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Abstract 

 

This thesis consists of three closely related studies investigating individual 

decision-making under risk and uncertainty, with a focus on decision weighting. 

Chapter 1 provides an overview of the common themes and theoretical framework 

for this research.  

Chapter 2 reports the development of a simple method to measure the 

probability weighting function of Prospect Theory (Kahneman & Tversky, 1979) and 

rank-dependent utility theories. Our method, called the Neo-Lite method, is based on 

Abdellaoui et al. (2011)’s source method and the Neo-additive weighting function 

(Chateauneuf et al., 2007). It can be used for both risk (known probabilities) and for 

ambiguity (unknown probabilities). The novelty of our method lies in how data of 

decision weights are used to obtain the measurement of the whole function. 

Compared to the more widely used parametric fitting, our method is simpler, as it 

minimizes the number of decision weights required and does not rely on the 

elicitation of subjective probabilities (for ambiguity). An experiment of choice under 

risk demonstrates the simplicity and tractability of our method. The predictive 

performance of probability weighting functions measured using our method is shown 

to be almost equally good to that measured using the standard parametric fitting 

method.  

Chapter 3 presents a theory of choice under risk primarily to explain why 

individual probability weighting functions are often found to be non-linear and 

inverse-S shaped. Our rationale for non-linear probability weighting is based on a 

psychologically grounded feature of choice making, a feature we call attention-based 

state weighting. We show that, under well-defined circumstances, our theory can be 

equivalent to Cumulative Prospect Theory (Tversky & Kahneman, 1992) with a 

probability weighting function depending on not only ranks but also sizes of 

outcomes of risky prospects. This allows our theory to accommodate evidence about 

probability weighting that cannot be explained by Prospect Theory or Cumulative 



  

iii 
 

Prospect Theory.  

The evidence just mentioned refers to recent findings that people have 

stake-sensitive probability weighting functions. Chapter 4 reports an experiment that 

further explores the idea of stake-sensitive decision weighting. In addition, the 

experiment also tests hypotheses derived from the theory presented Chapter 3. In this 

chapter, we use a more general concept, decision weights, to refer to probability 

weights that can be stake-sensitive. Particularly we investigate whether and how 

decision weights are affected by two main properties of a lottery: outcome level (or 

expected payoff level) and outcome spacing (or the ratio of the best outcome of the 

lottery to its worst outcome). We elicit subjects’ Certainty-Equivalents for 

carefully-designed sets of lotteries and estimate their decision weights and utility 

curvatures using a model slightly more general than Cumulative Prospect Theory. 

Our main finding is that only outcome spacing has significant and systematic 

influence on decision weighting at the aggregate level, and that both outcome level 

and outcome spacing have systematic and significant effects at individual levels. 

This finding, together with the theory of Chapter 3, challenges the common 

understanding of probability weighting. 

Chapter 5 concludes the thesis by summarizing all findings in previous chapters, 

discussing the implications, and pointing to directions for future research. 
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Chapter 1: Introduction                 
 

 

 

Theories of individual decision-making play a fundamental role in economic theory. 

Most economically relevant decisions have to be made in the presence of uncertainty. 

Since Knight (1921), situations of uncertainty are normally thought to contain two 

different scenarios: decision under risk where probabilities of uncertain events are 

objectively given and known, and decision under ambiguity where the probabilities 

are unknown1. This thesis is a collection of three studies (Chapters 2, 3 and 4) 

reporting research that contributes mainly to the area of decision-making under risk. 

While each of the three chapters is self-contained and can be read independently 

from the others, there is a common topic for all three studies: probability weighting 

and decision weighting2. 

The two concepts become widely known since the seminal paper of Prospect 

Theory (PT hereafter, Kahneman & Tversky, 1979), which models how people make 

choices between lotteries with known probabilities. PT has been one of the most 

important theories of decision making under risk in the past decades and has been 

applied in a wide variety of contexts (Wakker 2010). It generalizes the classical 

Expected Utility Theory (EUT hereafter, Von Neumann & Morgenstern, 1945) by 

introducing probability weighting, reference-dependent evaluation of outcomes, and 

loss aversion, and provides systematic explanations for the major deviations from 

EUT such as the Allais paradox (Allais, 1953), the certainty effect, and framing 

effects (Kahneman and Tversky, 1979, 1985).  

In PT, lotteries are modeled as risky prospects which are often denoted as 

(𝑝1: 𝑥1, … , 𝑝𝑛: 𝑥𝑛), that is, yielding outcome 𝑥𝑖 ∈ ℝ with probability 𝑝𝑖, where i =1, 
                                                             
1 Knight (1921) used the term ‘uncertainty’ to describe the latter case. It is in later literature what Knight called 

uncertainty is commonly labeled as ambiguity.  
2 Since the subtle difference between these two concepts is important for this thesis, we will explain this 

difference carefully later in this chapter. 
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2, …, n. Preferences over the prospects are then represented by the function  

 

𝑉(𝑝1: 𝑥1, … , 𝑝𝑛: 𝑥𝑛) = ∑ 𝑤(𝑝𝑖)𝑣(𝑥𝑖)

𝑛

𝑖=1

 

 

where 𝑤: [0,1] → [0,1]  is called the probability weighting function which 

transforms objective probabilities into probability weights, and 𝑣: ℝ → ℝ is a utility 

(or value) function that measures the decision maker’s subjective value of outcomes3. 

Empirical studies of the probability weighting function have been numerous (e.g. 

Tversky & Kahneman 1992, Wu & Gonzalez 1996, Bleichrodt & Pinto 2000) and 

have typically found it to be increasing, non-linear and inverse-S shaped, that is, 

𝑤(𝑝) > 𝑝 for small probabilities and 𝑤(𝑝) < 𝑝 for moderate or larger probabilities. 

This non-linear probability weighting is often interpreted as reflecting an intrinsic 

psychological element of people’s diminishing sensitivity towards less-extreme 

probabilities (e.g. Kahneman & Tversky 1979, Tversky & Wakker 1995, Prelec 

1998).  

Since EUT, the value of a lottery can be seen as a weighted average of the 

values of its outcomes. The weights attached to values of outcomes are often called 

decision weights. In EUT, decision weights are objective probabilities, whereas in PT, 

decision weights are probability weights, which can be different from objective 

probabilities. The latter implies that, for PT, decision weights are solely determined 

by the probability weighting function, which captures a decision maker’s 

misperceptions of likelihoods or her intrinsic attitude towards probabilities. As 

recognized by Tversky & Kahneman (1992), this may be too restrictive to capture the 

effect of important contextual factors on decision weighting. In addition, another 

feature of the PT model that has been a subject of criticism is that it allows violations 

of ‘stochastic dominance’ (Kahneman & Tversky 1979, pp. 283-284), which requires 

that a shift of probability mass from bad outcomes to better outcomes leads to an 

                                                             
3 In PT, an outcome can be either a gain or a loss based on the decision maker’s reference point, and the value 

function v(.) can be different for gains and for losses. Although PT does not restrict outcomes to be money, this 

thesis considers only monetary outcomes. 
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improved prospect (Fennema & Wakker 1997). 

These theoretical problems have been dealt with in a new version of PT, called 

Cumulative Prospect Theory (CPT henceforth, Tversky and Kahneman 1992)4. In 

particular, CPT satisfies stochastic dominance and incorporates the rank-dependence 

feature of decision weighting that was introduced by Quiggin (1982) and Schmeidler 

(1989)5. As a result, decision weights in CPT depend not only on probability weights, 

but also on ranks of the corresponding outcomes among all possible outcomes of the 

lottery6. For the outcome domain of gains, the preference function of CPT can be 

written as 

 

𝑉(𝑝1: 𝑥1, … , 𝑝𝑛: 𝑥𝑛) = ∑ 𝑑𝑖𝑣(𝑥𝑖)

𝑛

𝑖=1

 

 

where 𝑥1 > ⋯ > 𝑥𝑛 and the decision weights 𝑑 are defined by: 

 

𝑑𝑖 = 𝑤(𝑝𝑖), for i =1 

𝑑𝑖 = 𝑤(𝑝1 + ⋯ + 𝑝𝑖) − 𝑤(𝑝1 + ⋯ + 𝑝𝑖−1), for 2 ≤ 𝑖 ≤ 𝑛 

 

where w is the probability weighting function as in PT that captures people’s intrinsic 

attitude towards probabilities. CPT generalizes EUT and PT, because EUT is a 

special case of CPT when 𝑑𝑖 = 𝑝𝑖 and the characterization of PT that is captured by 

the formulation above becomes a special case of CPT when 𝑑𝑖 = 𝑤(𝑝𝑖). Hence, 

decision weight is a more general concept than probability weight, in the sense that 

the former refers to whatever is attached to the value of lottery outcomes and can be 

context-dependent7, whereas the latter is often thought as the part of decision 

weighting that reflects context-independent attitude towards objective probabilities 

                                                             
4 Models of similar forms were introduced by Starmer & Sugden (1989) and Luce & Fishburn (1991). 
5 Another improvement is that CPT also extends to the analysis of both decision under risk and decision under 

ambiguity. For a survey of non-expected utility, see Slovic et al. (1988), Camerer (1992), and Starmer (2000). 
6 The plausibility of the cumulative form of rank-dependence and the intuition of rank-dependent decision 

weights have been explicitly discussed in Wakker (1989) and Diecidue & Wakker (2001) respectively.  
7 Context-dependence here, and for the rest of the thesis, refers to the dependence on all sorts of elements of the 

decision context, such as lottery outcomes, decision tasks, source of uncertainty, etc., except objective 

probabilities. Context-dependent decision weights are weights that does not only depend on objective 

probabilities of the outcomes, but also on contextual elements.  
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due to psychological reasons such as human cognitive limitations8.  

While allowing decision weights to depend on the rank of lottery outcomes may 

increase the descriptive power of CPT, it certainly complicates the empirical 

measurement of the model (Abdellaoui 2000). However, since the way decision 

weights depend on probability weights are pre-specified in CPT, the only component 

of decision weights to be measured is the probability weighting function, which is 

thought to be a stable personal component of individual decision making under risk. 

And given that, in CPT, the decision weight of the best outcome of a lottery is still 

the same as its probability weight, the probability weighting function could be 

mapped with measurements of the decision weights for the best lottery outcome as 

the probability of that outcome varies from 0 to 1. This lays the theoretical ground 

for measuring the probability weighting function through the elicitation of the 

decision weights of the best lottery outcomes (e.g. Wu & Gonzalez 1996, Abdellaoui 

2000, Abdellaoui et al. 2011).  

The first study of this thesis has two goals. First we present a method to 

measure the probability weighting function. As CPT gains its prominence among 

decision theories, empirical studies, including those measuring CPT functions, 

becomes increasingly important. For example, the application of CPT to many 

aspects of the real world needs to be based on proper measurements of the 

probability weighting function (e.g. Bleichrodt et al. 1999, Bleichrodt & Pinto 2000). 

Since CPT provides a model for both the case of choice under risk and the case of 

ambiguity, it would be desirable to have a simple and tractable method which can 

measure the probability weighting function in both cases9. The method we introduce 

is called the Neo-Lite method. Unlike most existing methods, our method does not 

require data fitting techniques. Nor does it require the elicitation of subjective 

probabilities for ambiguity, which can be tricky because often assumptions about 

how probabilities are assigned to ambiguous events are needed (see e.g. Ellsberg, 

                                                             
8 See e.g., Edwards (1954, 1962), Tversky & Kahneman (1983), Brandstätter et al. (2002), Trepel et al. (2005). 
9 Many methods from the literature achieve this, e.g. Wakker & Deneffe (1996), Gonzalez & Wu (1999), 

Abdellaoui (2000), Van de Kuilen & Wakker (2011). Chapter 2 provides a more detailed review of existing 

methods. 
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1961).  

The second purpose of the first study is to test experimentally the predictive 

power of probability weighting functions measured with different methods and with 

different functional forms. Specifically, we want to compare our Neo-Lite method 

with the standard parametric fitting method, and to compare the non-linear class of 

weighting functions (e.g. Goldstein & Einhorn 1987, Prelec 1998) with the linear 

class (Chateauneuf et al. 2007). We elicited individuals’ Certainty-Equivalents (CE 

henceforth) of a set of lotteries as well as their choices between pairs of lotteries. 

Using the CEs we measured probability weighting functions using the two methods 

and various functional forms for each individual. The probability weighting functions 

measured were then used to make predictions about the choices. Our results show 

that the Neo-Lite method works as a good substitute for parametric fitting with the 

Neo-additive weighting function (Chateauneuf et al. 2007), but has its limitations as 

a substitute for parametric fitting with a nonlinear probability weighting function. In 

terms of predictive performance, we found that the non-linear probability weighting 

functions proposed by Goldstein & Einhorn (1987) and Prelec’s (1998) slightly 

outperform the Neo-additive function.  

Another important finding of the first study is that the probability weighting 

function measured using CE data is dramatically different from that measured using 

binary choice data. Although this is perhaps unsurprising in light of the well-known 

phenomenon of ‘preference reversal’ (e.g. Lichtenstein & Slovic 1971, Grether & 

Plott 1979, Seidl 2002, Cubitt et al. 2004), it reinforces the idea that, for theories of 

choice under risk that employ a decision weighting function and a value function, 

allowing decision weights to depend on non-probabilistic factors10 can considerably 

improve the descriptive power of the theories. This idea deeply motivated the second 

study of this thesis. 

Our second and third studies start to question the CPT model, particularly its 

modelling of decision weights. We are also motivated by the series of findings that 

                                                             
10 Here probabilistic factors basically refer to probabilities and probability weights, and in the case of preference 

reversal, the key non-probabilistic factor is the type of task used to elicit preferences.  
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decision weights are affected by lottery outcomes, particularly whether outcomes are 

perceived as gains or losses (e.g. Tversky & Kahneman 1992, Abdellaoui et al. 2005) 

and the level of outcomes (Etchart-Vincent 2004, 2009; Fehr-Duda et al. 2010). In 

our second study (Chapter 3), a theory of decision-making under risk is presented, 

primarily to account for the dependence of decision weights on lottery outcomes and 

the preference reversal phenomenon (or the dependence of decision weights on the 

type of tasks used to elicit preferences). It is natural to think of a more complicated 

decision weight function for CPT. However, we chose an alternative approach. Our 

theory is based on the concept of the Savage-act (Savage, 1972), the framework of 

which is fundamentally different from that of PT or CPT. An important feature of the 

latter two is that lotteries, treated as prospects, are evaluated independently and the 

evaluations determine the results of choice-making. In contrast, Savage’s framework 

provides a natural way to build in important factors such as cross-act comparisons, 

that is, allowing the value of a lottery to depend on the alternatives to choose 

between (e.g. Loomes & Sugden 1982, 1986; Bordalo et al. 2012).  

The key outputs of the second study are the followings. First, building on a 

psychological intuition similar to Bordalo et al. (2012), our theory implies CPT with 

an inverse-S shaped probability weighting function (or the decision weight attached 

to the best outcome of a lottery as a function of the probability of the best outcome). 

In other words, we show that the inverse-S shape of the typically found probability 

weighting function can come from a decision-making mechanism that does not 

pre-suppose any form of probability weighting. Secondly, the implied probability 

weighting function also depends on lottery outcomes and can be different for gains 

and losses. We then show that this can accommodate the empirical findings 

mentioned earlier regarding the outcome-dependence of decision weights. Thirdly, 

our theory can imply substantially different probability weighting functions (in terms 

of their shapes) for money valuation tasks and for binary choice tasks under risk, thus 

can potentially explain the ‘preference reversal’ phenomenon. We provide intuitive 

analysis of this in Chapter 3 and analytical support for this in Appendix 3.4. In 

general, our theory can do what CPT could do with a probability weighting function 
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which depends on multiple non-probabilistic factors, but is more parsimonious and 

intuitive.  

In Chapter 4, we explore one of the key implications of our theory by studying 

experimentally the effect of lottery outcomes on decision weighting. As mentioned 

by Tversky & Kahneman (1992), both the level of outcomes and the spacing of them 

can have an effect on decision weights. For two-outcome lotteries, the latter basically 

refers to the difference between the best and worst outcomes of the lottery. There 

have not been many studies that investigate explicitly the effect of outcome level or 

outcome spacing or both on decision weights, though some evidence on the existence 

of both types of effect can be found in Camerer (1992). More recently, 

Etchart-Vincent (2004, 2009) studied this question for the domain of losses and 

found that, compared to small-loss gambles, large-loss gambles are associated with 

smaller decision weights of the worst outcome. Another study by Fehr-Duda et al. 

(2010) found that in the domain of gains, decision weights of the best lottery 

outcome decrease as the general stake level of the lotteries increase, and that in the 

domain of losses, stake level has little effect on decision weighting. On the one hand, 

our third study, which focuses on the effects of outcome level as well as outcome 

spacing, fills a gap in the literature by studying explicitly the two effects. On the 

other hand, compared to Etchart-Vincent (2004, 2009) and Fehr-Duda et al. (2010), 

we have a stronger experimental control to isolate the effect of outcome level from 

the effect of outcome spacing. This is important because the two factors interact with 

each other and both may affect decision weighting. Based on our intuition and on one 

of the key predictions from our theory, we hypothesize that outcome spacing has a 

significant effect on decision weighting and plays a more important role in 

determining decision weights than outcome level does.  

We elicited CEs from subjects and fitted data to a generalization of CPT with a 

focus on the change of decision weights as lottery outcome spacing and outcome 

level change. Our main results are that, in general, outcome spacing has a systematic 

and significant effect on decision weighting at both aggregate and individual levels, 

whereas outcome level only has a significant effect at individual level. For lotteries 
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with the same probability distribution over outcomes, the estimated decision weights 

of the best lottery outcome are smaller for lotteries with larger outcome spacing, and 

also smaller for lotteries with higher outcome levels. The latter is consistent with 

Fehr-Duda’s (2010) results and potentially explains finding that risk aversion 

increases as stakes are higher (e.g. Binswanger 1981, Holt & Laury 2002). These 

results also lend support to the theory presented in Chapter 3. 

  Since PT, the theoretical and empirical research of decision weighting under 

risk has attracted enormous attention from psychologists and economists. Yet, our 

knowledge of this topic may still be far from complete, because there could be other 

non-probabilistic factors to be discovered11 which systematically influence decision 

weights. The three studies (Chapter 2, 3, and 4) are mainly devoted to advancing our 

understanding of probability weighting and decision weighting for risk, and to 

providing a theoretical development as a better alternative to CPT when the 

descriptive power of the latter becomes weaker as evidence accumulates. This thesis 

ends with Chapter 5, which summarizes the key messages from the previous chapters, 

provides a more specific discussion of the contributions of our three studies, and 

points to potentially fruitful new directions for future research.  

 

 

 

 

 

 

 

 

 

 

                                                             
11 For example, decision weighs have also been found to be affected by factors such as individual demographic 

characteristics (e.g. Fehr-Duda et al. 2006; Harbaugh et al. 2002), on emotional state (e.g. Fehr et al. 2007), on 

the emotional or affective content of the payoffs (e.g. Rottenstreich and Hsee 2001), and on the sources of 

uncertainty (e.g. Kilka & Weber 2001, Abdellaoui et al. 2011). 
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Chapter 2: A Simple Method to Measure 

Probability Weighting Functions and its 

Experimental Implementation                       
 

 

 

2.1 Introduction 

 

It has been understood, since Allais (1953), that Expected Utility Theory (EUT, von 

Neumann & Morgenstern 1945) has its limitation in describing individual behaviors 

under risk. A huge body of literature has documented violations of EUT (see e.g. 

Starmer, 2000 for a survey). Among non-EU theories, Prospect Theory (PT, 

Kahneman & Tversky 1979) is one of the most important (Wakker, 2010). In PT, 

most of the violations of EUT are accommodated by a (non-linear) probability 

weighting function, which is often regarded as one of the most important theoretical 

developments of behavioral economics.  

In terms of empirical research, an extension of PT, Cumulative Prospect Theory 

(CPT, Tversky and Kahneman 1992), has gained its importance and popularity. It 

generalizes the case of decision under risk and decision under ambiguity1, and 

introduces the key feature of rank-dependent utility theories (e.g. Quiggin 1982, 

Schmeidler 1989) that decision weights do not only depend on probability weights 

but also the rank of lottery outcomes. Nevertheless the probability weighting 

function in CPT still plays a crucial role in explaining deviations from EUT, 

capturing individual risk attitudes (when the probabilities of the events are known), 

                                                             
1 Decision under risk relates to situations where known statistical probabilities are available for uncertain events. 

It has been understood since Keynes (1921) and Knight (1921) that statistical probabilities are often unknown or 

unavailable. For such cases, referred to as ambiguity, Savage (1954) proposed Subjective Expected Utility Theory 

(SEUT), where prospects are evaluated by their (subjective) probability weighted average utility. Ellsberg (1961) 

put forward a more fundamental problem: it seems that often people cannot assign probabilities, not even 

subjective ones, to random events (ambiguity). Ellsberg’s paradox puts the preference basis of SEUT into 

question. 
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subjective beliefs and ambiguity attitudes (when probabilities of the events are 

unknown). Developing tools to measure this function hence becomes important for 

both empirical research on decision under uncertainty and the application of the 

probability weighting function to real decision analysis.  

Various methods have been developed (e.g. Wakker & Deneffe, 1996; Gonzalez 

& Wu, 1999; Abdellaoui, 2000; van de Kuilen & Wakker, 2011) that can measure 

parametric-free decision weights under both risk and ambiguity. It is sometimes also 

useful to obtain measurements of parameterized probability weighting functions for 

purposes of both theoretical research and empirical study (such as predictive tests).  

This could be easy for the case of risk but tricky for ambiguity, because the latter 

normally requires the elicitation of subjective probabilities that enable the mapping 

of ambiguous events to probability weights. In many studies, measurement of the 

probability weighting function for ambiguity relied on stated subjective probabilities 

(e.g. Heath & Tversky, 1991; Fox & Tversky, 1998). Recently, the 

revealed-subjective-probability approach is more often used (e.g. Abdellaoui et al. 

2005, 2011) to avoid potential biases from stated subjective probabilities.  

This chapter first introduces a simple method, called the Neo-Lite method, to 

measure probability weighting functions of CPT, for both risk and ambiguity. More 

precisely, Neo-Lite provides a convenient way to use decision weights to obtain the 

probability weighting function. This method can be more efficient than previous 

measurement methods because it minimizes the amount of data (decision weights) 

required and greatly simplifies the processing of data. Moreover, unlike most 

existing methods, our method does not require the elicitation of subjective 

probabilities for ambiguity in the sense that the parameters of the probability 

weighting function can be obtained without any inference about the underlying 

subjective probabilities of the uncertain events.  

Since our method is based on the assumption of the Neo-additive probability 

weighting function (Chateauneuf et al., 2007), a second purpose of this study is to 

experimentally compare the predictive power of different classes of probability 

weighting functions widely used in the literature, particularly the non-linear class 
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represented by Goldstein and Einhorn (1987) and Prelec 1998), and the Neo-additive 

(or linear) class (Chateauneuf et al., 2007). For the latter, we apply both the standard 

parametric fitting method and the Neo-Lite method to measure the probability 

weighting function and to see how the two measurements predict.  

In general, we find that the Neo-Lite method works as a good substitute for 

parametric fitting with the Neo-additive weighting function, both descriptively and 

predictively. Conditional on using a linear function, our method succeeds in 

revealing a function which is essentially indistinguishable from that generated with 

parametric fitting method. To compare the predictive power of the linear and 

non-linear classes of probability weighting functions measured from our experiment, 

we conduct both out-of-sample and in-sample predictive tests. We find that the 

performances of the two classes of weighting functions are very similar in the 

out-of-sample test, but the non-linear class outperforms the linear one in the 

in-sample test. This suggests that the latter class of weighting function has its 

limitation in describing and predicting choices under risk.  

This chapter proceeds as follows. Section 2.2 briefly introduces CPT, the theory 

under which our method works. Section 2.3 provides a brief review of the existing 

measurement methods in the literature. Section 2.4 presents the Neo-Lite method. 

Experimental design and results are presented in Section 2.5. Section 2.6 concludes. 

 

 

2.2 Prospect Theory for Risk and Ambiguity 

 

In this section we introduce basic concepts, notations and the theoretical framework 

based on Tversky & Kahneman (1992) and Abdellaoui et al. (2011). For simplicity, 

we use a similar set of concepts and notations as used by Abdellaoui et al. (2011). 

Let 𝑋 ∈ ℝ be the set of outcomes and S be the state space or the set of mutually 

exclusive uncertainty events E. Let (𝐸1: 𝑥1, … , 𝐸𝑛: 𝑥𝑛) denote a prospect yielding 

outcome 𝑥𝑗 if event 𝐸𝑗 happens, with j =1, 2, …n. For the purpose of this chapter, 
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outcomes are restricted to be gains of money, although this is not necessary for the 

new method we propose. A prospect is uncertain when only one of the events 𝐸1,

𝐸2, … , 𝐸𝑛 will happen but it is unknown ex ante which one will happen. Since in our 

measurements we only need two-outcome positive prospects (𝐸: 𝑥, not 𝐸: 𝑦), we 

use the simpler notation 𝑥𝐸𝑦 for such prospects, and by this notation we assume 

that  𝑥 > 𝑦 ≥ 0. The Certainty-Equivalent (CE) of a prospect is the sure amount 

that makes the decision maker indifferent to the prospect.  

A decision theory for uncertainty specifies how the decision maker’s 

preferences over prospects are determined by a value function 𝑉. For instance, 

Expected Utility holds if a prospect (𝐸1: 𝑥1, … , 𝐸𝑛: 𝑥𝑛)  is evaluated by 𝑉 =

∑ 𝑝(𝐸𝑗)𝑛
𝑗=1 𝑣(𝑥𝑗), with v, the utility function (also called value function) of outcomes, 

continuous and strictly increasing and 𝑝(𝐸𝑗) the probability of event 𝐸𝑗 . As in 

many other empirical studies on weighting functions, we use CPT for two-outcome 

prospects, which coincides with Quiggin’s (1982) rank-dependent utility because we 

only consider positive outcomes. It holds if there exists a utility function 𝑣: ℝ → ℝ 

and an event weighting function 𝑊 such that preferences maximize  

 

𝑉(𝑥𝐸𝑦) = 𝑊(𝐸)𝑣(𝑥) + (1 − 𝑊(𝐸))𝑣(𝑦)                 (2.1) 

 

where 𝑊 assigns a number 𝑊(𝐸) between 0 and 1 to each event E, such that 

𝑊(∅)= 0, 𝑊 is 1 at the universal event, and E ⊃ F implies 𝑊(𝐸) ≥ 𝑊(𝐹). If the 

probabilities of the events are known, then the prospects are evaluated by  

 

𝑉(𝑥𝐸𝑦) = 𝑤(𝑝(𝐸))𝑣(𝑥) + (1 − 𝑤(𝑝(𝐸)))𝑣(𝑦)              (2.2) 

 

where 𝑤(. ) is a probability weighting function2 that maps [0,1] to [0,1] and is 

strictly increasing and continuous, with 𝑤(0) = 0 and 𝑤(1) = 1. 

When probabilities are unknown or unknowable (i.e. under ambiguity), we are 

                                                             
2 For clarification, we use lower case w(.) to denote probability weighting functions for known probabilities 

exclusively.  
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back to equation (2.1). This generates great empirical difficulty in defining and 

measuring the weighting function for ambiguity. Therefore, the development of the 

source method by Abdellaoui et al. (2011) is important because it provides us a tool 

to measure the weighting function 𝑊 defined on subjective probabilities. They have 

formalized the definition of source of uncertainty3 and have shown, complementary 

to Ellsberg (1961)’s finding, that whenever the source of uncertainty is uniform to 

the decision maker (i.e. all the events from that source have a uniform degree of 

ambiguity), the decision maker can be seen as having a (subjective) probability 

measure p over the event space and a function 𝑤𝑄, carrying subjective probabilities 

to decision weights, such that for any event E from source Q we have  

 

𝑊(𝐸) = 𝑤𝑄(𝑝(𝐸))                          (2.3) 

 

where Q stands for the set of sources of uncertainty4. This generalizes Prospect 

Theory for risk because risk can be a special source of uncertainty. Now equation 

(2.1) becomes 

 

𝑉(𝑥𝐸𝑦) = 𝑤𝑄(𝑝(𝐸))𝑣(𝑥) + (1 − 𝑤𝑄(𝑝(𝐸)))𝑣(𝑦)             (2.4) 

 

In what follows we consider only two-outcome lotteries and assume that individual 

preferences for uncertain binary prospects are represented by equation (2.4) unless 

otherwise specified.   

 

 

2.3 Existing Methods in the Literature 

 

There have been generally three classes of empirical methods to measure the 

probability weighting function for risk: parametric fitting, non-parametric fitting, and 

                                                             
3 According to Abdellaoui et al. (2011), a source of uncertainty concerns a group of events that is generated by a 

common mechanism of uncertainty. In their paper, sources are modeled as algebras containing the universal event 

(certain to happen), the vacuous event (certain not to happen), the complement of each of their elements, and the 

union of each pair of their elements. In this chapter, we also take sources as algebras. 
4 We use Q instead of S to denote the set of uncertainty sources because the latter is used to represent ‘State’. 
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non-parametric non-fitting5.  

 

Parametric Fitting 

 

Needless to say, parametric fitting has been a standard method being widely used in 

empirical economics, due to the development of econometrics. A substantial part of 

empirical studies on choice under risk have used parametric fitting to measure the 

probability weighting function for various research purposes (e.g. Camerer and Ho 

1994, Wu & Gonzalez 1996, Bleichrodt and Pinto 2000, Kilka & Weber 2001, 

Blavatskyy 2005, Booij et al. 2010).  

For more specific examples, Tversky and Kahneman (1992) found direct 

evidence supporting the presence of probability weighting in decision making under 

risk, using parametric fitting to measure the probability weighting function. Hey and 

Orme (1994) used parametric fitting to test different theories of choice under risk and 

found that theories of the rank-dependence family perform relatively better than 

other families. More recently, Fehr-Duda et al. (2010) studied how risk tolerance 

varies with stake sizes. They fitted the value function and probability weighting 

function of Prospect Theory (Tversky & Kahneman, 1992) and found that, for gains, 

risk aversion grows as stakes increase. A sub-class of parametric fitting, called the 

semi-parametric fitting, works by assuming a parametric form of only the objective 

function, and estimating the parameters of the objective function and the point values 

of other functions. This method was first proposed by Abdellaoui et al. (2008), and 

has been gaining popularity due to its efficiency (compared to standard parametric 

fitting).  

 

Non-Parametric Fitting 

 

Another measurement technique for probability weighting and utility functions can 

                                                             
5 The book by Peter Wakker (2010) can be a good source for introductions to many of the widely used empirical 

methods for weighting function measurement.   
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be called non-parametric fitting (e.g. Gonzalez & Wu, 1999; Abdellaoui et al., 2007, 

2011; Stott, 2006). It uses data fitting but does not commit to any parametric family. 

Instead, it takes every value of the objective function as a parameter. For example, 

Gonzalez & Wu (1999) proposed a non-parametric method for estimating the 

probability weighting function for risk and confirmed the inverse-S shaped weighting 

function with their experimental data. A similar method was also used by Stott (2006) 

to discriminate, using experimental data, among various functional forms of the 

stochastic Prospect Theory models. Although not committing to any parametric 

functional forms can be an advantage for some research purposes, this method 

normally requires a large amount of data. Abdellaoui et al. (2008) and Van de Kuilen 

& Wakker (2011) provide a more detailed introduction and discussion of 

non-parametric fitting. 

 

Non-Parametric Non-Fitting 

 

Methods that use neither parametric functional forms nor data fitting techniques 

belong to this class. Most of these methods use specifically designed choice 

questions to elicit points of interests of the objective function. For example, 

Abdellaoui (2000) developed a method that has two steps: the first step consists of 

constructing a sequence of choice questions that elicit a sequence of outcomes 

equally spaced in utility by means of the trade-off method initially proposed by 

Wakker and Deneffe (1996); the second step uses the sequence of outcomes to obtain 

a sequence of probabilities equally spaced in terms of probability weighting. 

Alternative methods that use similar techniques include, e.g., Abdellaoui and Wakker 

(2005), Blavatskyy (2006), Abdellaoui et al. (2007), and van de Kuilen and Wakker 

(2011). These methods can generally be used to measure probability weighting 

midpoints which can reveal the shape of the weighting function. For example, Wu et 

al. (2005) applied Abdellaoui (2000)’s version of the trade-off method to 

discriminate between the original version of the PT (Kahneman & Tversky, 1979) 

and the CPT (Tversky & Kahneman, 1992) and found that the PT performs better. 
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For empirical studies on choice under ambiguity, similar methods of these 

classes have been used to measure the (subjective) probability weighting function, 

but often in more complex ways due to the need for the elicitation of subjective 

probabilities. For example, Hey et al. (2010) and Kothiyal et al. (2014) both tested 

the predictive performance of different models of choice under uncertainty and used 

parametric fitting with the subjective probabilities estimated as extra parameters. 

Another representative study using parametric fitting for choice under ambiguity is 

the paper by Abdellaoui et al. (2011). They found experimental evidence supporting 

the “source-dependence” nature of probability weighting functions. To obtain the 

weighting functions for ambiguity, they carried out complex procedures. They first 

used the semi-parametric method to measure the utility function, then obtained 

decision weights, elicited corresponding subjective probabilities from a sequence of 

choice questions, and finally did parametric fitting based on the measured decision 

weights and elicited subjective probabilities. Diecidue et al. (2007) tested the 

existence and nature of rank dependence for Rank-Dependent theories of choice 

under uncertainty, employing a non-parametric non-fitting method to elicit the 

decision weights of ambiguous events without eliciting subjective probabilities. 

Their method can be a good complement for our method in measuring the weighting 

function because their method can, as they have shown in their study, elicit decision 

weights in a simple way, and our method provides a simple way to obtain the 

parameters of the Neo-additive weighting function from the decision weights.  

 

 

2.4 The Neo-Lite Method 

 

Our method starts by assuming that the weighting function is Neo-additive 

(Chateauneuf et al. 2007), or loosely speaking, linear. Although the most common 

finding about weighting function is the inverse-S shape, the linear one can be seen as 

an approximation of the inverse-S shape. Indeed, several papers have argued for the 
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importance of the neo-additive family (e.g. Gilboa 1988; Cohen 1992; Loomes et al. 

2002; Teitelbaum 2007; Chateauneuf et al. 2007), and some studies have also found 

direct evidence of individuals exhibiting weighting functions very close to linear (e.g. 

Abdellaoui et al. 2011, Figure 4c, Figure 10 & 11). A major advantage of this family 

is its theoretical parsimony and resulting practical simplicity. Another important 

advantage is that interpretation of its parameters is clearer and more straightforward 

than other families (Wakker 2010, p.210). We will show this below. 

To show how our method can be applied to decision under ambiguity where the 

(subjective) probability weighting function can depend on the source of uncertainty, 

we will work with a source-dependent neo-additive weighting function, i.e. 

 

𝑤𝑄(𝑝) = {

0, 𝑝 = 0
    𝜇 + 𝛾𝑝,      0 < 𝑝 < 1   

1, 𝑝 = 1
 

 

where 0 ≤ 𝜇 < 1, 0 ≤ 𝛾 ≤ 1 − 𝜇, and 𝑄 is the source of uncertainty and it can be 

either risky or ambiguous.  

 

 

Figure 2.1: A typical Neo-additive probability weighting function (the solid line) 

 

As shown in Figure 2.1, 𝜇  corresponds to the lower intercept and 𝛾 

      

𝑤(𝑝(𝐸))  

𝑝(𝐸) 
0 1 

𝜇 

1 − 𝜇 − 𝛾 

𝛾 
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corresponds to the slope. Even without looking at the graph it is straightforward to 

read off the shape of the weighting function from the parameter values. Moreover, 

two important features of probability weighting, likelihood-insensitivity and 

pessimism/optimism (Wakker, 2010), can be captured by extremely simple 

representations of 𝜇  and 𝛾 . The slope can be seen as an index of 

likelihood-sensitivity (in other words, 1 − 𝛾 the index of likelihood-insensitivity) 

because it reflects how much the decision weight changes when the probability 

changes by one unit. The aggregate pessimism/optimism can be measured by 

(1 − 𝜇 − 𝛾) − 𝜇, i.e., the difference between the upper intercept and the lower 

intercept, because this index reflects generally to what extent probabilities are 

underweighted or overweighted (Abdellaoui et al. 2011).  

Once the weighting function is restricted to be Neo-additive, it is 

straightforward to obtain its parameter measurements. For any two disjoint events A 

and B from S that are non-null and non-universal and the union of which (𝐴 ∪ 𝐵) is 

non-universal, we have  

 

𝑤𝑄(𝑝(𝐴)) = 𝜇 + 𝛾𝑝(𝐴)                        (2.5) 

 

𝑤𝑄(𝑝(𝐵)) = 𝜇 + 𝛾𝑝(𝐵)                       (2.6) 

 

𝑤𝑄(𝑝(𝐴 ∪ 𝐵)) = 𝜇 + 𝛾𝑝(𝐴 ∪ 𝐵)                    (2.7) 

 

Manipulating equations (2.5), (2.6) and (2.7), we have, since 𝑝(𝐴) + 𝑝(𝐵) = 𝑝(𝐴 ∪

𝐵), 

 

𝜇 = 𝑤𝑄(𝑝(𝐴)) + 𝑤𝑄(𝑝(𝐵)) − 𝑤𝑄(𝑝(𝐴 ∪ 𝐵))                (2.8) 

 

The right-hand side of equation (2.8) is an index of lower-subadditivity 

(Tversky & Wakker 1995)6. This equation shows that, when the weighting function 

is Neo-additive, the intercept 𝜇 is a measure of the degree of lower-subadditivity. In 

                                                             
6 According to Tversky & Wakker (1995), lower-subadditivity is a property of a probability weighting function. 

They defined lower-subadditivity with an inequality relation between certain decision weights: a probability 

weighting function 𝑤 satisfies lower-subadditivity if 𝑤(𝑝1) ≥ 𝑤(𝑝1 + 𝑝2) − 𝑤(𝑝2), for probabilities 𝑝1 

and 𝑝2 such that 𝑝1 + 𝑝2 < 1. 
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other words, the right hand side of equation (2.8) captures the boundary effect near 

zero probability. For example, 𝑤𝑄(𝑝(𝐴)) + 𝑤𝑄(𝑝(𝐵)) > 𝑤𝑄(𝑝(𝐴 ∪ 𝐵))  would 

imply the “possibility effect” that an event has greater impact when it turns 

impossibility into possibility than when it merely makes a possibility more likely. 

Given that we have obtained an equation of 𝜇, one way to obtain 𝛾 is to measure 

the degree of upper-subadditivity7, i.e. to measure the upper intercept. Alternatively, 

𝛾 can also be obtained if we know the difference between the upper intercept and the 

lower intercept, which is equivalent to the index of pessimism/optimism. We notice 

that the index of pessimism/optimism is also easy to measure.  

Let 𝐴 be the complementary event of 𝐴 in source Q. We have 

 

𝑤𝑄(𝑝(𝐴)) = 𝜇 + 𝛾𝑝(𝐴)                       (2.9) 

 

Adding equation (2.5) and (2.9), with 𝑝(𝐴) + 𝑝(𝐴) = 1, we have  

 

2𝜇 + 𝛾 = 𝑤𝑄(𝑝(𝐴)) + 𝑤𝑄(𝑝(𝐴)) 

 

and hence 

 

1 − 2𝜇 − 𝛾 = 1 − 𝑤𝑄(𝑝(𝐴)) − 𝑤𝑄 (𝑝(𝐴))              (2.10) 

 

which is the index of pessimism/optimism. The right hand side of equation (2.10) 

measures the degree of pessimism/optimism because it can be re-written as (𝑝(𝐴) −

𝑤𝑄(𝑝(𝐴))) + (𝑝(𝐴) − 𝑤𝑄 (𝑝(𝐴))). In other words, if a decision maker overweights 

any event as much as he underweights the complement of that event (i.e. 𝑝(𝐴) −

𝑤𝑄(𝑝(𝐴)) = 𝑤𝑄(𝑝(𝐴)) − 𝑝(𝐴)), he can be seen as having no systematic tendency 

of pessimism or optimism towards probabilities.  

Combining equation (2.8) and (2.10), we have  

                                                             
7 See also Tversky & Wakker (1995). 
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𝛾 = 𝑤𝑄(𝑝(𝐴)) + 2𝑤𝑄(𝑝(𝐴 ∪ 𝐵)) − 𝑤𝑄(𝑝(𝐴)) − 2𝑤𝑄(𝑝(𝐵))        (2.11) 

 

Although the equation of 𝛾 is less obvious, it is obvious that once we pin down the 

lower intercept and the difference between the upper intercept and lower intercept 

(i.e. the aggregate pessimism/optimism), the slope is also pinned down.  

Our method is general in the sense that it can be applied to any situation of risk 

and (uniform) ambiguity where the four uncertain events 𝐴, 𝐵, 𝐴 ∪ 𝐵, and 𝐴̅ can be 

constructed. It provides a non-fitting way to measure the parameters of the weighting 

functions given that we know the four decision weights that appear on the right hand 

sides of (2.8) and (2.11). One way to obtain the decision weights is to design an 

experiment that enables either direct elicitation of the decision weights (e.g. Diecidue 

et al.,2007; van de Kuilen & Wakker, 2011) or elicitation of both utility and decision 

weights (e.g. Abdellaoui, 2000; Abdellaoui et al., 2008; Kothiyal et al., 2014).  

Before measuring the four decision weights, it is important to decide how to 

specify the four relevant events 𝐴, 𝐵, 𝐴 ∪ 𝐵, and 𝐴̅. To illustrate this, consider an 

Ellsberg-type urn containing four colors of balls: red, green, yellow, purple. A ball is 

to be randomly drawn from the urn to determine the results of some gambles on this 

urn. One way to specify the four events is the following: 

 

Event A= “the ball drawn is red”   

Event B= “the ball drawn is green”   

Event A∪B = “the ball drawn is either red or green”   

Event 𝐴̅ = “the ball drawn is not red”   

 

There is obviously more than one way of specification, as long as none of the four 

events end up being null or universal. In the case of risk, where probabilities of all 

the events are known, Event A and Event B can have the same probability, reducing 

the minimum number of decision weights required from four to three. 

In practice, however, we don’t observe decision weights directly. Decision 

weights can be obtained by using the methods mentioned in Section 2.3, or by 
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measuring the utility function. For the latter, for example, consider a binary prospect 

𝑥𝐸0, with 𝑢(0) assumed to be 0. Eliciting the Certainty-Equivalent (CE) of this 

prospect and using equation (2.4), we have 𝑣(𝐶𝐸) = 𝑤𝑄(𝑝(𝐸))𝑣(𝑥). The decision 

weight of event E can then be obtained by 𝑤𝑄(𝑝(𝐸)) = 𝑣(𝐶𝐸)/𝑣(𝑥). 

 

 

2.5 Measuring the Weighting Function for Risk  

 

Although we are interested in the plausibility and feasibility of the Neo-Lite method 

for both choice under risk and ambiguity, as a start, we examine the case of risk in 

this study, mainly because risk is the simplest experimental environment we could 

construct to test our method. This is an efficient way to obtain an impression of 

whether the non-fitting nature of the Neo-Lite method works. Application of this 

method to choice under ambiguity may deserve exclusive research beyond this one. 

 

 

2.5.1 Experimental Design 

 

The aim of this experiment is to generate a dataset which allows for: (i) the 

application of both the Neo-Lite method and standard parametric fitting to measure 

subjects’ probability weighting function for risk; (ii) the comparison and 

discrimination between the two classes of probability weighting functions. Our 

experiment has two parts to serve each of these purposes.  

 

The Measurement Set 

 

The Measurement Set refers to the dataset for the first part of the experiment. In the 

first part we elicit the Certainty-Equivalents of 16 risky prospects 𝑥𝑝0, with x = 4, 8, 
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12, 16 and p = 0.2, 0.4, 0.6, 0.8. All four x and all four probabilities are used. We 

selected four probability levels 0.2, 0.4, 0.6, and 0.8 in order not only to apply the 

Neo-Lite method, but also to do a robustness check. As has been explained, in the 

case of risk, the minimum number of decision weights (or probabilities) needed for 

the Neo-Lite method is three. When there are four different probabilities, there is 

more than one way to specify the four events 𝐴, 𝐵, 𝐴 ∪ 𝐵, and 𝐴̅. It is unclear 

whether different specifications yield different measurements of the weighting 

function, and having at least four probability entries enables an investigation of this 

question. For simplicity, we didn’t have more than four probability entries. Having 

shown the economy of the Neo-Lite method in data requirements, we choose to 

apply both our method and parametric fitting to the same data (Measurement Set) in 

order to make a clean comparison between the two methods.  

We introduced some variations of the outcome x because we intend to use the 

semi-parametric method (Abdellaoui et al. 2008, 2011) to estimate the utility 

function of money. This method allows for an independent measurement of the 

utility function, i.e. measuring the utility function without imposing any restriction 

on the probability weighting function. With this benefit, we can hold the utility 

function constant for each subject when applying different methods to measure the 

weighting function. This is important for a clean comparison of the weighting 

function measurements. More details on the semi-parametric method are provided in 

the data analysis section. 

The 16 CEs are elicited in a randomized order for each subject using choice-list 

tasks. In our experiment, a choice-list task consists of two choice lists: a basic list 

and a zoom-in list. Figure 2.2 shows the experimental layout of an example basic list. 

The upper table shows the gamble to be evaluated. In the experiment the risky 

prospects were called “gambles”. The gambles were presented to subjects in a table, 

the first row of which contains possible risky events and the second row of which 

contains the corresponding outcomes of each of the events. Numbers representing the 

risky event will be explained later in this section. The lower table in this figure is a   
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Figure 2.2: A sample basic choice list 

 

 

Figure 2.3: A sample zoom-in choice list 
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standard choice list, with the non-risky options (right options) being sure amounts of 

money from £0 to the gamble prize (£8 in this case) in £1 intervals. As usual, only 

one switch from choosing left to choosing right is allowed. After the basic list is 

completed, a zoom-in list will be generated according to the decision maker’s 

choices in the basic list. If the decision maker switches, for instance, between £4 and 

£5 (i.e. if the gamble is preferred to £4 or less, and £5 or more is preferred to the 

gamble) in the basic list in Figure 2.2, a zoom-in list as shown in Figure 2.3 will be 

generated. The non-risky options in the zoom-in list then starts with £4 and end with 

£5 in steps of £0.10. We introduce zoom-in lists mainly to elicit CEs at greater 

precision.. 

 

The Prediction Set 

 

In the second part of the experiment, subjects complete 96 binary choice questions in 

randomized orders (see Appendix 2.1 for more details). These choices are referred to 

as the Prediction Set because we intend to use the measurements of the probability 

weighting function obtained from the Measurement Set to predict these choices and 

compare the predictive performance of different functional classes. Figure 2.4 shows 

the experimental layout of an example binary choice question. For each such 

question, subjects only have to click either the left or the right button to indicate their 

choice of the left or the right gamble. Each gamble is either a two-outcome risky 

prospect or a three-outcome risky prospect, with the outcomes of the gambles being 

respectively two or three of £6, £10, and £14. Gambles are presented in the same 

way to subjects as in the first part of the experiment. 

In order to distinguish the predictive performance of the Neo-additive weighting 

function and nonlinear weighting functions, we construct binary choice questions 

which have two features. First, for each pair of gambles in each choice question, the 

ratio of the expected payoff of the left gamble to the expected payoff of the right 
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Figure 2.4: An example binary choice question 

 

gamble is within the range [0.5, 2]. This is to guarantee that no choice is too “easy” 

(or no gamble is too “obviously” better than its alternative). Second, probabilities 

involved in these choice questions range from 0.05 to 0.95, in steps of 0.05 for 

probabilities smaller than 0.2 or larger than 0.8, and in steps of 0.1 for probabilities 

between 0.2 and 0.8. If the choice questions of the Prediction Set are to be visualized 

in a Machina (1992)-type unit probability triangle, the segments each of which 

represents a pair of gambles will symmetrically spread over the whole triangle (see 

figures in Appendix 2.1).  

Due to the second feature, there is higher density for choices involving extreme 

probabilities than those involving only moderate probabilities. Specifically, 43% of 

the 96 choice questions involve only probabilities between 0.2 and 0.8 (including 0.2 

and 0.8). We call these choices Prediction Subset A for the convenience of later uses 

(see Figure 2.5 below). For the rest choice questions, at least one of the two gambles 

involve probabilities smaller than 0.2 or larger than 0.8. We call these choices 

Prediction Subset B. Since the nonlinear and Neo-additive weighting functions are 

more likely to differ at two ends of the probability domain than at middle parts, this 

design may help reveal any potential difference between the two types of weighting 

functions.  
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Figure 2.5: Division of the full prediction set 

 

Chance Device and Incentive System 

 

We use a bag filled with 20 numbered balls as the chance device to resolve gambles 

in this experiment. These numbered balls are from 1 to 20, with each number 

appearing exactly once. In other words, when one ball is to be drawn from this bag, 

each number from 1 to 20 is equally likely to be drawn. As shown in Figure 2.2, 2.3 

and 2.4, in the experiment, each gamble is presented in the form of a table listing the 

risky events and the consequences of each event. These risky events relates to which 

numbered ball is to be drawn from this set of 20 balls. For example, the event “from 

1 to 12” refers to “if the number drawn is between 1 and 12”, thus denoting a 

probability of 0.6. We choose exactly twenty numbers because this allows us to have 

probabilities as small as 0.05 (e.g. “from 1 to 1”) and as large as 0.95 (e.g. “from 1 to 

19”).  

We implement a general form of the random incentive system to incentivize 

subjects. At the end of the experiment, one choice is selected for real for each subject. 

One ball is then randomly drawn from these 20 balls to determine the results of any 

gamble chosen by each subject in their selected “real choice”. The “real choice” is 

selected in the following way. For each subject, the computer first randomly selects 

either the first part or the second part of the experiment with equal probabilities. If 
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Part 2 is selected, one of the binary choices is randomly selected for real payment. If 

Part 1 is selected, one of the basic choice lists is randomly selected, and one choice 

(i.e. one row) in that list is randomly selected. The option chosen for that row 

determines the real payment, unless the row selected is one of the two ‘switch-point’ 

rows in that list. If the latter happens, one of the rows in the corresponding zoom-in 

choice list will be randomly selected to be the final choice for real payment. This 

system guarantees that any single choice the subjects make during this experiment 

could be the one selected for real payment. Since subjects are told that they will 

receive what they have chosen for the selected ‘real choice’ as their payoff, this 

system ensures incentive compatibility.  

The experiment was programed and conducted using z-Tree (Fischbacher, 2007) 

in the CeDEx laboratory at the University of Nottingham. 48 university students 

were recruited as subjects via the ORSEE system (Greiner, 2015). The experiment 

lasts approximately 70 minutes. The average payoff for each subject is £12 

(including a show-up fee of £3). 

 

 

2.5.2 Data Analysis 

 

We use the Measurement Set to measure the probability weighting function for risk. 

Three probability weighting functions are measured, with the second and third 

belonging to the non-linear class: 

 

𝑤(𝑝) = 𝜇 + 𝛾𝑝    (Neo-additive, Chateauneuf et al. 2007) 

𝑤(𝑝) = 𝑒𝑥𝑝 (−𝛾(− 𝑙𝑛(𝑝))𝜇)    (Prelec, 1998) 

𝑤(𝑝) =
𝛾𝑝𝜇

(𝛾𝑝𝜇 + (1 − 𝑝)𝜇)⁄     (Goldstein & Einhorn, 1987) 

 

We use semi-parametric estimation to obtain decision weights first, then apply 

standard parametric fitting for non-linear probability weighting functions and both 

the Neo-Lite method and the standard parametric fitting for Neo-additive weighting 
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function. For both methods, we use equation (2.4) and assume the power utility 

function 𝑣(𝑥) = 𝑥𝛼.  

The reason we also fit the Neo-additive weighting function is to allow for a 

decomposition of the two-dimensional difference between the Neo-Lite method and 

the standard parametric fitting (with a nonlinear weighting function). One dimension 

concerns the measurement techniques (fitting vs. non-fitting) and the other 

dimension concerns the weighting function forms (nonlinear vs. linear). Prelec’s two 

parameter function and the Goldstein & Einhorn’s are chosen as representatives of 

the non-linear family not only because they are widely used in parametric fitting but 

also because their parameters have very similar interpretations to those in the 

Neo-additive function, with 𝜇 measuring the degree of elevation (pessimism) and 𝛾 

measuring the degree of curvature (likelihood-insensitivity). Since it is not clear 

which of the nonlinear weighting functions fit our data better, we choose to use both 

and pick up the better one as the benchmark for comparison. We did the following 

analysis for each subject. 

Step 1: Utility Function We fitted utility function using the semi-parametric 

method of Abdellaoui et al. (2008). The power utility function 𝑣(𝑥) = 𝑥𝛼  is 

assumed because it is simple, widely used, and often gives a better fit than alternative 

families (Wakker, 2008). Specifically, we fitted equation (2.4), taking the decision 

weight 𝑤(𝑝) of the outcome-relevant event as an extra parameter. Fitting was done 

using nonlinear least-square estimation with CE as the dependent variable. The 

utility was estimated four times at different probability levels, 0.2, 0.4, 0.6, and 0.8. 

For example, we first estimated the utility parameter, taking 𝑤(0.2) as an extra 

parameter. Then we re-estimate the utility parameter, taking 𝑤(0.4) as the extra 

parameter, etc. In this way we obtained four utility parameter estimates and a full set 

of estimated decision weights. We tested the equality of the utility parameters 

estimated with different decision weights and found no significant difference among 

these utility parameters (details provided in Appendix 2.2). Therefore we take the 

average of these values as the final utility parameter measurement which we report in 

the next section.  
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Table 2.1: Possible specifications of the four events for the Neo-Lite method  

Specification 𝒑(𝑨) 𝒑(𝑩) 𝒑(𝑨

∪ 𝑩) 

𝒑(𝑨̅) 

1 0.2 0.2 0.4 0.8 

2 0.2 0.4 0.6 0.8 

3 0.2 0.6 0.8 0.8 

4 0.4 0.4 0.8 0.6 

Note: 𝑝(. ) denotes probability. 

 

Step 2: Weighting Function With the estimated decision weights from the first 

step, we fitted the probability weighting function parameters using nonlinear 

least-square estimation. With the same set of decision weights, we also applied the 

Neo-Lite method. We also did robustness check with respect to the Neo-Lite method 

by testing the equality of the parameter sets (𝜇, 𝛾) measured under all the possible 

different specifications. For risk, each specification assigns a probability to each of 

the four events 𝐴, 𝐵, 𝐴 ∪ 𝐵, and 𝐴̅ (see Table 2.1). Under each specification, one 

set of weighting function parameters can be measured. Again, no significant 

difference was found between these measurements (more details provided in 

Appendix 2.3). We therefore take the average of these measurements as the final 

weighting function parameter measurement (for the Neo-Lite method).  

Step 3: Predictive Test Utility functions and probability weighting functions 

obtained in the first two steps are used to predict the 96 binary choices in the 

Prediction Set. The predictive success rates, the proportion of correctly predicted 

choices, are calculated. This indicator of predictive performance does not take into 

account any stochastic component of decision making, in other words, the measured 

model can either predict correctly or incorrectly, and the more a model correctly 

predicts the better the model is.  

Due to the non-fitting nature of our method, incorporating decision error 

analysis in the measurement (and thus in the prediction test) is not possible. 



CHAPTER 2 

30 
 

Therefore, all models we fitted are deterministic, with no extra decision error 

parameter estimated, and the measured models are used deterministically in 

prediction tests. For the same reason, we did not choose any probabilistic indicators 

of predictive performance (such as the predicted log-likelihood used by Kothiyal et 

al. 2014) that are not comparable with the predictive success rate. Another reason for 

using a “deterministic” indicator is that it provides information about how useful 

these models are in predicting actual choices. 

 

 

2.5.3 Experimental Results 

 

We present results for 47 of the 48 subjects, with Subject 7 excluded from the 

analysis for that he exhibited the same CE for all 16 prospects in the first part of the 

experiment and always chose left in second part8. We think this subject was clearly 

using extremely simple decision rules, which is not helpful for our intended analysis, 

though including this subject would not have changed the qualitative results 

presented in this section. 

 

Measurements 

 

For the power utility function 𝑣(𝑥) = 𝑥𝛼, the median utility parameter estimated 

using the semi-parametric method is 𝛼 = 0.870, significantly smaller than 1 

(Wilcoxon sign-rank test, p-value 0.000). Median parameter values are considered 

instead of mean values because there is some skewness in the distribution of the 

utility estimates (see Figure 2.6).  

 

                                                             
8 Actually we looked at each subject’s choices and excluded subjects whose choices in the experiment are 

unlikely a reflection of their attitudes towards risk and incentives in real life. For this reason, we excluded 

subjects with either or both of the two features: (1) a zero or negative utility parameter 𝛼; (2) a probability 

weighting function part or all of which is downward-sloping. Luckily, no other subject other than Subject 7 needs 

to be excluded. 
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Figure 2.6: Distributions of the measured utility parameter  

 

Figure 2.6 shows the histogram distribution of the measured utility parameter. 

In general, there is slightly more subjects with concave utility functions than with 

convex ones. The excluded subject corresponds to the short bar to the most left in 

this figure, having an almost flat utility function with 𝛼 = 0.017, which is not 

significantly different from 0 according to the nonlinear Wald-test (p-value 0.324). 

The four decision weights estimated using the semi-parametric method are 

summarized in Table 2.2. Significant deviation from the Expected-Utility theory is 

found, as shown in the fifth column of Table 2.2. 

 

Table 2.2: Decision weights estimated with semi-parametric fitting 

Decision Weight Mean Median Interquartile 
t-test p-value 

(𝒘(𝒑) = 𝒑) 

𝒘(𝟎. 𝟐) 0.379 0.355 [0.250, 0.481] 0.000 

𝒘(𝟎. 𝟒) 0.508 0.495 [0.400, 0.630] 0.000 

𝒘(𝟎. 𝟔) 0.622 0.624 [0.524, 0.727] 0.048 

𝒘(𝟎. 𝟖) 0.748 0.761 [0.656, 0.856] 0.000 

 

For the Neo-Lite methods, we first measured 𝜇 according to equation (2.8), 
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and measured the pessimism/optimism index according to equation (2.10). The 

median intercept 𝜇 =0.26 and the median pessimism/optimism index (1 − 𝛾 −

2𝜇) = −0.11. Then the slope 𝛾  is solved from these two results. The median 

measurement is 𝛾 =0.59. The results of all the parameter measurements are listed in 

Table 2.3. 

 

Table 2.3: Median weighting function parameter measurements  

 

Prelec 

𝑤(𝑝) = 

𝑒𝑥𝑝 (−𝛾(− 𝑙𝑛(𝑝))𝜇) 

G&E 

𝑤(𝑝) = 

𝛾𝑝𝜇

(𝛾𝑝𝜇 + (1 − 𝑝)𝜇)⁄  

Neo 

𝑤(𝑝) = 

𝜇 + 𝛾𝑝 

Neo-Lite 

𝑤(𝑝) = 

𝜇 + 𝛾𝑝 

𝝁 0.67 0.61 0.26 0.26 

𝜸 0.75 1.30 0.58 0.59 

 

In Table 2.3, “Neo-Lite” denotes the Neo-additive weighting function measured 

using Neo-Lite method; “Neo”, “Prelec” and “G&E” denote respectively the 

Neo-additive weighting function, Prelec (1998)’s weighting function and Goldstein 

& Einhorn (1987)’s weighting function, all measured using parametric fitting. We 

will continue to use these meanings and denotations for the rest of the chapter. Again, 

due to skewness in the distribution of the parameters, we report the median 

weighting functions. It is worth noticing that although the parameters of the Prelec 

function and the G&E function have similar interpretations, their parameter values 

(especially of 𝛾) are not comparable. The difference between the 𝛾 of “Prelec” and 

of “G&E” actually entails a similarity in their functional shapes, as is shown in the 

figure below.  
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Figure 2.7: Median Probability Weighting Functions  

 

In Figure 2.7 we plot the four weighting functions listed in Table 2.3. It is not 

surprising that all non-linear weighting functions exhibit the common inverse-S 

pattern. With hindsight it is also not so surprising that for probabilities between 0.2 

and 0.8, the fitted weighting functions almost overlap, since we have only four 

observations of decision weights that are between 0.2 and 0.8. However, it is 

surprising that the median “Neo-Lite” weighting function is almost exactly the same 

as the “Neo” weighting function, given that completed different measurement 

techniques (non-fitting and fitting procedures) are used. In order to further compare 

the two techniques, we looked at the parameter distributions of the “Neo-Lite” 

weighting function and the “Neo” weighting function. The left histogram of Figure 

2.8 shows the distributions of measured 𝜇 (the intercept) and the right histogram 

shows the distributions of measured 𝛾 (the slope).   
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Figure 2.8: Distributions of parameters of the Neo-additive weighting function  

 

For 𝜇, although negative values are not allowed in theory, we found a few 

subjects having a negative 𝜇. This is not strange if one has an S-shaped weighting 

function but only the middle part of that function is measured with a linear functional 

form. Therefore we didn’t exclude subjects with negative 𝜇 because they may 

represent a certain, though not common, type of subjects (e.g. having an S-shaped 

weighting function). 

We used three tests to inspect whether the distributions of 𝜇 and 𝛾 of the 

Neo-additive function measured using Neo-Lite method and using parametric fitting 

are the same: the t-test (for equality of means), the Wilcoxon sign-rank test (for the 

equality of medians), and the Mann-Whitney two-sample test (for the equality of the 

entire distributions). The result is that, for both 𝜇 and 𝛾, there is no significant 

difference (at 5% level) of the means, medians, or the whole distributions between 

the two methods. The p-values of the three tests are respectively 0.541, 0.612, 0.979 

for 𝜇, and 0.419, 0.216, 0.889 for 𝛾.  

We also compared the resulting distributions of different types of subjects from 

different measurement methods. Subjects are classified according to their attitudes 

towards probabilities (i.e. how they weight probabilities)9. Each subject is classified 

                                                             
9 Since the measured median utility function is significantly different from linearity, the probability weighting 

function only reflects the decision maker’s attitude towards probabilities rather than attitude towards risk. 
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as one of the four types: inverse-S (for subjects overweighting small probabilities 

and underweighting large probabilities), S-shape (for subjects underweighting small 

probabilities and overweighting large probabilities), overweighting (for subjects 

overweighting all probabilities), and underweighting (for subjects underweighting all 

probabilities). Details of how subjects are classified are provided in Appendix 2.4. 

Figure 2.9 reports the (stack) distributions of the numbers of the four types of 

subjects for each of the four weighting functions “Neo”, “Neo-Lite”, “Prelec”, and 

“G&E”.  

 

 

Figure 2.9: Distributions of different types of subjects according to their attitude towards 

probability  

 

Each bar in Figure 2.9 is a stack of (from bottom to top) the number of the 

inverse-S type, the S-shape type, the overweighting type and the underweighting type, 

with numbers of all four types summing up to 47. Not surprisingly, regardless of the 

measurement methods or weighting function models, most of the subjects were 

classified as having an inverse-S shaped weighting function, as denoted by the 

lightest color in the figure. More importantly, according to the Mann-Whitney test of 

equality of distributions, all four bars have the same distribution of subjects with 
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respect to the four types of probability weighting10. 

These results suggest that the non-fitting technique of the new method seems to 

be a good substitute for parametric fitting. In other words, when the weighting 

function is restricted to be Neo-additive, the Neo-Lite method and the parametric 

fitting method generate essentially the same measurements. Indeed, we couldn’t find 

any statistically significant difference in all these three aspects of the two 

measurements. However, the Neo-Lite method seems to be more efficient in this case 

than parametric fitting of the decision weighting function, because with the former, 

parameters could simply be calculated from decision weights without extra work.  

 

Out-of-Sample Predictive Performance 

 

We expected the predictive performance test to help us distinguish and discriminate 

between the four probability weighting functions, especially between “Neo-Lite” and 

“Neo”, and between “Neo” and the two nonlinear weighting functions. The former 

comparison relates to the comparison between data fitting technique and the 

non-fitting technique of our method, while the latter relates to the comparison 

between the descriptive and predictive power of the Neo-additive (linear) weighting 

function and the nonlinear weighting functions. Since we have shown that the 

“Neo-Lite” functions are not significantly different from the “Neo” functions, we 

wouldn’t expect their average predictive performances differ significantly (though 

the performance distribution across subjects may differ). However, by the nature of 

our design of the prediction set, we do expect that either the nonlinear weighting 

functions performs significantly better than the Neo-additive functions, or the 

opposite.  

We calculate the predictive success rate for each subject with each type of 

probability weighting function, and report the mean success rate over all subjects in 

Table 2.4. The predictive success rate is calculated as the proportion of correctly 

                                                             
10 Since the Mann-Whitney test can only test the equality of two samples, we did this test for each two of the four 

weighting functions, and therefore did six tests. The minimum p-value obtained among the six tests is 0.743. 
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predicted choices in all choices considered. We use Predictive Test 1 to refer to the 

test in which we use the (probability weighting functions obtained from the) 

Measurement Set to predict (choices in) the Prediction Set. In general, predictive 

success rates are low when the Prediction Set is considered as the predictive target.  

 

Table 2.4: Mean Predictive Success Rate (for the whole Prediction Set) 

Prelec G&E Neo Neo-Lite 

52.3% 51.1% 52.0% 51.7% 

 

Although, not surprisingly, there is no significant difference between the 

performance of “Neo” and “Neo-Lite”, it is unexpected somehow that there is also 

no significant difference between the nonlinear weighting function class and the 

Neo-additive class. The only significant difference lies between “Prelec” and “G&E” 

(t-test, p-value 0.005). It seems that our prediction set does not achieve the purpose 

of distinguishing the nonlinear weighting functions from the Neo-additive ones. We 

speculate that this is because the four measured functions perform equally bad given 

that this predictive test is a very strong out-of-sample test, with measurements of the 

probability weighting function from four probabilities (0.2, 0.4, 0.6, 0.8) to predict 

binary choices involving probabilities from 0.05 to 0.95. In other words, there might 

be a common failure of the four functions to predict choices involving extreme 

probabilities, and this common failure may have largely reduced the performance 

gap between the two classes which would otherwise be salient. Therefore, we 

changed the predictive target from the full prediction set to its subsets (Subset A and 

B as mentioned earlier) and examine the predictive performances.  

Table 2.5 shows the mean predictive success rate for the four weighting 

functions when predicting Prediction Subset A (where only probabilities between 0.2 

and 0.8 are involved) and Prediction Subset B (where probabilities lower than 0.2 or 

higher than 0.8 are involved). There are three key messages from Table 2.5. First, for 

Prediction Subset A, the success rates are significantly improved whereas for 
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Prediction Subset B, the opposite happens. This is again expected because in the 

Measurement Set, only probabilities between 0.2 and 0.8 are involved. In other 

words, the two ends of the weighting functions are not measured. Secondly, for 

Prediction Subset B, the predictive success rates even dip below 50%, indicating a 

systematic deviation of subjects’ attitudes towards probability from what has been 

elicited from the Measurement Set. Thirdly, whereas for Prediction Subset B there is 

no significant difference between the Neo-additive weighting functions and the 

nonlinear weighting functions, for Subset A, the nonlinear class performs 

significantly better than the Neo-additive class11. Subset B seems to be where the 

common failure lies.  

 

Table 2.5: Mean Predictive Success Rate (for subsets of the Prediction Set) 

Predictive Target Prelec G&E Neo Neo-Lite 

 

Prediction Subset A 

(non-extreme probabilities) 

 

 

58.0% 

 

 

57.9% 

 

 

56.9% 

 

 

56.5% 

 

Prediction Subset B 

(extreme probabilities) 

 

47.5% 

 

48.0% 

 

48.4% 

 

48.2% 

 

 

 

In-Sample Predictive Exercise 

 

We intended to discriminate between the Neo-additive weighting functions and the 

nonlinear weighting functions, but obviously the result of the out-of-sample test is 

enough for us to claim support for either of the two classes. Although for moderate 

probabilities, the nonlinear class performs better than the Neo-additive class, the 

absolute difference in the mean predictive success rates is less than 2%. Moreover, 

we failed to discriminate between the nonlinear weighting functions from the 

                                                             
11 We did t-tests for the equality of the mean predictive success rates between each pair of the linear-nonlinear 

weighting functions. The p-values for the null hypotheses “Prelec”= “Neo”, “Prelec”= “Neo-Lite”, “G&E”= 

“Neo”, and “G&E”= “Neo-Lite” are respectively 0.015, 0.031, 0.019, and 0.037. 
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Neo-additive ones at the probability domain (i.e. Subset B) where both classes of 

weighting functions fail to predict.  

It may be argued that our out-of-sample predictive test is perhaps too hard for 

the CPT model we work with, in light of the well-known preference reversal 

phenomenon (e.g. Lichtenstein & Slovic, 1971; Grether & Plott, 1979). For this 

reason, we speculate that performing in-sample tests, or using the binary choices as 

both a measurement set and a prediction set, would generally improve the predictive 

success rates of both classes of weighting functions, and this may also make the 

differences of performances distinguishable between the two classes. So we fitted the 

probability weighting functions “Prelec”, “G&E” and “Neo” with binary choices 

from Prediction Subset A, using the Maximum Likelihood Estimation introduced by 

Harrison (2008)12. We chose Prediction Subset A (instead of the full Prediction Set) 

as the new measurement set in order to make it more comparable to the original one 

because now both involve only probabilities between 0.2 and 0.8. We didn’t apply 

the Neo-Lite method in this case because it is much more complicated to obtain the 

decision weights first (than to fit the utility and weighting function parameters 

directly). However, this does not matter because the purpose of this additional 

analysis is to discriminate between the Neo-additive class and the nonlinear class of 

weighting functions. In other words, we need only to compare “Neo” with “Prelec” 

or “G&E”.  

We simultaneously fitted a power utility function with each of the three 

weighting functions (estimation results are shown in Appendix 2.5). The measured 

utility and weighting functions were used to predict the full Prediction Set, within 

which about 60% of choices involved probabilities lower than 0.2 or higher than 0.8. 

Table 2.6 reports the results. 

In this case we used a subset of the Prediction Set to predict the full set and the 

two complementary subsets. For all three predictive targets, the nonlinear weighting 

functions now performs significantly better than the fitted “Neo” function, with an 

                                                             
12 Details of these estimations can be found in Appendix 2.5. 
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absolute gap from approximately 3% to 9%13. This suggests that the nonlinear 

probability weighting functions seem to have more predictive (and hence descriptive) 

power than the Neo-additive weighting functions. In addition, Table 2.6 also shows 

that, again, choices involving extreme probabilities (Prediction Subset B) are harder 

to predict than choices involving no extreme probabilities.  

 

Table 2.6: Mean Benchmark Predictive Success Rate  

Predictive Target Prelec G&E Neo 

Full Prediction Set 66.7% 69.2% 62.6% 

Prediction Subset A 

(non-extreme probabilities) 
65.7% 71.2% 64.3% 

Prediction Subset B 

(extreme probabilities) 
67.0% 68.3% 62.3% 

Note: Prediction subset A is also the measurement set in this case. 

 

It now seems that although the Neo-Lite method works almost as well as 

parametric fitting when the Neo-additive weighting function is used, as shown by our 

evidence that that the Neo-Lite method generate almost exactly the same 

measurements of the Neo-additive weighting function as those generated by 

parametric fitting (with the robustness check of our method indicating its capability 

to exploiting more data which potentially favors parametric fitting), our method may 

not be a good substitute of parametric fitting because, in general, the Neo-additive 

weighting function seems to have less predictive power than the nonlinear class of 

weighting functions, especially when extreme probabilities are involved. 

So far we have done six predictive exercises. For convenience of analysis, the 

six exercises are named from Predictive Test 1 to 6 as shown in the table below. 

Strictly speaking, only Prediction Test 5 is an in-sample test, and all others are 

out-of-sample tests. The results for Test 1 is shown in Table 2.4, results for Test 2 

and 3 are shown in Table 2.5, and results for Test 4, 5, and 6 are shown in Table 2.6. 

                                                             
13 For each predictive target, we did t-tests for the equality of the mean predictive success rates between each 

pair of the three functions. All p-values are 0.000. This time, the “G&E” function performs significantly better 

than “Prelec” and “Neo”. 
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In general, we can see that the performance of Test 4, 5 and 6 is much better than 

Test 1, 2, and 3. In other words, we used two different measurement sets (one based 

on CEs and the other based on binary choices) to measure subjects’ utility and 

probability weighting functions, and the two measurements have substantially 

different predictive performances in predicting the same three sets of choices. This is 

somewhat unexpected because the two measurement sets involve the same range of 

probabilities (from 0.2 to 0.8). 

 

Table 2.7: The six predictive tests  

 
Probability weighting functions  

measured from  
Predictive target 

Predictive Test 1 the Measurement Set Prediction Set 

Predictive Test 2 the Measurement Set Prediction Subset A 

Predictive Test 3 the Measurement Set Prediction Subset B 

Predictive Test 4 Prediction Subset A Prediction Set 

Predictive Test 5 Prediction Subset A Prediction Subset A 

Predictive Test 6 Prediction Subset A Prediction Subset B 

 

Not surprisingly, the in-sample predictive success rates (Test 5) are significantly 

better than the corresponding out-of-sample success rates (Test 2). However, the 

facts that success rates in Test 4 are much higher than in Test 1, and that success 

rates in Test 6 are much higher than in Test 3 suggest that there might be some 

crucial difference between probability weighting functions measured using CE data 

and those measured using choice data. This is confirmed by Figure 2.10, which 

shows the probability weighting function we estimated from choices of Prediction 

Subset A. These weighting functions are quite different from those we obtained using 

the Measurement Set (i.e. CE data). The estimated weighting functions exhibit an 

uncommon shape: almost S-shaped for the nonlinear weighting functions and 

universally underweighting for the Neo-additive function. 
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Figure 2.10: Median probability weighting functions estimated from Prediction Subset A 

 

This finding has reminded us of the famous preference reversal phenomenon 

(see e.g. Seidl, 2002 for a survey), that is inconsistency between preference revealed 

from binary choices tasks and from evaluation tasks. Various explanations for this 

phenomenon have been studied (e.g. Loomes & Sugden, 1983; Loomes et al., 1989; 

Cubitt et al., 2004). However, our finding that different types of tasks of 

decision-making under risk reveal completely different probability weighting 

functions (inverse-S vs. S-shaped) brings up new interesting questions. For example, 

is preference reversal (and factors contributing to preference reversal) a cause for or 

a result of individuals having different weighting functions for different types of 

tasks? If the latter is true, what could then explain why people have different 

weighting functions for choice tasks and for evaluation tasks? These questions may 

deserve future research. 
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2.6 Conclusions 

 

We have introduced a non-fitting method, based on the Neo-additive parametric form 

and the subadditivity properties of the probability weighting function, to measure the 

probability weighting function for choice under uncertainty. For risk, the advantage 

of this method is mainly efficiency of the data analysis process. For ambiguity, the 

main advantage is that no elicitation of the subjective probabilities is needed. In this 

chapter, we did an experiment of choice under risk to test our method against 

standard parametric fitting method, and to test the non-linear class of probability 

weighting function against the Neo-additive weighting function.  

We have shown with our experiment that, in combination with a method that 

elicits decision weights, the Neo-Lite method provides a most simple and quick way 

to obtain measurements of the Neo-additive weighting function. These measurements 

do not differ from the Neo-additive weighting function measured using standard 

parametric fitting. However, as our predictive tests show, the non-linear class of 

probability weighting functions generally performs better than the Neo-additive 

function, particularly when we use choice data to predict choices. The usefulness of 

our method seems to be bounded by the natural limitations of the linear weighting 

functions to describe choices involving extreme probabilities. In other words, the 

Neo-Lite method works well whenever the Neo-additive weighting function is 

considered appropriate for use. It is not clear how our method works for ambiguity, 

but for risk, we generally suggest using this method as a quick and convenient way to 

obtain some pre-analysis results or to get a sense of the degree of pessimism and 

likelihood insensitivity of the decision maker, than as a rigorous empirical method in 

formal decision analysis. 

    In addition, our finding that people exhibit dramatically different shapes of 

probability weighting raises three important questions. The first is to what extent is 

the inverse-S shaped probability weighting function representative of individual risk 

preferences. The second is how we should interpret a probability weighting function 
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that is sensitive to the type of task used to elicit preferences. The third question is 

whether there are more fundamental regularities underlying decision-making that can 

explain this sensitivity. The answers to these questions may provide insights for how 

CPT can be extended or modified, or how future theories can be developed to 

accommodate violations of EUT as well as the preference reversal phenomenon.  
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Appendices for Chapter 2  

 

Appendix 2.1 More details of the Prediction Set 

 

Table 2.8: The list of all the binary choice questions in the Prediction Set of the experiment 

Question Left Option Right Option 

1 (£14, 0.9 ; £10, 0.1) (£14, 0.95 ; £6, 0.05) 

2 (£14, 0.85 ; £10, 0.15) (£14, 0.95 ; £6, 0.05) 

3 (£14, 0.85 ; £10, 0.15) (£14, 0.9 ; £6, 0.1) 

4 (£14, 0.8 ; £10, 0.2) (£14, 0.9 ; £6, 0.1) 

5 (£14, 0.7 ; £10, 0.3) (£14, 0.9 ; £6, 0.1) 

6 (£14, 0.7 ; £10, 0.3) (£14, 0.85 ; £6, 0.15) 

7 (£14, 0.7 ; £10, 0.3) (£14, 0.8 ; £6, 0.2) 

8 (£14, 0.6 ; £10, 0.4) (£14, 0.85 ; £6, 0.15) 

9 (£14, 0.6 ; £10, 0.4) (£14, 0.8 ; £6, 0.2) 

10 (£14, 0.5 ; £10, 0.5) (£14, 0.8 ; £6, 0.2) 

11 (£14, 0.5 ; £10, 0.5) (£14, 0.7 ; £6, 0.3) 

12 (£14, 0.4 ; £10, 0.6) (£14, 0.8 ; £6, 0.2) 

13 (£14, 0.4 ; £10, 0.6) (£14, 0.7 ; £6, 0.3) 

14 (£14, 0.4 ; £10, 0.6) (£14, 0.6 ; £6, 0.4) 

15 (£14, 0.3 ; £10, 0.7) (£14, 0.7 ; £6, 0.3) 

16 (£14, 0.3 ; £10, 0.7) (£14, 0.6 ; £6, 0.4) 

17 (£14, 0.2 ; £10, 0.8) (£14, 0.7 ; £6, 0.3) 

18 (£14, 0.2 ; £10, 0.8) (£14, 0.6 ; £6, 0.4) 

19 (£14, 0.2 ; £10, 0.8) (£14, 0.5 ; £6, 0.5) 

20 (£14, 0.15 ; £10, 0.85) (£14, 0.7 ; £6, 0.3) 

21 (£14, 0.15 ; £10, 0.85) (£14, 0.6 ; £6, 0.4) 

22 (£14, 0.15 ; £10, 0.85) (£14, 0.5 ; £6, 0.5) 

23 (£14, 0.6 ; £10, 0.4) (£14, 0.6 ; £6, 0.4) 

24 (£14, 0.1 ; £10, 0.9) (£14, 0.6 ; £6, 0.4) 

25 (£14, 0.1 ; £10, 0.9) (£14, 0.5 ; £6, 0.5) 

26 (£14, 0.1 ; £10, 0.9) (£14, 0.4 ; £6, 0.6) 

27 (£14, 0.05 ; £10, 0.95) (£14, 0.6 ; £6, 0.4) 

28 (£14, 0.05 ; £10, 0.95) (£14, 0.5 ; £6, 0.5) 

29 (£14, 0.05 ; £10, 0.95) (£14, 0.4 ; £6, 0.6) 

30 (£10, 0.95 ; £6, 0.05) (£14, 0.4 ; £6, 0.6) 

31 (£10, 0.95 ; £6, 0.05) (£14, 0.5 ; £6, 0.5) 

32 (£10, 0.95 ; £6, 0.05) (£14, 0.6 ; £6, 0.4) 
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33 (£10, 0.9 ; £6, 0.1) (£14, 0.6 ; £6, 0.4) 

34 (£10, 0.9 ; £6, 0.1) (£14, 0.5 ; £6, 0.5) 

35 (£10, 0.9 ; £6, 0.1) (£14, 0.4 ; £6, 0.6) 

36 (£10, 0.2 ; £6, 0.8) (£14, 0.25 ; £6, 0.75) 

37 (£10, 0.85 ; £6, 0.15) (£14, 0.5 ; £6, 0.5) 

38 (£10, 0.85 ; £6, 0.15) (£14, 0.4 ; £6, 0.6) 

39 (£10, 0.85 ; £6, 0.15) (£14, 0.3 ; £6, 0.7) 

40 (£10, 0.8 ; £6, 0.2) (£14, 0.5 ; £6, 0.5) 

41 (£10, 0.8 ; £6, 0.2) (£14, 0.4 ; £6, 0.6) 

42 (£10, 0.8 ; £6, 0.2) (£14, 0.3 ; £6, 0.7) 

43 (£10, 0.7 ; £6, 0.3) (£14, 0.4 ; £6, 0.6) 

44 (£10, 0.7 ; £6, 0.3) (£14, 0.3 ; £6, 0.7) 

45 (£10, 0.6 ; £6, 0.4) (£14, 0.4 ; £6, 0.6) 

46 (£10, 0.6 ; £6, 0.4) (£14, 0.3 ; £6, 0.7) 

47 (£10, 0.6 ; £6, 0.4) (£14, 0.2 ; £6, 0.8) 

48 (£10, 0.5 ; £6, 0.5) (£14, 0.3 ; £6, 0.7) 

49 (£10, 0.5 ; £6, 0.5) (£14, 0.2 ; £6, 0.8) 

50 (£10, 0.4 ; £6, 0.6) (£14, 0.2 ; £6, 0.8) 

51 (£10, 0.4 ; £6, 0.6) (£14, 0.15 ; £6, 0.85) 

52 (£10, 0.3 ; £6, 0.7) (£14, 0.2 ; £6, 0.8) 

53 (£10, 0.3 ; £6, 0.7) (£14, 0.15 ; £6, 0.85) 

54 (£10, 0.3 ; £6, 0.7) (£14, 0.1 ; £6, 0.9) 

55 (£10, 0.2 ; £6, 0.8) (£14, 0.1 ; £6, 0.9) 

56 (£10, 0.15 ; £6, 0.85) (£14, 0.1 ; £6, 0.9) 

57 (£10, 0.15 ; £6, 0.85) (£14, 0.05 ; £6, 0.95) 

58 (£10, 0.1 ; £6, 0.9) (£14, 0.05 ; £6, 0.95) 

59 (£10, 0.75 ; £6, 0.25) (£14, 0.5 £10 0.5) 

60 (£14, 0.85 ; £10, 0.1 ; £6, 0.05) (£14, 0.9 ; £6, 0.1) 

61 (£14, 0.8 ; £10, 0.15 ; £6, 0.05) (£14, 0.9 ; £6, 0.1) 

62 (£14, 0.8 ; £10, 0.15 ; £6, 0.05) (£14, 0.85 ; £6, 0.15) 

63 (£14, 0.7 ; £10, 0.25 ; £6, 0.05) (£14, 0.85 ; £6, 0.15) 

64 (£14, 0.7 ; £10, 0.25 ; £6, 0.05) (£14, 0.85 ; £6, 0.15) 

65 (£14, 0.8 ; £10, 0.1 ; £6, 0.1) (£14, 0.8 ; £6, 0.2) 

66 (£14, 0.7 ; £10, 0.2 ; £6, 0.1) (£14, 0.8 ; £6, 0.2) 

67 (£14, 0.7 ; £10, 0.15 ; £6, 0.15) (£14, 0.8 ; £6, 0.2) 

68 (£14, 0.6 ; £10, 0.3 ; £6, 0.1) (£14, 0.7 ; £6, 0.3) 

69 (£14, 0.6 ; £10, 0.25 ; £6, 0.15) (£14, 0.7 ; £6, 0.3) 

70 (£14, 0.5 ; £10, 0.4 ; £6, 0.1) (£14, 0.7 ; £6, 0.3) 

71 (£14, 0.5 ; £10, 0.35 ; £6, 0.15) (£14, 0.7 ; £6, 0.3) 

72 (£14, 0.4 ; £10, 0.5 ; £6, 0.1) (£14, 0.6 ; £6, 0.4) 

73 (£14, 0.3 ; £10, 0.65 ; £6, 0.05) (£14, 0.6 ; £6, 0.4) 

74 (£14, 0.25 ; £10, 0.6 ; £6, 0.15) (£14, 0.6 ; £6, 0.4) 

75 (£14, 0.25 ; £10, 0.6 ; £6, 0.15) (£14, 0.5 ; £6, 0.5) 

76 (£14, 0.15 ; £10, 0.6 ; £6, 0.25) (£14, 0.5 ; £6, 0.5) 



CHAPTER 2 

47 
 

77 (£14, 0.15 ; £10, 0.6 ; £6, 0.25) (£14, 0.4 ; £6, 0.6) 

78 (£14, 0.05 ; £10, 0.65 ; £6, 0.3) (£14, 0.4 ; £6, 0.6) 

79 (£14, 0.1 ; £10, 0.5 ; £6, 0.4) (£14, 0.4 ; £6, 0.6) 

80 (£14, 0.15 ; £10, 0.35 ; £6, 0.5) (£14, 0.3 ; £6, 0.7) 

81 (£14, 0.1 ; £10, 0.4 ; £6, 0.5) (£14, 0.3 ; £6, 0.7) 

82 (£14, 0.15 ; £10, 0.25 ; £6, 0.6) (£14, 0.3 ; £6, 0.7) 

83 (£14, 0.1 ; £10, 0.3 ; £6, 0.6) (£14, 0.3 ; £6, 0.7) 

84 (£14, 0.15 ; £10, 0.15 ; £6, 0.7) (£14, 0.2 ; £6, 0.8) 

85 (£14, 0.1 ; £10, 0.2 ; £6, 0.7) (£14, 0.2 ; £6, 0.8) 

86 (£14, 0.05 ; £10, 0.25 ; £6, 0.7) (£14, 0.2 ; £6, 0.8) 

87 (£14, 0.05 ; £10, 0.25 ; £6, 0.7) (£14, 0.15 ; £6, 0.85) 

88 (£14, 0.1 ; £10, 0.1 ; £6, 0.8) (£14, 0.15 ; £6, 0.85) 

89 (£14, 0.05 ; £10, 0.15 ; £6, 0.8) (£14, 0.15 ; £6, 0.85) 

90 (£14, 0.05 ; £10, 0.15 ; £6, 0.8) (£14, 0.1 ; £6, 0.9) 

91 (£14, 0.05 ; £10, 0.1 ; £6, 0.85) (£14, 0.1 ; £6, 0.9) 

92 £10 (£14, 0.6 ; £6, 0.4) 

93 £10 (£14, 0.5 ; £6, 0.5) 

94 £10 (£14, 0.4 ; £6, 0.6) 

95 £10 (£14, 0.2 ; £10, 0.6 ; £6, 0.2) 

96 £10 (£14, 0.1 ; £10, 0.8 ; £6, 0.1) 

 

In Figure 2.11, we sketch all the choices in the table above on a unit probability 

triangle. Each choice question is represented by a segment in the triangle, with each 

of the two end nodes of a segment representing each of the two gambles in a choice 

question. The triangle is positioned in a square divided into 20 rows and 20 columns. 

Each row (column) has a height (width) of 1/20 of the side length of the large square. 

In other words all three sides of the probability triangle are divided into probability 

intervals of 0.05. At the top corner is the best outcome £14, at the left bottom corner 

is the middle outcome £10, and at the right bottom corner is the worst outcome £6. 

Figure 2.11a sketches the choices with two-outcome gambles and Figure 2.11b 

shows choices involving three-outcome gambles. 
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Figure 2.11a: Choice questions of the Prediction Set involving only two-outcome gambles 

 

 

Figure 2.11b: Choice questions of the Prediction Set involving three-outcome gambles 
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Appendix 2.2 Measurements of utility 

 

To use the semi-parametric method to estimate the utility function and the decision 

weights, we first divided the Measurement Set into four subsets. Each of the subsets 

contains four Certainty-Equivalents of gambles having the same probability but 

different stakes. For each of these subsets of CEs, we estimated the power utility 

parameter 𝛼, taking the corresponding decision weight as an extra parameter (see 

Table 8). Since in the Measurement Set we have four probabilities 0.2, 0.4, 0.6, and 

0.8, we ended up with four utility measurements for each of the probabilities (or 

decision weights) for each subject. 

 

Table 2.9 Semi-parametric fitting of the utility parameter and decision weights 

Data for Estimation Parameters Estimated 
Estimated Utility 

Median Mean 

CE(𝟒𝟎.𝟐𝟎), 

CE(𝟖𝟎.𝟐𝟎), 

CE(𝟏𝟐𝟎.𝟐𝟎), 

CE(𝟏𝟔𝟎.𝟐𝟎) 

𝛼, w(0.2) 𝛼 = 0.86 𝛼 = 0.88 

CE(𝟒𝟎.𝟒𝟎), 

CE(𝟖𝟎.𝟒𝟎), 

CE(𝟏𝟐𝟎.𝟒𝟎), 

CE(𝟏𝟔𝟎.𝟒𝟎) 

𝛼, w(0.4) 𝛼 = 0.84 𝛼 = 0.83 

CE(𝟒𝟎.𝟔𝟎), 

CE(𝟖𝟎.𝟔𝟎), 

CE(𝟏𝟐𝟎.𝟔𝟎), 

CE(𝟏𝟔𝟎.𝟔𝟎) 

𝛼, w(0.6) 𝛼 = 0.86 𝛼 = 0.85 

CE(𝟒𝟎.𝟖𝟎), 

CE(𝟖𝟎.𝟖𝟎), 

CE(𝟏𝟐𝟎.𝟖𝟎), 

CE(𝟏𝟔𝟎.𝟖𝟎) 

𝛼, w(0.8) 𝛼 = 0.90 𝛼 = 0.88 

Note: The model estimated is equation (2.4), with power utility 𝑣(𝑥) = 𝑥𝛼 . CE(𝑥𝑝𝑦) 

denotes the Certainty-Equivalent of the gamble 𝑥𝑝𝑦. 

 



CHAPTER 2 

50 
 

We tested the equality of the four utility measurements at the aggregate level. 

Specifically, we tested the equality of the median utility parameters (the third column 

of Table 2.8) using Wilcoxon sign-rank test and found no significant difference any 

two of the four measurements (the minimum p-value 0.243). We tested the equality 

of the mean utility parameters (the fourth column of Table 2.8) using t-test and found 

no significant difference between any two of the four measurements (the minimum 

p-value 0.435). We also tested the hypothesis that these measurements are drawn 

from the populations with the same distribution using the Mann-Whitney test, and 

again no significant difference has been found (the minimum p-value 0.275). 

Therefore for each subject, we averaged the four utility parameter measurements and 

reported the averaged median utility parameter (over subjects) and the averaged 

utility parameter distribution (over subjects) in Section 2.5.3 of the main text.  

 

 

Appendix 2.3 Robustness checks for Neo-Lite method  

 

After obtaining, for each subject, the four decision weights 𝑤(0.2) , 𝑤(0.4) , 

𝑤(0.6) and 𝑤(0.8), we could obtain four potentially different sets of weighting 

function parameters for each different specifications of the relevant events (see Table 

2.9). We therefore did a robustness check for the Neo-Lite method by testing the 

equality of the four weighting function measurements, as what we have done for the 

four utility measurements generated using different subsets of the Measurement Set. 

At the aggregate level, we again used t-test to test the equality of means, 

Wilcoxon sign-rank test to test the equality of medians, and Mann-Whitney test to 

test the equality of the distributions. We found no significant difference between any 

two of these measurements of 𝜇 and 𝛾. Specifically, for 𝜇, the minimum p-values 

for mean tests, median test, and distribution tests are respectively 0.415, 0.560, and 

0.466; for 𝛾, the minimum p-values for mean tests, median test, and distribution 

tests are respectively 0.412, 0.382, and 0.620. We therefore average the four 
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measurements of 𝜇 and 𝛾 for each subject and reported the median (over subjects) 

of the averaged weighting function parameters in Table 2.3. 

 

Table 2.10: Median weighting function parameters measured using Neo-Lite with different 

specifications 

Specifications of the Four Events Median Parameter Measurements 

p(𝑨)=0.2, p(𝑩)=0.2, p(𝑨 ∪ 𝑩)=0.4, 

p(𝑨)=0.8 
𝜇 = 0.25, 𝛾 = 0.61 

p(𝑨)=0.2, p(𝑩)=0.4, p(𝑨 ∪ 𝑩)=0.6, 

p(𝑨)=0.8 
𝜇 = 0.27, 𝛾 = 0.58 

p(𝑨)=0.2, p(𝑩)=0.6, p(𝑨 ∪ 𝑩)=0.8, 

p(𝑨)=0.8 
𝜇 = 0.25, 𝛾 = 0.60 

p(𝑨)=0.4, p(𝑩)=0.4, p(𝑨 ∪ 𝑩)=0.8, 

p(𝑨)=0.6 
𝜇 = 0.27, 𝛾 = 0.58 

 

 

Appendix 2.4 Classification of subjects  

 

For each subject, we obtained four measured probability weighting functions 

“Prelec”, “G&E”, “Neo”, and “Neo-Lite”. For each measured function, we generated 

20 decision weights for probabilities from 0.05 to 0.95, in steps of 0.05. Let 

𝑤𝐹𝑈𝑁(𝑝) denote the sequence of generated decision weights with 𝑝=0.05, 0.10, …, 

0.90, 0.95 and 𝐹𝑈𝑁= “Prelec”, “G&E”, “Neo”, “Neo-Lite”. We then generated 

another sequence ∆𝐹𝑈𝑁(𝑝) = 𝑤𝐹𝑈𝑁(𝑝) − 𝑝. Given a weighting function 𝐹𝑈𝑁, a 

subject is classified as one of the four types below: 

Inverse-S type, if ∆𝐹𝑈𝑁(0.05) > 0 and ∆𝐹𝑈𝑁(0.95) < 0; 

S type, if ∆𝐹𝑈𝑁(0.05) < 0 and ∆𝐹𝑈𝑁(0.95) > 0; 

Overweighting type, if ∆𝐹𝑈𝑁(𝑝) > 0 for all 𝑝; 

Underweighting type, if ∆𝐹𝑈𝑁(𝑝) < 0 for all 𝑝; 
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Since we have confirmed that there is no subject whose measured weighting 

functions cross the 45-degree line (i.e. the identity line where 𝑤(𝑝) = 𝑝) more than 

once, we think this is a proper classification of subjects based on their attitudes 

towards probabilities.  

 

 

Appendix 2.5 Measuring probability weighting functions using 

binary choices in Prediction Subset A  

 

Using the binary choice data from Prediction Subset A, where no probabilities 

smaller than 0.2 or larger than 0.8 are involved, we fitted the power utility function 

v(x) = xα  and three probability weighting functions: “Prelec”, “G&E”, “Neo”. 

Results of parameter estimates are shown in Table 2.11. 

 

Table 2.11 Median measurements of power utility (alpha) and probability weighting function 

parameters 

 Prelec 

𝒘(𝒑) = 

𝐞𝐱𝐩 (−𝜸(− 𝐥𝐧(𝒑))𝝁) 

G&E 

𝒘(𝒑) = 

𝜸𝒑𝝁/(𝜸𝒑𝝁 + (𝟏 − 𝒑)𝝁) 

Neo 

𝒘(𝒑) = 𝝁 + 𝜸𝒑 

𝝁 1.16 1.46 -0.13 

𝜸 2.00 0.50 1.12 

𝜶 1.03 0.73 0.39 

 

 

Appendix 2.6 Experimental Instructions 

 

Welcome to this experiment on decision making which will last about an hour. You 

will be paid £3 for coming so long as you complete all of the required tasks. In 

addition, you may earn up to an additional £16 depending on your decisions and 
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upon chance. We will pay you in cash at the end of the experiment. There are some 

general rules you must follow:  

1. Please put away your mobile phones and do not talk to others at any time during 

the experiment.  

2. You will use your computer to make decisions during the experiment. Do not use 

your mouse or keyboard to play around with the software running on your computer. 

If you unintentionally or intentionally close the software program running on your 

computer, we will ask you to leave.  

3. If you have any questions during the experiment, please raise your hand. The 

experimenter will come to answer your questions. 

 

Details of the Experiment  

In this experiment, you will make a series of choices involving gambles and certain 

amounts of money. At the end of the experiment, you might play a gamble for real to 

determine part of your payoff from the experiment.  Here is an example gamble 

which we refer to as Gamble A.  

Gamble A 

From 1 to 12 From 13 to 20 

£10.00 £0.00 

This gamble results in one of two possible outcomes: either winning £10 or 

winning nothing.   The possible prizes are written in the second row of the table.  

The numbers in the first row of the table (“1 to 12” and “13 to 20”) relate to a set of 

balls, numbered from 1-20 that will be used to determine the outcome of any gamble 

that you could play for real. 

As you may have noticed when you enter the lab, there are 20 balls on the desk 

in the middle of the lab. Each ball has a number on it and there is exactly one ball 

with each of the numbers from 1 to 20. 

At the end of the experiment, these balls will be put into a bag and one ball will 

be randomly drawn from this bag to determine your payoff. So for example, if you 
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play Gamble A at the end of the experiment, you would get £10 if the number drawn 

is from 1 to 12; or you would get £0 if it is from 13 to 20. 

During the experiment, you will see gambles with different numbers of possible 

prizes.  For example, while gamble A has two prizes, Gamble B below has three 

prizes: If you were to play Gamble B for real you would get £10 if the number drawn 

is 1; £7 if the number drawn is from 2 to 15; or £1 if it is from 16 to 20.  

Gamble B 

From 1 to 1 From 2 to 15 From 16 to 20 

£10.00 £7.00 £1.00 

 

Finally, some options that we describe as gambles offer sure prizes.  Gamble C 

is an example which gives you a sure prize of £5 whatever the number drawn from 

the bag.  

Gamble C 

From 1 to 20 

£5.00 

 

The experiment has two parts. 

Part 1: Choice Lists 

In this part, you will complete some “choice lists”. To understand what a choice 

list is, please look at Screenshot 1 which is in the ‘screenshot booklet’ on your desk. 

This shows an example choice list. 

Above the example choice list there is a gamble – referred to as the “current 

gamble”. The  example choice list is then presented as a table which, in this case, 

contains 11 choices each of which requires you to choose between the current 

gamble (which is always the Left option) or a specific amount of money (the Right 

option). For each choice, you should indicate your preferred option by clicking either 

the Left or Right circle in the “Your Choice” column.  
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Notice that the amounts of money given for the Right options in the choice list 

range, in £1 intervals, from the lowest gamble payoff (zero in this case) to the highest 

gamble payoff (£10 in this case). Therefore, we expect that everyone will want to 

choose Left in the first choice (because you might win something with Left, whereas 

choosing Right would guarantee that you get nothing).  By contrast, for the bottom 

choice in this list (Choice 11) we expect that everyone will want to choose Right 

(because then you are guaranteed £10 whereas Left only offers a chance of that). 

Since the Left option stays the same moving down the choice list and the Right 

option gets better, we also expect that you will only switch once: in fact the computer 

will only allow a single switch between Left and Right in any choice list. It is, 

however, entirely up to you to decide where to switch from choosing Left to Right in 

any choice list. 

Once you have completed all the choices in a list and are happy with your 

decisions, you should click the Confirm button to proceed. Once you have done this 

you will not be able to change your confirmed choices. 

Now please look at Screenshot 2. There are two choice lists on this screenshot. 

Screenshot 2a on the left reproduces the example choice list that you saw in the 

previous screenshot but with two differences. First, it is now labelled a “Basic List”. 

We will explain why in a moment. Secondly, notice that this basic list has been 

completed by a hypothetical decision maker who decided to choose Right for the first 

time at Choice 6. Once this decision maker had confirmed their choices for this Basic 

List they would then see what we call a “Zoom-in List”. The relevant Zoom-in List is 

shown as Screenshot 2b.  

Notice that via their responses to the Basic List, the decision maker has told us 

that they prefer the current gamble to an amount of £4 or below, but they prefer an 

amount of £5 or more to the current gamble. The Zoom-in list for this gamble, then 

presents choices between the current gamble and money amounts which range 

between £4 and £5 (in 10p intervals).  Notice that the first and last choices of the 

Zoom-in list are decisions that have already been confirmed in the Basic List so these 

will be fixed by the computer. To complete a Zoom-in List, you must provide 
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decisions for the remaining 9 choices. Again, the computer will make sure that there 

is a single switch from Left to Right in any Zoom-in List.  

In Part 1, you will be asked to make decisions about a set of different gambles 

using choice lists. For every gamble you will see a Basic List followed by a Zoom-in 

list, determined by where you switch in the Basic List. 

We ask you to think about each choice in each choice list as if it were for real 

and as if it were the only choice you had to make. It makes sense for you to provide a 

considered response for each single choice because at the end of the experiment, we 

will randomly select one decision that you have made and use your decision to 

determine your payoff.    

 

Part 2: Choices between pairs of gambles 

For Part 2, you will be asked to make some choices between pairs of gambles. 

Now please look at Screenshot 3 which shows an example of the sort of choice you 

will face in Part 2. Gambles are presented in the same way as they were for Part 1 

and the numbers shown in the top row of the table refer to the same set of 20 

numbered balls. For each such task, you should consider which of the two gambles 

you would prefer and indicate your choice by clicking either the left or the right 

button. This will lead you to the next choice question, and you will not be able to 

change the choices you have made. Therefore, please think carefully before you 

make any click in this part. As you make your choices, please keep in mind that one 

of your choices will be for real.   

 

How payment is determined 

After you have finished Part 1 and 2, everyone will wait until all participants have 

finished their tasks. The computer will then randomly select one of your choices to 

be implemented for real payment.  

The ‘real choice’ will be selected in the following way. For each participant, the 

computer will first randomly select either Part 1 or Part 2, with equal probabilities. If 

Part 2 is selected, one of the choices will be randomly selected for real payment. If 
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Part 1 is selected, one of the Basic Lists will be randomly selected, and one choice 

(i.e. one row) in that list will be randomly selected. This row gives the choice for real 

payment, unless it is one of your two ‘switch-point’ choices in that list. If the choice 

selected in the Basic List is one of the two ‘switch-point’ choices, then one of your 

choices in the resulting Zoom-in List will be randomly selected to be the only choice 

for real payment. Thus any choice you face at any point could be the one selected for 

real payment. 

Following on from this process, the selected real choice, and what you chose in 

it, will be shown to you. You will receive what you chose. This may be a sure prize 

or it may be a gamble. In the latter case, what you receive will be determined in the 

following way. At the end of experiment, the experimenter will ask one of you to 

draw a ball from the bag of 20 numbered balls. That number will determine the 

payoff from any chosen gamble in your ‘real choices’. 

Before Part 1 begins, we ask you to complete a quiz. Once you have finished the 

quiz, click the Start Experiment button. You will only be able to start the experiment 

if you have answered all the quiz questions correctly. If you have any questions now 

or later, please raise your hand. 
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Chapter 3: Why People Have Non-linear 

Probability Weighting Functions: An 

Alternative Theory of Choice under Risk   
 

 

 

3.1 Introduction 

 

Since Prospect Theory (Kahneman & Tversky, 1979), the concept of decision 

weighting has been widely accepted and well-studied. Decision weights are found to 

be a non-linear function of probabilities, typically with overweighting of small 

probabilities and underweighting of moderate and large probabilities. This function is 

called probability weighting function and is often interpreted as reflecting an 

intrinsic1 human attitude towards probabilities, driven by, for example, diminishing 

sensitivity towards less extreme probabilities.  

However, experimental evidence that challenges this interpretation has been 

accumulating. For example, probability weighting has been found to depend on the 

domain of outcomes involved in the lotteries (i.e. whether the lotteries result in gains 

or losses) (see e.g. Tversky & Kahneman 1992, Abdellaoui 2000). Although theories 

featuring probability weighting have generally allowed for different weighting 

functions for gains and losses, following Cumulative Prospect Theory (Tversky & 

Kahneman 1992), it is not clear from these theories why probability weighting 

should be expected to depend on the domain of outcomes.  

More recently, evidence has emerged suggesting that probability weighting is 

affected by the payoff sizes of lottery outcomes (see e.g. Kühberger 1998; 

                                                             
1 ‘Intrinsic’ here and hereafter basically means decision-context-independent. 
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Etchart-Vincent 2004, 2009; Fehr-Duda et al. 2010). This means, for instance, when 

people are evaluating the two-outcome lottery (£x, p; £y, 1-p), their weighting of 

probability p would be affected by the absolute (or relative) sizes of x and (to) y. This 

evidence suggests that probability weighting is more than an 'intrinsic' response to 

chances, but also context-dependent.  

Another typical contextual factor that seems to affect probability weighting is 

the type of task used to elicit preference (based on which we can measure probability 

weighting). Indirect evidence suggests that probability weighting exhibits a stable 

inverse-S pattern when preferences over lotteries are elicited through money 

valuation tasks such as Certainty-Equivalent tasks (e.g. Kahneman & Tversky 1992; 

Gonzalez & Wu 1999; Abdellaoui et al. 2011) but is much less regular when 

preferences are elicited through binary choice tasks (e.g. Hey & Orme 1994; 

Camerer & Ho 1994; Wu & Gonzalez 1996; Humphrey & Verschoor 2004; Conte et 

al. 2011). For the latter cases, other shapes of probability weighting than the 

inverse-S one can prevail.  

In light of all these evidences discussed above, we think it would be helpful to 

re-think about why people are often found to have inverse-S shaped probability 

weighting functions and to what extent this reflects an intrinsic decisional attitude 

towards objective probabilities. We try to answer these questions by looking into the 

decision making process of choice under risk and building a model that does not 

pre-impose any type of probability weighting function. We propose a theory 

featuring an attention-based state weighting mechanism and show how our theory 

accommodates the evidence. This theory highlights a potentially important reason for 

the observation probability weighting under CPT. Briefly speaking, people weight 

probabilities non-linearly because their perceptions about probabilities are affected 

by the salience of the outcomes associated with the corresponding states. In our 

theory, a state is said to be the most salient if choosing differently leads to the largest 

welfare difference under that state.  

The best example to illustrate this intuition is the case where people buy lottery 

tickets. When people decide to spend £1 or £2 to buy lotteries that can yield them a 
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million, it is not hard to imagine that they keep telling themselves “what if I win…”. 

By doing this, people are already subconsciously overweighting the probability of 

winning. Their attention seems almost completely drawn to the winning state, 

because the winning state, with a stake of a million, is much more salient than the 

losing state, where the stake is only £1 or £2. Based on this idea, we formalize our 

theory with the following ingredients. 

 

State-weighting (instead of probability weighting) This entails two things. First, 

when choices are made, lotteries are viewed as (Savage) acts instead of prospects. In 

other words, lotteries specify state-contingent outcomes. Second, states are evaluated 

one by one and the overall preference is determined by a weighted sum of the 

within-state comparisons. Many theories are built on the general framework of acts, 

such as Regret Theory (Loomes & Sugden 1982) and third-generation Prospect 

Theory (Schmidt et al. 2008), but not many have incorporated state-weighting (e.g. 

the Salience Theory of Bordalo et al. 2012). 

Attention-weighted states The core ingredient of our model is that states are 

weighted by decision weights representing the attention of the decision maker drawn 

to the corresponding state. The attention paid to a state would depend on: (i) the 

probability of that state; (ii) how salient the outcomes associated with that state are 

compared to all other states. Our theory is similar to Salience Theory (Bordalo et al. 

2012) in this aspect, but we have some crucial differences, which will be discussed in 

Section 3.2.2. 

Context-dependent reference points We keep the ingredient of a 

reference-dependent value function from PT and CPT, but allow reference points to 

be context-dependent. Although we are not the first to explore this idea (e.g. Tversky 

& Kahneman 1991; Kőszegi & Rabin 2006; Schmidt et al. 2008), allowing the 

reference point to be context-dependent can greatly increase the explanatory power 

of our theory, given certain plausible assumptions about how reference points are 

context-dependent.  
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Though, as noted above, each of these ingredients has precedents in the 

literature, our combination and use of them is novel and distinctive. It provides a 

unified explanation for the set of findings of probability weighting (and thus for the 

behavioral ‘anomalies’ that can be explained with non-linear probability weighting) 

mentioned above. 

To demonstrate that our theory is able to explain all these findings, we derive 

propositions showing that our theory is observationally equivalent to a form of CPT, 

the most popular theory in empirical studies of choice and probability weighting, but 

with specific probability-weighting functions that can depend on lottery outcomes 

and are tied down by our theory. Our propositions 1 and 2 show how, under our 

theory, the implied probability-weighting functions of CPT can depend can depend 

on the sizes and domains of lottery outcomes, when preferences over lotteries are 

elicited through the commonly used Certainty-Equivalent tasks. In Section 3.3.2 we 

provide intuitive analysis of how our theory need not imply the inverse-S shape of 

probability weighting when preference is elicited through binary choice tasks.  

In general, we show that even if there is no context-independent probability 

weighting functions in the decision maker's cognitive system, individual behaviors 

can exhibit typical features that are attributed to probability-weighting in the 

framework of CPT. In this sense, we provide a theory of the appearance of 

probability weighting. However, what our analysis puts into question is not the 

concept of probability weighting per se, still less the appearance of it, but rather any 

interpretation under which probability weights reflect intrinsic, context-independent 

human attitudes towards probabilities. We think that what we call the attention-based 

state weighting mechanism, the key feature of our model, can be an important cause 

for the common observation of non-linear probability weighting. 

The rest of this chapter proceeds as follows. In the next section we sketch the 

model. In Section 3.3 we show how our theory explains the findings about 

probability weighting. Section 3.4 concludes.  
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3.2 A Theory of Attention-Based State Weighting 

 

3.2.1 The Model 

 

Let preferences be defined over Savage acts. A choice problem is described by a set 

of states of the world 𝑆, where each state 𝑠 ∈ 𝑆 occurs with objective and known 

probability 𝑝𝑠  such that ∑ 𝑝𝑠𝑠∈𝑆 = 1 , a set of outcomes 𝑋  of real numbers 

representing monetary payoffs, and a set of acts 𝐹, where an act 𝑓 ∈ 𝐹 specifies for 

each state 𝑠 the resulting outcome 𝑓𝑠 ≡ 𝑓(𝑠) ∈ 𝑋. In this chapter we consider only 

binary choices, i.e., a set of two acts 𝐹 = {𝑓, 𝑓′}, where at least one of the acts is a 

non-degenerate lottery. When an act is a degenerate lottery, or a certainty, we call it a 

constant act, whose consequences are the same in every state. The binary choice 

problem with n states can be shown in the following payoff matrix, where we choose 

between act 𝑓 and 𝑓′: 

 

Table 3.1: The general state-payoff matrix of a decision problem 

 
State 1 State 2 … State n 

Act 𝑓 𝑓1 𝑓2 … 𝑓𝑛 

Act 𝑓′ 𝑓1
′ 𝑓2

′ … 𝑓𝑛
′ 

 

Similar to the third-generation Prospect Theory (Schmidt et al, 2008), we allow 

the reference point, denoted by 𝑟, to be a (degenerate or non-degenerate) lottery, so 

we will call 𝑟 the reference act, with 𝑟𝑠 ≡ 𝑟(𝑠) ∈ ℝ. Accordingly, gains and losses 

will be defined state by state as (𝑓𝑠 − 𝑟𝑠). The most general form of our theory 

consists of three functions: preference function, attention weight function, and 

salience function. The preference function for act 𝑓, given the alternative act 𝑓′ and 

the reference act 𝑟, is 
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𝑉(𝑓, 𝑓′, 𝑟) = ∑ 𝜔𝑠𝑣(𝑓𝑠 − 𝑟𝑠)𝑠∈𝑆                                                (3.1)  

 

where 𝑓𝑠  and 𝑟𝑠  denote respectively the monetary outcomes of act 𝑓 and 𝑟 in 

state s. The decision maker chooses 𝑓 or 𝑓′, depending on the relative values of 

𝑉(𝑓, 𝑓′, 𝑟) and 𝑉(𝑓′, 𝑓, 𝑟). We use the same concept of utility (or value) function 

𝑣(. ) as in PT and CPT. In other words, 𝑣(. ) is an increasing (decreasing) function 

of gains (losses) of monetary outcomes given a reference point, and 𝑣(0) = 0. 

Different to PT and CPT, preferences V are determined by a weighted sum of state 

outcomes, and the decision weights assigned to each state, 𝜔𝑠 , depend on the 

attention paid to that state, which further depends on state probabilities and state 

(outcome) saliences:  

 

𝜔𝑠 =
𝜑𝑠

𝜂
∙ 𝑝𝑠

∑ 𝜑𝑘
𝜂

∙ 𝑝𝑘𝑘∈𝑆

                                                             (3.2) 

 

In this attention weight function, 𝑝𝑠 is the probability of state s and 𝜑𝑠 is a 

measurement of how salient state s is, in terms of the outcomes, among all possible 

states. Attention paid to a state depends on the probability of the state 𝑝𝑠 and the 

relative degree of salience of that state 𝜑𝑠. The parameter 𝜂 captures the extent to 

which salience distorts the decision maker’s perception of probabilities. In other 

words, 𝜂 measures the decision maker’s sensitivity towards saliences. When 𝜂 = 0, 

we have 𝜔𝑠 = 𝑝𝑠 as in Expected Utility. Unless stated otherwise, we assume 𝜂 ≥ 0, 

indicating that if two states have the same probability, the more salient state gets 

more attention, and hence relatively a larger decision weight. It is easier to see this 

from the following equation, which is an immediate implication of equation (3.2) and 

uses States 1 and 2 for illustration.  

 

𝜔1

𝜔2
=

𝑝1

𝑝2
∙ (

𝜑1

𝜑2
)

𝜂

                                                            (3.3) 

 

The ratio of decision weights for states 𝑠1 and 𝑠2 depends not only on the ratio of 

their probabilities, but also on their relative degree of saliences. The latter is given by 
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the salience function: 

 

𝜑𝑠 ≡ 𝜑(𝑓𝑠, 𝑓𝑠
′, 𝑟𝑠) =

|𝑣(𝑓𝑠 − 𝑟𝑠) − 𝑣(𝑓𝑠
′ − 𝑟𝑠)|

|𝑣(𝑓𝑠𝑚
− 𝑟𝑠) − 𝑣(𝑓𝑠𝑚

′ − 𝑟𝑠)|
                                 (3.4) 

 

where 𝑣(. ) is the same utility function as in (3.1), 𝑓𝑠
′ denotes the payoff of act 𝑓′ 

in state 𝑠, and 𝑠𝑚 denotes the most salient state (i.e. the state with the largest value 

difference between choosing act 𝑓 and choosing 𝑓′). By this definition we have 

𝜑𝑠𝑚
= 1 and 𝜑𝑠 < 1 for 𝑠 ≠ 𝑠𝑚. A state is more salient if there is greater welfare 

gap between choosing one option to choosing the other. We use the distance 

|𝑣(𝑓𝑠 − 𝑟𝑠) − 𝑣(𝑓𝑠
′ − 𝑟𝑠)| to capture this welfare gap instead of using simply the 

payoff difference |𝑓𝑠 − 𝑓𝑠
′|. This is basically to allow for individual heterogeneity 

and the effect of reference-dependence on judging the salience of outcomes. It is also 

worth noticing that given a reference point 𝑟 (where 𝑟 ≠ 𝑓 and 𝑟 ≠ 𝑓′), we have 

𝜑(𝑓𝑠, 𝑓𝑠
′) = 𝜑(𝑓𝑠

′, 𝑓𝑠)  and so 𝜔𝑠 = 𝜔𝑠
′ . This means that the decision weights 

assigned to state s is the same for both acts in the choice set. Then the decision maker 

would (weakly) prefer 𝑓 to 𝑓′ if and only if: 

 

∑ 𝜔𝑠(𝑣(𝑓𝑠 − 𝑟𝑠) − 𝑣(𝑓𝑠
′ − 𝑟𝑠)) ≥ 0

𝑠∈𝑆

                                         (3.5) 

 

We want to again address the common ingredients and differences between our 

theory and PT. The latter has two key ingredients, a reference-dependent utility 

function and a probability weighting function, and both functions are treated as 

exogenous, so that a decision maker’s behaviors under risk can be predicted with the 

knowledge of his utility function and weighting function parameters (and some 

assumption about the reference point). In contrast, our theory shares the same 

concept of an exogenous reference-dependent utility function, but drops the 

probability weighting function and replaces it with an attention-based state weighting 

mechanism (i.e. function (3.2) and (3.4)). Therefore, the only exogenous components 

of our preference model are the utility function 𝑣(. ), the reference act 𝑟, and the 
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parameter of salience sensitivity 𝜂. In this sense, our theory can be seen as one of 

‘endogenous probability weighting’. 

 

 

3.2.2 Some important features of the model 

 

Since the concepts of salience and attention-weighting are core to our model, it is 

worth clarifying the connections between our model and Salience Theory (Bordalo et 

al, 2012) in which salience is also plays a key role. Although our theory has some 

similarities to theirs, there is difference in crucial aspects2. We will use these 

comparisons to highlight some of the important features of our theory.  

The first difference lies in how (outcome) salience is determined. Instead of 

proposing a specific salience function, Bordalo et al. (2012) considered three 

properties of the salience function: ordering, diminishing sensitivity, and reflection. 

The example below illustrates the definition of these properties.  

 

Table 3.2: An example choice problem in the framework of Savage-acts 

 
State 1 State 2 State 3 State 4 

Lottery 1 10 4 5 -5 

Lottery 2 2 8 9 -9 

 

The payoff matrix of Lottery 1 and 2 are shown in this table. According to 

ordering, State 1 is more salient than State 2, because the interval (4, 8) is a subset of 

(2, 10). According to diminishing sensitivity, State 2 is more salient than State 3, 

because (5, 9) = (4+1, 8+1). According to reflection, State 3 is exactly as salient as 

State 4, because the payoffs differ only in signs. With these properties, Salience 

Theory permits some predictions about ranks of state saliences just on the basis of 

                                                             
2 Bordalo et al have a follow-up working paper (Bordalo et al. 2017) which develops salience theory in a 

different way to model consumer behaviors. Here we compare our model to their original Salience Theory model 

(Bordalo et al. 2012), as the latter is the one that ours relates to most closely. 
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these properties. However, this can only be done when the payoff matrix of the 

lotteries have specific patterns, as those in Table 3.2. For example, if the payoffs in 

State 3 is (5, 10) instead of (5, 9), even the three properties taken together cannot 

determine the relative saliences between State 2 and 3, and some assumption has to 

be made about the salience function. 

In our theory, state saliences are determined by state payoffs, the shape of the 

utility function 𝑣(. ), and the reference point. As mentioned, we use the same 

concepts of utility function and reference point as in PT and CPT. Although we 

proposed a specific salience function (3.4), our theory is actually more general than 

Salience Theory, because in our theory, the three properties are implied only under 

certain assumptions about the utility function 𝑣(. ) (e.g. an increasing, concave, and 

symmetric utility function for gains and losses). This generalization brings the 

benefit of allowing for individual heterogeneity with respect to the ranking of 

salience, even when the payoff matrix has the pattern of Table 3.2.  

The second important difference between this theory and Salience Theory lies in 

whether rank-dependence is imposed. In many theories of rank-dependence such as 

CPT, decision weights are assigned to prospect payoffs and dependent on only the 

probability and the rank of corresponding payoffs. This causes the well-known 

counter-intuition that very small changes of a payoff can lead to a dramatic change to 

its decision weight if the rank of that payoff among all possible payoffs also changes. 

In Salience Theory, decision weights are assigned to states and dependent only on 

the state probability and the rank of state saliences. The similar counter-intuition 

remains: small changes in salience can lead to dramatic changes to decision weights. 

These forms of rank-dependence can cause discontinuity in probability weighting 

and lottery valuation3. It is easy to see from our attention weight function and 

equation (3.3) that our theory avoids this problem because under equation (3.3), 

marginal changes in relative salience 𝜑𝑠 always have smooth effects on relative 

state weights 𝜔𝑠.  

Thirdly, unlike Salience Theory, our model incorporates reference-dependence, 
                                                             
3 For a critical comment on Salience Theory (2012), see Kontek (2016). 
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another key ingredient in PT. More importantly, we allow reference acts to be 

context-dependent. This adds considerable flexibility and power to our theory in 

explaining the evidence of probability weighting, and provides a unified framework 

to account for some other behavioral anomalies such as preference reversals. 

Sometimes shifts of reference points can have significant influence on preferences 

over lotteries because as reference points change, gains and losses are coded 

differently. This feature is particularly relevant to our theory because it is a key tenet 

of behavioral models of decision making that losses ‘loom larger’ than gains, and 

shifts of reference points can generate states of losses even if all payoffs are positive. 

We will show later, in Section 3.3.1 and 3.3.2, that the complicated findings on 

probability weighting can be nicely explained by our theory with the help of some 

plausible assumptions about context-dependent referencing. 

 

 

3.3 Implications on probability weighting  

 

In this part we will show how the theory presented implies that the agent behaves as 

if according to CPT preferences, but with a probability-weighting function that is 

endogenous and predicted by our theory. We also show how this explains typical 

findings on probability weighting and some observations that are hard for CPT alone 

to rationalize. Since these findings have generally been the results of lab experiments, 

we focus on two typical types of experimental tasks used to measure probability 

weighting: money valuation task (e.g. CE tasks and Willingness-To-Pay tasks) and 

binary choice task (e.g. the method proposed by van de Kuilen & Wakker 2011).  

Crucially, our theory predicts that probability-weighting will appear to take 

different forms in the two types of tasks. We will show that: (i) in money valuation 

tasks, probability weighting would be inverse-S shaped, gain-loss asymmetric, and 

be influenced by the level and spacing of outcomes; (ii) in binary choice tasks, 

probability weighting is less regular and can exhibit non-inverse-S shapes. By 
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implication, what pattern of probability-weighting is most commonly observed in 

studies using CPT will depend in part on the form of the tasks from which it is 

elicited.  

 

 

3.3.1 Money valuations and probability weighting 

 

Typically, to measure probability weighting functions, money valuations of lotteries, 

such as CE and Willingness-To-Pay (WTP for short), are elicited using valuation 

tasks. In such tasks, the decision maker can be seen as making a series of choices 

between the lottery to be valued and different sure money payoffs. In other words, 

sometimes it is literally true that the agent is making a series of choices between the 

lottery and sure sums, but, even when the task appears to have a more open-ended 

form, such comparisons may plausibly be taken to drive how the agent thinks about 

them. For example, in choice-list tasks, subjects are directly faced with multiple such 

choices in one list, while in WTP tasks, there might be a choice list in the decision 

maker’s mind used to decide how much to pay for the lotteries. For this reason, we 

characterize money valuation tasks as a decision context where a series of choices 

between a lottery and a certainty are made. We denote this context as 

Lottery-vs-Certainty (L-vs-C for short). 

What does our theory imply about choices in L-vs-C contexts? According to the 

intuition that greater salience attracts more attention and higher decision weight, the 

lottery tends to be preferred when the upside or the ‘winning state’ of the choice is 

more salient than the downside. For example, in choice between (£10, 0.1; £0, 0.9) 

and £1, the ‘winning state’ has a probability of 0.1. This ‘winning state’ is more 

salient because the former can make you better-off by £9 whereas in the ‘losing state’ 

your stake is just £1. This leads to overweighting of the probability 0.1 and a 

tendency to bet. By similar reasoning, the certainty tends to be preferred when the 

‘losing state’ of the choice problem is more salient than the ‘winning state’, a 
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situation often associated with large probabilities of ‘winning’ (e.g. choosing 

between (£10, 0.9; £0, 0.1) and £9). So far, our explanation about overweighting 

(underweighting) of small (large) probabilities has been very simple: small (large) 

probabilities are overweighted (underweighted) because they are often associated 

with more (less) salient states in L-vs-C contexts. 

Now consider moderate probabilities. People are widely found to be 

underweighting moderate probabilities greater than some critical value, which may 

be around 1/3. For instance, in choice between (£10, 0.5; £0, 0.5) and £5, people are 

often found to be risk averse, which is often interpreted as due to the underweighting 

of the probability 0.5 associated with winning £10 rather than the concavity of the 

utility function 𝑣(. ). Under our theory, this means that the ‘losing state’ of the 

choice (i.e. the state where you end up with £0 if the lottery is chosen) is often more 

salient than the ‘winning state’. We hypothesize that this may be naturally explained 

by loss aversion, which can arise as a result of a shift of reference point. More 

generally, we think that when choosing between a lottery and a certainty, people tend 

to subconsciously take the certainty as a reference point, because the certainty is 

immediately available and tends to be seen as something already “in the pocket”. For 

example, winning nothing while you could have got the sure £5 can feel as bad as a 

loss of £5 rather than as a reduced gain. Since losses ‘loom larger’ than gains, it is 

natural that the ‘losing state’ becomes more salient than the ‘winning state’ and the 

probability associated with the latter be underweighted. 

To explore the implications of this idea and to formalize our analysis, we make 

the following assumption about reference points.  

Assumption 1: In Lottery-vs-Certainty choice contexts, the reference act is the 

constant act whose consequence in every state is the certainty. For 

Lottery-vs-Lottery choices, the reference act is status quo, that is, the constant act 

whose consequence in every state is zero4. 

                                                             
4 There are cases where neither the certainty nor the status quo is likely to be taken as the reference act. For 

example, in Willingness-To-Accept tasks, the lottery being valued is likely to be perceived as an endowment and 

thus taken as the reference act. Our analysis here focuses on situations where the lottery is not perceived as an 

endowment. 
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Without loss of generality, let 𝑐 be the money valuation5 of a lottery (𝑥,  𝑝;  𝑦,  1 −

𝑝), where 𝑥 > 𝑐 > 𝑦 ≥ 0 and 1 > 𝑝 > 0, so that the decision maker is indifferent 

between receiving c and playing the lottery (see Table 3.3).  

 

Table 3.3: The money valuation decision problem (positive payoffs) 

 

State 1 

p 

State 2 

1-p 

The Lottery 𝑥 𝑦 

Certainty (reference point) 𝑐 𝑐 

 

According to our theory, this indifference implies the equation 

 

𝜔1𝑣(𝑥 − 𝑐) + 𝜔2𝑣(𝑦 − 𝑐) = 0                                                 (3.6) 

 

For the convenience of deriving theoretical results, we make a standard assumption 

about the Prospect-Theory-type utility function with loss aversion. 

 

Assumption 2:  

 

𝑣(𝑥) = {
(𝑥 − 𝑟)𝛼   ,                   𝑥 ≥ 0

−𝜆(−(𝑥 − 𝑟))𝛼 ,        𝑥 < 0
 

 

where 𝑟  is the consequence of the reference act, 𝜆 > 0  is the loss aversion 

parameter, and 𝛼 > 0 is the power parameter capturing the curvature of the utility 

function. We further assume that the power parameter of the utility function is the 

same for gains and for losses. This assumption greatly simplifies our analysis. 

To begin our exposition of how our theory accounts for the evidence about 

probability weighting, we present Proposition 1. This proposition shows that, when 

we consider positive payoffs and money valuations of lotteries, our theory is 

observationally-equivalent to a particular parameterized form of CPT. We use CPT 

                                                             
5 When we say ‘money valuation’ of a lottery, we generally refer to the Certainty-Equivalents of the lottery. 
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basically because it has been one of the most widely used theories in empirical 

studies of probability weighting. The key message from this proposition is that, if a 

decision maker behaves according to our theory but is treated as a CPT agent with 

his preferences elicited through money valuation tasks, she will be found to have the 

weighting function w (for proofs see Appendix 3.1). 

 

Proposition 1 Consider an agent’s valuation of the lottery (𝑥,  𝑝;  𝑦,  1 − 𝑝), where 

𝑥 > 𝑦 ≥ 0 and 1 > 𝑝 > 0. The following two statements are equivalent:  

(i) The agent has a utility function 𝑣(𝑥) as specified in Assumption 2 and his 

valuation of the lottery is determined by equations (3.2), (3.4), (3.6); 

(ii) The agent has the same utility function 𝑣(𝑥)  but behaves according to 

Cumulative Prospect Theory with 𝑟 = 0 (i.e. status quo) and with the weighting 

function: 

 

𝑤(𝑝) =
[𝑔(𝑝)𝑥 + (1 − 𝑔(𝑝))𝑦]𝛼 − 𝑦𝛼

𝑥𝛼 − 𝑦𝛼
 

where  

 

𝑔(𝑝) =
𝑝

1
𝛼(𝜂+1)

𝜆
1
𝛼(1 − 𝑝)

1
𝛼(𝜂+1) + 𝑝

1
𝛼(𝜂+1)

  

 

For clarity, we will refer to the weighting function, w(p), in part (ii) of the 

Proposition as “the implied probability weighting function”. Proposition 1 shows that 

the implied probability weighting function also depends on non-probabilistic factors: 

lottery payoffs x, y, utility function parameter6 𝛼, degree of loss aversion 𝜆, and 

degree of salience sensitivity 𝜂. In this sense, the implied probability weighting 

function is endogenous under our theory. Moreover, it reflects payoffs in a different 

                                                             
6 It may need to be clarified that, theoretically, the value of 𝛼 in our theory is the same as the 𝛼 in Cumulative 

Prospect Theory. This is natural because both share the same concept of utility function. Crucially, this concept 

implies that the utility function captures individuals’ exogenous attitudes towards outcomes. Based on this 

exogenous part, CPT introduces another independent part (the weighting function) to model preferences, whereas 

we introduce a component of decision making process that can be seen as the implied probability weighting 

function 𝑤(𝑝). In neither case is the shape of the utility function affected by the shape of the weighting function. 
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way from the rank-dependent structure of CPT and, rather than being a primitive 

intrinsic response to probability, it reflects other preference parameters, including the 

salience sensitivity parameter which is distinctive to our theory and does not feature 

in standard formulations of CPT. The function 𝑔(𝑝) resembles the two-parameter 

probability weighting function proposed by Goldstein and Einhorn (1987), which 

exhibits the typical inverse-S shape with 𝑥 > 𝑦 ≥ 0 and with a wide range of 

parameter values. Therefore, as we will elaborate below, the function w(p) can also 

exhibit inverse-S shapes with typical parameter values. 

Figure 3.1 below presents the implied probability weighting function w(p), for 

different values of the parameters of our preference model and for different values of  

outcomes x and y. The first panel holds all terms constant at particular values, except 

for 𝜆 which is varied. Similarly, second panel varies 𝜂 only, the third varies 𝛼 

only, and the fourth varies only the payoff ratio x/y. Specifically, Figure 3.1a 

illustrates that 𝜆 seems to influence only the elevation of the weighting function, 

with greater loss aversion associated with less elevation (or more pessimism). Figure 

3.1b illustrates that the salience sensitivity parameter 𝜂 seems to affect the degree of 

curvature of the weighting function (or likelihood insensitivity), with higher 𝜂 

related to greater likelihood insensitivity. Figure 3.1c illustrates that utility function 

parameter 𝛼  seems to have an impact on both elevation and curvature of the 

weighting function, with w seemingly more elevated and less curved when the utility 

function for gains is more concave.   

Although it is easy to see that the implied probability weighting function now 

depends on the outcomes x and y, it is only affected by the relative outcome spacing, 

or the ratio x/y. For example, doubling both x and y would have no impact on w. As 

illustrated in Figure 3.1d, the larger the ratio x/y is, the more elevated the weighting 

is, indicating greater optimism about the upside of risk. It is worth mentioning that 

the weighting function of Proposition 1 has a specific implication about how relative 

outcome spacing x/y affects the decision weighting: For individuals with concave 

utility functions (i.e. 0< 𝛼<1), their weighting functions are generally more elevated 
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Figure 3.1: Plotting 𝑤(𝑝) and manipulate different parameter values 

 

for (two-outcome) lotteries with larger relative outcome spacing, whereas for those 

with convex utility functions (i.e. 𝛼 >1), their weighting functions are generally less 

elevated for (two-outcome) lotteries with larger relative outcome spacing7.  

                                                             
7 Although this implication is perhaps true only in our model and only when the utility function has the simplest 

power functional form, it points to an intuitive idea that the way probability weighting is sensitive to lottery 

𝛼 = 1, 𝜂 = 1 𝑦 = 0 

Figure 3.1a: Manipulating 𝜆 

 

𝛼 = 1, 𝜆 = 1.5, 𝑦 = 0 

Figure 3.1b: Manipulating 𝜂 

 

𝜂 = 1, 𝜆 = 1.5 𝑦 = 0 

Figure 3.1c: Manipulating 𝛼 

 

𝛼 = 0.8, 𝜂 = 1, 𝜆 = 1.5, 𝑦 ≠ 0 

Figure 3.1d: Manipulating 𝑥/𝑦  
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In general Proposition 1 gives an account of why the commonly-found 

inverse-S probability weighting function might have that form and why and how 

probability weighting are found to be affected by the spacing or relative sizes of 

outcomes. It is also implied that individual heterogeneity of the weighting function 

found in experiments may be closely related to individual difference in their utility 

function curvature 𝛼, degree of salience sensitivity 𝜂, and degree of loss aversion 

𝜆.  

So far we have been considering positive lottery outcomes. Next consider 

negative outcomes8. Let 𝑐− denote the decision maker’s money valuation of the 

lottery (𝑥,  𝑝;  𝑦,  1 − 𝑝), where 𝑥 < 𝑦 ≤ 0 and 1 > 𝑝 > 0. 

 

Table 3.4: The money valuation decision problem (negative payoffs) 

 
State 1  

p 

State 2  

1-p 

The Lottery 𝑥 𝑦 

Certainty (reference point) 𝑐− 𝑐− 

 

Under our theory, this indifference means the equation 

 

𝜔1𝑣(𝑥 − 𝑐−) + 𝜔2𝑣(𝑦 − 𝑐−) = 0                                             (3.7) 

 

Our result regarding negative payoffs and probability weighting is shown in the 

proposition below (proofs provided in Appendix 3.2), which also gives a 

CPT-equivalent of our theory in the domain of loss. It shows how our theory can 

explain a specific pattern of difference between probability weighting for gains and 

losses, under Assumption 1 and 2. 

 

                                                                                                                                                                             
outcomes would depend on the curvature of the decision maker’s utility function over the outcomes or attitude 

towards the outcomes. Proof of this implication is provided in Appendix 3.3. 
8 Here positive outcomes basically refer to the case where lottery outcomes are gains of money, and negative 

outcomes refer to the case where lottery outcomes are losses of money. But, under our theoretical framework, in 

each case it is possible for an outcome to lie either side of the reference-point. For the decision maker, a positive 

outcome can be treated as a loss if it lies below her reference point, and a negative outcome can be treated as a 

gain if it lies above the reference point.  
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Proposition 2 Consider an agent’s valuation of the lottery (𝑥,  𝑝;  𝑦,  1 − 𝑝), where 

𝑥 < 𝑦 ≤ 0 and 1 > 𝑝 > 0. The following two statements are equivalent:  

(i) The agent has a utility function 𝑣(𝑥) as specified in Assumption 2 and his 

valuation of the lottery is determined by equations (3.2), (3.4), (3.7); 

(ii) The agent has the same utility function 𝑣(𝑥)  but behaves according to 

Cumulative Prospect Theory with 𝑟 = 0 (i.e. status quo) and with the probability 

weighting function: 

 

𝑤(𝑝)− =
[−𝑔(𝑝)−𝑥 − (1 − 𝑔(𝑝)−)𝑦]𝛼 − (−𝑦)𝛼

(−𝑥)𝛼 − (−𝑦)𝛼
 

where  

𝑔(𝑝)− =
𝑝

1
𝛼(𝜂+1)

𝜆−
1
𝛼(1 − 𝑝)

1
𝛼(𝜂+1) + 𝑝

1
𝛼(𝜂+1)

 

 

We can see by comparing Proposition 2 to Proposition 1 that the difference 

between the implied probability weighting for gains and losses comes from loss 

aversion9. Loss aversion is relevant both when x, y > 0 and when x, y < 0, because, in 

both cases, a consequence may exceed or fall short of the reference point. But, as 

Propositions 1 and 2 show, how 𝜆 enters the implied probability weighting function 

is subtly different in the two cases.  

When there is no loss aversion (i.e. 𝜆 = 1), 𝑔(𝑝) = 𝑔(𝑝)−, and the shape of 

𝑤(𝑝) and 𝑤(𝑝)− will be exactly the same given the values of the other parameters. 

When 𝜆 > 1 , 𝜆−
1

𝛼 < 𝜆
1

𝛼  for any 𝑝 ∈ (0,1)  and any 𝛼 > 0 , so that 𝑔(𝑝)− >

𝑔(𝑝) for any given 𝑝. Since 𝑤(. ) is an increasing function of 𝑔(𝑝), 𝑔(𝑝)− >

𝑔(𝑝) entails 𝑤− > 𝑤, for any 𝑝. In other words, under Assumption 1, our theory 

predicts that probability weighting for losses is generally more elevated (implying 

greater pessimism) than for gains, as illustrated in Figure 3.2. This is very intuitive 

because under CPT, the probability weighting function depicts probability weights 

                                                             
9 Note the difference between the denominators of 𝑔(𝑝) and 𝑔(𝑝)−. The two weighting functions 𝑤(𝑝) and 

𝑤(𝑝)− are identical, except for having different 𝑔(. ) functions. And that the only difference in the latter is the 

sign of the exponent on 𝜆 in the denominator. 
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associated with the largest gain or the largest loss, which corresponds to State 1 in 

 

 

 

 

Figure 3.2: Comparing 𝑤(𝑝) and 𝑤(𝑝)− with specific parameter values 

 

Table 3.3 and Table 3.4. However, State 1 is a state of gain in the case of gain (Table 

3.3) but a state of loss in the case of loss (Table 3.4). Due to loss aversion, the State 1 

in Table 3.3 is less salient than the State 1 in Table 3.4 given any probability 𝑝. This 

𝛼=0.8,  𝜂=1, 𝜆=1.5, 𝑦=0 

Figure 3.2a 

𝛼=1.2,  𝜂=1, 𝜆=1.5, 𝑦=0 

Figure 3.2b 

𝛼=1.2,  𝜂=1, 𝜆=2, 𝑦=0 

Figure 3.2c 
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implies a more elevated weighting function for loss under CPT.  

Figure 3.2 also illustrates that the size of the gap seems to be larger either when 

𝛼 is smaller (to see this compare Figure 3.2a and 3.2b) or when 𝜆 is larger (to see 

this compare Figure 3.2b and 3.2c). In the literature, while probability weighting has 

been widely found to be inverse-S shaped for both gains and losses, the difference 

between these two seems to be much less patterned. Although there are many 

findings that the weighting function for loss is more elevated than that for gains (e.g. 

Tversky  & Kahneman 1992, Abdellaoui 2000, Kusev et al 2009) as implied by 

Proposition 2, there are also evidence where it is not (e.g. Lattimore et al 1992, 

Bruhin et al 2010).  

We speculate that this mixture of evidence might be accounted for once we 

relax or change our assumptions underlying Proposition 2. For example, besides loss 

aversion, another source of the gap between probability weighting for gains and 

losses may be the asymmetry in the utility function curvature (i.e. allowing 𝛼 to be 

different for gains and losses), which has been typical in the literature. In addition, if 

the domain of outcomes turns out to be another contextual factor influencing the 

determination of reference points (i.e. allowing Assumption 1 to be different for 

gains and losses), there can also be more variations of this gap, depending on how 

the domain of outcomes affect the determination of reference points.  

Unlike other theories that simply allow for probability weighting to be different 

for gains and losses, our theory provides a framework within which such a difference 

is endogenous and predicted. Proposition 1 and 2 together show how one of those 

factors, loss aversion, can explain one of the most prevalent patterns found in the 

literature that probability weighting for loss is generally more elevated than for gains. 

We have shown that a typical decision maker, who has a slightly concave utility 

function (e.g. 𝛼 around 0.8), is slightly loss-averse (e.g. 𝜆 around 1.5), and is 

moderately sensitive to payoff salience (e.g. 𝜂 around 1), can exhibit the typical 

patterns of empirically observed probability weighting functions.  
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3.3.2 Binary choices and probability weighting 

 

As has been shown, our theory implies the appearance of inverse-S shaped 

probability weighting in the case of money valuations because there small (large) 

probabilities are often associated with more (less) salient states when a two-outcome 

lottery is being evaluated against some sure amounts of money. An interesting 

follow-up question would be, how about other cases than money valuations? In this 

part we discuss our theoretical implications about probability weighting in the case 

of binary choices between lotteries, or specifically the case where probability 

weighting is measured using binary choice data. We denote this decision context as 

Lottery-vs-Lottery (L-vs-L for short). Although money valuation data such as 

Certainty-Equivalents is popular for researchers, a significant part of empirical 

studies of probability weighting use binary choice data (e.g. Lattimore et al. 1992, 

Harrison & Rutström 2009, Hey et al. 2010). Somewhat surprisingly, in most of 

these studies, the inverse-S pattern of probability weighting is not dominant.  

Our theory implies distinctive features of probability weighting in the case of 

binary choices. Specifically, probability weighting can be much less regular and the 

weighting function can exhibit a variety of shapes depending on the lotteries used in 

the tasks. This result is based on two differences between the L-vs-C context (money 

valuations) and the L-vs-L context (binary choices). First, the status quo seems to be 

a more natural reference point when there is no certainty in the choice set (as 

specified in Assumption 1). Second, as the number of state increases from two to 

more, in the latter case, states with small probabilities need no longer be associated 

with greater salience. For example, consider two stochastically independent lotteries 

A= (𝑥1, p; 𝑥3, 1-p) and B= (𝑥2, q; 𝑥3, 1-q) where 𝑥1>𝑥2>𝑥3 and p < q. As will be 

clear in Table 3.5 below, probability p is associated with two states 1 and 2. Even if p 

is small and State 2 is salient enough to draw disproportionally high attention (i.e. to 

be overweighted), State 1 may be underweighted because it can be less salient than 

State 2 and State 3. As a result, the net effect of outcome salience on probability p 
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may be positive or negative, leading to respectively overweighting or underweighting. 

Following this reasoning, small probabilities are no longer always overweighted and 

large probabilities need not be underweighted. 

 

Table 3.5:  A Lottery-vs-Lottery choice problem 

 

State 1 

pq 

State 2 

p(1-q) 

State 3 

(1-p)q 

State 4 

(1-p)(1-q) 

Lottery A 𝑥1 𝑥1 𝑥3 𝑥3 

Lottery B 𝑥2 𝑥3 𝑥2 𝑥3 

 

Therefore, we can show that, under CPT, a decision maker can be found to have 

a non-inverse-S probability weighting function in this case10. Specifically, the shape 

of the underlying weighting function will depend on the outcomes and probabilities 

of the lotteries in the choice set. Take Lottery A and B in Table 3.5 as an example. 

Our theory predicts that, ceteris paribus, the probability p is more likely to be 

overweighted (underweighted) when 𝑥2 is closer (further) to 𝑥3. This is because 

when 𝑥2 is closer to 𝑥3, the difference between 𝑥1 and 𝑥2 is larger and State 1 

becomes more salient. The probability p is also more likely to be overweighted 

(underweighted) when, ceteris paribus, q is smaller (larger). This is because State 1 

occurs with probability pq. Suppose State 1 is assigned a distorted decision weight, 

i.e. a decision weight higher than its probability pq, due to its outcome salience. The 

larger q is relative to p, the more this distortion can be seen as attributed to the 

distorted probability weight of q than to the distorted probability weight of p. 

Symmetrically, whether probability q is overweighted or underweighted depends on 

all the other lottery parameters, (i.e, 𝑥1, 𝑥2, 𝑥3, and p) in a similar way.   

An interesting implication of this result is that we can potentially manipulate the 

shape of the underlying probability weighting function we try to measure by 

manipulating the set of lottery parameters (𝑥1 , 𝑥2 , 𝑥3 , p, q) we use to elicit 

preferences. Moreover, we can roughly identify conditions of these parameters for 

                                                             
10 For analytical results see Appendix 3.4. 
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different patterns of probability weighting. For example, we would expect that, 

fixing 𝑥1  and 𝑥3 , there exists a set of (𝑥2 , p, q) such that probability p is 

underweighted and probability q is overweighted, which is consistent with the S 

shape of probability weighting11. The sensitivity of probability weighting to the 

lottery parameters also means that preferences between lotteries are sensitive to these 

parameters. For example, for a typical choice of trade-off where people choose 

between a small probability to win a large prize and a large probability to a small 

prize, we predict that preferences can be extremely sensitive to the relative sizes of 

the prizes and probabilities. It may be a mistake to think either that most people 

would choose the latter because of risk aversion or that they would prefer most of the 

time the former because small probabilities are overweighted.  

 

 

3.4 Concluding Remarks 

 

3.4.1 A summary 

 

In this chapter we propose a potential explanation for why, under CPT, people appear 

to have non-linearly probability weighting functions and why these functions are 

typically found to be: (i) inverse-S shaped, (ii) different for the domain of gains and 

losses, (iii) sensitive to the spacing or relative sizes of outcomes. There is also 

evidence, though less well-known, that the patterns of measured probability 

weighting seem to be sensitive to the type of tasks used to elicit preferences. Some of 

these evidences cannot be well accounted for by PT or CPT, or any theory that 

imposes a single context-independent probability weighting function.  

We provide a theory of attention-based state weighting as our explanation and 

have shown how this theory fits into the findings about probability weighting. Rather 

than proposing specific functional forms for probability weighting, with Proposition 

                                                             
11 For analytical results see Appendix 3.4. 
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1 and 2 we aim at illustrating, under some specific assumptions, that what has been 

seen as probability weighting (and also the inverse-S shape of the probability 

weighting function) may simply be a result of the attention-based state weighting 

mechanism, in which deviations of decision weights from probabilities come from 

disproportionate allocations of decisional attention.  

The two propositions show that an agent who behaves according to our theory 

can exhibit the typical inverse-S probability weighting function with its shape 

determined by the agent’s utility function parameter, degree of loss aversion, salience 

sensitivity, the reference point, and the level and spacing of outcomes, when 

probability weighting is measured from money valuation tasks. In addition, Section 

3.3.2 presents an intuition for the implication that the implied probability weighting 

function can exhibit any shape depending on the agent’s utility function parameter, 

salience sensitivity, and the lottery probabilities and payoffs, when probability 

weighting is measured using binary choice tasks. The key message from that section 

are that probability weighting can be sensitive to decision contexts (such as to the 

types of experimental tasks) and that our theory can provide an account for such 

context-sensitivity.  

Again, our theoretical results challenge the popular understanding of decision 

weighting as reflecting a certain type of intrinsic attitudes towards probabilities. We 

prefer to interpret decision weighting as a result of both intrinsic imprecise 

perception of probabilities and the attention-based state-weighting heuristic induced 

in typical decision contexts under risk. The former makes it possible for the latter to 

play a role. We think that in light of the accumulating experimental findings of 

context-dependent decision weighting, our theory provides a more intuitive and 

systematic account for the evidence than a theory that simply imposes different 

weighting function for different decision contexts.  

 

 

3.4.2 Prospects for experimental tests 
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The theory we present has a wide scope for experimental tests. The first testable 

implication is that decision weights are affected by not only outcome ranks but also 

(relative) outcome spacing, as implied by Proposition 1. Most straightforwardly, 

since our theory has a CPT-equivalent (Proposition 1 and 2), it can explain most of 

the experimental evidences which CPT could explain, and also some of the evidence 

that CPT couldn’t. This is mainly because our theory implies the appearance of 

probability weighting in forms that vary with factors that would be irrelevant under 

CPT. Therefore we consider our theory a ‘best-buy’ alternative of CPT. We think 

that our theory can do better, both descriptively and predictively, in fitting 

experimental data of choice under risk, with an equal or even less number of 

parameters than what CPT would require.  

It would be more interesting to test the novel implications of our theory. One 

important implication is the differentiation between valuation tasks and choice tasks 

in terms of their probability weighting patterns. We suggest that the inverse-S pattern 

of probability weighting is rather stable for money valuation tasks, but very sensitive 

to the lottery parameters in choice tasks. Consequently, we can vary the lotteries used 

in choice tasks to manipulate the probability weighting function measurements we 

obtain from the choice tasks. We think this is a simple way to test our theory. 

Another interesting scope for test relates to the well-known preference reversal 

phenomenon. Our theory provides an explanation for the standard pattern of 

preference reversal: its persistence is largely due to a stable and dominant preference 

for the $-bet (i.e. a small probability to win a large prize) over the P-bet (a large 

probability to win a small prize) in money valuation tasks. This preference is stable 

and dominant because when preferences are revealed through money valuation tasks, 

small (large) probabilities tend to be seen as overweighted (underweighted). 

Therefore, people always have a tendency to put a higher money value on the $-bet. 

However, our theory predicts that preferences (for the P-bet) in choice tasks are less 

dominant and can easily be altered when the lottery parameters are different. As a 

result, the rate of standard preference reversal can somehow be manipulated by 
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manipulating the lotteries used to elicit preferences. Furthermore, our theory predicts 

that the preference for the $-bet may become much less dominant if we use 

non-money valuation tasks. For example, if we used probabilistic valuations instead, 

where people evaluate a lottery with another lottery, the decision context essentially 

becomes a Lottery-vs-Lottery case and the prevalence of the standard preference 

reversal may disappear12.  

Finally, we think that our assumption about context-dependent reference points 

also generates some interesting implications. For instance, under Assumption 1, we 

would find a potential link between loss aversion and probability weighting, 

particularly the component representing the degree of pessimism or optimism. 

However, our theory predicts that loss aversion plays a role only in money valuation 

tasks but not in binary choice tasks, because of a shift of reference points (from the 

status quo) to the sure money options. Although it is certainly unsurprising that a 

change of reference points often leads to systematic changes of behaviors, we think it 

is important to recognize that in experimental settings subjects’ reference points 

often deviate from the status quo and that these deviations often follow some 

regularities. It would be very helpful to identify these regularities and utilize them to 

explain experimental behaviors. 

 

 

 

 

 

 

 

 

 

                                                             
12 Cubitt et al (2004) use probabilistic valuation tasks as well as monetary valuation tasks, and found markedly 

different patterns of preference reversal relative to choice in the two cases. See also Butler and Loomes (2007) for 

a similar result.  
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Appendices for Chapter 3 

 

Appendix 3.1 Proof of Proposition 1 

 

For Proposition 1, let 𝑐 denote the decision maker’s money value of the lottery 

(𝑥,  𝑝;  𝑦,  1 − 𝑝), where 𝑥 > 𝑦 ≥ 0 and 1 > 𝑝 > 0. So probability weighting is 

measured based on indifference between the lottery and c. The following table is the 

same as Table 3.3. 

 

 

State 1 

p 

State 2 

1-p 

The Lottery 𝑥 𝑦 

Certainty (reference point) 𝑐 𝑐 

 

We first start with our theory. The indifference implies the equation 

𝜔1𝑣(𝑥 − 𝑐) + 𝜔2𝑣(𝑦 − 𝑐) = 0 

which is, under Assumption 1 and 2, 

𝜔1𝑣(𝑥 − 𝑐) − 𝜔2𝜆𝑣(𝑐 − 𝑦) = 0    

𝑜𝑟 

  
𝜔1

𝜔2
=

𝜆𝑣(𝑐 − 𝑦)

𝑣(𝑥 − 𝑐)
                                                       (3.8) 

According to equation (3.3), the left-hand side of equation (3.8) is equal to 

𝑝

1 − 𝑝
∙ (

𝜑1

𝜑2
)

𝜂

 

where  
𝜑1

𝜑2
=

𝑣(𝑥−𝑐)

𝜆𝑣(𝑐−𝑦)
. Equation (3.8) can be written as  

𝑝

1 − 𝑝
∙ (

𝑣(𝑥 − 𝑐)

𝜆𝑣(𝑐 − 𝑦)
)

𝜂

=
𝜆𝑣(𝑐 − 𝑦)

𝑣(𝑥 − 𝑐)
 

Rearrange this we have  

𝑝

1 − 𝑝
= (

𝜆𝑣(𝑐 − 𝑦)

𝑣(𝑥 − 𝑐)
)𝜂+1                                               (3.9) 

Under our theory, equation (3.9) can be seen as the simplified preference condition 
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for the decision problem in Table 3.4. Notice that equation (3.9) holds regardless of 

whether State 1 or State 2 is more salient to the decision maker. Now under the 

assumption of the power utility function 𝑣(. ), we have  

𝑝

1 − 𝑝
= (

𝜆(𝑐 − 𝑦)𝛼

(𝑥 − 𝑐)𝛼
)𝜂+1 

Now we do a series of rearrangements: 

𝑝

1 − 𝑝
= (

𝜆(𝑐 − 𝑦)𝛼

(𝑥 − 𝑐)𝛼
)𝜂+1 

                                  ⇒            (
𝑝

1 − 𝑝
)

1
𝛼(𝜂+1) =

𝜆
1
𝛼(𝑐 − 𝑦)

𝑥 − 𝑐
 

                                  ⇒            (
𝑝

1 − 𝑝
)

1
𝛼(𝜂+1)

(𝑥 − 𝑐) = 𝜆
1
𝛼(𝑐 − 𝑦) 

                                  ⇒            𝑐 =
(

𝑝
1 − 𝑝)

1
𝛼(𝜂+1)

𝑥 + 𝜆
1
𝛼𝑦

(
𝑝

1 − 𝑝)

1
𝛼(𝜂+1)

+ 𝜆
1
𝛼

 

which is further equivalent to  

𝑐 =
𝑝

1
𝛼(𝜂+1)

𝑝
1

𝛼(𝜂+1) + 𝜆
1
𝛼(1 − 𝑝)

1
𝛼(𝜂+1)

𝑥 +
𝜆

1
𝛼(1 − 𝑝)

1
𝛼(𝜂+1)

𝑝
1

𝛼(𝜂+1) + 𝜆
1
𝛼(1 − 𝑝)

1
𝛼(𝜂+1)

𝑦 

 

Now define  

𝑔(𝑝) ≡
𝑝

1
𝛼(𝜂+1)

𝜆
1
𝛼(1 − 𝑝)

1
𝛼(𝜂+1) + 𝑝

1
𝛼(𝜂+1)

                                      (3.10) 

Since we have assumed that 𝜆 > 0, 𝛼 > 0, 𝜂 ≥ 0, and 0 < 𝑝 < 1, we would have 

0 < 𝑔(𝑝) < 1. Now equation (3.9) is equivalent to: 

𝑐 = 𝑔(𝑝)𝑥 + (1 − 𝑔(𝑝))𝑦                                                   (3.11) 

Take the power of 𝛼 to both sides of equation (3.11) we have  

𝑐𝛼 = [𝑔(𝑝)𝑥 + (1 − 𝑔(𝑝))𝑦]𝛼                                              (3.12) 

Now let the right-hand side of (3.12) be equal to 𝑤(𝑝)𝑥𝛼 + (1 − 𝑤(𝑝))𝑦𝛼, where 
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𝑤(𝑝) is a probability weighting function as in CPT. We can then solve for 𝑤:  

𝑤 =
[𝑔(𝑝)𝑥 + (1 − 𝑔(𝑝))𝑦]𝛼 − 𝑦𝛼

𝑥𝛼 − 𝑦𝛼
                                      (3.13) 

In other words, equation (3.12) is equivalent to  

𝑣(𝑐) = 𝑤(𝑝)𝑣(𝑥) + (1 − 𝑤(𝑝))𝑣(𝑦)                                   (3.14) 

where 𝑣(. ) = (. )𝛼 and 𝑤(𝑝) specified as in equation (3.13).  

 

Now we start with CPT, i.e. equation (3.14), (3.13) and (3.10), and show that the 

preference condition of our theory, i.e. equation (3.9), can be obtained.   

With power utility function and equation (3.12), (3.13) can be written as 

𝑐𝛼 =
[𝑔(𝑝)𝑥 + (1 − 𝑔(𝑝))𝑦]𝛼 − 𝑦𝛼

𝑥𝛼 − 𝑦𝛼
𝑥𝛼 +

𝑥𝛼 − [𝑔(𝑝)𝑥 + (1 − 𝑔(𝑝))𝑦]𝛼

𝑥𝛼 − 𝑦𝛼
𝑦𝛼 

which can be simplified to 

𝑐𝛼(𝑥𝛼 − 𝑦𝛼) = [𝑔(𝑝)𝑥 + (1 − 𝑔(𝑝))𝑦]
𝛼

(𝑥𝛼 − 𝑦𝛼) 

Since x>y and 𝛼 > 0, we have 𝑥𝛼 − 𝑦𝛼 > 0. Hence 

𝑐𝛼 = [𝑔(𝑝)𝑥 + (1 − 𝑔(𝑝))𝑦]𝛼 

And since c>0 and 𝑔(𝑝)𝑥 + (1 − 𝑔(𝑝))𝑦 > 0, we can remove the power on both 

sides to get equation (3.11): 

𝑐 = 𝑔(𝑝)𝑥 + (1 − 𝑔(𝑝))𝑦                                              (3.11) 

Since 0 < 𝑝 < 1, 𝑔(𝑝) can be written as, by dividing both the numerator and 

denominator by (1 − 𝑝)
1

𝛼(𝜂+1), 

𝑔(𝑝) =
(

𝑝
1 − 𝑝)

1
𝛼(𝜂+1)

(
𝑝

1 − 𝑝)

1
𝛼(𝜂+1)

+ 𝜆
1
𝛼

                                               (3.15) 

Combining equation (3.11) and (3.15), we have 
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𝑐 =
(

𝑝
1 − 𝑝)

1
𝛼(𝜂+1)

𝑥 + 𝜆
1
𝛼𝑦

(
𝑝

1 − 𝑝)

1
𝛼(𝜂+1)

+ 𝜆
1
𝛼

 

Rearrange this we have  

(
𝑝

1 − 𝑝
)

1
𝛼(𝜂+1)

(𝑥 − 𝑐) = 𝜆
1
𝛼(𝑐 − 𝑦) 

Since x>c, this is equivalent to  

(
𝑝

1 − 𝑝
)

1
𝛼(𝜂+1) =

𝜆
1
𝛼(𝑐 − 𝑦)

𝑥 − 𝑐
 

Take the power of 𝛼(𝜂 + 1) to both sides and we have equation (3.9) 

𝑝

1 − 𝑝
= (

𝜆𝑣(𝑐 − 𝑦)

𝑣(𝑥 − 𝑐)
)𝜂+1 

By this we have shown that whether we start with CPT or our theory, we end up with 

the other preference condition. So Proposition 1 is proved. ∎ 

 

 

Appendix 3.2 Proof of Proposition 2 

 

Now consider the domain of loss. let 𝑐− denote the decision maker’s money value 

of the lottery (𝑥,  𝑝;  𝑦,  1 − 𝑝), where 𝑥 < 𝑦 ≤ 0 and 1 > 𝑝 > 0. The following 

table is the same as Table 3.4 

 

 

State 1 

p 

State 2 

1-p 

The Lottery 𝑥 𝑦 

Certainty (reference point) 𝑐− 𝑐− 

 

Under our theory, this indifference means the equation 

𝜔1𝑣(𝑥 − 𝑐−) + 𝜔2𝑣(𝑦 − 𝑐−) = 0 

which is now equivalent to 
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−𝜔1𝜆𝑣(𝑥 − 𝑐−) + 𝜔2𝑣(𝑐− − 𝑦) = 0   𝑜𝑟   
𝜔1

𝜔2
=

𝑣(𝑐− − 𝑦)

𝜆𝑣(𝑥 − 𝑐−)
 

Following similar procedures as we do in the proof of Proposition 1, we have the 

rearranged preference condition in this case: 

𝑐− = 𝑔(𝑝)−𝑥 + (1 − 𝑔(𝑝)−)𝑦                                             (3.16) 

where 

𝑔(𝑝)− =
𝑝

1
𝛼(𝜂+1)

𝜆−
1
𝛼(1 − 𝑝)

1
𝛼(𝜂+1) + 𝑝

1
𝛼(𝜂+1)

                                     (3.17) 

Again, consider the CPT preference condition in this case. There is a weighting 

function for loss, 𝑤(𝑝)−, and a value function as specified in Assumption 2, such 

that 

𝜆(−𝑐−)𝛼 = 𝑤(𝑝)−𝜆(−𝑥)𝛼 + (1 − 𝑤(𝑝)−)𝜆(−𝑦)𝛼                           (3.18) 

Further rearrange (3.16) to be 

(−𝑐−)𝛼 = [𝑔(𝑝)−(−𝑥) + (1 − 𝑔(𝑝)−)(−𝑦)]  𝛼                            (3.19) 

Let equations (3.18) and (3.19) be equivalent and solve for 𝑤(𝑝), we have  

𝑤(𝑝)− =
[−𝑔(𝑝)−𝑥 − (1 − 𝑔(𝑝)−)𝑦]𝛼 − (−𝑦)𝛼

(−𝑥)𝛼 − (−𝑦)𝛼
                         (3.20) 

Hence, starting with our theory, we have obtained an equivalent representation of 

CPT, i.e. equations (3.18) and (3.20). Similar to our proof of Proposition 1, we can 

also start with equations (3.17), (3.18), and (3.20) and obtain the preference 

condition of our theory. Proposition 2 can be proved accordingly.  

 

 

Appendix 3.3 Proof of Proposition 1’s implication 

 

Proposition 1 implies that, for two-outcome lotteries (x, p; y, 1-p), where x>y>0 and 

0<p<1, the decision weight of x (i.e. function w), is an increasing function of the 

ratio x/y when 0 < 𝛼 < 1 (i.e. concave utility function), but a decreasing function 

of the ratio x/y when 𝛼 > 1. Here’s the proof.  
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Let x/y = z. Then w can be rewritten as  

𝑤 =
[𝑔(𝑝)𝑧 + 1 − 𝑔(𝑝)]𝛼 − 1

𝑧𝛼 − 1
 

For a given probability p and a given decision maker, we can treat 𝑔(𝑝) and 𝛼 as 

exogenous parameters, so that w(.) can be seen as a function of 𝑧: 

𝑤(𝑧) =
(𝑔𝑧 + 1 − 𝑔)𝛼 − 1

𝑧𝛼 − 1
 

Since 𝑔 ∈ (0,1), 𝛼 > 0, and 𝑧 > 1, 𝑤(𝑧) is differentiable. Then we check the 

FOC for its monotonicity. 

𝑤′(𝑧) =
𝛼𝑔(𝑧𝛼 − 1)(𝑔𝑧 + 1 − 𝑔)𝛼−1 − 𝛼𝑧𝛼−1((𝑔𝑧 + 1 − 𝑔)𝛼 − 1)

(𝑧𝛼 − 1)2
 

Since (𝑧𝛼 − 1)2 > 0, we have 𝑤′(𝑧) ≶ 0 if and only if 

𝛼𝑔(𝑧𝛼 − 1)(𝑔𝑧 + 1 − 𝑔)𝛼−1 ≶ 𝛼𝑧𝛼−1((𝑔𝑧 + 1 − 𝑔)𝛼 − 1) 

Now let ℎ = 𝑔𝑧 + 1 − 𝑔. Since z >1 and 𝑔 ∈ (0,1), we have z > h > 1. The 

inequality above now becomes 

𝛼𝑔(𝑧𝛼 − 1)ℎ𝛼−1 ≶ 𝛼𝑧𝛼−1(ℎ𝛼 − 1) 

Rearrange this we have 

𝑔 ≶
ℎ −

1
ℎ𝛼−1

𝑧 −
1

𝑧𝛼−1

 

Now define function 𝑓(𝑡) = 𝑡 −
1

𝑡𝛼−1  with the domain 𝑡 ≥ 1 . Obviously this 

function is continuous and at least two times differentiable on its domain. Now we 

check its concavity/convexity. 

𝑓′′(𝑡) = 𝛼(1 − 𝛼)𝑡−𝛼−1 

Since 𝛼 > 0  and 𝑡 ≥ 1 , we know that 𝑡−α−1 > 0 , so that the sign of 𝑓′′(𝑡) 

depends on the sign of  (1 − 𝛼).  

When 𝛼 > 1, 𝑓′′(𝑡) < 0, function 𝑓(𝑡) is concave on the domain. According 

to concavity, we have that for any 𝑡1, 𝑡2 within the domain, and for any 𝜃 ∈ (0,1), 

𝑓((1 − 𝜃)𝑡1 + 𝜃𝑡2) > (1 − 𝜃)𝑓(𝑡1) + 𝜃𝑓(𝑡2) 

Now let 𝑡1 = 𝑧 ,  𝑡2 = 1 , and 𝜃 =
𝑧−ℎ

𝑧−1
. Since 𝑓(1) = 0 , the inequality above 
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becomes 

𝑓 ((1 −
𝑧 − ℎ

𝑧 − 1
) 𝑧 +

𝑧 − ℎ

𝑧 − 1
) > (1 −

𝑧 − ℎ

𝑧 − 1
) 𝑓(𝑧) 

which can be simplified to 

𝑓(ℎ) > (1 −
𝑧 − ℎ

𝑧 − 1
) 𝑓(𝑧) 

Since ℎ = 𝑔𝑧 + 1 − 𝑔, we have 

𝑓(ℎ) > (1 −
𝑧 − ℎ

𝑧 − 1
) 𝑓(𝑧) = (1 −

𝑧 − 𝑔𝑧 − 1 + 𝑔

𝑧 − 1
) 𝑓(𝑧) = 𝑔𝑓(𝑧) 

Therefore we have 

𝑓(ℎ)

𝑓(𝑧)
> 𝑔 

and hence 

𝑔 <
ℎ −

1
ℎ𝛼−1

𝑧 −
1

𝑧𝛼−1

 

and hence w′(z) < 0. So when 𝛼 > 1, w(p) is a decreasing function of z, which is 

the ratio x/y. 

When 0 < 𝛼 < 1, we can see that 𝑓′′(𝑡) > 0, and 𝑓(𝑡) is convex on the 

domain. And we will have  

𝑔 >
ℎ −

1
ℎ𝛼−1

𝑧 −
1

𝑧𝛼−1

 

as well as 𝑤′(𝑧) > 0. So when 0 < 𝛼 < 1, w(p) is an increasing function of the 

ratio x/y. ∎ 

 

 

Appendix 3.4 Analytical analysis of the case of binary choice tasks 

 

To support our statements in Section 3.3.2, we again examine the CPT equivalent of 

our theory in the case of binary choices. The table below is the same as Table 3.5. 
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State 1 

pq 

State 2 

p(1-q) 

State 3 

(1-p)q 

State 4 

(1-p)(1-q) 

Lottery A 𝑥1 𝑥1 𝑥3 𝑥3 

Lottery B 𝑥2 𝑥3 𝑥2 𝑥3 

 

However, unlike in the previous case where a whole CPT-equivalent weighting 

function can be derived, we can now only obtain the CPT-equivalent probability 

weights (because one choice does not reveal the decision maker’s value of the 

lotteries). The following proposition shows the properties of these probability 

weights, with a focus on the domain of positive payoffs. 

 

Proposition 3 Consider an agent’s choice between lotteries A= (𝑥1, p; 𝑥3, 1-p) and 

B= (𝑥2 , q; 𝑥3 , 1-q) where 𝑥1 >𝑥2>𝑥3 ≥ 0 and 0<p<q<1. The following two 

statements are equivalent: 

(i) The agent has a utility function 𝑣(𝑥) as specified in Assumption 2, a reference 

point as specified in Assumption 1, and his preference over the two lotteries are 

determined by equations (3.2), (3.4), (3.5); 

(ii) The agent has the same utility function 𝑣(𝑥)  but behaves according to 

Cumulative Prospect Theory with 𝑟 = 0 (i.e. status quo) and with the following 

weights w(p) and w(q) assigned respectively to outcome 𝑥1  of lottery A and 

outcome 𝑥2 of lottery B: 

𝑤(𝑝) = 𝑝 ∙ 𝑇𝑝  &  𝑤(𝑞) = 𝑞 ∙ 𝑇𝑞 

where 

𝑇𝑝 =
𝑞𝐿1,2 + (1 − 𝑞)𝐿1,3

𝑝𝑞𝐿1,2 + 𝑝(1 − 𝑞)𝐿1,3 + 𝑞(1 − 𝑝)𝐿2,3
 

 

𝑇𝑞 =
𝑝𝐿1,2 + (1 − 𝑝)𝐿2,3

𝑝𝑞𝐿1,2 + 𝑝(1 − 𝑞)𝐿1,3 + 𝑞(1 − 𝑝)𝐿2,3
 

 

and 𝐿1,2 = (𝑣(𝑥1) − 𝑣(𝑥2))𝜂 , 𝐿1,3 = (𝑣(𝑥1) − 𝑣(𝑥3))𝜂  and 𝐿2,3 = (𝑣(𝑥2) −

𝑣(𝑥3))𝜂. 



CHAPTER 3 

92 
 

The key message of this proposition is that in this context, whether and how 

much a probability is overweighted or underweighted depends not only on the 

probabilities and outcomes of the lottery being valued, but also on the probabilities 

and outcomes of the alternative lottery in the choice set. For example, p is 

overweighted (underweighted) if 𝑇𝑝> (<) 1, and the size of 𝑇𝑝 depends on all the 

variables of the choice problem: 𝑥1, 𝑥2, 𝑥3, p, and q. Small probabilities now need 

not be overweighted because a small p does not necessarily lead to 𝑇𝑝> 1. The 

similar analysis applies for q. We can roughly examine how these variables affect the 

probability weights with some assumption about the value of 𝜂. For simplicity, we 

assume 𝜂 = 1 (which has been shown to give an inverse-S shaped probability 

weighting in valuation tasks with typical values of 𝛼 and 𝜆). Then it can be shown 

that:  

1. 𝑇𝑝 is a decreasing function of q and an increasing function of 𝐿1,2. This means 

that, ceteris paribus, when 𝑥2  decreases (getting closer to 𝑥3 ) or q decreases 

(getting closer to p), probability p is more and more likely to be overweighted.  

2. 𝑇𝑞 is a decreasing function of p and an increasing (decreasing) function of 𝐿1,2 if 

p >(<) 0.5. For similar reasons, the larger p is, the less likely that q gets overweighted. 

In addition, given 𝑥1  and 𝑥3 , as 𝐿1,2  increases, 𝐿2,3  has to decrease. Since 

probability q is related to the two states with outcome pairs (𝑥1, 𝑥2) and (𝑥2, 𝑥3), its 

weight will be increasing in 𝐿1,2 only if the increase of 𝐿1,2 has greater effect on 

𝑇𝑞 than the decrease of 𝐿2,3. This requires p > 0.5.  

From Proposition 3 we can also roughly identify conditions for 𝑇𝑝 and 𝑇𝑞 that 

are consistent with different shapes of the underlying probability weighting function. 

For example, consider only four types of the weighting function: Inverse-S type, S 

type, Overweighting type (i.e. all probabilities are overweighted) and 

Underweighting type (all probabilities are underweighted). Since p < q, if p is 

overweighted and q underweighted, we can think that the underlying probability 

weighting function is consistent with the Inverse-S type. Similarly, if p is 

underweighted and q overweighted, the underlying probability weighting function is 

consistent with the S type. If both are overweighted or underweighted, the underlying 
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probability weighting function cannot be identified. Specifically, we can derive the 

approximate conditions from this proposition for different types of probability 

weighting. This is shown in the table below, with the first row and first column 

listing the corresponding conditions. 

 

Table 3.6: Approximate conditions for different types of implied probability weighting 

 𝐿1,3 > 2𝑞𝐿2,3 𝐿1,3 < 2𝑞𝐿2,3 

p > 0.5 Inverse-S type not Overweighting type 

p < 0.5 not Underweighting type S type 

 

In a typical choice between a small probability of winning large prize and large 

probabilities of small prize, the typical preference for the latter can be consistent with 

the S type probability weighting as p is small and q is large. For example, consider 

the preference-reversal-type choice between the lottery (£10, 0.4; £0, 0.6) and (£5, 

0.8; £0, 0.2). The underlying weighting function for this choice will be consistent 

with the S type if (𝑣(10) − 𝑣(0))𝜂 < 1.6(𝑣(5) − 𝑣(0))𝜂, which can hold with a 

concave utility function.    

 

 

Appendix 3.5 Proof of Proposition 3 

 

The table below is the same as Table 3.5. 

 

 

State 1 

pq 

State 2 

p(1-q) 

State 3 

(1-p)q 

State 4 

(1-p)(1-q) 

Lottery A 𝑥1 𝑥1 𝑥3 𝑥3 

Lottery B 𝑥2 𝑥3 𝑥2 𝑥3 

 

We begin with our theory, according to which, A is preferred to B if 
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𝜔1(𝑣(𝑥1) − 𝑣(𝑥2)) + 𝜔2(𝑣(𝑥1) − 𝑣(𝑥3)) + 𝜔3(𝑣(𝑥3) − 𝑣(𝑥2)) > 0 

which can be rearranged to be 

(𝜔1 + 𝜔2)𝑣(𝑥1) + 𝜔3𝑣(𝑥3) > (𝜔1 + 𝜔3)𝑣(𝑥2) + 𝜔2𝑣(𝑥3)                       (3.21) 

Now consider the preference condition from Cumulative Prospect Theory. According 

to CPT, A is preferred to B if there is a probability weighting function 𝑤(. ) such 

that 

𝑤(𝑝)𝑣(𝑥1) + (1 − 𝑤(𝑝))𝑣(𝑥3) > 𝑤(𝑞)𝑣(𝑥2) + (1 − 𝑤(𝑞))𝑣(𝑥3)               (3.22) 

For condition (3.21) to be equivalent to (3.22), we have 

𝑤(𝑝)

1 − 𝑤(𝑝)
=

𝜔1 + 𝜔2

𝜔3
  &  

𝑤(𝑞)

1 − 𝑤(𝑞)
=

𝜔1 + 𝜔3

𝜔2
   

Solving for 𝑤(𝑝) and 𝑤(𝑞), we obtain 

𝑤(𝑝) =
𝜔1 + 𝜔2

𝜔1 + 𝜔2 + 𝜔3
=

1 +
𝜔2

𝜔1

1 +
𝜔2

𝜔1
+

𝜔3

𝜔1

 

 

𝑤(𝑞) =
𝜔1 + 𝜔2

𝜔1 + 𝜔2 + 𝜔3
=

1 +
𝜔3

𝜔1

1 +
𝜔2

𝜔1
+

𝜔3

𝜔1

 

According to equation (3.3), we have 

𝑤(𝑝)

=
𝑝𝑞(𝑣(𝑥1) − 𝑣(𝑥2))

𝜂
+ 𝑝(1 − 𝑞)(𝑣(𝑥1) − 𝑣(𝑥3))

𝜂

𝑝𝑞(𝑣(𝑥1) − 𝑣(𝑥2))
𝜂

+ 𝑝(1 − 𝑞)(𝑣(𝑥1) − 𝑣(𝑥3))
𝜂

+ (1 − 𝑝)𝑞(𝑣(𝑥2) − 𝑣(𝑥3))
𝜂 

 

𝑤(𝑞)

=
𝑞𝑝(𝑣(𝑥1) − 𝑣(𝑥2))

𝜂
+ 𝑞(1 − 𝑝)(𝑣(𝑥2) − 𝑣(𝑥3))

𝜂

𝑝𝑞(𝑣(𝑥1) − 𝑣(𝑥2))
𝜂

+ 𝑝(1 − 𝑞)(𝑣(𝑥1) − 𝑣(𝑥3))
𝜂

+ (1 − 𝑝)𝑞(𝑣(𝑥2) − 𝑣(𝑥3))
𝜂 

 

Now define 𝐿1,2 , 𝐿1,3  and 𝐿2,3  such that 𝐿1,2 ≡ (𝑣(𝑥1) − 𝑣(𝑥2))𝜂 , 𝐿1,3 ≡

(𝑣(𝑥1) − 𝑣(𝑥3))𝜂 and 𝐿2,3 ≡ (𝑣(𝑥2) − 𝑣(𝑥3))𝜂, we have 
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𝑤(𝑝) =
𝑝𝑞𝐿1,2 + 𝑝(1 − 𝑞)𝐿1,3

𝑝𝑞𝐿1,2 + 𝑝(1 − 𝑞)𝐿1,3 + 𝑞(1 − 𝑝)𝐿2,3
 

 

𝑤(𝑞) =
𝑞𝑝𝐿1,2 + 𝑞(1 − 𝑝)𝐿2,3

𝑝𝑞𝐿1,2 + 𝑝(1 − 𝑞)𝐿1,3 + 𝑞(1 − 𝑝)𝐿2,3
 

 

Rearrange the equations to be 

𝑤(𝑝) = 𝑝 ∙
𝑞𝐿1,2 + (1 − 𝑞)𝐿1,3

𝑝𝑞𝐿1,2 + 𝑝(1 − 𝑞)𝐿1,3 + 𝑞(1 − 𝑝)𝐿2,3
 

 

𝑤(𝑞) = 𝑞 ∙
𝑝𝐿1,2 + (1 − 𝑝)𝐿2,3

𝑝𝑞𝐿1,2 + 𝑝(1 − 𝑞)𝐿1,3 + 𝑞(1 − 𝑝)𝐿2,3
 

 

and define  

𝑇𝑝 ≡
𝑞𝐿1,2 + (1 − 𝑞)𝐿1,3

𝑝𝑞𝐿1,2 + 𝑝(1 − 𝑞)𝐿1,3 + 𝑞(1 − 𝑝)𝐿2,3
 

 

𝑇𝑞 ≡
𝑝𝐿1,2 + (1 − 𝑝)𝐿2,3

𝑝𝑞𝐿1,2 + 𝑝(1 − 𝑞)𝐿1,3 + 𝑞(1 − 𝑝)𝐿2,3
 

 

Proposition 3 is proved. ∎ 
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Chapter 4: An Experimental Study of 

Outcome-sensitive Decision Weighting    
 

 

 

4.1 Introduction 

 

An enormous body of experimental and field evidence (for surveys see e.g. Starmer 

2000, Wakker 2010) has indicated descriptive limitations of the Expected Utility 

Theory (EU). The most popular alternatives to EUT belong to the family comprising 

Prospect Theory (PT henceforth, Kahneman & Tversky, 1979) and Cumulative 

Prospect Theory (CPT henceforth, Tversky and Kahneman 1992). A convenient 

feature of these models is that they retain the classical 'dual' structure of EUT, in the 

sense of having two components capturing, respectively, attitudes towards outcomes 

and towards probabilities. Unlike EUT, they model subjectivity toward probability 

through a probability weighting function which can be non-linear. In CPT, they also 

distinguish between decision weights and probability weights, with the former 

depending on the latter as well as on ranks of outcomes. Probability weighting has 

received many interpretations, but since PT, it has been widely understood as 

reflecting the intrinsic human attitude towards, or psychophysics of, chance 

(Kahneman & Tversky, 1984; Gonzalez & Wu, 1999).  

The probability weighting function has been extensively investigated, both 

theoretically (e.g. Diecidue et al. 2009; Prelec 1998) and empirically. The most 

typical and widely found empirical result is an inverse-S shaped probability 

weighting function at the aggregate level (Abdellaoui 2000; Lattimore et al. 1992; 

Tversky & Kahneman 1992). However, evidence has been accumulating that the 

probability weighting functions may also sometimes be non-inverse-S (e.g. Alarié 
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and Dionne 2001; Humphrey and Verschoor 2004; Harbaugh et al. 2002) and to be 

dependent on non-probabilistic factors, such as people’s demographic characteristics 

(such as gender, e.g. Fehr-Duda et al. 2006; or age, e.g. Harbaugh et al. 2002), on 

their emotional state (e.g. Fehr et al. 2007), on the nature of outcome (whether it is 

gain or loss) (e.g. Abdellaoui 2000), on stake sizes (e.g. Fehr-Duda et al. 2010), and 

on the emotional or affective content of the payoffs (e.g. Rottenstreich and Hsee 

2001). Apart from the distinction between gains and losses, none of these factors is 

suggested by CPT, and the effects of stake sizes are inconsistent with it, unless they 

conform to the specific rank-dependent formulation of CPT. These factors are only 

consistent with the psycho-physical mechanisms to the extent they are mediated 

through perceptual mechanisms. 

This evidence challenges our common understanding of the decision weighting 

function as the intrinsic part of individual decision-making under uncertainty and can 

hardly reconcile with PT or CPT, if decision weights do not only depend on 

probabilities or ranks of outcomes. Indeed, Tversky and Kahneman (1992) have 

implicitly expressed their concern about this:  

“…despite its greater generality, the cumulative functional is unlikely to be 

accurate in detail. We suspect that decision weights may be sensitive to the 

formulation of the prospects, as well as to the number, the spacing and the level of 

outcomes. In particular, there is some evidence to suggest that the curvature of the 

weighting function is more pronounced when the outcomes are widely spaced.”  

Note that, in this passage, they use ‘decision weights’ instead of ‘probability 

weights’, because if the dual structure of the decision model is retained, the former is 

a more accurate description of the weight attached to the value of outcomes. They 

mention four non-probabilistic factors that they thought might systematically affect 

decision weighting, two of which will be our focus: outcome spacing and outcome 

level. Outcome spacing is the size of gaps, in the case of monetary outcomes, 

between possible outcomes of a gamble, and outcome level refers to the general 

stake level or the expected payoff level of a gamble.  

The effect of these two factors on decision weighting has been indirectly shown 
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in some experimental studies1. However, we are aware of only a few studies that 

explicitly investigate the question of whether and how outcome level and outcome 

spacing affect decision weighting. For example, Etchart-Vincent (2004, 2009) 

studied this question for the domain of losses. She found that, compared to small-loss 

gambles, large-loss gambles appear to enhance probabilistic optimism (or lower the 

decision weight of the worst outcome), while larger outcome spacing tends to 

increase pessimism (or decrease the decision weight of the best outcome). Fehr-Duda 

et al. (2010) studied the effect of stake level and find that, in the domain of gains, 

decision weights of the best lottery outcome are generally smaller for high-stake 

gambles than for low-stake ones, indicating that the effect of stake levels on decision 

weighting may contribute to the well-known evidence that risk aversion increases 

with stake levels (e.g. Binswanger 1981, Holt & Laury 2002), They also find that in 

the domain of losses, stake level has little effect on decision weighting. While their 

studies suggest outcome spacing and levels may affect decision weighting, they 

didn't isolate the two effects from one another. The two factors interact with each 

other and both can affect decision weighting. In other words, the change of a lottery’s 

outcome spacing (level) could be accompanied with its change in outcome level 

(spacing). To examine the effect of either of the two factors, we need to control for 

the other one.  

The primary goal of this chapter is to investigate experimentally whether and 

how outcome level and spacing, in the domain of gain, affect decision-weighting. 

More importantly, we will separate the effect of outcome level on decision weighting 

from the effect of outcome spacing, with the help of a clean experimental control. If 

decision weights are found to depend on outcome level and outcome spacing, it lends 

support to the theory presented in Chapter 3, in which Proposition 1 predicts the 

implied probability weighting function to be outcome-sensitive. However, please 

note that this experiment is not primarily designed to test our theory or to distinguish 

it from other theories of risk, although our experimental data would allow for a 

convenient test of one of the implications of Proposition 1 from the theory of Chapter 
                                                             
1 See for example: Allais 1988, p. 243; Camerer 1992, p. 237; Harless and Camerer 1994, p. 1282. 
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3, which predicts that the effect of outcome spacing on decision weights vary with 

the utility curvature of the decision maker (see Appendix 3.3). In Section 4.4.4 we 

present the result of this test.  

For simplicity, we consider only two-outcome lotteries in the form of {x, p; y, 

1-p} with p being a probability, x and y being monetary outcomes, and x>y>0. 

Particularly we investigate how the decision weight attached to the best outcome x 

vary with lottery outcome level and outcome spacing.  

In this chapter, outcome level of a lottery is defined as its expected payoff level, 

and outcome spacing of a lottery is defined as the relative outcome difference, i.e. the 

ratios of its best outcome to its worst outcome x/y. We investigate relative rather than 

absolute outcome spacing because the theory presented in Chapter 3 has specific 

predictions regarding how relative outcome spacing affects decision weighting. In 

addition, it seems more intuitive that relative rather than absolute outcome spacing is 

more likely to affect decision weighting. For example, consider two lotteries {£11, 

0.3; £1, 0.7} and {£1000, 0.3; £990, 0.7}, which have the same absolute outcome 

spacing but dramatically different relative outcome spacing. A gap of £10 would 

probably be perceived as much more salient in the first lottery than the latter. We 

think this is likely to result in that people attach different weights to the best outcome 

of the first lottery and to that of the second lottery, even if outcome level has no 

effect on decision weighting. In contrast, PT and rank-dependent utility theories 

including CPT would predict that for lotteries {x, p; y, 1-p} with x>y, the decision 

weights attached to x should be independent of both x and the ratio x/y, provided p is 

held constant and variation in x and y does not affect either their ranking or their 

signs.  

We report an econometric analysis of the data from a new experiment designed 

to test this prediction and a contrary prediction of the theory presented in Chapter 3. 

We apply econometric methods to estimate the behavioral model parameters of 

subjects, with a focus on the estimated decision weights attached to outcome x. Our 

main experimental finding is that, in general, outcome spacing has a systematic effect 

on decision weighting at both aggregate and individual levels, whereas outcome level 
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only has a systematic effect at individual level. For a given probability p, the 

estimated decision weights on x are generally smaller for lotteries with larger 

outcome spacing, and also smaller for lotteries with higher outcome levels. The 

theory from Chapter 3 is consistent with our data, but no strong conclusion can be 

drawn from our results about the implication of relations between utility curvature 

and the effect of outcome spacing.  

The remainder of the chapter is organized as follows. Section 4.2 describes the 

experiment. Section 4.3 explains our theoretical framework and data analysis strategy. 

Results are reported and discussed in Section 4.4. The last section concludes. 

 

 

4.2 Experimental Design 

 

A key step in our experimental design is construction of four sets of lotteries, two of 

which differ in outcome levels and the other two in outcome spacing. We elicit each 

subject's Certainty Equivalents (CEs) for all lotteries in these sets. The four sets of 

lotteries have the following features2:  

 

Set 1, with high average expected payoffs and high average x/y ratios;  

Set 2, with low average expected payoffs and high average x/y ratios;  

Set 3, with high average expected payoffs and low average x/y ratios;  

Set 4, with low average expected payoffs and low average x/y ratios.  

 

Table 4.1: The basic design structure 

 
High Payoff Low Payoff 

High Spacing 
Set 1 

(8 lotteries) 

Set 2 

(8 lotteries) 

Low Spacing 
Set 3 

(8 lotteries) 

Set 4 

(8 lotteries) 

                                                             
2 For a full list of the lotteries see Appendix 4.1. 
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As shown in Table 4.1, Set 1 and 2 together make Set HS (High Spacing), Set 3 and 

4 together make Set LS (Low Spacing), Set 1 and 3 together make Set HP (High 

Payoff), and Set 2 and 4 together make Set LP (Low Payoff). To examine the effect 

of outcome spacing, we estimate subjects’ preference parameters with HS lotteries 

and LS lotteries respectively, and compare the results. Similarly, by comparing 

preference parameters estimated with HP and LP lotteries we can know the effect of 

outcome level on decision weighting.  

While the HS (HP) lotteries have generally higher x/y ratios (expected payoffs) 

than LS (LP) lotteries, it is important that there is also variability, with respect to 

both the payoff ratio and payoff level, for lotteries within each set, mainly because of 

the data analysis strategy we adopt. The reason for this will be better explained after 

we have introduced our econometric methods in the next section. As mentioned 

before, a key feature of our design is the capability to isolate the potential effect of 

outcome spacing from that of outcome level. To achieve this, we define Sets HP and 

LP in such a way that they have statistically indistinguishable distributions of lottery 

payoff ratio x/y, and define Sets HS and LS in such a way that they have statistically 

indistinguishable distributions of lottery expected payoffs. In this sense we can 

investigate the effect of either of the two factors while controlling for the other. 

 

Table 4.2 shows that, statistically, HS and LS lotteries only differ in their 

distributions of the ratio x/y but not in their distributions of expected payoffs, and 

that statistically, HP and LP lotteries only differ in their distributions of expected 

payoffs but not in their distributions of ratio x/y. The technique we used is 

Mann-Whitney two-sample test with the null hypothesis that the two samples have 

the same distribution3.  

 

 

 
                                                             
3 For details of the statistics of the x/y ratio and expected payoffs of lotteries of each set, see Appendix 4.1. 
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Table 4.2: P-values of hypothesis tests regarding properties of different sets of lotteries  

Lottery Probability 
 On ratio x/y  On expected payoff 

 𝐻0: HS=LS 𝐻0: HP=LP  𝐻0: HS=LS 𝐻0: HP=LP 

p=0.09  0.000 0.993  0.993 0.000 

p=0.21  0.000 1.000  1.000 0.000 

p=0.33  0.000 0.993  0.993 0.000 

 

Again, all lotteries are in the form of {x, p; y, 1-p} with x>y>0. We use three 

probabilities: p=0.09, 0.21, 0.33, and for each probability there are 32 lotteries 

divided into sets in the way shown in Table 4.1 as discussed above. We chose small 

probabilities spread across the range that previous studies have shown most likely to 

be overweighted, mainly because according to literature, the decision weights of 

these small probabilities seem to be more sensitive to lottery outcomes than moderate 

or large probabilities (e.g Etchart-Vincent 2004, Fehr-Duda et al 2010, Vieider et al. 

2013). We had three probability levels primarily because we want to introduce some 

probability variance to the lotteries to prevent subjects potentially from forming 

some very simple decision heuristics, which may arise if they see only a single 

probability throughout the experiment. In addition, the variance in probability levels 

can also serve as a robustness check for our results. On the other hand, since our 

design is within-subject, we did not want to have too many different probabilities 

because each extra value of p requires another 32 CE tasks for subjects to complete 

and we don’t want subjects to face too many tasks.  

It is worth mentioning that we have spent considerable efforts on simulation 

tests to determine the details of our design and to ensure that our design works well 

with our econometric methods. Specifically, simulation tests helped us to arrive at 

suitable design choices, such as the number of lotteries in each set, the range of the 

x/y ratios and expected payoffs in each set, and the extent to which the HS (HP) and 

LS (LP) sets differ in their distributions of the x/y ratios (expected payoffs). To be 

more precise, these design choices are made such that our econometric methods can 

recover or back out the preference parameters of interest with simulated subjects’ CE 
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data4. The current version of design we use has the highest chance to achieve this 

goal among all the versions we have tried5.  

The experimental task for subjects is to report their CEs of each of the 96 

lotteries6. Figure 4.1 shows the type of task subjects saw. Lotteries were displayed on 

the left as a pie chart, and to make the task as simple as possible to subjects, we let 

them make their decisions by entering their CE of the lottery into the textbox on the 

right. They can enter any money amount (i.e. in pound and pence) between the 

lowest and highest money payoffs of the corresponding lottery. The order of the 96 

tasks was randomized for each subject. 

 

 

Figure 4.1: A sample CE-task screen 

 

For each subject, the CE task for one randomly selected lottery was 

payoff-relevant. To incentivize subjects to truthfully report their CEs, we asked 

subjects to pick an envelope from a box of sealed envelopes before the experiment 

started, and told them that the envelope contains the information about their 

                                                             
4 We define ‘recover’ as follows: the preference parameters are recovered if the distributions of the estimated 

parameters (over simulated virtual subjects) are statistically indistinguishable from the true parameter 

distributions, i.e. the parameter distributions we simulated. The simulations of virtual subjects were based on 

assumptions of normally distributed behavioral parameters, in our case, typical CPT model parameters. 
5 With each version of design, we simulated 40 samples each containing 40 subjects, applied our econometric 

method, and checked how many samples out of the 40 would pass our test. A sample passes our test if all 

parameter distributions we have simulated are recovered with this sample. The current version of the design had 

the best performance (26 out of 40 samples passed the test).  
6 As can be seen from Figure 4.1, we asked subjects to state the amount they see just as good as the lottery, 

instead of using the term Certainty Equivalent. Incentives are explained below. 
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payoff-relevant lottery and about an offer of an amount of sure money. Subjects are 

told that the payoff-relevant lottery could be any of the 96 lotteries they would see in 

the experiment, and the amount of offer could be any between the lowest and highest 

prizes of the payoff-relevant lottery. They were then told that they will play the 

payoff-relevant lottery if their reported CE of this lottery is larger than their offer of 

sure money, and they will receive the offer if their stated CE is equal to or less than 

their offer. The whole payoff determination process was carefully explained in the 

experimental instructions (see Appendix 4.4) to make sure subjects understood it 

clearly. In addition, we also introduced a quiz before the main tasks to test subjects’ 

understanding of the tasks and the incentive scheme, and they were not allowed to 

start the main tasks unless they have answered all the quiz questions correctly.  

The experiment was run at the CeDEx laboratory at the University of 

Nottingham. 96 student subjects participated in this experiment with an average 

payoff of £18.20 including a show-up fee of £3. They were placed into five separate 

sessions. For each session, subjects first picked an envelope from a full set of 96 

(corresponding to the 96 lotteries in the experiment). Within each session, however, 

subjects picked the envelopes one by one without replacement, and at the same time 

they were told not to open the envelope until instructed. Then they read the 

instructions, completed the quiz, and proceeded to the experimental tasks. There was 

no time limit for completing a single task or all tasks. After all subjects have finished 

their tasks, they were asked to open their envelope and enter the indicated lottery 

code and amount of offer into the computer7. The program would retrieve subjects’ 

decisions and show them their final payoff. For those who were to play the lottery, 

they were then offered to draw a chip from a bag of 100 chips, numbered from 1 to 

100. The association between chip numbers and monetary outcomes was given to 

subjects in the initial description of the lottery, as the left hand panel of figure 4.1 

illustrates. Each session took approximately an hour.  

 

                                                             
7 The experimenter would check whether subjects have entered their code and offer truthfully before they 

received their payment. All subjects did enter the information truthfully. 
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4.3 Data Analysis Strategy 

 

Our theoretical framework is more general than CPT, in the sense that decision 

weights are not restricted to be only probability-dependent or rank-dependent. 

Consider a lottery (x, p; y, 1-p) with x and y being outcomes (x>y>0) and p being a 

probability. Let the value of such lottery be represented by  

 

𝑉 = 𝑤𝑥𝑣(𝑥) + (1 − 𝑤𝑥)𝑣(𝑦)                     (4.1) 

 

where 𝑤𝑥 is the decision weight of the best outcome x, and 𝑣(. ) is an increasing 

utility function of monetary outcomes.  

The econometric method we use is semi-parametric estimation, which has been 

widely used in preference elicitation studies such as Viscusi and Evans (2006) and 

Abdellaoui et al. (2011a). In other words, we estimate point decision weights along 

with utility parameters without assuming a parametric form of the weighting function. 

We choose this method mainly for two reasons. First, as mentioned earlier, we focus 

on specific small probabilities, so we don't require the whole probability-weighting 

function. Secondly, our core interest lies in comparing the estimated sizes of decision 

weights between HS and LS lotteries, and between HP and LP lotteries, and 

estimating decision weights directly would allow us to make comparisons of decision 

weights more straightforwardly, and probably more precisely than inferring them 

from estimated parameters of an assumed weighting function.   

Our basic econometric model is represented by equation (4.1), with a power 

utility function 𝑣(𝑚) = 𝑚𝛼, where m is a monetary outcome. The power utility 

function is probably the most popular parametric family for fitting utility (Wakker, 

2008). The advantage of a power utility function is that it can be conveniently 

interpreted and has also turned out to be the best compromise between parsimony 

and goodness of empirical fit in the context of prospect theory (Stott 2006). In 

addition, some studies have shown that for decision contexts of small and moderate 
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payoffs, the power utility function fits no worse than alternative classes of functions 

(e.g. Abdellaoui et al. 2008) such as the exponential or the ‘expo-power’ class first 

proposed by Saha (1993)).  

So for binary lotteries, (x, p; y, 1-p) with x>y>0, we estimate the following 

model for each given p and for each of the four sets of lotteries (HS, LS, HP and LP): 

 

𝑐𝑒 = 𝑐𝑒̂ + 𝜖                             (4.2) 

where 

𝑐𝑒̂ = (𝑤𝑥𝛼 + (1 − 𝑤)𝑦𝛼)1/𝛼                     (4.3) 

 

For convenience we use w to denote the decision weight on the best lottery outcome 

x. The right hand side of equation (4.3) gives the CE obtained by applying the 

appropriate indifference condition to equation (4.1).  

It is a standard practice to assume that individuals’ decisions are noisy (e.g. 

Loomes 2005). There may be different sources of error, such as carelessness, hurry or 

inattentiveness, and in our setup, imprecise preferences (Hey and Orme, 1994). 

Moreover, as Harbaugh et al. (2010) suggest, failing to account for decision errors 

may significantly affect estimated risk preference parameters in ways that are 

task-dependent. To be specific, while decision errors are usually assumed to be 

normally distributed with zero mean, the error variance is more likely to be 

task-dependent. Given the nature of our elicitation task, we allow for two different 

sources of decision error heteroskedasticity8. First, each individual has to consider 96 

lotteries with various payoff ranges. Since the observed certainty equivalent 𝑐𝑒 is 

stated by subjects and is forced to be between the largest and smallest payoffs of the 

lottery, it is very likely that the error is proportional to the payoff range. Secondly, 

since our approach models a representative agent’s behavior, an individual’s decision 

will most likely depart from the average prediction. As subjects may be 

heterogeneous with respect to their ability to find their true certainty equivalent, we 

allow, and expect, the error variance to differ by individual. Our error specification is 

                                                             
8  Many studies have used heteroskedastic decision errors, such as Hey (1995), Blavatskyy (2007), and 

Fehr-Duda et al. (2010). In addition, Loomes (2005) has discussed reasons why it might be too restricted for 

models that have a stochastic component to impose constant decision error variance. 
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therefore: 

 

ϵ~𝑁(0, (𝑥 − 𝑦)𝜎2) 

 

where the error variance, (𝑥 − 𝑦)𝜎2, is proportional to the payoff range of lotteries.  

To sum up, our data analysis strategy is to estimate equations (4.2) and (4.3), 

with respect to three parameters: 𝛼 (power utility), w (decision weight of the best 

outcome) and 𝜎 (payoff-range-independent error parameter9). For each individual 

and each probability p=0.09, 0.21, 0.33, we have data comprising 32 CE values, and 

we did four estimations: one with HS lotteries, one with LS lotteries, one with HP 

lotteries and one with LP lotteries. By comparing the parameter estimates from the 

HS group and the LS group, we can see how relative outcome spacing (or the ratio 

x/y) of lotteries affect decision weights, and by comparing the parameter estimates 

from the HP group and the LP group, we can see how the expected payoff level of 

lotteries affect decision weights. In section 4.4, we report both aggregate-level 

analysis, in which we pooled all the individual data together and performed the same 

four estimations for each of the three probabilities, and individual-level analysis. 

The estimation technique we use is Maximum Likelihood Estimation (MLE). 

Unlike Fehr-Duda et al. (2010) or Bruhin et al. (2010), we didn’t use the finite 

mixture regression model to account for individual heterogeneity for two reasons. 

First, the mixture model is very complex, and as they discussed, various problems 

may be encountered when maximizing the likelihood function of a finite mixture 

regression model, and it is normal that not all of these problems can be solved. 

Secondly, they used the finite mixture regression model to account for non-CPT type 

behaviors, whereas our basic model is already more general than CPT, as explained 

earlier. Compatible with this more general theoretical framework is the use of 

semi-parametric method in which our estimated decision weights need not be 

consistent with CPT. 

 

 
                                                             
9 For simplicity we will call 𝜎 the error parameter throughout the chapter. 
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4.4 Results 

 

We first report aggregate level results, then individual level results. For the latter, we 

also report and discuss the results of a robustness check. Finally we discuss the 

results regarding the test of the implication of my theory from Chapter 3. As we 

consider only two outcome lotteries (x, p; y, 1-p) with x>y, we will simply use 

‘decision weight’ to refer to ‘the decision weight attached to outcome x’ in this 

section.  

 

4.4.1 Aggregate Level Results  

 

Before we present our econometric results, we first report a general, and model-free, 

indicator of our subjects' revealed risk attitudes. The Relative Risk Premium index, 

RRP=(CE-EV)/EV, is calculated for each CE data point we obtained. Notice that 

slightly different from most of the literature (e.g. Dyer & Sarin 1982, Bruhin et al. 

2010) we have defined RRP so that a positive value corresponds to risk-seeking 

behavior and a negative one to risk-averse behavior. Although this is unusual, it is 

convenient in the light of the results to be reported.  

Generally subjects are risk-seeking, consistent with the fourfold pattern of risk 

attitudes predicted by Prospect Theory with an inverse-S shaped probability 

weighting function, that people are risk seeking for small probabilities of gains. They 

are more risk-seeking for HS lotteries than for LS lotteries, less risk-seeking for HP 

lotteries than for LP lotteries, and less risk seeking as probability of the best outcome 

increases. 
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Figure 4.2: Average RRP for different probabilities and different sets of lotteries 

 

Figure 4.2 shows the average RRP for all the 96 subjects over all lotteries of a 

given set and a given probability level. Since on average subjects are risk-seeking 

(according to this measure), it is unsurprising that people are more risk-seeking for 

HS lotteries than for LS lotteries, as shown on the left panel of Figure 4.2, because 

lotteries with high spacing have a larger x/y ratio and can be seen as more risky than 

lotteries with low spacing, when the probabilities of getting x are the same. However, 

the size of gap between RRP of HS lotteries and RRP of LS lotteries are surprisingly 

large and statistically significant (two-sided t-test, for all three probabilities p-values 

are 0.000). We will show later that this is probably because most subjects exhibited 

convex utilities of money in our study. The right panel of Figure 4.2 shows that 

people are less risk-seeking when the expected payoffs of the lotteries are larger. The 

difference is significant for p=0.09 and 0.21 (two-sided t-test, p-values are 0.001 and 

0.024 respectively). This is consistent with the well-known finding (e.g. Kachelmeier 

& Shehata 1992, Beattie & Loomes 1997, Holt & Laury 2002) that people are less 

risk-seeking or more risk-averse when the stakes of bets are higher. 

We now turn to one of our major interests, namely, whether the parameter 

estimates are different for different sets of lotteries.  

 

Result 1: At aggregate level, 

(i) The estimated curvatures of the utility functions are not significantly different 
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between HS/LS lotteries or between HP/LP lotteries (for the majority of the cases);  

(ii) There is a tendency for each of the three probabilities to be overweighted. 

Decision weights are systematically10 lower for HS lotteries than for LS lotteries, but 

are not systematically different between HP/LP lotteries.  

(iii) Decision error parameter 𝜎 is systematically larger for HS and HP lotteries 

than for LS and LP lotteries. 

 

Table 4.3 shows the parameter estimation results with all subjects’ CE data 

pooled together. From this table we can see that, in most cases, the ‘representative’ 

subject exhibits convex utility functions, and in almost all cases, probabilities can be 

seen as overweighted, as all decision weights w(p) are larger than their corresponding 

probability p. For each probability, we performed the Likelihood-Ratio test for each 

of the six pairs of parameters (for details see Appendix 4.2). According to the test 

results, utility curvature is not significantly different for HS and LS lotteries when 

p=0.09 or 0.21, and is not significantly different for HP and LP lotteries when p=0.21 

or 0.33. Decision weights are significantly lower for HS than for LS lotteries when 

p=0.21 or 0.33, indicating a significant and systematic effect of outcome spacing on 

decision weighting.  

Somewhat surprisingly, the effect of outcome level on decision weighting is 

neither significant nor systematic at aggregate level. One possibility is that our 

manipulation of expected payoffs is not strong enough. In other words, if we enlarge 

the difference of expected payoffs between HP and LP lotteries, we may observe 

significant effect of outcome level on decision weighting. However, our study also 

brings another possibility: since existing studies of the effect of outcome level 

(mainly Etchart-Vincent 2004 and Fehr-Duda et al. 2010) did not explicitly control 

for potential effect of outcome spacing, their finding of a significant effect of 

outcome level on decision weighting might be driven by an effect of outcome 

                                                             
10 In our study, we say that an effect is systematic if for all three probability levels, the effect has the same 

direction, and for at least one of the three probabilities, the difference between parameter estimates is statistically 

significant. For example, the effect of outcome spacing is systematic because for all probability levels, w𝐻𝑆 is 

smaller than w𝐿𝑆 , and for p=0.21 and 0.33, w𝐻𝑆  are significantly different from w𝐿𝑆 . According to this 

definition, the effect of outcome level on decision weighting is not systematic at aggregate level. 



CHAPTER 4 

111 
 

spacing rather than outcome level.  

 

Table 4.3: Pooled estimation of the parameters for different sets of lotteries 

 Effect of Outcome Spacing   Effect of Payoff Level 

 p=0.09 p=0.21 p=0.33   p=0.09 p=0.21 p=0.33 

𝛼𝐻𝑆 1.258 

(0.164) 

1.317 

(0.175) 

1.369** 

(0.183) 

 𝛼𝐻𝑃 0.917** 

(0.100) 

1.021 

(0.097) 

1.147 

(0.103) 

𝛼𝐿𝑆 1.399 

(0.257) 

1.459 

(0.500) 

0.782** 

(0.474) 

 𝛼𝐿𝑃 1.385** 

(0.165) 

1.016 

(0.135) 

1.082 

(0.143) 

𝑤𝐻𝑆 0.262 

(0.030) 

0.307** 

(0.033) 

0.352** 

(0.037) 

 𝑤𝐻𝑃 0.300 

(0.021) 

0.359 

(0.020) 

0.393 

(0.020) 

𝑤𝐿𝑆 0.291 

(0.036) 

0.378** 

(0.038) 

0.461** 

(0.042) 

 𝑤𝐿𝑃 0.264 

(0.030) 

0.378 

(0.027) 

0.391 

(0.027) 

𝜎𝐻𝑆 1.623** 

(0.029) 

1.517** 

(0.027) 

1.493** 

(0.027) 

 𝜎𝐻𝑃 1.462** 

(0.026) 

1.324** 

(0.024) 

1.303** 

(0.023) 

𝜎𝐿𝑆 0.479** 

(0.030) 

0.499** 

(0.028) 

0.548** 

(0.028) 

 𝜎𝐿𝑃 0.846** 

(0.030) 

0.886** 

(0.029) 

0.914** 

(0.028) 

Note:  

1. Sample size N=96, so that for each estimation we have 1536 (96*16) observations;  

2. Standard error in parentheses;  

3. The parameter subscripts HS, LS, HP, and LP denote respectively the parameter 

estimations obtained with the HS lotteries, LS lotteries, HP lotteries and LP lotteries;  

4. For each given probability, there are six pairs of parameter estimates, (𝛼𝐻𝑆, 𝛼𝐿𝑆), 

(𝑤𝐻𝑆, 𝑤𝐿𝑆), (𝜎𝐻𝑆, 𝜎𝐿𝑆), (𝛼𝐻𝑃, 𝛼𝐿𝑃), (𝑤𝐻𝑃, 𝑤𝐿𝑃), and (𝜎𝐻𝑃, 𝜎𝐿𝑃); where the two 

elements of one of these pairs are statistically significantly different from one 

another at 5%, according to the Likelihood-Ratio test, this is denoted by ** attached 

to both elements.  

 

There is also a strong pattern of decision error variance between the different 
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lottery sets. The decision error parameter 𝜎 is systematically and significantly larger 

for HS lotteries and for HP lotteries. Given that HS and HP lotteries generally have 

larger payoff ranges (𝑥 − 𝑦)  than LS and LP lotteries respectively, the actual 

decision error variance of CE, (𝑥 − 𝑦)𝜎2, is even larger for HS and HP lotteries. It 

might be that our findings on 𝜎 reveal how people genuinely make mistakes under 

risk, but we cannot rule out that this result is partly a product of our design, in the 

sense that our elicitation method magnifies the payoff range effect on decision error 

variances. Although we are confident that our subjects did understand the 

experimental tasks and the incentive mechanism, it is arguable that for the purpose of 

preference elicitation, the valuation-based approach has its drawbacks (see e.g. 

Harrison 1992, Dave et al. 2010). It would therefore be interesting to know whether 

our results here are robust to the elicitation method, by using for example the 

choice-based approach instead of the valuation-based approach. We leave this for 

future research. 

 

 

4.4.2 Individual Level Results  

 

In the previous section we have only considered the results for the average decision 

maker. The parameter estimates of the pooled model may be misleading if there is 

substantial heterogeneity in the population. Therefore, we extend the analysis to 

account for individual heterogeneity in parameter estimates by applying the 

estimation strategy to each individual. 

We first calculated individuals’ average RRP over the 96 lotteries. Figure 4.3 

shows its distribution. 82.3% of the subjects are risk seeking (with positive average 

RRP). 
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Figure 4.3: Distribution of individual average RRP over all subjects 

 

To see the effect of outcome spacing and expected payoff level, we further 

calculated each individual’s average RRP over lotteries of each of the four sets, HS, 

LS, HP and LP, pooling lotteries of different probabilities. The mean, median, and 

standard deviations of individual RRP for each set of lotteries are shown in Table 4.4. 

 

Table 4.4: Statistics of individual average RRP for different lottery sets 

 Mean Median S.D. 

All Lotteries 0.29 0.25 0.32 

HS 0.51 0.43 0.59 

LS 0.06 0.05 0.06 

HP 0.26 0.20 0.33 

LP 0.32 0.27 0.32 

 

Moreover, the distributions of individual average RRP are presented in Figure 

4.4. Its left panel plots the distributions of individual average RRP for HS lotteries 

against LS lotteries, and the right panel shows the distributions of individual average 

RRP for HP lotteries against LP lotteries.  

 

CE=EV 
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Figure 4.4: Distribution of individual average RRP for different sets of lotteries 

 

Although by glancing at Figure 4.4 we can see that the effect of outcome 

spacing on RRP is much larger than the effect of expected payoff level, both pairs of 

distributions are significantly different at 5% according to the Wilcoxon 

Signed-Ranks test. The median of the average individual RRP is significantly larger 

for HS lotteries than for LS lotteries according to the sign test (p-value 0.000). We 

have checked whether this pattern also holds for risk averse subjects, and 

unsurprisingly the answer is no. For risk-averse subjects, their RRP is generally 

lower for HS lotteries than for LS lotteries. We can hence conclude that the overall 

result that people are more risk seeking for HS lotteries than for LS lotteries is 

mainly due to the fact that the majority of subjects in our study are risk seeking. The 

median of the average individual RRP is also significantly larger for LP lotteries than 

for HP lotteries (p-value 0.001). This is again consistent with the finding in the 

literature (e.g. Kuehberger et al. 1999, Holt & Laury 2002) that risk aversion 

(seeking) increases (decreases) with stake sizes.  

In terms of individual heterogeneity, the variance of individual average RRP is 

remarkably larger for HS lotteries than for LS lotteries, whereas it is almost the same 

between HP and LP lotteries. This is not surprising because in our design, the x/y 

ratio is much larger for LS than for HS lotteries, and we forced subjects’ reported CE 

HS median 0.43 

LS median 0.05 

HP median 0.20 

LP median 0.27 
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to be within the range (y, x). For example, for an LS lottery such as {£6, 0.21; £4, 

0.79}, the largest possible RRP is approximately 0.36, whereas for an HS lottery 

such as {£50, 0.21; 10, 0.79}, the RRP can be as high as 2.72.   

Now we report the parameter estimation results for each individual. Although 

96 subjects participated in our experiment, 12 of them were excluded from the 

individual analysis, because no MLE results can be obtained for them11. Hence the 

following results are based on a sample size of N=84. For each individual and each 

probability p, we did four estimations, with respectively CE data for HS, LS, HP and 

LP lotteries. In general, the individual-level results regarding the parameters are 

qualitatively consistent with aggregate-level results, but the former give us additional 

information about distributions of parameters and about level of individual 

heterogeneity. These results can be summarized below.  

 

Result 2: At individual level, 

(i) There is considerable heterogeneity in individual parameter estimates.  

(ii) Larger outcome spacing leads to smaller individual heterogeneity of utility 

curvature, a lower median decision weight, and both a larger median and greater 

individual heterogeneity of the decision error parameter.  

(iii) Outcome level generally has no systematic effect on utility curvature or decision 

weighting, but higher expected payoffs lead to a systematically larger median and 

greater individual heterogeneity of the decision error parameter.   

 

We will provide more details about the results of the parameter estimates one by 

one. Recall that for each individual we actually did 12 estimations, since we have 

three probabilities and for each probability we did four estimations with each of the 

four sets of lotteries (HS, LS, HP, LP). In what follows we will use 𝛽HS, 𝛽LS, 𝛽HP, 

and 𝛽LP to denote individual-level parameter estimates respectively for the four 

different sets of lotteries, where 𝛽 ∈ {𝛼, 𝑤, 𝜎} is one of the parameters of interest. 

                                                             
11 We used STATA for the MLE, and no convergence could be achieved for those 12 subjects thus no estimation 

results were recorded by STATA.  
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Utility Parameter 

 

The majority of subjects have convex utility functions for most of the estimations, as 

can be seen from Figure 4.5. It seems that this partly contributes to the risk-seeking 

behaviors of our subjects. There is much greater individual heterogeneity of the 

distribution of 𝛼̃LS than the distribution of 𝛼̃HS, although the medians of 𝛼̃HS and 

𝛼̃LS are only significantly different when p=0.33, according to Wilcoxon sign-test 

(p-value 0.000)12. Figure 4.5b shows the effect of expected payoff level on utility 

estimates. When p=0.09, the median 𝛼̃HP is significantly smaller than the median 

𝛼̃LP according to the sign-test (p-value 0.000), but the differences are not significant 

when p=0.21 (p-value 0.380) or p=0.33 (p-value 0.445). Similar results hold for both 

risk-seeking and risk-averse subjects.  

 

 

Figure 4.5a: Distributions of individual 𝛼̃HS and 𝛼̃LS for each probability 

 

                                                             
12 For more details of the statistical tests of this section concerning medians and distributions of individual-level 

parameter estimates, see Table 4.14 of Appendix 4.3.3. 
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Figure 4.5b: Distributions of individual 𝛼̃HP and 𝛼̃LP for each probability 

 

It is puzzling why there is much greater heterogeneity in the distribution of the 

estimated utility parameter for the LS lotteries than for HS lotteries, and with LS 

lotteries there are non-negligible negative utility parameter estimates. Such 

difference suggests that some of our subjects have substantially different utility 

estimates for HS and LS lotteries. There might be two explanations for this puzzling 

result. First, inconsistent with their decision attitude for HS lotteries, many subjects 

behaved more casually with LS lotteries, most probably because they cared less and 

paid less attention to their CE tasks when considering LS lotteries for which the best 

outcome and worst outcome do not differ much. For example, some of the subjects 

occasionally violated first-order stochastic dominance, that is, reported a higher CE 

for a (weakly) stochastically dominated lottery13. Since we have built in an error term 

to our model which is assumed to be normally distributed with zero mean, such 

occasional ‘crazy’ behaviors can hardly be captured by the error variance parameter 

if most of the errors are in the same direction. This may result in distortions of the 

estimated utility curvature, because for a given estimation, only x and y vary, but not 

the probability p, and lead to some psychologically implausible utility parameter 

estimates. Our data also shows that subjects who have negative 𝛼̃ estimates violated 

dominance more frequently than those with positive 𝛼̃ estimates.  

The second explanation could be that subjects behaved sensibly and consistently 

                                                             
13 These violations concern comparisons across CE tasks, not instances of CEs outside the range of payoffs of a 

given lottery. 
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with both HS and LS lotteries, but our estimation technique failed to recover their 

true parameters for LS lotteries. If the latter is true, it means that our estimation 

strategy probably cannot yield reliable, that is, unique and significant estimation 

results with binary lotteries that have a low x/y ratio. We did two things to try to rule 

out this possibility. First, as mentioned before, we did a simulation test to ensure that 

our estimation strategy works with our current lottery design, and the test shows that 

it works well. Secondly, we ran each estimations 20 times, (for both aggregate and 

individual level analysis), and can confirm that our estimation results are significant, 

and stable over the 20 replications.  

Given that the first explanation is favored, there is a possible concern that the 

inconsistency of utility estimates across lotteries sets would bias the estimates of 

decision weights and the error parameter. In other words, the systematic and 

significant effect of outcome spacing on decision weights and on decision error 

variance may be results of the individual difference of utility curvatures between HS 

and LS lotteries. However, in a later section we show that this is not the case 

according to our robustness checks. 

 

Decision Weight  

 

In terms of decision weights (attached to the best outcome of a lottery), the majority 

of subjects overweight p=0.09 and 0.21, and about a half of subjects overweight 

p=0.33, as Figure 4.6 shows. For all three probabilities 0.09, 0.21, and 0.33, the 

median 𝑤̃HS are significantly lower than the median 𝑤̃LS according to the sign-test 

(p-values 0.001, 0.000, 0.000, respectively), whereas there is no systematic 

difference between the median 𝑤̃HP and 𝑤̃LP. Specifically, only for p=0.09, are the 

median 𝑤̃HP and 𝑤̃LP differ significantly according to the sign-test (p-value 0.004), 

and the directions of the effect of expected payoff level are opposite for p=0.09 and 

p=0.21. 
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Figure 4.6a: Distributions of individual 𝑤̃HS and 𝑤̃LS for each probability 

 

 

Figure 4.6b: Distributions of individual 𝑤̃HP and 𝑤̃LP for each probability 

There is also no obvious difference in the level of individual heterogeneity across 

different sets of lotteries. Qualitatively similar results hold for both risk-seeking and 

risk-averse subjects. 

It seems that decision weights have stronger patterns at individual-levels than at 

aggregate-level, and that outcome spacing has greater and more predictable impact 

on decision weighting than expected payoff level does. As we have discussed, this is 

unsurprising given that our manipulation of payoff level difference is not strong 

compared to the literature (e.g. Kachelmeier & Shehata 1992, Fehr-Duda et al. 2010).  

What is more interesting is the direction of effect of outcome spacing. One 

might expect that the estimated w being higher for HS lotteries than for LS lotteries, 

because for the former the payoff gap (𝑥 − 𝑦) is much larger, so that outcome x 

would become much more attractive in HS lotteries than in LS lotteries, and that 
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people would tend to overweight the weight attached to x more. However, our results 

show the opposite, that people exhibit significantly higher decision weights for LS 

lotteries. We will show in a Section 4.4.4 that this finding on decision weights can 

potentially be accommodated by the theory presented in Chapter 3, in which 

Proposition 1 implies that the direction of the effect of outcome spacing on decision 

weights can depend on the utility parameter 𝛼. 

 

Decision Error Parameter 

 

The effects on decision error parameter 𝜎 are stronger and more stable than on the 

other two parameters. Consistent with the aggregate-level results, at individual level, 

subjects have significantly larger median 𝜎̃HS than 𝜎̃LS (p-value 0.000 for all three 

probabilities), and significantly larger median 𝜎̃HP than 𝜎̃LP (p-value 0.000, 0.027, 

0.021 respectively for p=0.09, 0.21, 0.33), according to the sign-test. There is also 

greater individual heterogeneity of the distributions of  𝜎̃HS and 𝜎̃HP, as shown in 

Figure 4.7. However this result does not hold for risk-averse subjects, indicating that 

the gap shown in Figure 4.7 is mainly driven by risk-seeking subjects who are the 

majority.  

 

 

Figure 4.7a: Distributions of individual 𝜎̃HS and 𝜎̃LS for each probability 
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Figure 4.7b: Distributions of individual 𝜎̃HP and 𝜎̃LP for each probability 

 

Again, since in our model specification, the error variance is correlated with 

lottery payoff ranges (𝑥 − 𝑦), the difference of the actual decision error of CE 

would be much bigger, and the difference of the level of individual heterogeneity 

may be considerably larger for HS and HP lotteries than for LS and LP lotteries. In 

terms of heterogeneity, admittedly, this result may largely be due to the fact that 

subjects are forced to state their CEs between the range (y, x), and that HS lotteries 

have much wider payoff ranges than LS lotteries. However, this fact does not predict 

that people will make larger decision errors when they are allowed to. We conjecture 

that, as our results suggest, the possibility of larger mistakes itself induces a higher 

tendency to make larger mistakes. It is also interesting to ask whether this ‘error 

boundary effect’ is also significant beyond the type of elicitation task we use, but this 

is a question we defer to further research.     

 

 

4.4.3 Robustness Checks 

 

So far, we have found systematic impact of outcome spacing, but no systematic 

effect of outcome level, on decision weighting. We have also found that both 

outcome spacing and outcome level affect decision errors. However, as mentioned 

before, that some of our subjects have dramatically different utility parameter 
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estimates for HS and LS lotteries, we are concerned that this difference in utility 

estimates across lottery sets produces or magnifies the observed effects on decision 

weights and error variances. As a check on this, we investigate whether these effects 

would become smaller or even disappear if we hold each subject’s utility parameter 

constant between HS/LS lotteries and between HP/LP lotteries. We highly doubt that 

the individual-level utility curvature estimates we obtained for LS lotteries, as shown 

in Figure 4.5a, reveal the subjects’ true attitude towards money outcomes.    

We did three robustness checks, with three ways to hold the utility estimates 

constant across HS/LS and across HP/LP sets.  

Robustness Check 1: For each individual and each probability, we force 𝛼̃LS to 

be the same as 𝛼̃HS, and 𝛼̃LP to be the same as 𝛼̃HP. In other words, we re-estimate 

𝑤̃LS  and 𝜎̃LS  for the LS set with 𝛼̃HS  taken as a constant utility parameter. 

Similarly, to test the outcome level effect, we re-estimate 𝑤̃LP and 𝜎̃LP for LP 

lotteries with 𝛼̃HP taken as a constant utility parameter.  

Robustness Check 2: Similar to the first check, except that we now force 𝛼̃HS 

to be the same as 𝛼̃LS, and 𝛼̃HP to be the same as 𝛼̃LP. 

Robustness Check 3: For each individual and each probability, we estimate the 

three parameters with all the 32 lotteries, take the estimated utility parameter 𝛼̃ALL 

as constant across sets, and estimate 𝑤 and 𝜎 respectively for HS, LS, HP, and LP 

lotteries.  

With these checks, we implicitly assume that individual utility curvature is not 

affected by outcome spacing or outcome levels of lotteries. We are not aware of 

research on how outcome spacing or relative stake level affect utility curvature, but 

there has been a sizable body of evidence about the (absolute) stake level effect (e.g. 

Booij et al. 2010, Bombardini & Trebbi 2012, Vieider et al. 2013). These evidence, 

along with Rabin (2000)’s view, generally support the idea that people have changing 

relative risk aversion only when very large stakes are involved. Most of the studies 

that show evidence of an effect of payoff level on utility curvature used a payoff 

scaling-up factor of at least 10 (e.g. Scholten & Read 2014, Bouchouicha & Vieider 

2016). Since in our design, the expected payoff level has only approximately doubled 
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for HP than for LP lotteries, we don’t think our assumption about utility curvature 

would be too restrictive for the purpose of the robustness check. The results of these 

checks are summarized below (with details of these results provided in Appendix 

4.3). 

 

Result 3:  

(i) All three robustness checks yield qualitatively similar results (to previous ones 

reported in Section 4.4.2) regarding the effect of outcome spacing on decision 

weights and decision error, and regarding the effect of outcome level on decision 

error.  

(ii) Unlike the previous results, outcome level is now found to have a systematic 

effect on decision weighting. In these checks, decision weights are generally larger 

for LP lotteries than for HP lotteries.   

 

The results confirm that the effect of outcome spacing on decision weighting as 

well as on the decision error parameter is strong and robust. Furthermore, the 

robustness checks update our finding about the effect of payoff level on decision 

weighting, which this is now consistent with the handful of literature 

(Etchart-Vincent 2004, 2009; Fehr-Duda et al. 2010; Vieider et al. 2013). This seems 

to suggest that, for the baseline estimation in which utility parameters are not held 

constant across sets of lotteries, the inconsistency of estimates of 𝛼̃HP and 𝛼̃LP (for 

some subjects) more or less distorts the results about the effect of outcome level on 

decision weights. 

  

Table 4.5 shows how the effect of outcome level on decision weights differs 

across our estimation setups. As can be seen, in every column except those for p = 

0.09, the four estimated decision weights seem remarkably stable. For all three 

robustness checks, the effect of expected payoff level becomes systematic. For all 

probabilities, 𝑤̃HP is smaller than 𝑤̃LP, indicating that people seem to be more 

pessimistic about gambling when the stakes are higher. Moreover, according to 
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Wilcoxon sign-test, the gaps between median 𝑤̃HP  and 𝑤̃LP  are statistically 

significant at 5% for p=0.09 and 0.21 (p-values of these tests are all 0.00), though not 

for p=0.33.  

 

Table 4.5: Medians of individual estimates of 𝑤̃HP and 𝑤̃LP for different setups 

 p=0.09  p=0.21  p=0.33 

 
𝑤̃HP 𝑤̃LP 

 
𝑤̃HP 𝑤̃LP 

 
𝑤̃HP 𝑤̃LP 

Baseline Estimation 0.25 0.19 
 

0.32 0.37 
 

0.34 0.32 

Robustness Check 1 0.25 0.31 
 

0.32 0.36 
 

0.34 0.37 

Robustness Check 2 0.16 0.19 
 

0.32 0.37 
 

0.31 0.32 

Robustness Check 3 0.23 0.29 
 

0.32 0.36 
 

0.32 0.36 

Note: Again, baseline estimation refers to the one reported in Section 4.4.2 in which the 

utility parameter is not held constant across sets of lotteries.   

 

On average, subjects seem to neither overweight nor underweight the 

probability of 0.33 in our study, and the effect of outcome level almost disappears in 

this case. This leads us to a conjecture that, as mentioned before, that the size of the 

effect of outcomes on decision weighting seems to vary across probability levels. 

 

     

4.4.4 Testing the implication of Proposition 1 from Chapter 3  

 

For simplicity we will call the theory presented in Chapter 3 TC3. In general, the 

results of decision weights we have shown so far stand against PT and CPT, but 

could be accommodated by TC3 which allows decision weighting to be sensitive not 

only to outcome ranks but also (relative) outcome spacing. Furthermore, TC3 also 

has a specific prediction, derived from Proposition 1 of Chapter 3 (Section 3.3.1), 

that for individuals with a concave utility function of monetary outcomes, their 

decision weights generally increase with outcome spacing (or, in our two-outcome 
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lottery case, with the x/y ratio), and for individuals with a convex utility function 

their decision weights would decrease with outcome spacing. It is important to notice 

that this prediction relies on three premises. First, preference parameters are 

measured using CPT with CE data. Secondly, the power utility function is assumed; 

Thirdly, individual power utility parameter is independent of lottery outcome spacing. 

Hence, the robustness checks make it convenient to test Proposition 1’s implication 

about the effect of outcome spacing, with individual utility estimates being held 

constant across lottery groups. 

Since we have three robustness checks, our test results differ slightly with 

respect to which robustness check is considered, that is, which utility parameter is 

taken as the outcome-spacing-independent utility parameter, 𝛼̃HS, 𝛼̃LS, or 𝛼̃ALL. For 

the first two robustness checks, we force the utility parameter to be 

outcome-spacing-independent, whereas for the third check, since the estimation set is 

the combination of HS and LS lotteries, 𝛼̃ALL  can be naturally seen as 

outcome-spacing-independent.   

To test Proposition 1’s implication, we first examine the proportions of subjects 

that behaved consistently with our prediction. For each probability p, we can sort 

subjects into four types according to their estimated utility function curvature and 

decision weight sizes14:  

 

Type 1: 𝛼̃ > 1 and 𝑤̃HS > 𝑤̃LS 

Type 2: 𝛼̃ > 1 and 𝑤̃HS < 𝑤̃LS 

Type 3: 0 < 𝛼̃ < 1 and 𝑤̃HS > 𝑤̃LS 

Type 4: 0 < 𝛼̃ < 1 and 𝑤̃HS < 𝑤̃LS 

 

Among these, Type 2 and Type 3 are consistent with the prediction. So we 

calculated the proportion of subjects belonging to Type 2 or 3, with respectively the 

                                                             
14 Since a decreasing utility function of money is neither realistic nor concerned with our theoretical prediction, 

we exclude those with negative power utility parameters from this test. 
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parameter estimates from the three robustness checks15. Our results show that the 

average proportions of subjects (over three probability levels) consistent with the 

prediction are respectively 74%, 85%, and 55% for Robustness Check 1, 2 and 3 

respectively.  

We also grouped subjects by whether they have concave or convex utility 

functions, and used the one-sided sign-test to test whether the median decision 

weight estimates differ significantly for HS and LS lotteries in the predicted direction. 

These results are summarized in Table 4.6. For subjects with concave utility, we 

tested the null hypothesis that 𝑤̃HS = 𝑤̃LS against the hypothesis that 𝑤̃HS > 𝑤̃LS. 

For subjects with convex utility, we tested the same null hypothesis against the 

hypothesis that 𝑤̃HS < 𝑤̃LS. A p-value of less than 5% suggests that the alternative 

hypothesis is accepted, and hence our prediction is supported. 

In Table 4.6, the hypothesis tests for which the p-values are denoted with ** 

lend support to Proposition 1’s prediction. We can see that although the test results 

vary across the three checks, on average more than a half of the hypothesis tests 

favor our theoretical prediction. Particularly, these favoring tests correspond to the 

majority of our subjects who exhibit convex utility functions, while our prediction 

seems to work not very well with subjects who have concave utilities. Table 4.6c 

shows that for the latter type of subjects, the p-values are close to 1, indicating that 

the effect of outcome spacing on decision weights is insignificant in these cases. 

However, although the results as shown in Table 4.6 do not completely fit the 

prediction derived from Proposition 1 of TC3, it is always possible that the 

prediction fails because the second or the third premise mentioned above doesn’t 

hold. Furthermore, these results seem to suggest dependence of the effect of outcome 

spacing on the curvature of utility. Such dependence can play a role in TC3, but not 

in PT or CPT. Therefore, we think that TC3 is generally supported, given that we  

                                                             
15 For example, with Robustness Check 1, Type 2 would be those with 𝛼̃HS > 1 and 𝑤̃HS < 𝑤̃LS, and Type 3 

would be those with 0 < 𝛼̃HS < 1 and 𝑤̃HS > 𝑤̃LS. Notice that the 𝑤̃LS here are estimates from Robustness 

Check 1 but not from the baseline estimations. Since in Robustness Check 1 we have set 𝛼̃LS as a constant equal 

to 𝛼̃HS, the estimated 𝑤̃LS in Robustness Check 1 can be different from that in the baseline estimations. 

Similarly, in Table 4.6a, 4.6b, and 4.6c, the decision weight estimates are from Robustness Check 1, 2, and 3 

respectively, but not from the baseline estimations. 
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Table 4.6a: Statistical tests for different types of subjects (Robustness Check 1) 

Probability 

Group 
 

Subject type (No. of 

subjects) 
 

Alternative Hypothesis 

(p-value) 

p=0.09  𝛼̃HS > 1 (N=51)  𝐻1: 𝑤̃HS < 𝑤̃LS (0.000**) 

  0 < 𝛼̃HS < 1 (N=27)  𝐻1: 𝑤̃HS > 𝑤̃LS (0.010**) 

p=0.21  𝛼̃HS > 1 (N=58)  𝐻1: 𝑤̃HS < 𝑤̃LS (0.000**) 

  0 < 𝛼̃HS < 1 (N=22)  𝐻1: 𝑤̃HS > 𝑤̃LS (0.206) 

p=0.33  𝛼̃HS > 1 (N=60)  𝐻1: 𝑤̃HS < 𝑤̃LS (0.000**) 

  0 < 𝛼̃HS < 1 (N=17)  𝐻1: 𝑤̃HS > 𝑤̃LS (0.314) 

 

Table 4.6b: Statistical tests for different types of subjects (Robustness Check 2) 

Probability 

Group 
 

Subject type (No. of 

subjects) 
 

Alternative Hypothesis 

(p-value) 

p=0.09  𝛼̃LS > 1 (N=49)  𝐻1: 𝑤̃HS < 𝑤̃LS (0.000**) 

  0 < 𝛼̃LS < 1 (N=9)  𝐻1: 𝑤̃HS > 𝑤̃LS (0.000**) 

p=0.21  𝛼̃LS > 1 (N=44)  𝐻1: 𝑤̃HS < 𝑤̃LS (0.000**) 

  0 < 𝛼̃LS < 1 (N=19)  𝐻1: 𝑤̃HS > 𝑤̃LS (0.179) 

p=0.33  𝛼̃LS > 1 (N=31)  𝐻1: 𝑤̃HS < 𝑤̃LS (0.000**) 

  0 < 𝛼̃LS < 1 (N=11)  𝐻1: 𝑤̃HS > 𝑤̃LS (0.033**) 

 

Table 4.6c: Statistical tests for different types of subjects (Robustness Check 3) 

Probability 

Group 
 

Subject type (No. of 

subjects) 
 

Alternative Hypothesis 

(p-value) 

p=0.09  𝛼̃ALL > 1 (N=35)  𝐻1: 𝑤̃HS < 𝑤̃LS (0.000**) 

  0 < 𝛼̃ALL < 1 (N=37)  𝐻1: 𝑤̃HS > 𝑤̃LS (0.997) 

p=0.21  𝛼̃ALL > 1 (N=39)  𝐻1: 𝑤̃HS < 𝑤̃LS (0.000**) 

  0 < 𝛼̃ALL < 1 (N=30)  𝐻1: 𝑤̃HS > 𝑤̃LS (1.000) 

p=0.33  𝛼̃ALL > 1 (N=53)  𝐻1: 𝑤̃HS < 𝑤̃LS (0.036**) 

  0 < 𝛼̃ALL < 1 (N=21)  𝐻1: 𝑤̃HS > 𝑤̃LS (0.987) 
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have found a significant effect of outcome spacing on decision weighting, but this 

specific prediction tested in this section is only partly supported. For Robustness 

Check 1 and 2, Proposition 1’s prediction is supported in the majority of cases, but 

for Robustness Check 3, only a half of the cases are consistent with that prediction. 

Given the results, it seems still inconclusive whether the effect of outcome spacing 

on decision weighting depends on utility curvatures or not.  

 

 

4.5 Conclusion and Discussions 

 

This study pursues two goals. First, we investigate and isolate the effect of outcome 

spacing and outcome level on decision weighting. Our data suggest that, for small 

probabilities less than 1/3, outcome spacing has a significant effect on decision 

weighting at both aggregate and individual levels, whereas outcome level only has 

significant effect at individual level. For a given probability p, subjects generally 

exhibit smaller decision weights (of the best lottery outcome) for lotteries with larger 

outcome spacing, and smaller decision weights (of the best lottery outcome) for 

lotteries with higher expected payoff levels. The second goal is to test a prediction of 

the theory in Chapter 3 of this thesis. We find that this prediction is partly supported, 

but no firm conclusion can be drawn regarding whether decision weighting for risk is 

affected by utility curvatures.  

Although our results only apply to small probabilities below 1/3, it is worth 

mentioning the potential theoretical and prescriptive implications of these results. 

First, from a theoretical point of view, the fact that decision weighting is 

systematically sensitive to outcome spacing and levels is a challenge to most of the 

theories of decision under risk that typically assume separability of decision weights 

and outcome valuation (e.g. PT). Decision models may misrepresent risk preferences 

considerably when decision weights interact with the level of payoffs or other lottery 
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characteristics in a material way. Although in CPT, decision weights can be different 

from probability weights16, the dependence of decision weights on outcomes is 

perhaps restricted too much by that the only feature of the outcomes that matters for 

the weights is their ranking. In light of our evidence, we think that models that stay 

too close to the classical ‘dual’ structure (i.e. a component of decision weighting and 

a component of utility of outcomes) would be too simple to explain the evidence. But 

modifying the decision weighting function so as to incorporate more factors, such as 

outcome spacing and outcome level, would inevitably entail some loss of parsimony, 

and it would be even trickier to incorporate factors such as the length of delay of 

uncertainty resolution (Abdellaoui et al. 2011b), source of uncertainty (Abdellaoui et 

al. 2011a), or the type of lottery outcomes (Rottenstreich and Hsee 2001), all of 

which are found to have impact on decision weighting. 

Secondly, since the majority of our subjects are risk-seeking in the experiment, 

our main finding that decision weights are generally smaller for lotteries with larger 

outcome spacing is counter-intuitive under the framework of CPT or other 

rank-dependent utility models (e.g. Quiggin 1982, 2012), even if decision weights 

can depend on outcome spacing. In other words, if the w parameter we have 

measured is understood as a decision weight attached to the utility of consequences, 

it is hard to understand why the decision weight of the best outcome of a lottery is 

lower when the best outcome is much better relative to its worst outcome.  

We think our results have brought a serious question regarding how we should 

understand the concept of decision weight and whether the classical ‘dual’ structure 

of decision models is still helpful for us to understand and predict individual 

behaviors. After all, TC3 has provided a potential ground for accommodating these 

results. We speculate that other theories such as Loomes & Sugden (1982), Bell 

(1985), Gul (1991), and Bordalo et al. (2012), may also explain our experimental 

evidence, since in these theories, outcome spacing of gambles matters (though in 

different ways). Unlike in PT or CPT where the evaluation of a prospect is 

                                                             
16 The common understanding is that decision weights are a function of probability weights, which reflect an 

intrinsic and perhaps context-free individual attitude towards chances. 
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independent of the alternatives available, a common feature of most of these theories 

is that they have modified the classic dual structure to take into account the impact of 

emotions or other psychological traits arising from comparisons of risky alternatives. 

This would allow the ‘decision weighting component’ of decision making to interact 

with the contextual factors of decision making in a more psychologically intuitive 

way. Therefore, in light of our findings, we think the modeling approach that takes 

into account the comparative and context-dependent nature of decision making is a 

more promising one, provided that not too much parsimony or interpretability is 

traded off.   
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Appendices for Chapter 4 

 

Appendix 4.1 Details of the lotteries used in our experiment 

 

In Table 4.7 we provide basic statistics for each set of lotteries, with respect to 

their relative outcome spacing (i.e. ratio x/y) and outcome level (i.e. expected 

payoff).  

 

Table 4.7a: Lottery statistics, p=0.09 

  Ratio x/y  Expected payoff (£) 

  mean median min max  mean median min max 

HS  8.59 5.45 3.36 27.00  9.51 9.50 2.00 16.98 

LS  1.36 1.37 1.12 1.68  9.50 9.52 2.02 16.99 

HP  4.92 2.50 1.13 25.78  13.50 13.51 10.01 16.99 

LP  5.04 2.54 1.12 27.00  5.51 5.50 2.00 9.00 

 

Table 4.7b: Lottery statistics, p=0.21 

  Ratio x/y  Expected payoff (£) 

  mean median min max  mean median min max 

HS  8.50 5.41 3.34 25.88  12.50 12.51 4.98 20.00 

LS  1.36 1.37 1.11 1.66  12.50 12.48 5.01 19.98 

HP  4.93 2.48 1.12 25.67  16.50 16.52 12.98 20.00 

LP  4.92 2.52 1.11 25.87  8.50 8.50 4.98 12.03 

 

Table 4.7c: Lottery statistics, p=0.33 

  Ratio x/y  Expected payoff (£) 

  mean median min max  mean median min max 

HS  8.67 5.51 3.38 28.25  15.51 15.53 7.99 23.03 

LS  1.36 1.37 1.12 1.65  15.50 15.48 8.02 22.99 

HP  4.95 2.51 1.12 26.53  19.51 19.48 16.01 23.03 

LP  5.09 2.52 1.12 28.25  11.50 11.50 7.99 15.03 

 

 

Table 4.8 below shows a list of all the 96 lotteries for our experiment. 
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Table 4.8: The list of all lotteries for our experiment ((x, p; y, 1-p) with x>y) 

 
p=0.09 

 
p=0.21 

 
p=0.33 

 
x y 

 
x y 

 
x y 

Set 1 

£79.90 £3.10 
 

£53.90 £2.10 
 

£45.10 £1.70 

£65.70 £5.60 
 

£50.80 £4.20 
 

£43.70 £3.90 

£58.30 £7.40 
 

£48.50 £6.10 
 

£43.60 £5.40 

£53.80 £9.00 
 

£46.80 £7.80 
 

£42.90 £7.20 

£51.60 £10.30 
 

£46.40 £9.20 
 

£43.30 £8.50 

£49.40 £11.60 
 

£45.50 £10.70 
 

£43.20 £10.10 

£48.50 £12.80 
 

£45.10 £12.10 
 

£43.40 £11.50 

£47.10 £14.00 
 

£44.80 £13.40 
 

£43.60 £12.90 

Set 2 

£16.20 £0.60 
 

£20.70 £0.80 
 

£22.60 £0.80 

£18.20 £1.50 
 

£21.50 £1.90 
 

£23.30 £2.00 

£20.10 £2.40 
 

£23.10 £2.70 
 

£24.40 £2.90 

£20.60 £3.50 
 

£23.10 £4.00 
 

£24.90 £4.20 

£21.70 £4.50 
 

£24.30 £4.90 
 

£25.70 £5.20 

£23.30 £5.40 
 

£25.40 £5.90 
 

£26.70 £6.20 

£24.00 £6.40 
 

£26.10 £7.00 
 

£27.30 £7.40 

£25.10 £7.40 
 

£27.20 £8.00 
 

£28.50 £8.40 

Set 3 

£15.50 £9.50 
 

£18.60 £11.50 
 

£21.70 £13.20 

£16.30 £10.50 
 

£19.50 £12.50 
 

£22.30 £14.40 

£16.70 £11.50 
 

£20.00 £13.70 
 

£22.90 £15.60 

£17.50 £12.60 
 

£20.60 £14.80 
 

£23.40 £16.80 

£17.80 £13.60 
 

£20.90 £16.00 
 

£23.50 £18.30 

£18.20 £14.70 
 

£21.20 £17.10 
 

£24.10 £19.50 

£18.70 £15.70 
 

£21.70 £18.30 
 

£24.60 £20.70 

£18.90 £16.80 
 

£21.80 £19.50 
 

£24.80 £22.10 

Set 4 

£3.20 £1.90 
 

£7.30 £4.40 
 

£10.90 £6.60 

£4.40 £2.90 
 

£8.20 £5.40 
 

£11.60 £7.70 

£5.60 £3.80 
 

£9.30 £6.40 
 

£12.70 £8.70 

£6.70 £4.80 
 

£10.30 £7.40 
 

£13.70 £9.70 

£7.80 £5.80 
 

£11.30 £8.40 
 

£14.50 £10.80 

£8.40 £6.90 
 

£11.70 £9.60 
 

£14.70 £12.10 

£9.30 £7.90 
 

£12.40 £10.60 
 

£15.60 £13.20 

£10.00 £8.90 
 

£13.00 £11.70 
 

£16.10 £14.40 
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Appendix 4.2 More details of data analysis  

 

In this part we first show details of our Maximum-Likelihood estimation model, and 

then how we conduct the Likelihood-Ratio test for the aggregate estimation results. 

Our estimation model is based on equation (4.2), (4.3), and our error specification 

that the error term 𝜖 is normally distributed with zero mean and a variance of 

(𝑥 − 𝑦)𝜎2. Hence we can set up a log-likelihood function for 𝜖: 

𝑙𝑛𝐹 = −
1

2
𝑙𝑛(2𝜋) − ln(𝜎√𝑥 − 𝑦) −

𝜖2

2(𝑥 − 𝑦)𝜎2
 

Note that x and y here denote lottery outcomes. According to equation (4.2) and 

(4.3),   

𝜖 = 𝑐𝑒 − ((1 − 𝑤)𝑥𝛼 + 𝑤𝑦𝛼)1/𝛼 

our final log-likelihood function is  

𝑙𝑛𝐹 = −
1

2
𝑙𝑛(2𝜋) − ln(𝜎√𝑥 − 𝑦) −

(𝑐𝑒 − ((1 − 𝑤)𝑥𝛼 + 𝑤𝑦𝛼)
1
𝛼)2

2(𝑥 − 𝑦)𝜎2
 

We then estimate 𝛼, w, and 𝜎 to maximize the value of this log-likelihood function, 

with x, y being lottery payoffs and ce being subjects’ input. We ran this estimation for 

different sets of lotteries at both aggregate and individual levels. For the latter we ran 

estimations for each individual. Since at the aggregate level, we cannot perform tests 

of parameter distributions as we did for individual level results, another test strategy 

is adopted: the likelihood-ratio test.  

To run the likelihood-ratio test for our aggregate level results, we introduced 

two dummy variables to our model instead of estimating the parameters separately 

with HS, LS, HP and LP lotteries. Dummy variable HIGHS has value 1 if a lottery 

belongs to the HS set and value 0 if belongs to the LS set. Dummy variable HIGHP 

has value 1 if a lottery belongs to the HP set and value 0 if belongs to the LP set. 

Each one of the model parameters we want to estimate, 𝛽 ∈ {𝛼, 𝑤, 𝜎}, is assumed to 

depend linearly on the dummy variables in the following way: 

𝛽 = 𝛽𝐿𝑅 + 𝛽𝐻𝑅𝐻𝐼𝐺𝐻𝑅   for the test of outcome-spacing effect 

𝛽 = 𝛽𝐿𝑃 + 𝛽𝐻𝑃𝐻𝐼𝐺𝐻𝑃   for the test of outcome-level effect 
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There is an outcome-spacing (outcome level) effect if the estimated 𝛽𝐻𝑅 (𝛽𝐻𝑃) 

is significantly different from zero. With this setup, we can use the likelihood-ratio 

test to test the null hypothesis that 𝛽𝐻𝑅 or 𝛽𝐻𝑃 equals zero. It is worth mention that 

estimating the model with the dummy setup specified above yields exactly the same 

estimation results as what we reported in Table 4.2, which were obtained by 

estimating the parameters separately with each of the four different sets of lotteries 

(HS, LS, HP, LP). 

 

 

Appendix 4.3 More details about estimation results  

 

Appendix 4.3.1 Statistical tests of aggregate-level estimates 

 

Table 4.9 shows details of the Likelihood-Ratio test results presented in Table 4.2, 

including the Likelihood-Ratio Chi-square value (LR chi2) and the corresponding 

p-value for each pair of parameter estimates and for each probability. Those denoted 

with ** indicate the corresponding null hypothesis is rejected at the level of 5%. 

 

Table 4.9: Likelihood-Ratio test results for Table 4.2 

Null Hypothesis 
 p=0.09  p=0.21  p=0.33 

 LR chi2 p-value  LR chi2 p-value  LR chi2 p-value 

𝜶𝐇𝐒 = 𝜶𝐋𝐒  0.67 0.412  0.47 0.494  10.48 0.001** 

𝒘𝐇𝐒 = 𝒘𝐋𝐒  0.83 0.362  5.00 0.025**  7.76 0.005** 

𝝈𝐇𝐒 = 𝝈𝐋𝐒  1875.71 0.000**  1286.12 0.000**  1141.12 0.000** 

𝜶𝐇𝐏 = 𝜶𝐋𝐏  12.38 0.000**  0.00 0.969  0.21 0.649 

𝒘𝐇𝐏 = 𝒘𝐋𝐏  3.56 0.060  1.17 0.279  0.01 0.917 

𝝈𝐇𝐏 = 𝝈𝐋𝐏  325.66 0.000**  159.24 0.000**  157.44 0.000** 

 

 

Appendix 4.3.2 Statistics of the baseline estimations and robustness check 

results  
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Table 4.10, 4.11, 4.12 and 4.13 show respectively the individual-level parameter 

estimates statistics, including the mean, median, and standard deviations of the 

distributions over the 84 subjects, for the four estimation setups we use. 

 

Baseline Estimation 

 

Table 4.10a: Statistics of parameters of the baseline estimations (outcome-spacing effect) 

Parameter 
 p=0.09 

 
p=0.21 

 
p=0.33 

 mean median s.d. 
 

mean median s.d. 
 

mean median s.d. 

𝜶̃𝐇𝐒  3.28 1.16 3.42 
 

4.93 1.31 8.38 
 

4.39 1.46 8.05 

𝜶̃𝐋𝐒  3.04 1.59 5.29 
 

1.73 1.21 3.03 
 

-0.68 0.81 3.14 

𝒘̃𝐇𝐒  0.18 0.13 0.19 
 

0.2 0.17 0.17 
 

0.24 0.24 0.2 

𝒘̃𝐋𝐒  0.27 0.23 0.21 
 

0.34 0.31 0.18 
 

0.44 0.43 0.2 

𝝈̃𝐇𝐒  0.71 0.57 0.47 
 

0.66 0.58 0.45 
 

0.71 0.63 0.42 

𝝈̃𝐋𝐒  0.27 0.25 0.13 
 

0.29 0.27 0.13 
 

0.31 0.29 0.14 

 

Table 4.10b: Statistics of parameters of the baseline estimations (outcome-level effect) 

Parameter 
 p=0.09 

 
p=0.21 

 
p=0.33 

 mean median s.d. 
 

mean median s.d. 
 

mean median s.d. 

𝜶̃𝐇𝐏  0.86 0.7 1.46 
 

0.94 1.01 0.88 
 

1.26 1.13 1.19 

𝜶̃𝐋𝐏  1.76 1.36 1.44 
 

0.95 0.86 0.91 
 

1.31 1.11 0.9 

𝒘̃𝐇𝐏  0.29 0.25 0.18 
 

0.33 0.32 0.18 
 

0.35 0.34 0.17 

𝒘̃𝐋𝐏  0.24 0.19 0.18 
 

0.37 0.37 0.17 
 

0.35 0.32 0.17 

𝝈̃𝐇𝐏  0.6 0.48 0.42 
 

0.53 0.47 0.35 
 

0.62 0.54 0.4 

𝝈̃𝐋𝐏  0.39 0.34 0.2 
 

0.43 0.39 0.21 
 

0.46 0.4 0.21 

 

 

Robustness Check 1  

 

Table 4.11a: Statistics of parameters of Robustness Check 1 (outcome-spacing effect) 

Parameter 
 p=0.09 

 
p=0.21 

 
p=0.33 

 mean median s.d. 
 

mean median s.d. 
 

mean median s.d. 

𝜶̃𝐇𝐒  3.28 1.16 3.42 
 

4.93 1.31 8.38 
 

4.39 1.46 8.05 

𝒘̃𝐇𝐒  0.18 0.13 0.19 
 

0.2 0.17 0.17 
 

0.24 0.24 0.2 

𝒘̃𝐋𝐒  0.26 0.21 0.18 
 

0.28 0.28 0.17 
 

0.3 0.31 0.18 

𝝈̃𝐇𝐒  0.71 0.57 0.47 
 

0.67 0.58 0.45 
 

0.71 0.63 0.42 

𝝈̃𝐋𝐒  0.29 0.28 0.14 
 

0.31 0.29 0.15 
 

0.35 0.33 0.16 
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Table 4.11b: Statistics of parameters of Robustness Check 1 (outcome-level effect) 

Parameter 
 p=0.09 

 
p=0.21 

 
p=0.33 

 mean median s.d. 
 

mean median s.d. 
 

mean median s.d. 

𝜶̃𝐇𝐏  0.86 0.7 1.46 
 

0.94 1.01 0.88 
 

1.26 1.13 1.19 

𝒘̃𝐇𝐏  0.29 0.25 0.18 
 

0.33 0.32 0.17 
 

0.35 0.34 0.17 

𝒘̃𝐋𝐏  0.33 0.31 0.2 
 

0.37 0.36 0.18 
 

0.37 0.37 0.18 

𝝈̃𝐇𝐏  0.6 0.48 0.42 
 

0.53 0.47 0.35 
 

0.62 0.54 0.4 

𝝈̃𝐋𝐏  0.44 0.4 0.21 
 

0.46 0.42 0.22 
 

0.49 0.46 0.22 

 

Robustness Check 2  

 

Table 4.12a: Statistics of parameters of Robustness Check 2 (outcome-spacing effect) 

Parameter 
 p=0.09 

 
p=0.21 

 
p=0.33 

 mean median s.d. 
 

mean median s.d. 
 

mean median s.d. 

𝜶̃𝐋𝐒  3.04 1.59 5.29 
 

1.73 1.21 3.03 
 

-0.68 0.81 3.14 

𝒘̃𝐇𝐒  0.27 0.09 0.35 
 

0.32 0.23 0.31 
 

0.54 0.42 0.35 

𝒘̃𝐋𝐒  0.27 0.22 0.21 
 

0.33 0.31 0.18 
 

0.6 0.37 0.19 

𝝈̃𝐇𝐒  0.9 0.74 0.54 
 

0.75 0.67 0.44 
 

0.96 0.78 0.55 

𝝈̃𝐋𝐒  0.27 0.25 0.13 
 

0.28 0.27 0.13 
 

0.31 0.29 0.14 

 

Table 4.12b: Statistics of parameters of Robustness Check 2 (outcome-level effect) 

Parameter 
 p=0.09 

 
p=0.21 

 
p=0.33 

 mean median s.d. 
 

mean median s.d. 
 

mean median s.d. 

𝜶̃𝐋𝐏  1.76 1.36 1.44 
 

0.95 0.86 0.91 
 

1.31 1.11 0.9 

𝒘̃𝐇𝐏  0.21 0.16 0.18 
 

0.34 0.32 0.2 
 

0.34 0.31 0.18 

𝒘̃𝐋𝐏  0.24 0.19 0.18 
 

0.37 0.37 0.17 
 

0.35 0.32 0.17 

𝝈̃𝐇𝐏  0.68 0.54 0.43 
 

0.58 0.5 0.36 
 

0.65 0.6 0.38 

𝝈̃𝐋𝐏  0.39 0.34 0.2 
 

0.43 0.39 0.21 
 

0.45 0.4 0.21 

 

Robustness Check 3  

 

Table 4.13a: Statistics of parameters of Robustness Check 3 (outcome-spacing effect) 

Parameter 
 p=0.09 

 
p=0.21 

 
p=0.33 

 mean median s.d. 
 

mean median s.d. 
 

mean median s.d. 

𝜶̃𝐀𝐋𝐋  1.06 0.83 1.12 
 

0.98 0.96 0.94 
 

1.25 1.18 0.96 

𝒘̃𝐇𝐒  0.26 0.23 0.16 
 

0.33 0.32 0.17 
 

0.35 0.33 0.16 

𝒘̃𝐋𝐒  0.31 0.29 0.18 
 

0.38 0.37 0.17 
 

0.37 0.34 0.16 

𝝈̃𝐇𝐒  0.73 0.63 0.47 
 

0.68 0.59 0.42 
 

0.72 0.64 0.41 

𝝈̃𝐋𝐒  0.29 0.28 0.14 
 

0.3 0.28 0.14 
 

0.33 0.31 0.14 
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Table 4.13b: Statistics of parameters of Robustness Check 3 (outcome-level effect) 

Parameter 
 p=0.09 

 
p=0.21 

 
p=0.33 

 mean median s.d. 
 

mean median s.d. 
 

mean median s.d. 

𝜶̃𝐀𝐋𝐋  1.06 0.83 1.12 
 

0.98 0.96 0.94 
 

1.25 1.18 0.96 

𝒘̃𝐇𝐏  0.26 0.23 0.17 
 

0.33 0.32 0.17 
 

0.35 0.32 0.16 

𝒘̃𝐋𝐏  0.31 0.29 0.18 
 

0.38 0.36 0.17 
 

0.36 0.36 0.16 

𝝈̃𝐇𝐏  0.6 0.48 0.42 
 

0.55 0.47 0.37 
 

0.62 0.57 0.38 

𝝈̃𝐋𝐏  0.45 0.4 0.28 
 

0.45 0.4 0.27 
 

0.47 0.43 0.21 

 

 

Appendix 4.3.3 A summary of the individual-level statistical test results for 

different estimation setups  

 

In Table 4.14, we summarize the statistical tests results based on which we draw our 

main conclusion of this study. Results concerning the effects of outcome spacing and 

outcome level on the three parameters are organized for each probability level: Table 

14a, 14b, 14c show the results for p=0.09, 0.21, and 0.33 respectively. We report two 

types of hypothesis tests we did, one for medians (one-sided Wilcoxon sign-test) and 

one for the whole distributions (two-sided Wilcoxon signed-rank test). The former 

has the null hypothesis that the medians from the two samples are the same, and the 

latter has the null hypothesis that the two samples have the same distribution. In the 

table we report the qualitative results and the supporting p-value in the parentheses 

below For example, in Table 4.14a, the test of the equality of median 𝛼̃HS and 

median 𝛼̃LS, shows a p-value of 0.586, based on which we can accept the null 

hypothesis and therefore we use ‘HS=LS’ to denote this result. Since we used 

two-sided test of distributions, we only report whether the p-value supports equality 

of distributions or no equality.   
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Table 4.14a: Hypothesis test results of parameter medians and distributions (p=0.09) 

Estimation 

Setup 

 𝜶̃  𝒘̃  𝝈̃ 

 median distribution  median distribution  median distribution 

Baseline 

 HS=LS, 

(0.586) 

HP<LP, 

(0.000) 

HS=LS, 

(0.530) 

HP≠LP, 

(0.001) 

 HS<LS, 

(0.001) 

HP=LP, 

(0.101) 

HS≠LS, 

(0.001) 

HP≠LP, 

(0.022) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.000) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

Robustness 

Check 1 

 

N/A N/A 

 HS<LS, 

(0.000) 

HP<LP, 

(0.000) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.006) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.001) 

Robustness 

Check 2 

 

N/A N/A 

 HS<LS, 

(0.003) 

HP<LP, 

(0.000) 

HS=LS, 

(0.356) 

HP≠LP, 

(0.000) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.000) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.001) 

Robustness 

Check 3 

 

𝛼=1 

(0.156) 

𝛼=1 

(0.669) 

 HS<LS, 

(0.000) 

HP<LP, 

(0.000) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.001) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

 

Table 4.14b: Hypothesis test results of parameter medians and distributions (p=0.21) 

Estimation 

Setup 

 𝜶̃  𝒘̃  𝝈̃ 

 median distribution  median distribution  median distribution 

Baseline 

 HS=LS, 

(0.380) 

HP=LP, 

(0.380) 

HS≠LS, 

(0.041) 

HP=LP, 

(0.418) 

 HS<LS, 

(0.000) 

HP<LP, 

(0.004) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.005) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.027) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

Robustness 

Check 1 

 

N/A N/A 

 HS<LS, 

(0.000) 

HP<LP, 

(0.002) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

 HS>LS, 

(0.000) 

HP=LP, 

(0.230) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.050) 

Robustness 

Check 2 

 

N/A N/A 

 HS<LS, 

(0.046) 

HP<LP, 

(0.001) 

HS=LS, 

(0.297) 

HP≠LP, 

(0.000) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.000) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

Robustness 

Check 3 

 

𝛼=1 

(0.586) 

𝛼=1 

(0.831) 

 HS<LS, 

(0.000) 

HP<LP, 

(0.000) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.024) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.002) 
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Table 4.14c: Hypothesis test results of parameter medians and distributions (p=0.33) 

Estimation 

Setup 

 𝜶̃  𝒘̃  𝝈̃ 

 median distribution  median distribution  median distribution 

Baseline 

 HS>LS, 

(0.000) 

HP=LP, 

(0.445) 

HS≠LS, 

(0.000) 

HP=LP, 

(0.518) 

 HS<LS, 

(0.000) 

HP=LP, 

(0.744) 

HS≠LS, 

(0.000) 

HP=LP, 

(0.975) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.021) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

Robustness 

Check 1 

 

N/A N/A 

 HS<LS, 

(0.000) 

HP=LP, 

(0.230) 

HS≠LS, 

(0.000) 

HP=LP, 

(0.061) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.011) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.001) 

Robustness 

Check 2 

 

N/A N/A 

 HS<LS, 

(0.002) 

HP=LP, 

(0.230) 

HS≠LS, 

(0.000) 

HP=LP, 

(0.187) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.000) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

Robustness 

Check 3 

 

𝛼>1 

(0.011) 

𝛼=1 

(0.088) 

 HS<LS, 

(0.038) 

HP=LP, 

(0.230) 

HS≠LS, 

(0.003) 

HP=LP, 

(0.114) 

 HS>LS, 

(0.000) 

HP>LP, 

(0.011) 

HS≠LS, 

(0.000) 

HP≠LP, 

(0.000) 

 

 

Appendix 4.4 Experimental Instruction 

 

Welcome to this experiment on decision making which we expect to last about an 

hour. You will be paid £2 for participating so long as you complete all of the required 

tasks. In addition, you may earn more depending on your decisions and upon chance. 

We will pay you in cash at the end of the experiment. 

There are some general rules you must follow:  

1. Please put away your mobile phones and do not talk to others at any time during 

the experiment.  

2. You will use your computer to make decisions during the experiment. Please only 

use the computer in the way that you are asked to. Do not close the software that is 

running or use the computer for any other purpose. 

3. You must not open your envelope until instructed by the experimenter. 

4. If you have any questions during the experiment, please raise your hand.  
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If you disobey these rules, you may be asked to leave without payment. 

 

Lotteries  

In this experiment, you will make a 

series of decisions involving 

lotteries and certain amounts of 

money. At the end of the 

experiment, you might receive a 

sum of money for sure or you 

might play a lottery to determine 

your payoff.  

The picture on the right shows 

a sample lottery which we refer to 

as Lottery A. Playing this lottery 

results in one of two possible outcomes: winning £8.00 or £2.00. Chances of each 

outcome are shown as percentages and indicated by the relative sizes of the pie slices. 

If you play a lottery, your payoff will be determined by a draw of chip from a bag of 

chips numbered from 1 to 100. For example, for Lottery A, you win £8.00 if the 

number drawn is from 1 to 10 and win £2.00 otherwise. So there is a 10% chance to 

win £8.00 and a 90% chance to win £2.00, as shown in Picture 1.  

During the experiment, you will see 96 lotteries, labelled from L1 to L96. The 

lotteries will appear in a random order. Pay attention when a new lottery appears 

because each lottery is different. 

 

The Task 

For each lottery, your task is to enter the amount of money that you think is just as 

good as the lottery. That is, in a given question you should state the amount of money 

so that you are equally willing to play the lottery or instead receive the amount 

you set for sure. Besides, we will assume that each of your decision also implies two 

things: First, you prefer the lottery to any sure amount of money less than the amount 

Picture 1: A sample lottery 
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you stated; Secondly, you prefer any sure amount higher than the one you stated to 

the lottery.  

The picture below provides an example of what a task screen will look like. The 

lottery is shown on the left and you enter the sum that you think is just as good as the 

lottery on the right. 

 

Picture 2: A sample experimental task 

 

Once you have entered your decision and are ready to proceed, click ‘Confirm’. 

Once you confirm, you won’t be able to change your response later.  

It is in your best interest to think carefully and, for each lottery, enter the 

amount that you really think is just as good as it. This is because of the way that we 

are going to determine your payoff. 

 

How is your payoff determined 

To explain how your payoff from the experiment is determined, we need to tell you 

about what is in your envelope. It contains a slip of paper with two things on it. One 

is a label identifying one of the 96 lotteries you considered: we will call this your 

“selected” lottery. For each of the lotteries we have a corresponding envelope, so that 



CHAPTER 4 

142 
 

the one you just picked could be any of the 96. The other thing written on the slip in 

your envelope is an amount of money highlighted in a text box: we will call this your 

“offer”, which can be any amount between the lowest prize and the highest prize of 

the selected lottery.  

To determine your payoff, we will compare the offer in your envelope to the 

amount that you stated was just as good as the selected lottery: 

– If the offer is more than the amount you stated, you will be paid the offer;  

 – If the offer is less than the amount you stated, you will play the selected lottery 

and be paid its outcome;  

 – If the offer is equal to the amount you stated, (since you have indicated that you 

are equally willing to have either) you will be paid the offer. 

Notice that you either receive the offer or play the selected lottery. Given that you 

prefer more money to less, answering the questions truthfully ensures you get the 

one you prefer. 

 

The experiment will start with a small quiz to test your understanding of the 

instructions. You can only proceed to the main tasks when everyone have completed 

the quiz successfully.  

If you need to ask a question now or later please just raise your hand. 

REMEMBER YOU MUST NOT OPEN YOUR ENVELOPE UNTIL 

INSTRUCTED!  
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Chapter 5: Conclusions                 
 

 

 

My goal in this thesis is to contribute to the understanding of individual 

decision-making under uncertainty, particularly under risk where people choose 

between lotteries with objectively known probabilities. The three main chapters 

presented show the major output of my research in the pursuit of the PhD degree. 

Chapter 2 proposed a non-fitting method by which the probability weighting 

function of CPT can be easily approximated, in combination with an existing method 

that elicits decision weights. The main advantages of this method are its simplicity 

and efficiency in terms of data requirements. Moreover, no elicitation of the 

subjective probabilities is needed for measuring probability weighting functions for 

the case of ambiguity. An experiment of choice under risk was run to allow for the 

application of the Neo-Lite method and the standard parametric fitting method. Since 

our method relies on the assumption of the Neo-additive functional form, we also 

compared the predictive power of this function with typical non-linear functional 

forms. Our results show that the Neo-Lite method provides a more efficient way, 

compared to standard parametric fitting, to obtain measurements of the Neo-additive 

weighting function. The latter performs almost equally well as the non-linear 

probability weighting functions in terms of in-sample predictions, though the general 

out-of-sample predictive performance is poor.  

This study contributes to the literature mainly in two ways. First, we have 

proposed an empirical method for the measurement of probability weighting function 

for CPT, and have shown that this method can be used as a quick and convenient 

way to obtain some pre-analysis results or to get a sense of the shape of the 

probability weighting function. Secondly, our experimental findings, that people 

have inverse-S shaped probability weighting functions for CE tasks but S-shaped 
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weighting functions for binary choice tasks, add to the literature further evidence of a 

descriptive limitation of CPT. This then puts into question the extent to which the 

functions of the CPT model measured with CE tasks can represent individual risk 

preferences1.   

Chapter 3 is partly motivated by the findings from Chapter 2. In Chapter 3 we 

propose a model that explains, when preferences are elicited using CE tasks, why 

individuals are often found to have CPT probability weighting functions that are: (i) 

non-linear and inverse-S shaped; (ii) different for the domain of gains and losses; (iii) 

sensitive to the lottery outcomes. In addition, the model also allows the CPT 

probability weighting function to be considerably different for CE tasks and for 

binary choices. Our theory is based on the psychologically intuitive mechanism of 

attention-based state-weighting, and takes into account the comparative nature of 

decision-making (i.e. evaluation of a risky option can depend upon features of the 

broader set of alternatives in which it is embedded). With Propositions 1, 2 and 3, we 

have shown that our theory is equivalent to CPT with a much more complicated 

decision weighting function. 

We consider the contribution of Chapter 3 to be two-fold. First, it provides a 

theoretical explanation as to why people are often found to have inverse-S shaped 

non-linear probability weighting functions under CPT and why the weighting 

function can differ between the outcome domain of gains and of losses. The answer 

to these questions does not necessarily have anything to do with human 

psychophysics to distort likelihoods (if the latter exists). Instead we have shown that 

these findings can be accounted for with a decision-making process which does not 

presume context-independent distortions of objective probabilities. Secondly, our 

theory provides a coherent accommodation for evidence that could not be explained 

by EUT (e.g. Kahneman & Tversky 1979) and that could not be explained by CPT 

(e.g. Birmbaun 2008, Fehr-Duda et al. 2010), including the preference reversal 

                                                             
1 It remains a controversial question, since the finding of preference reversals, whether valuations of lotteries or 

choices between lotteries better represents individual risk preferences. The argument here is not against the use of 

the CE method for preference elicitation, but against the combination of the use of CE and the use of the CPT 

model. For many other theories that can explain preference reversals, such as Loomes & Sugden (1982, 1983), 

Goldstein & Einhorn (1987), Schmidt et al. (2008), Bordalo et al. (2012), the CE approach may not be a problem. 
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phenomenon (e.g. Grether & Plott 1979, Cubitt et al. 2004). The two key ingredients 

that underlie our theory are the psychological mechanism of attention-based 

state-weighting (Bordalo et al. 2012) and reference-dependent decision making (e.g. 

Kahneman & Tversky 1979, 1992). Neither ingredients are brand-new ideas, but the 

combination of the two ingredients generates a surprisingly powerful theory. We 

think the potential of this theory presented in Chapter 3 is yet to be fully explored.  

Complementary to Chapter 3, the study of Chapter 4 pursues two goals. First, 

we investigate experimentally the effects of contextual factors related to lottery 

outcomes on decision weighting. Our data suggests that outcome spacing has a 

significant effect on decision weighting at both aggregate and individual levels and 

outcome level only has significant effect at individual level. These results can be 

accommodated by our theory presented in Chapter 3. The second goal is to test a 

specific prediction derived from Proposition 1 of Chapter 3, regarding the effect of 

outcome spacing and the dependence of that effect on value function curvatures. We 

find that this prediction is mostly supported for subjects with convex power value 

functions, but less supported for subjects with concave value functions.  

The main contribution of the last study is to show clear-cut evidence that, 

decision weights (of the best lottery outcomes) are affected by both lottery outcome 

spacing and outcome level. Besides, we have isolated the effect of outcome spacing 

from outcome level, and have shown that in our experiment, people are more 

sensitive to the former than to the latter2. These results challenge the CPT model, 

especially its rank-dependent decision weighting function, and provide empirical 

grounds for the idea that decision weights, in the framework of PT and CPT, can 

depend on contextual factors of the decision problem systematically and 

significantly.  

Admittedly, there are various ways this study could be extended or improved. 

For example, more research could be done to see the effects of outcomes on decision 

weighting for lotteries with a high probability to win the best outcome. Moreover, 

                                                             
2 This result, however, may not be general, because our manipulations of differences in lottery outcome levels 

are weaker than our manipulations of differences in outcome spacing.  
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robustness of our results could be further checked by using alternative preference 

elicitation techniques, such as choice-list tasks, rather than the stated-CE tasks. 

Nevertheless, we think the study of Chapter 4 has generated valuable insights 

regarding the way we should interpret decision weights. In light of the evidence 

presented, it is perhaps too narrow to interpret decision weighting as 

context-independent probability weighting, as in PT. There might exist a part of 

deviation of decision weights (from objective probabilities) that is individual-unique 

and context-independent, but it remains a question whether we should build that part 

into theoretical models (as in CPT), because it is rather difficult to observe the 

context-independent part of decision weighting even if we know it exists.  

Overall, this thesis has investigated several issues related to probability 

weighting and decision weighting, two key concepts from two of the most influential 

and widely used models of behavioral economics. The three studies presented in this 

thesis have updated our understanding of the two concepts and of the limitations of 

CPT. Standing on evidence from our studies, we are no longer sure the 

context-independent probability weighting is still a useful concept for descriptive 

models or for empirical research. Neither are we sure about whether CPT is still the 

right model through which we can best understand individual behaviors under risk, 

or whether CPT is the right model to extend. We think it is better for future theories 

of choice to take into account the comparative nature of decision-making. Although 

Chapter 3 has already provided such a model, there is certainly scope for further 

research, both theoretical and empirical, to be done. For example, more experimental 

tests could be done regarding other implications of our theory, such as the connection 

between decision weighting and loss aversion. Regularities about reference point in 

decisions under risk need also be further investigated and systematized. In addition, 

all three studies in this thesis can be extended to the case of ambiguity. The future of 

the area of individual behaviors under uncertainty remains exciting and vigorous.  
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