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WRINKLING STRUCTURES AT THE RIM OF AN INITIALLY
STRETCHED CIRCULAR THIN PLATE SUBJECTED TO
TRANSVERSE PRESSURE*

CIPRIAN D. COMAN!T AND ANDREW P. BASSOM?

Abstract. Short-wavelength wrinkles that appear on an initially stretched thin elastic plate
under transverse loading are examined. As the degree of loading is increased so wrinkles appear and
their structure at the onset of buckling takes on one of three distinct forms depending on the size of
the imposed stretching. With relatively little stretching, the wrinkles sit off the rim of the plate at
a location which is not known a priori, but which is determined via a set of consistency conditions.
These take the form of constraints on the solutions of certain coupled nonlinear differential equations
that are solved numerically. As the degree of stretching grows, so an asymptotic solution of the
consistency conditions is possible which heralds the structure that governs a second regime. Now the
wrinkle sits next to the rim where its detailed structure can be described by the solution of suitably
scaled Airy equations. In each of these first two regimes the Féppl-von Kdrmén bifurcation equations
remain coupled, but as the initial stretching becomes yet stronger the governing equations separate.
Further use of singular-perturbation arguments allows us to identify the wavelength wrinkle which
is likely to be preferred in practice.

Key words. thin films, wrinkling, Foppl-von Kérmén plate equations, asymptotic methods.

AMS subject classifications. 74G10, 74G60

1. Introduction. It is well known that the governing equations for thin rods,
plates and shells can be obtained systematically from the general theory of nonlinear
elasticity by appealing to suitable asymptotic approximations that exploit the slender-
ness of such configurations. Typically, the outcome of these reduction schemes is an
entire hierarchy of equations rather than a unique set; furthermore, their merit can-
not be always gauged a priori and requires a case-by-case appraisal. The Foppl-von
Kérmdn (FvK) nonlinear plate equations were originally derived by ad-hoc approx-
imations but also represent the result of a particular asymptotic reduction (cf. [1],
pp-367-447), and have proved to be a versatile choice for describing many interesting
phenomena associated with thin elastic films (e.g., [2]). Arguably, this system rep-
resents the simplest nonlinear model able to capture the coupling between bending
deformations and the in-plane stretching of the plate mid-plane. This approximation,
however, does come at at a price and, despite its apparent simplicity, analytical solu-
tions of the FvK system are scarce. The one notable exception is the “Euler column”
[3] solution that describes a zero-Gaussian curvature deformation.

The principal aim of the work reported here is to throw light on a number of
mathematical structures that have relevance to the FvK bifurcation system. In some
recent papers [4, 5, 6] we have proposed a general asymptotic approach for describing
the edge wrinkling experienced by a uniformly stretched circular elastic plate when
acted upon by a transverse pressure or a concentrated central load. Generally speak-
ing, the FvK bifurcation system used in our edge-wrinkling investigations is either
equivalent to, or based on two coupled nonlinear equations linearised about an ax-
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2 CIPRIAN D. COMAN AND ANDREW P. BASSOM

isymmetric nonlinear solution that accounts for the finite mid-plane rotations in the
pre-bifurcation state.

The overall picture that emerged in our previous studies is summarised in Figure 1,
where typical neutral stability curves C,, are illustrated in terms of a non-dimensional
transverse loading parameter A > 0 and the wrinkle mode number (or “wavenumber”)
m € N. The driving system also depends on the initial in-plane stretching experienced
by the plate, which is described by a dimensionless parameter y defined formally in
82 below. Strictly speaking, it is the case p > 1 that lends itself most naturally to
asymptotic analysis since the energy minimum configuration for such problems — the
point (me, A.) in Figure 1 and corresponding to the least A, can be scaled on suitable
powers of y. When 0 < p < O(1) the coordinates of the global minimum of C,, are
O(1) quantities, a formal asymptotic strategy breaks down and critical values can
only be determined by a direct numerical simulation of the full governing equations.
In a strict mathematical sense little can be deduced for p = O(1), but it has been
demonstrated in [4] that even then singular perturbation methods can still be used
to provide a useful lower bound for the right-hand branch, C((]+). This is somewhat
fortuitous, but proves to be possible because, even though A is formally O(1), in
practice its computed value turns out to be quite large so it can be effectively used as
an asymptotically large quantity. We remark that this is an unexpected bonus and
cannot be predicted by any formal means. Moreover, as noted in [7], the wrinkling
pattern remains strongly localised even when p = 0 although there is no rational
theory that might suggest this could have been foreseen.

_ = (G
A Cé ) C!l C# Cé+)
(load)
(me, A¢c)
_ PR RN
ow?) L ;
0(1)1 L
- e o O >
(1) (mode number)
O(u3/*)

Fic. 1. The features of the neutral stability curves C, = Ck(f) u Cﬁ) for the initially
stretched thin elastic plate subjected to transverse pressure. The vertical axis indicates
the non-dimensional pressure A and the abscissa records the mode number m > 0. The
parameter p > 0 represents a non-dimensional measure proportional to the initial degree
of radial stretching; thus, the blue curve illustrates an unstretched plate (u = 0), while
the red one corresponds to a taut circular configuration (u>>1).

Our previous investigations have established that in the limit g > 1 the FvK
system decouples and the wrinkling instability is essentially one corresponding to a
plane-stress state [8, 9], but with a nonlinear pre-buckling stress distribution. This
asymptotic decoupling plays a key role in the success of singular perturbation analyses
vis-a-vis the FvK system, a fact that is also implicit in a number of earlier works (e.g.,
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WRINKLING OF A CIRCULAR PLATE 3

see [10, 11]); for instance, in our problem the decoupled equations are linear and can be
solved in closed form to any order (albeit non-trivially). The question remains open as
to what happens to the FvK system as p is increased from zero (an unstretched plate)
to p > 1 (a well-stretched plate), and it is this route to decoupling that motivates
our present study.

At this early stage we emphasise that our interest is with the pure buckling
problem; that is to determine the nature of A = A(u;m) which is just sufficient to
excite wrinkles of wavenumber m for a given u. The conventional method to isolate
the form of A would be to specify p and then determine the corresponding A as a
function of m. What makes this strategy unattractive here is that the basic solution
satisfies nonlinear equations that depend on the loading A. In standard bifurcation
theory one would hope to set the basic state once and for all and then seek eigenvalues
of the perturbation equations. Here this approach will fail, or at best be complicated
to implement, as the basic equations and the system describing the wrinkles are
coupled via A. The upshot would be that any critical loading values arising from the
wrinkle equations would be likely to modify the base state structure and it is unclear
how a converged solution might be arrived at which is consistent with both the base
state and wrinkle equations. Fortunately this difficulty can be neatly side-stepped
by viewing the problem from a slightly different standpoint. In this we effectively
specify A, which ties down the base state, and then solve the wrinkle equations for
the wavenumber m; it is then simple to invert the results to generate the dependence
of A on m. It is a crucial feature of our work that at no stage is A to be regarded as
fixed; rather for a specified p we are aiming to track the value of A(m) just sufficient
to induce buckling. As the chosen value of u is changed so A must compensate to
ensure we remain at the onset of buckling.

Within the mechanics of thin plates and shells there are several notable prece-
dents regarding the asymptotic limits of various equations as a loading parameter or a
geometrical characteristic is progressively varied. In their pioneering work [12] Junkin
and Davis studied a clamped circular plate loaded with a load on a central rigid in-
clusion by using “first-approximation” non-linear shell equations. Depending on the
magnitude of the load, they identified a sequence of plate problems that included the
usual linear equations for very small deflections and the FvK equations for moderate
deflections. A somewhat similar idea was implemented by Simmonds and Libai [13]
for a particular theory of internally pressurised spherical caps. By scaling the pressure
load and the shallowness parameters on suitable powers of a dimensionless thickness
quantity, they obtained as many as seventeen different types of simplified equations.
This suite of equations reflected a range of dominant deformation mechanisms be
they linear, nonlinear/inextensional, nonlinear/membrane or some other form. Ko-
maragiri et al. [14] revisited this analysis and carried out a related investigation for
a free-standing circular elastic plate under point and pressure loads. In more recent
times, Berdichevski’s asymptotic-variational technique [15] has emerged as a powerful
device that can accomplish comparable results as can be gleaned from [16] among
others. It is perhaps worth emphasising that all these studies dealt with deformation
problems, that is the load is prescribed and one tries to predict the corresponding
deformation. The problem we have in mind is somewhat different as we must tackle a
bifurcation equation. Thus, the size of the loading is intimately related to the initial
level of stretching, and can only be found by considering both the basic state and the
perturbation structure simultaneously.

It is acknowledged that over recent times there has been a plethora of studies
concerned with various situations in which wrinkling can arise. Researchers have
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4 CIPRIAN D. COMAN AND ANDREW P. BASSOM

been concerned with developing a comprehensive framework that is able to predict
where and how tensional wrinkle patterns evolve. It appears that while many papers
deal with stretched plates, relatively few are concerned with the case when wrinkling
is provoked by an imposed transverse loading. An excellent survey of some of the
key contributions relating to plates subject to stretching or shear has been compiled
by Taylor et al. [17] who review the advances that have been made with geometries
such as rectangular sheets or circular regions. Our situation is somewhat different
in the sense that the wrinkling described below is generated by a transverse pressure
load. This is enough to render the basic state genuinely nonlinear and it is then not
surprising that the corresponding bifurcation equations are also distinctive. Relatively
little effort has been devoted to this class of problems although note should be made
of the numerical calculations by Adams [18] who examined the problem of a tensioned
circular plate subjected to a concentrated load.

The remainder of the paper is organised in the following way. We begin our
study in §2 with a quick review of the differential equations for the basic state and
the linearisation of the FvK system around this solution. A central role in our analysis
is played by a suitable large non-dimensional parameter that we shall call A, and the
paper proceeds by expressing all physical quantities in terms of A. In particular,
it proves possible to identify the geometry of the right-hand branch of the neutral
stability curve and trace its evolution as the original in-plane stretching increases.
The nonlinear axisymmetric basic state is revisited in §3 so that we can reformulate
some of the earlier features of [4] in terms of A. We also show that for relatively
small p the associated short-wavelength wrinkle modes are governed by a parabolic
cylinder equation which is centred on a point near to, but off the rim of the plate,
and whose exact location can only be tied down upon solving a pair of consistency
conditions. These are solved numerically in §4 which shows that the structure of the
wrinkles is modified as p grows. Indeed, the wrinkles assume an asymptotic form,
the key elements of which are outlined in §4.1. The upshot is that a new modified
structure is appropriate to significantly enhanced p. At this point, which we shall
refer to as stage II, the radial extent of the wrinkles has grown but they have also
been pushed onto the rim of the plate so that an Airy-type equation becomes the
driving form. This stage II structure is developed in §5, where it is demonstrated
how a third regime must take over when g is enhanced further. This aspect is taken
up in §6 where it is shown how our asymptotic development automatically captures
the identity of the preferred mode when significant in-plane stretching is originally
present. The paper closes with some discussion and a few remarks.

2. Formulation. We are interested in the situation depicted in Figure 2 that
involves a circular elastic plate of uniform thickness A > 0 and radius a (with a/h >
1), a flexurally clamped edge and subjected to a uniform transverse pressure P. The
deformation of the plate is expressed using a standard cylindrical system of coordinates
(r,0,2) defined by the usual orthonormal triad {e,,eq, e.}, with e, perpendicular to
the median plane of the plate which also contains the origin of the axes. The linearly
elastic material of the plate is characterised by the Youngs’ modulus £ > 0 and the
Poisson’s ratio 0 < v < 1/2.

The starting point for formulating the relevant bifurcation problem is the well-
known Foppl-von Kérmén (FvK) system (e.g., see [19]). When written in terms of
the transverse displacement w and a suitably defined stress function F', these become

Eh
(1) DV*w —[F,w]=P and  V*F+ - [w,w] =0,

This manuscript is for review purposes only.



168
169
170
171
172
173
174
175
176

177

178

148

181

185
186
187

WRINKLING OF A CIRCULAR PLATE 5

FiG. 2. Top and side views of a uniformly stretched circular thin plate subjected to a
uniform transverse pressure; the dashed curve shown above represents its deflected shape.

where the first equation above accounts for the equilibrium in the normal direction,
and the second is a compatibility relation expressing the coupling between the Gaus-
sian curvature of the deformed configuration and the membrane stresses. In these
equations D = Eh3/12(1 — v?) represents the plate bending rigidity, and the bracket
denotes the Monge-Ampere bi-linear operator defined by [f, g] := (V2f)(V2%g) —(V®
Vf):(V®Vyg) for any two smooth functions f and g. In addition F' is related to
the membrane stress tensor N according to N = (V2F)I, — V ® VF, where I, is
the standard (in-plane) identity tensor Is = e, ® e, + ey ® ey.

As already mentioned, the plate is clamped in the vertical direction and has
normal tractions prescribed along its circumference; this corresponds to

(2a) w=0, 2—1:20, on r=a,
(2b) N, = Ny, N, =0, on r=a.

To simplify (1) we set p := r/a and introduce the dimensionless quantities

(3a)  A:=[12(1— 2?2 (g) (%)4 L p2i=12(1 -7 (gz) (%)2 :

F .
Eh3’
in what follows we shall drop the overbars on these re-scaled variables in order to

avoid over-complicating the notation. The parameter u? measures the dimensionless
bending stiffness In language introduced by Davidovitch et. al [20], u? is known as

(3b) w = [12(1 — u2)}1/2% . Fi=12(1-12)
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6 CIPRIAN D. COMAN AND ANDREW P. BASSOM

the bendability; it is envisaged to be fixed in an experiment while A is increased until
wrinkling appears. It can then be shown that for the nonlinear axisymmetric base
state the two equations in (1) are reduced to

2
(4) £§V1e] = xp+ ? and  LV[@] = _%

b

where the new dependent variables are © = O(p; A, u) := dw/dp and ® = O(p; A\, ) :=
dF/dp with Lﬁék) denoting the differential operator

m_1ld [ d\ K

The system (4) must be solved subject to the boundary conditions
(6) 8(0)=0(1)=2(0)=0,  &(1) =4’

2.1. The bifurcation boundary-value problem. As usual, bifurcations from
the symmetric basic state (4) are described by a set of equations which follow easily
via the method of adjacent equilibrium. This involves considering perturbations to
the basic state w = w(p), F = F(p) which are substituted in the dimensionless
version of (1) and then linearized with respect to the incremental fields w = w(p, )
and F = F(p,6). The final linear system of partial differential equations is

VG = [ib, F] + [@,F]  and  V*F = —[i,d)],
which can be simplified further by looking for solutions with separable variables,
(7) (@, F) = (W (p), ¥(p)) cos(mb),

where m > 0 is an arbitrary integer at this stage. The unknown amplitudes in (7)
satisfy the linear system

(8) Ell[W] + ,612[\1/] =0 and [,Ql[W] + 522 [\I/] = 0,

where we have introduced the ordinary differential operators

1d d dd [m\?
9 Lu=cimpr- 2 (o) 22 (2 Lop = [£I]2
(92) n=[b] pdp<dp>+dp<p>’ 2 =[Lon )

_1d [ _d do (m\?
(9b) ‘12—“21=‘pdp(@dp>+dp<p) |

This eighth-order system is to be solved subject to suitable regularity conditions at
the centre of the plate together with the rim conditions (2) appropriate for a flexurally
clamped plate. In dimensionless form these constraints become simply

dv
10 W=-—"=U=—=0
(10) i

U= =
dp ’

for pe{0,1}.

Our stated intention with this work is to explore the behaviour of the FvK sys-
tem over the entire range of values of p € [0,00) that measures the initial in-plane
stretching of the plate. Guided by our earlier remark, that even when g is small
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the eigenvalue A tends to be large, it is convenient to introduce the auxiliary fixed
non-dimensional parameter A > 1. The strategy we shall adopt is to monitor the
behaviour of the system by using various quantities expressed in terms of the A.
In particular results developed in [6] showed that when the wavenumber m is large
the corresponding critical loading required for wrinkling occurs at a value A oc m®/3.
Guided by this we write

(11) A= MAY Ao = 0(1),
together with the squared mode number
(12)  m? = MoA® + MyAWA L MoAS2 0 M; =0(1), (j=0,1,2).

We remark that we could subsume the quantity M within the definition of A, without
any loss of generality. However, it will prove helpful to be able to investigate various
limits while holding various physical quantities such as m or u fixed, and this is done in
the most transparent manner by keeping the definition of A completely independent
of other quantities in the problem. Furthermore, to re-iterate the point we highlighted
in §1, although it might seem more natural to specify m? and then seek the loading
A as a function of m, some mathematical subtleties inherent in the description of
the problem make this approach cumbersome. In particular, it is noted that the
basic state satisfies equations (4) which depend on A. Thus if we pursue the normal
method of developing a series for A as a function of m? then there is the potential
difficulty that as we proceed we need to keep careful track of the form of the basic
state that may need to be reappraised in light of small changes to A. To circumvent
this inconvenience we instead decide to determine m? := m?()\). There is no formal
difficulty in adopting this viewpoint and nothing is lost so doing for once answers are
determined it is elementary to invert our results and thereby express A := A(m) if
preferred. At this stage there is one parameter yet to be fixed being the salient regime
for the in-plane stretching u, but the relevant sizing becomes evident in the course of
the calculations described below.

In the following we shall see that as we increase the magnitude of the dimensionless
background tension p the solution structures evolves through three distinct stages I-
ITI. Each of these is somewhat intricate and inevitably requires the introduction of
some notational complexity. Rather than minimising this by repeating symbols from
stage to stage, and thereby risking having some notation with multiple meanings in
various parts of the paper, we have chosen to have unambiguous designations. This
might initially seem overwhelming, but the three structures that are developed in
84, 85 and §6 are separate of each other and each section can be treated as largely
self-contained. In this way, the need to undertake extensive cross-referencing between
the three calculations is hopefully mitigated as far as we are able.

3. The solution structure for A > 1: stage I. Given the form of (11),
simple scaling arguments applied to the base-state equations (4) suggest that across
the majority of circular plate, where p = O(1), we have

(13) O =AYy +AT30,..., ®=A3P)4+ Dy +....
Leading-order terms in (4) reduce to

@2
(14) O0dy = —hop?, L [Bo] = —2—; :
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8 CIPRIAN D. COMAN AND ANDREW P. BASSOM

from which it quickly follows that

g

(1) _
(15) £ ) = S

It is a routine exercise to show that at the centre of the plate ®y ~ Ap + O(p®)
for some constant A € R that could be determined numerically, but whose value is
immaterial for our immediate purposes. Rather, what is of more significance is the
nature of the solution of (14) at the rim p — 1. In view of the boundary conditions
(6) on the base state at p = 1 we anticipate that, if u is small, then &5 — 0asp — 17,
which requires

\ 2/3
(16) <I)0~6<3:2/3+...), O~ —a 7 (1—...),  where 55(;)\0) :

asx =1—p — 0". (This expression follows immediately from enforcing the balance
between the second derivative on the left hand side of (15) with the nonlinear term
on the right hand side.)

This then highlights the significance of a suitable rim layer wherein the majority of
the wrinkling will take place. Elementary scaling of the governing equations suggests
that x = O(A™1), so we define

(17) p:17§, X = o)

whereupon, governed by the behaviours (16), we expect that
(18) (®,0) = A%(¢o, 00) + A (g1, 01) + ... .

If a dash denotes differentiation with respect to X, then substitution in (4) shows
that the zeroth-order terms satisfy

1
(]‘9) 06/ = )‘0 + ¢090a ¢g = _50(2] )

and matching with the outer behaviour (16) demands that ¢y ~ 6X?/3 and 6 ~
—(X/6) X2/ as X — oo.

It is the rim condition ®(1) = u? from (6) that provides the clue for the appro-
priate scaling for u. If we put

(20) p=A~A2n,  po=0(1),

then we must have

(21) 0p(0) =0  and ¢o(0) = .

Clearly, the value of g > 0 plays a significant role in setting the leading-order form
of the basic state within the rim region and thus, presumably, is important in setting

the loading that generates wrinkle modes. Hence we now work with pg assumed fixed
and given, and seek to determine the value of Ag(m) that marks the onset of buckling.
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WRINKLING OF A CIRCULAR PLATE 9

3.1. The structure of the eigen-deformation. Given the form of the basic
solution we are able to proceed to examine the perturbation equations. We can
thereby identify the key scalings that ensure that quadratic terms drive perturbations
that are confined to a thin zone within the X = O(1) region. Put another way, the
basic state develops a rim layer and inside that, already thin, layer sit the wrinkle
modes. Tt can be verified that this inner rim later is of relative extent O(A~1/4), and
so the wrinkle exists at some location X = X,y about which we define the rescaled
variable Y = O(1),

Xo Y

— Al/4 o
(22) Y= AY4X - Xy) or p=1-% -

There are now two issues to be settled: (i) what sets the value of the location X, and
(ii) how is the disturbance confined to the vicinity of this point? We can begin to
address these questions by expanding the rim layer quantities ¢;(X) as Taylor series
taken about X = Xy. This shows that where Y = O(1) we have

1 1
(23) @ =A% <¢00 + AT Y + §A71/2¢02Y2 + 6A73/4¢’03Y3 +.. >

+AY3 (¢10 +A_1/4¢11Y+-~) ,

where the constants ¢;; denote the j!* derivative of ¢;(X) evaluated at X = Xo.
Taking derivatives shows that

dd 1
(24) d7p = 7A3¢01 - All/4(2502)/ - §A5/2¢03Y2 + ...

and we remark that expressions completely analogous to (23) and (24) hold for © and
its derivative, with the ¢;; replaced by 6;; which represents the jth-order derivative
of 6;(X) evaluated at X = Xj. Notice that although the base state correction term
¢1 enters both the expressions (18) and the Taylor series (23), it is not required for
the results we derive below. Hence, for reasons of brevity, we do not discuss ¢; (and
07) further here, though of course their presence would have to be properly accounted
for if we were to delve deeper into later terms in our series solutions.

3.2. The bifurcation equations. Given these proposed structures, and with
the squared mode number m? defined by (12), the scene is now set for determining
the important equations. We look for a solution of (8) of the form

(25) (W, ) = (Wo, W) + A~ VAW, W) + A™V2(Wo, o) + ...,

and remember that ® and its derivative are given by (23) and (24). On substituting
(25) into the original equations (8), collecting like powers of A, and then setting to
zero their corresponding coefficients results in a hierarchy of coupled equations, as
explained below.

Terms of O(AS) in the two equations yield

(26a) R1[Wo, W] = (Mg — ¢o1)Wo — 001P9 =0,
(26b) RQ[W(), \1’0] =01 Wy + My¥g =0.
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The consistency of this linear homogeneous system in Wy and ¥, requires

(27) Mo(Mo — ¢o1) + 9%1 =0.

At O(A?3/4) it follows that
(28a) R1[Wh, 1] = Y002 Wo — (M1 — ¢p02Y)Wo ,
(28D) Ro[Wh, 1] = —002Y Wy — MWy .

Again, a solution is only possible if suitable consistency conditions hold. The pair of
equations (26) imply that MyRq(W, @) + 0p1R2(W, ®) = 0 as these two operators are
linearly related. It follows that the system (28) is compatible only if

(29) M1 =0 and Mo(bog = 2001902 .

We need to proceed as far as O(A''/2). We determine that

1 1 d2W,
Ri[Wa, @2] = 002Y V1 + dpo2Y W1 + 59035/2‘1’0 - <M2 - 2¢>03Y2> Wo + 2720 )
1 d*w
RQ[WQ, (1)2] = —0pYW; — 5903Y2W0 — MoV + QWQO .

The consistency of this pair requires

d2W0 Mogbog — 2901003 — 2982 9 1
31 YWy — =MWy =0
(31) dy? 4(2Mo — do1) 0o T
which, when cast in the generic form
d>W 9
(32) dY2 — ’}/Y WO + (5WO = 0,

admits the exact solution Wy o< exp(—~'/2Y2/2) if § = /2. This gives

1/2
203, + 2001003 — Modos /

4(2My — ¢o1) 7

(33) My = -2

as long as v > 0. The expression Wy(Y) o< exp(—7'/2Y2/2) proves that the solution
is effectively confined to the ¥ = O(1) region subsumed within the X = O(1) rim
layer governing the base structure.

We now have the information we require to uncover the location of the wrinkles
centred at X = Xy. For a given Ay the leading-order rim solution (¢o,6) satisfies
the coupled system (19) subject to (21) and the matching conditions ¢o ~ 6X2/3
and Oy ~ —(\g/6)X /3 as X — co. Wrinkling occurs with a scaled square mode
number My and is located at X = X, where My and X are determined by solving the
consistency equations (27) and (29). Solution of this problem requires some associated
numerical work, as explained briefly in the next section.

4. Numerical solution of the stage-I equations. Our computational task
requires that, given the scaled constant ug > 0, we need to determine the relationship
between Ao and My. It turns out that considerable simplification can be achieved by
some judicious scaling. If we define a new rim co-ordinate X > 0 according to

(34) X=X,
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WRINKLING OF A CIRCULAR PLATE 11

and write the base structure variables ¢g =: )\(1)/ 2(50 and 0y =: )\(1)/ 250, then it follows
that

~ ~ o~ ~ 1
(35) 0! =1+ ¢obo, "= fié‘g,

subject to the constraints

~ ~ —~ 1 ~ —~ 3 2/3
(36) go~aXP+. ..., fo~—-X34 . as X — oo a:<>
«

together with
(37) 0o(0) =0  and ¢o(0) =A;
here, we have introduced the definition

_ M
A2

)

(38)

If furthermore, we put My =: )\g/ 4]\//.70 and denote by (;Aﬁoj and §Oj the j* derivatives

of quSO and 50 evaluated at X = )?0, then the consistency conditions (27) and (29)
become just

(39) Mo(My — do1) + 02, =0  and Mooz = 2001002

By this device we have reduced by one the dimension of the parameter space over
which solution is required. For each A there is one pair of corresponding (Mo7 XO) and
we are faced with a three-point boundary-value problem comprising the fourth-order
system (35)—(37) subject to consistency conditions to be imposed at a point X, that
is part of the solution. This computation was carried out using standard routines
available in MATLAB.

Some representative solutions are shown in Figure 3; in the left panel is illustrated
the dependence of Mo on A while the right panel indicates the corresponding form of
the location X o within the rim region. We note that for no initial in-plane stretching,
ie. A= 0, we have finite values MO ~ 0.8721 and Xo ~ 1.066. As A increases
so initially XO grows, but this trend is soon reversed and both Mo and X(] drop
steadily with A. This suggests that to account for stronger stretching pg > 1 (and
soA>1 by definition (38)) some sort of new structure ought to come into play in
an appropriate large-K limit. To unravel the corresponding details the first step is
therefore to examine the nature of the solution of (35)—(37) subject to (39) as A — cc.

4.1. The solution of (35)—(39) for large A. Consideration of the boundary
condition imposed on ¢ at X = 0 together with the nature of the governing equations

suggest that when A > 1 the solution develops a short-scale structure on a length
O(A~1/?). We therefore define

~

(40) X=A"12

and propose that the solution takes the form

o~

(41) B = A 00(2) +A301(2)+... . do=Ado(2)+ A p1(2) +A 3 a(2) +... .
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1 T T 1.2
1
0.6}
63
04}
0.8}
02t
0 20 40 60 0 20 40
A A

Fic. 3. The forms of Mo (left) and Xo (right) as functions of the parameter A as
determined from the solution of system (35)-(57) subject to (39) being satisfied at X = Xo.
Shown as superimposed markers are the corresponding large-A asymptotic results (46).

On substituting these forms in (35), comparison of like coefficients of A in the two
equations yield that

20, 20, -~ -~ 2y P Py 15,
W =1+ 00@50, W = 90¢1 + 61¢07 dz2 = dz2 =0 and dz? - 7560 ’

In view of the boundary conditions we suppose that 50 = 1, a claim that can be
checked later. Given this, it follows quickly that 6y = —1 + exp(—=z) and we can also
deduce that 51 is proportional to z. We cannot tie down this solution completely
without recourse to the far-field conditions (36) for X — oo. The fact that the
solution does not match directly onto the far-field requirements suggests strongly
that the inner-solution zone must be supplemented by some form of outer structure.
It is not difficult to verify that this outer zone lies where X = A%/2Y with Y = O(1)
and that here

(42) bo=N""00(Y)+.... do=ADo(Y)+....

To match with the inner region requires that (:)0 — —1 and 50 —~ lasY — 0.
Leading-order terms in the governing equations (35) give

5 = d*® 1~ 23 1
QpPo+1=0 and = -2 — o _ -
ay? 2 dy? 202

This latter equation admits the exact solution ®o = (1+ 3Y/2)%/3 which hence yields
that ©9 = —(143Y/2)~2/3. These expressions match automatically with the far-field
requirements (36) and with the inner-zone solutions as Y — 0. Furthermore we can
now deduce that 51 = 2z, rather than just being proportional to it, and it is then a
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WRINKLING OF A CIRCULAR PLATE 13

routine matter to solve for 52. Taken together, this means that within the inner zone

(40)

(43a) O =A"'[—1+exp(—z)] +

(43b)  do=A+Alz+A"? —322 +exp(—z) — éexp(—Qz) +cz — g +...,
where the precise value of ¢ € R will not be required.

We have now shown that when A > 1 the appropriate solution of (35)—(37)
develops a two-layer structure with an inner O(]A\’l/ 2)-zone and a wider outer region.
We still need to identify the corresponding values of M\o and )?0 that together fulfil the
cons1stency requlrements (39). The numerical solutions sketched in Figure 3 suggested
that as A — 0o so Xo — 0, and therefore it is unlikely that the consistency conditions
will hold somewhere in the outer zone. Granted this, suppose that (39) apply at some
point )/(\'0 A 1/2 4 for some zo > 0 to be found. In order to satisfy (39) it is clear
that the values of the various derivatives 901, 9027 (;501 and (;502 need to be found. These
can be inferred directly from our foregoing results (43), which yield

(44) 501 =A V24 fo1 = —A /2 exp(—zo0) + ...,

. 1~ .
(45) o2 = —51\72(1 —exp(—20))2 + ..., Oo2 = exp(—zp) + - ...

We proceed by examining the first of the consistency conditions in (39). Given
the values noted in (44) there appear to be two possibilities: either MO o~ 7901/(;501
or MO ¢01 A~V2 If we take the former option, routine algebra shows that the

second consistency requirement MOQSOQ = 2601902 cannot be satisfied. We are then
left to conclude that

(46) My~ A—1/2 and Xo~ A2 (20), as A — oo,

where the value of )?0 follows from the second consistency condition. These large-
A predictions are superimposed on the results shown in Figure 3, and both show
excellent agreement with the direct numerical simulations.

5. The emergence of structure for larger values of u: stage II. In
the preceding sections we have sought to explain the structure of wrinkling eigen-
deformations with high mode numbers (m ~ A3/2) when the in-plane stretching
parameter u is of size O(A): recall (12) and (20). Equation (11) reminds us that
the corresponding loading for wrinkling is O(A4) and we now investigate how the
situation needs to be modified as p grows. The workings of the previous section
show what is likely to happen as A increases. In particular we observe that the
square of the mode number m? ~ A3My = A3)\g/4M\o, and for A > 1 we predicted

My ~A-1/2 = )\(1)/4//10 by definition (38). Hence the wrinkle mode number is
(47) m o~ AN b2
We need to be careful that we continue to examine eigenstates with mode numbers

consistent with those appropriate to stage I; that is, we should keep m ~ A3/2. This
then suggests Ag ~ po while a second constraint for fixing the appropriate sizings for
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14 CIPRIAN D. COMAN AND ANDREW P. BASSOM

Ao and pg follows from the wrinkling structure itself. Using equation (32) and the
scalings of §3, it follows that the wrinkling layer is of extent O(A~5/43~1/4) where

5= \3/4 —Modos + 2001003 + 2,9\(2)2
=) o
4(2My — ¢o1)

Given the asymptotic results (44), it transpires that the depth of the wrinkle zone is
comparable to the distance of its centre from the rim when

(48) AT S AT or Mg ~ A

Taken with our earlier expectation A\g ~ pg it is now clear that some new structure is
anticipated once p = Ao becomes O(A3/2). To avoid introducing a plethora of new
variables we recycle much of the preceding notation, changing only those parts that
are crucial to avoid confusion.

Our discussion immediately above suggests that the stretching and loading must
be scaled according to

(49) = A¥2ub A= A2\ for some pf, A\ =0(1),

which replace (20) and (11), respectively. We have been careful to ensure that we
continue to seek eigen-deformations with mode numbers O(A?%/2), so suppose that

(50) m? = M{A® + M{A% + ... .

Once again, we proceed assuming that ,ug is fired and given, and endeavour to find
the form of )\g = )\EL)(MJ ) that marks the onset of buckling. Our previous asymptotics
predict that the wrinkling is confined to an O(A~!)-distance off the rim, so we can
simply retain definition (17) with p =1 — XA~L.

In view of the increase in the loading A the basic state is modified, though the key
equations are only slightly altered. The basic state across the majority of the plate
now satisfies

(51) ©=A%20+..., B=A%5+...,
where
)\T 2.3
0

Previously we needed to solve for &y subject to the requirement that it vanished as
p — 17; however, now the enhanced value of p in (49) means that we simply require
that (1) = (u)2. If we write ®¢ = (1})2¢o then it follows that
F2p3 /\T
53 LPpo) =~ d0(0)=0, (1) =1; I'=-2.
(53) 0 [¢0] e (0) (1) by

We need to ascertain the behaviour of this solution in the rim zone X = O(1) and it
is straightforward to deduce that if ¢{(1) = 8 then in the rim zone

(54) = A3(u)? [1ﬂ§+; (152#) )A(z+..l; 0 = 0O(A%?).
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WRINKLING OF A CIRCULAR PLATE 15
If where X = O(1) the wrinkle adopts the form
(55) (W, W) = (Wi, o) + A~ (Wi, o)) +...,
then leading-order terms arising from substitution in (8) tell us that
(56) M +B(ub)* =0  and  (uf)*My¥h = N\(B — 2)Wy.

At next order in equation (8a) we find that

(57)

MJ dx?

2| 2171
2 4 (o) ] W _ [(;J,)Q <6+;I‘2—1>X+M1T} wg =0.

This equation is merely a scaled form of the ubiquitous Airy equation 3" — xy = 0,
which is known to admit a solution with y(zg) = 0 and y — 0 as © — oo if gy =
—2.331. Given this, we deduce that equation (57) enables WOT — 0 both as X — 0
and as X — oo if

2/3 )
_ 1 1/3
(58) M} ~ —2.331(M])~1/3 Kﬁ + §r2 - 1> ()2 + 2MJ} {QMJ + (u5)2] .

We now have the elements required to determine the loading parameter )\8 in
terms of ug. The key to unlocking this dependence lies in the requirement ¢y(1) = 8
and the consistency condition (56a) combined with the basic state equation (53).
This second-order equation already is subject to the two requirements, ¢o(0) = 0 and
¢0(1) = 1, and the third constraint ¢(1) = —Mg/(u$)2, which follows directly from
¢p(1) = B and (56a), means that a solution only exists for certain values of I'. We
can write this in the alternative form

(59) N = (uh)* G [ My ] ,

for some function GJ[-] that can only be determined numerically; the form of this
function is illustrated in Figure 4.

It is a straightforward computational exercise to show that problem (53) admits
a solution with ¢{(1) = 0 when I' = K ~ 3.212. This then tells us that for large s
(and small §) then )\E ~ Ko(ug)?’. Moreover, if we look for a solution of (53) as a

regular series in inverse powers of ,u(TJ we can derive the two-term result

(60) A= Ko(pd)? + 1.207MIpd + ...,

which is included on Figure 4. It is observed that agreement is excellent, even for
surprisingly modest values of ug.

These features forecast the expected behaviours at even larger values of u. As pg
grows so the leading order loading parameter )\g becomes independent of the mode
number M, and the fact that the quantity M} ~ O((u})?), according to (58), means
that a restructuring should be anticipated once ,u;r) = O(AY?). Then p = O(A?) and
this last stage is described next.
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35

25

F1c. 4. The dependence of )\(]; on ,ug according to (59) when MJ = 1. Shown
superimposed on this plot are the one- and two-term asymptotic results (60), which
correspond to the triangular and round markers, respectively.

6. Stage III: strong stretching. Guided by the previous analysis we can
quickly sketch the structure appropriate when

(61) =A%, with 1= 0O(1).

We anticipate that once more m? = A3M, for some M = O(1), but that the com-
mensurate loading is now

(62) A= KB AS + N A% + A+

where A; = O(1) (j = 1,2) are yet to be determined. In passing we remark that
this scaling that m ~ p3/* was first derived using asymptotic arguments by Coman &
Bassom [8] and later Davidovitch et al. [20] gave a simple argument based on scaling
to confirm this result. Earlier in the paper we stressed our desire to take a solitary
one-term form for A\ and, at face value, it seems that we are now deliberately deviating
from this route. The reason is not difficult to appreciate; at such high values of p
the first term in the loading form (62) is independent of the wrinkle mode number
m according to the predictions of stage II. Thus, a simple one-term form for \ would
no longer be adequate to capture any wavenumber variation whatsoever, which forces
our consideration of the more complicated (62). Now, across the main part of the
plate, the series (51) becomes

D = APy + A3P; + A2Dy + ... and O =A%0,+A0;+60s+...,

where ®; = ®;(X) and ©, = 0;(X) (j =0,1,2,...) are to be determined. Note that
if we write ®g = fi%¢o, then ¢q satisfies the equation (53) with the value I' = Kg, by
virtue of which we are guaranteed that ®((1) = 0. Thus, we are able to express the
form of the base state in the X = O(1) rim region to obtain the counterpart to (54)
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in the form
(638,) o = ﬁ2A4 + (A22X2 + Ang)AZ + (A13X3 + A12X2 + AllX)A + ...,

(63]3) O = BQOAQ + (BllX + Blo)A + ...,

where
1 1.5\ ~o 1 2\ ~2 3
A =5 (1-5Ko)p",  Az:= 6(3+K0)li , By := —Kopi”,
MK b -
Aoy = 1;7 L A = _2712(1(0 -Ky), By = 2Koi®,
XK1 XK ~
A11 = 2[7 ! + 1742 5 Bl() = —)\1.

Standard numerical work (which is relegated to the supplementary material) shows
that Ko ~ 3.212, K7 ~ 0.5179 and K5 ~ 0.0389. In the expression (63a) we note the
absence of the A® term which is a direct consequence of the fact that ®{(1) = 0. We
can use the approximation of the basic state (63) to capture the asymptotic structure
of the wrinkles. To this end we shall employ the ansatz

(64) W:W0+W1A_l+... and \IfzijoA_1+\i1A_2+... .

The second equation in (8) gives an algebraic constraint, M Uy 4+ 2Ki*Wy = 0;
thus, the terms in the expansion (64b) are quite passive and respond to what the W;
(j =0,1,...) components need to do. However, use of (64) in (8a) yields

d2W,

72MA22 7M(M_A21)
dx? '

— (aX — ﬂ)Wg =0 with «a:= Z B = 2

(65)

We recognise this equation once again as related to an Airy form, and elementary
algebra shows that a non-trivial solution with W — 0 as X — 0 and X — oo is
possible if

- . 1 23
(66) MKy = pM + & (2 ;- 1) TRAI VAR

where Ai(—¢p) = 0, & =~ 2.331. Now, while the leading-order term in (62) was
independent of M , we observe that Xl — 00 both as M — 0 and as M — oo. Thus,
we can identify the wavenumber that corresponds to the least loading, and minimizing
A1 with respect to M gives the critical point (M., A1) ~ (1.6877,13.0346).

We remark that the solution Wo does not fulfil all eight of the rim conditions
(10) prescribed. This merely reflects the fact that the majority of the wrinkle zone is
governed by a system of order less than eight, which means that not all the constraints
can be satisfied. This does not present any problem and just points to the fact
that the O(A~1) rim zone contains an inner region in which the aforementioned
requirements can be ensured. The details of this inner zone affect later terms in
our asymptotic series, in particular, they do influence the form of Ag in (62). The
manipulations required are routine but lengthy so, in the interest of brevity, the details
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558 of the corresponding analysis are consigned to the supplementary material. Here, we
559 simply state the final results

560 (67) Ao = 3.2123413.034615/2+54.84174%+...  and  m? = 1.6877u%%+. .. .

561 The predictions of these last formulae are illustrated in Figure 5, where we compare
562 them with some direct numerical simulations of (8)-(10). It is clear that the agreement
563 is very good. In particular, in the left window the relative errors range from 10% at
564 p = 80 to 5.7% when p = 120 and are merely 2.8% once p = 200. The predictions
565 of the critical wavenumber differ from the simulations by about 5% when u = 180;
566 although these relative errors are slightly larger than for the critical loading values
567 it should be remembered that the asymptotic result (67b) consists of only one term.
568 Better improvement could be expected should further terms in (67b) be developed
569 but this simple result is sufficiently accurate that the additional effort necessary to
570 extricate higher order terms is arguably not commensurate with the likely marginal
improvement in results.

7
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Fic. 5. Comparisons between direct numerical simulations of the boundary-value
problem (8)-(10) and the critical values (67) for 30 < p < 200. The markers corre-
spond to the former set of data, while the continuous curves represent the asymptotic
results.

ut
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7. Discussion. In this article we have endeavoured to provide a detailed de-
scription of the short-wavelength wrinkle modes that develop in a uniformly stretched
weakly clamped circular plate subjected to a transverse pressure. Three distinct
regimes of initial stretching have been identified (see Figure 6); in the first of these
the eigenmodes are located off the rim of the plate at a location determined by the
solution of a pair of consistency conditions. As the size of the stretching u increases
then the wrinkles effectively sit at the rim, where they are governed by the solution of
a scaled Airy equation. A third regime is suggested in which the leading-order loading
required for wrinkling loses all dependence on the mode number.
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F1G. 6. Schematic of the asymptotic regimes studied. Upper line indicates the size
of the correction to the leading order wavenumber O(A3/?).

At the outset our principal motivation behind this work was to shed light on
the nature of the asymptotic decoupling of the FvK system found recently in some
related studies [5, 6]. Although there are a number of non-trivial examples in the lit-
erature in which the asymptotic decoupling of the FvK nonlinear equations has been
encountered, for example [10]-[11], it should be emphasised that the nature of this
phenomenon was actually quite different. Indeed, a close look indicates that the afore-
mentioned references were concerned with out-of-plane bending perturbations from a
state of plane stress. As a consequence, the compatibility relation in the FvK system
decoupled at leading-order, giving rise to the standard linear bi-harmonic equation
for the stress function, and this had the effect of turning the equilibrium equation
into an expression solvable in closed form. So in spite of the fact that the analysis
was ostensibly nonlinear, those works ended up dealing with a weak nonlinear pertur-
bation from a linear plane-stress elastic state. By contrast, the situation present in
our work is exactly the opposite. Here our perturbations take place relatively remote
from the original flat state of the circular plate; exactly how remote is something
that is controlled by the nonlinear basic state. This has significant ramifications for
the subsequent asymptotic analysis as the nature of basic state is one of the critical
elements in the implementation of our singular perturbation strategies.

It is important to appreciate some of the inherent limitations of our results. We
have been exclusively focused on the onset of wrinkling which is acknowledged as
being very awkward to observe in the laboratory. While there are numerous valid
reasons for understanding onset (or near-threshold phenomena [20]), from the practi-
cal standpoint wrinkles well into the post-buckling regime are much easier to produce.
In the far-post-buckling situation traditional simplified theories have been developed
based on tension field theory [21], [22]. The approach taken by tension-field theory is
in marked contrast to the bifurcation technique adopted here. Tension-field theory in
some sense smears out the individual wrinkles and seeks to trace the evolution of the
boundary separating the winkled and un-wrinkled areas. As further evidence that the
post-buckling regime can behave very differently to the onset problem, we note recent
results that suggest how spatially varying wavenumbers can be dramatically affected
by increasing the load; see Paulsen et al. [23] and Taffetani & Vella [24], to name just
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20 CIPRIAN D. COMAN AND ANDREW P. BASSOM

two studies of these effects.

It is helpful to note that our results need to be considered carefully if general-
isations to other geometries are contemplated. An obvious question is to ask how
our work may be applied to annular plates. In our present study the existence of
the edge instability is contingent upon the presence of compressive stresses near the
circumference which is guaranteed if the outer edge of the plate is weakly clamped
or pinned. If there is also uniform stretching applied along the outer circumference
then one has a handle on the extent of the region of compressive stresses and this is
the role played by our parameter . For an annular plate with a traction-free inner
boundary, weakly clamped along the outer rim, and subjected to uniform stretching
along that edge there will be no compressive stresses in the annulus according to the
Lamé solution. If transverse pressure is also applied then the region of compressive
stresses will be situated near the outer rim and this will be an entirely nonlinear phe-
nomenon. Haughton & McKay [25] have considered the plane-stress problem for an
annular membrane in the case of a nonlinear Varga material and with several types
of boundary conditions. The principal stresses were found to be always tensile if the
inner boundary is stress free.

Our problem here has the feature that the loading intimately ties together the
basic state with the infinitesimal wrinkle pattern. The usual approach taken in these
types of problems is to determine the underlying basic state and then adjust the load-
ing, which plays the role of an eigenvalue, so that non-trivial modes are possible. Here
the situation is somewhat different. The value of A plays a pivotal role in the form of
the basic state so that both this quantity and the perturbation structure really need
to be developed in tandem. This is the feature that suggested it would be advanta-
geous to view A as given and then calculate the associated wrinkle wavenumber. This
strategy has enabled us to monitor the stability characteristics of the system as the
in-plane loading varies from completely unstretched right through to a taut geometry.
Whilst we have been able to implement similar techniques in related situations, we
believe this is first example where it has proved possible to track the effect of a varying
physical parameter over such an extended regime. It would be of considerable inter-
est to know whether the problem we have here is somewhat special in that respect or
whether the approach has more general applicability.

The referees are thanked for their numerous comments which led to improvements
in the paper.
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SUPPLEMENTARY MATERIALS: WRINKLING STRUCTURES AT
THE RIM OF AN INITIALLY STRETCHED CIRCULAR THIN
PLATE SUBJECTED TO TRANSVERSE PRESSURE*

CIPRIAN D. COMANT AND ANDREW P. BASSOM?
SM1. Background. For easy reference we start by listing below the main equa-

tions from [SM1]. The basic state is described by the main fields © = ©(p) and
® = ®(p), which satisfy the nonlinear equations

0 1406 © 0P d’® 1d® @ 02
SM1 —t—— - ==X+ — and — ===,
(SM1) dp?>  pdp  p? p dp*>  pdp p? 2p
subject to the constraints
(SM2a) o) =0, 1) =p2,
(SM2b) ©(0) =0, ®(0)=0.

The incremental radial amplitudes (W, ¥) satisfy two coupled linear bifurcation equa-
tions,

(SM3) [,H[W] + ﬁlg[\I/] =0 and [,21[W] + £22 [\I/] = O,
where

1d (. _d e (m\?
SM4 Lu=[mP--= (o) +— (= Lo = [£IM)2
(SMda) =[] pdp<dp>+dp<p)’ 2 =TT
(SM4b)

Co1d ([ d\  de [(m)? W 1d [ d\ K
ta=-tn=—i L (ep)+ 2 (5) =05 05)

The corresponding boundary conditions correspond to a weakly clamped plate and
assume the form

_aw

dv
(SM5) W=

=
dp 0,

for pe{0,1}.

SM2. Basic state. Let us recall the main scalings from §6 in [SM1],

(SM6) p= A, =0,
and m? = ABM, for some M = O(1); also, our loading can be expressed as
(SM7) A= KoiPA% + M A% + A+
for some Xj —0(1) (j =1,2,...). Our main goal is to find A\; and Xs.
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SM2 CIPRIAN D. COMAN AND ANDREW P. BASSOM

A little more than a simple exercise in elementary algebra indicates that away
from the rim of the plate (p = 1) our basic-state fields must be expanded acording to

(SM8a) d=AD)+ AP + A%Dy + ...,
(SM8b) 0 =A%0)+A0, +05+...,
where the behaviours of the unknown coefficient functions ©; = 0;(p) and ®; = ®;(p)

(j =0,1,2,...) can be found as explained below.
Substituting (SM8) in (SM1a) leads to the algebraic relations

(SM9a) — Koji’p® = 09y,
(SM9b) —Mip? = 60d, + 0,9,
(SMQC) — XQPQ = @0@2 + @1@1 + @2@0 s

while the other base equation, (SM1b), yields a sequence of differential equations

@2
(SM10a) £371o] =~
(SM10D) £ = -2
2
(SM10c) £V [@y] = _91 1426002

2p

SM2.1. Zeroth order. Eliminating ©¢ between (SM9a) and (SM10a), and fur-
ther putting ®g =: i2¢0, gives that

Kgp®
202

We recall that the base condition ® = ;% on p = 1 leads to the middle of the above
boundary conditions, while the vanishing of the derivative at the rim was provoked
by the outcome of stage II. By solving numerically the eigenvalue problem (SM11) we

find

(SM11) 8+%¢5—p—12¢0= 60(0) =0, do(1) =1, @h(1)=0.

(SM12) Ko ~3.212.

We are going to need the form of the basic state inside the rim zone (i.e., the
wrinkling layer), where p =1 — (X/A) with X = O(1). To this end we need to note
that ¢} (1) = 0 (fixed), ¢ff (1) = 1—(K2/2) (using the equation) and ¢y’ (1) = —(3+K2)
(differentiating the equation). Put together these results tell us that, where X = O(1),
we have

(SM13) oy = i?

1+i(2—}(§) <§>2+é(3+K§) <§>3+...
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SM2.2. First order. At the next order, eliminating the ©g and ©; from the
base equations (SM9b) and (SM10b) gives the equation for ®;. By setting ®; =: i%¢;
we obtain

K3p _ Kohip?
¢1 ~3 2
Lo

Again, we need the Taylor series of ¢; where X = O(1). If we define the auxiliary
problem

1 1
(SM14) ’1’+;¢’1—p—2¢1 $1(0) =0, ¢:1(1)=0

~, 1~ 1~  K2p?
(SM15) /1/+;¢/1*ﬁ¢1* 0P

Kop®
T3 ¢1 2
o ol
then this is well-defined and with no parameters, as Ky is already known. Standard
numerical methods help us to identify ¢/ (1) =: K1, namely,

; $1(0) =0, ¢1(1) =

(SM16) Ky ~0.5179.

Setting p — 1 in the differential equation (SM15) also tells us that ¢ (1) = Ko — K.
Thus, the Taylor expansion of ¢1 as p — 1 can be expressed in the form

so that

sn17) o= [ (<) oo (5) o

SM2.3. Second order. If we repeat the above procedures on (SM9c) and
(SM10c) we find that, if 5 =: ji%¢9, then ¢ satisfies

py Ly L, K ¢2 CEop*ha  Mps  3K30PNIGY  20Kopdn
? p 2 I ﬁ3¢3 2ﬁ6¢0 2ﬁ6¢0 ﬁﬁﬁbg ’
and restoring the original variables gives
(SM18)
1 1 K p )\2 3K0 /\ p3 ~ ~
DY — Py — — Py——— Dy = < + L | =2 (do + Koor) (o + 3K
2 p 2 p2 ¢O ¢0 2¢401 ( 1)( )

This must be solved subject to the homogeneous boundary conditions $2(0) = ®o(1) =
0.

We can take advantage of the linearity of (SM18) and use the principle of super-
position to solve it. The particular form of its right-hand side suggests introducing
the auxiliary problems

1 1 K2p3 3K,

(SM19) @& + ;cpga 3% - B0 gy = 220y, (0) = Baa(1) = 0,
0 0
and
(SM20)
1 1 K2 ~
/2/b+;‘1’/2b*ﬁ‘1’2b (gp Pop = 2[; (do+Kod1)(do+3Kod1) , D2y(0) = Pop(1) =0
0 0
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Note that ®3 = Pg, + Pop, and we have already dealt with (SM19) in §SM2.2. Direct
numerical integration of (SM20) immediately allows us to find ®},(1) =: K2, namely,

(SM21) Ky ~0.0389.
Putting this together suggests that as p — 1 so

X 2\ /x
(SM22) By = | K152 + Koot <)+
0 gt ) \A

If we then combine the results (SM13), (SM17) and (SM22), we conclude that, where
X = O(1), the base-state variable ® assumes the behaviour

(SM23) @ = A2 + A?

1 MK
L@ KX + 1ﬁ1X]

= +0(1).

Y N2
%(3+K§)ﬁ2X?’ MXQ (KlA~ +K2)\ )X

For simplicity, we shall define a sequence of constants A;; (i,7 € {1,2,3}) so that
this behaviour can be expressed more succinctly as

(SM24) & = PA" + [AX? + Apn X| A% + [A13X° + A1 X? + A XA+ O(1).

SM2.4. The bifurcation equation. We can use the information contained in
(SM24) to deduce that for a wrinkle structure

(SM25) W=Wo+A"Wi+... and V=A""T+A 20 +.. .,

for some W;, ¥; (unknown at this stage). We note that at leading order in (SM3b)
we just get . .

MUy + 2Koi° Wy = 0;
thus, the ¥ ;-functions are quite passive and respond to what the W;-components need
to do. At zeroth orders in the other equation (O(A®)) we find that

— W
(SM26) CyWo] = 5 — [aX — f]Wo =0,
where

2 A9 M Ay — MM
(SM27) o= —% and 5:2%.

The solution of this equation is
Wo o Ai ('3 (X = B/a)),

which vanishes as X — 0 if —(/a?/3 = —(p, where {y ~ 2.331. Making use of (SM27)
this simplifies to

_ . 1 2/3 .
SM28 MK, =aM+2331( =K2 -1 PB3MY3
H 51t H

which tells us that )\1 = )\1 (M) has the property that )\1 — 400 as either M — 00 or
M — 0F. Clearly, this indicates that the curve )\1 vs. M has a minimum, (Mc7 )\10)
(say), and simple numerical calculations yield

(SM29) M, ~1.6877 and Ay, ~ 13.0346.
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SM2.5. The higher-order correction term. At O(A®) in (SM3a) we obtain

Wy W, —~d*W
— oM
axz M axe dX2

(SM30) — Xp? +2MX (M — 245X — Az W,

+ M(2MX —3A413X2 — 2415X — Ay )Wo + M(M — 2455X — Ag)Wy = 0.

If we recall the definitions of o and 8 from (SM27) and work on the right-hand side

of the above equation by using the governing equation for Wy, we can re-cast (SM30)
in the simplified form

Wy 2M &PWy M, ~ —
X 2 dxe +?(2MX73A13X272A12X7A11)W0

(SM31) Lu[Wy] =X

We only really need to work out how Wl behaves as X — 0. However, before we can
do that it is necessary to simplify further the right-hand side of (81\151) To this end,

let us start by noting that equation (SM26) tells us that XW, = (W, o+ BWY) /.
Thus, reducing the X 2W0 by replacing one X WO in this way gives

dX? 2 dX?

— MA,: Wy 2M d2W,
(SM32) Lu[Wi]=[1- 3M A ) 4 Wo & Wo
o

—~ MA
Xy — 11755

Wo.

~2 2o

. lzz\?(ﬁ— A1) 38MAs
m

By differentiating XWo = (W}'+BW,)/a we have that XW(, = (W[ +B8W,)/a)— Wy
and XWJ = (W + BW{)/a) —2W{. Thus, the right-hand side of (SM32) becomes

3MA\ [1 =~ =~ 1 2M &@Ww,
(W, wh —ow!| - =—/— %
) [a ( o T 6 0 ) 0 ,172 dX?2

o

(SM33) RHS := (

MA
( + W) — MQHWO-

~2 2o

N [21\7(1\7 A1p)  3BMAss
m

Now the RH S is expressed as a linear multiple of various derivatives of WO. To write
down the solution of L4[W;] = RHS, we need the following observation. If we denote
by ¢(™ the nt'-order derivative of the function g = g(X) (n € N), then the particular
integral of the equation in f = f(X),

is given by
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Given these obsevations we can now write down the solution of the full VIN/'l equation.
Putting everything together, we finally get

= 3MA\[1 (1@ 1,.=,\ 1=, 2MWy
M34) Wy=|[1- — (=W W) - Wy | - =
(SM34) ! < ) [oﬂ (5 0 +3B 0 a ° 2 3a

N [2M(A7— A1) 38MAuy

1 1~ fod MAll"v

a? \3 2o

Let us recall that we are solely interested in what happens to (SM34) as X — 0. We

already know that WO(O) = 0, and we set Wé(()) =: wp. In light of this notation the
governing equation (SM26) and its differential consequences imply that

Wy (0) =0, W(0)=—fuwy, Wi (0)=2awy, W (0) = Bwp.

Together with (SM34) this then leads us to
(SM35)
282 8FAM _ 2MB  AMB(M — Ain)  MAy

’Wl—) wo , as X —0.

1502 5u2as 3apu? 3a2? ap

SM3. The bending layer. To tie things down we still need to consider the rim
bending layer where all the boundary conditions on the perturbation are imposed. It
can be shown by easy balances that the depth of the inner zone is O(A~2), so we are
led to introduce a new rescaled variable ( = O(1) defined by

¢
P=1-xs
We are somewhat fortunate as this happens to be the rim layer for the base state as
well. This layer only operates on the © component and that is just too small to come
into play (so the driving differential operator in the bending layer will have constant
coefficients). It turns out that the leading-order equation for the W-component of the

wrinkle is just
d*Whend B 2 @PWhena 0
act M Taer T
We need the solution of this differential equation to match onto the linearly decaying
Wy as ( — oo, and to satisfy the rim conditions that Wyenq and its first derivative

vanish on ¢ = 0; these constraints leave us with

1 - 1
Wbend = C+ = exp(_p‘C) =
1 f
So this tells us that Wyenq grows like ¢, while the constant part of its large-¢ behaviour

is simply —1/1z. We can now take advantage of these observations in conjunction with
(SM35) to deduce that

($M36) 26> 88%AuM  2MB  AMB(M — Ayp)  MAn _ 1

~

 15a2 Splas a2 3a2? ap?
whence, by re-arrangement,

i [ 1 <~a - 252,12) 8453 L2, 4B(M — A1) MK

e 15a 502 3 3 it

(SM37) Ay

M
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Since by our original assumption (SM6) g = O(1), we are free to set 1 = 1 in
(SM37). Substituting also the numerical values (SM12), (SM16), (SM21) and (SM29)
we eventually get

(SM38) Ao ~ 54.8417 .
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