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Abstract	

This	thesis	has	examined	nonlinear	signal	summation	using	a	combination	of	EEG	and	

computational	 modelling.	 Nonlinearities	 are	 essential	 to	 many	 perceptual	

phenomena,	but	remain	poorly	understood	beyond	the	earliest	levels	of	the	sensory	

pathways.	

Many	 nonlinear	 physiological	 phenomena,	 such	 as	 cross-orientation	

suppression	(XOS),	can	be	readily	described	by	models	of	normalisation	for	neuronal	

gain	control	in	primary	visual	cortex	(V1).	However,	there	are	several	nonlinearities	

that	normalisation	cannot	 fully	explain.	For	example,	 super	 saturation	–	which	can	

occur	in	around	17%	of	V1	and	25%	of	V2	neurons	in	macaque	(Peirce,	2007b)	–	would	

be	considered	metabolically	wasteful	within	a	framework	of	normalisation:	an	over-

exertion	of	the	normalisation	pool	upon	the	excitatory	response	of	a	neuron.	It	seems	

unlikely	that	this	non-monotonic	nonlinearity	does	not	serve	a	purpose.	Considering	

this,	gain	control	may	not	be	the	only	function	served	by	nonlinearities	in	the	visual	

system	(and	beyond).	

Peirce	 (2007b,	2011,	2013)	proposed	that	nonlinearities	 in	V1	could	also	be	

used	by	neurons	in	mid-level	vision	to	detect	signal	conjunctions	for	combinations	of	

stimuli.	 This	 kind	 of	 signal	 summation	 would	 make	 possible	 neurons	 with	 more	

complex	receptive	field	preferences	than	are	commonly	observed	in	V1.	For	example,	

neurons	that	are	sensitive	to	multiple	orientations	and	a	narrow	bandwidth	of	spatial	

frequencies	would	be	useful	for	detecting	patterns	coherent	plaids.		

However,	at	any	one	point	in	time,	several	different	nonlinearities	can	occur	in	

response	to	a	stimulus.	Being	able	to	distinguish	one	from	the	other	is	more	difficult	

than	it	might	at	first	seem.	The	experiments	described	throughout	this	thesis	aimed	

to	disentangle	nonlinearities,	identify	those	that	were	selective	for	specific	stimulus	

combinations	and	characterise	them.		

In	Chapter	3	we	used	transient	electroencephalography	(EEG)	to	measure	the	

earliest	component	–	C1	–	of	visual	evoked	potentials	(VEPs)	to	brief	presentations	of	

gratings	and	their	combinations	into	coherent	and	non-coherent	plaids.	By	comparing	

the	C1	response	to	gratings	and	plaids,	we	aimed	to	measure	the	degree	of	nonlinear	

summation	 taking	 place	 for	 coherent	 and	 non-coherent	 grating	 combinations.	 The	



outcome	was	inconclusive;	there	was	limited	evidence	to	suggest	the	involvement	of	

extra	 nonlinearities	 in	 the	processing	 of	 coherent	 plaids	 that	were	not	 involved	 in	

processing	non-coherent	plaids.	This	might	be	an	inherent	problem	with	the	transient	

EEG	 approach.	 Although	 it	 produces	 a	 rich	 time	 course	 of	 data	 following	 the	

presentation	of	a	stimulus,	the	response	is	the	sum	of	many	nonlinearities.		

To	overcome	this,	we	took	an	alternative	approach	in	Chapter	4	and	used	the	

two-frequency	method	of	steady-state	EEG.	This	allows	you	to	tag	each	of	the	grating	

components	 forming	 a	 plaid,	 as	 well	 as	 directly	 measure	 nonlinearities	 at	

intermodulation	frequencies.	We	found	a	plaid-selective	 intermodulation	response,	

which	was	larger	for	coherent	plaids	than	it	was	for	non-coherent	plaids.	In	support	

of	this	representing	an	additional	nonlinearity	beyond	normalisation,	the	degree	of	

component	suppression	did	not	differ	between	coherent	and	non-coherent	plaids	for	

any	of	the	grating	components	used.		

We	generated	a	simple	two-layered	computational	model	of	signal	summation	

to	 try	 and	 explain	 the	 complexity	 of	 responses	 generated	 in	 to	 combinations	 of	

gratings.	 The	 model	 took	 the	 form	 of	 a	 logical	 AND	 gate,	 allowing	 it	 to	 respond	

selectively	 to	 conjunctions	 of	 signals.	 It	 appears	 that	 this	 kind	 of	 mechanism	 can	

represent	well	the	responses	we	observed	using	EEG.		

It	is	not	clear	how	a	mechanism	that	makes	use	of	saturating	nonlinearities	to	

perform	selective	signal	summation	would	behave	across	contrast.	At	lower	contrast	

levels,	before	many	neurons	reach	the	rising	slope	of	their	dynamic	range,	it	might	be	

that	 the	 mechanism	 fails	 altogether.	 Using	 a	 similar	 paradigm	 to	 Chapter	 4,	 we	

measured	intermodulation	responses	across	a	wide	range	of	contrast	levels	in	Chapter	

5.	We	again	found	a	selective	intermodulation	response	that	was	larger	for	coherent	

plaids.	However,	this	difference	only	occurred	at	the	highest	component	contrast	level	

that	we	used	–	32%.	

Having	found	a	nonlinearity	in	the	visual	system	that	appeared	to	selective	for	

particular	combinations	of	grating	stimuli,	we	wanted	to	investigate	whether	similar	

nonlinearities	 are	 put	 to	 use	 in	 other	 brain	 regions.	 In	 Chapter	 6	 we	 generated	

auditory	stimuli	–	three	pure	tones	–	that	were	combined	to	form	a	consonant	and	a	

dissonant	 chord.	 Substantial	 component	 suppression	was	 observed	 for	 one	 of	 the	



components.	However,	no	intermodulation	responses	or	component-based	harmonic	

responses	were	observed.		

Bringing	 these	 findings	 together,	 the	 transient	 approach	 to	 measuring	

nonlinear	responses	is	somewhat	limited,	and	provided	only	hints	at	what	might	be	

the	 presence	 of	 ‘conjunction’	 detectors	 in	 mid-level	 vision.	 On	 the	 other	 hand,	 it	

appears	 that	 the	 two-frequency	 approach	 is	 extremely	 useful	 for	 measuring	 and	

disentangling	multiple	nonlinear	responses.	Here	–	in	the	visual	system,	at	least	–	this	

was	 useful	 for	 distinguishing	 responses	 relating	 to	 lateral	 inhibition	 caused	 by	 the	

presence	 of	 multiple	 stimulus	 components	 from	 responses	 relating	 to	 the	

combination	 of	 responses	 relating	 to	 those	 stimulus	 components	 in	 the	 brain.	

Conjunction	detectors	that	operate	at	moderate	to	high	contrast	levels	appear	to	be	

present	 in	mid-level	 vision.	 In	 the	one	auditory	 study	 that	we	 conducted,	no	 clear	

pattern	of	results	were	observed,	making	 it	difficult	to	assess	the	usefulness	of	the	

two-frequency	approach	in	that	domain.	
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Chapter	1: Literature	Review	

The visual system 

Nonlinearities	are	prevalent	

The	visual	system	can	be	thought	of	as	a	functional	hierarchy.	It	is	composed	of	distinct	

and	 increasingly	 complex	 neural	 populations,	 each	 combining	 signals	 from	 the	

previous	region	to	form	more	complex	representations.	Receptive	field	(RF)	size	and	

complexity	increases	up	through	the	cortical	regions	of	the	visual	stream	(Serre,	Oliva,	

&	Poggio,	2007).	In	primary	visual	cortex	(V1),	neurons	have	elongated	RFs	that	can	

be	derived	by	the	summation	and	subtraction	of	geniculo-cortical	projections	(Figure	

1.1)	(Hubel	&	Wiesel,	1959,	1962,	1963).	There,	many	neurons	respond	selectively	to	

stimulus	features	like	size	(Greenlee	&	Magnussen,	1988;	Xing,	Shapely,	Hawken,	&	

Ringach,	2005),	orientation	(Blakemore	&	Campbell,	1969;	Campbell	&	Maffei,	1970;	

Hubel	&	Wiesel,	1962)	and	spatial	frequency	(Albrecht	&	DeValois,	1981;	Campbell,	

Cooper,	&	Enroth-Cugell,	1969;	Campbell	&	Robson,	1968;	Greenlee	&	Magnussen,	

1988;	 Maffei	 &	 Fiorentini,	 1973),	 while	 neurons	 in	 higher	 visual	 areas	 respond	

selectively	to	complex	stimuli	such	as	faces	(Kanwisher,	McDermott,	&	Chun,	1997;	

McCarthy,	Puce,	Gore,	&	Allison,	1997).	

	Few	 neurons	 within	 this	 hierarchy	 respond	 linearly	 across	 contrast;	 they	

display	a	limited	dynamic	range	of	contrasts	over	which	the	majority	of	their	response	

occurs	 followed	 by	 saturation	 (Albrecht	 &	 Hamilton,	 1982;	 Peirce,	 2007b).	 The	

beginning	 of	 this	 process	 involves	 transforming	 the	 external	 visual	 scene	 into	 the	

retinal	image;	a	representation	of	the	external	visual	scene	on	the	retina.		It	is	created	

from	the	transduction	process	that	occurs	when	light	from	the	external	environment	

is	projected	through	the	lens	of	the	eye	and	onto	the	mosaic	of	rods	and	cones	across	

the	retina,	known	as	photoreceptors.	The	transformation	from	light	energy	to	neural	

electrical	 impulses	 results	 in	 projections	 to	 bipolar	 cells	 and	 retinal	 ganglion	 cells.	

Opponent	arrangements	in	retinal	ganglion	cells	allow	them	to	detect	local	contrast	

intensities	in	the	visual	scene.	For	example,	centre-surround	classical	receptive	fields	
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(CRF)	–	the	limited	range	of	visual	space	within	which	a	neuron	can	detect	changes	in	

luminance	(Enroth-Cugell	&	Robson,	1966;	Kuffler,	1953).		

	

RFs	allow	retinal	ganglion,	LGN	and	V1	neurons	to	act	as	spatiotemporal	filters,	

removing	enough	redundant	information	from	the	retinal	image	to	encode	the	spatial	

distribution	of	luminance	and	contrast	energy	in	the	visual	scene	(Lennie,	2003).	Basic	

‘linear’	models	these	receptive	fields	involve	projections	first	passing	through	a	linear	

spatial	filter,	where	the	local	intensities	of	a	retinal	image	are	multiplied	by	the	local	

weights	of	 the	receptive	 field	and	summed	together.	Being	 linear,	 the	 filter	can	be	

used	to	describe	the	selectivity	of	a	neuron;	images	that	are	similar	to	the	filter	will	

produce	larger	responses	than	those	that	are	not.	For	example,	localised	areas	of	high	

a b

Figure	1.1	CRF	structures	in	a)	centre-surround	LGN	neurons	and	b)	V1	simple	
cells,	based	on	Hubel	and	Wiesel	(1959,	1962).		Red	regions	represent	‘ON’	
regions	of	the	receptive	field,	where	high	luminance	regions	of	a	stimulus	
provides	optimal	stimulation.	Blue	areas	represent	‘OFF’	regions	of	the	
receptive	field,	where	low	luminance	regions	of		stimulus	provides	optimal	
stimulation.	The	LGN	CRFs	shown	here	can	be	described	as	the	difference	of	
two	Gaussian	functions,	while	the	V1	simple	cells	can	be	described	as	the	
product	of	a	sinusoidal	function	and	a	Gaussian	function.	A	diverging	blue-
white-red	colormap	was	used	instead	of	a	greyscale	colormap	to	better	
highlight	the	spatial	organisation	of	the	receptive	fields	in	2D	space.	
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luminance	intensity	will	optimally	excite	‘ON’	regions	of	a	retinal	ganglion	cell’s	centre-

surround	RF,	while	‘OFF’	regions	will	be	optimally	excited	by	localised	areas	of	low	(or	

no)	luminance	intensity.	The	centre-surround	spatial	organisation	LGN	neuron	filters	

selectivity	(Kaplan,	Marcus,	&	So,	1979;	Shapely	&	Lennie,	1985)	and	the	elongated	

filters	of	V1	simple	cells	(Movshon,	Thompson,	&	Tolhurst,	1978)	are	able	to	describe	

their	spatial	frequency,	while	their	temporal	weighting	functions	predict	the	temporal	

frequency	selectivity	of	LGN	neurons	(Benardete	&	Kaplan,	1999;	Kremers,	Weiss,	&	

Zrenner,	1997)	to	arbitrary	stimuli,	such	as	white	noise.	However,	when	it	comes	to	

generating	 firing	 rate	 responses	 (impulse	 spikes)	 from	 the	 linearly	 summed	 signal,	

nonlinearities	are	required.	Receptive	fields	make	use	of	several	static	nonlinearities	

at	their	output,	such	as	half-wave	rectification	(firing	rate	can	never	be	negative)	and	

saturation	 (the	 response	 ceiling	 of	 a	 neuron	 due	 to	 refractory	 periods)	 (Kuffler,	

Fitzhugh,	 &	 Barlow,	 1957;	 Passaglia,	 Enroth-cugell,	 &	 Troy,	 2001;	 Troy	 &	 Robson,	

1992).		

Potentially,	 this	 saturation	 is	 a	 simple	biophysical	 artefact	 that	neurons	are	

unable	 to	 respond	 at	 increasingly	 high	 rates	 (e.g.	 due	 to	 a	 lack	of	 resources).	 This	

seems	 unlikely	 due	 to	 the	 relative	 heterogeneity	 of	 neural	 responsiveness,	 which	

varies	 from	neuron	to	neuron,	and	even	within	a	given	neuron	responsiveness	can	

change.	 It	 appears	 that	 this	 nonlinear	 behaviour	 results	 from	 an	 active	 process	 of	

suppression.	 Two	 major	 nonlinearities	 that	 demonstrate	 this	 are	 luminance	 gain	

control	(‘light	adaptation’)	and	contrast	gain	control.	Gain,	or	physiological	sensitivity,	

is	defined	as	 the	magnitude	of	a	 stimulus	 that	 is	 required	 to	generate	a	 response.	

Luminance	 gain	 control	 starts	 in	 retinal	 ganglion	 cells	 and	 places	 the	 accelerating	

dynamic	range	of	neurons	to	match	the	recent	average	 light	 intensity	of	 the	visual	

scene.	 In	areas	where	 light	 intensity	 is	high,	 light	adaptation	 reduces	 the	gain,	but	

increases	it	in	areas	where	light	intensity	is	low.	By	holding	the	mean	luminance	across	

the	 retinal	 image	 relatively	 constant,	 luminance	 gain	 control	 allows	 the	 retina	 to	

adjust	to	 local	variations	 in	contrast.	Contrast	gain	control	also	begins	 in	the	retina	

(Baccus	&	Meister,	2002;	Victor,	1987).	With	mean	luminance	adjusted	for,	contrast	

gain	 control	 adjusts	 response	 gain	 using	 local	 variations	 in	 luminance	 (i.e.	 RMS	

contrast),	 such	 that	 gain	 is	 reduced	 where	 contrast	 is	 high	 and	 increased	 where	

contrast	 is	 low.	 This	 is	 then	 strengthened	as	 it	 is	 projected	 to	 the	 LGN	and	 cortex	
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(Kaplan,	Purpura,	&	Shapley,	1987;	Sclar,	Maunsell,	&	Libnie,	1990).	Mechanisms	of	

gain	 control,	 collectively	 referred	 to	 as	 ‘normalisation’	 (Carandini	&	Heeger,	 1994,	

2012;	 Carandini,	 Heeger,	 &	 Movshon,	 1997),	 allows	 neurons	 to	 maintain	 optimal	

response	sensitivity	across	contrast.	It	also	reduces	redundancy	in	neural	populations,	

for	example	by	reducing	statistical	dependence	between	neighbouring	neurons	with	

similar	tuning	properties	(Albrecht	&	Geisler,	1991;	Albrecht	&	Hamilton,	1982;	Bonin,	

Mante,	&	Carandini,	2005;	Heeger,	1992;	Schwartz	&	Simoncelli,	2001;	Shou,	Li,	Zhou,	

&	Hu,	1996).		

	

Normalisation	in	V1	

			Take	 cross-orientation	 suppression	 (XOS)	 as	 an	 example.	 A	 grating	 whose	

orientation	falls	outside	of	the	tuning	bandwidth	of	a	neuron	will	generate	very	little	

(if	any)	response	when	presented	alone.	When	spatially	superimposed	on	top	of	the	

Figure	1.2	Contrast	response	functions	for	a	linear	response	and	nonlinear	
responses.	The	black	function	represents	the	output	of	a	saturating	nonlinearity.	
The	dark	blue	function	represents	response	gain	control	(created	by	reducing	
RMax	to	0.7)	and	the	lighter	blue	function	contrast	gain	control	(created	by	adding	
a	masker	at	a	standing	contrast	of	0.3).	Compared	to	a	linear	response,	gain	
control	and	normalisation	processes	extend	the	neuron’s	dynamic	range	at	low-
to-mid	level	contrasts.		
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preferred	 grating	 however,	 it	 typically	 results	 in	 a	 reduction	 in	 response	 to	 the	

preferred	grating.	A	divisive	process	of	 lateral	 inhibition	between	neurons	explains	

this	well.	For	example,	DeAngelis,	Freeman	and	Ohzawa	(1994)	and	Petrov,	Carandini	

and	McKee	(2005)	found	that	XOS	was	broadly	tuned	for	spatial	frequency	(up	to	a	

factor	of	~4	difference	between	target	and	mask	SF:	Petrov	et	al.,	2005).	As	a	non-

preferred	 grating	 generates	 very	 little	 response,	 the	 neuron	might	 instead	 receive	

inhibitive	 input	 from	 a	 wide	 pool	 of	 other	 cortical	 neurons	 with	 different	 spatial	

frequency	preferences,	resulting	in	the	observed	broadly-tuned	response	inhibition.	

Several	 recent	 studies	 have	 provided	 evidence	 that	 this	 process	may	occur	 in	 two	

stages;	before	and	after	binocular	summation	takes	place,	the	latter	taking	place	in	

cortex	 (e.g.	D.	H.	Baker,	Meese,	&	Summers,	 2007;	Cass,	 Stuit,	 Bex,	&	Alais,	 2009;	

Meese	 &	 Holmes,	 2007,	 2010;	 Petrov	 et	 al.,	 2005;	 Viswanathan,	 Jayakumar,	 &	

Vidyasagar,	2011).		

Normalisation	is	described	well	by	the	hyperbolic	Naka-Rushton	function:	

	

𝑟𝑒𝑠𝑝 = 𝑅𝑀𝑎𝑥
𝐶+,

𝐶-., + 𝐶+, + 𝐶0,
	

	

where	𝑅𝑀𝑎𝑥	is	the	maximum	response	rate	of	the	neuron,	𝐶+,	the	contrast	intensity	

of	 a	 stimulus	 preferred	 by	 the	 neuron,	𝐶0,	 the	 contrast	 intensity	 of	 a	masker,	 for	

example,		𝐶-.	the	‘semi-saturation	point’	(the	contrast	required	to	produce	half	of	the	

neuron’s	maximum	response),	and	𝑛	an	exponent	that	determines	the	slope	of	the	

response	function	(Albrecht	&	Hamilton,	1982;	Naka	&	Rushton,	1966;	Peirce,	2007b,	

2011).	 The	 numerator	 in	 the	 equation	 determines	 neural	 excitation,	 while	 the	

denominator	determines	neural	inhibition.		

Without	 considering	 𝐶0,,	 this	 first	 equation	 represents	 contrast	 saturation		

(Figure	1.2).	As	contrast	intensity	increases,	the	neuron’s	responsiveness	reaches	the	

accelerating	dynamic	range	of	its	function,	provided	that	exponent	𝑛	>1.	Acting	as	a	

counter-weight	 to	 excitation,	 contrast	 intensity	 proportionally	 increases	 in	 the	

denominator.	 Following	 the	 semi-saturation	 point	 of	 the	 response	 function,	 this	

balance	between	numerator	and	denominator	results	in	a	compression	of	response	



	 6	

function.	When	a	masker	 is	also	present	at	a	standing	contrast,	the	𝐶0,	 term	in	the	

denominator	results	in	a	lateral	shift	in	the	response	function	(Figure	1.2).		

Though	many	neurons	display	nonlinearities	that	are	useful	for	adjusting	the	

gain	of	neurons,	there	are	other	nonlinearities	that	are	difficult	to	explain	in	terms	of	

gain	 control.	 For	 example,	 some	 neurons	 display	 supersaturation	 –	 a	 contrast	

response	function	with	a	characteristic	inverted	u-function	(Peirce,	2007b).	This	type	

of	 activity	 is	 redundant	 within	 a	 framework	 of	 normalisation;	 an	 exaggerated	

suppressive	input	from	the	normalisation	pool.	However,	so	much	attention	has	been	

placed	on	normalisation	and	gain	control	in	V1	over	the	last	40-50	years	that	a	great	

deal	has	yet	to	be	understood	about	how	the	rest	of	the	visual	system	operates.		

	

Nonlinear	responses	beyond	V1	

Further	 combinations	 beyond	 V1	 necessarily	 contribute	 to	 our	 visual	 experience.	

Multiple	extra-striate	regions	respond	to	stimuli	more	complex	than	oriented	Gabors	

or	gratings;	stimuli	like	contours,	plaids,	shapes	and	faces	(Anzai,	Peng,	&	Van	Essen,	

2007;	Desimone,	1991;	Desimone,	Albright,	Gross,	&	Bruce,	1984;	Gallant,	Connor,	

Rakshit,	 Lewis,	 &	 Van	 Essen,	 1996;	 Pasupathy	 &	 Connor,	 1999,	 2002;	 Willmore,	

Prenger,	&	Gallant,	2010).	It	seems	unlikely	that	processes	such	as	supersaturation	are	

redundant.	Instead,	nonlinearities	might	serve	to	do	more	than	adjust	response	gain.	

For	 example,	 supersaturation	may	 instead	 reflect	 mechanisms	 with	 very	 selective	

tuning	 properties	 (Peirce,	 2007b,	 2011).	 It’s	 of	 clear	 importance	 to	 understand	

whether	this	is	the	case,	and	what	nonlinearities	might	be	useful	for	encoding	stimuli	

more	complex	than	simple	gratings	(for	a	review,	see	Peirce,	2015).	

The	 adaptation	 approach	 presents	 an	 opportunity	 for	 targeting	 specific	

mechanisms	carrying	out	these	combinations.	As	mentioned	earlier,	neurons	are	able	

to	 adjust	 their	 response	 gain	 to	 a	particular	 stimulus	 given	 the	 average	 luminance	

(light	adaptation	in	the	retina)	and	local	variations	in	luminance	(contrast	adaptation)	

across	the	surface	of	a	reflecting	stimulus.	The	degree	to	which	this	happens	can	be	

manipulated	 by	 prolonged	 exposure	 to	 a	 stimulus.	 Prolonged	 exposure	 to	 a	 high	

contrast	grating,	 for	example,	 results	 in	 stronger	adaptation	and	 in	 turn	a	 reduced	

response	to	test	stimuli	at	lower	contrast	levels	that	share	the	same	features,	such	as	
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spatial	 frequency	 or	 orientation.	 By	moving	 the	 neuron’s	 dynamic	 range	 to	 higher	

contrasts,	 this	 active	 process	 increases	 the	 neuron’s	 sensitivity	 to	 higher-contrast	

stimuli	 (Blakemore	&	Campbell,	 1969;	Greenlee	&	Magnussen,	 1988;	Manahilov	&	

Vassilev,	1986;	Ohzawa,	Sclar,	&	Freeman,	1985;	Sclar,	Lennie,	&	Depriest,	1989;	Shou	

et	 al.,	 1996;	 Snowden	 &	 Hammett,	 1992).	 Therefore,	 by	 presenting	 an	 adapter	

stimulus	with	 certain	 features,	 such	 as	 spatial	 frequency	 and	 orientation,	 you	 can	

target	the	responsiveness	of	neurons	tuned	to	those	features.	Consider	the	following	

simple	experiment.	You	determine	a	participant’s	contrast	threshold	–	the	contrast	

required	to	detect	a	stimulus	–	for	a	sinusoidal	grating	of	a	certain	spatial	frequency.	

You	 then	 flicker	 a	 high	 contrast	 grating	 identical	 to	 the	 original	 for	 an	 adaptation	

period.	Following	a	brief	interval,	a	target	grating	of	the	same	spatial	frequency	as	the	

initial	grating	 is	presented	 in	 the	same	position.	 If	 the	 target	grating	 is	matched	 in	

spatial	frequency	with	the	adapter	grating,	there	will	likely	be	an	elevation	in	contrast	

threshold	(greater	contrast	would	be	required)	for	detecting	the	target	relative	to	the	

initial	contrast	 threshold	measurement	–	a	contrast	after-effect	of	adaptation.	This	

suggests	 that	 the	 response	 gain	 of	 a	 particular	mechanism	 that	 is	 sensitive	 to	 the	

features	 within	 the	 adapter	 stimulus	 has	 been	 decreased,	 providing	 a	 way	 of	

identifying	and	manipulating	certain	mechanisms	within	the	visual	system.		

A	range	of	adaptation	after-effects	have	also	been	identified,	such	as	the	tilt	

aftereffect	 (TAE)	 (Gibson,	 1937;	 Gibson	 &	 Radner,	 1937).	 Like	 contrast	 detection	

thresholds,	 these	 can	been	used	 to	 study	 feature-selective	mechanisms	within	 the	

visual	system.	Adaptation	aftereffects	describe	when	the	appearance	of	a	stimulus	is	

changed	in	some	way	following	adaptation	to	another	stimulus	that	may	share	similar	

features.	In	the	TAE,	prolonged	adaptation	to	a	line	or	grating	causes	a	change	in	the	

perception	of	another	oriented	stimulus’	orientation	away	from	the	adapter	(Mitchell	

&	Muir,	1976;	Paradiso,	Shimojo,	&	Nakayama,	1989;	Peter	Wenderoth	&	Johnstone,	

1988).	Contrast	adaptation	to	a	stimulus	of	one	orientation	results	in	the	temporary	

strengthening	 of	 inhibitive	 lateral	 activity	 between	 populations	 of	 broadly-tuned	

orientation-selective	 neurons	 (Tolhurst	 &	 Thompson,	 1974).	 The	 broadly-tuned	

adaptation	 results	 in	neurons	–	whose	orientation	 tuning	 is	 further	away	 from	the	

orientation	of	 the	 stimulus	 –	 responding	more	 strongly,	which	 results	 in	 the	 tilted	

perception	of	 the	test	stimuli.	Roach	and	colleagues	 (Roach	&	Webb,	2013;	Roach,	
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Webb,	&	McGraw,	2008)	identified	a	form	of	TAE	induced	by	circular	and	radial	global	

patterns	that	was	insensitive	to	spatial	frequency	but	sensitive	to	orientation	(relative	

to	 the	 local	 structure	of	 the	pattern).	 Interestingly,	 adaptation	 seemed	 to	occur	 in	

spatially	 remote	 locations	 that	 did	 not	 receive	 input	 from	 the	 adapter	 patterns.	

Following	adaptation,	they	found	TAEs	still	occurred	for	grating	patterns	displayed	in	

these	 spatially	 remote	 locations,	 irrespective	 of	 differences	 in	 spatial	 frequency	

between	 adapter	 and	 test.	 This	 suggests	 the	 involvement	 of	 a	 neural	 population	

sensitive	to	the	global	orientation	structure	of	the	circular/radial	pattern	recurrently	

inhibiting	the	local	orientation	channels	that	they	receive	their	input	from.	Tan	et	al.	

(Tan,	 Bowden,	 Dickinson,	 &	 Badcock,	 2015;	 Tan,	 Dickinson,	 &	 Asaad,	 2016;	 Tan,	

Dickinson,	 &	 Badcock,	 2016)	 found	 that	 shape	 information	 within	 texture-defined	

radial	frequency	patterns	is	globally	processed,	indicating	the	involvement	of	global	

mechanisms	 sensitive	 to	 annular	 shape	 (however,	 see	 Baldwin,	 Schmidtmann,	

Kingdom,	&	Hess,	2015;	Kingdom,	Baldwin,	&	Schmidtmann,	2015).	

Adaptor Test
a

b

Figure	1.2.	Examples	of	a)	SFAE	and	b)	SAAE	stimuli	taken	from	Gheorghiu	and	Kingdom	
(2009).	
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To	more	easily	understand	how	V1	outputs	are	combined	in	mid-level	vision,	

though,	simpler	compound	stimuli	whose	components	are	predictably	and	optimally	

encoded	 in	V1	might	be	more	useful	 (Coen-Cagli	&	Schwartz,	2013).	To	 this	end,	a	

number	of	novel	adaptation	aftereffects	have	been	found	for	simple	contours	(Bell,	

Sampasivam,	 McGovern,	 Meso,	 &	 Kingdom,	 2014;	 Gheorghiu	 &	 Kingdom,	 2009;	

Hancock,	McGovern,	&	Peirce,	2010;	Hancock	&	Peirce,	2008;	McGovern,	Hancock,	&	

Peirce,	 2011;	 Peirce,	 McGovern,	 &	 Hancock,	 2009;	 Suzuki,	 2001,	 2003).	 Contour	

integration	 and	 detection	 is	 crucial	 for	 object	 perception.	 It	 allows	 us	 to	 separate	

objects	 in	 space	 from	 other	 objects	 and	 from	 their	 background	 (e.g.	 Gheorghiu	&	

Kingdom,	2012;	Sassi,	Vancleef,	Machilsen,	Panis,	&	Wagemans,	2010;	Vancleef	et	al.,	

2013).	Gheorghiu	and	Kingdom	(2009)	used	two	adaptation	aftereffects;	the	shape-

frequency	aftereffect	(SFAE)	and	the	shape-amplitude	aftereffect	(SAAE)	(Figure	1.2).	

Adaptation	to	two	2D	sine-wave	adaptor	contours,	one	above	a	fixation	point	and	one	

below,	was	induced	with	a	90s	adaptation	period,	followed	by	a	repeated	0.5s	test	

period	with	a	2.5s	top-up	adaptation	period.	One	of	the	adapter	contours	either	had	

a	greater	peak	frequency	or	greater	peak	amplitude	than	the	other.	During	the	test	

period,	 the	adapter	contours	were	 replaced	with	 two	test	contours,	both	of	which	

were	 identical	 in	 peak	 amplitude	 and	 frequency.	 They	 found	 that,	 where	 the	

frequency	 or	 the	 amplitude	 of	 adapter	 contours	 was	 different,	 participants	 also	

perceived	 a	 difference	 in	 that	 feature	between	 the	 test	 contours	 (SFAE	 and	 SAAE,	

respectively).	For	example,	 in	the	SFAE	condition,	 following	adaptation	participants	

would	perceive	one	of	the	test	contours	to	have	more	cycles	from	end-to-end	than	

the	other,	even	though	they	were	physically	identical.	A	model	of	contour	integration	

by	 a	 curvature	 detection	 mechanism	 explained	 their	 findings	 well.	 The	 authors		

suggested	that	this	can	be	achieved	by	an	operation	in	which	outputs	of	sub-unit	RFs	

along	the	chord	of	the	contours,	each	like	orientation-tuned	V1	filters,	are	combined	

by	multiplication.	If	just	one	of	the	sub-unit	RFs	do	not	receive	input,	for	example	if	

there	is	a	long-enough	gap	in	the	contour,	then	the	AND-like	operation	does	not	take	

place.	 However,	 it	 has	 been	 debated	 repeatedly	 whether,	 in	 fact,	 summation	 of	

nonlinear	V1	responses	could	perform	this	job	(May	&	Zhaoping,	2011,	2013,	Peirce,	

2007b,	2011,	2013).	
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The	SFAE	and	SAAE	methods	are	difficult	to	interpret	in	terms	of	local	versus	

global	processing	because	 the	adapter	 stimuli	vary	 in	orientation	structure	at	both	

levels.	Peirce	and	Taylor	(2006)	developed	a	novel	compound	adaptation	procedure	

to	get	around	this	problem	and	disentangle	responses	to	compound	stimuli	–	in	this	

particular	case	to	plaids	–	from	responses	to	the	components	of	the	compound.	They	

used	two	pairs	of	spatial	frequency-matched	gratings:	two	had	a	spatial	frequency	of	

1.5cpd	 (gratings	A	and	B),	 and	 the	other	pair	 shared	a	 spatial	 frequency	of	2.5cpd	

(gratings	C	and	D).	Each	grating	in	the	pair	was	orthogonal	in	orientation	to	the	other:	

gratings	A	and	B	had	orientations	of	0°	and	90°,	while	gratings	C	and	D	had	orientations	

of	45°	and	135°.	To	form	compound	plaid	patterns,	each	of	the	grating	components	

were	linearly	combined	with	two	of	the	other	gratings,	which	resulted	in	two	spatial-

frequency	matched,	orthogonally	oriented	‘coherent’	plaids	(AB	and	CD)	and	two	non-

matched,	‘non-coherent’	plaids	(AC	and	BD).	Initial	adaptation	took	place	for	30s	in	

two	retinally	independent	locations	on	either	side	of	a	fixation	spot.	On	one	side,	the	

side	of	 ‘compound	adaptation’,	 the	 two	coherent	plaid	patterns	 (AB	and	CD)	were	

counter-phase	modulated	at	a	rate	of	2Hz	and	were	interleaved	with	each	other	every	

1s.	 On	 the	 other	 side,	 the	 side	 of	 ‘component	 adaptation’,	 the	 two	 non-coherent	

plaids	 (AC,	BD)	did	 the	same.	This	was	 followed	by	a	200ms	 inter-stimulus-interval	

(ISI),	 a	 200ms	 probe,	 2s	 top	 up	 adaptation,	 another	 200ms	 ISI	 and	 then	 a	 second	

probe.	The	probes	presented	on	either	side	of	fixation	were	the	same	as	each	other,	

for	example	both	were	plaid	CD	or	both	were	plaid	AD.	By	presenting	all	of	the	grating	

components	 in	 both	 locations,	 but	 in	 different	 configurations,	 the	 authors	

hypothesised	that	if	a	mechanism	exists	that	is	selective	for	coherent	plaids,	then	the	

magnitude	of	contrast	adaptation	will	be	larger	on	the	side	of	compound	adaptation.	

On	the	other	hand,	if	there	is	no	such	mechanism,	then	contrast	adaptation	will	occur	

equally	as	strong	on	both	sides.	Their	results	supported	the	former	hypothesis:	they	

found	that	contrast	adaptation	to	the	plaids	was	selective	for	plaid	coherence.		

Hancock	 et	 al.,	 (2010;	 2008)	 adapted	 this	 method	 to	 identify	 a	 curvature	

aftereffect	(CAE).	Participants	were	adapted	to	flickering	compound	contours	made	

of	two	oriented	grating	components	 in	one	hemi-field,	and	to	the	flickering	grating	

components	alternating	180˚	out	of	temporal	phase	(so	that	one	was	always	present)	

in	the	other	hemi-field.	The	perceived	curvature	of	a	straight	test	pattern	was	greater	



	 11	

following	 compound	 adaptation	 than	 following	 component	 adaptation,	 but	 was	

abolished	when	the	components	were	spatially	separated	(Hancock	&	Peirce,	2008)	

or	when	the	spatial	frequency	of	each	component	was	mismatched	by	more	than	2.14	

octaves	(Hancock	et	al.,	2010).	A	mechanism	sensitive	to	the	compound	pattern,	but	

not	to	either	of	its	components	presented	in	isolation,	can	explain	these	results.	The	

abolition	of	the	effect	by	spatial	separation	or	spatial	frequency	mismatching	suggests	

that,	rather	than	just	indiscriminately	combining	output	from	spatially	proximal	RFs,	

the	mechanism	requires	them	to	have	similar	spatial	frequency	tuning.	

	

	

Plaids	present	a	simple	but	compelling	case	of	‘phenomenal	coherence’	where	

the	 perception	 of	 a	 compound	 stimulus	 is	 greater	 than	 the	 sum	 of	 its	 parts.	 The	

combination	of	superimposed,	oriented	grating	components	in	certain	configurations	

results	 in	 the	 perception	 of	 a	 distinct	 chequerboard	 pattern	 (a	 ‘coherent’	 plaid).	

Deviations	 from	 these	 configurations,	 however,	 result	 in	 the	 perception	 of	 the	

superimposed,	 semi-transparent	 grating	 components	 (‘non-coherent’	 plaid)	 (Figure	

1.3).	This	has	been	observed	for	plaids	in	motion	(Adelson	&	Movshon,	1982;	Kim	&	

Wilson,	1993)	and	static	plaids	(Georgeson,	1992;	Meese	&	Freeman,	1995;	Olzak	&	

Figure	1.3.	Combining	gratings	to	make	different	kinds	of	plaids.	Grating	components	(left),	coherent	
plaids	(middle)	and	non-coherent	plaids	(right).	Grating	A	can	be	orthogonally	superimposed	on	top	of	
another	grating	A	to	form	coherent	plaid	AA,	or	on	top	of	a	grating	B	to	form	non-coherent	plaid	AB.	
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Thomas,	 1991),	 though	 mechanisms	 responding	 to	 drifting	 plaids	 likely	 encode	

combinations	of	motion	 signals	while	 those	 responding	 to	 static	plaids	encode	 the	

form	of	 the	plaid	 (Huk	&	Heeger,	2002;	Movshon	&	Newsome,	1996;	Rust,	Mante,	

Simoncelli,	&	Movshon,	2006).		

Building	on	Peirce	and	Taylor’s	(2006)	findings,	Hancock,	McGovern	and	Peirce	

(2010)	measured	adaptation	to	compound	plaid	patterns	across	a	range	of	component	

spatial	 frequencies.	 They	 found	 a	 contrast	 aftereffect	 that	 was	 again	 greatest	 in	

magnitude	 when	 plaid	 components	 matched	 in	 spatial	 frequency	 (i.e.	 their	

combination	 formed	 a	 coherent	 plaid),	 with	 a	 tuning	 bandwidth	 of	 around	 ~2.72	

octaves.	This	held	 for	a	 relatively	wide	range	of	coherent	plaid	spatial	 frequencies;	

from	0.4c/deg	to	6.4	c/deg	and	displayed	different	temporal	dependencies	from	the	

CAE	 (McGovern	 et	 al.,	 2011).	 A	 similar	 effect	 has	 been	 found	 for	 chromatic	 plaid	

adaptation	 (Robinson	 &	 MacLeod,	 2011).	 Perceptual	 plaid	 coherence	 breaks	

altogether	 (Olzak	 &	 Thomas,	 1991),	 or	 requires	 higher	 contrast	 thresholds	 as	 a	

function	of	 spatial	 frequency	mismatching	 (Georgeson,	1998).	Non-coherent	plaids	

are	also	picked	 in	 a	more	 sequential	manner	 in	 visual	 search	 tasks	while	 coherent	

plaids	 ‘pop-out’	 of	 the	 search	 arrays,	 indicative	 of	 pre-attentive	 mechanisms	 for	

perceiving	 coherent	 plaids	 (Nam,	 Solomon,	 Morgan,	 Wright,	 &	 Chubb,	 2009).	

Together,	 these	 findings	point	 to	 the	existence	of	mechanisms,	distinct	 from	those	

responsible	 for	 the	CAE,	 that	selectively	combine	plaid	components	based	on	their	

relative	spatial	frequency.	Mechanisms	that	‘match’	by	spatial	frequency	might	serve	

to	limit	the	total	number	of	signal	combinations	that	the	visual	system	must	carry	out,	

and	help	it	identify	object	features	like	edges	that	are	more	likely	to	originate	from	

the	same	object.	

The	 perceived	 contrast	 of	 plaids	 also	 differs	 from	 that	 of	 the	 grating	

components	that	form	them.	Likely	due	to	XOS,	they	have	a	lower	perceived	contrast	

than	 either	 of	 their	 components	 presented	 at	 the	 same	 contrast	 (Georgeson	 &	

Shackleton,	 1994).	 For	 example,	 a	 component	 presented	 alone	 at	 32%	Michelson	

contrast	would	be	perceived	as	being	slightly	higher	in	contrast	than	a	plaid	composed	

of	 two	 16%	 contrast	 grating	 components.	When	 presented	 at	 low	 contrast	 levels	

plaids	fail	 to	cohere	(Meese	&	Georgeson,	1996),	and	show	selective	adaptation	at	

higher	contrast	levels,	while	gratings	show	the	opposite	pattern	(McGovern	&	Peirce,	
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2010).	McGovern	and	Peirce	(2010)	also	found	that	contrast	adaptation	to	plaids	was	

spatially	phase-invariant,	whereas	contrast	adaptation	to	the	grating	components	was	

sensitive	to	spatial	phase.	As	the	spatial	phase	of	a	probe	grating	stimulus	relative	to	

the	adapter	increased,	a	smaller	magnitude	in	adaptation	was	observed,	while	for	a	

compound	plaid	 stimulus	 this	 shift	 in	 spatial	phase	of	 the	probe	did	not	affect	 the	

magnitude	of	adaptation.	Together,	 the	evidence	of	spatial	 frequency	selectivity	of	

plaid	perception,	phase	invariance	and	differences	in	contrast	coding	suggests	that	a	

selective	mechanism	beyond	V1	encoding	of	simple	edges	is	involved	in	the	processing	

of	plaids.		

	

Decision

Decision

a

b

Ch1

Ch2

Ch1

Ch2

Figure	1.4.	Taken	from	Peirce	(2007b).	A	summing	circuit	that	sums	linear	outputs	
(a)	cannot	differentiate	between	100%	contrast	stimulation	to	one	channel	alone	
and	50%	contrast	stimulation	to	two	channels.	A	summing	circuit	that	makes	use	
of	compressive	nonlinearities	(b),	such	as	contrast	gain	and	normalisation,	can.	
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Inspired	by	the	findings	of	Peirce	and	Taylor	(Peirce	&	Taylor,	2006)	and	Olzak	

and	Thomas	(Olzak	&	Thomas,	1999),	Peirce	(Peirce,	2007b,	2011,	2013)	suggested	

that	 nonlinearities	might	 be	 useful	 for	more	 than	 just	 optimising	 gain	 control	 and	

normalisation.	They	might	in	fact	be	essential	for	detecting	signal	conjunctions.	Logical	

AND-gates	are	summing	circuits	that	can	take	advantage	of	saturating	nonlinearities	

in	V1	to	discriminate	between	a	compound	pattern	and	its	components	(Figure	1.4)	

By	nonlinearly	summing	the	compressed	output	of	V1	channels,	greater	stimulation	

can	be	provided	by	the	circuit	than	any	one	channel	could	generate	on	its	own.	This	

would	allow	a	mechanism	to	encode	the	combination	of	signals	as	more	than	the	sum	

of	their	parts.	For	example,	imagine	a	summing	circuit	composed	of	two	V1	channels	

that	both	provide	input	to	a	‘conjunction’	neuron	higher	in	the	visual	system.	If	this	

circuit	sums	the	output	of	both	V1	channels	linearly,	the	conjunction	neuron	cannot	

differentiate	between	100%	contrast	stimulation	to	one	V1	channel	alone	and	50%	

contrast	stimulation	to	both	channels.	On	the	other	hand,	if	the	maximum	response	

achievable	 is	 limited	by	 saturating	 responses,	a	 summing	circuit	 that	makes	use	of	

compressive	nonlinearities	can.	

	

Detecting nonlinear summation using EEG 
The	difficulty	of	understanding	what	nonlinearities	might	drive	selective	mechanisms	

in	mid-level	 vision	 lies	 in	being	able	 to	disentangle	one	nonlinearity	 from	another.	

Those	giving	rise	to	normalisation	processes	clearly	play	a	large	role	in	the	detection	

of	 features	 in	 the	 visual	 scene.	 It	 is	 also	 clear	 that	 for	 detecting	 conjunctions	 of	

information,	 other	 nonlinearities	 must	 be	 involved.	 Following	 XOS,	 an	 additional	

nonlinearity,	 such	 as	 a	 logical	 AND-gate,	 may	 then	 process	 the	 plaid	 form	 by	

selectively	combining	outputs	from	V1	channels.		

So	how	might	one	disentangle	the	multiple	nonlinear	processes	of	mid-level	

vision?	The	spatio-temporal	 resolution	of	 fMRI	seems	too	coarse	to	distinguish	the	

different	 potential	 neural	 components	 that	 contribute	 to	 the	 overall	 response.	

Although	EEG	has	a	poorer	spatial	resolution,	its	superior	temporal	precision	might	be	

useful	 in	 this	endeavour.	 For	 instance,	 if	 the	additive	 responses,	 the	normalisation	
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nonlinearities	and	the	combination	nonlinearities	operate	on	different	timescales,	but	

in	similar	cortical	regions	then	EEG	might	be	able	to	distinguish	them.		

	

ERPs:	what	do	they	represent?	

Transient	 visual	 evoked	 potentials	 (VEPs,	 but	 also	 referred	 to	 as	 visually	 evoked	

responses	(VERs)	e.g.	Vassilev,	Manahilov,	&	Mitov,	1983)	are	ERPs	time-locked	to	the	

onset	of	a	brief	visual	stimulus.	Owing	to	the	ease	with	which	sensory	systems	can	be	

examined	relative	to	higher	cognitive	functions,	transient	VEPs	were	among	the	first	

ERPs	to	be	studied.	They	provide	an	incredibly	rich	data	set	with	excellent	temporal	

precision,	allowing	researchers	to	study	the	time	course	of	characteristic	peaks	and	

troughs	in	amplitude,	known	as	response	‘components’,	in	depth.	Those	which	occur	

earlier	in	the	time	course,	that	is	to	say	those	with	an	earlier	latency,	tend	to	be	more	

strongly	 influenced	 by	 low-level	 stimulus	 properties	 than	 later	 components	

(Manahilov	&	Vassilev,	1986;	Smith	&	Jeffreys,	1978).	

The	earliest	of	these	components	is	referred	to	as	the	C1	(Foxe	et	al.,	2008;	

Jeffreys	&	Axford,	1972a),	as	well	as	other	names	including	the	N75	and	N1	(Fortune	

&	Hood,	2003;	e.g.	Kevin,	Doug,	Matthias,	&	Gerhard,	2008;	Manahilov	&	Vassilev,	

1986;	Parker	&	Salzen,	1977).	It	reflects	feedforward	signals	in	early	visual	cortex	that	

can	 be	 observed	 consistently	 around	 posterior	 occipital	 channels	 (Ellemberg,	

Hammarrenger,	Lennie,	Roy,	&	Guillemot,	2001;	Hansen,	Haun,	Johnson,	&	Ellemberg,	

2016;	Miller,	Shapiro,	&	Lovegrove,	2015;	Reed,	Marx,	&	May,	1984).	The	typical	onset	

latency	of	the	C1	is	around	40-60ms	and	reaches	peak	amplitude	anywhere	between	

50-110ms	 post-stimulus	 (Clark,	 Fan,	 &	 Hillyard,	 1995;	 Di	 Russo,	Martínez,	 Sereno,	

Pitzalis,	&	Hillyard,	2002;	Ellemberg	et	al.,	2001;	Hansen	et	al.,	2016;	Rokszin,	Gyori-

Dani,	Nyúl,	&	Csifcsák,	2015).		

Unlike	 later	 components	 such	 as	 the	 N170	 or	 P300,	 the	 polarity	 and	

topography	of	the	C1	component	is	known	to	vary	in	polarity.	It	has	been	suggested	

that	this	is	consistent	with	the	retinotopic	organisation	of	V1	(e.g.	Clark	et	al.,	1995;	

Di	Russo	et	al.,	2002),	and	in-line	with	the	cruciform	model	of	striate	cortex	(Butler	et	

al.,	1987;	Holmes,	1945;	Jeffreys	&	Axford,	1972a,	1972b;	Kelly,	Vanegas,	Schroeder,	

&	Lalor,	2013;	Vanegas,	Blangero,	&	Kelly,	2013).	This	proposes	that	the	polarity		
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reversal	 observed	 for	 C1	 is	 caused	by	 cortical	 folding	 around	 the	 calcarine	 fissure.	

Stimuli	presented	 to	 the	upper	 right	quadrant	of	visual	 space,	 for	example,	will	be	

V1D

V1V

V2

V3

Figure	1.6.	Taken	from	Ales,	Yates	and	Norcia	(2010).	MRI	scans	from	two	participants	with	visual	
areas	V1,	V2	and	V3	labelled.	Neither	participant	conforms	directly	to	the	cruciform	model	of	the	
calcarine	sulcus.	For	example,	the	bottom	participant	resembles	the	cruciform	model	in	terms	of	
having	well	defined	upper	and	lower	banks	of	V1,	but	there	is	also	complex	cortical	folding	in	areas	V2	
and	V3.	
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projected	to	the	lower	left	bank	of	the	calcarine	fissure,	resulting	in	a	negative	scalp	

potential.	Stimuli	presented	in	the	lower	right	quadrant	of	visual	space,	on	the	other	

hand,	will	project	to	the	upper	left	bank	of	the	calcarine	fissure	and	result	in	a	positive	

scalp	potential.	Using	this	model,	recent	studies	have	attempted	to	‘map’	retinotopic	

sensitivities	onto	the	visual	field	on	an	individual	participant	basis	with	some	success	

(Kelly,	 Gomez-Ramirez,	 &	 Foxe,	 2008;	 Vanegas	 et	 al.,	 2013)	 to	 minimise	 inter-

individual	 variation	 caused	 by	 inherent	 differences	 in	 cortical	 folding	 (e.g.	

Rademacher,	Caviness,	Steinmetz,	&	Galaburda,	1993).	However,	it	remains	unclear	

whether	 the	 cruciform	 model	 is	 a	 good	 candidate	 model	 for	 identifying	 activity	

originating	 in	V1.	Ales,	Yates	and	Norcia	(2010,	2013)	found	that	 in	some	cases,	no	

polarity	 inversion	 was	 found	 in	 V1	 sources,	 but	 was	 for	 areas	 V2	 and	 V3.	 They	

displayed	that	 the	cortical	 folding	assumed	by	the	cruciform	model	often	does	not	

occur	 (see	 Figure	 1.6),	 and	 suggested	 that	 multiple	 sources	 contribute	 to	 the	 C1	

response	beyond	V1.		

What	 is	 clear,	 however,	 is	 that	 foveal	 presentations	 of	 a	 stimulus	 tend	 to	

generate	 a	 potential	 with	 different	 characteristics	 than	 following	 peripheral	

presentations.	 The	 VEP	 following	 foveal	 presentations	 changes	 drastically	 across	

spatial	 frequency.	 At	 lower	 spatial	 frequencies	 the	 time	 course	 is	 dominated	 by	 a	

positive-going	 deflection	 (P1)	 with	 a	 peak	 latency	 around	 120msec,	 but	 at	 higher	

spatial	frequencies	it	is	dominated	by	a	negative-going	deflection	between	70-110ms	

(Baas,	Kenemans,	&	Mangun,	2002;	e.g.	Ellemberg	et	al.,	2001;	Hansen	et	al.,	2016;	J.	

G.	 May	 &	 Lovegrove,	 1987;	 Proverbio,	 Zani,	 &	 Avella,	 1996;	 Reed	 et	 al.,	 1984;	

Tobimatsu,	Tomoda,	&	Kato,	1996).	Hansen	et	al	(2016)	found	that	this	initial	negative	

component	to	centrally	placed	stimuli,	which	they	referred	to	as	fC1	(foveal	C1),	was	

high	 pass	 for	 spatial	 frequency	 and	 was	 generated	 at	 more	 posterior	 occipital	

channels,	while	the	first	major	component	generated	by	peripheral	stimuli	(pC1),	was	

bandpass	 for	 spatial	 frequency	 and	 observed	 at	 slightly	 more	 anterior	 occipital	

channels.	This,	combined	with	a	latency	difference	of	~32msec,	led	them	to	suggest	

that	the	fC1	component	generated	to	centrally	placed	stimuli	may	in	fact	reflect	the	

C2	 component,	which	 typically	 follows	 the	 pC1	 referred	 to	 by	 Jeffreys	 and	 Axford	

(1972a,	1972b).		
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Using	ERPs	to	study	nonlinear	responses	

VEP	 components	 can	 be	 used	 to	measure	 specific	 nonlinear	 responses.	 In	 a	 study	

examining	 how	 the	 human	VEP	 is	 changed	 by	 adaptation,	Manahilov	 and	 Vassilev	

(1986)	measured	the	first	and	second	negative-going	deflections	of	the	VEP,	which	I	

will	 refer	 to	 as	 the	C1	 and	N1.	 They	 label	 them	differently	 in	 their	 paper,	 but	 as	 I	

mentioned	earlier	there	is	inconsistency	in	component	labelling	in	the	literature.	They	

found	that	the	N1	component	showed	a	general	adaptation	irrespective	of	stimulus	

features.	 The	 C1,	 on	 the	 other	 hand,	 showed	 suppression	 only	 when	 the	 spatial	

frequency	of	the	test	and	adapter	gratings	were	matched,	indicating	that	it	reflected	

a	spatial-frequency	selective	response.		

More	recently,	Miller,	Shapiro	and	Luck	(2015)	measured	C1,	C2	and	lateral	occipital	

P1	responses	to	checker	 ‘wedges’	 in	 the	upper	or	 lower	visual	 field	quadrants	 that	

were	 presented	 in	 isolation	 from	 each	 other	 (e.g.	 one	 wedge	 in	 the	 top	 left	 and	

another	in	the	top	right	quadrant),	presented	together	(e.g.	two	wedges	in	the	top	left	

and	another	two	in	the	top	right	quadrant)	but	spatially	separated	by	2˚	of	visual	angle,	

or	proximal	to	one	another	with	a	gap	of	0.16˚	of	visual	angle.	They	hypothesised	that	

if	stimuli	presented	simultaneously	are	processed	relatively	independently,	then	the	

VEP	 measured	 should	 roughly	 equate	 to	 the	 linear	 sum	 of	 responses	 to	 each	

component.	On	the	other	hand,	if	they	are	processed	by	a	common	mechanism	then	

the	VEP	response	to	multiple	components	together	should	be	less	than	the	linear	(i.e.	

a	normalised)	sum	of	responses	to	each	of	the	components,	which	they	referred	to	as	

‘competition’.	 They	 found	 that	 the	 C1	 response	 showed	 moderate	 levels	 of	

normalisation	when	the	check	wedges	were	closer	together	than	when	further	apart,	

showing	a	less	than	linear	response	that	was	still	larger	than	the	response	to	a	single	

stimulus.		The	C2	component,	which	Hansen	et	al.,	(2016)	suggested	is	the	C1	observed	

for	central	stimuli,	was	represented	by	an	average	response	to	the	components	than	

a	 linear	 sum.	 Similarly,	 Chen,	 Yu,	 Zhu,	 Peng	 and	 Fang	 (2016)	 found	 that	 early	

components	 (C1,	 P1)	 showed	 differing	 degrees	 of	 nonlinear	 spatial	 summation	 to	

proximal	grating	components.	They	found	that	C1	to	three	proximal	grating	stimuli	

was	sub-additive	only	when	participants	actively	attended	to	the	stimuli.	This	affect	
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disappeared	when	participants	did	not	attend	and	when	 the	gratings	were	 further	

apart	from	each	other.		

Clearly,	the	early	VEP	response	components	are	highly,	and	reliably,	sensitive	

to	low-level	stimulus	features.	As	demonstrated	by	more	recent	studies,	they	may	also	

be	suitable	for	studying	nonlinear	summation	of	information	in	the	visual	system.	The	

nonlinear	summation	involved	in	coherent	plaid	processing	has	not	yet	been	assessed	

using	the	VEP	approach.	

	

Frequency-tagging	is	useful	for	separating	nonlinearities	

The	‘steady	state’	ERP	(Cobb,	Morton,	&	Ettlinger,	1967;	Compston,	2010;	D.	Regan,	

1966)	 or	 steady	 state	 visual	 evoked	 potential	 (SSVEP)	 also	 provides	 a	 useful	

opportunity	 for	 studying	 visual	 system	 nonlinearities.	 The	 method	 involves	

modulating	the	 intensity	(‘flickering’)	or	position	of	a	visual	stimulus	at	a	fixed	rate	

(FHz,	where	F	is	any	real	number	>0)	over	an	extended	period.	The	result	is	a	train	of	

synaptic	potential	responses	observable	as	a	waveform	that	achieves	a	‘steady	state’;	

it	shares	a	stable,	periodic	relationship	to	the	stimulus	in	amplitude	and	phase	across	

the	presentation	time.		

The	human	visual	EEG	can	be	decomposed	into	many	superimposed	sinusoidal	

functions	 (D.	 Regan,	 1966),	 something	 which	 the	 steady-state	 approach	 can	 take	

advantage	 of	 in	 combination	 with	 Fourier	 analyses.	 An	 SSVEP	 to	 one	 stimulus,	

sinusoidally	modulating	in	intensity	between	0	and	full	intensity	at	a	rate	of	F1,	will	

not	generally	display	a	sinusoidal	response	only	at	ƒ1	(Figure	1.5a).	To	do	so	would	

require	a	neural	population	to	respond	linearly	to	the	full	stimulus	signal.	As	outlined	

earlier,	 neurons	 in	 the	 visual	 system	 tend	 to	 display	 asymmetric	 responses;	 signal	

nonlinearities	 indicative	 saturation	 and	 sensitivities	 to	 things	 like	 orientation	 and	

spatial	frequency.	The	result	of	these	signal	transformations	is	additional	‘harmonic’	

responses	at	multiples	of	the	stimulus	 input	frequency,	at	 ‘nƒ’,	where	‘n’	 is	a	small	

integer	value	greater	than	1	(see	Figure	1.5b).	A	large	body	of	work,	particularly	clinical	

research,	 utilises	 ‘pattern-reversal’	 stimulus	 modulation	 (or	 ‘contrast-reversal’),	

where	 stimulus	 intensity	 sinusoidally	 modulates	 between	 1	 and	 -1,	 effectively	

reversing	the	spatial	phase	of	the	stimulus	half	way	through	the	stimulus	period	(Cobb	
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et	al.,	1967).	The	 result	of	 this	 is	a	 reliable	 ‘fundamental’	 response	at	2ƒ1,	not	ƒ1,	

because	the	phase-reversal	results	in	double	the	number	of	synaptic	potentials	being	

generated	within	a	single	stimulus	cycle.		

	

Victor	 (1979)	 and	Victor	 and	 Shapley	 (1980)	made	 single-unit	 recordings	 in	 cat	

retinal	Y-cells	in	response	to	stimuli	modulated	in	intensity	as	a	function	of	the	sum	of	

8	periodic	sinusoidal	functions.	Similar	in	principle	to	measuring	the	contrast	response	

function	 to	 investigate	 the	 response	 nonlinearity	 of	 a	 mechanism	 to	 a	 particular	

stimulus,	using	this	‘sum-of-sinusoids’	approach	allowed	them	to	investigate	the	order	

of	nonlinearity	of	the	cell	under	study	at	nƒi,	where	‘i’	is	an	integer	between	1	and	8.	

Additional	frequencies,	not	present	in	the	input	signal,	at	harmonics	and	at	nƒi±mƒj	

(known	 as	 ‘intermodulation	 frequencies’),	 where	 ‘m’	 is	 another	 integer	 and	 ‘j’	 an	

integer	value	such	that	1≤j<i≤8,	are	present	in	the	resulting	SSVEP.	

	

Figure	1.5.	Examples	of	a	a)	linear	and	b)	nonlinear	SSVEP	response.	Both	responses	
were	generated	to	the	presentation	of	a	stimulus	sinusoidally	modulating	in	Michelson	
contrast	between	0	and	1	at	a	rate	of	4.6Hz.	A	neuron	using	a	contrast	saturation	
operation	was	simulated	to	generate	the	nonlinear	response	in	b).	This	resulted	in	
harmonic	responses	at	9.2Hz	(2ƒ1)	and	13.8Hz	(3ƒ1).	
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Using	frequency-tagging	to	measure	nonlinear	signal	summation	

Modulating	 stimuli	 at	 many	 different	 temporal	 frequencies,	 however,	 can	 be	

problematic.	 The	 signal-to-noise	 ratio	 (SNR)	 at	 higher	order	nonlinear	 responses	 is	

quite	low;	by	summing	multiple	narrow-band	signals,	attenuation	occurs	for	higher-

order	responses	with	low	absolute	amplitude	through	overlap	with	other	higher-order	

frequency	responses.	A	wide	range	of	stimulus	frequencies	can	be	used	to	avoid	this,	

but	 is	 not	 necessarily	 a	 useful	 option	 for	 investigating	 visual	 system	nonlinearities	

where	relatively	low	driving	frequencies	are	preferable	for	the	generation	of	higher-

order	 responses	 (e.g.	 Alonso-Prieto,	 Belle,	 Liu-Shuang,	 Norcia,	 &	 Rossion,	 2013;	

Boremanse,	Norcia,	&	Rossion,	 2013).	 Regan	and	Regan	 (1988)	 suggested	 that	 the	

properties	 of	 higher-order	 responses	 to	 a	 particular	 stimulus	 may	 represent	 a	

‘fingerprint’	of	nonlinear	response	for	the	mechanisms	involved	in	processing	it.	The	

attenuation	of	higher-order	responses	resulting	from	the	sum-of-sinusoids	approach	

is	therefore	a	major	disadvantage	for	investigating	specific	nonlinear	mechanisms.	A	

more	 frequency-selective	 technique	 would	 be	 preferable	 to	 understand	 what	

nonlinear	responses	correspond	to,	and	to	be	able	to	disentangle	lateral	nonlinearities	

from	other	nonlinearities.		

The	 ‘two-frequency’	 or	 ‘frequency-tagging’	 approach	 involves	 simultaneously	

modulating	 the	 components	 of	 a	 two-component	 stimulus	 at	 slightly	 different	

temporal	frequencies	to	one	another	(see	Figure	1.6).	This	makes	it	much	simpler	to	

pick	 stimulus	 frequencies	 that	 are	 temporally	 incommensurate;	 very	 little	 (if	 any)	

overlap	occurs	between	their	harmonics	and	intermodulation	responses.	It	provides	a	

rich	 dataset	 that	 can	 be	 used	 to	 look	 at,	 for	 example,	 the	 responses	 at	 the	 two	

fundamental	frequencies	to	examine	competition	effects	between	the	tagged	stimuli	

(Andersen,	Müller,	&	Hillyard,	2015;	Appelbaum,	Wade,	Vildavski,	Pettet,	&	Norcia,	

2006;	Keitel,	Andersen,	Quigley,	&	Müller,	2013;	D.	Regan	&	Heron,	1969).	Of	interest	

to	the	present	thesis,	however,	is	the	narrow-band	quality	of	the	evoked	response.	It	

makes	it	easier	to	examine	the	higher-order	nonlinearities	involved	in	the	combination	

of	the	two	stimuli	at	nƒ1,	nƒ2	and	nƒ1±nƒ2.	Responses	at	intermodulation	frequencies	

now	represent	a	nonlinearity	at	or	after	the	point	of	signal	combination	between	the	

two	stimulus	components	(Spekreijse	&	Oosting,	1970a;	Zemon	&	Ratliff,	1984).	They		
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cannot	 result	 from	 independent	 channels,	 nor	 from	 simple	 linear	 combinations	 of	

Figure	1.6.	Example	of	frequency-tagged	stimuli	and	the	output	of	a	nonlinear	
operation.	a)	1	second	window	of	independent	contrast	modulation	of	two	stimuli	at	
4.6Hz	(red)	and	7.5Hz	(orange).	b)	The	output	produced	by	first	summing	the	contrast	
modulations	shown	in	a)	and	then	squaring	this	sum	to	generate	a	nonlinear	response.	
c)	This	represents	the	FFT	of	this	squared	‘response’.	Marked	in	blue	are	fundamental	
and	harmonic	responses	relating	directly	to	each	stimulus	component	signal.	Marked	in	
red	are	the	intermodulation	responses	generated	by	the	nonlinear	(squaring)	
summation	of	the	two	signals	
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signals.	On	the	other	hand,	they	may	represent	lateral,	suppressive	nonlinearities	and,	

critically,	 spike-generating	 nonlinearities	 by	 neurons	 whose	 receptive	 fields	 make	

them	sensitive	to	the	combination	of	the	two	stimuli	(see	M.	P.	Regan	&	Regan,	1988	

for	a	mathematical	explanation).		

This	 technique	 has	 for	 several	 decades	 been	 used	 to	 examine	multiple	 lateral	

suppressive	nonlinearities	in	the	visual	system	and	the	tuning	functions	of	early	visual	

system	mechanisms	(Baitch	&	Levi,	1988;	T.	J.	Baker,	Norcia,	&	Candy,	2011;	Candy,	

Skoczenski,	&	Norcia,	2001;	Suter,	Perrier,	Parker,	Fox,	&	Roessler,	1996;	Tsai,	Wade,	

&	Norcia,	2012).	Norcia	and	colleagues	(T.	J.	Baker,	Norcia,	&	Candy,	2011;	Candy	et	

al.,	2001;	Tsai	et	al.,	2012)	have	used	frequency-tagged	pattern-reversal	gratings	to	

examine	 the	development	of	monocular	 and	binocular	XOS	and	orientation	 tuning	

bandwidths.	For	example,	nonlinear	responses	measured	at	nƒ1±nƒ2	in	combination	

with	 examination	 of	 responses	 at	 2ƒ1	 and	 2ƒ2	 have	 allowed	 them	 to	 identify	

immaturities	specific	to	XOS	(non-selective	masking	at	2ƒ1	and	2ƒ2)	but	not	binocular	

integration	 (nƒ1±nƒ2	 responses	 still	 present,	 indicative	 of	 binocular	 integration)	 in	

infants.	Relatively	few	studies,	however,	have	used	the	frequency-tagging	technique	

to	investigate	responses	to	compound	stimuli	in	mid-level	vision.	

Compound	 stimuli	 that	 are	 perceived	 as	more	 than	 the	 sum	of	 their	 parts	 are	

pervasive	perceptual	phenomena	in	human	vision;	the	visual	system	must	somehow	

segment	 irrelevant	 information	and	bind	that	which	is	relevant	to	 identify	patterns,	

shapes,	surfaces	and	objects	in	the	visual	environment.		The	nonlinear	combinations	

involved	 may	 be	 fundamental	 operations	 performed	 by	 mid-level	 visual	 system	

mechanisms	and	could	result	 in	intermodulation	responses.	Boremanse,	Norcia	and	

Rossion	(2013)	presented	half-face	stimuli	at	two	different	frequencies	and	measured	

the	sum	and	difference	intermodulation	responses.	These	were	larger	when	two	face-

halves	were	 presented	 as	 a	whole	 face	 compared	 to	when	 they	were	 horizontally	

separated	 or	 vertically	 misaligned.	 They	 attribute	 this	 to	 a	 nonlinear	 mechanism	

sensitive	to	the	whole,	rather	than	the	parts,	of	the	face.	Similarly,	 intermodulation	

responses	have	been	found	when	parts	of	a	Kanizsa-type	 illusory	stimulus	(Kanizsa,	

1979)	are	presented	at	different	 rates	but	not	when	 the	parts	are	 rotated	 so	as	 to		

‘break’	 the	 illusory	 percept	 (Alp,	 Kogo,	 Van	 Belle,	 Wagemans,	 &	 Rossion,	 2016;	
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Gundlach	&	Müller,	2013),	when	an	object	is	distinct	from	its	background	(i.e.	figure-

ground	 interactions:	 (Appelbaum,	 Wade,	 Pettet,	 Vildavski,	 &	 Norcia,	 2008b),	 for	

contour	integration	in	Vernier	stimuli	when	the	contours	are	collinear	(Victor	&	Conte,	

2000),	 and	 to	 visual	 form-motion	binding	when	 the	 abutting	 sides	 of	 a	 square	 are	

moved	 closer	 together	 (Aissani,	 Cottereau,	 Dumas,	 Paradis,	 &	 Lorenceau,	 2011).	

Mechanisms	 that	 perform	 selective	 signal	 combinations	 might	 then	 operate	

throughout	cortex.	

As	 electrophysiological	 evidence	 for	 selective	 plaid	 responses	 based	 on	 plaid	

coherence	 has	 yet	 to	 be	 provided	 in	 the	 literature,	 the	 frequency-tagging	 SSVEP	

technique	 presents	 a	 unique	 and	 data-rich	 approach	 for	 doing	 so.	 Likewise,	 as	

relatively	 little	 is	 known	 about	 how	 intermodulation	 responses	 are	 generated	 by	

specific	mechanisms,	 the	dependence	on	coherence	for	 the	putative	plaid	detector	

presents	 a	 relatively	 simple	 way	 to	 distinguish	 the	 nonlinearities	 feeding	 the	

intermodulation	response,	and	therefore	develop	new	insights	into	how	they	occur.	If	

special	 mechanisms	 for	 plaids	 exist	 and	 are	 partially	 driving	 the	 intermodulation	

responses,	 then	 it	 would	 be	 expected	 that	 they	 would	 differ	 according	 to	 plaid	

coherence.	 Conversely	 if	 the	 intermodulation	 response	 is	 driven	 only	 by	 a	

normalisation	 pool	 for	 XOS	 between	 the	 orthogonal	 grating	 components,	 which	 is	

thought	to	be	very	broadly	tuned	to	spatial	frequency	(DeAngelis	et	al.,	1994;	Petrov	

et	 al.,	 2005),	 then	 the	 intermodulation	 response	 should	 be	 the	 same	 for	 different	

forms	of	plaid	 (or	should	at	 least	be	related	to	the	strength	of	suppression	directly	

measured	at	component	frequencies).	Surround-suppression	may	also	contribute	to	

the	 intermodulation	 response	 for	 spatially	 extensive	 stimuli.	 Using	 a	 contrast	

sensitivity	task,	Petrov,	Carandini	and	McKee	(2005)	demonstrated	for	the	first	time	in	

humans	that	XOS	and	surround	suppression	are	two	distinct	mechanisms.	XOS	is	more	

broadly	tuned	for	orientation	and	spatial	frequency	and	occurs	earlier	than	surround	

suppression.	Also,	the	spatial	extent	of	XOS	covered	both	foveal	and	peripheral	areas	

of	 stimuli,	 while	 surround	 suppression	 was	 present	 only	 in	 peripheral	 areas.	 They	

suggested	that	the	mechanism	producing	the	sharp	orientation	and	spatial	frequency	

tuning	observed	in	the	periphery	for	surround	suppression	actively	enhances	cortical	

response	specificity,	rather	than	contributing	to	normalisation	between	responses	to	

the	target	and	mask	by	XOS.	The	use	of	orthogonally	oriented	grating	components,	
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however,	should	make	contributions	from	surround	suppression	to	 intermodulation	

responses	relatively	weak.	Petrov	et	al	(2005)	found	that	an	orientation	difference	of	

around	60°	was	enough	to	abolish	surround	suppression.	

The	 response	 asymmetries	 that	 the	 frequency-tagging	 approach	 is	 able	 to	 take	

advantage	of	 are	not	 a	property	of	 visual	 system	neurons	alone,	but	 are	prevalent	

throughout	the	different	sensory	systems	(M.	P.	Regan	&	Regan,	1988).	Likewise,	the	

need	to	understand	combinatorial	mechanisms	is	not	a	visual-domain	specific	problem	

(e.g.	Colon,	Legrain,	&	Mouraux,	2014;	Wile	&	Balaban,	2007).	Nozaradan,	Zerouali,	

Peretz	 and	 Mouraux	 (2015),	 for	 example,	 recently	 used	 the	 frequency-tagging	

approach	 to	 study	 cross-modal	 mechanisms	 that	 combine	 auditory	 and	

somatosensory	information.		

The	technique	of	measuring	responses	to	multiple	frequency-tagged	stimuli	and	

using	the	responses	to	understand	a	variety	of	nonlinear	combinations	would	seem	to	

be	very	powerful	technique,	given	that	 it’s	 likely	that	nonlinear	signal	combinations	

take	place	throughout	the	brain.	

Summary 
This	thesis	will	examine	a	range	of	possible	nonlinear	combinations	by	using	plaids.	

It	will	focus	on	nonlinear	interactions	in	mid-level	vision	using	both	transient	ERPs	and	

frequency	 tagging	 techniques.	 It	will	also	study	signal	combinations	 in	 the	auditory	

system	 by	 combining	 tones	 to	 form	 consonant	 and	 dissonant	 chords;	 similar	

mechanisms	may	be	operationalised	in	systems	other	than	the	visual	system.	
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Chapter	2: General	Methods	

Recruitment  
All	participants	had	normal	or	corrected-to-normal	vision	(for	vision	experiments)	and	

normal	 or	 corrected-to-normal	 hearing	 (for	 the	 auditory	 experiment),	 and	 gave	

informed	 consent	 to	 participate.	 The	 ethics	 board	 at	 the	 School	 of	 Psychology,	

University	 of	 Nottingham,	 granted	 ethical	 approval.	 The	 work	 described	 was	

conducted	in	accordance	with	the	2008	version	of	the	Declaration	of	Helsinki.			

	

EEG Set-up 
A	DBPA-1	Sensorium	bio-amplifier	(Sensorium	Inc.,	Charlotte,	VT,	USA)	was	used	for	

EEG	recording	at	a	sampling	rate	of	1000Hz.	Voltage	responses	were	recorded	from	

122	electrode	channels	(silver/silver-chloride)	on	a	set	of	customized	whole-head	caps	

with	twisted	and	fixed	electrode	cables	(EasyCap,	Munich,	Germany).	This	included	a	

ground	electrode	placed	on	the	forehead,	reference	electrode	at	the	left	mastoid,	EOG	

electrodes	 (RHE,	 LHE	 and	 LIO)	 and	 117	 scalp	 electrodes.	 Caps	 were	 centered	 on	

electrode	 Cz,	 halfway	 between	 the	 nasion	 and	 inion.	Where	 possible,	 impedances	

were	brought	below	25	kilohms	(kΩ)	before	the	experiment	began	(below	50	kΩ	if	this	

could	not	be	achieved).	Note	that	on	many	commercial	systems	this	might	seem	like	

high	impedance,	but	is	the	suggested	setting	for	the	Sensorium	DBPA-1	amplifier.	

A	 parallel	 port	 from	 the	 stimulus	 computer	 was	 used	 to	 indicate	 when	 a	

stimulus	onset	occurred,	sending	a	trigger	signal	time-locked	to	the	screen	refresh.	

We	confirmed	in	advance	that	this	was	precise	on	our	hardware,	using	a	photometer	

connected	 to	 the	 amplifier	 via	 a	 StimTracker	 (Cedrus	 Light	 Sensor,	 Cedrus	

Corporation,	San	Pedro,	CA,	USA).	

	

Gamma correction 
It	 was	 critical	 that	 we	 did	 not	 introduce	 nonlinearities	 into	 the	 measurements	

erroneously	by	using	uncalibrated	monitors.	In	the	transient	experiment	(Chapter	3),	

a	 computer-controlled	 monitor	 (Iiyama	 Prolite	 X2472HD,	 Iiyama,	 Hoofddorp,	 The	

Netherlands)	 with	 a	 screen	 resolution	 of	 1920	 x	 1080	 pixels,	 mean	 luminance	 of	
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133cd/m2	and	a	 refresh	 rate	of	60	Hz	was	used	 for	 stimulus	presentation.	Gamma	

correction	was	carried	out	using	a	colorimeter	 (ColorCal	MKII,	Cambridge	Research	

Systems,	Kent,	UK).	The	intermodulation	experiment	reported	in	Chapter	4	used	the	

same	 monitor,	 but	 the	 gamma	 function	 of	 the	 screen	 was	 linearized	 using	 a	

spectroradiometer	 (SpetraScan	PR-655,	Photo	Research	 Inc.,	Chatsworth,	CA,	USA).	

Chapter	 5’s	 experiment	 used	 a	 computer-controlled	 LCD	 monitor	 (Display++,	

Cambridge	Research	Systems	Ltd.,	Kent,	UK)	with	a	screen	resolution	of	1920x1080,	

mean	 luminance	 of	 120cd/m2	 and	 a	 refresh	 rate	 of	 120Hz	 was	 used	 for	 stimulus	

presentation.	 The	 gamma	 function	 of	 the	 screen	 was	 linearized	 using	 the	 pre-set	

gamma	 table	 stored	 within	 the	 monitor,	 and	 this	 was	 checked	 using	 a	

spectroradiometer	(SpetraScan	PR-655,	Photo	Research	Inc.,	Chatsworth,	CA,	USA).	

	

Stimulus configuration and experimental procedure 
Stimuli	(see	Figure	2.1	for	a	general	example)	were	presented	within	a	circular	window	

that	had	a	raised	cosine	edge	profile	(width=1.5°,	referring		to	the	width	of	the	blurred	

edge	of	the	raised	cosine	mask	that	was	overlaid	on	the	grating).	A	further	circle	was	

placed	 in	 the	 centre	 of	 the	 stimulus	 with	 the	 same	 mid-grey	 colour	 as	 in	 the	

Figure	2.1.	Combining	gratings	to	make	different	kinds	of	plaids.	Grating	components	(left),	
coherent	plaids	(middle)	and	non-coherent	plaids	(right).	Grating	A	can	be	orthogonally	
superimposed	on	top	of	another	grating	A	to	form	coherent	plaid	AA,	or	on	top	of	a	grating	B	to	
form	non-coherent	plaid	AB.	



	 28	

background.	This	also	had	a	 raised	cosine	edge	profile	 (width	=	0.08°),	and	helped	

accentuate	the	fixation	dot	–	a	red	circle	in	the	centre	of	the	screen.	In	the	transient	

experiment,	the	stimulus	circle	subtended	10°	in	diameter,	the	central	circle	0.6°	and	

the	 fixation	 dot	 0.2°.	 In	 the	 intermodulation	 experiments	 the	 stimulus	 circle	

subtended	7.5°	in	diameter,	the	central	circle	0.4°,	and	the	fixation	dot	0.175°.	

	

Maintaining	visual	attention:	the	green	dot	task	

In	the	visual	experiments	that	I	go	on	to	outline,	participants	were	asked	to	fixate	on	

the	central	fixation	dot	described	in	the	General	Configuration	subsection,	but	spread	

their	visual	attention	to	detect	and	respond	as	quickly	as	possible	to	the	appearance	

of	a	green	dot	on	the	surface	of	 the	stimulus	on	each	trial.	To	collect	 responses,	a	

button	box	 (Cedrus	RB840)	was	 placed	 in	 front	 of	 participants,	where	participants	

could	easily	rest	their	hand	throughout	the	experiment.	The	use	of	an	attentional	task,	

independent	of	the	stimulus	conditions,	is	common	practice	in	fMRI	studies	since	the	

finding	 that	 differential	 attention	 to	 different	 stimuli	 can	 provide	 an	 important	

confound	(Huk,	Ress,	&	Heeger,	2001).	The	task	dot,	subtending	0.3°	of	visual	angle	in	

the	transient	experiment	and	0.25°	in	the	intermodulation	experiments,	appeared	in	

a	random	radial	location	half-way	between	the	edge	of	the	central	circle	and	the	edge	

of	the	stimulus	circle.	The	timing	of	the	dot’s	appearance	was	set	to	be	unpredictable	

to	 the	participant	 to	make	 the	 task	 challenging.	 The	 timing	of	 this	 varied	 for	 each	

experiment,	and	will	be	described	in	each	chapter	separately.	

	

Making	plaids		

Plaid	coherence	is	achieved	by	spatially	superimposing	similar	orthogonal	sinusoidal	

gratings,	each	presented	synchronously	in	time	at	similar	contrast	levels.	This	is	well-

suited	 for	 measuring	 transient	 VEPs,	 which	 are	 generated	 in	 response	 to	 brief	

presentations	of	 a	 stimulus,	 and	 is	 the	 approach	used	 in	 the	 transient	 experiment	

discussed	in	this	thesis.		

The	 principle	 of	 spatially	 superimposing	 orthogonal	 sinusoidal	 gratings	

remained	unchanged	in	the	intermodulation	experiments.	However,	to	generate	the	

intermodulation	 responses	 in	plaid	conditions,	 the	 two	grating	components	had	 to	
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have	their	contrast	intensity	simultaneously	modulated	at	slightly	different	temporal	

frequencies	 (Figure	2.2).	The	contrast	of	any	one	component	varied	sinusoidally	 in	

time	between	0	and	a	given	maximum	contrast	relative	to	the	full	Michelson	contrast	

of	the	monitor	(0.99).	The	plaid	patterns	were	formed	from	the	signed	sum	(black	is	

negative,	white	is	positive)	of	the	pixel	values	resulting	from	the	two	components	such	

that,	when	the	components	were	both	at	the	peak	of	their	sinusoidal	modulation	in	

time,	 a	 standard	plaid	pattern	was	physically	 present	momentarily,	whereas	when	

either	component	was	at	its	trough	only	the	other	component	was	physically	present,	

as	 a	 simple	 grating.	 By	 smoothly	 (sinusoidally)	 ramping	 up	 and	down	 the	 stimulus	

intensity	between	0	and	a	maximum	contrast,	 the	frequencies	chosen	to	modulate	

stimuli	did	not	have	to	be	tied	to	the	monitor	refresh	rate.	The	sampling	rate	of	the	

EEG	system	and	the	length	of	presentation	time	were	both	critical	for	measuring	at	

the	correct	 frequency	resolution.	By	accounting	for	these,	the	measured	responses	

4.6 HZ 7.5 HZ

Figure	2.2.	Illustration	of	the	separate	frequency-tagging	of	plaid	components.	



	 30	

were	smooth	responses	at	our	frequencies	with	the	exception	a	few	frequencies	in	

Chapter	4	(as	described	below).		

The	 frequencies	chosen	 for	contrast	modulation	were	selected	on	the	basis	

that	 they	allowed	the	response	frequencies	to	be	temporally	 incommensurate;	 the	

fundamental	 frequencies	 and	 their	 harmonics,	 and	 the	 intermodulation	 terms	 and	

harmonics	would	not	overlap.	Further,	we	aimed	to	avoid	overlap	between	the	typical	

alpha	 band	 (8-12Hz)	 and	 the	 sum	 intermodulation	 response	 frequency	 as	 in	

Boremanse,	Norcia	and	Rossion	(Boremanse	et	al.,	2013)	to	boost	signal-to-noise.	The	

experiment	reported	in	chapter	4	used	contrast	modulation	frequencies	of	2.3Hz	and	

3.75Hz,	and	4.6Hz	and	7.5Hz	were	used	in	chapter	5.	Chapter	4	was	supposed	to	use	

4.6Hz	and	7.5Hz,	too,	but	stimuli	were	erroneously	presented	at	half	the	presentation	

frequency.	The	recorded	data	did	not	suffer	 for	 this	mistake;	as	will	be	outlined	 in	

chapter	4,	we	found	significant	results	that	went	on	to	be	published.		

An	initial	concern	was	whether	a	coherent	plaid	still	appears	when	you	have	

two	 components	 that	 are	 infrequently	 matched	 in	 contrast	 across	 time.	 Due,	

presumably,	to	the	reasonably	high	rate	of	contrast	modulation,	the	percept	for	the	

observer	is	not	of	two	gratings	changing	contrast	gradually.	Instead,	the	percept	is		of	

a	plaid	that	alternates	with	gratings	at	a	high	and	unpredictable	rate.		

	

Choosing	spatial	frequencies	

Transient.	Gratings	A	and	B	were	 two	 sinusoidal	 grating	patterns.	Grating	A	had	a	

spatial	frequency	of	2.5cpd	and	grating	B	a	spatial	frequency	of	5.5cpd.	These	spatial	

frequencies	 were	 chosen	 to	 ensure	 that	 C1	 responses	 driven	 by	 centrally	 placed	

stimuli	would	be	generated	(Ellemberg	et	al.,	2001;	Hansen	et	al.,	2016).	They	were	

also	chosen	so	that	there	was	a	big	enough	separation	between	A	and	B	to	generate	

perceptually	distinct	coherent	and	non-coherent	plaids	but	keep	spatial	frequency	low	

enough	to	not	affect	visual	acuity.	

	

Intermodulation.	As	in	the	transient	experiment,	gratings	A	and	B	were	two	sinusoidal	

grating	patterns.	However,	grating	A	had	a	spatial	frequency	of	1cpd	and	grating	B	a	

spatial	 frequency	 of	 3cpd.	 This	 was	 because	 the	 C1	 component	 response	 was	 no	

longer	the	measurement	of	interest.	Having	spatial	frequencies	~4cpd	was	no	longer	
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necessary,	 and	 I	wanted	 to	make	 the	 checks	 in	 the	plaid	patterns	more	 salient	 by	

making	them	larger.	

	

Analysing SSVEP data 
Data	were	band-pass	 filtered	between	0.1Hz	 and	100Hz.	 They	were	 then	epoched	

according	to	stimulus	onset,	with	the	first	second	of	data	removed	to	exclude	onset	

transients	from	the	analysis,	resulting	in	a	10-second	epoch	for	each	trial.	Trials	were	

time-averaged	 by	 condition	 for	 each	 participant,	 averaging	 out	 activity	 that	 is	 not	

phase-locked	 to	 the	 stimulus	 presentation,	 such	 as	 the	 prominent	 occipital	 cortex	

alpha-wave	response.	Fast	Fourier	transforms	(FFTs)	were	then	conducted	on	these	

average	waveforms	 to	 bring	 the	 data	 into	 frequency	 space,	 resulting	 in	 amplitude	

responses	(μV)	at	discrete	frequencies	(for	a	10s	stimulus	the	FFT	has	a	resolution	of	

0.1Hz)	between	0.1	and	100Hz.		

The	 amplitude	 response	 at	 each	 frequency	 at	 each	 electrode	 site	 was	

converted	into	a	measure	of	signal-to-noise	ratio	(SNR)	by	dividing	the	amplitude	at	

the	frequency	of	interest	by	the	average	amplitude	of	the	surrounding	12	frequency	

bins.	The	choice	of	channels	from	which	data	was	extracted	in	each	of	the	three	SSVEP	

experiments	was	based	on	group	topographies	showing	peak	responses	for	all	stimuli	

occurring	there	and	observations	from	previous	literature.	

To	 determine	 whether	 SNRs	 were	 significantly	 above	 background	 noise	

(SNR=1),	 a	 series	 of	 one-sample	 t-tests	were	 conducted	 separately	 for	 each	 set	 of	

component	SNRs,	difference	intermodulation	SNRs,	and	sum	intermodulation	SNRs.	

Each	series	of	 t-tests	were	corrected	using	 the	 ranked	Bonferroni-Holm	method	to	

control	 for	 Type	 1	 errors	 (Holm,	 1979).	 The	 extent	 to	which	 a	 stimulus	 type	 (e.g.	

grating/plaid)	 predicted	 response	 SNRs	 was	 examined	 using	 linear	 mixed-effects	

modelling.	The	analytical	model	was	generated	using	the	mixed	function	of	the	Afex	

package	in	R	(Singmann	et	al.,	2016).	In	Chapters	4	and	6,	Stimulus	Type	was	the	only	

predictor	with	random	slopes	as	a	function	of	‘participant’	using	a	maximal	random	

effects	structure	(as	recommended	by	Barr,	Levy,	Scheepers,	&	Tily,	2013).	In	Chapter	

5,	Stimulus	Type	and	Contrasts	were	set	as	predictors,	again	with	random	slopes	as	a	

function	of	 ‘participant’	using	a	maximal	 random	effects	structure.	This	model	was	
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applied	to	both	component	and	intermodulation	SNRs.	The	lsmeans	function	in	R	

for	examining	pairwise	comparisons	from	linear	mixed	effects	model	structures	was	

used	when	 a	 significant	main	 effect	 of	 pattern	was	 found,	 and	 comparisons	were	

corrected	using	the	Tukey	HSD	method	for	multiple	comparisons	(Russell,	2016).	
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Chapter	3: Visual	 evoked	 responses	 to	 coherent	 and	 non-

coherent	plaid	stimuli	

Rationale 
The	most	natural	way	to	try	and	understand	the	nonlinear	responses	to	plaids	

and	gratings	is	simply	to	measure	the	Visual	Evoked	Potential	(VEP).	VEPs	are	simple	

waveforms,	time-locked	to	the	onset	of	the	stimulus	presentation	comprising	multiple	

response	components,	each	of	which	may	indicate	a	different	neural	substrate.	

While	many	have	 studied	 the	neural	 responses	 to	 low-level	 image	 features	

using	VEPs	(e.g.	Butler	et	al.,	1987;	Jeffreys	&	Axford,	1972a;	Kelly	et	al.,	2008;	J.	G.	

May	&	Lovegrove,	1987;	Shigeto,	Tobimatsu,	Yamamoto,	Kobayashi,	&	Kato,	1998),	

only	a	few	have	examined	how	processes	such	as	normalisation	(Chen,	Yu,	Zhu,	Peng,	

&	Fang,	2016;	Miller	et	al.,	2015)	are	represented	within	the	early	VEP	components.	

None	 have	 directly	 assessed	 the	 nonlinearities	 involved	 summation	 of	 individual	

grating	components	involved	in	plaid	processing.		

Other	 methodologies	 have	 been	 used	 to	 try	 and	 understand	 nonlinear	

summation.	McDonald,	Mannion	 and	 Clifford	 (2012)	 used	 fMRI	 to	 investigate	 the	

summation	 of	 orthogonally	 oriented	 grating	 components	 that	 formed	 a	 coherent	

plaid.	They	found	that	BOLD	responses	to	the	plaid	were	greater	than	to	the	grating	

components	alone,	but	less	than	would	be	predicted	by	linear	summation	of	individual	

component	 responses.	 This	 is	 in	 agreement	with	 animal	 studies	 (Allison,	 Smith,	 &	

Bonds,	 2001;	 Brouwer	&	 Heeger,	 2011a;	 DeAngelis,	 Robson,	 Ohzawa,	 &	 Freeman,	

1992;	Grossberg	&	Hong,	2006;	Heeger,	1992)	and	psychophysical	studies	(Georgeson	

&	 Shackleton,	 1994)	 of	 plaid	 processing.	 However,	 these	 have	 not	 compared	

responses	to	coherent	and	non-coherent	plaids,	instead	framing	their	results	with	the	

context	of	normalisation.	

We	aimed	to	investigate	the	nonlinearities	that	result	from	combinations	of	

coherent	 and	 non-coherent	 gratings	 using	 EEG,	 to	 try	 and	 differentiate	 the	

contribution	form	suppressive,	versus	expansive,	nonlinearities.	Here,	the	first	reliable	

VEP	component	(C1),	and	the	first	positive	(P1)	deflection	that	follows	the	C1	were	

measured	in	response	to	centrally-presented	gratings	and	their	combination	into	both	
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coherent	 and	 non-coherent	 plaids.	 Based	 on	 observations	 of	 nonlinear	 spatial	

summation	 being	 represented	 in	 these	 early	 VEP	 components	 (Chen	 et	 al.,	 2016;	

Miller	et	al.,	2015),	and	because	cross-orientation	suppression	is	largely	un-tuned	for	

spatial	frequency	(DeAngelis	et	al.,	1994;	Petrov	et	al.,	2005),	it	was	expected	that	if	

an	 additional	 nonlinearity	 is	 required	 for	 processing	 coherent	 plaids	 but	 not	 non-

coherent	 plaids,	 this	 additional	 nonlinearity	 would	 be	 present	 in	 early	 VEP	

components.					

	

Methods 
Participants.	Twenty-one	 participants	were	 recruited.	Upon	 completion	 of	 testing,	

two	 participants	 reported	 difficulty	 with	 the	 task	 due	 to	 undisclosed	 visual	

impairments.	As	a	result,	their	data	was	removed	from	analyses.	All	other	participants	

had	 normal	 or	 corrected-to-normal	 vision.	 Informed	 consent	 to	 participate	 in	 the	

study	was	given	from	all	participants.	The	ethics	board	at	the	School	of	Psychology,	

University	of	Nottingham,	granted	ethical	approval.	

	

Gamma	 correction	 and	 materials.	 A	 computer-controlled	 monitor	 (Iiyama	 Prolite	

X2472HD,	 Iiyama,	Hoofddorp,	The	Netherlands)	with	a	 screen	 resolution	of	1920	x	

1080	pixels,	mean	luminance	of	133.17cd/m2	and	a	refresh	rate	of	60	Hz	was	used	for	

stimulus	 presentation.	 Gamma	 correction	 was	 carried	 out	 using	 a	 photometer	

(ColorCal	MKII,	Cambridge	Research	Systems,	Kent,	UK).	No	chin	rest	was	used,	so	as	

to	maximise	participant	comfort,	albeit	reducing	the	precision	with	which	the	stimulus	

size/position	could	be	calculated.	Participants	sat	at	a	screen	distance	of	~100-120cm	

(measured	for	each	participant	and	used	to	adjust	screen	properties	at	the	beginning	

of	the	session).	The	PsychoPy	stimulus	generation	library	(Peirce,	2007a)	was	used	for	

stimulus	presentation	and	collecting	participant	responses	to	a	simple	detection	task.	

A	button	box	(Cedrus	RB-x30	Response	Pad,	Cedrus	Corporation,	San	Pedro,	CA,	USA)	

was	used	for	participants	to	make	these	responses.	

	

Stimuli.	Gratings	were	all	based	around	 two	sinusoidal	grating	patterns	 (‘A’:2.5cpd	

and	 ‘B’:5.5cpd).	 They	 were	 sometimes	 combined	 with	 another	 spatial-frequency-
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matched	grating	to	form	two	coherent	plaids	(i.e.	‘AA’	and	‘BB’)	or	combined	with	the	

other	 grating	 to	 form	 a	 non-coherent	 plaid	 (i.e.	 ‘AB’).	 While	 components	 were	

randomly	oriented	on	each	trial,	they	always	overlapped	at	a	plaid	angle	of	90˚.	Stimuli	

were	presented	at	Michelson	contrasts	of	20%,	40%	and	80%,	resulting	in	15	stimulus	

conditions	including	the	blank	(no	stimulus)	condition.	

Stimuli	were	presented	within	a	10deg	 raised	cosine	annular	envelope.	The	

blank	inner	portion	of	the	annulus	subtended	0.6deg	of	visual	angle	leaving	the	outer	

portion	with	a	 radius	of	4.7deg.	A	 red	 fixation	dot	was	placed	 in	 the	centre	of	 the	

screen	 and	 subtended	 0.2deg.	 A	 green	 dot	 of	 0.3deg	 that	 appeared	 in	 a	 random	

location	at	 the	half-radius	of	 the	outer	 annulus,	was	employed	 in	 a	 simple	 task	 to	

maintain	attention	to	the	stimulation	area.	

	

Experimental	 Procedure.	 When	 seated	 in	 the	 recording	 booth,	 participants	 were	

instructed	 to	 maintain	 fixation	 on	 the	 central	 red	 fixation	 point.	 They	 were	 then	

instructed	to	respond	on	the	button	box	as	quickly	as	possible	to	the	presence	of	the	

green	task	dot	(without	looking	towards	it)	and	that	this	would	appear	in	a	pseudo-

random	order	throughout	the	experiment.	They	were	then	given	a	brief	presentation	

of	 the	 experiment	 to	 ensure	 they	 understood	what	 they	were	 being	 asked	 to	 do.	

Following	this,	they	were	presented	with	a	blank	fixation	screen	consisting	of	a	grey	

background	and	the	red	fixation	dot	until	they	indicated	that	they	were	ready	to	begin.		

Stimuli	were	presented	for	333ms	with	an	inter-stimulus-interval	of	between	

500ms	and	1000ms	(Figure	3.1).	To	prevent	after-images,	stimuli	were	phase-reversed	

Phase reversal
166.5 ms

Stimulus onset
0 ms

ISI
500-1000 ms

Figure	3.1.	Example	of	an	experimental	trial	for	a	grating	stimulus.	
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halfway	 through	 presentation	 (at	 166.5ms).	 Each	 stimulus	 type	 was	 randomly	

interleaved	and	 repeated	20	 times	 in	a	 run,	with	5	 runs	 in	 total.	Participants	were	

given	 short	 breaks	 between	 runs.	 Upon	 completion,	 participants	 were	 thanked,	

debriefed	and	given	the	opportunity	to	ask	any	questions.	

	

Analytical	 Procedure.	 Data	 were	 band-pass	 filtered	 between	 1Hz	 and	 100Hz	 to	

remove	slow	drifts,	and	epoched	between	-100ms	and	500ms	from	stimulus	onset.	

Minimal	 artefact	 rejection	was	 used	on	 a	 participant-by-participant	 basis.	 Peak-to-

peak	fluctuations	greater	than	100µV	were	identified	on	a	channel-by-channel	basis	

and	corrected	using	the	average	of	the	nearest	neighbouring	channels.	If	this	occurred	

at	more	than	16	channels,	the	entire	trial	was	removed	from	analysis.	This	process	

removed	 an	 average	 of	 8.55%	 (SEM:	 ±8.54)	 of	 trials	 across	 participants.	 This	 was	

calculated	across	participants,	rather	than	the	total	of	number	of	runs,	to	account	for	

inter-individual	 variability.	 Grand	 average	 global	 field	 power	 (GFP)	 was	 used	 to	

determine	the	approximate	peak	latency	of	the	C1	and	P1	components	and	generate	

a	window	around	this	for	analysis	(see	General	Methods	for	details).	The	latency	of	

particular	 components	 can	 be	 variable	 between	 participant	 and	 even	 between	

conditions	within	a	single	participant.	To	measure	the	amplitude	and	latency	of	each	

component	 we	 determined	 a	 relatively	 wide	 window,	 the	median	 location	 of	 the	

component	in	GFP	±30ms	for	that	condition	and	across	participants.	A	window	of	60-

120ms	 was	 used	 for	 the	 C1	 component	 and	 a	 window	 of	 107-167ms	 for	 the	 P1	

component.	 The	 selection	 of	 these	 windows	 allowed	 us	 to	 avoid	 the	 impact	 of	

transient	phase	reversal,	which	occurred	as	a	result	of	the	spatial	phase	reversal	of	

stimuli	at	166ms,	on	the	time	course	of	the	response.	

Grand	average	topographies	(see	Figures	3.2	to	3.16	in	Appendix	One)	with	discrete	

10ms	 time-windows	 between	 0ms	 and	 170ms	 were	 then	 used	 to	 determine	 the	

electrodes	from	which	to	extract	data	On	a	first	pass	of	this	procedure,	four	electrodes	

(AF1,	 AF4,	 TPP7h	 and	 PPO5h)	were	 observed	 as	 being	 particularly	 noisy	 and	were	

removed	 from	analysis.	The	GFPs	and	 topographies	were	 then	 re-calculated.	Using	

this	procedure,	electrode	Oz	was	deemed	the	most	appropriate	site	for	both	C1	and	

P1	peak	responses	to	our	stimuli.		
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	Data	 were	 averaged	 by	 condition	 for	 each	 participant.	 Peak	 component	

responses	 for	 each	 condition	 were	 identified	 in	 Python	 using	 Scipy’s 

signal.argrelextrema	package.	A	criterion	window	of	14ms	(7	points	on	either	

side)	was	set	to	identify	points	in	the	response	function	greater	(positive	or	negative)	

in	magnitude	than	their	surround.		For	the	C1	component,	the	most	negative	point	

identified	within	the	C1	window	of	60-120ms	was	picked,	and	for	the	P1	component	

the	most	positive	point	during	its	107-167ms	time	window	was	picked.	If	no	peak	was	

identified	using	the	above	criteria,	i.e.	in	the	case	where	the	VEP	was	very	flat	and	no	

reliable	peak	could	be	identified,	the	average	amplitude	during	the	time	window	was	

stored	instead.			

To	 assess	 differences	 in	 signal	 summation	 between	 coherent	 and	 non-

coherent	plaids,	a	ratio	of	amplitude	response	‘linearity’	was	calculated	as:	

𝐿𝐼 =
𝑝𝑅𝑒𝑠𝑝

𝑐1𝑅𝑒𝑠𝑝 + 𝑐2𝑅𝑒𝑠𝑝,	

	

where	𝐿𝐼	is	‘linearity	index’,	𝑝𝑅𝑒𝑠𝑝	is	the	absolute	response	to	a	plaid	stimulus	and	

𝑐1𝑅𝑒𝑠𝑝	and	𝑐2𝑅𝑒𝑠𝑝	are	the	separate	absolute	responses	to	the	grating	components	

forming	that	plaid.	For	example,	coherent	plaid	AA	at	40%	contrast	was	formed	simply	

by	 the	orthogonal	 superimposition	of	 two	20%	contrast	 grating	A’s.	 By	 adding	 the	

response	of	grating	A	at	20%	contrast	 to	 itself,	a	hypothetical	 ‘linear’	 response	 for	

plaid	AA	at	40%	contrast	can	be	generated.	An	𝐿𝐼	of	1	would	reflect	linear	summation;	

the	magnitude	 of	 response	 for	 that	 plaid	 was	 equivalent	 to	 linearly	 summing	 the	

response	to	each	of	the	components	forming	that	plaid	alone.	On	the	other	hand,	an	

𝐿𝐼	of	0.5	would	indicate	a	response	equal	to	the	average	of	the	component	responses.	

The	 extent	 to	 which	 grating/plaid	 pattern	 predicted	 peak	 amplitudes	 was	

examined	using	linear	mixed-effects	modelling.	The	analytical	models	were	generated	

using	 the	 mixed	 function	 of	 the	 Afex	 package	 in	 R	 (Singmann	 et	 al.,	 2016).	

Grating/plaid	pattern	(A,	B,	AA,	BB	and	AB)	and	contrast	(20,	40	and	80%)	were	used	

as	predictors	with	random	slopes	as	a	function	of	‘Participant’	using	a	maximal	random	

effects	structure	(as	recommended	by	Barr	et	al.,	2013).	These	models	were	applied	

to	peak	C1	and	peak	P1	amplitudes,	separately.	Another	model	was	then	generated	

for	fitting	to	𝐿𝐼	scores.	This	was	again	done	separately	for	C1	and	P1,	and	included		
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Figure	3.17.	Grand	average	waveforms	for	each	condition.	Top:	Coherent	plaid	BB	provided	
as	an	example	because	very	clear	peak	responses	were	observed	for	this	condition.	Bottom:	
all	other	conditions	(A,	B,	AA	and	AB).	The	blue	waveform	represents	the	grand	average	
response	at	20%	Michelson	contrast,	purple	to	40%	and	red	to	80%.	In	the	top	plot,	white	
circles	mark	the	peak	of	the	C1	(first	negative)	and	P1	(first	positive)	responses	for	each	
contrast	presentation	of	coherent	plaid	BB.	The	solid	coloured	line	represents	the	mean	
response,	and	the	transparent	shading	around	of	the	same	colour	represents	the	SEM.	The	
small	arrow	marked	on	the	x-axis	line	at	166ms	in	the	top	plot	represents	when	stimulus	
phase-reversal	occurred.				
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pattern	(AA,	BB	and	AB)	and	contrast	(40,	80)	as	predictors	with	random	slopes	as	a	

function	of	‘Participant’,	as	in	the	previous	models.	The	lsmeans	function	in	R	for	

examining	pairwise	comparisons	from	linear	mixed	effects	model	structures	was	used	

when	a	 significant	main	 effect	 of	 pattern	or	 contrast	was	 found,	 and	 comparisons	

were	corrected	using	the	Tukey	HSD	method	for	multiple	comparisons	(Russell,	2016).	

Correction	was	made	assuming	the	full	possible	set	of	105	comparisons	even	though	

many	comparisons	were	not	actually	of	interest	a	priori	and	have	not	been	presented	

or	examined.		

	

Results 

C1	Responses	
First,	the	C1	peak	amplitudes	were	analysed	to	test	for	effects	of	stimulus	contrast	

and	pattern	(see	Figure	3.18).	Contrast	significantly	increased	C1	response	magnitude	

for	 all	 stimuli	 except	 grating	 A.	 The	 higher-spatial-frequency	 grating	 and	 coherent	

plaid	(B	and	BB)	resulted	in	generally	larger	C1	peak	amplitudes.	At	equivalent	contrast	

levels,	plaid	responses	were	similar	in	magnitude	to	their	component	responses.	For	

example,	the	response	to	plaid	BB	at	80%	contrast	was	similar	in	magnitude	to	that	of	

grating	B	at	80%	contrast.		
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Figure	3.18.	C1	peak	amplitudes.	Each	point	represents	the	mean	across	participants	for	
that	condition	and	error	bars	represent	95%	CIs.	
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	A	 significant	main	 effect	 of	 Contrast	 (F(2,252)=	 45.03,	 p<.001)	 and	 Pattern	

(F(4,	252)=	32.32,	p<.001)	was	found.	The	interaction	between	Contrast	and	Pattern	

was	 non-significant	 (F(8,252)=	 1.21,	 p>.05).	 Post-hoc	 tests	 showed	 that	 peak	 C1	

amplitudes	decreased	as	a	function	of	Contrast	for	all	patterns	except	grating	A,	which	

only	showed	a	very	slight	(non-significant)	decrease	in	response	amplitude.	The	20%	

contrast	response	amplitude	was	significantly	smaller	than	the	80%	contrast	response	

amplitude	(at	least	p<.05,	at	most	p<.001).	Only	for	coherent	plaid	BB	was	the	peak	

response	 amplitude	 at	 20%	 contrast	 significantly	 less	 than	 that	 at	 40%	 contrast	

(p<.05).	 At	 40%	 and	 80%	 contrast,	 peak	 C1	 response	 amplitudes	were	 smaller	 for	

grating	A	than	grating	B	(p<.001),	and	for	coherent	plaids	AA	and	AB	than	coherent	

plaid	BB	(p<.001).		

	

Next,	 the	 question	 of	 whether	 there	 was	 a	 difference	 in	 nonlinear	 spatial	

summation	 between	 coherent	 and	 non-coherent	 plaids	 was	 addressed.	 𝐿𝐼	 scores	

were	calculated	for	each	plaid.	These	were	generated	by	dividing	the	absolute	peak	

amplitude	measured	at	40%	or	80%	contrast	for	a	plaid	pattern,	and	dividing	this	by	

the	sum	of	the	unsigned	response	to	the	grating	components	forming	that	plaid	(at	

20%	and	40%	contrast,	respectively).		C1	𝐿𝐼	scores	(Figure	3.19)	were	less	than	linear	

and	the	average	score	was	smaller	for	non-coherent	plaid	AB	than	for	both	coherent	
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Figure	3.19.	C1	LI	scores.	Each	point	represents	the	group	average,	and	error	
bars	95%	CIs.	
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plaids.	One	participant	was	excluded	from	analysis	because	of	an	extreme	outlying	

ratio	value	(>4).	A	significant	main	effect	of	Pattern	(F(2,85)=	13.60,	p<.001)	but	not	

Contrast	(F(1,85)=	0.83,	p=.37)	was	found.	The	interaction	between	the	two	was	also	

non-significant	 (F(2,85)=	0.27,	p=.76).	Post-hoc	 tests	 revealed	 that	 the	LI	 score	 for	

pattern	AA	at	40%	contrast	was	larger	than	AB	at	40%	contrast	(p<.05),	and	the	80%	

contrast	LI	score	for	AA	was	larger	than	AB	(p<.01).In	summary,	other	than	for	grating	

A,	 clear	 contrast	 response	 functions	 were	 observed	 for	 C1	 peak	 amplitudes;	 they	

became	larger	in	magnitude	with	increasing	contrast.	C1	peak	amplitudes	were	also	

larger	for	the	higher	spatial	frequency	patterns	(grating	B	and	coherent	plaid	BB)	than	

all	other	patterns.		

	

P1	Responses	
	

For	the	P1	peak	component,	the	higher	spatial	frequency	grating	B	and	coherent	plaid	

BB	 resulted	 in	 significantly	 larger	 P1	 peak	 amplitudes	 compared	 to	 all	 other	

conditions.	A	significant	main	effect	of	Contrast	(F(2,252)=	6.37,	p<.01)	and	Pattern	

(F(2,252)=	 41.34,	 p<.001)	 was	 found	 for	 P1	 peak	 amplitudes	 (Figure	 3.20).	 The	
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Figure	3.20.	P1	peak	amplitudes.	Each	point	represents	the	mean	across	participants	for	
that	condition	and	error	bars	represent	95%	CIs.	
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interaction	 between	 Contrast	 and	 Pattern	 was	 non-significant	 (F(8,252)=	 1.46,	

p=0.17).	Contrary	to	the	main	effect	of	contrast,	no	post-hoc	tests	for	any	one	stimulus	

pattern	comparing	across	contrast	levels	revealed	a	significant	difference.	Larger	P1	

amplitudes	were	observed	for	grating	B	than	grating	A	at	all	contrast	levels	(p<.01	at	

20%	and	p<.001	at	40%	and	80%).	At	40%	contrast,	a	smaller	P1	peak	amplitude	was	

observed	 for	 coherent	 plaid	AA	 than	plaid	BB	 (p<.001),	 and	 again	 at	 80%	 contrast	

(p<.001),	along	with	a	smaller	P1	for	non-coherent	plaid	AB	than	for	coherent	plaid	BB	

(p<.001).		

	

As	for	component	C1,	P1	𝐿𝐼	scores	(Figure	3.21)	were	less	than	linear	and	the	

average	score	was	smaller	for	non-coherent	plaid	AB	than	for	both	coherent	plaids.	

Two	participants	were	excluded	from	analysis	because	of	extreme	outlying	values	(>6	

and	 >3,	 respectively).	 The	 main	 effects	 of	 Pattern	 and	 Contrast	 were	 both	 non-

significant	(F(2,80)=	1.81,	p=.17;	F(1,80)=	.11,	p=.74),	as	was	the	interaction	between	

them	(F(2,80)=	0.08,	p=.93).	
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Figure	3.21.	P1	LI	scores.	Each	point	represents	the	group	average,	and	error	
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Discussion 
The	peak	amplitudes	of	the	first	major	negative	(C1)	and	positive	(P1)	VEP	components	

were	measured	in	response	to	presentations	of	sinusoidal	grating	patterns	presented	

alone,	and	when	combined	to	form	plaid	patterns.	This	was	to	assess	the	nonlinear	

combination	of	signals	to	the	gratings	when	forming	different	kinds	of	plaid	pattern.	

These	early	VEP	components	have	been	shown	to	 indicate	differences	 in	nonlinear	

spatial	 summation	 (Chen	et	 al.,	 2016;	Miller	 et	 al.,	 2015).	Here,	 coherent	plaid	AA	

resulted	in	significantly	larger	C1	𝐿𝐼	scores	than	non-coherent	plaid	AB,	but	the	same	

was	not	true	for	coherent	plaid	BB	compared	to	the	non-coherent	plaid.		

	

Amplitude	effects	
An	increase	in	response	amplitude	with	increasing	stimulus	contrast	was	observed	for	

the	C1	component,	particularly	for	the	5.5	cpd	stimuli	(grating	B	and	plaid	BB).	Based	

on	the	latency	and	the	high-pass	spatial	frequency	characteristic	of	the	C1	component	

in	response	to	centrally	placed	stimuli	vs.	the	bandpass	C1	response	to	peripherally	

presented	stimuli,	Hansen	et	al.,	(2016)	suggested	that	the	former	may	represent	the	

C2	component	response,	not	the	C1.	We,	too,	measured	a	central	C1	response	that	

was	high-pass	for	spatial	frequency,	though	how	the	response	might	have	differed	if	

stimuli	were	presented	peripherally	was	not	the	focus	of	the	study	and	is	therefore	

not	known.	The	P1	peak	amplitude	did	not	vary	with	contrast	for	any	stimulus,	and	

like	the	C1	component	was	larger	in	magnitude	for	higher	spatial	frequency	than	lower	

spatial	 frequency	 stimuli.	 The	 spatial-frequency	 tuning,	 but	 contrast	 invariance,	

suggests	a	generation	site	beyond	striate	cortex,	and	several	studies	have	suggested	

that	the	P1	component	is	extra-striate	in	origin	(Di	Russo	et	al.,	2002;	Martinez	et	al.,	

1999).	

	

LI	scores	all	less	than	linear	
It’s	not	so	surprising	that	the	response	to	a	plaid	is	less	than	a	linear	summation	of	

responses	 to	 components	 alone.	 Presumably	 due	 to	 XOS,	 single	 cell	 studies	 and	

human	 investigations	 using	 fMRI	 (Bonds,	 1989;	 Busse,	 Wade,	 &	 Carandini,	 2009;	
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DeAngelis	 et	 al.,	 1992;	McDonald	 et	 al.,	 2012)	 have	 also	 found	 that	 the	 summed	

response	to	a	plaid	is	less	than	a	linear	summation	of	responses	to	its	components.	

Plaids	also	have	a	lower	perceived	contrast	relative	to	sinusoidal	gratings	presented	

at	the	same	contrast	 (Georgeson	&	Shackleton,	1994),	 though	McDonald,	Mannion	

and	Clifford	(2012)	and	the	present	study	found	larger	responses	for	plaids	compared	

to	one	of	their	component	gratings	of	equivalent	Michelson	contrast	alone.	This	was	

specific	to	coherent	plaids	in	the	current	instance,	and	might	reflect	a	difference	in	

processing	 for	coherent	plaids	vs.	non-coherent	plaids.	That	assertion	 is	difficult	 to	

make,	though,	because	the	same	comparison	of	non-coherent	plaid	vs.	component	

responses	 cannot	 be	made;	 the	 different	 components	 (A	 and	 B)	 forming	 the	 non-

coherent	plaid	generate	responses	of	different	magnitudes.	

Gheorghiu	and	Kingdom	(2009)	suggested	that	a	multiplication	of	V1	outputs	

was	involved	in	the	processing	of	simple	contour	stimuli.	This	is	an	appealing	solution	

because	of	its	simplicity;	it	would	allow	a	mechanism	detecting	contours	to	respond	

only	to	a	combination	of	contour	components	but	neither	of	the	components	alone.	

However,	 this	 does	 not	 explain	 the	 less-than-linear	 summation	 observed	 for	 plaid	

stimuli	 –	 a	 greater	 than	 linear	 response	 would	 be	 expected	 from	 multiplication.	

Perceptual	studies	of	plaids	and	gratings	have	found	that	plaids	are	perceived	at	lower	

contrast	compared	to	gratings	of	the	same	contrast	(Georgeson	&	Shackleton,	1994).	

Though	 it	would	have	been	useful	to	have	measured	the	perceived	contrast	of	our	

stimuli,	our	finding	that	plaids	produced	larger	responses	to	gratings	at	all	contrast	

levels	suggests	that	contrast	alone	is	not	enough	to	determine	the	magnitude	of	the	

response	to	the	stimulus,	and	that	an	extra	factor,	such	as	a	plaid-response,	resulted	

in	the	difference	between	coherent	plaid	and	grating	responses.	This	supports	Peirce’s	

suggestion	(2007b,	2011)	that,	in	combination	with	component	suppression,	a	logical	

AND-gated	mechanism	in	mid-level	vision	could	provide	greater	stimulation	than	any	

one	 component	 could	 alone.	 This	 additional	 response	 could	 be	 what	 McDonald,	

Mannion	and	Clifford	(2012)	observed	as	a	‘release	from	suppression’	to	plaid	stimuli.	

They	only	used	coherent	plaid	stimuli	so	had	no	comparison	to	non-coherent	plaids,	

whereas	we	have	shown	that	this	‘release’	only	happens	for	coherent	plaids.		
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LI	scores	only	different	for	AA,	not	BB,	compared	to	AB	
LI	 scores	 were	 calculated	 to	 compare	 the	 linearity	 of	 summation	 between	 the	

different	plaid	patterns.	XOS	is	largely	un-tuned	for	spatial	frequency	(DeAngelis	et	al.,	

1994;	Petrov	et	al.,	2005),	so	if	similar	amounts	of	XOS	occurred	for	each	plaid	and	no	

extra	summation	was	taking	place,	it	would	be	expected	that	no	difference	would	be	

found	in	LI	score	between	any	of	the	plaid	conditions.	A	significant	difference	was	only	

found	between	coherent	plaid	AA	and	non-coherent	plaid	AB;	in	all	other	cases	the	

data	fell	 in	the	expected	direction	but	differences	were	not	significant.	It	 is	difficult	

therefore	to	conclude	that	there	was	a	difference	in	summation	between	coherent	

and	non-coherent	plaids.		

The	perception	of	plaids	has	been	shown,	by	several	methods,	to	depend	on	

matched	spatial	frequencies.	When	spatial	frequencies	differ	in	the	two	gratings	being	

combined,	observers	perceive	a	pair	of	 semi-transparent	gratings	 sliding	past	each	

other	 (Adelson	&	Movshon,	1982)	whereas	a	plaid	with	matched	spatial	 frequency	

components	appears	as	a	single	coherent	checkerboard	pattern	with	a	single	direction	

of	motion.	Similarly,	selective	adaptation	to	plaids	decreases	when	components	are	

unmatched	(Hancock	et	al.,	2010)	and	the	pop-out	effects	of	visual	search	disappears	

when	plaid	targets	have	unmatched	components	 (Nam	et	al.,	2009).	Despite	this,	 I	

found	 limited	 evidence	 for	 the	 involvement	 of	 extra	 nonlinearities	 in	 processing	

coherent	plaids	 relative	 to	non-coherent	plaids	 in	 the	current	experiment.	Perhaps	

VEPs	 are	 not	 sensitive	 enough	 to	 differentiate	 between	 the	 different	 nonlinear	

interactions	that	give	rise	to	selective	plaid	processing.		
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Chapter	4: Measuring	 nonlinear	 signal	 combinations	 using	

intermodulation	responses	

Rationale 
The	previous	chapter	examined	nonlinear	signal	summation	by	measuring	transient	

VEP	responses.	While	there	were	observable	patterns	within	the	data	in	the	direction	

that	we	hypothesised,	these	were	not	very	clear.	The	transient	EEG	approach	brings	

with	it	several	inherent	limitations.	The	first	is	the	somewhat	arbitrary	application	of	

a	time	window	within	which	to	pull	out	peak	responses.	This	is	done	based	largely	on	

the	previous	literature	to	limit	any	experimenter	bias	in	analysing	results,	but	brings	

with	it	the	danger	that	genuine	peak	responses	are	missed,	confounding	the	results.	

Secondly,	 and	 critically	 for	 the	 purpose	 of	 this	 thesis,	 the	 transient	 EEG	 approach	

measures	 mass	 evoked	 potentials.	 This	 made	 it	 extremely	 difficult	 to	 pick	 apart	

different	nonlinearities	within	the	response,	and	could	explain	why	we	observed	only	

very	subtle	effects	in	the	hypothesised	direction.	

Measuring	amplitude	responses	at	intermodulation	terms	to	different	kinds	of	

plaid	pattern	might	present	a	more	effective	way	of	distinguishing	between	response	

nonlinearities.	 Steady	 state	 VEP’s	 are	 more	 objective	 in	 that	 no	 time	 window	 of	

interest	has	to	be	applied	to	the	analysis	(save	for	epoching)	–	a	response	is	either	

generated	at	a	frequency	of	interest	or	it	 is	not.	Further,	the	method	allows	you	to	

measure	direct	responses	to	the	components	of	a	compound	stimulus	at	ƒ1	and	ƒ2	and	

their	harmonics	at	2ƒ1	and	2ƒ2,	as	well	 as	 responses	at	 intermodulation	 terms	 like	

ƒ2±ƒ1.	 This	 allows	 you	 to	 examine	 nonlinearities	 between	 components	 directly	 at	

component	frequencies	as	well	as	at	intermodulation	terms.		

One	 possibility	 is	 that	 mechanisms	 for	 plaids	 exist	 that	 contribute	 to	

intermodulation	responses.	If	this	is	the	case,	then	I	would	expect	such	responses	to	

differ	 according	 to	 plaid	 coherence.	 Conversely	 if	 the	 intermodulation	 response	 is	

driven	 by	 a	 normalisation	 pool	 for	 cross-orientation	 suppression	 (XOS),	 which	 is	

thought	to	be	relatively	un-tuned	to	spatial	frequency	(DeAngelis	et	al.,	1994;	Petrov	

et	al.,	2005),	then	the	intermodulation	response	should	be	similar	for	different	forms	

of	plaid.	An	exception	to	this	might	be	if	the	intermodulation	response	is	also	driven	
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by	 surround	 suppression,	 which	 unlike	 XOS	 is	 tightly	 tuned	 for	 spatial	 frequency	

(Petrov	et	al.,	2005).	However,	surround	suppression	is	also	tightly	tuned	to	the	same	

orientation	as	the	excitatory	region	of	neurons,	so	I	would	expect	contributions	from	

this	to	be	weak	for	orthogonally	arranged	grating	components.	

	

Methods 
Participants.	 Fifteen	 participants	 (7	 females,	 8	 males)	 with	 normal	 or	

corrected-to-normal	 vision	 gave	 informed	 consent	 to	 participate	 in	 the	 study.	 The	

ethics	board	at	the	School	of	Psychology,	University	of	Nottingham,	granted	ethical	

approval.	 The	 work	 was	 conducted	 in	 accordance	 with	 the	 2008	 version	 of	 the	

Declaration	of	Helsinki.			

	

Stimuli	 and	 Experimental	 Procedure.	Stimuli	 comprised	 of	 two	 sinusoidal	 gratings	

(denoted	as	 ‘A’	 and	 ‘B’)	 and	various	 combinations	 thereof.	Grating	A	had	a	 spatial	

frequency	of	 1cpd	and	grating	B	 a	 spatial	 frequency	of	 3cpd.	 These	 could	 then	be	

combined	with	a	second,	spatially	orthogonal,	grating	to	form	plaid	patterns	that	were	

either	coherent	(‘AA’,	‘BB’)	or	non-coherent	(‘AB’,	‘BA’)	as	shown	in	Figure	1.	On	each	

trial	 the	 overall	 orientation	 of	 the	 stimulus,	 either	 grating	 or	 plaid,	 was	 randomly	

assigned	but	the	orthogonal	configuration	of	the	grating	components	that	formed	a	

plaid	was	maintained.		

Components	were	presented	within	a	7.5°	diameter	circular	window	with	a	

raised	cosine	edge	profile	(width=1.5°).	In	the	center	of	the	stimulus	a	further	circle	

(diameter	0.4°)	was	placed	with	the	same	mid-grey	color	as	in	the	background,	also	

with	a	raised	cosine	edge	profile	(0.08°).	This	was	done	to	accentuate	the	fixation	dot,	

a	red	circle	subtending	0.175°	in	the	center	of	the	screen.	A	further	green	dot	(0.25°	

diameter)	 appeared	occasionally	 and	briefly,	 located	 at	 a	 radius	 of	 3.75°	 from	 the	

centrally	located	fixation	point	but	a	random	radial	angle.	This	was	used	as	part	of	the	

attentional	control	task	that	participants	were	asked	to	perform.	

When	seated	in	the	recording	booth,	participants	were	instructed	to	maintain	

fixation	 on	 the	 red	 fixation	 point.	 They	 conducted	 the	 green	 dot	 attentional	 task,	

independent	of	the	stimulus	presentation,	to	ensure	that	attention	was	constant.	The	
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green	dot	appeared	at	a	random	time	within	any	trial	number	divisible	by	10	or	6	(6,	

10,	12,	18	etc.).	This	resulted	in	rare	events,	unpredictable	to	the	participants,	that	

required	their	attention	to	detect,	preventing	them	from	assigning	greater	or	lesser	

attention	to	the	actual	stimulus.	Although	diverting	attention	away	from	the	stimulus	

might	decrease	our	chances	of	measuring	strong	signals	Appelbaum	et	al.,	(2009)	we	

considered	 it	more	 important	 to	keep	attention	constant.	 It	 remains	very	possible,	

however,	that	we	underestimate	the	size	of	responses	in	our	data	because	of	this.	The	

percentage	 of	 task	 occurrences	 across	 each	 condition	 relative	 to	 the	 grand	 total	

number	of	occurrences	shows	no	bias	towards	any	particular	condition:	A1-13.33%;	

A2-13.07%;	B1-14.67%;	B2-10.67%;	A1A2-12.27%;	B1B2-13.33%;	A1B2-9.60%;	B1A2-

13.07%).	 It	 is	 therefore	 unlikely	 that	 the	 dot	 task	was	 a	 factor	 in	 determining	 any	

systematic	effects	observed	between	conditions.	Participants	 responded	to	76.34%	

(SEM:	2.22)	of	dot	occurrences,	indicating	that	the	task	was	neither	too	easy	nor	too	

difficult.	

A	brief	presentation	of	the	experiment	was	provided	to	ensure	the	participants	

understood	what	they	were	being	asked	to	do.	Following	this,	they	were	presented	

with	a	blank	fixation	screen	consisting	of	a	grey	background	and	red	fixation	dot	until	

they	indicated	that	they	were	ready	to	begin.		

In	 the	 literature	 review	 and	 General	 Methods,	 I	 covered	 the	 need	 to	

independently	 modulate	 plaid	 components	 at	 slightly	 different	 frequencies	 to	

generate	 intermodulation	responses.	Here,	the	frequencies	chosen	were	2.3Hz	and	

3.75Hz	 on	 the	 basis	 that	 they	 allowed	 the	 response	 frequencies	 to	 be	 temporally	

incommensurate;	the	fundamental	frequencies	(2.3Hz,	3.75Hz),	their	harmonics	(2ƒ1:	

4.6Hz,	2ƒ2:	7.5Hz)	and	the	intermodulation	terms	(ƒ2-ƒ1:	1.45Hz,	ƒ1+ƒ2:	6.05Hz)	and	

harmonics	(2ƒ2-2ƒ1:	2.9Hz,	2ƒ1+2ƒ2:	12.1Hz)	would	not	overlap.	Further,	we	aimed	to	

avoid	overlap	between	the	typical	alpha	band	(8-12Hz)	and	the	sum	intermodulation	

response	frequency	(ƒ1+ƒ2:	6.05Hz)	as	in	Boremanse,	Norcia	and	Rossion	(Boremanse	

et	 al.,	 2013)	 to	 boost	 signal-to-noise.	 The	 contrast	 of	 any	 one	 component	 varied	

sinusoidally	in	time	between	0	and	50%	of	the	maximal	contrast	of	the	monitor	(which	

had	a	maximal	Michelson	contrast	of	0.99).		

For	the	remainder	this	thesis,	in	the	context	of	intermodulation	stimuli	only,	

‘1’	 denotes	 a	 grating	 component	 that	 was	 flickered	 at	 2.3Hz	 and	 ‘2’	 denotes	 a	
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component	flickering	at	3.75Hz.	For	example,	grating	A	flickered	at	2.3Hz	will	now	be	

referred	to	as	A1,	while	a	coherent	plaid	with	grating	A	components	will	be	referred	

to	as	A1A2,	where	one	component	was	flickered	at	2.3Hz	and	the	other	at	3.75Hz.	The	

full	set	of	components	and	compounds	resulted	in	8	stimuli:	four	grating	components	

(A1,	A2,	B1,	 and	B2),	 two	coherent	plaids	 (A1A2	and	B1B2)	and	 two	non-coherent	

plaids	(A1B2,	and	B1A2).	A	trial	consisted	of	an	11	second	presentation	of	a	flickering	

grating	or	two	simultaneously	flickering,	superimposed	grating	components,	followed	

by	a	7-9	second	inter-stimulus-interval.	Each	of	the	8	stimuli	was	presented	3	times	in	

a	 run	 (lasting	 8	 minutes),	 and	 participants	 completed	 5	 runs,	 with	 short	 breaks	

between	each.	Upon	completion,	participants	were	thanked,	debriefed	and	given	the	

opportunity	to	ask	any	questions.	

	

Analytical	Procedure.	The	amplitude	response	at	each	frequency	at	each	electrode	

site	 was	 converted	 into	 a	 measure	 of	 signal-to-noise	 ratio	 (SNR)	 by	 dividing	 the	

amplitude	at	the	frequency	of	interest	by	the	average	amplitude	of	the	surrounding	

12	frequency	bins.	The	data	used	in	the	following	analyses	were	taken	from	electrode	

Oz.	 This	was	 based	 on	 group	 topographies	 showing	 peak	 responses	 for	 all	 stimuli	

occurring	there,	and	is	consistent	with	measurements	in	the	vicinity	of	primary	visual	

cortex.	We	also	conducted	the	analysis	using	a	cluster	of	electrodes	around	Oz,	but	

this	made	no	difference	to	the	conclusions	from	the	analyses.		

Initially,	the	frequencies	of	interest	for	analysis	were	at	ƒ1	(2.3Hz),	ƒ2	(3.75Hz),	

ƒ2-ƒ1	 (1.45Hz),	and	ƒ1+ƒ2	 (6.05Hz).	Upon	 inspection	of	 the	data,	 responses	at	 the	

2ƒ2-2ƒ1	 (2.9Hz)	 and	 2ƒ1+2ƒ2	 (12.1Hz)	 frequencies	 warranted	 further	 analysis.	 To	

determine	whether	SNRs	were	significantly	above	background	noise	(SNR=1),	a	series	

of	one-sample	t-tests	were	conducted	separately	for	each	set	of	component	SNRs	(i.e.	

A1,	 A1A2	 and	 A1B2;	 A2,	 A1A2	 and	 B1A2;	 B1,	 B1B2,	 B1A2;	 B2,	 B1B2	 and	 A1B2),	

difference	 intermodulation	 SNRs	 (at	ƒ2-ƒ1	and	2ƒ2-2ƒ1:	A1,	A2,	B1,	B2,	A1A2	and	

A1B2,	B1B2	and	B1A2),	and	sum	intermodulation	SNRs	(at	ƒ1+ƒ2	and	2ƒ1+2ƒ2:	A1,	

A2,	B1,	B2,	A1A2,	A1B2,		B1B2	and	B1A2).	Each	series	of	t-tests	were	corrected	using	

the	ranked	Bonferroni-Holm	method	to	control	 for	Type	1	errors	 (Holm,	1979).The	
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extent	to	which	grating/plaid	pattern	predicted	response	SNRs	was	examined	using	

linear	mixed-effects	modelling.		

	

Modelling.	A	two-layer	network	model	was	generated	based	on	Peirce	(2007b,	2011;	

see	Figure	4.1)	in	which	static	sigmoidal	nonlinearities	were	applied	to	the	outputs	of	

each	channel	(as	expected	by	any	model	of	V1	outputs)	and	summed	by	a	“Layer	2”	

mechanism,	which	also	has	a	 sigmoidal	nonlinearity.	 Such	a	model	 can	be	used	 to	

investigate	 the	 relationship	 between	 XOS,	 nonlinear	 additive	 summation	 and	 the	

generation	of	intermodulation	responses	to	plaids.	Contrast	input	to	the	model	was	

Normalisation 
Pool

Layer 1
Component Pattern Detection

Layer 2
Compound Pattern Detection

∑∑

∑∑

Figure	4.1.	Model	schematic	displaying	how	contrast	input	was	transformed	within	each	layer.	
Though	the	Layer	1	channels	were	un-tuned	in	this	study,	the	Gabor	patches	differing	in	
orientation	and	spatial	frequency	are	visual	representations	used	to	indicate	how	the	channels,	
within	the	framework	that	we	propose,	might	be	tuned.	These	are	followed	by	a	static	sigmoidal	
nonlinearity	and	then	a	temporal	filter	(if	appropriate	to	the	simulation).	The	normalisation	pool	
exerted	its	influence	(for	XOS)	as	part	of	the	static	nonlinearity.	A	similar	configuration	(without	
normalisation)	was	used	to	transform	input	into	Layer	2	channels.	
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generated	in	the	same	way	that	contrast	was	modulated	in	the	stimuli	presented	to	

participants:	

𝑐𝑜𝑛𝑡𝑟 = 𝐶 ∙ (sin 𝑡 ∙ ƒ ∙ 2𝜋 ∙ 0.5 + 0.5),	

where	𝑡	represents	a	point	in	time	between	0	and	11	seconds	(in	steps	of	0.01s),	ƒ	the	

temporal	frequency	for	that	component	and	𝐶	the	maximum	Michelson	contrast	(set	

to	 0.5).	 The	multiplication	 and	addition	by	0.5	 scaled	 the	minimum	and	maximum	

contrast	 to	 be	 0	 and	 1	 initially	 and	 the	 further	 multiplication	 by	 𝐶	 reduced	 the	

maximum	contrast	to	0.5.		

Layer	 1	 involved	 four	 channels	 with	 static	 nonlinearities	 (Naka	 &	 Rushton,	

1966)	 with	 an	 extra	 term	 in	 their	 denominators	 to	 account	 for	 XOS	 (Carandini	 &	

Heeger,	2012)	and	is	here	assumed	to	represent	grating	component	responses.	The	

structure	of	a	Layer	1	channel	was	as	follows:	

𝑐𝑜𝑚𝑝𝑅𝑒𝑠𝑝 = 𝑟𝑀𝑎𝑥 ∙ IJKL

MNOPIJK
L PQR

,	

where	𝑟𝑀𝑎𝑥	is	the	maximum	response	of	the	channel,	𝐼+S	the	input	contrast	of	

the	stimulus	component	being	encoded	at	that	channel	at	time	point	𝑡,	𝑛	an	exponent	

and	𝐶-.the	semi-saturation	point.	𝑁𝑃,	used	as	the	normalisation	pool,	is	the	sum	of	

three	extra	terms	corresponding	to	the	input	to	the	other	three	Layer	1	channels.	The	

value	of	each	of	these	terms	was	determined	in	a	similar	fashion	to	the	𝐼+S	term:	

𝑁𝑃 = 𝐼VS,

VWX

	

Two	 channels	 corresponded	 to	 ‘detectors’	 for	 components	 A1	 and	 A2,	 and	 their	

output	was	summed	(𝐶𝑆𝑎)	before	being	passed	to	Layer	2.	The	same	was	done	for	the	

other	two	channels,	(‘B1’	and	‘B2’)	and	their	sum	referred	to	as	𝐶𝑆𝑏.	

The	second	layer	can	be	thought	of	as	two	additional	“channels”	with	a	similar	

static	 nonlinearity	 (without	 the	 additional	 XOS	 term	 on	 the	 denominator),	 which	

would	respond	selectively	to	the	presence	of	a	plaid:	

𝑝𝑙𝑎𝑖𝑑𝑅𝑒𝑠𝑝 = 𝑟𝑀𝑎𝑥 ∙ M^KL

MNOPM^KL
,	

where	𝐶𝑆	 (either	 a	 or	 b)	 represents	 the	 linearly	 summed	 component	 responses	 (as	

described	above),	𝑛	an	exponent	and	𝐶-.	the	semi-saturation	point	(the	same	used	in	

Layer	1).	For	both	channel	layers,	𝑟𝑀𝑎𝑥	was	held	constant	at	1,	𝑛	at	2	and	𝐶-.	at	0.2.	

These	were	reasonable	values	to	set	parameters	with,	given	similar	values	reported	in	
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studies	that	aimed	to	model	similar	phenomena	(D.	H.	Baker	&	Wade,	2017;	Sit,	Chen,	

Geisler,	Miikkulainen,	&	Seidemann,	2009;	Tsai	et	al.,	2012).	The	overall	output	of	the	

model	 was	 then	 calculated	 as	 the	 linearly	 summed	 response	 of	 𝑐𝑜𝑚𝑝𝑅𝑒𝑠𝑝	 and	

𝑝𝑙𝑎𝑖𝑑𝑅𝑒𝑠𝑝,	simulating	the	population	response	measured	with	EEG.	

It	 has	 been	 suggested	 that	 the	 temporal	 processing	 of	 signals	 by	 the	

mechanisms	generating	intermodulation	responses	may	be	key	to	their	almost-always	

asymmetric	response	patterns	(e.g.	Alp	et	al.,	2016;	Boremanse	et	al.,	2013).	Thus,	we	

wanted	to	evaluate	the	importance	of	various	temporal	filters,	modeling	the	neural	

impulse	response	functions	(NIRs)	on	the	performance	of	the	model.	Further,	it	has	

been	 suggested	 that	 later	 mechanisms	 in	 the	 visual	 pathway	 may	 differ	 in	 their	

temporal	 filtering	 properties	 compared	 to	 earlier	 mechanisms.	 We	 therefore	

conducted	simulations	where	NIRs	were	generated	and	used	as	temporal	 filters	on	

each	channel’s	output.		

We	tested	two	variants	of	filter	(Figure	4.2).	The	first	variant	was	generated	by	

summing	three	Gaussian	distributions.	It	had	a	bandpass	Fourier	response	peaking	at	

~5Hz	with	a	slow	decay	towards	20Hz.	The	second	form	of	linear	filter	was	generated	

simply	 by	 halving	 the	 peaks	 and	 widths	 of	 the	 band-pass	 filter	 described	 above,	
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Figure	4.2.	Temporal	and	Fourier	responses	of	the	bandpass	and	higher-pass	
temporal	filters.	The	left	figures	represent	temporal	responses	and	the	right	Fourier	
responses.	Red	indicates	responses	of	the	bandpass	filter	and	blue	the	higher-pass	
filter.	
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resulting	 in	 a	 high(er)-pass	 Fourier	 response	 peaking	 at	 ~10Hz.	 These	 filters	 were	

combined	in	three	ways;	a)	the	bandpass	filter	for	both	Layer	1	and	Layer	2,	b)	the	

bandpass	filter	for	Layer	1	and	higher	frequency	filter	for	Layer	2,	and	c)	no	temporal	

filtering	 at	 either	 level.	 This	 allowed	 us	 to	 assess	 the	 importance	 of	 the	 temporal	

integration	functions	in	the	resulting	responses,	and	whether	there	is	any	evidence	

for	these	differing	in	early-	and	late-stages	of	the	model.		

Following	this,	noise	was	added	to	the	output	of	the	model.	A	vector	of	10,000	

values	 that	was	 the	average	of	1000	 iterations	of	 random	sampling	 from	a	normal	

distribution	was	filtered	with	a	3rd	order	bandpass	Butterworth	filter	between	0.1	and	

100Hz.	This	resulted	in	a	1/ƒ	decay	like	that	observed	in	the	EEG	data.	The	mean	of	

the	random	distribution	allowed	us	to	scale	the	overall	magnitude	of	the	1/ƒ	noise	

and	the	SD	the	degree	of	randomisation	(mean=10	and	SD=0.5	for	no	temporal	filter,	

m=190	and	SD=9.5	for	application	of	temporal	filter).		

FFTs	 were	 performed	 on	 the	 model	 output	 with	 the	 added	 noise.	 The	

magnitude	 of	 model	 responses	 was	 normalized	 between	 0	 and	 1	 by	 using	 the	

minimum	and	maximum	response	for	the	condition	being	simulated.	This	controlled	

for	the	arbitrary	scaling	of	model	responses	introduced	by	the	temporal	filter.	In	all	

cases,	this	maximum	was	found	at	the	1/f	noise	magnitude	at	0.1Hz,	rather	than	at	a	

signal	bin	related	to	the	stimulus	input.	The	same	approach	that	was	used	for	the	EEG	

data	was	 used	 to	 calculate	 SNRs	 at	 each	 frequency,	 and	 these	were	 then	 used	 to	

perform	model	fitting.		

	

Results 

General	overview	
We	wanted	to	measure	fundamental	responses	to	grating	components,	both	alone	

and	 when	 forming	 part	 of	 a	 plaid.	 We	 also	 wanted	 to	 measure	 intermodulation	

responses	 at	 the	 difference	 and	 sum	 of	 the	 fundamental	 frequencies	 used	 to	

modulate	the	contrast	of	each	component	forming	a	plaid.	Clear	component-based	

responses	at	ƒ1	(2.3Hz)	and	ƒ2	(3.75Hz)	were	observed	at	posterior	occipital	sites	for	

gratings	presented	alone	as	well	as	when	they	were	presented	along	with	another	

grating	component	in	the	plaid	conditions.	Further,	clear	intermodulation	responses		
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were	observed	 in	all	plaid	conditions	at	ƒ1+ƒ2	 (6.05Hz),	but	only	 in	coherent	plaid	

conditions	at	2ƒ1+2ƒ2	(12.1Hz).	It	should	be	noted	that	in	Figure	4.3	there	are	a	few	

responses	that	straddle	multiple	bins	(the	ƒ2,	ƒ2-ƒ1	and	ƒ1+ƒ2	responses).	This	was	a	

result	of	the	coding	error	mentioned	in	the	General	Methods	section	that	resulted	in		

Figure	4.3.	Example	Fourier	amplitude	spectra	with	SNR	topographies.	Top:	grating	
component	A1	alone	with	fundamental	SNR	topography.	Bottom:	Coherent	plaid	A1A2	with	
ƒ1+ƒ2	and	2ƒ1+2ƒ2	intermodulation	SNR	topographies.	A	component	alone	resulted	in	
fundamental	responses	at	the	driving	frequency	as	well	as	harmonic	responses.	Simultaneously	
presenting	two	components	resulted	in	fundamental	and	harmonic	responses	for	each	
component	frequency.	Additional	nonlinearities	were	observed	at	the	intermodulation	
frequencies.	The	reason	that	a	few	responses	appear	to	straddle	multiple	bins	(the	ƒ2,	ƒ2-ƒ1	and	
ƒ1+ƒ2	responses)	was	that	the	stimulus	frequencies	fell	exactly	between	two	bins	in	these	cases;	
the	FFT	bins	had	a	resolution	of	0.1Hz.	
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stimuli	being	presented	at	half	 the	 intended	driving-frequency.	The	this	resulted	 in	

frequency	 responses	 that	 fell	 exactly	 between	 two	 bins,	 where	 each	 bin	 had	 a	

resolution	of	0.1Hz.	For	example,	a	driving	response	of	3.75Hz	straddled	the	3.7Hz	and	

3.8Hz	bins.	

	
Response	to	components.			
To	test	the	well-documented	effects	of	XOS	(DeAngelis	et	al.,	1994;	Meese	&	Holmes,	

2007;	Petrov	et	al.,	2005)	we	could	compare	directly	the	response	to	each	frequency-

tagged	grating	component	in	isolation	and	in	the	presence	of	a	second	grating.	The	

SNR	measures	of	 these	 responses	 to	each	 component	–	 calculated	by	dividing	 the	

amplitude	at	the	frequency	of	interest	by	the	average	amplitude	of	the	surrounding	

12	 frequencies	 (with	 signal	 bins	 excluded)	 –	 can	be	 seen	 in	 Figure	4.4.	 Substantial	

suppression	was	 observed	 for	 components	 presented	 at	 2.3Hz	 in	 the	 presence	 of	

another	 grating	 component	 at	 3.75Hz	 (Figure	 4.5).	 This	 was	 not	 the	 case	 for	

components	presented	at	3.75Hz.		

	

A1 (1cpd, 2.3Hz) A2 (1cpd, 3.75Hz)

B1 (3cpd, 2.3Hz) B2 (3cpd, 3.75Hz)

Component Topographies

Figure	4.4.	SNR	topographies	for	grating	components	presented	alone.	
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All	 fundamental	 component	 responses,	 whether	 presented	 alone	 or	 in	 the	

presence	of	another	grating,	were	significantly	above	background	noise	(p<.01	in	all	

cases).	 For	 the	2.3Hz	 response	 to	grating	A1	 there	was	a	 significant	main	effect	of	

stimulus	 pattern	 (F2,28=8.26,	 p=.002).	 Post-hoc	 pairwise	 comparisons	 showed	 that	

component	A1	SNRs	were	reduced	for	both	the	A1A2	plaid	(t28=	2.92,	p=	.018)	and	the	
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Figure	4.5.	Bar	plots	displaying	fundamental	frequency	response	SNRs	to	component	A1,	
component	A2,	component	B1	and	component	B2.	As	indicated	by	the	stimulus	insets,	the	
leftmost	bar	of	each	plot	represents	the	fundamental	frequency	SNR	when	that	component	was	
presented	alone,	the	middle	when	it	was	part	of	a	coherent	plaid,	and	the	right	as	part	of	a	non-
coherent	plaid.	*	represents	a	significant	difference	at	p<.05	and	**	at	p<.01.	
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A1B2	plaid	(t28=	3.91,	p=	.002)	but	there	was	no	significant	difference	between	the	

two	plaid	 conditions	 (t28=	 0.99,	p=	 0.587).	 A	 similar	 effect	was	 observed	 for	 2.3Hz	

responses	to	B1	(F2,28=	6.64,	p=	.004),	again	driven	by	significant	differences	between	

the	grating	alone	and	each	plaid	condition	(B1B2:	t28=	3.12,	p=	.009;	B1A2:	t28=	3.12,	

p=	.011).	There	was	no	significant	difference	between	the	response	to	coherent	and	

non-coherent	plaids	(t28=	-.06,	p=	.998).	

For	 the	 higher	 temporal	 frequency	 components,	 at	 3.75Hz	 the	 levels	 of	

suppression	were	 less	pronounced	and	did	not	 result	 in	 significant	main	effects	of	

stimulus	type	(A2:	F2,28=	.02,	p=.98;	B2:	F2,	28=	.65,	p=	.528).	This	pattern	of	suppression	

may	 reflect	 an	 additional	 complex	 interaction	 between	 spatial	 and	 temporal	

frequency	 tuning	 of	 cross-orientation	 normalisation	 processes	 (Cass	&	Alais,	 2006;	

Meese	&	Holmes,	2007,	2010).	

In	 summary,	 although	 different	 patterns	 of	 suppression	 were	 observed	

between	components,	 levels	of	cross-orientation	suppression	were	similar	 for	both	

coherent	and	non-coherent	plaids	for	all	conditions.	This	 indicates	that	suppressive	

effects	were	not	spatial-frequency	tuned.			

	

Response	to	plaids.	
Intermodulation	 frequencies	were	 used	 to	 assess	 responses	 to	 the	 conjunction	 of	

grating	components	(see	Figures	4.6	to	4.9	for	plaid	topographies).	Responses	at	the	

difference	frequency	(ƒ2-ƒ1:	1.45Hz)	were	not	prominent	compared	to	background	

noise	for	all	conditions	(Figure	4.10).	A	main	effect	of	pattern	was	found	(F6,84=	3.09,	

p=.009),	 though	 no	 significant	 differences	 were	 observed	 in	 post-hoc	 pairwise	

comparisons	 between	 plaid	 conditions.	 At	 the	 harmonic	 of	 the	 intermodulation	

difference	frequency	(2ƒ2-2ƒ1:	2.9Hz),	responses	in	all	conditions	were	not	prominent	

compared	to	background	noise	(Figure	4.11),	and	the	main	effect	of	stimulus	pattern	

on	SNRs	was	non-significant	(F6,84=	2.07,	p=	.066).	
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A1A2

2.3Hz (ƒ1) 3.75Hz (ƒ2) 1.45Hz (ƒ2-ƒ1)

2.9Hz (2ƒ2-2ƒ1) 6.05Hz (ƒ1+ƒ2) 12.1Hz (2ƒ1+2ƒ2)

Figure	4.3.	SNR	average	topographies	at	ƒ1,	ƒ2,	ƒ2-ƒ1,	2ƒ2-2ƒ1,	ƒ1+ƒ2	and	2ƒ1+2ƒ2	for	coherent	plaid	
A1A2.	

B1B2

2.3Hz (ƒ1) 3.75Hz (ƒ2) 1.45Hz (ƒ2-ƒ1)

2.9Hz (2ƒ2-2ƒ1) 6.05Hz (ƒ1+ƒ2) 12.1Hz (2ƒ1+2ƒ2)

Figure	4.4.	SNR	average	topographies	at	ƒ1,	ƒ2,	ƒ2-ƒ1,	2ƒ2-2ƒ1,	ƒ1+ƒ2	and	2ƒ1+2ƒ2	for	coherent	plaid	
B1B2.	
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A1B2

2.3Hz (ƒ1) 3.75Hz (ƒ2) 1.45Hz (ƒ2-ƒ1)

2.9Hz (2ƒ2-2ƒ1) 6.05Hz (ƒ1+ƒ2) 12.1Hz (2ƒ1+2ƒ2)

Figure	4.6.	SNR	average	topographies	at	ƒ1,	ƒ2,	ƒ2-ƒ1,	2ƒ2-2ƒ1,	ƒ1+ƒ2	and	2ƒ1+2ƒ2	for	non-coherent	
plaid	A1B2.	

	

B1A2

2.3Hz (ƒ1) 3.75Hz (ƒ2) 1.45Hz (ƒ2-ƒ1)

2.9Hz (2ƒ2-2ƒ1) 6.05Hz (ƒ1+ƒ2) 12.1Hz (2ƒ1+2ƒ2)

Figure	4.5.	SNR	average	topographies	at	ƒ1,	ƒ2,	ƒ2-ƒ1,	2ƒ2-2ƒ1,	ƒ1+ƒ2	and	2ƒ1+2ƒ2	for	non-coherent	
plaid	B1A2.	
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Figure	4.7.	Response	SNRs	at	1.45Hz	(ƒ2-ƒ1)	for	each	grating	component	and	plaid	condition.	The	
bars	represent	the	SNR,	the	error	bars	95%	CIs,	and	the	black	dashed	line	represents	background	
noise	at	an	SNR	of	1.	
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Figure	4.11.	Response	SNRs	at	2.9Hz	(2ƒ2-2ƒ1)	for	each	grating	component	and	plaid	condition.	The	
bars	represent	the	SNR,	the	error	bars	95%	CIs,	and	the	black	dashed	line	represents	background	
noise	at	an	SNR	of	1.	
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At	the	sum	intermodulation	frequency	(ƒ1+ƒ2:	6.05Hz)	prominent	responses	

were	observed	(Figure	4.12).	One-sample	t-tests	comparing	each	condition’s	SNR	to	

background	noise	revealed	significant	differences	 for	both	coherent	plaid	and	non-

coherent	plaid	conditions	(A1A2:	t14=	5.07,	p=.001,	95%	CI=	[1.62,	2.53];	B1B2:	t14=	

7.91,	p	<.001,	95%	CI=	[2.70,	3.97];	A1B2:	t14=	4.45,	p=.003,	95%	CI=	[1.66,	2.88];	B1A2:	

t14=	3.38,	p<.023,	95%	CI=	[1.41,	2.84]),	as	well	as	for	component	A2	(t14=	3.24,	p<.024,	

95%	CI=	[1.13,	1.65]).	The	latter	finding	was	unexpected	as	only	one	component	(i.e.	

only	 one	 flickering	 stimulus)	 was	 presented	 in	 that	 condition;	 mathematically,	 an	

intermodulation	 response	 should	not	 take	place.	 This	 finding	might	be	a	 statistical	

false	alarm.	A	significant	main	effect	of	stimulus	pattern	was	found	(F6,84=	24.23,	p<	

.001).	 Post-hoc	 pairwise	 comparisons	 showed	 that	 response	 SNRs	 at	 6.05Hz	 were	

significantly	larger	in	response	to	plaid	B1B2	than	for	plaid	A1A2	(t84=	-4.22,	p<.001)	

and	the	mean	6.05Hz	response	SNR	to	the	non-coherent	plaids	(the	mean	of	A1B2	and	

B1A2	responses;	t84=	-3.00,	p=.009).	

	

0

1

2

A1 A2 B1 B2 A1A2 B1B2 A1B2 B1A2
Stimulus

SN
R

Sum intermodulation (6.05Hz) responses

Figure	4.12.	Response	SNRs	at	6.05Hz	(ƒ1+ƒ2)	for	each	grating	component	and	plaid	condition.	The	
bars	represent	the	SNR,	the	error	bars	95%	CIs,	and	the	black	dashed	line	represents	background	
noise	at	an	SNR	of	1.	
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At	the	harmonic	of	the	intermodulation	sum	frequency	(2ƒ1+2ƒ2:	12.1Hz;	see	

Figure	4.13)	only	responses	to	coherent	plaids	were	significantly	above	background	

noise	(A1A2:	t14=	3.74,	p=.017,	95%	CI=	[1.71,	3.60];	B1B2:	t14=	4.00,	p=	.017,	95%	CI=	

[1.48,	2.82]).	There	was	a	significant	main	effect	of	stimulus	pattern	on	response	SNRs	

(F6,84=	 11.61,	 p<	 .001).	 Significant	 differences	 were	 observed	 in	 post-hoc	 pairwise	

comparisons	 between	 both	 coherent	 plaids	 and	 the	 mean	 non-coherent	 plaid	

response	(A1A2:	t84=	4.69,	p<	.001;	B1B2:	t84=	2.62,	p=	.030).	

	

Summary.	 The	 response	 at	 the	 sum	 intermodulation	 term	 (ƒ1+ƒ2:	 6.05Hz)	 was	

significantly	 above	 background	 noise	 for	 all	 plaid	 conditions,	 and	 was	 greater	 for	

coherent	 plaid	 B1B2	 than	 any	 other	 condition.	 That	 all	 plaid	 responses	 were	

significantly	 above	 background	 noise	 and	 that	 suppression	 for	 coherent	 and	 non-

coherent	plaid	responses	was	similar,	may	indicate	that	the	6.05Hz	response	primarily	

reflected	XOS.	At	the	harmonic	of	the	sum	intermodulation	term	(12.1Hz),	however,	

there	was	 a	 degree	 of	 selectivity;	 the	 response	was	 larger	 for	 coherent	 than	 non-

coherent	plaids,	and	was	significantly	above	background	noise	for	coherent	plaids	but		
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Figure	4.13.	Response	SNRs	at	12.1Hz	(2ƒ1+2ƒ2)	for	each	grating	component	and	plaid	condition.	
The	bars	represent	the	SNR,	the	error	bars	95%	CIs,	and	the	black	dashed	line	represents	background	
noise	at	an	SNR	of	1.	
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Figure	4.14.	SNR	Spectra	for	a)	EEG	data	and	b)	model	data	without	an	NIR	being	applied.	
Highlighted	in	dark	blue	are	fundamental	component-based	SNRs	(ƒ1	and	ƒ2:	2.3Hz	and	
3.75Hz),	light	blue	the	component	harmonic	SNRs	(2ƒ1	and	2ƒ2:	4.6Hz	and	7.5Hz),	red	the	
intermodulation	responses	(ƒ2-ƒ1	and	ƒ1+ƒ2:	1.45Hz	and	6.05Hz)	and	magenta	the	
intermodulation	harmonic	responses	(2ƒ2-2ƒ1	and	2ƒ1+2ƒ2:	2.9Hz	and	12.1Hz).	The	contrast	
saturation	model	was	the	simplest,	followed	by	the	inclusion	of	XOS	(normalisation	pool)	
and	then	the	conjunction	detection	model.			
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not	 for	 non-coherent	 plaids,	 suggesting	 that	 it	 was	 spatial-frequency	 tuned.	 	 This	

appears	 more	 consistent	 with	 a	 nonlinearity	 resulting	 from	 plaid-selective	

mechanisms	(which	are	expected	to	be	spatial-frequency	tuned)	rather	than	a	XOS	

mechanism	(which	is	not).	Computational	modeling	is	needed	to	understand	whether	

that	intuitive	explanation	fits	with	the	data,	however.	

	

Modelling.	
Simulations	of	several	candidate	models,	including	the	conjunction	detection	model	

outlined	 in	 the	 methods	 section,	 were	 generated.	 The	 candidate	 models	 with	 no	

conjunction	detection	were	each	composed	of	a	channel	bank	of	4	V1	neurons	(like	

Layer	 1	 of	 the	 conjunction	model).	 In	 the	 interest	 of	 understanding	 how	different	

component-based	nonlinearities	contribute	to	the	summed	nonlinearities	observed	in	

EEG	data,	 input	signals	underwent	only	contrast	saturation	in	one	model,	and	both	

contrast	saturation	and	XOS	in	another.	The	output	of	these	simulations	is	shown	in	

the	top	rows	of	Figure	4.14b	and	Figure	4.15b.	In	both	figures,	the	model	output	is	

being	compared	to	the	EEG	data	we	collected	for	coherent	plaid	A1A2.	The	EEG	data	

is	shown	in	section	'a’	of	both	figures,	and	the	various	model	outputs	are	shown	in	

section	‘b’.	The	same	noise	as	described	earlier	was	injected	into	the	output	of	these.	

Two	 versions	 of	 each	were	 run;	 one	where	 no	 temporal	 filter	 was	 applied	 to	 the	

channel	 output	 (Figure	 4.14b)	 and	 another	 where	 the	 temporal	 filters	 that	 were	

outlined	earlier	were	applied	(Figure	4.15b).	It	should	be	noted	that	the	application	of	

the	second	temporal	filter	(whether	bandpass	or	high-pass)	was	applied	to	Layer	2	in	

the	conjunction	detection	model	only	(shown	in	the	bottom	row	of	Figure	4.14b	and	

Figure	4.15b).	

In	the	first	candidate	model,	each	channel	had	a	stage	of	contrast	saturation	

upon	 contrast	 input	 (Figure	 4.14b	 top	 left;	 Figure	 4.15b	 top	 left).	 Fundamental	

responses	and	their	harmonics	were	produced.	No	intermodulation	responses	were	

produced	because	the	operation	performed	by	each	channel	was	independent	of	the	

other	channels;	the	different	temporal	signals	could	not	combine.	This	is	dissimilar	to	

the	observed	EEG	data	in	sections	a)	of	both	figures,	and	clearly	not	the	case	for	much	

of	 the	 visual	 system.	 In	 V1	 substantial	 XOS	 is	 usually	 observed	 in	 response	 to	
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superimposed	grating	 stimuli	 (e.g.	Bonds,	1989;	Brouwer	&	Heeger,	2011b;	Burr	&	

Morrone,	1987).		
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Figure	4.15.	SNR	Spectra	for	a)	EEG	data	and	b)	model	data	with	NIRs	applied.	Highlighted	
in	dark	blue	are	fundamental	component-based	SNRs	(ƒ1	and	ƒ2:	2.3Hz	and	3.75Hz),	light	
blue	the	component	harmonic	SNRs	(2ƒ1	and	2ƒ2:	4.6Hz	and	7.5Hz),	red	the	
intermodulation	responses	(ƒ2-ƒ1	and	ƒ1+ƒ2:	1.45Hz	and	6.05Hz)	and	magenta	the	
intermodulation	harmonic	responses	(2ƒ2-2ƒ1	and	2ƒ1+2ƒ2:	2.9Hz	and	12.1Hz).	The	contrast	
saturation	model	was	the	simplest,	followed	by	the	inclusion	of	XOS	(normalisation	pool)	
and	then	the	conjunction	detection	models.	
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	The	 second	 candidate	 model	 performed	 contrast	 saturation	 and	 received	

input	from	a	normalisation	pool	(outlined	in	methods	section);	i.e.	a	model	of	contrast	

gain	to	account	for	contrast	saturation	and	XOS	(Figure	4.14b	top	right;	Figure	4.15b	

top	right).		When	no	temporal	filter	was	applied,	suppression	was	observed	at	both	

the	fundamental	and	harmonic	component-based	SNRs.	With	the	application	of	the	

temporal	 filter	 to	 the	 output	 of	 each	 channel,	 suppression	 was	 observed	 at	 the	

fundamental	response	frequencies,	but	the	harmonic	SNRs	showed	a	slight	increase.	

In	both	cases,	a	substantial	 intermodulation	response	SNR	was	observed	at	6.05Hz	

(ƒ1+ƒ2)	and	a	slight	intermodulation	response	was	observed	at	12.1Hz	(2ƒ1+2ƒ1).	On	

the	 surface,	 this	 supports	 the	 finding	 that	 XOS	 drives	 substantial	 intermodulation	

responses	 (e.g.	 T.	 J.	 Baker,	 Norcia,	 &	 Rowan	 Candy,	 2011;	 Candy	 et	 al.,	 2001).	

However,	the	output	produced	by	these	models	is	still	dissimilar	to	the	raw	data	in	

showing	relatively	weak	harmonic	component	responses	(and	essentially	no	harmonic	

intermodulation	response).		

When	 no	 temporal	 filter	 was	 applied,	 the	 additional	 nonlinearity	 of	 the	

conjunction	 detector	 raised	 the	 SNR	 at	 the	 fundamental,	 harmonic	 and	

intermodulation	terms	compared	to	the	contrast	gain	(contrast	saturation	+	XOS)	only	

model.	 In	contrast,	 the	addition	of	 the	bandpass	temporal	 filter	at	Layer	1	and	the	

higher-pass	 temporal	 filter	at	 Layer	2	 resulted	 in	 larger	SNRs	only	at	 the	harmonic	

responses	 (4.6Hz:	 2ƒ1,	 7.5Hz:	 2ƒ2	 and	 12.1Hz:	 2ƒ1+2ƒ2).	 Applying	 the	 bandpass	

temporal	 filter	 to	 both	 Layer	 1	 and	 Layer	 2	 of	 the	 conjunction	 model	 decreased	

fundamental	component	responses,	the	4.6Hz	response	and	the	12.1Hz	response,	but	

notably	increased	the	6.05Hz	response.	This	latter	model	was	the	most	dissimilar	of	

the	 conjunction	 detector	 models	 to	 the	 observed	 EEG	 data.	 The	 model	 with	 no	

temporal	filter	and	the	model	with	different	temporal	filters	at	stage	1	and	stage	2	

both	resulted	in	larger	12.1Hz	SNRs;	the	frequency	at	which	a	significant	difference	

between	 coherent	 and	 non-coherent	 plaids	was	 found	 in	 the	 EEG	 data.	 They	 also	

display	several	additional	frequency	combination	responses	that	are	present	within	

the	EEG	data	spectra,	such	as	the	response	at	9.8Hz	(ƒ1+2ƒ2).	 	Both	clearly	capture	

some	of	the	subtleties	involved	in	the	signal	combinations	taking	place	in	the	EEG	data,	

though	the	larger	12.1Hz	response	produced	by	the	bandpass	+	higher-pass	model	is	

closer	to	the	EEG	findings.	
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In	summary,	we	generated	several	simple	fixed	models	to	account	for	different	

kinds	of	signal	summation	in	response	to	frequency-tagged	flickering	stimuli.	Rather	

than	 comparing	 models	 using	 measures	 of	 fit	 quality	 and	 (somewhat	 arbitrary)	

penalties	for	numbers	of	parameters,	we	have	compared	models	in	terms	of	whether	

they	 produced	 responses	 at	 the	 expected	 frequencies.	 The	 only	 model	 variants	

capable	of	producing	the	full	range	of	responses	observed	in	the	data	were	the	models	

including	 a	 2nd	 layer	 non-linear	 step;	 the	 model	 with	 only	 cross-orientation	

suppression	(normalisation)	does	not	show	the	observed	intermodulation	responses.	

The	use	of	a	bandpass	temporal	filter	at	Layer	1	and	a	higher-pass	temporal	filter	at	

Layer	2	of	the	conjunction	model	appears	to	slightly	better	account	for	our	data	than	

without	the	application	of	any	model	of	the	neural	 impulse	response	function,	and	

much	better	than	when	a	different	bandpass	temporal	filter	is	applied	to	Layers	1	and	

2	of	the	model.	This	presumably	indicates	different	temporal	integration	windows	at	

different	stages	of	the	visual	hierarchy.	

	

Discussion 
We	have	measured	neural	responses	to	sinusoidal	grating	patterns	presented	alone	

and	 combined	 as	 coherent	 and	 non-coherent	 plaids	 to	 assess	 the	 nonlinear	

combination	 of	 neural	 responses	 to	 the	 gratings.	 To	 do	 this	 we	 measured	 EEG	

responses	 at	 intermodulation	 frequencies,	 which	 have	 previously	 been	 shown	 to	

indicate	a	nonlinearity	at	or	after	the	point	of	summation	(D.	Regan,	1983;	D.	Regan	

&	Heron,	1969;	M.	P.	Regan	&	Regan,	1988;	Spekreijse	&	Oosting,	1970b;	Spekreijse	

&	Reits,	1982;	Zemon	&	Ratliff,	1984).	We	found,	for	compound	stimuli	(plaids),	there	

was	a	non-selective	nonlinear	response	at	6.05Hz,	and	a	plaid-selective	response	at	

12.1Hz	(2ƒ1+2ƒ2),	when	the	combination	formed	a	coherent	plaid.		

Previous	measures	of	intermodulation	responses	to	plaids	have	suggested	that	

they	 reflect	 lateral	 suppressive	 effects	 such	 as	 XOS	 (T.	 J.	 Baker,	 Norcia,	 &	 Rowan	

Candy,	 2011;	 Candy	 et	 al.,	 2001).	 The	 frequency-tagging	 technique	 we	 have	 used	

allows	a	more	direct	measure	of	XOS	by	examining	the	effect	of	each	component	(e.g.	

presented	at	3.75Hz)	on	the	response	to	the	other	(at	2.3Hz)	so,	to	test	whether	the	
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intermodulation	 response	 could	 be	 caused	 by	 XOS	 we	 could	 compare	 it	 with	 the	

pattern	of	suppression	we	measured	directly.		

We	 did	 indeed	 observe	 substantial	 suppression;	 for	 example,	 when	 a	

component	(either	A1	or	B1)	was	presented	alone	at	2.3Hz,	a	greater	2.3Hz	response	

was	 observed	 than	 when	 the	 component	 was	 presented	 in	 combination	 with	 an	

orthogonal	 grating.	 Critically,	 however,	 the	 12.1Hz	 response	 was	 very	 much	

dependent	 on	 the	 spatial	 frequencies	 being	 matched	 in	 the	 two	 components.	

Conversely,	 and	 in	 keeping	with	 previous	 findings	 that	 XOS	 is	 largely	 un-tuned	 for	

spatial	 frequency	 (DeAngelis	 et	 al.,	 1994;	 Petrov	 et	 al.,	 2005),	 the	 reductions	 in	

component	 responses	 that	we	measured	 occurred	 equally	 for	 any	 combination	 of	

spatial	 frequencies.	 It	 seems	unlikely	 that	 the	observed	 intermodulation	 responses	

resulted	purely	from	XOS,	given	that	one	is	tuned	for	spatial	frequency	and	the	other	

is	not.		

The	 perception	 of	 moving	 plaids	 has	 been	 shown	 to	 depend	 on	 matched	

spatial	frequencies	in	several	ways.	When	spatial	frequencies	differ	in	the	two	gratings	

being	combined,	observers	perceive	a	pair	of	semi-transparent	gratings	sliding	past	

each	 other	 (Adelson	 &	 Movshon,	 1982)	 whereas	 a	 plaid	 with	 matched	 spatial	

frequency	 components	 appears	 as	 a	 single	 coherent	 checkerboard	 pattern	 with	 a	

single	direction	of	motion.	Similarly,	 selective	adaptation	 to	 static	plaids	decreases	

when	components	are	unmatched	(Hancock	et	al.,	2010)	and	the	pop-out	effect	 in	

visual	search	disappears	when	plaid	targets	have	unmatched	components	(Nam	et	al.,	

2009).	 A	 mechanism	 selective	 for	 coherent	 plaids	 appears	 to	 explain	 better	 the	

nonlinear	intermodulation	responses	we	have	measured.	In	support	of	this,	we	found	

that	the	addition	of	‘conjunction	detector’	channels	beyond	contrast	gain	operations	

resulted	in	model	output	more	like	the	EEG	data.		

Studies	 of	 fMRI	 (McDonald	 et	 al.,	 2012)	 and	 positron	 emission	 topography	

(PET)	 (P	Wenderoth,	Watson,	Egan,	Tochon-Danguy,	&	O’keefe,	1999)	have	 shown	

similar	responses	to	plaid	and	grating	stimuli	of	equivalent	contrast.	McDonald	et	al.	

(McDonald	et	al.,	2012)	used	fMRI	to	study	the	summation	of	signals	to	gratings	and	

plaids.	However,	this	method	measures	a	‘mixed’	signal;	it	cannot	distinguish	changes	

in	 the	 responses	 of	 a	 set	 of	 neurons	 from	 changes	 in	 the	 number	 of	 neurons	

responding.	For	instance,	a	greater	response	in	V1	could	be	caused	either	by	reduced	
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suppression	 between	 neurons	 or	 by	 recruitment	 of	 an	 additional	mechanism.	 The	

inherently	superior	temporal	resolution	of	EEG,	combined	with	the	frequency-tagging	

technique,	 allows	 us	 to	 separate	 responses	 to	 different	 components	 within	 the	

stimulus.		

Previous	 measurements	 using	 the	 frequency	 tagging	 technique	 with	

combinations	of	oriented	gratings	have	shown	intermodulation	responses	(T.	J.	Baker,	

Norcia,	 &	 Rowan	 Candy,	 2011;	 Candy	 et	 al.,	 2001).	 These	 were	 attributed	 to	

suppression	 between	 channels;	 coherent	 and	 non-coherent	 plaids	 were	 not	

compared	 in	 terms	 of	 spatial	 frequency	 matching.	 These	 studies	 also	 used	

counterphase	 flicker,	 whereas	 we	 modulated	 between	 low	 and	 high	 contrast	

intensities	 and	 measured	 fundamental	 responses	 at	 the	 driving	 frequencies.	 The	

harmonic	responses	at	2ƒ1	(4.6Hz)	and	2ƒ2	(7.5Hz)	-	not	shown	here	-	displayed	the	

same	effects	as	the	fundamental	responses	in	terms	of	component	suppression;	all	

components	 displayed	 the	 same	 amount	 of	 harmonic	 component	 suppression	

irrespective	of	plaid	coherence.		

The	 intermodulation	responses	we	measured	were	predominantly	observed	

at	the	sum	intermodulation	frequencies,	and	not	at	the	difference.	This	has	also	been	

the	case	for	several	other	intermodulation	studies	(Aissani	et	al.,	2011;	Alp	et	al.,	2016;	

Appelbaum,	Wade,	Pettet,	Vildavski,	&	Norcia,	2008a;	Gundlach	&	Müller,	2013)	but	

the	converse	was	true	for	Boremanse	et	al.	(2013).	One	interpretation	for	differences	

between	 the	 intermodulation	 terms	 suggested	 by	 Boremanse	 et	 al.	 (2013)	 is	 that	

responses	 at	 both	 frequencies	 reflect	 parallel	 nonlinearities	 but	 the	 sum	

intermodulation	 response	 output	 may	 be	 a	 temporally	 band-pass	 or	 higher-pass	

nonlinearity	 and	 signal	 early	 local	 spatial	 interactions,	 whereas	 the	 difference	

intermodulation	response	may	be	generated	by	a	 temporally	 low-pass	nonlinearity	

and	generated	by	signal	integration	to	higher-level	(global)	stimuli,	such	as	their	face-

part	 stimuli,	which	 require	 longer	 to	 process	 (Alonso-Prieto	 et	 al.,	 2013).	Here	we	

found	 that	 the	 application	 of	 a	 bandpass	 temporal	 filter	 at	 Layer	 1	 and	 a	 higher	

frequency	 filter	 at	 Layer	 2	 of	 our	model	 resulted	 in	 better	model	 output	 than	 by	

applying	a	bandpass	filter	at	both	layers.	Rapid	local	combinations	would	certainly	fit	

in	with	our	EEG	results	as	we	used	simple	sinusoidal	gratings	that	presumably	were	

being	combined	across	many	receptive	fields	to	encode	another	pattern	(the	plaid).	
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Further,	 sum	 intermodulation	 responses	 were	 strongest	 around	 Oz,	 placed	

approximately	over	the	occipital	pole,	consistent	with	activity	relatively	early	in	visual	

cortex.	

Alp	 et	 al.,	 (2016)	 suggested	 that	 the	 temporal	 resonance	 properties	 of	

different	neural	mechanisms	may	influence	the	varied	response	at	the	difference	and	

sum	intermodulation	frequencies.	These	resonances	may	depend	on	specific	synaptic	

connections	 to	 and	 from	 the	 mechanisms,	 feedback	 connectivity	 and	 the	 relative	

complexity	 of	 the	 receptive	 field	 within	 the	 visual	 hierarchy	 (e.g.	 sensitive	 to	

compound	plaids	or	sensitive	to	 faces).	The	effects	of	such	differences	 in	 temporal	

integration	have	not	been	applied	quantitatively	 in	a	computational	model	 (e.g.	 to	

explain	differential	 responses	at	 sum-	and	difference-intermodulation	 terms).	Here	

we	used	 a	 simple	 approach	 to	model	 the	 temporal	 properties	 of	mechanisms	 and	

found	that	using	different	neural	impulse	response	functions	(temporal	filters)	at	early	

and	late	layers	was	sufficient	to	explain	a	wide	range	of	features	in	the	data.	In	the	

case	studied	here	(plaid	combinations)	it	appeared	that	responses	at	6.05Hz	(ƒ1+ƒ2)	

in	the	present	data	primarily	represented	XOS	mechanisms,	while	responses	at	12.1Hz	

(2ƒ1+2ƒ2)	reflected	plaid-selective	mechanisms.		

The	 responses	 to	 gratings	 and	 plaids	 appear	 similar	 in	 terms	 of	 their	

topography.	Although	they	may	result	from	different	neurons,	we	would	expect	these	

to	be	anatomically	proximal.	For	example,	if	the	response	to	plaids	originated	in	V2,	it	

would	be	hard	to	distinguish	from	the	V1	response	to	gratings	using	EEG.	Furthermore,	

although	 they	 are	 reliable,	 the	 intermodulation	 responses	 do	 not	 have	 large	

amplitudes,	which	compounds	the	difficulty	in	localizing	them.		

In	summary,	we	have	shown	a	nonlinear	response	to	a	compound	of	gratings	

(plaid)	 that	 does	 not	 arise	 purely	 from	 contrast	 normalisation	 between	 spatial	

frequency	 channels.	 The	 data	 are	 in	 keeping	 with	 a	 mechanism	 for	 detecting	

conjunctions	 of	 visual	 features,	 as	might	 result	 from	 a	 logical	 AND	 operation.	 The	

frequency-tagging	technique	provides	a	useful	tool	to	investigate	AND-gates	in	a	wide	

variety	of	neural	mechanisms.	
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Chapter	5: Measuring	 the	 contrast	 response	 function	 of	

intermodulation	responses	

Rationale 
In	the	previous	chapter	I	reported	a	study	in	which	we	measured	SSVEP	responses	to	

high-contrast	plaid	 stimuli.	 The	 frequency-tagging	approach	 critically	 allowed	us	 to	

disentangle	 nonlinearities	 resulting	 in	 XOS	 from	 other	 nonlinearities,	 like	 those	

indicative	of	a	putative	“plaid	detector”.	We	found	a	plaid-selective	intermodulation	

response	 for	coherent	plaids;	when	the	plaid	components	were	matched	 in	spatial	

frequency.	 A	 simple	 two-layer	model	 of	 nonlinear	 summation	was	 generated	 that	

described	 the	 data	 well.	 The	 mechanism	 was	 structured	 as	 a	 logical-AND	 gated	

summing	circuit	that	performs	selective	signal	combinations.		

The	study	reported	in	the	previous	chapter	used	only	one	high	contrast	level.	

We	 found	 a	 plaid	 selective	 response,	 but	 this	 tells	 us	 nothing	 about	 how	 the	

mechanism	generating	that	response	depends	on	contrast.	Critical	for	the	mechanism	

is	 the	use	of	saturating	nonlinearities	 in	V1	(Peirce,	2007b,	2011).	A	computational	

consequence	of	the	suggested	mechanism	is	that	at	very	low	component	contrasts	–	

before	 the	 expansive	 rising	 slope	 of	 a	 neuron’s	 contrast	 response	 function	 –	 the	

mechanism	cannot	 to	detect	a	compound	pattern	over	and	above	 its	components.	

This	caused	May	and	Zhaoping	(2011)	to	suggest	that	multiplication	is	needed	for	AND	

gates,	instead	of	the	literal	“nonlinear	summation”,	suggested	by	Peirce	(2007).	While	

Peirce	(2011)	agrees	that	the	mechanism	does	not	detect	plaids	at	low	contrast,	he	

points	to	the	psychophysical	literature	indicating	that	plaids,	indeed,	do	not	have	any	

special	status	at	low	contrasts;	they	appear	simply	as	a	pair	of	non-coherent	gratings.	

McGovern	and	Peirce	(2010)	found	that	adaptation	to	plaid	components	was	

strongest	at	low	probe	contrasts,	but	adaptation	to	plaid	compounds	was	strongest	at	

higher	 probe	 contrasts.	 The	 perception	 of	 plaids	 also	 changes	 from	 a	 distinct	

checkerboard	pattern	to	that	of	its	two	superimposed	grating	components	at	lower	

contrast	 levels	 (Meese	 &	 Freeman,	 1995).	 This	 suggests	 that,	 measured	

psychophysically,	plaid-detecting	mechanisms	operate	at	mid-to-high	contrast	levels,	

but	fail	at	low	contrasts.		
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The	aim	here	was	to	measure	the	contrast	response	function	of	plaid-selective	

responses	 to	 determine	 whether	 the	 effects	 noted	 in	 the	 previous	 chapter	 are	

contrast-dependent.	 As	 before,	 using	 the	 intermodulation	 approach	 allows	 us	 to	

examine	 the	 effect	 that	 the	 presence	 of	 one	 component	 has	 on	 the	 response	 to	

another,	as	well	as	to	disentangle	response	nonlinearities	for	XOS	and	plaid	selectivity.	

Here,	we	measured	intermodulation	responses	to	different	combinations	of	gratings	

and	plaids	over	a	wide	range	of	contrast	levels.	

As	contrast	increases,	component-based	responses	should	show	similar	levels	

of	 suppression	 irrespective	 of	 the	 plaid	 they	 are	 a	 part	 of.	 A	 plaid-selective	

intermodulation	response	should	occur	for	the	coherent	plaid,	and	should	be	visible	

at	moderate-to-high	contrast	levels.		

	

Methods 
Participants.	 Fifteen	 participants	 with	 normal	 or	 corrected-to-normal	 vision	 gave	

informed	 consent	 to	 participate	 in	 the	 study.	 The	 ethics	 board	 at	 the	 School	 of	

Psychology,	University	of	Nottingham,	granted	ethical	approval.	

	

Stimuli	 and	 Experimental	 Procedure.	Stimuli	 comprised	 of	 two	 sinusoidal	 gratings	

(gratings	 ‘A’	 and	 ‘B’)	 and	 various	 combinations	 thereof.	 Grating	 A	 had	 a	 spatial	

frequency	of	 1cpd	and	grating	B	 a	 spatial	 frequency	of	 3cpd.	 These	 could	 then	be	

combined	with	a	second,	spatially	orthogonal,	grating	to	form	plaid	patterns	that	were	

either	coherent	(‘AA’)	or	non-coherent	(‘AB’).	On	each	trial	the	overall	orientation	of	

the	 stimulus,	 either	 grating	 or	 plaid,	 was	 randomly	 assigned	 but	 the	 orthogonal	

configuration	of	the	gratings	was	maintained.		

Participants	were	 instructed	 to	maintain	 fixation	on	 the	central	 red	 fixation	

point	and	to	respond	as	quickly	as	possible	when	they	detected	the	appearance	of	the	

green	 task	 dot	 (without	 looking	 towards	 it)	 by	 pressing	 the	 central	 button	 on	 the	

response	box.	This	green	dot	appeared	at	a	random	time	during	each	trial.	Participants	

were	presented	with	a	blank	fixation	screen	consisting	of	a	grey	background	and	red	

fixation	dot	until	they	indicated	that	they	were	ready	to	begin.		
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The	 frequencies	 chosen	 to	 generate	 intermodulation	 responses	were	4.6Hz	

(ƒ1)	 and	 7.5Hz	 (ƒ2),	 again	 on	 the	 basis	 that	 they	 allowed	 the	 components	 to	 be	

temporally	 incommensurate.	 These	 frequencies	 are	 higher	 than	 those	 used	 in	 the	

previous	chapter	 for	 reasons	outlined	 in	 the	General	Methods.	We	aimed	to	avoid	

overlap	between	the	low-frequency	1/f	decay	noise	and	the	difference	IM	response	

frequency	(2.9Hz),	as	well	as	overlap	between	the	typical	alpha	band	(8-12Hz)	and	the	

sum	 IM	 response	 frequency	 (12.1Hz)	 as	 in	 Boremanse,	 Norcia	 and	 Rossion	

(Boremanse	et	al.,	2013)	to	boost	signal-to-noise.	

The	 component	 contrast	 varied	 sinusoidally	 in	 time	between	0	 and	a	 given	

maximum	 contrast	 for	 the	 duration	 of	 a	 trial.	 The	 range	 of	maximum	 component	

contrast	levels	used	were	2%,	4%,	8%,	16%	and	32%	Michelson	contrast.	The	contrast	

of	 the	 plaid	 then	was	 formed	 by	 the	 addition	 of	 these	 components,	which	 varied	

sinusoidally	in	time	such	that	the	maximal	contrast	a	plaid	could	have	was	64%	(32%	

x	 2).	 The	 result	was	 25	 stimulus	 configuration	 x	 contrast	 conditions:	 three	 grating	

components	(A1,	A2	and	B2),	one	coherent	plaid	(A1A2)	and	one	non-coherent	plaid	

(A1B2),	 each	 displayed	 at	 the	 individual	 contrast	 levels.	 A	 trial	 consisted	 of	 an	 11	

second	 presentation	 of	 a	 flickering	 grating	 or	 two	 simultaneously	 flickering,	

superimposed	grating	components,	followed	by	a	7-9	second	inter-stimulus-interval.	

Each	of	the	25	stimuli	was	presented	1	time	in	a	run	(lasting	around	8	minutes),	with	

8	runs	in	total	split	across	two	recording	sessions.	Participants	were	given	short	breaks	

between	 runs	 and	were	 thanked,	 debriefed	 and	 given	 the	 opportunity	 to	 ask	 any	

questions	upon	completion.	

	

Analytical	 procedure.	 The	 amplitude	 response	 at	 each	 frequency	 at	 each	

electrode	site	was	converted	into	a	measure	of	signal-to-noise	ratio	(SNR)	by	dividing	

the	 amplitude	 at	 the	 frequency	 of	 interest	 by	 the	 average	 amplitude	 of	 the	

surrounding	12	frequency	bins.	The	data	used	in	the	following	analyses	were	taken	

from	electrode	Oz.	This	was	based	on	group	topographies	showing	peak	responses	for	

all	 stimuli	 occurring	 there,	 and	 is	 consistent	 with	measurements	 in	 the	 vicinity	 of	

primary	visual	cortex.	

The	frequencies	of	interest	for	analysis	were	at	ƒ1	(4.6Hz),	ƒ2	(7.5Hz),	2ƒ1	(9.2Hz),	2ƒ2	

(15Hz),	 ƒ2-ƒ1	 (2.9Hz),	 2ƒ2-2ƒ1	 (5.8Hz),	 ƒ1+ƒ2	 (12.1Hz),	 and	 2ƒ1+2ƒ2	 (24.2Hz).	 To	
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determine	whether	SNRs	were	significantly	above	background	noise	(SNR=1),	a	series	

of	one-sample	t-tests	were	conducted	separately	for	each	set	of	component	SNRs	(i.e.	

A1,	 A1A2	 and	 A1B2;	 A2,	 A1A2	 and	 B1A2;	 B2,	 B1B2	 and	 A1B2),	 difference	

intermodulation	SNRs	(at	ƒ2-ƒ1	and	2ƒ2-2ƒ1:	A1,	A2,	B2,	A1A2	and	A1B2),	and	sum	

intermodulation	SNRs	(at	ƒ1+ƒ2	and	2ƒ1+2ƒ2:	A1,	A2,	B2,	A1A2	and	A1B2)	at	each	

contrast	level.	Each	series	of	t-tests	were	corrected	using	the	ranked	Bonferroni-Holm	

method	to	control	for	Type	1	errors	(Holm,	1979).The	extent	to	which	grating/plaid	

pattern	predicted	response	SNRs	was	examined	using	linear	mixed-effects	modelling.	

	

Results 

Response	to	components	

Most	the	component-based	SNRs	were	significantly	above	a	background	noise	level	

of	1.	The	only	exceptions	were	component	A1	at	2%	and	4%	contrast,	when	presented	

alone	and	in	plaids	A1A2	and	A1B2,	and	component	A2	at	2%	presented	alone	and	2%	

and	 4%	 in	 plaid	 A1A2.	 See	 Figure	 5.1	 for	 component-based	 topographies	 when	

presented	alone.	

To	 measure	 directly	 the	 effect	 of	 suppression	 for	 different	 stimulus	

configurations	the	component-based	SNR	was	measured,	for	each	component,	when	

presented	alone	to	when	it	was	presented	as	part	of	a	plaid.	By	doing	so	we	could	

determine	(i)	whether	the	component	response	was	suppressed	by	the	presence	of	

another	grating	component	 in	 the	plaid	conditions	and	 (ii)	whether	 the	amount	of	

cross-orientation	suppression	observed	for	a	given	grating	component	differed	as	a	

function	of	plaid	coherence.		

	

A1.	Figure	5.2a	shows	the	increasing	contrast	response	functions	for	responses	at	the	

4.6Hz	fundamental	frequency	for	component	A1	when	presented	alone,	within	plaid	

A1A2	and	within	plaid	A1B2.	By	fitting	the	SNR	data	for	component	A1	to	the	LMEM,	

a	significant	main	effect	of	Pattern	(F(2,196)=	10.61,	p<.0001)	and	Contrast	(F(2,196)=	

31.73,	p<.0001)	was	 found.	 There	was	also	a	 significant	 interaction	between	 them	

(F(8,196)=	2.89,	p<.01).		
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Pairwise	comparisons	for	component	A1	between	A1,	A1A2	and	A1B2	across	

the	five	contrast	levels	were	then	carried	out.	There	were	no	significant differences	

between	any	grating	and	plaid	patterns	at	2%,	4%,	and	8%	contrast.	At	16%	contrast,	

the	response	to	component	A1	presented	alone	was	larger	than	when	presented	in	

plaid	 A1B2	 (t	 (196)	 =	 3.91,	 p<.05).	 At	 32%	 contrast,	 responses	 to	 component	 A1	

presented	in	plaid	A1B2	were	smaller	than	A1	presented	alone	(t	(196)	=	-4.53,	p<.001)	

and	presented	in	plaid	A1A2	(t	(196)	=	3.81,	p<.05).	This	suggests	that,	at	a	component		
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Figure	5.1.	Component-based	SNR	topographies	for	A1	(left),	A2	(middle)	and	B2	(right).	Contrast	
increases	from	the	top	to	the	bottom	of	the	figure,	from	2%	Michelson	through	to	32%	Michelson	
component	contrast.	Colour	maps	were	scaled	so	that	if	the	topography’s	maximum	value	was	less	
than	2.5,	the	maximum	of	the	topography	was	set	to	2.5.	This	helped	avoid	noisy	topographical	maps	
as	SNR	approached	1.	
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Figure	5.2.	Contrast	response	functions	of	a)	fundamental	component-based	SNRs	at	
4.6Hz	and	at	b)	harmonic	SNRs	at	9.2Hz	to	component	A1.	As	indicated	by	the	key,	each	
figure	displays	the	contrast	response	function	of	component	A1	presented	alone	vs.	when	
presented	as	part	of	a	plaid.	The	black	dashed	bar	represents	an	SNR	of	1,	and	error	bars	
represent	95%	CIs. 
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contrast	of	32%,	there	was	a	difference	in	component	suppression	for	component	A1	

between	plaids	A1A2	and	A1B2,	with	less	suppression	observed	for	plaid	A1A2.  

Figure	 5.2b	 shows	 the	 contrast	 response	 functions	 for	 responses	 at	 the	

harmonic	9.2Hz	 frequency	 to	component	A1	presented	alone	and	as	part	of	plaids	

A1A2	and	A1B2.	A	significant	main	effect	of	Pattern	(F(2,196)=	14.95,	p<.0001)	and	

Contrast	 (F(4,196)=	 21.15,	 p<.0001)	was	 found,	 as	well	 as	 a	 significant	 interaction	

between	the	two	(F(8,196)=	5.96,	p<.0001).		

Pairwise	comparisons	 revealed	 that	 the	9.2Hz	harmonic	 response	 increased	

significantly	across	contrast	(2%,	4%,	and	8%	all	less	than	16%	and	32%	at	p<.05)	only	

when	component	A1	was	presented	alone.	A1	presented	alone	also	resulted	in	larger	

9.2Hz	response	SNRs	than	when	presented	as	part	of	plaids	A1A2	and	A1B2	at	16%	

(p<.05	 and	 p<.01,	 respectively)	 and	 32%	 (p<.0001)	 contrast.	 This	 suggests	 that	

substantial	 suppression	 occurred	 to	 a	 similar	 degree	 at	 9.2Hz	 for	 responses	 to	

component	A1	when	presented	in	plaids	A1A2	and	A1B2.	

	

A2.	 An	 increasing	 contrast	 response	 function	 was	 observed	 at	 the	 fundamental	

frequency	of	7.5Hz	for	component	A2	SNRs	when	presented	alone	and	in	plaid	A1A2	

(Figure	5.3a).	A	main	effect	of	stimulus	pattern	affected	(F(1,	129)=	4.68,	p<.05),	and	

component	 contrast	 (F(4,126)=	 23.74,	 p<0001)	 was	 found.	 No	 interaction	 was	

observed	between	the	two.		

Pairwise	 comparisons	 for	 component	 A2	 between	 A2	 and	 A1A2	 across	 the	 five	

contrast	levels	were	then	carried	out.	SNR’s	to	A2	presented	alone	and	in	plaid	A1A2	

were	 similar	 across	 contrast,	 suggesting	 that	 there	 was	 very	 little	 suppression	 of	

component	A2	when	combined	with	component	A1.	The	significant	effect	of	stimulus	

pattern	upon	the	SNRs	is	likely	due	to	the	change	in	function	steepness	for	A2	between	

4%	and	16%	component	contrast,	which	resulted	in	a	local	peak	in	the	function	at	8%.	

Figure	5.3b	displays	harmonic	response	SNR	functions	at	15Hz	for	component	

A2.	As	suggested	by	the	figure,	only	a	significant	main	effect	of	Contrast	was	found	

(F(4,126)=	 55.37,	 p<.0001).	 Further	 post-hoc	 analyses	were	 not	warranted	 for	 this	

data.	
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Figure	5.3	Contrast	response	functions	of	a)	fundamental	component-based	SNRs	at	
7.5Hz	and	at	b)	harmonic	SNRs	at	15Hz	to	component	A2.	As	indicated	by	the	key,	each	
figure	displays	the	contrast	response	function	of	component	A1	presented	alone	vs.	when	
presented	as	part	of	a	plaid.	The	black	dashed	bar	represents	an	SNR	of	1,	and	error	bars	
represent	95%	CIs.	
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Figure	5.4.	Contrast	response	functions	of	a)	fundamental	component-based	SNRs	at	
7.5Hz	and	at	b)	harmonic	SNRs	at	15Hz	to	component	B2.	As	indicated	by	the	key,	each	
figure	displays	the	contrast	response	function	of	component	A1	presented	alone	vs.	when	
presented	as	part	of	a	plaid.	The	black	dashed	bar	represents	an	SNR	of	1,	and	error	bars	
represent	95%	CIs.	
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B2.	The	contrast	response	function	for	B2	presented	alone	and	in	plaid	A1B2	is	shown	

in	 Figure	 5.4c.	 Stimulus	 pattern	 affected	 SNRs	 (F(1,126)=	 6.69,	 p=.01),	 as	 did	

component	contrast	(F(4,126)=	4.6,	p<.01).		There	was	no	statistical	interdependence	

between	stimulus	pattern	and	component	contrast	(F(4,	126)=	1.24,	p=.30).	Despite	

the	significant	main	effects	 just	described,	the	only	significant	post-hoc	test	results	

were	between	B2	at	2%	contrast	and	B2	at	32%	contrast	(t(126)=	-4.11,	p<.01),	and	

between	 A1B2	 at	 2%	 contrast	 and	 B2	 at	 32%	 contrast(t(126)=	 -4.2,	 p<.01).	 This	

suggests	that,	in	general,	SNRs	for	component	B2	presented	alone	and	in	plaid	A1B2	

were	similar.	

Figure	5.4c	displays	harmonic	response	SNR	functions	at	15Hz	for	component	

B2.	 A	 significant	 main	 effect	 of	 Pattern	 (F(1,	 126)=	 15.91,p<.001)	 and	 Contrast	

(F(4,126)=	 11.18,	 p<.0001)	was	 found,	 as	well	 as	 a	 just-significant	 interaction	 (F(4,	

126)=	 2.44,	 p=.05).	 Despite	 this,	 post-hocs	 revealed	 only	 that	 B2	 presented	 alone	

increased	significantly	 in	contrast	between	steps	 in	contrast	(2%	less	than	8%,	16%	

and	32%	component	contrast	at	p<.01),	as	did	A1B2	(2%	less	than	32%	component	

contrast	 at	 p<.05).	 At	 8%	 component	 contrast,	 B2	 presented	 alone	 resulted	 in	 a	

significantly	larger	SNR	than	it	did	when	presented	in	plaid	A1B2,	indicative	of	some	

suppression.	

In	 summary,	 component-based	 fundamental	 and	 harmonic	 responses	

displayed	increasing	contrast	response	functions.	The	only	difference	in	suppression	

between	plaids	was	at	32%	component	contrast	for	A1	presented	in	plaids	A1A2	and	

A1B2;	the	fundamental	4.6Hz	response	SNR	in	A1B2	was	lower	than	in	A1A2.		

 

Response	to	plaids	

Only	responses	at	the	difference	intermodulation	frequency	were	substantially	above	

background	noise	(see	Figure	5.5	for	SNR	topographies,	and	Figure	5.6	for	the	analysed	

response	SNRs).	Topographies	and	responses	 for	 the	difference	harmonic	at	5.8Hz,	

the	sum	intermodulation	response	at	12.1Hz	and	its	harmonic	at	24.2Hz	can	be	seen	

in	Figures	5.7	to	5.12	in	Appendix	Two.		
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Figure	5.5.	SNR	topographies	at	2.9Hz	for	plaid	A1A2	(left	and	A1B2	(right).	Contrast	increases	
from	the	top	to	the	bottom	of	the	figure,	from	2%	Michelson	through	to	32%	Michelson	
component	contrast.	Colour	maps	were	scaled	so	that	if	the	topography’s	maximum	value	was	
less	than	2.5,	the	maximum	of	the	topography	was	set	to	2.5.	This	helped	avoid	noisy	
topographical	maps	as	SNR	approached	1.	
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Difference	Frequency.	At	2.9Hz,	an	 increasing	contrast	 response	 function	 that	was	

steepest	 between	 16	 and	 32%	 contrast	was	 observed	 for	 coherent	 plaid	A1A2.	 	 A	

substantial	response	at	2.9Hz	was	observed	for	coherent	plaid	A1A2	at	32%	contrast	

(t(14)=	 4.48,	 p<.05).	 No	 other	 condition	 resulted	 in	 an	 intermodulation	 response	

significantly	different	from	an	SNR	of	1.	

A	 significant	main	 effect	 of	 Pattern	 (F(4,336)=	 7.26,	 p<.0001)	 and	 Contrast	

(F(4,336)=5.81,	p<.001),	as	well	as	a	significant	interaction	between	them	(F(16,336)=	

3.27,	 p<.0001)	 was	 found	 .	 Paired-samples	 t-tests	 were	 conducted	 between	 plaid	

patterns	A1A2	and	A1B2	across	the	five	component	contrast	levels.	For	plaid	A1A2,	

responses	at	contrast	levels	2%,	4%,	8%	and	16%	were	non-significantly	different	from	

each	other,	but	were	all	significantly	smaller	than	responses	at	32%	contrast	(all	at	

p<.001).	On	the	other	hand,	there	was	no	significant	increase	across	contrast	for	non-

coherent	plaid	A1B2.	A	significant	difference	at	32%	contrast	between	plaids	A1A2	

and	A1B2	 (t(336)=4.88,	 p=.0001)	was	 found.	 The	 interaction	 between	 Pattern	 and	

Contrast	 is	 likely	 due	 to	 the	 SNRs	 for	 A1A2	 increasing	 with	 component	 contrast	
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Figure	5.5.	Contrast	response	functions	for	SNRs	at	the	difference	intermodulation	
frequency	(2.9Hz)	for	each	condition.	The	black	dashed	line	represents	an	SNR	of	1,	and	
error	bars	represent	95%	CIs.	
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(significant	 from	 8%	 contrast	 when	 not	 corrected	 for	 multiple	 comparisons)	 and	

A1B2’s	function	remaining	flat.		

To	summarise,	only	the	difference	intermodulation	response	displayed	robust	

responses.	 This	 was	 found	 for	 coherent	 plaid	 A1A2	 presented	 at	 32%	 component	

contrast,	and	this	was	larger	than	the	2.9Hz	response	to	plaid	A1B2.		

	

Discussion 
We	have	measured	neural	responses	to	sinusoidal	grating	patterns	presented	alone	

and	combined	as	coherent	and	non-coherent	plaids	at	a	range	of	component	contrast	

levels.	This	was	with	the	aim	of	measuring	the	contrast	response	functions	of	different	

nonlinear	combinations	of	neural	responses	to	the	grating	components.	To	do	this	we	

measured	 responses	 at	 intermodulation	 frequencies,	 which	 have	 previously	 been	

shown	to	indicate	a	nonlinearity	at	or	after	the	point	of	summation	(D.	Regan,	1983;	

D.	Regan	&	Heron,	1969;	M.	P.	Regan	&	Regan,	1988;	Spekreijse	&	Oosting,	1970b;	

Spekreijse	 &	 Reits,	 1982;	 Zemon	 &	 Ratliff,	 1984).	 The	 main	 finding	 was	 that	 for	

compound	stimuli	(plaids)	we	found	reliable	responses	at	2.9Hz	(ƒ2-ƒ1),	but	only	when	

the	combination	formed	a	coherent	plaid	and	its	components	were	presented	at	32%	

contrast.	This	is	essentially	a	conceptual	replication	of	the	previous	chapter,	with	the	

difference	 that	 the	 contrast	 in	 the	 previous	 chapter	 was	 higher	 (50%	 component	

contrast)	and	the	component	modulation	frequencies	lower	(2.3Hz	and	3.75Hz).	

As	discussed	in	the	previous	chapter,	this	intermodulation	response	indicates	

a	nonlinear	combination	of	signals;	it	does	not	tell	us	the	nature	of	that	nonlinearity.	

It	could	be	the	case	that	it	just	reflects	lateral	suppressive	effects	like	XOS	(T.	J.	Baker,	

Norcia,	&	Rowan	Candy,	2011;	Candy	et	al.,	2001).	The	frequency-tagging	technique	

we	have	used	allows	us	to	investigate	that	hypothesis	directly	by	examining	the	effect	

of	each	component	(e.g.	presented	at	7.5Hz)	on	the	response	to	the	other	(at	4.6Hz).	

Here,	we	observed	suppression	of	component	A1,	but	only	as	part	of	plaid	A1B2	at	

16%	and	32%	component	contrast.	Further,	this	suppression	only	differed	from	plaid	

A1A2	at	32%	component	contrast.		

As	 in	 the	 previous	 chapter,	 it	 is	 difficult	 to	 explain	 the	 intermodulation	

response	 (this	 time	 at	 2.9Hz)	 for	 plaid	 A1A2	 in	 terms	 of	 XOS,	 given	 that	 this	 was	
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directly	measured	only	for	A1B2.	XOS	and	the	2.9Hz	response	appear	to	be	oppositely	

tuned.	Instead,	a	plaid-selective	mechanism	combining	component-based	responses	

might	 be	 contributing	 to	 the	 larger	 intermodulation	 response.	 This	 is	 in	 line	 with	

previous	findings	of	perceptual	plaid	coherence,		compound	adaptation	and	the	pop-

out	 effect	 in	 visual	 search	 tasks	 being	 dependent	 on	 spatial	 frequency	 matching	

(Adelson	&	Movshon,	1982;	Hancock	et	al.,	2010;	Nam	et	al.,	2009).	

The	 difference	 intermodulation	 response	 appears	 to	 increase	 continuously	

across	component	contrast	until	16%-32%	where	the	function	slope	became	steeper.	

Tying	back	into	the	conjunction-detection	model,	these	findings	could	suggest	that	the	

response	threshold	of	the	mechanism	is	higher	than	most	of	the	contrast	range	that	

can	 be	 used	 on	 a	 stimulus	 like	 a	 plaid.	 The	 contrasts	 of	 a	 plaid’s	 components	 are	

interdependent	because	of	their	spatial	superposition.	This	seems	unlikely,	though,	

considering	 that	 the	 perception	 of	 plaid	 coherence	 doesn’t	 break	 until	 below	 4%	

contrast	(Meese	&	Freeman,	1995).	Based	on	my	own	observations,	 it	seems	more	

likely	 that	 responses	 at	 the	 intermodulation	 frequencies	 are	 intrinsically	 low	 in	

magnitude	 –	 certainly	 much	 lower	 than	 component-based	 responses	 –	 so	 get	

obscured	by	background	noise	for	mid	contrast	stimuli.	This	background	noise	could	

be	due	to	high	phase	variability	between	participants	that	does	not	get	cancelled	out	

by	the	incoherent	averaging	(i.e.	independent	of	phase)	across	participants	that	was	

used	here.		

To	 the	 best	 of	 my	 knowledge,	 only	 two	 other	 studies	 have	 measured	

intermodulation	responses	across	contrast,	and	both	used	similar	frequency-pairs	to	

the	present	study.	Brown,	Candy	and	Norcia	(1999)	and	Candy,	Skoczenski	and	Norcia	

(2001)	used,	respectively:	5Hz-7.5Hz;	3.3Hz-8.3Hz	and	5.5Hz-8.3Hz.	Surprisingly,	they	

found	 neither	 ƒ1+ƒ2	 nor	 ƒ2-ƒ1	 responses	 across	 contrast	 for	 orthogonally	

superimposed	test	and	mask	gratings,	but	did	find	robust	responses	at	ƒ2-ƒ1	and	2ƒ2-

2ƒ1	for	parallel	test-mask	grating	configurations.	A	later	study	also	found	low	(if	any)	

intermodulation	responses	for	orthogonal	test	and	mask	grating	stimuli	at	a	standing	

component	 contrast	 of	 40%	 (T.	 J.	 Baker,	 Norcia,	 &	 Rowan	 Candy,	 2011).	 	 Lateral	

suppression	 brought	 about	 by	 XOS	 is	 highly	 nonlinear,	 and	would	 be	 expected	 to	

produce	 intermodulation	 responses	as	observed	 in	 the	present	and	previous	 study	

(Cunningham,	Baker,	&	Peirce,	2017).		



	 85	

Three	key	differences	between	my	work	and	those	mentioned	above	are	that	

they	 used	 a	 square-wave	 profile	 for	 contrast	 modulation,	 the	 modulations	 were	

counterphase	(i.e.	between	1	and	-1)	and	they	used	contrast	sweeps	of	test	stimuli	to	

measure	 suppression	 across	 contrast.	 Particularly	 to	 the	 former	 difference,	 using	

sinusoidal	 contrast	 modulation	 is	 more	 specific	 than	 square-wave	 contrast	

modulation;	 it	only	 introduces	 those	 frequency	components	 to	 the	response	signal	

relating	 to	 the	 stimuli	 and	 their	 combination,	 whereas	 square-wave	 contrast	

modulation	 introduces	 responses	 at	 additional	 frequencies.	 These	 additional	

frequencies	could	have	overlapped	at	intermodulation	frequencies,	meaning	there	is	

a	risk	that	they	could	be	enhanced	or	attenuated	responses	at	those	frequencies.	

Here	 we	 found	 a	 difference	 in	 XOS	 between	 plaids	 A1A2	 and	 A1B2	 for	

component	A1.	Though	XOS	is	largely	un-tuned	for	spatial	frequency	(DeAngelis	et	al.,	

1994;	Petrov	et	al.,	2005),	recent	research	has	highlighted	that	the	tuning	of	XOS	can	

change	depending	on	the	interaction	between	the	spatial	and	temporal	frequency	of	

the	stimuli	being	presented	(Cass	et	al.,	2009;	Meese	&	Holmes,	2007).	Different	from	

the	present	study,	the	adaptation	studies	mentioned	above	used	stimuli	where	both	

components	(the	test	and	mask,	as	they	were	being	used)	were	presented	at	the	same	

temporal	 frequency.	 Brown,	 Candy	 and	 Norcia	 (1999)	 and	 Candy,	 Skoczenski	 and	

Norcia	(2001)	used	the	intermodulation	approach	and	found	that,	for	test	and	mask	

gratings	that	were	orthogonally	superimposed,	suppression	of	components	followed	

a	similarly	shaped	function	to	that	found	here.	Though	they	used	contrast	sweeps	to	

measure	contrast	response	functions,	this	would	not	be	expected	to	alter	the	shape	

of	the	response	functions	for	XOS,	just	the	magnitude.	

We	have	again	shown	a	nonlinear	response	to	a	compound	of	gratings	(plaid)	

that	does	not	appear	to	be	determined	purely	from	contrast	normalisation	between	

spatial	 frequency	 channels.	 This	 response	 became	 prominent	 at	 the	 highest	

component	 contrast	 level	 used	 (32%).	 The	 data	 support	 the	 idea	 of	 logical	 AND	

operations	being	used	by	mechanisms	for	detecting	conjunctions	of	visual	features. 
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Chapter	6: Measuring	intermodulation	responses	in	the	auditory	

domain	

Rationale 

In	the	previous	two	chapters	I	used	the	two-frequency	SSVEP	method	to	study	signal	

combinations	 in	 the	 human	 visual	 system.	 In	 both	 chapters	 I	 observed	

intermodulation	responses	that	appeared	to	be	tuned	to	compound	plaid	stimuli	that	

were	selective	for	plaid	coherence.	When	the	components	forming	a	plaid	matched	in	

spatial	frequency,	a	greater	intermodulation	response	was	observed	that	could	not	be	

fully	 explained	 by	 normalisation	 brought	 about	 by	 lateral	 inhibition.	 The	 main	

implications	of	this	are	two-fold.	First,	this	suggests	that	the	human	visual	system	is	

equipped	with	mechanisms	that	are	sensitive	to	certain	combinations	of	information,	

in	 this	 case	 the	 combination	 of	 grating	 components	 within	 a	 plaid.	 Second,	 these	

studies	demonstrate	 the	usefulness	of	 the	 two-frequency	method	 for	 investigating	

nonlinear	responses	in	the	human	brain.	

The	 brain	might	 employ	 nonlinear	 combinations	 like	 these	 beyond	 just	 the	

visual	 cortex.	 Some	 studies	 of	 multisensory	 integration	 have	 employed	 the	 two-

frequency	method	to	understand	how	multisensory	stimulus	combinations	 interact	

(e.g.	 Colon	 et	 al.,	 2014;	Nozaradan	 et	 al.,	 2015).	 For	 example,	Nozardan,	 Zerouali,	

Peretz	 and	 Mouraux	 (2015)	 examined	 audio-tactile	 interactions,	 and	 found	 that	

intermodulation	 responses	 were	 indicative	 of	 sensorimotor	 integration	 when	

participants	 tapped	 to	 a	 beat.	 	 The	 auditory	 system,	 like	 the	 visual	 system,	 is	

hierarchically	 organised	 (Wessinger,	 VanMeter,	 Tian,	 Pekar,	&	Rauschecker,	 2001).	

Neural	populations	 in	primary	auditory	 cortex	 (A1)	also	make	use	of	nonlinearities	

(Ahrens,	Linden,	&	Sahani,	2008;	David,	Mesgarani,	Fritz,	&	Shamma,	2009;	Sutter	&	

Loftus,	2003).	For	example,	A1	responses	increase	and	saturate	with	spectro-temporal	

auditory	contrast	(analogous	to	spatiotemporal	visual	contrast),	and	an	A1	neuron’s	

response	can	be	 reduced	by	noise	masking	 (Phillips,	1990)	–	both	of	which	can	be	

represented	 well	 by	 the	 normalisation	 equation	 (Carandini	 &	 Heeger,	 2012;	

Rabinowitz,	Willmore,	Schnupp,	&	King,	2011).	
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The	same	techniques	as	we	have	used	in	previous	chapters	are	all	able	to	be	

applied	in	the	same	way	to	study	auditory	cortex.	Previous	studies	have	used	EEG	to	

show	 responses	 to	 amplitude-modulated	 sounds	 in	 the	 same	 way	 that	 we	 used	

contrast-modulated	 visual	 stimuli. The	 combination	 of	 pure	 tones	 to	 form	 chords	

could	be	used	as	an	auditory	analogue	to	the	combination	of	sinusoidal	gratings	to	

form	plaids	in	the	visual	system.	Chords	can	be	consonant	or	dissonant;	the	former	

describing	a	combination	of	pure	tones	that	results	in	a	clean	or	coherent	sound,	while	

the	latter	results	in	a	combination	that	is	perceptually	jarring	or	non-coherent.	Several	

studies	have	used	EEG	to	understand	how	the	auditory	system	processes	consonance	

and	dissonance	(Bidelman	&	Grall,	2014;	Fishman	et	al.,	2001;	Kung	et	al.,	2014;	Park,	

Park,	Kim,	&	Park,	2010).	For	example,	Park	et	al.,	 (2010)	found	significantly	higher	

induced	 gamma-band	 activity	 when	 listening	 to	 consonant	 chords	 compared	 to	

listening	to	dissonant	chords.	 In	a	number	of	cases,	gamma-band	activity	has	been	

related	 to	 perceptual	 binding,	 for	 example	 to	 Kanizsa	 triangles	 (Tallon-Baudry,	

Bertrand,	 Delpuech,	 &	 Pernier,	 1996),	 though	 this	 is	 still	 contested	 (Palanca	 &	

DeAngelis,	 2005).	 Park	 et	 al	 suggested	 that	 the	 increase	 gamma-band	 activity	 for	

consonant	chords	is	indicative	of	perceptual	binding	between	the	notes	forming	the	

consonant	chord.	In	this	chapter,	we	wanted	to	implement	the	two-frequency	method	

to	determine	whether	we	find	any	evidence	for	nonlinear	signal	combinations	in	the	

auditory	ssVEP	responses,	and	whether	they	show	the	same	selectivity	for	coherent	

compounds	as	we	have	found	in	visual	cortices.	

	

Methods	

Participants.	Fifteen	participants	with	normal	 hearing	 and	normal	 or	 corrected-to-

normal	vision	gave	informed	consent	to	participate	in	the	study.	The	ethics	board	at	

the	 School	 of	 Psychology,	University	 of	Nottingham,	 granted	 ethical	 approval.	 The	

work	 was	 conducted	 in	 accordance	 with	 the	 2008	 version	 of	 the	 Declaration	 of	

Helsinki.			

	

Stimuli	and	Experimental	Procedure.	The	stimuli	were	comprised	of	six	 frequency-

modulated	pure	tones	–	notes	F	(349.23Hz)	A	(440Hz),	C	(523.25Hz),	E	(659.25Hz),	F#	
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(369.99Hz)	and	C#	(554.37Hz).	 	These	were	all	generated	at	a	sample	rate	of	44KHz	

(see	Figure	6.1	for	an	example).	They	were	combined,	as	a	first	step,	into	pairs	of	tones	

(FA,	CE,	F#C#).	These	were	combined	with	each	other	to	form	chords;	consonant	chord	

FACE	and	dissonant	chord	FF#AC#	(see	Figure	6.2).	On	each	trial	the	stimuli	were	played	

dichotically.	

	

When	seated	in	the	recording	booth,	participants	were	instructed	to	maintain	

their	attention	on	a	nature	documentary	that	was	playing	on	screen.	The	volume	for	

the	documentary	was	muted	and	subtitles	were	displayed.	A	brief	presentation	of	the	

experiment	was	provided	to	ensure	the	participants	understood	what	they	were	being	

asked	 to	do.	 Following	 this,	 the	documentary	began	playing	and	participants	were	

instructed	that	the	experiment	was	going	to	start.		

Figure	6.1.	Component	tone	FA	signal	before	amplitude	modulation	
at	21Hz	(top)	and	after	(bottom).	
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To	 generate	 intermodulation	 responses,	 the	 pure	 tone	 components	 were	

amplitude	modulated.	Component	tone	FA	was	amplitude	modulated	at	21Hz,	and	CE	

and	F#C#	were	amplitude	modulated	at	24Hz.	These	frequencies	were	chosen	on	the	

basis	that	they	allowed	the	response	frequencies	to	be	temporally	incommensurate;	

the	fundamental	frequencies	(21Hz,	24Hz),	their	harmonics	(2ƒ1:	42Hz,	2ƒ2:	48Hz)	and	

the	 intermodulation	terms	(ƒ2-ƒ1:	3Hz,	 ƒ1+ƒ2:	45Hz)	would	not	overlap.	Further,	we	

aimed	 to	 avoid	 overlap	 between	 line	 noise	 at	 50Hz	 and	 the	 sum	 intermodulation	

response	frequency	(ƒ1+ƒ2:	45Hz).	The	amplitude	was	modulated	between	0	and	75%	

of	the	computer’s	maximal	volume	(which	had	a	maximal	Michelson	contrast	of	0.99).		

A	trial	consisted	of	an	11	second	presentation	of	an	amplitude	modulating	tone	

or	 two	 simultaneously	modulating,	 superimposed	 tones,	 followed	by	 a	 7-9	 second	

inter-stimulus-interval.	Each	of	the	5	stimuli	was	presented	10	times	in	a	run,	with	3	

Figure	6.2.	Chord	FACE	(top)	and	FF#AC#	(bottom)	signals.	These	
represent	a	mixture	of	FA	and	CE	signals	(top)	and	FA	and	F#C#	signals	
(bottom).	
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runs	in	total.	Participants	were	given	short	breaks	between	runs.	Upon	completion,	

participants	were	thanked,	debriefed	and	given	the	opportunity	to	ask	any	questions.	

	

	

Analytical	Procedure.	The	data	were	band-pass	 filtered	between	0.1Hz	and	100Hz.	

The	data	were	then	epoched	according	to	stimulus	onset	and	the	first	second	of	data	

removed	to	exclude	onset	transients	from	the	analysis,	resulting	in	10-second	epoch	

for	 each	 trial.	 Trials	 were	 then	 time-averaged	 by	 condition	 for	 each	 participant,	

averaging	out	activity	that	is	not	time-locked	to	the	stimulus	presentation,	such	as	the	

alpha-wave	response.	Fast	Fourier	transforms	(FFTs)	were	then	conducted	on	these	

average	waveforms	 to	 bring	 the	 data	 into	 frequency	 space,	 resulting	 in	 amplitude	

responses	(μV)	at	discrete	frequencies	(for	a	10s	stimulus	the	FFT	has	a	resolution	of	

0.1Hz)	between	0.1	and	100Hz.		

The	amplitude	response	at	each	frequency	of	interest	at	each	electrode	site	

was	converted	into	a	measure	of	signal-to-noise	ratio	(SNR)	by	dividing	the	amplitude	

FA (21Hz ƒ1) CE (24Hz ƒ2)

F#C# (24Hz ƒ2)

Component Responses

Figure	6.3.	SNR	topographies	for	components	FA	(upper	left),	CE	(upper	right)	and	F#C#	
(bottom).		
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at	the	frequency	of	interest	by	the	average	amplitude	of	the	surrounding	12	frequency	

bins.	Based	on	group	 topographies	 (see	Figure	6.3),	 the	data	used	 in	 the	 following	

analyses	were	taken	from	a	cluster	of	electrode	sites	(Fz,	FFC1h,	FFC2h,	FC1,	FCz,	FC2,	

FCC1h	and	FCC2h).	

To	 determine	 whether	 SNRs	 were	 significantly	 above	 background	 noise	

(SNR=1),	 a	 series	 of	 one-sample	 t-tests	were	 conducted	 separately	 for	 each	 set	 of	

component	 SNRs	 (i.e.	 FA,	 FA(CE)	 and	 FA(F#C#);	 CE	 and	 (FA)CE);	 F#C#	 and	 FF#AC#),	

difference	intermodulation	SNRs	(at	ƒ2-ƒ1:	FA,	CE,	F#C#,	FACE	and	FF#AC#),	and	sum	

intermodulation	SNRs	(at	ƒ1+ƒ:	FA,	CE,	F#C#,	FACE	and	FF#AC#).	Each	series	of	t-tests	

were	corrected	using	the	ranked	Bonferroni-Holm	method	to	control	for	Type	1	errors	

(Holm,	1979).	

The	extent	to	which	pure	tone/chord	predicted	response	SNRs	was	examined	

using	linear	mixed-effects	modelling.	The	analytical	model	was	generated	using	the	

mixed	function	of	the	Afex	package	in	R	(Singmann	et	al.,	2016).	‘Stimulus’	(levels:	FA,	

CE,	F#C#,	FACE	and	FF#AC#)	was	the	only	predictor	with	random	slopes	as	a	function	of	

‘participant’	using	a	maximal	random	effects	structure	(as	recommended	by	Barr	et	

al.,	 2013).	 This	 model	 was	 applied	 to	 both	 component	 SNRs	 and	 intermodulation	

SNRs.	The	lsmeans	function	in	R	for	examining	pairwise	comparisons	from	linear	mixed	

effects	 model	 structures	 was	 used	 when	 a	 significant	 main	 effect	 of	 pattern	 was	

found,	 and	 comparisons	were	 corrected	using	 the	 Tukey	HSD	method	 for	multiple	

comparisons	(Russell,	2016).	

	

Results 

General	overview	
We	wanted	to	measure	fundamental	responses	to	the	tone	components,	both	alone	

and	 when	 forming	 part	 of	 a	 chord.	 We	 also	 wanted	 to	 measure	 intermodulation	

responses	 at	 the	 difference	 and	 sum	 of	 the	 fundamental	 frequencies	 used	 to	

modulate	the	amplitude	of	each	component	forming	a	chord.	Clear	component-based	

responses	at	ƒ1	(21Hz)	and	ƒ2	(24Hz)	were	observed	for	tones	presented	alone	as	well	

as	 when	 they	 were	 presented	 along	 with	 another	 tone	 component	 in	 the	 chord	

conditions.	None	of	the	chord	stimuli	resulted	in	robust	intermodulation	responses.	
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Response	to	tone	components	
As	 in	 the	 visual	 system,	 the	 two-frequency	 method	 meant	 that	 I	 could	 compare	

directly	the	response	to	each	frequency-tagged	tone	component	 in	 isolation	and	in	

the	presence	of	a	tone.	The	SNR	measures	of	these	responses	to	each	component	–	

calculated	 by	 dividing	 the	 amplitude	 at	 the	 frequency	 of	 interest	 by	 the	 average	

amplitude	of	the	surrounding	12	frequencies	(with	signal	bins	excluded)	–	can	be	seen	
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Figure	6.4.	Component	response	SNRs	for	a)	component	FA,	b)	component	CE,	and	
c)	component	F#C#.	In	a)	the	leftmost	bar	represents	SNR	when	FA	was	presented	
alone,	the	middle	when	part	of	consonant	chord	FACE,	and	the	rightmost	when	part	
of	dissonant	chord	FF#AC#.	In	b)	and	c)	the	left	bar	represents	the	SNR	when	that	
component	was	presented	alone,	and	the	right	when	presented	as	part	of	b)	
consonant	chord	FACE	and	c)	when	part	of	dissonant	chord	FF#AC#.	Error	bars	
represent	95%	CIs,	and	the	dashed	line	at	1	represents	a	response	equivalent	to	
background	noise.	
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in	Figure	6.4.	Substantial	suppression	was	observed	for	component	FA	presented	at	

21Hz	in	the	presence	of	both	CE	(24Hz)	and	F#C#	(24Hz).	This	was	not	the	case	for	both	

CE	and	F#C#.		

Except	 for	 the	 21Hz	 response	 to	 tone	 FA	 in	 chord	 FF#AC#,	 all	 fundamental	

responses	were	significantly	above	background	noise	(at	either	p<.05	or	p<.01).	For	

the	 21Hz	 response	 to	 tone	 FA,	 a	 significant	 main	 effect	 of	 Stimulus	 was	 found	

(F2,30=13.79,	 p<.0001).	 Post-hoc	 pairwise	 comparisons	 showed	 that	 tone	 FA	 alone	

resulted	 in	 significantly	 larger	 SNRs	 than	when	presented	within	 chords	 FACE	 (t30=	

3.38,	 p<.01)	 and	 FF#AC#	 (t30=	 5.17,	 p<.0001).	 The	 21Hz	 response	 SNR	 to	 FA	when	

presented	in	chord	FACE	did	not	differ	significantly	from	when	presented	in	FF#AC#.	

There	was	no	observable	suppression	for	tones	CE	and	F#C#	when	combined	with	tone	

FA	(CE:	F1,15=	.03,	p>.05;	F#C#:	F1,15=	.32,	p>.05).		

	

In	summary,	response	suppression	was	observed	only	for	component	FA	when	

combined	 with	 the	 other	 two	 tone	 components.	 This	 suppression	 did	 not	 differ	

between	 the	 coherent	 and	 non-coherent	 tone	 combinations,	 indicating	 that	 the	

suppression	was	not	frequency-tuned.	
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Figure	6.5.	Response	SNRs	at	the	difference	intermodulation	term,	3Hz.	The	black	dashed	line	
represents	background	noise	at	an	SNR	of	1.	Error	bars	represent	95%	CIs. 
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Response	to	chords	
Intermodulation	frequencies	were	used	to	assess	responses	to	the	conjunction	of	tone	

components.	 Responses	 at	 the	 difference	 intermodulation	 frequency	 (ƒ2-ƒ1:	 3Hz,	

Figure	6.5)	and	sum	intermodulation	frequency	(ƒ1+ƒ2:	45Hz,	Figure	6.6)	were	not	

prominent	compared	to	background	noise	for	any	stimulus.	Likewise,	no	significant	

main	effects	were	found	for	both	(3Hz:	F4,60=	1.05,	p>.05;	45Hz:	F4,60=	1.52,	p>.05).	

These	results	suggest	that	very	little,	if	any	intermodulation	response	occurred	to	the	

pairs	of	amplitude	modulated	tones.	

	

	

Discussion 

I	have	measured	neural	responses	to	amplitude-modulated	tones	presented	as	simple	

2-tone	combinations	alone	and	then	combined	to	form	a	coherent	(FACE)	and	non-

coherent	(FF#AC#)	chord.	This	was	done	to	assess	the	nonlinear	combination	of	neural	

responses	to	the	tones.	EEG	responses	were	measured	at	intermodulation	frequencies	

to	 specifically	 investigate	nonlinear	 combinations.	Contrary	 to	 the	previous	 studies	

described	 in	 this	 thesis	 that	 examined	 nonlinearities	 in	 the	 visual	 system,	 robust	

intermodulation	responses	were	not	observed	here	in	the	auditory	domain.	However,	
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Figure	6.6.	Response	SNRs	at	the	sum	intermodulation	term,	45Hz.	The	black	dashed	line	represents	
background	noise	at	an	SNR	of	1.	Error	bars	represent	95%	CIs.	
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substantial	component	suppression	was	observed	for	tone	FA,	and	this	did	not	depend	

on	the	chord	coherence.	

The	 auditory	 masking	 is	 not	 a	 surprising	 finding;	 it	 has	 been	 previously	

established	that	auditory	response	masking	occurs	(Abbas	&	Sachs,	1976;	de	la	Rocha,	

Marchetti,	Schiff,	&	Reyes,	2008;	Phillips,	1990;	Sachs,	S	Kiang,	Sac,	&	S,	1968),	and	

can	 be	 described	 well	 by	 the	 normalisation	 equation	 (Carandini	 &	 Heeger,	 2012;	

Rabinowitz	et	al.,	2011).	Substantial	suppression	was	observed	only	for	component	

FA,	and	this	did	not	differ	in	magnitude	as	a	function	of	compound	coherence.	Given	

the	 observed	 response	 suppression,	 it	 was	 surprising	 to	 find	 no	 intermodulation	

response.	 Intermodulation	 responses	 are	 generated	 at	 the	 point	 of	 or	 just	 after	 a	

nonlinear	signal	combination	has	taken	place	(Spekreijse	&	Oosting,	1970a;	Zemon	&	

Ratliff,	 1984),	 such	 as	 lateral	 suppression	 between	 neural	 populations	 tuned	 to	

different	frequencies	(Baitch	&	Levi,	1988;	T.	J.	Baker,	Norcia,	&	Candy,	2011;	Candy	

et	al.,	2001;	Suter	et	al.,	1996;	Tsai	et	al.,	2012).		

Intermodulation	responses	may	simply	have	a	lower	signal-to-noise	ratio	in	the	

auditory	 system	 than	 in	 the	 visual	 system,	 and	 mass-measurements	 of	 neural	

responses	 through	 EEG	might	 not	 be	 sensitive	 enough	 to	 capture	 them.	We	 have	

consistently	observed	low	signal-to-noise	ratios	for	intermodulation	responses	in	the	

visual	 system,	 certainly	 smaller	 than	 component-based	 responses	 to	 the	 gratings	

forming	plaids.	This	is	also	a	common	observation	in	the	literature	(e.g.	Appelbaum	et	

al.,	2008b;	Boremanse	et	al.,	2013;	Boremanse,	Norcia,	&	Rossion,	2014;	Sutoyo	&	

Srinivasan,	2009).		

Alternatively,	the	auditory	system	might	also	not	express	nonlinearities	in	the	

same	way	 as	 the	 visual	 system	does.	 There	were	 no	 noticeable	 component-based	

harmonic	responses	in	this	study,	but	we	observed	large	harmonic	responses	in	the	

visual	system	in	the	previous	chapters.	We	wondered	whether	the	sounds	were	simply	

not	 loud	enough,	 such	 that	 the	 summation	was	occurring	 in	 the	 linear	part	of	 the	

response	curve	(moderate	volumes	had	been	used	in	the	data	collected	here).	To	test	

this,	we	re-ran	the	study	at	100%	volume	but,	again,	no	intermodulation	responses	

nor	harmonic	responses	were	observed.		

A	potential	confound	of	using	amplitude-modulating	tones	to	study	coherent	

chords	 is	 that	 the	amplitude	modulation	process	actually	adds	power	at	additional	
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frequencies.	 For	 instance,	 by	 taking	 an	 A	 tone	 (440Hz)	 and	modulating	 it	 at	 24Hz	

results	in	a	spectrum	that	includes	power,	not	only	at	440Hz,	but	also	416	and	464Hz.	

As	a	result	the	amplitude-modulated	chords	did	not	sound	as	clearly	coherent,	or	as	

discordant,	 as	was	 intended.	 So,	 though	 plaid	 coherence	 appears	 to	 persist	 in	 the	

visual	system,	despite	the	temporal	modulation	that	is	necessary	to	make	this	method	

work,	the	same	might	not	be	true	of	chord	coherence	in	the	auditory	system.	

We	attempted	to	delineate	responses	to	component	tones	 from	compound	

responses	at	intermodulation	frequencies	to	chord	stimuli.	In	this	instance,	we	have	

found	that	the	method	used	in	the	two	previous	chapters	does	not	translate	directly,	

and	more	work	is	needed	to	refine	the	stimuli	and	experimental	procedure	used	to	

examine	nonlinear	combinations	in	the	auditory	cortex	in	the	same	way	as	in	the	visual	

cortex.	
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Chapter	7: General	Discussion	
This	thesis	has	examined	nonlinear	signal	summation	using	a	combination	of	EEG	and	

computational	 modelling.	 Nonlinearities	 are	 essential	 to	 many	 perceptual	

phenomena,	but	remain	poorly	understood	beyond	the	earliest	levels	of	the	sensory	

pathways.	

Many	 nonlinear	 physiological	 phenomena,	 such	 as	 XOS,	 can	 be	 readily	

described	by	models	of	normalisation	for	neuronal	gain	control	in	V1.	However,	there	

are	several	nonlinearities	that	normalisation	cannot	fully	explain.	For	example,	super	

saturation	–	which	can	occur	in	around	17%	of	V1	and	25%	of	V2	neurons	in	macaque	

(Peirce,	2007b)	–	would	be	considered	metabolically	wasteful	within	a	framework	of	

normalisation:	 an	 over-exertion	 of	 the	 normalisation	 pool	 upon	 the	 excitatory	

response	of	a	neuron.	It	seems	unlikely	that	this	non-monotonic	nonlinearity	does	not	

serve	a	purpose.	Considering	this,	gain	control	may	not	be	the	only	function	served	by	

nonlinearities	in	the	visual	system	(and	beyond).	

Peirce	 (2007b,	2011,	2013)	proposed	that	nonlinearities	 in	V1	could	also	be	

used	by	neurons	in	mid-level	vision	to	detect	signal	conjunctions	for	combinations	of	

stimuli.	 This	 kind	 of	 signal	 summation	 would	 make	 possible	 neurons	 with	 more	

complex	receptive	field	preferences	than	are	commonly	observed	in	V1.	For	example,	

neurons	that	are	sensitive	to	multiple	orientations	and	a	narrow	bandwidth	of	spatial	

frequencies	would	be	useful	for	detecting	patterns	coherent	plaids.		

However,	at	any	one	point	in	time,	several	different	nonlinearities	can	occur	in	

response	to	a	stimulus.	Being	able	to	distinguish	one	from	the	other	is	more	difficult	

than	it	might	at	first	seem.	The	experiments	described	throughout	this	thesis	aimed	

to	disentangle	nonlinearities,	identify	those	that	were	selective	for	specific	stimulus	

combinations	and	characterise	them.		

 

Summary of findings 

In	Chapter	3	we	used	transient	EEG	to	measure	the	earliest	component	–	C1	–	of	VEPs	

to	 brief	 presentations	 of	 gratings	 and	 their	 combinations	 into	 coherent	 and	 non-

coherent	plaids.	By	comparing	the	C1	response	to	gratings	and	plaids,	we	aimed	to	

measure	 the	 degree	 of	 nonlinear	 summation	 taking	 place	 for	 coherent	 and	 non-
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coherent	 grating	 combinations.	 The	 outcome	 was	 inconclusive;	 there	 was	 limited	

evidence	 to	 suggest	 the	 involvement	 of	 extra	 nonlinearities	 in	 the	 processing	 of	

coherent	plaids	that	were	not	involved	in	processing	non-coherent	plaids.	This	might	

be	an	inherent	problem	with	the	transient	EEG	approach.	Although	it	produces	a	rich	

time	course	of	data	following	the	presentation	of	a	stimulus,	the	response	is	the	sum	

of	many	nonlinearities.		

To	overcome	this,	we	took	an	alternative	approach	in	Chapter	4	and	used	the	

two-frequency	method	of	steady-state	EEG.	This	allows	you	to	tag	each	of	the	grating	

components	 forming	 a	 plaid,	 as	 well	 as	 directly	 measure	 nonlinearities	 at	

intermodulation	frequencies.	We	found	a	plaid-selective	 intermodulation	response,	

which	was	larger	for	coherent	plaids	than	it	was	for	non-coherent	plaids.	In	support	

of	this	representing	an	additional	nonlinearity	beyond	normalisation,	the	degree	of	

component	suppression	did	not	differ	between	coherent	and	non-coherent	plaids	for	

any	of	the	grating	components	used.		

We	generated	a	simple	two-layered	computational	model	of	signal	summation	

examine	the	complexity	of	responses	generated	in	to	combinations	of	gratings.	The	

channels	were	not	made	selective	to	spatial	frequency	or	orientation,	but	the	model	

was	 structured	 to	 operate	 like	 a	 logical	 AND	 gate.	 It	 appears	 that	 this	 kind	 of	

mechanism	can	represent	well	the	responses	we	observed	using	EEG.		

It	is	not	clear	how	a	mechanism	that	makes	use	of	saturating	nonlinearities	to	

perform	selective	signal	summation	would	behave	across	contrast.	At	lower	contrast	

levels,	before	many	neurons	reach	the	rising	slope	of	their	dynamic	range,	it	might	be	

that	 the	 mechanism	 fails	 altogether.	 Using	 a	 similar	 paradigm	 to	 Chapter	 4,	 we	

measured	intermodulation	responses	across	a	wide	range	of	contrast	levels	in	Chapter	

5.	We	again	found	a	selective	intermodulation	response	that	was	larger	for	coherent	

plaids.	However,	this	difference	only	occurred	at	the	highest	component	contrast	level	

that	we	used	–	32%.	

Having	found	a	nonlinearity	in	the	visual	system	that	appeared	to	be	selective	

for	 particular	 combinations	 of	 grating	 stimuli,	 we	 wanted	 to	 investigate	 whether	

similar	nonlinearities	are	put	to	use	in	other	brain	regions.	In	Chapter	6	we	generated	

auditory	stimuli	–	three	pure	tones	–	that	were	combined	to	form	a	consonant	and	a	

dissonant	 chord.	 Substantial	 component	 suppression	was	 observed	 for	 one	 of	 the	
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components.	However,	no	intermodulation	responses	or	component-based	harmonic	

responses	were	observed.				

 

Implications 

The	 two-frequency	 method	 is	 extremely	 useful	 for	 disentangling	 different	

nonlinearities	in	the	visual	system.	As	discussed	in	Chapter	2,	methods	like	transient	

EEG	 recording,	 fMRI	 and	 psychophysics	 measure	 the	 sum	 of	 many	 nonlinearities	

across	many	hundreds	of	 thousands	of	neurons.	This	makes	 it	difficult	 to	attribute	

those	 response	 measures	 to	 specific	 processes,	 especially	 when	 additional	

nonlinearities	might	represent	a	very	small	proportion	of	the	summed	response	(i.e.	

in	 the	 case	 where	 only	 small	 populations	 of	 neurons	 are	 performing	 additional	

selective	signal	summations).	Here,	the	two-frequency	method	allowed	us	to	measure	

responses	to	each	of	the	components	in	compound	plaids,	giving	us	a	direct	measure	

of	how	the	presence	of	one	affected	the	response	to	the	other.	The	technique	also	

enabled	us	 to	measure	 intermodulation	 responses,	and	we	were	 therefore	able	 to	

distinguish	XOS	from	any	additional	nonlinearities	that	might	be	taking	place.	Taking	

this	a	step	further,	Sutoyo	and	Srinivasan	(2009)	flickered	four	separate	components	

simultaneously	to	analyse	nonlinearities	to	the	various	combinations	that	took	place	

monocularly	and	interocularly.	

Certainly,	a	major	role	that	nonlinearities	in	the	early	visual	system	play	is	to	

adjust	the	gain	of	neuronal	responses,	but	as	suggested	by	the	results	in	Chapters	4	

and	5	that	may	not	be	their	only	purpose.	Twice	we	showed	a	nonlinearity	that	was	

larger	 when	 the	 grating	 components	 forming	 a	 plaid	 were	 matched	 in	 spatial	

frequency	 (coherent)	 than	 when	 they	 were	 not	 (non-coherent).	 The	 degree	 of	

component	suppression	was	similar	for	all	components	in	Chapter	4,	irrespective	of	

whether	they	formed	a	coherent	or	non-coherent	plaid.	Therefore,	XOS	alone	could	

not	readily	explain	the	larger	intermodulation	response	for	coherent	plaids.	In	Chapter	

5,	 there	was	more	 component	 suppression	observed	 for	 a	 component	 in	 the	non-

coherent	plaid	condition,	 rather	 than	 in	 the	coherent	plaid	condition.	Again,	 this	 is	

difficult	to	interpret	within	a	framework	of	XOS	alone.	However,	it	could	be	explained	

by	an	additional	nonlinearity	involved	in	summing	responses	to	the	plaid	components,	
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in	line	with	the	model	output	in	Chapter	4.	Since	in	both	cases	the	results	could	not	

be	 explained	 by	 differences	 in	 component	 suppression,	 the	 combined	 results	 of	

Chapters	4	and	5	 suggest	 that	nonlinear	 summation	at	 least	mostly	 contributes	 to	

intermodulation	 responses	 and	 contributes	 very	 little	 to	 component	 suppression.	

Further,	Chapter	5	suggests	that	the	mechanism	performing	nonlinear	summation	of	

plaid	components	does	not	operate	at	lower	component	contrast	levels.	This	is	in-line	

with	 the	concept	of	 logical	AND	gates	making	use	of	 saturating	nonlinearities.	The	

input	threshold	to	the	summing	mechanism	would	need	to	be	higher	than	that	which	

any	one	component	can	produce	on	its	own.	

Based	on	the	results	 in	Chapter	6,	this	does	not	appear	to	take	place	 in	the	

auditory	 system.	 Our	 results	 would	 suggest	 that	 auditory	 system	 nonlinearities	

behave	differently	from	those	in	the	visual	system.	For	example,	we	observed	clear	

component	suppression	for	component	FA	when	combined	with	either	of	the	other	

pure	tone	components,	but	saw	no	intermodulation	response	(or	even	component-

based	harmonic	responses).	It	seems	more	likely,	however,	that	the	stimuli	that	we	

generated	 confounded	 the	 measurements	 made.	 By	 amplitude-modulating	

frequency-modulated	signals	(i.e.	the	tones),	new	frequencies	are	introduced	to	the	

signal	that	can	alter	the	sound	of	the	tone.	So	while	the	percept	of	the	coherent	plaid	

persists	when	you	contrast	modulate	its	components,	the	same	is	not	necessarily	true	

for	amplitude	modulating	the	components	of	a	consonant	chord.	

 

Relationship to the previous literature 

XOS	complexity	

We	observed	two	different	patterns	of	component	suppression	in	Chapters	4	and	5.	

The	 components	 that	 were	 contrast	 modulated	 at	 2.3Hz	 in	 Chapter	 4	 displayed	

suppression,	while	those	modulated	at	3.75Hz	did	not.	This	suggests	that,	irrespective	

of	 spatial	 frequency,	 higher	 temporal	 frequency	 components	 exhibit	 stronger	

inhibition	on	responses	to	lower	temporal	frequency	components.	Again,	in	Chapter	

5	where	 the	stimulus	components	were	modulated	at	4.6Hz	and	7.5Hz,	 the	higher	

frequency	(7.5Hz)	components	showed	no	suppression.	However,	no	suppression	was	

observed	 for	 component	 A1	 when	 combined	 with	 component	 A2,	 but	 substantial	
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suppression	was	observed	when	combined	with	B2.	Contrary	to	Chapter	4,	this	would	

suggest	 that	when	maskers	 are	 higher	 in	 spatiotemporal	 frequency	 relative	 to	 the	

other	stimulus	component,	XOS	becomes	spatial	frequency	tuned.	

DeAngelis,	 Freeman	 and	 Ohzawa	 (1994)	 and	 Petrov,	 Carandini	 and	McKee	

(2005)	found	that	XOS	was	broadly	tuned	for	spatial	frequency	(up	to	a	factor	of	~4	

difference	 between	 target	 and	 mask	 SF:	 Petrov	 et	 al.,	 2005),	 indicating	 that	 the	

mechanism	 involved	 receives	 spatial	 frequency-related	 inhibition	 from	 a	 wide	

broadly-tuned	pool	of	cortical	neurons.	However,	several	studies	(Cass	et	al.,	2009;	

Meese	&	Holmes,	2007,	2010;	Snowden,	1992)	have	 found	 that	XOM	occurs	more	

strongly	when	 superimposed	 grating	 components	 are	 of	 a	 lower	 spatial	 frequency	

(<2cpd:	Meese	&	Holmes,	2007)	and	presented	at	a	higher	temporal	frequency	(>4Hz:	

Meese	&	Holmes,	2007).	This	might	reflect	different	routes	to	suppression	in	the	visual	

system	(e.g.	D.	H.	Baker	et	al.,	2007;	Cass	et	al.,	2009;	Meese	&	Holmes,	2007,	2010;	

Petrov	et	al.,	2005;	Viswanathan	et	al.,	2011).	Before	full	binocular	summation	takes	

place	in	cortex,	there	is	evidence	of	a	subcortical	component	of	XOS	broadly	tuned	for	

orientation	that	operates	primarily	at	lower	spatial	frequencies	and	higher	temporal	

frequencies.	 This	 propagates	 to	 cortex	where	 a	 second	 component	with	 the	 same	

sharp	tuning	as	neuronal	excitation	strengthens	the	overall	suppressive	effect.		

This	is	almost	in	line	with	the	pattern	of	suppression	observed	for	components	

A1	and	B1	in	Chapter	4,	which	had	spatial	frequencies	of	1cpd	and	3cpd.	Our	results	

would	 suggest	 that	what	mattered	 for	 suppression	 in	Chapter	4	was	 the	 temporal	

frequency	 of	 the	 component	 acting	 as	 the	 masker.	 The	 suppression	 observed	 in	

Chapter	 5	 might	 reflect	 a	 complex	 interaction	 between	 the	 spatial	 and	 temporal	

frequency	tuning	of	XOS.	However,	it	is	difficult	to	interpret	the	effect	that	temporal	

frequency	played	in	our	results	relative	to	the	findings	of	Meese	and	Holmes	(2007)	

and	Cass	et	al.,	(2009)	because	they	presented	both	components	at	the	same	temporal	

frequency.	Further,	our	stimuli	were	presented	binocularly	and	foveally,	whereas	they	

had	multiple	 viewing	 conditions	 and	Cass	 et	 al.,	 (2009)	 so	 understanding	 at	which	

point	 different	 forms	 of	 suppression	 impacted	 the	 responses	 that	 we	 observed	 is	

difficult.	

The	 two-frequency	 EEG	 method	 would	 be	 well-suited	 to	 investigating	 this	

further.	Using	a	wide	array	of	conditions	across	temporal	and	spatial	frequency,	and	
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monocular,	dichoptic	and	binocular	viewing	conditions	in	a	style	similar	to	Sutoyo	and	

Srinivasan	(2009),	one	could	carry	out	a	thorough	investigation	of	different	routes	to	

suppression	(D.	H.	Baker	et	al.,	2007;	Priebe	&	Ferster,	2006)	and	their	dependence	

on	orientation,	spatial	frequency	and	temporal	frequency. 

	

Intermodulation	responses	

Our	 results	 from	 Chapters	 4	 and	 5	 are	 in	 general	 agreement	 with	 most	 studies	

measuring	 intermodulation	 responses	 to	 compound	 stimulus	 configurations;	 they	

found	 larger	 intermodulation	 responses	 for	 both	 spatially	 coincidental	 and	 non-

coincidental	‘compound’	conditions	than	‘component’	conditions	(Aissani	et	al.,	2011;	

Alp	et	al.,	2016;	Boremanse	et	al.,	2013,	2014;	Gundlach	&	Müller,	2013;	Hou,	Pettet,	

Sampath,	 Candy,	 &	 Norcia,	 2003;	 Sutoyo	 &	 Srinivasan,	 2009).	 Alp	 et	 al.,	 (2016)	

examined	 the	 perception	 of	 illusory	 surfaces	 using	 Kanizsa	 stimuli	 –	 a	 spatially	

separated	stimulus	configuration	(i.e.	the	components	are	in	different	regions	of	the	

visual	scene	–	and	found	larger	intermodulation	responses	at	ƒ1+ƒ1	and	2ƒ1+ƒ2	when	

the	 four	 Kanizsa	 components	 formed	 an	 illusory	 square.	 Similarly,	 Gundlach	 and	

Müller	(2013)	found	larger	intermodulation	responses	at	ƒ1+ƒ2	when	Kanizsa	stimuli	

formed	an	illusory	bar.	Aissani	et	al.,	(2011)	found	that	when	moving	bars	arranged	in	

a	square	shape	were	manipulated	to	appear	‘bounded’	(i.e.	to	form	the	percept	of	a	

single	 object),	 larger	 intermodulation	 responses	 occurred	 at	 2ƒ1+2ƒ2.	 Boremanse,	

Norcia	and	Rossion	(2013,	2014)	found	that	responses	at	different	 intermodulation	

frequencies	 like	ƒ2-ƒ1	and	2ƒ2-2ƒ1	were	 larger	when	face-halves	were	vertically	and	

horizontally	 aligned	 such	 that	 they	 formed	 a	 whole	 face,	 and	 when	 both	 halves	

belonged	 to	 the	 same	 person.	 It	 would	 be	 interesting	 to	 use	 the	 intermodulation	

approach	 to	 examine	 surround	 suppression	using	 and	 add	 to	 Petrov	 et	 al’s	 (2005)	

contribution	to	our	understanding	of	the	functionality	of	surround	suppression.	

Combined,	 this	 provides	 support	 for	 the	 use	 of	 two-frequency	 method	 to	

measure	responses	to	compound	stimuli,	and	for	the	 idea	that	the	visual	system	is	

equipped	 with	 mechanisms	 that	 are	 tuned	 to	 selectively	 encode	 patterns	 like	

coherent	plaids	(Adelson	&	Movshon,	1982;	Hancock	et	al.,	2010;	Nam	et	al.,	2009).	A	

mechanism	 selective	 for	 coherent	plaids	 in	 combinations	with	mechanisms	of	 XOS	
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appears	to	explain	better	the	nonlinear	intermodulation	responses	we	have	measured	

than	XOS	alone.	 In	Chapter	4	we	 found	 that	 the	addition	of	 ‘conjunction	detector’	

channels	beyond	contrast	gain	operations	resulted	in	model	output	more	like	the	EEG	

data.	Additionally,	in	Chapter	5	we	found	that	responses	to	the	coherent	compound	

plaid	at	ƒ2-ƒ1	largely	followed	what	would	be	expected	of	a	mechanism	making	use	of	

saturating	 nonlinearities	 to	 selectively	 detect	 signal	 conjunctions.	 A	 logical	 AND	

operation	performing	nonlinear	summation	in	combination	with	XOS	cannot	be	ruled	

out	as	a	candidate	mechanism	for	driving	plaid-selective	responses	at	intermodulation	

frequencies.	Using	a	model	 that	operated	 like	a	 logical	AND	gate	 in	Chapter	4,	we	

captured	 differences	 in	 amplitude	 between	 difference	 and	 sum	 intermodulation	

frequencies	 that	 were	 also	 observed	 in	 the	 measured	 EEG	 data	 and	 are	 widely	

observed	 in	 the	 literature.	 A	 simple	 nonlinear	 combination,	 such	 as	 a	 squaring	

nonlinearity	 on	 the	 linear	 sum	 of	 V1	 signals,	 produces	 equal	 amplitude	 at	 the	

difference	and	sum	frequencies.		

Another	 way	 in	 which	 signals	 might	 be	 nonlinearly	 combined	 is	 by	

multiplication	of	output	signals	 (Gheorghiu	&	Kingdom,	2009).	There	 is	evidence	of	

multiplicative	 combinations	of	 signals	 in	 the	 fly	 (Gabbiani,	Krapp,	Koch,	&	Laurent,	

2002)	and	rabbit	(Taylor,	He,	Levick,	&	Vaney,	2000),	but	not	in	primate.	It	would	seem	

easier	to	make	use	of	saturating	nonlinearities	that	already	exist	in	the	visual	system	

to	perform	nonlinear	summation	as	opposed	to	multiplication.	Pierce	(2011)	points	

out	 that	 though	 multiplication	 and	 nonlinear	 summation	 seem	 computationally	

different,	they	in	effect	lead	to	the	same	neuronal	decision	to	fire	(or	not).	Further,	

though	we	did	not	observe	clear	plaid-selective	responses,	the	results	from	Chapter	3	

did	not	show	a	large	increase	in	response	to	coherent	plaids	that	might	be	expected	

from	a	mechanism	performing	multiplication.	 Instead	we	saw	responses	 that	were	

slightly	less-than-linear	for	coherent	plaids,	and	responses	that	resembled	the	average	

response	to	both	components	for	the	non-coherent	plaid.	

It	is	intriguing	that	the	two-frequency	studies	referenced	above	have	observed	

intermodulation	responses	at	either	the	difference	or	sum	intermodulation	terms	for	

a	 particular	 type	 of	 stimulus.	 One	 interpretation	 for	 differences	 between	 the	

intermodulation	terms	suggested	by	Boremanse	et	al.	(2013)	is	that	responses	at	both	

frequencies	 reflect	 parallel	 nonlinearities,	 but	 the	 sum	 intermodulation	 response	
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output	may	 be	 a	 temporally	 band-	 or	 high-pass	 nonlinearity	 and	 signal	 early	 local	

spatial	interactions.	On	the	other	hand,	the	difference	intermodulation	response	may	

be	 generated	 by	 a	 temporally	 low-pass	 nonlinearity	 and	 generated	 by	 signal	

integration	 to	 higher-level	 (global)	 stimuli,	 such	 as	 their	 face-part	 stimuli,	 which	

require	longer	to	process	(Alonso-Prieto	et	al.,	2013).	In	Chapter	4	we	found	that	the	

application	of	a	bandpass	temporal	filter	at	Layer	1	and	a	higher	frequency	filter	at	

Layer	2	of	our	model	resulted	 in	better	model	output	than	by	applying	a	bandpass	

filter	 at	 both	 layers.	 Rapid	 local	 combinations	 would	 certainly	 fit	 in	 with	 our	 EEG	

results	 for	 Chapter	 4	 as	we	 used	 simple	 sinusoidal	 gratings	 that	 presumably	were	

being	combined	across	many	receptive	fields	to	encode	another	pattern	(the	plaid).	

However,	in	Chapter	5	when	the	temporal	frequencies	used	were	doubled	to	4.6Hz	

and	7.5Hz,	our	main	finding	was	larger	responses	to	coherent	plaids	at	the	difference	

intermodulation	term	ƒ2-ƒ1.		

Alp	 et	 al.,	 (2016)	 suggested	 that	 the	 temporal	 resonance	 properties	 of	

different	neural	mechanisms	may	influence	the	varied	response	at	the	difference	and	

sum	intermodulation	frequencies.	These	resonances	may	depend	on	specific	synaptic	

connections	 to	 and	 from	 the	 mechanisms,	 feedback	 connectivity	 and	 the	 relative	

complexity	 of	 the	 receptive	 field	 within	 the	 visual	 hierarchy	 (e.g.	 sensitive	 to	

compound	plaids	or	sensitive	to	 faces).	The	effects	of	such	differences	 in	 temporal	

integration	have	not	been	applied	quantitatively	 in	a	computational	model	 (e.g.	 to	

explain	 differential	 responses	 at	 sum-	 and	 difference-intermodulation	 terms).	 In	

Chapter	 4	 we	 used	 a	 simple	 approach	 to	 model	 the	 temporal	 properties	 of	

mechanisms	 and	 found	 that	 using	 different	 neural	 impulse	 response	 functions	

(temporal	 filters)	 at	 early	 and	 late	 layers	was	 sufficient	 to	explain	 a	wide	 range	of	

features	 in	 the	 data.	 It	 appeared	 that	 responses	 at	 6.05Hz	 (ƒ1+ƒ2)	 in	 Chapter	 4	

primarily	 represented	 XOS	 mechanisms,	 while	 responses	 at	 12.1Hz	 (2ƒ1+2ƒ2)	

reflected	plaid-selective	mechanisms.	However,	in	Chapter	5	using	plaid	stimuli	again	

we	observed	robust	responses	only	at	the	difference	intermodulation	term	ƒ2-ƒ1.		

It	is	therefore	difficult	to	reconcile	what	might	be	influencing	the	prominence	

of	responses	at	either	the	difference	or	the	sum	terms.	What	is	an	exciting	prospect	is	

that	the	many	nonlinearities	that	appear	when	you	use	the	two-frequency	method	

might	not	simply	 represent	phenomenological	noise,	but	meaningful	 responses.	By	
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carrying	out	an	 in-depth	study	 into	how	the	frequency	range	(e.g.	using	a	range	of	

component	 frequencies	 between	 1Hz	 and	 8Hz)	 and	 frequency	 distance	 (i.e.	 the	

distance	between	ƒ1	and	ƒ2	in	Hz)	affect	responses	to	compound	stimuli	like	plaids,	

one	 might	 come	 closer	 to	 understanding	 the	 complex	 temporal	 dependencies	

involved	 in	 generating	 these	 responses.	 If	 what	 Boremanse	 et	 al.,	 (2013,	 2014)	

suggested	 is	 accurate,	 then	 the	 resulting	 Fourier	 spectrums	 might	 be	 different	

depending	on	the	complexity	of	the	compound	stimulus	being	presented.			

	

Conclusion 
The	visual	system	makes	use	of	nonlinearities	for	more	than	just	contrast	gain	control.	

Mechanisms	 exist	 that	 selectively	 detect	 signal	 conjunctions	 for	 certain	 stimulus	

combinations,	such	as	coherent	plaids,	by	making	use	of	the	saturating	nonlinearities	

that	are	prevalent	throughout	V1.	These	mechanisms	can	be	measured	using	the	two-

frequency	steady-state	EEG	approach.		

The	 potential	 of	 this	 approach	 to	 understanding	 nonlinearities	 is	 vast.	

Developing	paradigms	around	the	two-frequency	methodology	will	prove	invaluable	

to	 understanding	what	 kind	of	mechanisms	 exist	 in	mid-level	 vision	 and	how	 they	

operate,	 as	 well	 as	 to	 further	 our	 understanding	 of	 the	 complexities	 involved	 in	

encoding	multiple	stimulus	components	at	earlier	levels	of	the	visual	system.	
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Appendix	one	–	supplementary	figures	from	Chapter	3	
	

	 	

Component A at 20% Michelson Contrast, 0-160ms

Figure	3.	2.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	component	A	at	20%	
contrast.	
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Component A at 40% Michelson Contrast, 0-160ms

Figure	3.3.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	component	A	at	40%	
contrast.			
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Component A at 80% Michelson Contrast, 0-160ms

Figure	3.4.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	component	A	at	80%	
contrast.			
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Component B at 20% Michelson Contrast, 0-160ms

Figure	3.5.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	component	B	at	20%	
contrast.		
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Component B at 40% Michelson Contrast, 0-160ms

Figure	3.6.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	component	B	at	40%	
contrast.		
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Component B at 80% Michelson Contrast, 0-160ms

Figure	3.7.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	component	B	at	80%	
contrast.			
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Plaid AA at 20% Michelson Contrast, 0-160ms

Figure	3.8.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	plaid	AA	at	20%	
contrast	(10%	component	contrast).		
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Plaid AA at 40% Michelson Contrast, 0-160ms

Figure	3.9.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	plaid	AA	at	40%	
contrast	(20%	component	contrast).			
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Plaid AA at 80% Michelson Contrast, 0-160ms

Figure	3.10.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	plaid	AA	at	80%	
contrast	(40%	component	contrast).			
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Plaid BB at 20% Michelson Contrast, 0-160ms

Figure	3.11.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	plaid	BB	at	20%	
contrast	(10%	component	contrast).			
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Plaid BB at 40% Michelson Contrast, 0-160ms

Figure	3.12.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	plaid	BB	at	40%	
contrast	(20%	component	contrast).			
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Plaid BB at 80% Michelson Contrast, 0-160ms

Figure	3.13.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	plaid	BB	at	80%	
contrast	(40%	component	contrast).			
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Plaid AB at 20% Michelson Contrast, 0-160ms

Figure	3.14.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	plaid	AB	at	20%	
contrast	(10%	component	contrast).			
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Plaid AB at 40% Michelson Contrast, 0-160ms

Figure	3.15.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	plaid	AB	at	40%	
contrast	(20%	component	contrast).			
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Plaid AB at 80% Michelson Contrast, 0-160ms

Figure	3.16.	Grand	average	topograpies	in	10ms	averaged	chunks	for	grating	plaid	AB	at	80%	
contrast	(40%	component	contrast).			
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Appendix	two	–	supplementary	figures	from	Chapter	5	
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Figure	5.7.	Contrast	response	functions	for	SNRs	at	the	harmonic	difference	
intermodulation	frequency	(5.8Hz)	for	each	condition.	The	black	dashed	line	represents	
an	SNR	of	1,	and	error	bars	represent	95%	CIs.		
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Figure	5.8.	SNR	topographies	at	5.8Hz	(2ƒ2-2ƒ1)	for	coherent	plaid	A1A2	and	non-coherent	
plaid	A1B2.	Contrast	increases	from	the	top	to	the	bottom	of	the	figure,	from	2%	Michelson	
through	to	32%	Michelson	component	contrast.	Colour	maps	were	scaled	so	that	if	the	
topography’s	maximum	value	was	less	than	2.5,	the	maximum	of	the	topography	was	set	to	
2.5.	This	helped	avoid	noisy	topographical	maps	as	SNR	approached	1.	
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Figure	5.9	Contrast	response	functions	for	SNRs	at	the	sum	intermodulation	frequency	
(12.1Hz)	for	each	condition.	The	black	dashed	line	represents	an	SNR	of	1,	and	error	
bars	represent	95%	CIs.	
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Figure	5.10.	SNR	topographies	at	12.1Hz	(ƒ1+ƒ2)	for	coherent	plaid	A1A2	and	non-coherent	
plaid	A1B2.	Contrast	increases	from	the	top	to	the	bottom	of	the	figure,	from	2%	Michelson	
through	to	32%	Michelson	component	contrast.	Colour	maps	were	scaled	so	that	if	the	
topography’s	maximum	value	was	less	than	2.5,	the	maximum	of	the	topography	was	set	to	
2.5.	This	helped	avoid	noisy	topographical	maps	as	SNR	approached	1.		
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Figure	5.11.	Contrast	response	functions	for	SNRs	at	the	harmonic	sum	
intermodulation	frequency	(24.2Hz)	for	each	condition.	The	black	dashed	line	
represents	an	SNR	of	1,	and	error	bars	represent	95%	CIs.	
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Figure	5.12.	SNR	topographies	at	24.2Hz	(2ƒ1+2ƒ2)	for	coherent	plaid	A1A2	and	non-coherent	
plaid	A1B2.	Contrast	increases	from	the	top	to	the	bottom	of	the	figure,	from	2%	Michelson	
through	to	32%	Michelson	component	contrast.	Colour	maps	were	scaled	so	that	if	the	
topography’s	maximum	value	was	less	than	2.5,	the	maximum	of	the	topography	was	set	to	
2.5.	This	helped	avoid	noisy	topographical	maps	as	SNR	approached	1.	


