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WRINKLING STRUCTURES AT THE RIM OF AN INITIALLY
STRETCHED CIRCULAR THIN PLATE SUBJECTED TO

TRANSVERSE PRESSURE\ast 

CIPRIAN D. COMAN\dagger AND ANDREW P. BASSOM\ddagger 

Abstract. Short-wavelength wrinkles that appear on an initially stretched thin elastic plate
under transverse loading are examined. As the degree of loading is increased, wrinkles appear
and their structure at the onset of buckling takes on one of three distinct forms depending on
the size of the imposed stretching. With relatively little stretching, the wrinkles sit off the rim of
the plate at a location which is not known a priori, but which is determined via a set of consistency
conditions. These take the form of constraints on the solutions of certain coupled nonlinear differential
equations that are solved numerically. As the degree of stretching grows, an asymptotic solution of
the consistency conditions is possible, which heralds the structure that governs a second regime.
Now the wrinkle sits next to the rim, where its detailed structure can be described by the solution of
suitably scaled Airy equations. In each of these first two regimes the F\"oppl--von K\'arm\'an bifurcation
equations remain coupled, but as the initial stretching becomes stronger the governing equations
separate. Further use of singular perturbation arguments allows us to identify the wavelength wrinkle
which is likely to be preferred in practice.
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1. Introduction. It is well known that the governing equations for thin rods,
plates, and shells can be obtained systematically from the general theory of nonlinear
elasticity by appealing to suitable asymptotic approximations that exploit the slender-
ness of such configurations. Typically, the outcome of these reduction schemes is an
entire hierarchy of equations rather than a unique set; furthermore, their merit can-
not always be gauged a priori and requires a case-by-case appraisal. The F\"oppl--von
K\'arm\'an (FvK) nonlinear plate equations were originally derived by ad hoc approxi-
mations but they also represent the result of a particular asymptotic reduction (cf. [1,
pp. 367--447]) and have proved to be a versatile choice for describing many interesting
phenomena associated with thin elastic films (see, e.g., [2]). Arguably, this system
represents the simplest nonlinear model able to capture the coupling between bending
deformations and the in-plane stretching of the plate mid-plane. This approximation,
however, does come at at a price, and despite its apparent simplicity, analytical solu-
tions of the FvK system are scarce. The one notable exception is the ``Euler column""
[3] solution that describes a zero-Gaussian curvature deformation.

The principal aim of the work reported here is to throw light on a number of
mathematical structures that have relevance to the FvK bifurcation system. In the
recent papers [4, 5, 6] we proposed a general asymptotic approach for describing the
edge wrinkling experienced by a uniformly stretched circular elastic plate when acted
upon by a transverse pressure or a concentrated central load. Generally speaking, the
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1010 CIPRIAN D. COMAN AND ANDREW P. BASSOM

FvK bifurcation system used in our edge-wrinkling investigations is either equivalent
to or based on two coupled nonlinear equations linearized about an axisymmetric non-
linear solution that accounts for the finite mid-plane rotations in the prebifurcation
state.

The overall picture that emerged in our previous studies is summarized in Fig-
ure 1, where typical neutral stability curves \scrC \mu are illustrated in terms of a nondi-
mensional transverse loading parameter \lambda > 0 and the wrinkle mode number (or
``wavenumber"") m \in \BbbN . The driving system also depends on the initial in-plane
stretching experienced by the plate, which is described by a dimensionless parameter
\mu , defined formally in section 2 below. Strictly speaking, it is the case \mu \gg 1 that
lends itself most naturally to asymptotic analysis since the energy minimum config-
uration for such problems---the point (mc, \lambda c) in Figure 1 and corresponding to the
least \lambda ---can be scaled on suitable powers of \mu . When 0 \leq \mu \leq \scrO (1) the coordinates
of the global minimum of \scrC \mu are \scrO (1) quantities, a formal asymptotic strategy breaks
down, and critical values can only be determined by a direct numerical simulation
of the full governing equations. In a strict mathematical sense little can be deduced
for \mu = \scrO (1), but it was demonstrated in [4] that even then singular perturbation
methods can still be used to provide a useful lower bound for the right-hand branch,

\scrC (+)
0 . This is somewhat fortuitous and proves to be possible because, even though \lambda 

is formally \scrO (1), in practice its computed value turns out to be quite large, so it can
be effectively used as an asymptotically large quantity. We remark that this is an
unexpected bonus and cannot be predicted by any formal means. Moreover, as noted
in [7], the wrinkling pattern remains strongly localized even when \mu = 0 although
there is no rational theory that might suggest this could have been foreseen.

𝑂

𝜆

𝑚

𝐶𝜇
(+)

𝐶𝜇
(−)

𝐶0
(+)𝐶0

(−)

O(1)

O(1)

O(𝜇3)

O(𝜇3/4)

(𝑚𝑐 , 𝜆𝑐)

(𝑚𝑐 , 𝜆𝑐)

(load)

(mode number)

Fig. 1. The features of the neutral stability curves \scrC \mu = \scrC ( - )
\mu \cup \scrC (+)

\mu for the initially stretched
thin elastic plate subjected to transverse pressure. The vertical axis indicates the nondimensional
pressure \lambda , and the abscissa records the mode number m > 0. The parameter \mu \geq 0 represents
a nondimensional measure proportional to the initial degree of radial stretching; thus, the blue
curve illustrates an unstretched plate (\mu = 0), while the red curve corresponds to a taut circular
configuration (\mu \gg 1). (See online version for color.)

Our previous investigations have established that in the limit \mu \gg 1 the FvK
system decouples and the wrinkling instability essentially corresponds to a plane-stress
state [8, 9], but with a nonlinear prebuckling stress distribution. This asymptotic
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WRINKLING OF A CIRCULAR PLATE 1011

decoupling plays a key role in the success of singular perturbation analyses vis-\`a-vis
the FvK system, a fact that is also implicit in a number of earlier works (see, e.g.,
[10, 11]); for instance, in our problem the decoupled equations are linear and can be
solved in closed form to any order (albeit nontrivially). The question remains open as
to what happens to the FvK system as \mu is increased from zero (an unstretched plate)
to \mu \gg 1 (a well-stretched plate), and it is this route to decoupling that motivates
our present study.

We emphasize that our interest lies in the pure buckling problem, that is, to
determine the nature of \lambda = \lambda (\mu ;m) which is just sufficient to excite wrinkles of
wavenumber m for a given \mu . The conventional method to isolate the form of \lambda is to
specify \mu and then determine the corresponding \lambda as a function ofm. What makes this
strategy unattractive here is that the basic solution satisfies nonlinear equations that
depend on the loading \lambda . In standard bifurcation theory one would hope to set the
basic state once and for all and then seek eigenvalues of the perturbation equations.
Here this approach will fail or, at best, be complicated to implement, as the basic
equations and the system describing the wrinkles are coupled via \lambda . The upshot would
be that any critical loading values arising from the wrinkle equations would be likely
to modify the base state structure, and it is unclear how a converged solution might
be arrived at which is consistent with both the base state and wrinkle equations.
Fortunately this difficulty can be neatly side-stepped by viewing the problem from a
slightly different standpoint. In this we effectively specify \lambda , which ties down the base
state, and then solve the wrinkle equations for the wavenumber m; it is then simple
to invert the results to generate the dependence of \lambda on m. It is a crucial feature of
our work that at no stage is \lambda to be regarded as fixed; rather, for a specified \mu we are
aiming to track the value of \lambda (m) just sufficient enough to induce buckling. As the
chosen value of \mu is changed, so \lambda must compensate to ensure we remain at the onset
of buckling.

Within the mechanics of thin plates and shells there are several notable prece-
dents regarding the asymptotic limits of various equations as a loading parameter
or a geometrical characteristic is progressively varied. In their pioneering work [12]
Junkin and Davis studied a clamped circular plate with a load on a central rigid in-
clusion by using ``first-approximation"" nonlinear shell equations. Depending on the
magnitude of the load, they identified a sequence of plate problems that included the
usual linear equations for very small deflections and the FvK equations for moderate
deflections. A somewhat similar idea was implemented by Simmonds and Libai [13]
for a particular theory of internally pressurized spherical caps. By scaling the pressure
load and the shallowness parameters on suitable powers of a dimensionless thickness
quantity, they obtained as many as 17 different types of simplified equations. This
suite of equations reflected a range of dominant deformation mechanisms, including
linear, nonlinear/inextensional, nonlinear/membrane, and other forms. Komaragiri,
Begley, and Simmonds [14] revisited this analysis and carried out a related investi-
gation for a free-standing circular elastic plate under point and pressure loads. More
recently, Berdichevski's asymptotic-variational technique [15] has emerged as a power-
ful device that can accomplish comparable results as can be gleaned from [16] among
others. It is perhaps worth emphasizing that all these studies dealt with deformation
problems, that is, the load is prescribed and one tries to predict the corresponding
deformation. The problem we have in mind is somewhat different as we must tackle a
bifurcation equation. Thus, the size of the loading is intimately related to the initial
level of stretching and can only be found by considering both the basic state and the
perturbation structure simultaneously.
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1012 CIPRIAN D. COMAN AND ANDREW P. BASSOM

It is acknowledged that in recent times there has been a plethora of studies con-
cerned with various situations in which wrinkling can arise. Researchers have been
concerned with developing a comprehensive framework that is able to predict where
and how tensional wrinkle patterns evolve. It appears that while many papers deal
with stretched plates, relatively few are concerned with the case when wrinkling is
provoked by an imposed transverse loading. An excellent survey of some of the key
contributions relating to plates subject to stretching or shear has been compiled by
Taylor et al. [17], who review the advances that have been made with geometries such
as rectangular sheets and circular regions. Our situation is somewhat different in the
sense that the wrinkling described below is generated by a transverse pressure load.
This is enough to render the basic state genuinely nonlinear, and it is not surprising
that the corresponding bifurcation equations are also distinctive. Relatively little ef-
fort has been devoted to this class of problems, although mention should be made of
the numerical calculations by Adams [18], who examined the problem of a tensioned
circular plate subjected to a concentrated load.

The remainder of the paper is organized in the following way. We begin our
study in section 2 with a quick review of the differential equations for the basic state
and the linearization of the FvK system around this solution. A central role in our
analysis is played by a suitably large nondimensional parameter that we call \Delta , and
we proceed by expressing all physical quantities in terms of \Delta . In particular, it proves
possible to identify the geometry of the right-hand branch of the neutral stability curve
and trace its evolution as the original in-plane stretching increases. The nonlinear
axisymmetric basic state is revisited in section 3 so that we can reformulate some
of the earlier features of [4] in terms of \Delta . We also show that for relatively small \mu 
the associated short-wavelength wrinkle modes are governed by a parabolic cylinder
equation, which is centered on a point near to, but off the rim, of the plate, and
whose exact location can only be pinned down upon solving a pair of consistency
conditions. These are solved numerically in section 4, which shows that the structure
of the wrinkles is modified as \mu grows. Indeed, the wrinkles assume an asymptotic
form, the key elements of which are outlined in section 4.1. The upshot is that a new
modified structure is appropriate to significantly enhanced \mu . At this point, which we
refer to as stage II, the radial extent of the wrinkles has grown, but they have also been
pushed onto the rim of the plate so that an Airy-type equation becomes the driving
form. This stage II structure is developed in section 5, where it is demonstrated how
a third regime must take over when \mu is enhanced further. This aspect is taken up in
section 6, where it is shown how our asymptotic development automatically captures
the identity of the preferred mode when significant in-plane stretching is originally
present. The paper closes with some discussion and a few remarks.

2. Formulation. We are interested in the situation depicted in Figure 2 that
involves a circular elastic plate of uniform thickness h > 0 and radius a (with a/h \gg 
1), a flexurally clamped edge and subjected to a uniform transverse pressure P . The
deformation of the plate is expressed using a standard cylindrical system of coordinates
(r, \theta , z) defined by the usual orthonormal triad \{ \bfite r, \bfite \theta , \bfite z\} , with \bfite z perpendicular to
the median plane of the plate which also contains the origin of the axes. The linearly
elastic material of the plate is characterized by the Young's modulus E > 0 and the
Poisson's ratio 0 < \nu < 1/2.

The starting point for formulating the relevant bifurcation problem is the well-
known F\"oppl--von K\'arm\'an (FvK) system (see, e.g., [19]). When written in terms of
the transverse displacement w and a suitably defined stress function F , this system
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WRINKLING OF A CIRCULAR PLATE 1013

𝑎

𝑁0

𝑁0

𝑃

𝑁𝜃𝜃 > 0
𝑁𝜃𝜃 < 0 𝑁𝜃𝜃 < 0

𝑁0 𝑁0

Fig. 2. Top and side views of a uniformly stretched circular thin plate subjected to a uniform
transverse pressure; the dashed curve shown above represents its deflected shape.

becomes

(1) D\nabla 4w  - [F,w] = P and \nabla 4F +
Eh

2
[w,w] = 0 ,

where the first equation accounts for the equilibrium in the normal direction, and the
second is a compatibility relation expressing the coupling between the Gaussian cur-
vature of the deformed configuration and the membrane stresses. In these equations,
D \equiv Eh3/12(1  - \nu 2) represents the plate bending rigidity, and the bracket denotes
the Monge--Amp\`ere bilinear operator defined by [f, g] := (\nabla 2f)(\nabla 2g)  - (\bfnabla \otimes \bfnabla f) :
(\bfnabla \otimes \bfnabla g) for any two smooth functions f and g. In addition F is related to the
membrane stress tensor \bfitN according to \bfitN = (\nabla 2F )\bfitI 2  - \bfnabla \otimes \bfnabla F , where \bfitI 2 is the
standard (in-plane) identity tensor \bfitI 2 = \bfite r \otimes \bfite r + \bfite \theta \otimes \bfite \theta .

As already mentioned, the plate is clamped in the vertical direction and has
normal tractions prescribed along its circumference; this corresponds to

w = 0 ,
\partial w

\partial r
= 0 on r = a ,(2a)

Nrr = N0 , Nr\theta = 0 on r = a .(2b)

To simplify (1) we set \rho := r/a and introduce the dimensionless quantities

\lambda := [12(1 - \nu 2)]3/2
\biggl( 
P

E

\biggr) \Bigl( a
h

\Bigr) 4

, \mu 2 := 12(1 - \nu 2)

\biggl( 
N0

Eh

\biggr) \Bigl( a
h

\Bigr) 2

,(3a)

w := [12(1 - \nu 2)]1/2
w

h
, F := 12(1 - \nu 2)

F

Eh3
;(3b)
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1014 CIPRIAN D. COMAN AND ANDREW P. BASSOM

in what follows we drop the overbars on these rescaled variables in order to avoid
overcomplicating the notation. The parameter \mu 2 measures the dimensionless bend-
ing stiffness. In language introduced by Davidovitch et al. [20], \mu 2 is known as the
bendability; it is envisaged to be fixed in an experiment, while \lambda is increased until
wrinkling appears. It can then be shown that for the nonlinear axisymmetric base
state the two equations in (1) are reduced to

(4) \scrL (1)
0 [\Theta ] = \lambda \rho +

\Theta \Phi 

\rho 
and \scrL (1)

0 [\Phi ] =  - \Theta 2

2\rho 
,

where the new dependent variables are \Theta \equiv \Theta (\rho ;\lambda , \mu ) := dw/d\rho and \Phi \equiv \Phi (\rho ;\lambda , \mu ) :=

dF/d\rho , with \scrL (k)
0 denoting the differential operator

(5) \scrL (k)
0 \equiv 1

\rho 

d

d\rho 

\biggl( 
\rho 
d

d\rho 

\biggr) 
 - k2

\rho 2
, (k \in \BbbN ) .

The system (4) must be solved subject to the boundary conditions

(6) \Theta (0) = \Theta (1) = \Phi (0) = 0 , \Phi (1) = \mu 2.

2.1. The bifurcation boundary-value problem. As usual, bifurcations from
the symmetric basic state (4) are described by a set of equations which follow easily
via the method of adjacent equilibrium. This involves considering perturbations to
the basic state w = \r w(\rho ), F = \r F (\rho ) which are substituted in the dimensionless
version of (1) and then linearized with respect to the incremental fields \widehat w \equiv \widehat w(\rho , \theta )
and \widehat F \equiv \widehat F (\rho , \theta ). The final linear system of partial differential equations is

\nabla 4 \widehat w = [\r w, \widehat F ] + [ \widehat w, \r F ] and \nabla 4 \widehat F =  - [\r w, \widehat w] ,
which can be simplified further by looking for solutions with separable variables,

(7) ( \widehat w, \widehat F ) = (W (\rho ),\Psi (\rho )) cos(m\theta ) ,

where m \geq 0 is an arbitrary integer at this stage. The unknown amplitudes in (7)
satisfy the linear system

(8) \scrL 11[W ] + \scrL 12[\Psi ] = 0 and \scrL 21[W ] + \scrL 22[\Psi ] = 0 ,

where we have introduced the ordinary differential operators

\scrL 11 \equiv [\scrL (m)
0 ]2  - 1

\rho 

d

d\rho 

\biggl( 
\Phi 

d

d\rho 

\biggr) 
+

d\Phi 

d\rho 

\biggl( 
m

\rho 

\biggr) 2

, \scrL 22 \equiv [\scrL (m)
0 ]2 ,(9a)

\scrL 12 =  - \scrL 21 \equiv  - 1

\rho 

d

d\rho 

\biggl( 
\Theta 

d

d\rho 

\biggr) 
+

d\Theta 

d\rho 

\biggl( 
m

\rho 

\biggr) 2

.(9b)

This eighth-order system is to be solved subject to suitable regularity conditions at the
center of the plate, together with the rim conditions (2) appropriate for a flexurally
clamped plate. In dimensionless form these constraints become simply

(10) W =
dW

d\rho 
= \Psi =

d\Psi 

d\rho 
= 0 for \rho \in \{ 0, 1\} .
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WRINKLING OF A CIRCULAR PLATE 1015

Our stated intention with this work is to explore the behavior of the FvK sys-
tem over the entire range of values of \mu \in [0,\infty ) that measures the initial in-plane
stretching of the plate. Guided by our earlier remark that even when \mu is small the
eigenvalue \lambda tends to be large, it is convenient to introduce the auxiliary fixed nondi-
mensional parameter \Delta \gg 1. The strategy we shall adopt is to monitor the behavior
of the system by using various quantities expressed in terms of the \Delta . In particular,
results developed in [6] showed that when the wavenumber m is large the correspond-
ing critical loading required for wrinkling occurs at a value of \lambda \propto m8/3. Guided by
this we write

(11) \lambda = \lambda 0\Delta 
4, \lambda 0 = \scrO (1) ,

together with the squared mode number

(12) m2 = M0\Delta 
3 +M1\Delta 

11/4 +M2\Delta 
5/2 + . . . , Mj = \scrO (1) , (j = 0, 1, 2) .

We remark that we could subsume the quantity M0 within the definition of \Delta without
any loss of generality. However, it will prove helpful to be able to investigate various
limits while holding various physical quantities such asm or \mu fixed, and this is done in
the most transparent manner by keeping the definition of \Delta completely independent
of other quantities in the problem. Furthermore, to reiterate the point we highlighted
in section 1, although it might seem more natural to specify m2 and then seek the
loading \lambda as a function of m, some mathematical subtleties inherent in the description
of the problem make this approach cumbersome. In particular, it is noted that the
basic state satisfies equations (4), which depend on \lambda . Thus if we pursue the normal
method of developing a series for \lambda as a function of m2, then there is the potential
difficulty of needing to keep careful track of the form of the basic state that may need
to be reappraised in light of small changes to \lambda . To circumvent this inconvenience we
instead decide to determine m2 := m2(\lambda ). There is no formal difficulty in adopting
this viewpoint, and it is elementary to invert our results and thereby express \lambda := \lambda (m)
if preferred. At this stage there is one parameter yet to be fixed as the salient regime
for the in-plane stretching \mu , but the relevant sizing becomes evident in the course of
the calculations described below.

In the following we shall see that as we increase the magnitude of the dimensionless
background tension \mu the solution structures evolve through distinct stages I--III.
Each of these is somewhat intricate and inevitably requires the introduction of some
notational complexity. Rather than minimizing this by repeating symbols from stage
to stage, and thereby risking that some notation will have multiple meanings in various
parts of the paper, we choose to have unambiguous designations. This might initially
seem overwhelming, but the three structures that are developed in sections 4, 5, and
section 6 are separate from one other and each section is largely self-contained. In
this way, we hope that the need to undertake extensive cross-referencing between the
three calculations is mitigated as much as possible.

3. The solution structure for \Delta \gg 1: Stage I. Given the form of (11),
simple scaling arguments applied to the base state equations (4) suggest that across
the majority of the circular plate, where \rho = \scrO (1), we have

(13) \Theta = \Delta 4/3\Theta 0 +\Delta  - 4/3\Theta 1 . . . , \Phi = \Delta 8/3\Phi 0 +\Phi 1 + . . . .

Leading-order terms in (4) reduce to

(14) \Theta 0\Phi 0 =  - \lambda 0\rho 
2 , \scrL (1)

0 [\Phi 0] =  - \Theta 2
0

2\rho 
,
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1016 CIPRIAN D. COMAN AND ANDREW P. BASSOM

from which it quickly follows that

(15) \scrL (1)
0 [\Phi 0] =  - \lambda 2

0\rho 
3

2\Phi 2
0

.

It is a routine exercise to show that at the center of the plate \Phi 0 \sim A\rho + \scrO (\rho 3)
for some constant A \in \BbbR that could be determined numerically but whose value is
immaterial for our immediate purposes. Rather, what is of more significance is the
nature of the solution of (14) at the rim \rho \rightarrow 1 - . In view of the boundary conditions
(6) on the base state at \rho = 1 we anticipate that, if \mu is small, then \Phi 0 \rightarrow 0 as \rho \rightarrow 1 - ,
which requires

(16) \Phi 0 \sim \delta 
\Bigl( 
x2/3 + . . .

\Bigr) 
, \Theta 0 \sim  - \lambda 0

\delta 
x - 2/3 (1 - . . . ) , where \delta \equiv 

\biggl( 
3

2
\lambda 0

\biggr) 2/3

,

as x \equiv 1 - \rho \rightarrow 0+. (This expression follows immediately from enforcing the balance
between the second derivative on the left-hand side of (15) with the nonlinear term
on the right-hand side.)

This then highlights the significance of a suitable rim layer wherein the majority of
the wrinkling will take place. Elementary scaling of the governing equations suggests
that x = \scrO (\Delta  - 1), so we define

(17) \rho = 1 - X

\Delta 
, X = \scrO (1),

whereupon, governed by the behaviors (16), we expect that

(18) (\Phi ,\Theta ) = \Delta 2(\phi 0, \theta 0) + \Delta 4/3(\phi 1, \theta 1) + . . . .

If a dash denotes differentiation with respect to X, then substitution in (4) shows
that the zeroth-order terms satisfy

(19) \theta \prime \prime 0 = \lambda 0 + \phi 0\theta 0, \phi \prime \prime 
0 =  - 1

2
\theta 20 ,

and matching with the outer behavior (16) demands that \phi 0 \sim \delta X2/3 and \theta 0 \sim 
 - (\lambda 0/\delta )X

 - 2/3 as X \rightarrow \infty .
It is the rim condition \Phi (1) = \mu 2 from (6) that provides the clue to the appropriate

scaling for \mu . If we put

(20) \mu = \Delta \mu 0 , \mu 0 = \scrO (1),

then we must have

(21) \theta 0(0) = 0 and \phi 0(0) = \mu 2
0.

Clearly, the value of \mu 0 > 0 plays a significant role in setting the leading-order form of
the basic state within the rim region and thus, presumably, is important in setting the
loading that generates wrinkle modes. Hence we now work with \mu 0 assumed fixed and
given, and we seek to determine the value of \lambda 0(m) that marks the onset of buckling.
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WRINKLING OF A CIRCULAR PLATE 1017

3.1. The structure of the eigendeformation. Given the form of the basic
solution, we are able to proceed to examine the perturbation equations. We can
thereby identify the key scalings that ensure that quadratic terms drive perturbations
that are confined to a thin zone within the X = \scrO (1) region. Put another way, the
basic state develops a rim layer, and inside that---already thin---layer sit the wrinkle
modes. It can be verified later that this inner rim is of relative extent \scrO (\Delta  - 1/4), and
so the wrinkle exists at some location X = X0 about which we define the rescaled
variable Y = \scrO (1),

(22) Y := \Delta 1/4(X  - X0) or \rho = 1 - X0

\Delta 
 - Y

\Delta 5/4
.

There are now two issues to be settled: (i) What sets the value of the location X0,
and (ii) how is the disturbance confined to the vicinity of this point? We can begin to
address these questions by expanding the rim layer quantities \phi j(X) as Taylor series
taken about X = X0. This shows that where Y = \scrO (1) we have

(23) \Phi = \Delta 2

\biggl( 
\phi 00 +\Delta  - 1/4\phi 01Y +

1

2
\Delta  - 1/2\phi 02Y

2 +
1

6
\Delta  - 3/4\phi 03Y

3 + . . .

\biggr) 

+\Delta 4/3
\Bigl( 
\phi 10 +\Delta  - 1/4\phi 11Y + . . .

\Bigr) 
,

where the constants \phi ij denote the jth derivative of \phi i(X) evaluated at X = X0.
Taking derivatives shows that

(24)
d\Phi 

d\rho 
=  - \Delta 3\phi 01  - \Delta 11/4\phi 02Y  - 1

2
\Delta 5/2\phi 03Y

2 + . . . ,

and we remark that expressions completely analogous to (23) and (24) hold for \Theta and
its derivative, with the \phi ij replaced by \theta ij , which represents the jth-order derivative
of \theta i(X) evaluated at X = X0. Notice that although the base state correction term
\phi 1 enters both the expressions (18) and the Taylor series (23), this is not required for
the results we derive below. Hence, for brevity we do not discuss \phi 1 (and \theta 1) further
here, although of course their presence would have to be properly accounted for if we
were to delve deeper into later terms in our series solutions.

3.2. The bifurcation equations. Given these proposed structures, and with
the squared mode number m2 defined by (12), the scene is now set for determining
the important equations. We look for a solution of (8) of the form

(25) (W,\Psi ) = (W0,\Psi 0) + \Delta  - 1/4(W1,\Psi 1) + \Delta  - 1/2(W2,\Psi 2) + . . .

and remember that \Phi and its derivative are given by (23) and (24). Substituting
(25) into the original equations (8), collecting like powers of \Delta , and then setting to
zero their corresponding coefficients results in a hierarchy of coupled equations, as
explained below.

Terms of \scrO (\Delta 6) in the two equations yield

\scrR 1[W0,\Psi 0] \equiv (M0  - \phi 01)W0  - \theta 01\Psi 0 = 0 ,(26a)

\scrR 2[W0,\Psi 0] \equiv \theta 01W0 +M0\Psi 0 = 0 .(26b)

The consistency of this linear homogeneous system in W0 and \Psi 0 requires

(27) M0(M0  - \phi 01) + \theta 201 = 0 .
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1018 CIPRIAN D. COMAN AND ANDREW P. BASSOM

At \scrO (\Delta 23/4) it follows that

\scrR 1[W1,\Phi 1] = Y \theta 02\Psi 0  - (M1  - \phi 02Y )W0 ,(28a)

\scrR 2[W1,\Phi 1] =  - \theta 02YW0  - M1\Psi 0 .(28b)

Again, a solution is possible only if suitable consistency conditions hold. The pair of
equations (26) imply that M0\scrR 1(W,\Phi )+ \theta 01\scrR 2(W,\Phi ) \equiv 0 as these two operators are
linearly related. It follows that the system (28) is compatible only if

(29) M1 = 0 and M0\phi 02 = 2\theta 01\theta 02 .

We need to proceed as far as \scrO (\Delta 11/2). We determine that

\scrR 1[W2,\Phi 2] = \theta 02Y\Psi 1 + \phi 02YW1 +
1

2
\theta 03Y

2\Psi 0  - 
\biggl( 
M2  - 

1

2
\phi 03Y

2

\biggr) 
W0 + 2

d2W0

dY 2
,

\scrR 2[W2,\Phi 2] =  - \theta 02YW1  - 
1

2
\theta 03Y

2W0  - M2\Psi 0 + 2
d2\Psi 0

dY 2
.

The consistency of this pair requires

(31)
d2W0

dY 2
+

\biggl[ 
M0\phi 03  - 2\theta 01\theta 03  - 2\theta 202

4(2M0  - \phi 01)

\biggr] 
Y 2W0  - 

1

2
M2W0 = 0 ,

which, when cast in the generic form

(32)
d2W0

dY 2
 - \gamma Y 2W0 + \delta W0 = 0 ,

admits the exact solution W0 \propto exp( - \gamma 1/2Y 2/2) if \delta = \gamma 1/2. This gives

(33) M2 =  - 2

\biggl[ 
2\theta 202 + 2\theta 01\theta 03  - M0\phi 03

4(2M0  - \phi 01)

\biggr] 1/2
,

as long as \gamma > 0. The expression W0(Y ) \propto exp( - \gamma 1/2Y 2/2) proves that the solution
is effectively confined to the Y = \scrO (1) region subsumed within the X = \scrO (1) rim
layer governing the base structure.

We now have the information we require to uncover the location of the wrinkles
centered at X = X0. For a given \lambda 0, the leading-order rim solution (\phi 0, \theta 0) satisfies
the coupled system (19) subject to (21) and the matching conditions \phi 0 \sim \delta X2/3

and \theta 0 \sim  - (\lambda 0/\delta )X
 - 2/3 as X \rightarrow \infty . Wrinkling occurs with a scaled square mode

number M0 and is located at X = X0, where M0 and X0 are determined by solving
the consistency equations (27) and (29). The solution of this problem requires some
associated numerical work, as explained briefly in the next section.

4. Numerical solution of the stage-I equations. Our computational task
requires that, given the scaled constant \mu 0 > 0, we need to determine the relationship
between \lambda 0 and M0. It turns out that considerable simplification can be achieved by
some judicious scaling. If we define a new rim coordinate \widehat X \geq 0 according to

(34) \widehat X := \lambda 
1/4
0 X

and write the base structure variables \phi 0 =: \lambda 
1/2
0

\widehat \phi 0 and \theta 0 =: \lambda 
1/2
0

\widehat \theta 0, then it follows
that

(35) \widehat \theta \prime \prime 0 = 1 + \widehat \phi 0
\widehat \theta 0, \widehat \phi \prime \prime 

0 =  - 1

2
\widehat \theta 20
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WRINKLING OF A CIRCULAR PLATE 1019

subject to the constraints

(36) \widehat \phi 0 \sim \alpha \widehat X2/3 + . . . , \widehat \theta 0 \sim  - 1

\alpha 
\widehat X - 2/3 + . . . as \widehat X \rightarrow \infty ; \alpha \equiv 

\biggl( 
3

2

\biggr) 2/3

,

together with

(37) \widehat \theta 0(0) = 0 and \widehat \phi 0(0) = \widehat \Lambda ;

here, we have introduced the definition

(38) \widehat \Lambda :=
\mu 2
0

\lambda 
1/2
0

.

If, furthermore, we put M0 =: \lambda 
3/4
0

\widehat M0 and denote by \widehat \phi 0j and \widehat \theta 0j the jth derivatives

of \widehat \phi 0 and \widehat \theta 0 evaluated at \widehat X = \widehat X0, then the consistency conditions (27) and (29)
become simply

(39) \widehat M0(\widehat M0  - \widehat \phi 01) + \widehat \theta 201 = 0 and \widehat M0
\widehat \phi 02 = 2\widehat \theta 01\widehat \theta 02.

By this device we have reduced by one the dimension of the parameter space for
which a solution is required. For each \widehat \Lambda there is one pair of corresponding (\widehat M0, \widehat X0),
and we are faced with a three-point boundary-value problem comprising the fourth-
order system (35)--(37) subject to consistency conditions to be imposed at a point \widehat X0

that is part of the solution. This computation was carried out using standard routines
available in MATLAB.

0 20 40 60
0  

0.2

0.4

0.6

0.8

1  

0 20 40 60
0.6

0.8

1  

1.2

Fig. 3. The forms of \widehat M0 (left) and \widehat X0 (right) as functions of the parameter \widehat \Lambda as deter-

mined from the solution of system (35)--(37) subject to (39) being satisfied at \widehat X = \widehat X0. Shown as

superimposed markers are the corresponding large-\widehat \Lambda asymptotic results (46).

Some representative solutions are shown in Figure 3; the left panel illustrates the
dependence of \widehat M0 on \widehat \Lambda , while the right panel indicates the corresponding form of the
location \widehat X0 within the rim region. We note that for no initial in-plane stretching,
i.e., \widehat \Lambda = 0, do we have finite values \widehat M0 \simeq 0.8721 and \widehat X0 \simeq 1.066. As \widehat \Lambda increases,
so initially \widehat X0 grows, but this trend is soon reversed and both \widehat M0 and \widehat X0 drop
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1020 CIPRIAN D. COMAN AND ANDREW P. BASSOM

steadily with \widehat \Lambda . This suggests that to account for stronger stretching \mu 0 \gg 1 (and

so \widehat \Lambda \gg 1 by definition (38)) some sort of new structure ought to come into play in

an appropriate large-\widehat \Lambda limit. To unravel the corresponding details the first step is
therefore to examine the nature of the solution of (35)--(37) subject to (39) as \widehat \Lambda \rightarrow \infty .

4.1. The solution of (35)--(39) for large \widehat \Lambda . Consideration of the boundary

condition imposed on \widehat \phi 0 at \widehat X = 0, together with the nature of the governing equa-
tions, suggests that when \widehat \Lambda \gg 1 the solution develops a short-scale structure on a

length \scrO (\widehat \Lambda  - 1/2). We therefore define

(40) \widehat X = \widehat \Lambda  - 1/2z

and propose that the solution takes the form

(41) \widehat \theta 0 = \widehat \Lambda  - 1\widetilde \theta 0(z)+\widehat \Lambda  - 3\widetilde \theta 1(z)+. . . , \widehat \phi 0 = \widehat \Lambda \widetilde \phi 0(z)+\widehat \Lambda  - 1\widetilde \phi 1(z)+\widehat \Lambda  - 3\widetilde \phi 2(z)+. . . .

On substituting these forms into (35), comparison of like coefficients of \widehat \Lambda in the two
equations yields that

d2\widetilde \theta 0
dz2

= 1 + \widetilde \theta 0\widetilde \phi 0,
d2\widetilde \theta 1
dz2

= \widetilde \theta 0\widetilde \phi 1 + \widetilde \theta 1\widetilde \phi 0,
d2\widetilde \phi 0

dz2
=

d2\widetilde \phi 1

dz2
= 0, and

d2\widetilde \phi 2

dz2
=  - 1

2
\widetilde \theta 2
0 .

In view of the boundary conditions, we suppose that \widetilde \phi 0 \equiv 1, a claim that can be
checked later. Given this, it follows immediately that \widetilde \theta 0 =  - 1 + exp( - z), and we

can also deduce that \widetilde \phi 1 is proportional to z. We cannot pin down this solution
completely without recourse to the far-field conditions (36) for \widehat X \rightarrow \infty . The fact
that the solution does not match directly onto the far-field requirements strongly
suggests that the inner-solution zone must be supplemented by some form of outer
structure. It is not difficult to verify that this outer zone lies where \widehat X = \widehat \Lambda 3/2 \widetilde Y with\widetilde Y = \scrO (1) and that here,

(42) \widehat \theta 0 = \widehat \Lambda  - 1\widetilde \Theta 0(\widetilde Y ) + . . . , \widehat \phi 0 = \widehat \Lambda \widetilde \Phi 0(\widetilde Y ) + . . . .

To match the inner region requires that \widetilde \Theta 0 \rightarrow  - 1 and \widetilde \Phi 0 \rightarrow 1 as \widetilde Y \rightarrow 0. Leading-
order terms in the governing equations (35) give

\widetilde \Theta 0
\widetilde \Phi 0 + 1 = 0 and

d2\widetilde \Phi 0

d\widetilde Y 2
=  - 1

2
\widetilde \Theta 2
0 =\Rightarrow d2\widetilde \Phi 0

d\widetilde Y 2
=  - 1

2\widetilde \Phi 2
0

.

This latter equation admits the exact solution \widetilde \Phi 0 = (1 + 3\widetilde Y /2)2/3, which hence

yields that \widetilde \Theta 0 =  - (1 + 3\widetilde Y /2) - 2/3. These expressions match automatically the far-

field requirements (36) and the inner-zone solutions as \widetilde Y \rightarrow 0. Furthermore, we can

now deduce that \widetilde \phi 1 = z, rather than just being proportional to it, and it is then a
routine matter to solve for \widetilde \phi 2. Taken together, these facts mean that within the inner
zone (40)

\widehat \theta 0 = \widehat \Lambda  - 1[ - 1 + exp( - z)] + . . . ,(43a)

\widehat \phi 0 = \widehat \Lambda + \widehat \Lambda  - 1z + \widehat \Lambda  - 3

\biggl[ 
 - 1

4
z2 + exp( - z) - 1

8
exp( - 2z) + \widetilde cz  - 7

8

\biggr] 
+ . . . ,(43b)

where the precise value of \widetilde c \in \BbbR will not be required.
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WRINKLING OF A CIRCULAR PLATE 1021

We have now shown that when \widehat \Lambda \gg 1, the appropriate solution of (35)--(37)

develops a two-layer structure with an inner \scrO (\widehat \Lambda  - 1/2)-zone and a wider outer region.

We still need to identify the corresponding values of \widehat M0 and \widehat X0 that together fulfill
the consistency requirements (39). The numerical solutions sketched in Figure 3

suggested that as \widehat \Lambda \rightarrow \infty , so \widehat X0 \rightarrow 0, and therefore it is unlikely that the consistency
conditions will hold somewhere in the outer zone. With this in mind, suppose that the
consistency requirements (39) apply at some point \widehat X0 = \widehat \Lambda  - 1/2z0 for some z0 > 0 to
be found. In order to satisfy (39), it is clear that the values of the various derivatives\widehat \theta 01, \widehat \theta 02, \widehat \phi 01, and \widehat \phi 02 need to be found. These can be inferred directly from our
foregoing results (43), which yield\widehat \phi 01 = \widehat \Lambda  - 1/2 + . . . , \widehat \theta 01 =  - \widehat \Lambda  - 1/2 exp( - z0) + . . . ,(44)

\widehat \phi 02 =  - 1

2
\widehat \Lambda  - 2(1 - exp( - z0))

2 + . . . , \widehat \theta 02 = exp( - z0) + . . . .(45)

We proceed by examining the first of the consistency conditions in (39). Given

the values noted in (44), there appear to be two possibilities, either \widehat M0 \simeq  - \widehat \theta 201/\widehat \phi 01

or \widehat M0 \simeq \widehat \phi 01 = \Lambda  - 1/2. If we take the former option, routine algebra shows that the
second consistency requirement \widehat M0

\widehat \phi 02 = 2\widehat \theta 01\widehat \theta 02 cannot be satisfied. We are then
left to conclude that

(46) \widehat M0 \simeq \widehat \Lambda  - 1/2 and \widehat X0 \simeq \widehat \Lambda  - 1/2 ln (2\widehat \Lambda ) as \widehat \Lambda \rightarrow \infty ,

where the value of \widehat X0 follows from the second consistency condition. These large-\widehat \Lambda predictions are superimposed on the results shown in Figure 3, and both show
excellent agreement with the direct numerical simulations.

5. The emergence of structure for larger values of \bfitmu : Stage II. In the
preceding sections we have sought to explain the structure of wrinkling eigendeforma-
tions with high mode numbers (m \sim \Delta 3/2) when the in-plane stretching parameter \mu 
is of size \scrO (\Delta ); recall (12) and (20). Equation (11) reminds us that the corresponding
loading for wrinkling is \scrO (\Delta 4), and we now investigate how the situation needs to
be modified as \mu grows. The workings of the previous section show what is likely to
happen as \widehat \Lambda increases. In particular we observe that the square of the mode number

m2 \sim \Delta 3M0 = \Delta 3\lambda 
3/4
0

\widehat M0, and for \widehat \Lambda \gg 1 we predicted \widehat M0 \sim \widehat \Lambda  - 1/2 = \lambda 
1/4
0 /\mu 0 by

definition (38). Hence the wrinkle mode number is

(47) m \sim \Delta 3/2\lambda 
1/2
0 /\mu 

1/2
0 .

We need to be careful that we continue to examine eigenstates with mode numbers
consistent with those appropriate to stage I; that is, we should keep m \sim \Delta 3/2. This
then suggests \lambda 0 \sim \mu 0, while a second constraint for fixing the appropriate sizings for
\lambda 0 and \mu 0 follows from the wrinkling structure itself. Using (32) and the scalings of
section 3, it follows that the wrinkling layer is of extent \scrO (\Delta  - 5/4\widehat \gamma  - 1/4), where

\widehat \gamma \equiv \lambda 
5/4
0

\Biggl[ 
 - \widehat M0

\widehat \phi 03 + 2\widehat \theta 01\widehat \theta 03 + 2\widehat \theta 202
4(2\widehat M0  - \widehat \phi 01)

\Biggr] 
.

Given the asymptotic results (44), it transpires that the depth of the wrinkle zone is
comparable to the distance of its center from the rim, when

(48) \Delta  - 5/4\lambda 
 - 1/4
0 \mu 

 - 1/4
0 \sim \Delta  - 1 or \lambda 0\mu 0 \sim \Delta .
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1022 CIPRIAN D. COMAN AND ANDREW P. BASSOM

Taken with our earlier expectation \lambda 0 \sim \mu 0, it is now clear that some new structure
is anticipated once \mu \equiv \Delta \mu 0 becomes \scrO (\Delta 3/2). To avoid introducing a plethora of
new variables, we recycle much of the preceding notation, changing only those parts
that are crucial to avoid confusion.

Our discussion immediately above suggests that the stretching and loading must
be scaled according to

(49) \mu = \Delta 3/2\mu \dagger 
0, \lambda = \Delta 9/2\lambda \dagger 

0 for some \mu \dagger 
0, \lambda 

\dagger 
0 = \scrO (1) ,

which replace (20) and (11), respectively. We have been careful to ensure that we
continue to seek eigendeformations with mode numbers \scrO (\Delta 3/2), so suppose that

(50) m2 = M\dagger 
0\Delta 

3 +M\dagger 
1\Delta 

2 + . . . .

Once again, we proceed by assuming that \mu \dagger 
0 is fixed and given, and we endeavour

to find the form of \lambda \dagger 
0 = \lambda \dagger 

0(M
\dagger 
0 ) that marks the onset of buckling. Our previous

asymptotics predict that the wrinkling is confined to an \scrO (\Delta  - 1)-distance off the rim,
so we can simply retain definition (17) with \rho = 1 - X\Delta  - 1.

In view of the increase in the loading \lambda the basic state is modified, although the
key equations are only slightly altered. The basic state across the majority of the
plate now satisfies

(51) \Theta = \Delta 3/2\Theta 0 + . . . , \Phi = \Delta 3\Phi 0 + . . . ,

where

(52) \Theta 0\Phi 0 =  - \lambda \dagger 
0\rho 

2 and \scrL (1)
0 [\Phi 0] =  - (\lambda \dagger 

0)
2\rho 3

2\Phi 2
0

.

Previously we needed to solve for \Phi 0 subject to the requirement that it vanished as
\rho \rightarrow 1 - ; however, now the enhanced value of \mu in (49) means that we simply require

that \Phi 0(1) = (\mu \dagger 
0)

2. If we write \Phi 0 \equiv (\mu \dagger 
0)

2\phi 0, then it follows that

(53) \scrL (1)
0 [\phi 0] =  - \Gamma 2\rho 3

2(\phi 0)2
; \phi 0(0) = 0, \phi 0(1) = 1; \Gamma \equiv \lambda \dagger 

0

(\mu \dagger 
0)

3
.

We need to ascertain the behavior of this solution in the rim zone X = \scrO (1), and it
is straightforward to deduce that if \phi \prime 

0(1) \equiv \beta , then in the rim zone

(54) \Phi = \Delta 3(\mu \dagger 
0)

2

\biggl[ 
1 - \beta X

\Delta 
+

1

2

\biggl( 
1 - \beta  - 1

2
\Gamma 2

\biggr) 
X2

\Delta 2
+ . . .

\biggr] 
, \Theta = \scrO (\Delta 3/2).

If where X = \scrO (1) the wrinkle adopts the form

(55) (W,\Psi ) = (W \dagger 
0 ,\Psi 

\dagger 
0) + \Delta  - 1(W \dagger 

1 ,\Psi 
\dagger 
1) + . . . ,

then leading-order terms arising from substitution in (8) tell us that

(56) M\dagger 
0 + \beta (\mu \dagger 

0)
2 = 0 and (\mu \dagger 

0)
2M\dagger 

0\Psi 
\dagger 
0 = \lambda \dagger 

0(\beta  - 2)W \dagger 
0 .

At next order in the first equation of (8) we find that

(57)

\Biggl[ 
2 +

(\mu \dagger 
0)

2

M\dagger 
0

\Biggr] 
d2W \dagger 

0

dX2
 - 
\biggl[ 
(\mu \dagger 

0)
2

\biggl( 
\beta +

1

2
\Gamma 2  - 1

\biggr) 
X +M\dagger 

1

\biggr] 
W \dagger 

0 = 0 .
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This equation is merely a scaled form of the ubiquitous Airy equation y\prime \prime  - xy = 0,
which is known to admit a solution with y(x0) = 0 and y \rightarrow 0 as x \rightarrow \infty if x0 \simeq 
 - 2.331. Given this, we deduce that (57) enables W \dagger 

0 \rightarrow 0 both as X \rightarrow 0 and as
X \rightarrow \infty if

(58) M\dagger 
1 \simeq  - 2.331(M\dagger 

0 )
 - 1/3

\biggl[ \biggl( 
\beta +

1

2
\Gamma 2  - 1

\biggr) 
(\mu \dagger 

0)
2 + 2M\dagger 

0

\biggr] 2/3 \Bigl[ 
2M\dagger 

0 + (\mu \dagger 
0)

2
\Bigr] 1/3

.

We now have the elements required to determine the loading parameter \lambda \dagger 
0 in

terms of \mu \dagger 
0. The key to unlocking this dependence lies in the requirement \phi \prime 

0(1) \equiv \beta 
and the first consistency condition in (56) combined with the basic state equation (53).
This second-order equation already is subject to the two requirements \phi 0(0) = 0 and

\phi 0(1) = 1, and the third constraint \phi \prime 
0(1) =  - M\dagger 

0/(\mu 
\dagger 
0)

2, which follows directly from
\phi \prime 
0(1) \equiv \beta and the first consistency condition in (56), means that a solution exists

only for certain values of \Gamma . We can write this in the alternative form

(59) \lambda \dagger 
0 = (\mu \dagger 

0)
3 G

\Biggl[ 
M\dagger 

0

(\mu \dagger 
0)

2

\Biggr] 

for some function G[ \cdot ] that can only be determined numerically; the form of this
function is illustrated in Figure 4.

0  0.5 1  1.5 2  2.5
0 

5 

10

15

20

25

30

35

Fig. 4. The dependence of \lambda \dagger 
0 on \mu \dagger 

0 according to (59) when M\dagger 
0 = 1. Shown superimposed on

this plot are the one- and two-term asymptotic results (60), which correspond to the triangular and
round markers, respectively.

It is a straightforward computational exercise to show that problem (53) admits

a solution with \phi \prime 
0(1) = 0 when \Gamma = K0 \approx 3.212. This then tells us that for large \mu \dagger 

0

(and small \beta ), \lambda \dagger 
0 \simeq K0(\mu 

\dagger 
0)

3. Moreover, if we look for a solution of (53) as a regular

series in inverse powers of \mu \dagger 
0, we can derive the two-term result

(60) \lambda \dagger 
0 = K0(\mu 

\dagger 
0)

3 + 1.217M\dagger 
0\mu 

\dagger 
0 + . . .
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1024 CIPRIAN D. COMAN AND ANDREW P. BASSOM

which is included in Figure 4. It is observed that agreement is excellent, even for
surprisingly modest values of \mu \dagger 

0.

These features forecast the expected behaviors at even larger values of \mu . As \mu \dagger 
0

grows, so the leading-order loading parameter \lambda \dagger 
0 becomes independent of the mode

number M\dagger 
0 , and the fact that the quantity M\dagger 

1 \sim \scrO ((\mu \dagger 
0)

2), according to (58), means

that a restructuring should be anticipated once \mu \dagger 
0 = \scrO (\Delta 1/2). Then \mu = \scrO (\Delta 2), and

this last stage is described next.

6. Stage III: Strong stretching. Guided by the previous analysis we can
quickly sketch the appropriate structure when

(61) \mu = \Delta 2\widetilde \mu with \widetilde \mu = \scrO (1) .

We anticipate that once more m2 = \Delta 3\widetilde M , for some \widetilde M = \scrO (1), but that the com-
mensurate loading is now

(62) \lambda = K0\widetilde \mu 3\Delta 6 + \widetilde \lambda 1\Delta 
5 + \widetilde \lambda 2\Delta 

4 + . . . ,

where \lambda j = \scrO (1) (j = 1, 2) are yet to be determined. We remark that this scaling
m \sim \mu 3/4 was first derived using asymptotic arguments by Coman and Bassom [8],
and later Davidovitch et al. [20] gave a simple argument based on scaling to confirm
this result. Earlier in the paper we stressed our desire to take a solitary one-term
form for \lambda , and at face value it seems that we are now deliberately deviating from
this route. The reason is not difficult to appreciate; at such high values of \mu , the
first term in the loading form (62) is independent of the wrinkle mode number m
according to the predictions of stage II. Thus, a simple one-term form for \lambda would
no longer be adequate to capture any wavenumber variation whatsoever, which forces
our consideration of the more complicated (62). Now, across the main part of the
plate, the series (51) becomes

\Phi = \Delta 4\Phi 0 +\Delta 3\Phi 1 +\Delta 2\Phi 2 + . . . and \Theta = \Delta 2\Theta 0 +\Delta \Theta 1 +\Theta 2 + . . . ,

where \Phi j \equiv \Phi j(X) and \Theta j \equiv \Theta j(X) (j = 0, 1, 2, . . . ) are to be determined. Note
that if we write \Phi 0 = \widetilde \mu 2\phi 0, then \phi 0 satisfies (53) with the value \Gamma = K0, by virtue
of which we are guaranteed that \Phi \prime 

0(1) = 0. Thus, we are able to express the form of
the base state in the X = \scrO (1) rim region to obtain the counterpart to (54) in the
form

\Phi = \widetilde \mu 2\Delta 4 + (A22X
2 +A21X)\Delta 2 + (A13X

3 +A12X
2 +A11X)\Delta + . . . ,(63a)

\Theta = B20\Delta 
2 + (B11X +B10)\Delta + . . . ,(63b)

where

A22 :=
1

2

\biggl( 
1 - 1

2
K2

0

\biggr) \widetilde \mu 2 , A13 :=
1

6
(3 +K2

0 )\widetilde \mu 2 , B20 :=  - K0\widetilde \mu 3 ,

A21 :=
\widetilde \lambda 1K1\widetilde \mu , A12 :=  - 

\widetilde \lambda 1

2\widetilde \mu (K0  - K1) , B11 := 2K0\widetilde \mu 3 ,

A11 :=
\widetilde \lambda 2K1\widetilde \mu +

\widetilde \lambda 2
1K2\widetilde \mu 4

, B10 :=  - \widetilde \lambda 1 .
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Standard numerical work (which is relegated to the supplementary material) shows
that K0 \simeq 3.212, K1 \simeq 0.5179, and K2 \simeq 0.0389. In expression (63a) we note the
absence of the \Delta 3 term, which is a direct consequence of the fact that \Phi \prime 

0(1) = 0. We
can use the approximation of the basic state (63) to capture the asymptotic structure
of the wrinkles. To this end we shall employ the ansatz

(64) W = \widetilde W0 + \widetilde W1\Delta 
 - 1 + . . . and \Psi = \widetilde \Psi 0\Delta 

 - 1 + \widetilde \Psi 1\Delta 
 - 2 + . . . .

The second equation in (8) gives an algebraic constraint, \widetilde M\Psi 0+2K0\widetilde \mu 3W0 = 0; thus,
the terms in the second expansion of (64) are quite passive and respond to what the
Wj (j = 0, 1, . . . ) components need to do. However, use of (64) in the first equation
of (8) yields

(65)
d2\widetilde W0

dX2
 - (\alpha X  - \beta )\widetilde W0 = 0 with \alpha :=  - 2\widetilde MA22\widetilde \mu 2

, \beta :=  - 
\widetilde M(\widetilde M  - A21)\widetilde \mu 2

.

We recognize this equation as once again related to an Airy form, and elementary
algebra shows that a nontrivial solution with \widetilde W \rightarrow 0 as X \rightarrow 0 and X \rightarrow \infty is
possible if

(66) \widetilde \lambda 1K1 = \widetilde \mu \widetilde M + \xi 0

\biggl( 
1

2
K2

0  - 1

\biggr) 2/3 \widetilde \mu 5/3\widetilde M - 1/3 ,

where Ai( - \xi 0) = 0, \xi 0 \simeq 2.331. While the leading-order term in (62) was independent

of \widetilde M , now we observe that \widetilde \lambda 1 \rightarrow \infty both as \widetilde M \rightarrow 0 and as \widetilde M \rightarrow \infty . Thus, we can
identify the wavenumber that corresponds to the least loading, and minimizing \widetilde \lambda 1

with respect to \widetilde M gives the critical point (\widetilde Mc, \widetilde \lambda 1c) \simeq (1.6877, 13.0346).

We remark that the solution \widetilde W0 does not fulfill all eight of the rim conditions
(10) prescribed. This merely reflects the fact that the majority of the wrinkle zone
is governed by a system of order less than eight, which means that not all the con-
straints can be satisfied. This does not present any problem and simply points to the
fact that the \scrO (\Delta  - 1) rim zone contains an inner region in which the aforementioned
requirements can be ensured. The details of this inner zone affect later terms in our
asymptotic series; in particular, they influence the form of \widetilde \lambda 2 in (62). The manipula-
tions required are routine but lengthy, so in the interest of brevity the details of the
corresponding analysis are consigned to the supplementary material. Here, we simply
state the final results

(67) \lambda c = 3.212\mu 3 + 13.0346\mu 5/2 + 54.8417\mu 2 + . . . and m2
c = 1.6877\mu 3/2 + . . . .

The predictions of these last formulae are illustrated in Figure 5, where we compare
them with some direct numerical simulations of (8)--(10). It is clear that the agreement
is very good. In particular, in the left panel of the figure, the relative errors range
from 10\% at \mu = 80 to 5.7\% when \mu = 120 and are merely 2.8\% once \mu = 200.
The predictions of the critical wavenumber differ from the simulations by about 5\%
when \mu = 180; although these relative errors are slightly larger than those for the
critical loading values, it should be remembered that the asymptotic result in the
second part of (67) consists of only one term. Better improvement could be expected
should further terms in the second part of (67) be developed, but this simple result
is sufficiently accurate that the additional effort necessary to extricate higher order
terms is arguably not commensurate with the likely marginal improvement in results.
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Fig. 5. Comparisons between direct numerical simulations of the boundary-value problem (8)--
(10) and the critical asymptotic values (67) for 30 \leq \mu \leq 200. The markers correspond to the former
set of data, while the continuous curves represent the asymptotic results.

7. Discussion. In this article we have endeavored to provide a detailed descrip-
tion of the short-wavelength wrinkle modes that develop in a uniformly stretched
weakly clamped circular plate subjected to a transverse pressure. Three distinct
regimes of initial stretching have been identified (see Figure 6); in the first of these
the eigenmodes are located off the rim of the plate at a location determined by the
solution of a pair of consistency conditions. As the size of the stretching \mu increases,
the wrinkles effectively sit at the rim, where they are governed by the solution of a
scaled Airy equation. A third regime is suggested in which the leading-order loading
required for wrinkling loses all dependence on the mode number.

𝑚 = O ∆3/2 + O(∆)

𝜆 = O(Δ4) 𝜆 = O(Δ9/2) 𝜆 = O Δ6 + O ∆5

𝑚 = O ∆3/2 + O(Δ1/2) 𝑚 = O ∆3/2 + O(1)

𝑚 ≫ 1

𝜇 = 0 𝜇 ≫ 1

𝑚 = 0

𝜇 = O(∆) 𝜇 = O(Δ3/2) 𝜇 = O(Δ2)

(PCF, non-critical) (Airy, intermediate) (Airy, critical)

Fig. 6. Schematic of the asymptotic regimes studied. Upper line indicates the size of the
correction to the leading-order wavenumber \scrO (\Delta 3/2).

At the outset, our principal motivation behind this work was to shed light on
the nature of the asymptotic decoupling of the FvK system found recently in related
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studies [5, 6]. Although there are a number of nontrivial examples in the litera-
ture in which the asymptotic decoupling of the FvK nonlinear equations has been
encountered, for example, [10, 11], it should be emphasized that the nature of this
phenomenon was actually quite different. Indeed, a close look indicates that the afore-
mentioned references were concerned with out-of-plane bending perturbations from a
state of plane stress. As a consequence, the compatibility relation in the FvK system
decoupled at leading order, giving rise to the standard linear biharmonic equation for
the stress function, and this had the effect of turning the equilibrium equation into
an expression solvable in closed form. So in spite of the fact that the analysis was
ostensibly nonlinear, those works ended up dealing with a weak nonlinear perturba-
tion from a linear plane-stress elastic state. In contrast, the situation present in our
work is exactly the opposite. Here our perturbations take place relatively remotely
from the original flat state of the circular plate; exactly how remote is something
that is controlled by the nonlinear basic state. This has significant ramifications for
the subsequent asymptotic analysis, as the nature of basic state is one of the critical
elements in the implementation of our singular perturbation strategies.

It is important to appreciate some of the inherent limitations of our results. We
have been exclusively focused on the onset of wrinkling, which is acknowledged as
being very awkward to observe in the laboratory. While there are numerous valid
reasons for understanding onset (or near-threshold phenomena [20]), from a practical
standpoint wrinkles well into the postbuckling regime are much easier to produce.
In the far-postbuckling situation traditional simplified theories have been developed
based on tension field theory [21, 22]. The approach taken by tension-field theory is
in marked contrast to the bifurcation technique adopted here. Tension-field theory in
some sense smears out the individual wrinkles and seeks to trace the evolution of the
boundary separating the wrinkled and unwrinkled areas. As further evidence that
the postbuckling regime can behave very differently from the onset problem, we note
recent results that suggest how spatially varying wavenumbers can be dramatically
affected by increasing the load; see Paulsen et al. [23] and Taffetani and Vella [24], to
name just two studies of these effects.

It is helpful to note that our results need to be considered carefully if general-
izations to other geometries are contemplated. An obvious question to ask is how
our work may be applied to annular plates. In our present study the existence of
the edge instability is contingent upon the presence of compressive stresses near the
circumference, which is guaranteed if the outer edge of the plate is weakly clamped
or pinned. If there is also uniform stretching applied along the outer circumference,
then one has a handle on the extent of the region of compressive stresses, and this is
the role played by our parameter \mu . For an annular plate with a traction-free inner
boundary, weakly clamped along the outer rim and subjected to uniform stretching
along that edge, there will be no compressive stresses in the annulus according to the
Lam\'e solution. If transverse pressure is also applied, then the region of compressive
stresses will be situated near the outer rim and this will be an entirely nonlinear
phenomenon (exactly as in the current paper). Haughton and McKay [25] considered
the plane-stress problem for an annular membrane in the case of a nonlinear Varga
material and with several types of boundary conditions. The principal stresses were
found to be always tensile if the inner boundary is stress free.

Our problem here has the feature that via the loading, the basic state and the
infinitesimal wrinkle pattern are intimately connected. The usual approach taken in
these types of problems is to determine the underlying basic state and then adjust the
loading, which plays the role of an eigenvalue, so that nontrivial modes are possible.
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Here the situation is somewhat different. The value of \lambda plays a pivotal role in the form
of the basic state so that both this quantity and the perturbation structure need to be
developed in tandem. This is the feature that suggested it would be advantageous to
view \lambda as given and then calculate the associated wrinkle wavenumber. This strategy
has enabled us to monitor the stability characteristics of the system as the in-plane
loading varies from completely unstretched right through to a taut geometry. While
we have been able to implement similar techniques in related situations, we believe
this is the first example where it has proved possible to track the effect of a varying
physical parameter over such an extended regime. It would be of considerable interest
to know whether the problem presented here is somewhat special in that respect or
whether the approach has more general applicability.

Acknowledgments. We thank the referees for their numerous comments which
led to improvements in the paper.
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