we have

S(ρ∥ρ̂n)≥ log 1
1− λ̂n

+ c

4n log
1− λ̂n

λ̂n

 . (6.66)

However, the righthand side achieves its minimum at λ̂n = c/4n, so the risk
is larger than c′ logn/n. This shows that the minimax risk for the quantum
relative entropy scales as logn/n.

6.7 Conclusion

In this chapter we proposed two adaptive estimators for the qubit mixed
state, one based on local measurements and the other on collective global
measurements. In section 6.2 we upper-bounded the minimax Bures distance
risk for the estimator based on local measurements and showed that it scales as
1/n. In section 6.3, we proposed an estimator based on collective measurements
and used LAN theory to obtain upper and lower bounds for the risk of 3/2n
and 5/4n respectively. A key element in obtaining the upper bounds was the
local decomposition of the Bures risk into contributions from the Hellinger risk
of estimating the eigenvalue, and a quadratic contribution from the risk of
estimating the ‘rotation parameters’. While the contribution to the Bures risk
from the ‘rotation terms’ is easily shown to scale as O(1/n), we noticed that the
difficulty in establishing minimax results for the Bures distance is encapsulated
in the challenges of establishing minimax results for the Hellinger risk. Finally
in section 6.5, we considered these challenges and proposed that a minimax
optimal estimator for the mixed qubit state ρ is immediately obtained given
a minimax optimal estimator for the binomial parameter under the Hellinger
loss function.

We also briefly considered the derivation of minimax bounds for the quantum
relative entropy (QRE) risk. We derived a local decomposition of the QRE
similar to the one obtained for the Bures distance, and demonstrated that the
global estimator proposed achieves a rate of O(n−1 logn). We also showed that
no estimator can achieve faster rates and established that the minimax QRE
risk scales as O(n−1 logn). A possible direction for future work is to extend
the results presented in this chapter to the multi-qubit case.
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6.8 Appendix

6.8.1 Proof of Lemma 5

The proof is a straightforward application of Hoeffding’s inequality.

Theorem 9 (Hoeffding’s inequality). Let R1, . . . ,Rm be independent random
variables with ai ≤Ri ≤ bi. Let S =∑m

i=1Ri, and µ= E[S]. Then for all t > 0

P(|S−µ| ≥ nt)≤ 2exp−2n2t2/
∑

i(bi−ai) . (6.67)

We have Xi ∈ [−1,1], and E∑iXi = ñ
3 rx. Applying Hoeffding’s inequality

we get

P

∣∣∣∣∣ 3ñ∑i

Xi− rx

∣∣∣∣∣
2
≥ t2

≤ 2exp−2t2ñ/3 (6.68)

and similarly for the other spin components. Applying the three inequalities
together, with t2 = n2ϵ2−1 and ϵ2 > 0, we have

P

 ∑
j=x,y,z

|r′
j− rj |2 ≥ 3n2ϵ2−1

≤ 6exp−2ñn2ϵ2−1/3 . (6.69)

The estimate ρ̃ is then the closest state in trace distance to the matrix 1
2(1+

r′ ·σ). As ∥ρ− ρ̃∥21 =∑
i=x,y,z |r̃i− ri|2, (6.69) implies the stated bound.

6.8.2 Expansion of the square Bures distance

Here we derive the expansion (6.11) of the square Bures distance DB(ρ,ρ′)2 :=
2
[
1−

√
F (ρ,ρ′)

]
. We know that for qubits the fidelity between two states can

be expressed in terms of the Bloch vectors as

F (ρ,ρ′) := 1
2

(
1+

√
1−|r|2

√
1−|r′|2 + r · r′

)
= 1

2

(
1+

√
1−|r|2

√
1−|r′|2 + |r||r′|cosΦ

)
(6.70)
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where Φ is the angle between the Bloch vectors. For two sufficiently close states,
the angle Φ is small and the cosine term can be expanded as

F (ρ,ρ′) = 1
2

(
1+

√
1−|r|2

√
1−|r′|2 + |r||r′|− |r||r

′|
2 Φ2 + |r||r

′|
24 Φ4

)

=
(√

(1−λ)(1−λ′)+
√
λλ′

)2
− |r||r

′|
4 Φ2 + |r||r

′|
24 Φ4, (6.71)

where we have use the fact that |r| = 1− 2λ. Therefore the square Bures
distance is given by

DB(ρ,ρ′)2 = 2
[

1−
√(√

(1−λ)(1−λ′)+
√

λλ′
)2
− |r||r

′|
4 Φ2 + |r||r

′|
24 Φ4

]

= 2
[

1−
(√

(1−λ)(1−λ′)+
√

λλ′
)

+ 1
8

|r||r′|√
(1−λ)(1−λ′)+

√
λλ′

Φ2 +O(Φ4)
]

= DH(λ,λ′)2 + 1
4

(1−2λ)(1−2λ′)√
(1−λ)(1−λ′)+

√
λλ′

Φ2 +O(Φ4), (6.72)

where DH(λ,λ′)2 is the square Hellinger distance between the binary distribu-
tions λ = (λ,1−λ) and λ′ = (λ′,1−λ′).

6.8.3 Proof of Theorem 8

Since the first measurement stage is the localisation of the true state by the
estimate ρ̃, we write the risk as a sum of two terms

R(ρ, ρ̂n) = E
[
DB(ρ, ρ̂n)2

]
= P(|r̃| ≤ δ) ·E

[
DB(ρ, ρ̂n)2 | |r̃| ≤ δ

]
+P(|r̃|> δ) ·E

[
DB(ρ, ρ̂n)2 | |r̃|> δ

]
(6.73)

The expectation is taken over the measurement outcomes given the true
state ρ. The final estimate ρ̂n is defined by either (6.39) or (6.41) depending
on the preliminary estimate ρ̃. Specifically, if the estimate ρ̃ is within a ball
of radius δ > 0 of the fully mixed state, we perform standard tomographic
measurements on the remaining copies of the state. The final estimate is then
the maximum likelihood (ML) estimate given by (6.39), while in the other
instance the technology of LAN is utilised and the final estimate is (6.41). In
order to make the difference between the two estimators explicit, we let ρ̂1

n

denote the final estimator in the case when |r̃| ≤ δ and ρ̂2
n be the final estimate
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when |r̃|> δ. Therefore, we have

R(ρ, ρ̂n) = P(|r̃| ≤ δ) ·E
[
DB(ρ, ρ̂1

n)2∣∣ |r̃| ≤ δ
]

+P(|r̃|> δ) ·E
[
DB(ρ, ρ̂2

n)2∣∣ |r̃|> δ
]

= R1 +R2. (6.74)

We consider the contribution to the risk from the term R1 first. Let B1 be a
ball of radius δ+n−1/2+ϵ2 around the centre of the Bloch sphere. When the true
state ρ ̸∈B1, we note that the probability P(|r̃| ≤ δ) goes to zero exponentially
fast in n. This is because the estimate ρ̃ lies within a ball of radius O(n−1/2+ϵ2)
around the true state with high probability (Lemma 5). This along with the
fact that the square Bures distance is bounded as DB(σ,π)≤ 2 for any pair of
density matrices σ,π implies that when ρ ̸∈B1, the term R1 can be neglected.
However, when ρ ∈B1, the term R1 has a non zero contribution and is written
as

R1 =
 E

[
DB(ρ, ρ̂1

n)2
∣∣∣ |r̃| ≤ δ] ·P(|r̃| ≤ δ) , ρ ∈B1

o(1) ρ /∈B1
(6.75)

The term R2 can be treated similarly. Let B2 be a ball of radius δ−n−1/2+ϵ2

around the centre of the Bloch sphere. As the probability P(|r̃| > δ) decays
exponentially if ρ ∈B2, the term R2 is relevant only when ρ ̸∈B2 R2 = E

[
DB(ρ, ρ̂2

n)2
∣∣∣ |r̃|> δ

]
·P(|r̃|> δ) , ρ ̸∈B2

o(1) ρ ∈B2
(6.76)

Substituting (6.75), (6.76) in (6.74) we see that the minimax risk is bounded
from above as

limsup
n→∞

sup
ρ

nR(ρ, ρ̂n)≤ limsup
n→∞

max
{

sup
ρ∈B1

nE
[
DB(ρ, ρ̂1

n)2
∣∣∣ |r̃| ≤ δ] ,

sup
ρ ̸∈B2

nE
[
DB(ρ, ρ̂2

n)2
∣∣∣ |r̃|> δ

]}
(6.77)

Case 1 : ρ ∈B1 and |r̃| ≤ δ
We now evaluate the risk when the state ρ is in B1 while the estimate ρ̃ is

within a ball of radius δ > 0 around the fully mixed state. The final estimate ρ̂1
n

is the ML estimate and given by (6.39). The outcomes from the n/3 repeated
measurements in a setting σi are i.i.d, this implies that the ML estimate
of the Bloch vector parameters rx, ry, rz from the outcomes of the standard
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tomographic measurements are asymptotically Gaussian in distribution

lim
n→∞

√
n(r̂i− ri) =N (0, I(ρ)−1), i= x,y,z (6.78)

where the covariance matrix is the inverse of the Fisher information matrix
I(ρ). The elements of the matrix I(ρ) are defined for each i, j ∈ {x,y,z} as

I(ρ)i,j = 1
(1+ ri)(1− ri)

δi,j . (6.79)

The local expansion of the square Bures distance for states away from the
boundary of the Bloch sphere is quadratic in the Bloch vector components

DB(ρ, ρ̂1
n)2 = (r− r̂)TG(r− r̂)+O(∥r− r̂∥3), (6.80)

where G is the weight matrix of the square Bures distance

Gj,k := 1
4

(
1+ r2

i

(1−|r|2)

)
δj,k. (6.81)

The asymptotic behaviour of the ML estimator (6.39) together with this local
expansion of the square Bures distance, implies that the risk of the ML estimate
scales as follows for large n

E
[
DB(ρ, ρ̂1

n)2
]

= 1
n

Tr
(
I(ρ)−1G

)
+o(n−1) (6.82)

It is easy to see that I(ρ)≥ 1, and therefore we have that asymptotically the
minimax Bures risk is upper bounded by

limsup
n→∞

sup
ρ∈B1

nE
[
DB(ρ, ρ̂1

n)2
]
≤ 3

4

(
1+ δ

1− δ

)
(6.83)

where we used the fact that |r| ≤ δ+O(n−1/2+ϵ2).

Case 2 : |r̃|> δ, ρ ̸∈B2

We now consider the case when ρ̃ is away from the fully mixed state. Since
the state ρ̃ is within the ball of radius O(n−1/2+ϵ2) of the true state ρ ̸∈ B2,
we consider the local parametrisation of the states θ = (λ,w), and perform
the secondary measurements on the joint state ρθ

n = ρ⊗n
θ of n qubits. Using the
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approximation of the square Bures distance in (6.11), the risk is expressed as

E
[
DB(ρ, ρ̂2

n)2
]

= E

DH(λ, λ̂n)2 + 1
4

(1−2λ)(1−2λ̂)(√
(1−λ)(1− λ̂n)+

√
λλ̂n

)Φ2

+O(n−2)

≤ E
[
DH(λ, λ̂n)2

]
+ 1
n
E
[
(u− ûn)2 +(v− v̂n)2

]
+O(n−2).

(6.84)

The second term on the right corresponding to the rotation parameters has
been evaluated in [57]. Since LAN holds in the limit of large n, the problem
of estimating the rotation parameters is translated to one of determining
the displacement of a Gaussian state ϕw. The heterodyne measurement is
known to be the optimal measurement in this case [57, 59]. The estimation
of these parameters is described in detail in [57], and here we only note that
both E

[
(u− ûn)2

]
and E

[
(v− v̂n)2

]
are bounded from above by (1−λ)/(2(1−

2λ)2)≤ 1/2. Substituting these values, the minimax risk becomes

limsup
n→∞

sup
ρ ̸∈B2

nR(ρ, ρ̂2
n) = limsup

n→∞
sup

θ
nE

[
DB(ρ, ρ̂2

n)
]

≤ limsup
n→∞

sup
λ
nE

[
DH(λ, λ̂n)2

]
+1. (6.85)

The minimax risk is upper bounded by 1 plus the minimax risk of the square
Hellinger distance. We now deal with this term. The expectation is taken over
the probability distribution pn,λ(j) defined in equation (6.27),

E
[
DH(λ, λ̂n)2

]
=

n/2∑
j=0,1/2

DH(λ, λ̂n(j))2Bn,λ(n/2− j)×K(j,n,λ)

≤
n/2∑

j=0,1/2
DH(λ, λ̂n(j))2Bn,λ(n/2− j)×|1−K(j,n,λ)|

+
n/2∑

j=0,1/2
DH(λ, λ̂n(j))2Bn,λ(n/2− j) = E1 +E2.(6.86)

We now consider the term E1 separately. We split the sum in E1 over the
values of j ∈ Jn, and j ̸∈ Jn, where Jn is interval defined in (6.30). Thus, we
have
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E1 =
∑

j∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)×|1−K(j,n,λ)|

+
∑

j ̸∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)×|1−K(j,n,λ)|

≤ max
j∈Jn

|1−K(j,n,λ)|
∑

j∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)

+max
j ̸∈Jn

|1−K(j,n,λ)|
∑

j ̸∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)

≤ O(n−1/2+ϵ3)
∑

j∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)

+max
j ̸∈Jn

|1−K(j,n,λ)|
∑

j ̸∈Jn

2Bn,λ(n/2− j). (6.87)

In the last inequality, we used the fact that K(j,n,λ) = 1 +O(n−1/2+ϵ3)
on the values of j ∈ Jn, and that DH(p,q)2 ≤ 2 for any pair of probability
distributions p,q. The value maxj ̸∈Jn |1−K(j,n,λ)| is uniformly bounded for
λ away from 1/2. This along with the fact that the mass of the binomial
distribution Bn,λ(n/2− j) is concentrated on values of j ∈ Jn implies that the
second term in (6.87) goes to zero exponentially fast in n. Therefore,

E1 ≤O(n−1/2+ϵ3)
∑

j∈Jn

DH(λ, λ̂n(k))2Bn,λ(k). (6.88)

Substituting this back in (6.86), we have that the Hellinger risk is upper
bounded by

E
[
DH(λ, λ̂n)2

]
≤ O(n−1/2+ϵ3)

∑
j∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)

+
n/2∑

j=0,1/2
DH(λ, λ̂n(j))2Bn,λ(n/2− j)

≤ O(n−1/2+ϵ3)
n∑

k=0
DH(λ, λ̂n(k))2Bn,λ(k)+

n∑
k=0

DH(λ, λ̂n(k))2Bn,λ(k)

=
(

1+O(n−1/2+ϵ3)
)
EBinom

[
DH(λ, λ̂n(k))2

]
(6.89)

≤
(

1+O(n−1/2+ϵ3)
)
EBinom

[
DKL(λ, λ̂n(k))

]
. (6.90)

In the second line we expand the sums over the entire support of the binomial
distribution k ∈ {0, . . . ,n}, and let EBinom mark expectation with respect to the
binomial distribution. The last inequality employs the inequality between the
square Hellinger distance and the Kullback–Leibler (KL) distance, defined as
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DKL(p,q) := p log p
q +(1−p) log 1−p

1−q . Substituting (6.90) in (6.85), and noting
that the ‘add-beta’ estimator λ̂n was defined in (6.40) over the full support, we
have

limsup
n→∞

sup
ρ̸∈B2

nR(ρ, ρ̂2
n)≤ limsup

n→∞
sup

λ
nEBinom

[
DKL(λ, λ̂n)

](
1+O(n−1/2+ϵ3)

)
+1

≤ 1
2 +1. (6.91)

The rate follows from the fact that the ‘add beta’ estimator of the binomial
parameter, defined in equation (6.40), is known to be asymptotically minimax
for the KL risk, achieving the rate 1

2n(1+o(1)) [22, 23]. Comparing this rate
with the one in (6.83), we see that 3/2 is the larger value provided δ < 1/2.
This gives the upper bound stated in Theorem 8.

6.8.4 Expansion of Quantum Relative Entropy

We derive the expansion of the quantum relative entropy S(ρ∥ρ′) = Tr[ρ(logρ−
logρ′)]. For qubits the relative entropy between two states can be expressed in
terms of the Bloch vector components as

S(ρ∥ρ′) = 1
2

[
log (1−|r|2)− log (1−|r′|2)+ |r| log

(
1+ |r|
1−|r|

)
(6.92)

−|r|cosΦlog
(

1+ |r′|
1−|r′|

)]
,

where Φ is the angle between the Bloch vectors of the two states. For sufficiently
close states, the angle Φ is small and the cosine term in the above equation
can be expanded as

S(ρ∥ρ′) = 1
2

[
log (1−|r|2)− log (1−|r′|2)+ |r| log

(
1+ |r|
1−|r|

)
(6.93)

−|r| log
(

1+ |r′|
1−|r′|

)]
+ |r|4 (Φ2 +O(Φ4)) log

(
1+ |r′|
1−|r′|

)
.

Using the fact that |r|= 1−2λ and simplifying, we get
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S(ρ∥ρ′) = 1
2

[
log

(
λ(1−λ)
λ′(1−λ′)

)
− (1−2λ) log

(
λ(1−λ′)
λ′(1−λ)

)]

+ |r|4 (Φ2 +O(Φ4)) log
(

1+ |r′|
1−|r′|

)

= λ log
(
λ

λ′

)
+(1−λ) log

(
1−λ
1−λ′

)
+ 1−2λ

4 (Φ2 +O(Φ4)) log
(

1−λ′

λ′

)
(6.94)

=DKL(λ,λ′)+ 1−2λ
4 (Φ2 +O(Φ4)) log

(
1−λ′

λ′

)
, (6.95)

where DKL(λ,λ′) is the Kullback-Leibler distance between the two distributions
λ = (λ,1−λ) and λ′ = (λ′,1−λ′).



Chapter 7

Comparison of estimation methods in quan-
tum state tomography: a simulation study

7.1 Introduction

In previous chapters we considered estimation schemes such as simple linear
inversion and maximum likelihood with standard full tomography in chapter
2, ‘compressive’ tomography with incomplete measurements in chapter 4, 5,
adaptive tomography with local and collective measurement designs in chapter 6.
In this chapter we consider finite dimensional full state tomography in the case
of composite systems such as trapped ions. This is the by now familiar multiple
ions tomography (MIT) setup from earlier chapters. As before, we consider two
measurement designs in the MIT setup - the Pauli bases measurements and
the more general random bases measurements. The tomographic procedure
involves repeating each measurement on identical copies of the state, resulting
in a dataset of outcome counts from which the density matrix is reconstructed.
Since the measurements are performed on n copies of the state, and no evolution
of the state is assumed, the tomographic problem can be recast as a classical
parameter estimation problem familiar in statistics, where the parameters of
the density matrix are to be determined. Several familiar and well-studied
estimators can be employed for this purpose. In chapter 2 we introduced
examples of two such estimators - the Least Squares Estimator (LSE) and the
commonly used Maximum Likelihood Estimator (MLE).

The various estimators in general produce differing estimates of the state,
and we may wish to determine which estimation strategy is ‘best’. An obvi-
ous method of comparing the performance of estimators is in terms of their
estimation errors for a given state and measurement design. These errors may
be quantified in terms of various loss functions such as the Frobenius norm,
trace norm and the fidelity based Bures distance, which measure the ‘distance’
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between the true state and the estimates. Since these estimates necessarily
depend on the counts data obtained from the experiment, it is common to
consider the expected loss (or risk) of an estimator, where the expectation is
taken with respect to all possible outcome datasets.

In the case of certain efficient estimators, asymptotic theory informs us
that their risk achieves the Cramér-Rao lower bound (CRLB) in the limit
n→∞, and they are therefore ‘optimal’ for sufficiently large n. The MLE is
known to be asymptotically optimal in this sense, and its risk decreases at a
rate of O(1/n) for most states. However, as we have seen in chapter 3 and
6, this asymptotic theory does not meaningfully apply when the underlying
parameters are close to the boundary of the parameter space. In terms of
the density matrix, this means that for states of high purity and very small
eigenvalues, such estimators cannot be said to be ‘optimal’. Additionally, since
in experiments only a finite number of copies of the state are available as a
resource, it is not immediately clear what the implications of asymptotic theory
are in practice. For instance, estimators that are asymptotically unbiased may
not be so for finite n [106].

An additional difficulty arises from the fact that the performance of estima-
tors can be studied in terms of several different loss functions, and therefore
the answer to the question of how well an estimator performs depends on this
choice. These loss functions usually satisfy certain smoothness conditions and
are locally quadratic for most states. However, as we have seen in chapters 3, 5
and 6, the fidelity based loss functions are not quadratic near the boundary,
while other loss functions such as the Frobenius norm continue to be so. This
implies that for states near the boundary ‘efficient’ estimators can be shown to
achieve the CRLB in terms of Frobenius norm but the asymptotic theory is
not valid for fidelity based loss functions [106]. This feature at the boundary is
known to give rise to a poor scaling of O(1/

√
n) of the risk for fidelity based

loss functions [89].
The aim of this chapter is to better understand and compare tomographic

estimators in a systematic way. To this end we present results from an extensive
and systematic simulation study comparing the performance of several estima-
tors across a range of different variables - types of states, ranks, measurement
design, number of copies of the state as a resource and the number of qubits.
Along with the commonly used and well studied estimators like the MLE, a
few new estimators are introduced and their performance investigated. We
quantify the errors of the estimators in terms of several loss functions such as
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the Bures distance, trace and Frobenius norms. We analyse and interpret the
simulation results, highlighting the performance of the estimators for states near
the boundary of the parameter space and their differing behaviour across the
several loss functions. The performance of all of the estimators are studied in
both the asymptotic regime with large n, and realistic values of n typically used
in tomographic experiments [62]. Along with the numerical results presented
in this chapter we introduce two web-based applications that makes available
all of the estimators studied here for use online. These applications will allow
the user to reproduce the results presented here, and more importantly they
enable the user to perform their own simulations with arbitrary states, and
thus complement the results presented in this chapter.

The chapter is structured in the following way. In section 7.2 we begin with
a brief review of the MIT setup and introduce the tomographic problem. In
section 7.3 we define all of the estimators considered in the simulation study.
These include commonly used estimators such as the LSE, MLE, positive LSE
along with some new estimators such as the Thresholded Generalised Least
Squares (TGLS) and the Positive Generalised Least Squares (PGLS) estimators.
We then define the Fisher information matrix and review the essential results
of asymptotic theory in section 7.4. In sections 7.5 and 7.6 we describe, present
and analyse the results of the simulation study. Finally in section 7.7 we
introduce and demonstrate the web-based applications.

7.2 A review of multiple ions tomography

In the MIT setup, the aim of quantum tomography is to estimate an unknown
state of N ions from the outcomes of measurements performed on identically
prepared systems. Let ρ∈ Sd be the density matrix associated with the unknown
state, where d= 2N is the dimension of the associated Hilbert space Hd. We
consider measurements of two types - the standard tomographic measurements
in the Pauli basis, and measurements that are drawn randomly from the
uniform measure over orthonormal bases (ONB). In the case of the Pauli
basis, one measures an arbitrary Pauli observable σx,σy,σz on each of the N
ions simultaneously. Therefore, each measurement is labelled by a sequence
s = (s1, . . . , sN ) ∈ {x,y,z}N , and there are 3N possible measurement bases. In
the uniformly random measurement set up, a measurement can be implemented
by first rotating the state ρ by a random unitary U ∈M(Cd), after which each
ion is measured in the σz eigenbasis.
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Let S = {s1, . . . ,sk} be the measurement design consisting of k measurement
settings. In the case of the Pauli set up the total number k = 3N , while in the
random measurement setup the number of settings measured can be chosen
freely. A measurement in a particular setting produces a ±1 outcome from
each ion, and we let o ∈ {+1,−1}N be a vector record of outcomes from each
of the N ions. The probability of obtaining a particular outcome o is given by
pρ(o|s) := Tr(ρP s

o), where the one-dimensional projection matrix is given by

P s
o = |es1

o1⟩⟨e
s1
o1|⊗ . . .⊗|e

sN
oN
⟩⟨esN

oN
|. (7.1)

For each setting s, measurements are repeated on m identical copies of the
state, and the counts of the outcomes N(o|s) are recorded, where N(o|s)
represents the number of times a given outcome record o is observed given
that measurements were performed in a chosen setting s. The total number
of quantum samples used is therefore n=m×k. The resulting dataset D of
counts is a 2N ×k table whose columns are independent and contain all the
counts in a given setting. The probability of observing a given dataset of counts
is given by the product of multinomials

pρ(D|S) =
∏
s

m!∏
oN(o|s)!

∏
o
pρ(o|s)N(o|s) (7.2)

Our goal is the statistical reconstruction of the density matrix from this dataset
of counts. As described in the introduction, there are many estimators known
in the literature for this purpose, and in this chapter we consider several of the
more commonly used estimators. We also introduce and define new estimators
such as the Threshold Generalised Least Squares (TGLS) and the Positive
Generalised Least Squares (PGLS).

7.3 Estimators

7.3.1 Maximum Likelihood (ML)

We describe the estimators considered over the next few subsections, and begin
with the commonly used Maximum Likelihood Estimator (MLE)

ρ̂ML := argmax
τ∈Sd

pτ (D|S), (7.3)
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where the minimisation is over the space of d×d density matrices. It is more
common and convenient to maximise the natural logarithm of the likelihood
function instead. Discarding the constant factorial terms in (7.2), we have the
following form of the estimator

ρ̂ML := argmax
τ∈Sd

∑
o,s
N(o|s)pτ (o|s). (7.4)

The MLE is commonly used in quantum tomography [13, 19, 71, 101, 50],
with several methods proposed in the literature such as the iterative algorithm
proposed by Hradil [101]. We leave a discussion of our specific implementation
until a later section. The MLE is known to possess certain desirable statistical
properties. Specifically, under certain regularity conditions it is known to be
asymptotically normal, meaning that in the limit of large m it has a Gaussian
distribution with covariance matrix given by the inverse of the classical Fisher
information matrix [118, 61]. While this is true for most states ρ ∈ Sd, the
asymptotic theory does not hold for states at the boundary of Sd, and as we
shall see in a later section this is because the MLE is constrained to produce
only state estimates, while the maximum of the likelihood may lie outside
the convex space Sd. Anticipating a later discussion we note that as long as
pρ(o|s)> 0 for all o,s the asymptotic theory does apply for the ‘unconstrained’
version of the MLE, where the estimates are not constrained to lie in Sd [61].

7.3.2 Least Squares (LS)

There are a number of techniques that can be used to estimate the state from
the outcome statistics in the dataset. An example of such a method is the linear
Least Squares (LS) estimator [95, 25]. To better describe the linear estimation
problem, we consider the true probability vector

y = (p(o1|s1), . . . ,p(od|s1), . . . . . . ,p(od|sd))T ∈ Rkd. (7.5)

In the standard basis, each element of this vector can be expressed in terms of
the density matrix elements and the corresponding one-dimensional projections
as

p(o|s) = 2
∑
j>i

Re(ρij)Re(P s
o)i,j +2

∑
j>i

Im(ρij)Im(P s
o)i,j +

d∑
i

ρii(P s
o)i,i (7.6)
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We now choose to parameterise the state by the elements of the density matrix
ρ that appear in the above equation. Let β ∈ Rd2 be a vector of parameters
defined as

β :=
(
Reρ1,2, . . . ,Reρd−1,d, Imρ1,2, . . . , Imρd−1,d,ρ1,1, . . . ,ρd,d

)T
. (7.7)

With this choice of parameterisation (7.6) can be expressed as an inner product
between vectors p(o|s) =X(o|s)T β, where

X(o|s)T :=
(
2Re(P s

o)1,2, . . . ,2Re(P s
o)d−1,d,2Im(P s

o)1,2, . . . ,

2Im(P s
o)d−1,d,(P s

o)1,1, . . . ,(P s
o)d,d

)
.

This notion allows us to express the tomographic system of equations in matrix
form as

y =Xβ, (7.8)

where X is a kd×d2 matrix whose rows are given by X(o|s)T for each pair of
outcome o and setting s. In an experimental set up, we do not have access to
the true probability vector. Instead from the d×k dataset of counts, we have
access to the empirical probabilities f(o|s) :=N(o|s)/m, whose expectations
are Ef(o|s) = p(o|s). Replacing the probability vector y by the vector of
empirical frequencies we have

f =Xβ +ϵ, (7.9)

where ϵ ∈ Rdk is a mean zero vector of statistical noise. The least-squares
solution to the above system of equations is defined as the minimizer of the
following optimisation problem

β̂ := arg min
τ∈Rd2

∥f −Xτ∥2, (7.10)

and has the well known explicit form β̂ = (XTX)−1 ·XT ·f . The final estimate
of the density matrix ρ̂LS is then constructed from the estimated parameter
vector β̂. We note that the least squares estimator produces an estimate that
is not necessarily a density matrix.
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7.3.3 Generalised Least Squares (GLS)

The error term in equation (7.9) is such that given the measurements design S it
has mean zero E [ϵ|S] = 0, and a covariance matrix we denote as Cov [ϵ|S] = Ω.
The covariance is not a diagonal matrix because for each given measured setting
s, the errors corresponding to the d possible outcomes are correlated. However,
as the outcomes from different settings are independent, Ω is a dk×dk block
diagonal matrix where each block is given by the d×d covariance matrix for a
given setting s

Cov[ϵs|s] =

p(oi|s)(1−p(oi|s)), i= j

−p(oj |s)p(oj |s), i ̸= j.
(7.11)

In a situation where there is correlation in the error terms and the covariance
matrix Ω is known beforehand, it is more natural to consider the Generalised
Least Squares (GLS) [12] over the ordinary Least Squares (LS) estimator

β̂GLS = arg min
τ∈Rd2

(f −Xτ)T Ω−1 (f −Xτ) (7.12)

= arg min
τ∈Rd2

∥Ω−1/2 (f −Xτ)∥2, (7.13)

which has the following explicit form

β̂GLS = (XTX)−1XT Ω−1f . (7.14)

The GLS estimator is known to be unbiased, efficient and asymptotically
normal [12]

√
m(β̂GLS−β)→N

(
0,(XT Ω−1X)−1

)
. (7.15)

However in practice the covariance matrix is unknown since it depends on the
true probabilities determined by the unknown state ρ. We therefore propose
to use an estimate Ω̂ of the covariance matrix instead. We shall describe the
computation of this estimate in a later section. In addition to this difficulty, the
matrix Ω as defined is singular due the fact that for each setting the frequencies
are constrained to sum to one ∑o f(o|s) = 1, and the system of equations (7.9)
is overdetermined. This is easily remedied by removing one equation for each
setting from the linear system. Let f̃ be a truncated vector of frequencies,
where for each setting s a randomly selected row corresponding to one outcome
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is omitted. For example we may have

f̃ = (f(o2|s1), . . . ,f(od|s1),f(o1|s2),f(o3|s2), . . . ,f(od−1|sd))T ∈ Rkd−k.

(7.16)
Similarly let X̃ and ϵ̃ be truncated versions of the design matrix and error
vector such that f̃ = X̃β + ϵ̃. Also let Ω̃ = Cov[ϵ̃|S]. The GLS estimate is now
given by

β̂GLS = (X̃T X̃)−1X̃T ( ˆ̃Ω)−1f̃ , (7.17)

where ˆ̃Ω is the estimated truncated covariance matrix. We denote ρ̂GLS as
estimate of the density matrix constructed from its vectorised form β̂GLS.

7.3.4 Thresholded Least Squares (TLS)

The LSE suffers from the disadvantage that it does not necessarily produce a
density matrix, i.e, a positive semi-definite estimate of trace one. Additionally
as pointed out in [25], the LS estimator does a poor job of estimating zero
eigenvalues of the true state, and may estimate them as negative, while it
estimates the large non-zero eigenvalues fairly well. The Thresholded Least
Squares (TLS) estimator proposed in [25], improves the LS estimate ρ̂LS by
setting the eigenvalues of ρ̂LS that are below a certain statistical noise threshold
to zero and rescaling the remaining eigenvalues so that they sum to one. The
resulting estimate is therefore a density matrix. The choice of the statistical
noise threshold is informed by the accuracy of the LS estimate, and a theoretical
choice for this threshold is detailed in [25, 26]. The following algorithm 2
describes the thresholding and rescaling of the eigenvalues of the LS estimate.

The algorithm takes as its input the eigenvalues of the normalised LS
estimate ρ̂LS/Tr(ρ̂LS) sorted in descending order. Then beginning with the
smallest eigenvalue, the algorithm checks if it is above the noise threshold. If
so, then the TLS estimate is simply ρ̂TLS = ρ̂LS/Tr(ρ̂LS). On the other hand
if the eigenvalue is below the threshold, it is set to zero and the remaining
eigenvalues are suitably rescaled. The algorithm then iteratively checks each
of the remaining eigenvalues in ascending order. The final estimate ρ̂TLS

is constructed by replacing the eigenvalues of ρ̂LS with these thresholded
eigenvalues. Constructed in this way ρ̂TLS is the closest state to the normalised
LS estimate with positive (non-zero) eigenvalues larger than ν.
The noise threshold ν in the above procedure depends on the LS estimate ρ̂LS.
Specifically, this threshold is proportional to an upper bound on the operator
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Algorithm 2: Algorithm to threshold the eigenvalues of the LS estimate
Input : Eigenvalues of ρ̂LS/Tr(ρ̂LS) sorted in descending order

λ̂1 ≥ . . .≥ λ̂d, and noise threshold ν
Output : Eigenvalues of thresholded estimate ρ̂TLS

1 for p= 1, . . . ,d do
2 if λ̂d−p+1 ≥ ν then
3 STOP;
4 else
5 λ̂d−p+1← 0;

for j = 1, ...,d−p do
6 λ̂j ← λ̂j + 1

d−p

(
1−∑d−p

m=1 λ̂m

)
7 end
8 end
9 end

norm error of the LS estimate. Let ν := Cµ, where ∥ρ̂LS−ρ∥ ≤ µ, and C is an
absolute constant. In [25, 26], for the case of the standard tomographic setup
and Pauli bases measurements, this upper bound µ is shown to be proportional
to
√

4
m log2N+1. In practice, we use cross validation to choose the value of this

constant C, and therefore of the noise threshold ν from the data. We describe
this cross validation procedure in section 7.5.2.

7.3.5 Thresholded Generalised Least Squares (TGLS)

This estimator is obtained by using the GLS estimate ρ̂GLS instead of the LS
estimate as a starting point for the thresholding procedure. The constant for
thresholding is chosen in the same way by cross validation.

7.3.6 Positive Least Squares (PLS)

The Positive Least Squares (PLS) estimator is the restriction of the minimisation
in (7.10) to hold only over τ ∈ Rd2 that correspond to density matrices. Let us
define the map X :M(Cd) 7→ Rkd that is a one-to-one map from the space of
Hermitian matrices to Rdk. For a given outcome o and setting s the map is
defined by

(X (A))o,s = Tr[AP s
o ] A ∈M(Cd). (7.18)

Therefore X maps the density matrix ρ ∈ Sd to its vector of probabilities y. If
we parameterise the state ρ by the vector β as in (7.7), then the map X can be
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expressed in matrix notation and is precisely the design matrix X. The PLS
estimator is defined in terms of this map as

ρ̂PLS = arg min
τ∈Sd

∥X (τ)−f∥2. (7.19)

7.3.7 Positive Generalised Least Squares (PGLS)

This is defined in much the same way as the PLS estimator and is a restriction
of the minimisation in (7.13) to hold only over parameters that produce density
matrices. In keeping with the discussion in the section 7.3.3, we consider the
truncated frequency vector f̃ as in (7.16), and a correspondingly truncated map
X̃ : Sd 7→ Rkd−k. The Positive Generalised Least Squares (PGLS) estimator is
defined as

ρ̂PGLS = arg min
τ∈Sd

∥ ˆ̃Ω−1/2
(
X̃ (τ)− f̃

)
∥2. (7.20)

7.4 The Fisher information matrix

As we will be interested in the performance of the estimators for reasonably
large values of m, it is meaningful to consider the Fisher information matrix
and the implications of asymptotic theory. For reasonably large values of m,
the estimates of ‘good’ estimators lie in a local neighbourhood around the true
state, and therefore for practical purposes we may study the estimation errors
only in terms of a local parameterisation of states. Let us denote θ ∈Θ to be a
vector of local parameters such that ρ≡ ρθ, with Θ being an open set and the
parameter θ varying smoothly. We shall make this choice of parameterisation
explicit shortly. The square Frobenius norm can be locally expanded in such
parameters as

∥ρθ−ρθ+δθ∥2F = (δθ)TGF (θ)(δθ)+O(∥δθ∥2), (7.21)

where GF (θ) is a positive and constant weight matrix. It is known that
estimators such as the MLE (under certain conditions) are efficient, meaning
that for sufficiently large m and values of θ within the parameter space, such
estimators have a Gaussian distribution [118]

√
m(θ̂−θ)≈N (0, I(θ)−1), (7.22)
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where the covariance matrix I(θ)−1 is the inverse of the classical Fisher in-
formation matrix. The Fisher matrix depends on both the parameterisation
and the measurement design. In particular (7.22) together with the locally
quadratic expansion (7.21) gives

√
mE

[
∥ρθ−ρθ̂∥

2
F

]
≈ Tr

[
GF (θ)I(θ)−1

]
(7.23)

for such efficient estimators and reasonably large m. The right side of the above
equation shows that the asymptotic mean square error can be characterised in
terms of Fisher information, and in general this quantity serves as a meaningful
lower bound on the mean errors in the limit of large m. Therefore we shall
compare the performance of the estimators introduced in the previous sections
against this theoretical ‘benchmark’ quantity.

In order to define the Fisher information matrix in the MIT setup, we
first need to choose a local parametrisation of states. Let us assume that
the unknown state ρ belongs to the space of rank r states Sr ⊂M(Cd), for a
fixed rank r ≤ d. In its own eigenbasis ρ is the diagonal matrix of eigenvalues
Diag(λ1, . . . ,λr,0, . . . ,0), and any sufficiently close state is uniquely determined
by its matrix elements in the first r rows (or columns). Intuitively this can be
understood by noting that any rank-r state ρ′ in the neighbourhood of ρ can
be obtained by perturbing the eigenvalues and performing a small rotation of
the eigenbasis; in the first order of approximations these transformation leave
the (d− r)× (d− r) lower-right corner unchanged so

ρ′ =


Diag(λ1, . . . ,λr) 0

0 0

+


∆diag ∆off

∆†
off O(∥∆∥2)

 . (7.24)

We therefore choose the (local) parametrisation ρ′ = ρθ with

θ :=
(
θ(d);θ(r);θ(i)

)
(7.25)

= (ρ′
2,2, . . . ,ρ

′
r,r ;Reρ′

1,2, . . . ,Reρ′
r,d; Imρ′

1,2, . . . , Imρ′
r,d) ∈ R2rd−r2−1,

where, in order to enforce a trace-one normalisation, we constrain the first
diagonal matrix element to be ρ′

1,1 = 1−∑d
i=2 ρ

′
i,i. With this parameterisation

fixed, the classical Fisher information associated with a single chosen setting s
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is defined as

I(ρ|s)a,b :=
∑

o:p(o|s)>0

1
pρ(o|s)

∂pρ(o|s)
∂θa

· ∂pρ(o|s)
∂θb

. (7.26)

For a set S of k settings the Fisher information matrix associated with a single
measurement sample from each setting s∈S is given by the sum of the individual
Fisher matrices I(ρ|s), and we denote the average I(ρ|S) = 1

k

∑
s∈S I(ρ|s). The

individual matrices can be computed by using definition (7.26) together with
the parametrisation (7.25). With the Fisher information thus defined, we can
express the mean square error (7.23) more concretely as

MSE := E
[
∥ρ− ρ̂∥2F

]
≈ 1
n

Tr(I(ρ|S)−1G). (7.27)

It is worth noting some important aspects of the Fisher information matrix
as we define it here. Firstly, since we choose to parameterise a local rank-r
neighbourhood of the true state, the asymptotic MSE defined by (7.27) should
be thought of as characterising the performance of estimators that have prior
knowledge of the rank of the state. Whereas both in experiments as well as in
our simulations the true rank of the state is unknown. Secondly we note that
the chosen parametrisation is not constrained by the positivity of the states.
This means that while the state ρ may be close to the boundary of the positive
semi-definite cone of matrices, the parameters θ need not necessarily be close
to the boundary of the parameter space Θ.

7.5 Numerical simulations

In this section we detail the simulation study, and begin by describing the
various states and variables of the study. The performance of the estimators
presented in the previous sections are compared for two categories of states. The
first category of states we consider are equal eigenvalue rank-r states. These
states have a fixed eigenvalue spectrum of r equal eigenvalues of magnitude
1/r each, and have randomly generated eigenvectors. The performance of the
estimators is compared for such states for all ranks r = 1, . . . ,d. The reason
for choosing such states is that we expect them to be representative of the
behaviour of rank-r states and to have relatively large errors amongst states of
rank r. Additionally, having such a fixed spectrum allows for a more consistent
comparison of the estimators across several ranks. The second category of
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Error function Definition

Square Frobenius norm DF (ρ̂,ρ) := ∥ρ̂−ρ∥2F = Tr[(ρ̂−ρ)∗(ρ̂−ρ)]

Trace norm DTr(ρ̂,ρ) := ∥ρ̂−ρ∥1 = Tr
[√

(ρ̂−ρ)∗(ρ̂−ρ)
]

Bures distance DB(ρ̂,ρ) :=
√

2
(
1−Tr

[√√
ρρ̂
√
ρ
])1/2

Hellinger distance DH(λ̂,λ) :=
√

2
(

1−∑d
i

√
λ̂iλi

)1/2

Table 7.1 The different error functions used. The Bures distance is defined only
for states ρ̂,ρ ∈ Sd, and its classical analogue the Hellinger distance is defined
between two probability distributions.

states we consider are ones of fixed rank and spectrum, such as the GHZ state,
and states with decaying eigenvalue spectrums.

We generate the above mentioned states for 3 or 4 qubits, and for a particular
‘true state’ we simulate a dataset D of counts from which the state is to be
reconstructed. The outcome statistics depend on a few variables that we may
vary, namely the type of measurement design (random basis vs Pauli), the
number of repetitions per settings m, and in the case of the random basis
measurements the total number of settings measured k. This allows us to
study the performance of the estimators across several different combinations
of variables - types of states, ranks, measurement design, number of repetitions
per setting m, the total number of settings k and the number of ions N .

7.5.1 Error/Loss functions

Let us denote the mean error (or risk) of an estimator ρ̂ as E [D(ρ̂,ρ)], where
D(ρ̂,ρ) represents the choice of error function. In the simulation study we
estimate this mean error for several choices of the error function D(ρ̂,ρ), which
are tabulated in Table 7.1. We would like to note that the Bures distance is
defined only over the space of density matrices, and therefore applies only in
the case where the estimates ρ̂ are certifiably states. The classical analogue
of the Bures distance is the Hellinger distance, which is defined between two
probability distributions. We shall have reason to explain the behaviour of
the square Bures distance of the estimators DB(ρ̂,ρ)2 in terms of the square
Hellinger distance between their eigenvalues DH(λ̂,λ)2.
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7.5.2 Implementation of the estimators

We now list certain practical details about the implementation of the estimators
described in the previous sections. In particular we discuss how we estimate
the covariance matrix ˆ̃Ω used in the GLS, TGLS, PGLS estimators, and we
also describe the cross-validation procedure we use to select a constant C for
the thresholded in the TLS and TGLS estimators.

1. The estimate of covariance matrix ˆ̃Ω for the generalised estimators (GLS,
TGLS and PGLS) is computed from the data in the following way. For
the a given dataset of counts D, we first obtain the LS estimate ρ̂LS and
then construct the TLS estimate (see Algorithm 2) with threshold ν = 0.
From this we obtain an estimate of the probabilities p̂(o|s) = Tr[ρ̂TLSP

s
o ].

The matrix ˆ̃Ω is then constructed from these estimated probabilities via
(7.11). The generalised estimates (GLS/TGLS/PGLS) are then evaluated
using ˆ̃Ω and the same dataset D.

2. The MLE and the positive estimators (PLS and PGLS) are all imple-
mented using the CVX package for disciplined convex programming on
MATLAB1.

3. As mentioned briefly in section 7.3.4, the constant C in the threshold
for the TLS and TGLS estimators is selected using cross-validation. We
describe this cross-validation method below [25].

• For a particular number of repetitions per setting m, we simulate
data in 5 independent batches and we denote the corresponding
datasets as D1, . . . ,D5. With m/5 repetitions per setting in each
batch, so that the number of repetitions overall is m. The total
dataset of counts is therefore simply the sum D =∑5

i=1Di.

• We choose a vector of constants C. For each value of C, and for each
j ∈ {1, . . . ,5} we compute the following estimators. We hold out the
dataset Dj , and compute the TLS/TGLS estimate ρ̂−j

T(G)LS(C) for
the dataset D−j =∑

i ̸=jDi, with constant ν = Cµ= C
√

4
m log2N+1.

For each Dj the LS/GLS estimate ρ̂j
(G)LS is also evaluated.

1http://cvxr.com/cvx/

http://cvxr.com/cvx/
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• For all values of C, the empirical discrepancy is evaluated

CVD(C) = 1
5

5∑
i=1

D
(
ρ̂−j

T(G)LS(C), ρ̂j
(G)LS

)

for a choice of error function D(ρ̂,ρ).

• This function CVD(C) is then minimised over all values C

ĈD = argmin
C
CVD(C)

this gives an estimate for the thresholding constant, which is then
used to evaluate the TLS or the TGLS estimators with threshold
ν = ĈDµ.

Notice that the cross-validation procedure picks different constants for
different choices of the error function. An important caveat here is that
the Bures distance is not defined for the LS/GLS estimates ρ̂j

(G)LS, and
therefore the above procedure cannot apply. Instead in the simulations
we estimate the thresholding constant ĈDB

using the ML estimate as

ĈDB
= argmin

C
DB(ρ̂T(G)LS, ρ̂ML)2.

7.6 Simulation results and analysis

We first present plots of the estimated mean errors E [D(ρ̂,ρ)] of the estimators
for the equal eigenvalues states. The results for the special states follows in
section 7.6.4. For each given rank r and number of qubits N , we generate a
state with equal eigenvalues

(
1
r , . . . ,

1
r ,0, . . . ,0

)
and random eigenbasis. Then for

each choice of measurement design and values of k and m, the several estimates
of the true state are evaluated. The error of each resulting estimate is computed
using all the error functions listed in Table 7.1, and the corresponding mean
errors are estimated from 100 different runs of the experiment.

In order to make the results of the simulation study more accessible, we have
made the plots presented here available online via an interactive R Shiny
application at this address: https://rudhacharya.shinyapps.io/plots/

https://rudhacharya.shinyapps.io/plots/
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7.6.1 Square Frobenius norm

We notice in figures 7.1, 7.2 and 7.3 that the performance of the least squares
estimator is clearly the poorest amongst all the estimators for ranks r < d, ad-
ditionally its mean square error (MSE) demonstrates no significant dependence
on the rank of the true state and remains fairly constant, while the remaining
estimators all show a scaling of the MSE with the rank of the true state. On
comparison with the Fisher MSE, we see that the performance of several of the
estimators matches well with the asymptotic value. This is remarkable as the
Fisher MSE (7.27) was defined for a rank-r parameterisation of states, while
none of the estimators have any prior knowledge of the rank.

We also note that for relatively small values of n=m×k the TLS, TGLS,
PLS, PGLS, ML estimators all appear to perform better than the Fisher error
(for example the values k =m= 100 in figure 7.3 and k = 81, m= 100 in figure
7.1). Although this might seem surprising at first, it can be understood from
the following observation. The Fisher information matrix (7.26) is defined in
terms of a local parametrisation that is not constrained by the positivity of
states, while all of the listed estimators produce estimates that are density
matrices. The eigenvalues λ= 1/r of states of high ranks are all small and close
to zero. For such eigenvalues and relatively small values of n, the estimates λ̂
of unbiased estimators can be thought of as being roughly normally distributed
with mean 1/r, and variance that is comparable or larger than the magnitude
of the eigenvalues themselves. Therefore without the constraint of positivity,
unbiased estimators would produce estimates with λ̂ < 0. Whereas estimators
like the MLE are not unbiased for small n as the estimates are constrained
to be positive. This requirement of positivity provides additional information
when the eigenvalues are small, and explains the observed difference in the
performance of such estimators when compared with the Fisher error. For large
values of n however, the uncertainty in the eigenvalues is very small and the
Fisher MSE acts as a lower bound for all of the estimators. For a more detailed
discussion on the applicability of the asymptotic bound and the unbiasedness
of the MLE for finite n in the qubit case, we recommend [106].

Across both the Pauli and the random measurement design we note that
the performance of the PGLS and the ML estimators is very similar, and for
large m almost identical. We can demonstrate that this similarity in behaviour
is to be expected and in fact show that the PGLS and the ML estimators are
equivalent in the limit of large m. In this limit and for probabilities not close
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to the boundary, the multinomial distribution (7.2) is well approximated by
the multivariate Gaussian, i.e Multi(m,y)→N (my,mΩ), where y ∈Rdk is the
vector of probabilities (7.5), and Ω is the covariance matrix of the multinomial
distribution (7.11). Therefore the distribution of the frequency vector f in this
limit is given by the Gaussian density function

1√
(2π)dk

√
|Ω|

exp
[
−m2 (f −y)T Ω−1(f −y)

]
. (7.28)

This is also by definition the form of the likelihood function that needs to be
maximised in order to obtain the MLE. Talking the natural logarithm of (7.28)
and discarding the constant terms we may therefore express the MLE in the
large m limit as the following minimisation problem

ρ̂ML = arg min
τ∈Sd

∥Ω−1/2 (f −X (τ))∥2. (7.29)

This we we recognise from (7.20) to be the definition of the PGLS estimator.
Therefore in the large m limit, the two estimators are equivalent. There is
also a similar equivalence between the non-positive GLS estimator and the
‘unconstrained’ ML estimate. Let us define the unconstrained MLE as the
following relaxation of the above minimsation

ρ̂uML := arg min
τ∈M(Cd)

∥Ω−1/2 (f −X (τ))∥2. (7.30)

On comparison with (7.13) we recognise this to simply be the GLS estima-
tor. Since the GLS is known to be asymptotically normal

√
m(θ̂− θ)→

N (0, I(θ)−1), with θ ∈Θ being some choice of parameterisation of M(Cd), it
follows that the unconstrained ML has the same asymptotic distribution. It
is important to note that this distribution is not only over states, but over
self-adjoint matrices. This means that for states ρ that are close to boundary
of the positive semi-definite cone, the GLS and the unconstrained ML may pro-
duce estimates that are not valid density matrices. Additionally this Gaussian
distribution holds as long as the probabilities pρ(o|s)> 0 for all o and s. This
was also noted with the Fisher information matrix in section 7.4, where the
state being at the boundary of Sd does not necessarily imply that parameter θ

is at the boundary of the parameter space Θ.
However this is not true of the PGLS and ML estimators (7.29). For most

states the MLE (and therefore the PGLS) is known to be asymptotically nor-
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mally distributed with covariance given by the inverse of the Fisher information
matrix. But since the MLE produces only density matrices as estimates, its
distribution for states ρ close to the boundary is not Gaussian. In fact it can
be shown that for such states the ML/PGLS estimate is obtained by projecting
the unconstrained ML estimate onto the space of density matrices. To make
the form of this projection concrete, we first note that since Ω is a positive
matrix the function ∥Ω−1/2(a−b)∥2 is a valid distance ∀a,b ∈ Rdk, and (7.30)
describes an orthogonal projection of f onto the linear subspace defined by
the map X . Using this fact we may expand the right side of (7.29) by the
Pythagorean theorem for any τ ∈ Sd as

∥Ω−1/2 (f −X (τ))∥2 = ∥Ω−1/2 (f −X (ρ̂uML))∥2 +∥Ω−1/2 (X (ρ̂uML)−X (τ))∥2.
(7.31)

The term ∥Ω−1/2 (f −X (ρ̂uML))∥2 is fixed for a particular estimate ρ̂uML, and
therefore the minimisation (7.29) is equivalently expressed as

ρ̂ML = arg min
τ∈Sd

∥Ω−1/2 (X (ρ̂uML)−X (τ))∥2. (7.32)

This is seen to be a projection of ρ̂uML onto the closest density matrix. Therefore
the ML estimate can be obtained by projecting the unconstrained ML estimate
ρ̂uML onto the space of density matrices.

7.6.2 Square Bures distance

As the Bures distance DB(ρ̂,ρ) is defined only over density matrices, we plot
the Mean Square Bures (MSB) error only for the ML, TLS, TGLS, PLS and
the PGLS estimators. The most noticeable feature across both the Pauli and
the random bases measurement design is that for large values of n (for example
the plots with m= 1000 in figures 7.4, 7.5, 7.6) the MSB is seen to be larger
for states of middling ranks than for the full rank states. Contrast this with
the behaviour for smaller values of n (plots with m= 100 in figure 7.4).

This behaviour is explained by the fact that the Bures distance is known to
be sensitive to the misestimation of very small eigenvalues [89]. In chapter 6
we demonstrated that for qubit states in a local neighbourhood close to the
boundary of the Bloch sphere, the leading order contribution to the square
Bures error is from the classical Hellinger component. In fact, comparing
the plots in this section with the corresponding plots for the square Hellinger
distance (section 7.6.3), we see that for large n the Mean Square Hellinger
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(MSH) error of the estimators E
[
DH(λ̂,λ)2

]
is approximately equal to the MSB.

Furthermore the MSH also demonstrates the same behaviour with the rank.
For large n the eigenvalues are all seen to be estimated well and the resulting
square Hellinger errors are substantially smaller than 1/d. This implies that for
full rank states the error (λ1/2

i − λ̂1/2
i )2 = ( 1√

d
− λ̂1/2

i )2 for each i ∈ {1, . . .d} is
very small, while for states of lower ranks, the estimators may misestimate the
rank and assign small positive values for some of the zero eigenvalues, i.e λ̂i > 0
for i > r. Since the error for these components is simply (λ1/2

i − λ̂1/2
i )2 = λ̂i,

the estimated value of λ̂i can be fairly small and still result in a total error
that is larger than in the case of the full rank states.

As discussed in chapters 6 and 3, this sensitivity of the Bures distance to
the misestimation of small eigenvalues is a feature of the quantum fidelity, and
this behaviour affects the rate at which states with small eigenvalues can be
estimated [105, 89]. For states near the boundary of the Bloch sphere and
fidelity based distances, the estimation errors scale only as O(1/

√
n) for fixed

bases measurements, instead of the standard rate of O(1/n) as in (7.27).

7.6.3 Square Hellinger distance and Trace norm

Since like the Bures distance, the Hellinger distance is valid only between
probability vectors, we plot the MSH only for estimators that produce certifiable
states. As explained above, it is insightful to compare the plots (figures 7.7,
7.8, 7.9) to those for the square Bures distance. For large values of n and states
with eigenvalues close to zero, the magnitude and behaviour of the MSH is
similar to that of the MSB.

The relative performance of the estimators in terms of the trace norm
(figures 7.10, 7.11, 7.12) is largely similar to their performance in terms of the
square Frobenius norm. We specially note the behaviour of the mean errors as
the rank of the true state is varied, and the comparable performance of the
PGLS and the ML estimators.

7.6.4 Special states

Apart from the states with equal eigenvalues, we also compare the performance
of the estimators in the estimation of certain states of fixed ranks and eigenvalue
spectrums. We consider the GHZ state (|0⟩⊗N + |1⟩⊗N )/

√
2, which is commonly

used in several quantum information processing tasks [119, 20, 68], along with
states that have exponentially decaying eigenvalue spectrums, and full rank
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states with a few dominant eigenvalues and the rest sampled as small uniform
noise. Simulations with such states allows us to better understand how the
spectrum of the eigenvalues affect the performance of the estimators. For
each given state of N = 4 qubits, the several estimates are computed for
the two different measurement designs, with m= 100 repetitions per setting
(which is typical in tomographic experiments [62]) and 100 different runs of the
experiment.

In figures 7.13, 7.14 we plot the estimation errors in terms of the various
loss functions for a randomly generated full-rank state with an exponentially
decaying eigenvalue spectrum. We also plot the mean eigenvalues of the
estimates and compare them against the eigenvalues of the true state. For both
measurement designs the errors are comparable to estimation errors for the
equal eigenvalue state of rank 3/4 for m,k = 100. Apart from the LS and GLS
estimators, the others are seen to estimate the true eigenvalues well. However,
both the LS and GLS prove to be useful starting points for the thresholded
estimators. Figures 7.15, 7.16, 7.17, 7.18 plot the estimation errors for a random
full-rank state with 2 and 4 dominant eigenvalues. The remaining eigenvalues
are small and are generated as uniform noise. Unlike their performance for the
state with decaying eigenvalues, all of the estimators are seen to mis-estimate
several of the smaller eigenvalues.

Plots for the GHZ state are presented in figures 7.19 and 7.20. It is worth
noting that the magnitude of the square Bures errors is comparable to that of
the square Hellinger errors for all the estimators and both measurement designs.
This is in keeping with the discussion in section 7.6.2, as the estimators have
no knowledge that the true state is pure and therefore any misestimation of
zero eigenvalues carries a large contribution to the Hellinger component of the
Bures error. In the plots for the Pauli measurement design (figure 7.19), the
PLS estimator is seen to perform the worst in terms of the square Hellinger
and Bures error. In the eigenvalue plots we see that the PLS estimate is not
close to pure and has a few large eigenvalues. However, on comparison with
the estimation errors for a random pure state and Pauli measurement design
in figure 7.21, one notices that rather than the PLS performing poorly, the
TGLS, PGLS and ML estimators all perform better for the GHZ state and
Pauli settings. This behaviour is however not seen in the square Frobenius and
trace norm errors, nor in the plots for the random bases measurement design
7.20.
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Mean square Frobenius error (MSE) for the Pauli measurement
design

Figure 7.1 The estimated mean square Frobenius error (MSE) E [DF (ρ̂,ρ)] of
the estimators for randomly generated 3 and 4 qubit rank-r states of equal
eigenvalues, and the Pauli measurement settings.
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Mean square Frobenius error (MSE) for the random bases
measurement design and 3 qubits

Figure 7.2 The estimated mean square Frobenius error (MSE) E [DF (ρ̂,ρ)] of
the estimators for randomly generated 3 qubit rank-r states of equal eigenvalues,
and the random bases measurement design.



7.6 Simulation results and analysis 153

Mean square Frobenius error (MSE) for the random bases
measurement design and 4 qubits

Figure 7.3 The estimated mean square Frobenius error (MSE) E [DF (ρ̂,ρ)] of
the estimators for randomly generated 4 qubit rank-r states of equal eigenvalues,
and the random bases measurement design.
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Mean square Bures error (MSB) for the Pauli measurement design

Figure 7.4 The estimated mean square Bures error (MSB) E
[
DB(ρ̂,ρ)2

]
of

the estimators for randomly generated 3 and 4 qubit rank-r states of equal
eigenvalues, and the Pauli measurement settings.
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Mean square Bures error (MSB) for the random bases
measurement design and 3 qubits

Figure 7.5 The estimated mean square Bures error (MSB) E
[
DB(ρ̂,ρ)2

]
of the

estimators for randomly generated 3 qubit rank-r states of equal eigenvalues,
and the random bases measurement design.



7.6 Simulation results and analysis 156

Mean square Bures error (MSB) for the random bases
measurement design and 4 qubits

Figure 7.6 The estimated mean square Bures error (MSB) E
[
DB(ρ̂,ρ)2

]
of the

estimators for randomly generated 4 qubit rank-r states of equal eigenvalues,
and the random bases measurement design.
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Mean square Hellinger error (MSH) for the Pauli measurement
design

Figure 7.7 The estimated mean square Hellinger error (MSH) E
[
DH(λ̂,λ)2

]
between the eigenvalues of the estimates and those of a randomly generated
3 and 4 qubit rank-r state with equal eigenvalues, for the Pauli measurement
design.
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Mean square Hellinger error (MSH) for the random bases
measurement design and 3 qubits

Figure 7.8 The estimated mean square Hellinger error (MSH) E
[
DH(λ̂,λ)2

]
between the eigenvalues of the estimates and those of a randomly generated 3
qubit rank-r state with equal eigenvalues, for the random bases measurement
design.
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Mean square Hellinger error (MSH) for the random bases
measurement design and 4 qubits

Figure 7.9 The estimated mean square Hellinger error (MSH) E
[
DH(λ̂,λ)2

]
between the eigenvalues of the estimates and those of a randomly generated 4
qubit rank-r state with equal eigenvalues, for the random bases measurement
design.
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Mean trace norm error for the Pauli measurement design

Figure 7.10 The estimated mean trace norm error E [∥ρ̂−ρ∥1] of the estimators
for randomly generated 3 and 4 qubit rank-r states of equal eigenvalues, and
the Pauli measurement design.
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Mean trace norm error for the random bases measurement design
and 3 qubits

Figure 7.11 The estimated mean trace norm error E [∥ρ̂−ρ∥1] of the estimators
for randomly generated 3 qubit rank-r states of equal eigenvalues, and the
random bases measurement design.
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Mean trace norm error for the random bases measurement design
and 4 qubits

Figure 7.12 The estimated mean trace norm error E [∥ρ̂−ρ∥1] of the estimators
for randomly generated 4 qubit rank-r states of equal eigenvalues, and the
random bases measurement design.
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Estimation errors for the Pauli measurement design and the state
with exponentially decaying eigenvalues

Figure 7.13 Box-plots of the various mean errors for all the estimators, and a
4-qubit random state with exponentially decaying eigenvalues. The number
of repetitions per setting is m = 100, and we perform 100 iterations of the
simulation. The two plots in the final row plot the mean eigenvalues (in
descending order) of the various estimates in comparison to those of the true
state.
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Estimation errors for the random bases measurement design and
the state with exponentially decaying eigenvalues

Figure 7.14 Box-plots of the various mean errors for all the estimators, and a
4-qubit random state with exponentially decaying eigenvalues. The number
of settings is k = 100, repetitions per setting is m= 100, and we perform 100
iterations of the simulation. The two plots in the final row plot the mean
eigenvalues (in descending order) of the various estimates in comparison to
those of the true state.
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Estimation errors for the Pauli measurement design and the state
with two dominant eigenvalues

Figure 7.15 Box-plots of the various mean errors for all the estimators, and a
4-qubit random state with two dominant eigenvalues. The number of repetitions
per setting is m= 100, and we perform 100 iterations of the simulation. The
two plots in the final row plot the mean eigenvalues (in descending order) of
the various estimates in comparison to those of the true state.
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Estimation errors for the random measurement design and the
state with two dominant eigenvalues

Figure 7.16 Box-plots of the various mean errors for all the estimators, and a
4-qubit random state with two dominant eigenvalues. The number of settings
is k = 100, repetitions per setting is m= 100, and we perform 100 iterations of
the simulation. The two plots in the final row plot the mean eigenvalues (in
descending order) of the various estimates in comparison to those of the true
state.
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Estimation errors for the Pauli measurement design and the state
with four dominant eigenvalues

Figure 7.17 Box-plots of the various mean errors for all the estimators, and a 4-
qubit random state with four dominant eigenvalues. The number of repetitions
per setting is m= 100, and we perform 100 iterations of the simulation. The
two plots in the final row plot the mean eigenvalues (in descending order) of
the various estimates in comparison to those of the true state.
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Estimation errors for the random measurement design and the
state with four dominant eigenvalues

Figure 7.18 Box-plots of the various mean errors for all the estimators, and a
4-qubit random state with four dominant eigenvalues. The number of settings
is k = 100, repetitions per setting is m= 100, and we perform 100 iterations of
the simulation. The two plots in the final row plot the mean eigenvalues (in
descending order) of the various estimates in comparison to those of the true
state.
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Estimation errors for the Pauli measurement design and the GHZ
state

Figure 7.19 Box-plots of the various mean errors for all the estimators, and
a 4-qubit GHZ state. The number of repetitions per setting is taken to be
m = 100, and we perform 100 iterations of the simulation. The two plots in
the final row plot the mean eigenvalues (in descending order) of the various
estimates in comparison to those of the true state.
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Estimation errors for the random bases measurement design and
the GHZ state

Figure 7.20 Box-plots of the various mean errors for all the estimators, and a
4-qubit GHZ state. The number of settings is k = 100, repetitions per setting
m = 100, and we perform 100 iterations of the simulation. The two plots in
the final row plot the mean eigenvalues (in descending order) of the various
estimates in comparison to those of the true state.
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Estimation errors for the Pauli measurement design and a random
pure state

Figure 7.21 Box-plots of the various mean errors for all the estimators, and a
random 4-qubit pure state. The number of repetitions per setting is m= 100,
and we perform 100 iterations of the simulation. The two plots in the final
row plot the mean eigenvalues (in descending order) of the various estimates in
comparison to those of the true state.
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7.7 The Apps

We now introduce two web-based applications we have developed for performing
tomographic simulations online. The first application ‘Dashboard: Comparing
Estimators’ makes it possible for the user to reproduce the simulations of
standard tomography presented in this chapter. More importantly however,
it allows the user to upload and carry out simulations for any multi-qubit
state, provided that its dimension is no larger than 24. Our aim in developing
this application is to provide a tool with a user-friendly interface that makes
it covenient to compare the performance of several estimators for any states
of interest. It also serves to complement the results of the simulation study
presented in this chapter.

The second application ‘State Estimation’, generates estimates of an un-
known true state from the counts dataset of the standard tomographic ex-
periment. This dataset of counts is uploaded by the user, and may either be
simulated or from an actual tomographic experiment. Then for a particular
choice of estimator, the final estimated density matrix is made available for
download.

Documentation for the applications is made available online, along with
sample files for the simulations. Both applications are designed with R Shiny2,
and are powered by R and MATLAB. They are hosted on the Shiny server
maintained by the UoN School of Mathematical Sciences.

7.7.1 Dashboard: Comparing Estimators

Web address : https://shiny.maths.nottingham.ac.uk/shiny/qt_dashboard/

This application is designed to allow the user to perform simulations of the
standard tomographic procedure with the Pauli measurement design for any
state, and any combination of estimators. The application supports arbitrary
states of upto 4 qubits. States can either be uploaded in a CSV format file,
or chosen from the options in the dropdown menu. The user can choose from
options of randomly generated states, GHZ states, fully mixed states and the
equal eigenvalue states as considered in section 7.6. For a particular choice, the
application then allows the user to specify the number of qubits and the rank
of the state, see figure 7.22.

2https://shiny.rstudio.com/

https://shiny.maths.nottingham.ac.uk/shiny/qt_dashboard/
https://shiny.rstudio.com/
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Figure 7.22 An application for performing tomographic simulations online. The
application allows the user to choose or upload a multi-qubit states of various
ranks, and compare the performance of several estimators.

In addition to all of the estimators studied in this chapter, the application also
makes available the Lasso estimator, defined via the minimisation

ρ̂ := argmin
τ≥0
∥X −f∥2 +2µ∥τ∥1. (7.33)

The final estimate is the obtained as ρ̂Lasso := ρ̂/Trρ̂. The penalty µ is defined
by the user, see figure 7.23. Any combination of estimators can be chosen from
the checkbox menu. For a given true state of N qubits and specified value
of the number of repetitions m, the counts data is simulated resulting in a
2N ×3N dataset D from which the state is estimated. The number of ‘Global
Iterations’ corresponds to the number of times a dataset D is simulated and
the state estimates evaluated. A larger value here corresponds to a better
approximation of the mean error or risk of an estimator.
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Figure 7.23 Once the simulations have completed, box-plots of the estimation
errors can be generated for several different error/loss functions from the output
panel. The min and max values of the y-axis can be specified to suitably scale
the plots.

Once the simulations have completed, a popup informs the user that the
‘Output Panel’ on the right is ready to use. The panel allows the user to
generate box-plots in terms of several error functions- the square Frobenius
norm, the trace norm, the square Bures distance and the fidelity/infidelity. The
panel also provides the option to specify the minimum and maximum values
for the y-axis of the plot, allowing the user to focus on a particular range of
the errors.
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7.7.2 State Estimation

Web address : https://shiny.maths.nottingham.ac.uk/shiny/state_estimation/

This application is designed to generate state estimates directly from a
2N ×3N dataset of counts uploaded by the user. Therefore the outcome data
from the tomographic experiment is not simulated from a chosen state. The
application is deigned to comfortably handle datasets of size 24× 34. For a
particular dataset of counts, the file is first processed by clicking the ‘Process
file’ button. This prepares the dataset for the estimators, and once the file
has been successfully processed a popup appears informing the user that an
estimator may be chosen. As before, all of the estimators presented in this
chapter along with the Lasso estimator (7.33) are made available. For the Lasso,
TLS and TGLS estimators, the penalty and the constants for the threshold
are to be specified by the user. Once the estimation has completed the density
matrix of the estimate is made available for download in CSV format.

Figure 7.24 An application to estimate an unknown state from the outcome
dataset of the tomographic experiment.

7.8 Conclusion

In this chapter we presented results from an extensive and systematic simulation
study comparing the performance of several tomographic estimators for several
different combinations of states, ranks, measurement designs, number of copies

https://shiny.maths.nottingham.ac.uk/shiny/state_estimation/
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Figure 7.25 Once the state has been estimated for a particular choice of
estimator, the resulting density matrix can be downloaded in CSV format.

of the state and loss functions. Apart from the fairly standard and well known
estimators like the maximum likelihood (ML) and the least squares (LS), we
also introduced some new estimators such as the positive generalised least
squares (PGLS) and the thresholded generalised least squares (TGLS). We
outlined the equivalence of the PGLS and the ML estimators in the limit of
large number of samples, and considered the implications of asymptotic theory
for states near the boundary of the positive semi-definite cone of matrices. We
analysed the errors for several loss functions and highlighted the difference in
performance of the estimators across the various loss functions, specifically
illustrating the sensitivity of the Bures distance to the misestimation of small
eigenvalues.

We also introduced two web-based applications with the aim of providing
tools that will enable their users to perform tomographic simulations online
and compare the performance of estimators for any states of interest. These
applications also serve to complement and verify the results of the simulation
study presented here.



Chapter 8

Conclusions and directions for future work

In this thesis we considered various aspects of quantum state estimation, whose
central problem is the devising of estimation schemes for the recovery of an
unknown quantum state from an ensemble of n independent and identically pre-
pared systems. We have investigated the performance and efficiency of several
estimation methods and measurement designs. In chapters 4 and 5 we explored
the possibility of ‘compressive’ recovery of low-rank states with ‘fine-grained’ or
‘raw data’ from the standard tomographic procedure. We demonstrated such
compressive recovery both theoretically and numerically, and obtained rates
for the minimum number of measurement settings required, by establishing a
concentration inequality for the Fisher information matrices associated with
the reduced measurement design. There are several open questions and possible
avenues for future research related to the research presented in these chapters.
As already mentioned in chapter 4, deriving a concentration bound for the
Pauli setting case remains an open problem as it requires control over the
spectral properties of the Fisher information matrix. In the case of the random
basis measurements, it would be fruitful to further study the links between the
results in chapter 5 and related work demonstrating compressive recovery with
rank-one projectors sampled from unitary t-designs [81, 32, 53], and recovery
using rank-r strictly complete POVMS [10]. Furthermore, as pointed out in
chapter 4, establishing a concentration of the Fisher information provides the
correct rate for the minimum number of measurements required, but provides
a pessimistic estimate for the constant in front. Also, we have seen in chapter
5 that despite a lack of concentration of the Fisher information for states with
small eigenvalues, the Mean Square Error (MSE) still concentrates about its
optimal. For these reasons, it might be possible to derive stronger results by
studying the concentration of the MSE directly.
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In terms of the Mean Infidelity (MINF) however, we have seen in chapter
5 that compressive recovery of states with small eigenvalues is not possible.
More importantly, it is known that for any fixed basis measurement design and
nearly pure states the MINF demonstrates only a O(1/

√
n) rate of estimation,

as opposed to the optimal O(1/n) rate. This motivated the work in chapter 6,
where we pose the problem in terms of the maximum Bures risk. We proposed
two adaptive qubit estimation strategies, one based on local measurements
and the other on collective global measurements. For both these estimation
strategies we demonstrated a O(1/n) scaling for the maximum Bures risk. We
also investigated the possibility of deriving a minimax optimal estimator for the
Bures risk. We demonstrated that a minimax optimal estimator for the mixed
qubit state can be immediately obtained given a minimax optimal estimator for
the binomial parameter under the Hellinger loss function. To the best of our
knowledge, such an estimator for the Hellinger loss function is not currently
known. This suggests an area of future research that is of great importance
not just for classical estimation theory, but for quantum state estimation as
well. Another avenue for future work is to extend and generalise the results
presented in this chapter to the multi-qubit case.

Finally in chapter 7 we systematically compared the performance of several
estimation schemes in an extensive simulation study. This work serves to
highlight the suitability of various estimators- both standard and newly defined-
for states of different ranks, purity and dimensions. To complement this study,
we have developed two web-based applications that will enable the performing
of tomographic simulations online for arbitrary user-defined states and for all
of the estimators defined in chapter 7. We aim to update these apps with more
estimators of interest and make it possible to perform simulations with different
measurement designs.
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