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WRINKLING STRUCTURES AT THE RIM OF AN INITIALLY2

STRETCHED CIRCULAR THIN PLATE SUBJECTED TO3

TRANSVERSE PRESSURE∗4

CIPRIAN D. COMAN† AND ANDREW P. BASSOM‡5

Abstract. Short-wavelength wrinkles that appear on an initially stretched thin elastic plate6
under transverse loading are examined. As the degree of loading is increased so wrinkles appear and7
their structure at the onset of buckling takes on one of three distinct forms depending on the size of8
the imposed stretching. With relatively little stretching, the wrinkles sit off the rim of the plate at9
a location which is not known a priori, but which is determined via a set of consistency conditions.10
These take the form of constraints on the solutions of certain coupled nonlinear differential equations11
that are solved numerically. As the degree of stretching grows, so an asymptotic solution of the12
consistency conditions is possible which heralds the structure that governs a second regime. Now the13
wrinkle sits next to the rim where its detailed structure can be described by the solution of suitably14
scaled Airy equations. In each of these first two regimes the Föppl-von Kármán bifurcation equations15
remain coupled, but as the initial stretching becomes yet stronger the governing equations separate.16
Further use of singular-perturbation arguments allows us to identify the wavelength wrinkle which17
is likely to be preferred in practice.18
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1. Introduction. It is well known that the governing equations for thin rods,21

plates and shells can be obtained systematically from the general theory of nonlinear22

elasticity by appealing to suitable asymptotic approximations that exploit the slender-23

ness of such configurations. Typically, the outcome of these reduction schemes is an24

entire hierarchy of equations rather than a unique set; furthermore, their merit can-25

not be always gauged a priori and requires a case-by-case appraisal. The Föppl-von26

Kármán (FvK) nonlinear plate equations were originally derived by ad-hoc approx-27

imations but also represent the result of a particular asymptotic reduction (cf. [1],28

pp.367–447), and have proved to be a versatile choice for describing many interesting29

phenomena associated with thin elastic films (e.g., [2]). Arguably, this system rep-30

resents the simplest nonlinear model able to capture the coupling between bending31

deformations and the in-plane stretching of the plate mid-plane. This approximation,32

however, does come at at a price and, despite its apparent simplicity, analytical solu-33

tions of the FvK system are scarce. The one notable exception is the “Euler column”34

[3] solution that describes a zero-Gaussian curvature deformation.35

The principal aim of the work reported here is to throw light on a number of36

mathematical structures that have relevance to the FvK bifurcation system. In some37

recent papers [4, 5, 6] we have proposed a general asymptotic approach for describing38

the edge wrinkling experienced by a uniformly stretched circular elastic plate when39

acted upon by a transverse pressure or a concentrated central load. Generally speak-40

ing, the FvK bifurcation system used in our edge-wrinkling investigations is either41

equivalent to, or based on two coupled nonlinear equations linearised about an ax-42
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2 CIPRIAN D. COMAN AND ANDREW P. BASSOM

isymmetric nonlinear solution that accounts for the finite mid-plane rotations in the43

pre-bifurcation state.44

The overall picture that emerged in our previous studies is summarised in Figure 1,45

where typical neutral stability curves Cµ are illustrated in terms of a non-dimensional46

transverse loading parameter λ > 0 and the wrinkle mode number (or “wavenumber”)47

m ∈ N. The driving system also depends on the initial in-plane stretching experienced48

by the plate, which is described by a dimensionless parameter µ defined formally in49

§2 below. Strictly speaking, it is the case µ � 1 that lends itself most naturally to50

asymptotic analysis since the energy minimum configuration for such problems – the51

point (mc, λc) in Figure 1 and corresponding to the least λ, can be scaled on suitable52

powers of µ. When 0 ≤ µ ≤ O(1) the coordinates of the global minimum of Cµ are53

O(1) quantities, a formal asymptotic strategy breaks down and critical values can54

only be determined by a direct numerical simulation of the full governing equations.55

In a strict mathematical sense little can be deduced for µ = O(1), but it has been56

demonstrated in [4] that even then singular perturbation methods can still be used57

to provide a useful lower bound for the right-hand branch, C(+)
0 . This is somewhat58

fortuitous, but proves to be possible because, even though λ is formally O(1), in59

practice its computed value turns out to be quite large so it can be effectively used as60

an asymptotically large quantity. We remark that this is an unexpected bonus and61

cannot be predicted by any formal means. Moreover, as noted in [7], the wrinkling62

pattern remains strongly localised even when µ = 0 although there is no rational63

theory that might suggest this could have been foreseen.64

𝑂

𝜆

𝑚

𝐶𝜇
(+)

𝐶𝜇
(−)

𝐶0
(+)𝐶0

(−)

O(1)

O(1)

O(𝜇3)

O(𝜇3/4)

(𝑚𝑐 , 𝜆𝑐)

(𝑚𝑐 , 𝜆𝑐)

(load)

(mode number)

Fig. 1. The features of the neutral stability curves Cµ = C(−)
µ ∪ C(+)

µ for the initially
stretched thin elastic plate subjected to transverse pressure. The vertical axis indicates
the non-dimensional pressure λ and the abscissa records the mode number m > 0. The
parameter µ ≥ 0 represents a non-dimensional measure proportional to the initial degree
of radial stretching; thus, the blue curve illustrates an unstretched plate (µ = 0), while
the red one corresponds to a taut circular configuration (µ� 1).

Our previous investigations have established that in the limit µ � 1 the FvK65

system decouples and the wrinkling instability is essentially one corresponding to a66

plane-stress state [8, 9], but with a nonlinear pre-buckling stress distribution. This67

asymptotic decoupling plays a key role in the success of singular perturbation analyses68

vis-à-vis the FvK system, a fact that is also implicit in a number of earlier works (e.g.,69
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WRINKLING OF A CIRCULAR PLATE 3

see [10, 11]); for instance, in our problem the decoupled equations are linear and can be70

solved in closed form to any order (albeit non-trivially). The question remains open as71

to what happens to the FvK system as µ is increased from zero (an unstretched plate)72

to µ � 1 (a well-stretched plate), and it is this route to decoupling that motivates73

our present study.74

At this early stage we emphasise that our interest is with the pure buckling75

problem; that is to determine the nature of λ = λ(µ;m) which is just sufficient to76

excite wrinkles of wavenumber m for a given µ. The conventional method to isolate77

the form of λ would be to specify µ and then determine the corresponding λ as a78

function of m. What makes this strategy unattractive here is that the basic solution79

satisfies nonlinear equations that depend on the loading λ. In standard bifurcation80

theory one would hope to set the basic state once and for all and then seek eigenvalues81

of the perturbation equations. Here this approach will fail, or at best be complicated82

to implement, as the basic equations and the system describing the wrinkles are83

coupled via λ. The upshot would be that any critical loading values arising from the84

wrinkle equations would be likely to modify the base state structure and it is unclear85

how a converged solution might be arrived at which is consistent with both the base86

state and wrinkle equations. Fortunately this difficulty can be neatly side-stepped87

by viewing the problem from a slightly different standpoint. In this we effectively88

specify λ, which ties down the base state, and then solve the wrinkle equations for89

the wavenumber m; it is then simple to invert the results to generate the dependence90

of λ on m. It is a crucial feature of our work that at no stage is λ to be regarded as91

fixed; rather for a specified µ we are aiming to track the value of λ(m) just sufficient92

to induce buckling. As the chosen value of µ is changed so λ must compensate to93

ensure we remain at the onset of buckling.94

Within the mechanics of thin plates and shells there are several notable prece-95

dents regarding the asymptotic limits of various equations as a loading parameter or a96

geometrical characteristic is progressively varied. In their pioneering work [12] Junkin97

and Davis studied a clamped circular plate loaded with a load on a central rigid in-98

clusion by using “first-approximation” non-linear shell equations. Depending on the99

magnitude of the load, they identified a sequence of plate problems that included the100

usual linear equations for very small deflections and the FvK equations for moderate101

deflections. A somewhat similar idea was implemented by Simmonds and Libai [13]102

for a particular theory of internally pressurised spherical caps. By scaling the pressure103

load and the shallowness parameters on suitable powers of a dimensionless thickness104

quantity, they obtained as many as seventeen different types of simplified equations.105

This suite of equations reflected a range of dominant deformation mechanisms be106

they linear, nonlinear/inextensional, nonlinear/membrane or some other form. Ko-107

maragiri et al. [14] revisited this analysis and carried out a related investigation for108

a free-standing circular elastic plate under point and pressure loads. In more recent109

times, Berdichevski’s asymptotic-variational technique [15] has emerged as a powerful110

device that can accomplish comparable results as can be gleaned from [16] among111

others. It is perhaps worth emphasising that all these studies dealt with deformation112

problems, that is the load is prescribed and one tries to predict the corresponding113

deformation. The problem we have in mind is somewhat different as we must tackle a114

bifurcation equation. Thus, the size of the loading is intimately related to the initial115

level of stretching, and can only be found by considering both the basic state and the116

perturbation structure simultaneously.117

It is acknowledged that over recent times there has been a plethora of studies118

concerned with various situations in which wrinkling can arise. Researchers have119
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4 CIPRIAN D. COMAN AND ANDREW P. BASSOM

been concerned with developing a comprehensive framework that is able to predict120

where and how tensional wrinkle patterns evolve. It appears that while many papers121

deal with stretched plates, relatively few are concerned with the case when wrinkling122

is provoked by an imposed transverse loading. An excellent survey of some of the123

key contributions relating to plates subject to stretching or shear has been compiled124

by Taylor et al. [17] who review the advances that have been made with geometries125

such as rectangular sheets or circular regions. Our situation is somewhat different126

in the sense that the wrinkling described below is generated by a transverse pressure127

load. This is enough to render the basic state genuinely nonlinear and it is then not128

surprising that the corresponding bifurcation equations are also distinctive. Relatively129

little effort has been devoted to this class of problems although note should be made130

of the numerical calculations by Adams [18] who examined the problem of a tensioned131

circular plate subjected to a concentrated load.132

The remainder of the paper is organised in the following way. We begin our133

study in §2 with a quick review of the differential equations for the basic state and134

the linearisation of the FvK system around this solution. A central role in our analysis135

is played by a suitable large non-dimensional parameter that we shall call ∆, and the136

paper proceeds by expressing all physical quantities in terms of ∆. In particular,137

it proves possible to identify the geometry of the right-hand branch of the neutral138

stability curve and trace its evolution as the original in-plane stretching increases.139

The nonlinear axisymmetric basic state is revisited in §3 so that we can reformulate140

some of the earlier features of [4] in terms of ∆. We also show that for relatively141

small µ the associated short-wavelength wrinkle modes are governed by a parabolic142

cylinder equation which is centred on a point near to, but off the rim of the plate,143

and whose exact location can only be tied down upon solving a pair of consistency144

conditions. These are solved numerically in §4 which shows that the structure of the145

wrinkles is modified as µ grows. Indeed, the wrinkles assume an asymptotic form,146

the key elements of which are outlined in §4.1. The upshot is that a new modified147

structure is appropriate to significantly enhanced µ. At this point, which we shall148

refer to as stage II, the radial extent of the wrinkles has grown but they have also149

been pushed onto the rim of the plate so that an Airy-type equation becomes the150

driving form. This stage II structure is developed in §5, where it is demonstrated151

how a third regime must take over when µ is enhanced further. This aspect is taken152

up in §6 where it is shown how our asymptotic development automatically captures153

the identity of the preferred mode when significant in-plane stretching is originally154

present. The paper closes with some discussion and a few remarks.155

2. Formulation. We are interested in the situation depicted in Figure 2 that156

involves a circular elastic plate of uniform thickness h > 0 and radius a (with a/h�157

1), a flexurally clamped edge and subjected to a uniform transverse pressure P . The158

deformation of the plate is expressed using a standard cylindrical system of coordinates159

(r, θ, z) defined by the usual orthonormal triad {er, eθ, ez}, with ez perpendicular to160

the median plane of the plate which also contains the origin of the axes. The linearly161

elastic material of the plate is characterised by the Youngs’ modulus E > 0 and the162

Poisson’s ratio 0 < ν < 1/2.163

The starting point for formulating the relevant bifurcation problem is the well-164

known Föppl-von Kármán (FvK) system (e.g., see [19]). When written in terms of165

the transverse displacement w and a suitably defined stress function F , these become166

(1) D∇4w − [F,w] = P and ∇4F +
Eh

2
[w,w] = 0 ,167
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Fig. 2. Top and side views of a uniformly stretched circular thin plate subjected to a
uniform transverse pressure; the dashed curve shown above represents its deflected shape.

where the first equation above accounts for the equilibrium in the normal direction,168

and the second is a compatibility relation expressing the coupling between the Gaus-169

sian curvature of the deformed configuration and the membrane stresses. In these170

equations D ≡ Eh3/12(1− ν2) represents the plate bending rigidity, and the bracket171

denotes the Monge-Ampère bi-linear operator defined by [f, g] := (∇2f)(∇2g)− (∇⊗172

∇f) : (∇ ⊗∇g) for any two smooth functions f and g. In addition F is related to173

the membrane stress tensor N according to N = (∇2F )I2 −∇ ⊗∇F , where I2 is174

the standard (in-plane) identity tensor I2 = er ⊗ er + eθ ⊗ eθ.175

As already mentioned, the plate is clamped in the vertical direction and has176

normal tractions prescribed along its circumference; this corresponds to177

w = 0 ,
∂w

∂r
= 0 , on r = a ,(2a)178

Nrr = N0 , Nrθ = 0 , on r = a .(2b)179180

To simplify (1) we set ρ := r/a and introduce the dimensionless quantities181

λ := [12(1− ν2)]3/2
(
P

E

)(a
h

)4
, µ2 := 12(1− ν2)

(
N0

Eh

)(a
h

)2
,(3a)182

w := [12(1− ν2)]1/2
w

h
, F := 12(1− ν2)

F

Eh3
;(3b)183

184

in what follows we shall drop the overbars on these re-scaled variables in order to185

avoid over-complicating the notation. The parameter µ2 measures the dimensionless186

bending stiffness In language introduced by Davidovitch et. al [20], µ2 is known as187
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6 CIPRIAN D. COMAN AND ANDREW P. BASSOM

the bendability; it is envisaged to be fixed in an experiment while λ is increased until188

wrinkling appears. It can then be shown that for the nonlinear axisymmetric base189

state the two equations in (1) are reduced to190

(4) L(1)
0 [Θ] = λρ+

ΘΦ

ρ
and L(1)

0 [Φ] = −Θ2

2ρ
,191

where the new dependent variables are Θ ≡ Θ(ρ;λ, µ) := dw/dρ and Φ ≡ Φ(ρ;λ, µ) :=192

dF/dρ with L(k)
0 denoting the differential operator193

(5) L(k)
0 ≡ 1

ρ

d

dρ

(
ρ
d

dρ

)
− k2

ρ2
, (k ∈ N) .194

The system (4) must be solved subject to the boundary conditions195

(6) Θ(0) = Θ(1) = Φ(0) = 0 , Φ(1) = µ2.196

2.1. The bifurcation boundary-value problem. As usual, bifurcations from
the symmetric basic state (4) are described by a set of equations which follow easily
via the method of adjacent equilibrium. This involves considering perturbations to
the basic state w = ẘ(ρ), F = F̊ (ρ) which are substituted in the dimensionless
version of (1) and then linearized with respect to the incremental fields ŵ ≡ ŵ(ρ, θ)

and F̂ ≡ F̂ (ρ, θ). The final linear system of partial differential equations is

∇4ŵ = [ẘ, F̂ ] + [ŵ, F̊ ] and ∇4F̂ = −[ẘ, ŵ] ,

which can be simplified further by looking for solutions with separable variables,197

(7) (ŵ, F̂ ) = (W (ρ),Ψ(ρ)) cos(mθ) ,198

where m ≥ 0 is an arbitrary integer at this stage. The unknown amplitudes in (7)199

satisfy the linear system200

(8) L11[W ] + L12[Ψ] = 0 and L21[W ] + L22[Ψ] = 0 ,201

where we have introduced the ordinary differential operators202

L11 ≡ [L(m)
0 ]2 − 1

ρ

d

dρ

(
Φ
d

dρ

)
+
dΦ

dρ

(
m

ρ

)2

, L22 ≡ [L(m)
0 ]2 ,(9a)203

L12 = −L21 ≡ −
1

ρ

d

dρ

(
Θ
d

dρ

)
+
dΘ

dρ

(
m

ρ

)2

.(9b)204
205

This eighth-order system is to be solved subject to suitable regularity conditions at206

the centre of the plate together with the rim conditions (2) appropriate for a flexurally207

clamped plate. In dimensionless form these constraints become simply208

(10) W =
dW

dρ
= Ψ =

dΨ

dρ
= 0 , for ρ ∈ {0, 1} .209

Our stated intention with this work is to explore the behaviour of the FvK sys-210

tem over the entire range of values of µ ∈ [0,∞) that measures the initial in-plane211

stretching of the plate. Guided by our earlier remark, that even when µ is small212

This manuscript is for review purposes only.



WRINKLING OF A CIRCULAR PLATE 7

the eigenvalue λ tends to be large, it is convenient to introduce the auxiliary fixed213

non-dimensional parameter ∆ � 1. The strategy we shall adopt is to monitor the214

behaviour of the system by using various quantities expressed in terms of the ∆.215

In particular results developed in [6] showed that when the wavenumber m is large216

the corresponding critical loading required for wrinkling occurs at a value λ ∝ m8/3.217

Guided by this we write218

(11) λ = λ0∆4, λ0 = O(1) ,219

together with the squared mode number220

(12) m2 = M0∆3 +M1∆11/4 +M2∆5/2 + . . . , Mj = O(1) , (j = 0, 1, 2) .221

We remark that we could subsume the quantity M0 within the definition of ∆, without222

any loss of generality. However, it will prove helpful to be able to investigate various223

limits while holding various physical quantities such as m or µ fixed, and this is done in224

the most transparent manner by keeping the definition of ∆ completely independent225

of other quantities in the problem. Furthermore, to re-iterate the point we highlighted226

in §1, although it might seem more natural to specify m2 and then seek the loading227

λ as a function of m, some mathematical subtleties inherent in the description of228

the problem make this approach cumbersome. In particular, it is noted that the229

basic state satisfies equations (4) which depend on λ. Thus if we pursue the normal230

method of developing a series for λ as a function of m2 then there is the potential231

difficulty that as we proceed we need to keep careful track of the form of the basic232

state that may need to be reappraised in light of small changes to λ. To circumvent233

this inconvenience we instead decide to determine m2 := m2(λ). There is no formal234

difficulty in adopting this viewpoint and nothing is lost so doing for once answers are235

determined it is elementary to invert our results and thereby express λ := λ(m) if236

preferred. At this stage there is one parameter yet to be fixed being the salient regime237

for the in-plane stretching µ, but the relevant sizing becomes evident in the course of238

the calculations described below.239

In the following we shall see that as we increase the magnitude of the dimensionless240

background tension µ the solution structures evolves through three distinct stages I–241

III. Each of these is somewhat intricate and inevitably requires the introduction of242

some notational complexity. Rather than minimising this by repeating symbols from243

stage to stage, and thereby risking having some notation with multiple meanings in244

various parts of the paper, we have chosen to have unambiguous designations. This245

might initially seem overwhelming, but the three structures that are developed in246

§4, §5 and §6 are separate of each other and each section can be treated as largely247

self-contained. In this way, the need to undertake extensive cross-referencing between248

the three calculations is hopefully mitigated as far as we are able.249

3. The solution structure for ∆ � 1: stage I. Given the form of (11),250

simple scaling arguments applied to the base-state equations (4) suggest that across251

the majority of circular plate, where ρ = O(1), we have252

(13) Θ = ∆4/3Θ0 + ∆−4/3Θ1 . . . , Φ = ∆8/3Φ0 + Φ1 + . . . .253

Leading-order terms in (4) reduce to254

(14) Θ0Φ0 = −λ0ρ2 , L(1)
0 [Φ0] = −Θ2

0

2ρ
,255
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8 CIPRIAN D. COMAN AND ANDREW P. BASSOM

from which it quickly follows that256

(15) L(1)
0 [Φ0] = −λ

2
0ρ

3

2Φ2
0

.257

It is a routine exercise to show that at the centre of the plate Φ0 ∼ Aρ + O(ρ3)258

for some constant A ∈ R that could be determined numerically, but whose value is259

immaterial for our immediate purposes. Rather, what is of more significance is the260

nature of the solution of (14) at the rim ρ→ 1−. In view of the boundary conditions261

(6) on the base state at ρ = 1 we anticipate that, if µ is small, then Φ0 → 0 as ρ→ 1−,262

which requires263

(16) Φ0 ∼ δ
(
x2/3 + . . .

)
, Θ0 ∼ −

λ0
δ
x−2/3 (1− . . . ) , where δ ≡

(
3

2
λ0

)2/3

,264

as x ≡ 1− ρ→ 0+. (This expression follows immediately from enforcing the balance265

between the second derivative on the left hand side of (15) with the nonlinear term266

on the right hand side.)267

This then highlights the significance of a suitable rim layer wherein the majority of268

the wrinkling will take place. Elementary scaling of the governing equations suggests269

that x = O(∆−1), so we define270

(17) ρ = 1− X

∆
, X = O(1)271

whereupon, governed by the behaviours (16), we expect that272

(18) (Φ,Θ) = ∆2(φ0, θ0) + ∆4/3(φ1, θ1) + . . . .273

If a dash denotes differentiation with respect to X, then substitution in (4) shows274

that the zeroth-order terms satisfy275

(19) θ′′0 = λ0 + φ0θ0, φ′′0 = −1

2
θ20 ,276

and matching with the outer behaviour (16) demands that φ0 ∼ δX2/3 and θ0 ∼277

−(λ0/δ)X
−2/3 as X →∞.278

It is the rim condition Φ(1) = µ2 from (6) that provides the clue for the appro-279

priate scaling for µ. If we put280

(20) µ = ∆µ0 , µ0 = O(1),281

then we must have282

(21) θ0(0) = 0 and φ0(0) = µ2
0.283

Clearly, the value of µ0 > 0 plays a significant role in setting the leading-order form284

of the basic state within the rim region and thus, presumably, is important in setting285

the loading that generates wrinkle modes. Hence we now work with µ0 assumed fixed286

and given, and seek to determine the value of λ0(m) that marks the onset of buckling.287
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3.1. The structure of the eigen-deformation. Given the form of the basic288

solution we are able to proceed to examine the perturbation equations. We can289

thereby identify the key scalings that ensure that quadratic terms drive perturbations290

that are confined to a thin zone within the X = O(1) region. Put another way, the291

basic state develops a rim layer and inside that, already thin, layer sit the wrinkle292

modes. It can be verified that this inner rim later is of relative extent O(∆−1/4), and293

so the wrinkle exists at some location X = X0 about which we define the rescaled294

variable Y = O(1),295

(22) Y := ∆1/4(X −X0) or ρ = 1− X0

∆
− Y

∆5/4
.296

There are now two issues to be settled: (i) what sets the value of the location X0 and297

(ii) how is the disturbance confined to the vicinity of this point? We can begin to298

address these questions by expanding the rim layer quantities φj(X) as Taylor series299

taken about X = X0. This shows that where Y = O(1) we have300

301

(23) Φ = ∆2

(
φ00 + ∆−1/4φ01Y +

1

2
∆−1/2φ02Y

2 +
1

6
∆−3/4φ03Y

3 + . . .

)
302

+ ∆4/3
(
φ10 + ∆−1/4φ11Y + . . .

)
,303

304

where the constants φij denote the jth derivative of φi(X) evaluated at X = X0.305

Taking derivatives shows that306

(24)
dΦ

dρ
= −∆3φ01 −∆11/4φ02Y −

1

2
∆5/2φ03Y

2 + . . .307

and we remark that expressions completely analogous to (23) and (24) hold for Θ and308

its derivative, with the φij replaced by θij which represents the jth-order derivative309

of θi(X) evaluated at X = X0. Notice that although the base state correction term310

φ1 enters both the expressions (18) and the Taylor series (23), it is not required for311

the results we derive below. Hence, for reasons of brevity, we do not discuss φ1 (and312

θ1) further here, though of course their presence would have to be properly accounted313

for if we were to delve deeper into later terms in our series solutions.314

3.2. The bifurcation equations. Given these proposed structures, and with315

the squared mode number m2 defined by (12), the scene is now set for determining316

the important equations. We look for a solution of (8) of the form317

(25) (W,Ψ) = (W0,Ψ0) + ∆−1/4(W1,Ψ1) + ∆−1/2(W2,Ψ2) + . . . ,318

and remember that Φ and its derivative are given by (23) and (24). On substituting319

(25) into the original equations (8), collecting like powers of ∆, and then setting to320

zero their corresponding coefficients results in a hierarchy of coupled equations, as321

explained below.322

Terms of O(∆6) in the two equations yield323

R1[W0,Ψ0] ≡ (M0 − φ01)W0 − θ01Ψ0 = 0 ,(26a)324

R2[W0,Ψ0] ≡ θ01W0 +M0Ψ0 = 0 .(26b)325326
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10 CIPRIAN D. COMAN AND ANDREW P. BASSOM

The consistency of this linear homogeneous system in W0 and Ψ0 requires327

(27) M0(M0 − φ01) + θ201 = 0 .328

At O(∆23/4) it follows that329

R1[W1,Φ1] = Y θ02Ψ0 − (M1 − φ02Y )W0 ,(28a)330

R2[W1,Φ1] = −θ02YW0 −M1Ψ0 .(28b)331332

Again, a solution is only possible if suitable consistency conditions hold. The pair of333

equations (26) imply that M0R1(W,Φ) + θ01R2(W,Φ) ≡ 0 as these two operators are334

linearly related. It follows that the system (28) is compatible only if335

(29) M1 = 0 and M0φ02 = 2θ01θ02 .336

We need to proceed as far as O(∆11/2). We determine that337

R1[W2,Φ2] = θ02YΨ1 + φ02YW1 +
1

2
θ03Y

2Ψ0 −
(
M2 −

1

2
φ03Y

2

)
W0 + 2

d2W0

dY 2
,338

R2[W2,Φ2] = −θ02YW1 −
1

2
θ03Y

2W0 −M2Ψ0 + 2
d2Ψ0

dY 2
.339

340

The consistency of this pair requires341

(31)
d2W0

dY 2
+

[
M0φ03 − 2θ01θ03 − 2θ202

4(2M0 − φ01)

]
Y 2W0 −

1

2
M2W0 = 0 ,342

which, when cast in the generic form343

(32)
d2W0

dY 2
− γY 2W0 + δW0 = 0 ,344

admits the exact solution W0 ∝ exp(−γ1/2Y 2/2) if δ = γ1/2. This gives345

(33) M2 = −2

[
2θ202 + 2θ01θ03 −M0φ03

4(2M0 − φ01)

]1/2
,346

as long as γ > 0. The expression W0(Y ) ∝ exp(−γ1/2Y 2/2) proves that the solution347

is effectively confined to the Y = O(1) region subsumed within the X = O(1) rim348

layer governing the base structure.349

We now have the information we require to uncover the location of the wrinkles350

centred at X = X0. For a given λ0 the leading-order rim solution (φ0, θ0) satisfies351

the coupled system (19) subject to (21) and the matching conditions φ0 ∼ δX2/3352

and θ0 ∼ −(λ0/δ)X
−2/3 as X → ∞. Wrinkling occurs with a scaled square mode353

number M0 and is located at X = X0, where M0 and X0 are determined by solving the354

consistency equations (27) and (29). Solution of this problem requires some associated355

numerical work, as explained briefly in the next section.356

4. Numerical solution of the stage-I equations. Our computational task357

requires that, given the scaled constant µ0 > 0, we need to determine the relationship358

between λ0 and M0. It turns out that considerable simplification can be achieved by359

some judicious scaling. If we define a new rim co-ordinate X̂ ≥ 0 according to360

(34) X̂ := λ
1/4
0 X ,361
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and write the base structure variables φ0 =: λ
1/2
0 φ̂0 and θ0 =: λ

1/2
0 θ̂0, then it follows362

that363

(35) θ̂′′0 = 1 + φ̂0θ̂0, φ̂′′0 = −1

2
θ̂20 ,364

subject to the constraints365

(36) φ̂0 ∼ αX̂2/3 + . . . , θ̂0 ∼ −
1

α
X̂−2/3 + . . . as X̂ →∞; α ≡

(
3

2

)2/3

366

together with367

(37) θ̂0(0) = 0 and φ̂0(0) = Λ̂ ;368

here, we have introduced the definition369

(38) Λ̂ :=
µ2
0

λ
1/2
0

.370

If furthermore, we put M0 =: λ
3/4
0 M̂0 and denote by φ̂0j and θ̂0j the jth derivatives371

of φ̂0 and θ̂0 evaluated at X̂ = X̂0, then the consistency conditions (27) and (29)372

become just373

(39) M̂0(M̂0 − φ̂01) + θ̂201 = 0 and M̂0φ̂02 = 2θ̂01θ̂02.374

By this device we have reduced by one the dimension of the parameter space over375

which solution is required. For each Λ̂ there is one pair of corresponding (M̂0, X̂0) and376

we are faced with a three-point boundary-value problem comprising the fourth-order377

system (35)–(37) subject to consistency conditions to be imposed at a point X̂0 that378

is part of the solution. This computation was carried out using standard routines379

available in MATLAB.380

Some representative solutions are shown in Figure 3; in the left panel is illustrated381

the dependence of M̂0 on Λ̂, while the right panel indicates the corresponding form of382

the location X̂0 within the rim region. We note that for no initial in-plane stretching,383

i.e. Λ̂ = 0, we have finite values M̂0 ' 0.8721 and X̂0 ' 1.066. As Λ̂ increases384

so initially X̂0 grows, but this trend is soon reversed and both M̂0 and X̂0 drop385

steadily with Λ̂. This suggests that to account for stronger stretching µ0 � 1 (and386

so Λ̂ � 1 by definition (38)) some sort of new structure ought to come into play in387

an appropriate large-Λ̂ limit. To unravel the corresponding details the first step is388

therefore to examine the nature of the solution of (35)–(37) subject to (39) as Λ̂→∞.389

4.1. The solution of (35)–(39) for large Λ̂. Consideration of the boundary390

condition imposed on φ̂0 at X̂ = 0 together with the nature of the governing equations391

suggest that when Λ̂ � 1 the solution develops a short-scale structure on a length392

O(Λ̂−1/2). We therefore define393

(40) X̂ = Λ̂−1/2z ,394

and propose that the solution takes the form395

(41) θ̂0 = Λ̂−1θ̃0(z)+Λ̂−3θ̃1(z)+. . . , φ̂0 = Λ̂ φ̃0(z)+Λ̂−1φ̃1(z)+Λ̂−3φ̃2(z)+. . . .396
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Fig. 3. The forms of M̂0 (left) and X̂0 (right) as functions of the parameter Λ̂ as

determined from the solution of system (35)–(37) subject to (39) being satisfied at X̂ = X̂0.

Shown as superimposed markers are the corresponding large-Λ̂ asymptotic results (46).

On substituting these forms in (35), comparison of like coefficients of Λ̂ in the two397

equations yield that398

d2θ̃0
dz2

= 1 + θ̃0φ̃0,
d2θ̃1
dz2

= θ̃0φ̃1 + θ̃1φ̃0,
d2φ̃0
dz2

=
d2φ̃1
dz2

= 0 and
d2φ̃2
dz2

= −1

2
θ̃ 2
0 .399

In view of the boundary conditions we suppose that φ̃0 ≡ 1, a claim that can be400

checked later. Given this, it follows quickly that θ̃0 = −1 + exp(−z) and we can also401

deduce that φ̃1 is proportional to z. We cannot tie down this solution completely402

without recourse to the far-field conditions (36) for X̂ → ∞. The fact that the403

solution does not match directly onto the far-field requirements suggests strongly404

that the inner-solution zone must be supplemented by some form of outer structure.405

It is not difficult to verify that this outer zone lies where X̂ = Λ̂3/2Ỹ with Ỹ = O(1)406

and that here407

(42) θ̂0 = Λ̂−1Θ̃0(Ỹ ) + . . . , φ̂0 = Λ̂ Φ̃0(Ỹ ) + . . . .408

To match with the inner region requires that Θ̃0 → −1 and Φ̃0 → 1 as Ỹ → 0.
Leading-order terms in the governing equations (35) give

Θ̃0Φ̃0 + 1 = 0 and
d2Φ̃0

dỸ 2
= −1

2
Θ̃2

0 =⇒ d2Φ̃0

dỸ 2
= − 1

2Φ̃2
0

.

This latter equation admits the exact solution Φ̃0 = (1 + 3Ỹ /2)2/3 which hence yields409

that Θ̃0 = −(1+3Ỹ /2)−2/3. These expressions match automatically with the far-field410

requirements (36) and with the inner-zone solutions as Ỹ → 0. Furthermore we can411

now deduce that φ̃1 = z, rather than just being proportional to it, and it is then a412
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routine matter to solve for φ̃2. Taken together, this means that within the inner zone413

(40)414

θ̂0 = Λ̂−1[−1 + exp(−z)] + . . . ,(43a)415

φ̂0 = Λ̂ + Λ̂−1z + Λ̂−3
[
−1

4
z2 + exp(−z)− 1

8
exp(−2z) + c̃z − 7

8

]
+ . . . ,(43b)416

417

where the precise value of c̃ ∈ R will not be required.418

We have now shown that when Λ̂ � 1 the appropriate solution of (35)–(37)419

develops a two-layer structure with an inner O(Λ̂−1/2)-zone and a wider outer region.420

We still need to identify the corresponding values of M̂0 and X̂0 that together fulfil the421

consistency requirements (39). The numerical solutions sketched in Figure 3 suggested422

that as Λ̂→∞ so X̂0 → 0, and therefore it is unlikely that the consistency conditions423

will hold somewhere in the outer zone. Granted this, suppose that (39) apply at some424

point X̂0 = Λ̂−1/2z0 for some z0 > 0 to be found. In order to satisfy (39) it is clear425

that the values of the various derivatives θ̂01, θ̂02, φ̂01 and φ̂02 need to be found. These426

can be inferred directly from our foregoing results (43), which yield427

φ̂01 = Λ̂−1/2 + . . . , θ̂01 = −Λ̂−1/2 exp(−z0) + . . . ,(44)428

φ̂02 = −1

2
Λ̂−2(1− exp(−z0))2 + . . . , θ̂02 = exp(−z0) + . . . .(45)429

430

We proceed by examining the first of the consistency conditions in (39). Given431

the values noted in (44) there appear to be two possibilities: either M̂0 ' −θ̂201/φ̂01432

or M̂0 ' φ̂01 = Λ−1/2. If we take the former option, routine algebra shows that the433

second consistency requirement M̂0φ̂02 = 2θ̂01θ̂02 cannot be satisfied. We are then434

left to conclude that435

(46) M̂0 ' Λ̂−1/2 and X̂0 ' Λ̂−1/2 ln (2Λ̂) , as Λ̂→∞ ,436

where the value of X̂0 follows from the second consistency condition. These large-437

Λ̂ predictions are superimposed on the results shown in Figure 3, and both show438

excellent agreement with the direct numerical simulations.439

5. The emergence of structure for larger values of µ: stage II. In440

the preceding sections we have sought to explain the structure of wrinkling eigen-441

deformations with high mode numbers (m ∼ ∆3/2) when the in-plane stretching442

parameter µ is of size O(∆): recall (12) and (20). Equation (11) reminds us that443

the corresponding loading for wrinkling is O(∆4) and we now investigate how the444

situation needs to be modified as µ grows. The workings of the previous section445

show what is likely to happen as Λ̂ increases. In particular we observe that the446

square of the mode number m2 ∼ ∆3M0 = ∆3λ
3/4
0 M̂0, and for Λ̂ � 1 we predicted447

M̂0 ∼ Λ̂−1/2 = λ
1/4
0 /µ0 by definition (38). Hence the wrinkle mode number is448

(47) m ∼ ∆3/2λ
1/2
0 /µ

1/2
0 .449

We need to be careful that we continue to examine eigenstates with mode numbers
consistent with those appropriate to stage I; that is, we should keep m ∼ ∆3/2. This
then suggests λ0 ∼ µ0 while a second constraint for fixing the appropriate sizings for
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14 CIPRIAN D. COMAN AND ANDREW P. BASSOM

λ0 and µ0 follows from the wrinkling structure itself. Using equation (32) and the
scalings of §3, it follows that the wrinkling layer is of extent O(∆−5/4γ̂−1/4), where

γ̂ ≡ λ5/40

[
−M̂0φ̂03 + 2θ̂01θ̂03 + 2θ̂202

4(2M̂0 − φ̂01)

]
.

Given the asymptotic results (44), it transpires that the depth of the wrinkle zone is450

comparable to the distance of its centre from the rim when451

(48) ∆−5/4λ
−1/4
0 µ

−1/4
0 ∼ ∆−1 or λ0µ0 ∼ ∆ .452

Taken with our earlier expectation λ0 ∼ µ0 it is now clear that some new structure is453

anticipated once µ ≡ ∆µ0 becomes O(∆3/2). To avoid introducing a plethora of new454

variables we recycle much of the preceding notation, changing only those parts that455

are crucial to avoid confusion.456

Our discussion immediately above suggests that the stretching and loading must457

be scaled according to458

(49) µ = ∆3/2µ†0, λ = ∆9/2λ†0 , for some µ†0, λ
†
0 = O(1) ,459

which replace (20) and (11), respectively. We have been careful to ensure that we460

continue to seek eigen-deformations with mode numbers O(∆3/2), so suppose that461

(50) m2 = M†0∆3 +M†1∆2 + . . . .462

Once again, we proceed assuming that µ†0 is fixed and given, and endeavour to find463

the form of λ†0 = λ†0(M†0 ) that marks the onset of buckling. Our previous asymptotics464

predict that the wrinkling is confined to an O(∆−1)-distance off the rim, so we can465

simply retain definition (17) with ρ = 1−X∆−1.466

In view of the increase in the loading λ the basic state is modified, though the key467

equations are only slightly altered. The basic state across the majority of the plate468

now satisfies469

(51) Θ = ∆3/2Θ0 + . . . , Φ = ∆3Φ0 + . . . ,470

where471

(52) Θ0Φ0 = −λ†0ρ2 and L(1)
0 [Φ0] = − (λ†0)2ρ3

2Φ2
0

.472

Previously we needed to solve for Φ0 subject to the requirement that it vanished as473

ρ→ 1−; however, now the enhanced value of µ in (49) means that we simply require474

that Φ0(1) = (µ†0)2. If we write Φ0 ≡ (µ†0)2φ0 then it follows that475

(53) L(1)
0 [φ0] = − Γ2ρ3

2(φ0)2
; φ0(0) = 0, φ0(1) = 1; Γ ≡ λ†0

(µ†0)3
.476

We need to ascertain the behaviour of this solution in the rim zone X = O(1) and it477

is straightforward to deduce that if φ′0(1) ≡ β then in the rim zone478

(54) Φ = ∆3(µ†0)2
[
1− βX

∆
+

1

2

(
1− β − 1

2
Γ2

)
X2

∆2
+ . . .

]
; Θ = O(∆3/2).479
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If where X = O(1) the wrinkle adopts the form480

(55) (W,Ψ) = (W †0 ,Ψ
†
0) + ∆−1(W †1 ,Ψ

†
1) + . . . ,481

then leading-order terms arising from substitution in (8) tell us that482

(56) M†0 + β(µ†0)2 = 0 and (µ†0)2M†0Ψ†0 = λ†0(β − 2)W †0 .483

At next order in equation (8a) we find that484

(57)

[
2 +

(µ†0)2

M†0

]
d2W †0
dX2

−
[
(µ†0)2

(
β +

1

2
Γ2 − 1

)
X +M†1

]
W †0 = 0 .485

This equation is merely a scaled form of the ubiquitous Airy equation y′′ − xy = 0,486

which is known to admit a solution with y(x0) = 0 and y → 0 as x → ∞ if x0 '487

−2.331. Given this, we deduce that equation (57) enables W †0 → 0 both as X → 0488

and as X →∞ if489

(58) M†1 ' −2.331(M†0 )−1/3
[(
β +

1

2
Γ2 − 1

)
(µ†0)2 + 2M†0

]2/3 [
2M†0 + (µ†0)2

]1/3
.490

We now have the elements required to determine the loading parameter λ†0 in491

terms of µ†0. The key to unlocking this dependence lies in the requirement φ′0(1) ≡ β492

and the consistency condition (56a) combined with the basic state equation (53).493

This second-order equation already is subject to the two requirements, φ0(0) = 0 and494

φ0(1) = 1, and the third constraint φ′0(1) = −M†0/(µ
†
0)2, which follows directly from495

φ′0(1) ≡ β and (56a), means that a solution only exists for certain values of Γ. We496

can write this in the alternative form497

(59) λ†0 = (µ†0)3G

[
M†0

(µ†0)2

]
,498

for some function G[ · ] that can only be determined numerically; the form of this499

function is illustrated in Figure 4.500

It is a straightforward computational exercise to show that problem (53) admits501

a solution with φ′0(1) = 0 when Γ = K0 ≈ 3.212. This then tells us that for large µ†0502

(and small β) then λ†0 ' K0(µ†0)3. Moreover, if we look for a solution of (53) as a503

regular series in inverse powers of µ†0 we can derive the two-term result504

(60) λ†0 = K0(µ†0)3 + 1.217M†0µ
†
0 + . . . ,505

which is included on Figure 4. It is observed that agreement is excellent, even for506

surprisingly modest values of µ†0.507

These features forecast the expected behaviours at even larger values of µ. As µ†0508

grows so the leading order loading parameter λ†0 becomes independent of the mode509

number M†0 , and the fact that the quantity M†1 ∼ O((µ†0)2), according to (58), means510

that a restructuring should be anticipated once µ†0 = O(∆1/2). Then µ = O(∆2) and511

this last stage is described next.512
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Fig. 4. The dependence of λ†0 on µ†0 according to (59) when M†0 = 1. Shown
superimposed on this plot are the one- and two-term asymptotic results (60), which
correspond to the triangular and round markers, respectively.

6. Stage III: strong stretching. Guided by the previous analysis we can513

quickly sketch the structure appropriate when514

(61) µ = ∆2µ̃ , with µ̃ = O(1) .515

We anticipate that once more m2 = ∆3M̃ , for some M̃ = O(1), but that the com-516

mensurate loading is now517

(62) λ = K0µ̃
3∆6 + λ̃1∆5 + λ̃2∆4 + . . . ,518

where λj = O(1) (j = 1, 2) are yet to be determined. In passing we remark that
this scaling that m ∼ µ3/4 was first derived using asymptotic arguments by Coman &
Bassom [8] and later Davidovitch et al. [20] gave a simple argument based on scaling
to confirm this result. Earlier in the paper we stressed our desire to take a solitary
one-term form for λ and, at face value, it seems that we are now deliberately deviating
from this route. The reason is not difficult to appreciate; at such high values of µ
the first term in the loading form (62) is independent of the wrinkle mode number
m according to the predictions of stage II. Thus, a simple one-term form for λ would
no longer be adequate to capture any wavenumber variation whatsoever, which forces
our consideration of the more complicated (62). Now, across the main part of the
plate, the series (51) becomes

Φ = ∆4Φ0 + ∆3Φ1 + ∆2Φ2 + . . . and Θ = ∆2Θ0 + ∆Θ1 + Θ2 + . . . ,

where Φj ≡ Φj(X) and Θj ≡ Θj(X) (j = 0, 1, 2, . . . ) are to be determined. Note that519

if we write Φ0 = µ̃2φ0, then φ0 satisfies the equation (53) with the value Γ = K0, by520

virtue of which we are guaranteed that Φ′0(1) = 0. Thus, we are able to express the521

form of the base state in the X = O(1) rim region to obtain the counterpart to (54)522
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in the form523

Φ = µ̃2∆4 + (A22X
2 +A21X)∆2 + (A13X

3 +A12X
2 +A11X)∆ + . . . ,(63a)524

Θ = B20∆2 + (B11X +B10)∆ + . . . ,(63b)525526

where527

A22 :=
1

2

(
1− 1

2
K2

0

)
µ̃2 , A13 :=

1

6
(3 +K2

0 )µ̃2 , B20 := −K0µ̃
3 ,528

A21 :=
λ̃1K1

µ̃
, A12 := − λ̃1

2µ̃
(K0 −K1) , B11 := 2K0µ̃

3 ,529

A11 :=
λ̃2K1

µ̃
+
λ̃21K2

µ̃4
, B10 := −λ̃1 .530

531

Standard numerical work (which is relegated to the supplementary material) shows532

that K0 ' 3.212, K1 ' 0.5179 and K2 ' 0.0389. In the expression (63a) we note the533

absence of the ∆3 term which is a direct consequence of the fact that Φ′0(1) = 0. We534

can use the approximation of the basic state (63) to capture the asymptotic structure535

of the wrinkles. To this end we shall employ the ansatz536

(64) W = W̃0 + W̃1∆−1 + . . . and Ψ = Ψ̃0∆−1 + Ψ̃1∆−2 + . . . .537

The second equation in (8) gives an algebraic constraint, M̃Ψ0 + 2K0µ̃
3W0 = 0;538

thus, the terms in the expansion (64b) are quite passive and respond to what the Wj539

(j = 0, 1, . . . ) components need to do. However, use of (64) in (8a) yields540

(65)
d2W̃0

dX2
− (αX − β)W̃0 = 0 with α := −2M̃A22

µ̃2
, β := −M̃(M̃ −A21)

µ̃2
.541

We recognise this equation once again as related to an Airy form, and elementary542

algebra shows that a non-trivial solution with W̃ → 0 as X → 0 and X → ∞ is543

possible if544

(66) λ̃1K1 = µ̃M̃ + ξ0

(
1

2
K2

0 − 1

)2/3

µ̃5/3M̃−1/3 ,545

where Ai(−ξ0) = 0, ξ0 ' 2.331. Now, while the leading-order term in (62) was546

independent of M̃ , we observe that λ̃1 → ∞ both as M̃ → 0 and as M̃ → ∞. Thus,547

we can identify the wavenumber that corresponds to the least loading, and minimizing548

λ̃1 with respect to M̃ gives the critical point (M̃c, λ̃1c) ' (1.6877, 13.0346).549

We remark that the solution W̃0 does not fulfil all eight of the rim conditions550

(10) prescribed. This merely reflects the fact that the majority of the wrinkle zone is551

governed by a system of order less than eight, which means that not all the constraints552

can be satisfied. This does not present any problem and just points to the fact553

that the O(∆−1) rim zone contains an inner region in which the aforementioned554

requirements can be ensured. The details of this inner zone affect later terms in555

our asymptotic series, in particular, they do influence the form of λ̃2 in (62). The556

manipulations required are routine but lengthy so, in the interest of brevity, the details557
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of the corresponding analysis are consigned to the supplementary material. Here, we558

simply state the final results559

(67) λc = 3.212µ3+13.0346µ5/2+54.8417µ2+. . . and m2
c = 1.6877µ3/2+. . . .560

The predictions of these last formulae are illustrated in Figure 5, where we compare561

them with some direct numerical simulations of (8)-(10). It is clear that the agreement562

is very good. In particular, in the left window the relative errors range from 10% at563

µ = 80 to 5.7% when µ = 120 and are merely 2.8% once µ = 200. The predictions564

of the critical wavenumber differ from the simulations by about 5% when µ = 180;565

although these relative errors are slightly larger than for the critical loading values566

it should be remembered that the asymptotic result (67b) consists of only one term.567

Better improvement could be expected should further terms in (67b) be developed568

but this simple result is sufficiently accurate that the additional effort necessary to569

extricate higher order terms is arguably not commensurate with the likely marginal570

improvement in results.
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Fig. 5. Comparisons between direct numerical simulations of the boundary-value
problem (8)-(10) and the critical values (67) for 30 ≤ µ ≤ 200. The markers corre-
spond to the former set of data, while the continuous curves represent the asymptotic
results.

571

7. Discussion. In this article we have endeavoured to provide a detailed de-572

scription of the short-wavelength wrinkle modes that develop in a uniformly stretched573

weakly clamped circular plate subjected to a transverse pressure. Three distinct574

regimes of initial stretching have been identified (see Figure 6); in the first of these575

the eigenmodes are located off the rim of the plate at a location determined by the576

solution of a pair of consistency conditions. As the size of the stretching µ increases577

then the wrinkles effectively sit at the rim, where they are governed by the solution of578

a scaled Airy equation. A third regime is suggested in which the leading-order loading579

required for wrinkling loses all dependence on the mode number.580
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𝑚 = O ∆3/2 + O(∆)

𝜆 = O(Δ4) 𝜆 = O(Δ9/2) 𝜆 = O Δ6 + O ∆5

𝑚 = O ∆3/2 + O(Δ1/2) 𝑚 = O ∆3/2 + O(1)

𝑚 ≫ 1

𝜇 = 0 𝜇 ≫ 1

𝑚 = 0

𝜇 = O(∆) 𝜇 = O(Δ3/2) 𝜇 = O(Δ2)

(PCF, non-critical) (Airy, intermediate) (Airy, critical)

Fig. 6. Schematic of the asymptotic regimes studied. Upper line indicates the size
of the correction to the leading order wavenumber O(∆3/2).

At the outset our principal motivation behind this work was to shed light on581

the nature of the asymptotic decoupling of the FvK system found recently in some582

related studies [5, 6]. Although there are a number of non-trivial examples in the lit-583

erature in which the asymptotic decoupling of the FvK nonlinear equations has been584

encountered, for example [10]-[11], it should be emphasised that the nature of this585

phenomenon was actually quite different. Indeed, a close look indicates that the afore-586

mentioned references were concerned with out-of-plane bending perturbations from a587

state of plane stress. As a consequence, the compatibility relation in the FvK system588

decoupled at leading-order, giving rise to the standard linear bi-harmonic equation589

for the stress function, and this had the effect of turning the equilibrium equation590

into an expression solvable in closed form. So in spite of the fact that the analysis591

was ostensibly nonlinear, those works ended up dealing with a weak nonlinear pertur-592

bation from a linear plane-stress elastic state. By contrast, the situation present in593

our work is exactly the opposite. Here our perturbations take place relatively remote594

from the original flat state of the circular plate; exactly how remote is something595

that is controlled by the nonlinear basic state. This has significant ramifications for596

the subsequent asymptotic analysis as the nature of basic state is one of the critical597

elements in the implementation of our singular perturbation strategies.598

It is important to appreciate some of the inherent limitations of our results. We599

have been exclusively focused on the onset of wrinkling which is acknowledged as600

being very awkward to observe in the laboratory. While there are numerous valid601

reasons for understanding onset (or near-threshold phenomena [20]), from the practi-602

cal standpoint wrinkles well into the post-buckling regime are much easier to produce.603

In the far-post-buckling situation traditional simplified theories have been developed604

based on tension field theory [21], [22]. The approach taken by tension-field theory is605

in marked contrast to the bifurcation technique adopted here. Tension-field theory in606

some sense smears out the individual wrinkles and seeks to trace the evolution of the607

boundary separating the winkled and un-wrinkled areas. As further evidence that the608

post-buckling regime can behave very differently to the onset problem, we note recent609

results that suggest how spatially varying wavenumbers can be dramatically affected610

by increasing the load; see Paulsen et al. [23] and Taffetani & Vella [24], to name just611

This manuscript is for review purposes only.



20 CIPRIAN D. COMAN AND ANDREW P. BASSOM

two studies of these effects.612

It is helpful to note that our results need to be considered carefully if general-613

isations to other geometries are contemplated. An obvious question is to ask how614

our work may be applied to annular plates. In our present study the existence of615

the edge instability is contingent upon the presence of compressive stresses near the616

circumference which is guaranteed if the outer edge of the plate is weakly clamped617

or pinned. If there is also uniform stretching applied along the outer circumference618

then one has a handle on the extent of the region of compressive stresses and this is619

the role played by our parameter µ. For an annular plate with a traction-free inner620

boundary, weakly clamped along the outer rim, and subjected to uniform stretching621

along that edge there will be no compressive stresses in the annulus according to the622

Lamé solution. If transverse pressure is also applied then the region of compressive623

stresses will be situated near the outer rim and this will be an entirely nonlinear phe-624

nomenon. Haughton & McKay [25] have considered the plane-stress problem for an625

annular membrane in the case of a nonlinear Varga material and with several types626

of boundary conditions. The principal stresses were found to be always tensile if the627

inner boundary is stress free.628

Our problem here has the feature that the loading intimately ties together the629

basic state with the infinitesimal wrinkle pattern. The usual approach taken in these630

types of problems is to determine the underlying basic state and then adjust the load-631

ing, which plays the role of an eigenvalue, so that non-trivial modes are possible. Here632

the situation is somewhat different. The value of λ plays a pivotal role in the form of633

the basic state so that both this quantity and the perturbation structure really need634

to be developed in tandem. This is the feature that suggested it would be advanta-635

geous to view λ as given and then calculate the associated wrinkle wavenumber. This636

strategy has enabled us to monitor the stability characteristics of the system as the637

in-plane loading varies from completely unstretched right through to a taut geometry.638

Whilst we have been able to implement similar techniques in related situations, we639

believe this is first example where it has proved possible to track the effect of a varying640

physical parameter over such an extended regime. It would be of considerable inter-641

est to know whether the problem we have here is somewhat special in that respect or642

whether the approach has more general applicability.643

The referees are thanked for their numerous comments which led to improvements644

in the paper.645
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SUPPLEMENTARY MATERIALS: WRINKLING STRUCTURES AT
THE RIM OF AN INITIALLY STRETCHED CIRCULAR THIN

PLATE SUBJECTED TO TRANSVERSE PRESSURE∗

CIPRIAN D. COMAN† AND ANDREW P. BASSOM‡

SM1. Background. For easy reference we start by listing below the main equa-
tions from [SM1]. The basic state is described by the main fields Θ ≡ Θ(ρ) and
Φ ≡ Φ(ρ), which satisfy the nonlinear equations

(SM1)
d2Θ

dρ2
+

1

ρ

dΘ

dρ
− Θ

ρ2
= λρ+

ΘΦ

ρ
and

d2Φ

dρ2
+

1

ρ

dΦ

dρ
− Φ

ρ2
= −Θ2

2ρ
,

subject to the constraints

Θ(1) = 0 , Φ(1) = µ2 ,(SM2a)

Θ(0) = 0 , Φ(0) = 0 .(SM2b)

The incremental radial amplitudes (W,Ψ) satisfy two coupled linear bifurcation equa-
tions,

(SM3) L11[W ] + L12[Ψ] = 0 and L21[W ] + L22[Ψ] = 0 ,

where

L11 ≡ [L(m)
0 ]2 − 1

ρ

d

dρ

(
Φ
d

dρ

)
+
dΦ

dρ

(
m

ρ

)2

, L22 ≡ [L(m)
0 ]2 ,(SM4a)

L12 = −L21 ≡ −
1

ρ

d

dρ

(
Θ
d

dρ

)
+
dΘ

dρ

(
m

ρ

)2

, L(k)
0 ≡ 1

ρ

d

dρ

(
ρ
d

dρ

)
− k2

ρ2
.

(SM4b)

The corresponding boundary conditions correspond to a weakly clamped plate and
assume the form

(SM5) W =
dW

dρ
= Ψ =

dΨ

dρ
= 0 , for ρ ∈ {0, 1} .

SM2. Basic state. Let us recall the main scalings from §6 in [SM1],

(SM6) µ = ∆2µ̃ , µ̃ = O(1) ,

and m2 = ∆3M̃ , for some M̃ = O(1); also, our loading can be expressed as

(SM7) λ = K0µ̃
3∆6 + λ̃1∆5 + λ̃2∆4 + . . . ,

for some λ̃j = O(1) (j = 1, 2, . . . ). Our main goal is to find λ̃1 and λ̃2.
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A little more than a simple exercise in elementary algebra indicates that away
from the rim of the plate (ρ = 1) our basic-state fields must be expanded acording to

Φ = ∆4Φ0 + ∆3Φ1 + ∆2Φ2 + . . . ,(SM8a)

Θ = ∆2Θ0 + ∆Θ1 + Θ2 + . . . ,(SM8b)

where the behaviours of the unknown coefficient functions Θj ≡ Θj(ρ) and Φj ≡ Φj(ρ)
(j = 0, 1, 2, . . . ) can be found as explained below.

Substituting (SM8) in (SM1a) leads to the algebraic relations

−K0µ̃
3ρ2 = Θ0Φ0 ,(SM9a)

− λ̃1ρ2 = Θ0Φ1 + Θ1Φ0 ,(SM9b)

− λ̃2ρ2 = Θ0Φ2 + Θ1Φ1 + Θ2Φ0 ,(SM9c)

while the other base equation, (SM1b), yields a sequence of differential equations

L(1)
0 [Φ0] = −Θ2

0

2ρ
,(SM10a)

L(1)
0 [Φ1] = −Θ0Θ1

ρ
,(SM10b)

L(1)
0 [Φ2] = −Θ2

1 + 2Θ0Θ2

2ρ
.(SM10c)

SM2.1. Zeroth order. Eliminating Θ0 between (SM9a) and (SM10a), and fur-
ther putting Φ0 =: µ̃2φ0, gives that

(SM11) φ′′0 +
1

ρ
φ′0 −

1

ρ2
φ0 = −K

2
0ρ

3

2φ20
, φ0(0) = 0 , φ0(1) = 1 , φ′0(1) = 0 .

We recall that the base condition Φ = µ2 on ρ = 1 leads to the middle of the above
boundary conditions, while the vanishing of the derivative at the rim was provoked
by the outcome of stage II. By solving numerically the eigenvalue problem (SM11) we
find

(SM12) K0 ' 3.212 .

We are going to need the form of the basic state inside the rim zone (i.e., the
wrinkling layer), where ρ = 1− (X/∆) with X = O(1). To this end we need to note
that φ′0(1) = 0 (fixed), φ′′0(1) = 1−(K2

0/2) (using the equation) and φ′′′0 (1) = −(3+K2
0 )

(differentiating the equation). Put together these results tell us that, where X = O(1),
we have

(SM13) Φ0 = µ̃2

[
1 +

1

4
(2−K2

0 )

(
X

∆

)2

+
1

6
(3 +K2

0 )

(
X

∆

)3

+ . . .

]
.
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SM2.2. First order. At the next order, eliminating the Θ0 and Θ1 from the
base equations (SM9b) and (SM10b) gives the equation for Φ1. By setting Φ1 =: µ̃2φ1
we obtain

(SM14) φ′′1 +
1

ρ
φ′1 −

1

ρ2
φ1 −

K2
0ρ

3

φ30
φ1 = −K0λ̃1ρ

3

µ̃3φ20
, φ1(0) = 0 , φ1(1) = 0 .

Again, we need the Taylor series of φ1 where X = O(1). If we define the auxiliary
problem

(SM15) φ̃′′1 +
1

ρ
φ̃′1 −

1

ρ2
φ̃1 −

K2
0ρ

3

φ30
φ̃1 =

K0ρ
3

φ20
, φ̃1(0) = 0, φ̃1(1) = 0 ,

then this is well-defined and with no parameters, as K0 is already known. Standard
numerical methods help us to identify φ̃′1(1) =: K1, namely,

(SM16) K1 ' 0.5179 .

Setting ρ→ 1 in the differential equation (SM15) also tells us that φ̃′′1(1) = K0 −K1.

Thus, the Taylor expansion of φ̃1 as ρ→ 1 can be expressed in the form

φ̃1 → K1

(
−X

∆

)
+

1

2
(K0 −K1)

(
X

∆

)2

+ . . . ,

so that

(SM17) Φ1 = − λ̃1
µ̃

[
K1

(
−X

∆

)
+

1

2
(K0 −K1)

(
X

∆

)2

+ . . .

]
.

SM2.3. Second order. If we repeat the above procedures on (SM9c) and
(SM10c) we find that, if Φ2 =: µ̃2φ2, then φ2 satisfies

φ′′2 +
1

ρ
φ′2 −

1

ρ2
φ2 −

K2
0ρ

3

φ30
φ2 = −K0ρ

3λ̃2
µ̃3φ20

− λ̃21ρ3
2µ̃6φ20

− 3K2
0ρ

3λ̃21φ̃
2
1

2µ̃6φ40
− 2λ̃21K0ρ

3φ̃1
µ̃6φ30

,

and restoring the original variables gives
(SM18)

Φ′′2+
1

ρ
Φ′2−

1

ρ2
Φ2−

K2
0ρ

3

φ30
Φ2 = − λ̃2

µ̃

(
ρ3K0

φ20

)
+
λ̃21
µ̃4

[
− ρ3

2φ40
(φ0 +K0φ̃1)(φ0 + 3K0φ̃1)

]
.

This must be solved subject to the homogeneous boundary conditions Φ2(0) = Φ2(1) =
0.

We can take advantage of the linearity of (SM18) and use the principle of super-
position to solve it. The particular form of its right-hand side suggests introducing
the auxiliary problems

(SM19) Φ′′2a +
1

ρ
Φ′2a −

1

ρ2
Φ2a −

K2
0ρ

3

φ30
Φ2a =

ρ3K0

φ20
, Φ2a(0) = Φ2a(1) = 0 ,

and
(SM20)

Φ′′2b+
1

ρ
Φ′2b−

1

ρ2
Φ2b−

K2
0ρ

3

φ30
Φ2b =

ρ3

2φ40
(φ0+K0φ̃1)(φ0+3K0φ̃1) , Φ2b(0) = Φ2b(1) = 0 .
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Note that Φ2 = Φ2a + Φ2b and we have already dealt with (SM19) in §SM2.2. Direct
numerical integration of (SM20) immediately allows us to find Φ′2b(1) =: K2, namely,

(SM21) K2 ' 0.0389 .

Putting this together suggests that as ρ→ 1 so

(SM22) Φ2 =

(
K1

λ̃2
µ̃

+K2
λ̃21
µ̃4

)(
X

∆

)
+ . . . .

If we then combine the results (SM13), (SM17) and (SM22), we conclude that, where
X = O(1), the base-state variable Φ assumes the behaviour

(SM23) Φ = ∆4µ̃2 + ∆2

[
1

4
(2−K2

0 )µ̃2X2 +
λ̃1K1

µ̃
X

]

+ ∆

[
1

6
(3 +K2

0 )µ̃2X3 +
λ̃1(K1 −K0)

2µ̃
X2 +

(
K1

λ̃2
µ̃

+K2
λ̃21
µ̃4

)
X

]
+O(1) .

For simplicity, we shall define a sequence of constants Aij (i, j ∈ {1, 2, 3}) so that
this behaviour can be expressed more succinctly as

(SM24) Φ = µ̃2∆4 +
[
A22X

2 +A21X
]

∆2 +
[
A13X

3 +A12X
2 +A11X

]
∆ +O(1) .

SM2.4. The bifurcation equation. We can use the information contained in
(SM24) to deduce that for a wrinkle structure

(SM25) W = W̃0 + ∆−1W̃1 + . . . and Ψ = ∆−1Ψ̃0 + ∆−2Ψ̃1 + . . . ,

for some Wj , Ψj (unknown at this stage). We note that at leading order in (SM3b)
we just get

M̃Ψ̃0 + 2K0µ̃
3W̃0 = 0 ;

thus, the Ψj-functions are quite passive and respond to what the Wj-components need
to do. At zeroth orders in the other equation (O(∆6)) we find that

(SM26) L#[W̃0] ≡ d2W̃0

dX2
− [αX − β] W̃0 = 0 ,

where

(SM27) α := −2A22M̃

µ̃2
and β :=

(A21 − M̃)M̃

µ̃2
.

The solution of this equation is

W̃0 ∝ Ai (α1/3(X − β/α)) ,

which vanishes as X → 0 if −β/α2/3 = −ζ0, where ζ0 ' 2.331. Making use of (SM27)
this simplifies to

(SM28) λ̃1K1 = µ̃M̃ + 2.331

(
1

2
K2

0 − 1

)2/3

µ̃5/3M̃−1/3 ,

which tells us that λ̃1 = λ̃1(M̃) has the property that λ̃1 → +∞ as either M̃ →∞ or

M̃ → 0+. Clearly, this indicates that the curve λ̃1 vs. M̃ has a minimum, (M̃c, λ̃1c)
(say), and simple numerical calculations yield

(SM29) M̃c ' 1.6877 and λ̃1c ' 13.0346 .
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SM2.5. The higher-order correction term. At O(∆5) in (SM3a) we obtain

(SM30) −Xµ̃2 d
2W̃0

dX2
− µ̃2 d

2W̃1

dX2
− 2M̃

d2W̃0

dX2
+ 2M̃X(M̃ − 2A22X −A21)W̃0

+ M̃(2M̃X − 3A13X
2 − 2A12X −A11)W̃0 + M̃(M̃ − 2A22X −A21)W̃1 = 0 .

If we recall the definitions of α and β from (SM27) and work on the right-hand side

of the above equation by using the governing equation for W̃0, we can re-cast (SM30)
in the simplified form

(SM31) L#[W̃1] = X
d2W̃0

dX2
− 2M̃

µ̃2

d2W̃0

dX2
+
M̃

µ̃2
(2M̃X− 3A13X

2− 2A12X−A11)W̃0 .

We only really need to work out how W̃1 behaves as X → 0. However, before we can
do that it is necessary to simplify further the right-hand side of (SM31). To this end,

let us start by noting that equation (SM26) tells us that XW̃0 = (W̃ ′′0 + βW̃0)/α.

Thus, reducing the X2W̃0 by replacing one XW̃0 in this way gives

(SM32) L#[W̃1] =

(
1− 3M̃A13

µ̃2α

)
X
d2W̃0

dX2
− 2M̃

µ̃2

d2W̃0

dX2

+

[
2M̃(M̃ −A12)

µ̃2
− 3βM̃A13

µ̃2α

]
XW̃0 −

M̃A11

µ̃2
W̃0 .

By differentiatingXW̃0 = (W̃ ′′0 +βW̃0)/α we have thatXW̃ ′0 = ((W̃ ′′′0 +βW̃ ′0)/α)−W̃0

and XW̃ ′′0 = ((W̃ ′′′′0 +βW̃ ′′0 )/α)−2W̃ ′0. Thus, the right-hand side of (SM32) becomes

(SM33) RHS :=

(
1− 3M̃A13

µ̃2α

)[
1

α
(W̃ ′′′′0 + βW̃ ′′0 )− 2W ′0

]
− 2M̃

µ̃2

d2W̃0

dX2

+

[
2M̃(M̃ −A12)

µ̃2
− 3βM̃A13

µ̃2α

]
1

α
(W̃ ′′0 + βW̃0)− M̃A11

µ̃2
W̃0 .

Now the RHS is expressed as a linear multiple of various derivatives of W̃0. To write
down the solution of L#[W̃1] = RHS, we need the following observation. If we denote
by g(n) the nth-order derivative of the function g ≡ g(X) (n ∈ N), then the particular
integral of the equation in f ≡ f(X),

L#[f ] = g(n) ,

is given by

f = fpart(X) :=
1

(n+ 1)α
g(n+1)(X) .
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Given these obsevations we can now write down the solution of the full W̃1 equation.
Putting everything together, we finally get

(SM34) W̃1 =

(
1− 3M̃A13

µ̃2α

)[
1

α2

(
1

5
W̃

(5)
0 +

1

3
βW̃ ′′′0

)
− 1

α
W̃ ′′0

]
− 2M̃

µ̃2

W̃ ′′′0
3α

+

[
2M̃(M̃ −A12)

µ̃2
− 3βM̃A13

µ̃2α

]
1

α2

(
1

3
W̃ ′′′0 + βW̃ ′0

)
− M̃A11

µ̃2α
W̃ ′0 .

Let us recall that we are solely interested in what happens to (SM34) as X → 0. We

already know that W̃0(0) = 0, and we set W̃ ′0(0) =: ω0. In light of this notation the
governing equation (SM26) and its differential consequences imply that

W̃ ′′0 (0) = 0 , W̃ ′′′0 (0) = −βω0 , W̃
(4)
0 (0) = 2αω0 , W̃

(5)
0 (0) = β2ω0 .

Together with (SM34) this then leads us to
(SM35)

W̃1 →

[
− 2β2

15α2
− 8β2A13M̃

5µ̃2α3
+

2M̃β

3αµ̃2
+

4M̃β(M̃ −A12)

3α2µ̃2
− M̃A11

αµ̃2

]
ω0 , as X → 0 .

SM3. The bending layer. To tie things down we still need to consider the rim
bending layer where all the boundary conditions on the perturbation are imposed. It
can be shown by easy balances that the depth of the inner zone is O(∆−2), so we are
led to introduce a new rescaled variable ζ = O(1) defined by

ρ = 1− ζ

∆2
.

We are somewhat fortunate as this happens to be the rim layer for the base state as
well. This layer only operates on the Θ component and that is just too small to come
into play (so the driving differential operator in the bending layer will have constant
coefficients). It turns out that the leading-order equation for the W -component of the
wrinkle is just

d4Wbend

dζ4
− µ2 d

2Wbend

dζ2
= 0 .

We need the solution of this differential equation to match onto the linearly decaying
W̃0 as ζ → ∞, and to satisfy the rim conditions that Wbend and its first derivative
vanish on ζ = 0; these constraints leave us with

Wbend = ζ +
1

µ̃
exp(−µ̃ζ)− 1

µ̃
.

So this tells us that Wbend grows like ζ, while the constant part of its large-ζ behaviour
is simply −1/µ̃. We can now take advantage of these observations in conjunction with
(SM35) to deduce that

(SM36) − 2β2

15α2
− 8β2A13M̃

5µ̃2α3
+

2M̃β

3αµ̃2
+

4M̃β(M̃ −A12)

3α2µ̃2
− M̃A11

αµ̃2
= − 1

µ̃
,

whence, by re-arrangement,

(SM37) λ̃2 =
µ̃

K1

[
1

M̃

(
µ̃α− 2β2µ̃2

15α

)
− 8A13β

2

5α2
+

2β

3
+

4β(M̃ −A12)

3α
− λ̃21K2

µ̃4

]
.
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Since by our original assumption (SM6) µ̃ = O(1), we are free to set µ̃ = 1 in
(SM37). Substituting also the numerical values (SM12), (SM16), (SM21) and (SM29)
we eventually get

(SM38) λ̃2 ' 54.8417 .
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