

Improving the Realism of

Ground Movement Models

Christofas Stergianos

MSc Computer Science and Entrepreneurship with Distinction

School of Computer Science

University of Nottingham

Thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy (PhD)

2017

ii

Abstract

As air traffic increases, more airports are facing capacity problems. A growing number of

airports are considering optimisation methods as a solution for increasing their capacity and

improving their efficiency. However, modelling an airport is complicated as there are many

processes that happen in parallel, each with different constraints and objectives that need to

be considered. This thesis focuses on the ground movement problem, the problem of moving

aircraft efficiently around an airport. This problem links the problems at the stands and at the

runways, and a good model for this problem can not only help the controllers who direct the

aircraft to do so more effectively, but can also feed into taxi time estimation improvements,

which can aid the solution of other optimisation problems, such as take-off sequencing.

Firstly, the effects of the pushback process are investigated and a model that includes this

process is presented. Secondly, the effects of different levels of prioritisation between arrivals

and departures is investigated. Thirdly, the effects that the airport layout has on the routing

process is investigated by examining various airport morphologies and by identifying areas

that can cause delays. Different airport morphologies are compared, and the use and

importance of alternative paths is highlighted. Moreover, the gate allocation process that also

affects the ground movement problem is considered, and a model that uses the routing process

of aircraft as a tool to provide a more informed and tailored allocation of aircraft to the gates

is presented. A 52% decrease in the duration of delays was observed during the routing

process of aircraft when the two processes were integrated. Furthermore, a new routing

algorithm that solves the routing problem faster than what is currently used in academia for

routing aircraft by taking into consideration all the available paths is presented. The results

show a 46% to 67% (depending on the airport) improvement on execution time. Finally, the

model is applied in a flight simulator cockpit - a tool for assisting the air transportation

operations - and it was integrated with other novel technologies in other research fields. This

research provides a more realistic and faster way to solve the ground movement problem of

aircraft.

iii

Acknowledgements

First of all, I would like to thank Dr. Jason Atkin for his guidance and his advice. I have been

extremely fortunate to have him as my supervisor and I am deeply grateful for his ongoing

support and help. He has not only been a great supervisor, but a fantastic person to work with.

I would also like to thank Dr. Patrick Schittekat and Dr. Tomas Nordlander for the support

and guidance regarding my research, but also for helping me integrate in the company and

socialise during my placement in Sintef.

Moreover, I would like to thank Prof. Herve Morvan for setting such a high standard for the

INNOVATE project and for making sure that we get the best training, experience and

opportunities throughout the duration of the project.

I would also like to thank my parents for believing in me and for supporting me through the

entirety of my studies.

Finally, I am truly grateful to my partner Kyriaki for her continued support and

encouragement. She has been always eager to help me in any way possible and I am

convinced that I wouldn’t be where I am today, if it wasn’t for her.

The research leading to these results has received funding from the People Programme (Marie

Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013)

under REA grant agreement no 608322.

iv

Contents

List of Figures .. ix

List of Tables ... xi

1 Introduction ... 1

1.1 Background and Motivation .. 1

1.2 Aims and Scopes ... 2

1.3 Contributions of this Thesis .. 2

1.4 Publications and Talks .. 4

1.5 Non-disclosure Agreement .. 6

1.6 Collaborations with Sintef ... 6

1.7 INNOVATE and the Virtual and Physical Demonstrator ... 7

1.8 Structure of the Thesis ... 8

2 Background and Related Work .. 9

2.1 Introduction ... 9

2.1.1 Basic terms .. 9

2.2 The Ground Movement Problem ... 10

2.2.1 Constraints .. 10

2.2.2 Objectives ... 14

2.3 Ground Movement Problem Solutions .. 16

2.3.1 Genetic Algorithms ... 16

2.3.2 Mixed Integer Linear Programming ... 18

2.3.3 Other Solution Methods .. 21

2.3.4 Comparison of the approaches .. 23

2.4 Pushback Process .. 23

2.5 The Gate Assignment Problem ... 24

2.5.1 Constraints .. 24

2.5.2 Objectives ... 26

2.5.3 Gate Assignment Problem Solutions .. 26

2.5.4 Integration with the Ground Movement Problem ... 27

2.6 Runway Scheduling... 27

2.6.1 Constraints .. 28

2.6.2 Objectives ... 29

2.6.3 Previous work on runway scheduling ... 29

2.6.4 Integration with Ground Movement ... 30

2.7 Taxi time prediction .. 32

2.8 Conclusions ... 34

v

3 The QPPTW algorithm, Datasets and Airports ... 35

3.1 Introduction ... 35

3.2 The QPPTW Algorithm .. 36

3.2.1 Introduction of the QPPTW Algorithm and Benefits of Using this Methodology

 .. 36

3.2.2 Notation and Definitions ... 37

3.2.3 Definitions of Key Concepts ... 38

3.2.4 Explaining the QPPTW Algorithm ... 39

3.3 Airports and Graphs .. 42

3.3.1 Zurich Airport ... 42

3.3.2 Stockholm Arlanda Airport .. 44

3.3.3 Manchester Airport ... 46

3.4 Conclusions ... 48

4 Pushback Delays on the Airport Ground Movement Problem 49

4.1 Introduction ... 49

4.2 The Pushback Process ... 50

4.2.1 Previous Research on Pushback Process .. 51

4.3 Integrating the Pushback Process to the Routing Process ... 52

4.3.1 Notation and Definitions ... 52

4.3.2 The QPPTW Algorithm with Pushback Process .. 53

4.3.3 Developed QPPTW Models .. 56

4.3.4 Calculating the Delays .. 57

4.3.5 Finding the Minimum Taxi Time ... 57

4.4 MILP Routing Model with the Pushback Process... 58

4.4.1 Notation and Definitions ... 58

4.4.2 Developed Model .. 59

4.4.3 Constraints .. 60

4.4.4 Objective Function .. 61

4.5 Comparison and Insights ... 61

4.5.1 Experimental Set-up.. 62

4.5.2 Comparison Results .. 63

4.6 Comparison of the two Methodologies ... 68

4.6.1 Comparison of two Methodologies when Arrivals are Included 69

4.7 Conclusions ... 69

5 Pushback Process with Stand Holding and the Effects of Prioritisation Levels for

Arrivals or Departures .. 71

5.1 Introduction ... 71

5.2 Integrating the Stand Holding Process with the Pushback Process 73

vi

5.2.1 Notation and Definitions ... 73

5.2.2 The QPPTW Algorithm with Pushback Process and Stand Holding................ 74

5.3 The Effects of the Pushback Process with Stand Holding .. 76

5.4 Priority Between Arrivals and Departures .. 79

5.4.1 Importance of the Consideration Order .. 80

5.4.2 Trade-off Results After Prioritising Departures ... 81

5.5 Mixed Prioritisation... 82

5.5.1 Mixed Prioritisation Results ... 82

5.5.2 Reasons that Delays Happen ... 84

5.5.3 Further Investigation of Varying the Prioritisation of Departures against

Arrivals ... 86

5.6 Conclusions ... 88

6 The Effects of Airport Layout and Re-routing on Taxiing ... 89

6.1 Introduction ... 89

6.2 Problem Description .. 90

6.3 Airport Layouts ... 92

6.3.1 Airports - Similarities and Differences ... 92

6.3.2 New Airport Layouts .. 94

6.3.3 Using the Same Data in Different Layouts ... 97

6.3.4 Investigating the Chosen Path ... 98

6.4 Results ... 99

6.4.1 Explaining why Delays Happen.. 100

6.4.2 Comparing Zurich and Arlanda Airports .. 103

6.4.3 Further Investigation of Different Airport Layouts .. 106

6.5 Conclusions ... 114

7 Considering the Gate Allocation Process ... 116

7.1 Introduction ... 116

7.2 Previous Work on Integration with the Ground Movement Problem 117

7.3 The Gate Allocation Problem .. 119

7.3.1 Definitions of the Variables for the Gate Allocation Model 119

7.3.2 Constraints .. 120

7.3.3 Objective Function .. 122

7.3.4 Effects on the Ground Movement Process .. 123

7.4 Solving the Ground Movement Problem and Finding Conflicting Aircraft 124

7.4.1 Definitions of the Variables .. 124

7.4.2 Finding the Conflicting Combinations of Aircraft .. 125

7.4.3 The Algorithm for Finding the Conflicting Combinations of Aircraft 128

7.5 Implementation Issues ... 130

vii

7.5.1 Adjusting the QPPTW Algorithm for Solving Side Problems and Running

Combinations of Aircraft for Potential Conflicts .. 130

7.5.2 Testing Combinations of Aircraft for Potential Conflicts 131

7.6 The Integration Framework ... 132

7.6.1 Definitions of the Variables .. 132

7.6.2 The Feedback Loop... 133

7.6.3 Adding the Ground Movement Feedback to the Gate Allocation Model 135

7.6.4 The Stopping Condition .. 136

7.7 Executing the Integrated Model .. 136

7.7.1 Experimental Settings ... 137

7.7.2 Results ... 137

7.8 Buffer Time Between Aircraft .. 141

7.8.1 Implementing the Buffer Time Between Aircraft ... 141

7.8.2 The Impact of Adding a Buffer Time Between Aircraft 142

7.9 Conclusions ... 145

8 An A* Approach for the Quickest Path Problem with Time Windows 148

8.1 Introduction ... 148

8.2 The A* Approach and Overview of Implementations .. 149

8.2.1 Previous Work .. 149

8.2.2 A Heuristic Estimation of the Cost ... 150

8.2.3 Definitions of the Variables .. 152

8.2.4 The ASQPPTW Algorithm ... 153

8.2.5 The Differences Between the Departing and Arriving Process 155

8.3 Experimental Settings ... 159

8.4 Execution Times for Each Algorithm ... 159

8.4.1 Solving the Full Problem .. 160

8.4.2 Solving Arrivals and Departures Separately ... 162

8.4.3 Solving the Departures without the Heuristic for the Pushback Process 164

8.5 Investigating the Expansion of the two Algorithms .. 165

8.5.1 The Number of Labels that are Generated with Each Algorithm 166

8.5.2 Tests on a Different Airport Layout .. 170

8.5.3 Prioritising Arrivals .. 173

8.5.4 Traffic and ASQPPTW Performance .. 176

8.5.5 Label Generation and Airport Characteristics .. 177

8.5.6 Examination of the Heuristic .. 179

8.6 Conclusions ... 181

9 Integration of the Ground Movement Problem in a Flight Simulator Cockpit 183

viii

9.1 Introduction ... 183

9.2 Advanced Receiver Autonomous Integrity Monitoring .. 184

9.3 Solving the Ground Movement Problem and Applying the Solution 184

9.3.1 Using the GPS Locations of the Aircraft to Find their Position on the Graph

 .. 185

9.3.2 Real Time Navigation of an Aircraft on the Ground 187

9.4 Physiological Monitoring of Human Performance ... 187

9.5 The Physical Demonstrator ... 189

9.6 Conclusions ... 191

10 Conclusions .. 192

10.1 General Summary .. 192

10.2 Key Results ... 193

10.3 Future Work .. 195

References .. 197

ix

List of Figures

3.1: Model of Zurich airport as a graph with edges and nodes ... 43

3.2: Traffic for different hours during the day in Zurich airport ... 44

3.3: Model of Arlanda airport as a graph with edges and nodes ... 45

3.4: Model of Manchester airport as a graph with edges and nodes ... 47

3.5: Traffic for different hours during the day in Manchester airport ... 48

4.1: Causes of pushback delays, delaying other aircraft or the aircraft pushing back 50

4.2: Blocked edges during pushback ... 56

4.3: Total delay for each algorithm/model .. 64

5.1: Delay graph that shows number of aircraft that are delayed by “x” or more for day 1 79

5.2: Delay graph for arrivals/departures for different prioritisations, showing the delay (in

seconds) against the number of arrivals (A) and departures (D) aircraft which have that delay or

higher, for three different configurations. ... 84

5.3: Example case were departing aircraft 466 has to push back early to avoid traffic 85

6.1: Graph of Arlanda airport .. 93

6.2: Graph of Zurich airport .. 94

6.3: Graph of Arlanda airport .. 95

6.4: Graph of Zurich airport .. 96

6.5: A departing aircraft (red) delaying an arriving aircraft (blue) ... 100

6.6: Two departing aircraft heading towards different runways ... 101

6.7: Departing aircraft need to start their pushback process earlier to avoid a conflict 102

6.8: Number of aircraft for each time duration of delay in each airport 107

6.9: Distribution of taxi duration for each airport. .. 108

6.10: Delay graph for different airport layouts, showing the delay (in minutes) against the

number of aircraft which have that delay or higher .. 109

6.11: An example in Zurich airport where sufficient number of taxiways ensure that there is no

delay .. 110

6.12: An example in Zurich airport where removing taxiways introduces a delay 111

6.13: Example of aircraft that needs to take a longer path due to traffic (instance 1) 112

6.14: Example of aircraft that needs to take a longer path due to traffic (instance 2) 113

6.15: Example of aircraft taking a shorter path when a new taxiway is introduced 113

7.1: Example of three aircraft interacting with each other .. 127

7.2: Flow diagram of the integrated model ... 134

7.3: The duration of delays during the ground movement process and the increase of the

objective value of the gate allocation model for each iteration, for terminal 1, day 2 140

7.4: The duration of delays during the ground movement process and the increase of the

objective value of the gate allocation model for each iteration, for terminal 1, day 2 when buffer

time between aircraft is included .. 145

8.1: Distribution of labels generated by each algorithm (left) and cumulative graph that shows

the number of aircraft that generate “x” labels or more (right) for Zurich airport 167

file:///C:/Users/suidi/Documents/Thesis/Thesis.docx%23_Toc494967152
file:///C:/Users/suidi/Documents/Thesis/Thesis.docx%23_Toc494967153

x

8.2: Distribution of labels generated by each algorithm (left) and cumulative graph that shows

the number of aircraft that generate “x” labels or more (right) for Zurich airport (arrivals and

departures) ... 168

8.3: Distribution of labels generated by each algorithm (left) and cumulative graph that shows

the number of aircraft that generate “x” labels or more (right) for Zurich airport (arrivals and

departures separate) ... 169

8.4: Distribution of labels generated by each algorithm (left) and cumulative graph that shows

the number of aircraft that generate “x” labels or more (right) for Arlanda airport 171

8.5: Distribution of labels generated by each algorithm (left) and cumulative graph that shows

the number of aircraft that generate “x” labels or more (right) (arrivals and departures - Arlanda

airport) ... 172

8.6: Distribution of labels generated by each algorithm (left) and cumulative graph that shows

the number of aircraft that generate “x” labels or more (right) (arrivals and departures separate -

Zurich airport) ... 173

8.7: Distribution of labels generated by each algorithm (left) and cumulative graph that shows

the number of aircraft that generate “x” labels or more (right) when arrivals are prioritised ... 174

8.8: Distribution of labels generated by each algorithm (left) and cumulative graph that shows

the number of aircraft that generate “x” labels or more (right) when arrivals are prioritised ... 175

8.9: Distribution of labels generated by each algorithm (left) and cumulative graph that shows

the number of aircraft that generate “x” labels or more (right) with less traffic 176

8.10: The improvement in the number of labels generated in relation to the time duration

travelled ... 178

8.11: The improvement in the number of labels generated in relation to the distance travelled179

9.1: Finding the closest node ... 186

9.2: Graph representation of Zurich airport (quickest path highlighted) 188

9.3: The flight simulator cockpit ... 189

9.4: Quickest path highlighted after taking into consideration the positions of other aircraft .. 190

file:///C:/Users/suidi/Documents/Thesis/Thesis.docx%23_Toc494967188

xi

List of Tables

 3.1: Table of definitions for the QPPTW algorithm... 37

 3.2: Specifications of instances .. 46

 4.1: Table of definitions ... 52

 4.2: Table of definitions for the MILP model .. 58

 4.3: Total delays and total taxi time for each algorithm/model for instances 1 and 2. 63

 4.4: Total delays and total taxi time for each model/algorithm for running instances 3, 4 and 5.

... 63

 4.5: Flights which are affected by ground movement delays (Instance 1). 65

 4.6: Results of including the pushback process. .. 66

 4.7: Comparison between the two methodologies ... 69

 5.1: Table of definitions for QPPTW with stand holding .. 73

 5.2: Delays when the stand holding process is used .. 78

 5.3: Different priorities in routing arrivals and departures ... 81

 5.4: Delays of aircraft for different prioritisations ... 83

 5.5: Delays for different “mixed prioritisation” settings .. 87

 6.1: Groups and types of stands ... 98

 6.2: Total taxi time if there were no delays .. 103

 6.3: Duration of delays in seconds ... 104

 6.4: Total taxi time in seconds ... 104

 6.5: The number of delays for each airport .. 105

 7.1: Table of definitions for the gate allocation model .. 119

 7.2: Table of definitions for finding the conflicting combinations of aircraft 124

 7.3: Table of definitions for the integration process .. 133

 7.4: Results after solving the gate allocation process while considering the ground movement

... 138

 7.5: Results after solving the gate allocation process while considering the ground movement

including buffer times between aircraft .. 143

 8.1: Table of definitions ... 152

 8.2: Execution times in milliseconds for routing aircraft (Zurich Airport) 160

 8.3: Execution times in milliseconds for routing aircraft (Arlanda Airport) 161

 8.4: Execution times in milliseconds for routing departing aircraft (Zurich Airport) 162

 8.5: Execution times in milliseconds for routing arriving aircraft (Zurich Airport) 162

 8.6: Execution times in milliseconds for routing departing aircraft (Arlanda Airport) 163

 8.7: Execution times in milliseconds for routing arriving aircraft (Arlanda Airport) 163

 8.8: Execution times in milliseconds for routing departing aircraft when the heuristic for the

pushback process is not included (Zurich airport) .. 164

 8.9: Execution times in milliseconds for routing departing aircraft when the heuristic for the

pushback process is not included (Arlanda airport) .. 165

 8.10: Number of labels generated with each algorithm (ASQPPTW vs QPPTW) 166

xii

 8.11: Number of labels generated in Arlanda airport (ASQPPTW vs QPPTW) 170

 8.12: Execution times in milliseconds for routing aircraft when arrivals are prioritised (QPPTW

vs ASQPPTW) .. 174

 8.13: Number of labels that are generated with each set-up .. 180

 9.1: Table of Notation and Definitions .. 185

1

1

Introduction

1.1 Background and Motivation

This research is part of a Marie Curie project funded by the European Union called the

INtegration of NOVel Aerospace TEchnologies (INNOVATE) and is supported by the

Institute of Aerospace Technology of the University of Nottingham. The project builds on

previous PhD theses at the school of Computer Science and considers some of the real-world

issues when integrating this research into airports.

This thesis considers the problem of more accurately modelling the movement of aircraft

around an airport, and using this model in a system to direct aircraft around the airport. This

is an increasingly important problem, with airports getting busier over time, and many facing

capacity problems. Furthermore, reducing CO2 emissions is becoming an increasingly

important consideration at many airports (SESAR 2015). Even though a considerable amount

of optimisation research exists for various airport processes, few airports actually use

automated optimisation processes, and those that do often use them only for a few processes.

One of the major concerns that has been expressed to us by controllers as a reason for not

adopting more automation is that the automated systems often do not have a realistic enough

model of the problem, or consider enough of the special cases (i.e. aircraft need to take a

longer or uncommon route when there is traffic). This research aims to address this issue by

improving the accuracy of the models and using these improved models to investigate the

problem in more detail. The finished system has also been embedded into a demonstrator that

will be presented in Chapter 9.

In practice, the routing problem is still usually solved manually by air traffic controllers. The

ground movement controller is responsible for guiding aircraft around the taxiways,

monitoring intersections where aircraft arrive and deciding upon the prioritisation of

2

movements. At quieter airports, the same person may also determine the take-off sequence,

or the pushback times for aircraft, but it is more common for different controllers to handle

different problems. Consequently, the different processes are usually handled independently

even though they affect one another. However, due to the complexity of the problem, a high

level of coordination is needed, and the optimal solution is not always achieved. Optimisation

models can provide a better solution for airports as was demonstrated in Kjenstad et al.

(2013b) where their model, when tested on a real airport, outperformed expert controllers.

1.2 Aims and Scopes

The main objective of this thesis is to provide a more integrated and realistic model for the

ground movement of the aircraft in airports. More specifically, the research in this thesis has

the following aims.

• To take into consideration more parameters for the ground movement model and to

enable integration with other processes that affect or get affected by the ground

movement process as well as producing new algorithms to achieve this.

• To produce a more realistic model that will be able to identify delays that can happen

during the ground movement process of aircraft

• To get a better understanding of the morphology of an airport and how it affects the

delays that can happen during the taxiing process of aircraft.

• To increase the processing speed of algorithms that are used for solving the routing and

scheduling process of aircraft, if possible.

• To integrate this research into a prototype system that also makes use of other novel

aerospace technologies.

This research focuses on the ground movement problem, but other processes and

technologies outside of this area are also considered where they are relevant to this work or

where understanding these is beneficial to understanding the work in this thesis.

1.3 Contributions of this Thesis

The contributions of this thesis can be summarised as follows:

3

Chapter 4

• The pushback process is explicitly modelled within the routing process for aircraft,

making it possible to identify many real-world delays that would otherwise pass

unnoticed by the model.

• The effects of considering the pushback process are examined using two different ground

movement models. This provides a better understanding of where and when delays

during the ground movement process of aircraft actually happen.

Chapter 5

• The prioritisation of arrivals over departures or vice versa to different degrees is

examined. The performance (in terms of delays) of different prioritisation setups

between arriving and departing aircraft is described. This provides important insight into

how these delays happen when the pushback process is explicitly modelled and how they

can be reduced.

Chapter 6

• The performance of a routing algorithm that can take into consideration multiple paths

is compared between two airports. This provides a better understanding of how the

morphology of an airport can affect the effectiveness of a routing methodology.

• The morphology of the airport is examined, focusing on where delays can happen and

the use of non-shortest paths.

Chapter 7

• A new algorithm that can find, in a short amount of time, aircraft that can interact with

each other, which can be used for providing feedback to the gate allocation process, is

presented.

• An integration framework between the ground movement process and the gate allocation

process is described that reduces the delays that can happen during the ground movement

process of an aircraft by avoiding allocations that can cause delays.

Chapter 8

• An improved algorithm for solving the Quickest Path Problem with Time Windows, that

uses heuristics to speed up the routing process of aircraft is presented. This algorithm

provides a better tool for real time routing but also provides a fast routing method that is

ideal for integrating with other processes that happen in the airport.

• The performance of the new algorithm is presented in various airports and set-ups.

4

Chapter 9

• A framework where the routing process, the aircraft position process and the mental load

of the pilot observation are integrated within a virtual cockpit is described. This provides

an important insight into how a routing model can be used in a real-world scenario.

• A methodology of real time routing of aircraft, using the position of the aircraft, is

presented that deals with the practical issues of implementing a routing model.

1.4 Publications and Talks

During the research leading to this thesis a number of publications have been produced. The

work has also been presented in various conferences and events. The publications and talks

are presented below, grouped into the corresponding chapters of this thesis:

Chapter 4

• “Pushback delays on the routing and scheduling problem of aircraft”, presentation at the

International Conference on Applied Operational Research (ICAOR 2015), Vienna,

Austria (16/07/2015), talk

• Stergianos, C., Atkin, J.A.D., Schittekat, P., Nordlander, T.E., Gerada, C., Morvan, H.

(2015). “Pushback delays on the routing and scheduling problem of aircraft”. 7th

International Conference on Applied Operational Research, ICAOR. Lecture Notes in

Management Science 7, pp. 34-40, paper

• Stergianos, C., Atkin, J.A.D., Schittekat, P., Nordlander, T.E., Gerada, C., Morvan, H.

(2015). “The effects of pushback delays on airport ground movement”. Journal of

Applied Operational Research, Vol. 7, No. 2, pp. 68-79, paper

Chapter 5

• “The importance of considering pushback time and arrivals when routing”, presentation

at the International Conference on Applied Operational Research (ICAOR 2016),

Rotterdam, The Netherlands (29/06/2016), talk

• Stergianos, C., Atkin, J.A.D., Schittekat, P., Nordlander, T.E., Gerada, C., Morvan, H.

(2016). “The importance of considering pushback time and arrivals when routing

departures on the ground at airports”. 8th International Conference on Applied

Operational Research, ICAOR. Lecture Notes in Management Science 8, pp. 41-46,

paper

5

• Stergianos, C., Atkin, J.A.D., Morvan, H. (2016). “Airport ground movement with

pushback modelling: Understanding the effects of prioritisation levels for arrivals or

departures”. Journal of Applied Operational Research, Vol. 8, No. 1, pp 42-53, paper

Chapter 6

• Stergianos, C., Atkin, J.A.D., Morvan, H. “The effects of airport layout and re-routing

on taxiing”, paper in preparation

Chapter 7

• “Combining the ground movement and gate allocation problems”, presentation at the

Student Conference on Operational Research (SCOR 2014), Nottingham, UK

(03/05/2014), talk

• Stergianos, C., Atkin, J.A.D., Morvan, H. “Airport gate assignment considering the

delays that occur during the ground movement process of aircraft.”, paper in preparation

Chapter 8

• “An A-Star Approach for the Quickest Path Problem with Time Windows”, presented at

the International Conference on Computational Complexity and Algorithms (ICCA

2017), Sydney, Australia (27/01/2017), talk

• Stergianos, C., Atkin, J.A.D., Morvan, H. “Using a guided search for solving the quickest

path problem with time windows” paper in preparation

Furthermore, I have presented my work in the following events:

• “A brief introduction to the Innovate Programme”, presentation at the LANCS workshop

on Air Transportation, Nottingham, UK (21/01/2014)

• “WP3 - Green ground operations: Improving the ground movement of airplanes and

implementing assisted take-off”, presentation at the INNOVATE Launch event,

Nottingham, UK (10/04/2014)

• “The aircraft ground movement problem and its integration with the gate allocation

problem”, presentation at the ASAP Seminar, Nottingham, UK (29/10/2014)

• “Optimised preparations to take-off”, presented at the INNOVATE Annual Showcase,

Nottingham, UK (15/1/2015)

• “INNOVATE Work Packages Presentation WP3: Ground operations technologies”,

presented at the INNOVATE Annual Showcase, Nottingham, UK (15/1/2015)

• “Optimised preparations to take-off”, presented at the INNOVATE Midterm Report

Meeting, Nottingham, UK (23/01/2015)

• “Optimised preparations to take-off”, presented at Sintef, Oslo, Norway (03/02/2015)

6

• “The importance of considering pushback time and arrivals when routing departures on

the ground at airports”, presentation at the ASAP Seminar, Nottingham, UK

(19/10/2016)

• “Improving the Realism for Ground Movement Models”, presented at the INNOVATE

End of Project Conference, Nottingham, UK (25/05/2017)

Moreover, I have presented the following poster:

• “Optimised preparations to take-off”, presented at the ESO Division PhD Poster

Competition, Nottingham, UK (05/11/2014)

Finally, I have made two blog posts in order to promote the work of the INNOVATE project.

• “Image recognition on a UAV” INNOVATE Blog at the University of Nottingham blogs

(08/12/2014)

• “Is air traffic optimisation really that important?” INNOVATE Blog at the University of

Nottingham blogs (22/04/2016)

1.5 Non-disclosure Agreement

The data that has been used for the experiments in this thesis are covered by two non-

disclosure agreements. For this reason, the datasets that were used cannot be provided.

Chapter 3 provides some details of these datasets.

1.6 Collaborations with Sintef

During my PhD, I had two placements (six months in total) in Sintef – a research centre in

Oslo, Norway. The “Optimisation” research group of Sintef Digital has done significant work

in optimising air traffic control and has developed their own Air Traffic Control Service that

can help the decision-making process of air traffic controllers.

I worked closely with Dr. Patrick Schittekat and Dr. Tomas Nordlander. They provided me

with data for Arlanda airport that was used in – and contributed in – three publications.

Chapters 4 and 5 include the work that was performed during this placement. The linear

model that is used in Chapter 4 is a simplified version of the model that was used in Sintef

for the research that was performed for Arlanda airport. Dr. Schittekat and Dr. Nordlander

have both contributed in making the model and advising what research directions should be

followed during my stay.

7

1.7 INNOVATE and the Virtual and Physical

Demonstrator

As previously mentioned, this research was a part of the INNOVATE project. The aim of the

INNOVATE project is to integrate novel technologies in the aerospace sector, such as

Propulsion Technologies, Airframe and Control Technologies, Ground Operations

Technologies (where most of this research lies) and Innovative Navigation & Communication

Technologies. This project aims to link a series of technological advances in various research

sectors in aerospace in a virtual and physical demonstrator that will show the applicability of

the research as well as the benefits of it.

As stated in the INNOVATE program handbook, “INNOVATE aims to train the next

generation of highly skilled engineers and scientists able to understand, undertake and support

state-of-the-art technological activities and challenges for the aero-sector in a multi-

disciplinary environment.”

13 early stage researchers from different disciplines in the wider aerospace technologies field

work together in order to improve and integrate technologies and processes for the aerospace

sector. One of the objectives of this project is to work together in order to build a blueprint

for the air transportation system that will be used in the future.

Being a part of this project led to the development of two fully autonomous Unmanned Aerial

Vehicles (UAV’s or drones). I was responsible for building the image recognition process

that could detect a specific letter on the ground and release a payload near the target letter.

This project was designed to be a learning experience of the methodologies and procedures

that would be necessary in order to build a physical demonstrator with the technologies that

we would develop during our research.

The researchers of the INNOVATE project were divided into 4 teams and each team would

have to build a virtual and physical demonstrator that would integrate the technologies of the

research that was performed by the members of the team. The demonstrator that was

developed by the team that I was part of is described in detail in Chapter 9 and demonstrates

the use of this research in an integrated environment.

8

1.8 Structure of the Thesis

This thesis is structured as follows:

Chapter 2 presents the relevant background work in the area. It focuses on research that is

related to the ground movement problem, but also presents important papers for other

processes (such as the pushback, the gate allocation and the runway sequencing process) that

are connected with the ground movement process, and attempts to integrate the ground

movement process with these processes. Chapter 3 provides a small description of the ground

movement problem and explains the primary algorithm that was used for the routing process

of aircraft. Moreover, the airports and the datasets that were used are summarized in this

chapter. Chapter 4 investigates the effects of the pushback process to the ground movement

process by implicitly modeling the pushback process. Chapter 5 examines the effects of

different prioritization levels between arrivals and departures when the stand holding process

and the pushback process are implemented for departing aircraft. Chapter 6 investigates the

effects of the airport layout on the delays that can happen during the ground movement

process. The effects of the number of taxiways are examined in terms of the number and the

duration of delays, as well as the total taxi time and the use of alternative paths. Chapter 7

presents an integrated model of the ground movement process and the gate allocation process.

The conflicting combinations that can arise from an allocation are found and are avoided

when the gate allocation problem is solved in order to decrease the delays that are likely to

happen when the aircraft are routed. Chapter 8 presents an enhanced approach for routing

aircraft using a heuristic that uses the remaining time that is necessary for an aircraft to reach

its destination. Chapter 9 presents an implementation of the system into a flight simulator

cockpit, along with the outputs of two other projects. The ground movement process is

integrated with the positioning and navigation process of the aircraft while the mental demand

of the pilot is monitored with non-invasive techniques. Finally, the key results from this

research and the various conclusions are discussed in Chapter 10.

9

2

Background and Related Work

2.1 Introduction

The movement of aircraft on the surface of an airport is one of the more important and

difficult to model (due to the large number and unpredictability of the parameters)

optimisation problems at an airport and includes a number of sub-problems that are beneficial

to optimise (Atkin et al. 2010, Kjenstad et al. 2013b). Departing aircraft will first push back

from the stands (the pushback process), then taxi around the airports (the taxi process), and

queue for the runway (runway sequencing process), whereas arrivals will land on a runway

and need to taxi to the stands, potentially traversing taxiways in the opposite directions to the

departing aircraft.

In this chapter, the related research that has been performed in the areas mentioned above is

presented. Section 2.2 describes the constraints and objectives that are used for the ground

movement problem and Section 2.3 presents the solutions that have been developed. Section

2.4 briefly introduces the pushback process and Sections 2.5, 2.6 and 2.7 present the related

work in the gate allocation problem, the runway scheduling and taxi time prediction

respectively. Finally, the chapter concludes in Section 2.8.

2.1.1 Basic terms

It is important to define several terms that are often used when discussing about the movement

of the aircraft on the ground.

• Gate – is an area attached to a terminal that passengers can use to board on an aircraft

that is parked there.

10

• Stand – is the area where aircraft can park. This includes the gates where passengers can

use to board on an aircraft as well as areas that are not directly connected to a terminal.

• Pushback process - is the part of the ground movement process where the aircraft pushes

back from the stand to the taxiway next to the stand and starts its engines.

• Apron – is the area where aircraft park. It includes a group of stands that are close to

each other and may share the same resources. Aprons usually provide limited

manageability to aircraft, and aircraft that use the aprons usually do not affect (and are

not affected) by aircraft that use the main taxiways of the airport

• Towing – is a process where an aircraft is moved from a stand, so the stand (usually a

gate) can be used by other aircraft.

• Conflict – (or two aircraft are too close to each other) is when two aircraft are assigned

to use the same resources (i.e. segment of a taxiway) at the same.

2.2 The Ground Movement Problem

One of the problems that today’s airports face is the ground movement problem. The ground

movement problem considers the way aircraft move around the airport in order to reach their

destination within a specific timeframe. During the movement of the aircraft it is important

that two aircraft never approach too close to each other, as this would result in a conflict.

Usually the solution of the routing problem consists of a path that each aircraft has to follow

and/or times when the aircraft has to pass different points and intersections in order for an

aircraft to reach its destination (runway, stand, de-icing, etc.). Atkin et al. (2010) highlighted

the importance of the ground movement optimization tools as they improve the on-time

operations within the airport. When taking multiple aircraft into consideration, especially in

large and busy airports, it is important to apply a routing algorithm that would optimise their

movements. This makes it possible to minimise the total travel time of aircraft moving around

the airport’s surface and in turn the excess fuel consumption and CO2 emissions which is a

significant concern for the airport.

2.2.1 Constraints

Regarding the ground movement problem there are multiple constraints that have been

considered. These constraints include the maximum speed of the aircraft as well as defining

the safety distance between the aircraft. Another important constraint of the ground

movement problem is the route that each aircraft has to follow. The sequencing of arrivals

and departures also plays an important role for the ground movement problem as it can cause

11

delays. Other constraints of the airport ground movement problem can be the earliest and

latest take-off or landing time that can be an unpredictable parameter (i.e. the landing time is

usually estimated as it cannot be calculated before the aircraft is near the airport).

Aircraft route

One of the constraints during the routing process of aircraft is the route that the aircraft is able

to follow. There are three ways to model this constraint. One way is to limit the aircraft to a

single path, another way is to have a set of paths that the aircraft can use, and finally to have

no restrictions to which path the aircraft can use.

If the available routes that an aircraft can follow are predetermined, the available routes are

already found, so the ground movement solver only focuses on the sequence of the aircraft

that want to use a path or part of a path at the same time (Smeltink et al. 2004, Rathinam et

al. 2008, Kjenstad et al. 2013a, 2013b, Weiszer et al. 2015b, 2015c, Chen et al. 2015).

If there is a set of predetermined routes that each aircraft can follow (there is more than one

path for each aircraft to use) the solver is able to select the best path taking into consideration

the other constraints (if there are any) and the objective function (Pesic et al. 2001, Gotteland

et al. 2001, 2003a, Gotteland and Durand 2003b, Herrero et al. 2005, Garcia et al. 2005,

Balakrishnan and Jung 2007, Roling and Visser 2008, Deau et al. 2008, 2009, Evertse and

Visser 2017).

Finally, the paths that an aircraft can follow can be completely unrestricted and the ground

movement solver has to find the shortest or the quickest path, each time an aircraft is routed

(Marín 2006, Marín and Codina 2008, Keith et al. 2008, Clare et al. 2009a, Clare and Richards

2009b, 2011, Brownlee et al. 2014, Weiszer et al. 2015a, Benlic et al. 2016, Chen et al.

2016b).

For this thesis, two of these approaches (using a single path for each flight and having

completely unrestricted paths) were used in Chapter 4. Having no restrictions to the paths that

aircraft can use, performed better in terms of overall delays between aircraft, compared to

restricting the aircraft to using a single path, so this approach was used for the rest of the

research.

Separation Rules and conflict detection

Another constraint that has to be taken into account while dealing with the optimisation of

the ground movement problem is avoiding conflicts between the aircraft (two aircraft being

too close to each other) and avoiding accidents. The distance between the aircraft however is

not standard and different authors suggest different distances, as discussed below, but this

requirement has to be respected in order to avoid conflicting aircraft. There is not a strict rule

12

applied in airports and keeping a safe distance from the leading aircraft is at the discretion of

the pilot.

There is a minimum distance of 200 meters that is suggested by Smeltink et al. (2004), Roling

and Visser (2008), Rathinam et al. (2008) and Burgain et al. (2012) whereas Gotteland et al.

(2001) and Pesic et al. (2001) suggest a distance of no less than 60 meters between taxiing

aircraft. Weiszer et al. (2015c) use a minimum safety time distance between aircraft which is

set at 12 seconds. As mentioned in the paper, this is equal to 62 meters when the aircraft is

moving at the speed of 10 knots. As there are no specific separation rules applied by all

airports Weiszer et al. (2014, 2015a) have restricted the aircraft from using one edge (small

part of the taxiway) at a time.

A similar method to Weiszer et al. (2014, 2015a) has been used in the research of this thesis,

where each edge can be used by only one aircraft at a time. The length of the edges of the

graphs that have been used in this thesis has been limited to a certain size to more realistically

represent the minimum distance between two aircraft as it will be seen in the next chapter.

In this thesis, the same approach that is followed by Weiszer et al. (2014, 2015a) has been

implemented as it is more realistic.

Aircraft speed

Maximum and minimum speeds are also constrained as a part of the ground movement

problem to ensure that aircraft move safely and efficiently in the airport. Smeltink et al. (2004)

mention that speeds below 8 knots rarely occur and use a minimum speed of 5 knots in order

to constrain the search space and reduce the computation time. In some more precise models,

the speed is lower while aircraft traverse through a turn and higher when they move in a

straight line (Ravizza et al. 2013a, Weiszer et al. 2014, Chen 2016a). Moreover, Pesic et al.

(2001) consider the time aircraft need when turning. However, other factors such as the nature

of the taxiway or the gate and runway accessibility (Gotteland et al. 2001) or the type and

size of the aircraft (Balakrishnan and Jung 2007, Roling and Visser 2008) should be taken

into account. Rathinam et al. (2008) find the speed of each aircraft in the sectors along its

route using a maximum speed of 15.5 knots. Chen et al. (2016a) make a more detailed speed

profile for aircraft, breaking the type of movement of each aircraft to four parts: acceleration,

travelling at constant speed, braking and rapid braking. They use 30 knots as a maximum

speed when the aircraft is traversing a straight segment and 10 knots when the aircraft is

turning.

While maximum and minimum speeds of aircraft that are taxiing are considered as constraints

for the solution of the ground movement problem, aircraft can also be held at specific points

along their path while taxiing. Smeltink et al. (2004) suggest the limit of one aircraft waiting

13

at a holding point at a time. Gotteland et al. (2001) recommend waiting on the taxiway rather

than using a longer route or wait at the gate and they search for convenient holding points. A

model that suggests points where aircraft can hold is also suggested by Gotteland and Durand

(2003b). Furthermore, aircraft holding is also implemented by Chen et al. (2016b) when there

is a conflict and no other alternative movements can be found.

For the experiments of this thesis the speed of 16 knots has been implemented similar to

Rathinam et al. (2008) since it is closer to the average speed that aircraft will move around

the airport (Roling and Visser 2008). Since the research in this thesis does not focus on the

fuel consumption of the aircraft and in order to reduce the complexity of the problem, the

speed of the aircraft is considered to be constant when their path is not interrupted by other

aircraft. This however, does not significantly affect the delays that can happen, since the

aircraft are modelled to occupy segments of the taxiways for the whole duration of the time

that it takes to traverse each segment, regardless the variations of the speed that an aircraft

can have during the use of a segment.

Timing (departures and arrivals)

For arriving aircraft, the aim is usually to reach the stand that they are allocated to as soon as

possible, as they can then turn-off their engines and unload the passengers. For this reason,

most of the research uses the landing time of an aircraft as a constant and force the aircraft to

start their journey to their allocated stand after this time (Ravizza et al. 2014, Weiszer et al.

2015b).

Departing aircraft need to travel from the stand that they are parked at, to the runway that

they will take-off from. For departing aircraft, arriving at the runway early can result in

wasting fuel since once the engines of an aircraft start up, they usually stay on and consume

fuel even on idle.

There are many airports where aircraft have to wait at a holding point before they can enter

the runway and depart. Furthermore, possible queuing as well as preparations that have to be

completed in order for the aircraft to be able to fly should always be taken into account. As

aircraft have to depart at a scheduled time (in order to respect the take-off sequence), the

pushback process has to start within a fixed time slot.

Usually there are three ways to model time constraints of the departing aircraft.

• One is for the aircraft to arrive at the runway as fast as possible starting from the time

that an aircraft is set to initiate its pushback process. Since however, this can result in

excess fuel consumption, it is more common for aircraft to reach the runway at a specific

time or within a certain time frame.

14

• Another aim can be for departing aircraft to reach the runway within a specified

timeframe (Gotteland et al. 2003a, Deau et al. 2009, Benlic et al. 2016). According to

the European Central Flow Management Unit (CFMU) each aircraft has to take-off

within a specific timeframe based on the set departure time. Missing a time window can

cause penalties and can be costly for the airport. During the peak time in busy airports

there may be a delay or waiting time while the aircraft is taxiing or while entering the

runway. In some cases, these timing uncertainties make it hard to optimize the runway

sequencing problem and to respect all the time slots.

• Finally, another way to model departing aircraft is to wait at the stand (before the engines

are turned on) and start taxiing as late as possible but still arrive at the runway on time.

Ravizza et al. (2014) use a method called stand holding in order to have departing aircraft

to start as late as possible and still reach the runway on time by taking into consideration

the delays that can happen during the ground movement process, transferring all the

excess waiting time at the stand.

Stand holding has also been used in this thesis (see Chapter 5) as it is the most efficient way

to reduce the time that an aircraft has to wait at the runway. As discussed in Chapter 5, it is

important to reduce excess waiting time at the runway since once the engines are turned on,

they continue to burn fuel even on idle.

2.2.2 Objectives

The objectives of the ground movement problem and the route aircraft will have to follow

differ depending on the aim of each implementation. Departing aircraft will have to be at the

runway at a specific time ready for take-off, while arriving aircraft will have to reach a

specific stand which they are allocated to, as early as possible. In most cases, the aim is to

reduce the total taxi time or the fuel consumption which can be achieved with starting the

engines as late as possible for departing aircraft and turn the engines off as early as possible

for arriving aircraft. The objectives that previous work has been focusing on, are presented

below.

Total taxi time

Usually the main objective of the ground movement problem is to minimise the total taxi time

of the aircraft. In some cases, ground movement aims at reducing the total taxi time as well

as the waiting time at the runway (Van Velthuizen 1997, Pesic et al. 2001, Smeltink et al.

2004, Marín 2006, Roling and Visser 2008, Rathinam et al. 2008, Roling 2009, 2011, Ravizza

and Atkin 2011, Marín 2013, Ravizza et al. 2014).

15

Fuel consumption

More recently, minimising the fuel consumption is also an important objective as calculating

the fuel consumption is getting more accurate (Jung et al. 2011, Nikoleris et al. 2011, Chen

and Stewart 2011a, Ravizza et al. 2013b). However, lower fuel consumption and minimizing

the total taxi time can be two conflicting factors as shorter times demand higher speeds.

Therefore, recent research has been focusing on the simultaneous study of fuel consumption

and total taxi time (Weiszer et al. 2014). In order to achieve that, Weiszer et al. (2014) suggest

a set of optimal ground movement speed profiles based on a heuristic method that examines

acceleration, constant speed, braking and rapid braking. Chen et al. (2015) use a multi-

objective function that takes into consideration the taxi time, the fuel consumption, the HC

emissions and CO emissions. Weiszer et al. (2015a and 2015b) use a multi-objective function

that takes into consideration the total taxi time and the fuel consumption.

Other objectives

Ground movement research can also focus on the minimization of the delays that can happen

during the routing process (Herrero et al. 2005, Garcia et al. 2005).

Other researchers consider additional factors such as respecting the CFMU time slots

(Gotteland et al. 2003a, Deau et al. 2008, 2009) or scheduled time slots within which aircraft

have to arrive or depart (Smeltink et al. 2004, Balakrishnan and Jung 2007) and minimising

the total taxi distance (Clare et al. 2009a, Clare and Richards 2009b, 2011).

Multiple objectives can also be considered. In Marín and Codina (2008), the objective

function is a combination of the total taxiing time, worst taxiing time, the delays that happen

during taxiing, the number of departures and arrivals and the times controllers have to

interfere.

The objective of the model that has been developed in this thesis is the minimisation of the

total taxiing time (e.g. using the quickest path, and avoiding delays). Even though reducing

the fuel consumption is also an important objective, it is not the primary goal of this thesis.

This thesis focuses more on building and evaluating an enhanced ground movement model

by implementing or integrating with other processes such as the pushback process, the stand

holding process and the gate allocation process. Methods that are used in other models could

be applied to this model, in order to investigate the fuel burn trade-off when considering the

pushback process, the stand holding process and the gate allocation process. Since there is a

high correlation between the time that an aircraft stays with its engines on and the fuel

consumption, it is assumed that reducing the total taxiing time will also reduce the total fuel

consumption.

16

2.3 Ground Movement Problem Solutions

There has been significant research regarding the ground movement problem and finding the

ideal route for each aircraft. Usually, ground movement solution methods are based on a

graph representation of an airport, where intersections are represented as nodes and taxiways

as arcs. The result of the ground movement process is a route that an aircraft should follow,

as well as the times that specific nodes on the graph should be reached or traversed.

Most of the existing research in this area involves the use of genetic algorithms or Mixed

Integer Linear Programming (MILP) models to solve the ground movement problem. MILP

based solutions can guarantee an optimal solution but all objectives and variables need to be

linear and some problems can take a long time to solve. Genetic algorithms on the other hand

might not give an optimal solution. However, they can be more realistic and may lead to a

solution faster. Furthermore, other heuristic methods have been used to solve the problem as

they can find a near-optimum solution in a short amount of time.

Two methodologies are considered and compared in Chapter 4, one being a MILP

formulation of the ground movement problem and the other one being a heuristic algorithm

that finds the quickest path for each aircraft taking into consideration the aircraft that have

been previously routed. A number of alternative methods have also been used in the literature

to solve the ground movement problem - such as genetic algorithms, MILP formulation and

other heuristic approaches. Their use and benefits are presented in the following subsections.

2.3.1 Genetic Algorithms

Genetic algorithms are one of the methodologies that has been widely used for solving the

ground movement problem as they can solve the problem in a more realistic amount of time.

Genetic algorithms generate a population of possible solutions and repeatedly modify them.

In each step, they use a fitness function to evaluate each solution and choose the ones that

provide a better solution. Traits from the best performing solutions are used to form new

solutions which will again be evaluated, and the best ones are again chosen until a near

optimal solution is found.

Genetic algorithm research

Pesic et al. (2001) propose the use of a Genetic Algorithm as a method for taxi optimization

at Charles De Gaulle Airport. The model selects the right taxiway in order to reduce the

commuting time from the runway to the stand and vice versa. The model then tries to find a

solution that does not include a conflict (e.g. two aircraft that are too close to each other). The

17

aim is to produce a solution with a better fitness value by using parents with fewer conflicts

in order to have children with a better result. A mutation operator (a way to randomly change

the existing solution to increase the diversity of solutions) was used to change the solutions

with the worst fitness values focusing on making a more feasible solution.

Durand and Alliot (1998) propose a combination of genetic algorithms and a mathematical

technique called partial separation. The research proposes the use of partially separable

functions in order to improve the rate of convergence of the genetic algorithms in use. In

order to optimize the global objective function, each variable is optimized separately and the

use of the genetic algorithm with adapted crossover seems to be the most effective method.

An additional parameter is considered by Gotteland et al. (2001). They tried to minimize the

time that is spent from landing to reaching the stand and from leaving the stand to taking-off

through a ground congestion simulation method that tries to solve conflicts. The simulation

model chooses a path and an optional holding point on the taxiway and time, using an A*

algorithm which prioritises the aircraft in a way that conflicts are avoided (considering the

routes of other aircraft as well).

Gotteland et al. (2003a) try to also include CFMU slot constraints in order to achieve accuracy

of predicted take-off times in their ground traffic simulation model. A combination of the

Dijkstra’s algorithm and a Recursive Enumeration Algorithm is used to provide the

appropriate paths and holding times.

Genetic algorithms are also used by Gotteland and Durand (2003b) for the simulation tool

that is implemented at Charles De Gaulle airport. The aim of their research is to reduce taxi

time by considering the capacity of the runways and at the same time respecting the separation

rules between aircraft. In order to reduce delays a Branch & Bound algorithm which finds the

optimal path for the aircraft is used. They apply two different genetic algorithm based

methods; the first method finds combinations of paths and holding positions and the second

method finds the combinations of paths and the priority between aircraft.

A simulation model for calculating the decrease in delays after optimising the runway

sequencing of the aircraft and the conflicts that happen during taxiing is used by Deau et al.

(2008). Deau et al. use the time slots that aircraft need to arrive at the stand as variables of

the problem and the most important constraint they take into account is the wake turbulence

separation. The aim of the research is to reduce the departure delays and be consistent with

the time slots. For the solution of the problem they use a branch and bound algorithm. The

solution method for conflicting aircraft used a genetic algorithm that uses the predetermined

runway sequences as a target rather than a constraint. Similarly, Deau et al. (2009) contrast

the runway planning delays to the total ground delays while considering all the taxiing

18

constraints in order to reduce the delays that happen when aircraft move around the airport.

A hybrid optimisation method is introduced where a genetic algorithm searches for optimal

combinations of paths.

Herrero et al. (2005) present two approaches that make use of a time-space flow algorithm

and a genetic algorithm in order to reduce ground delays. In the first approach, the problem

is modelled using time constrained arcs within a network and the modified flow algorithm

estimates the maximum number of demanded operations that can be routed within a specific

period. The second approach uses a genetic algorithm where the number of the departures is

defined from the beginning. This approach provides a more flexible representation of the

problem and the ability to consider the operations separately.

Garcia et al. (2005) hybridise a genetic algorithm with a time-space dynamic flow-

management algorithm in order to reduce the delays. In particular, they use a modified

minimum-cost maximum-flow algorithm to find the initial population. Initially the genetic

algorithm with the use of an artificial intelligence method is used to solve the routing problem

using the routes and time schedules as variables. Then a deterministic flow algorithm is used

to form an initial flow distribution and the genetic algorithm uses a fitness function to process

the initial solution and find better ones (hybrid strategy).

Weiszer et al. (2015b) use an implementation of the Fast Non-dominated Sorting Genetic

Algorithm to solve the scheduling and routing of aircraft. Their model also takes into

consideration other problems that are affected or affect the routing and scheduling of aircraft.

The objective function tries to minimise the total taxi time and the fuel consumption. An

initial population of “individuals” is randomly created and the “individuals” with the best

objective values are selected. New “individuals” are created with a 2-point crossover and a

mutation is applied to each of them. A similar approach is followed in Weiszer et al. (2015c)

as well.

2.3.2 Mixed Integer Linear Programming

Mixed Integer Linear Programming Formulations are used in many cases of operational

research and they can be used as a method to obtain optimal solutions. Mixed Integer Linear

Programming Formulations are an extension of Linear Programming. In Linear

Programming, all constraints and the objective function have to be linear. However, in Mixed

Integer Linear Programming all or some of the variables can be integer. This restriction

increases the complexity of the model and finding a solution to a large-scale problem can

become difficult. Mixed Integer Linear Programming models for this problem, according to

19

Keith et al. (2008), can offer the advantage of continuous variables for the constraints but for

the routing and runway order integer variables can be used.

Mixed Integer Linear Programming (MILP) research

The mixed integer programming formulation method is often used for an optimization model

for the routing and scheduling of aircraft at the airport.

In the model that was developed by Smeltink et al. (2004), the route and the arrival/departure

time for each aircraft are used as input and the aim is to reduce the waiting times while taxiing

and to find the times that the aircraft should pass from particular points at the airport. In this

paper, it is suggested that a minimum speed should be introduced in order to reduce

computation time. The sequence each aircraft passes through a node is known unless two

aircraft want to use the same node at the same time. The research uses binary variables for

finding the optimal sequence in this case. In general, the results show that the delays due to

taxi conflicts are reduced.

Marín (2006) uses a linear multicommodity flow network model for solving the routing and

scheduling problem of aircraft on the ground. A Branch-and-Bound and a Fix and Relax

(some variables get fixed values during various stages of the solving process to speed up the

process) method are used in the MILP model which aims to reduce the total taxiing time of

all flights. The results of the Fix and Relax method outperform those of the Branch-and-

Bound method. Marín and Codina (2008) extend the taxi planning research that is proposed

by Marín (2006) and suggest a binary multicommodity network flow approach that takes into

consideration multiple objectives. The multi-objective approach attempts to reduce the

controller interference regarding the solution of conflicts that may arise, improve the routing

time and the delay for arrivals and departures, and the increase of number of aircraft that can

move on the airport at the same time without introducing more delays. Marín (2013) use

Lagrangian decomposition in order to solve the routing and scheduling process and to

minimise the taxi time of the aircraft.

Another integer programming formulation is used by Balakrishnan and Jung (2007) for

Dallas-Fort Worth airport in order to optimise the taxi route planning. Two different aspects

of the ground movement are discussed: these are controlled pushback and taxi reroute. The

model tries to find the surface routes and pushback times of the aircraft in order to reduce the

cost considering capacity and speed limits and a penalty is applied when the aircraft does not

depart on time. This method seems to be effective as it decreases both the departure and

arrival taxi time and the waiting time of the aircraft on the runway is significantly reduced as

well. All these factors could finally play an important role in saving fuel. However, the

20

particular model does not take into account the variation in taxi speeds and it may not be

reliable enough in order to be used at the airports.

Rathinam et al. (2008), suggest another MILP optimisation model for the ground movement

problem of the aircraft at Dallas-Fort Worth International airport. The objective function

minimises the total taxi time. The problem formulation is based on the research of Smeltink

et al. (2004). However, in Smeltink et al. the separation constraints are not included. Also,

there is an attempt to minimize the size of the problem by reducing the number of variables

as well as the number of constraints.

Roling and Visser (2008) also proposed a MILP model based model while trying to provide

an optimal solution for the ground movement problem. In particular, it is a deterministic space

and time model that tries to reduce the delays and the stops during taxiing through an optimal

scheduling of the aircraft. For this reason, it provides ground movement plans for each aircraft

with specified routes and times of arrival at each node. As the data used for taxi planning is

not precise, uncertainty is taken into account. The objective function tries to reduce a

weighted combination of the total taxi time and holding time and it is restricted within a fixed

planning horizon where conflicts are avoided by allocating one flight at a time to a node.

However, this idea was applied on a hypothetical airport and the suggested taxi time plan is

based on future guidance and control systems that will be able to precisely predict taxiing

operations.

Roling (2009) designs a taxi planning system that deals with more realistic scenarios. The

objective function of the model considers the total taxi time. Moreover, the model takes into

account: a constraint that blocks nodes when they are being used; a delay and route constraint

that assign a specific route and delay to each flight; and a waiting time constraint that applies

any delays to the next segments of an aircraft’s path as well. Roling (2011) further extend

this work by applying the model on different large airports to optimise the taxi times of

aircraft.

Keith et al. (2008) also propose a MILP optimisation method for the combination of airport

taxiway and runway scheduling problem. Their model is similar to the routing protocol that

Marín (2006) used for the taxi routing time and their continuous time formulation is based on

the Smeltink et al. (2004) model. In particular, the proposed optimisation model uses binary

variables in order to arrange the route of each aircraft in a similar way as in Smeltink et al.

(2004) and the aircraft can move from one point to another within a defined period in order

to satisfy the constraints, as in Marín (2006). The objective function in this model consists of

a weighted combination of the total taxi time and taxi distance, the final time on the runway

and a penalty according to the remaining distance which aircraft need to traverse in order to

reach their destination. The MILP model introduced by Keith et al. was modified and turned

21

into an iterative MILP formulation for departures by Clare et al. (2009a) in order to decrease

the computational demand for the separation constraints between aircraft. At first the added

constraints are relaxed, and each iteration is repeated until a solution without conflicts is

found.

Clare and Richards (2009b, 20011) use Iterative Receding Horizon MILP models that solve

the routing and the runway sequencing problem simultaneously. The objective function of

Clare and Richards (2009b) consists of the total taxi time, the total taxi distance, a penalty

which is connected to the remaining distance the aircraft need to travel and the time that the

aircraft have been through the last node. The objective function of Clare and Richards (2011)

takes into consideration the final time that the aircraft arrives at the runway, the total duration

of taxiing, the total distance traversed, and the distance left to travel based on the terminal

that is used.

Another MILP formulation is proposed by Yin et al. (2012) with data from George Bush

Intercontinental airport in Houston, Texas. The model tries to minimise the total taxi times

and cost through optimal taxi routes and schedules for each aircraft. Although this model can

help in reducing the taxi times and the fuel consumption it is rather difficult to solve. The

computational time for the optimal solution can be very long when it comes to a large-scale

problem despite the use of the rolling horizon method.

Evertse and Visser (2017) present an MILP model that can plan in real time the taxi

movement of aircraft. It takes into consideration unpredicted events by updating the solution

every second. In order to reduce the complexity of the problem, the problem was decomposed

by using a rolling horizon approach. In this formulation, the aircraft are allowed to

temporarily stop at any point (node of the graph) while they are traversing a taxiway. The

objective function focuses on minimising deviations from the CFMU slots and the emissions

of the aircraft.

2.3.3 Other Solution Methods

Other solution methods have also been used in order to solve the ground movement problem

and reach optimal or near optimal solutions. Researchers have used heuristic methods, which

include algorithms that can find an almost optimal solution within a short computational time.

If there is a difficult problem that cannot be solved using an exact method, heuristics could

be the most effective solution method to reach to a good solution.

Anderson et al. (2000) suggest the use of simple queuing models to control the taxi-in

(arrivals) and taxi-out (departures) procedures as well as a model that considers aircraft turns

22

in order to understand the dynamics of the airport ground operations. Simple queuing models

are also used by Carr et al. (2002) in order to handle departure congestion.

In Brinton et al. (2002) an event-based A* algorithm and a Co-Evolution strategy that provide

route schedules are tested. When the two approaches are compared regarding the time that

aircraft need to arrive to their destination the event-based A* algorithm seems more effective

than the Co-Evolution strategy.

Cheng and Foyle (2002) and Cheng (2003) suggest the use of the Ground-Operation Situation

Awareness and Flow Efficiency (GO-SAFE) approach, which provides traffic information to

the ground controller and supports him with taxi route planning as well as runway scheduling.

A simulation-based architecture that aims to improve the ground movement of the aircraft in

the taxiways next to the gates is suggested by Confessore et al. (2005). The proposed model

consists of a simulation model and an optimization module and the objective of the research

is to minimise traffic and delays that happen on the ground.

A time-based simulation model for organising the movement of the aircraft on the taxiways

and understanding the communication between controllers and pilots is proposed by Baik et

al. A time-dependent shortest path algorithm is used to provide optimal taxi routes for aircraft

to traverse between stands and runways (Baik et al. 2002, Baik and Trani 2008).

Cheng (2007) suggests a Flight-Deck Automation for Reliable Ground Operation (FARGO)

model to improve taxi control and precision. The proposed system enables communication

between tower controllers and pilots regarding surface traffic information.

Ravizza et al. (2011, 2014) and Weiszer et al. (2014) use heuristics in order to solve the

routing and scheduling problems. They both use a routing algorithm that routes aircraft

sequentially based on Dijkstra’s algorithm. The algorithm finds the quickest available path

for each aircraft, by taking into consideration previously routed aircraft. Ravizza and Atkin

(2011) try different heuristic methods to optimise the sequence that aircraft are being

considered, since the aircraft that is routed first is implicitly prioritised.

Kjenstad et al. (2013a, 2013b) use a heuristic decomposition of the ground movement and

departure sequencing problem. First the shortest route is found for each aircraft and then any

conflicts between aircraft are solved taking into consideration the departure sequence. Lesire

(2009, 2010) solves the routing and scheduling problem with an A* approach. The Lesire

(2010) approach uses a heuristic based on the Euclidian distance in order to find the optimal

path for each aircraft whereas Lesire (2009) improves a Contract Reservation Algorithm

(CRA) by using a heuristic and a pruning algorithm.

23

Mori (2010) uses cellular automata to simulate the congestion that occurs during departures.

Dijkstra’s algorithm is used by Gupta et al. (2010a) to find the optimal routes on a runway

and taxiway network in order to solve the ground movement problem. Bhadra et al. (2011)

propose an Airport Surface Detection Equipment Model X (ASDE-X) system that uses virtual

queuing in order to deal with congestion that happens during departures. ASDE-X has also

been used by Srivastava (2011) in order to create a taxi out prediction model.

2.3.4 Comparison of the approaches

The majority of the ground movement research has used approaches that are based on Genetic

algorithms and MILP models for the solution of the problem. GAs are heuristics which are

not exact solution methods and, as a result they cannot guarantee an optimal solution of the

problem. However, MILP models are capable of providing optimal solutions with the

condition that all of the objectives and the constraints are linear. Although there are various

ways to linearise the considered constraints and objectives, this condition can result in large

and complicated models that require significant computational time to provide a solution.

Therefore, the accuracy of the results could be affected. A less common solution approach

for solving the ground movement problem is the use of heuristics when for example the size

of the problem is uncertain, or the available solution time is inadequate to find an exact

solution.

As airport operation systems require real-time decision making, computation time is a very

important factor for the selection of a method. Thus, GAs often outperform MILP models.

For instance, in the paper of Roling and Visser (2008) the computational time increases

significantly when more flights are added to their MILP formulation.

In addition, the complexity of the ground movement problem often does not allow the use of

a realistic scenario. However more realistic scenarios should be considered when designing

models for the optimal solution of the ground movement problem. Moreover, it would be

beneficial to investigate a variety of solution methods such as metaheuristics and hybrid

approaches in order to take advantage of the assets of various models.

2.4 Pushback Process

The pushback process is an important aspect to consider when optimising the ground

movement process of aircraft since long delays can happen during this process. Delays can

happen by aircraft that pushback and block other aircraft or by aircraft not being able to

24

pushback due to traffic near the stand where they are parked. For this reason, it is important

to consider the pushback process when designing a ground movement optimisation model.

Chapters 4 and 5 provide more information on the research that has been performed in this

area. Since the pushback process is a more specific part of the ground movement process the

background research on this area has been described in detail in Chapter 4. This makes it

easier for the reader to better understand the context in which this chapter was developed.

2.5 The Gate Assignment Problem

Another problem that airports have to deal with is the gate allocation problem. The gate

allocation problem studies how flights should be assigned to particular stands in a way that

airports could avoid gate closures, blocked gates and delays in order to save money and time.

Although there have been many attempts for solving this problem, there have been a few

models that the gate allocation process is integrated with the aircraft ground movement

problem in order to find an optimal or near optimal solution for the wider problem. The gate

assignment problem can affect other airport operation processes as the stands where the

aircraft need to travel can affect the taxi time, the sequence and the scheduling of aircraft

resulting in delays, increased fuel consumption and consequently increased expenses.

2.5.1 Constraints

Various constraints have to be considered when dealing with the gate allocation problem (see

below). The solution of the gate assignment problem includes the proper assignment of a gate

to all of the aircraft as well as the times that aircraft need to be at their allocated gate.

Hard constraints

Two flights cannot be allocated to the same gate at the same time.

One of the most important constraints that need to be taken into consideration is that one

stand cannot be assigned to two flights at the same time (Xu and Bailey 2001, Ding et al.

2005, Dorndorf et al. 2008, 2012, Tang et al. 2010, Xu et al. 2011, Neuman and Atkin 2013,

Kim and Feron 2014, Kumar et al. 2014). If the time that the aircraft arrive or leave their

stand is the input of the solution method, then two aircraft with the same stand times cannot

be allocated to the same stand. In case the stand times are the output of the solution method

two aircraft could be allocated to the same stand as long as there is a long enough delay to

the second aircraft so that the stand times for the two aircraft no longer overlap each other

25

(Ding et al. 2005, Lim et al. 2005, Dorndorf et al. 2008, Neuman Atkin 2013, Kim and Feron

2014). Such a delay, however, would be costly for the airport.

Aircraft should be assigned to a suitable stand.

Each aircraft-stand assignment should be relevant to the size of the aircraft (Dorndorf et al.

2008, 2012, Neuman and Atkin 2013) and relevant stand facilities for the aircraft. Airlines

might also have preferences regarding facilities that might be available at specific stands

(Drexl and Nikulin 2008, Nikulin and Drexl 2010, Genc et al. 2012, Neuman Atkin 2013).

This would mean that specific flights are allocated to specific stands at airports. Furthermore,

the process of stand allocation considers safety measures such as available checks if there is

a domestic or international flight.

Aircraft-stand combination that are disallowed.

When an aircraft is allocated to a specific stand, aircraft might not be able to use other stands

that are close by (Dorndorf et al. 2008, 2012, Nikulin and Drexl 2010). Also, there might only

be specific types of aircraft that would be able to use these stands. This could be the case

when the aircraft is too large and prevents the use of a nearby stand by other aircraft as in

Neuman and Atkin (2013).

Soft constraints

Alongside with the above key constraints there are also other constraints that need to be

considered when dealing with the gate allocation problem.

• One constraint is the effort to minimise the distance that passenger have to walk through

the airport (Babić et al. 1984, Mangoubi and Mathaisel 1985). However, the walking

distance problem does not seem to be taken into consideration any more as airports are

more interested in environmental issues as well as ways to save fuel and consequently

money.

• Other researchers introduce ways to spread out aircraft in order to avoid congestion at

the airport (Kim et al. 2009, 2010).

• Airlines might have preferences regarding the gates that they use or the stands that their

aircraft are parked and might also follow a particular regular schedule which could be

beneficial (Nikulin and Drexl 2010, Dorndorf et al. 2012).

• Furthermore, there might be a time gap that needs to be respected between consecutive

flights that are allocated to the same gate (Dorndorf et al. 2008, Kim et al. 2010, Kim

and Feron 2011, Kumar et al. 20011, Neuman and Atkin, 2013).

• In addition to this, Kumar et al. (2011) suggest a pushback time gap constraint during

which aircraft with the same pushback route need to perform their pushback.

26

• Some researches might be dealing with a towing constraint when aircraft are staying long

at an airport and they have to be removed from the gate/stand (Dorndorf et al. 2007,

2008, Diepen et al. 2009, Kumar et al. 2011, Neuman and Atkin 2013).

• Lastly, the preceding constraint suggests that each flight can only be followed by a

maximum one flight (Xu and Bailey 2001, Lim et al. 2005).

2.5.2 Objectives

The gate allocation problem consists of several objectives.

One of the objectives is to reduce the deviation from the schedule (Cheng 1997, Dorndorf et

al. 2007, 2012, Drexl and Nikulin 2008, Nikulin and Drexl 2010,) or to increase the time

gaps/reduce the deviation from the time gaps between flights that are allocated to gates

(Dorndorf et al. 2008, 2012, Diepen et al. 2009, Bolat 2000, Neuman and Atkin, 2013).

Also, the objective of gate assignment research could be that flights have to be allocated to

the appropriate gate (Dorndorf et al. 2007, 2008, 2012, Drexl and Nikulin 2008, Nikulin and

Drexl 2010, Neuman and Atkin, 2013) or the reduction of the time an aircraft has to hold to

be assigned to a gate in case there are no available gates which might cause delays (Lim et

al. 2005, Hu and Di Paolo 2007).

Another objective that might be considered is to reduce the number of aircraft that are not

allocated to a gate and need to use a remote stand (Ding et al. 2004a, 2005, Dorndorf et al.

2008, 2012, Drexl and Nikulin 2008, Neuman and Atkin 2013) or the conflicts that might

occur around gates (Kim et al. 2009, Neuman and Atkin 2013).

Another objective is the reduction of the distance luggage has to be transferred (Hu and Di

Paolo 2007) and the passenger walking distance or waiting time (Babić et al. 1984, Haghani

and Chen 1998, Xu and G. Bailey 2001, Yan and Hou 2001, Ding et al. 2004a, 2004b, 2005,

Hu and Di Paolo 2007, Drexl and Nikulin 2008, Kim et al. 2010).

Lastly airports might have to consider the reduction of the towing of each aircraft (Dorndorf

et al. 2007, 2008, 2012, Nikulin and Drexl 2010, Kumar et al. 2014) or the maximisation of

the duration that each gate is in use (Genc et al. 2012).

2.5.3 Gate Assignment Problem Solutions

Different solution methods have been used to solve the gate assignment problem.

27

One of the solutions for the gate assignment problem uses Linear Programming. The LP

model that was developed by Bihr (1990) focuses on the minimisation of the distance

passengers walk and the constraints include each aircraft being assigned to one gate and that

all aircraft are assigned to a gate. However, the structure of the solution method is not that

flexible when last minute changes need to be done (e.g. flight delays). Xu and Bailly (2001)

propose a model that allocates gates to flights while considering daily data for passengers and

their destination. The problem is developed as a mixed integer problem with linear objective

function and constraints, and a meta-heuristic tabu model is used for the solution of the

problem. Yan and Hou (2001) propose a multiple objective zero-one integer model that tries

to reduce the walking distance and the passenger waiting time.

Mangoubi and Mathaisel (1985) compare two different methodologies for minimising

passenger walking distance, an LP model and a heuristic method. Their results show that

using heuristics makes it possible to obtain a nearly optimal solution to the problem much

faster than when solving the problem with the LP model.

Another solution for the gate assignment problem uses a genetic algorithm which creates the

chromosomes based on the relative positions between the aircraft in the queues to the gates

instead of the absolute positions. (Hu and Di Paolo 2007).

A recent research of Schaijk and Visser (2017) also deal with the gate assignment problem.

In their research, they change the constraints from deterministic into stochastic. The solution

model assigns gates to flights in a way that the delays that happen are not more than a given

value using binary integer programming.

2.5.4 Integration with the Ground Movement Problem

The gate allocation process significantly affects the ground movement process of aircraft.

There have been various attempts to integrate the gate allocation process with the ground

movement process. Since the integration between the gate allocation process and the ground

movement process is explicitly considered in Chapter 7, and in order to provide a better

context in which this chapter was developed, the research that has been performed in this area

has been presented in Chapter 7.

2.6 Runway Scheduling

The runway scheduling process also affects the ground movement process of aircraft.

Airports have to deal with the ground movement problem as soon as aircraft land on the

28

runway or when they leave their stand. As a result, ground movement operation systems

require the aircraft entry and exit times. Both arrival and departure runway scheduling are an

important issue that has to be dealt with when solving the ground movement problem.

In this section, the constraints and objectives of the runway sequencing problem are

introduced and the previous research as well as the integration with the ground movement

process at airports are presented.

2.6.1 Constraints

Various separation rules should be considered in order to increase the capacity of the runways

(Atkin et al. 2008, 2009, Benlic et al. 2016).

Wake vortex/turbulence

The constraint that is mostly taken into consideration when dealing with the optimization of

the runway scheduling problem is the separation between aircraft (Gotteland et al. 2001,

Leese et al. 2001, Deau et al. 2008, 2009, Clare et al. 2009a, Rathinam et al. 2008, Keith et

al. 2008, Atkin et al. 2008, 2009, Clare and Richards 2011, Lee and Balakrishnan 2012,

Weiszer et al. 2015c, Benlic et al. 2016). Wake vortices are created by the aircraft taking-off,

which are linked to the weight of the aircraft. For this reason, the aircraft that wants to use

the runway next needs to wait a certain amount of time for the vortices to dissipate and use

the runway safely. Deau et al. (2008) classify aircraft as low, medium and heavy according

to their weight and explain that there is a minimum waiting time of 180 seconds for a “low”

aircraft which is following a “heavy” aircraft departure.

En-route separations

Moreover, existing papers consider the en-route separations when aircraft follow similar

routes (Keith et al. 2008, Atkin et al. 2008, 2009, Deau et al. 2009, Clare et al. 2009a, Clare

and Richards 2009b, 2011, Benlic et al. 2016).

Aircraft speed

Speeds of aircraft are also considered in order to adjust separation between them (Atkin et al.

2008, 2009, Deau et al. 2009, Benlic et al. 2016).

Other parameters

Taxi time prediction is also an important factor for optimising the runway sequencing

problem (Atkin et al. 2006, 2008, Ravizza et al. 2014). Moreover, another factor that should

be considered is that aircraft might have to wait at a holding point close to the runway (Leese

29

et al. 2001, Atkin et al. 2007). Atkin et al. (2006, 2008) highlight the importance of taxi time

prediction for more effective runway scheduling models.

2.6.2 Objectives

Several objectives are considered when solving the runway scheduling problem. One of the

objectives is finding a sequence - that departing and arriving aircraft reach the runway - that

minimises the time between two consecutive take-offs or landings. The importance of an

optimised departure schedule that should be assigned to departing aircraft is highlighted in

various papers (Leese et al. 2001, Anagnostakis and Clarke 2003, Atkin et al. 2006, 2007,

2008, Keith et al. 2008, Deau et al. 2008, Deau et al. 2009, Gupta et al. 2010b, Apice et al.

2014), while other papers consider sequencing of arrivals (Ernst et al. 1999, Bianco et al.

1999, Chandran and Balakrishnan 2007, Tavakkoli et al. 2012). Other papers consider

optimal sequences for both arrivals and departures (Li et al. 2009, Balakrishnan and Chandran

2010, Weiszer et al. 2015c, De Maere and Atkin 2015, Benlic et al. 2016).

Papers that deal with the runway problem also focus on the maximisation of the runway

throughput (Anagnostakis and Clarke 2003, Atkin et al. 2006, 2007, 2008, Chandran and

Balakrishnan 2007, Li et al. 2009, Balakrishnan and Chandran 2010, Gupta et al. 2010a,

Apice et al. 2014, Benlic et al. 2016).

Another objective that is considered is the reduction of the total delay of aircraft by taking

into account the delays of all of the aircraft in order to minimise their total delay (Atkin et al.

2006, Gupta et al. 2010a, 2010b, Weiszer 2015c).

In some papers there might be specific time slots that need to be met (Leese et al. 2001,

Karapetyan et al. 2017).

Finally, resequencing to avoid unfairness is considered by some papers that constrain the

maximum position shift the aircraft can have (Psaraftis 1980, Balakrishnan and Chandran

2010) or a penalty is applied when a reference schedule is not followed (Beasley et al. 2004).

2.6.3 Previous work on runway scheduling

Bennell et al. (2011) present the different solution approaches that can be used to solve the

runway optimization problem. The key methodologies that were identified are heuristics and

meta-heuristics, dynamic programming and branch and bound techniques.

30

Atkin et al. (2007) propose a hybrid meta-heuristic model that supports air controllers by

taking more departing aircraft into consideration. Heuristics are also used in optimising the

runway scheduling process (Ernst et al. 1999, Bianco et al. 1999, Beasley et al. 2004, Soomer

and Koole 2008).

Several papers use dynamic programming models (Psaraftis 1980, Leese et al. 2001,

Chandran and Balakrishnan 2007, Li et al. 2009, Balakrishnan and Chandran 2010, De Maere

and Atkin 2015). A dynamic programming algorithm which re-sequences the departures is

suggested by Leese et al. (2001). The model uses holding points for aircraft that are already

sequenced in order to provide an even more effective runway sequence.

Dynamic programming and backwards induction is suggested by Li et al. (2009). A recent

research of De Maere and Atkin (2015) proposes a pruned dynamic programming model for

the solution of the runway scheduling problem for arrivals and departures that takes into

consideration different cost compositions that each aircraft can have. The results show that

the model can produce optimal runway sequences for aircraft in short computation time.

Other techniques have been used to solve the runway sequencing problem for either

departures or arrivals. Gupta et al. (2010a, 2010b) use MILP model to sequence departing

aircraft. Tavakkoli et al. (2012) investigate arrival sequences only, using a fuzzy

programming solution method and the objective function aims to reduce the deviation cost

from the scheduled time. Apice et al. (2014) attempt to solve the departures sequencing

problem using a model that reduces delays and increases the capacity of the runway to help

air traffic controllers in airports with handling multiple runways. A two-stage algorithm is

used and an optimal departure schedule is produced.

Anagnostakis and Clarke (2003) also propose a two-stage algorithm for optimal runway

scheduling. Karapetyan et al. (2017) suggested the use of a user-friendly Pre-Departure

Sequencer (PDS) which is created for medium sized airports. The PDS is designed to be part

of a larger scale system and the researchers focused on creating a system that is clear

regarding its operation and its decision making.

2.6.4 Integration with Ground Movement

Runway sequencing can also be considered as a ground traffic optimization aspect (Gotteland

et al. 2001, Deau et al. 2008, 2009, Anderson and Milutinović 2013, Weiszer et al. 2015c,).

While the ground movement solution methods usually focus on minimising the total taxi time

of the aircraft, most integrated research focus on guaranteeing that the aircraft are at the

31

runway at a specific time (Rathinam et al. 2008, Keith et al. 2008, Clare et al. 2009a, Clare

and Richards 2009b, 2011, Weiszer et al. 2015c).

Separation rules that are taken into consideration are mostly connected to wake vortex,

however, en-route separations are also considered (Keith et al. 2008, Clare et al. 2009a, Clare

and Richards 2009b, 2011, Lee and Balakrishnan 2012, Weiszer et al. 2015c, Benlic et al.

2016).

Some of the models that consider or integrate with the ground movement process are

summarised below.

Atkin et al. (2006) suggest a ground controller support system that organises the sequence of

the aircraft before they take off. The relationship between moving the planning horizon and

the frozen take-off order as well as changes on it is investigated. The model uses a tabu search

that provides an ideal take-off schedule. Then the paths close to the runway are defined and

the holding point model plans the possible overtaking. Finally, the model evaluates the cost

of the predicted departure times.

A meta-heuristic solution approach that provides optimized departure sequences is proposed

by Atkin et al. (2008) that takes part of the ground movement process into consideration. The

research considers three different separation rules in order to increase the capacity of the

runways. The first separation rule is the ''wake vortex" which is linked to the weight class of

the aircraft, the second separation rule is applied when aircraft follow similar routes and the

third rule considers speeds of aircraft in order to adjust separation between them. A holding

point network before the runway is modelled in order to provide achievable take-off

sequences.

Keith et al. (2008) suggest a MILP model to solve optimally a combination of the runway

scheduling and routing of the aircraft while satisfying the separation constraints. Clare et al.

(2009a) extend this research by using a receding horizon in order to improve the execution

times. Moreover, Clare and Richards (2009b, 2011) propose models for runway sequencing

using a MILP model in order to ensure that the aircraft arrive at the runway on time (see

Section 2.3.2).

Runway sequencing is considered by Deau et al. (2008, 2009) as a ground traffic optimization

aspect. Their research uses a ground traffic simulator to model and discuss the runway

sequencing problem and the way the sequences can be implemented on the runway.

The models of Lee and Balakrishnan (2012) and Ravizza et al. (2014) hold the aircraft at the

stand in order to reduce the waiting time at the runway and to make sure that the aircraft

32

arrive at the runway at the right time taking into consideration the ground movement of other

aircraft and that they arrive at the runway at the correct sequence.

Weiszer et al. (2015c) introduce a runway scheduling model for arrivals and departures that

is based on an evolutionary algorithm. The purpose of the research is to find the ideal arrival

and departure times of the flights in order to reduce runway delays and fuel burn by

optimising the speed profiles of the aircraft and by minimising the waiting time at the runway.

However, only wake-vortex separations are considered in this paper. Benlic et al. (2016) also

introduce a runway scheduling problem that sequences arrivals and departures while

considering the aircraft ground movement. The aim of the model is to increase the runway

throughput and reduce the total taxi times of aircraft using a Receding Horizon Control based

Iterated Local Search (RHC-ILS) technique for tackling the runway sequencing problem.

2.7 Taxi time prediction

Taxi time prediction is another airport operation that should be considered when dealing with

the ground movement problem. Accurate time prediction will help in better prediction of

take-off times as well as more accurate prediction of arrival times (Idris et al. 2002). Also,

taxi time prediction can be useful as it can be used for later engine start-up in order to achieve

a decrease in fuel consumption (Atkin et al. 2011). Moreover, Simaiakis and Balakrishnan

(2010) and Balakrishna et al. (2008) highlight the importance of accuracy in taxi-out

prediction as a main factor in fuel burn, emissions and cost management.

Rappaport et al. (2009) examine the impact that speed reduction of turning aircraft has on

taxi time since aircraft move faster when they travel straight. Moreover, Atkins et al. (2008)

mention that taxi time around corners while taxiing can differ significantly.

Pina and De Pablo (2005) propose a taxi planner prototype which is based on a mathematical

model that optimises the ground movement problem. Apart from estimating the ideal route

for the aircraft the model also predicts its taxi time. In this model taxi times are considered as

constants and they are estimated considering parameters like the weather, the runway that is

being used, the type of the aircraft, the stand location or the traffic. The research shows that

statistical analysis can help in reliable taxi time prediction.

Tu et al. (2008) propose a model that estimates delays for departing aircraft using seasonal

and daily delay patterns to represent the distribution of delays. Various kinds of delays, such

as airport congestion and weather conditions, are studied together as a large group. The main

characteristic of the model is the calculation of the delay propagation effect (delays

33

accumulated by previous flights) which is used to estimate the congestion levels at the airport

and future delays for departures.

Simaiakis and Balakrishnan (2010) carry out a research in order to analyse how congestion

affects taxi time, fuel burn and emissions. They suggest that congestion at the airports occurs

because of multiple departures that happen at an airport and they use metrics that: take into

account the number of flights; compare the actual and the free-flow taxi-out times; and

evaluate them according to the airport throughput.

Furthermore, linear regression models have been used to estimate taxi time (Kistler and Gupta

2009, Jordan et al. 2010, Atkin et al. 2011 Ravizza et al. 2013a). A statistical learning

approach, which chooses the most important variables from a subset, is used to model taxi

time by Jordan et al. (2010). The approach uses data from Dallas/Fort Worth International

Airport and it includes both taxi-out and taxi-in times. Information from the same airport are

used by Kistler and Gupta (2009) to represent the taxi time and traffic interaction. Atkin et

al. (2011) examine a combined ground movement system and a statistical multiple linear

regression model to analyse the predictability of taxi times at London Heathrow airport. A

taxi time prediction model for arriving and departing aircraft is suggested by Ravizza et al.

(2013a) who also study the key parameters that lead to changes in taxi times (taxi distance,

turning angle, arriving and departing aircraft speed, traffic at the airport). However, Chen et

al. (2011b) suggest the use of Fuzzy Rule-Based Systems (FRBSs) as opposed to linear

regression methods in order to enhance the precision of taxi time estimation models.

Idris et al. 2002 examine the basic elements that affect the taxi-out time and consider the size

of the departure queue (take-off queue) as the most crucial point for more accurate estimation.

More specifically, the queue size is defined as the number of take-offs that happen between

an aircraft’s pushback and take-off time. The model uses the number of aircraft that are about

to depart and measures the size of the take-off queue by estimating the passing of the aircraft

while taxiing-out. However, the suggested model only focuses on departing aircraft taxi time.

The size of the departure queue is also considered for the prediction of taxi-out time by

Simaiakis and Balakrishnan (2009). They suggest a queuing model for departures that

decreases taxi time in order to reduce emissions.

Taxi-out time prediction is the subject of some other studies. Balakrishna et al. (2008, 2009,

2010) suggest taxi-out estimation that is based on stochastic dynamic programming and uses

the strategy of Reinforcement Learning (RL). Balakrishna et al. 2008) propose an average

taxi-out time estimation method that was tested on John F. Kennedy International airport. The

model estimates the taxi-out time 30-60 minutes prior to take-off and seems to be a flexible

model that can adjust to the constantly changing departure operations. Balakrishna et al.

(2010) is the first research that applies a nonparametric reinforcement learning method and

34

artificial intelligence, which is based on stochastic dynamic programming, in order to

estimate taxi-out time on the departures of Tampa International Airport. An approximate

dynamic programming model that is based on RL is also used by Ganesan et al. (2010).

Clewlow et al. (2010) examine departures at John F. Kennedy International Airport and

Boston Logan International Airport to study the elements that affect how long taxi-out

procedures last. The number of arrivals and departures, the runway configuration, the

weather, and the terminal where the aircraft is allocated, are considered to be the main factors

that affect the taxi-out time duration but with the number of aircraft that arrive and depart

being the most important parameters. This is the first approach that considers that the number

of arriving aircraft has an impact on taxi-out time.

Srivastava (2011) proposes a taxi-out time prediction system that is based on historical data

on traffic flow. In particular, the model digitizes the surface of the airport as logical areas

(taxiways, terminals, runways, queues) and then it defines the location of the aircraft. The

variables that are taken into consideration are the position of the aircraft at the queue, the

runway distance, the arrival and departure rates, and weather. However, the estimations of

the model are short term and it has to be readjusted whenever the traffic plan changes.

2.8 Conclusions

Finding the optimal solution to the aircraft ground movement problem - as well as to the gate

allocation problem and runway sequencing problem - is a very difficult task. The majority of

the papers that have been reviewed suggest solutions that solve different problems that affect

each other, but do not provide an optimal solution for the overall problem.

There is no doubt that an optimal solution for the integrated problem will be an asset for the

airports as they can save money by reducing fuel consumption and delays. Furthermore, it

may increase the capacity of the airports and make them more passenger-friendly. All these

improvements can provide a more efficient and environmentally friendly airport.

Building a model that integrates more than one airport problem is becoming more and more

popular as the execution time for many methods is improved and the results get closer to

optimal solution. Having a more integrated solution and considering these problems

separately from the theoretical level and closer to a practical implementation is necessary in

order to design effective systems.

35

3

The QPPTW algorithm, Datasets and Airports

3.1 Introduction

This chapter introduces the routing algorithm which was used as a starting point for various

extensions that will be presented in many of the following chapters. Moreover, this chapter

reviews the datasets, as well as the airports that have been used for performing the

experiments in this thesis.

The majority of the experiments that were executed for this research made use of the Quickest

Path Problem with Time Windows (QPPTW) algorithm. The algorithm has been developed

for solving the ground movement process of aircraft and can find the quickest path for each

aircraft by taking into consideration previously routed aircraft. In the next section (Section

3.2), the key concepts of the QPPTW algorithm are introduced and a pseudocode of the

algorithm is presented and described.

The experiments in this thesis were executed using datasets from three different international

airports. These airports are Stockholm Arlanda Airport, Zurich Airport and Manchester

Airport. As the aim of this research is to increase the real-world applicability of ground

movement models in airports, it is important to make use of real data when running the

experiments. Using real data from airports makes it possible to run experiments in more

realistic scenarios and draw more accurate conclusions. In Section 3.3 the datasets and the

layouts that were used for the experiments are presented.

Finally, the conclusions are summarised in Section 3.4.

36

3.2 The QPPTW Algorithm

QPPTW is a routing algorithm that was based on Dijkstra’s algorithm (Dijkstra 1959) and

was developed by Gawrilow et al. (2008) and later modified by Ravizza et al. (2014) to make

it more suitable for airports. The algorithm is fully explained in the PhD thesis of Stenzel

(Stenzel 2008) and the PhD thesis of Ravizza et al. (2013c), so only a summary of its

operations will be presented here, sufficient to understand the key processes and principles in

the previous work, the modifications which have been made, and the contributions of the

current work.

In order to maintain a thread of continuity with the original QPPTW algorithm and to make

it easier for the reader to better understand additions that were made in the following chapters,

the notation of variables that was used below are the same or similar to the notation that was

used in the PhD thesis of Stenzel (2008) and Ravizza (2013c). For the same reason, the

pseudocode that is presented later in this section (Algorithm 3.1) is also the same as the one

used in the PhD thesis of Ravizza (2013c).

3.2.1 Introduction of the QPPTW Algorithm and Benefits of Using

this Methodology

In summary, the QPPTW algorithm is a deterministic algorithm that finds the quickest path

for each aircraft in turn, taking into consideration aircraft that have been previously routed.

When there are no delays this will be the shortest path, but when some parts of the shortest

path are already being used (blocked) by other aircraft at that time, then the quickest path can

involve either taking an alternative route (around the blockage) or waiting for the blocking

aircraft to move. The algorithm is implemented to iteratively expand out from the starting

vertex to all neighbouring vertices, like Dijkstra’s algorithm, but with time windows denoting

when the edges are already in use. The weight of each edge is normally the time that it takes

to traverse the edge, however where the vertex is occupied this edge weight is increased by

the time that it will take for the other aircraft to finish using that vertex. It should be noted

that since there may be multiple time windows for which an edge is occupied, there also may

be multiple gaps which could be utilised by other aircraft, so the expansion has to consider

not only utilising the edge after other previously routed aircraft, but also whether gaps can be

utilised by new aircraft.

The QPPTW algorithm has been chosen for this research for a variety of reasons. First it is

able to take into consideration multiple paths, which is an important aspect, when there are

many arriving and departing aircraft that move at the airport at the same time. Chapter 4

37

(Section 4.6), where the QPPTW algorithm is compared with a MILP based methodology,

shows the importance of being able to take multiple taxiways into consideration when solving

the routing process. Moreover, the research in this thesis is not limited to the current state of

traffic in airports. Optimising the ground movement of aircraft can decrease the delays and

increase the number of aircraft that can move at an airport at the same time. This, however,

means that aircraft will have to utilise any of the available taxiways and not only focus on

using a few short paths. The importance of multiple taxiways in an airport is highlighted in

Chapter 6. A compact airport with many aircraft moving at the same time is shown to result

in shorter taxi times, than a sparser airport with large taxiways, due to taking into

consideration multiple taxiways.

Another benefit of the QPPTW algorithm is that it can route aircraft fast, allowing for

integration with other processes. Some processes that happen in an airport can affect the

routing process, such as the gate allocation process (where aircraft are allocated to gates) or

the runway sequencing process (where the sequence of aircraft that take-off at the runway is

scheduled). Integrating these processes with the routing process can be computationally

expensive, making it impossible much of the time to find a solution within a reasonable

timeframe. Having a fast routing process that can be invoked multiple times by other

processes is essential in any integrated model. This makes the QPPTW algorithm ideal for

implementing with other processes such as the gate allocation process, which is investigated

in Chapter 7.

3.2.2 Notation and Definitions

Table 3.1 shows the definitions of the notation that was used to describe the QPPTW

algorithm (Algorithm 3.1).

Table 3.1: Table of definitions for the QPPTW algorithm

E The set of all edges

V The set of all vertices

e ∈ E An edge

υ ∈ V A vertex

G = (V, E) The directed graph representing the airport layout, with vertices υ ∈

V and edges e ∈ E

𝑎𝑒
𝑗
 The start time of the jth time-window on edge e ∈ E

𝑏𝑒
𝑗
 The end time of the jth time-window on edge e ∈ E

𝐹𝑒
𝑗

= [𝑎𝑒
𝑗
, 𝑏𝑒

𝑗
] jth time-window on edge e ∈ E, from time 𝑎𝑒

𝑗
 to time 𝑏𝑒

𝑗

38

F(e) The sorted set of all of the time-windows on edge e ∈ E

H The Fibonacci heap storing the added labels

aL The start time of Label L

bL The end time of Label L

IL = [aL, bL] The time interval used in a label L

predL The predecessor label of label L

L = (υL, IL, predL) A label on vertex υL ∈ V with a time interval IL and predecessor label

predL

L(υ) The set of all of the labels at vertex υ ∈ V

R A conflict-free route that is being generated

s ∈ V A source vertex

t ∈ V A target vertex

time The time that an aircraft sets off

p The pushback duration

T = (s, t, time, p) A taxi request to route, from source s ∈ V setting off at time time, to

target t ∈ V and with pushback duration p (for departures)

we The weight (necessary taxi time) of edge e ∈ E

H.getMin() A function that returns the element with the lowest value in heap H

Maximise(a, b) A function that returns the element with the largest value between

elements a and b

head(e) A function that returns the vertex y of an edge e that is directed from

vertex x to vertex y.

3.2.3 Definitions of Key Concepts

The expansion steps of the QPPTW algorithm are similar to Dijkstra's algorithm. However,

the QPPTW algorithm can be expanded several times to the same vertex as it can use different

time-windows. In order to explain the algorithm, it is necessary to define the following

concepts.

Firstly, the time windows are used in order to provide the availability of each edge.

Definition: Set of sorted time-windows

The sorted set of time windows F(e) contains the time intervals 𝐹𝑒
𝑗

= [𝑎𝑒
𝑗
, 𝑏𝑒

𝑗
] for edge e that

identify the time gaps that edge e can be used by an aircraft. The times that edge e is occupied

by aircraft that have been previously routed are therefore excluded. This set is defined for

each edge and all of them are used as an input every time an aircraft is routed.

39

The algorithm uses labels to expand to a vertex.

Definition: Label

A label L = (υL, IL, predL) consists of the vertex υL that the current aircraft considers

expanding to, the time interval IL = [aL, bL] that it would take for the current aircraft to reach

vertex υL, and a reference to the label where label L has expanded from (predL). The vertices

of each predecessor label (predL) can be used to form a route, and the time intervals IL

denotes the traversal times for each edge along the route.

A dominance check between labels takes place, in order to remove the labels that are

dominated.

Definition: Dominance

A label L´ = (υL´, IL´, predL´) is dominated by another label L = (υL, IL, predL) on vertex υL´ =

υL if and only if IL´ ⊆ IL. This means that the following happens: aL ≤ aL´ and bL ≥ bL’.

Once the quickest path is found, the time-windows are adjusted based on the time intervals

that the edges were used, and the algorithm is executed again for the next aircraft.

3.2.4 Explaining the QPPTW Algorithm

The QPPTW algorithm requires as an input the graph G = (V, E) (see figures 3.1, 3.3 and

3.4), with each edge having its own weight function we. Each edge has its own set of time

windows F(e) that provides the availability of the edge. The algorithm also requires the

details of the flight i that will route Ti = (si, ti, timei, pi) and returns the quickest available path

R that aircraft i can use to go from vertex si to ti for arrivals (or from vertex ti to si for

departures since they are routed backwards) by respecting the previously routed aircraft

(time-windows).

The pseudocode of the QPPTW algorithm is provided in Algorithm 3.1. The algorithm is

sorting the labels that are generated in a Fibonacci heap H (see Table 3.2) that is initialised in

line 1 of Algorithm 3.1. A Fibonacci heap is a data structure where data can be stored, and it

is used for retrieving the element with the smallest value in a short amount of time. Using a

Fibonacci heap provides the same benefits as it does for Dijkstra’s algorithm regarding the

running time of Algorithm 3.1. The labels are stored in a list L that is used for referencing

the previous vertex that a label has expanded from and is initialised in line 2. This list is used

for accessing the labels for the dominance check that happens in lines 23-29 and for building

the route starting from the latest label that has reached the target (or source) vertex all the

way back to the source (or target) vertex by finding the previous label of each label when

40

reconstructing the route in line 9. The first label that uses the source vertex is generated in

line 3 and is inserted into the Fibonacci heap and into the label list in lines 4 and 5. When a

label is inserted in the Fibonacci heap it is sorted based on the key that the label was added,

which is the earliest arrival time to that vertex.

If the queue is empty (line 6) at this point it means that there is not a new vertex for the

algorithm to expand to, which means that there is no available path to reach the target vertex

(line 32). If the Fibonacci heap is not empty, the label with the smallest key (line 7) is pulled.

If the vertex of the pulled label is the target vertex (line 8), the route is formed (lines 9-10),

otherwise the algorithm expands to the available vertices. The time-windows of the outgoing

edges are examined (lines 11-12). The algorithm checks if the time interval of the time-

window of each edge is sufficient for the algorithm to expand to the vertex at the end of the

edge (lines 14 and 16).

The earliest time that the edge under consideration can be exited is found in lines 18-19. If

the time-window of the edge is wide enough for expanding towards the next vertex (line 20)

a new label is generated (lines 22).

The algorithm then checks if the new label is dominated by previous labels and if so, it is not

considered (lines 25-26) or if the new label dominates a previous label, then the dominated

label is removed from the Fibonacci heap (lines 27-29). Finally, the new label is added in the

Fibonacci heap with the key being the time that the aircraft arrives at the vertex where the

algorithm has expanded (line 30).

Since the label with the smallest key is always pulled by the Fibonacci heap, this means that

the time that the aircraft arrives at the vertex of the label under consideration is always going

to be the earliest time that the aircraft can arrive at that vertex. If that vertex is the target

vertex, this means that the algorithm has found the fastest way to reach this vertex and the

route that is formed is the quickest path from source to target vertex.

The presented algorithm has been enhanced and altered for the purposes of this research and

new versions as well as the original algorithm have been used for the routing process of

aircraft in airports in the chapters to follow.

41

Algorithm 3.1: Quickest Path Problem with Time Windows (QPPTW)

Input: Graph G = (V, E) with weights we for all e ∈ E, the set of sorted time-windows F(e)

for all e ∈ E, a taxi request Ti = (si, ti, timei, pi) for aircraft i, with the source vertex si ∈ V, the

target vertex ti ∈ V and the start time timei.

Output: Conflict-free route R from si to ti with minimal taxi time that starts at the earliest at

time timei, respects the given time-windows F(e) or returns the message that no such route

exists.

1 Let H = ∅

2 Let L(υ) = ∅ ∀ υ ∈ V

3 Create new label L such that L = (si, [timei, ∞), nil)

4 Insert L into heap H with key timei

5 Insert L into set L(si)

6 while H ≠ ∅ do

7 Let L = H.getMin(), where L = (υL, IL, predL) and IL = [aL, bL]

8 if υL = ti then

9 Reconstruct the route R from si to ti by working backwards from L

10 return the route R

11 forall the outgoing edges eL of υL do

12 foreach 𝐹𝑒𝐿

𝑗
 ∈ F (eL), where 𝐹𝑒𝐿

𝑗
 = [𝑎𝑒𝐿

𝑗
, 𝑏𝑒𝐿

𝑗
], in increasing order of 𝑎𝑒𝐿

𝑗
 do

13 /*Expand labels for edges where time intervals overlap*/

14 if 𝑎𝑒𝐿

𝑗
 > bL then

15 goto 11 /*consider the next outgoing edge*/

16 if 𝑏𝑒𝐿

𝑗
 < aL then

17 goto 12 /*consider the next time-window*/

18 Let timein = Maximise (aL, 𝑎𝑒𝐿

𝑗
) /*𝑎𝑒𝐿

𝑗
 > aL ⇒ waiting*/

19 Let timeout = timein + 𝑤𝑒𝐿

20 if timeout ≤ 𝑏𝑒𝐿

𝑗
 then

21 Let u = head(eL)

22 Let L’ = (u, [timeout, 𝑏𝑒𝐿

𝑗
], L)

23 /*dominance check*/

24 foreach L̂ ∈ L(υ) do

25 if L̂ dominates L’ then

26 goto 12 /*next time-window*/

27 if L’ dominates L̂ then

28 Remove L̂ from H

29 Remove L̂ from L(υ)

30 Insert L’ into heap H with key aL’

31 Insert L’ into set L(υ)

32 return “there is no si - ti route”

42

3.3 Airports and Graphs

In this section, the airports and graphs as well as the datasets that were used for the

experiments in this thesis are presented. These airports were: Stockholm Arlanda Airport

(located in Stockholm, Sweden), Zurich Airport (located in Zurich, Switzerland) and

Manchester Airport (located in Manchester, England). It is important to mention that the

datasets are not open for publication as a non-disclosure agreement for all of the datasets has

been signed by the University of Nottingham and Sintef – a research centre in Oslo, Norway

that is also involved with optimising the ground movement operations in airports (see Chapter

1 Section 1.6).

A graph model of each airport has been developed using nodes and edges. Since the QPPTW

algorithm restricts the use of an edge to only one aircraft, the length of each edge has been

limited in order to represent more reasonable distances (the maximum weight we of each edge

e was limited to 20 seconds or less). This avoided blocking edges for an unrealistically long

time, providing a more accurate model of the interaction between aircraft.

3.3.1 Zurich Airport

Zurich airport is the largest international airport in Switzerland and is the primary hub for

Swiss International Air Lines. In 2016 the airport handled around 27.6 million passengers

and 269,160 aircraft movements.

Figure 3.1 shows the developed graph model of the airport, as well as the location of the three

terminals and the three runways. The stands and the areas where aircraft could park are

marked by grey nodes.

The airport has three passenger terminals (Terminals A, B and E) and three runways (16/34,

14/32 and 10/28, where the numbers represent the magnetic azimuth of the runway’s direction

in decadegrees). The airport uses the runways in three ways. The north concept uses runway

14 and 16 for landing and runway 28 and 16 (and runway 10 for north-easterly winds) for

take-offs. The east concept uses runway 28 for landing and runways 32 and 34 for take-offs.

The south concept uses runway 34 for landing and runways 32 and 34 (and partially runway

28) for take-offs. The north concept is used for the majority of the time during the day.

The data that was used for this airport consisted of the following information. The type of the

flight (arrival or departure), the landing time or arrival time of the aircraft (depending on the

type of the flight), the size of the aircraft, the runway where the aircraft land or take-off and

the stands where the aircraft park or start their journey from. The above data was provided

43

for an entire week, from the 27th of June until the 3rd of July 2011. The dataset contains 5609

flight movements during this week. Due to the limited availability of real datasets that can be

provided by airports, it was not possible to run the experiments with more recent data and

with more datasets.

Figure 3.1: Model of Zurich airport as a graph with edges and nodes

44

The data about Zurich airport also provided the locations of the stands and the runways

making it possible to build a graph with nodes and edges that would simulate the layout of

the airport (see Figure 3.1). The developed graph model of the airport consists of 424 nodes

(94 of which are stands) and 507 edges.

Figure 3.2 shows the number of aircraft movements for each hour during the day. Arrivals

and departures are separated using different colours. As the graph shows, the airport is mainly

busy between 7 a.m. and 9 p.m. with an exception during 2 p.m. to 4 p.m.

Figure 3.2: Traffic for different hours during the day in Zurich airport

3.3.2 Stockholm Arlanda Airport

Stockholm Arlanda Airport is the largest international airport in Sweden and is a major hub

for Scandinavian Airlines and Norwegian Air Shuttle. In 2016 the airport handled 24.7million

passengers.

Figure 3.3 shows the developed graph for Arlanda airport, as well as the location of the

terminals and the runways. The stands and the areas where aircraft can park are marked by

grey nodes.

The airport has four passenger terminals (Terminals 2, 3, 4 and 5) and three runways

(01L/19R, 01R/19L and 08/26). Runways 01L/19R and 01R/19L are parallel runways and

aircraft can take-off and land simultaneously at the same time using these runways. Runway

01L is usually used for departures and 01R (right side of the picture) is used for arrivals.

Runway 26 (at the top of the picture) is newer and used in off-peak conditions.

0

50

100

150

200

250

300

350

400

450

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
u

m
b

er
 o

f
ai

rc
ra

ft

Hour of the day

Arrivals

Departures

45

Figure 3.3: Model of Arlanda airport as a graph with edges and nodes

Two hours of historical data (from 5 a.m. to 7 a.m. on the 21st of May 2014) from the Swedish

Air Navigation Service Provider (ANSP) were provided for this airport and were used as a

basis for the instances that were created. The data that was used for this airport consisted of

the following information: The take-off time of the aircraft, the size of the aircraft, the runway

where the aircraft take-off and the stands where the aircraft start their journey from. For this

airport, only data for arriving aircraft was available.

Table 3.2 shows the number of aircraft and the time span for each of the instances that were

used for Arlanda airport. Instance 1 consists of the historical data and extra flights that were

46

added in order to increase the number of aircraft that interact with each other when the

problem is solved. It includes 54 aircraft (44 from the original dataset) set to depart within 2

hours.

The remaining instances were developed to simulate the effects of heavier airport loads, by

altering the original data (by adding more aircraft and assigning them to different stands),

creating problems of increasing difficulty. These resulting instances therefore have different

characteristics for sparsity of movements and complexity of solution.

Table 3.2: Specifications of instances

Instance No. No. of Aircraft Time span

1 54 2h

2 70 3h 40m

3 98 4h 50m

4 118 4h 50m

5 140 4h 50m

Further to the above instances, in Chapter 4, where the developed models are executed using

departing aircraft, as well as in Chapter 6, where the two airport layouts are compared, data

from Zurich airport has been utilised in order to be used in Arlanda airport. More details on

how this data was applied to a different airport can be found in Chapter 6.

The locations of various taxiways, as well as the locations of the stands and the runways,

were also provided by Sintef, making it possible to build a graph with nodes and edges that

would simulate the layout of the airport. Figure 3.3 shows the developed graph, as well as the

location of the four terminals and the three runways. The stands and the areas where aircraft

could park are marked by grey nodes. The developed graph consists of 606 nodes (118 of

which are stands) and 668 edges.

3.3.3 Manchester Airport

Manchester airport is the third busiest airport in the UK. In 2016 the airport handled 25.6

million passengers and 192,293 aircraft movements.

The airport has three passenger terminals (Terminals 1, 2 and 3) and 2 parallel runways next

to each other (05L/23R and 05R/23L).

The historical data that was used for this airport are from the 28th of August 2011 to the 4th of

September 2011 and consisted of the following information: The type of the flight (arrival or

departure), the time that the aircraft will arrive to, or depart from, the stand (depending on the

47

type of the flight) and the size of the aircraft. In total, there are 21 datasets provided, each

consisting of operations from 1 terminal for 1 day (7 days for 3 terminals). As it will be seen

in Chapter 7, each terminal has been solved separately due to the more demanding execution

time of the model that this dataset is used for.

The locations of nodes and the connections between them (edges) that would simulate the

layout of Manchester airport was also provided. Figure 3.4 shows the developed graph, as

well as the location of the three terminals and the runway. The developed graph consists of

113 nodes and 152 edges. In contrast to the graphs that were described earlier, this graph does

not include nodes for the stands as for this airport the exact locations of the stands were not

available. Moreover, since the two runways are next to each other and the second runway is

accessible only through the first runway, to simplify the problem, this graph has only one of

the runways modelled.

Figure 3.4: Model of Manchester airport as a graph with edges and nodes

48

Figure 3.5 shows the number of aircraft movements for each hour during the day. As the

graph shows, the airport is mainly busy between 7 a.m. and 10 a.m. and between 5 p.m. and

8 p.m.

Figure 3.5: Traffic for different hours during the day in Manchester airport

3.4 Conclusions

In this chapter, the main algorithm that is used for solving this problem is presented. This

algorithm has been extended and modified in various ways and used for solving the ground

movement problem in each chapter.

Moreover, the details about the airports that have been utilised in this research are provided

as well as the datasets that were used for them. The experiments in the following chapters use

graph representations that model three airports (Zurich, Arlanda and Manchester) as well as

information that is extracted from historic data (or based on historic data) from these airports.

0

50

100

150

200

250

300

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
u

m
b

er
 o

f
ai

rc
ra

ft

Hour of the day

Arrivals

Departures

49

4

Pushback Delays on the Airport Ground

Movement Problem

4.1 Introduction

This chapter focuses on the pushback process of aircraft and the associated delays that can be

caused to the routing process of aircraft. The pushback process (which is the part of the

ground movement process where the aircraft pushes back from the stand to the taxiway and

starts its engines) affects the routing process and it is important to have an integrated model

where the pushback process is explicitly implemented. As mentioned in Chapter 2, most of

the models do not explicitly implement the pushback process in the routing process and will

either start routing the aircraft from the time that they have already pushed back or increase

the departure time of the aircraft by a value based on estimations. However, the pushback

process can affect or can be affected by other aircraft that are moving on the ground and

including this process to the routing process is important for a model to be accurate.

This chapter aims to investigate and evaluate the effects upon the paths and schedules of

explicitly taking into consideration the pushback process of aircraft. The effects of the

pushback process are examined by implementing this process to two different routing

methods. Considering two different routing methods and evaluating the differences between

the delays when the pushback process delays are and are not explicitly considered, is

important in order to quantify any accuracy benefits, such as improved predictions of delays.

In the next section (Section 4.2) the pushback process is introduced and in Section 4.3 an

improved version of the QPPTW algorithm that includes the pushback process in the core of

the algorithm will be presented. In Section 4.4 a MILP model for solving the routing process

by taking into consideration the pushback process, will be presented. In Section 4.5, the

50

effects of the pushback delays are going to be examined, and how and in what extent they

affect the routing process, by comparing different routing methodologies. Moreover, a

comparison between the two methodologies is presented in Section 4.6. Finally, the overall

conclusions are summarised in Section 4.7.

4.2 The Pushback Process

The pushback process is a crucial point where delays can (and do) happen. Aircraft usually

need to push back from the terminals before starting their engines, since doing so near the

terminals risks damaging the terminals. The pushback and engine start-up process is often a

time-consuming process. While an aircraft is being pushed back and its engines are started,

it can block other aircraft that are moving around the airport or it may not be able to pushback

if other aircraft are using stands that are close by. In cases where the taxi area around the

gates is not wide enough to be simultaneously used by two aircraft, a taxiway may be blocked

by the aircraft for the duration of the process. In summary, pushback operations for one

aircraft can delay other aircraft. The reverse can also happen, where an aircraft may not be

permitted to start the pushback process until another aircraft has passed. This is the case

whenever the area that they would push back to, will not be free for the entire duration of the

process. Figure 4.1 shows how delays can happen, illustrating how an aircraft pushing back

would prevent another aircraft from passing, or an aircraft that is passing could prevent an

aircraft from pushing back.

Pushback delays can cause significant delays at airports and add uncertainty to the predicted

position of an aircraft. The absence of consideration of these factors in a model can lead to

further unpredicted delays later on down the path of an aircraft, since the delay in the routing

process for one aircraft may cause knock-on interactions with later aircraft. For a busy airport,

if not dealt with, these delays can propagate and negatively affect the overall throughput of

the airport.

Figure 4.1: Causes of pushback delays, delaying other aircraft or the aircraft pushing back

51

A take-off sequencing system would usually require knowledge of how early an aircraft can

reach the runway, so any unpredicted delays, may affect the feasibility of potential take-off

sequences, compromising the feasibility of these sequences. An accurate model for

scheduling and routing aircraft on the ground is important for providing any automated

decision support to improve runway operations.

4.2.1 Previous Research on Pushback Process

Although the ground movement problem has received significant research attention, there has

been very little consideration of the pushback process.

The majority of the models that take into consideration the pushback process, usually focus

on the delays that can happen close to the stands and try to avoid or minimise them (Cheng

1998, Neuman and Atkin 2013). In some cases, the pushback time and the delays that can

happen during the pushback process are included in the total taxi time of an aircraft (Tu et al.

2008, Ravizza et al. 2013a). The added delays, however, are added to the total taxi time

without attributing in which part of the trip exactly these delays happen.

Tu et al. (2008) attempted to identify the delays that happen during the routing process with

the use of statistical analysis. They took into consideration a number of trends and patterns

like weather impact, delay built up from previous flights, seasonal and daily patterns, in order

to predict the difference between the scheduled time and actual time that an aircraft was going

to start the pushback process. Neuman and Atkin (2013) attempted to find the conflicts that

may occur because of the pushback process or the conflicts that happen close to the stands in

order to better allocate aircraft to stands. Cheng (1998) developed a model that predicts and

resolves conflicts on the taxiways close to the gates, in order to minimise the delay. Burgain

et al. (2012) used a stochastic model of surface operations to control the pushback clearances

based on the number of aircraft that are taxiing. However, these models do not explicitly

examine the effects of the pushback process upon the ground movement, instead focusing on

the minimisation of the total travel time and/or queuing time at the runway.

Ravizza et al. (2013a) used a model to predict the total delays for aircraft (at the stands or the

runway) in order to absorb more of this time at the stand, before the pushback process of the

aircraft commences. Consideration of the time which was needed to perform the pushback

process and start the engines was an important element of the system. Furthermore, Ravizza

et al. (2014) compared a number of approaches for predicting the total taxi time, but

recognised that the real ground movement problem requires a better understanding of where

delays actually occur as well as the total unimpeded delays.

52

4.3 Integrating the Pushback Process to the Routing

Process

In this section, the implementation of the pushback process in the QPPTW algorithm is going

to be presented. First the notation and definitions of the variables that were used are

introduced. Then the way that the pushback process was added to the QPPTW algorithm (that

was presented in Chapter 3) is described as well as the models that were developed for the

experiments. Finally, other processes that are necessary for evaluating the effects of the

pushback process are presented, such as the method for calculating the delays and finding the

time that it takes for an aircraft to traverse its shortest path.

4.3.1 Notation and Definitions

All of the notation that is introduced in this section has been summarised in Table 4.1 below.

In order to maintain a thread of continuity with the original QPPTW algorithm which the

algorithm that will be later presented is based on and to make it easier for the reader to better

understand the additions, the notation of common variables that was used below are the same

or similar to the notation that was used in the PhD thesis of Ravizza (2013c).

Table 4.1: Table of definitions

E The set of all edges

V The set of all vertices

e ∈ E An edge

υ ∈ V A vertex

G = (V, E) The directed graph representing the airport layout, with vertices υ ∈

V and edges e ∈ E

𝑎𝑒
𝑗
 The start time of the jth time-window on edge e ∈ E

𝑏𝑒
𝑗
 The end time of the jth time-window on edge e ∈ E

𝐹𝑒
𝑗

= [𝑎𝑒
𝑗
, 𝑏𝑒

𝑗
] jth time-window on edge e ∈ E, from time 𝑎𝑒

𝑗
 to time 𝑏𝑒

𝑗

F(e) The sorted set of all of the time-windows on edge e ∈ E

H The priority queue storing the added labels

aL The start time of Label L

bL The end time of Label L

IL = [aL, bL] The time interval used in a label L

predL The predecessor label of label L

53

L = (υL, IL, predL) A label on vertex υL ∈ V with a time interval IL and predecessor label

predL

L (υ) The set of all of the labels at vertex υ ∈ V

R A conflict-free route that is being generated

s ∈ V A source vertex

t ∈ V A target vertex

time The time that an aircraft sets off

pf The pushback duration for flight f

T = (s, t, time, p) A taxi request to route, from source s ∈ V setting off at time time, to

target t ∈ V and with pushback duration p (for departures)

we The weight (necessary taxi time) of edge e ∈ E

FL The set of all flights.

n The total number of flights, |FL|

f ∈ FL := {1, …, n} A flight

tf The time at which flight f should commence its push back – i.e. the

starting time for aircraft f in the datasets

wf,i The weight (necessary taxi time) of the ith edge of flight f’s path,

which connects the (i-1)th vertex of the path with the ith vertex

mf The minimum time that it can take for an aircraft f to reach the runway

from the stand

Tf The time that it takes for aircraft f to reach its destination including

any delays that might occur

Nf The number of vertices on the allocated path for flight f

υf,i ith vertex (i from 1 to Nf) on the allocated path for flight f. This

determines the path that f takes through the taxiways.

trf,i The time at which aircraft f arrives at the ith vertex of its path (i from

1 to Nf).

H.getMin() Function that returns the element with the lowest value in heap H

Maximise(a, b) Function that returns the element with the largest value between

elements a and b

head(e) Function that returns the vertex y of an edge e that is directed from

vertex x to vertex y.

4.3.2 The QPPTW Algorithm with Pushback Process

The QPPTW is a deterministic algorithm that finds the quickest path (between vertices in a

graph) for each aircraft in turn, taking into consideration aircraft that have been previously

54

routed. When there are no delays this will be the shortest path, but when some parts of the

shortest path are already being used (blocked) by other aircraft at that time, then a quickest

path can involve either taking an alternative route (around the blockage) or waiting for the

blocking aircraft to move. Full details of the basic algorithm can be found in Chapter 3.

In order to include the pushback process to the QPPTW algorithm some changes to the

algorithm were necessary. Algorithm 4.1 shows the QPPTW algorithm (as it was presented

in Chapter 3) with the addition of the pushback process. The parts that differ from the original

algorithm have been underlined in red. In this implementation, the routing process of the

aircraft is considered to initiate at the stand, before the aircraft is pushed back. For the first

movement, the aircraft will move to the next vertex (on the taxiway) where it starts its

engines. In this first movement, all of the neighbouring vertices are taken into consideration

as the QPPTW algorithm would normally expand. However, for the first movement the

duration is increased by the time that it takes to complete the pushback process and the engine

start-up operation, and this becomes the new weight of that edge (see lines 19 and 20). All of

the edges that the algorithm checks for the first move have been modified to have their weight

increased by the pushback duration. This ensures that the pushback time is considered, but is

also attributed to the beginning of the aircraft’s journey (by the stands), where it actually

happens.

Figure 4.2 shows an aircraft f1 that is pushing back from vertex A to vertex B. The new weight

of the edge AB w’AB which is used by the modified algorithm can be calculated by w’AB = wAB

+ pf, where wAB is the normal weight of the edge. The pushback duration pf is determined by

the size of the aircraft f.

The QPPTW algorithm finds the quickest path, taking into consideration the added delay that

is caused by the pushback process. All of the edges that are connected to the first edge are

blocked, preventing other aircraft from coming too close to the aircraft which is pushing back.

In the example in Figure 4.2, this means that all of the edges AB, BC, BD are blocked for the

entire duration on the pushback process (w’AB). Blocking the edges ensures that the aircraft

will reach its destination in the shortest amount of time allowing for the fact that edges can

be used by a maximum of one aircraft at a time.

Figure 4.2 also illustrates the situation where there is another aircraft f2 that has to wait for

aircraft f1 to finish the pushback process. Aircraft such as f2 that get blocked have to either

wait or choose a longer path if there is one. The QPPTW algorithm which is used will ensure

that the path is reallocated appropriately.

55

Algorithm 4.1: Quickest Path Problem with Time Windows (QPPTW) - Departures

Input: Graph G = (V, E) with weights we for all e ∈ E, the set of sorted time-windows F(e)

for all e ∈ E, a taxi request Ti = (si, ti, timei, pi) for aircraft i, with the source vertex si ∈ V, the

target vertex ti ∈ V and the start time timei.

Output: Conflict-free route R from si to ti with minimal taxi time that starts at the earliest at

time timei, respects the given time-windows F(e) or returns the message that no such route

exists.

1 Let H = ∅

2 Let L(υ) = ∅ ∀ υ ∈ V

3 Create new label L such that L = (si, [timei, ∞), nil)

4 Insert L into heap H with key timei

5 Insert L into set L(si)

6 while H ≠ ∅ do

7 Let L = H.getMin(), where L = (υL, IL, predL) and IL = [aL, bL]

8 if υL = ti then

9 Reconstruct the route R from si to ti by working backwards from L

10 return the route R

11 forall the outgoing edges eL of υL do

12 foreach 𝐹𝑒𝐿

𝑗
 ∈ F (eL), where 𝐹𝑒𝐿

𝑗
 = [𝑎𝑒𝐿

𝑗
, 𝑏𝑒𝐿

𝑗
], in increasing order of 𝑎𝑒𝐿

𝑗
 do

13 /*Expand labels for edges where time intervals overlap*/

14 if 𝑎𝑒𝐿

𝑗
 > bL then

15 goto 11 /*consider the next outgoing edge*/

16 if 𝑏𝑒𝐿

𝑗
 < aL then

17 goto 12 /*consider the next time-window*/

18 Let timein = Maximise (aL, 𝑎𝑒𝐿

𝑗
) /*𝑎𝑒𝐿

𝑗
 > aL ⇒ waiting*/

19 if aL = timei then

20 Let timeout = timein + 𝑤𝑒𝐿 + pi

21 else

22 Let timeout = timein + 𝑤𝑒𝐿

23 if timeout ≤ 𝑏𝑒𝐿

𝑗
 then

24 Let u = head(eL)

25 Let L’ = (u, [timeout, 𝑏𝑒𝐿

𝑗
], L)

26 /*dominance check*/

27 foreach L̂ ∈ L(υ) do

28 if L̂ dominates L’ then

29 goto 12 /*next time-window*/

30 if L’ dominates L̂ then

31 Remove L̂ from H

32 Remove L̂ from L(υ)

33 Insert L’ into heap H with key aL’

34 Insert L’ into set L(υ)

35 return “there is no si - ti route”

56

4.3.3 Developed QPPTW Models

In order to investigate whether the pushback process is affecting the accuracy of the routing

process when the QPPTW algorithm is used, two models were compared with each other.

One includes the pushback process and the other one does not.

The first algorithm (Algorithm 1) is a typical implementation of the QPPTW algorithm, as

described in Chapter 3 and routes aircraft without taking the blocking which can occur during

the pushback process into consideration. In order to provide a fair comparison, rather than

modelling the pushback delay by the stand, the algorithm instead delays the aircraft from

setting off until the pushback duration has expired by delaying the start time of the operation.

i.e. the start time for any aircraft f in Algorithm 1 is given by tf + pf. This is equivalent to

assuming that the pushback and engine start-up operations will occur out of the way (at the

stands) and will not delay any other aircraft while they occur. Again, to ensure a fair

comparison, the calculated total taxi time is given by Equation 4.1 adding the pushback delay

to the final taxi time for each aircraft.

 𝑇𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = ∑(𝑇𝑓 + 𝑝𝑓)

𝑛

𝑓=1

 (4.1)

The second algorithm (Algorithm 2) is an extension of Algorithm 1, and includes the

pushback duration at the start of the movement. This model uses the extension that was

described in Section 4.3.2. In contrast to Algorithm 1, Algorithm 2 will start the routing

process for aircraft f (which now includes the pushback process as an increased weight on the

first edge) at time tf and the final total taxi time will be determined by Equation 4.2, since the

pushback delay has already been included in the taxi time.

Figure 4.2: Blocked edges during pushback

57

 𝑇𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = ∑ 𝑇𝑓

𝑛

𝑓=1

 (4.2)

The total taxi time for an aircraft Tf will not only include the pushback duration for this aircraft

pf but will also include all of the delays that can be caused during the pushback process as

well. These delays can be caused to an aircraft by its own pushback process (not being able

to pushback immediately due to traffic) or the pushback process of other aircraft that are

moving on the airport (where the pushback process of another aircraft blocks the path of this

aircraft).

4.3.4 Calculating the Delays

In order to be able to compare the delays that take place in various configurations, all of the

component delays need to be calculated. The total delay for a day is the sum of all of the

delays that happen to all of the aircraft on that day. Since it is not possible to observe an

obvious delay when an aircraft chooses a longer path (there may be no waiting time) the

excess time is calculated by determining the minimum time without including the pushback

time (see next subsection) that an aircraft would have needed to reach its destination and

comparing this with the total taxi time of that aircraft.

After determining the total taxi time (Tf), the minimum taxi time (mf) and the pushback

duration (pf) it is easy to find the delay (i.e. excess travel time) for each flight. Equation 4.3

shows how the sum of all of the delays that happen during a day are calculated using the

notation defined in Table 4.1.

 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 = ∑(𝑇𝑓 − 𝑚𝑓 − 𝑝𝑓)

𝑛

𝑓=1

 (4.3)

4.3.5 Finding the Minimum Taxi Time

The minimum time that an aircraft needs to reach its destination (without including the

pushback time) is calculated separately for each aircraft movement, by routing the aircraft in

an empty graph with the use of a tailored version of Dijkstra's algorithm. Equation 4.4 holds

for all vertex times trf,i on the path for f when calculating the shortest path. In normal

operations, however, the time windows can cause delays for aircraft, so Inequality 4.5 instead

holds for each vertex on the path for aircraft f.

58

 trf,i = trf,i-1 + wf,x,y ∀ i ∈ {2, …, N}, where vertex x= υf,i-1 and vertex y= υf,i (4.4)

 trf,i ≥ tf,i-1 + wf,x,y ∀ i ∈ {2, …, N}, where vertex x= υf,i-1 and vertex y= υf,i (4.5)

4.4 MILP Routing Model with the Pushback Process

In this section, a Mixed-Integer Linear Programming model for routing and scheduling

aircraft will be presented. As mentioned in Chapter 3, the QPPTW algorithm (and as an

extension the model that was presented in the previous section) routes the aircraft

sequentially, based on the times that they start taxiing. However, as mentioned in Chapter 2,

there are also many models that constrain the available paths and focus on optimising the

sequence of the aircraft. For this reason, a MILP model, which does this, was created in order

to investigate how the pushback process affects a model where the routes are predetermined

but the schedule of aircraft movement on these routes (or parts of these routes) is variable.

4.4.1 Notation and Definitions

Table 4.2: Table of definitions for the MILP model

sf,i The time that flight f starts traveling towards the ith vertex of its

path, i ∈ {1..kf}

C The set of all identified conflicts where given the values of sf,i and

the allocated paths, two flights would wish to use the same vertex

at the same time

c := {f1, f2, i1, i2} ∈ C A conflict between two flights f1 and f2 at a vertex, where the

conflict vertex is the i1
th vertex on the path for flight f1, and the i2

th

vertex on the path for flight f2

f1(c) A function which will return the flight f1 of the conflict c

f2(c) A function which will return the flight f2 of the conflict c

i1(c) A function which will return the i1
th vertex on the path for flight f1

where conflict c happens

i2(c) A function which will return the i2
th vertex on the path for flight f2

where conflict c happens

kf The total number of vertices on the allocated path for flight f.

l The number of vertices which two aircraft share after the vertex

where they first conflict.

59

The notation that is introduced in this section is summarised in Table 4.2. The notation that

was used in the previous section (Table 4.1) is still valid.

4.4.2 Developed Model

This model uses the shortest path for each aircraft and focuses on organising the sequence of

the aircraft, when two aircraft need to use the same resource at the same time. It differs from

the QPPTW algorithm as it focuses more on the sequence of the aircraft rather than finding

alternative paths whenever there is a conflict.

The model makes use of the vertices that each aircraft traverses, instead of blocking the edges

(as the QPPTW algorithm does). The time that flight f commences its journey to vertex i is

denoted sf,i. Only one aircraft can use any vertex v at any time, so a different aircraft can only

use the vertex when the current aircraft uses the next vertex.

The model consists of 4 stages:

1. Find the shortest path for all of the aircraft, to determine the allocated paths (using

the QPPTW algorithm).

2. Find all of the initial conflicts between aircraft (aircraft that will require the same

vertex at the same time) and add constraints to resolve them.

3. Solve the LP model for all of the known conflicts and find new times (the LP model

is explained below).

4. Identify any new conflicts and if there are any, add constraints to resolve them and

then go to step 3.

In order to find the shortest path (as step 1 describes) the QPPTW algorithm is used to route

each aircraft on an empty graph. The vertices that are used by each aircraft to form the shortest

path will be used for many of the constraints that will be presented in MILP formulation.

For the 2nd step it is important to find all of the conflicts that happen when the aircraft use the

shortest path that was found in the previous step. In order to identify a conflict, the movements

of every aircraft are stored in each vertex every time that it is used. If any vertex is used by

more than one aircraft at the same time, a conflict is added to the list of conflicts. Any conflict

is between only 2 aircraft, although each aircraft can have multiple conflicts with other

aircraft, and 2 aircraft can conflict with each other multiple times along their path.

A linear programming formulation is then used to solve the routing problem and determine

the order in which aircraft will pass vertices where there is a conflict (step 3). The next

60

subsections (Section 4.4.3 and Section 4.4.4) describe the constraints and objective function

of this formulation.

Where further conflicts are found, additional constraints are added to the model and it is re-

solved until no further conflicts exist (step 4).

4.4.3 Constraints

For the 3rd step of the developed model that was summarised above, a linear optimisation

model is solved. The constraints for this model are shown below:

 𝑠𝑓,1 ≥ 𝑡𝑓 ∀ 𝑓 ∈ 𝐹 (4.6)

 𝑠𝑓,2 ≥ 𝑠𝑓,1 + 𝑤𝑓,1 + 𝑝𝑓 ∀ 𝑓 ∈ 𝐹 (4.7)

 𝑠𝑓,𝑖+1 ≥ 𝑠𝑓,𝑖 + 𝑤𝑓,𝑖 ∀ 𝑖 ≔ {2 … 𝑘𝑓 − 1} ∀ 𝑓 ∈ 𝐹 (4.8)

Constraint 4.6 ensures that all aircraft start after their set start times. This time is allocated to

each aircraft and the program is forbidden from making them start earlier.

Constraint 4.7 and Constraint 4.8 ensure that an aircraft cannot enter the next vertex on its

path any earlier than the time at which it enters the current vertex, plus the time to traverse

(i.e. the weight of) the edge between the two vertices. Constraint 4.7 ensures that the aircraft

spends extra time on its first vertex to simulate the pushback operation (which will also delay

the time at which any other aircraft can enter that vertex). Note that pf will be 0 for the versions

that do not include the pushback process.

If conflicts are found, additional constraints are added to resolve the conflicts, ensuring that

one of the aircraft cannot use the vertex until the other has reached the following vertex. One

of the disjunctive constraints (Constraint 4.9 or Constraint 4.10) will be added for each

conflict.

 𝑠𝑓2(𝑐),𝑖2(𝑐) ≥ 𝑠𝑓1(𝑐),𝑖1(𝑐)+1 ∀ 𝑐 ∈ 𝐶 (4.9)

 𝑠𝑓1(𝑐),𝑖1(𝑐) ≥ 𝑠𝑓2(𝑐),𝑖2(𝑐)+1 ∀ 𝑐 ∈ 𝐶 (4.10)

For efficiency reasons and in order to avoid potentially conflicting constraints, these are

actually applied to the next l vertices at the same time, where l is the number of vertices which

the two aircraft share after the vertex where they first conflict. i.e. if they enter the shared

path in a specific order, they must traverse all shared vertices in that order:

61

 𝑠𝑓2(𝑐),𝑖2(𝑐)+𝑗 ≥ 𝑠𝑓1(𝑐),𝑖1(𝑐)+𝑗+1 ∀ 𝑗 ∈ {0 … 𝑙 − 1} ∀ 𝑐 ∈ 𝐶 (4.11)

 𝑠𝑓1(𝑐),𝑖1(𝑐)+𝑗 ≥ 𝑠𝑓2(𝑐),𝑖2(𝑐)+𝑗+1 ∀ 𝑗 ∈ {0 … 𝑙 − 1} ∀ 𝑐 ∈ 𝐶 (4.12)

In order to have a better understanding of the types of delays that can happen during the

pushback process, two variants of the model are evaluated. Instead of letting the MILP model

to decide which aircraft will be prioritised during a conflict, this process is performed

manually. Each variant is evaluated with and without including the pushback process. In the

first variant (Model 1), the prioritisation constraints (Constraints 4.9 and 4.11) are applied in

order to prioritise the aircraft that would reach the vertex first, even though the aircraft may

use the vertices for different durations (e.g. aircraft which are pushing back will use the vertex

for longer than aircraft which are going past). In the second variant (Model 2), this

prioritisation is reversed (using constraints 4.10 and 4.12 instead of constraints 4.9 and 4.11),

so priority will be given to the aircraft which starts moving towards the vertex second. Since

the pushback operation is time consuming, this will usually be the one which is already

taxiing rather than the one which is pushing back. This models what happens at real airports

more often, since it is often better to avoid asking an aircraft which is already moving to stop.

This latter approach also turns out to be more similar to the usual case for the QPPTW

approach (which prioritises the aircraft which started moving first), since when an aircraft

which is pushing back comes into contention with one which is already moving, the one

which was already moving will almost always have commenced its pushback earlier (it has

had to complete its pushback and taxi to the vertex where the problem occurs before it comes

into contention with the aircraft which is pushing back).

4.4.4 Objective Function

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑠𝑓,𝑘𝑓

𝑛

𝑓=1

 (4.13)

The objective function (Equation 4.13) measures the times at which the aircraft reach the final

vertices in their journeys, which is equivalent to the objective function for the first (QPPTW-

based) method, allowing a comparison to be made between the two methods.

4.5 Comparison and Insights

In this section, the two methodologies of routing and scheduling aircraft that were presented

in the previous sections are compared. Each methodology is implemented with and without

62

the pushback process in order to investigate if and how the pushback process affects the

routing process. The reason two different methodologies were used is to verify that the effects

of the pushback process that were observed in the results, are not unique to the methodology

that is used for routing and scheduling the aircraft.

In summary, the first methodology, has a fixed sequence of aircraft and focuses on optimising

the route based on the availability of the taxiways that can be partially occupied by previously

routed aircraft. The second methodology is having a fixed route for each aircraft and

optimising the sequence of aircraft whenever a resource (part of a taxiway) needs to be used

by more than one aircraft. As seen in Chapter 2 these are two popular approaches when it

comes to solving the routing and scheduling problem of aircraft.

4.5.1 Experimental Set-up

Both routing methods were executed using different instances for Stockholm’s Arlanda

airport, the largest airport in Sweden. The airport details and datasets for the experiments

were the first datasets that were obtained for the experiments of this chapter and have been

provided by Sintef during our collaboration. The data that was used for these experiments is

presented in Chapter 3. The framework was programmed in Java and was executed on a

personal computer (Intel Core i3-3120M, 2.5GHz, 4GB RAM). For Method 2, the framework

was programmed in Java and all of the LP models were solved using CPLEX (with the use

of CPLEX Java libraries for Eclipse).

The experiments were executed using 5 instances that were based on real data for Arlanda

airport as it was presented in Chapter 3. Each instance has a different complexity, duration,

and number of aircraft that are routed.

The execution time for both of the QPPTW algorithms was less than 1.5 seconds which is

fast enough for real time routing. The average time for Algorithm 2 - 5th instance (which is

the most computationally demanding instance) was 1452ms. For the linear optimisation

models the execution time was usually less than 2 seconds. For instance 5, the problem was

solved in 1840ms on average for Model 1and in 2066ms on average for Model 2.

As this chapter focuses on the pushback process of aircraft and in order to simplify the

problem, the experiments in this section were executed using only departing aircraft. Input

information were: the starting point of the aircraft (gate), the end point (runway), and the time

that aircraft initiate their journey.

63

4.5.2 Comparison Results

After executing the models that were developed with and without the pushback process being

implemented, the results have been summarised in tables 4.3, 4.4, 4.5 and 4.6.

As Table 4.3 shows that in each case, it is apparent that significant additional delays result

from the consideration of the pushback delays (Algorithm 2 and ‘push’ variants of the

models). In fact, these delays are significantly longer in comparison to the delays without the

pushback modelling. This shows that there is relatively little interaction between the aircraft

when pushback delays are not considered, highlighting the importance for accurate models

of including these delays.

Table 4.3: Total delays and total taxi time for each algorithm/model for instances 1 and 2.

 Instance 1 Instance 2

 Total [s]: Delay Taxi time Delay Taxi time

Method 1
QPPTW no push 89 26606 1 35579

QPPTW push 1313 28010 1778 37356

Method 2

LP Model 1 no push 45 26562 1 35579

LP Model 1 push 1022 27719 1234 36812

LP Model 2 no push 53 26570 19 35597

LP Model 2 push 1332 28029 1802 37380

Table 4.4: Total delays and total taxi time for each model/algorithm for running instances 3,

4 and 5.

 Instance 3 Instance 4 Instance 5

 Total [s]: Delay Taxi time Delay Taxi time Delay Taxi time

M
et

h
o

d

1

QPPTW push 50 51669 109 62579 153 73711

QPPTW no push 807 52426 1504 63974 2466 76024

M
et

h
o
d

2

LP Model 1 no push 20 51639 50 62520 50 73608

LP Model 1 push 593 52212 1075 63545 2618 76176

LP Model 2 no push 20 51639 64 62534 64 73622

LP Model 2 push 780 52399 1373 63843 2297 75855

For the instances in Table 4.4 the data is similar, but with gradually increasing traffic (see

Chapter 3). It is apparent from the results that, as the traffic increases, the interactions between

aircraft, and hence delays, increase even without the pushback delay modelling, although

these delays are still relatively small. These interactions are increasing in a super-linear

64

manner in relation to the increase in the number of aircraft, as would be expected. With the

explicit pushback delay modelling included, the consequent delays are much higher, as was

observed for instances 1 and 2. It is also obvious that the rate of increase of the delays is rapid

as the number of aircraft is increased. This will, therefore, be an even larger problem at busier

airports than at quieter airports, with an increasing importance for explicitly considering the

pushback delays.

Figure 4.3 shows a comparison of all of the algorithms/models with and without the pushback

process for each instance. The graph visualises the great extent to which the delays can pass

unnoticed when the pushback process is not considered, regardless of the methodology that

is used for routing the aircraft.

Figure 4.3: Total delay for each algorithm/model

In order to have a better understanding of the effects of the pushback process, a comparison

with all of the delays that happen during Instance 1 has been performed. Table 4.5 shows the

details of the flights in Instance 1 that are affected by the delays for each methodology. Flights

which are unaffected have been omitted. The table presents the following information for all

the models (QPPTW, LP Model 1 and LP Model 2). Columns “No push” and “Push” show

the delays (in seconds) that happen when the model is executed without and with taking into

consideration the pushback process respectively. Column “Difference” shows the additional

delay that occurs when the pushback process is considered. Column “Type” shows the type

of delay that delays the flight (when the pushback process is implemented) with “1” being a

delay that happens when an aircraft is blocked due to another aircraft pushing back, “2” being

a delay that happens when an aircraft cannot initiate its pushback process due to traffic by

0

500

1000

1500

2000

2500

3000

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

D
el

ay
 [

m
]

QPPTW no push QPPTW push

LP Model 1 no push LP Model 1 push

LP Model 2 no push LP Model 2 push

65

other aircraft and “r” being a delay that happens after the pushback process has occurred

where the paths of two aircraft cross or overlap one another.

Table 4.5: Flights which are affected by ground movement delays (Instance 1).

 QPPTW (Method 1) LP 1 (Method 2) LP 2 (Method 2)

F
li

g
h

t
n

o

S
ta

r
t

ti
m

e

S
ta

n
d

N
o

 p
u

sh

P
u

sh

D
if

fe
re

n
ce

T
y

p
e

C
a

u
se

r

N
o

 p
u

sh

P
u

sh

D
if

fe
re

n
ce

T
y

p
e

C
a

u
se

r

N
o

 p
u

sh

P
u

sh

D
if

fe
re

n
ce

T
y

p
e

C
a

u
se

r

1 5:04:12 F37 0 0 - - - 0 93 93 1 2 0 0 - - -

2 5:04:46 F39R 0 172 172 2 1 0 0 - - - 0 173 173 2 1

4 5:13:53 S76 0 0 - - - 0 87 87 1 5 0 0 - - -

5 5:15:00 S78 0 166 166 2 4 0 0 - - - 0 167 167 2 4

7 5:24:10 53 0 0 - - - 0 92 92 1 8 0 0 - - -

8 5:24:55 57 0 173 173 2 7 0 0 - - - 0 173 173 2 7

9 5:29:20 G145 0 0 - - - 0 0 - - - 13 273 260 2 10

10 5:30:00 G142 0 186 186 1 9 0 186 186 1 9 0 0 - - -

12 5:34:45 F37 12 36 24 r 9 13 13 - r 9 0 0 - - -

17 5:45:00 11 23 23 - r 16 0 0 - - - 0 0 - - -

21 5:50:20 34 3 3 - r 18 3 3 - r 18 3 3 - r 18

23 5:55:00 F33R 0 0 - - - 0 0 - - - 10 10 - r 25

25 5:58:57 41 10 10 - r 23 10 10 - r 23 0 0 - - -

27 6:04:40 17 0 0 - - - 6 6 - r 28 6 6 - r 28

28 6:04:53 40 20 20 - r 27 0 0 - - - 0 0 - - -

30 6:05:52 36 0 0 - - - 0 254 254 1 31 0 0 - - -

31 6:09:52 42 0 9 9 2 30 0 0 - - - 0 10 10 2 30

36 6:15:20 38 7 7 - r 35 7 7 - r 35 7 7 - r 35

37 6:18:03 32 0 0 - - - 0 181 181 1 39 0 0 - - -

39 6:22:02 34 0 82 82 2 37 0 0 - - - 0 83 83 2 37

40 6:26:14 35 0 0 - - - 0 84 84 1 41 0 0 - - -

41 6:27:35 39 0 174 174 2 40 0 0 - - - 0 175 175 2 40

43 6:30:00 31 0 0 - - - 6 6 - 1 44 0 0 - - -

44 6:30:00 33 14 252 238 2 43 0 0 - - - 14 252 238 2 43

Total 89 1313 122

4

- - 45 102

2

977 - - 53 1332 127

9

- -

It is apparent that the delays are actually affecting a small number of flights to a fairly large

extent, rather than being evenly spread across many aircraft. This sort of characteristic will

make it even more important to understand these delays, since they can affect the predicted

taxi times considerably for these aircraft. This will make it increasingly inappropriate to use

predictions which do not consider pushback operations within any integrated system. For

66

example, a 3 or more-minute discrepancy in predicted arrival time at the runway is likely to

make a predicted runway sequence unachievable. As mentioned in Chapter 2, the runway

sequence is another process that is being optimised in airports and changes to the take-off

sequence of aircraft can introduce extra delays to the ground movement problem.

Similar results were observed for the remaining instances, 2 to 5. The results for all of the

instances are summarised in Table 4.6.

Both of the potential causes for delays were observed to occur in the experiments; aircraft

pushing back and blocking the taxi area for other aircraft (i.e. the aircraft pushing back is

doing the blocking – delay type “1”) and aircraft being prevented from pushing back due to

another aircraft passing at that time (delay type “2”).

Table 4.6: Results of including the pushback process.

 QPPTW (Method 1) LP Model 1 (Method 2) LP Model 2 (Method 2)

Additional

no. of

delays

Additional

delay [s]

Additional

no. of

delays

Additional

delay [s]

Additional

no. of

delays

Additional

delay [s]

Instance 1 9 1224 7 977 8 1279

Instance 2 12 1777 11 1233 12 1783

Instance 3 5 757 6 573 5 760

Instance 4 13 1395 8 1025 8 1309

Instance 5 22 2313 16 2568 16 2233

In most cases where aircraft delay each other with the QPPTW algorithms and the LP Model

2, the delay was experienced by the aircraft that was set to pushback later (see Table 4.5 –

delay type “2”), as expected. These aircraft will often not be able to start the pushback process

at all since the edges in front of the stand would need to be clear for the whole duration of the

pushback process. However, with the LP Model 1 these kinds of delays were avoided as the

aircraft that was set to push back had the priority most of the time (its operation takes longer

so it was more likely to start earlier when the two were in contention) and the second type of

delay was observed more often.

An example of this case can be seen with two flights that conflict with each other in Instance

1. Flight 1 is set to start its pushback process 34 seconds before flight 2 and it passes through

the areas that flight 2 pushed back. When the routing of the aircraft was performed using the

QPPTW algorithm or the LP Model 2, flight 2 could not complete its pushback process before

flight 1 had to traverse in front of the stand where flight 2 was parked. This resulted in flight

2 being forced to initiate its pushback process almost 3 minutes later. When the LP Model 1

67

was used for the routing process of the two aircraft, flight 2 would initiate its pushback

process on time, forcing flight 1 to wait for around 1.5 minutes for this process to be

completed.

Comparing the approaches, it can be observed from the results that, even though the pushback

process can increase the amount of delay, the LP Model 1 seems to perform better than the

LP Model 2 and the QPPTW algorithm for the first four instances. The LP Model 1 routes all

of the aircraft in advance and still takes the pushback process into consideration, however the

main reason that there are fewer delays is that it will allow an aircraft to push back

immediately even if it has to delay a taxiing aircraft to do so (as seen in the example above).

This may not be practical at real airports, however. In the LP Model 1 if aircraft have the

same departure time they can also push aircraft back in parallel, resulting in aircraft not

interacting with each other. However, in instance number 5 where there are aircraft departing

every 2-3 minutes and it is harder for an aircraft not to interact with another (as it is when

pushing back at the same time in the same taxi area for Model 1) the QPPTW algorithm and

the LP Model 2 perform better than the LP Model 1.

The QPPTW algorithm has the advantage of being able to re-route aircraft when necessary,

whereas the LP models always apply the shortest paths. In this case, however, this advantage

seems to be no help. This implies that the shortest path approach works well for Arlanda.

Investigating the extent to which this is, or is not the case for other airport layouts, where

there are more options for paths with similar lengths, is investigated in Chapter 5.

The majority of the additional delay was experienced within the area around the stands and

was caused directly by the pushback process. However, in some cases the delays close to the

stands also caused later delays, with aircraft being delayed enough to interact with other

aircraft later on. For example, in instance 1 with the QPPTW algorithm, aircraft 9 delays

aircraft 10 and then aircraft 12 and 10 interact. This can also affect the order in which aircraft

arrive at the runway in some cases. For example, with Algorithm 1 aircraft arrive at the

runway in the order 10 – 11 – 9 – 12, whereas with Algorithm 2 it is 11 – 9 – 10 – 12. When

considering the integration of systems, this can affect the feasibility of potential take-off

sequences with appropriate re-sequencing no longer being possible, and hence is also

important to understand.

To sum up, the results show that the pushback process significantly affects the routing process

regardless of the routing methodology that is used. Firstly, it affects the number and duration

of delays and failure to consider the pushback process meant that the taxi times for some

aircraft could be greatly underestimated, substantially reducing the potential benefits from

using a ground movement system. Secondly, in some cases the interactions between aircraft

68

even changed the order in which aircraft reached the runways, which could affect the potential

benefits from the interaction with a take-off sequencing system.

The take-off sequence is an important parameter in optimising the ground movement process

in airports that can have significant implications in the capacity of the airport as mentioned

in Atkin et al. (2007). In the next chapter (Chapter 5), the effects of the pushback process are

examined when the runway sequence is used as an input to the routing process in order to

guarantee the correct sequence.

4.6 Comparison of the two Methodologies

As it was observed in the previous section, the LP model 1 seems to outperform the QPPTW

algorithm. Even though this chapter focused on examining how the implementation of the

pushback process can affect the routing process, it is important to understand what the

benefits of each methodology are, and which methodology is more suitable for routing

aircraft.

The LP models focus on the sequence that the aircraft will use the resources while using only

the shortest path, whereas the QPPTW algorithm has a fixed sequence and focuses on the

quickest path for each case individually. The experiments in the previous section, were solely

designed to highlight the effects of the pushback process between departing aircraft and

focused mainly on delays that occur in the areas where aircraft push back. As mentioned in

the previous section, most of the delays were observed close to the stands, between aircraft

pushing pack close to each other. However, when solving the full ground movement problem,

delays can happen in many areas around the airport (especially in bottleneck areas) and by

arriving aircraft as well.

Arriving aircraft, usually head towards the opposite direction from departing aircraft (from

the runway to the stand). This makes it harder for a methodology that uses the shortest path

for routing each aircraft - such as LP model 1 – to route all of the aircraft without adding long

delays to the solution every time there is a conflict between an arriving and a departing

aircraft. When two aircraft travel towards opposite directions and they have to use the same

resources (taxiway) one will always have to wait for the other one to complete using these

resources before it is able to continue its journey. QPPTW on the other hand, has an advantage

in these cases, since it can route aircraft around a longer path (taking advantage of multiple

or parallel taxiways), avoiding long delays.

For this reason, further experiments were executed, this time, including arriving aircraft.

69

4.6.1 Comparison of two Methodologies when Arrivals are Included

In order to be able to see the effect of arriving aircraft, new instances were used that included

arriving aircraft as well (see Chapter 3).

After executing the experiments, it becomes apparent that any benefit that the LP Model 1

has over the QPPTW algorithm is lost when arriving aircraft are also included. As Table 4.7

shows, the QPPTW algorithm outperforms the LP Model 1 in each instance that was tested.

QPPTW would perform 28% to 84% better than the LP Model 1 and in total it would route

all the aircraft producing a third of the delays that the LP Model does.

Table 4.7: Comparison between the two methodologies

 Aircraft

LP Model 1

Delay [s]

QPPTW

Delay [s] Improvement

Instance 1 79 1537 1102 28%

Instance 2 75 1416 199 86%

Instance 3 207 2070 1153 44%

Instance 4 127 860 387 55%

Instance 5 95 847 478 44%

Instance 6 77 163 105 36%

Instance 7 95 6237 978 84%

Total 755 13130 4402 66%

The results in this and the previous section show that even though a methodology that focuses

on the sequence between aircraft instead of the paths, can perform well when there are few

aircraft considered, when the full problem is solved, it cannot compete against a methodology

that can take into consideration multiple paths.

4.7 Conclusions

This chapter has investigated the importance of the pushback process in the routing and

scheduling problem of the ground movement of aircraft.

Two different routing methods were considered, with various configurations to examine the

effect of the pushback process. All of the methods (QPPTW, LP Model 1 and 2) had versions

which did and did not take the pushback process into consideration.

70

In all cases, the pushback process had a considerable effect upon the resulting delays. Failure

to consider the pushback process meant that the taxi times for some aircraft could be greatly

underestimated, substantially reducing the potential benefits from using a ground movement

system. It was observed that, although most of the delays occurred around the stands, where

the pushback process happens, in some cases the delays had further effects later on, causing

other aircraft to interact. In some cases, the interactions even changed the order in which

aircraft reached the runways, which could affect the potential benefits from the interaction

with a take-off sequencing system.

The order of considering the aircraft is important, as the methodology that would change the

order of the aircraft (LP model 1) performed better than the QPPTW algorithm. The ordering

between aircraft will be investigated in Chapter 5. However, it is also important to consider

arrivals. The methodology that uses the shortest path ignores other paths. The QPPTW

algorithm benefits from using multiple paths when arrivals are included. It will be seen in

Chapter 6 that the QPPTW algorithm frequently uses alternative paths and that increasing the

number of alternative paths can result in less delays. For this reason, it is important to use a

methodology that can take the full potential of the airport into consideration and therefore the

QPPTW algorithm was used from now on.

71

5

Pushback Process with Stand Holding and the

Effects of Prioritisation Levels for Arrivals or

Departures

5.1 Introduction

In this chapter, the priority between arriving and departing aircraft is examined. This research

considers finding an appropriate taxi path and timings for each aircraft so as to reduce the

taxi times for both arriving and departing aircraft when the pushback process is included

(contrary to the previous chapter that only considered departures). The trade-off between the

arrivals and departure delays, the reasons for the trade-off, and the potential for controlling

this trade-off, are all questions that are considered. It is important to quantify any benefits or

drawbacks, such as increased delays, and have better insight into how different prioritisation

of arriving aircraft can lead to larger or smaller delays.

Moreover, stand holding is added to the routing process for departing aircraft, while taking

into consideration the pushback process. Stand holding consists of finding the latest time that

an aircraft can start its pushback process and still arrive at the runway on time. This means

that, where aircraft would not take off as soon as they would arrive at the runway, delay

should be experienced at the stand (setting off later) rather than the runway queue (waiting).

i.e. the slack is moved from the end of the journey to the start. We note that airports would

still want to allow some small slack at the runway to provide some flexibility in case of

uncertainties such as unpredicted delays that can result in deviations from the original time

schedule.

Some models take into consideration different priorities between aircraft but the available

paths for aircraft are constrained. For example, Gotteland and Durand (2003b) use different

72

prioritisation levels between aircraft in order to optimise the use of the available paths.

However, only specific paths are available for each aircraft to use. In the paper of Hayashi et

al. (2015) the departing aircraft are prioritised every time there is traffic that prevents a

departing aircraft from pushing back. Their model finds a time that aircraft need to be at the

runway and estimates the necessary time that is needed for each aircraft to reach the runway

and determines a time that aircraft should push back. The aircraft are then held at the stand

until that time.

In the paper of Evertse and Visser (2017) where the ground movement of aircraft is optimised,

the arrivals are implicitly prioritised over departing aircraft in order to minimise specific

emissions (carbon monoxide and unburned hydrocarbons) that arriving aircraft produce in

higher quantities compared to departing aircraft. Ravizza et al. (2014) use stand holding in

order to minimise the time that an aircraft waits at the runway. In their paper, the latest time

that an aircraft can leave the stand by taking into consideration the delays that can happen

later on the path, is found. This transfers the excess waiting time to the stand, before the

engines are turned on, resulting in less fuel consumption overall.

The algorithm which is utilised in this work is based on the QPPTW algorithm as it was

presented in Chapter 3 and Chapter 4. In this chapter, the algorithm is extended in order to

include the stand holding process, while the pushback process is still in use. The sequence of

consideration of aircraft can affect both the routing process and, consequently, the pushback

process, and thus is an important aspect, the effects of which need to be investigated. The

effects that the choice to prioritise departures, arrivals or to have a mixed prioritisation

method can have on the delays, are therefore also considered in this chapter. Providing the

users with more control over choices, that can be adjusted to different prioritisation needs,

can provide a more useful decision support system (a computer based system that can help

with the decision-making process regarding the ground movement of aircraft) for air traffic

control practitioners. Having a better understanding of what is actually happening and the

effects of prioritising departures over arrivals, or vice versa, may potentially be even more

useful for the airports, beyond work on ground movement decision support.

In the next section (Section 5.2), the implementation of stand holding with the pushback

process into the QPPTW algorithm is presented and in Section 5.3, the effects of this

implementation are examined. Section 5.4 compares the effects of prioritising departures over

arrivals and Section 5.5 investigates the effects of having a mixed prioritisation. Finally, the

conclusions are discussed in Section 5.6.

73

5.2 Integrating the Stand Holding Process with the

Pushback Process

As was seen in the previous chapter, the ground movement process directly affects the runway

sequencing problem. As mentioned in Chapter 2, it is important to take into consideration the

order in which aircraft take off when solving the routing problem. For this it is necessary for

the aircraft to arrive at the runway in the same order in which they are going to take-off. In a

system with any kind of pre-departure sequencing and an aim to reduce engine running time

(see for example Atkin et al. 2012 and Ravizza et al. 2014), departures tend to have a fixed

arrival time at the runway rather than a fixed departure time from the stands. The actual time

at which the taxi operation commences is, therefore, an output of the algorithm, rather than

an input. The aim is to find the latest time that each aircraft can start the pushback process

that guarantees that the aircraft will reach the runway on time. This reduces the waiting time

at the runway by moving the excess waiting time to the start of the journey, before the engines

are started. Furthermore, this guarantees that other aircraft cannot arrive earlier at the runway

and affect the take-off sequence that is scheduled as it was seen in the previous chapter.

In this section, an extended version of the QPPTW algorithm is presented, which uses stand

holding as well as including the pushback process.

5.2.1 Notation and Definitions

Table 5.1 shows the definitions of the notation that was used in the description of this work,

including Algorithm 5.1 (the QPPTW algorithm with pushback process and stand holding),

which is shown later. In order to maintain a thread of continuity with the original QPPTW

algorithm which the Algorithm 5.1 is based on and to make it easier for the reader to better

understand the additions, the notation has been kept the same for common variables that were

used in the PhD thesis of Ravizza (2013c).

Table 5.1: Table of definitions for QPPTW with stand holding

E The set of all edges

V The set of all vertices

e ∈ E An edge

υ ∈ V A vertex

G = (V, E) The directed graph representing the airport layout, with vertices υ ∈ V

and edges e ∈ E

74

𝑎𝑒
𝑗
 The start time of the jth time-window on edge e ∈ E

𝑏𝑒
𝑗
 The end time of the jth time-window on edge e ∈ E

𝐹𝑒
𝑗

= [𝑎𝑒
𝑗
, 𝑏𝑒

𝑗
] jth time-window on edge e ∈ E, from time 𝑎𝑒

𝑗
 to time 𝑏𝑒

𝑗

F(e) The sorted set of all of the time-windows on edge e ∈ E

H The Fibonacci heap storing the added labels

aL The start time of Label L

bL The end time of Label L

IL = [aL, bL] The time interval used in a label L

predL The predecessor label of label L

L = (υL, IL, predL) A label on vertex υL ∈ V with a time interval IL and predecessor label

predL

L(υ) The set of all of the labels at vertex υ ∈ V

R A conflict-free route that is being generated

s ∈ V A source vertex

t ∈ V A target vertex

time The time that an aircraft sets off

p The pushback duration

T = (s, t, time, p) A taxi request to route, from source s ∈ V setting off at time time, to

target t ∈ V and with pushback duration p (for departures)

we The weight (necessary taxi time) of edge e ∈ E

H.getMin() Function that returns the element with the lowest value in heap H

Maximise(a, b) Function that returns the element with the largest value between

elements a and b

head(e) Function that returns the vertex y of an edge e that is directed from

vertex x to vertex y.

5.2.2 The QPPTW Algorithm with Pushback Process and Stand

Holding

In order to apply the stand holding process for departing aircraft, the algorithm needs to route

the aircraft “backwards”. The “backwards” version of the QPPTW algorithm uses as a start

time, the time that the aircraft needs to be at the runway (instead of the time that it has to push

back), and works backwards along the route towards the stands, going backwards in time,

calculating the time that it needs to be at each earlier vertex on the route in turn.

75

Algorithm 5.1: Quickest Path Problem with Time Windows (QPPTW) - Departures

Input: Graph G = (V, E) with weights we for all e ∈ E, the set of sorted time-windows F(e)

for all e ∈ E, a taxi request Ti = (si, ti, timei, pi) for aircraft i, with the source vertex si

∈ V, the target vertex ti ∈ V and the start time timei.

Output: Conflict-free route R from si to ti with minimal taxi time that starts at the earliest at

time timei, respects the given time-windows F(e) or returns the message that no

such route exists.

1 Let H = ∅

2 Let L(υ) = ∅ ∀ υ ∈ V

3 Create new label L such that L = (ti, [0, timei), nil)

4 Insert L into heap H with key –timei

5 Insert L into set L(ti)

6 while H ≠ ∅ do

7 Let L = H.getMin(), where L = (υL, IL, predL) and IL = [aL, bL]

8 if υL = si then

9 Reconstruct the route R from si to ti by working backwards from L

10 return the route R

11 forall the outgoing edges eL of υL do

12 foreach 𝐹𝑒𝐿

𝑗
 ∈ F(eL), where 𝐹𝑒𝐿

𝑗
 = [𝑎𝑒𝐿

𝑗
, 𝑏𝑒𝐿

𝑗
], in increasing order of 𝑎𝑒𝐿

𝑗
 do

13 /*Expand labels for edges where time intervals overlap*/

14 if 𝑎𝑒𝐿

𝑗
 > bL then

15 goto 11 /*consider the next outgoing edge*/

16 if 𝑏𝑒𝐿

𝑗
 < aL then

17 goto 12 /*consider the next time-window*/

18 Let timeout = Minimise (bL, 𝑏𝑒𝐿

𝑗
) /* 𝑏𝑒𝐿

𝑗
 < bL ⇒ waiting*/

19 Let u = head(eL)

20 if u = si then

21 Let timein = timeout – (𝑤𝑒𝐿
 + pi)

22 else

23 Let timein = timeout – 𝑤𝑒𝐿

24 if timein ≥ 𝑎𝑒𝐿

𝑗
 then

25 Let L’ = (u, [𝑎𝑒𝐿

𝑗
, timein], L)

26 /*dominance check*/

27 foreach L̂ ∈ L(υ) do

28 if L̂ dominates L’ then

29 goto 12 /*next time-window*/

30 if L’ dominates L̂ then

31 Remove L̂ from H

32 Remove L̂ from L(υ)

33 Insert L’ into heap H with key –bL’

34 Insert L’ into set L(υ)

35 return “there is no si - ti route”

76

In order to integrate the pushback process into the backwards QPPTW algorithm, some

changes to the main algorithm had to be made. Algorithm 5.1 shows the QPPTW algorithm

that implements the stand holding process and the pushback process. The parts that are

different from the original algorithm have been underlined in red

Using the stand holding process means that every time the algorithm expands to another

vertex, it searches for the latest time that it needs to start moving from the previous vertex in

the aircraft’s path, to reach the current vertex. Similar to the QPPTW algorithm that was used

in the previous chapter every time the algorithm tries to expand in a new vertex, it has to

check if that vertex is a stand (line 20) which will be the starting point of the aircraft and the

target point of the algorithm. If yes, then the time interval that needs to be available on the

edge that leads to the stand vertex increases by pf (see line 21). As mentioned earlier in

Chapters 3 and 4, the QPPTW algorithm is implemented to iteratively expand out from the

starting vertex to all neighbouring vertices, like Dijkstra’s algorithm, but with time windows

denoting when the edges are already in use. In this implementation, the algorithm will look

for an available time window on that edge that can fit the extended time interval that is

necessary for an aircraft to use the edge as it does for all other edges (see line 24). However,

using the stand holding process means this time it searches for available time windows

backwards in time. The weight of the edge leading to the stand (where the engine start-up

will take place) will also increase by an amount equal to the pushback duration for the aircraft

which is pushing back (see line 21). Finally, the available time windows of this edge are going

to be updated based on the extra time that is needed for the pushback process in order to block

the nearby edges from being used by other aircraft during this time.

5.3 The Effects of the Pushback Process with Stand

Holding

In this section, the delays that can happen during the routing process when the pushback

process is implemented are investigated using the stand holding process to route the departing

aircraft and also considering the arriving aircraft which are routed forwards in time as in

Chapter 4.

In order to understand the effects of the stand holding process in practice, the developed

model (see previous section) was executed (for departing aircraft) using real data of this from

seven different days from Zurich airport (see Chapter 3); as the previous datasets did not

include arriving aircraft, new datasets have been used. Since arriving aircraft need to arrive

77

at the stand and turn their engines off as soon as possible, the arrivals were routed first using

the typical implementation of the QPPTW algorithm (see Chapter 3). The departing aircraft

were routed second, using the algorithm that was presented in the previous section.

The airport where the experiments were executed has been changed in order to be able to

include data that contain arriving aircraft and multiple runways as well (see Chapter 3). Input

information were: whether a flight was arriving or departing, the weight class (light, medium,

or heavy), the starting point of the aircraft (the runway for arrivals, the stand for departures),

the end point (the stand for arrivals, the runway for departures), the landing time for arrivals

and the take-off time for departures.

The framework was programmed in Java and executed on a personal computer (Intel Xeon

E5-1620, 3.7GHz, 32GB RAM). The execution times varied from 9 to 15 seconds for routing

all moving aircraft for one day (from 780 to 840 aircraft movements), which is fast enough

for real time routing, especially since far fewer aircraft would be simultaneously routed in

practice. Since stand holding and the pushback process are concepts that are only relative for

departing aircraft, departures have been routed using the algorithm that was described in the

previous section (Algorithm 5.1) and arriving aircraft have been routed using the original

QPPTW algorithm (see Chapter 3).

Table 5.2 shows the total delays that occur when the program routes different sets of aircraft.

As defined in the previous chapter (Section 4.3.4) a delay is the excess travel time of an

aircraft and is calculated by subtracting the minimum taxi time and the pushback duration (if

there is any) from the total taxi time of that aircraft. The second column shows the delays in

seconds that occur when all of the aircraft are routed, both arriving and departing. The

information in parentheses shows the split of the delay between arriving (first number) and

departing (second number) aircraft. The third column shows the delays that occur when only

the arriving aircraft are routed and column four when only the departing aircraft are routed.

Column five shows the additional delay that is introduced to departures when the arriving

aircraft are taken into consideration. Finally, the last column shows the number of additional

individual delays that are introduced when arriving aircraft are also taken into consideration.

Firstly, a significant difference in the delay between arriving and departing aircraft is

apparent. This is expected as the pushback process can cause both more delays and longer

delays than those that happen when the aircraft are routed without modelling this process (see

Chapter 4). Arriving aircraft, on the other hand, do not have to wait for anything as they are

prioritised (by routing them first), so they can park as soon as possible after they land.

By comparing the results of the two set ups, it is clear that most of the delays occur because

of arriving aircraft. When departing aircraft are solved separately (without taking into

78

consideration arriving aircraft), the delay for each aircraft would be on average around 8

seconds. When the arriving aircraft were also routed, the delay for each aircraft rose by 17

seconds (211%) to 25 seconds. The departing aircraft need a clear apron to push back onto,

and arriving aircraft disturb this process.

Table 5.2: Delays when the stand holding process is used

Arrivals + Departures

total delays [s]

Arrivals only

delays [s]

Departure only

delays [s]

Difference

[s]

No. of

additional

delays

Day 1 23904 (80/23824) 80 7814 16010 65

Day 2 20452 (63/20389) 63 4624 15765 72

Day 3 15646 (9/15637) 9 4888 10749 56

Day 4 25501 (74/25427) 74 9349 16078 77

Day 5 18427 (93/18334) 93 5436 12898 50

Day 6 22017 (29/21988) 29 8116 13872 58

Day 7 14906 (91/14815) 91 4905 9910 62

Sum 140853 (439/140414) 439 45132 95282 440

Figure 5.1 shows the number of aircraft that are delayed by “x” or more during day 1. As

shown in Figure 5.1, the majority of delays are short in duration, with 50% of the observed

delays during day 1 being less than 34 seconds (see blue dotted line). The longest delays that

happen are because departing aircraft cannot find a large enough window to push back in

between other aircraft, whether arrivals or other departures. Even if one aircraft passes in

front of a parked aircraft once every 4 minutes the parked aircraft simply cannot commit to

initiating the pushback process. This results in departing aircraft pushing back much earlier

than needed in order to ensure that they are going to arrive at the runway on time. In one

extreme case, an aircraft (flight 264 on day 1) had to start pushing back approximately 25

minutes before it would have done in isolation. With a 4-minute pushback duration and only

3 minutes to travel the distance, this is a considerable increase in time, and equates to a

significant additional engine running time, wasting fuel. This is obviously unrealistic, and

controllers would not allow this in practice. However, this is a rare case. The majority of the

delays for day 1 have a much shorter duration. As Figure 5.1 shows, a significant number of

aircraft (15%) that are delayed by more than 4 minutes (see green line) but few delays (3.3%)

last longer than 11 minutes (see red line).

79

Figure 5.1: Delay graph that shows number of aircraft that are delayed by “x” or more for

day 1

The above results led to the belief that aircraft during the pushback process should have a

higher priority. The hypothesis is that if departing aircraft are prioritised over arriving aircraft,

or at least have a higher priority than modelled here, there would not be such a large difference

in the duration of delays between arriving and departing aircraft. For this reason, the next

section focuses on the prioritisation between arriving and departing aircraft and how this

affects the duration of delays.

5.4 Priority Between Arrivals and Departures

Arriving aircraft need to taxi from the runway (where they land) to their destination stand

(where they unload the passengers and cargo). Departing aircraft need to taxi from the stand

to the runway, and usually need to be at the runway at a specific time. The objective in both

cases is usually to reduce the taxi time, the time that the engines are running and burning fuel.

Unfortunately, these taxi operations usually take place on the same taxiways, potentially in

opposite directions, so that there is often a decision about which aircraft should use a taxiway

first. There are often situations where one aircraft has to wait for another to move and some

kind of prioritisation is needed.

In the previous section arriving aircraft were prioritised, since parking at the designated stand

is a straightforward process and shutting down the engines as soon as possible will save fuel.

At busy airports, the runway throughput is often the primary capacity constraint. A take-off

sequence may even be pre-planned at some airports in order to ensure a high runway

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20 22 24

N
u

m
b

er
 o

f
ai

rc
ra

ft
 w

it
h

 t
h

at
 d

el
ay

 o
r

m
o

re

Duration of Delay [m]

+
0.56

80

throughput, and pushback times may have been determined in order to ensure a good runway

throughput (Atkin et al. 2012). Delaying aircraft from reaching the runway may risk a loss of

runway capacity, or missing a take-off slot, so should be avoided.

In this section, the effects of prioritisation between arrivals and departures is examined. As

was seen in the previous section, when the pushback process and the stand holding process

are implemented for the departing aircraft, the number and the duration of delays can be

significantly different for arrivals and departures. For this reason, prioritising the departures

is examined and compared to prioritising arrivals.

The same model and framework that were used in Section 5.3, were also used here for all of

the experiments, as well as the same flight data from Zurich airport.

5.4.1 Importance of the Consideration Order

Since QPPTW considers aircraft one at a time, the order in which they are considered is

important. A first come first served order, whereby the first aircraft which will set off is routed

first, is often sensible, for two reasons: 1) when time windows are allocated for edges it is

much easier to allocate a time window after the existing usage of the edge, than to try to fit a

time window in between other time windows (the gaps will often not be large enough, as

discussed later); 2) first-come-first-served is often considered to be fairer when considering

which aircraft should get priority at a vertex/edge. In order to do this, however, it is necessary

to know when each aircraft will start moving. For the arrivals, this is not a problem, since

aircraft are routed based on the time that they arrive at the airport; since there is no advantage

to waiting at the runway before starting their taxi back to the stands and the objective is to

reach the designated stand as quickly as possible, aircraft will start to taxi as soon as they

land. This is not the case for departures, however.

As discussed earlier in Section 5.3, in a system with any kind of pre-departure sequencing

and an aim to reduce engine running time (see for example Atkin et al. 2012 and Ravizza et

al. 2014), departures tend to have a fixed arrival time at the runway rather than a fixed

departure time from the stands. The actual time at which the taxi operation commences is,

therefore, an output of the algorithm, rather than an input. Finding an approximate start time

(pushback time) for the departing aircraft can be achieved by subtracting the minimum time

(see ‘Calculating delay’ Chapter 4, Section 4.3) that an aircraft needs to reach the runway

from a specific stand from the time at which an aircraft must reach the stand. This time does

not take into account any delays, however, so it is possible for the actual start time to need to

81

be earlier than this. Once taxi start times (real for arrivals, or estimated for departures) are

known, then these are utilised for the consideration/ prioritisation order of aircraft.

5.4.2 Trade-off Results After Prioritising Departures

In the previous section (Section 5.3) the experiments were executed by giving a priority to

arriving aircraft. In order to investigate the effects of different prioritisation set-ups between

aircraft, new experiments were executed in this section having the departures prioritised.

Table 5.3 shows the total delays that occur when the arrivals are prioritised and when the

departures are prioritised. The first two columns show the sum of the delays in seconds that

occur when all of the aircraft are routed for each day, and a breakdown of the delays that are

caused to arriving and departing aircraft, respectively, in the parentheses. The third column

shows the difference in the delays between prioritising arrivals and departures.

After comparing the delays when arrivals are prioritised to the delays when departures are

prioritised (in Table 5.3) it is evident that in all of the cases, prioritising the departures results

in a huge increase in delays for arrivals. However, the total delays are considerably lower,

ranging from a 35% to a 51% decrease in each case. This is a significant difference, reducing

the total delay to be closer to 3 hours rather than the 6 hours from just having different

priorities. Part of the problem is that departures are more limited as they must use the apron

near to their stand to push back onto, but this apron also forms a part of the route for other

aircraft. Routing departing aircraft first effectively reserves this apron for the pushback

operation, potentially finding alternative routes around it for the other aircraft. The delays

that can happen due to the morphology of the area where aircraft push back, as well as the

use of alternative paths will be examined in more detail in Chapter 6.

Table 5.3: Different priorities in routing arrivals and departures

Prioritise Arrivals

(Arr/Dep) [s]

Prioritise Departures

(Arr/Dep) [s]

% Difference

Day 1 23904 (80/23824) 11735 (7814/3921) -51% (9668%/-84%)

Day 2 20452 (63/20389) 13222 (4624/8598) -35% (7240%/-58%)

Day 3 15646 (9/15637) 8402 (4888/3514) -46% (54211%/-78%)

Day 4 25501 (74/25427) 15260 (9563/5697) -40% (12823%/-78%)

Day 5 18427 (93/18334) 10470 (5313/5157) -43% (5613%/-72%)

Day 6 22017 (29/21988) 12132 (8116/4016) -45% (27886%/-82%)

Day 7 14906 (91/14815) 8373 (4905/3468) -44% (5290%/-77%)

82

The results in Table 5.3 show that arriving aircraft play a significant role in an airport. It is

clear that the interaction of arrivals and departures can greatly increase the delay for

whichever are routed second, so it is obviously important to consider both in the routing

process. This shows that solving only half of the ground movement problem (either arrivals

or departures) is unlikely to provide realistic estimates of delay at airports such as Zurich,

where common taxiways are often used during the pushback process. These results also

indicate that it is better to prioritise the departures, due to the time that they spend in the

pushback process, the need for that to be a continuous span of time in one location, and their

inflexibility in where to spend this time.

5.5 Mixed Prioritisation

Further to solving the problem by prioritising departing aircraft, the experiments were also

executed with having a mixed prioritisation between arrivals and departures. In this section,

the effects of a mixed prioritisation are examined, and the reasons why delays happen are

investigated. Furthermore, the experiments were also executed with different levels of mixed

prioritisation, where the priority between arrivals and departures is balanced in order to have

more control over the trade-off.

5.5.1 Mixed Prioritisation Results

The results for each of the days are summarised in Table 5.4. The arrivals column shows the

sum of the delays in seconds for each day when arrivals are prioritised, with the breakdown

of the delays between arrivals and departures being shown in parentheses. The departures

column shows the same information for when departures are prioritised and the mixed column

when the prioritisation is mixed. When departures and arrivals are ordered separately, arrivals

are ordered by landing time and departures by take-off time. When the two are prioritised

together, the approximate taxi starting times are determined for departures (as described

earlier in Section 5.4.1) and are used along with the landing times for arrivals to prioritise the

aircraft.

It can be seen from Table 5.4 that, on average, having a mixed priority between arrivals and

departures results in a much better overall efficiency than prioritising arrivals alone, but is

slightly worse than prioritising the departures. On average, having a mixed priority can save

more than 2 hours and 20 minutes of delays per day compared with prioritising arrivals.

However, prioritising departures can save around another 3 minutes more per day compared

with mixed priority.

83

Table 5.4: Delays of aircraft for different prioritisations

 Priority

 Arrivals [s] (Arr/Dep) Departures [s] (Arr/Dep) Mixed [s] (Arr/Dep)

Day 1 23904 (80/23824) 11797 (3983/7814) 12044 (3928/8116)

Day 2 20454 (63/20391) 13330 (8706/4624) 13762 (8282/5480)

Day 3 15646 (9/15637) 8469 (3581/4888) 8782 (3592/5190)

Day 4 25502 (74/25428) 15261 (5912/9349) 14544 (6203/8341)

Day 5 18427 (93/18334) 10482 (5046/5436) 11091 (4879/6212)

Day 6 22017 (29/21988) 12141 (4025/8116) 12230 (3893/8337)

Day 7 14906 (91/14815) 8388 (3483/4905) 8799 (3178/5621)

Importantly, however, the prioritisation also changes the composition of the delays. When

prioritising arrivals, even though the total delay is very high, the delays that affect the arriving

aircraft are much smaller (almost insignificant) in comparison to the delays that are caused to

the departing aircraft. In contrast, when having a mixed prioritisation or when prioritising the

departures, the delays that affect the arrivals are much higher, and closer to the delays that

affect the departures. On average, the arrival delays are still less than the departure delays,

but the overall difference is much smaller, especially for when the arrivals are prioritised.

To better understand the delay allocation, the results for day 1 have been considered in more

detail. Figure 5.2 shows the number of aircraft of different types that are delayed by “x” or

more seconds, for different prioritisation methods. The “Arrival” prioritisation values

demonstrate the delays that happen when arrivals are prioritised, with “Arrivals (A)” showing

the arriving aircraft that are affected by this prioritisation and “Arrivals (D)” the number of

departing aircraft. It is clear that the delay is affecting a small number of departure aircraft by

a large amount, rather than being spread evenly across the departures. It is obviously

important to understand why these delays differ so much, so further investigation was

performed and is discussed in the next subsection.

The “Mixed” (A) and (D), and “Departure” (A) and (D) results, similarly, show the delays

for arriving and departing aircraft when there is a mixed prioritisation or when departures are

prioritised. Even when departures are prioritised for day 1, more departing aircraft are still

delayed (147) than arriving aircraft (103), and it is clear that this holds for any level of delay

considered (the departures delay line is consistently above the arrivals delay line). With a

mixed prioritisation, there is a smaller total difference between the number of delays for

arriving and departing aircraft, having slightly more arriving aircraft delayed (134) than

departing (115). However, when arrivals are prioritised, very few arriving aircraft are affected

(7) compared to the number of delays that happen for departing aircraft (212). This is not

84

surprising for arrivals, since the runway will often be the bottleneck on the throughput, so

arrivals will be automatically nicely spaced to follow each other around the taxiways – the

only delays being due to interactions with departures.

Figure 5.2: Delay graph for arrivals/departures for different prioritisations, showing the delay

(in minutes) against the number of arrivals (A) and departures (D) aircraft which have that

delay or higher, for three different configurations.

5.5.2 Reasons that Delays Happen

As has been mentioned earlier, many delays can happen during the pushback process. Aircraft

that push back need a clear area to push back to and start their engines, which can be a time-

consuming process. This area must be clear during the entire duration of the process.

Prioritising the arrivals disrupted this process as the area that an aircraft needs to pushback to

was often not clear for the entirety of the necessary time; which could apply a long delay

waiting for a large enough gap. Depending on the size of the aircraft, the pushback and engine

start-up time varies between 200 seconds (for small aircraft) to 280 seconds (for large

aircraft). The taxiway needs to be clear for at least this amount of time for an aircraft to be

able to initiate the pushback process.

An example will now be considered to illustrate the problem. Figure 5.3 shows the aircraft

that are considered in this example and their routes. Departing aircraft number 466 (coloured

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

er
 o

f
ai

rc
ra

ft
 w

it
h

 t
h

at
 d

el
ay

 o
r

m
o

re

Delay [m]

Departure (A)

Departure (D)

Mixed (A)

Mixed (D)

Arrival (A)

Arrival (D)

85

in yellow) on day 1 needs to push back. This aircraft is parked on the northwest side of

terminal A.

Figure 5.3: Example case where departing aircraft 466 has to push back early to avoid

traffic

Three arriving aircraft (344, 345 and 346 – marked in red, blue and light green respectively)

landed on runway 14 within a time window of 4.5 minutes. Two of these head towards the

south side of terminal A and one of them towards the south part of the airport. Since the

quickest path for these arriving aircraft passes in front of the northwest side of terminal A,

when the arriving aircraft are prioritised they will block the taxiway for the duration that they

are on it, preventing the departing aircraft from starting its pushback process. The 3 arriving

aircraft do not leave a long enough gap between them for the departing aircraft to perform its

pushback, so the algorithm handles this by performing the pushback process before any of

the 3 aircraft arrive. This results in the departing aircraft pushing back 6 minutes and 48

seconds earlier than it needed to have done if there was no traffic at the airport. On the other

86

hand, when departures are prioritised, the departing aircraft is able to push back (being

scheduled to do so before the arrivals are considered), and blocks the taxiway for a time.

Because of this, the quickest path of the last of the 3 arriving aircraft (346) is temporarily

blocked and the algorithm re-routes the aircraft onto a (now) quicker path, forcing it to choose

a slightly longer path (marked in dark green) but only increasing its total taxi time by 11

seconds. The taxiway layout is fairly flexible at Zurich and it is possible to find an alternative

path relatively easily, hence the arrival delays are relatively low. This situation will probably

be different when fewer alternative taxiways are available and will be examined in the next

chapter.

Having a mixed priority makes it possible for departing aircraft to start the pushback process

before at least some of a stream of consecutive arriving aircraft have had a chance to block

the taxiway to which the departure will push back. However, prioritising departing aircraft

ensured that this was more often the case and provided a slightly better performance overall.

Neither approach gave ideal results, however, so further investigation of prioritisation was

performed.

5.5.3 Further Investigation of Varying the Prioritisation of

Departures against Arrivals

The ability to prioritise arrivals or departures provides a useful facility for airport

practitioners, and deserves further investigation. In the mixed prioritisation, the balancing of

the times provided a facility to have more control over the trade-off. In order to see the trade-

off between mixed prioritisation and prioritising arrivals, the flights were sorted again but

this time various small “time priorities” were given to departures. To do this, extra time was

deducted from the departure times when sorting the flights, resulting in more of the departures

being prioritised before arrivals even when the start time of the departure was a bit later

(depending on the value of the extra time). Different extra times were considered on an

increasing scale (namely 10, 30, 60 and 90 seconds) in order to better understand the effects

of prioritising departures over arrivals. The results are summarised in Table 5.5.

It can be observed from Table 5.5 that, as the extra time increases, (on average) the total time

decreases. Even though there is some variation between the days, the total delay decreases

when the departures have a higher priority. With 10 seconds extra time there is an 84 seconds

improvement in terms of delays for the whole week and for 30 seconds, a bit more than 3

minutes less delay. For 1 minute extra time, the overall benefit is a bit more than 4 minutes

and for 1.5 minutes extra time 6 minutes less delays occur. Furthermore, as the extra time

increases, the departure delay significantly decreases, and the arrival delays increase. For 1

87

minute extra time, the departure delays decreased by 19.5 minutes while the arrival delays

increased by 16 minutes. Eventually, the best total delay is achieved by completely

prioritising the departures.

Table 5.5: Delays for different “mixed prioritisation” settings

 Delay (Arrival/Departure) [s]

 Extra time [s]: 0 10 30

Day 1 12044 (3928/8116) 12036 (3959/8077) 11985 (4034/7951)

Day 2 13762 (8282/5480) 13691 (8293/5398) 13773 (8466/5307)

Day 3 8782 (3592/5190) 8707 (3596/5111) 8684 (3621/5063)

Day 4 14544 (6203/8341) 14531 (6259/8272) 14527 (6303/8224)

Day 5 11091 (4879/6212) 11089 (4879/6210) 11070 (4911/6159)

Day 6 12230 (3893/8337) 12280 (3954/8326) 12219 (4019/8200)

Day 7 8799 (3178/5621) 8834 (3222/5612) 8807 (3256/5551)

Total 81252 (33955/47297) 81168 (34162/47006) 81065 (34610/46455)

Difference 84 (-207/291) 187 (-655/842)

 Delay (Arrival/Departure) [s]

 Extra time [s]: 0 60 90

Day 1 12044 (3928/8116) 11900 (4008/7892) 11879 (4014/7865)

Day 2 13762 (8282/5480) 13754 (8519/5235) 13756 (8545/5211)

Day 3 8782 (3592/5190) 8662 (3679/4983) 8658 (3679/4979)

Day 4 14544 (6203/8341) 14536 (6320/8216) 14536 (6320/8216)

Day 5 11091 (4879/6212) 11140 (4990/6150) 11083 (4988/6095)

Day 6 12230 (3893/8337) 12218 (4043/8175) 12209 (4058/8151)

Day 7 8799 (3178/5621) 8792 (3322/5470) 8773 (3324/5449)

Total 81252 (33955/47297) 81002 (34881/46121) 80894 (34928/45966)

Difference 250 (-926/1176) 358 (-973/1331)

It is clear from these results that the deduction of this extra time from the planned times for

departures successfully allows the planner to trade off the consequent arrival delay against

the departure (and total) delay, which is a vital ability for any live implementation to have.

88

5.6 Conclusions

In this chapter, a more accurate model that uses the runway sequence as an input to the

QPPTW algorithm was developed. This model implements the pushback process with the

stand holding process, which finds the latest time that an aircraft can push back and still arrive

at the runway on time. Using the stand holding process when arriving aircraft were considered

as well, led to large delays for the departing aircraft.

In order to minimise the pushback delays that occur in an airport, a higher priority was

provided to departing aircraft. However, it should be acknowledged that this will slightly

increase the delay for arrivals, which may not always be advisable. It is expected that the

delays for arrivals would be even worse if there were no other, almost as good, taxi routes

available for these arrivals to use instead.

A mixed prioritisation is possible, but has a problem in that the start time for the taxi

operations is only known in advance for arrivals. A method for estimating the start times for

departures was presented here, based upon the shortest path, and was found to have some

success in the mixed prioritisation. A parameterisation method was then investigated,

whereby departures could be further prioritised by varying amounts using an additional time

factor, to allow for more fine tuning of the balancing between arrivals and departures. It has

been shown that it is possible to control this balance by altering the value of the additional

time factor, providing a simple but effective way for solving this problem.

Having a better understanding of the effects and the types of delays that occur from various

prioritisations of aircraft can lead to a more realistic and accurate model that can assist the

decision-making process of the ground movement operations. Furthermore, having a flexible

model that can modify the priority between arrivals and departures may also provide a more

tailored routing tool that will be able to adjust to differing demands across or within airports.

For example, if the delay for arrivals is increasing, it may be sensible to prioritise them more,

whereas it may be sensible to prioritise departures otherwise. There is value in giving an

airport an additional parameter that can be used to tune operations to their preferences,

however we believe that this approach can be refined further, perhaps by tailoring the

prioritisation for different aircraft according to the situation at the time, for example to

encourage re-routing of some arrivals when it will not greatly affect them, but to allow other

departures to be pushed back earlier instead when the arrival delays would be unacceptable.

89

6

The Effects of Airport Layout and Re-routing on

Taxiing

6.1 Introduction

This chapter considers the effects that different airport layouts have on the taxi time of aircraft

and the delays that happen to aircraft while moving on an airport. This is an important

problem, as there are many airports that have different layout morphologies, but research is

usually limited to a particular airport case in each study. This is often the case due to limited

datasets that are available as well as the difficulty in comparing results from different datasets.

In general, using optimisation methods in airports can be very useful as it can reduce the

levels of CO2 emissions. However, it is important to know the effects of an optimisation

method in different airport layouts and more importantly how the airport layout affects the

solution when the problem is optimised.

The optimal solution for routing aircraft in order to go from the stand to the runway and vice

versa can be significantly different in two airports. Furthermore, having an optimal ground

movement solution in an airport where resources are badly allocated can still result in large

delays. An example of this can be seen in Chapter 4 (Section 4.5.2 – Instance 5) where aircraft

were allocated to close stands in Arlanda airport, resulting in large delays. Spending many

resources in making costly improvements such as adding long parallel taxiways around an

airport, is expensive and moreover it can provide only marginal improvements if the type of

the longer delays that happen on that airport are not related to the number of taxiways.

However, areas that delays can still happen (even though an optimised routing process is in

use), can be identified and refined by making small changes.

90

It is important to make use of all of the available paths of the airport when routing the aircraft.

For this reason, the QPPTW algorithm is used in this research as it takes into consideration

all of the available parts of the airport in order to find the quickest route instead of using pre-

selected paths.

In this chapter, the types of delays that can happen in airports with multiple terminals and

runways are investigated. The effects that the morphology of the airport - such as physical

size, number of taxiways and type of areas where aircraft can park - can have to the routing

process of aircraft is considered. How the routing process is affected can be examined by

observing the differences in the total taxi time of each aircraft, the number and the duration

of delays as well as the use of alternative paths.

The structure of this chapter is as follows: Section 6.2 describes the airport layout problem in

more detail and Section 6.3 provides more details of the airport layouts that were chosen and

later modified in order to be able to compare the performance of QPPTW algorithm in

different layouts. Moreover, details on how the new layouts were built are provided as well

as details on how to identify the types of delays. Section 6.4 presents the results that derive

after solving the problem in different layouts and discusses the findings. Finally, the chapter

summarises the conclusions in Section 6.5.

6.2 Problem Description

During the routing process of an aircraft there are areas of the airport where congestion can

occur and where delays are more likely to happen. In some airports aircraft are physically

constrained to use only one path in order to reach their destination. Most airports, however,

have multiple taxiways in order to maximise their capacity. It is important for the routing

process of the aircraft to have an algorithm that can take all of the available taxiways into

consideration before a route is assigned. Always following the shortest path becomes less

efficient as the number of aircraft moving around the airport increases. Considering multiple

paths can result in some aircraft taking a longer path but overall the total taxi time of all of

the aircraft is minimised.

Airport morphology is an important aspect of the routing process. The limited number of

taxiways and especially the areas where only one taxiway can be used, can create a bottleneck

effect as multiple aircraft are competing for the same resource. This can result in significant

delays, especially when two aircraft are heading in opposite directions. For example, when

there is one arriving and one departing aircraft that need to use the same taxiway or when two

aircraft start from different stands and are heading towards different runways and vice versa.

91

Furthermore, some aircraft can perform operations that result in blocking parts of a taxiway

for a significant period of time such as when aircraft are pushing back directly to a taxiway.

Larger and more sparse airports with many taxiways may help increase the capacity of the

airport and avoid or reduce these delays but the travelled distance of each aircraft increases.

Usually many airports have the runways close to the terminals. However, in some cases, due

to lack of available space or expansions that happen after an airport is built, the distance

between the terminals and the runway can be significant. This can be observed, for example,

in Arlanda airport where the 3rd runway (01R/19L) was constructed as an extension to the

main airport, and is situated far from all of the passenger and cargo terminals. As optimisation

methods are getting more and more efficient though, it is possible to utilise them for many

processes that happen in airports and reduce the delays that can happen. This allows airports

to have more aircraft that can share the same resources without causing many delays. This

can make compact airports to better handle congestion and result in shorter taxi times. An

example of using optimisation techniques to decrease the delays in busy airports can be seen

in Heathrow airport with the Target Start-up Approval Time (TSAT) system that was utilised

and resulted in shorter taxi times (Atkin et al. 2009).

The layout of the terminals and their position relative to the taxiway can also affect the

movement of aircraft. Airports that have aircraft pushing back directly on a taxiway can result

in more aircraft that are moving around being blocked or forced to choose another path. On

the other hand, airports that have aprons (area where aircraft park without affecting the

taxiways) can lead to long delays since there is only one entry/exit to the apron.

Using a different path to move around an area that is blocked - if one is available - can be

advantageous when an aircraft has to wait for a long time for the preferred path. Once the

aircraft pushes back and turns on its engines, the fuel consumption does not vary greatly

during the taxi operation. Some aircraft need to keep pushing the brakes while the aircraft is

stopped as the thrust of the engines is enough for the aircraft to move even on idle. This means

that even if the aircraft is stopped at a crossroad, or waits for traffic to clear, a significant

amount of fuel is consumed, similar to the amount that is consumed when moving (Wood et

al. 2008). For this reason, the fuel consumption can be decreased even though a longer path

is allocated to the aircraft as long as the aircraft reaches its destination earlier in time.

Understanding the effects of airport layout on the routing process of aircraft can lead to more

specialised algorithms for each airport and provide a better guide in improving the

infrastructure of airports. Algorithms that take into consideration multiple paths could

potentially reduce the total delay in one airport, or increase it in another. So far, each

algorithm is usually tested in one airport and the effectives of the algorithm can be

significantly different on another.

92

6.3 Airport Layouts

In order to investigate the effects of the airport morphology, aircraft were routed around four

different airport layouts. Graph representations of Arlanda airport (Sweden) and Zurich

airport (Switzerland) were used for this work, and then two further airport layouts were

created (based on Arlanda and Zurich airport) to identify and then illustrate some of the

important characteristics of the layouts. A weighted graph for each of the airport layouts was

created using as a weight for each edge, the time that is needed to traverse that edge. During

the pushback process the edge weight is also affected by the weight of the aircraft as was

described in Chapter 4.

6.3.1 Airports - Similarities and Differences

Zurich and Arlanda airports were chosen due to their similarities in terms of number of

runways and capacity but also their differences in airport morphology. Figure 6.1 and Figure

6.2 show the graph layouts for Zurich and Arlanda respectively. The runways are shown as

bold black lines and the areas where the passenger terminals, the cargo terminals and the

hanger and maintenance areas are enclosed in boxes that are marked as terminals, cargo and

hangar respectively. The groups are explained later in Section 6.3.3.

Both airports have three runways and handle a similar number of flights, as indicated by the

similarity in the total number of passengers in 2016: 27.7 million for Zurich and 24.7 million

for Arlanda. Arlanda has two parallel runways (east and west) and one runway to the north.

All of the terminals/gates are enclosed between the runways. Moreover, it has long single

taxiways to connect the terminals to the east runway and most of the stands are located within

enclosed aprons (areas that are used for parking aircraft and are connected to the taxiway on

one side). In contrast, all of the runways in Zurich are close to each other with two runways

crossing one another. The terminals and stands are located to both sides of the south runway

and there are many parallel taxiways and alternative routes for an aircraft to reach the runways

starting from a stand or vice versa. Furthermore, the majority of stands are connected directly

to the taxiways having only one small apron that is limited to one entry/exit point.

93

Figure 6.1: Graph of Arlanda airport - Groups

94

Figure 6.2: Graph of Zurich airport - Groups

6.3.2 New Airport Layouts

Based on these airports, two new airports were designed to test the effects of having additional

or fewer taxiways and of aircraft pushing back onto taxiways instead of aprons. All of the

airports were converted to graphs that consist of nodes and edges. Only one aircraft can use

95

a node at a time and aircraft can travel to all of the nodes that are connected through an edge

and are not used at the same time by another aircraft that has been previously routed. If an

edge is being used, the aircraft could wait for it to be free, or they could take an alternative

route. The weight of each edge is the time that it takes for an aircraft to traverse this edge and

the edges that are connected to stands have a dynamic weight that is subject to the size of the

aircraft using them.

Figure 6.3: Graph of Arlanda airport – Added nodes

96

Figure 6.4: Graph of Zurich airport – Nodes removed

Alternative airport 1 is based on the Arlanda airport but has extra taxiways. The taxiways

were added at strategic locations where bottlenecks were observed to occur. Previously, the

eastern runway was connected to the rest of the airport (the other two runways and all of the

terminals) by just two taxiways, north and south of the airport. In this layout two more

taxiways were added in parallel to each aforementioned taxiway providing more options to

access the eastern runway. The bold nodes and the dotted edges in Figure 6.3 represent the

97

extra nodes and edges that were added in order to form the new taxiways (see Figure 6.1 for

comparison). The reason for adding these extra runways was to examine whether reducing

the delays that happen at a bottleneck area will reduce the total delay and increase the use of

longer routes.

Alternative airport 2 is based on Zurich airport but has fewer taxiways. Short parts of the

taxiways were removed in order to reduce the available paths for aircraft. More specifically,

taxiways that crossed the (28) runway (the runway that separates the airport to two parts,

south and north) were reduced and the taxiway that connects the terminals A and B to the

stand at the south part of the airport and the (34) was removed. The aforementioned changes

in addition to other small alterations to a few taxiways were performed in order to reduce the

alternative paths of aircraft and force them to use the preferred/shortest path, as can be seen

in Figure 6.4. Contrary to Figure 6.3 the bold nodes and dotted edges in Figure 6.4 represent

the edges that were removed in order to restrict the use of these taxiways (see Figure 6.2 for

comparison).

6.3.3 Using the Same Data in Different Layouts

 In order to have comparable results from each airport layout, the same data was used for

running the experiments for all of the airport layouts. The time that aircraft depart from the

stands or land at the airport as well as the size of the aircraft have remained the same (so it is

possible to compare only the effects of the airport layout). The only parameter from the

datasets that has been changed is the stand where aircraft start or end their journey. The stands

of Zurich airport in the datasets have been converted to similar stands in Arlanda airport. In

order to avoid having an inconsistent or biased use of the data, which was originally obtained

from Zurich airport, and to make sure that the results are coherent, the stands from Zurich

airport have been matched with the stands from Arlanda airport in the following way.

Initially each airport was divided in groups/parking areas, where aircraft are more likely to

interact with each other because the resources (taxiways) were shared. These groups are

marked in Figure 6.3 and Figure 6.4 with different colours. Moreover, each group was

assigned one of the following types: passenger terminal, cargo terminal or

hangar/maintenance area. All of the groups are enclosed by grey boxes in Figure 6.3 and

Figure 6.4 that represent their type. Each group from Zurich airport was assigned (in a

sensible manner) to a corresponding group in Arlanda airport firstly of the same type and then

of the same or similar size. Each group in Figure 6.3 corresponds to the group with the same

colour in Figure 6.4. Table 6.1 shows the number of stands and the type of each group as well

as the colour that each group is marked in Figure 6.3 and Figure 6.4. Finally, each stand that

98

was used in Zurich airport was assigned to a random stand in Arlanda airport from the same

group using a random number generator. This process was repeated 30 times and the results

that are provided below refer to the average value of the 30 individual experiments that were

executed for the Arlanda and the Arlanda based layout.

Table 6.1: Groups and types of stands

 Group Stand type Number of stands

 1 Passenger 14

 2 Passenger 10

 3 Passenger 10

 4 Passenger 13

 5 Passenger 10

 6 Passenger 5/6

 7 Passenger 4

 8 Passenger 2

 9 Cargo 14

 10 Cargo 5

 11 Cargo 3

 12 Hangar/Maintenance 3

For the examples that are provided in the results section, where the specific cases for Arlanda

or Arlanda airport with extra taxiways are examined - such as distribution of taxi time or the

number of aircraft that are affected by different delay duration – the most representative

instance is presented. This happened to be instance 6 (out of the 30 instances in total) where

the sum of all of the delays for the whole week was the closest to the average value of the 30

instances.

6.3.4 Investigating the Chosen Path

In order to be able to investigate the effects of adding or removing taxiways, it is important

to be able to identify whether an aircraft is using the shortest path or a longer path. As

mentioned in Chapter 3, the QPPTW algorithm is finding the quickest path, which can be

either the shortest path (with or without delays during the journey) or a longer path, that was

preferred as the shortest path was blocked by a previously routed aircraft and it was faster to

de-tour rather than wait for the necessary resources (parts of a taxiway) to be available.

However, when the aircraft is routed it is impossible to know whether the path that is chosen

is the shortest path. The algorithm can only guarantee that it is the quickest at the time. For

this reason, before the problem is solved, each aircraft is routed on an empty graph using a

99

variation of Dijkstra’s algorithm that implements many characteristics of QPPTW algorithm

as described in Chapter 3. The nodes of the shortest path that are visited by the aircraft are

stored as a parameter of the flight that is being considered when the full problem is solved.

When the aircraft is routed, the two paths (sequences of nodes) are compared, and if they are

the same, any delays that happen are considered “delays on the shortest path” and if the path

are different, the delays is considered a “delay due to choosing an alternative path”. The

alternative path will always have a different distance, even if the difference in some cases can

be very small. The sequence of nodes of the shortest path that is found for each flight will be

used to evaluate the use of alternative paths in the next section.

6.4 Results

The experiments were executed using real data from Zurich airport (the largest airport in

Switzerland). In order to have consistency across days, seven different days of data were used

for the experiments. Using real data made it possible to have more reliable results, as there is

no bias in the allocation of aircraft to stands and take-off times or how the aircraft are spread

across the day.

The parameters that were used as input were: the type of movement (arriving or departing

aircraft), the weight class of the aircraft (light, medium or heavy), the starting point of the

aircraft (the runway for arrivals, the stand for departures), the end point (the stand for arrivals,

the runway for departures), the landing time for arrivals and the take-off time for departures.

The experiments were executed on a personal computer (Intel Core i3-3120M, 2.5GHz, 8GB

RAM) and the model was programmed in Java. The execution times varied between 5 to 11

seconds for routing all of the aircraft of a single day (from 780 to 840 aircraft movements per

day) and between 38 to 64 seconds for solving the whole week (5609 aircraft movements in

total).

The aircraft were routed sequentially, by routing the departing aircraft first (based on the take-

off time), starting from the latest departing aircraft and moving earlier in time, then

sequentially routing the arriving aircraft (based on their landing time). Priority was given to

departing aircraft in order to minimise the delays as described in Chapter 5. The departing

aircraft were sequenced backwards in time in order to guarantee that the routed aircraft would

arrive at the runway in the correct order, respecting the take-off sequence that aircraft were

allocated on the runway.

100

6.4.1 Explaining why Delays Happen

After examining the results, it is apparent that many delays happen at both of the airports

(Arlanda and Zurich) even though aircraft arrive to - and depart from - each runway at

different times. This can be explained by the following reasons where cases from the results

are examined.

Firstly, arriving aircraft and departing aircraft move around the airport at the same time and

usually towards different directions. This can cause delays especially in areas where there are

not enough taxiways (bottlenecks). An example of this kind of delay can be seen in Figure

6.5 where a departing aircraft delays an arriving aircraft during day 1 of the experiments in

Zurich airport. Aircraft 386 (which is coloured in red) has started pushing back from stand A

and is heading towards runway 16 (see red path) where it needs to arrive before 07:04:00 in

order to take-off. Aircraft 423 (which is coloured in blue) has landed at 06:55:22 on runway

16 (see blue path) and heads towards stand B. The two aircraft meet at 06:57:51 where they

both want to use node C. The departing aircraft (386) has started its journey first and has

priority over the arriving aircraft (423) resulting in a 24 second delay to the latter.

Figure 6.5: A departing aircraft (red) delaying an arriving aircraft (blue)

101

Furthermore, arriving aircraft are affected by departing aircraft that push back as they lock

resources for a substantial amount of time. In Zurich airport pushback delays are more

common as the terminals are surrounded by taxiways and aircraft that pushback can block

parts of the taxiways that are more frequently used. Out of the 95 stands in Zurich airport, 82

are surrounded by taxiways (86%). In Arlanda there are more terminals that extend outwards

from the main airport structure making the pushback delays mainly a problem of aircraft that

park at the same area/apron. Only 36 out of the 94 stands (38%) are surrounded by taxiways.

The second reason delays happen is caused by the fact that the airports have 3 runways and

stands in different areas around the airport. This causes even flights of the same type (arrivals

or departures) to be on crossing paths if they start and head towards different destinations.

Figure 6.6 shows a case where two departing aircraft that are heading towards different

directions cause a delay. Aircraft 386 (which is coloured in red) starts at 06:52:18 from stand

A and is heading towards runway 16 (see red path) where it needs to arrive before 07:04:00.

Aircraft 387 (which is coloured in blue) starts from stand B and is heading towards runway

28 (see blue path) where it needs to be before 07:03:00. In order for aircraft 387 to avoid a

conflict in nodes C and D, it starts the pushback process 6 seconds in advance and it is forced

Figure 6.6: Two departing aircraft heading towards different runways

102

to follow a path that is slightly longer than the shortest path which further increases the travel

time by 15 seconds.

The third reason that can cause delays is that some departing aircraft can interact with other

aircraft that pushback in their path. Since they need to arrive at the runway at a certain

sequence, some departing aircraft may need to start earlier in order to avoid delays from

aircraft that are allocated later but will start their pushback process before the first aircraft has

reached its destination. An example of this case can be seen in Figure 6.7, where three

departing aircraft push back at the same area during day 1 in Zurich airport. Aircraft 402

(which is coloured in green) needs to be at the runway 32 at 06:23 starting from stand C.

Aircraft 404 (which is coloured in blue) needs to be at the same runway before aircraft 402

at 06:21 starting from stand B. Both of these aircraft need to use the same node, (node D) so

aircraft 404 is forced to start pushing back 1 minute and 4 seconds earlier in order to avoid a

conflict with aircraft 402. This has a knock-on effect, as aircraft 407 (coloured in red) which

needs to be at the runway at 06:16, has to start its pushback process earlier as well. Aircraft

407 starts from stand A and also departs from runway 32. Since it also needs to use node D,

the aircraft is forced to start 11 seconds earlier in order to avoid blocking aircraft 404.

Figure 6.7: Departing aircraft need to start their pushback process earlier to avoid a conflict

103

6.4.2 Comparing Zurich and Arlanda Airports

After running the experiments for Zurich and Arlanda airport the total time that is needed for

each aircraft to reach its destination was considerably longer in Arlanda airport. The full

results are summarised in Table 6.3, Table 6.4 and Table 6.5, in the columns “Zurich” and

“Arlanda”. The rest of the columns contain the results of the next subsection but were added

to one table to make it easier for the reader to compare the results from all the airport layouts.

Table 6.2 shows the total taxi time which would be needed if there were no delays. It can be

seen that aircraft in Arlanda airport need to travel for a significantly longer duration in order

to reach their destination resulting in longer taxi times for aircraft in Arlanda. The stands in

Arlanda airport are on average further from the runways compared to Zurich airport, forcing

aircraft in Arlanda to keep their engines on for an extra time of 2 minutes and 26 seconds

compared to Zurich airport.

Table 6.2: Total taxi time (in seconds) if there were no delays

Zurich Zurich less

taxiways

Arlanda Arlanda extra

taxiways

Day 1 155902 174663 268753 261115

Day 2 148978 166867 265190 257960

Day 3 134085 152723 259629 251186

Day 4 157091 174753 275335 268014

Day 5 138459 157629 261185 253224

Day 6 138189 152873 247912 240908

Day 7 144963 163024 258986 251457

Total 1017667 1142532 1836992 1783864

When the problem is solved by taking into consideration all of the aircraft that are moving

around the airport (and all the delays that can arise) the excess time that aircraft in Arlanda

airport need to keep their engines on is slightly lower (2 minutes and 23 seconds) which

means that for each aircraft routed around Zurich, 3 extra seconds of delay occur (see Table

6.3).

After examining the duration of delays that occur in each airport, the total duration of delays

was slightly higher for Zurich, having a sum of 39 extra minutes of delays per day (on

average) or a bit less than 3 seconds extra delay per aircraft (see Table 6.4). The delays

contribute about 6.7% to the total taxi time of aircraft in Zurich compared to 3% in Arlanda.

104

However, even though there is more congestion in Zurich airport since the airport is more

compact, the total taxi time is considerably lower.

Table 6.3: Duration of delays in seconds

Zurich Zurich less

taxiways

Arlanda Arlanda extra

taxiways

Day 1 10214 10118 8317 6701

Day 2 12213 12307 7884 7045

Day 3 7437 8221 7562 5302

Day 4 14586 15228 8927 7962

Day 5 9680 10777 9459 8195

Day 6 11917 11879 8682 7250

Day 7 7347 7810 6184 5001

Total 73394 76340 57014 47455

Table 6.4: Total taxi time in seconds

Zurich Zurich less

taxiways

Arlanda Arlanda extra

taxiways

Day 1 166116 184781 277071 267816

Day 2 161192 179175 273074 265005

Day 3 141522 160944 267191 256488

Day 4 171677 189982 284262 275975

Day 5 148139 168407 270644 261419

Day 6 150106 164752 256594 248158

Day 7 152310 170834 265170 256458

Total 1091062 1218875 1894006 1831319

The total number of delays is significantly higher in Zurich airport - 33% more in total or 53

more delays per day on average – compared to Arlanda airport. More importantly however,

on average, 78% of the delays in Zurich were caused by aircraft choosing a longer path,

whereas in Arlanda airport this percentage was 71%. This shows that in Zurich, aircraft are

more likely to choose an alternative path.

Furthermore, the delays that happen due to rerouting of aircraft (taking a longer path) also

contribute more to the total delay that occurs in Zurich airport. 78% of the delays are caused

105

by aircraft using a different path from the shortest one compared to 71% of the aircraft that

do the same in Arlanda.

Table 6.5 shows for each layout a) the number of delays, b) the number of delays that happen

due to rerouting of aircraft and c) the percentage of delays are caused by aircraft using a

different than the shortest path.

The results indicate the following: An outspread airport with long taxiways and few

connections between them such as Arlanda airport is more likely to have flights with longer

routing times, smaller duration of delays, smaller number of delays and more delays that are

caused by waiting for another aircraft to free the necessary resources instead of choosing a

longer path.

Table 6.5: The number of delays for each airport

Zurich Zurich less

taxiways

Arlanda Arlanda extra

taxiways

T
o

ta
l

d
el

ay
s

R
er

o
u

ti
n

g

d
el

ay
s

P
er

ce
n
ta

g
e

o
f

re
ro

u
ti

n
g

 d
el

ay
s

T
o

ta
l

d
el

ay
s

R
er

o
u

ti
n

g

d
el

ay
s

P
er

ce
n
ta

g
e

o
f

re
ro

u
ti

n
g

 d
el

ay
s

T
o

ta
l

d
el

ay
s

R
er

o
u

ti
n

g

d
el

ay
s

P
er

ce
n
ta

g
e

o
f

re
ro

u
ti

n
g

 d
el

ay
s

T
o

ta
l

d
el

ay
s

R
er

o
u

ti
n

g

d
el

ay
s

P
er

ce
n
ta

g
e

o
f

re
ro

u
ti

n
g

 d
el

ay
s

Day 1 225 181 80% 207 153 74% 169 124 73% 168 127 76%

Day 2 230 176 77% 200 145 73% 172 127 74% 172 130 76%

Day 3 204 167 82% 178 136 76% 117 78 67% 123 79 64%

Day 4 231 184 80% 229 165 72% 186 135 73% 191 145 76%

Day 5 197 143 73% 194 132 68% 143 90 63% 145 95 65%

Day 6 212 164 77% 187 130 70% 169 126 74% 157 117 75%

Day 7 196 153 78% 175 125 71% 167 123 73% 162 126 78%

Total 1495 1168 78% 1370 986 72% 1122 802 71% 1116 818 73%

The results show that the morphology of the airport can significantly affect the routing

process of aircraft. This lead to the hypothesis that if the morphology of each airport (Arlanda

and Zurich) was altered, by removing or adding taxiways, it is expected to see the same

effects. For this reason, further experiments were executed and are presented in the following

part of this section.

106

6.4.3 Further Investigation of Different Airport Layouts

The number of taxiways and alternative paths that the two airports have affect the movement

of aircraft. In order to validate and quantify this effect, the experiments were run in the two

altered airport layouts that were mentioned earlier in this section. These layouts use the same

airport characteristics as the previous airports with the exception of extra taxiways for

Arlanda and fewer taxiways for Zurich. The aim is to make Zurich airport less interconnected

and Arlanda airport more interconnected. The results are summarised in Table 6.3, Table 6.4

and Table 6.5, columns “Zurich less Taxiways” and “Arlanda extra Taxiways”.

When the experiments were executed in Zurich airport with fewer taxiways, the total taxi

time was increased by 12% adding approximately 20 seconds extra time to the duration of

each aircraft’s travel time compared to the results using the original Zurich graph (see Table

6.3). On the other hand, in Arlanda airport with more taxiways the total taxi time was

decreased by 3%, saving about 10 seconds from each aircraft’s journey time compared to the

results that were observed in the original Arlanda graph. This shows that the total taxi time is

indeed affected by the number of taxiways. Figure 6.8 shows the number of aircraft that are

delayed by different time durations, for each airport. As the graph shows, when the number

of taxiways is increased (Arlanda to Arlanda with extra taxiways), the less time it takes (on

average) for an aircraft to complete its journey as the number of aircraft that are affected by

long delays decreases. Arlanda airport has more aircraft that have long delays (over 90

seconds) whereas Arlanda airport with extra taxiways has more aircraft that are affected by

short delays (mainly between 10 and 50 seconds). Similarly, when the taxiways are decreased

(Zurich to Zurich with less taxiways), the routing time of an aircraft, on average, will increase

as the number of aircraft that are affected by long delays increases. Zurich airport has more

aircraft that are affected by short delays (mainly between 10 and 30 seconds) compared to

Zurich airport with less taxiways that has more aircraft that are being affected by longer

delays (over 40 seconds).

107

Figure 6.8: Number of aircraft for each time duration of delay in each airport

Figure 6.9 shows the distribution of taxi duration (under 16 minutes) that aircraft have during

the week for all the airports. As the graph shows, even though the total taxi time was increased

when the problem was solved for the Zurich layout with extra taxiways (compared to the

results of the original Zurich layout) and was decreased when solved in the Arlanda layout

with extra taxiways (compared to the results of the original Arlanda layout); the total taxi

duration was still significantly higher when solved in the altered Arlanda layout compared to

the altered Zurich layout. This shows that even though extra taxiways can improve the total

taxi time in an airport, a congested airport that is smaller in size can still provide faster taxiing.

This indicates that a more compact airport should be preferred compared to a more outspread

one, once the ground movement model that solves the problem is implemented.

0

100

200

300

400

500

N
u

m
b

er
 o

f
A

ir
cr

af
t

Duration of Delay [s]

Zurich

Zurich Less Taxiways

Arlanda

Arlanda Extra Taxiways

108

Figure 6.9: Distribution of taxi duration for each airport

Furthermore, the total duration of delays also increased in Zurich airport with less taxiways

by 4% contributing to a 7-minute increase per day in delays compared to the results that were

reported when the original Zurich airport was used (see Table 6.3). Again, when the taxiways

were increased in Arlanda airport, the total duration of delays was decreased by 17% which

is approximately 23 minutes less delays per day compared to the total duration time that was

observed when using the original Arlanda graph. Figure 6.10 shows the cumulative graph of

delays under 6 minutes for each airport layout. As the graph shows, delays longer than 22

seconds (see green line) happen more often when there are less taxiways. Zurich airport with

less taxiways has the biggest number of aircraft that are affected by long delays, and Arlanda

airport with the extra taxiways has the fewest.

Moreover, in Arlanda airport a smaller number of aircraft is affected by short delays than in

Arlanda airport with extra taxiways (see left of the green line) and the reversed is observed

for Zurich airport, where more aircraft are affected by short delays than in Zurich airport with

less taxiways. This shows that it is more common to have shorter delays happen when extra

taxiways are added. These results show that the number of taxiways affects the duration of

the delays. Overall, when the number of taxiways was decreased the duration of delays

increased and when the number of taxiways was increased the duration of delays decreased.

0%

5%

10%

15%

20%

25%

30%

0 2 4 6 8 10 12 14 16

Fr
eq

u
en

cy
 o

f
O

cc
u

rr
en

ce

Taxi Time [m]

Zurich

Zurich Less Taxiways

Arlanda

Arlanda Extra Taxiways

109

Figure 6.10: Delay graph for different airport layouts, showing the delay (in minutes) against

the number of aircraft which have that delay or higher

Even though there is a significant improvement (17%) in the total duration of delay that

happens when a few taxiways are added in Arlanda airport, it is not enough in order to

perform as good as a smaller -in physical size- airport. Making a congested airport (such as

Zurich) even more congested will increase (by 4%) the duration of the total delay but it will

still overwhelmingly outperform a larger -in physical size- airport when it comes to the total

time that an aircraft will keep their engines on (total taxi time) as Figure 6.9 and Figure 6.10

show.

The number of delays that happen during the week was also affected (see Table 6.5). In Zurich

airport with less taxiways there were 125 less delays than the delays that happened when the

problem was executed in the original airport graph of Zurich. On the contrary, the delays that

happen when the problem is solved in the graph of Arlanda airport with extra taxiways did

not change significantly, having a decrease of 6 delays during the whole week.

More importantly however, is the composition of these delays. When the problem was solved

using the Zurich layout with less taxiways, the delays that are attributed to aircraft taking a

longer path decreased compared to the delays that happened when the original Zurich layout

was used (see Table 6.5). As a percentage, 72% of the delays in the Zurich layout with less

taxiways were caused by aircraft choosing an alternative path compared to 78% that was the

percentage for Zurich airport. Similarly, when the problem was solved using the Arlanda

layout with extra taxiways, 73% of the delays were caused by aircraft taking a longer path

compared to 71% that was the percentage for when the original Arlanda layout was used.

This shows that when there are fewer available taxiways there will be fewer aircraft that will

use alternative paths, since bottlenecks are more likely to occur. Adding extra taxiways where

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6

N
u

m
b

er
 o

f
A

ir
cr

af
t

Delay [m]

Zurich

Zurich Less Taxiways

Arlanda

Arlanda Extra Taxiways

0.37

110

bottlenecks can happen will increase the number of alternative paths that are used, given an

algorithm that takes into consideration multiple paths.

These results show that adding or removing taxiways from an airport will produce a cascade

of effects. Firstly, the total duration of delays is decreased (or increased) as the number of

taxiways are increased (or decreased) as it was also demonstrated in Figure 6.8. This affects

the total taxi time of each aircraft making the total taxi time to follow the same trend as total

duration of delays as it was observed in Figure 6.9.

Figure 6.11: An example in Zurich airport where sufficient number of taxiways ensure that

there is no delay

Furthermore, the number of taxiways can have a strong and consistent effect on the types of

delays that are observed in the airports that were tested in this chapter. More taxiways result

in delays with a smaller duration. More aircraft use alternative paths and that leads to a smaller

sum of the duration of all of the delays. In contrast having fewer taxiways decreases the

number of delays, but delays last for longer. Aircraft are limited to fewer paths and the total

duration of delays is increased.

111

Figure 6.11 and Figure 6.12 show a case from day 1 in Zurich airport where two aircraft that

are not delayed can interact with each other when taxiways are removed. When the

experiments were executed using the original Zurich graph, departing aircraft 282 (marked

in green) pushes back and starts heading towards runway 28. Arriving aircraft 502 (marked

in yellow) lands on runway 14 and heads towards stand A.

Figure 6.12: An example in Zurich airport where removing taxiways introduces a delay

Similarly figures 6.13, 6.14 and 6.15 show a case from day 1 in Arlanda airport, where

introducing taxiways, significantly reduces the delay of a flight. Overlapping paths of

departing aircraft, have been painted only with the colour of the leading departing aircraft,

when the remaining path of an aircraft is the same with the one of the leading aircraft.

When the aircraft are routed using the original Arlanda graph, flight 416 lands on the runway

01R at 06:22:07 and has to park at stand A (see blue path at Figure 6.13). The shortest path

for this trip is to use the south taxiway (bottom of the figure) that connects runway 19L/01R

with the rest of the airport/terminals. However, this path is constantly occupied by other

departing aircraft. As Figure 6.13 shows, the south taxiway (part of the shortest path for

aircraft 416) is allocated to aircraft 400 (see red path), which needs to be at runway 19L at

112

06:30. The same taxiway is then used by aircraft 399 (green aircraft) that also needs to be at

runway 19L at 06:33. Furthermore, the same taxiway is allocated back to back to aircraft 398

(marked in cyan), 397 (marked in yellow) and 396 (marked in magenta), which all follow a

similar path, starting from stands D, E, F respectively, and all need to reach the same runway

19L at 6:36, 6:38 and 6:40 respectively (see Figure 6.14). This makes it impossible for

arriving aircraft 416 to use the south taxiway from runway 19L/01R and is forced to take a

much longer path from the north taxiway (see blue path). The resulted delay due to taking a

longer path is almost 5 minutes.

Figure 6.13: Example of aircraft that needs to take a longer path due to traffic (instance 1)

On the contrary, when the aircraft are routed around the Arlanda graph with extra taxiways,

aircraft 416 can use the extra taxiway that is parallel to the taxiway that was previously

occupied by multiple aircraft (connecting the runway19L/01R with the rest of the airport on

the south.

113

Figure 6.14: Example of aircraft that needs to take a longer path due to traffic (instance 2)

Figure 6.15: Example of aircraft taking a shorter path when a new taxiway is introduced

114

Now aircraft 416 can use the parallel taxiway (see blue path in Figure 6.15) avoiding

departing aircraft 400 and 399. Eventually aircraft 416 only needs to wait for a few seconds

for aircraft 398 to use a small part of its path before it can park at stand A. Aircraft 416 is not

affected in this case by aircraft 397 and 396 since it has parked before any of them completes

its pushback process. The introduction of the taxiway resulted in a reduction in the delay of

aircraft 416 by 4 minutes and 22 seconds.

6.5 Conclusions

In this chapter, the effects of airport layout in the delays that can occur at an airport were

investigated. QPPTW algorithm was used for routing the aircraft, which is an algorithm that

can consider, and make use of, multiple paths. This algorithm routes aircraft sequentially and

respects the movements of previously routed aircraft. The proposed model that was used (see

Chapter 5) takes into consideration a more realistic movement of aircraft by implementing

parameters that are known to cause or affect delays such as the pushback process (that was

explicitly modelled) and the take-off sequence of aircraft (that was used as an input).

The experiments were executed for four different airports that were converted to graphs. Two

- similar in number of passengers - airports that had different layout characteristics in terms

of number of taxiways and connectivity between them, were initially chosen. These

differences were then decreased by making two intermediate airport graphs - an airport graph

similar to Arlanda but with more taxiways, and an airport similar to Zurich but with fewer

taxiways.

The results showed that airports with more taxiways and more connections between them can

provide a broader number of alternative paths. Even though a compact airport can have more

congestion, using an alternative path for an aircraft is more commonly preferred than waiting,

as the extra delay is shorter than waiting for a busy taxiway to clear. It was found that, by

adding taxiways to strategic areas where bottlenecks are more likely to occur, the total

duration of delays could be significantly decreased. Furthermore, alternative paths were then

more likely to be used even though they might need an aircraft to travel longer distances on

the ground. This can reduce the total travel time of the aircraft and can also reduce the total

fuel consumption. Moreover, removing taxiways from an interconnected airport such as

Zurich can introduce bottlenecks and increase the total delays.

Having a compact airport layout that has many short and interconnected taxiways increases

the number of delays as well as the duration of the delays, but overall, it will reduce the total

taxi time. Even if a physically larger airport such as Arlanda airport improves its infrastructure

115

by adding taxiways in areas where bottlenecks can occur, it still cannot compete in terms of

total taxi time to a more compact airport even if this airport has fewer taxiways. A small taxi

duration time provides less fuel consumption and CO2 emissions. A routing and scheduling

algorithm that takes into consideration all of the available paths when routing aircraft, can

easily handle the increased complexity and route all the aircraft by minimising the total taxi

time.

116

7

Considering the Gate Allocation Process

7.1 Introduction

Even though the ground movement process and the gate allocation process affect one another,

in most cases they are solved separately. This chapter focuses on integrating the ground

movement process with the gate allocation process. Allocating aircraft to their stands is a

process that usually happens before the day starts without taking into consideration any

information from the ground movement process. Regarding the ground movement problem,

aircraft are routed using as a constant the stands where the aircraft start their journey from or

park. As was mentioned earlier, in Chapter 4, many delays can and usually do happen close

to the stands due to the pushback process. The area where departing aircraft pushback to, as

well as the taxiways that arriving and departing aircraft use, depend on the stand that they are

assigned to. This makes it necessary for both the routing process and the gate allocation

process to be considered when the problem is solved in order to have a better and more

accurate solution. Solving each problem optimally without considering one another, will most

likely lead to a solution that is not optimal for the overall problem.

The main purpose of this research is to build a model that will provide a better and more

intelligent gate allocation process that will take into consideration the delays that can happen

for every combination of allocated aircraft that is considered. The objective function of the

model (apart from considering the typical parameters of the gate allocation process) will also

include minimising the delays that happen when the aircraft are moving on the ground.

The proposed framework includes two optimisation systems developed in collaboration. The

first system uses a process which was designed by Dr. Neuman - and is described in Section

7.2 - to solve the gate allocation problem of aircraft and the second system solves the routing

problem of the aircraft on the ground using the methodology developed in this thesis. This

117

chapter extends the collaborative framework which was described in the 4th and 5th chapter

of Neuman’s PhD thesis (2015). Importantly, this chapter will present how these two distinct

systems can work together and communicate with each other in order to provide a better

overall solution in a realistic timeframe. Furthermore, it will be shown that including the

ground movement process of aircraft can result in a gate allocation solution with less duration

of delays when the aircraft are routed.

The basic QPPTW algorithm will be used for the routing process of aircraft, as has been

described in Chapter 4 where the pushback process is explicitly implemented in the routing

process. A fast algorithm that can find all of the combinations of aircraft that can interact with

each other, has also been developed and is presented.

In the next section (Section 7.2) the previous work on the integration between the gate

allocation and the ground movement problem are presented. In Section 7.3 the gate allocation

problem is described as well as the gate allocation model that was used for this integration.

Section 7.4 explains the way that the conflicting aircraft are identified and how the algorithm

for this process works. Furthermore, the changes that were made to the routing algorithm for

this integration are also described. Section 7.5 describes the issues that arise when the routing

process is implemented in the integrated model. Section 7.6 presents the integration

framework and how the two models communicate. Moreover, the way that the ground

movement process feedback is included in the gate allocation model is described. Section 7.7

presents the results after executing the experiments in a model of Manchester airport using

real data for 7 days. Section 7.8 improves the robustness of the model and the effects of the

increased robustness are tested after executing further experiments. Finally, the chapter

summarises up the work in Section 7.9.

7.2 Previous Work on Integration with the Ground

Movement Problem

Despite the variety of aspects and different proposed algorithms for solving the gate

allocation problem, only a few models combine the gate allocation problem with the routing

of the aircraft on the ground. The gate allocation problem could also be combined with the

bus planning problem (Diepen et al. 2009) however in this thesis we will only consider

integration models with the ground movement problem.

Kim et al. (2009) provide one of the first models that tries to integrate the gate allocation

problem with the ground movement problem. In particular they try to reduce the conflicts that

can happen where the aircraft park near each stand by creating a simulation tool. First a MILP

118

model is used to allocate aircraft to stands and then the results are compared with the

allocations of a heuristic method. Kim et al. (2010) extended the above research by

introducing the reduction of the total time the passengers have to spend at the terminal as an

extra objective.

Cheng (1998) introduces the conflicts of the aircraft that can happen during the ground

movement process of aircraft to the gate allocation problem as a factor that should also be

considered. Cheng studies the ground movement of the aircraft and the conflicts that occur

near stands. He presents a network based simulation method in order to approach the problem

and to reduce conflicts and consequently minimise delays.

Kim and Feron (2014) introduce a queuing departure simulator. A robust gate assignment is

presented that reduces the conflicts near stands using departure metering (controlling the

number of aircraft that are moving around the airport at any time).

A hybrid gate allocation solution approach that can take into consideration the delays that can

happen while aircraft move around the airport as a solution to the gate allocation problem is

suggested by Guclu and Cetek (2013). It proposes an algorithm that assigns the available

stands to the arriving aircraft and offers better delay management while minimising the delays

that can happen during the ground movement of aircraft.

Neuman and Atkin (2013) suggest a gate allocation method that considers the taxiway

conflicts that might occur near stands. Real data was used for the approach and taxiway

information is used early in the allocation process for a more effective gate assignment. A

new constraint is added to this model. This constraint considers the reduction of the number

of aircraft with similar routes that are moving near the stands area and could result in a

conflict. The model was based on a Mixed Integer Programming formulation and the

objective function consists of the time gaps, airline preferences, reduction of the number of

stands that are assigned to remote stands and the appropriate use of the space at the stand.

The number of allocations that can produce a conflict are reduced but the disadvantages of

this method are the extensive calculation time and the increase of the number of flights that

need to be towed.

More recent research presents a hybrid dynamic method that integrates gate allocation with

the routing process of the aircraft (Guclu and Cetek, 2017). The solution model allocates

aircraft to parking points while considering the minimisation of taxi time and delays. It is also

designed to provide real time new routes and parking points. For the application of the model

a fast-time simulation tool was used, and the applied algorithm used real data. Moreover, all

of the important capacity and traffic constraints were considered. The results of the hybrid

119

dynamic method show a decrease in delays that happen during the ground movement process

as well as a decrease in taxi time.

7.3 The Gate Allocation Problem

The gate allocation problem consists of allocating aircraft to airport gates or stands by taking

into consideration the preferences or constraints of the airline and the airport, as well as the

availability and the size of the stand (in order to be able to serve the appropriate size of

aircraft). There has been extensive research in this area and there are many models that

suggest how to solve this problem as were presented in Chapter 2.

In summary, the gate allocation process is solved using a mixed integer programming model

with a multi-objective function. The model was developed by Neuman and is described in the

4th and 5th chapter of her PhD thesis (2015). In this section, this model is going to be briefly

explained in order to examine the way that this model takes into consideration the ground

movement process and how this may affect the integrated model. First the notation that was

described in Neuman’s PhD thesis will be presented and then the constraints and objective

function are described and examined.

7.3.1 Definitions of the Variables for the Gate Allocation Model

Table 7.1 show the notation that was used to describe the gate allocation model. In order to

make it easier for the reader, the notation and definitions for the variables that were used

below are the same to what was used in the PhD thesis of Neuman (2015). Full details of this

part of the model and the aims and objectives of gate allocation can be found in that thesis.

Table 7.1: Table of definitions for the gate allocation model

F Set of flights

n Total number of flights in F

i, j Flight indices i, j ∈ {1, ..., n}

fi ∈ F A flight with index i

𝑒𝑓𝑖
 On-gate time of fi, a constant for each fi

𝑙𝑓𝑖
 Off-gate time of fi, a constant for each fi

G Set of gates

m Total number of gates available in G

k, l Gate indices k, l ∈ {1, ..., m}

120

gk ∈ G A gate with index k

F (gk) Subset of flights that can use gk

Sh Set of pairs of gates that cannot be used simultaneously

GR Subset of gates used when minimising conflicts

z Indices of subsets of gates

NC Number of conflicting flights allocated to one GR, a variable

𝑋𝑔𝑘, 𝑓𝑖
 Decision variable, it is 1 if fi is allocated to gk, 0 otherwise

𝑈𝑔𝑘, 𝑓𝑖,𝑓𝑗
 Indicator variable, it is 1 if fi and fj are allocated to gk, 0 otherwise

𝑔𝑎𝑝𝑔𝑘, 𝑓𝑖,𝑓𝑗
 Time gap between fi and fj when both are allocated to gate gk

SG Minimum size of 𝑔𝑎𝑝𝑔𝑘, 𝑓𝑖,𝑓𝑗
 , a constant

LG Maximum size of 𝑔𝑎𝑝𝑔𝑘, 𝑓𝑖,𝑓𝑗
 , a constant

𝑝𝑓𝑖, 𝑓𝑗
 Penalty for putting fi and fj on the same gate

𝑟𝑓𝑖, 𝑔𝑘
 Penalty for putting flight fi on gate gk dependent upon sizes

𝑎𝑓𝑖, 𝑔𝑘
 Penalty for putting flight fi on gate gk related to airline preferences

du Penalty for ‘dummy gate’

OVERNIGHT Set of flights which stayed overnight at their assigned gate

ghista Gate that was used by flight a in the historic data

Cd (fi) Set of flights which may be in conflict with the departure time of fi

Ca (fi) Set of flights which may be in conflict with the arrival time of fi

𝑓𝑟𝑒𝑞𝑓𝑖, 𝑔𝑘
 Function indicating how often the airline for fi has used gk in the historic

data

maxFreq Function that returns the maximum value of all frequencies (𝑓𝑟𝑒𝑞𝑓𝑖, 𝑔𝑘
)

size(fi) Function that returns the size of flight fi

biggestGateSize Function that returns the size of the largest gate of the terminal

maxSize(gk) Function that returns the maximum size of the aircraft that can park at

gate gk

7.3.2 Constraints

The model implements the following constraints:

 𝑋𝑔𝑘, 𝑓𝑖
= 0, ∀ 𝑓𝑖 ∉ 𝐹(𝑔𝑘), ∀ 𝑔𝑘 ∈ 𝐺 (7.1)

𝑔𝑎𝑝𝑔𝑘, 𝑓𝑖,𝑓𝑗

= {
𝑒𝑓𝑗

− 𝑙𝑓𝑖
 𝑖𝑓 𝑒𝑓𝑗

≥ 𝑒𝑓𝑖

𝑒𝑓𝑖
− 𝑙𝑓𝑗

 𝑖𝑓 𝑒𝑓𝑖
≥ 𝑒𝑓𝑗

 , 𝑓𝑖, 𝑓𝑗 ∈ 𝐹(𝑔𝑘), 𝑔𝑘 ∈ 𝐺, 𝑓𝑖 ≠ 𝑓𝑗
(7.2)

121

𝑔𝑎𝑝𝑔𝑘, 𝑓𝑖,𝑓𝑗

= {
𝑒𝑓𝑗

− 𝑙𝑓𝑖
 𝑖𝑓 𝑒𝑓𝑗

≥ 𝑒𝑓𝑖

𝑒𝑓𝑖
− 𝑙𝑓𝑗

 𝑖𝑓 𝑒𝑓𝑖
≥ 𝑒𝑓𝑗

, 𝑓𝑖, 𝑓𝑗 ∈ 𝐹(𝑔𝑘), 𝑔𝑘 ∈ 𝐺, 𝑓𝑖 ≠ 𝑓𝑗
(7.3)

𝑈𝑔𝑘, 𝑓𝑖,𝑓𝑗
≥ 𝑋𝑓𝑖, 𝑔𝑘

+ 𝑋𝑓𝑗, 𝑔𝑘
− 1

𝑈𝑔𝑘, 𝑓𝑖,𝑓𝑗
≥ 0

}
∀ 𝑓𝑖, 𝑓𝑗 ∈ 𝐹(𝑔𝑘), ∀ 𝑔𝑘 ∈ 𝐺, 𝑆𝐺 < 𝑔𝑎𝑝𝑔𝑘, 𝑓𝑖,𝑓𝑗

< 𝐿𝐺

0 ≤ 𝑆𝐺 ≤ 𝐿𝐺

(7.4)

 𝑈𝑔𝑘, 𝑓𝑖,𝑓𝑗
= 0, ∀ (𝑓𝑖 𝑜𝑟 𝑓𝑗) ∉ 𝐹(𝑔𝑘), ∀ 𝑔𝑘 ∈ 𝐺 (7.5)

∑ 𝑋𝑔𝑘, 𝑓𝑖

𝑚+1

𝑘=1

= 1, ∀𝑓𝑖 ∈ 𝐹

(7.6)

 𝑋𝑓𝑖, 𝑔𝑘
+ 𝑋𝑓𝑗, 𝑔𝑘

 ≤ 1, ∀ 𝑓𝑖, 𝑓𝑗 ∈ 𝐹(𝑔𝑘), ∀ 𝑔𝑘 ∈ 𝐺, 𝑔𝑎𝑝𝑔𝑘, 𝑓𝑖,𝑓𝑗
≤ 𝑆𝐺,

𝑆𝐺 ≥ 0

(7.7)

 𝑋𝑎,𝑔ℎ𝑖𝑠𝑡𝑎
= 1, ∀ 𝑎 ∈ 𝑂𝑉𝐸𝑅𝑁𝐼𝐺𝐻𝑇 (7.8)

 𝑋𝑓𝑖, 𝑔𝑘
+ 𝑋𝑓𝑗, 𝑔𝑙

≤ 1, ∀ 𝑓𝑖 ∈ 𝐹(𝑔𝑘), ∀ 𝑓𝑗 ∈ 𝐹(𝑔𝑙) ∀(𝑔𝑘, 𝑔𝑙) ∈ 𝑆ℎ (7.9)

 𝑋𝑓𝑖, 𝑔𝑘
+ ∑ 𝑔𝑘 ∈ 𝐺𝑅 ∑ 𝑓𝑖 ∈ 𝐶𝑑(𝑓𝑖) 𝑋𝑓𝑖, 𝑔𝑘

≤ 𝑁𝐶, ∀𝑓𝑖 ∈ 𝐹(𝑔𝑘), ∀𝑔𝑘

∈ 𝐺𝑅, ∀𝐺𝑅 ∈ {𝐺𝑅1, … , 𝐺𝑅𝑧}

(7.10)

The first constraint (Equation 7.1) constrains the usage of a gate to aircraft that fit (aircraft

are not bigger in size than what the gate can accommodate). The second constraint (Equation

7.2) specifies the required (minimum) time gap between two aircraft that use the same gate

(the one after the other).

Equation 7.3 and Equation 7.4 define the time gap that two aircraft (fi and fj) that are allocated

to the same gate (gk) should have and Equation 7.5 indicates if the two aircraft are allocated

in the same gate. Equation 7.6 ensures that each flight can be allocated to only one gate.

Moreover, two flights cannot use the same gate at the same time (Equation 7.7), and the

aircraft that stay at the airport overnight need to be allocated to gates that are used for

overnight stay (Equation 7.8).

Another constraint was added for prohibiting gates being used simultaneously in cases where

a large aircraft does not allow the use of a neighbouring gate (Equation 7.9).

122

Finally, a constraint was added for avoiding conflicting arriving with departing aircraft based

on the times that they were most likely to park at the gate or initiate the pushback process

respectively (Equation 7.10).

7.3.3 Objective Function

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑝𝑓𝑖, 𝑓𝑗
𝑈𝑔𝑘, 𝑓𝑖,𝑓𝑗

+ ∑ ∑ 𝑟𝑓𝑖, 𝑔𝑘

𝑚

𝑘=1

𝑛

𝑖=1

𝑚

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

𝑋𝑓𝑖, 𝑔𝑘

+ ∑ ∑ 𝑎𝑓𝑖, 𝑔𝑘

𝑚

𝑘=1

𝑛

𝑖=1

𝑋𝑔𝑘, 𝑓𝑖
+ 𝑁𝐶 + ∑ 𝑑𝑢𝑋𝑓𝑖,𝑑𝑢𝑚𝑚𝑦

𝑛

𝑖=1

(7.11)

𝑝𝑓𝑖, 𝑓𝑗

=
𝐿𝐺

(𝑔𝑎𝑝𝑓𝑖,𝑓𝑗
)

 𝑖𝑓 𝑆𝐺 < 𝑔𝑎𝑝𝑔𝑘, 𝑓𝑖,𝑓𝑗
< 𝐿𝐺 ∀ 𝑖, 𝑗 (7.12)

𝑟𝑓𝑖, 𝑔𝑘

=
𝑚𝑎𝑥𝑆𝑖𝑧𝑒(𝑔𝑘) − 𝑠𝑖𝑧𝑒(𝑓𝑖)

𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝐺𝑎𝑡𝑒𝑆𝑖𝑧𝑒
 ∀ 𝑖, 𝑘 (7.13)

𝑎𝑓𝑖, 𝑔𝑘

= 1 −
𝑓𝑟𝑒𝑞𝑓𝑖, 𝑔𝑘

𝑚𝑎𝑥𝐹𝑟𝑒𝑞
, 𝑚𝑎𝑥𝐹𝑟𝑒𝑞 ≠ 0 (7.14)

The objective function of the model takes into consideration several parameters and is given

by Formula 7.11.

The first element is the time duration a gate is unoccupied between flights that are allocated

in the same gate. Maximising this duration (Equation 7.12) makes the solution more robust

as there is less chance for a conflict between two aircraft to happen, in case the aircraft

allocated to the gate first is delayed or the aircraft that is allocated to that gate second arrives

early.

The second element is the size of the gate (Equation 7.13). This size should match the size of

the aircraft and using a gate that is larger than the size of the aircraft is avoided. Unoccupied

large gates can be used by more aircraft and this affects the robustness of the solution as well.

The third element is related to the preferences of the airline, which tries to match the gates

with flights of a specific airline in order to minimise the movement of personnel and

equipment between gates (Equation 7.14).

The fourth element (NC) is related to the number of aircraft that are using gates that belong

123

to the same group. This variable considers flights that are allocated in gates that are in the

same area (in the same group) and are more likely to produce a conflict during the pushback

process and/or when moving on the area near the gate.

The fifth element is minimising the use of remote stands, where passengers need to arrive at

a gate and then have to be transferred by a bus to the remote stand. These are areas where

aircraft can park, usually separated from the main terminals.

There are more elements in the objective function with a very small weight that are not

included in the Formula 7.11. These elements have a miniscule effect on the objective value.

One of them, however, gives a slight priority to the gates that are closer to the runway.

7.3.4 Effects on the Ground Movement Process

As some of the parameters of the objective function and some of the constraints show, the

routing process is partially taken into consideration when the gate allocation problem is

solved in this model. This model has been designed to take into considerations delays that

can happen during the ground movement process especially in the areas near the stands (see

Chapter 5 of Neuman’s thesis, 2013)

First, in the objective function, the use of gates that belong to the same “gate group” (NC),

by aircraft that are operating in the same time gaps is discouraged. This element has been

added in order to reduce the probability of two aircraft interacting with each other which can

result in a delay. If two aircraft are not in the same area at the same time they cannot produce

a delay. This is particularly important close to the gates, as there is a limited manoeuvrability

and aircraft that are pushing back and turn on their engines can be the cause of long delays.

Adding this element (NC) implicitly reduces the number of possible delays that can happen

during the pushback process of the aircraft.

For the same reasons (limited manoeuvrability and delays that can happen close to the stands),

the gap between aircraft that are allocated in the same gate is maximised. This element in the

objective function (Equation) aside from improving the robustness (since any delay can result

in the two aircraft being at the same stand at the same time) can potentially improve the

routing process as well. If the aircraft that are assigned at the same stand (one arriving and

the other one departing) have a large gap between them, the probability of them interacting

along their path is decreased. On the other hand, if the two aircraft meet close to the stand,

where aircraft may have limited manoeuvrability, it is more likely for large delays to occur.

Another element that can affect the ground movement process is that the stands that are closer

to the runway are preferred (last element). Even though this element has a small weight, it

124

can potentially reduce the total travel time of the aircraft assuming that the duration of delays

is not considerably increased due to favouring these stands.

Finally, potential conflicts between aircraft are also avoided by constraining the use of nearby

stands so an arriving aircraft does not park at a stand close to where an aircraft is performing

the pushback process at that time (see Equation).

These parameters in the objective function and the constraints of this model, show that the

ground movement process is implicitly considered when the gate allocation process is solved.

However, conflicts and delays during the ground movement process of aircraft can still

happen. This chapter integrates the gate allocation with the ground movement process

explicitly considering the delays that can happen during the routing process of aircraft when

the gate allocation process is solved. It is expected that even though there will be a low

number of delays when the problem is solved by the gate allocation solver alone, considering

the delays that can happen when the ground movement problem is solved, will decrease the

number and the duration of delays.

7.4 Solving the Ground Movement Problem and Finding

Conflicting Aircraft

In this section, the way that the combinations of aircraft that can cause delays to one another

is presented. This process is vital for integrating the ground movement problem with the gate

allocation problem as it provides the necessary feedback to the gate allocation solver after the

routing process is considered. First the notation that was used are defined, then the way

conflicting combinations are found is explained and finally the algorithm that finds the

combinations of aircraft that conflict with each other is presented.

7.4.1 Definitions of the Variables

Table 7.2 presents the new variables that were used to describe the framework.

Table 7.2: Table of definitions for finding the conflicting combinations of aircraft

P The set of all of the flights routed before flight fi sorted in a

decreasing order based on the start time of each flight

p ∈ P := {1, …, fi - 1} A flight that is routed before aircraft fi

C The set of combinations of conflicting flights

ci ∈ C := {1, …, |C|} A combination of conflicting flights

125

f1(ci) Function that returns the (chronologically) first flight of the

conflict ci

sf The starting time for aircraft f in the datasets

ef The time aircraft f reaches its destination

lf The latest time that aircraft f would reach its destination in the

scenario where it is delayed the most

Tf The total taxi time of flight f

mf The minimum time that it takes for an aircraft f to reach its

destination on the quickest path, assuming all edges are unused by

any other aircraft.

Insert Function that inserts aircraft (or sets of aircraft) that conflict with

each other to a set C

runPair (p, f) Function that returns the delay that is produced when aircraft p

and f are routed together on an empty graph

7.4.2 Finding the Conflicting Combinations of Aircraft

In order for the gate allocation model to allocate aircraft by taking into consideration the

delays that arise for each allocation that is considered, it is important to know which

combinations of aircraft can interact with each other. All of the aircraft combinations that

cause delays to one another during the routing process are identified using the Algorithm 7.1

(see Section 7.4.3) and are stored in a “conflicting combinations” list. Each combination of

aircraft has a cost that is associated with that combination, which is the sum of the delays that

is caused to each aircraft f (see Equation 7.15).

 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑐𝑖 = ∑(𝑇𝑓 – 𝑚𝑓)

𝑓∈𝑐𝑖

 ∀ 𝑐𝑖 ∈ 𝐶 (7.15)

Every time an aircraft is routed, all of the aircraft that are moving on the airport are considered

as potential conflicts. In order to find out if two aircraft are delaying one another it is

necessary to route just the two of them on an empty airport, so no other aircraft can affect the

duration of the delay. Each aircraft f has a minimum amount of time that it needs to reach its

destination (mf). If it takes longer than the minimum time for an aircraft to reach its

destination, this denotes that there is a conflict since something delayed it. However, not only

two aircraft can cause delays to one another. Sometimes interactions between three or more

aircraft can cause delays to each other. For this reason, combinations of any number of aircraft

can be considered for potential delays (combinations of three aircraft, four, etc.). In order for

a number of aircraft to be considered as a “conflicting combination” every aircraft (except

126

from the first aircraft) need to be delayed by another aircraft of this combination without

having a subset of aircraft that do not affect or are affected by any aircraft from the rest of the

set. This means Inequality 7.16 should hold every time all of the aircraft f ∈ ci are routed on

an empty graph.

 𝑇𝑓 – 𝑚𝑓 > 0 ∀ 𝑓 ∈ (𝑐𝑖\𝑓1(𝑐𝑖)) (7.16)

Figure 7.1 shows an example of three aircraft that interact with each other. Aircraft f2 is

delayed by aircraft’s f1 pushback process (in node A). This results in aircraft f3 being delayed

by aircraft f2 (in node B - see part 1 of Figure 7.1). If aircraft f2 was not delayed, as it is

demonstrated in part 2 of the same figure, aircraft f2 and aircraft f3 would not interact. Even

though aircraft f2 and f3 share partially the same path, aircraft f2 will arrive at node B first,

early enough to avoid an interaction with aircraft f3. Similarly, if aircraft f2 was not routed,

aircraft f1 and aircraft f3 would not interact (see part 3). In this case, the combinations (sets)

of aircraft that interact with each other are [f1, f2] and [f1, f2, f3]. Combinations [f2, f3] and [f1,

f3] do not cause a delay to one another and for this reason they are not considered as a

conflicting combination even though they can be part of a conflicting combination.

The minimum time that is needed for an aircraft to reach its destination was found by routing

each aircraft from each stand to the runway and vice versa, on an empty airport. This provides

a set of time durations that denote the necessary time that it takes for any aircraft to reach its

destination without any delay that is caused by other aircraft. The QPPTW algorithm was

used for routing any pair or combination of aircraft. Each combination is executed on an

empty airport so that if a delay occurs, the only aircraft that can cause the delay are the ones

that are tested.

The algorithm that finds all of the possible combinations of conflicting aircraft (see next

subsection and Algorithm 7.1) is executed after each aircraft is routed. For each routed aircraft

(say aircraft f), the algorithm looks for combinations of aircraft that affect this aircraft (f). The

algorithm searches for delays that are caused only by aircraft that have already been routed

(before aircraft f). If aircraft f is part of a combination of aircraft that causes a delay, with

aircraft that are scheduled chronologically after aircraft f, the combination of these aircraft

will be found later on, when the latest (chronologically) aircraft is being considered. It is

important to mention that since the QPPTW algorithm routes aircraft sequentially, only

aircraft routed before aircraft f can cause a delay to aircraft f. This way, all of the combinations

of aircraft that can cause a delay to each aircraft are found. When the combinations of aircraft

that can cause a delay to the last aircraft are found, all of the conflicting combinations of

aircraft for this allocation are found.

127

Figure 7.1: Example of three aircraft interacting with each other

128

7.4.3 The Algorithm for Finding the Conflicting Combinations of

Aircraft

Finding all of the aircraft that can interact with each other, can quickly become a process that

requires significant computational time if all of the combinations of aircraft during a day have

to be tested. On an average day, more than 500 aircraft need to be routed. Considering each

combination that can arise from all of the aircraft on a day is computationally challenging.

In order to reduce the search space, combinations that cannot possibly cause a delay to one

another are not considered. The first way to reduce the search space for conflicting aircraft,

is to consider aircraft that are moving on the airport at the same time as the aircraft under

consideration is moving. If a previously routed aircraft (p) arrives at its destination (including

any delays) before the aircraft under consideration (f) starts its journey, then it is impossible

for these two aircraft to interact. This drastically reduces the search area as the number of

aircraft that move at the same time in an airport is much lower than the number of aircraft

that move around during the whole day.

In order to guarantee that a previously routed aircraft p will not be moving in the airport at

the same time as aircraft f, the latest time that aircraft p will arrive at its destination is

considered (see line 2 in Algorithm 7.1). The latest time that aircraft p can arrive at its

destination is found after finding all of the conflicts that cause a delay to aircraft p. Since only

aircraft that are routed before aircraft p can cause a delay to aircraft p, the latest time that

aircraft p will arrive at its destination is known before aircraft f is considered. If aircraft f

starts moving after this time, then aircraft p cannot directly cause a delay to aircraft f. It is

important to mention that aircraft p can still cause a delay to another aircraft that can

potentially cause a delay to aircraft f, even though aircraft f and p do not move at the same

time. This case however, is found after examining the aircraft that can cause a delay to aircraft

that directly cause a delay to the aircraft under consideration (f). Aircraft that can directly

cause a delay to aircraft f are only the ones that move around at the same time as aircraft f.

An algorithm (Algorithm 7.1) for finding the conflicting combinations of aircraft has been

developed and is described below. Algorithm 7.1 can find combinations of conflicting aircraft

- that contain any of the previously routed aircraft p ∈ P - in four ways.

The first process (lines 3 to 5) searches all of the previously routed aircraft to find which ones

are (or can be if they are delayed) moving at the same time as the one that is currently being

routed (aircraft f). If there is an aircraft (p) that moves at the same time as aircraft f then it is

examined to determine if aircraft p causes a delay to aircraft f. If a delay exists, the

combination is added to the list of aircraft that conflict aircraft f (Cf).

129

Algorithm 7.1: Finding the conflicting combinations of aircraft

Input: A flight f ∈ F, a set of aircraft P routed before aircraft f

Output: A set with combinations of conflicting aircraft Cf that can cause flight f a delay

1 foreach p ∈ P do

2 if lp > sf then

3 Tf = runPair (p, f)

4 if Tf > mf then

5 Insert {p, f} into Cf

6 if {p, f} ∉ Cf then

7 foreach cf ∈ Cf do

8 Tf = runAllocation(cf, p) /*Algorithm 7.2*/

9 if Tf > mf then

10 Insert {cf, p} into Cf

11 if Cp ≠ ∅ then

12 foreach cp ∈ Cp do

13 Tf = runAllocation (cp, f) /*Algorithm 7.2*/

14 if Tf > mf then

15 Insert {cp, f} into Cf

16 if Cf ≠ ∅ then

17 foreach cf ∈ Cf do

18 Tf = runAllocation(cf, cp)

19 if Tf > mf then

20 Insert {cf, cp} into Cf

21 else

22 break

After the first process is completed, the second process (lines 6 to 10) initiates, where the

algorithm searches for combinations of aircraft that cause delays (more than one aircraft

causing a delay in aircraft f). The algorithm checks if aircraft that are already in the list of

conflicting aircraft Cf interact with any other aircraft p routed before aircraft f regardless of

whether aircraft p delays aircraft f. In this way combinations of more than two aircraft can

occur.

The third process (lines 13 to 15), checks if the list of conflicting combinations Cp of an

aircraft g that is routed before aircraft f, can cause a delay to aircraft f. This list (Cp) contains

conflicting combinations (if there are any) of aircraft that were found in a previous execution

of Algorithm 7.1 when aircraft p was the aircraft under consideration. This process takes into

consideration aircraft that do not cause directly a delay to aircraft f and may not even be active

(have reached their destination) when aircraft f starts its routing process, but affect a chain of

aircraft that can eventually affect aircraft f.

130

Finally, the conflicting combinations Cp of aircraft routed before aircraft f are checked for

potential conflicts with the conflicting combinations Cf of aircraft f (lines 17 to 20). This again

finds aircraft that do not cause a direct delay to aircraft f but affect a chain of aircraft that can

eventually affect aircraft f.

It is important to mention though that any combination added in the list of conflicting

combinations, has to cause an added delay on aircraft f. Due to the structure of the QPPTW

algorithm, it is only necessary to check for the previously routed aircraft, as the algorithm

routes each aircraft sequentially, according to time (first come – first served). For this reason,

an aircraft f' that routes after an aircraft f cannot cause any delay to aircraft f.

7.5 Implementation Issues

As was mentioned in the previous section, in order to ascertain if combinations of aircraft

conflict with each other, it is necessary to solve the problem on an empty graph, for these

aircraft alone. Solving the problem separately running the full ground movement program for

each combination that needs to be tested, requires significant computational time, as many

objects (instances of various classes) need to be built. The QPPTW algorithm is a fast

algorithm that can route multiple aircraft swiftly. However, there are many processes that

surround the QPPTW algorithm, which do not significantly affect the computational time if

executed once when the program is initialised, but can accumulate a significant delay if

executed multiple times. The processes include loading the data that is needed in order to

make the initial graph (nodes, edges, distances, minimum traversal times between nodes),

initialising the graph, finding the conflicting edges etc.

7.5.1 Adjusting the QPPTW Algorithm for Solving Side Problems

and Running Combinations of Aircraft for Potential Conflicts

In order to keep the execution time to the minimum, the initialisation of the processes that are

necessary for the QPPTW algorithm to run are executed only once. Every time combinations

of aircraft are examined for delays; the problem is solved in the same graph as the one that

the ground movement problem is solved. These two processes are executed in parallel, as the

algorithm for finding the conflicting combinations of aircraft is run after each single aircraft

is routed.

131

The QPPTW algorithm uses time windows in order to take into consideration other aircraft

that have been previously routed. Time windows allow an aircraft to use an edge only when

there is a wide enough timespan for the aircraft to traverse this edge. In order to use the same

graph – and as an extension the same nodes and edges – each time new combinations of

aircraft are tested for conflicts, another set of time windows was introduced in the algorithm.

The new time windows - which will be called temporary time windows for convenience - are

a separate set of time windows that mark the availability of the edge, only when Algorithm

7.1, the algorithm for “finding the conflicting combinations”, is used.

7.5.2 Testing Combinations of Aircraft for Potential Conflicts

Every time the “run allocation” command is executed in Algorithm 7.1, the following

processes are executed (Algorithm 7.2):

Algorithm 7.2: runAllocation

Input: Two sets of conflicting aircraft C1, C2

Output: The sum of all delays that occur in this combination

1: for each edge e

2: clear temporary windows

3: end for

4: Total delay = 0

5: for each f ∈ C1 ∪ C2

6: run QPPTW(f) /*Algorithm 3.1*/

7: reconstruct path

8: adjust temporary time windows

9: if Tf – mf > 0 and f ≠ f1

10: Total delay += Tf – mf

11: else

12: return 0

13: end if

14: end for

15: if 𝑙𝑓𝑛
< 𝑒𝑓𝑛

16: 𝑙𝑓𝑛
= 𝑒𝑓𝑛

17: end if

18: return Total delay

As Algorithm 7.2 shows, the first step of the algorithm is to clear all of the temporary time

windows. This ensures that the combination of conflicting aircraft is going to be executed in

an empty graph. For each aircraft in the conflicting combinations list the QPTTW algorithm

is going to be executed using the temporary time windows instead of the actual ones. The

132

path is then going to be reconstructed by QPPTW once the target node is reached. Then the

temporary time windows are going to be adjusted, allowing for the QPPTW algorithm to take

into consideration the aircraft routed in previous iterations. Moreover, if any of the aircraft

under consideration - aside from the first one - is not delayed, the process stops and Algorithm

7.2 returns the value of zero, as in order for a combination to qualify as a conflicting

combination, all aircraft involved (with the exception of the last one) need to cause a delay.

Otherwise, the delay is added to the total delay variable which is the variable that Algorithm

7.2 returns when all of the aircraft under consideration are routed. Finally, before the process

returns the total delay, the latest time that the last routed aircraft (if it is the aircraft under

consideration in Algorithm 7.1) arrives at its destination is updated. This variable is updated

so the latest possible time that an aircraft can move around the airport is known, before the

next aircraft is routed (when the ground movement problem is solved). This information

makes it possible to skip tests for aircraft that do not move at the same time around the airport

(see Section 7.4.3).

7.6 The Integration Framework

In this section, the integration framework is described. First the new notation that has been

used is defined, then the way that the two models - the ground movement and the gate

allocation - were integrated is presented. Moreover, the way that the ground movement

feedback is added to the gate allocation model is described and the stopping condition of the

iterative process of the integration is defined. Finally, an extension for making the solution

more robust is presented.

7.6.1 Definitions of the Variables

For convenience, the new variables and notation that will be used to explain various concepts

in this section has been collected into a single table (Table 7.3). Since the integration model

was developed in conjunction with another PhD student and in order to make it easier for the

reader to better understand the integration framework, the notation (and definitions) for the

variables that were used below are the same or similar to the notation that was used in the

PhD thesis of Neuman (2015). The variables and the notation that were presented in Table

7.2 are still valid for this section.

133

Table 7.3: Table of definitions for the integration process

𝑋𝑔𝑗,𝑓𝑗 A decision variable, it becomes 1 if aircraft fj is allocated to gate

gj, 0 otherwise

rvari An indicator variable, becomes 1 if configuration ci ∈ C occurs

in the allocation plan

sci = {ck ∈ C : ci ⊂ ck} A set that contains all the supersets ck that contain the conflicting

combination ci

wi The weight of variable rvari when fitted into the objective

function of the gate allocation model

7.6.2 The Feedback Loop

The integration framework consists of three parts. The first part is the gate allocation process

that was developed by Neuman (2014) and was briefly explained in Section 7.3. The second

part is the routing process of aircraft and searching the combinations of aircraft that can

interact with each other that was described in Section 7.4. The third part is the feedback loop

which coordinates the information flow between the two processes that were previously

mentioned.

Figure 7.2 shows a flow diagram of the integrated model. Initially the gate allocation solver

is executed and the optimal allocation of aircraft to stands is found. This initial solution does

not take into consideration the ground movement process. The allocation of aircraft to stands

that results from the initial solution is then passed by the feedback loop manager to the ground

movement process solver. The ground movement solver then routes all of the aircraft using

as input the stands and the times that are provided by the gate allocation solver (using

Algorithm 3.1 for arriving aircraft and Algorithm 5.1 for departing aircraft). Each time an

aircraft is routed, the algorithm that finds the conflicting combinations of aircraft is executed

(Algorithm 7.1). When all of the aircraft have been routed, all of the conflicting combinations

of aircraft that were discovered by the ground movement solver, are passed by the feedback

loop manager back to the gate allocation solver. These conflicting combinations are then

added to the gate allocation model as extra constraints (see Section 7.6.3). If the stopping

condition (see Section 7.6.4) is satisfied, the feedback loop manager will terminate the

integration process. Otherwise, the updated list of conflicting aircraft will be passed to the

gate allocation process all over again until the stopping condition is satisfied.

134

Figure 7.2: Flow diagram of the integrated model

The pseudocode of this process as described by Neuman in her PhD, is provided in Algorithm

7.3.

Algorithm 7.3: The integrated gate and route allocation algorithm

1: run the Gate Allocation Optimiser to obtain an initial allocation

2: pass the initial allocation to the Manager

3: run the Routing Optimiser for the initial allocation (Using Algorithms 3.1 and 5.1)

4: obtain feedback information from the Routing Optimiser to the Manager

5: while stopping condition not met do

6: pass the routing feedback information to the Gate Allocation Optimiser

7: run the Gate Allocation Optimiser to obtain a new allocation

8: pass the new allocation to the Manager

9: run the Routing Optimiser for the new allocation to obtain new feedback information

10: pass the new feedback information to the Manager

11: add the new feedback information to the previous feedbacks

12: end while

135

Once the stopping condition is met, the allocation with the smallest total duration of delays

is found. It is important to mention that an allocation may not always lead to a better solution

for the ground movement process. The gate allocation solver does not know beforehand the

total delay that will be produced once all of the aircraft are routed. It only takes into

consideration combinations that are known to cause a delay and suggests the best allocation

based on this information.

7.6.3 Adding the Ground Movement Feedback to the Gate Allocation

Model

Each time the ground movement solver finds the conflicting combinations of aircraft, the list

of “conflicting combinations” is passed to the gate allocation solver. The gate allocation

solver uses the model that was developed by Neuman for her PhD thesis (2015) and was

briefly described in Section 7.3. Each combination ci of conflicting aircraft from the

“conflicting combinations” C list is added as a constraint to the gate allocation model.

Equation 7.17 describes the constraint (as was described in Neuman’s thesis)

∑ 𝑋𝑔𝑗,𝑓𝑗

|𝑐𝑖|

𝑗=1

− 𝑟𝑣𝑎𝑟𝑐𝑖
 − ∑ 𝑟𝑣𝑎𝑟𝑐𝑘

𝑐𝑘∈𝑠𝑐𝑖

 ≤ |𝑐𝑖| − 1,

∀𝑖 ∈ {1, … , |𝐶|}, 𝑠𝑐𝑖 = {𝑐𝑘 ∈ 𝐶: 𝑐𝑘 ⊃ 𝑐𝑖}

(7.17)

where |ci| denotes the number of aircraft that conflict with each other in combination ci ∈ C,

gj denotes the gate of the allocation with index j and fj denotes the flight of the allocation with

index j. The constraint, will force the additional variable rvari to have the value of 1 if the

allocation of the aircraft in combination ci is part of the solution of the gate allocation model

and ci is not already part of a larger combination of conflicting aircraft ck which is being

considered (𝑟𝑣𝑎𝑟𝑐𝑘
= 1). A weight wi is used for variable rvari in order to fit the variable to

the objective function of the gate allocation model. The aim of this integration is to find an

allocation that takes into consideration the routing process of aircraft, without compromising

the other elements of the objective function that are used for solving the gate allocation

process.

The weight wi is equal to the cost of the conflicting combination ci, which is the total duration

of delay that the aircraft in this combination produce to each other (in a specific gate

configuration). As Equation 7.18 indicates, the sum of all of the weighted (wi) variables rvari

(as was described in Neuman’s thesis) is added to the objective function of the gate allocation

model.

136

 ∑(𝑤𝑖

𝑙

𝑖=1

∗ 𝑟𝑣𝑎𝑟𝑖) (7.18)

7.6.4 The Stopping Condition

The integration process will be terminated when the ground movement solver stops providing

new conflicting combinations of aircraft. This happens when the list of conflicting

combinations Cf does not contain a new conflicting combination c’ for any flight f ∈ F.

Each time the ground movement problem is executed, it tries to find new combinations of

conflicting aircraft. The gate allocation model is then extended by adding these combinations

as new constraints. The gate allocation solver then tries to find a solution where allocations

of conflicting combinations of aircraft are minimised. If the ground movement problem does

not provide any new combination of conflicting aircraft in the feedback list, then the

integration model is stopped. If there are no new combinations to consider, the gate allocation

solver cannot provide a new allocation that will lead to a better ground movement solution

than the ones that are already provided.

7.7 Executing the Integrated Model

In this section, the results that were obtained after executing the integrated model are

presented. The objective of the integration framework is to minimise the number and the total

duration of delays that happen in the airport (during the ground movement process) after

solving the gate allocation problem. For these experiments, each terminal was solved

separately due to the complexity of the problem. This is a common practice when the gate

allocation problem is solved, as it is rare that an aircraft is able to be assigned to gates from

two (or more) different terminals. This is because airlines are usually associated with one

terminal, often, to reduce resources that are needed (such as check in desks, personnel etc.).

It is possible though, that aircraft from different terminals interact with each other during the

ground movement process and solving the full gate allocation problem could provide a better

solution. However, it has not yet been possible to find an optimal solution for the entire gate

allocation problem in a reasonable timescale. Neuman in her PhD (2015) suggested the use

of an alternative version of the system that implements a Receding Horizon decomposition

in order to solve this problem. For this chapter however, only the basic gate allocation solver

was used for the integration of the two systems and restricting the consideration to a single

terminal eliminates the problem.

137

7.7.1 Experimental Settings

The experiments for this chapter were executed for Manchester airport as the developed

model that solved the gate allocation problem was already implemented for this airport.

Moreover, the datasets of Manchester airport were the only datasets available for solving the

gate allocation process (previous datasets were adequate for solving the ground movement

process of aircraft only). This airport has 3 terminals and 1 runway. Manchester airport was

chosen for the variety of traffic characteristics that it has for each terminal. This provides a

variety in the cases that are examined, especially for the gate allocation process as Neuman

has highlighted in Chapter 3 of her PhD thesis (2015). 7 days of historic flight data was used

for each terminal. The problem was solved independently for each terminal and each day (21

instances were solved). After executing the experiments, it was observed that the complexity

of the instances differs significantly. More specifically, days 3 and 5 for terminal 1 and days

2 to 5 for terminal 3 were much harder for the gate allocation process to solve, in many cases

exceeding 1 hour until a solution was found. On the other hand, for terminal 2 the integrated

model was solved within a few minutes in most cases. More details about the execution times

of the gate allocation solver can be found in Chapter 6 of Neuman’s PhD thesis (2015).

7.7.2 Results

The results summarising the total delay and the number of conflicts are presented in Table

7.4. The first column shows the terminal and the day of the data that was used for the

experiment. The second column shows the number of iterations that integrated model has

performed (see line 5-12, Algorithm 7.3) for each instance and the number of the iterations

that provided an improved solution in terms of total delays (in the parenthesis). The third

column shows the total duration of the delays that happen in that instance when the aircraft

are routed using the initial gate allocation solution (without taking into consideration the

ground movement process) and the number of conflicts (inside the parenthesis). The fourth

column shows the total duration of delays for the best performing allocation that was found

by the integrated model as well as the number of conflicts (inside the parenthesis) for that

allocation. The fifth column shows the improvement in the total duration of delays that

happens when the ground movement process is considered. Finally, the sixth column shows

by how much (as a percentage) the objective value - for the gate allocation problem only – is

affected.

138

Table 7.4: Results after solving the gate allocation process while considering the ground

movement

Terminal

/Day

Iterations Initial delay [s]

(conflicts)

Final delay [s]

(conflicts)

Improvement Objective [%]

1 / 1 7 (5) 223 (10) 0 (0) 100% 0.62

1 / 2 15 (15) 203 (12) 0 (0) 100% 0.87

1 / 3 30 (28) 224 (13) 0 (0) 100% 1.20

1 / 4 18 (17) 274 (14) 6 (1) 98% 0.56

1 / 5 3 (3) 60 (2) 0 (0) 100% 0.02

1 / 6 18 (18) 276 (9) 0 (0) 100% 0.15

1 / 7 3 (2) 276 (9) 0 (0) 100% 0.30

2 / 1 10 (7) 53 (4) 0 (0) 100% 0.39

2 / 2 40 (35) 142 (7) 5 (1) 96% 1.16

2 / 3 49 (46) 130 (7) 5 (1) 96% 0.57

2 / 4 15 (6) 38 (4) 0 (0) 100% 0.51

2 / 5 49 (13) 43 (5) 0 (0) 100% 0.79

2 / 6 60 (58) 445 (11) 0 (0) 100% 3.75

2 / 7 12 (3) 39 (6) 0 (0) 100% 0.20

3 / 1 74 (55) 125 (13) 0 (0) 100% 1.14

3 / 2 120 (120) 398 (21) 2 (1) 99% 0.26

3 / 3 83 (40) 73 (16) 2 (1) 97% 0.08

3 / 4 194 (193) 468 (30) 0 (0) 100% 0.56

3 / 5 177 (157) 276 (19) 0 (0) 100% 0.82

3 / 6 62 (61) 185 (5) 0 (0) 100% 0.44

3 / 7 96 (89) 117 (11) 0 (0) 100% 0.39

Average 54 (46.2) 194 (10.9) 0.95 (0.24) - 0.7

Total - 4068 (228) 20 (5) 99.5% -

As the results indicate, even without taking the ground movement process into consideration,

the number of conflicts and delays that happen when the aircraft are routed - using the initial

solution for the gate allocation problem - are moderately low. When the ground movement

problem was solved, based on the initial gate allocation solution, the total number of delays

was 228 and the total duration of delays was 1 hour and 8 minutes. This is lower than the

delays that were observed when the ground movement problem was solved for Zurich and

Arlanda airport, using real data (see Chapter 6). This is expected as this gate allocation model

implicitly takes into consideration the ground movement process as was mentioned in Section

139

7.3. However, the low number and duration of delays also suggests that the results are affected

by the fact that the problem is solved for each terminal separately.

Even though the number of initial delays is not high for each terminal, when the delays that

can happen during the ground movement process are taken into consideration, there is a

significant improvement in the total duration of delays when the integrated problem is solved.

For all of the 21 instances that were tested, the integrated process eliminated the delays or at

least significantly improved the total duration of delays that happen when aircraft are routed,

when comparing the delays that happen during the initial allocation to the final allocation that

the integrated model has produced. On average, the total delay for all of the terminals over

the week decreased by 99.5% when the ground movement process was taken into

consideration. Overall, the total duration of delays decreased from 68 minutes to 20 seconds

and the total number of delays decreased by 223, from 228 conflicts to just 5. For the majority

of the instances (16 out of 21) the final allocation had no conflicts between aircraft and the

worst performing allocation would produce only 6 seconds of delay for a full day on one

terminal. This shows that taking into consideration the ground movement process can prevent

all or at least most of the delays from happening when the aircraft move around the airport.

Furthermore, the number of iterations (see Algorithm 7.3) was on average around 54, which

shows that there are many alternative allocations that do not drastically change the fitness of

the objective value of the gate allocation problem, but provide a range of alternative input for

the ground movement process. It is important to mention however, that not all of the iterations

would provide an improvement in the total duration of delay. Out of the 54 iterations that

would happen on average for each day and terminal, approximately 46 would provide an

improvement in the total duration of delay. The gate allocation solver does not know

beforehand if a certain allocation will provide less or shorter delays. The results however,

indicate that the initial solution of the gate allocation problem is a competitive solution,

providing more evidence that the gate allocation model will provide a relative good solution

in terms of delays that can happen during the ground movement process. As mentioned in

Section 7.3, the gate allocation model implicitly takes into consideration the delays that can

happen close to the gates.

Finally, the objective function of the gate allocation problem was (in most of the cases) not

significantly affected by the new solution. Out of the 21 cases where the gate allocation was

improved, only 4 would increase the value of the objective function of the gate allocation

model by more than 1%. The instance that was affected the most by introducing the ground

movement process had its objective value increased (only for the gate allocation model) by

3.75%.

140

Eventually, how much the objective function of the gate allocation process should be affected

depends on the importance of decreasing the delays that would happen during the routing

process. Since the parameters of the gate allocation and the delays that can happen during the

routing process cannot be compared in an absolute way, an airport may need to decide what

is more practical or profitable for their case and adjust the weight (or limit the maximum

value) of each parameter accordingly.

Figure 7.3 shows the delays that happen (on the left side axis) for terminal 1, day 2, when the

ground movement problem is solved for each gate allocation provided by the integrated

model, in contrast with the increase (as a percentage) of the objective value of the gate

allocation solution compared to the initial gate allocation solution (on the right-side axis), for

each iteration. As the graph shows, the allocations that are found do not always improve the

delays that can happen in the ground movement process. Also, the solution of the gate

allocation model, is not always worsening. This shows that changing the allocation of a flight

may not always have the expected results when it comes to improving the delays during the

ground movement process but overall it can produce multiple solutions that outperform the

initial allocation when it comes to the delays that happen during the ground movement

process. In this example, 16 allocations were found that would decrease the delays when the

ground movement process is subsequently solved. The best performing one would decrease

the delays from 4 and a half minutes to no delay at all.

Figure 7.3: The duration of delays during the ground movement process and the increase of

the objective value of the gate allocation model for each iteration, for terminal 1, day 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

50

100

150

200

250

G
at

e
al

lo
ca

ti
o

n
 o

b
j v

al
u

e
in

cr
ea

se
 (

%
)

Iteration

D
el

ay
 [

s]

Ground Movement

Gate Allocation

141

7.8 Buffer Time Between Aircraft

The solution of the integrated model provides a solution that can take into consideration

delays that can happen in the future when the aircraft are routed. However, in most large

airports, the ground movement process is a complicated procedure where many unpredictable

parameters can influence the timing of each movement. In some cases, the ground movement

solvers take this unpredictability into consideration by adding extra buffer times (that forces

a time gap between two aircraft) in each section of an aircraft’s route. However, when the

routing process is done in real time it is not necessary as the solution can be recalculated fast,

and adding robustness can affect the throughput of aircraft that are moving around the airport.

On the other hand, a solution for the gate allocation process is something that cannot easily

change if a problem occurs while the day is unfolding. Changing a gate allocation solution

while aircraft are already using the gate according to the initial solution can require moving

personnel and passengers to different gates which in many cases can be impossible and

moreover moving aircraft to different stands which is impractical.

A robust solution in this case can prove to be more useful. Moreover, improving the

robustness for the ground movement process when considering the gate allocation problem

does not negatively affect the capacity of the airport to the extent it does for the ground

movement problem. Once the gate allocation solver provides a robust solution, aircraft can

be re-routed moments before they start their journey, without considering large buffer times

between them.

In this section, a buffer time between aircraft is introduced in order to investigate how a more

robust ground movement solution can affect the integrated process.

7.8.1 Implementing the Buffer Time Between Aircraft

In order to increase the robustness of the model, the ground movement process was expanded

by implementing buffer times between aircraft. To add the buffer times in the QPPTW

algorithm there have been some modifications to the algorithm. The first change is adjusting

the necessary time for blocking each edge. The QPPTW algorithm uses time windows for

each edge in order to identify when each edge can be available. If there is a large enough gap

(time window) for an aircraft to use that edge, then the algorithm expands to that edge. For

implementing the buffer time between aircraft, this time window needs to be longer in

duration to include the buffer time.

142

The second change is when adjusting the time windows, after the route has been found. After

QPPTW finds the series of nodes that form the route of the aircraft and the times that the

aircraft is going to reach each node, the time windows for each edge are adjusted so they are

ready to be used by the next aircraft. In order to include a buffer time between aircraft, the

length of the time windows is reduced by the time duration that is defined for the buffer time.

This extension was added in the temporary time windows as well, since it is necessary to find

the delays that can happen when two (or more) aircraft cannot be more than 30 seconds “near”

each other.

7.8.2 The Impact of Adding a Buffer Time Between Aircraft

The same experiments (see previous section) were executed again, this time including the

buffer times, to evaluate the effects of the buffer time between aircraft. Buffer times between

aircraft were not used for the previous section (the buffer time was set to 0), as is the case

when aircraft are routed live. For this set up, the buffer time was set to 30 seconds. This buffer

time will force all aircraft to have a minimum 30 seconds gap between them during the routing

process. It is expected that the number and the duration of delays is going to be significantly

higher when the buffer time between aircraft is included, since more aircraft will be affected

if they have to keep a 30 seconds gap for shared resources (such as taxiway sections).

Moreover, the improvement in the number and the duration of delays - when the ground

movement process is included compared to not taking the process into consideration - is

expected to be higher when the buffer time is not included. This is expected to happen because

the ground movement process is more constrained and there will be fewer available sections

of paths for the aircraft to use.

Moreover, as mentioned earlier, the gate allocation process already takes implicitly into

consideration potential delays that can happen near the gates by avoiding to allocate departing

aircraft to the same gate groups at the same time (avoiding pushback delays) and avoids

allocating aircraft that are arriving and departing at the same time to gates that are near to

each other. This makes the allocation more robust, as it is more likely for aircraft in these

cases to interact. However, the aircraft in these cases are also more likely to interact when the

buffer time between aircraft is included. For this reason, including the buffer time will

potentially not greatly benefit the gate allocation process as robustness near gates is already

considered by the gate allocation process.

The results of the new experiments have been summarised in Table 7.5. The format of the

table has remained the same as in Table 7.4 (see previous section).

143

Table 7.5: Results after solving the gate allocation process while considering the ground

movement including buffer times between aircraft

Terminal

/Day
Iterations

Initial delay [s]

(conflicts)

Final delay [s]

(conflicts)

Improvement

[%]
Objective

1 / 1 28 (27) 426 (13) 0 (0) 100% 0.53

1 / 2 25 (25) 647 (20) 0 (0) 100% 1.73

1 / 3 44 (32) 257 (11) 0 (0) 100% 1.56

1 / 4 21 (18) 458 (17) 0 (0) 100% 0.56

1 / 5 6 (6) 213 (10) 0 (0) 100% 0.25

1 / 6 33 (33) 598 (15) 0 (0) 100% 0.54

1 / 7 29 (29) 326 (13) 0 (0) 100% 1.16

2 / 1 332 (248) 137 (7) 25 (2) 82% 9.61

2 / 2 442 (430) 381 (12) 81 (4) 79% 2.82

2 / 3 337 (329) 380 (9) 75 (4) 80% 2.32

2 / 4 348 (301) 162 (7) 20 (1) 88% 0.59

2 / 5 394 (246) 208 (8) 18 (3) 91% 3.42

2 / 6 139 (137) 816 (14) 71 (3) 91% 5.60

2 / 7 331 (280) 235 (8) 51 (3) 78% 2.30

3 / 1 226 (206) 299 (18) 0 (0) 100% 1.01

3 / 2 178 (178) 850 (23) 0 (0) 100% 0.36

3 / 3 82 (64) 276 (20) 0 (0) 100% 0.16

3 / 4 227 (218) 677 (32) 0 (0) 100% 0.92

3 / 5 249 (245) 784 (29) 31 (4) 96% 1.34

3 / 6 14 (13) 258 (6) 0 (0) 100% 0.22

3 / 7 134 (99) 163 (14) 0 (0) 100% 0.65

Average 172 (151) 416 (15.2) 17.7 (1.14) - 1.79

Total - 8740 (319) 372 (24) 95.7% -

As the results show, all of the instances that were solved, resulted in an improvement in the

total duration of delays that happen when the aircraft are routed. Overall, the total duration of

delays would decrease by 95.7% from 2 hours and 26 minutes to 6 minutes and 12 seconds

and the total number of delays would decrease by 295, from 319 conflicts to 24. As expected,

the number and the duration of delays is higher when the buffer time between aircraft is

included, since it is more likely for aircraft to interact with each other when they have to keep

a 30 seconds gap between them.

144

Taking into consideration the results from the previous section, the integrated model seems

to still have a drastic improvement in the duration and number of delays when there is a buffer

time between aircraft. As mentioned earlier in this section, it is harder to reduce the total

duration of delays when there is a 30 seconds gap enforced to aircraft that want to use the

same resources (such as parts of taxiways). The availability of parts of the paths is

significantly reduced, making it harder for an aircraft to avoid delays overall.

Moreover, the gate allocation process attempts to implicitly take into consideration the

ground movement process. Avoiding allocations where potential delays (during the routing

process) can happen makes it more likely to avoid delays when the buffer time is also

included. However, after examining the results, there are still many instances where the

delays have been significantly reduced or eliminated. In 13 out of the 21 instances all the

delays have been eliminated and the instance that had the smallest improvement in terms of

total delays, still improved by 78%.

Having a robust solution seems to not significantly affect the improvement that can be

achieved when an integrated model is used. An 95.7% reduction in the duration of delays is

a significant improvement especially when considering that the overall robustness of the

solution is also increased. However, it is important to mention that the number of iterations

that are needed for the integration process has been increased, which in turn negatively affects

the execution time. Usually, a solution was found within a few hours or half a day. However,

some of the hardest instances would need over a week to solve, with the longest one taking

approximately 14 days to solve.

The average number of iterations in the integrated model was around 165, 142 of which would

provide a solution where the total duration of delays would be decreased. As in the previous

section, this shows that there is a variety of alternative allocations that can provide a wide

range of alternative input for the ground movement process, without drastically affecting the

fitness of the objective value of the gate allocation problem. Again, not all of the proposed

allocations improve the total delay that happens when the initial gate allocation solution is

used for solving the ground movement process. This provides more evidence that the gate

allocation model on its own can produce a competitive solution, in term of delays that can

later happen during the ground movement process of aircraft.

Finally, the objective function of the gate allocation problem was again not greatly affected

when the buffer time between aircraft was included. On average, the value of the final gate

allocation solution would be around 1.86% larger than the initial gate allocation solution,

which shows that an integrated model can provide an overall good solution, without greatly

affecting the solutions of the individual processes.

145

Figure 7.4 shows on the left side axis the delays that happen when the ground movement

problem is solved every time the gate allocation process produces a new allocation, and on

the right-side axis, the increase (as a percentage) of the objective value of the gate allocation

process for each iteration, for terminal 1, day 2. Comparing this graph, with the graph in

Figure 7.3, a number of differences can be observed. In this graph, the total delay when the

initial gate allocation is used for solving the ground movement problem, is larger (647

seconds versus 203 when no buffer time between aircraft is included). The additional delay

is caused by the fact that more aircraft interact with each other as it has been previously

highlighted. This results in a larger number of iterations as well. In Figure 7.4 the number of

iterations is 26, whereas in Figure 7.3 it is 16. Furthermore, the increase of the objective

function for the gate allocation problem alone is also larger (0.87% versus 1.73%), as it is

more difficult to reduce all the conflicts that happen during the ground movement process

when the buffer times are included.

Figure 7.4: The duration of delays during the ground movement process and the increase of

the objective value of the gate allocation model for each iteration, for terminal 1, day 2 when

buffer time between aircraft is included

7.9 Conclusions

The gate allocation process and the ground movement process affect one another and are part

of a wider problem that needs to be optimised in airports. Solving the two processes separately

does not take into consideration the full problem. An integrated model is important as it can

provide a gate allocation solution that will take into consideration any delay that can happen

when the aircraft are later moving on the ground. Minimising these delays can provide large

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0

100

200

300

400

500

600

700

G
at

e
al

lo
ca

ti
o

n
 o

b
j v

al
u

e
in

cr
ea

se
 (

%
)

Iteration

D
el

ay
 [

s]

Ground Movement

Gate Allocation

146

benefits (such as less fuel consumption, reduced CO2 emissions and less traffic), without

greatly affecting the objectives of the gate allocation process. So far, these two processes are

usually solved separately and there has been little research towards integrating them.

In this chapter, an integration framework was presented that solved the gate allocation

problem by taking into consideration the ground movement process of aircraft. One of the

latest and most advanced gate allocation models, that was developed by Neuman in her PhD

thesis, was used for integrating with the ground movement problem. An algorithm was

developed that would search for any potential conflict between combinations of aircraft

(pairs, triplets, etc.) executing a light version of the ground movement solver for each

combination of aircraft. This algorithm would run the ground movement process multiple

times, and the problem was solved on a pre-existing graph using temporary time windows to

mark the availability of each edge, making it possible to find conflicts between combinations

of aircraft fast. Moreover, the routing algorithm was extended in order to include buffer times

between aircraft.

Furthermore, an integration framework was developed in conjunction with Dr. Neuman that

allows the information flow between the two solvers (gate allocation and ground movement)

and adds the feedback from the ground movement process (conflicting aircraft) to the gate

allocation solver.

After solving the problem using the integrated framework without using any buffer time

between aircraft, the total duration of delays would decrease on average about 99.5%.

Moreover, the value of the objective function was not affected significantly in most cases.

Moreover, since there are still many unpredicted delays that can happen that affect the ground

movement process of aircraft, the framework was also executed using a 30 seconds buffer

time between all aircraft in order to obtain a more robust solution. The experiments show that

there was on average a significant improvement in the reduction of the total duration of delays

(about 95.3%). Even though there were fewer instances where delays were completely

eliminated when the buffer time was included, the robustness of the solution has been

significantly increased, so in practice an integrated model that includes buffer times may

eventually result in fewer delays.

Overall, the results showed that in both set-ups (with and without buffer time) the integrated

model would provide a significant reduction in the total duration of delays that happen during

the routing process of aircraft. Integrating the ground movement process to the gate allocation

problem provides a more complete approach to the full problem and it is important to be

considered as it can significantly affect the overall solution. Moreover, solving the problem

147

for the full airport (all terminals at the same time) may provide even better improvements in

the overall solution.

To conclude, integrating with even more processes such as the runway sequencing process

and improving the execution times of individual solvers can provide even better results,

making airports much more effective and environmentally friendly.

148

8

An A* Approach for the Quickest Path Problem

with Time Windows

8.1 Introduction

An airport is a place where many resources are shared and in order to maximise its capacity

all the processes that take place need to be well organised. Many processes happen in parallel

and many affect or get affected by other processes. Finding the optimal solution when taking

all the processes into consideration can be computationally expensive, making it hard to use

in a system that could provide real time advice to the air traffic controllers. This was

particularly evidenced in Chapter 7, when solving the gate allocation problem by considering

the routing process for some days with high traffic, would require a considerable amount of

time for the problem to be solved.

Having a fast routing algorithm, will allow researchers to add additional features and

complexity to the model and more importantly to integrate with other processes that happen

in parallel in airports in a real-time system for aircraft ground movement.

As mentioned in Chapter 3, the QPPTW algorithm is a fast and useful algorithm when it

comes to routing aircraft, as it can take into consideration all the available paths. However,

QPPTW involves searching for the quickest path by expanding the search in all directions,

similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist

the search and achieve a better performance.

This chapter presents an improved version of the QPPTW algorithm for solving the routing

and scheduling problem that is based on the A* algorithm. The A* QPPTW (ASQPPTW)

algorithm still solves the problem sequentially as the QPPTW algorithm does, but does not

expand towards all directions. Instead it has a guided search for the destination node.

149

The results will show that the ASQPPTW algorithm can solve the problem faster than

QPPTW algorithm, providing an excellent tool for solving the routing process fast.

ASQPPTW algorithm can allow processes that solve other problems in airports, to have

multiple routing solutions with different configurations resulting in a fast and more integrated

system that can take the whole ground movement problem into consideration.

Section 8.2 presents an overview of the challenges and the new implementations of the

ASQPPTW and describes the mechanics of the algorithm. Section 8.3 provides the

description of the setups that were used for the experiments. Section 8.4 provides a head to

head comparison between ASQPPTW and QPPTW of the execution time that is necessary

for solving the routing problem. Section 8.5 investigates the reasons that ASQPPTW is able

to solve the routing problem faster focusing on the way each algorithm expands and Section

8.6 discusses the conclusions that are drawn from this chapter.

8.2 The A* Approach and Overview of Implementations

In this section, the ASQPPTW algorithm is described and explained. First, the relevant

previous work is presented and discussed. Then the heuristics that are used for an A* search

approach are discussed and compared. Moreover, the heuristic that was chosen for improving

the QPPTW algorithm is presented and described. Finally, various concepts about the

ASQPPTW algorithm as well as the algorithm itself are defined and a pseudocode of the

algorithm is presented.

8.2.1 Previous Work

QPPTW is a popular algorithm for solving the routing process and integrating with other

processes. Many models use this algorithm as a base for the routing process and expand its

functionality by adding many useful extensions and integrating with other processes.

Gawrilow et al. (2008) develop the algorithm and have used it for controlling automated

guided vehicles in container terminals. Ravizza et al. (2014) implement the stand holding

process in the QPPTW algorithm in order to take into consideration the runway sequencing

of aircraft and to shift the runway delays to the stand where the aircraft is parked. Ravizza et

al. (2013b) analyse the trade-off between taxi time and fuel consumption, by using the k-

QPPTW algorithm that finds the k fastest paths. Weiszer et al. (2015a) as well as Chen et al.

(2016b) both use a database for speed profiles of aircraft to reduce the calculation time for

the routing and scheduling problem that is solved by the QPPTW algorithm. Benlic et al.

150

(2016) use the QPPTW algorithm for solving the runway sequencing problem considering

the routing and scheduling problem. Furthermore, in this research the QPPTW algorithm is

the main algorithm used for the routing process (see Chapters 4 to 7), integrating various

functionalities such as the pushback process.

However, even though the QPPTW algorithm is a fast and reliable routing algorithm, it is a

Dijkstra based algorithm. Dijkstra’s algorithm is used for finding the shortest path between a

start node to a goal node in a graph. It explores nodes towards all the directions until it reaches

the target node. There are other graph search algorithms (such as A* algorithm) that can find

the shortest path faster, by making a more informed search.

There has been an attempt for solving the routing and scheduling problem with an A*

approach by Lesire (2010), but the QPPTW algorithm provides a better coverage of the

solution space, potentially allowing it to find better solutions, since it can guarantee that the

quickest path is found. The Lesire approach uses a heuristic based on the Euclidian distance,

which can be misleading when the shortest path is blocked, since this heuristic usually favours

a shortest path instead of the quickest. Finally, the execution time is mentioned in the paper

to be “less than a second per flight” which is fast, but not fast enough for solving a full day

multiple times (which is something that can be useful when integrating with other processes).

The QPPTW version of Ravizza in his PhD thesis (2013c) that is based on Dijkstra’s

algorithm solved the problem in similar times.

8.2.2 A Heuristic Estimation of the Cost

A* algorithm is an algorithm that is widely used for pathfinding that is based on Dijkstra's

algorithm. It makes use of heuristics in order to have a guided search, resulting in faster

execution times. Instead of expanding to the node that will minimise the shortest path distance

A* algorithm will select to expand to the node that minimises the shortest path distance up to

that point plus the remaining cost to the goal node. More specifically, minimising the function

 f(n) = g(n) + h(n) (8.1)

where n is the node that is being considered, g(n) is the cost of the path from the starting node

to node n and h(n) is the remaining cost that the heuristic has estimated.

In this case, the optimal solution is required, since any additional travel time of aircraft can

result in an increase in fuel consumption and CO2 emissions. For this reason, the ideal

heuristic should be exactly equal to the cost that is required to move from node n to the goal

151

node. However, this is very hard as it is not always possible to know the exact remaining cost

to the goal node.

In the case of the QPPTW algorithm it is the quickest path that needs to be found and not the

shortest. The use of time windows by QPPTW increases the available ways that an aircraft

can reach its destination, as it introduces the dimension of time. The QPPTW algorithm routes

aircraft in a dynamic graph, as the node where it expands is affected not only by the original

weight of the edges but also from the delays that can happen from previously routed aircraft

that make use of these edges. For this reason, it is not possible to know which is the quickest

path or what the cost of it will be, before actually routing the aircraft in a graph that takes into

consideration all of the previously routed aircraft.

The best heuristic that can be achieved in this case is the cost of the shortest path, which is

the same for all aircraft, and it is the exact cost for the remaining path when delays do not

occur. In cases where there are no blocked edges due to previously routed aircraft, the

heuristic will only expand to the shortest path, providing a very fast solution. In cases where

there are delays that are caused by blocked edges, the cost of the shortest path will provide

the largest value that can be used by a heuristic that is not larger than the actual cost that is

required to reach its destination - thus guaranteeing that the optimal solution is found.

Calculating the cost of the shortest path every time the algorithm needs to expand can provide

a very accurate heuristic, but it is more computationally expensive compared to calculating a

less accurate cost such as the remaining Euclidean distance. However, this issue can be solved

by using a pre-calculated table that can provide the remaining duration from each node to

each stand or runway.

The algorithm that was developed for this chapter (ASQPPTW), uses a heuristic that

calculates the remaining cost of the shortest path. ASQPPTW follows Equation 8.1 as well.

In this case g(n) is the duration that it takes for an aircraft to travel from the starting node to

node n, including any delays that happen across this path. g(n) is already known as it is the

time that the aircraft will enter the next node (including any delays that can occur on the last

edge due to previously routed aircraft).

The h(n) is calculated by finding the duration that it takes for an aircraft to reach the

destination node from node n when the shortest path is traversed. This duration is calculated

beforehand and is used as input for the algorithm. In order to have this data before the

algorithm is executed, aircraft were routed on an empty graph from each node to each runway

for routing the departing aircraft and from each node to each stand for the arriving aircraft. A

tailored implementation of Dijkstra’s algorithm was used for this process. In each node of the

152

graph the time that it takes to reach each stand and runway is stored. This makes it possible

to retrieve h(n) fast whenever it is needed.

In order to quantify the benefits of a heuristic that uses the cost of the shortest path, another

heuristic was also created and tested (see Section 8.5.6). This new heuristic is based on the

Euclidian distance from node n to the goal node. The duration that is needed to traverse this

distance was then found (using the speed that aircraft is moving) in order to be able to add

any delays that can happen from previously routed aircraft. In this case, the calculation of the

heuristic is almost always smaller than the actual duration that is needed by an aircraft to

traverse the shortest path. The only case when the cost of the heuristic is the same as the cost

from node n to the goal node, is when node n and the goal node are connected by a single

edge.

8.2.3 Definitions of the Variables

Various variables and constants will be used in the explanations of the problem and the

definition of concepts, as well as in the algorithm explanation. For convenience, these have

been collected into a single table (Table 8.1) here for reference. In order to maintain some

thread of continuity with the QPPTW algorithm which ASQPPTW is based on and to make

it easier for the reader to better understand the additions of ASQPPTW, the notation of

common variables that was used below are the same or similar to the notation that was used

in the PhD thesis of Stenzel (2008) and Ravizza (2013c).

Table 8.1: Table of definitions

E The set of all edges

V The set of all vertices

e ∈ E An edge

υ ∈ V A vertex

G = (V, E) The directed graph representing the airport layout, with vertices υ ∈

V and edges e ∈ E

𝑎𝑒
𝑗
 The start time of the jth time-window on edge e ∈ E

𝑏𝑒
𝑗
 The end time of the jth time-window on edge e ∈ E

𝐹𝑒
𝑗

= [𝑎𝑒
𝑗
, 𝑏𝑒

𝑗
] jth time-window on edge e ∈ E, from time 𝑎𝑒

𝑗
 to time 𝑏𝑒

𝑗

F(e) The sorted set of all of the time-windows on edge e ∈ E

H The priority queue storing the added labels

aL The start time of Label L

bL The end time of Label L

153

IL = [aL, bL] The time interval used in a label L

predL The predecessor label of label L

L = (υL, IL, predL) A label on vertex υL ∈ V with a time interval IL and predecessor label

predL

L(υ) The set of all of the labels at vertex υ ∈ V

R A conflict-free route that is being generated

s ∈ V A source vertex

t ∈ V A target vertex

time The time that an aircraft sets off

p The pushback duration

T = (s, t, time, p) A taxi request to route, from source s ∈ V setting off at time time, to

target t ∈ V and with pushback duration p (for departures)

we The weight (necessary taxi time) of edge e ∈ E

C(υ, n) The estimated remaining duration that it would take to reach the

destination vertex n ∈ V from the current vertex υ ∈ V

H.getMin() Function that returns the element with the lowest value in heap H

Maximise(a, b) Function that returns the element with the largest value between

elements a and b

head(e) Function that returns the vertex y of an edge e that is directed from

vertex x to vertex y.

8.2.4 The ASQPPTW Algorithm

The ASQPPTW is an improved version of the QPPTW algorithm. The approach that is

described below is based on the PhD thesis of Ravizza (2013c). Both the “forwards” version

(summarised in Chapter 3) and the “backwards” version (presented in Chapter 5) have been

modified in this approach. The pushback process was explicitly implemented for the

departing aircraft and both versions have been enhanced by considering the remaining time

when searching for the next vertex to expand.

The ASQPPTW algorithm uses as an input the graph G = (V, E) as described in Chapter 3,

where each edge has its own weight function we. The availability of each edge is denoted by

a set of time windows F(e) for that edge. A taxi request Ti = (si, ti, timei, pi) that contains the

details of the flight i are also used as an input to the algorithm in order to route a flight and

the algorithm will return the quickest available path R that can be used by aircraft i in order

to reach vertex ti, starting from si for arrivals (or to reach vertex si, starting from ti for

154

departures since they are routed backwards) by respecting the aircraft that have been

previously routed (time-windows).

Since departures are routed backwards, starting from the destination of the aircraft and find

each previous step until the algorithm reaches the stand, the algorithm starts from the target

vertex and searches for the source vertex which is opposite to what the arrival process does.

Algorithm 8.1 shows the pseudocode of the ASQPPTW algorithm for arriving aircraft and

Algorithm 8.2 for departing aircraft. It is based on the QPPTW algorithm as was described in

Chapter 3. Again, the parts that are different from the original QPPTW algorithm have been

underlined in red.

The difference with the two algorithms is that Algorithm 8.2 includes the stand holding

process for departing aircraft with the pushback process explicitly implemented and the

heuristic that is used for the pushback process differs from the heuristic used in the rest of the

routing process. Moreover, since the departing aircraft use the stand holding process and are

routed backwards there are some differences in the way that the heuristic was implemented

in the arriving and the departing part of the algorithm.

The new algorithm iteratively finds the quickest routes from source to target vertices (or from

target to source) in a weighted graph by taking into consideration the time-window

constraints. The expansion of the algorithm is similar to A* algorithm with the addition of

taking into consideration the availability of the edges of the graph.

The priority queue H (see Table 8.1) where the labels that are generated by the algorithm are

stored, is initialised in line 1 (see Algorithm 8.1 and Algorithm 8.2). The labels that are

generated are also stored in a list L (which is initialised in line 2). This list is used for finding

the label (and the vertex of that label) that a label has expanded from. It is also used for

accessing the previously created labels for the dominance check that takes place in lines 23-

29 for Algorithm 8.1 (26-32 for Algorithm 8.2) and for constructing the final route. The route

is formed by finding the previous label of each label, starting from the latest label that has

reached the target (or source) vertex all the way back to the source (or target) vertex (line 9).

An initial label that expands from the source vertex is created in line 3 and is inserted to the

priority queue (line 4) and to the label list (line 5). Every time a label is inserted in the priority

queue, the key which the label was inserted with, is used for the sorting process of the queue.

The value of this key is calculated by adding the earliest arrival time to the vertex of that label

plus the estimate of the remaining time to the target vertex for arrivals. For departures, the

key for the label is the latest exit time from that vertex minus the estimate of the remaining

time to the source vertex.

155

In each iteration of the while loop (line 6), the algorithm will check whether there are still

labels consideration in the priority queue. If the queue has no more labels, the algorithm

cannot expand to a new vertex, which means that there is no available path that leads to the

target vertex (line 35 for arrivals or 39 for departures). If there are still labels in the priority

queue, the label with the smallest key (line 7) is pulled. For departing aircraft, the algorithm

needs to find the latest time that the aircraft can leave each vertex (which would be the

maximum key) so the keys are stored in the priority queues with the opposite value in order

to maintain the ascending order of the queue and be able to pull the label with the “smallest”

key.

If the vertex of the label that has been pulled is the target vertex (line 8) for arrivals or the

source vertex for departures, a function for forming the route is called (lines 9-10), otherwise

the algorithm will expand to the next available vertex. Every time that the algorithm considers

a new vertex, the time-windows of the edge that lead to the vertex are examined (lines 11-

12). The algorithm will expand to a new vertex only if the time interval of the time-window

of the edge that leads to the vertex, is available when the aircraft will start traversing this edge

(lines 14 and 16). At this stage, the two algorithms start to differ. The two branches are

similar, however the “arrivals” one works forward in time to find the next vertex whereas the

“departures” one works backwards in time to find the previous vertex of the route.

For each edge that is considered, the earliest time that it can be exited is found for arrivals

and the latest time it can be entered is found for departures, including the pushback time if

the vertex that is considered (for departures) matches the source vertex (lines 18-19). If the

time-window of the edge that is leading to the next vertex is wide enough for the aircraft to

traverse this edge (line 20 for arrivals, 24 for departures) a new label is created (lines 22 or

arrivals, 25 for departures). The new label is then checked to determine if it is dominated by

labels that have been added to the list of labels earlier, and if so, it is not considered (lines 25-

26 for arrivals, 28-29 for departures) or if the new label dominates a label that has been

previously added to the list of labels, then the dominated label is removed from the priority

queue (lines 27-29 for arrivals, 30-32 for departures). Finally, the new label is added in the

priority queue with the appropriate key.

8.2.5 The Differences Between the Departing and Arriving Process

As indicated earlier, the departing and arriving processes have a few differences. The use of

the heuristic for calculating the remaining duration (such as during the pushback process) can

in some cases provide a more tailored cost. These differences can affect the execution time

156

of each process and the way the algorithm expands. For this reason, they have been

highlighted below, and investigated in Sections 8.4 and 8.5.

The departing process in the ASQPPTW algorithm has an if statement in line 34. This “if”

statement checks if the vertex that is considered, is the source vertex. In the case that the

vertex is not the “source” vertex (the vertex where the aircraft starts the pushback process)

then the cost is equal to the time that the aircraft starts leaving the current vertex (bL’) minus

the calculated remaining time to the source vertex. As mentioned earlier the sign of the cost

is inverted because since the latest departure time is considered, the maximum entry time to

the vertices are pulled from the priority queue which is the opposite of the minimum of the

negative cost. However, when the vertex that is considered is the source vertex, this means

that there is no remaining time to the destination. Moreover, if the current vertex is the source

vertex, the time that the aircraft starts leaving the current vertex (bL’) is also different. bL’ is

equal to timein since the end of the time interval of the current label L’ (see lines 21 and 25).

timein is smaller by the pushback duration of the aircraft (pi) when the considered vertex is

the source vertex so bL’ is also smaller by the pushback duration of the aircraft (pi). For this

reason, the pushback duration is then added to the time that the aircraft starts leaving the

current vertex (bL’). This results in the latest label having a great advantage when it is

considered by the priority queue as there is no other label that was considered earlier with

higher bL’ but with an added heuristic cost of h(n) ≥ 0.

157

Algorithm 8.1: A* Quickest Path Problem with Time Windows (ASQPPTW) - Arrivals

Input: Graph G = (V, E) with weights we for all e ∈ E, the set of sorted time-windows F(e)

for all e ∈ E, a taxi request Ti = (si, ti, timei, pi) for aircraft i, with the source vertex si

∈ V, the target vertex ti ∈ V and the start time timei.

Output: Conflict-free route R from si to ti with minimal taxi time that starts at the earliest at

time timei, respects the given time-windows F(e) or returns the message that no

such route exists.

1 Let H = ∅

2 Let L(υ) = ∅ ∀ υ ∈ V

3 Create new label L such that L = (si, [timei, ∞), nil)

4 Insert L into heap H with key timei + C(si, ti)

5 Insert L into set L(si)

6 while H ≠ ∅ do

7 Let L = H.getMin(), where L = (υL, IL, predL) and IL = [aL, bL]

8 if υL = ti then

9 Reconstruct the route R from si to ti by working backwards from L

10 return the route R

11 forall the outgoing edges eL of υL do

12 foreach 𝐹𝑒𝐿

𝑗
 ∈ F(eL), where 𝐹𝑒𝐿

𝑗
 = [𝑎𝑒𝐿

𝑗
, 𝑏𝑒𝐿

𝑗
], in increasing order of 𝑎𝑒𝐿

𝑗
 do

13 /*Expand labels for edges where time intervals overlap*/

14 if 𝑎𝑒𝐿

𝑗
 > bL then

15 goto 11 /*consider the next outgoing edge*/

16 if 𝑏𝑒𝐿

𝑗
 < aL then

17 goto 12 /*consider the next time-window*/

18 Let timein = Maximise (aL, 𝑎𝑒𝐿

𝑗
) /* 𝑎𝑒𝐿

𝑗
 > aL ⇒ waiting*/

19 Let timeout = timein + 𝑤𝑒𝐿

20 if timeout ≤ 𝑏𝑒𝐿

𝑗
 then

21 Let u = head(eL)

22 Let L’ = (u, [timeout, 𝑏𝑒𝐿

𝑗
], L)

23 /*dominance check*/

24 foreach L̂ ∈ L(υ) do

25 if L̂ dominates L’ then

26 goto 12 /*next time-window*/

27 if L’ dominates L̂ then

28 Remove L̂ from H

29 Remove L̂ from L(υ)

30 if υL = ti then

31 Insert L’ into heap H with key aL’

32 else

33 Insert L’ into heap H with key aL’ + C(υ, ti)

34 Insert L’ into set L(υ)

35 return “there is no si - ti route”

158

Algorithm 8.2: A* Quickest Path Problem with Time Windows (ASQPPTW) - Departures

Input: Same as Algorithm 8.1

Output: Same as Algorithm 8.1

1 Let H = ∅

2 Let L(υ) = ∅ ∀ υ ∈ V

3 Create new label L such that L = (ti, [0, timei), nil)

4 Insert L into heap H with key –(timei – C(si, ti))

5 Insert L into set L(ti)

6 while H ≠ ∅ do

7 Let L = H.getMin(), where L = (υL, IL, predL) and IL = [aL, bL]

8 if υL = si then

9 Reconstruct the route R from si to ti by working backwards from L

10 return the route R

11 forall the outgoing edges eL of υL do

12 foreach 𝐹𝑒𝐿

𝑗
 ∈ F (eL), where 𝐹𝑒𝐿

𝑗
 = [𝑎𝑒𝐿

𝑗
, 𝑏𝑒𝐿

𝑗
], in increasing order of 𝑎𝑒𝐿

𝑗
 do

13 /*Expand labels for edges where time intervals overlap*/

14 if 𝑎𝑒𝐿

𝑗
 > bL then

15 goto 11 /*consider the next outgoing edge*/

16 if 𝑏𝑒𝐿

𝑗
 < aL then

17 goto 12 /*consider the next time-window*/

18 Let timeout = Minimise (bL, 𝑏𝑒𝐿

𝑗
) /* 𝑏𝑒𝐿

𝑗
 < bL ⇒ waiting*/

19 Let u = head(eL)

20 if u = si then

21 Let timein = timeout – 𝑤𝑒𝐿
 – pi

22 else

23 Let timein = timeout – 𝑤𝑒𝐿

24 if timein ≥ 𝑎𝑒𝐿

𝑗
 then

25 Let L’ = (u, [𝑎𝑒𝐿

𝑗
, timein], L)

26 /*dominance check*/

27 foreach L̂ ∈ L(υ) do

28 if L̂ dominates L’ then

29 goto 12 /*next time-window*/

30 if L’ dominates L̂ then

31 Remove L̂ from H

32 Remove L̂ from L(υ)

33 if υL = si then

34 Insert L’ into heap H with key –(bL’ + pi)

35 else

36 Insert L’ into heap H with key –(bL’ – C(υ, ti))

37 Insert L’ into set L(υ)

38 return “there is no si - ti route”

159

8.3 Experimental Settings

In order to investigate the performance of the ASQPPTW algorithm and how the A* approach

of routing aircraft with time windows performed compared to the Dijkstra’s approach, a set

of experiments were executed. Firstly, the execution times of the ASQPPTW and the QPPTW

algorithms were examined and compared. The experiments were also run with routing only

the arriving and only the departing aircraft in order to investigate if and how the stand holding

process (discussed in Chapter 5) affects the performance of the new algorithm. Secondly the

number of labels that are generated with each algorithm was measured by counting the labels

that were inserted in the priority queue. This gives some measure of how much of the search

space the addition of the heuristic to the algorithm is allowing it to ignore.

Both ASQPPTW and QPPTW were implemented in the same Java code using the same

functions and algorithms for all of the processes that they share (such as dominance check,

reconstruction the route, adjusting the time windows etc.). The same data was used for both

of the experiments. The experiments were executed for 7 different instances (data from 7

different days) from Zurich airport and for 7 different instances from Arlanda airport in order

to have a wider variety of results.

Finally, the experiments that were recording the execution times were run 5 times for each

day and for each setup and the results that are mentioned in the following sections refer to the

average execution times. This process was performed in order to rule out any random

fluctuations in the performance of the computer. Eventually all of the execution times were

homogenous and the differences in execution times was most of the times very close to the

average.

8.4 Execution Times for Each Algorithm

This section presents the results after comparing the execution times of the QPPTW algorithm

with those of the ASQPPTW algorithm. First the two algorithms are compared when solving

the whole problem and later when solving the arriving and departing aircraft individually.

Moreover, the two algorithms are compared with each other in another airport in order to

verify that the improved performance of the ASQPPTW algorithm is not limited to a specific

airport.

Finally, the heuristic is slightly changed in order to understand how it affects the execution

time of the ASQPPTW algorithm. Indeed, the ASQPPTW algorithm outperforms QPPTW in

every set-up that was tried. An average improvement of 46% in execution times was observed

160

for Zurich airport and 67% for Arlanda airport. Moreover, the ASQPPTW algorithm

performed the best when routing the departing aircraft and this was at least partially attributed

to the heuristic that is implemented for the pushback process, which the arriving aircraft do

not have. In conclusion, the ASQPPTW algorithm routes each aircraft faster than QPPTW in

every configuration that was tried and this is attributed to the fact that the heuristic that is

used significantly reduces the search tree. In the next section (Section 8.5) the way that the

ASQPPTW algorithm expands is going to be examined.

8.4.1 Solving the Full Problem

Initially the execution times for solving the whole problem were investigated. This includes

other algorithms on top of the algorithm presented in section 8.2 that are necessary for the

problem to be solved, such as the reconstruction of the route after the ASQPPTW algorithm

has found a solution, the readjustment of the time-windows and the sorting of the reservations.

When the algorithms solved the full problem in Zurich airport (for both arriving and departing

aircraft), the ASQPPTW algorithm performed significantly better than the QPPTW

algorithm. The relevant results are summarised below in Table 8.2. For each individual day,

ASQPPTW would solve the problem faster than QPPTW, having an improvement in

execution time that ranged from 37% to 58%. In total, the ASQPPTW algorithm would route

the full week (7 days) in 5.6 seconds – 46 % faster, compared to 14.6 seconds that were

needed for the QPPTW algorithm to solve the same problem.

Table 8.2: Execution times in milliseconds for routing aircraft (Zurich Airport)

 No. of aircraft QPPTW [ms] ASQPPTW [ms] Improvement

Day 1 818 2457 1545 37%

Day 2 806 2310 1422 38%

Day 3 781 1837 919 50%

Day 4 837 2403 1394 42%

Day 5 825 2002 851 57%

Day 6 755 1675 710 58%

Day 7 787 1944 997 49%

Total 5609 14627 7838 46%

Furthermore, the same experiments were executed in Arlanda airport in order to validate the

above results and to confirm that the ASQPPTW algorithm is indeed a faster routing

algorithm regardless of the type of the airport.

161

As mentioned in Chapter 6, Arlanda airport is similar in size and capacity to Zurich airport

but the morphology of the taxiways, and the layout of the runways and terminals is

significantly different. Zurich airport is more compact with “box style” terminals, located on

both sides of one of the runways. Moreover, aircraft push back directly on busy taxiways and

there are many parallel and interconnected taxiways across the airport. On the contrary,

Arlanda airport has long taxiways that are less interconnected with each other and the

terminals have aprons where aircraft can push back without affecting the main traffic.

Table 8.3 shows the execution times of the ASQPPTW and the QPPTW algorithms for

Arlanda airport. Again, the ASQPPTW algorithm performs significantly better solving the

problem from 60% to 73% faster than QPTTW. In total, the ASQPPTW algorithm would

route the aircraft of a full week in 8.4 seconds compared to 25.2 (67% better) that was needed

for the QPPTW algorithm.

Table 8.3: Execution times in milliseconds for routing aircraft (Arlanda Airport)

 No. of aircraft QPPTW [ms] ASQPPTW [ms] Improvement

Day 1 818 3757 1514 60%

Day 2 806 3772 1259 67%

Day 3 781 3645 1124 69%

Day 4 837 3948 1451 63%

Day 5 825 3731 1001 73%

Day 6 755 3047 959 69%

Day 7 787 3284 1063 68%

Total 5609 25183 8371 67%

Even though the execution times for Arlanda airport are similar to those for Zurich airport

when using the ASQPPTW algorithm; the improvement (as a percentage) between the

execution times of the ASQPPTW algorithm and the QPPTW algorithm, gives the impression

that ASQPPTW performs much better in Arlanda airport. Although this is true, it is important

to mention that Arlanda airport is more outspread resulting in the graph that was used for

Arlanda to have more nodes than the one of Zurich. This makes it more time consuming for

QPPTW to expand towards all the directions until it reaches the target vertex. It is also

portrayed in the results, as solving the full week with the QPPTW algorithm requires 15

seconds for Zurich airport compared to 25 seconds that is needed for Arlanda airport. On the

other hand, ASQPPTW solves the problem in quite similar time for both of the airports,

requiring just 0.5 seconds more time to route a week’s aircraft in Arlanda airport, compared

to doing the same for Zurich.

162

8.4.2 Solving Arrivals and Departures Separately

The algorithms were also tested for solving parts of the problem. In the first run, only the

departing aircraft were routed and in the second run, only the arrivals. In both cases the

ASQPPTW would again perform better than the QPPTW algorithm. The results are

summarised in Table 8.4 and Table 8.5.

For the departing aircraft, the ASQPPTW algorithm performed significantly better, routing

all of the departures in 0.4 seconds, (90% faster) compared to the 4.3 seconds that the QPPTW

algorithm did. The execution times for each day when the departing aircraft were routed with

ASQPPTW were from 87% to 92% faster.

For arriving aircraft, the ASQPPTW algorithm would solve the problem 18% to 41% faster

(depending on the day). In total ASQPPTW routed the full week in 3.7 seconds, 28% (1.5

seconds) faster than the QPPTW algorithm did.

Table 8.4: Execution times in milliseconds for routing departing aircraft (Zurich Airport)

 No. of aircraft QPPTW [ms] ASQPPTW [ms] Improvement

Day 1 407 616 78 87%

Day 2 405 641 53 92%

Day 3 392 591 56 91%

Day 4 414 656 75 89%

Day 5 421 628 53 92%

Day 6 377 587 60 90%

Day 7 387 610 47 92%

Total 2803 4329 422 90%

Table 8.5: Execution times in milliseconds for routing arriving aircraft (Zurich Airport)

 No. of aircraft QPPTW [ms] ASQPPTW [ms] Improvement

Day 1 411 1035 790 24%

Day 2 401 981 794 19%

Day 3 389 535 328 39%

Day 4 423 951 778 18%

Day 5 404 494 294 41%

Day 6 378 494 307 38%

Day 7 400 688 416 40%

Total 2806 5177 3706 28%

163

The same experiments were also executed in Arlanda airport. As Table 8.6 and Table 8.7

show, the results in Arlanda airport follow the same pattern. The ASQPPTW algorithm routed

the departing aircraft from 86% to 92% faster than the QPPTW algorithm. Overall, the

ASQPPTW algorithm routed the departing aircraft 6.4 seconds faster (88% improvement).

Moreover, ASQPPTW algorithm routed the arriving aircraft of a full week, 3.2 seconds faster

which indicates a 44% improvement compared to QPPTW algorithm. The improvement in

execution times varied from 35% to 57% for each individual day.

Table 8.6: Execution times in milliseconds for routing departing aircraft (Arlanda Airport)

 No. of aircraft QPPTW [ms] ASQPPTW [ms] Improvement

Day 1 407 1048 144 86%

Day 2 405 1023 142 86%

Day 3 392 1008 81 92%

Day 4 414 1036 148 86%

Day 5 421 1131 115 90%

Day 6 377 968 114 88%

Day 7 387 1042 112 89%

Total 2803 7254 855 88%

Table 8.7: Execution times in milliseconds for routing arriving aircraft (Arlanda Airport)

 No. of aircraft QPPTW [ms] ASQPPTW [ms] Improvement

Day 1 411 1318 758 42%

Day 2 401 1181 717 39%

Day 3 389 897 471 48%

Day 4 423 1255 812 35%

Day 5 404 807 348 57%

Day 6 378 852 406 52%

Day 7 400 966 528 45%

Total 2806 7275 4039 44%

After comparing the results, it is apparent that the ASQPPTW algorithm performs much better

for departing aircraft compared to arriving aircraft. There was a 90% improvement for

departing aircraft compared to 28% for arriving aircraft in Zurich airport and an 88%

improvement for departing aircraft compared to 44% for arriving aircraft in Arlanda airport.

In order to understand why this happens, the structure of the two processes (departures versus

arrivals) were examined. The main difference in the two processes is that the departing

process is using the stand holding process and includes the pushback process. In order to test

164

whether this feature of the ASQPPTW algorithm is responsible for the difference more

experiments were executed.

8.4.3 Solving the Departures without the Heuristic for the Pushback

Process

As mentioned earlier the benefits of the heuristic of the ASQPPTW algorithm are much

greater when solving the departing process than when solving the arrivals. Even though these

two processes are solved differently (the departures are solved backwards in order to achieve

stand holding and the pushback process is included) it is useful to test what characteristics

result in this improvement.

As mentioned in Section 8.2.5 the heuristic that is used during the pushback process is

different than the heuristic that is used for the arrivals. In order to test whether the heuristic

for the pushback process affects the performance of the ASQPPTW algorithm the algorithm

was modified. The pushback heuristic has been removed and the heuristic for calculating the

remaining duration to travel to the target vertex was used for all of the cases (pushback or

simple movement). This was achieved by removing the “if” statement (lines 34-36 in

Algorithm 8.2) that checks if the aircraft is at a stand and therefore should be performing the

pushback process. In this new version, the cost of the label is always equal to the time that

the aircraft starts leaving the current vertex (bL’) minus the remaining time to the source vertex

h(n).

Table 8.8: Execution times in milliseconds for routing departing aircraft when the heuristic

for the pushback process is not included (Zurich airport)

No. of

aircraft
QPPTW [ms] ASQPPTW [ms]

Modified

ASQPPTW [ms]
Improvement

Day 1 407 616 78 348 44%

Day 2 405 641 53 325 49%

Day 3 392 591 56 351 41%

Day 4 414 656 75 324 51%

Day 5 421 628 53 324 48%

Day 6 377 587 60 295 50%

Day 7 387 610 47 320 47%

Total 2803 4329 422 2287 47%

165

The experiments were executed again, comparing the modified ASQPPTW with the original

algorithm. The results are summarised in Table 8.8 and Table 8.9. The modified version

performs significantly worse than the original ASQPPTW algorithm. As Table 8.8 and Table

8.9 show, removing the parameter of the cost calculation for the pushback process results in

an improvement of 47% in execution time compared to the QPPTW algorithm instead of 90%

improvement that happens when the parameter is included in Zurich airport. Similarly, in

Arlanda airport the improvement without the parameter of the cost calculation for the

pushback process is 52% compared to 88% that was the case when the parameter was

included.

Table 8.9: Execution times in milliseconds for routing departing aircraft when the heuristic

for the pushback process is not included (Arlanda airport)

No. of

aircraft
QPPTW [ms] ASQPPTW [ms]

Modified

ASQPPTW [ms]
Improvement

Day 1 407 1048 144 520 50%

Day 2 405 1023 142 515 50%

Day 3 392 1008 81 461 54%

Day 4 414 1036 148 493 52%

Day 5 421 1131 115 520 54%

Day 6 377 968 114 457 53%

Day 7 387 1042 112 488 53%

Total 2803 7254 855 3453 52%

This shows that the pushback parameter that is implemented in the ASQPPTW algorithm is

at least partially responsible for the better performing execution times of the departing

aircraft.

8.5 Investigating the Expansion of the two Algorithms

In this section, the way that each algorithm expands is investigated. More specifically, the

research focuses on the number of labels that are generated and how they are distributed for

different setups. First the number of labels that are generated for solving the full problem with

each algorithm is found and then for solving the arrivals and departures separately. Initially

Zurich and Arlanda airports are investigated. Then the priority between arrivals and

departures is changed in order to examine how the number of labels that are generated is

affected. Moreover, the way that the “number of labels that are generated” is affected by the

distance and time that it takes for an aircraft to reach its destination is examined. The

166

experiments are also executed with less arriving aircraft in order to investigate how traffic

affects the number of labels that are generated. Finally, another heuristic that is based on the

remaining distance is used in order to compare the efficiency with the heuristic method that

was chosen for the ASQPPTW algorithm.

The results show that ASQPPTW generates far less labels for almost every aircraft that it

routes compared to the QPPTW algorithm, which explains the improved execution times of

ASQPPTW. These results are consistent with every set-up that was described earlier.

Moreover, it is argued and demonstrated that the heuristic that was chosen for ASQPPTW is

the most efficient way to solve the quickest path problem when time windows are used.

8.5.1 The Number of Labels that are Generated with Each Algorithm

The ASQPPTW algorithm performs significantly better than the QPPTW algorithm. This is

attributed to the fact that ASQPPTW has a guided search when looking for the target vertex

on the graph, whereas the QPPTW expands in every direction. Both algorithms use labels as

a way to consider the next vertex and to store the information about the previous labels that

eventually will form the quickest path. It is expected that the ASQPPTW algorithm will

generate significantly less labels (for the above reason) than the QPPTW.

Table 8.10: Number of labels generated with each algorithm (ASQPPTW vs QPPTW)

QPPTW ASQPPTW

Total labels
Average

labels/flight
Total labels

Average

labels/flight

Day 1 363322 444 77806 95

Day 2 352302 437 74294 92

Day 3 334396 428 63640 81

Day 4 369063 441 81662 98

Day 5 386553 469 69472 84

Day 6 328415 435 65500 87

Day 7 340136 432 62979 80

Total 2474187 441 495353 88

After executing both algorithms, the number of labels that are generated are summarised in

Table 8.10. After comparing the labels that are generated between the QPPTW and

ASQPPTW algorithms it is apparent that the ASQPPTW generates far less labels. Out of the

5,609 aircraft that were routed (7 days) only 3 of them were routed by generating more labels

167

when routed with the ASQPPTW algorithm. For solving the full week (5,609 flights

movements) the QPPTW algorithm would generate 2,474,187 labels, compared to 495,353

labels that are generated when ASQPPTW solved the same problem. This is an 80% reduction

in the total labels that are generated. On average, the QPPTW algorithm needs to generate

441 labels to route one aircraft, compared to 88 labels that it takes for the ASQPPTW

algorithm to do the same process. Figure 8.1 shows the distribution of labels that are generated

with each algorithm (left) and a cumulative graph that shows the number of aircraft that

generate “x” labels or more (right). The distribution graph shows that the number of labels

that are generated by ASQPPTW have a smaller mean value compared to the QPPTW

algorithm, but also a smaller standard deviation (96.5 versus 175.5).

Figure 8.1: Distribution of labels generated by each algorithm (left) and cumulative graph

that shows the number of aircraft that generate “x” labels or more (right) for Zurich airport

Furthermore, in order to have a better understanding of the labels that are generated with each

algorithm, the same graphs were made separating the arrivals from departures. Figure 8.2

shows the distribution of labels that are generated in more detail, for the two algorithms (to

the left) as well as the cumulative graph that shows the number of aircraft that generate “x”

labels or more (right). Note that the ASQPPTW algorithm is marked as “A*” and the QPPTW

algorithm is marked as “Q”.

The graphs show that the number of labels that are generated when the ASQPPTW algorithm

routes the arriving aircraft is more likely to be bigger than it is for departures. On average,

ASQPPTW would generate 65 labels for each departing aircraft, compared to 112 labels that

are generated for each arriving aircraft. Similarly, for the QPPTW algorithm, on average 415

labels were generated for solving each departing aircraft, compared to 467 labels that were

needed for arriving aircraft. The standard deviation in the number of labels that are generated

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

0 500 1000

Fr
eq

u
en

cy
 o

f
O

cc
u

rr
en

ce

Number of Labels

ASQPPTW

QPPTW

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200

N
u

m
b

er
 o

f
A

ir
cr

af
t

Number of Labels

ASQPPTW

QPPTW

168

for departing and arriving aircraft is quite different for both algorithms. The standard

deviation for departing aircraft routed using the ASQPPTW is around 60 compared to 118

for arriving aircraft. For QPPTW, for departing aircraft is around 42 compared to 242 for

arriving aircraft. The standard deviation is significantly bigger for arrivals because they are

routed after the departures. As mentioned earlier in Chapter 5, it is more effective to route

departures first. For this reason, many arriving aircraft have to reroute as there are departing

aircraft already using taxiways. This makes the number of labels that are generated more

variable for arriving aircraft, as there are more “ways” for an aircraft to reach its destination

due to the increased time windows. For this reason, the number of labels that are generated is

affected by the number of previously routed aircraft that are moving on the airport at the same

time.

Figure 8.2: Distribution of labels generated by each algorithm (left) and cumulative graph

that shows the number of aircraft that generate “x” labels or more (right) for Zurich airport

(arrivals and departures)

In order to verify that the standard deviation is high for arrivals due to the previously routed

departing aircraft, the experiments were executed for arriving and departing aircraft

separately. Figure 8.3 shows the distribution for the labels that are generated for each

algorithm on the left as well as the cumulative graph that shows the number of aircraft that

generate “x” labels or more on the right, solving the arriving and departing aircraft separately,

without affecting one another.

The experiments and graphs show that the standard deviation is smaller than when arriving

aircraft are solved after the departing aircraft. The average number of labels that were

generated with the ASQPPTW algorithm for departing aircraft was 70 when solved separately

compared to 112 when solved after the departures were routed. Similarly, for QPPTW the

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

1.00%

0 400 800 1200

Fr
eq

u
en

cy
 o

f
O

cc
u

rr
en

ce

Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

N
u

m
b

er
 o

f
A

ir
cr

af
t

Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

169

average is around 195 when solved separately compared to 467 when solved after the

departures.

Figure 8.3: Distribution of labels generated by each algorithm (left) and cumulative graph

that shows the number of aircraft that generate “x” labels or more (right) for Zurich airport

(arrivals and departures separate)

Moreover, not only more labels are generated when arrivals are solved after departures, but

there is a wider distribution of values. The standard deviation arrivals when solved separately

with the ASQPPTW algorithm is 80 compared to 118 that is the case for arrivals when solved

after departures. The same happens with QPPTW as the standard deviation for arrivals solved

separately is 117 compared to 242 for when arrivals are solved after departures. This can be

seen from the two graphs as well, when the arrivals (yellow and red line) are much more

widely distributed across the graph, reaching up to 1200 labels when arrivals are solved after

departures, compared to a much narrower distribution (less than 500 labels max) when solved

separately.

This indicates that more labels are generated when there are more aircraft (previously routed)

moving around the airport. This is expected as anything different than the shortest path will

produce extra labels in order to find the next best available path, which is the main aspect of

using time windows (that both QPPTW and ASQPPTW have).

Furthermore, Figure 8.3 shows that the average number of labels that are generated when

ASQPPTW is used, is not very different for arriving and departing aircraft (see yellow and

green line). The average number for departures is 65, compared to 43 that is for arrivals.

However, for QPPTW there is a significant difference in the number of labels that are

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

0 200 400 600

Fr
eq

u
en

cy
 o

f
O

cc
u

rr
en

ce

Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500
N

u
m

b
er

 o
f

A
ir

cr
af

t
Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

170

generated between arrivals and departures. The average number of labels generated for

departures is 416 compared to 223 that is the value for arrivals.

This also provides another indication to why the ASQPPTW algorithm when compared to the

QPPTW algorithm is providing better results in execution times for departing aircraft against

the arrivals. The QPPTW algorithm generates significantly less labels when it solves the

problem for arrivals than for departures. Even though ASQPPTW generates similar labels for

arrivals and departures, as a percentage, departures seem to route much faster than arrivals

when compared to the QPPTW algorithm.

8.5.2 Tests on a Different Airport Layout

In order to verify that the number of labels that are generated for each type of aircraft (arrival

or departure) is not due to the type of the airport, the experiments were also run for Arlanda

airport.

Table 8.11: Number of labels generated in Arlanda airport (ASQPPTW vs QPPTW)

QPPTW ASQPPTW

Total labels
Average

labels/flight
Total labels

Average

labels/flight

Day 1 515978 634 98397 121

Day 2 512853 640 86463 108

Day 3 532216 686 85844 111

Day 4 543317 651 104239 125

Day 5 590646 719 117089 142

Day 6 470897 628 87807 117

Day 7 503183 643 89349 114

Total 3669090 657 669188 120

Table 8.11 shows, the average number of labels that is generated in Arlanda airport when the

aircraft are routed with the QPPTW algorithm is 657 compared to 120 that is the number for

when the ASQPPTW algorithm is used. This is an 82% reduction of labels that are generated

when the ASQPPTW algorithm which is very close to the 80% reduction that was noticed

when the same experiment was executed for Zurich airport.

Figure 8.4 shows the distribution of the number of labels that are generated for each flight for

both of the algorithms on the left as well as the cumulative graph, that shows the number of

aircraft that generate “x” labels or more, on the right. Similarly to the results observed for

Zurich airport, the number of labels that are generated by ASQPPTW have a smaller mean

171

value compared to the QPPTW algorithm, but also a smaller standard deviation (140 versus

306). As expected, the number of labels that are generated for Arlanda airport are higher due

to the size of the airport and -as a result- the number of vertices and arcs. It is the same reason

that was mentioned in the previous section (Section 8.4) where the execution times were

higher for both algorithms (ASQPPTW and QPPTW) in Arlanda airport. However, even

though the number of labels that are generated when the aircraft are routed around Arlanda

airport are slightly higher, the distribution pattern is quite similar to the one of Zurich airport

(Figure 8.1).

Figure 8.4: Distribution of labels generated by each algorithm (left) and cumulative graph

that shows the number of aircraft that generate “x” labels or more (right) for Arlanda airport

Moreover, the same graph was made separating the arrivals from departures. Figure 8.5 shows

the distribution of labels that are generated on the left, as well as the cumulative graph on the

right, in more detail, for the two algorithms.

Similar to the results in Zurich airport, the graph shows that more labels are generated for

both algorithms when the arriving aircraft are routed compared to when the departing are

routed. Furthermore, the standard deviation in the number of labels that are generated for

departing and arriving aircraft follows the same pattern that the graph for Zurich has (Figure

8.2). For departing aircraft, the standard deviation using the ASQPPTW algorithm in the

number of labels that are generated per routed aircraft is 96 compared to 169 that is the value

for arrivals. For the QPPTW algorithm, the value was 57 for departing aircraft and 412 for

arriving aircraft.

Even though the average value and the standard deviation for arriving and departing aircraft

is a bit higher compared to Zurich airport, the values show the same result. Both algorithms

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0 500 1000 1500 2000

Fr
eq

u
en

cy
 o

f
O

cc
u

rr
en

ce

Number of Labels

ASQPPTW

QPPTW

0

1000

2000

3000

4000

5000

6000

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

N
u

m
b

er
 o

f
A

ir
cr

af
t

Number of Labels

ASQPPTW

QPPTW

172

produce less labels for departing aircraft and the ASQPPTW algorithm needs less labels for

both arriving and departing aircraft.

Figure 8.5: Distribution of labels generated by each algorithm (left) and cumulative graph

that shows the number of aircraft that generate “x” labels or more (right) (arrivals and

departures - Arlanda airport)

Finally, the experiments were executed without solving the arrivals after the departures but

rather independently. This was done in order to verify that the reason that there are

significantly more labels generated for routing the arriving aircraft compared to the labels

that are generated from departing aircraft is because the arrivals are routed first and not

because of the airport layout.

As Figure 8.6 shows, the number of labels that are generated when arrivals and departures

are solved independently is different than when solved as a whole. On average, the

ASQPPTW algorithm would generate 65 labels per arriving aircraft with a standard deviation

of 21 compared to the QPPTW algorithm that requires 365 labels per arriving aircraft on

average with a standard deviation of 157. It is important to mention that the results are again

very similar to Zurich airport and that the distribution of the labels that are generated with

each airport as shown in Figure 8.6 and Figure 8.3 follow the same pattern.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

0 500 1000 1500 2000

Fr
eq

u
en

cy
 o

f
O

cc
u

rr
en

ce

Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

0

500

1000

1500

2000

2500

3000

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

N
u

m
b

er
 o

f
A

ir
cr

af
t

Number of Labels

A* Departures
Q Departures
A* Arrivals
Q Arrivals

173

Figure 8.6: Distribution of labels generated by each algorithm (left) and cumulative graph

that shows the number of aircraft that generate “x” labels or more (right) (arrivals and

departures separate - Zurich airport)

8.5.3 Prioritising Arrivals

So far, all of the experiments were executed with the departures being prioritised. In order to

investigate whether the results are affected by the priority of arriving or departing aircraft the

same experiments were executed again with the arrivals routed first. As mentioned in Chapter

5, the set of aircraft that is routed first is implicitly prioritised over the other. Moreover, it

was observed that prioritising the arrivals results in large delays to departing aircraft as many

of them need to initiate the pushback process significantly earlier in order to avoid being

disrupted by arriving aircraft. These delays result in examining a larger number of alternative

ways for an aircraft to reach its destination that leads to more labels being generated.

After running the experiments, a significantly larger number of labels were generated for

routing each flight. Figure 8.7 shows the distribution of labels that are generated on the left,

as well as the cumulative graph on the right, with the ASQPPTW and QPPTW algorithms

when the arrivals were prioritised. The ASQPPTW algorithm again produces significantly

less labels for each aircraft compared to the QPPTW algorithm. More specifically,

ASQPPTW generates on average 170 labels for routing an aircraft, whereas QPPTW on

average generates 769 labels. This provides more proof that the ASQPPTW algorithm is

performing significantly better regardless of which set of aircraft is prioritised (arrivals or

departures).

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

0 200 400 600 800

Fr
eq

u
en

cy
 o

f
O

cc
u

rr
en

ce

Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

N
u

m
b

er
 o

f
A

ir
cr

af
t

Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

174

Figure 8.7: Distribution of labels generated by each algorithm (left) and cumulative graph

that shows the number of aircraft that generate “x” labels or more (right) when arrivals are

prioritised

Furthermore, the execution times are also significantly better with ASQPPTW compared to

the QPPTW algorithm. When the arrivals are prioritised the ASQPPTW algorithm performs

even better compared to QPPTW.

Table 8.12: Execution times in milliseconds for routing aircraft when arrivals are

prioritised (QPPTW vs ASQPPTW)

 No. of aircraft QPPTW [ms] ASQPPTW [ms] Improvement

Day 1 818 6496 1820 72%

Day 2 806 5946 1604 73%

Day 3 781 4017 828 79%

Day 4 837 6588 1726 74%

Day 5 825 4142 900 78%

Day 6 755 3622 827 77%

Day 7 787 4431 1051 76%

Total 5609 35243 8756 75%

As it is shown in Table 8.12 it took 35 seconds for the QPPTW algorithm to solve the full

week, whereas the ASQPPTW algorithm solved the problem in just 8.8 seconds solving the

problem 75% faster. This follows the suggestion that the ASQPPTW algorithm performs even

better when the airport is more congested, and more aircraft are delayed.

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0.14%

0 1000 2000 3000

Fr
eq

u
en

cy
 o

f
O

cc
u

rr
en

ce

Number of Labels

ASQPPTW

QPPTW

0

1000

2000

3000

4000

5000

6000

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0
1

4
0

0
1

6
0

0
1

8
0

0
2

0
0

0
2

2
0

0
2

4
0

0
2

6
0

0
2

8
0

0
3

0
0

0
3

2
0

0

N
u

m
b

er
 o

f
A

ir
cr

af
t

Number of Labels

ASQPPTW

QPPTW

175

Furthermore, the distribution of labels that are generated with each algorithm when arrivals

are prioritised in order to have a better understanding of the labels that are generated with

each algorithm, the same graph was made separating the arrivals from departures. Figure 8.8

shows the distribution of labels that are generated in more detail on the left as well as the

cumulative graph on the right, separating the arrivals from the departures.

Figure 8.8: Distribution of labels generated by each algorithm (left) and cumulative graph

that shows the number of aircraft that generate “x” labels or more (right) when arrivals are

prioritised

The distribution of labels that are generated per departing aircraft is considerably wider than

the arriving aircraft. Moreover, the distribution of labels that are generated when departing

aircraft are routed is also much wider than the distribution of arriving aircraft when the

departures were prioritised. On average ASQPPTW generates 296 labels for each departing

aircraft when arrivals are prioritised compared to 112 that are generated for each arriving

aircraft when departures are prioritised. Similarly, QPPTW generates on average 1315 labels

for each departing aircraft when arrivals are prioritised compared to 476 that are generated

for each arriving aircraft when departures are prioritised.

In the previous two subsections (8.5.2 and 8.5.3) the departures would produce far less labels

than the arrivals when departures were prioritised. The results in this section further prove

that the number of labels that are generated is significantly affected by delays that are

produced by previously routed aircraft.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

0 1000 2000

Fr
eq

u
en

cy
 o

f
O

cc
u

rr
en

ce

Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

0

500

1000

1500

2000

2500

3000

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0
1

4
0

0
1

6
0

0
1

8
0

0
2

0
0

0
2

2
0

0
2

4
0

0
2

6
0

0
2

8
0

0
3

0
0

0

N
u

m
b

er
 o

f
A

ir
cr

af
t

Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

176

8.5.4 Traffic and ASQPPTW Performance

The experiments were also executed in a less congested airport scenario, where there were

less departing aircraft. This configuration was tested in order to verify that the number of

labels that are generated is affected by the delays that happen in the airport. To simulate the

decreased traffic and less delays, every second departing aircraft was removed from the list

of aircraft that were routed. This affected the departing aircraft as it was easier for them to

pushback and move around having less chances to be delayed, as well as the arriving aircraft

that could move around easier without many paths being blocked by departing aircraft that

are pushing back and block important taxiways.

Figure 8.9 shows how the labels that were generated from this experiment are distributed on

the left, as well as the cumulative graph on the right, using ASQPPTW and QPPTW and by

separating the distribution of arriving aircraft and departing aircraft.

Figure 8.9: Distribution of labels generated by each algorithm (left) and cumulative graph

that shows the number of aircraft that generate “x” labels or more (right) with less traffic

The average number of labels that were generated for each flight using the ASQPPTW

algorithm was 53 for departing aircraft and 82 for arriving aircraft. The average number of

labels that were generated for each flight when the QPPTW algorithm was used was 413 for

departing aircraft and 402 for arriving aircraft.

Comparing these results with the results that were observed when all arrivals and departures

were routed in Section 8.5.2, the ASQPPTW algorithm performed better in the airport with

the reduced traffic. When routing all of the flights, the ASQPPTW algorithm would generate

84% less labels when routing departing aircraft compared to the QPPTW algorithm, whereas

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

0 500 1000

Fr
eq

u
en

cy
 o

f
O

cc
u

rr
en

ce

Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

0

500

1000

1500

2000

2500

3000

0 200 400 600 800

N
u

m
b

er
 o

f
A

ir
cr

af
t

Number of Labels

A* Departures

Q Departures

A* Arrivals

Q Arrivals

177

when a part of the total number flights were routed (reducing the traffic and the delays) 87%

less labels were generated with the ASQPPTW algorithm. Similarly, for the arriving aircraft

the ASQPPTW algorithm would outperform the QPPTW algorithm when routing all the

flights by 76%, whereas an 80% improvement was recorded when a part of the total number

the flights were routed. This provides more evidence that ASQPPTW performs even better

compared to QPPTW when there is more traffic and the routing problem gets more

complicated. Moreover, it proves that the number of labels that are generated is indeed

affected by the delays that can happen in the airport.

8.5.5 Label Generation and Airport Characteristics

In order to have a better understanding of the ASQPPTW algorithm and the resulted decrease

in label generation, the improvement in the number of “labels that are generated” was

correlated (separately) with two parameters. The first parameter is the distance of the shortest

path which is the minimum distance that an aircraft needs to traverse in order to reach its

destination and the second parameter is the total taxi time that was required for the aircraft to

reach its destination. These two parameters were chosen in order to investigate if the

ASQPPTW algorithm performs better than the QPPTW algorithm as the distance and/or the

time that the aircraft is moving around the airport increases. After performing a regression

analysis on the previously mentioned variables the results are displayed in Figure 8.10 and

Figure 8.11.

Figure 8.10 shows the improvement (as a percentage) in the number of labels that are

generated by ASQPPTW compared to QPPTW in relation to the time duration that the aircraft

was travelling - including all the delays that may have occurred. As the graph shows the

results are quite scattered, with the majority of the observations (duration of travel) for

departing aircraft being around 201 seconds and an 85% improvement in the number of labels

generated and 190 seconds and a 75% improvement for arrivals. After performing a linear

regression, the functions of which are displayed in the graph for arrivals and departures

(separately), the coefficient of determination (R2) for departures is around 53% and for

arrivals around 5%. As the travel duration increases it is observed that the improved

performance of ASQPPTW gradually decreases for departing aircraft. However, it is

important to mention that the coefficient of determination is not very high so as the travel

duration increases it is harder to predict how much less labels ASQPPTW will generate

compared to QPPTW. This is more apparent for the arriving aircraft where the coefficient of

determination is very low indicating that there is a very low correlation between the travel

duration of an arriving aircraft and the improvement of the ASQPPTW algorithm in label

generation. This is expected though, as the duration of the arrivals is greatly affected by the

178

departing aircraft that are prioritised. This causes many of the shortest routes to be blocked,

making it harder for both algorithms to solve the problem and less predictable when it comes

to the number of labels that will be generated.

Figure 8.10: The improvement in the number of labels generated in relation to the time

duration travelled

Similarly, for Figure 8.11 the graph shows the improvement in number of labels that are

generated by ASQPPTW compared to QPPTW in relation to the distance that the aircraft has

travelled. In this graph, the results are even more scattered, with the majority of the

observations (distance travelled) being 1519 meters and an 85% improvement in label

generation for departures and 1456 meters and a 76% improvement for arrivals. After

performing a linear regression (see functions on the graph), the coefficient of determination

(R2) for departures is around 19% and for arrivals around 3%. As the distance that is travelled

increases it is observed that the improved performance of ASQPPTW gradually decreases for

departing aircraft. The coefficient of determination however, is quite low so it is hard to tell

if the two variables are correlated. For the arriving aircraft, the coefficient of determination

is even lower demonstrating again the unpredictability of the improvement that the

ASQPPTW algorithm can have when there are many delays and the shortest path is often not

available.

R² = 0.5326

R² = 0.0526

-10%

10%

30%

50%

70%

90%

110%

0 200 400 600 800 1000

Im
p

ro
ve

m
en

t

Duration [s]

Departures

Arrivals

179

Figure 8.11: The improvement in the number of labels generated in relation to the distance

travelled

As the results show, there is not a strong correlation between the travelled distance or the

travel duration of a flight and the improvement that the ASQPPTW algorithm can provide in

reduced numbers of generated labels compared to QPPTW. For this reason, the airport

characteristics were not investigated in more depth. Evidently the traffic in the airport and the

delays that happen can be a more crucial factor for the increased performance of ASQPPTW

against the QPPTW algorithm as demonstrated in the previous subsections.

8.5.6 Examination of the Heuristic

In favour of providing a better insight into the benefits of the heuristic that was used in the

ASQPPTW algorithm, another heuristic was also tested. As discussed in Section 8.2.2 another

option would be to use a heuristic that is based on distance.

While the experiments were executed, the extra execution time and memory that was required

for the ASQPPTW with the alternative heuristic was also tracked. After running the

experiments, the results show that the use of storing the value of the cost from moving from

each node to each stand or runway did not affect the execution time of ASQPPTW. For each

of the 317 nodes which the graph consists of, the algorithm would load and store the

“minimum time duration” that is needed by an aircraft to reach a stand or a runway, for each

of the 110 stands and runways (34,870 values in total). The loading of these values would

happen in less than 10 milliseconds which is a very low increase considering that the

R² = 0.1939

R² = 0.0279

-10%

10%

30%

50%

70%

90%

110%

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Im
p

ro
ve

m
en

t

Distance [m]

Departures

Arrivals

180

execution time of the ASQPPTW algorithm can be faster by at least 7 seconds compared to

the QPPTW algorithm.

The memory requirements would increase by approximately 200 Megabytes when

ASQPPTW is used compared to QPPTW but overall the ASQPPTW algorithm needs less

than 700 Megabytes to solve the problem, which is not a significant requirement for any

modern personal computer.

After solving the same problem using two different heuristics, the heuristic chosen for

ASQPPTW performed significantly better than the distance heuristic. Table 8.13 shows the

number of labels that are generated with each set-up (QPPTW, ASQPPTW and QPPTW with

a distance based heuristic). The results show that even though the distance heuristic provides

a significant improvement compared to QPPTW, it cannot reach the efficiency of ASQPPTW.

On average, the ASQPPTW algorithm would generate 43% less labels compared to the

QPPTW with the distance based heuristic.

Table 8.13: Number of labels that are generated with each set-up

QPPTW ASQPPTW Distance Heuristic

Total

labels

Average

labels/flight

Total

labels

Average

labels/flight

Total

labels

Average

labels/flight

Day 1 363322 444 77806 95 135766 166

Day 2 352302 437 74294 92 127706 158

Day 3 334396 428 63640 81 117136 150

Day 4 369063 441 81662 98 139236 166

Day 5 386553 469 69472 84 133099 161

Day 6 328415 435 65500 87 114497 152

Day 7 340136 432 62979 80 115924 147

Total 2474187 441 495353 88 126195 157

As mentioned in Section 8.2.2 the reason that the heuristic of ASQPPTW outperforms the

distance based heuristic and any other heuristic that can be used for A* type algorithms is

because ASQPPTW heuristic provides a more accurate estimation. The results show that the

accuracy of the heuristic is important, as the distance heuristic will almost always expand to

more nodes and generate more labels, eventually increasing the execution time.

181

8.6 Conclusions

In this chapter, a new algorithm that can solve the routing and scheduling problem of aircraft

faster was introduced. The new approach is based on the A* algorithm and is designed to

provide a directed search to the quickest path problem with time windows. The algorithm

extends the popular QPPTW algorithm for finding the quickest path for aircraft and takes into

consideration important parameters such as the stand holding process and the pushback

process. The presented approach is based on finding the remaining time that is needed to

traverse the shortest path instead of using an estimation of the distance to the target

destination, making it possible to have a compatible and advantageous use of time windows,

that are necessary for routing multiple aircraft that interact with each other.

Experiments were run to test the efficiency of the new algorithm compared to QPPTW. Both

algorithms solved 7 days of the routing process of aircraft in Zurich airport as well as Arlanda

airport. The execution time for both of the algorithms was measured for solving the full

problem as well as solving the arrival and departure parts of the problem separately. The

results have been very encouraging and show that the new A* approach of solving the

problem (ASQPPTW) outperforms the QPPTW algorithm on average by 46% to 67% (in

Zurich and Arlanda airport respectively) in execution time when used for solving the full

routing problem. When the performance of the program was tested, ASQPPTW could route

the aircraft of a full week (which is 5609 aircraft in this case) on a simple notebook computer

in 7.2 seconds. That is on average less than 1.3 milliseconds per flight which makes it more

than adequate for real time routing but also provides a useful routing method that can be used

in conjunction with other processes that happen in the airport such as the gate allocation

process and the runway sequencing process. This can be very useful for optimising the full

problem instead of finding the optimal solutions of smaller problems and lead to a solution

that will increase the fuel efficiency of aircraft that are moving on airports and increase the

capacity of airports.

Moreover, the way that the ASQPPTW algorithm expands was investigated and the number

of labels that are generated for routing each aircraft were calculated. The results show that

the ASQPPTW algorithm generates far less labels compared to the QPPTW algorithm, which

explains why there is an improved efficiency in execution times. The differences in number

of generated labels between arriving aircraft and departing aircraft was also investigated in

Zurich and Arlanda airport. Routing the departing aircraft before the arriving aircraft

considerably affects the speed of which both the QPPTW and ASQPPTW algorithms can find

the route for departing aircraft. However, the ASQPPTW algorithm is much more efficient

in solving the problem even in this case. This proves that using a heuristic that calculates the

182

remaining time can outperform a routing algorithm that expands towards all directions (such

as QPPTW) in almost every case. Moreover, it is shown that an increase in the number of

delays results in more labels being generated for both algorithms and that ASQPPTW

performs even better in situations where there are more delays (high traffic).

183

9

Integration of the Ground Movement Problem

in a Flight Simulator Cockpit

9.1 Introduction

In this chapter, the real-world difficulties of applying the research that has been presented in

the previous chapters, is investigated. The developed project demonstrates how this research

can be used in practice in a wider and more integrated framework. The ground movement

model that was developed in Chapters 4 and 8 is applied within a flight simulator cockpit,

and the various integration and applicability issues are discussed.

There has been extensive research in the ground movement problem as was presented in

Chapter 2, but so far, the overwhelming majority has not been tested in airports. Many

processes happen in parallel while aircraft are moving on the ground. The ground movement

problem affects and is affected by processes from other disciplines outside the traditional area

that the current literature is focusing on. Two of these processes that have arisen from the

research that is taking place in the Institute of Aerospace Technology of the University of

Nottingham and have been underlined by the INNOVATE project are the navigation and

positioning of the aircraft and monitoring the human workload of pilots. Significant research

is happening on these areas and testing the ground movement model within the latest

advances on this area is therefore very useful. Creating a physical demonstrator that combines

new technologies and the latest research can provide useful insight into how to apply this

research.

The flight simulator cockpit was developed as part of this research and in conjunction with

the research of two other PhD students from the INNOVATE project. The purpose of the

project is to demonstrate the applicability of novel aerospace technologies and how they can

184

be integrated in an operational system. The project consists of three different processes that

work in parallel and with each other. The first process is the navigation and positioning of the

aircraft, the second process is the real-time routing of aircraft and the third process is the

physiological monitoring of human performance to assess the impact of the other two

processes on mental demand.

9.2 Advanced Receiver Autonomous Integrity Monitoring

The first process (navigation and positioning of the aircraft) uses the Advanced Receiver

Autonomous Integrity Monitoring (ARAIM) system, which is a new aircraft based

augmentation system technique. The ARAIM technique uses the global navigation satellite

system receivers to navigate aircraft around the world with a high precision. The ARAIM

system aims to reduce the dependence of the support systems that are needed from the ground

or satellite based systems that are currently in use. This method provides a real-time

positioning method for the aircraft. More details of the system that is used can be found on

the paper of Paternostro et al. (2016).

The ARAIM algorithm that was used for this project is connected to a commercial flight

simulator software (called X Plane 10) through a tool (X-Plane Connect) that was developed

by NASA (Teubert, 2008). X-Plane Connect (XPC) is an open source research tool that makes

it possible to interact with the X-Plane software. As stated on the NASA website (NASA

2017), through the XPC tool it is possible for the user to receive real time information from

the simulated aircraft in X-Plane using functions written in various programming languages

such as MATLAB, Python, Java, C or C++. By using this tool, it is possible to visualise flight

paths, test control algorithms, simulate an active airspace, or generate out-the-window visuals

for in-house flight simulation software.

For this research, the XPC tool has been used for extracting information that is associated

with the real-time position and attitude of the aircraft. This information is used by the ARAIM

tool that has been developed by Paternostro et al. (2016) for the navigation of the aircraft.

9.3 Solving the Ground Movement Problem and Applying

the Solution

In this section, the model that was developed for the physical demonstrator is explained. In

the first part, the way that the location of the aircraft on the graph can be found by using GPS

185

locations is described. In the second part, the real-time routing and navigation of the aircraft

is presented.

9.3.1 Using the GPS Locations of the Aircraft to Find their Position

on the Graph

The routing system uses a directed graph model of the airport. To use this, it needs to locate

each aircraft in a node of the graph. In order to find the location of the aircraft on the graph,

using real time GPS coordinates (such as those from XPC) it is important to convert and

project the geographic coordinates to the x and y coordinates on the graph that the model is

using (see airports and graphs section in Chapter 3)

Since the area that is considered (the airport) is rather small compared to the size of the earth,

these calculations do not take into consideration the curvature of the earth. The (x, y) positions

of the nodes are therefore calculated in a linear way, since the distance between two (x, y)

points and two actual locations on the earth is almost identical. The error that is generated

when comparing the distance between a point and a nearby node is less than a centimetre, not

practically affecting the accuracy of finding the closest node at which the aircraft is located

at any time.

Table 9.1: Table of Notation and Definitions

Constants Explanation

W The width of the airport graph picture in pixels

H The height of the airport graph picture in pixels

φm The coordinate of the most northern location of the area that is considered

λm The coordinate of the most western location of the area that is considered

φM The coordinate of the most southern location of the area that is considered

λM The coordinate of the most eastern location of the area that is considered

Variables Explanation

φ The latitude of the aircraft

λ The longitude of the aircraft

x The x coordinate of the aircraft on the graph/screen

y The y coordinate of the aircraft on the graph/screen

The x, y coordinates are calculated using Equations 9.2 and 9.3, and Table 9.1 shows the

definitions of the notation that was used. For this calculation, the dimensions of the picture

186

(airport graph representation) are needed as well as the geographic coordinates of the upper

left corner and the bottom right corner of the area that the picture is going to include.

 𝑥 =
𝑊(𝜑 − 𝜑𝑚)

𝜑𝑀 − 𝜑𝑚

 (9.2)

 𝑦 =
𝐻(𝜆𝑚 − 𝜆)

𝜆𝑀 − 𝜆𝑚

 (9.3)

Once the location of the aircraft on the graph is found, the node that is the closest to the

aircraft needs to be identified. Since, however, the aircraft can travel from node A to node B,

but there can be a node C that the aircraft is closest to, finding the node that has the minimum

distance from the aircraft can be misleading. An example of this situation can be seen in

Figure 9.1. where the aircraft is traveling from node A to node B and is closer to node C

which is not on its path. In this case node B should be considered as the closest node, rather

than node C.

For this reason, the algorithm that was created to find the node which the aircraft is closest to

is searching for the path segment (rather than node) that the aircraft is closest to. When the

closest segment is found, the node which the aircraft is closest to (start node or end node of

the segment) is found, by comparing the distance of the aircraft and the two nodes of the

segment.

 𝑙2 = (𝑥𝑏 − 𝑥𝑎)2 + (𝑦𝑏 − 𝑦𝑎)2 (9.4)

 𝑡 =
(𝑥 − 𝑥𝑎)(𝑥𝑏 − 𝑥𝑎) + (𝑦 − 𝑦𝑎)(𝑦𝑏 − 𝑦𝑎)

𝑙2
 (9.5)

Figure 9.1: Finding the closest node

187

 𝑑 = √(𝑥𝑎 + 𝑡(𝑥𝑏 − 𝑥𝑎) − 𝑥)2 + (𝑦𝑎 + 𝑡(𝑦𝑏 − 𝑦𝑎) − 𝑦)2 (9.6)

Equations 9.4, 9.5 and 9.6 show how the distance (d) between the aircraft and a node is found.

This distance is calculated for all of the nodes of the graph, and the node that has the smallest

value denotes the node closest to the aircraft. In case the shortest distance to a node is greater

than 100m, the aircraft is considered to be out of the range of the airport.

9.3.2 Real Time Navigation of an Aircraft on the Ground

The previously mentioned algorithm finds the locations of all of the aircraft that are in the

airport. Then the aircraft that is controlled by the user/pilot is routed to a runway for take-off

by taking into consideration the location of other aircraft. The model uses the ASQPPTW

algorithm to route the aircraft from the node which the aircraft is currently at, to the runway

that is used for aircraft that are taking-off for at that time. This process takes into consideration

other aircraft by blocking the nodes on which other aircraft are. When the ASQPPTW

algorithm is executed the nodes that are occupied by other aircraft are not available for

expanding. It is important to mention that this methodology considers that the aircraft have

full control of their routing process and are not being scheduled by the air traffic controllers.

Although the optimal available path is found, this is not a globally optimal solution.

The above process is implemented within its own thread and is executed approximately every

2 seconds. The position of the aircraft is updated each time, as well as the available path for

the aircraft to reach the runway.

The available path and the positions of the aircraft are highlighted on the map to advise the

controller on the path that has to be followed in order to reach the runway. Figure 9.2 shows

an example of the output for an aircraft traveling from a gate in terminal A to runway 14/32

in Zurich airport.

9.4 Physiological Monitoring of Human Performance

The third process of the integrated project monitors the human performance to assess the

impact of the other two processes on mental demand. It uses the FLIR A65sc thermal infrared

camera which can monitor the thermal features of the person’s face that is using the flight

simulator. The developed model for this process can track the face of the user and monitors

the temperature difference of specific points in the face such as the pupils and the nose.

188

Marinescu et al. (2017) show that there is a high correlation between the decrease of the

temperature of the nose and the mental workload.

This process evaluates the effects that the previously mentioned processes (see Sections 9.2

and 9.3) have on the pilot. Since these processes provide new information to the pilot, it is

useful to monitor his mental workload in order to be able to evaluate how safe, and how

demanding for the pilot, the implementation of these processes is.

Figure 9.2: Graph representation of Zurich airport (quickest path highlighted)

189

9.5 The Physical Demonstrator

The developed model integrates the processes that were described in the previous sections in

a physical demonstrator. The physical demonstrator is a flight simulator cockpit that uses

several instruments and controllers.

The demonstrator is located in the Aerospace Technology Centre and consists of the

following hardware:

• Yoke

• Throttle quadrant

• Rudder Pedals

• Switch Panel

• Instrument Panel

• Radio Panel

• Multi Panel

• High Specification Research PC.

• FLIR Infra-Red camera4 LED screens

Figure 9.3: The flight simulator cockpit

Figure 9.3 shows the flight simulator cockpit without the thermal camera.

190

The physical demonstrator runs the X-Plane flight simulator software. Using the instruments

described above it is possible for the user to control an aircraft and complete various tasks

such as routing, take-off, navigation and landing.

The routing process that was described in Section 9.3 of the physical demonstrator uses as an

input the geographical coordinates that is the output of the ARAIM algorithm (see Section

9.2). The ARAIM algorithm finds the exact location of the aircraft that is being controlled by

the operator/pilot of the cockpit simulator. These coordinates are then passed to the ground

movement program. The output of this program is a graph representation of the airport, with

the quickest path being highlighted (see Figure 9.2).

Figure 9.4: Quickest path highlighted after taking into consideration the positions of other

aircraft

The highlighted path is updated every second and guides the user to the runway where the

take-off procedure can initiate. The ground movement program takes into consideration the

locations of other aircraft that are moving on the airport. The algorithm will highlight the

fastest path that leads to the runway avoiding the paths that are blocked by other aircraft.

Figure 9.4 shows the quickest path for the same aircraft that has to go from a gate in terminal

A to runway 14/32 in Zurich airport, but this time taking into consideration two aircraft that

are blocking shorter paths (aircraft are marked in green and blue).

191

While the user follows the path that is presented by the ground movement tool the human

performance and the mental workload are monitored by the thermal camera as described in

Section 9.4.

9.6 Conclusions

In this chapter, the integration of the ground movement problem in a flight simulator cockpit

and the real-world difficulties of applying this research has been presented. This integration

project works as a proof of concept for integrating the algorithms for the routing process into

a real system. Various integration issues come up, such as the question of automating the

identification of the node to place an aircraft in the model.

The fast execution speed for solving the ground movement process makes it possible to

provide the path that the aircraft needs to follow in order to reach its destination in real time.

The position of other aircraft on the ground is always taken into consideration when the

quickest path is calculated. The path is constantly updated with the latest positions of the all

of the aircraft on the ground (including the aircraft that is being routed), in order to guarantee

that the path that is shown to the pilot is accurate and always the quickest.

The ground movement process uses as an input the real time GPS coordinates of the aircraft,

which is provided by the Advanced Receiver Autonomous Integrity Monitoring system and

as an output, provides the necessary information to the pilot in order to be able to navigate

around the airport. At the same time, the human performance and the mental workload are

monitored. All these processes are integrated into one system that provides an improved way

to navigate around the airport. This system could be integrated in aircraft, in order to provide

a more automated, safer and optimised movement of aircraft on the ground.

192

10

Conclusions

10.1 General Summary

As mentioned throughout this thesis, theoretical models can ignore some practical issues

when modelling the ground movement process of aircraft. There is always a level of

abstraction when modelling a real-world problem and some parameters that are considered

less important are ignored in order to simplify the problem. This thesis considers some of

these practical issues and investigates their importance. Moreover, it considers the practicality

of implementing them into airport systems and integrating with positioning software.

This thesis has focused on the improvement of the realism of ground movement methods

using operational research methodologies. More specifically, processes and parameters that

affect the ground movement process have been investigated in order to understand how delays

during the routing process of aircraft in airports happen, and how they can be reduced.

Two methodologies have been used for modelling and solving the ground movement

problem. After comparing the two approaches, the one that was more appropriate for solving

the ground movement problem was chosen, as it was more effective in taking into

consideration both arriving and departing aircraft and being able to use alternative paths.

Various features were added to the selected approach in order to explicitly implement the

pushback process and to use stand holding for departing aircraft. Later the routing

methodology was redesigned in order to improve the execution time of the ground movement

process. Finally, the methodology for routing and scheduling aircraft was integrated with

other processes in a physical demonstrator as proof of concept.

The effects of the pushback process and the delays that can happen were investigated in

Chapter 4. In Chapter 5 the stand holding process plus pushback process were implemented

within the routing process and the priority between arrivals and departures was examined. A

193

model with a mixed prioritisation was created with various degrees of prioritisation settings

and the delays that can happen when aircraft were routed for each setting were examined. The

effects of the layout of the airport were also examined in Chapter 6, providing a better

understanding of when and how delays can happen. Chapter 7 introduces an integration

framework for solving the gate allocation process while taking into consideration the delays

that can happen during the ground movement process. A new algorithm was also introduced

in Chapter 8, that can solve the ground movement problem faster. Finally, an implementation

of this research was integrated with other novel technologies in a flight simulation cockpit in

order to demonstrate the applicability of this research.

In the following sections of this chapter, the key results are presented and the areas where

future research seems promising are highlighted.

10.2 Key Results

Better understanding of the pushback process. The effects of the pushback process, when

explicitly implemented, have been investigated in this thesis. The delays that can happen due

to aircraft that are pushing back or by aircraft that are not allowing other aircraft to push back

have been identified and examined. This is an important issue, as many delays do happen

during the pushback process, that could pass unnoticed if the process is not explicitly

implemented. Knowing where and when these delays can happen is vital in order to be able

to minimise them.

Better understanding of the prioritisation effects between arriving and departing

aircraft. The delays that happen when arrivals or departures were prioritised were also

examined. Furthermore, a mixed prioritisation as well as different levels of mixed

prioritisation were also examined. The priority between aircraft can also have a significant

effect on the delays that can happen during the routing process and using different

prioritisation methods provides an important insight into how these delays happen when the

pushback process is explicitly implemented and how they can be reduced.

Improved model for aircraft routing including pushback delays. A model that can route

aircraft on the ground has been extended to include the pushback process while the stand

holding process is in use. The majority of the experiments in this thesis use these extensions

in order to have a more accurate mapping of the delays that can happen during the ground

movement process. These extensions provide a more realistic tool for solving the ground

movement process of aircraft.

194

Better understanding of the effects of airport layout. Chapter 6 analysed how the airport

layout can affect the routing process of the aircraft and the delays that happen during taxiing.

Moreover, the use of alternative paths has been investigated and layouts that contain extra or

fewer taxiways were created to observe the delays that can arise or the improvement in

reducing long delays.

Integration framework between the routing process and the gate allocation process. An

integration framework that can solve the gate allocation problem, by explicitly taking into

consideration the delays that can happen during the ground movement process of aircraft has

been created and tested. The model tries different allocations and receives detailed feedback

with the combinations of aircraft that can produce a delay. This makes it possible to add in

the gate allocation process an extra objective for the individual delays that can happen, and

attempt to minimise them.

The integrated model takes the wider problem - of optimising the ground processes at an

airport - into consideration and can provide an overall good solution instead of optimal

solutions for the individual problems. In practice, it can significantly decrease the number

and the duration of delays that happen when the aircraft move on the ground, as the results in

this thesis shows.

Finding conflicting combinations. An algorithm that can find all the conflicting

combinations in a particular allocation (flights to stands) has been created. The algorithm

solves multiple combinations of aircraft on an empty graph in order to isolate the aircraft that

cause a delay. Delays that could happen between combinations of aircraft if other aircraft of

the allocation were missing are also found in order to guarantee that the list of conflicting

aircraft contains all the possible combinations of aircraft that can arise between any number

of aircraft with that particular allocation to stands. This makes it possible to provide important

feedback to the gate allocation process that can be used for avoiding allocations where aircraft

conflict with each other.

Faster execution times. The QPPTW algorithm has been modified from a Dijkstra’s based

algorithm to incorporate an A* based algorithm. A heuristic that can significantly reduce the

number of expansion labels that are generated has been implemented. The heuristic finds the

remaining time that is necessary for the aircraft to reach its destination if there are no delays

to the remaining path. This can help the algorithm only expand towards the node of the

quickest path if no delays occur, significantly reducing the search space. The execution time

was shown to be reduced by 46% to 67%, depending on the airport. Having a model with a

fast execution time makes it more adequate for real time routing but also provides a useful

routing method that can be used in conjunction with other processes that happen in the airport

such as the gate allocation process and the runway sequencing process.

195

Practical implementation. A practical implementation of the routing process has also been

presented in Chapter 9. The ground movement process has been integrated with processes

from other disciplines – such as positioning and navigation process and the mental workload

monitoring of the pilot – for the first time, as a proof of concept of the practicality of

integration. This provides an insight into the practical implementation issues that can arise

when integrating the ground movement process in a physical flight simulator cockpit.

10.3 Future Work

During this research, a number of areas with further research potential have been identified.

Some of these areas have been summarised below.

More historic flight data. Executing experiments using historic data is very important for

drawing accurate conclusions. However, the available data for this thesis was limited. Having

more datasets can make the arguments that are drawn from the conclusions stronger and more

reliable.

Use of more airports. This research considers experiments in three different airports. As was

observed in Chapters 6 and 8 the layout of the airport significantly affects the efficiency of

the algorithm that is used and the execution times. Moreover, the duration of delays, the taxi

duration, the number of delays and the use of alternative paths were also significantly affected

by the airport that was used. This shows that running experiments in one or only a few airports

may not provide generally acceptable results for the ground movement process in general, so

there is value in considering new layouts.

A faster integrated model with gate allocation. Even though the ground movement solver

and the algorithm that finds conflicting combinations of aircraft in the integrated model in

Chapter 7, can route all the aircraft multiple times and find all the bad combinations within

seconds, the gate allocation model can currently find a day’s allocations only for one terminal

in a reasonable time. Since the gate allocation solver is executed multiple times in order to

find the best solution, the integrated model takes a considerable amount of time to execute.

As mentioned in Neuman’s thesis (Section 7.6 of her thesis), using a receding horizon

decomposition might improve the execution times. Moreover, some parameters may not be

so important for the integrated model - especially the ones that try to reduce the delays that

happen during taxiing – since the feedback that the integrated model receives from the ground

movement solver might be sufficient for minimising taxiing delays.

Integration with other processes. As was seen in this thesis, integration of airport processes

that affect each other can provide an improved overall solution. In this research, the pushback

196

process was explicitly implemented within the ground movement process, the stand holding

process was also used for departing aircraft to guarantee the sequence of arrival of aircraft at

the runway and the ground movement process was integrated with the gate allocation process.

However, more processes could be integrated with the ground movement process, such as the

runway sequencing/take-off scheduling. The ASQPPTW algorithm that has been presented

in Chapter 8 provides an excellent tool for fast solution of the ground movement process,

making it possible in future work to construct integrated models that were previously thought

to be impractical due to long execution times.

Integration with electric aircraft taxi. Another novel technology that has been investigated

by the INNOVATE project has been electric taxiing. Since an electric motor is sufficient for

pushing back an aircraft and only consumes electricity when the aircraft is moving, the

parameters of the ground movement problem of aircraft are affected significantly. Stand

holding is not as necessary as it is for aircraft that taxi using their engines and the duration of

the pushback process might be reduced without the need to start up the engines at the stand.

A model that will take into consideration the effects of an electric motor will be very useful

for identifying the benefits of this technology.

197

References

Anagnostakis, I. and Clarke, J.P., 2003, January. Runway operations planning: a two-stage

solution methodology. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii

International Conference on (pp. 12-pp). IEEE.

Anderson, K., Carr, F., Feron, E. and Hall, W., 2000. Analysis and modeling of ground

operations at hub airports. In Proceedings of the 3rd USA/Europe Air Traffic Management

R&D seminar, Napoli, Italy.

Anderson, R. and Milutinović, D., 2013. An approach to optimization of airport taxiway

scheduling and traversal under uncertainty. Proceedings of the Institution of Mechanical

Engineers, Part G: Journal of aerospace engineering, 227(2), pp.273-284.

Apice, C., De Nicola, C., Manzo, R. and Moccia, V., 2014. Optimal scheduling for aircraft

departures. Journal of Ambient Intelligence and Humanized Computing, 5(6), pp.799-807.

Atkin, J.A., Burke, E.K., Greenwood, J.S. and Reeson, D., 2006, June. The effect of the

planning horizon and the freezing time on take-off sequencing. In Proceedings of 2nd

International Conference on Research in Air Transportation (ICRAT’06).

Atkin, J.A., Burke, E.K., Greenwood, J.S. and Reeson, D., 2007. Hybrid metaheuristics to

aid runway scheduling at London Heathrow airport. Transportation Science, 41(1), pp.90-

106.

Atkin, J.A., Burke, E.K., Greenwood, J.S. and Reeson, D., 2008. A metaheuristic approach

to aircraft departure scheduling at London Heathrow airport. Computer-aided Systems in

Public Transport, pp.235-252.

Atkin, J.A., Burke, E.K., Greenwood, J.S. and Reeson, D., 2009. An examination of take-off

scheduling constraints at London Heathrow airport. Public Transport, 1(3), pp.169-187.

Atkin, J.A., Burke, E.K. and Ravizza, S., 2010, June. The airport ground movement problem:

Past and current research and future directions. In Proceedings of the 4th International

Conference on Research in Air Transportation (ICRAT), Budapest, Hungary (pp. 131-138).

Atkin, J.A., Burke, E.K. and Ravizza, S., 2011. A statistical approach for taxi time estimation

at London Heathrow Airport. In: Proceedings of the 10th Workshop on Models and

Algorithms for Planning and Scheduling Problems (MAPSP), Nymburk, Czech Republic, pp.

61-63.

198

Atkins, S., Brinton, C. and Jung, Y., 2008, September. Implication of variability in airport

surface operations on 4-D Trajectory Planning. In Proceedings of the American Institute of

Aeronautics and Astronautics (AIAA) Aviation Technology, Integration, and Operations

(ATIO) Conference.

Babić, O., Teodorović, D. and Tošić, V., 1984. Aircraft stand assignment to minimize

walking. Journal of Transportation Engineering, 110(1), pp.55-66.

Baik, H., Sherali, H. and Trani, A., 2002. Time-dependent network assignment strategy for

taxiway routing at airports. Transportation Research Record: Journal of the Transportation

Research Board, (1788), pp.70-75.

Baik, H. and Trani, A.A., 2008. Framework of a time-based simulation model for the analysis

of airfield operations. Journal of Transportation Engineering, 134(10), pp.397-413.

Balakrishna, P., Ganesan, R., Sherry, L. and Levy, B.S., 2008, October. Estimating taxi-out

times with a reinforcement learning algorithm. In Digital Avionics Systems Conference, 2008.

DASC 2008. IEEE/AIAA 27th (pp. 3-D). IEEE.

Balakrishna, P., Ganesan, R. and Sherry, L., 2009, June. Application of reinforcement

learning algorithms for predicting taxi-out times. In Proceedings of the 8th ATM R&D

Seminars, Napa, USA.

Balakrishna, P., Ganesan, R. and Sherry, L., 2010. Accuracy of reinforcement learning

algorithms for predicting aircraft taxi-out times: A case-study of Tampa Bay

departures. Transportation Research Part C: Emerging Technologies, 18(6), pp.950-962.

Balakrishnan, H. and Jung, Y., 2007, August. A framework for coordinated surface

operations planning at Dallas-Fort Worth International Airport. In AIAA Guidance,

Navigation, and Control Conference (Vol. 3, pp. 2382-2400).

Balakrishnan, H. and Chandran, B.G., 2010. Algorithms for scheduling runway operations

under constrained position shifting. Operations Research, 58(6), pp.1650-1665.

Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M. and Abramson, D., 2004. Displacement

problem and dynamically scheduling aircraft landings. Journal of the operational research

society, 55(1), pp.54-64.

Benlic, U., Brownlee, A.E. and Burke, E.K., 2016. Heuristic search for the coupled runway

sequencing and taxiway routing problem. Transportation Research Part C: Emerging

Technologies, 71, pp.333-355.

Bennell, J.A., Mesgarpour, M. and Potts, C.N., 2011. Airport runway scheduling. 4OR: A

Quarterly Journal of Operations Research, 9(2), pp.115-138.

199

Bhadra, D., Knorr, D.A. and Levy, B., 2011. Benefits of virtual queuing at congested airports

using ASDE-X: A case study of JFK airport. Air Traffic Control Quarterly, 20(3), p.225.

Bianco, L., Dell'Olmo, P. and Giordani, S., 1999. Minimizing total completion time subject

to release dates and sequence‐dependent processing times. Annals of Operations Research,

86, pp.393-415.

Bihr, R.A., 1990. A conceptual solution to the aircraft gate assignment problem using 0, 1

linear programming. Computers & Industrial Engineering, 19(1-4), pp.280-284.

Bolat, A., 2000. Procedures for providing robust gate assignments for arriving aircrafts.

European Journal of Operational Research, 120(1), pp.63-80.

Brinton, C., Krozel, J., Capozzi, B. and Atkins, S., 2002, August. Improved taxi prediction

algorithms for the surface management system. In Proceedings of the AIAA Guidance,

Navigation, and Control Conference (pp. 5-8), Monterey, CA, USA.

Brownlee, A.E., Atkin, J.A., Woodward, J.R., Benlic, U. and Burke, E.K., 2014. Airport

ground movement: real world data sets and approaches to handling uncertainty.

In Proceedings of the 10th International Conference on Practice and Theory of Automated

Timetabling (PATAT 2014) (pp. 462-464).

Burgain, P., Pinon, O.J., Feron, E., Clarke, J.P. and Mavris, D.N., 2012. Optimizing pushback

decisions to valuate airport surface surveillance information. IEEE Transactions on

Intelligent Transportation Systems, 13(1), pp.180-192.

Carr, F., Evans, A., Clarke, J.P. and Feron, E., 2002, May. Modeling and control of airport

queueing dynamics under severe flow restrictions. In American Control Conference, 2002.

Proceedings of the 2002 (Vol. 2, pp. 1314-1319). IEEE.

Chandran, B. and Balakrishnan, H., 2007, July. A dynamic programming algorithm for robust

runway scheduling. In American Control Conference, 2007. ACC'07 (pp. 1161-1166). IEEE.

Chen, J. and Stewart, P., 2011a, July. Planning aircraft taxiing trajectories via a multi-

objective immune optimisation. In Natural Computation (ICNC), 2011 Seventh International

Conference on (Vol. 4, pp. 2235-2240). IEEE.

Chen, J., Ravizza, S., Atkin, J.A. and Stewart, P., 2011b. On the utilisation of fuzzy rule-

based systems for taxi time estimations at airports. In OASIcs-OpenAccess Series in

Informatics (Vol. 20). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Chen, J., Weiszer, M. and Stewart, P., 2015, September. Optimal speed profile generation for

airport ground movement with consideration of emissions. In Intelligent Transportation

Systems (ITSC), 2015 IEEE 18th International Conference on (pp. 1797-1802). IEEE.

200

Chen, J., Weiszer, M., Stewart, P. and Shabani, M., 2016a. Toward a More Realistic, Cost-

Effective, and Greener Ground Movement Through Active Routing—Part I: Optimal Speed

Profile Generation. IEEE Transactions on Intelligent Transportation Systems, 17(5),

pp.1196-1209.

Chen, J., Weiszer, M., Locatelli, G., Ravizza, S., Atkin, J.A., Stewart, P. and Burke, E.K.,

2016b. Toward a more realistic, cost-effective, and greener ground movement through active

routing: A multiobjective shortest path approach. IEEE Transactions on Intelligent

Transportation Systems, 17(12), pp.3524-3540.

Cheng, Y., 1997. A knowledge-based airport gate assignment system integrated with

mathematical programming. Computers & Industrial Engineering, 32(4), pp.837-852.

Cheng, Y., 1998. Solving push-out conflicts in apron taxiways of airports by a network-based

simulation. Computers & industrial engineering, 34(2), pp.351-369.

Cheng, V.H. and Foyle, D.C., 2002, August. Automation tools for enhancing ground-

operation situation awareness and flow efficiency. In Proceedings of the AIAA Guidance,

Navigation, and Control Conference (Vol. 4856).

Cheng, V.H., 2003, August. Airport surface operation collaborative automation concept.

In Proceedings of the AIAA Guidance, Navigation, and Control Conference (pp. 11-14).

Cheng, V.H., 2007, April. Research progress on an automation concept for surface operation

with time-based trajectories. In Integrated Communications, Navigation and Surveillance

Conference, 2007. ICNS'07 (pp. 1-13). IEEE.

Clare, G., Richards, A. and Sharma, S., 2009a. Receding horizon, iterative optimization of

taxiway routing and runway scheduling. In Proceedings of the AIAA Guidance Navigation,

and Control Conference, Chicago, USA.

Clare, G. and Richards, A., 2009b. Airport ground operations optimizer. In 8th Innovative

Research Workshop & Exhibition Proceedings, Eurocontrol.

Clare, G. and Richards, A.G., 2011. Optimization of taxiway routing and runway scheduling.

IEEE Transactions on Intelligent Transportation Systems, 12(4), pp.1000-1013.

Clewlow, R.R., Simaiakis, I. and Balakrishnan, H., 2010. Impact of arrivals on departure taxi

operations at airports. In AIAA Guidance, Navigation, and Control Conference. Toronto,

Ontario Canada.

Confessore, G., Liotta, G. and Grieco, R., 2005, December. A simulation-based architecture

for supporting strategic and tactical decisions in the apron of Rome-Fiumicino Airport.

201

In Proceedings of the 37th conference on Winter simulation (pp. 1596-1605). Winter

Simulation Conference.

De Maere, G. and Atkin, J.A., 2015. Pruning rules for optimal runway sequencing with airline

preferences. Lecture Notes in Management Science, 7, p.77.

Deau, R., Gotteland, J.B. and Durand, N., 2008, June. Runways sequences and ground traffic

optimisation. In ICRAT 2008, International Conference on Research in Air Transportation.

Deau, R., Gotteland, J.B. and Durand, N., 2009, June. Airport surface management and

runways scheduling. In ATM 2009, 8th USA/Europe Air Traffic Management Research and

Development Seminar.

Diepen, G., Van Den Akker, J.M. and Hoogeveen, J.A., 2009. Integrated gate and bus

assignment at Amsterdam Airport Schiphol. In Robust and Online Large-Scale

Optimization (pp. 338-353). Springer Berlin Heidelberg.

Ding, H., Lim, A., Rodrigues, B. and Zhu, Y., 2004a, January. Aircraft and gate scheduling

optimization at airports. In System Sciences, 2004. Proceedings of the 37th Annual Hawaii

International Conference on (pp. 8-pp). IEEE.

Ding, H., Lim, A., Rodrigues, B. and Zhu, Y., 2004b. New heuristics for over-constrained

flight to gate assignments. Journal of the Operational Research Society, 55(7), pp.760-768.

Ding, H., Lim, A., Rodrigues, B. and Zhu, Y., 2005. The over-constrained airport gate

assignment problem. Computers & Operations Research, 32(7), pp.1867-1880.

Dorndorf, U., Drexl, A., Nikulin, Y. and Pesch, E., 2007. Flight gate scheduling: State-of-

the-art and recent developments. Omega, 35(3), pp.326-334.

Dorndorf, U., Jaehn, F. and Pesch, E., 2008. Modelling robust flight-gate scheduling as a

clique partitioning problem. Transportation Science, 42(3), pp.292-301.

Dorndorf, U., Jaehn, F. and Pesch, E., 2012. Flight gate scheduling with respect to a reference

schedule. Annals of Operations Research, 194(1), pp.177-187.

Drexl, A. and Nikulin, Y., 2008. Multicriteria airport gate assignment and Pareto simulated

annealing. IIE Transactions, 40(4), pp.385-397.

Durand, N. and Alliot, J.M., 1998, July. Genetic crossover operator for partially separable

functions. In GP 1998, 3rd annual conference on Genetic Programming.

Ernst, A.T., Krishnamoorthy, M. and Storer, R.H., 1999. Heuristic and exact algorithms for

scheduling aircraft landings. Networks, 34(3), pp.229-241.

202

Evertse, C. and Visser, H.G., 2017. Real-time airport surface movement planning:

Minimizing aircraft emissions. Transportation Research Part C: Emerging Technologies, 79,

pp.224-241.

García, J., Berlanga, A., Molina, J.M. and Casar, J.R., 2005. Optimization of airport ground

operations integrating genetic and dynamic flow management algorithms. AI

Communications, 18(2), pp.143-164.

Genç, H.M., Erol, O.K., Eksin, İ., Berber, M.F. and Güleryüz, B.O., 2012. A stochastic

neighborhood search approach for airport gate assignment problem. Expert Systems with

Applications, 39(1), pp.316-327.

Gotteland, J.B., Durand, N., Alliot, J.M. and Page, E., 2001, December. Aircraft ground

traffic optimization. In ATM 2001, 4th USA/Europe Air Traffic Management Research and

Development Seminar.

Gotteland, J.B., Durand, N. and Alliot, J.M., 2003a, June. Handling CFMU slots in busy

airports. In ATM 2003, 5th USA/Europe Air Traffic Management Research and Development

Seminar.

Gotteland, J.B. and Durand, N., 2003b, December. Genetic algorithms applied to airport

ground traffic optimization. In Evolutionary Computation, 2003. CEC'03. The 2003

Congress on (Vol. 1, pp. 544-551). IEEE.

Guclu, O.E. and Cetek, C., 2013. Optimization of Aircraft Taxi Movements and Gate

Allocation using Hybrid Dynamic Gate Assignment. In Proceedings of the Multidisciplinary

Academic Conference, p1

Guclu, O.E. and Cetek, C., 2017. Analysis of aircraft ground traffic flow and gate utilisation

using a hybrid dynamic gate and taxiway assignment algorithm. The Aeronautical Journal,

121(1240), pp.721-745.

Gupta, P., Subramanian, H. and Pant, R.S., 2010a. Generation of optimized routes and

schedules for surface movement of aircraft on taxiways. In AIAA ATIO/ISSMO Conference,

Fort Worth, TX, USA.

Gupta, G., Malik, W. and Jung, Y., 2010b, August. Incorporating active runway crossings in

airport departure scheduling. In AIAA Guidance, Navigation and Control Conference (pp. 2-

5).

Haghani, A. and Chen, M.C., 1998. Optimizing gate assignments at airport terminals.

Transportation Research Part A: Policy and Practice, 32(6), pp.437-454.

203

Hayashi, M., Hoang, T., Jung, Y.C., Malik, W., Lee, H. and Dulchinos, V.L., 2015.

Evaluation of Pushback Decision-Support Tool Concept for Charlotte Douglas International

Airport Ramp Operations. Eleventh USA/Europe Air Traffic Management Research and

Development Seminar (ATM2015)

Herrero, J.G., Berlanga, A., Molina, J.M. and Casar, J.R., 2005. Methods for operations

planning in airport decision support systems. Applied Intelligence, 22(3), pp.183-206.

Hu, X.B. and Di Paolo, E., 2007, September. An efficient genetic algorithm with uniform

crossover for the multi-objective airport gate assignment problem. In Evolutionary

Computation, 2007. CEC 2007. IEEE Congress on (pp. 55-62). IEEE.

Idris, H., Clarke, J.P., Bhuva, R. and Kang, L., 2002. Queuing model for taxi-out time

estimation. Air Traffic Control Quarterly, 10(1), pp.1-22.

Jordan, R., Ishutkina, M.A. and Reynolds, T.G., 2010, October. A statistical learning

approach to the modeling of aircraft taxi time. In Digital Avionics Systems Conference

(DASC), 2010 IEEE/AIAA 29th (pp. 1-B). IEEE.

Jung, Y., Hoang, T., Montoya, J., Gupta, G., Malik, W., Tobias, L. and Wang, H., 2011, June.

Performance evaluation of a surface traffic management tool for Dallas/Fort Worth

International Airport. In Ninth USA/Europe Air Traffic Management Research and

Development Seminar (pp. 1-10).

Karapetyan, D., Atkin, J.A., Parkes, A.J. and Castro-Gutierrez, J., 2017. Lessons from

building an automated pre-departure sequencer for airports. Annals of Operations Research,

252(2), pp.435-453.

Keith, G., Richards, A. and Sharma, S., 2008, August. Optimization of taxiway routing and

runway scheduling. In Proceedings of the AIAA Guidance, Navigation and Control

Conference, Honolulu, Hawaii, USA.

Kim, S.H., Feron, E. and Clarke, J.P., 2009, August. Assigning gates by resolving physical

conflicts. In AIAA Guidance, Navigation, and Control Conference (p. 5648).

Kim, S.H., Feron, E. and Clarke, J.P., 2010, August. Airport gate assignment that minimizes

passenger flow in terminals and aircraft congestion on ramps. In Proceedings of the AIAA

Guidance, Navigation, and Control Conference, Toronto, Canada (Vol. 2, pp. 1226-1238).

Kim, S.H. and Feron, E., 2014. Impact of gate assignment on departure metering. IEEE

Transactions on Intelligent Transportation Systems, 15(2), pp.699-709.

204

Kistler, M.S. and Gupta, G., 2009, September. Relationship between airport efficiency and

surface traffic. In Proceedings of the 9th AIAA Aviation Technology, Integration, and

Operations Conference, Hilton Head, SC, USA.

Kjenstad, D., Mannino, C., Schittekat, P. and Smedsrud, M., 2013a, April. Integrated surface

and departure management at airports by optimization. In Modeling, Simulation and Applied

Optimization (ICMSAO), 2013 5th International Conference on (pp. 1-5). IEEE.

Kjenstad, D., Mannino, C., Nordlander, T.E., Schittekat, P. and Smedsrud, M., 2013b.

Optimizing AMAN-SMAN-DMAN at Hamburg and Arlanda airport. Proceedings of the

SID, Stockholm.

Kumar, P. and Bierlaire, M., 2011. Multi-objective airport gate assignment problem. In Swiss

Transport Research Conference, Monte Verita, Switzerland.

Kumar, P. and Bierlaire, M., 2014. Multi‐objective airport gate assignment problem in

planning and operations. Journal of advanced transportation, 48(7), pp.902-926.

Lee, H. and Balakrishnan, H., 2012, October. A comparison of two optimization approaches

for airport taxiway and runway scheduling. In Digital Avionics Systems Conference (DASC),

2012 IEEE/AIAA 31st (pp. 4E1-1). IEEE.

Leese, R. A., Craig, A., Ketzscer, R., Noble, S. D., Parrott, K., Preater, J., Wilson, R. E., &

Wood, D. A. (2001). The sequencing of aircraft departures. In 40th European study group

with industry, Keele.

Lesire, C., 2009. Automatic planning of ground traffic. In AIAA Aerospace Sciences Meeting

(ASM'09). Orlando, USA.

Lesire, C., 2010, August. An Iterative A* Algorithm for Planning of Airport Ground

Movements. In ECAI (pp. 413-418).

Li, L., Clarke, J.P., Chien, H.H.C. and Melconian, T., 2009, October. A probabilistic

decision-making model for runway configuration planning under stochastic wind conditions.

In Digital Avionics Systems Conference, 2009. DASC'09. IEEE/AIAA 28th(pp. 3-A). IEEE.

Lim, A., Rodrigues, B. and Zhu, Y., 2005. Airport gate scheduling with time windows.

Artificial Intelligence Review, 24(1), pp.5-31.

Mangoubi, R.S. and Mathaisel, D.F., 1985. Optimizing gate assignments at airport terminals.

Transportation Science, 19(2), pp.173-188.

Marín, A.G., 2006. Airport management: taxi planning. Annals of Operations Research,

143(1), pp.191-202.

205

Marín, A.G. and Codina, E., 2008. Network design: taxi planning. Annals of Operations

Research, 157(1), pp.135-151.

Marín, A.G., 2013. Airport taxi planning: Lagrangian decomposition. Journal of Advanced

Transportation, 47(4), pp.461-474.

Marinescu, A., Sharples, S., Campbell Ritchie, A., Sanchez Lopez, T., McDowell, M. and

Morvan, H., 2017. Physiological parameter response to variation of mental workload. Human

Factors.

Mori, R., 2010. Modeling of aircraft surface traffic flow at congested airport using cellular

automata. In Proceedings of the 4th International Conference on Research in Air

Transportation (ICRAT), Budapest, Hungary (pp. 139-145).

NASA 2017. X-Plane Communication Toolbox (XPC), accessed 29 September 2017

<https://software.nasa.gov/software/ARC-17185-1>

Neuman, U.M. and Atkin, J.A., 2013, September. Airport gate assignment considering

ground movement. In International Conference on Computational Logistics (pp. 184-198).

Springer, Berlin, Heidelberg.

Neuman, U.M., 2015. Modelling and analysis of real world airport gate allocation problem

(Doctoral dissertation, University of Nottingham).

Nikoleris, T., Gupta, G. and Kistler, M., 2011. Detailed estimation of fuel consumption and

emissions during aircraft taxi operations at Dallas/Fort Worth International Airport.

Transportation Research Part D: Transport and Environment, 16(4), pp.302-308.

Nikulin, Y. and Drexl, A., 2010. Theoretical aspects of multicriteria flight gate scheduling:

deterministic and fuzzy models. Journal of Scheduling, 13(3), pp.261-280.

Paternostro, S., Moore, T., Hill, C., Atkin, J. and Morvan, H.P., 2016. Evaluation of ARAIM

Performance on Predicted Aircraft Trajectories. Proceedings of ION/IEEE PLANS.

Pesic, B., Durand, N. and Alliot, J.M., 2001, July. Aircraft ground traffic optimisation using

a genetic algorithm. In Proceedings of the 3rd Annual Conference on Genetic and

Evolutionary Computation (pp. 1397-1404). Morgan Kaufmann Publishers Inc.

Pina, P. and De Pablo, J.M., 2005. Benefits obtained from the estimation and distribution of

realistic taxi times. In ATM R&D Seminar.

Psaraftis, H.N., 1980. A dynamic programming approach for sequencing groups of identical

jobs. Operations Research, 28(6), pp.1347-1359.

206

Rathinam, S., Montoya, J. and Jung, Y., 2008, September. An optimization model for

reducing aircraft taxi times at the Dallas Fort Worth International Airport. In 26th

International Congress of the Aeronautical Sciences (ICAS) (pp. 14-19).

Rappaport, D.B., Yu, P., Griffin, K. and Daviau, C., 2009, September. Quantitative analysis

of uncertainty in airport surface operations. In Proceedings of the AIAA aviation technology,

integration, and operations conference.

Ravizza, S. and Atkin, J.A., 2011. Exploration of the ordering for a sequential airport ground

movement algorithm. Tech. Rep. 1543, University of Nottingham, UK.

Ravizza, S., Atkin, J.A., Maathuis, M.H. and Burke, E.K., 2013a. A combined statistical

approach and ground movement model for improving taxi time estimations at airports.

Journal of the Operational Research Society, 64(9), pp.1347-1360.

Ravizza, S., Chen, J., Atkin, J.A., Burke, E.K. and Stewart, P., 2013b. The trade-off between

taxi time and fuel consumption in airport ground movement. Public Transport, 5(1-2), pp.25-

40.

Ravizza, S., 2013c. Enhancing decision support systems for airport ground movement

(Doctoral dissertation, University of Nottingham).

Ravizza, S., Atkin, J.A. and Burke, E.K., 2014. A more realistic approach for airport ground

movement optimisation with stand holding. Journal of Scheduling, 17(5), pp.507-520.

Roling, P.C. and Visser, H.G., 2008. Optimal airport surface traffic planning using mixed-

integer linear programming. International Journal of Aerospace Engineering, 2008(1), p.1.

Roling, P., 2009, September. Airport surface traffic planning optimization: a case study of

Amsterdam Airport Schiphol. In Proceedings of the 9th AIAA Aviation Technology,

Integration, and Operations Conference (ATIO).

Roling, P.C., 2011. TPMagic, a universal airport surface traffic planning analysis and

optimization tool. In 11th AIAA Aviation Technology, Integration, and Operations (ATIO)

Conference, including the AIA, Virginia Beach, VA, USA, 20-22 September 2011, AIAA 2011-

7006. American Institute of Aeronautics and Astronautics (AIAA).

SESAR. 2015. The Roadmap for Delivering High Performing Aviation for Europe. European

ATM Master Plan. [Online]. Available: https://ec.europa.eu/transport/sites/transport/files/

modes/air/sesar/doc/eu-atm-master-plan-2015.pdf

Schaijk, O.R. and Visser, H.G., 2017. Robust flight-to-gate assignment using flight presence

probabilities. Transportation Planning and Technology, 40(8), pp.928-945.

https://ec.europa.eu/transport/sites/transport/files/modes/air/sesar/doc/eu-atm-master-plan-2015.pdf
https://ec.europa.eu/transport/sites/transport/files/modes/air/sesar/doc/eu-atm-master-plan-2015.pdf

207

Simaiakis, I. and Balakrishnan, H., 2010. Impact of congestion on taxi times, fuel burn, and

emissions at major airports. Transportation Research Record: Journal of the Transportation

Research Board, (2184), pp.22-30.

Smeltink, J.W. and Soomer, M.J., de Waal, P.R. and van der Mei, R.D., 2004. An

Optimisation Model for Airport Taxi Scheduling. Elsevier Science.

Soomer, M.J. and Koole, G.M., 2008. Fairness in the aircraft landing problem. Proceedings

of the Anna Valicek competition.

Srivastava, A., 2011, October. Improving departure taxi time predictions using ASDE-X

surveillance data. In Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA

30th (pp. 2B5-1). IEEE.

Stenzel, B., 2008. Online disjoint vehicle routing with application to AGV routing. (Doctoral

dissertation, Technical University of Berlin, Germany).

Tang, C.H., Yan, S. and Hou, Y.Z., 2010. A gate reassignment framework for real time flight

delays. 4OR: A Quarterly Journal of Operations Research, 8(3), pp.299-318.

Tavakkoli-Moghaddam, R., Yaghoubi-Panah, M. and Radmehr, F., 2012. Scheduling the

sequence of aircraft landings for a single runway using a fuzzy programming approach.

Journal of Air Transport Management, 25, pp.15-18.

Tu, Y., Ball, M.O. and Jank, W.S., 2008. Estimating flight departure delay distributions—a

statistical approach with long-term trend and short-term pattern. Journal of the American

Statistical Association, 103(481), pp.112-125.

Van Velthuizen, M.A.R., 1997. Taxi planning optimization using mixed integer

programming. Delft University of Technology, Faculty of Aerospace Engineering,

memorandum m-799.

Weiszer, M., Chen, J., Ravizza, S., Atkin, J. and Stewart, P., 2014, July. A heuristic approach

to greener airport ground movement. In Evolutionary Computation (CEC), 2014 IEEE

Congress on (pp. 3280-3286). IEEE.

Weiszer, M., Chen, J. and Stewart, P., 2015a. A real-time active routing approach via a

database for airport surface movement. Transportation Research Part C: Emerging

Technologies, 58, pp.127-145.

Weiszer, M., Chen, J. and Locatelli, G., 2015b. An integrated optimisation approach to airport

ground operations to foster sustainability in the aviation sector. Applied Energy, 157, pp.567-

582.

208

Weiszer, M., Chen, J. and Stewart, P., 2015c, September. Preference-based evolutionary

algorithm for airport runway scheduling and ground movement optimisation. In Intelligent

Transportation Systems (ITSC), 2015 IEEE 18th International Conference on (pp. 2078-

2083). IEEE.

Wood, E., Herndon, S., Miake-Lye, R., Nelson, D., 2008. Aircraft and Airport-Related

Hazardous Air Pollutants: Research Needs and Analysis. Transportation Research Board 87th

Annual Meeting, Washington, DC.

Xu, J. and Bailey, G., 2001, January. The airport gate assignment problem: mathematical

model and a tabu search algorithm. In System Sciences, 2001. Proceedings of the 34th Annual

Hawaii International Conference on (pp. 10-pp). IEEE.

Xu, L., Wang, F. and Xu, Z., 2011, January. A robust approach for the airport gate

assignment. In International Forum on Shipping, Ports and Airports (IFSPA) (p. 15).

Yan, S. and Huo, C.M., 2001. Optimization of multiple objective gate assignments.

Transportation Research Part A: Policy and Practice, 35(5), pp.413-432.

Yin, K., Tian, C., Wang, B. and Quadrifoglio, L., 2012. Analysis of Taxiway Aircraft Traffic

at George Bush Intercontinental Airport, Houston, Texas. Transportation Research Record:

Journal of the Transportation Research Board, (2266), pp.85-94.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 Aims and Scopes
	1.3 Contributions of this Thesis
	1.4 Publications and Talks
	1.5 Non-disclosure Agreement
	1.6 Collaborations with Sintef
	1.7 INNOVATE and the Virtual and Physical Demonstrator
	1.8 Structure of the Thesis

	2 Background and Related Work
	2.1 Introduction
	2.1.1 Basic terms

	2.2 The Ground Movement Problem
	2.2.1 Constraints
	2.2.2 Objectives

	2.3 Ground Movement Problem Solutions
	2.3.1 Genetic Algorithms
	2.3.2 Mixed Integer Linear Programming
	2.3.3 Other Solution Methods
	2.3.4 Comparison of the approaches

	2.4 Pushback Process
	2.5 The Gate Assignment Problem
	2.5.1 Constraints
	2.5.2 Objectives
	2.5.3 Gate Assignment Problem Solutions
	2.5.4 Integration with the Ground Movement Problem

	2.6 Runway Scheduling
	2.6.1 Constraints
	2.6.2 Objectives
	2.6.3 Previous work on runway scheduling
	2.6.4 Integration with Ground Movement

	2.7 Taxi time prediction
	2.8 Conclusions

	3 The QPPTW algorithm, Datasets and Airports
	3.1 Introduction
	3.2 The QPPTW Algorithm
	3.2.1 Introduction of the QPPTW Algorithm and Benefits of Using this Methodology
	3.2.2 Notation and Definitions
	3.2.3 Definitions of Key Concepts
	3.2.4 Explaining the QPPTW Algorithm

	3.3 Airports and Graphs
	3.3.1 Zurich Airport
	3.3.2 Stockholm Arlanda Airport
	3.3.3 Manchester Airport

	3.4 Conclusions

	4 Pushback Delays on the Airport Ground Movement Problem
	4.1 Introduction
	4.2 The Pushback Process
	4.2.1 Previous Research on Pushback Process

	4.3 Integrating the Pushback Process to the Routing Process
	4.3.1 Notation and Definitions
	4.3.2 The QPPTW Algorithm with Pushback Process
	4.3.3 Developed QPPTW Models
	4.3.4 Calculating the Delays
	4.3.5 Finding the Minimum Taxi Time

	4.4 MILP Routing Model with the Pushback Process
	4.4.1 Notation and Definitions
	4.4.2 Developed Model
	4.4.3 Constraints
	4.4.4 Objective Function

	4.5 Comparison and Insights
	4.5.1 Experimental Set-up
	4.5.2 Comparison Results

	4.6 Comparison of the two Methodologies
	4.6.1 Comparison of two Methodologies when Arrivals are Included

	4.7 Conclusions

	5 Pushback Process with Stand Holding and the Effects of Prioritisation Levels for Arrivals or Departures
	5.1 Introduction
	5.2 Integrating the Stand Holding Process with the Pushback Process
	5.2.1 Notation and Definitions
	5.2.2 The QPPTW Algorithm with Pushback Process and Stand Holding

	5.3 The Effects of the Pushback Process with Stand Holding
	5.4 Priority Between Arrivals and Departures
	5.4.1 Importance of the Consideration Order
	5.4.2 Trade-off Results After Prioritising Departures

	5.5 Mixed Prioritisation
	5.5.1 Mixed Prioritisation Results
	5.5.2 Reasons that Delays Happen
	5.5.3 Further Investigation of Varying the Prioritisation of Departures against Arrivals

	5.6 Conclusions

	6 The Effects of Airport Layout and Re-routing on Taxiing
	6.1 Introduction
	6.2 Problem Description
	6.3 Airport Layouts
	6.3.1 Airports - Similarities and Differences
	6.3.2 New Airport Layouts
	6.3.3 Using the Same Data in Different Layouts
	6.3.4 Investigating the Chosen Path

	6.4 Results
	6.4.1 Explaining why Delays Happen
	6.4.2 Comparing Zurich and Arlanda Airports
	6.4.3 Further Investigation of Different Airport Layouts

	6.5 Conclusions

	7 Considering the Gate Allocation Process
	7.1 Introduction
	7.2 Previous Work on Integration with the Ground Movement Problem
	7.3 The Gate Allocation Problem
	7.3.1 Definitions of the Variables for the Gate Allocation Model
	7.3.2 Constraints
	7.3.3 Objective Function
	7.3.4 Effects on the Ground Movement Process

	7.4 Solving the Ground Movement Problem and Finding Conflicting Aircraft
	7.4.1 Definitions of the Variables
	7.4.2 Finding the Conflicting Combinations of Aircraft
	7.4.3 The Algorithm for Finding the Conflicting Combinations of Aircraft

	7.5 Implementation Issues
	7.5.1 Adjusting the QPPTW Algorithm for Solving Side Problems and Running Combinations of Aircraft for Potential Conflicts
	7.5.2 Testing Combinations of Aircraft for Potential Conflicts

	7.6 The Integration Framework
	7.6.1 Definitions of the Variables
	7.6.2 The Feedback Loop
	7.6.3 Adding the Ground Movement Feedback to the Gate Allocation Model
	7.6.4 The Stopping Condition

	7.7 Executing the Integrated Model
	7.7.1 Experimental Settings
	7.7.2 Results

	7.8 Buffer Time Between Aircraft
	7.8.1 Implementing the Buffer Time Between Aircraft
	7.8.2 The Impact of Adding a Buffer Time Between Aircraft

	7.9 Conclusions

	8 An A* Approach for the Quickest Path Problem with Time Windows
	8.1 Introduction
	8.2 The A* Approach and Overview of Implementations
	8.2.1 Previous Work
	8.2.2 A Heuristic Estimation of the Cost
	8.2.3 Definitions of the Variables
	8.2.4 The ASQPPTW Algorithm
	8.2.5 The Differences Between the Departing and Arriving Process

	8.3 Experimental Settings
	8.4 Execution Times for Each Algorithm
	8.4.1 Solving the Full Problem
	8.4.2 Solving Arrivals and Departures Separately
	8.4.3 Solving the Departures without the Heuristic for the Pushback Process

	8.5 Investigating the Expansion of the two Algorithms
	8.5.1 The Number of Labels that are Generated with Each Algorithm
	8.5.2 Tests on a Different Airport Layout
	8.5.3 Prioritising Arrivals
	8.5.4 Traffic and ASQPPTW Performance
	8.5.5 Label Generation and Airport Characteristics
	8.5.6 Examination of the Heuristic

	8.6 Conclusions

	9 Integration of the Ground Movement Problem in a Flight Simulator Cockpit
	9.1 Introduction
	9.2 Advanced Receiver Autonomous Integrity Monitoring
	9.3 Solving the Ground Movement Problem and Applying the Solution
	9.3.1 Using the GPS Locations of the Aircraft to Find their Position on the Graph
	9.3.2 Real Time Navigation of an Aircraft on the Ground

	9.4 Physiological Monitoring of Human Performance
	9.5 The Physical Demonstrator
	9.6 Conclusions

	10 Conclusions
	10.1 General Summary
	10.2 Key Results
	10.3 Future Work

	References

