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ABSTRACT 

 

 Computer aided molecular design (CAMD) is a powerful technique to 

design molecules or chemical mixtures that fulfil a set of desirable target 

properties as specified by users. Molecular physical and thermodynamic 

properties are selected as the target properties to ensure that the designed 

molecules can achieve the property functionalities. However, the aspects of 

safety and health are not strongly emphasised as design objectives in 

many CAMD problems. In order to ensure that the synthesised molecule 

does not cause much harm and health-related risks to the consumers, it is 

critical to integrate both safety and health aspects as design factors in the 

current CAMD approaches. 

 

 The main focus of this research is to develop a novel chemical 

product design methodology that integrates the concept of inherent safety 

and occupational health aspects in a CAMD framework. The generated 

molecules that are optimised with respect to the target properties must be 

evaluated in terms of their safety and health performance. The assessment 

is conducted by safety and health-related parameters/sub-indexes that 

have significant adverse impact on both aspects. This proposed approach 

ensures that a product that possesses the desirable properties, and at the 

same time meets the safety and health criteria, is produced. 

 

 The next focus of this research is to generate optimal molecules 

with the desired functionalities and favourable safety and health attributes 

in a single-stage CAMD framework. Besides target properties, the concept 

of inherent safety and health is also considered as design objective to 

ensure that the synthesised molecules are simultaneously optimised with 
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regards to both criteria. Fuzzy optimisation approach is applied to optimise 

these two principal design criteria in this work. 

 

 As molecular properties are utilised as the parameters to examine 

the safety and health features of the molecules, these properties are often 

estimated through property prediction models. This research also focuses 

on the management of uncertainty resulted from properties used in the 

sub-indexes. The quantification of uncertainty helps to revise the safety 

and health measurement so that it can better reflect the inherent hazard 

level of the molecules.  

 

 The fourth focus of this research is to address the limitations 

present in the current method of molecular hazard quantification. The 

enhancement is carried out by adopting the ordered weighted averaging 

(OWA) operator method with the analytic hierarchy process (AHP) 

approach in the safety and health assessment. Two case studies on solvent 

design are considered to demonstrate the presented methodologies.  
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λI Degree of satisfaction for total index score of molecule 

λmax Maximum eigenvalue in AHP 
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CHAPTER 1 

 

INTRODUCTION 

 

 When dealing with product and process plant design, several 

decisions have to be considered during the research and development 

stage. These include determining the composition of chemical mixtures to 

achieve the desired product properties, constructing plant flowsheets and 

identifying the suitable operating conditions of the process (Seider et al., 

2004). In a conventional design problem, the engineering technical aspects 

and economic factors are often the two key components considered as the 

decision-making criteria. Over the past few decades, many chemical 

processing industries have widely adopted the concept of sustainability 

development. Different aspects of sustainability such as environment, 

health and safety have received increasing attention in process plant 

development and design (Rathnayaka et al., 2014). Nowadays, process 

safety is regarded as a vital decision-making component especially in the 

chemical and petrochemical industries (Ee et al., 2015). This is due to the 

constant increasing scale of industrial operations and growing amount of 

industrial accidents reported in the process industries (Khan and Amyotte, 

2004). Most accidents have occurred due to the mishandling of hazardous 

materials, combustible dusts and reactive chemicals (Chen et al., 2015). 

For instance, the Bhopal disaster, which was considered as one of the 

worst chemical disasters in history, has resulted in at least 3,800 fatalities 

immediately after the incident. The cause was due to the leakage of more 

than 40 tons of methyl isocyanate (MIC) gas, which is extremely toxic to 

living beings, from the pesticide plant (Broughton, 2005). Besides, the 

1974 catastrophic explosion in a chemical plant close to the village of 



 

2 

 

Flixborough also served as an initiator for thorough reviews on methods to 

enhance the safety factors in the chemical process industry (Hansson, 

2010). 

 

 Besides process safety, another major concern in process industries 

is the occupational health of the workers. As reported by the International 

Labour Organisation (ILO), over two million people around the world die 

from work-related diseases annually while occupational accidents have 

resulted in three hundred thousand fatalities yearly. Since more death tolls 

have been caused by work-related illness, the importance of occupational 

health in the industry must be treated as equally significant as process 

safety in process plants. One way to eliminate or minimise hazards in the 

plant is to operate the process with milder conditions and substitute those 

hazardous chemicals with less harmful ones. Any unintentional release or 

leakage of safer chemicals will not cause much adverse impacts to the 

people and environment. This concept of ‘embedding’ safety by eliminating 

or minimising process hazards is known as inherent safety, which was first 

introduced by Trevor Kletz (Kletz, 1978). Inherent safety design (ISD) 

serves differently compared to conventional safety concept as it strives to 

eliminate or minimise hazards through the implementation of inherent 

safety principles in plant design. The concept of inherent safety also 

assisted the development of a new health assessment concept, known as 

inherent occupational health (Hassim and Edwards, 2006). Both inherent 

safety and inherent occupational health share common key principles that 

include avoiding the use of hazardous materials and operating simpler 

processes with milder process conditions (Kletz, 1984; Hassim and Hurme, 

2010a). The former principle serves as the main motivation of this 

research, thus there is a need to incorporate the inherent safety and 
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occupational health assessment while deciding on the use of less harmful 

chemicals in the process. 

 

1.1 Inherent Safety and Occupational Health 

 Conventionally, plant hazards are managed through the 

establishment of hazard identification and analysis techniques such as 

failure modes and effect analysis (FMEA), quantitative risk analysis (QRA) 

and hazard and operability analysis (HAZOP) (Palaniappan et al., 2002). 

These techniques assist in controlling hazard in order to minimise the 

consequences of a possible accident through the installation of add-on 

technological safety barriers, such as emergency shutoff valves, automatic 

interlocking devices, and flammable gas detector (Kang et al., 2016), 

which act as parts of layers of protection (LOP). However, the installation 

of add-on barriers often complicates plant design and further increases the 

capital costs (Srinivasan and Nhan, 2008). In fact, several past accidents 

such as the Flixborough (1974) and Piper Alpha (1987) catastrophes have 

occurred due to the failure of LOP in controlling hazards. This is because 

hazards remain present in the system since safety barriers do not eliminate 

them (Abidin et al., 2016). Rather than controlling hazards, the alternative 

to address these safety concerns is by eliminating them at their sources 

(Mansfield and Hawksley, 1998). After the Flixborough disaster in 1974, 

Trevor Kletz has presented a lecture titled “What You Don’t Have, Can’t 

Leak,” which was deemed the first time that the concept of ISD in chemical 

processes has been formally introduced. Rather than applying the 

traditional safety concept to manage hazard, Kletz proposed that the 

process should be modified in a manner that hazard can be completely 

eliminated or its magnitude and likelihood of occurrence can be 

significantly minimised. ISD is best employed during the early stage of 
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design, particularly the research and development phase, when decision-

making on process concept and reaction chemistry are made. This is due to 

the great deal of freedom in the selection of chemistry, solvents, raw 

materials, intermediates, unit operations, plant location and process 

parameters in early stage. Hence, it has the greatest potential 

opportunities for impacting the risk profile (Srinivasan and Natarajan, 

2012). As the design progresses to later stages, the opportunities to 

modify the inherent safety of a process decrease as more engineering and 

financial decisions have already been decided in earlier stages (Heikkilä, 

1999). Kletz (1991) has listed the Basic Principles of Inherent Safety, 

which comprise of intensification, substitution, attenuation, simplification, 

etc. The principle of intensification involves minimising the inventory of 

hazardous materials which lowers the magnitude of adverse impact to the 

workers due to leaks. The principle of substitution promotes the 

replacement of hazardous materials with less harmful ones. The principle of 

attenuation proposes the process operations to be conducted under milder 

and less hazardous conditions. Meanwhile, the principle of simplification 

aims to eliminate unnecessary complexity in process design to minimise 

the likelihoods for process error and wrong operation. 

 

 Besides process safety, the concern of occupational health has also 

received much attention even though it is not discussed as extensively as 

process safety. According to the World Health Organization (WHO), 

occupational health strives to improve working conditions and other 

aspects that are related to environment hygiene. Generally, health impacts 

differ from safety impacts in many aspects. The main distinction is, safety 

hazards may result in acute effects, whereas health impacts often deal with 

chronic diseases, due to prolonged exposure. Since the effects of health 

hazards can only be observed after long duration, this has resulted in 
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health-related events to receive much less attention as compared to safety. 

However, more fatalities are reported to be caused by work-related 

diseases than that of industrial accidents (Wenham, 2002). Hence, the 

improvement of occupational health in the industry has the same 

importance as the enhancement of process safety in process plants. This 

has prompted the establishment of inherent occupational health, in which 

the principal goal is to minimise the occupational health hazards arised 

from chemical processes to the workers (Hassim and Hurme, 2010a). 

 

 As mentioned previously, mishandling of hazardous materials is one 

of the key factors that result in industrial tragedy. One of the mutual aims 

and principles of both inherent safety and inherent occupational health is to 

promote the substitution of hazardous materials used in the plants with 

less dangerous ones. For instance, a highly toxic chemical involved in the 

process can be substituted with a less or non-toxic chemical. However, it is 

crucial that the latter chemical must demonstrate compatible product 

performance similar to that of the former. The potentially safer chemical 

can be a conventionally used chemical or a new chemical which has not 

been commercially available. An approach known as the computer-aided 

molecular design (CAMD) technique can be applied for the exploration and 

design of molecules that possess desirable functionalities and 

characteristics. The idea of integrating inherent safety and occupational 

health into CAMD will serve as the core objective of this research work. 

 

1.2 Computer-Aided Molecular Design (CAMD) 

 Traditionally, the exploration for new chemicals often couples with 

trial and error approach where numerous molecular compounds are 

synthesised in the laboratory. The properties of the generated compounds 
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are then examined based on the analytical results to validate whether the 

desired requirements are attained. However, this trial-and-error bottom-up 

method does not perform effectively in the present increasingly demanding 

global business environment as it is time-consuming and costly 

(Gebreslassie and Diwekar, 2015). On the other hand, another promising 

approach known as the chemical product design technique can greatly 

assist in the search of a potential chemical candidate with reduced time 

and effort (Duvedi and Achenie, 1996). In order to develop a chemical 

product that satisfies a specified design problem, Cussler and Moggridge 

(2001) have proposed four primary steps in their design process: define 

needs, generate ideas to fulfil needs, select among ideas, and manufacture 

final chemical product. According to Achenie et al. (2003), the second and 

third steps of the chemical product design process by Cussler and 

Moggridge (2001) can be combined to represent a molecular design 

problem. In order to solve the problem, numerous methods such as 

empirical trial and error approaches, mathematical programming, and 

hybrid techniques are often utilised. In the case where appropriate 

property models are available, the molecular design problem can be 

converted into a CAMD problem, which is a computer-aided based 

procedure employing property models. A CAMD problem is also equivalent 

to a ‘reverse property prediction’ problem, in which the product needs are 

given in terms of physicochemical properties, but the chemical identities 

(molecular or atomic structure) or their mixture (compositions) are 

unknown. In order to determine the chemical structures that best fulfil the 

needs, the reverse engineering approach coupling with CAMD technique 

(Heintz et al., 2014a) can be adequately employed. CAMD has been 

recognised as a powerful tool to identify molecules having a desirable set 

of physicochemical properties (Harper and Gani, 2000). Existing databases 

comprising of many chemical groups or molecular building blocks are 
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utilised to explore a large amount of conventional or novel molecular 

structures that can satisfy the product needs of interest. As the chemical 

identities or their mixture are unknown, property models may be employed 

in a generate and test solution approach by coupling with CAMD where the 

property prediction problem is solved iteratively to test the generated 

alternatives (Gani, 2004a). The problem can be formulated using a 

mathematical programming model to generate the optimal solution (Churi 

and Achenie, 1996). With this advantage, CAMD can be extensively used 

for the design of economically and sustainability superior chemical agents 

for industrial or other purposes. In this research, CAMD technique is 

employed to synthesise molecules that do not only achieve the specified 

target properties, but also display favourable safety and health 

characteristics. The concept of inherent safety and occupational health is 

integrated into the CAMD framework to serve as an assessment tool to 

ensure that molecules with high performance in terms of safety, health and 

product functionality are generated. 

 

1.3 Research Gaps 

 In CAMD problems, the development of a product is based on the 

needs of the customers. These needs are expressed in terms of product 

specifications, which are often represented by the physicochemical 

properties. The molecules generated must meet these target properties to 

ensure that the synthesised molecules can function and behave in the 

desired manner. Over the decades, the aspects of safety and health have 

been included as design constraints in molecular design problem. Molecules 

that do not meet the safety and health constraints are therefore screened 

out. However, the implementation of such constraints may suppress the 

generation of molecules which perform dominantly with respect to product 
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functionality, but are excluded due to not complying with the imposed 

constraints. There exists this major research gap in which a CAMD 

framework should also conduct a trade-off between the advantages in the 

performance of the excluded molecules and their safety attributes (Lampe 

et al., 2015). Instead of solving the CAMD problem with respect to only 

optimising the targeted functional properties, the safety and health aspects 

of the molecules must also receive the same emphasis. Hence, there exists 

a necessity to integrate safety and health aspects as design objectives 

along with target properties to ensure that the designed molecule is 

simultaneously optimised with respect to safety, health and functional 

performance. Over the years, chemical industries have played a crucial role 

in promoting sustainable development due to the possible impact on the 

environment, health and safety of its product and process activities (Heintz 

et al., 2014b). Mansfield and Hawksley (1998) highlighted the importance 

of integrating inherent safety, health and environment (SHE), rather than 

regarding each of these three factors in isolation as they are all 

interrelated. 

 

 In order to assess the level of inherent SHE of a process route, 

index-based metrics are often applied to serve as indicators for the 

evaluation (Edwards and Lawrence, 1993; Cave and Edwards, 1997; 

Heikkilä, 1999; Hassim and Hurme, 2010a). However, most of the 

established inherent indexes are developed to examine a single aspect; 

either inherent safety, inherent occupational health or inherent 

environmental hazard in a process route. Nevertheless, the methodology 

used to develop these indexes is similar, in which parameters that might 

significantly contribute to adverse safety, health or environmental impacts 

are first identified. However, not all identified parameters can be included 

in the indexes as the selection of parameters is often confined by the 
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availability of information during early design stage. The chosen 

parameters can be categorised into two classes, namely parameters that 

are linked to the chemicals (e.g. molecular physical and thermodynamic 

properties) and parameters that are associated to the process conditions. 

Each parameter is also known as a sub-index, which is assigned with a 

sub-index value or penalty score depending on the degree of potential 

hazards or the probability of exposure to the hazards. Most inherent safety 

and occupational health indexes are rather straightforward to be applied, 

as the inherent safety or health level of a route can be quantified by the 

summation of sub-index values of all contributing sub-indexes. The route 

with a lower sum is deemed to possess lower risk. On the other hand, 

inherent environmental indexes are more complicated as additional 

calculations are needed in order to determine the overall index value. 

Therefore, this research work only focuses on the application of inherent 

safety and occupational health indexes. Since most inherent safety and 

occupational health indexes are presented for process route design and 

selection, sub-indexes related to process conditions are not suitable to be 

incorporated in a molecular design problem. Hence, only chemical-related 

sub-indexes are considered, and they are generally assessed by 

physicochemical properties. Most CAMD methods have depended on the 

group contribution based property prediction methods to estimate the 

properties of molecules. These property prediction methods are rather 

user-friendly, and they have acceptable accuracy in estimating properties 

of simple-structured molecules (Harper et al., 1999). Thus, chemical-

related sub-indexes can be integrated into a CAMD problem to evaluate the 

safety and health performance of the generated molecules. 

 

 The application of property prediction methods in calculating 

properties offers the advantage of swift property estimation without the 
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need of extensive computational resources. However, the main concern for 

the application of property prediction model is the accuracy of the 

estimated property values may not always be guaranteed as there are 

commonly 5-10% (or higher) of discrepancies between the actual 

experimental values and property predictions (Maranas, 1997). Since the 

sub-index values rely strongly on the property values, thus the accuracy of 

sub-index values assigned to the molecules to quantify their corresponding 

inherent hazard level is contributed by the accuracy and reliability of 

property prediction models. The deviation of predicted value may result in 

the shift of sub-index score to an inaccurate value, thereby incorrectly 

reflecting the inherent hazard level. Hence, there exists this research gap 

where uncertainty resulted from the application of property prediction 

methods must be managed in order to determine the inherent safety and 

health sub-index values with improved accuracy to better represent the 

intrinsic hazard level of the generated molecules under uncertainty 

condition. 

 

 In each sub-index, the hazard level is generally measured by one or 

more physicochemical properties of the molecules. For instance, the sub-

index of volatility is being examined using the normal boiling point, while 

the sub-index of flammability is assessed by both flash point and boiling 

point. All sub-indexes share a common trend, in which the properties are 

divided into multiple sub-ranges, and a single penalty score is then 

assigned to each sub-range. A sub-range with higher risk level receives a 

higher penalty score and vice versa. Through this score allocation method, 

property values that fall within the same sub-range are considered to 

exhibit similar hazard level. At the property boundary which separates two 

adjacent sub-ranges, the penalty score switches abruptly from one value to 

another. The main drawback of this current allocation method is the 
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discontinuity at the boundary, which may distort the comparison of 

alternatives that are near these limits. In order to address this weakness, 

the scorings near the boundary should be smoothened to ensure continuity 

in allocating scorings at all property range. Besides, most inherent safety 

and occupational health indexes presented that the quantification of the 

overall risk level of a process route is conducted by summing up all the 

sub-index values involved in the evaluation. The proposed approach treats 

all sub-indexes to have equal impact to the plant safety and occupational 

health of the workers. However, some sub-indexes may bring about higher 

adverse impact as compared to others. This issue leads to another research 

gap where a systematic procedure must be developed to improve the 

current approach of determining the overall hazard level of molecules by 

introducing weight factor to each sub-index. This ensures that a higher 

impact sub-index is penalised with higher degree, so that a more 

conservative solution can be formulated. 

 

1.4 Scopes of Research 

Based on the problems identified in Section 1.3, the scopes of this research 

work are defined as follow: 

 

1.4.1 Evaluate the safety and health aspects of optimal 

molecules using inherent safety and health 

indexes 

 CAMD technique is employed for designing molecules that meet the 

desirable functionality and attributes, which can be expressed in terms of 

targeted physicochemical properties for which the molecules must fulfil. In 

a CAMD problem, these properties are commonly estimated through group 

contribution based property prediction models, which can be integrated 
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into the mathematical optimisation model. A set of molecules that satisfies 

these target properties is generated by the optimisation model. These 

molecules then undergo performance analysis, mainly focusing on the 

aspects of safety and health to serve as the assessment criteria in order to 

identify the best solution. Some well-established inherent safety and health 

indexes are applied to serve as the evaluation tool, by utilising several 

significant safety and health sub-indexes to measure the molecular 

performance. The safety and health level of each molecule is determined 

and quantified by the total sub-index value allocated to it. The molecules 

are then compared and ranked by their corresponding total index scores, 

which represent the overall hazard level exhibited by the molecules. The 

molecule with the lowest risk level is then selected as the preferable 

solution. 

 

1.4.2 Integrate inherent safety and health aspects into 

chemical product design framework 

 Based on the previous scope in Section 1.4.1, the target properties 

given by physical and thermodynamic properties are usually the key design 

criteria that must be attained in order to satisfy the needs detailed by 

customers. Due to increasing attentions on the concept of sustainability in 

recent decades, the aspects of safety and health are mostly considered as 

design constraints so that molecules that do not meet such criteria are 

screened out. However, the implementation of such constraints may 

suppress the generation of molecules which demonstrate superior 

performance in terms of product functionality, but are eliminated for not 

satisfying the constraints. In this scope, inherent safety and health of the 

molecule are served as the design objectives, along with the targeted 

properties of the molecule. The CAMD problem now becomes a multi-
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objective design problem where molecule has to be optimised in terms of 

target property functionalities and safety and health performance. This 

provides greater flexibility as trade-off between functional performance of 

molecules and their safety and health attributes is considered. Fuzzy 

optimisation is employed to solve this multi-objective optimisation 

problem. To carry out the safety and health assessment, inherent safety 

and health sub-indexes are applied to identify sub-index values that will 

indicate the molecular hazard level. In order to simultaneously determine 

the optimal molecular structure and its corresponding sub-index values, 

disjunctive programming techniques are used to convert the molecular 

physicochemical properties into their respective scores. 

 

1.4.3 Manage uncertainty on the application of property 

prediction in safety and health sub-indexes 

 The allocation of safety and health sub-index scores to the 

molecules is highly dependent on their physicochemical properties. Since 

the identity of the molecules is initially unknown, and the goal of a CAMD 

problem is to identify the optimal molecular structures, property prediction 

methods are commonly coupled in such problem to assist in estimating the 

properties. The accuracy of the scores assigned to the molecules relies 

heavily on the accuracy of the property values as estimated by the 

prediction models. However, it is common that most prediction models 

have 10% or higher discrepancies between the actual experimental values 

and predicted values. The discrepancies may result in the inaccuracy on 

the allocation of scores to the molecules. Thus, uncertainty resulted from 

the application of property prediction models to determine the sub-index 

scores must be managed. The goal is to improve the scorings of safety and 
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health sub-indexes to better reflect the inherent safety and health level of 

different molecules under property prediction uncertainty. 

 

1.4.4 Improve the measurement of safety and health by 

introducing weight factors for sub-index 

prioritisation and smoothing sub-index scores 

 Based on the current inherent safety and health indexes taken from 

literature, each sub-index is measured using single or multiple molecular 

properties, and subjective scaling is employed where properties are first 

divided into a several sub-ranges. Each sub-range is given a single penalty 

score to represent a certain degree of hazard level. A property boundary is 

the point that separates two adjacent sub-ranges, and at this point the 

score switches abruptly from one value to another. Two molecules with 

property values falling within the same sub-range are assigned identical 

penalty score and are both considered to possess similar degree of hazard 

with respect to that particular sub-index. However, when another two 

molecules have property values that are close to one another but are 

separated by the property boundary, they each fall in an adjacent sub-

range, thus resulting in the allocation of different penalty scores to each 

molecule. This scenario brings about the main weakness of this score 

allocation approach, which is the discontinuity in scorings at the boundary. 

In this scope, a modification is made on the scorings at the property 

boundary region by smoothing them to ensure that there is always 

continuity in terms of scorings at any feasible property value. 

 

 Besides, the overall hazard of a molecule is quantified by summing 

all the sub-index values that are involved in assessing the inherent safety 

and health level of the molecules. Through this method, all sub-indexes are 
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considered to have equivalent contribution to the overall adverse safety 

and health impacts. In this scope, weight factor is introduced to each sub-

index to distinguish the level of importance among sub-indexes. A higher 

impact sub-index is given a higher weight to ‘magnify’ the hazardous 

condition of that particular sub-index. One method that can be utilised to 

determine the weight factors is the analytic hierarchy process (AHP), which 

is a structured multi-attribute decision approach. Since weaker-performing 

sub-indexes (higher penalty) are prioritised (given higher weight), this 

approach of determining the overall hazard ensures that the CAMD 

optimisation model is able to generate a more conservative solution with 

regards to safety and health performance. 

 

1.5 Research Objectives 

 The scopes identified in Section 1.4 lead to the objectives of this 

research, and they are shown as follow: 

1. To apply inherent safety and health indexes for evaluating the 

safety and health attributes of optimal molecules generated by 

CAMD techniques. 

2. To integrate safety and health aspects as design objectives in CAMD 

framework with the application of inherent sub-indexes. 

3. To manage uncertainty resulted from property prediction on 

inherent safety and health sub-indexes. 

4. To improve the measurement of molecular safety and health 

performance by introducing weight factors to the sub-indexes and 

smoothing the sub-index scores. 
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1.6 Thesis Outline 

The outline of this thesis is organised as follows. Chapter 2 presents 

the literature review on inherent safety, inherent occupational health, the 

application of inherent indexes, CAMD and its applications, property 

prediction methods employed in CAMD, multi-objective optimisation 

approach, and AHP to manage decision-making problem. Chapter 3 depicts 

the methodology of the four proposed research scopes. The four scopes are 

then demonstrated in Chapters 4 to 7. The first research scope is 

presented in Chapter 4, which is to perform a safety and health 

assessment on the generated optimal molecules with the application of 

safety and health sub-indexes. The second research scope is illustrated in 

Chapter 5, which aims to consider both safety and health aspects as design 

objectives to generate molecules that not only exhibit the desired target 

property functionalities, but also display favourable safety and health 

characteristics. The third research scope is demonstrated in Chapter 6, 

which helps to manage uncertainty resulted from the application of 

property prediction models in the sub-indexes. The fourth research scope is 

proposed in Chapter 7, which smoothens the sub-indexes at the property 

boundary region, and introduces weight factors to all sub-indexes to reflect 

the impact level of different sub-indexes. 

 

1.7 Summary 

 In Chapter 1, the importance of safety and health aspects in process 

plants has been highlighted. Most industrial accidents are resulted by the 

mishandling of hazardous and reactive chemical substances. One way to 

address such issue is to substitute those dangerous chemicals with less 

harmful ones. The search for new replacement chemicals can be conducted 

by the application of CAMD, which is an effective tool to explore suitable 
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chemical candidates that exhibit the desired target properties as specified 

by users. Through CAMD, it is possible to look for existing molecules or 

novel molecular structures that not only demonstrate compatible property 

functionalities similar to those of the substituted hazardous chemicals, but 

also with improved safety and health characteristics. In order to ensure 

that both safety and health aspects are taken into consideration in CAMD, 

the concept of inherent safety and occupational health can be adopted in 

the framework. This concept aims to eliminate or reduce safety and 

occupational-related hazards rather than controlling them. Many inherent 

safety and occupational health indexes have been established to quantify 

and compare hazards in different chemical process routes for the synthesis 

of a specific product. The indexes are comprised of several safety and 

health parameters/sub-indexes, which employ molecular properties to 

measure the degree of potential hazards with respect to different 

attributes. 

 

 As discussed earlier, the first research scope is to utilise chemical-

related sub-indexes to assess the safety and health aspects of the 

molecules generated from CAMD model. This ensures that safer molecules 

with better safety and health characteristics are selected to substitute the 

usage of dangerous chemicals in process plant. The research gaps for the 

management of safety and health criteria in the current state of CAMD are 

highlighted. Most CAMD works implemented safety and health criteria as 

design constraints, hence molecules that do not meet such constraints are 

screened out. The second scope of this research is to conduct a trade-off 

between the property functionalities and the safety and health performance 

of the molecules. As there are several design objectives in the CAMD 

model, fuzzy optimisation formulation can be adequately applied to 

simultaneously optimise all objectives. This ensures that the solutions 
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generated are optimised with respect to functional performance, safety and 

health aspects. 

 

 The method to quantify molecular hazard is by adopting sub-

indexes to assign penalty scores based on the safety and health-related 

properties. As CAMD requires the application of property prediction models 

to estimate molecular properties, this can result in the issue of uncertainty 

when utilising safety and health sub-indexes to evaluate the molecules. 

Therefore, the third research scope is to account for property prediction 

uncertainty in the sub-indexes, so that the sub-index scores can be 

enhanced to better reflect the hazard level exhibited by the molecules. As 

these sub-indexes are developed in such a way that properties are divided 

into multiple sub-ranges with different scorings to represent different 

hazard level, the fourth research scope is to improve the index scaling by 

smoothing the scores at the property boundaries. This modification is 

carried out to address the limitation of the existing scoring approach and 

ensure continuity in terms of scores allocation. Besides, this scope also 

covers the introduction of weight factors to the sub-indexes, so that sub-

indexes with higher impact are prioritised to provide greater contribution to 

the overall hazard level of the molecules. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction 

The core objective of this research work is to present a novel CAMD 

framework by implementing the aspects of safety and health as design 

objectives. This ensures that the CAMD model is able to synthesis 

molecules that fulfil the targeted properties and also exhibit acceptable 

safety and health characteristics. The application of such molecules in 

process plants will minimise the magnitude of harm to the people and 

surrounding community. The concepts of inherent safety and occupational 

health are integrated into the CAMD framework to carry out the molecular 

safety and health evaluation. Section 2.2 discusses the overview of 

inherent safety, while also reviews some of the prominent inherent safety 

indexes in literature. Meanwhile, Section 2.3 examines the background of 

some early health indexes, and also the development of inherent indexes 

specifically on occupational health. Section 2.4 then presents the 

introduction to CAMD, and the application of property prediction methods is 

also discussed. Section 2.4.1 provides a background of some of the 

commonly used property estimation methods in CAMD. Section 2.4.2 

details the issues of property prediction uncertainty, and the existing works 

that have been carried out to manage uncertainty of the property data. The 

applications of CAMD in the design of numerous chemical products are 

illustrated in Section 2.4.3, while Section 2.4.4 illustrates the optimisation 

technique utilised to solve a multi-objective design problem. Section 2.5 

provides brief explanation on analytic hierarchy process (AHP), which is a 



 

20 

 

tool to manage multi-attributes decision-making problems. The 

employment of AHP in many applications is also reviewed. 

 

2.2 Inherent Safety 

A process is deemed to be inherently safer when the amount of 

hazardous materials and operations involved is minimised. An inherently 

safer plant is more appealing than a conventional plant as the former has 

reduced ‘built-in’ hazard potential (Rahman et al., 2005) and less add-on 

protective systems that leads to process simplification (Hassim and Hurme, 

2010a). The concept of inherent safety has long been implemented in 

many applications, such as process concept evaluation, process route 

planning and plant layout design (Okoh and Haugen, 2014). 

 

Generally, the best way to integrate inherent safety principles to 

their full extent is to employ them in the earlier design phase. In order to 

identify the level of inherent safety for different process routes, one 

commonly used method is the index-based approach, where each process 

route is evaluated by several safety factors or parameters. It is able to 

swiftly produce reliable results that can assist users in deciding process 

route with better safety attributes (Gnoni and Bragatto, 2013). In the past 

few decades, numerous inherent safety indexes have already been 

established, which began with the introduction of Prototype Index for 

Inherent Safety (PIIS) as developed by Edwards and Lawrence (1993). The 

following section provides a full background on the development of PIIS. 

 

2.2.1 Prototype Index for Inherent Safety (PIIS) 

PIIS is a simple index-based method to quantify the inherent safety 

of a process route, which mainly focuses on reaction step. The 
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development of this index is motivated by the existing index scoring 

schemes of Dow Fire and Explosion Index and Mond Fire and Explosion 

Index. Edwards and Lawrence (1993) first proposed a preliminary list of 

safety-related parameters that could be integrated into the index to assist 

with the safety assessment, which comprises of inventory, phase, 

temperature, pressure, heat of reaction, new phase generation, catalysts, 

side reactions, waste products, reaction yield, reaction rate, viscosity, 

flammability, explosiveness, corrosiveness, and toxicity. Since PIIS aims to 

measure the inherent safety of a route during conceptual design stage, the 

selection of parameters is limited by the data availability at that stage. Due 

to this reason, seven parameters are shortlisted to form the index scoring 

scheme, which can be classified into chemical score and process score. 

Chemical score is related to properties of chemicals involved in the reaction 

step, which comprise of inventory, flammability, explosiveness, and 

toxicity. Meanwhile, process score is associated to the reaction conditions, 

which cover temperature, pressure, and yield. The parameter scores are 

formulated by dividing the domain of values for a parameter into intervals 

and allocating a score to each interval. For instance, the flammability 

scores provided by PIIS are given in Table 2.1. This parameter is assessed 

by two properties, namely flash point (Fp) and boiling point (Tb). As shown 

in Table 2.1, these properties are divided into few intervals, where each 

interval is given a discrete score to represent the degree of hazard. The 

scores are assigned in a manner that higher score represents higher safety 

hazard level. The total score for each reaction step is the summation of 

chemical and process scores, while the total index value of a process route 

is determined by summing up the scores received by each reaction step in 

the process route. 
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Table 2.1: Flammability scores (PIIS) (Edwards and Lawrence, 1993) 

Flammability    Score 

Non-combustible   0 

Fp > 140°F    1 

100°F < Fp < 140°F   2 

Fp < 100°F & Tb > 100°F  3 

Fp < 100°F & Tb < 100°F  4 

 

2.2.2 Inherent Safety Index (ISI) 

Another notable safety index is the Inherent Safety Index (ISI) 

established by Heikkilä (1999) to serve as an extension of PIIS. A wider 

scope of safety parameters has been considered in ISI, in which their data 

must be readily available during preliminary process design phase. These 

parameters can also be classified into two groups, namely chemical 

inherent safety index and process inherent safety index. The former index 

includes sub-indexes for chemical reactivity, flammability, explosiveness, 

toxicity, and corrosiveness of chemical species present in the process; 

whereas the latter index contains sub-indexes for inventory, process 

temperature, process pressure, equipment safety, and safe process 

structure. The sub-indexes of equipment safety and safe process structure 

are not as straightforward as compared to other parameters as these two 

sub-indexes are evaluated based on accident statistics, layout data, case-

based reasoning on a database of good and bad design cases, etc. The 

score domain differs from one sub-index to another, as the range of scores 

signifies the potential of impact of the specific sub-index to the plant 

safety. For instance, toxicity is deemed to have the most significant impact 

on plant safety, thus it has the largest score domain ranging from zero to 

six. On the other hand, corrosion is given the smallest score domain 
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(ranges from zero to two), as this particular hazard can be managed by an 

appropriate choice of construction materials. The total inherent safety 

index score of each process route is the summation of all sub-index values 

in both chemical and process inherent safety indexes. It is up to the 

process designer to introduce weighting factors to the sub-indexes when 

determining the total index score, if one considers that certain sub-indexes 

should be prioritised than others. 

 

2.2.3 i-Safe 

Meanwhile, Palaniappan et al. (2002) has presented the i-Safe index 

which is mainly based on the sub-index values derived from PIIS and ISI to 

compare inherent safety of different chemical routes. Some additional 

factors are also taken into consideration when ranking process routes, 

namely worst chemical index, total chemical index and worst reaction 

index. The sub-indexes of flammability, toxicity, explosiveness, and NFPA 

reactivity rating are utilised to determine the chemical index, while the 

sub-indexes of temperature, pressure, yield, and heat of reaction assess 

the reaction index. 

 

2.2.4 Other Inherent Safety Indexes 

Besides index-based approach, Gupta and Edwards (2003) 

presented a simple graphical method using the sub-indexes from PIIS to 

compare the inherent safety level of several chemical process routes. 

Meanwhile, Khan and Amyotte (2004) introduced the Integrated Inherent 

Safety Index (I2SI) which considers the process life cycle with economic 

assessment and hazard potential identification for each alternative. Sub-

indexes involving hazard potential, inherent safety potential and add-on 

control equipment are applied. As PIIS, ISI and i-safe have treated the 
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chemicals present in a process route as individual components, where the 

chemical with the worst hazard (highest penalty score) is chosen to 

represent the chemical scores in these indexes, Leong and Shariff (2009) 

have thus proposed the process route index (PRI) to address the 

mentioned concerns. PRI considers all chemicals present as a mixture, and 

the explosiveness level is used as the measurement tool to quantify the 

inherent safety level for process route selection. Shariff and Leong (2009) 

have presented an inherent risk assessment in preliminary design stage for 

the development of process design. Its principal focus is to determine the 

inherent risk of an explosion through the application of 2-region F-N curve. 

Shariff and Zaini (2013) then extended this approach by proposing a 2-

region risk matrix concept to carry out the risk evaluation for toxic release. 

Ahmad et al. (2014) developed a novel method known as the Numerical 

Descriptive Inherent Safety Technique (NuDIST) to assist in deciding the 

safest route in petrochemical industry. Recently, Ahmad et al. (2016) 

presented a graphical approach known as the Graphical Descriptive 

Technique for Inherent Safety Assessment (GRAND) to further examine 

several chemical process routes by identifying the root-cause of the 

hazards via visualisation method. 

 

In conclusion, the inherent safety indexes as discussed in Section 

2.2 are able to assist process designer to rapidly compare and rank several 

process routes manufacturing the same chemical during early design 

phase. Several key safety parameters that can result in major adverse 

impacts to plant safety are identified, and score domain for each parameter 

is constructed to reflect the hazard level of each process route. The 

information for chemical properties and process conditions of the routes 

must be readily available to apply the indexes. As process design 

progresses from early conceptual design phase to later phases, more 
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decisions will be made and it is not effective to modify these decisions later 

due to cost and time constraints. Hence, the inherent safety assessment 

approach is most effective when applied in early stage, where potential 

hazards of each process route can be identified early. By quantifying the 

hazard level of each route using the index based approach, the best 

process route with the least chemical and process-related hazards can be 

rapidly selected. This helps to minimise the capital and operating costs 

needed on managing plant safety, as less add-on safety equipment are 

required in the final design. Besides inherent safety, the concept of 

inherent occupational health has also emerged as a crucial decision-making 

factor in plant design. The following section discusses on the development 

of inherent occupational health over the years. 

 

2.3 Inherent Occupational Health 

As for the aspect of health, some of the earlier established health 

indexes include Chemical Exposure Index (CEI) (Dow Chemical, 1994) and 

Toxicity Hazard Index (Tyler et al., 1996), in which both indexes assess the 

short-term and acute health hazard risks resulted from possible chemical 

release to on site employees within process plants and neighbouring 

communities. Meanwhile, Koller et al. (2000) developed the EHS method to 

classify and examine potential safety, health, and environmental (SHE) 

hazards during process development. However, the aspect of health only 

serves a minor role in EHS method and it only addresses the exposure-

effect relationship of the workplace, which includes irritation and chronic 

toxicity. Later, Johnson (2001) established the Occupational Health Hazard 

Index (OHHI), which was the first index to evaluate occupational health 

hazard in design phase. However, one drawback of OHHI is that certain 

factors are over-evaluated since excessive data are required. In order to 
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improve the shortcoming of OHHI, Hassim and Edwards (2006) then 

developed the Process Route Healthiness Index (PRHI), which is further 

discussed in the following section. 

 

2.3.1 Process Route Healthiness Index (PRHI) 

PRHI aims to evaluate the potential occupational-related hazards of 

new process plants by considering numerous factors that may bring about 

impact on human health in the workplace. The two key components 

deemed to have direct influence on the health hazard level are the 

chemical substances present and the amount of chemical released. In order 

to determine the PRHI of a process route, five indexes which contribute to 

PRHI are developed, namely Inherent Chemical and Process Hazard Index 

(ICPHI), Health Hazard Index (HHI), Material Harm Index (MHI), Worker 

Exposure Concentration (WEC) and Occupation Exposure Limit (OEL). 

ICPHI is used to determine the work activities, process conditions and 

material properties that are potentially harmful to human health. This is 

assessed based on the assignation of penalty score to the activities, 

process conditions and material properties. HHI is used to evaluate 

chemicals that have the inherent ability to cause typical occupational 

disease to the workers. The information to determine this particular index 

is taken from the Occupational Safety and Health Administration (OSHA), 

Health Code (HC) and Health Effects (HE), which indicate the main effects 

of exposure to each chemical substance. Meanwhile, MHI is used to rank 

the healthiness of all materials involved in each process stage via NFPA 

Ranking for Health. However, the application of PRHI is rather complicated 

since it involves a broad range of parameters to be assessed, while some 

information may not necessarily be available especially in the early design 

phase. An enhanced index known as the Inherent Occupational Health 

Index (IOHI) by Hassim and Hurme (2010a) is then introduced. 
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2.3.2 Inherent Occupational Health Index (IOHI) 

IOHI as presented by Hassim and Hurme (2010a) is one of the well-

established inherent health indexes. The principal objective is to evaluate 

health risks of process routes during process research and development 

phase that can potentially cause adverse health effects to the workers. The 

degree of health hazard is largely affected by the potential harm caused by 

the material and the potential for exposure to the material present in the 

route. There are two indexes in IOHI, namely Index for Physical and 

Process Hazards (IPPH) and Index for Health Hazards (IHH). The former 

index focuses on the likelihood of workers to be exposed to the chemicals, 

while the latter index concentrates on health impacts and risks due to the 

exposure. In order to assess both IPPH and IHH on a process route, several 

factors or parameters that might bring about significant contribution to the 

arising of adverse health impacts are selected. Mode of process (IPM), 

material phase (IMS), volatility (IV), pressure (IP), corrosiveness (IC), and 

temperature (IT) are the six sub-indexes selected for IPPH while IHH is 

comprised of the sub-indexes of exposure limit (IEL) and R-phrase (IR). The 

sub-indexes are penalised based on the basis of worst situation, which 

means that the maximum penalty received by the most hazardous 

chemical in a reaction step will represent the sub-index penalty score for 

that particular reaction step. IPPH is calculated by the sum of all its six sub-

indexes while IHH is the summation of exposure limit and R-phrase sub-

indexes. The total IOHI for each process route is the sum of IPPH and IHH. 

 

All the inherent safety and occupational health indexes highlighted 

in Sections 2.2 and 2.3 applied the same approach to assess and quantify 

the inherent hazard level of a process route, which is the index-based 

approach. All parameters or sub-indexes are allocated scores to reflect the 

degree of potential hazard present in a route. The inherent hazard index 
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must be applicable during early stage in process design and development 

(Tyler, 1985). The approach can be easily mastered by any users with 

different background due to its simplicity. In addition, index method is 

relatively helpful in decision making since it is convenient and not too time-

consuming (Gnoni and Bragatto, 2013). 

 

2.3.3 Applications of Inherent Safety and Occupational 

Health Indexes 

Numerous works have applied the established inherent safety and 

occupational health indexes to assist with chemical process route selection. 

Srinivasan and Nhan (2008) presented the Inherent Benign-ness Indicator 

(IBI) to evaluate the inherent benign-ness of a process route based on 15 

parameters linked to safety, health and environmental impact. The safety 

parameters are similar to the indexes selected by i-Safe except for toxicity, 

which is considered under occupational health. Some limitations of the 

inherent safety indexes that include subjective scaling and weighting of 

factors are addressed with the application of a statistical analysis-based 

procedure presented in IBI. Objective scaling approach is employed to 

normalise parameters to range from zero (non-hazardous) to one (most 

hazardous). A frequency distribution of heat of reaction, pressure and 

temperature for common reactions are applied to scale these three 

parameters. Ee et al. (2015) have developed a Combined Approach for 

Inherent Safety and Environmental (CAISEN) assessment that aims to 

identify potential environmental and safety hazards during early stages of 

process design. The environmental impact is evaluated by the life cycle 

assessment (LCA), while the process safety is cover by all sub-indexes 

provided in ISI. The ISI percentage is applied to indicate the degree of 
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hazards, which is a ratio of the total calculated ISI score for a specific 

process over the maximum ISI score that a process can obtain. 

 

Serna et al. (2016) have conducted a multi-criteria decision analysis 

for the selection of chemical process route with an integrated sustainability 

approach. The three principal sustainability dimensions considered are 

economic, environmental and social aspects. The social dimension can be 

divided into safety and occupational health indicator groups, in which the 

scorings for the former indicator groups are adopted from the normalised 

scales proposed by Srinivasan and Nhan (2008). Warnasooriya and 

Gunasekera (2017) have proposed an integrated index known as the 

Inherent Chemical Process Route Index (ICPRI) to evaluate the possible 

toxicological effects on environment and occupational health, and the 

chemical and process-related safety impacts to the plant. The evaluation of 

occupational health follows the method proposed by Hassim and Hurme 

(2010b), which takes into account the workplace chemical concentration 

present in the plant and the chemical exposure limit of all chemicals to 

determine the Occupational health Hazard Index (OhHI). As for inherent 

safety, the parameters considered are inventory, flammability, 

explosiveness, reactivity, temperature and pressure, where the scores are 

based on PIIS, ISI and NFPA ratings. 

 

Generally, the parameters applied in the indexes can be classified 

into two groups. The process-related parameters examine the inherent 

safety hazards and the potential for hazards exposure posed by the process 

itself e.g. the process operating conditions. Meanwhile, the chemical-

related parameters are measured by the physical and chemical properties 

of the molecule. Since it is stated in Section 1.3 that the safety and health 

aspects should be included as design objectives in a CAMD problem, the 
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chemical parameters from the indexes can be integrated into the CAMD 

problem to evaluate the safety and health performance of the generated 

molecules. 

 

2.4 Computer-Aided Molecular Design (CAMD) 

In CAMD, the principal goal is to identify the molecule or molecular 

structure from the given set of molecule building blocks and a specified set 

of target properties (Gani, 2004b). In the early problem formulation phase, 

the desirable target properties that meet the customer’s needs are defined, 

along with the target range. The appropriate chemical building blocks used 

to synthesise the molecules are also selected. A database comprising of 

large quantity of chemical groups is applied to explore a wide range of 

conventional molecules or novel molecular structures that can serve as the 

potential molecular candidates. Structural feasibility constraints are 

imposed to ensure that chemical structural rules are not violated. 

Molecules that meet the target properties are examined in the performance 

analysis stage, in which molecules that display undesirable attributes are 

removed, with the assistance of solving algorithm (Heintz et al., 2014b). 

An optimisation technique is utilised to systematically develop and evaluate 

molecules until the optimal molecular candidates have been identified 

(Papadopoulos, et al., 2010). 

 

In CAMD, the physical and chemical properties of the molecules are 

generally estimated using some types of fragment-based methodology, 

such as group contribution (GC) methods, topological indices (TI), and 

signature descriptors (SD). The following sections depicts on the 

development of GC methods over the years. 
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2.4.1 Group Contribution (GC) Methods 

Most chemical process and product design often involve the 

knowledge of a set of physical and thermodynamics properties of pure 

compounds and mixtures. However in many cases, the property data for 

the components of interest may not always be readily available. One way 

to obtain such information is by conducting experimental works, which 

generally require substantial amount of time and resources. Alternatively, 

one can utilise property prediction methods to rapidly estimate the list of 

properties with adequate reliability. One of the conventionally applied 

estimation techniques is the UNIFAC method, a group-contribution (GC) 

based prediction approach first proposed by Fredenslund et al. (1975). 

UNIFAC model is developed based on the basic concept of GC approach, 

where the interactions of each functional group present in the molecules 

are represented by group-interaction parameters. These parametric 

coefficients are then applied to estimate the activity coefficients in nonideal 

liquid mixtures. 

 

Nowadays, GC methods are the most commonly used property 

prediction techniques in CAMD (Austin et al. 2016). Through this approach, 

it considers that a molecule is formed from a collection of molecular 

groups. For instance, an ethanol compound can be constructed from the 

groups of CH3, CH2 and OH. Each group carries a distinct contribution value 

to a specific property. In order to predict a particular property, the 

contributions of groups present in the compound are summed up to 

determine the property value of interest. Through GC method, the property 

of a component can be estimated swiftly without the necessity of 

considerable computation resources. Various studies have been carried on 

estimating the properties of pure compounds via GC methods. One of the 

commonly referenced GC method works was presented by Joback and Reid 
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(1987), in which it was assumed that there are no interactions between the 

groups. Thus, the property prediction only considers additive contributions 

among groups present in the molecule. In this work, GC methods for 

eleven pure component properties are developed, which include normal 

boiling point, melting point, critical temperature, critical pressure, critical 

volume, ideal gas heat of formation, ideal gas Gibbs energy of formation, 

heat of vaporisation at normal boiling point, heat of fusion, ideal gas heat 

capacity, and liquid dynamic viscosity. The group contribution definition 

can be represented by Equation (2.1), where P represents a specific 

property, Ci is the contribution of group of type-i with Ni occurrences, and f 

represents certain function of multiplication between Ni and Ci. 
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Meanwhile, Constantinou and Gani (1994) established a new 

property estimation approach where the prediction is conducted at two 

levels. The primary level contains contributions from first-order functional 

groups, while the secondary level comprises of a set of second-order 

groups having the first-order groups as building blocks. The proposed 

model is given by Equation (2.2), where Ci is the contribution of the first-

order group of type-i that occurs Ni times, Dj the contribution of the 

second-order group of type-j that occurs Mj times, f(P) is a simple function 

of the property P, and x is a binary value allowing user to decide whether 

to include secondary level prediction. This method is capable of 

differentiating isomers and offers an improved accuracy and reliability of 

property estimation. Apart from several properties predicted by the Joback 

and Reid (1987) method, Constantinou and Gani (1994) also included GC 

model for estimating standard enthalpy of vaporisation at 298 K. With the 
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incorporation of second-order groups, all but one of the compared property 

models exhibit an average relative error (ARE) of less than 3%. 
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Constantinou et al. (1995) later extended the Constantinou and 

Gani (1994) method to include the prediction of acentric factor and liquid 

molar volume at 298 K. Marrero and Gani (2001) presented an enhanced 

group-contribution based prediction of pure compound properties that 

includes three levels estimation. The primary and secondary levels are 

similar to those developed by Constantinou and Gani (1994), while the 

tertiary level comprises of groups that cover extensive structural 

information about molecular fragments of components whose description is 

inadequate via the first and second level groups. This approach also 

provides the prediction of complex heterocyclic and large polyfunctional 

acyclic compounds. The GC model now takes the following general form: 
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where Ek is the contribution of the third-order group of type-k that has Ok 

occurrences in a component, while z is a binary value to allow user to 

decide whether to incorporate third-order groups. This method 

demonstrates higher estimation accuracy as most of the compared 

property models possess an ARE of lower than 3%. Meanwhile, the most 

conventionally applied GC method for acute toxicity was developed by 

Martin and Young (2001), whom correlated the acute toxicity (96-h LC50) 

to the fathead minnow for almost 400 organic chemical compounds. The 

model is formulated using multilinear regression and computational neural 
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networks (CNNs). Marrero and Gani (2002) employed the Marrero and Gani 

(2001) model to further develop methods for the prediction of octanol-

water partition coefficient (Kow) and aqueous solubility (Ws) at ambient 

temperature. The contributions for all groups are determined by linear 

regression analysis based on a vast data set of Kow and Ws values. 

Meanwhile, Gani et al. (2005) addressed the limitation of some GC 

methods in which certain groups and/or their contributions to a specific 

property may not be available. A group contribution+ (GC+) technique is 

established where the missing groups are generated and their contributions 

can be estimated via a set of zero-order and first-order connectivity indices 

(CI). This work also compares the results generated from the GC 

technique, CI-based approach, and the GC+ (combined GC-CI) method. It 

is observed GC approach provides a better accuracy provided that the 

contributions of all groups in the compound are available. In the case 

where missing groups are present in the chemical, GC+ approach is the 

better option. Conte et al. (2008) then proposed the GC+ models for the 

prediction of surface tension and viscosity of pure organic components. 

Nannoolal et al. (2008) extended the normal boiling point GC model to 

allow the estimation of vapour pressure. The inputs needed for this new 

model are the molecular structure of the chemical and its normal boiling 

point to determine the vapour pressure of that chemical at different 

temperatures. 

 

 Hukkerikar et al. (2012b) modified and enhanced the model 

parameters for GC+ models used for property estimation with the 

employment of covariance matrices to quantify uncertainties in the 

predicted property values. There are 18 pure compound properties 

examined in this work, which include new GC+ models for entropy of 

vaporisation at normal boiling point, flash point, auto ignition temperature, 
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Hansen solubility parameters, and Hildebrand solubility parameter. 

Hukkerikar et al. (2012a) also introduced GC+ property models to predict 

22 environment-related properties of organic compounds, such as oral rat 

LD50, bioconcentration factor, permissible exposure limit, global warming 

potential, and etc. Recently, Frutiger et al. (2016a) employed the Marreno 

and Gani (2001) GC method to establish new GC models for flammability-

related properties that comprise of lower and upper flammability limits, 

flash point, and auto ignition temperature. 

 

 In summary, GC approaches are simple tools to use as they only 

require the occurrence of groups present in a compound and their 

contributions to be input into simple function models to calculate the 

property values of interest. GC methods are particularly useful when 

employed in CAMD since they can easily represent a vast and diverse 

chemical space as the groups can be bonded in numerous ways to generate 

a great variation of different molecular structures. In addition, GC 

techniques can be easily transformed into the mathematical formulations of 

CAMD problems as the GC function models and count of groups can be 

integrated in the context of mathematical optimisation (Austin et al. 2016). 

 

 Besides GC method, topological indices (TI) and molecular signature 

descriptors (SD) are also commonly used in CAMD. TI is defined from the 

concept of molecular graph theory, where atoms and bonds forming a 

molecule are considered as vertices and edges respectively. The 

connections between atoms can be expressed in terms of numerous 

matrices, such as vertex adjacency matrix, edge adjacency matrix, 

incidence matrix, etc. (Raman and Maranas, 1998). Randic (1975) 

developed the molecular connectivity indices (CI) to describe the degree of 

branching of molecules with the use of first-order molecular connectivity 
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index. Kier and Hall (1976) then included higher orders of CI to account for 

heteroatoms. Meanwhile, Visco et al. (2002) and Faulon et al. (2003) 

proposed the molecular SD for encoding local neighbourhood of a molecule. 

This technique represents atoms present in a molecule with the extended 

valencies to a user-specified parameter known as the signature height. The 

height of the signature denotes the level to which the neighbourhood 

information is determined (Chemmangattuvalappil et al., 2010). An atom is 

designated as a root atom, and the atomic signature covers all 

atoms/bonds extending out to the predefined height, without backtracking. 

The SD approach is capable of differentiating between stereoisomers and 

has been employed in many applications, which include descriptor in 

several biological platforms (Visco and Chen, 2017). 

 

 Even though all GC, TI, and SD methods like many property 

estimation techniques promise high predictive accuracy and reliability, the 

issue of uncertainty do exist in the estimated property values, which may 

affect the generation of optimal molecules in CAMD and process design. 

The following section further discusses the works done to manage 

uncertainty mainly due to property models. 

 

2.4.2 Property Prediction Uncertainty 

 Most CAMD problems have coupled with property prediction 

methods, such as GC methods, for property estimations. The reliability and 

accuracy of these prediction methods have significant impacts on the 

effectiveness of CAMD model in identifying the optimal molecule for a 

specific design problem. In the past three decades, numerous works have 

been conducted to study the effect of uncertainty in property prediction 

models. According to Larsen (1986), the design of chemical process 

requires various types of data such as physical, thermodynamic, and 
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transport property data for pure chemicals and mixtures to assist with 

material and energy balances and for designing equipment. These data are 

also essential to determine technical feasibility and economic potential, 

compare process alternatives, and perform process alteration to account 

for changing operating conditions. The accuracy of the property data is 

crucial since it may affect process design and cost. Larsen (1986) proposed 

the data quality methods to prioritise the available data sources, identify 

the data range of applicability, develop quality codes to measure reliability, 

and apply numerical estimates for data accuracy. Mathias and Klotz (1994) 

analysed the performance of several thermodynamic properties models by 

utilising them on applications comprising of van der Waals (vdW) equations 

of state (EOS). 

 

 Meanwhile, Whiting (1996) emphasised the importance of the 

accuracy of physical property data and prediction models for examining the 

risk of process failure and the acceptable range of safety-factor in process 

design. Monte Carlo simulations and probabilistic sensitivity analyses were 

conducted to assist in quantifying thermodynamics-induced process 

uncertainties. A comparison study on the results of applying process 

simulations using different models was considered to provide process 

design engineer with detailed uncertainty information. Maranas (1997) was 

the first to present a systematic methodology to evaluate the effect of 

property prediction uncertainty in optimal molecular design problems. 

Multivariate probability density distributions method is employed to 

explicitly quantify uncertainty by modelling the probability of different 

realisations of group contribution parameters. Yan et al. (2003) performed 

a reliability analysis through the comparison of four GC methods (Joback-

Reid, Constantinou-Gani, Wilson-Jasperson, and Marrero-Pardillo) to assess 

their capability in predicting the critical temperatures of organic 
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compounds. They concluded that the Constantinou-Gani method performs 

better with alkanes and alkenes, while the user-friendly Wilson-Jasperson 

model demonstrates compatible prediction results with all organic and 

inorganic compounds. 

 

 Dong et al. (2005) have reviewed 194 papers since 1940 that have 

studied the expression of uncertainty for thermodynamic property 

measurements specifically to calculate critical temperature for pure 

chemical compounds. The evolution and progression on the nature and 

extent of estimations of uncertainty have been emphasised. Even though 

the reporting of uncertainty data has shown enhancement over the years, 

comprehensive uncertainty analyses remained uncommon then, specifically 

with respect to the incorporation of contributions resulted from sample 

impurities. Hajipour and Satyro (2011) re-evaluated the Riazi and Daubert 

(1980) and Lee and Kesler (1980) correlations to estimate the critical 

temperature, critical pressure, and acentric factor of pure hydrocarbons in 

the range of C5 to C36. The former have introduced the improved 

correlations which took into account the uncertainty of normal boiling point 

and specific gravity to estimate the uncertainties on critical properties and 

acentric factors. Hukkerikar et al. (2012b) presented the enhanced model 

parameters for group-contribution+ (GC+) models to assist with the 

estimation of pure chemical properties. Parameters estimation and 

uncertainty analysis were considered on the GC+ models with the use of 

the maximum-likelihood estimation method to present property predictions 

with higher reliability, along with an estimate of prediction uncertainties of 

the predicted property values. Ng et al. (2015a) addressed the 

uncertainties arised from the application of property prediction models in a 

CAMD problem through the introduction of property robustness. This 

property robustness signifies the accuracy of the prediction models, which 
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is expressed in terms of standard deviation of the models that serves as a 

measurement of average variation between the actual experimental values 

and the prediction values. 

 

 Recently, Frutiger et al. (2016b) established a methodology to deal 

with the numerical and statistical concerns when developing GC models, 

specifically for the estimation of heat of combustion in this study. 

Uncertainty analysis on the model parameter estimation and property 

prediction was considered to improve the new heat of combustion GC 

method with better estimation performance statistics. Comprehensive 

uncertainty analysis with 95% confidence interval of the prediction model 

was performed to ensure that the estimated properties of interest are of 

high accuracy. For most GC methods developed in literature, their 

capability of estimating the properties of pure compounds are 

demonstrated by their corresponding statistical performance indicators. 

Some of the indicators include coefficient of determination (R2), standard 

deviation (SDE), average absolute error (AAE), and average relative error 

(ARE). In this work, GC methods and other empirical correlations are used 

to estimate the molecular properties that are evaluated in the inherent 

safety and health sub-indexes. Thus, the accuracy and reliability of the 

estimation models highly affect the accuracy of the allocation of sub-index 

scores to the molecules. This has resulted in the issue of uncertainty 

resulted from the application prediction models. To address this concern, 

uncertainty from property prediction is managed on the safety and health 

sub-indexes. The statistical performance indicators provided by the models 

identify, which are then adopted to determine the uncertain region at all 

property boundaries present in the sub-indexes. The sub-index scores in 

this region are adjusted and enhanced accordingly to better reflect the 

molecular inherent hazard level under property prediction uncertainty. 



 

40 

 

2.4.3 CAMD Applications 

 CAMD techniques have been adopted extensively in many chemical 

industries, such as the design of chemical-based products, solvents, active 

ingredients, pharmaceutical drugs, polymers, refrigerants, lubricants, 

extractants, catalysts, ionic liquids, biodiesel additives, and more. One of 

the early CAMD works was conducted by Gani and Brignole (1983), which 

synthesised potential solvents for the separation of aromatic and paraffinic 

hydrocarbons on the basis of UNIFAC predictions through enumeration 

method. Brignole et al. (1986) then extended and improved the problem 

formulation for the synthesis, assessment and screening of solvents. 

UNIFAC groups are first characterised based on their respective 

combinatorial properties, then the appropriate groups are selected 

depending on the nature of problem. Molecular structures are identified by 

solving the partitioned combinatorial problem subjected to a list of 

feasibility criteria. Joback (1989) presented a molecule design procedure 

with six primary steps: problem formulation, target transformation, group 

selection, molecular enumeration, molecular screening, and final 

evaluation. Case studies on the design of refrigerants, polymers, solvents, 

and drugs were considered by applying the proposed methodology. Gani et 

al. (1991) have proposed a structured CAMD algorithm with four steps: 

pre-specify molecular groups and target properties, synthesise a feasible 

set of optimal molecular structures, estimate the properties and screen the 

set of molecules, and design the final molecular compound. This work also 

considered the selection and ability of the computational methods to 

generate optimal solutions with high predicted performance. Klein and Wu 

(1992) incorporated optimisation techniques in computer-aided mixture 

design problems to determine the chemical identity and composition of 

solvent mixtures that are optimised with respect to targeted properties. 

The objective function of the model is expressed by a cost function, which 
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serves to rank the solvent mixtures, while some thermodynamic properties 

act as constraints to be complied. A two-loop optimisation algorithm known 

as the successive regression and linear programming (SRLP) is established 

to solve the model with the presence of non-linear constraints. Odele and 

Macchietto (1993) pioneered the utilisation of mixed-integer nonlinear 

programming (MINLP) in CAMD problems which requires that the number 

of each molecular group type present in the molecule must be in the form 

of integer values. This formulation allows nonlinearity in objective and 

constraint functions comprising of both continuous and discrete decision 

variables. The methodology is illustrated with solvent design case studies 

for liquid extraction and multicomponent gas absorption. 

Venkatasubramanian et al. (1994) first introduced the application of 

genetic algorithms in CAMD to address the limitations encountered by 

some of the earlier CAMD works. Genetic algorithms provide systematic 

stochastic search for enhanced solutions through sampling areas of the 

parameter space that offer higher potential for good solutions. Besides, 

genetic algorithms are capable of directly integrating advanced level of 

chemical knowledge and reasoning strategies for a higher efficiency search. 

Churi and Achenie (1996) presented a novel mathematical programming 

model to generate chemical compounds that can achieve the targeted 

performance characteristics. It applies discrete values which are able to 

provide an almost complete structural and connectivity information of the 

molecule. Another advantage is that property prediction methods with high 

accuracy can be utilised to their full extent in the proposed model. A case 

study on refrigerant design for the replacement of Freon 12 has been 

considered to demonstrate the application of the formulation. Maranas 

(1996) introduced a framework that reformulates a class of optimal 

molecular design problems which incorporated the nonlinear structure-

property functionalities into the corresponding mixed-integer linear 
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programming (MILP) problems. The proposed framework is capable of 

eliminating the caveat of convergence to suboptimal molecular designs and 

enhancing the possibility of generating novel and superior design solutions. 

The methodology is illustrated with a case study on polymers design, while 

addressing two design objectives that include property matching and 

property optimisation. The former functions to minimise the maximum 

scaled deviation of design properties from some target values, while the 

latter serves to minimise or maximise a single property subject to the pre-

specified lower and upper bounds of the remaining properties. 

Constantinou et al. (1996) established a general framework for computer-

aided product design (CAPD) that adopts group contribution method to 

synthesis a wide range of compounds with various degrees of complexity 

and size. A new group contribution based approach for property prediction 

with improved accuracy is adopted to enhance the validity of generated 

solutions in achieving the targeted performance. The framework is then 

demonstrated on the design of solvents, polymers, azeotropes and miscible 

mixtures, and minimum cost solvent for paint and coating applications. 

Instead of applying mathematical programming and combinatorial 

techniques that have been proposed in many previous CAMD works, 

Ourique and Silva Telles (1998) introduced an alternative which employs 

molecular graphs for the representation of chemical compounds and utilises 

simulated annealing algorithm in the search of target compounds. These 

two principal features of the methodology are applied in solvent design for 

extraction of n-butanol and refrigerant design for the replacement of 

chlorofluorocarbons (CFCs) in heat pumps. Raman and Maranas (1998) 

first integrated topological indices as structural descriptors for correlating 

properties within a MILP optimisation framework. The topological indices 

provide full molecular interconnectivity information and exhibit higher 

accuracy of property correlations than simple group contribution methods. 
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Two examples that include the design of alkanes attaining the targeted 

properties and the substituent selection for optimal fungicidal and 

insecticidal properties have been considered using the presented 

framework. Harper et al. (1999) extended the work done by Constantinou 

et al. (1996) to couple molecular modelling techniques with a traditional 

CAMD method. This work enhances the compound selection features and 

improves the generation of molecular structures and property prediction 

associating to molecular modelling. The extended CAMD uses a multilevel 

procedure with each level carrying out its own generation and test steps. 

The results from each level are served as the input for the subsequent level 

so that the combinatorial problem can be solved efficiently. 

 

 Marcoulaki and Kokossis (2000) have proposed a computer-aided 

technique for the synthesis of molecules with optimal properties. The 

approach integrates stochastic optimisation and group-contribution 

methods to develop chemicals of desirable performance. Three different 

case studies have been illustrated using this approach, namely the design 

of refrigerants to substitute Freon-12, the design of a heating medium, and 

the design of a solvent for the liquid–liquid extraction of ethanol from 

water. As most mathematical programming based CAMD problems are 

often formulated as MINLP with significantly large amount of linear 

constraints as compared to nonlinear/nonconvex constraints, most search 

space variables in the form of binary (integer) and continuous variables are 

usually presented in the nonlinear terms. As a result, Ostrovsky et al. 

(2002) implemented a branch-and-bound algorithm (BB) for branching on 

a group of linear branching functions that are linearly dependent on the 

search variables in a reduced dimension. A case example to design 

cleaning agents in lithographic printing has been considered to 

demonstrate the proposed strategy. Karunanithi et al. (2005) introduced a 
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computer-aided molecular/mixture design framework that is capable to 

develop optimal solvents and solvent mixtures that are optimised with 

respect to structural, property and process constraints. As the CAMD 

problem is formulated as a MINLP, it is solved using a proposed 

decomposition-based solution method. Two case studies involving the 

design of extractant to separate acetic acid from water in a liquid-liquid 

extraction process and the design of pharmaceutical compound in a real 

industrial problem are illustrated with the presented methodology. 

Yamamoto and Tochigi (2008) have carried out the molecular design of 

foaming agents to search for hydrofluoroethers as potential alternatives 

using neural network (NN) method, which is a data-processing approach 

containing input, hidden and output layers. The thermophysical properties 

needed for the design of a foaming agents, such as the enthalpy of 

vaporisation, surface tension and normal boiling point, have been 

estimated via    method.  everal generated compounds are selected 

based on thermal conductivity as determined by multiple regression.  oli  

et al. (2008) introduced an extended hybrid experimental/computer-aided 

technique to design solvents used in reactions. First, a reaction model is 

developed from several reaction rate measurements, then the CAMD 

problem is formulated to synthesise the optimal solution with respect to 

maximising the reaction rate constant. Satyanarayana et al. (2009) have 

employed CAMD approach to generate the polymer repeat unit structures 

which comply with the required constraints. A systematic framework 

integrating recently developed group contribution plus (GC+) models and 

an extended CAMD approach to include design of polymer repeat units has 

been proposed. Through this integration, a vast amount of polymer 

structures can be taken into consideration in polymer design problems. 

Meanwhile, the design of liquid formulations is often conducted by 

experiment-based trial-and-error technique, which is time-intensive and 
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involves large amount of resources. Conte et al. (2011) proposed the 

integrated experiment-modelling approach, which is a hybrid of computer-

aided model-based techniques and heuristic based experimental testing, 

for the development of liquid formulated products. The approach is tested 

on the design of paint formulation and insect repellent lotion, in which a set 

of feasible product candidates are synthesised for each design problem and 

the chemical candidates are validated through a course of pre-specified 

activities (work-flow). Chemmangattuvalappil and Eden (2013) applied the 

molecular signature descriptors for the design of molecules in a reverse 

problem formulation framework. The signature descriptors offer to trace 

the alterations in molecular groups present in a molecule resulting from 

different kinds of chemical reactions. Hence, the changes in the molecular 

structure caused by reactions are expressed as a function of the property. 

The problem is then solved to synthesis molecular structures that achieve 

the property targets in the process design step. Meanwhile, the search for 

the suitable binary working fluid mixtures to be used in organic Rankine 

cycle (ORC) has been conducted by Papadopoulos et al. (2013) using 

CAMD approach. The potential molecular candidates serving as the first 

compound of the binaries are first identified. The next step is to select the 

best matching molecules and subsequently determine the optimum mixture 

concentration to attain optimum mixture performance targets. Mattei et al. 

(2013) has applied mixture property models and CAMD techniques for the 

design of emulsion-based chemical products. Their methodology comprises 

of seven sequential hierarchical steps and a conceptual case study using 

this methodology to develop a personal detergent is demonstrated. 

Stavrou et al. (2014) utilised and extended the approach of continuous 

molecular targeting-computer-aided molecular design (CoMT-CAMD) which 

integrated both solvent and process optimisation of a precombustion CO2-

capture system with physical absorption. The process topology involved in 
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this study comprises of all major process operations of a conventional CO2-

capture system, and the performance is assessed with a single economic 

objective function. Quantitative structure property relationship (QSPR) 

models for the ideal gas heat capacity and molar mass of the optimised 

solvent have been constructed via the pure component parameters of the 

PC-SAFT equation of state. Meanwhile, Cignitti et al. (2015) introduced a 

CAMD framework for the development of pure, mixed and blended 

chemical based products. The molecular design formulation is transformed 

into a MINLP, which is then sequentially solved using a decomposed 

optimisation technique. Gebreslassie and Diwekar (2015) presented a 

novel approach to solve for the design of optimal solvent molecule to 

extract acetic acid from process waste stream based on an efficient ant 

colony optimisation (EACO) algorithm. The problem is solved using MINLP 

model by maximising the performance of the solvent with respect to 

structural feasibility, property and process constraints. Ng et al. (2015b) 

discussed the developments, current obstacles and future opportunities in 

the chemical product design area. Some significant challenges discussed 

include the necessity to develop new property prediction models, the 

computational complexity in CAMD, and the need to introduce a 

sustainable chemical product design framework with the growing focus on 

greener future. Dev et al. (2016) presented a multi-objective CAMD 

algorithm to formulate both reactants and products in which their 

respective targeted properties are optimised. As the objective functions of 

the work include structure-dependent properties, both group contributions 

and/or topological indices are adapted into the algorithm. Recently, Chong 

et al. (2017) presented a methodology for the development of optimal ionic 

liquid solvent for CO2 capture in a bio-energy system. In addition to 

identifying the optimal solvent, the approach is able to determine the 

optimal operating conditions which offer the best carbon capture 
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performance. Scheffczyk et al. (2017) incorporated quantum mechanical 

information into CAMD to assist with property prediction using COSMO-RS 

method (‘Conductor-like Screening Model for Realistic  olvation’). As a 

result, an optimisation-based framework known as COSMO-CAMD is 

introduced to generate new solvents. This work has also considered case 

studies to design potential solvents in liquid-liquid extraction of phenol and 

hydroxymethylfurfural (HMF) from water. Abedin et al. (2017) developed a 

computational technique to design water compatible visible light 

photosensitisers that could enhance the photo-polymerization of the 

hydrophilic-rich phase in dental adhesive resin. A model building set is 

applied to formulate the QSPRs for properties associated to the photo-

polymerization reaction of the adhesive monomers and hydrophilicity of the 

photosensitiser through the utilisation of connectivity indices. The QSPRs 

are then integrated into the problem framework to synthesise 

photosensitiser molecules with optimised properties. 

 

 As previously mentioned in Sections 1.3 and 1.4.2, the aspects of 

safety, health and environment have been considered as design constraints 

in many CAMD problems. Numerous earlier works were prompted by the 

search of less harmful substitutes to replace chlorofluorocarbons (CFCs) as 

refrigerants, since it was discovered that the use of CFCs can result in the 

depletion of ozone layer. Previously, Duvedi and Achenie (1996) have 

utilised CAMD mathematical programming for the design of 

environmentally-friendly refrigerants. The augmented-penalty/outer-

approximation approach is applied to solve the MINLP problem for the 

generation of optimal compounds that are optimised with respect to a 

performance index, which is represented in terms of explicit target 

properties. The main focus of the environmental constraint used is the 

ozone-depletion potential (ODP), which is predicted through correlations 
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linking with the number of halogenated groups found in the component. 

Meanwhile, a three-step approach introduced by Pistikopoulos and Stefanis 

(1998) also aimed to synthesise solvents with lessened environmental 

impacts. The framework involves the identification of agent-based process 

operations, determination of a set of solvent blends complying with the 

processing and environmental constraints, and screening of an optimal 

solvent blend with regards to global plant-wide basis constraints. 

Environmental impact assessment methods such as the post-release 

environmental damage were used as the environmental criteria in solvent 

selection. Trade-offs between the cost and environmental impact were also 

examined in this work. Meanwhile, a design problem comprising of many 

nonlinear correlations can result in a nonconvex formulation, which may 

lead the problem to be trapped in a local solution. In order to tackle this 

issue, Sinha et al. (1999) proposed a global optimisation model to solve a 

solvent design problem to guarantee the yield of a global solution. An 

environmental constraint on the octanol-water partition coefficient (log Kow) 

is imposed in their framework to generate environmentally benign solvents 

for the applications of surface cleaning in printing industry. Buxton et al. 

(1999) presented the procedure for the selection of optimal solvent blends 

to be used for nonreactive and multicomponent absorption processes. This 

work is an extension of the solvent design technique presented by 

Pistikopoulos and Stefanis (1998). The solvent alternatives are evaluated 

with respect to process operational, environmental and economic 

performance. The environmental impact of the blends was assessed by the 

lethal concentration, LC50 constraint to denote their respective toxicity to 

the environment. Chavali et al. (2004) employed connectivity indices to 

carry out physical property predictions of a transition metal catalyst, which 

include electronegativity, density and toxicity. The toxicity used for the 

conducting environmental evaluated is in the form of LC50 (lethal dose in 
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air for 50% of exposed animals), which has been correlated based on the 

database from the Syracuse Research Corporation. The connectivity indices 

are then incorporated in the optimisation approach for the redesign of 

environmentally-benign homogeneous catalysts with respect to the three 

mentioned target properties. As for safety aspect, Karunanithi et al. (2006) 

presented a CAMD algorithm in a MINLP model for the design and selection 

of solvents and/or anti-solvents for solution crystallisation. Besides 

satisfying the solvent property requirements such as solubility and crystal 

morphology, safety constraints in terms of flammability and toxicity are 

also imposed to prevent the generation of hazardous solvents. Patel et al. 

(2010) adopted the concept of inherent safety design (ISD) to develop 

solvent processes, where the principle of ‘substitution’ is practised by 

utilising CAMD technique as a tool for the selection of inherently safer 

solvents. Similar safety constraints in the forms of flash point and log LC50 

toxicity are also considered to screen out flammable and toxic solvents. 

Meanwhile, consequence models and regulatory guidelines provided by EPA 

Risk Management Program are employed to incorporate safety 

consideration in process simulation to ensure an inherently safer process 

design. Papadokonstantakis et al. (2015) integrated several criteria such as 

thermodynamic performance, environmental impact, hazard evaluation, 

and economic analysis with predictive molecular-based approaches, CAMD, 

and process modelling to develop a solvent-based post-combustion CO2 

capture system. Two sustainability indices have been considered in this 

work, namely the life cycle analysis metrics that deal with comprehensive 

environmental impact for standard process operation, and hazards metrics 

that examine the harm potential in accidental situations. In this work, the 

EHS method by Koller et al. (2000) and the Hazard Identification and 

Ranking System (HIRA) by Khan and Abbasi (1998) are applied as the 

tools to assess hazards. Palma-Flores et al. (2016) carried out 
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simultaneous molecular and process design for the application of ORC to 

recover low-temperature waste heat. The evaluation of the generated 

working fluids was conducted using the flammability index from Kondo et 

al. (2001) and the toxicity index by Toxicity Estimation Software Tool 

(TEST) to assure that the working fluids attained the desired sustainability 

characteristics. Gerbaud et al. (2017) extended the methodology of Heintz 

et al. (2014a) that involves all stakeholders within the chemical enterprise 

to search for novel commodity chemicals using a combined computer-aided 

organic synthesis (CAOD) and CAMD technique. In order to ensure that the 

new products can comply with the increasingly stricter environmental, 

health and safety specifications, property constraints for flash point, acute 

toxicity (LC50), octanol-water partition coefficient (log Kow), and 

bioconcentration factor are imposed. Two case studies involving the 

substitution of aprotic highly dipolar solvents with itaconic acid derivatives 

and the design of biolubricants from vegetable oils have been carried out. 

Many of these CAMD problems involve multiple design objectives, in which 

several target properties are selected as the objective functions to be 

optimised. In order to solve a multi-objective design problem, some of the 

developed multi-objective optimisation tools can be employed, and they 

are discussed in Section 2.4.4. 

 

2.4.4 Multi-Objective Optimisation 

 In many CAMD problems, the generation of optimal molecules must 

meet many criteria, such as performance characteristics, economic 

potential, environmental impact, and more. A molecule with high 

performance attributes may be harmful to the ecosystem, such as the early 

use of CFCs in refrigeration applications. These problems can be 

represented as multi-objective optimisation problems, in which the aim is 

to evaluate the trade-off between different criteria with respect to a set of 
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optimal solutions (Ghosh and Chakraborty, 2015). Generally, the methods 

applied to solve such problems can be grouped into two categories, namely 

ideal procedure and preference-based procedure. The former procedure 

first determines several trade-off optimal solutions with a wide range of 

values for the objective functions. Subsequently, the best trade-off solution 

is selected using higher-level information. Meanwhile, the ideal-based 

multi-objective optimisation procedure solves the problem with a 

composite objective function to form the weighted sum of the objectives, 

where the weight assigned to a specific objective is dependent on its 

preference factor. This preference-based procedure is much simpler to be 

applied, but it is relatively subjective compared to the ideal procedure 

(Deb, 2001). One the most regularly used classical preference-based 

approach is known as the weighted sum method (Fishburn, 1967). This 

approach is user-friendly as all objectives are multiplied with their 

respective user supplied weight, and they are then summed up to scalarise 

into a single objective. However, the method is rather subjective as the 

values assigned to the weights are based on the user’s judgement, in 

which they are assigned in a manner that larger weight represents higher 

importance to the problem. Besides, most data and parameters available 

for multi-objective problems are generally indefinite and uncertain in 

nature (Singh and Yadav, 2015). Thus, the application of traditional 

techniques may not be efficient to tackle these problems with inherent 

imprecision. An alternative to solve multi-objective optimisation problem is 

the fuzzy optimisation algorithm. Zadeh (1965) first proposed the fuzzy set 

theory to represent and manipulate fuzzy data that was not precise. A 

fuzzy set can be defined as a group of elements with a continuum of 

degrees of membership, ranging from zero to one. The proposed method is 

known to be a capable tool to solve a multi-objective problem under fuzzy 

environment. Bellman and Zadeh (1970) then included the concept of fuzzy 
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theory in a decision-making problem. Each objective function is first 

converted into a fuzzy goal, then all fuzzy goals together with the fuzzy 

constraints are expressed in terms of fuzzy sets in the space of 

alternatives. A fuzzy solution can be depicted as an intersection of the 

specified fuzzy goals and constraints. An optimal solution is then illustrated 

by a point in the space of alternatives where the membership function of 

the specific fuzzy solution attains its maximum value. Meanwhile, 

Zimmermann (1978) extended the Bellman-Zadeh principle to present the 

fuzzy linear programming method, in which a fuzzy decision set of 

solutions is expressed through the aggregation of all fuzzy inequalities by 

utilising the ‘min’ aggregation approach. The optimal solution of the linear 

program can be then obtained by the one fuzzy decision for which its 

minimum aggregated function is the maximal (Dubey and Mehra, 2014). 

 

 Over the years, max-min aggregation method has been widely 

applied in numerous research works. Amid et al. (2011) integrated a 

weighted max-min fuzzy model in a supply chain problem to decide on the 

selection of supplier. Since many input information for such problem are 

not known precisely, the proposed model offers to manage the vagueness 

of input data and different weights of criteria in this problem. The weights 

of criteria assigned in this problem are decided by the application of 

analytic hierarchy process (AHP). Tay et al. (2011) employed fuzzy 

optimisation for the development of a sustainable integrated biorefinery 

with two conflicting objective functions, namely economic and 

environmental performance. Pareto optimality analysis is then performed 

to examine results generated via max-min aggregation approach. 

Meanwhile, Ng et al. (2014b) introduced a systematic framework to 

construct a bioenergy-based industrial symbiosis (BBIS) that includes 

biorefineries, existing milling facilities and combined heat and power (CHP) 
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plants operated by different owners. Since each owner has distinct profit-

oriented goals, this problem is managed with the concept of industrial 

symbiosis (IS) to deal with their cooperation. The utilisation of a novel 

disjunctive fuzzy optimisation technique facilitates in achieving the 

optimum network configuration with maximum economic performance 

which also satisfies the respective interests of all participating owners. Ng 

et al. (2015a) also adopted max-min aggregation method in fuzzy 

optimisation to manage the trade-off between property superiority and 

property robustness in a CAMD problem. The former demonstrates the 

optimality of product property; while the latter measures the accuracy of 

property prediction models to estimate molecular properties. The proposed 

methodology offers the synthesis of optimal molecules under property 

prediction uncertainty. Wan et al. (2016) presented a fuzzy multi-footprint 

optimisation (FMFO) approach for Malaysian sago industry to synthesis a 

sustainable value chain. The proposed approach simultaneously takes into 

account carbon footprint, water footprint, workplace footprint, and 

economic potential as objectives. Max-min aggregation in fuzzy 

optimisation is then employed to balance the conflicting objectives in order 

to select the optimal sustainable sago value chain. In this research, fuzzy 

optimisation can help in optimising two main objective functions in this 

work, namely the target performance of the molecule and the inherent 

safety and health level of the molecule itself. In order to determine the 

hazard level of molecules, inherent safety and health sub-indexes are 

employed to provide index scores to the molecules. As discussed in Section 

1.4.4, one way in improve the quantification of overall molecular hazard is 

by introducing weight factors to the sub-indexes. One method to determine 

such weights is through the application of analytic hierarchy process (AHP), 

which is further discussed in the following section. 
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2.5 Analytic Hierarchy Process (AHP) 

 AHP is described by Saaty (1994) as a theory of relative 

measurement that is now widely used for many decision-making problems. 

AHP is a systematic procedure that offers the depiction of a decision-

making problem in hierarchical structure. The problem is decomposed into 

smaller constituent parts or elements, and a series of pairwise comparison 

judgments among elements are carried out with respect to a common 

criterion or feature. A scale of values is applied in the pairwise comparisons 

to express the relative strength or intensity of impact of one element to 

another. Subsequently, the priority of each element is derived based on the 

input judgements to select the preferred alternative. Hence, AHP is a 

powerful technique that is appropriate for the management of multi-

objective, multi-criterion, and multi-actor decisions with any number of 

alternatives. The key advantage of using AHP is its ability to examine and 

minimise the inconsistency of different expert judgments (Aminbakhsh et 

al., 2013). 

 

 AHP has gained much popularity in many decision-making 

applications due to its simplicity, flexibility, intuitive appeal, and its 

capability to blend quantitative and qualitative specifications in a single 

decision framework (Ramanathan, 2002). Odynocki (1979) applied AHP as 

the principal tool of examination to identify the National Health Insurance 

proposal among three plans that has the highest potential to enhance the 

health care system. The conceptual model of the “ideal” health care system 

is formulated with all its elements weighed through pairwise comparisons 

with respect to their impact to the system. Saaty and Gholamnezhad 

(1982) assessed different approaches for the safe disposal of high-level 

nuclear waste. Five disposal strategies have been compared and prioritised 

with regards to a list of tangible and intangible criteria. Arbel (1987) 
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presented an AHP based technique for the identification of the best market 

entry alternative to venture into a new technological market. The 

alternatives are compared with a list of assessment criteria that include 

managerial control, financial details, sales effectiveness, technical 

infrastructure, and etc. Schniederjans and Wilson (1991) introduced a new 

hybrid of the AHP and zero-one linear programming (ZOLP) methodologies 

to assist with the selection of information system projects and the 

assignment of resources to accomplish them. AHP helps to prioritise the set 

of information system projects subjected to the appropriate criteria of the 

organisation, while the prioritisation data is subsequently applied as a 

ranking strategy within the structure of a ZOLP model. The latter model 

also takes into account the resource availability constraints encountered by 

the organisation for the appropriate selection of projects. Akash et al. 

(1999) conducted a comparison between several electricity power 

generation alternatives in Jordan, which include fossil fuel power plants, 

nuclear, solar, wind, and hydro-power energies, through the application of 

AHP. Cost-to-benefit analysis is carried out with the construction of 

separate hierarchies for benefits and costs. 

 

 Handfield et al. (2002) demonstrated the utilisation of AHP serving 

as a decision support tool to assist purchasing managers for 

comprehending the trade-offs between different environmental dimensions. 

AHP offers to analyse the relative significance of several environmental 

attributes and evaluate the relative performance of different supplies with 

respect to these attributes. Promentilla et al. (2006) proposed an 

assessment technique for the prioritisation and selection of 

countermeasures at the planning phase of site remediation. The analytic 

network process (ANP) supermatrix approach, which is an extension of AHP 

to manage decision structure with higher complexity, is utilised to input 
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decision maker’s value judgment in order to compute the relative 

preference of the remedial alternatives. Four decision models obtained 

from the generalised hiernet are analysed to illustrate the role of hierarchic 

functional dependence, inner dependence, and feedback cycle in 

influencing the computation of priority weights. Aminbakhsh et al. (2013) 

introduced AHP in the safety risk evaluation procedure to prioritise the 

safety risk items in construction project. Besides, AHP also functions as a 

tool to examine and minimise inconsistencies of safety risk severities 

provided by the expert judgments. The cost of safety (COS) model is also 

adopted for the planning of rational budget and establishing practical goals 

without compromising safety. Recently, Li et al. (2016) established a task 

analytic hierarchy approach based on AHP to assess multiple-criteria task 

and decision-making in nuclear safety. Several criteria and sub-criteria of 

task are adapted into the method, which can be categorised into 

objectivity, person and security. This strategy is capable of selecting 

optimal scheme with minimised hazard and improved efficiency of task. 

Jagtap and Bewoor (2017) demonstrated an application of AHP to 

determine the major equipment in a thermal power plant. The ranking of 

equipment is subjected to four main criteria, namely effect on failure of 

equipment on power generation, environment and safety, frequency of 

failure, and maintenance cost. Kluczek (2017) illustrated an overall multi-

attribute method for sustainability evaluation in manufacturing processes. 

AHP is applied to rank activity areas for manufacturing process with respect 

to four dimensions of sustainability, which cover the technical, 

environmental, economic, and social aspects. The capability of the 

presented framework is demonstrated through a case study in the 

production of heating devices. 
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 In conclusion, AHP is considered a useful tool to solve a multi-

criterion or multi-attribute decision-making problem with three steps: 

decompose the problem into a hierarchical structure, pairwise comparisons 

among the elements or alternatives to a common goal, and synthesise 

priority for each element to identify the preferred solution. In this work, as 

the overall hazard level of a molecule is determined by sum of the safety 

and health sub-indexes, it is necessary to introduce weights to the sub-

indexes to represent the level of contribution of each sub-index to the 

overall impact. A higher significance sub-index is prioritised by allocating a 

higher weight to it. Hence, AHP can be adequately applied to identify the 

appropriate weight factors. The application of AHP in weight determination 

is demonstrated in Chapter 7. 

 

2.6 Summary 

 In order to integrate the concept of inherent safety and occupational 

health in CAMD, the background theory of the development of inherent 

safety and occupational health is discussed in Sections 2.2 and 2.3. 

Inherent safety design strives to reduce the amount of hazardous chemical 

substances used in the process and to operate processes with milder 

conditions. The principles of inherent safety design are best applied in the 

early design phase as potential hazards can be identified and decisions can 

be made earlier to eliminate or minimise the impact of hazards. Numerous 

inherent safety indexes have been developed to examine the safety level of 

different process routes, such as PIIS, ISI, and i-Safe. These indexes 

employed safety-related parameters/sub-indexes, in which their respective 

data must be available in early design phase, to conduct safety evaluation 

of the chemical process routes. The overall hazard level can be determined 

by the summation of all sub-index scores involved in the assessment. As 

for inherent occupational health, the focus is to reduce the occupational 
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health-related hazards from chemical processes to the employees. The two 

key inherent occupational health indexes are PRHI and IOHI, which utilised 

health-related sub-indexes to evaluate health risks. This index-based 

approach is a convenient and simple tool to rapidly quantify and rank 

different chemical process routes with respect to their safety and health 

level. Thus, it can also be easily adopted in the CAMD programming to 

examine the molecular safety and health performance. 

 

 As the concept of inherent safety and occupational health is adopted 

to replace the use of dangerous chemicals with less harmful ones, CAMD is 

an adequate tool to search for the suitable chemical candidates with 

promising targeted performance. CAMD is capable of identifying the 

molecular structure that satisfies the specified target properties from a 

given list of chemical building blocks. Some group-contribution based 

property prediction models have been commonly incorporated in CAMD 

programming to assist with the estimation of properties depending on the 

molecular structure. CAMD technique has also been widely applied in many 

chemical applications, such as the design of solvents, polymers, 

refrigerants, and etc. The consideration of safety and health aspects in 

many CAMD works have also been discussed, while the shortcomings of the 

existing works are also highlighted. The research gap will serve as the 

main motivation of this research work, which is to simultaneously consider 

both safety and health aspects along with the property functionalities to 

function as design objectives to be optimised in the CAMD framework. As 

there are multiple criteria to be taken into account, multi-objective 

optimisation technique is employed to optimise all design objectives 

simultaneously. The proposed max-min aggregation fuzzy-based 

optimisation is able to carry out the trade-off between the objectives. 

Hence, it can optimise the two main objectives in this research, which are 
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the target functionality performance and the safety and health attributes of 

the molecules. 

 

 Meanwhile, the background study of AHP is also discussed, which is 

a tool to handle multi-objective or multi-attribute decision-making problem. 

It decomposes the problem into smaller constituents in a hierarchical 

structure, then pairwise comparisons are considered among elements with 

respect to a common goal or criterion. Numerical scales are used and the 

priorities of all elements are determined to select the preferred solution. 

The application of AHP is proposed in the fourth scope to assist the 

determination of weight factors which will be assigned to the sub-indexes. 

A larger impact sub-index is prioritised by allocating it with higher weight 

to ensure that it offers a greater contribution to the overall safety and 

health level of the molecule. The next chapter illustrates the research 

methodology of the four proposed scopes. 
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

 

 The overall methodology for the integration of safety and health 

aspects into CAMD framework is presented, which includes analysing 

molecular performance with inherent safety and health sub-indexes, 

incorporating safety and health as design objectives along with targeted 

property functionalities, managing the allocation of safety and health sub-

index scores under property prediction uncertainty, and enhancing the sub-

index scores by score smoothing and introducing weight factors. The 

methodology is divided into six research stages. The research methodology 

proceeds with the following stages: early research stage, research scope 1, 

research scope 2, research scope 3, and ends with research scope 4. 

 

3.1 Early Research Stage 

 The early stage of this research work is to carry out the background 

study on CAMD, and to determine the research gaps in the current state of 

CAMD. The following steps are considered in this stage: 

i. Literature study on existing CAMD works and future direction. 

ii. Identify research gaps in current CAMD works. 

iii. Generate ideas and identify research direction. 

iv. Establish scopes of research. 

 

3.2 Research Scope 1 

Evaluate the safety and health aspects of optimal molecules using inherent 

safety and health indexes 



 

61 

 

 The aim of this research scope is to develop a CAMD model to 

generate optimal molecules that meet the desired target properties as 

specified by user. The generated set of molecules then undergo a 

performance analysis stage to evaluate their safety and health 

performance with the application of inherent safety and occupational health 

sub-indexes. The following steps are the brief procedure in this scope: 

i. Define molecular design goal of the problem. 

ii. Identify target properties of the problem. 

iii. Select target properties to serve as design objectives to be 

optimised. 

iv. Search for appropriate property prediction models to estimate 

property values. 

v. Select appropriate molecular building blocks to synthesis molecules. 

vi. Introduce structural constraints to ensure that only feasible 

molecules can be formed. 

vii. Apply fuzzy optimisation to solve the multi-objective optimisation 

problem to generate optimal molecular structures. 

viii. Select appropriate safety and health sub-indexes to serve as tools 

to assess the performance of the generated optimal molecules. 

ix. Assign sub-index scores to the optimal molecules to represent their 

inherent hazard level. 

x. Rank the molecules according to their corresponding total index 

score. 

 

3.3 Research Scope 2 

Integrate inherent safety and health aspects into chemical product design 

framework 
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 The principal aim of this scope is to consider both safety and health 

aspects along with the target property functionalities as design objectives 

in the CAMD model. The proposed framework is able to generate optimal 

molecules with high performance and favourable safety and health 

attributes. The following steps are employed in this stage: 

i. Follow steps (i) to (iii) of research scope 1 as given in Section 3.2. 

ii. Include the aspects of safety and health as design objectives along 

with the target functional properties. 

iii. Select appropriate safety and health sub-indexes to serve as tools 

to assess the performance of the potential molecules. 

iv. Search for appropriate property prediction models to estimate 

target properties and properties that are applied in the safety and 

health sub-indexes. 

v. Introduce disjunctive programming to convert property values into 

their corresponding sub-index scores. 

vi. Assign sub-index scores to molecules and determine the total index 

score of each molecule which represents the overall hazard level. 

vii. Follow steps (v) to (vii) of research scope 1 as given in Section 3.2. 

 

3.4 Research Scope 3 

Manage uncertainty on the application of property prediction in safety and 

health sub-indexes 

 The primary aim of this research scope is to manage property 

prediction uncertainty in the safety and health sub-indexes. As the 

accuracy of sub-index scores depends on the reliability of the prediction 

models, the magnitude of uncertainty exhibited by each model is 

integrated into the sub-indexes so that the scores can be revised to better 
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reflect the hazard level of the molecules under uncertainty condition. The 

following steps are the key procedure in this scope: 

i. Follow steps (i) to (iv) of research scope 2 as given in Section 3.3. 

ii. Manage uncertainty resulted from the application of property 

prediction models to estimate properties evaluated in safety and 

health sub-indexes. 

iii. Identify standard deviation given by each of the property prediction 

model applied. 

iv. Locate every property boundary in the sub-indexes, which is the 

point where the sub-index score switches from one value to 

another. 

v. Determine the uncertain range around each property boundary with 

the standard deviation of the respective property. 

vi. Enhance the scores in the uncertain range with the use of a linear 

slope to better reflect the hazard level. 

vii. Follow steps (v) to (vii) of research scope 2 as given in Section 3.3. 

 

3.5 Research Scope 4 

Improve the measurement of safety and health by introducing weight 

factors for sub-index prioritisation and smoothing sub-index scores 

 The main goal of this scope is to address the discontinuity of scores 

at property boundary when applying the sub-indexes. As the safety and 

health-related properties in the sub-indexes are divided into several sub-

ranges, the property boundary separating two adjacent sub-ranges is the 

point in which the penalty score switches abruptly from one value to 

another. Thus, the scores in the boundary range are smoothened to ensure 

continuous transition of scores. Besides, different weight factors are also 

introduced to the sub-indexes so that larger impact sub-indexes are given 
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larger weights to allow great contributions to the overall safety and health 

level of molecules. The following steps are applied in this stage: 

i. Follow steps (i) to (iv) of research scope 2 as given in Section 3.3. 

ii. Locate every property boundary in the sub-indexes, which is the 

point where the sub-index score switches from one value to 

another. 

iii. Identify the range around each property boundary in which the sub-

index scores will be smoothened. 

iv. Smoothen the sub-index scores around each property boundary 

range to ensure that the scores are continuous at any point. 

v. Introduce disjunctive programming to convert property values into 

their corresponding sub-index scores. 

vi. Apply analytic hierarchy process (AHP) method to determine weight 

factors that will be assigned to sub-indexes. 

vii. Assign weight factor to each sub-index depending on the severity of 

score; a sub-index with higher score is prioritised and given higher 

weight factor. 

viii. Determine the total index score of each molecule by summing up 

the multiplications between the scores and their respective weights. 

ix. Follow steps (v) to (vii) of research scope 1 as given in Section 3.2. 

 

3.6 Methodology Overview 

 Figure 3.1 presents the flow diagram of the methodology applied in 

Research Scope 1, while Figure 3.2 is the methodology proposed for 

Research Scope 2. It is noted that both figures differ from one another as 

in Figure 3.1 (scope 1), safety and health aspects are only evaluated in the 

performance analysis stage once the molecules are generated. Meanwhile, 

safety and health aspects along with the target properties are considered 



 

65 

 

as design objectives in Figure 3.2 (scope 2). Figure 3.3 illustrates the 

methodologies of Research Scopes 3 and 4, which are the extensions of the 

procedure carried out in Figure 3.2 (scope 2). The additional steps in Figure 

3.3 as compared to Figure 3.2 are represented by step boxes with thicker 

outline. The one step with single asterisk (*) is only considered when 

carrying out the methodology in Research Scope 3, while the two steps 

with double asterisks (**) are only adopted in the methodology of 

Research Scope 4. 

 

3.7 Summary 

 Chapter 3 presents the brief methodology of the four research 

scopes proposed in this research. The methodology of Research Scope 1 

uses safety and health aspects as assessment tool in the performance 

analysis stage to screen and rank molecules with better safety and health 

features. The methodology of Research Scope 2 considers both aspects of 

safety and health as design objectives. The methodologies of Research 

Scopes 3 and 4 are the extensions of Scope 2. Scope 3 addresses the 

uncertainty resulted from property predictions in sub-indexes, while Scope 

4 improves the safety and health measurement of molecules by smoothing 

the scores and allocating weight to each sub-index to differentiate the 

impact level among sub-indexes. The detailed methodologies of the four 

scopes are illustrated in the following Chapters 4 to 7. 
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Figure 3.1: Flow diagram of overall methodology in Research Scope 1 
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Figure 3.2: Flow diagram of overall methodology in Research Scope 2 
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Figure 3.3: Flow diagram of overall methodologies in Research Scopes 3 

and 4 
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CHAPTER 4 

 

A NOVEL CHEMICAL PRODUCT DESIGN 

FRAMEWORK WITH THE INTEGRATION OF 

SAFETY AND HEALTH ASPECTS 

 

4.1 Introduction 

 This chapter presents the first scope of the research, which is the 

utilisation of CAMD techniques to design an optimal molecule that meets 

the desired target properties. Since the CAMD problem involves multiple 

property functionalities, fuzzy optimisation is employed to deal with the 

trade-off between conflicting objectives to obtain optimal solutions. The 

generated set of optimal molecules is then assessed in the performance 

analysis stage with respect to the safety and health aspects. Inherent 

safety and occupational health indexes are used as the assessment tools to 

evaluate the safety and health performance of each molecule. These 

molecules are assessed by several safety and health-related sub-indexes, 

where penalty score representing the degree of hazard is allocated to each 

sub-index. The total index score obtained by each molecule is determined 

to quantify the inherent safety and health level of the molecule. The 

molecules are then ranked according to their safety and health index 

scores to highlight molecules with better performance. A case study on 

solvent design for gas sweetening process is performed to illustrate the 

application of the proposed methodology. 
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4.2 Problem Statement 

 In most CAMD problems, the selected design objectives to be 

optimised are usually represented by physical and thermodynamic 

properties of the molecule. After optimisation is carried out, the generated 

molecules are optimal with respect to the targeted functional properties. 

However, these molecules with high functionality are not guaranteed with 

favourable safety and health performance. Though safety and health 

aspects are evaluated during performance analysis phase, there is a lack of 

a systematic assessment methodology to integrate these aspects during 

the design stage. In this chapter, the existing inherent safety and health 

indexes, which have long been developed to evaluate the inherent hazard 

level of a chemical process route, are adapted in a CAMD problem to 

assess the inherent safety and health level of the generated molecules. 

This is to ensure that the selected molecule achieves the targeted 

functionality, and at the same time, does not cause major adverse impacts 

to human. The safety and health evaluation of the molecules is conducted 

during the performance analysis stage after the optimal molecules are 

generated. There are several specific problems to be addressed, which are 

stated as follows: 

1. As CAMD problem involves the need to optimise multiple design 

objective properties which may be conflicting in nature, a 

formulation known as fuzzy optimisation can address the trade-off 

between these objectives and simultaneously optimise them. 

2. Since most of the existing inherent safety and health indexes are 

developed for process route selection, not all factors or parameters 

considered in these indexes can be applied in the problem. The 

selection of appropriate safety and health-related sub-indexes has 
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to be carried out in order to evaluate the safety and health 

performance of the molecules. 

3. These sub-indexes are usually represented as physical and chemical 

properties. In order to determine the property values of the 

molecules, appropriate property prediction models have to be 

identified. If there are no property prediction models available for a 

particular property, other empirical correlations of that property are 

identified. 

 

4.3 Methodology 

 The main objective of this scope is to establish a systematic 

framework that incorporates the aspects of safety and health as molecular 

evaluation tools in a CAMD problem. CAMD approach is first utilised to 

generate a list of optimal molecules that meet the functional target 

properties of the design problem. The generated molecules are then 

evaluated based on their safety and health performance with the 

application of inherent safety and occupational health indexes. This is to 

ensure that an inherently safer and healthier molecule that meets the 

desired target properties is selected as the final solution. This proposed 

design includes problem formulation, model development, molecular 

design, optimisation model, and performance analysis. 

 

4.3.1 Problem Formulation 

 In this stage, the needs of a chemical product are identified by 

defining the product characteristics and specifications to determine its 

functionality and physical behaviour. These specifications can be translated 

in terms of target properties. All selected target properties are then 

expressed with respect of property range, where the property value must 
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fall within the predefined range for the molecule to function and behave in 

the desired manner. This specification range can be illustrated with two 

inequality expressions bounded by lower bound (vL
p
 ) and upper bound (vU

p
 ) 

of the range as shown by Equation (4.1): 

 

PpvVv U
pp

L
p   (4.1) 

 

where p represents the target property, while Vp represents the target 

property value. The desired properties to be optimised are selected as the 

design objectives which the molecules must achieve in order to serve its 

function. The remaining properties will serve as property constraints for the 

molecules to fulfil. 

 

4.3.2 Model Development 

 In this stage, all properties that are considered as the target 

properties have to be calculated through property prediction models. The 

most notable approach coupled in most CAMD problem is the GC method, 

which is able to estimate the physical and chemical properties of a 

molecule based on its structure. The general form of a GC model is shown 

in Equation (2.3). Meanwhile, properties with no GC method available can 

be estimated using correlations and empirical relationships. 

 

4.3.3 Molecular Design 

 In this stage, the appropriate molecular groups acting as potential 

building blocks are chosen. For instance, if a CAMD problem requires the 

synthesis of alcohol-based molecules, then hydroxyl group (OH) must be 

selected. Next, structural constraints are specified and implemented in 

order to eliminate combination of infeasible solution. In order to ensure 
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that a single molecular structure is generated, the summation for the 

number of occurrences for all selected groups must be greater than zero: 

 

0
1




TG

i

iN  (4.2) 

 

where Ni is the number of occurrences of group i while GT is the total 

number of groups needed to form the molecules. Besides, in order to 

ensure that a molecule does not contain free bonds, the octet rule of 

structural feasibility is applied (Odele and Macchietto, 1993): 

 

  gvN
TG

i

ii 22
1


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 (4.3) 

 

where vi is the valence of group i and g is 1, 0, -1 or -2 for acyclic, 

monocyclic, bicyclic and tricyclic compounds respectively. 

 

4.3.4 Optimisation Model 

 In this stage, the target property models are first transformed into 

their property operators. The property operators are represented by the 

linear combinations of the number of occurrence for molecular group of 

type-i and its corresponding contribution. The lower and upper bounds of 

the property operators are then determined. This is further illustrated in 

Section 4.4.4.1. Based on the target properties identified in Section 4.3.1, 

some of them are selected as the design objectives in which the selected 

properties are optimised. The remaining target properties will act as 

property constraints to be fulfilled. Since multiple objectives are involved, 

the CAMD problem is now a multi-objective optimisation problem. 

However, some design objectives may potentially be conflicting in nature. 
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Fuzzy optimisation algorithm can be adopted as a decision making tool to 

deal with the trade-off between these conflicting objectives. In order to 

apply fuzzy optimisation algorithm, a degree of satisfaction, λp has to be 

introduced to each design objective property. 

 

 

Figure 4.1: The degree of satisfaction, λp curve for design objective to be 

maximised (a) or minimised (b) 

 

 Figure 4.1 illustrates the degree of satisfaction curve for design 

objective to be maximised or minimised. As shown in Figure 4.1(a), the 

goal is to maximise Vp. Hence any Vp above vU
p
  has a λp value of one, which 

indicates that the objective is fully satisfied. On the contrary, any Vp below 

vL
p
  has a λp value of zero, which depicts that the objective is not satisfied. 

In between vL
p
  and vU

p
 , the λp value is represented by a linear function. The 

reverse mechanism is shown in Figure 4.1(b) where the goal is to minimise 

Vp. From Figure 4.1, λp can then be expressed as a linear membership 

function bounded by vL
p
  and vU

p
  as shown in Equations (4.4) and (4.5). 

Equation (4.4) is used for a design objective to be maximised while 

Equation (4.5) is used for a design objective to be minimised. 
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Ppλp  10  (4.6) 

 

 λp is a continuous variable representing the level of satisfaction, 

which ranges from 0 to 1. In order for all λp to reach high level of 

satisfaction, all λp have to be maximised or be close to 1. Max-min 

aggregation method developed by Zimmermann (1978) can be employed 

in this work to maximise the least satisfied degree of satisfaction. This is to 

ensure that all values of λp will be satisfied partially to at least the degree 

of λ. A modified max-min aggregation technique is applied to ensure the 

that solution generated by the optimisation model achieves Pareto 

optimality (Javadian et al., 2009). The overall objective function is shown 

by Equation (4.7), subjected to constraint of Equation (4.8): 

 





Pp

pλ
M

λ
1

 max  (4.7) 

Ppλλp   (4.8) 

 

where M is an arbitrarily large number. The huge value of M ensures that 

the second term in Equation (4.7) does not have significant effect on the 

final numerical value of λ. As the second term will assume a non-zero 
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value, this forces the individual λp to be maximised, which ensures Pareto 

optimality (Yu et al., 2016; Promentilla et al., 2017). 

 

 In order to generate multiple optimal solutions, integer cuts have 

been applied. Integer cuts introduce additional constraints into the problem 

formulation which prevent the formation of the optimal solutions that have 

already been identified. This approach assists the designer in finding 

alternatives other than the optimal solution. For instance, when the 

optimisation model has generated an optimal molecular structure, an 

additional constraint is then introduced to the model. The constraint 

ensures that the molecular structure of this particular optimal solution will 

not be formed again in the search of the next alternative. The integer cut 

constraint is formulated as follows: 

 

0
1

* 


TG

i
ii NN  (4.9) 

 

where N*
i
  represents the number of molecular group of type i of the 

optimal solution(s) that has/have already been generated by the 

optimisation model. For example, a particular CAMD problem considers 

CH3, CH2 and OH groups as the molecular building blocks to formulate the 

molecules. If the first optimal solution generated by the model consists of 

one CH3 group, one CH2 group and one OH group (equivalent to an ethanol 

compound), the integer cut constraint added for next model iteration is 

given by: 

 

0111 OHCH2CH3  NNN  (4.10) 
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where NCH3, NCH2 and NOH represent the number of CH3, CH2 and OH groups 

present in the molecule respectively. With the addition of constraint (4.10), 

the next model iteration will not generate the exact same combination of 

molecular groups (or ethanol compound) as the next optimal solution. 

 

4.3.5 Performance Analysis 

 

Table 4.1: Parameters evaluated in inherent safety indexes 

Parameters   PIIS ISI i-Safe 

Heat of reaction     

Heat of side reaction     

Chemical interaction     

Reactivity rating     

Flammability      

Explosiveness      

Toxicity      

Corrosiveness      

Inventory      

Yield       

Temperature      

Pressure      

Type of equipment     

Process structure     

 

 The generated molecules from the previous stage then undergo the 

performance analysis stage to assess their safety and health performance. 

First, the selection of safety and health sub-indexes has to be carried out. 

The selection of the inherent safety and health indexes are made based on 
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the existing indexes that have already been well developed. For safety 

indexes, PIIS (Edwards and Lawrence, 1993), ISI (Heikkilä, 1999) and i-

Safe (Palaniappan et al., 2002) are considered. Table 4.1 shows a 

summary of the parameters that are considered in their indexes. 

 

 However, only some of these parameters can be applied in this work 

(product design) as these indexes were not originally meant for product 

design; instead they are developed for selecting the ‘best’ chemical process 

route to synthesise the desired product. Hence, parameters that are 

related to process are selected in this work. The parameters that are 

related to the chemical properties are heat of reaction, heat of side 

reaction, chemical interaction, reactivity, flammability, explosiveness, 

toxicity, and corrosiveness. In a CAMD problem, it is easier to apply 

parameters that can be directly linked to the properties which can be 

estimated through property prediction methods. Parameters in which the 

index scores are assigned based on non-numerical descriptions may not be 

easily included in the mathematical optimisation model. For instance, the 

corrosiveness sub-index from ISI is based on the basis of the required 

construction material, such as carbon steel, stainless steel and special 

materials. Expert judgments are needed for the selection of appropriate 

construction material, as there are no direct prediction methods that can 

be utilised to decide on such selection. Therefore, two parameters are 

chosen from the safety indexes, namely flammability (IFL) and 

explosiveness (IEX). The former sub-index can be evaluated using flash 

point (Fp) and normal boiling point (Tb), while the latter sub-index can be 

measured by upper and lower explosion limits (UEL and LEL respectively). 

All these properties can be easily estimated through property prediction 

models. Toxicity exposure is not chosen as one of the safety sub-indexes to 

avoid repetition as it has already been included in one of the health indexes 
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(Hassim and Hurme, 2010a). The index scores for explosiveness sub-index 

are taken from ISI while the score for flammability sub-index is taken from 

NFPA flammability rating (National Fire Protection Association, 2007). Even 

though PIIS also offers explosiveness index scores, the maximum score 

assigned is ten, which is relatively high compared to the maximum index 

score given by ISI and NFPA. For consistency purpose, explosiveness index 

scores from ISI are applied. On the other hand, the reason for applying the 

NFPA flammability rating is that it is one of the standard systems that is 

commonly applied to classify the hazards of the materials, as it is 

frequently used in the material safety data sheet (MSDS). The penalty 

scores for the two safety sub-indexes are shown in Tables 4.2 and 4.3. 

 

Table 4.2: Flammability (IFL) sub-index (National Fire Association 

Protection, 2007) 

Parameter  Score Information   Penalty Score 

Flammability, IFL Nonflammable   0 

   Fp ≥ 93.4°C    1 

   Fp < 93.4°C    2 

   Fp < 37.8°C    3 

   Fp < 22.8°C & Tb < 37.8°C  4 

 

Table 4.3: Explosiveness (IEX) sub-index (ISI) (Heikkilä, 1999) 

Parameter   Score Information Penalty Score 

Explosiveness, IEX  Non explosive  0 

S = (UEL-LEL) vol%  0 ≤ S < 20  1 

    20 ≤ S < 45  2 

    45 ≤ S < 70  3 

    70 ≤ S ≤ 100  4 
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Table 4.4: Parameters evaluated in the inherent health indexes 

Parameters  PRHI IOHI 

Mode of process   

Material phase   

Volatility    

Pressure    

Corrosiveness    

Temperature    

Viscosity    

Ability to precipitate   

Density difference   

Volume changes   

Solubility    

Exposure limit    

R-phrase    

Transport    

Venting or flaring   

Maintenance works   

 

 As for health indexes, the two indexes considered are PRHI (Hassim 

and Edwards, 2006) and IOHI (Hassim and Hurme, 2010a). As shown in 

Table 4.4, many of the parameters evaluated are mainly focussed on 

process aspects. Similar to the selection of safety parameters, only the 

chemical-properties parameters are chosen for molecular assessment, 

which include viscosity (Iη) from the PRHI, as well as material phase (IMS), 

volatility (IV), and exposure limit (IEL) from the IOHI. For these four chosen 

health sub-indexes, the evaluation is carried out at 25°C and 1 atm as 

these are usually the conditions in which the workers handle the materials 

in the plant. Tb and normal melting point (Tm) are used to determine IMS, 
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while Tb alone is used to examine IV. According to Hassim and Hurme 

(2010a), the exposure limit is with the basis of 8-h daily exposure time and 

it illustrates a chronic type of toxicity, which is represented in terms of 

permissible exposure limit (PEL). Besides chronic-typed toxicity, the acute 

type of toxicity is equally important and it should also be covered in this 

work. Hence, another parameter named acute health hazard (IAH) is also 

included in which the scoring for this sub-index is based on the NFPA 

health hazard rating (National Fire Protection Association, 2007). From the 

NFPA health hazards, the potential of a material to cause injury due to 

contact with or entry into the body via inhalation, skin contact, eye 

contact, or ingestion is addressed. These can be measured using 

LC50,inhalation for acute inhalation toxicity, LD50,dermal for acute dermal toxicity, 

and LD50 for acute oral toxicity. Since the group contribution model for LD50 

(acute oral toxicity) is available, this particular property is used in this sub-

index to carry out the acute toxicity measurement. The penalty scores for 

the five selected health sub-indexes are shown in Tables 4.5 to 4.9. The 

total penalty score of a molecule (ISHI) is the summation of all the sub-

index scores assigned to it, which is shown in Equation (4.11). A molecule 

with lower total penalty score is desired as it represents an inherently safer 

and healthier molecule. 

 

ISHI = IFL + IEX + Iη + IMS + IV + IEL + IAH (4.11) 

 

Table 4.5: Viscosity (Iη) sub-index (PRHI) (Hassim and Edwards, 2006) 

Parameter  Score Information   Penalty Score 

Viscosity, Iη  Low (0.1 cp ≤ η < 1 cp)  1 

   Medium (1 cp ≤ η < 10 cp)  2 

   High (10 cp ≤ η ≤ 100 cp)  3 

 



 

82 

 

Table 4.6: Material phase (IMS) sub-index (IOHI) (Hassim and Hurme, 

2010) 

Parameter  Score Information Penalty Score 

Material phase, IMS Gas   1 

   Liquid   2 

   Solid   3 

 

Table 4.7: Volatility (IV) sub-index (IOHI) (Hassim and Hurme, 2010) 

Parameter Score Information   Penalty Score 

Volatility, IV Liquid and gas   

  Very low volatility (Tb > 150°C) 0 

  Low (150°C ≥ Tb > 50°C)  1 

  Medium (50°C ≥ Tb > 0°C)  2 

  High (Tb ≤ 0°C)   3 

 

Table 4.8: Exposure limit (IEL) sub-index (IOHI) (Hassim and Hurme, 

2010) 

Parameter  Score Information Penalty Score 

Exposure limit, IEL Vapour (ppm)   

   PEL > 1000  0 

   PEL ≤ 1000  1 

   PEL ≤ 100  2 

   PEL ≤ 10  3 

   PEL ≤ 1  4 
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Table 4.9: Acute health hazard (IAH) sub-index (National Fire Association 

Protection, 2007) 

Parameter   Score Information  Penalty Score 

Acute health hazard, IAH Oral rat LD50 (mg/kg)   

    LD50 > 2000   0 

    500 < LD50 ≤ 2000  1 

    50 < LD50 ≤ 500  2 

    5 < LD50 ≤ 50   3 

    LD50 ≤ 5   4 

 

4.4 Case Study: Solvent Design for Gas 

Sweetening Process 

 Over the years, many anthropogenic activities have resulted in the 

release of huge quantity of carbon dioxide (CO2) into the atmosphere. 

Fossil fuel combustion can be regarded as one of the major contributions 

leading to the increase in CO2 emissions. This can bring about adverse 

impact to the environment, i.e. global warming. Nowadays, chemical 

industries have played a major role in promoting sustainable development. 

The removal of CO2 from fossil fuel combustion is one critical issue that 

must be addressed. The most extensively used technology for the removal 

of CO2 is the chemical absorptions with the utilisation alkanolamines as 

solvents (Muhammad and GadelHak, 2015). Figure 4.2 shows a schematic 

diagram of a gas sweetening process using amines as absorbent. The sour 

gas enters at the bottom of the absorber column while the lean amine 

solution enters the column at the top. In the absorber, the sour gas comes 

into contact with the amine solution, where the acid gas components such 

as CO2 will be removed by the weak CO2-amine bonding. Sweet gas then 

exits from the top of column while the rich amine solution is then fed into a 



 

84 

 

flash drum where hydrocarbons are vented out at the top vapour stream. 

The rich amine solution will then flow through the rich-lean-heat exchanger 

to be heated up and subsequently enters the stripper column. In the 

stripper column, the amine solution is regenerated by heating the solvent 

to strip off the acid gases at a low pressure, which then leaves the column 

from the top. The regenerated or lean amine solution exits from the bottom 

of column and transfers heat to the rich amine solution in the heat 

exchanger. Make-up amine is added to the lean amine stream before 

entering the absorber column (Behroozsarand and Zamaniya, 2011; Peters 

et al., 2011; Shakerian et al., 2015). 

 

 

Figure 4.2: Simplified flow sheet of amine gas sweetening plant 

 

4.4.1 Problem Formulation 

4.4.1.1 Design Goal 

 The application of alkanolamines for the removal of acid gas from 

sour gas has long been practiced in the gas industry for almost 60 years. 

Some advantages of using alkanolamines include their high reactivity and 

low solvent cost. Among amines, aqueous monoethanolamine (MEA) 
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solution is the most commonly used solvent in gas sweetening process as it 

exhibits fast reaction rate, low solvent cost, reasonable thermal stability, 

and high absorbing capacity (Kumar et al., 2014). However, it also suffers 

from one major drawback, which is solvent loss due to its high volatility 

and degradation (Wang et al., 2015). Hence, this results in higher MEA 

make-up cost. The goal of this case study is to determine a solvent that 

will replace MEA as the absorbent which can help in minimising the usage 

of amine solution in the acid gas removal unit. Since MEA is known to be a 

nontoxic solvent, the generated solvent must not exhibit high safety and 

health hazard level. Hence, inherent safety and health indexes are applied 

as the evaluation tool to assess the safety and health performance of the 

generated molecule. 

 

4.4.1.2 Target Properties 

 For this case study, the aim is to identify an amine-based solvent 

serving as CO2-absorbent involved in a chemical reaction that can help in 

reducing the amount of solvent loss in a gas sweetening process. The 

solvent must also possess a favourable safety and health characteristics to 

ensure that it does not bring much harm to the employees dealing with the 

process. The design objective of this work is to develop a molecule with low 

vapour pressure (VP) to ensure that the solvent does not vaporise easily, 

which helps in minimising solvent loss. Besides, the solvent should also 

have low soil sorption coefficient (log Koc) to prevent the accumulation of 

the escaping solvent in one place (Chemmangattuvalappil and Eden, 2013; 

Ng et al., 2014a). These two mentioned target properties are selected as 

the design objectives to be optimised. Next, the relevant property 

constraints are determined to ensure that the generated molecule exhibits 

the similar characteristics as the conventional amine solvents. The selected 

property constraints include heat of vaporisation (Hv), liquid molar volume 
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(Vm), viscosity (η), molecular weight (Mw), boiling point (Tb) and melting 

point (Tm). All property ranges of the solvent at standard condition (298 K 

and 1 atm) are shown in Table 4.10. The lower and upper boundary values 

for Hv, VP, Mw, η, Tb and Tm are acquired from Kumar et al. (2014) while 

the lower and upper boundary values for Vm are taken from 

Chemmangattuvalappil and Eden (2013). 

 

Table 4.10: Property targets for case study (gas sweetening) 

Property  Lower bound Upper bound 

Hv (kJ/mol)  50  528 

Vm (cm3/mol)  40  224 

Mw (g/mol)  60  250 

η (cP)   -  460 

Tb (°C)   111  350 

Tm (°C)  -65  25 

VP (mm Hg)  minimum - 

log Koc   minimum - 

 

4.4.2 Model Development 

4.4.2.1 Property Prediction Model 

 In this stage, all properties that are considered as the target 

properties in Section 4.4.1.2 have to be calculated through property 

prediction methods. From Table 4.10, Hv, Vm, Tb and Tm can be predicted 

with GC models presented by Hukkerikar et al. (2012b), while η can be 

estimated by GC model developed by Conte et al. (2008) as shown in Table 

4.11. Meanwhile, properties without available GC models can be estimated 

using correlations or empirical relationships. VP can be calculated from the 
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normal boiling point, Tb of the component using an empirical relationship as 

shown by the following equation (Sinha and Achenie, 2003): 

 

7.1
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where T is the temperature at standard condition (298 K). log Koc can be 

calculated through the correlation given in terms of octanol-water partition 

coefficient, log Kow which is shown by Equation (4.13) (Seth, et al., 1999). 

log Kow can be determined through GC model by Hukkerikar et al. (2012b) 

as shown in Table 4.11. 

 

61.0log03.1log  owoc KK  (4.13) 

 

Table 4.11: GC models for selected properties in the case study 

Property p f(P) in Equation (2.3)  Universal constants 

Hv (kJ/mol) Hv − Hv0   Hv0 = 9.6127 kJ/mol 

Vm (cm3/mol) Vm − Vm0   Vm0 = 16 cm3/mol 

η (cP)  ln η    - 

Tb (K)  exp(Tb/Tb0)   Tb0 = 244.5165 K 

Tm (K)  exp(Tm/Tm0)   Tm0 = 143.5706 K 

log Kow  log Kow − Kow0   Kow0 = 0.4876 

 

4.4.3 Molecular Design 

4.4.3.1 Molecular Blocks 

 The molecular blocks selected in this case study are based on the 

conventional absorbents that are utilised in gas sweetening process. Some 

of the frequently used absorbents are monoethanolamine (MEA), 
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diethanolamine (DEA), triethanolamine (TEA), methyldiethanolamine 

(MDEA), diglycolamine (DGA), diisopropanolamine (DIPA) (Kumar et al., 

2014), and diisopropylamine (Chemmangattuvalappil and Eden, 2013). The 

selected molecular blocks include CH3, CH2, CH, OH, CH2O, CH2NH2, 

CH2NH, CHNH, CH3N, and CH2N. In this case study, only simple-structured 

molecules are considered, hence only first-order groups are utilised to 

construct the molecules. The binary variables of x and z in Equation (2.3) 

are set to zero. Since most conventionally used absorbents are acyclic 

compounds, the variable g in Equation (4.3) takes the value of one. 

 

4.4.3.2 Structural Constraints 

 In order to ensure that a structurally feasible molecule is formed 

without containing any free bonds, structural constraints shown by 

Equations (4.2) and (4.3) are applied. 

 

4.4.4 Optimisation Model 

4.4.4.1 Property Operator Targets 

 

Table 4.12: Property operator targets for case study (gas sweetening) 

Property p Ωp  Lower bound Upper bound 

Hv  Hv - Hv0 40.3873 518.3873 

Vm  Vm - Vm0 0.024  0.208 

Mw  Mw  60  250 

η  ln η  -  6.1312 

Tb  exp(Tb/Tb0) 4.8117  12.7879 

Tm  exp(Tm/Tm0) 4.2623  7.9779 
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 The target properties listed in Table 4.10 are then converted into 

their respective property operator, Ωp as shown in Table 4.12. The property 

operator is illustrated by the simple function f(P) for each target property 

p, which is exactly the left-hand side of Equation (2.3). For instance, the 

property operator of Tm is given by the function of exp(Tm/Tm0), where Tm is 

given in K, while Tm0 has a value of 143.5706 K (Hukkerikar et al., 2012b). 

By substituting the lower and upper bounds of Tm from Table 4.10 into 

exp(Tm/Tm0), the calculated lower and upper property operator bounds of 

Tm are shown in Table 4.12. 

 

4.4.4.2 Fuzzy Optimisation 

 

Table 4.13: Property operator targets for design objectives (gas 

sweetening) 

Property p Ωp    LB  UB  Design goal 

VP  exp(Tb/Tb0)   5.2373 9.3078  Minimise VP 

        (or maximise Tb) 

log Koc  log Kow − Kow0   -2.6284 3.7313  Minimise log Koc 

        (or log Kow) 

 

 As stated in Section 4.4.1.2, log Koc and VP are the two target 

properties selected as the design objectives. The two objectives can be 

conflicting; hence fuzzy optimisation is performed to simultaneously 

optimise both objectives. To apply fuzzy optimisation, the linear 

membership functions from Equations (4.4) and (4.5) and the constraint 

from Equation (4.6) are used. In order to optimise these two design 

objectives, their property operator range must first be identified. As VP is 

estimated from Tb, the property operator for VP is expressed in terms of 



 

90 

 

that of Tb. While the property operator for log Koc is also represented in 

terms of that of log Kow. Both log Kow and VP are optimised separately (by 

maximising or minimising) to identify their respective upper and lower 

property operator bounds. The lower and upper bound values for both 

properties are shown in Table 4.13. The remaining properties in Table 4.12 

are served as property constraints to be fulfilled. Both design objectives 

can then be represented by the linear membership functions as shown in 

Equations (4.14) and (4.15): 
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 The overall objective is given by Equation (4.7), subjected to the 

following constraints: 

 

λλVP   (4.16) 

λλ
ocK log  (4.17) 

 

 The optimisation model becomes a mixed-integer linear 

programming (MILP). Integer cuts can be applied to enumerate alternative 

solutions. 

 

4.4.5 Performance Analysis 

4.4.5.1 Selection of Inherent Safety and Health Sub-

indexes 

 The generated molecules from previous stage subsequently undergo 

the performance analysis stage to assess their safety and health 
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characteristics. The safety assessment is carried out using the sub-indexes 

of flammability (IFL) and explosiveness (IEX). Meanwhile, the selected health 

sub-indexes are comprised of viscosity (Iη), material phase (IMS), volatility 

(IV), exposure limit (IEL), and acute health hazard (IAH). The allocation of 

the safety and health sub-index scores are provided in Section 4.3.5 

(Tables 4.2, 4.3 and 4.5 to 5.9). The total penalty score that a molecule 

received is calculated using Equation (4.11). 

 

4.4.5.2 Property Prediction Models 

 As the application of safety and health sub-indexes involved several 

physicochemical properties, their corresponding property prediction models 

must be identified to assist with property estimation. The involved 

properties include Fp, Tb, UEL, LEL, η, Tm, PEL, and LD50 for acute oral 

toxicity. The GC models for Tb, Tm, and η are provided in Table 4.11. As 

shown in Table 4.14, GC model developed Hukkerikar et al. (2012b) is 

employed to predict Fp, while GC models by Hukkerikar et al. (2012a) are 

applied to determine PEL and LD50 for acute oral toxicity. 

 

Table 4.14: GC models for selected properties used in sub-indexes 

Property p  f(P) in Equation (2.3)    Universal constants 

Fp (K)   Fp − Fp0     Fp0 = 170.7058 K 

PEL (mol/m3)  −log PEL     - 

LD50 (mol/kg)  −log LD50 − ALD50 − BLD50MW   ALD50 = 1.9372; 

         BLD50 = 0.0016 

 

 The value of PEL calculated in Table 4.14 contains the unit of 

mol/m3. In order to convert the unit of PEL into ppm, the following 

equation is applied: 
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1000' ,  PELVPEL stdgas  (4.18) 

 

where PEL’ is expressed in terms of ppm while Vgas,std is the molar volume 

of gas or vapour at standard condition (298 K and 1 atm), which takes the 

value of 24.45 dm3/mol. Meanwhile, both lower explosion limit (LEL) and 

upper explosion limit (UEL) can be used interchangeably with lower 

flammability limit (LFL) and upper flammability limit (UFL) respectively. 

They can be calculated using the following correlations: 
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where CO is the oxygen stoichiometric coefficient in a reaction (Ma et al., 

2013). Consider a general compound CxHyOzNw undergoes a complete 

combustion in air: 
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CO can then be calculated by: 

 

24

zy
xCO   (4.22) 

 

4.4.6 Results and Discussions 

 Since this case study aims to replace MEA, the safety and health 

performance of the generated molecules must not perform inferior than 
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that of MEA. The properties of MEA are shown in Table 4.15. The values of 

Tb, Tm, Fp, S, and LD50 are taken from MSDS provided by Sigma-Aldrich. 

The values of log Kow and η are extracted from the U.S. National Library of 

Medicine. Meanwhile, VP and PEL of MEA can be found in the Occupational 

Safety and Health Administration (OSHA) Occupational Chemical Database. 

Since log Koc is MEA is not available, it can be predicted using Equation 

(4.13), which returns a value of -1.96. All the safety and health sub-index 

scores for MEA are shown in Table 4.16. 

 

Table 4.15: Properties of MEA 

Property Property value Property Property Value 

log Kow  -1.31   Tm (°C) 10 

log Koc  -1.96   Fp (°C)  86 

VP (mm Hg) 0.4   S (vol%) 14.5 

η (cP)  18.95   PEL (ppm) 3 

Tb (°C)  170   LD50 (mg/kg) 1720 

 

Table 4.16: The sub-index scores of MEA 

IFL IEX Iη IMS IV IEL IAH ISHI 

2 1 3 2 0 3 1 12 

 

 The optimisation model is solved using LINGO 14.0 with a 

computational time of 0.4 seconds for the first generated solution. Eight 

solvents with the best λ values are generated, and their molecular 

structures are illustrated in Figure 4.3. Tables 4.17 and 4.18 demonstrate 

the properties of the eight generated solvents, which are all determined 

using property prediction models. From Table 4.17, all eight solvents have 

larger log Koc as compared to MEA. Note that the eight solvents are less  
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Figure 4.3: The best eight solvents with their molecular structures 

 

Table 4.17: The eight generated solvents with their properties 

Solvent λ log Koc VP  Hv  Vm  Mw 

   (mm Hg) (kJ/mol) (cm3/mol) (g/mol) 

S1 0.597 -0.18 0.117  75.59  159.3  147.2 

S2 0.587 -0.11 0.114  75.91  175.2  161.2 

S3 0.548 0.14 0.071  78.44  191.4  175.3 

S4 0.544 -0.37 0.185  73.37  159.0  147.2 

S5 0.525 0.26 0.211  71.15  175.8  161.2 

S6 0.518 -1.14 0.221  82.23  133.0  133.2 

S7 0.513 -1.21 0.228  81.92  117.1  119.2 

S8 0.506 0.42 0.232  71.76  153.0  131.2 
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Table 4.18: The eight generated solvents with their properties (continued) 

Solvent η Tb Tm Fp S PEL LD50 

  (cP) (°C) (°C) (°C) (vol%) (ppm) (mg/kg) 

S1  16.32 227.0 24.8 115.4 6.544 0.666 662.5 

S2  15.42 227.6 22.2 114.1 5.772 0.644 611.8 

S3  16.66 236.9 23.6 119.2 5.163 0.582 579.9 

S4  14.26 218.0 20.8 109.0 6.544 0.712 640.5 

S5  7.51 215.4 -12.3 90.1 5.772 1.048 526.3 

S6  36.66 214.4 21.1 107.6 7.553 2.443 771.0 

S7  38.81 213.8 23.8 108.9 8.930 2.530 818.2 

S8  10.93 213.4 16.2 94.0 6.265 4.772 744.6 

 

Table 4.19: The eight generated solvents with their sub-index scores 

Solvent IFL IEX Iη IMS IV IEL IAH ISHI 

S1  1 1 3 2 0 4 1 12 

S2  1 1 3 2 0 4 1 12 

S3  1 1 3 2 0 4 1 12 

S4  1 1 3 2 0 4 1 12 

S5  2 1 2 2 0 3 1 11 

S6  1 1 3 2 0 3 1 11 

S7  1 1 3 2 0 3 1 11 

S8  1 1 3 2 0 3 1 11 

 

volatile than MEA as they all have lower VP than MEA. Meanwhile, Table 

4.19 shows all the sub-index values assigned to each molecule and their 

respective total index score. The best four solvents (S1 to S4) have an ISHI 

value of 12 while the remaining four solvents have an ISHI value of 11. 

Even though solvents S1 to S4 perform better in terms of target 
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functionality, their inherent safety and health performance are still inferior 

to that of solvents S5 to S8. This is mainly demonstrated by the highest IEL 

penalty score received by solvents S1 to S4, which is deemed to be highly 

toxic when inhaled by the workers. In addition, solvents S5 to S8 also 

exhibit better safety and health performance compared to MEA, in which 

solvent S5 is less viscous than MEA, while solvents S6 to S8 are less 

flammable than MEA. Hence, solvents S5 to S8 can be considered as the 

chemical candidates for the gas sweetening process. The International 

Union of Pure and Applied Chemistry (IUPAC) name for solvents S5, S6, S7 

and S8 are 1-(diethylamino)-3-methoxy-2-propanol, [n-

ethyl(hydroxymethyl)amino]methanol, 2-(pentylamino)ethanol, and 1-

[(hydroxymethyl)(isopropyl)amino]-1-ethanol respectively. 

 

 In this work, only the desired physicochemical properties of the 

molecule are considered as the design objectives in the early design stage. 

Safety and health aspects are only integrated in the performance analysis 

stage to evaluate the molecular performance. In order to ensure that the 

generated molecules exhibit both optimum targeted functionality and 

favourable safety and health performance, safety and health aspects 

should also be included as the design objectives along with the target 

physicochemical properties. This is addressed as the second scope of this 

research work and is presented in Chapter 5, which considers the 

simultaneous optimisation of molecular functional performance and its 

safety and health attributes. 

 

 In addition, the allocation of sub-index scores to the molecules is 

based on the property values, which are calculated via the property 

prediction models. These estimated property values are highly dependent 

on the accuracy of the property prediction models. Some estimated values 
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may have remarkable deviation from their respective actual experimental 

values. This may cause a lower or higher sub-index score to be assigned to 

certain molecules, since their property values may fall into another 

property sub-range resulting in inaccurate scores being assigned to the 

molecules. This issue has been identified as the third scope and is 

presented in Chapter 6 to enhance the safety and health sub-index scores 

under property prediction uncertainty. 

 

 One major limitation of the application of safety and health sub-

indexes is the discontinuity of sub-index scores at the boundary values 

separating two adjacent sub-ranges. This causes the safety and health 

evaluation on the molecule to be less sensitive as property values that fall 

within the same interval are assigned a similar sub-index score. For 

instance, molecules with PEL value within 1 to 10 ppm are assigned a sub-

index score of 3 while molecules with PEL value within 10 to 100 ppm are 

assigned a score of 2. Now consider that molecule P has a PEL of 3 ppm 

while molecule Q has a PEL of 8 ppm. Both molecules receive a similar sub-

index score of 3, even though molecule Q has a higher PEL value, which 

indicates that it is inherently healthier than molecule P. Now consider 

another molecule R with PEL of 11 ppm, even though it has a PEL value 

difference of 3 ppm compared to molecule Q, it receives a score of 2. 

Meanwhile, molecule P and Q have a higher PEL value difference, but they 

both received the same score. Hence, one way to solve these issues is to 

modify the sub-index to ensure a continuous change in the scoring, which 

is addressed as the fourth scope and is presented in Chapter 7. 

 

 Nevertheless, the application of the existing safety and health 

indexes in CAMD in this work still provides a first insight on the 

consideration of safety and health aspects in the design stage. When these 
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inherently safer and healthier molecules are used in a process (eg. as 

solvent, catalyst, refrigerant, etc.), this helps to lower the overall hazard 

level present in the process. 

 

4.5 Summary 

 A novel methodology is proposed to assess the safety and health 

aspects of the optimal molecules generated by CAMD approach. The 

desired target properties of the molecular design problem are first 

identified in order to fulfil the customers’ needs. These target properties 

can be estimated through property prediction models. The appropriate 

molecular building blocks are selected depending on the nature of the 

design problem. In order to ensure that a feasible molecule that does not 

contain any free bonds is produced, structural constraints are introduced 

into the problem. Optimisation is then carried out by optimising the design 

objectives subjected to property constraints to generate the optimal 

solution. Integer cuts are then introduced as constraints to generate 

alternative feasible solutions. The generated set of molecules then 

undergoes a performance analysis stage to evaluate their safety and health 

performance. Inherent safety and health indexes are applied as the 

assessment tool. Each molecule is allocated with several sub-index scores, 

and the summation of the scores is used to quantify and rank the inherent 

hazard level of each molecule. A case study on the solvent design for gas 

sweetening process by applying this method is illustrated. The objective is 

to design a solvent acting as absorbent to help in minimising the usage of 

amine solution in the acid gas removal unit. The design objectives of this 

problem are to minimise both the soil sorption coefficient and vapour 

pressure of the solvent subjected to the desired target property 

constraints. Eight solvents with optimised results are formulated and safety 
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and health evaluations are subsequently performed on these solvents. The 

two safety sub-indexes selected are flammability and explosiveness, while 

the five health sub-indexes selected include viscosity, material phase, 

volatility, exposure limit and acute health hazard. Sub-index scores are 

then assigned to each molecule and the total index score of each molecule 

is then calculated. From the results, the most optimal solvent does not 

possess the lowest index score. There exists a need to revise the current 

CAMD approach to include the aspects of safety and health in the early 

decision-making stage. This new approach can assist in designing 

molecules that are optimal in targeted property performance as well as 

safety and health performance.  
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CHAPTER 5 

 

A MOLECULAR DESIGN METHODOLOGY BY 

THE SIMULTANEOUS OPTIMISATION OF 

PERFORMANCE, SAFETY AND HEALTH 

ASPECTS 

 

5.1 Introduction 

 In most CAMD problems, molecular physical and thermodynamic 

properties are often selected as the design criteria during design stage to 

ensure that the synthesised molecules fulfil the targeted functionalities. 

However, the incorporation of safety and health aspects into CAMD is not 

strongly emphasised as design criteria in many design problems. They are 

mainly introduced as property constraints so that molecules that do not 

fulfil the safety and health criteria are screened out. Instead of eliminating 

potential molecules, it is necessary to analyse the trade-off between the 

molecular functional performance and its safety and health characteristics. 

This chapter addresses the second scope of this research, in which both 

safety and health aspects are integrated as design criteria in the existing 

CAMD method to ensure that the synthesised molecule does not bring 

harm and health-related hazards to the consumers, and at the same time 

exhibits high functional performance. A novel chemical product design 

methodology has been developed to integrate both safety and health 

aspects, as well as the target physicochemical properties into a single-

stage CAMD framework. The assessment of safety and health parameters 
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are based on the molecular properties that have significant impact on both 

aspects. Each property is introduced with a sub-index value depending on 

the degree of potential hazards. Disjunctive programming algorithm is 

employed to assist in converting the input molecular property values into 

their corresponding sub-index scores. Fuzzy optimisation is applied to 

optimise two principal design objectives in this work: molecular target 

properties and its safety and health performance. A case study on solvent 

design for gas sweetening process has been carried out to determine the 

optimal molecule with reasonably low safety and health hazards level, and 

at the same time, achieves the targeted property functionalities. 

 

5.2 Problem Statement 

 Generally in most conventional CAMD problems, the design 

objectives to achieve are often the physicochemical properties of the 

molecule. These target properties are optimised to ensure that the 

generated molecule is able to attain the desired product functionality. The 

aspects of safety and health are usually imposed as design constraints so 

that the generation of hazardous molecules can be prevented. However, 

the ‘enforcement’ of such constraints may suppress the generation of 

solvents which excel dominantly in terms of product functionality, but are 

screened out due to not meeting the imposed constraints. For instance, 

given that a constraint is considered where Fp of the molecules is set to be 

‘greater than 50°C’ to generate less flammable molecules. With this 

constraint, any molecules with Fp lower than 50°C are excluded from the 

final solutions. However, an excluded molecule with Fp of 49°C may have 

significantly superior functional performance as to that of a candidate 

molecule with Fp of 51°C, even though their Fp values are relatively close to 

one another. Instead of imposing constraints on the safety and health 
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factors, a trade-off should be conducted between the advantages in the 

performance of molecules and their safety and health attributes. In this 

chapter, inherent safety and occupational health of the molecule are served 

as the design criteria, along with the targeted properties of the molecule. 

The application of inherent safety and health indexes is used as the 

assessment tools to examine the molecular performance. There is one 

specific problem to be addressed, which is stated as follows: 

1. In Chapter 4, the safety and health sub-indexes are employed after 

the optimal molecules are generated to assess the molecular safety 

and health performance. In this chapter, both targeted functional 

properties and the safety and health aspects of the molecules are 

simultaneously optimised. Thus, the allocation of sub-index scores 

to the molecules in this case has to be done concurrently when the 

optimisation model is searching for the optimal solution. Since the 

allocation of scores is based on the input property values, 

disjunctive programming algorithm is introduced to convert the 

properties into their corresponding scores. 

 

5.3 Methodology 

 The main scope of this work is to present a systematic framework 

that incorporates the aspects of safety and health as design criteria in a 

CAMD problem. This framework considers both product functionality and 

inherent safety and health properties simultaneously, in order to generate 

an optimal molecule with respect to both criteria. 

 

5.3.1 Problem Formulation 

 This stage serves the same purpose as the one presented in Section 

4.3.1. The desired target properties which define the molecular targeted 
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functionalities and characteristics are identified. Each target property is 

bounded by a pre-specified range as given by Equation (4.1) to ensure the 

generated molecules can function and behave in the desired manner. 

Target properties to be optimised are selected as design objectives, while 

the remaining properties will act as property constraints. 

 

5.3.2 Inherent Safety and Health Sub-index Selection 

 In Chapter 4, both safety and health aspects are not considered as 

design objectives as they are only evaluated in the performance analysis 

stage once the optimal molecules are generated. Since the main goal of 

this chapter is to include both safety and health aspects as design criteria, 

both aspects are optimised simultaneously along with the targeted 

functional properties. Thus, the selection of safety and health sub-indexes 

are carried out before the molecules are generated. As explained in Section 

4.3.5, the existing inherent safety and occupational health indexes are 

developed to assess and compare the hazard level of different possible 

chemical process routes to manufacture the same chemical compound. 

Each index is made up of numerous sub-indexes, which can be divided into 

chemical-related sub-indexes and process-related sub-indexes. The 

appropriate chemical-related sub-indexes have been selected in Section 

4.3.5, which comprised of flammability (IFL) and explosiveness (IEX) for 

safety; and viscosity (Iη), material phase (IMS), volatility (IV), exposure 

limit (IEL), and acute health hazard (IAH) for health. Each sub-index is 

evaluated by single or multiple properties, which are divided into several 

sub-ranges to represent different levels of potential hazard. A sub-range 

with higher degree of hazard is assigned a larger penalty score and vice 

versa. The sub-index scores for the seven chosen sub-indexes are shown in 

Tables 4.2, 4.3, and 4.5 to 4.9. The overall hazard level exhibited by a 
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molecule is quantified by summing up all the seven sub-index values as 

given by Equation (4.11). 

 

5.3.3 Model Development 

5.3.3.1 Property Prediction Models 

 The molecular properties specified in Section 5.3.1 are the desired 

target properties for the generated molecules to fulfil the design goal. 

Meanwhile, the application of safety and health sub-indexes in Section 

5.3.2 also involves the use of various safety and health-related properties. 

In this stage, all properties that are considered as target properties and in 

the safety and health sub-indexes have to be determined via property 

prediction models. As previously stated in Section 4.4.5.2, the GC models 

for Tb, Tm, and η are given in Table 4.11, while the GC models for Fp, PEL, 

and LD50 for acute oral toxicity are shown in Table 4.14. Both UEL and LEL 

can be calculated through the correlations provided by Equations (4.19) 

and (4.20). 

 

5.3.3.2 Disjunctive Programming for Allocation of Sub-

index Scores 

 The allocation of penalty scores to the molecule is based on its input 

property values. All seven sub-indexes from Section 5.3.2 are comprised of 

several property sub-ranges, with each sub-range represented by a sub-

index value. For instance, for the viscosity sub-index (Iη) as shown in 

Figure 5.1, if the viscosity of a particular molecule falls in between 0.1 cP 

and 1 cP, a scoring of one is assigned to it. If the viscosity falls between 1 

cP and 10 cP, then a scoring of two is allocated to it and so on. As the 

viscosity of 1 cP is a boundary separating the “0.1 to 1 cP” sub-range and 

“1 cP to 10 cP” sub-range, the scoring switches abruptly from one to two 
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as the viscosity moves across it. The presence of multiple sub-ranges in 

the sub-index has created a disjunction for the constraint. A modelling 

method known as disjunctive programming employs discontinuous 

functions to describe abrupt changes over a certain decision variable (El-

Halwagi, 2012). Therefore, disjunctive programming can be adequately 

applied in this problem. As mentioned in Section 5.3.3.1, property 

prediction models are able to estimate the properties of interest for a 

molecule, while disjunctive programming inputs these properties into the 

safety and health sub-indexes in order to convert them into the 

corresponding sub-index scores. In this way, the optimisation model is able 

simultaneously allocate scores to the potential generated molecules while 

searching for the optimal solution of a given design problem. 

 

 

Figure 5.1: The graphical illustration of viscosity sub-index (Iη) 

 

 This section demonstrates the disjunctive algorithm that is 

employed in this work. Consider there is a particular sub-index score model 

which assigns a score of IA when the corresponding property is lower than 

a boundary property value (pswitch). Meanwhile, a score of IB is allocated in 
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the event where the property value is equivalent to or above pswitch. This 

sub-index score model can be represented by Equation (5.1). 

 










switchB

switchA

p
ppI

ppI
I  (5.1) 

 

 Binary integer variables are introduced to model these functions. 

They are transformed to the following mixed-integer formulation using a 

binary integer variable (I): 

 

)1( IIIII BAp   (5.2) 

 

subjected to the following condition: 
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 In order to ensure that the model assigns the correct value to I to 

satisfy condition (5.3), the following constraints have to be included: 

 

       1,01  IIppppIpp switchUswitchswitchL
 (5.4) 

 

where pL and pU are the lower and upper bounds respective to any feasible 

p value. When p is smaller than pswitch, the term “p – pswitch” becomes 

negative, forcing I to be 1 to satisfy both equalities in constraint (5.4). On 

the other hand, when p is greater than or equals to pswitch, the term “p – 

pswitch” becomes positive, forcing I to be 0 to again satisfy both equalities in 

constraint (5.4). In this section, the application of disjunctive programming 
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on the index scoring is demonstrated for the viscosity sub-index. Consider 

the following criteria: 

 

















cp 100cp 103

    cp 10cp 12

   cp 1cp 1.01

η

η

η

Iη  (5.5) 

 

 The viscosity can be determined from the GC method in Table 4.11. 

Since the left hand side of its GC equation is given by the natural logarithm 

of η, it is crucial to reduce the complexity of the formulation model by 

keeping it as linear as possible. In order to eliminate these non-linear 

terms in the formulation, Equation (5.5) can be rewritten as shown below 

with the viscosity intervals represented in terms of ln η: 

 

















6052.4ln3026.23

         3026.2ln02

      0ln3026.21

η

η

η

Iη  (5.6) 

 

 The viscosity sub-index score Iη may be one, two or three 

depending on the viscosity of the molecule. Binary integer variables are 

used to model these functions. The Iη function can be transformed to the 

following mixed-integer formulation using two integer variables (Iη1 and 

Iη2): 

 

121  ηηη III  (5.7) 

 

subjected to the following conditions: 
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 In order to model conditions (5.8) and (5.9) which assign the values 

of Iη1 and Iη2 to either 0 or 1 based on the viscosity of the molecule, the 

following constraints are considered: 

 

  11 6052.4ln13026.2 ηη IηI   (5.10) 

  22 3026.23026.2ln16052.4 ηη IηI   (5.11) 

 

5.3.4 Molecular Design 

 In this stage, the first step is to identify the suitable first-order 

molecular groups serving as potential building blocks for molecular 

formation. The list of first-order molecular building blocks can be found in 

Hukkerikar et al. (2012a,b). In this chapter, second-order molecular 

groups are also considered as they are able to help differentiate distinct 

isomeric structures and improve the accuracy of the estimated properties. 

The possible second-order molecular groups are chosen based on the 

selection of first-order groups. Next, structural feasibility constraints are 

imposed to ensure that the generated molecules are feasible and do not 

contain any free bonds. 

 

 The mathematical algorithms presented by Zhang et al. (2015) in 

their CAMD problems are considered in this chapter. The following sets are 

first defined: 

 

G1 = {i|i is a first-order group}; 
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ID = {id|id is the ID number of each group}; 

 

 Then, several binary variables are introduced to describe the 

connectivity of molecular groups. Binary variable bi1,id1,i2,id2 signifies 

whether first-order group i1 with id id1 (i1,id1) is connected to first-order 

group i2 with id id2 (i2,id2), in which i1, i2 ∊ G1 and id1, id2 ∊ ID. 

 

   






otherwise0

, group to connected is , group1 2211
,,, 2211

idiidi
b idiidi  

 

 Meanwhile, another binary variable, zi1,id1 is assigned to represent 

the existence of group (i1,id1) in the molecule. 

 

 
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5.3.4.1 Structural Constraints: First-Order Groups 

 In this section, the octet rule of structural feasibility is employed 

(Odele and Macchietto, 1993) to ensure that the synthesised molecules do 

not contain free bonds: 
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(5.13) 

 

where vi is the valence of group i, Ni is the number of occurrence for first-

order group i, and g is 1, 0, -1 or -2 for acyclic, monocyclic, bicyclic and 

tricyclic compounds respectively. Besides, the mathematical constraints 
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presented by Churi and Achenie (1996) are imposed to assure that only a 

single molecular structure is produced. 

 

5.3.4.2 Structural Constraints: Second-Order Groups 

 All second-order groups are made up by the connection of first-

order groups using single bond (Zhang et al., 2015), and the full list is also 

provided in Hukkerikar et al. (2012a,b). The selection of second-order 

groups is decided by the first-order groups that are applied in a particular 

CAMD problem. For instance, the second-order group (CH3)2CH can only be 

present in a molecule when a single CH group is bonded to two CH3 groups. 

In order for (CH3)2CH to be chosen as one of the second-order groups, 

both first-order groups CH3 and CH must first be selected as the building 

blocks. Disjunctive programming can then be utilised to determine the 

number of second-order groups exists in a molecule. The disjunctive 

constraints below are applied for second-order group (CH3)2CH: 

 

          123

2

23112312323 CH,CH,CH,CH,CH,CHCH,CHCHCH 1 id

IDid

idididid CbICL  


 
(5.14) 

         12312323123

2

231 CH,CHCH,CHCHCHCH,CH,CH,CH, ididid

IDid

idid ICUCb 
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IDid

idIM
1

12323 CH,CHCHCH  (5.16) 

 

where id1, id2 ∊ ID, L(CH3)2CH and U(CH3)2CH represent the lower and upper 

limit for the number of CH3 groups bonded to CH group respectively, 

C(CH3)2CH,id1 represents a boundary value to denote whether (CH3)2CH is 

present in the molecule, I(CH3)2CH,id1 is a binary variable which denotes 

whether group CH with ID number id1 is connected to at least two CH3 

groups, and M(CH3)2CH represents the total number of (CH3)2CH group 

present in the molecule. Since a single CH group has a valence number of 
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three, hence the possible number of CH3 groups that could be connected to 

CH group can either be zero, one, two or three. Hence, L(CH3)2CH and 

U(CH3)2CH are assigned the value of zero and three respectively. 

 

 

Figure 5.2: The four possible scenarios where CH group is connected to 

(a) none, (b) one, (c) two or (d) three CH3 group(s) 

 

 In order to form (CH3)2CH in a molecule, at least two CH3 groups 

must be connected to a single CH group, as shown in Figure 5.2. When 

only one or none CH3 is connected to the CH group, (CH3)2CH can never be 

formed. Hence, the boundary value, C(CH3)2CH,id1 should be assigned a value 

between one and two; and in this work, the value of 1.5 is allocated to 

C(CH3)2CH,id1. In the event where the number of CH3 groups connected to CH 

is greater than 1.5, (CH3)2CH group is present. Otherwise, the formation of 

(CH3)2CH group will not occur. Hence, Equations (5.14) and (5.15) can now 

be reduced to 

 

  IDidbI
IDid

ididid  
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 For each CH group in the molecule, if the number of CH3 groups 

connected to that particular CH group is greater than 1.5, the value of 

I(CH3)2CH,id1 is forced to become one to fulfil constraints (5.17) and (5.18). 
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Otherwise, the value of I(CH3)2CH,id1 becomes zero. All values of I(CH3)2CH,id1 for 

each CH group are then be summed up as shown in Equation (5.16) to 

determine the number of occurrence of (CH3)2CH in the molecule. 

 

5.3.5 Optimisation Model 

 In this chapter, the two main criteria to be optimised are the 

functionality performance of the molecule and its safety and health aspects 

performance. In order to ensure an inherently safer and healthier molecule 

is generated, the total penalty score of the safety and health sub-indexes, 

ISHI must be minimised. However, the molecule which performs better in 

terms of functionality may not necessarily exhibit a low penalty score. 

Hence, a decision making has to be made on the trade-off between the 

target performance of the molecule and its inherent safety and health 

level. The design criteria here are conflicting in nature and fuzzy 

optimisation algorithm can thus be applied to ensure that both desirable 

product functionality and the safety and health criteria can be attained. 

Similarly to Section 4.3.4, a degree of satisfaction for target property, λp 

has to be introduced to each target property selected as design objective, 

while a degree of satisfaction for inherent safety and health, λI is applied to 

ISHI. λp can be represented by the linear membership functions as given by 

Equations (4.4) and (4.5). As for λI, it can be expressed as a linear 

membership function bounded by lower and upper bounds of ISHI as shown 

in Equation (5.19), in which ISHI is to be minimised. The lower bound (I L
SHI

 ) 

and upper bound (I U
SHI

 ) of ISHI are determined by the lowest and highest ISHI 

values respectively subjected to the target property constraints and 

structural constraints. 
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 All λp and λI can be simultaneously optimised by the max-min 

aggregation approach presented by Zimmermann (1978), which maximises 

the least satisfied degree of satisfaction. To ensure Pareto optimality, the 

objective function of this optimisation model is given by Equation (5.20), 

which is expanded from Equation (4.7), subjected to constraints (4.8) and 

(5.21). Once the first optimal molecule is generated, integer cuts are then 

added to generate alternative optimal molecules. 
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λλ
SHII   (5.21) 

 

5.4 Case Study: Solvent Design for Gas 

Sweetening Process 

5.4.1 Problem Formulation 

 The proposed methodology in Section 5.3 is carried out on the same 

case study as given in Section 4.4. The design goal of this CAMD problem 

is to identify an amine-based solvent serving as CO2-absorbent involved in 

a chemical reaction that can help in reducing the amount of solvent loss in 

a gas sweetening process. The proposed methodology also focuses on the 

aspects of safety and occupational health, in which both the solvent 

performance and the safety and health attributes are simultaneously 

considered as design criteria when developing the solvents. Three 

properties are chosen as design objectives to be optimised, which include 

VP, log Koc and ISHI. The former two properties represent the desired 
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solvent characteristics, while the latter property measures the inherent 

safety and health level of the solvent. The desired solvent candidate must 

have low VP so that it does not vaporise easily, low log Koc to prevent the 

accumulation of the escaping solvent in one place, and low ISHI to ensure 

that it is inherently safer and healthier. Meanwhile, Hv, Vm, η, Mw, Tb, and 

Tm are selected as property constraints and their respective target range 

are shown in Table 4.10. 

 

5.4.2 Inherent Safety and Health Sub-index Selection 

 One of the design objectives is to minimise ISHI, which is the sum of 

the seven selected sub-indexes that include IFL, IEX, Iη, IMS, IV, IEL, and IAH. 

 

5.4.3 Model Development 

 In this stage, the property prediction models for all involved 

properties in this case study are identified. All GC models are summarised 

in Tables 4.11 and 4.14, while the correlations are provided by Equations 

(4.12), (4.13), (4.19), and (4.20). Disjunctive programming as 

demonstrated in Section 5.3.3.2 is then employed to allocate penalty 

scores for all the seven sub-indexes. 

 

5.4.4 Molecular Design 

 In order to generate the molecules, the same first-order molecular 

blocks as listed in Section 4.4.3.1 are chosen. Meanwhile, the appropriate 

second-order molecular groups are selected based on the first-order 

groups, which include (CH3)2CH, CH(CH3)CH(CH3), CHOH, 

CHα(OH)CHβ(OH), and CHα(OH)CHβ(NHγ), where α, β and γ can either be 

zero, one or two. The binary variable of x in Equation (2.3) is now set to 
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one for the inclusion of second-order groups. The structural constraints 

discussed in Sections 5.3.4.1 and 5.3.4.2 are applied. 

 

5.4.5 Optimisation Model 

 All property constraints listed in Section 5.4.1 are transformed into 

their respective property operator, Ωp as provided in Table 4.12. Unlike the 

case study in Section 4.4, this case study has three design objectives 

comprising of VP, log Koc and ISHI. In order for these three properties to be 

optimised, their property operator range must first be determined. Each of 

these three properties is optimised one at a time (either by maximising or 

minimising) to identify their respective upper and lower property operator 

bounds. The lower and upper bound values (LB and UB respectively) for 

these three design objectives are summarised in Table 5.1. 

 

Table 5.1: Property operators targets for design objectives (gas 

sweetening) 

Property p Ωp  LB  UB  Design goal 

VP  exp(Tb/Tb0) 5.2373  9.6504  Minimise VP 

        (or maximise Tb) 

log Koc  log Kow - Kow -2.6284 3.5933  Minimise log Koc 

        (or log Kow) 

ISHI  ISHI  10  13  Minimise ISHI 

 

 All objectives are then expressed by linear membership functions as 

shown in Equations (5.22) to (5.24): 

 

VP
VP λ





2373.56504.9

2373.5Ω
 (5.22) 
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 The overall objective function is given by Equation (5.20), subjected 

to constraints (4.16), (4.17), and (5.21). The optimisation model is a 

mixed-integer nonlinear programming (MINLP) due to the formulation of 

IAH. The property used to assess this sub-index is LD50 (acute oral toxicity), 

in which a logarithm variable is present in the GC model. In this case 

study, two different design problem scenarios are considered in the results. 

In Scenario A, the design objectives are to optimise VP, log Koc and ISHI. In 

scenario B, the safety and health criteria are not considered as the design 

objectives. Thus, only VP and log Koc are optimised, while ISHI of each 

molecule is only calculated after the optimised molecules are generated. 

Scenario B works the same as the research scope presented in Chapter 4, 

but the results may be different as second-order molecular groups are 

applied in this chapter. Both scenarios are conducted to examine the effect 

of integration of the safety and health sub-indexes has on the generated 

molecules. 

 

5.4.6 Results and Discussions 

 The optimisation model is solved using LINGO 14.0 with a 

computational time of 98 minutes for the first generated solution. Six 

solvents with the six highest λ values for each scenario are generated, and 

their molecular structures are illustrated in Figure 5.3. The six molecules 

generated in Scenario A are labelled as solvent A1 to A6; while the six 

molecules in Scenario B are named as solvent B1 to B6. Tables 5.2 and 5.3 

show the properties of the six generated solvents in Scenario A, while 
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Tables 5.5 and 5.6 show the properties of the six generated solvents in 

Scenario B. The individual sub-index scores of the generated solvents in 

Scenarios A and B are summarised in Tables 5.4 and 5.7 respectively. It is 

noted that the solvents that are ranked third and fourth (Solvents B3 and 

B4) in Scenario B are ranked first and second (Solvents A1 and A2) in 

Scenario A. This is because among the six solvents generated in Scenario 

B, solvents B3 and B4 exhibit better safety and health performance as 

displayed by their lower ISHI scores in Table 5.7. Hence, the integration of 

safety and health aspects as design criteria (as demonstrated by Scenario 

A) helps to prioritise molecules with improved safety and health 

characteristics. By comparing Scenarios A and B, the methodology in 

Scenario B is easier to compute in an optimisation model, since the model 

only optimises VP and log Koc. As ISHI can be manually calculated after the 

optimal molecules are generated, disjunctive programming algorithm 

shown in Section 5.3.3.2 is not necessarily required. In Scenario B, six 

iterations with the addition of integer cuts have been conducted to form six 

different solvents. However, when these six solvents are ranked according 

to their ISHI, the best solution among them is not guaranteed to be the 

global optimal solution. More iteration is thus needed to increase 

confidence level for the global optimality of the solution, which is rather 

time-consuming and indefinite. Therefore, the optimisation approach 

presented in Scenario A is preferable as it simultaneously optimise VP, log 

Koc and ISHI. In this way, the solution generated from the first iteration is 

guaranteed to be the global optimum solution. Hence, the six solvents 

generated in Scenario A are the top six global solutions with respect to 

property functionality and safety and health aspects. The discussion from 

this point onwards focuses only on Solvents A1 to A6, unless it is stated 

otherwise. 
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Figure 5.3: The generated solvents with their molecular structures 
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Table 5.2: The generated solvents with their properties in Scenario A 

Solvent λ log Koc VP  Hv  Vm  Mw 

   (mmHg) (kJ/mol) (cm3/mol) (g/mol) 

A1 0.614 -0.93 0.083  84.22  133.6  133.2 

A2 0.612 -1.05 0.084  84.45  132.7  133.2 

A3 0.559 -0.34 0.122  74.01  147.2  131.2 

A4 0.558 -0.46 0.124  74.24  146.3  131.2 

A5 0.545 -1.31 0.136  81.92  116.5  119.2 

A6 0.533 -0.51 0.147  72.65  144.8  131.2 

 

Table 5.3: The generated solvents with their properties in Scenario A 

(continued) 

Solvent η Tb Tm Fp  S PEL LD50 

 (cP) (°C) (°C) (°C) (vol%) (ppm) (mg/kg) 

A1 78.52 233.7 22.5 119.2 7.553 1.057 898 

A2 77.42 233.5 21.7 119.0 7.553 1.006 836 

A3 25.24 226.2 23.7 100.7 6.265 2.437 1022 

A4 24.88 225.9 23.0 100.5 6.265 2.320 952 

A5 71.63 224.1 20.3 113.9 8.930 1.113 858 

A6 33.15 222.5 22.7 97.8 6.265 2.578 887 
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Table 5.4: The generated solvents with their sub-index scores in Scenario 

A 

Solvent IFL IEX Iη IMS IV IEL IAH ISHI 

A1  1 1 3 2 0 3 1 11 

A2  1 1 3 2 0 3 1 11 

A3  1 1 3 2 0 3 1 11 

A4  1 1 3 2 0 3 1 11 

A5  1 1 3 2 0 3 1 11 

A6  1 1 3 2 0 3 1 11 

 

Table 5.5: The generated solvents with their properties in Scenario B 

Solvent λ log Koc VP  Hv  Vm  Mw 

   (mm Hg) (kJ/mol) (cm3/mol) (g/mol) 

B1 0.666 -0.67 0.052  86.76  149.8  147.2 

B2 0.653 -0.84 0.063  88.25  148.5  147.2 

B3 0.614 -0.93 0.083  84.22  133.6  133.2 

B4 0.612 -1.05 0.084  84.45  132.7  133.2 

B5 0.594 -0.21 0.069  75.91  174.6  161.2 

B6 0.591 -0.19 0.053  76.77  172.5  161.2 
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Table 5.6: The generated solvents with their properties in Scenario B 

(continued) 

Solvent η Tb Tm Fp S PEL LD50  

 (cP) (°C) (°C) (°C) (vol%) (ppm) (mg/kg) 

B1 84.87 242.7 23.9 124.3 6.544 0.955 865 

B2 67.71 239.0 23.0 125.2 6.544 0.730 766 

B3 78.52 233.7 22.5 119.2 7.553 1.057 898 

B4 77.42 233.5 21.7 119.0 7.553 1.006 836 

B5 28.45 237.3 18.6 119.2 5.772 0.283 641 

B6 42.76 242.3 21.7 122.7 5.772 0.280 576 

 

Table 5.7: The generated solvents with their sub-index scores in Scenario 

B 

Solvent IFL IEX Iη IMS IV IEL IAH ISHI 

B1  1 1 3 2 0 4 1 12 

B2  1 1 3 2 0 4 1 12 

B3  1 1 3 2 0 3 1 11 

B4  1 1 3 2 0 3 1 11 

B5  1 1 3 2 0 4 1 12 

B6  1 1 3 2 0 4 1 12 

 

 From the generated results as shown in Tables 5.2 and 5.3, solvent 

A1 displays the lowest VP value while solvent A5 has the lowest log Koc 

value. According to Table 4.15, MEA has VP and log Koc values of 0.4 mm 

Hg and -1.96 respectively. All solvents have a relatively lower VP compared 

to MEA, but their log Koc values are still larger than that of MEA. In 

comparison of their inherent safety and health performance as provided in 

Table 5.4, all six solvents received a similar ISHI score of 11. The similarity 
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in ISHI scoring is due to the fact that all safety and occupational health sub-

indexes are represented by multiple property sub-ranges, with each sub-

range allocated with a discrete value. The safety and health-related 

property values of the solvents fall in the same corresponding sub-ranges, 

thus resulting in the similarity of scores for all individual sub-indexes. Even 

though all six solvents have high penalty scores for the sub-indexes of 

viscosity and exposure limit, they offer low flammability, low 

explosiveness, very low volatility and low acute health hazard. 

 

 It was reported that inhalation is the main source of chemical 

exposure occupationally since the respiratory system is the most common 

route for chemical contaminants in the form of gas, vapour and fume to 

enter the human body (Hassim and Hurme, 2010a). Highly volatile 

chemicals are more likely to be inhaled by the workers in the event of an 

accidental leakage. According to the volatility sub-index IV, Table 4.7 shows 

that molecules with normal boiling point (Tb) above 150°C are considered 

to have very low volatility. From Table 5.2, the six solvents have Tb values 

of over 220°C, which is significantly higher than the threshold of 150°C. 

Even though the generated solvents possess high exposure limit impact 

(high IEL score), they do not vaporise easily to bring about any airborne 

disease to the employees. As a result, the application of these optimal 

molecules in process plants can help in minimising the adverse safety and 

occupational health impacts resulted from the hazards associated to 

chemicals. 

 

 Meanwhile, the accuracy and reliability of the property prediction 

models play a crucial in this work. As the sub-index scores are allocated 

based on the estimated property values, the accuracy of the assigned sub 

index scores is significantly affected by the accuracy of the prediction 
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models. Hence, the comparison study between the estimated properties 

with their corresponding experimental property values should be 

conducted. However, the experimental property data for all generated 

solvents may not be readily available. This is due to the fact that these 

solvents are not commercially available in the market. One way to predict 

the experimental property values of a molecule with novel molecular 

structure is to search for the data from another commercially available 

molecule that has the same molecular formula and functional groups. 

However, certain property data for the latter molecule may still not be 

available. For instance, both solvents A1 and A2 have the similar molecular 

formula of C6H15NO2. Another commercially available chemical with the 

same molecular formula is diisopropanolamine, and its property data can 

be taken from PubChem. The only known properties are its Fp (127°C), Tb 

(248°C), UEL (5.4 vol%), LEL (1.1 vol%), and LD50 (4765 mg/kg). As its 

PEL and η values at standard condition are not available, it hinders the 

calculation for the final ISHI of diisopropanolamine. Therefore, future work 

can be proposed to carry out verification on the molecular properties and 

performance of the generated solvents through experimental work. 

Besides, the uncertainty resulted from the property prediction models can 

also be analysed to study its effect on the accuracy of the sub index scores 

allocated to the molecules, which is the main research scope for the next 

chapter. 

 

5.5 Summary 

In this work, a single-stage CAMD framework has been developed to design 

molecule with low safety and health risks level that also achieves a set of 

desired target properties. The existing safety and health indexes are 

adapted into the CAMD problem to evaluate the safety and health 
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attributes of the molecules. Disjunctive programming algorithm has been 

integrated into the framework for converting the input property values into 

their respective sub-index scores. The calculation of total index score of a 

molecule enables users to quantify and compare its inherent hazard level. 

Fuzzy optimisation is then employed to simultaneously optimise multiple 

design objectives: product functionality and safety and health performance. 

A case study on the solvent design for a gas sweetening process is carried 

out to develop amine-based solvents that simultaneously achieve high 

functionality and favourable safety and health characteristics. The results 

show that the proposed methodology is able to generate molecules that 

achieve the desired product functionality and also possess high safety and 

health performance. Since the allocated index scores are highly dependent 

on the molecular properties, the accuracy of the property prediction models 

has high impact on the accuracy of the index scores. The following chapter 

considers the enhancement for the accuracy of the index scoring to better 

reflect the inherent hazard level of a molecule under property prediction 

uncertainty. 
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CHAPTER 6 

 

MANAGING UNCERTAINTY ON THE 

INTEGRATION OF SAFETY AND HEALTH 

INDEXES IN COMPUTER-AIDED 

MOLECULAR DESIGN 

 

6.1 Introduction 

 In Chapter 5, a chemical product design methodology has been 

presented to integrate both safety and health aspects into the CAMD 

framework. The measurement of safety and health performance are based 

on the molecular properties that have impacts on both of these aspects. In 

all sub-indexes, the properties involved are divided into few sub-ranges, 

where each sub-range is assigned with a sub-index value or penalty score 

reflecting the degree of potential hazards. This approach ensures that a 

molecule that satisfies the targeted properties, and at the same time meets 

the safety and health criteria, is synthesised. In CAMD, all involved 

molecular properties are estimated through property prediction methods. 

Property prediction models offer the advantage of quick estimation without 

the need of conducting empirical test to identify the property values of 

interest. Thus, the reliability and effectiveness of these prediction models 

in estimating the properties significantly affect the accuracy of the 

allocated score to the molecules. However, uncertainty resulted from the 

utilisation of property prediction models may adversely affect the accuracy 

of scores assigned to the molecules. As the allocation of scores serve as 

the safety and health indicators, uncertainties are managed on the safety 
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and health sub-indexes to enhance the allocated scores for improved 

measurement of inherent hazard level demonstrated by the molecules. A 

case study on solvent design for carotenoid extraction from palm pressed 

fibre (PPF) has been carried out under property prediction uncertainty to 

determine the optimal molecule with reasonably low safety and health 

hazards level and optimum functionality. 

 

6.2 Problem Statement 

 

 

Figure 6.1: The allocation of sub-index scores based on property sub-

ranges 

 

 Currently, the commonly used approach to assign sub-index score is 

by dividing the property into several sub-ranges, where each sub-range is 

represented by a discrete value. This approach is rather user-friendly as 

one can rapidly determine the individual sub-index score without involving 

any mathematical formula. However, the use of multiple property sub-

ranges has a limitation, where the score switches abruptly at the property 

boundary separating two adjacent sub-ranges. This limitation becomes 

notable as uncertainty from property prediction models are considered in 
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the sub-indexes. In order to demonstrate this issue, the same example as 

given in Section 5.3.3.2 is applied, where there is a particular sub-index 

score model which assigns a score of IA when the property is lower than 

the property boundary (pswitch), while a score of IB is allocated in the event 

where the property is equivalent to or above pswitch. This example of sub-

index model is illustrated as shown Figure 6.1, p represents the property 

value, Ip denotes the sub-index score, while pL and pU are the feasible 

property lower and upper bounds respectively. 

 

 The molecular physicochemical properties can be swiftly estimated 

using property prediction methods without the need of carrying out 

experimental work. However, the discrepancies between the actual 

experimental values and estimated values for most property prediction 

models are around 10% or higher. Since the scores assigned to the 

molecule are based on the estimated property values, the accuracy of the 

allocated scores is thus dependent on the accuracy of the prediction 

models. The deviation of the estimated property value from the actual 

value may result in an inaccurate score being assigned to the molecule. 

This issue is especially more significant when the predicted value is near 

the property boundary, pswitch as shown in Figure 6.1. This is the point 

where the sub-index score switches from IA to IB as p moves from the 

lower score property sub-range (below pswitch) to the adjacent higher score 

sub-range (above pswitch). For example, given that a molecule M has an 

estimated p that is slightly higher than pswitch, and its given Ip score 

according to Figure 6.1 would be IB. As p is estimated by prediction model, 

it is possible that its actual property value is lower or higher than the 

estimated value within an acceptable range. Thus, it is possible that the 

actual value itself is slightly lower than pswitch. In the case where the actual 

p is below pswitch, then its Ip score should now be IA. Thus, it is observed 
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that the property boundary region is deemed to be highly uncertain and 

sensitive to the assignment of sub-index scores. Uncertainty resulted from 

the accuracy of property prediction model can cause the score to be shifted 

to a different value. In this chapter, property prediction uncertainty is 

managed on the safety and health sub-indexes, where the main concern is 

the uncertainty in allocating scores at the property boundary region. The 

outcome of this chapter is to ensure that the scores can be adjusted and 

enhanced to better represent the inherent hazard level of a molecule under 

prediction uncertainty. There are several specific problems to be 

addressed, which are stated as follows: 

1. As the allocation of scores at all property boundaries are deemed to 

be highly uncertain, an uncertain range must be determined for 

each property boundary to manage the uncertainty. One way is to 

identify and apply the statistical performance indicators such as 

standard deviation and average absolute error provided by the 

property prediction models to determine the uncertain range. 

2. As the sub-index scores in the uncertain range are modified to 

account for property prediction uncertainty, the scores are then 

expressed in terms of different functions. Thus, disjunctive 

programming is adopted to model the score functions for the 

conversion of property values into their respective scores. 

 

6.3 Methodology 

 The methodology proposed in this chapter is an extension for the 

work done in Chapter 5. As shown in Figure 3.3, the additional stage 

considered in this chapter is the uncertainty management in the sub-

indexes. Meanwhile, the disjunctive programming algorithm used in this 

chapter differs from that of the previous chapter (as presented in Section 
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5.3.3.2), where score functions are applied to account for property 

prediction uncertainty. Hence, the uncertainty management stage is 

illustrated in Section 6.3.1, while the modified disjunctive programming is 

demonstrated in Section 6.3.2. 

 

6.3.1 Managing Uncertainty in Sub-indexes 

 Prior to this phase, the CAMD steps involved in this methodology 

are as follow: problem formulation, selection of safety and health sub-

indexes, and identification of property prediction models. The full 

descriptions for these three steps are presented in Sections 5.3.1, 5.3.2 

and 5.3.3.1 respectively. In this stage, the issue of uncertainty is 

addressed by illustrating it with the application of the simple sub-index 

model example as given in Figure 6.1. In this example, given that there 

are two molecules, J and K, with estimated property values of pJ and pK 

respectively as shown in Figure 6.2(a). Their corresponding Ip scores would 

be IA and IB respectively. For all property prediction models, their capability 

to estimate the properties of chemical components are usually expressed in 

terms of statistical performance indicators. Consider that the prediction 

model for this particular property has a standard deviation of σ, then the 

actual experimental property value for molecule J can fall within the range 

of pJ ± σ, which is represented by the grey region on the left in Figure 

6.2(a). In this range, the Ip score for pJ is always fixed at IA. Thus, 

uncertainty from the prediction model does not affect the sub-index score 

assigned to molecule J. Meanwhile, the actual property value for molecule 

K is within the range of pK ± σ, as represented by the grey region on the 

right in Figure 6.2(a). However, the Ip score in this range is uncertain as it 

can either be IA or IB. This is due to the fact that the property boundary, 

pswitch, happens to fall in the uncertain range for molecule K. As pswitch is the 

point that separates two adjacent sub-ranges with different Ip scores, any 
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molecule with estimated p value that is near to pswitch will encounter the 

same uncertainty issue with its score allocation. Hence, property prediction 

uncertainty must be managed mainly at the property boundary region. 

 

 

Figure 6.2: (a) Initial form of sub-index; (b) Revised sub-index with the 

incorporation of uncertainty 

 

 In order to address uncertainty in this sub-index, the standard 

deviation of the prediction model for this property, σ is added to or 

subtracted from pswitch to create the uncertain range [pswitch ± σ, the grey 

zone in Figure 6.2(b)]. At pswitch − σ, the initial score is IA; whereas at pswitch 

+ σ, the initial score would be IB. In this uncertain range, the IP score 

transits linearly from IA (at pswitch − σ) to IB (at pswitch + σ). This transition is 

represented by the linear slope drawn on the uncertain range. 

 

 Another sub-index with different scorings is depicted in Figure 6.3. 

Given that the standard deviation of property prediction for the property is 

σb. As there are two property boundaries (pb1 and pb2) present in this 

particular sub-index, the uncertainty ranges at the two boundaries are 

determined as shown in Figure 6.3(a). However, there exists an 

overlapping of uncertain range for both boundaries (in the range of “pb2 − 
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σb” to “pb1 + σb”) as denoted by the darker grey region in  igure 6.3(a). By 

using the similar linear transition slope in Figure 6.2(b), two linear slopes 

are drawn on the uncertain range for both boundaries. 

 

 

Figure 6.3: (a) Initial form of sub-index; (b) Sub-index with the 

incorporation of uncertainty; (c) Revised sub-index with composite curve 

 

 As shown in Figure 6.3(b), the overlapping region now contains two 

different transition slopes contributed by each property boundary. The 

transition slope with the lower scores is contributed by the lower boundary, 
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pb1, while the other slope is by pb2. However, it is meaningless if the p 

value at this overlapping region is given two different sub-index scores. A 

single property value at any feasible p region can only receive a single sub-

index score to indicate its inherent hazard level. In order to address this 

issue, a composite curve is applied on this overlapping region. Both 

transition slopes in this region increase linearly from the lower boundary to 

the upper boundary of the dark grey region. At the lower boundary of the 

dark grey region (pb2 − σb), the lowest IP score is provided by the lower 

transition slope. Meanwhile, the highest IP score at the upper boundary of 

the dark grey region (pb1 + σb) is provided by the higher transition slope. A 

new composite curve is added by linearly connecting the lowest IB score (at 

the lower boundary) to the highest IB score (at the upper boundary) in the 

dark grey region. This resulting composite curve and the modified sub-

index slopes are illustrated in Figure 6.3(c). The two methods proposed in 

Figures 6.2 and 6.3 are then applied to manage the property prediction 

uncertainty present in the safety and health sub-indexes. 

 

6.3.2 Allocation of Sub-index Scores with Disjunctive 

Programming 

 Once all the sub-indexes are modified by incorporating uncertainty, 

the property values of a molecule have to be translated into their 

corresponding scores. For instance, the revised sub-index as shown in 

Figure 6.2(b) shows that when p is below pswitch − σ, a score of IA is 

allocated to the molecule. When p falls between pswitch ± σ, the score given 

to the molecule is in the range of IA to IB, which can be represented by a 

linear function. When p is above pswitch + σ, the given score would be IB. 

The score model for this particular sub-index in Figure 6.2(b) can be 

expressed by Equation (6.1): 
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 As shown in Equation (6.1), the three p intervals have their scores 

represented by different functions. These intervals have resulted in a 

disjunction for the constraint. Disjunctive programming algorithm as 

presented in Section 5.3.3.2 is applied to model the different Ip score 

functions as given by Equation (6.1). Binary integer variables are used to 

model these functions. The IP function can be transformed to the following 

mixed-integer formulation using two binary integer variables (b1 and b2): 
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subjected to the following conditions: 

 










σpp

σpp
b

switch

switch

1

0
1  (6.3) 










σpp

σpp
b

switch

switch

1

0
2  (6.4) 

 

 When p is smaller than pswitch − σ, both b1 and b2 take the value of 

one. According to Equation (6.2), its IP value would then be equivalent to 

IA. When p is larger than pswitch + σ, both b1 and b2 take the value of zero, 

its IP value would then be IB. When p is between pswitch ± σ, b1 and b2 would 

take the values of zero and one respectively, resulting in the calculated IP 

value in Equation (6.2) to be expressed by the linear function representing 

the linear transition slope. Thus, the two binary variables in Equation (6.2) 

function as a switch to ‘activate’ the only Ip function of interest. In order to 
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ensure that the model assigns the correct values to b1 and b2 to satisfy 

conditions (6.3) and (6.4), the following constraints have to be included: 

 

         11 1** bσppσppbσpp switchUswitchswitchL   (6.5) 

         22 1** bσppσppbσpp switchUswitchswitchL   (6.6) 

 

where pL and pU are the lower and upper bounds respective to any feasible 

p value. When p is smaller than pswitch − σ, the term “p – (pswitch − σ)” in 

constraint (6.5) and “p – (pswitch + σ)” in constraint (6.6) become negative, 

forcing b1 and b2 to be 1 to satisfy both equalities in constraints (6.5) and 

(6.6) respectively. On the other hand, when p is greater than or equals to 

pswitch + σ, the term “p – (pswitch − σ)” in constraint (6.5) and “p – (pswitch + 

σ)” in constraint (6.6) become positive, forcing b1 and b2 to be 0 to again 

satisfy both in constraints (6.5) and (6.6) respectively. When p is between 

pswitch ± σ, b1 and b2 are forced to become 0 and 1 respectively. 

 

 Once this step has been formulated in the optimisation model, the 

following steps are molecular design and optimisation model formulation. 

As the incorporation of uncertainty has resulted in the use of many non-

linear equations, it is preferable to simplify the formulation of optimisation 

model. Thus, only first-order molecular groups are considered in this work. 

The full description of the phases of molecular design and optimisation 

model formulation are presented in Sections 4.3.3 and 5.3.5 respectively. 

 

6.4 Case Study: Solvent Design for Extraction 

of Carotenoids 

 According to Oil World, palm oil is the world most important 

vegetable oil, as it accounts for 38.7% (62.6 million tons) of the vegetable 
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oil production in 2015 (European Palm Oil Alliance, 2016). The oil palm tree 

exhibits the highest yielding oil crop per unit area of cultivated land, in 

which the oil yield per hectare of plantation is ten times higher than other 

leading oilseed crops. Palm oil is utilised predominantly in edible food 

industry, while also applied in non-food industry such as soap and 

oleochemical manufacturing (Mba et al., 2015). After the extraction of 

crude palm oil from fresh fruit bunches (FFB), the remaining by-product is 

known as the palm pressed fibber (PPF). Nowadays, PPF is usually burned 

as fuel to supply energy for palm oil mills (Neoh et al., 2011), transported 

to the plantation along with empty fruit bunch (EFB) for field mulching (Lau 

et al., 2008), or used as animal feed (Dal Prá et al., 2016). 

 

 Choo et al. (1996) discovered that the residual oil found in PPF 

contains a significant amount of carotenoids (4000-6000 ppm), vitamin E 

(2400-3500 ppm), and sterols (4500-8500 ppm). The four major 

constituents of identified carotenoids include β-carotene, α-carotene, 

lycopene, and phytoene. The quantity of caretenoids present in the residual 

oil in PPF is about six times higher than found in crude palm oil (França and 

Meireles, 1997). Carotenoids are mainly used in medical, cosmetic and 

biotechnological purposes, while also serve as natural colouring agents in 

food processing industry (Yara-Varón et al., 2016b). 

 

 One of the established approaches to recover carotenoids from PPF 

is the solvent extraction method (Neoh et al., 2011). It offers high 

performance in the recovery of residual oil and does not require frequent 

maintenance (Anderson, 2011). Among all solvents, n-hexane is the top 

choice as it offers high residual oil recovery and low polarity, and it can be 

easily separated from the products via evaporation. It has a moderate and 

convenient boiling point (68.5°C), which is appealing for the extraction 
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process since it is not highly volatile to cause any solvent loss (Yara-Varón 

et al., 2016a). Besides, it only requires low heat consumption for solvent 

recovery as it also offers low sensible heat (Anderson, 2011). However, 

hexane is deemed to be highly flammable, toxic to aquatic life, and may 

cause fatality if swallowed or enters airways. 

 

6.4.1 Problem Formulation 

 In this case study, the design goal is to substitute hexane with an 

alternative solvent to recover carotenoids from PPF. The replacement 

solvent must exhibit lower flammability than hexane and must not cause 

severe destruction to aquatic life. In addition, it must not cause safety and 

health concerns to the on-site workers operating solvent extraction and 

recovery process. As hexane possesses an appropriate boiling point for 

solvent extraction and offers high solubility of carotenoids, the generated 

solvent must also demonstrate the similar attributes. The four design 

objective properties chosen in this case study are as follow: 

1. the boiling point of hexane (68.5°C) is applied as the target 

benchmark for the boiling point (Tb) of solvent. In this case study, 

the boiling point difference (Tb,diff) between hexane and the 

developed solvent is minimised. 

2. the heat of vaporisation (Hv) of solvent is minimised for lower 

energy consumption during solvent recovery process. 

3. the solubility of carotenoids in the solvent is maximised to achieve 

higher carotenoid extraction, which can be determined using the 

Hansen Solubility Parameters (HSP) (Hansen 2007). 

4. the total index score (ISHI) is minimised for an inherently safer and 

healthier solvent. 
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 As the main drawbacks of using hexane are its highly flammability 

and toxicity, properties such as flash point (Fp), octanol-water partition 

coefficient (log Kow), and acute toxicity (96-h LC50 to fathead minnow) are 

chosen as property constraints to ensure that the generated solvents do 

not demonstrate such undesirable characteristics. The upper and lower 

boundary values (UB and LB respectively) of the property constraints are 

given in Table 6.1. 

 

Table 6.1: Property constraints for case study (carotenoid extraction) 

Property  Standard deviation/error LB UB 

   of GC method 

Fp (°C)   12.10    -1.2 - 

log Kow   0.64    - 2.86 

log LC50 (96-h) 0.37    1.37 - 

 

 For Fp, the lower bound is decided based on the flash point of 

hexane (-23.3°C). In order to generate a molecule with lower flammability 

than hexane, its Fp must be set higher than that of hexane. As Fp is 

estimated using GC method developed by Hukkerikar et al. (2012b), the 

standard deviation of the Fp GC model should be taken into account while 

deciding on the lower bound. The standard deviation value for this model 

as given in Table 6.1 is 12.1°C. An additional Fp margin of 10°C is also 

incorporated to ensure the Fp of the generated molecule does not come 

close to that of hexane. Using Fp of hexane as the reference value, the 

lower bound Fp value for the proposed solvent is calculated by adding the 

temperature margin and standard deviation value to -23.3°C, which 

returns a value of -1.2°C as shown in Table 6.1. As for log Kow and LC50, 

both properties are essential in identifying the environmental fate of the 

chemicals. The boundary value for log Kow is determined using the hazard 
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ranking criteria by Cordella et al. (2009). In this hazard ranking criteria, 

log Kow is divided into three sub-ranges with different degree of hazards. 

The sub-range with the least hazard level is chosen, which states that log 

Kow value of a chemical must be lower than 3.5. The same log Kow 

constraint is also applied by Patel et al. (2010) for the design of solvent. 

With this constraint, hexane will not emerge as one of the potential solvent 

candidates as it possesses a log Kow value of 3.94. This property can also 

be predicted using GC method by Hukkerikar et al. (2012b), with a 

standard deviation of 0.64. As for acute toxicity LC50, its boundary value is 

determined based on the United Nations' Globally Harmonised System of 

Classification and Labelling of Chemicals (GHS). The lower bound for LC50 

(96-h) in this case study is set at 10 mg/l. Hexane has a LC50 (96-h to 

fathead minnow) value of 2.5 mg/l, thus it does not fulfil the lower bound 

constraint and will not be generated. This property can be estimated using 

GC method proposed by Martin and Young (2001), with a root-mean-

square error (RMSE) of 0.37 (expressed in terms of log LC50). By 

considering the standard deviation or error of the prediction models, the 

revised boundary values for log Kow and log LC50 are presented in Table 

6.1. Kow is unitless while LC50 has a unit of mg/l. 

 

6.4.2 Selection of Inherent Safety and Health Sub-

indexes 

 Similar to the case studies demonstrated in Sections 4.4 and 5.4, 

the seven sub-indexes applied to assess the molecular performance are IFL, 

IEX, Iη, IMS, IV, IEL, and IAH. The sub-index scores are not the same as the 

ones used in the previous case studies, as uncertainty from property 

prediction is taken into account in the sub-indexes. The revised sub-index 
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scores are given in Section 6.4.3.2, which addresses the management of 

uncertainty on properties evaluated in sub-indexes. 

 

6.4.3 Model Development 

6.4.3.1 Property Prediction Models 

 

Table 6.2: GC models for selected properties in the case study (carotenoid 

extraction) 

Property p  f(P) in Equation (2.3)  Universal constants 

δd   δd    - 

δp   δp    - 

δh   δh    - 

LC50 (mg/l)  −log LC50   - 

UEL or UFL (vol%) log (UFL/UFLconst)  UFLconst = 129.9552 vol% 

LEL or LFL (vol%) log (LFL/LFLconst)  LFLconst = 4.5315 vol% 

 

 In Section 6.4.1, the involved target properties in this case study 

are Tb, Hv, HSP parameters (δd, δp and δh), Fp, log Kow, and LC50 (96-h to 

fathead minnow). GC models to determine Tb, Hv, Fp, and log Kow have 

been provided in Tables 4.11 and 4.14. The three HSP parameters and LC50 

are estimated by GC models developed by Hukkerikar et al. (2012b) and 

Martin and Young (2001) respectively. Meanwhile, both UEL and LEL (from 

IEL sub-index) in this case study are predicted using GC model presented 

by Frutiger et al. (2016a). The prediction equations for HSP parameters, 

log LC50, UEL, and LEL are given in Table 6.2. 
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6.4.3.2 Managing Uncertainty in Sub-indexes 

 In this section, the management of uncertainty in acute health 

hazard sub-index (IAH) is demonstrated. Figure 6.4(a) illustrates the initial 

form of IAH sub-index as provided by NFPA hazard health rating. This sub-

index is evaluated using log LD50 for acute oral toxicity, which can be 

estimated using the GC method by Hukkerikar et al. (2012a). First, the 

standard deviation for this GC model is identified as 0.43. Then, all 

property boundaries present in this sub-index must be determined, which 

are log LD50 at 0.7, 1.7, 2.7, and 3.3. In Figure 6.4(b), all the uncertain 

ranges are highlighted as shown by the grey regions. Note that there is an 

overlapping region between log LD50 at 2.87 and 3.13 as shown by the 

dark grey region. All linear transition slopes are drawn in the uncertain 

regions while composite curve is added in the overlapping region. Figure 

6.4(c) shows the revised IAH sub-index curves after taking into account 

property prediction uncertainty. 

 

 For other health sub-indexes excluding IMS, the properties involved 

are Tb, η, and PEL, where the standard deviations of their GC models are 

7.9 K, 3.44 cP, and 0.78 respectively (Hukkerikar et al., 2012b; Conte et 

al., 2008; Hukkerikar et al., 2012a). These standard deviations are then 

used to determine the uncertain range of each property boundary. For each 

boundary, the upper bound of its uncertain range is the addition of the 

corresponding standard deviation to the boundary value. The lower bound 

can be determined by subtracting the corresponding standard deviation 

from the boundary value. A similar approach to apply transition slope as 

illustrated in Figure 6.4 is introduced to each uncertain range. 
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Figure 6.4: (a) Initial form of IAH sub-index; (b) IAH sub-index with the 

integration of uncertainty; (c) Revised IAH sub-index curve 

 

Table 6.3: Viscosity (Iη) sub-index (revised form from PRHI) (Hassim and 

Edwards, 2006) 

Parameter  Score Information  Penalty Score 

Viscosity, Iη  0.1 cp ≤ η < 1 cp  (η + 1.7)/1.8 

   1 cp ≤ η < 4.44 cp  (η + 9.32)/6.88 

   4.44 cp ≤ η < 6.56 cp 2 

   6.56 cp ≤ η < 13.44 cp (η + 7.2)/6.88 

   13.44 cp ≤ η ≤ 100 cp 3 
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Table 6.4: Volatility (IV) sub-index (revised form from IOHI) (Hassim and 

Hurme, 2010) 

Parameter Score Information   Penalty Score 

Volatility, IV Liquid and gas   

  Tb > 157.9°C    0 

  157.9°C ≥ Tb > 142.1°C  (157.9 − Tb)/15.8 

  142.1°C ≥ Tb > 57.9°C  1 

  57.9°C ≥ Tb > 42.1°C  (73.7 − Tb)/15.8 

  42.1°C ≥ Tb > 7.9°C   2 

  7.9°C ≥ Tb > -7.9°C   (39.5 − Tb)/15.8 

  Tb ≤ -7.9°C    3 

 

Table 6.5: Exposure limit (IEL) sub-index (revised form from IOHI) 

(Hassim and Hurme, 2010) 

Parameter  Score Information Penalty Score 

Exposure limit, IEL Vapour (ppm)   

Let P’ = log PEL P’ > 3.78  0 

   2.78 < P’ ≤ 3.78 0.641(3.78 − P’) 

   2.22 < P’ ≤ 2.78 1.2821(2.78 − P’) + 0.641 

   1.78 < P’ ≤ 2.22 0.641(2.22 − P’) + 1.359 

   1.22 < P’ ≤ 1.78 1.2821(1.78 − P’) + 1.641 

   0.78 < P’ ≤ 1.22 0.641(1.22 − P’) + 2.359 

   0.22 < P’ ≤ 0.78 1.2821(0.78 − P’) + 2.641 

   -0.78 < P’ ≤ 0.22 0.641(0.22 − P’) + 3.359 

   P’ ≤ -0.78  4 
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Table 6.6: Acute health hazard (IAH) sub-index (revised form from National 

Fire Protection Association, 2007) 

Parameter  Score Information      Penalty Score 

Acute health  Oral rat LD50 (mg/kg)   

hazard, IAH  D’ > 3.731       0 

Let D’ = log LD50 3.129 < D’ ≤ 3.731      1.1628(3.731 − D’) 

   2.871 < D’ ≤ 3.129      2.3256(3.129 − D’) + 0.7 

   2.269 < D’ ≤ 2.871      1.1628(2.871 − D’) + 1.3 

   2.129 < D’ ≤ 2.269      2 

   1.269 < D’ ≤ 2.129      1.1628(2.129 − D’) + 2 

   1.129 < D’ ≤ 1.269      3 

   0.269 < D’ ≤ 1.129      1.1628(1.129 − D’) + 3 

   D’ ≤ 0.269       4 

 

 For the two safety sub-indexes (IFL and IEX) and IMS, they are each 

assessed by two properties, which are predicted using different prediction 

models. Each model has its distinct statistical performance indicator values 

and it is relatively hard to address to different uncertainties originated from 

two different prediction models. Thus, the initial form of IFL, IEX and IMS 

sub-indexes given by NFPA flammability rating, ISI, and IOHI respectively 

are applied, which are given in Tables 4.2, 4.3, and 4.6. Meanwhile, 

uncertainty is incorporated in the sub-indexes of Iη, IV, IEL, and IAH, in 

which their revised scores are provided in Tables 6.3 to 6.6. 

 

6.4.3.3 Allocation of Sub-index Scores with Disjunctive 

Programming 

 In this stage, disjunctive programming algorithm presented in 

Section 6.3.2 are applied to assignment scores of the four revised sub-
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indexes that account for property prediction uncertainty (as shown in 

Tables 6.3 to 6.6), as multiple score functions are involved in these sub-

indexes. Meanwhile, the simpler disjunctive programming procedure as 

illustrated in Section 5.3.3.2 are utilised for the assignment of scores to the 

remaining three sub-indexes (IF, IEX and IMS) that do not incorporate 

uncertainty. 

 

6.4.4 Molecular Design 

 In this case study, only first-order groups are employed to construct 

the molecules. The appropriate molecular building blocks selected to 

construct the solvent are based on the molecular structures of the 

conventionally used solvent for the extraction of carotenoids. These 

solvents include straight chain hydrocarbons, alcohols and ketones 

(Ibrahim and Onwuala, 2007). Besides, Yara-Varón et al. (2016a) proposed 

five green solvents namely 2-methyltetrahydrofuran (2-MeTHF), dimethyl 

carbonate (DMC), cyclopentyl methyl ether (CPME), isopropyl alcohol (IPA), 

and ethyl acetate, for the substitution of n-hexane to extract carotenoids 

from carrots. Based on the proposed solvents, this case study considers 

both acyclic and monocyclic compounds, and the selected molecular blocks 

include CH3, CH2, CH, C, OH, CH3CO, CH2CO, CH3O, CH2O, CHO, CH3COO, 

CH2COO, CH2 (cyclic), CH (cyclic), C (cyclic), and O (cyclic). The structural 

constraints for first-order groups as presented in Section 5.3.4.1 are 

employed. 

 

6.4.5 Optimisation Model 

 In this final stage, the four selected design objectives are optimised. 

The first objective is to minimise the boiling point difference (Tb,diff) 

between hexane and the solvent. The Tb of the solvent is first transformed 
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in terms of property operator, ΩTb, which is given by the f(P) function of its 

GC model as shown in Table 4.12. For hexane, its Tb is 68.5°C or 341.65 K, 

where its corresponding property operator, ΩTb,hexane is equivalent to 

4.0441. Therefore for this first objective as shown in Equation (6.7), the 

absolute difference (ΩTb,diff) between the Tb property operator of solvent, 

ΩTb and that of hexane, ΩTb,hexane is minimised. 

 

0441.4ΩΩΩΩmin ,,  TbhexaneTbTbdiffTb  (6.7) 

 

 For the second design objective, the heat of vaporisation of the 

solvent, Hv is minimised. Similarly to Tb, the Hv of solvent is also 

transformed into its corresponding property operator, ΩHv, which is also 

given in Table 4.12. As for the third design objective, the solubility of 

carotenoids in the solvent is maximised for higher carotenoid extraction. 

HSP is utilised to predict the solubility of carotenoids in the solvent. There 

are three parameters in HSP, namely δd, δp, and δh, which signify the 

dispersion, polar, and hydrogen bonding respectively. Another parameter 

known as the distance of a solvent from the centre of the Hansen solubility 

sphere, Ra is calculated by the following equation. 

 

     2,,

2
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,,

2
4 BhAhBpApBdAda δδδδδδR   (6.8) 

 

 In Equation (6.8), component A refers to the solute (carotenoids) 

while component B refers to the solvent. The smaller the Ra, the greater 

the affinity between carotenoids and solvent B; thus the higher the 

solubility of carotenoids in the solvent. According to Choo et al. (1996), the 

three main constituents of carotenoids found in the residual oil in PPF are 

β-carotene (31.0%), α-carotene (19.5%), and lycopene (14.1%). The HSP 
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values for these constituents can be taken from Aissou et al. (2017). Their 

HSP values are relatively close to one another. In this work, the HSP values 

used for carotenoids are the weighted average of the HSP values from the 

three constituents, in which the calculated δd, δp, and δh are 17.3782, 

0.3839, and 1.6396 respectively. With these three parameters identified, 

the third design objective is to minimise the value of Ra for a high 

extraction performance. As for the fourth design objective, ISHI is 

minimised for the synthesis of solvent with low hazard level. Unlike Tb and 

Hv, both Ra and ISHI are not transformed into property operators as the 

latter two are not directly calculated by any prediction models. In 

summary, the objective functions of this case study are to minimise ΩTb,diff, 

ΩHv, Ra, and ISHI. 

 

 In order to minimise the four design objective properties, the linear 

membership functions as given by Equations (4.5) and (5.19) are applied. 

The next step is to identify the upper and lower bounds for the four target 

properties. Each of these four properties is optimised one at a time to 

identify the property bounds for all four properties. Once all boundary 

values are identified, the four objectives are then expressed by the linear 

membership functions as given by Equations (6.9) to (6.12): 

 

diffTb

diffTb
λ ,

,

0032.07261.2

Ω7261.2





 (6.9) 

Hv
Hv λ





0244.148018.30

Ω8018.30
 (6.10) 

Ra
a λ

R






586346.3777867.9

777867.9
 (6.11) 

ISHI
SHI λ

I






767422.880962.11

80962.11
 (6.12) 
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 The overall objective function of the optimisation model is given by 

Equation (5.20), subjected to constraints (4.8) and (5.21). Integer cuts 

have been used to generate alternate solutions so that there are multiple 

solutions to conduct experimental verification and to choose the final 

product. 

 

6.4.6 Results and Discussions 

 The optimisation model is solved using LINGO 14.0 with a 

computational time of 35 seconds for the first generated solution. From the 

optimisation results, the six molecules with the six highest λ values are 

shown in Figure 6.5. 

 

 

Figure 6.5: The generated solvents with their molecular structures 
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Table 6.7: The six generated solvents with their properties 

Solvent λ ISHI Ra Hv  Tb Fp log Kow LC50 

    (kJ/mol) (°C) (°C)  (mg/l) 

C1 0.404 10.58 6.634 35.52  107.2 16.7 1.561 68.6 

C2 0.379 10.30 7.432 34.32  86.2 9.6 1.011 114.6 

C3 0.363 10.34 7.532 35.23  101.5 16.0 1.197 86.3 

C4 0.326 10.24 7.761 32.89  68.7 4.5 0.762 208.0 

C5 0.215 11.15 6.271 30.76  79.7 2.1 2.064 224.9 

C6 0.204 11.19 6.327 31.67  95.4 8.5 2.250 169.3 

 

Table 6.8: The six generated solvents with their sub-index scores 

Solvent IFL IEX Iη IMS IV IEL IAH ISHI 

C1  3 1 1.35 2 1 1.40 0.83 10.58 

C2  3 1 1.20 2 1 1.33 0.77 10.30 

C3  3 1 1.24 2 1 1.36 0.74 10.34 

C4  3 1 1.18 2 1 1.27 0.79 10.24 

C5  3 1 1.16 2 1 1.71 1.28 11.15 

C6  3 1 1.19 2 1 1.75 1.25 11.19 

 

 The estimated properties of these six solvents are shown in Table 

6.7, while their respective sub-index scores are illustrated in Table 6.8. 

From the results, solvent C1 is the best optimal solution, as it has a 

reasonable ISHI and Ra. However, it has the highest Hv and Tb among six 

solvents. By comparing the four optimised target properties individually, 

solvent C5 has the lowest Ra and Hv, but displays a relatively high ISHI. 

Meanwhile, solvent C4 has the lowest ISHI and Tb, but exhibits the largest 

Ra. Even though solvent C4 (ethyl acetate) has the largest Ra, Yara-Varón 

et al. (2016a) found that it demonstrates similar carotenoid extraction yield 
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as compared to that of hexane. Therefore, the other five solvents with 

lower Ra than solvent C4 should also possess compatible or better 

extraction yield as compared to hexane. In order to guide a decision maker 

for the selection of final candidate substance, one can opt for solvent C4 in 

the case where safety and health aspects are given the highest priorities, 

or solvent C5 for the extraction process to achieve the best performance. 

 

When comparing the individual sub-index scores in Table 6.8, all 

solvents have a similar IFL value of three, which is considered easily 

flammable. But these six solvents have relatively higher Fp compared to 

hexane, with solvent C1 offering the highest Fp. Since all six flash points 

fall in the same interval in the IFL sub-index, they exhibit the same IFL 

score. As for IEX, they have a similar penalty of one, which indicates a very 

low tendency to cause explosion. The six solvents also have fairly similar η, 

since their Iη scores do not vary significantly. Meanwhile, all solvents exist 

as liquid form in standard condition, thus they display the same score for 

material phase sub-index IMS. They also have low volatility, as all their IV 

scores are one. As for IEL and IAH, in which the former measures chronic 

toxicity (inhalation) while the latter assesses acute toxicity (oral), solvents 

C1 to C4 have considerably low toxicity compared to solvents C5 and C6. 

Solvent C4 is considered the best choice of solvent if the aspects of safety 

and health were the only priorities of the design. If uncertainty analysis 

were not conducted on the sub-indexes, the initial forms of sub-indexes 

would be applied and solvents C1 to C4 would have a similar ISHI value of 

10 while solvents C5 and C6 would have an ISHI score of 11. In this 

scenario, it is easy to conclude that solvents C5 and C6 are more 

hazardous than the remaining four solvents. However, the remaining four 

solvents display the similar ISHI value, thus it is relatively difficult to 

differentiate their inherent hazard level. Hence, by carrying out uncertainty 
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analysis on the sub-indexes, it definitely helps to produce a total index 

score which better represents the actual inherent safety and health hazard 

level of the molecule. 

 

 By comparing the three case studies carried out as shown in 

Sections 4.4, 5.4 and 6.4, some safety and health sub-indexes have higher 

importance level towards the overall molecular hazard level while others 

contributed less. For instance, both Iη and IEL have higher scorings as 

compared to the other sub-index. Hence, the two aforementioned sub-

indexes have greater impact to the overall hazard in the case studies 

conducted in Sections 4.4 and 5.4, while the sub-index with highest hazard 

contribution in this case study is IFL. The higher-impact (larger-scoring) 

sub-indexes are different among the case studies as they are dependent on 

the nature of the design problems. The current approach used to quantify 

the overall inherent hazard level is by summing up all the seven sub-

indexes. With this approach, all sub-indexes are treated equally as weight 

factors are not introduced to the sub-indexes. However, this may not be 

the case as all sub-indexes contributed differently as demonstrated by the 

results of the three case studies. The hazard quantification method can be 

improved by assigning a larger weight to sub-index with higher impact, and 

vice versa. This new method prioritises sub-indexes with higher severity 

penalty scores to ensure that the model can formulate a more conservative 

solution with respect to safety and health hazard. Chapter 7 will study the 

effect of introducing weight factors to the sub-indexes on the optimal 

solutions generated by the model. Besides, the algorithm of AHP will also 

be illustrated to identify the appropriate weight factors. 

 

 

 



 

151 

 

6.5 Summary 

 A chemical product design framework employing CAMD methods 

has been applied to design a molecule with low safety and health hazards 

level that also meets a set of desired properties specified by the user. The 

existing safety and health indexes from literature are integrated into a 

CAMD problem to evaluate the safety and health characteristics of the 

generated molecules. In this work, the main highlight is the management 

of uncertainty on the sub-indexes to ensure that a more accurate index 

value is assigned to the molecule to better represent the safety and health 

performance of the molecule. The statistical performance indicators of the 

property prediction models are identified and applied to determine the 

uncertainty range in the sub-indexes. A case study on the solvent design 

for the extraction of carotenoids from PPF is carried out and fuzzy 

optimisation is applied to develop solvents that simultaneously achieve 

high product functionality and favourable safety and health performance. 

The results show that total penalty score, ISHI of the molecules differ from 

one another. This helps to differentiate and compare the intrinsic hazard 

level exhibited by each molecule. Another way to improve the accuracy of 

the sub-index scores in quantifying the inherent hazard level of the 

molecules is to enhance the sensitivity of the scores. The property intervals 

can be smoothened to ensure that there is a continuous change of scorings 

from the lower bound to the upper bound of the feasible property value 

range. Besides, the current method of quantifying the intrinsic hazard level 

of the molecule is by summing up the seven sub-index values. Further 

work can be conducted to improve this approach, which should also take 

into account the severity of each sub-index score of the synthesised 

molecules. 
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CHAPTER 7 

 

ENHANCING MOLECULAR SAFETY AND 

HEALTH MEASUREMENT VIA INDEX 

SMOOTHING AND PRIORITISATION 

 

7.1 Introduction 

 As presented in Chapters 5 and 6, a CAMD algorithm incorporating 

the inherent safety and occupational health sub-indexes have been 

presented to generate molecules that are optimised with respect to 

targeted functionalities, safety and health performance. In each sub-index, 

the evaluation is carried by one or more properties, in which they are 

divided into multiple sub-ranges, each of which is assigned a penalty score 

that corresponds to its degree of hazard. As the property value moves from 

one sub-range to another, the sub-index score switches abruptly at the 

property boundary, which is the point that separates two adjacent sub-

ranges. This condition has created discontinuity in scores allocation, which 

is a major limitation in quantifying the molecular hazard level. In this 

chapter, the penalty scores are revised in a manner that there are smooth 

transitions from one property sub-range to another at the property 

boundaries. In addition, weight factors are introduced to the sub-indexes 

to ensure that a higher-impact sub-index is prioritised and hence assigned 

a larger weight. This approach can be carried out through the combination 

of the ordered weighted averaging (OWA) operator method with the 

analytic hierarchy process (AHP), which improves the quantification of the 

overall safety and health performance. In this chapter, AHP plays a role in 
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identifying the proper weight factors that will be introduced to the sub-

indexes. This ensures that a higher-importance sub-index is emphasised 

through the allocation of larger weight. 

 

7.2 Problem Statement 

 The technique used to quantify the inherent risk level of a molecule 

as proposed in Chapters 4 to 6 is by summing up all the sub-index scores 

from the selected safety and health sub-indexes. This method presumes 

that all sub-indexes have equal impact to the plant safety and occupational 

health of the workers. However, from the results generated by the case 

studies in Sections 4.4, 5.4, and 6.4, certain sub-indexes have contributed 

more to the final total index score as compared to others. Besides, a 

molecule with the lowest total index score may not necessarily display low 

risk level with respect to all sub-indexes. This is because one of its sub-

indexes may exhibit a very high score, while the remaining sub-indexes 

have relatively lower scores to compensate the high-scoring sub-index. In 

reality, any molecule demonstrating highly hazardous attribute with respect 

to a specific sub-index (eg. highly toxic) is usually deemed a dangerous 

chemical, and that particular molecule is therefore screened out in the 

chemical selection phase. Hence, there is a need to address this limitation 

on hazard quantification so that the more hazardous or greater-impact 

sub-index will be penalised to a greater extent. This limitation can be 

addressed by assigning different weight factors to each sub-index. One way 

to identify the weights is through AHP, which is a structured multi-attribute 

decision technique. Once AHP has identified the proper weights to be 

assigned to the sub-indexes, the next step is to consider utilising an 

approach that can assign weights in such a manner that sub-index with 

larger penalty score (higher adverse impact to the plant) receives a heavier 
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weight, and vice versa. OWA operator method can be adequately applied in 

this case, as it allows the allocation of weight factors based on the ordered 

ranking of the sub-index scores. It is also necessary to formulate the OWA 

operator as a mathematical model so that it can be integrated into a CAMD 

programming. 

 

 Besides, as shown by the general trend for the allocation of sub-

indexes illustrated in Figure 6.1, the properties examined in the sub-

indexes are divided into multiple sub-ranges, and numerical penalty scores 

are then assigned to each sub-range. Through this score allocation method, 

property values that fall in the same sub-range are deemed to possess the 

similar hazard level. The main limitation of this current allocation method is 

the discontinuity at the property boundaries, which may distort the 

comparison of alternatives that are near these limits. This weakness is 

addressed in this chapter by smoothing the scorings near the property 

boundaries. In summary, the issues to be addressed in this chapter are as 

following: 

1. to determine weight factors given to the sub-indexes through AHP; 

2. to assign weights to the sub-indexes in an ordered manner through 

OWA operator; 

3. to represent OWA operator as a mathematical model to be 

incorporated into a CAMD; 

4. to smoothen the sub-index scores at the property boundaries. 

 

 Section 7.3 illustrates the working procedure of an AHP, while the 

OWA operator method is presented in Section 7.4. 
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7.3 Analytic Hierarchy Process (AHP) 

 In many decision-making problems, AHP is often used as the 

decision structuring and analysis tool. The application of AHP has three 

main principles, namely problem decomposition, comparative judgements, 

and synthesis of priorities. The stage of decomposition begins by breaking 

down a problem into smaller elements, and structuring them into a 

hierarchy with different levels, where each level contains a finite number of 

elements. The top of the hierarchy is usually the objectives of the decision-

making problem, the intermediate levels are represented by several criteria 

on which the subsequent levels depend on, while the lowest level contains 

a list of potential alternatives. Each element in the hierarchy will serve as 

the criterion for all elements of the level below (Saaty and Kearns, 1985). 

In the stage of comparative judgements, pairwise comparisons of the 

relative strength or importance of n elements in the same hierarchy level 

are carried out with respect to a common aspect in the level above. 

Decision-maker can compare any two elements (eg. Ei and Ej) and assign a 

numerical scale aij as the ratio of their relative importance. If two elements 

being compared have equal importance, then aij would be given a value 

one. If element Ei is considered to have higher importance than Ej, then aij 

would be greater than one. Once n(n−1)/2 pairwise comparisons are 

completed among all elements, a positive reciprocal square matrix 

containing the comparative judgments is obtained as shown in Equation 

(7.1). 
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 In the comparison matrix, the reciprocal property aji = 1/aij (where 

aij > 0) always holds true for j = 1, 2, ... , n and i = 1, 2, ... , n, in which n 

represents the number of elements in the level. A measurement scale of 1 

to 9 (Saaty, 1977) as shown in Table 7.1 is used to assign the numerical 

value to each aij. For instance, if element Ei is deemed to be strongly more 

important than Ej, then its aij value would be 5. Its corresponding 

reciprocal, aji will then be equivalent to 1/5. 

 

Table 7.1: The fundamental AHP scale (Saaty, 1977) 

Numerical Definition (explanation) 

scale 

1  Equal importance (two elements contribute equally to the 

  objective) 

3  Moderate importance of one over another (experience and 

  judgement slightly favour one element over another) 

5  Essential or strong importance (experience and judgement 

  strongly favour one element over another) 

7  Very strong importance (an element is strongly favoured and 

  its dominance demonstrated in practice) 

9  Extreme importance (the evidence favouring one element 

  over another is of the highest possible order of affirmation) 

2, 4, 6 and 8 Intermediate values between the two adjacent judgements 

  (the judgement falls between two levels) 

Reciprocals If element i has one of the above numbers allocated to it 

  when compared with element j, then j has the reciprocal 

  value when compared with i 

 

 The relative strength or importance of all elements being compared 

can be identified from the comparison matrix. To do this, a vector of 
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priorities or weights, w has to be computed from the matrix. First, in order 

to determine vector w, Saaty (1980) has suggested the principal 

eigenvalue method as shown in Equation (7.2): 

 

wλwA  max  (7.2) 

 

where A is the pairwise comparison matrix and λmax is the maximum 

eigenvalue of matrix A. The solution for vector w is determined numerically 

by raising the matrix A to a sufficiently large power, then summing over 

the rows and normalising them to obtain the weight vector w = (w1, w2, ... 

, wn)
T. The value of λmax can then be identified through Equation (7.2). The 

next step is to determine the consistency of the comparison matrix. A 

matrix is considered to be perfectly consistent when its elements fulfil the 

following condition: 

 

kjiaaa ikjkij ,,  (7.3) 

 

 Given a problem with three elements where element Ei is considered 

to be more important than Ej, and Ej is more important than Ek. The 

problem is deemed to be inconsistent if element Ek has higher importance 

than Ei. Saaty (1980) has introduced Equations (7.4) and (7.5) to measure 

the extent of the deviation from consistency of the comparison matrix: 

 

1
max






n

nλ
CI  (7.4) 

RI

CI
CR   (7.5) 

 



 

158 

 

where CR is the consistency ratio, CI is the consistency index, and RI is a 

random consistency index that can be referred to Table 7.2. The value of 

CR should be less than 0.1 or 10% for the deviation from consistency to be 

acceptable. If the calculated CR does not fall within this range, decision 

makers will be asked to revise their comparative judgements. Since the 

AHP numerical scale as shown in Table 7.1 ranges from one to nine, it is 

suggested that one should not consider more than seven elements for 

pairwise comparison in order to ensure the validity of numerical 

comparisons. In case of a problem with large number of elements, 

hierarchical decomposition should be carried out by grouping the elements 

into comparability classes of approximately seven elements each (Saaty 

and Kearns, 1985). 

 

Table 7.2: Random consistency (RC) index (Saaty, 1980) 

Size of matrix, n RC  Size of matrix, n RC 

1   0  6   1.24 

2   0  7   1.32 

3   0.58  8   1.41 

4   0.90  9   1.45 

5   1.12  10   1.49 

 

 In the synthesis of priorities stage, the priorities of all elements are 

determined for each level beginning from the second level to the bottom 

level. For each element, its composite or global priority is calculated by 

multiplying the priority of its respective criterion in the level above and 

summing them for each element in a level based on the criteria it 

influences (Saaty and Kearns, 1985). This stage is illustrated with an 

example of decision making problem that contains three levels, where the 

top level is represented by the objective. In its second level, there are two 
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criteria known as K1 and K2, in which the local priorities calculated by 

pairwise comparison with respective to the objective are 0.667 and 0.333 

respectively. Meanwhile in the third level, each criterion is provided with 

two alternatives known as J1 and J2. Given the local priorities of J1 and J2 

with respect to criterion K1 are 0.75 and 0.25 respectively, while the local 

priorities of J1 and J2 with respect to K2 are 0.2 and 0.8 respectively. 

Then, the global priority for J1 can be calculated by: (0.667 × 0.75) + 

(0.333 × 0.2) = 0.567, while the global priority for J2 is determined by: 

(0.667 × 0.25) + (0.333 × 0.8) = 0.433. Alternative J1 is chosen as the 

preferred solution as it has larger global priority than that of J2. The 

application of AHP to determine the weight factors is further illustrated in 

Section 7.5.2. 

  

7.4 Ordered Weighted Averaging (OWA) 

Operator 

 As AHP is applied to determine weights to the sub-indexes, the next 

step is to employ a method that can assign weights in such a manner that 

sub-index with higher penalty score receives a larger weight, and vice 

versa. This ensures that a higher-scoring sub-index will have a greater 

contribution to the final weighted ISHI value. This results in an inherently 

conservative weighing procedure, which can be managed by applying 

aggregation operators that have been developed to assist in aggregating 

information. Some of these methods include the max and min operators, 

arithmetic averaging (AA) operator, weighted AA (WAA) operator, 

geometric averaging (GA) operator, ordered weighted averaging (OWA) 

operator, etc. (Xu and Da, 2003). In this work, the weights are assigned 

based on the ordered position of the sub-index scores. The allocation of 

weight in this manner can be adequately done with the application OWA 
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operator method introduced by Yager (1988). An OWA operator of 

dimension n is a function 

F : Rn → R 

with an associated n vector 

w = (w1, w2, ... , wn)
T 

where 

1. wi ∈ [0,1] 

2. ∑i wi = 1 

 

Besides, 

 

  
j

jjn bwaaaF ,...,, 21  
(7.6) 

 

where bj is the jth largest of the ai. The principal characteristic of the OWA 

operator is the reordering step, in which an argument ai is not associated 

with a specific weight wi, but a weight wi is associated with a specific rank i 

of the arguments (Yager, 1988). The application of OWA operator approach 

in this chapter is further demonstrated in Section 7.5.2. 

 

7.5 Methodology 

 As shown in Figure 3.3, the procedure proposed in this chapter is an 

extension of the methodology presented in Chapter 5, in which the goals 

are to introduce weight factors to the sub-indexes and to smoothen the 

sub-index scores at the property boundaries. 
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7.5.1 Problem Formulation and Safety and Health 

Assessment 

 The first stage of this methodology is the problem formulation 

phase, which serves the same purpose as the step presented in Section 

5.3.1. The following phase is the safety and health assessment step, which 

considers the same seven sub-indexes as discussed in Section 5.3.2 to 

evaluate the molecular performance. 

 

7.5.2 Determination of Total Weighted Index Score 

 As presented in Section 5.3.2, the total index score, ISHI assigned to 

the molecule is equivalent to the summation of all seven sub-index scores. 

A lower ISHI is favourable as the molecule exhibits lower magnitude of 

hazard. This method of measuring hazard treats all sub-indexes with equal 

importance, as they all have the similar weight of contribution towards the 

final total score. In this chapter, weights are introduced to the sub-indexes 

and the quantification of the overall hazard exhibited by the molecules can 

be carried out through OWA operator approach, as shown by Equation 

(7.7). This equation is derived from Equation (7.6), where the right-hand 

side of the former equation is the summation for all multiplications 

between the sub-index values and their corresponding weights. SIR1 

represents the sub-index with the highest scoring, SIR2 is the sub-index 

with the second highest scoring, and so on. w1 to w7 are the weights given 

to the sub-indexes, in which the value of w1 is greater than w2, w2 is larger 

than w3, and so on. As weights are now introduced in the equation, the 

overall hazard level of the molecule is quantified by ISHI,w, which signifies 

the total weighted index score. 

 

7766332211, ... RRRRRwSHI SIwSIwSIwSIwSIwI   (7.7) 
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 Through OWA operator method, the weights can be assigned 

conditionally to the criteria depending, based on the logic that there should 

be more weight placed on the weaker and more critical features of a given 

alternative. This approach can thus yield a more conservative approach 

than simply assigning fixed weights to the criteria. For the measurement of 

safety and health aspects of the molecules, sub-index with weaker 

performance (or more severe score) is assigned higher weight to penalise 

the high hazard condition demonstrated by the molecules. The next step is 

to employ AHP for the identification of weights introduced to the sub-

indexes. In the first stage of AHP, the problem is represented in the form 

of hierarchy that contains several elements. The hierarchy for this weight 

determination problem is shown in Figure 7.1. 

 

 

Figure 7.1: Hierarchy for the weight determination of sub-indexes 

 

 In Figure 7.1, the top level is the goal of this AHP problem, which is 

to determine the weight of the sub-indexes. The seven sub-indexes in the 

bottom level are the elements which contribute to the final ISHI,w value. In 

the next step, pairwise comparisons are considered among all seven sub-

indexes to assess the relative importance and impact towards ISHI,w. The 

complete pairwise comparison matrix is shown in Table 7.3. 

 

 

 

 

Weight (or 
impact) to ISHI,w 

Rank 1 
sub-index 

(SIR1) 

Rank 2 
sub-index 

(SIR2) 

Rank 3 
sub-index 

(SIR3) 

Rank 4 
sub-index 

(SIR4) 

Rank 5 
sub-index 

(SIR5) 

Rank 6 
sub-index 

(SIR6) 

Rank 7 
sub-index 

(SIR7) 
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Table 7.3: Pairwise comparison matrix 

  SIR1 SIR2 SIR3 SIR4 SIR5 SIR6 SIR7 

SIR1  1 2 3 4 5 6 7 

SIR2  1/2 1 2 3 4 5 6 

SIR3  1/3 1/2 1 2 3 4 5 

SIR4  1/4 1/3 1/2 1 2 3 4 

SIR5  1/5 1/4 1/3 1/2 1 2 3 

SIR6  1/6 1/5 1/4 1/3 1/2 1 2 

SIR7  1/7 1/6 1/5 1/4 1/3 1/2 1 

 

 The first row of the matrix in Table 7.3 shows the pairwise 

comparisons made between the highest-scoring sub-index with the other 

sub-indexes. This highest-scoring sub-index is deemed to have an 

intermediate level of “equal importance” and “moderate importance” over 

the second highest-scoring sub-index, thus the allocated numerical scale 

for this comparison is two. Meanwhile, the highest-scoring sub-index is 

considered to have a very strong importance over the lowest-scoring sub-

index, thus a numerical value of seven is assigned to this comparison. The 

numerical values in the first column are equivalent to the reciprocal values 

of the first row respectively. The diagonal values in the matrix are equal to 

unity as the sub-index being evaluated is compared with itself. 

 

 In the synthesis of priorities stage, the vector of weights, w has to 

be determined from the comparison matrix in Table 7.3. Through the 

maximum eigenvalue method as given by Equation (7.2), the weight 

vector, w calculated is shown as below: 

 

 Tw 0312.00448.00676.01036.01587.02399.03543.0  (7.8) 
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 Hence, the values of w1 to w7 are 0.3543, 0.2399, 0.1587, 0.1036, 

0.0676, 0.0448 and 0.0312 respectively. By substituting the vector w into 

Equation (7.2), the value of λmax determined from the aforementioned 

equation is 7.1955. The next step is to identify the extent of the deviation 

from consistency of the comparison matrix. By substituting the λmax value 

into Equation (7.4), the calculated value of CI is 0.0326. According to Table 

7.2, the value of RI is 1.32 when the number of elements, n is 7. 

Therefore, the value of CR determined from Equation (7.5) is 0.0247 or 

2.47%, which is lower than the 10% tolerance. Thus, the intensity of 

inconsistency of the matrix is acceptable. 

 

 In CAMD programming, constraints have to be introduced to 

allocate the descending order of sub-index values for SIR1 to SIR7 given in 

Equation (7.7). Binary integer variables are used to formulate the 

constraints, which are given by Equations (7.9) to (7.12): 

 

7...17654321  iSIIbIbIbIbIbIbIb RiAHiELiViMSiηiEXiFLi  (7.9) 

7...117654321  ibbbbbbb iiiiiii  (7.10) 

7...117654321  ibbbbbbb iiiiiii  (7.11) 

1,6...1  ijiSISI RjRi  (7.12) 

 

where bij (for i = 1...7 and j = 1...7) is the binary integer variable. With 

this new approach to quantify the molecular hazard, it can be noted that 

molecule with multiple severe-scoring sub-indexes will have considerably 

large ISHI,w value. Therefore, the introduction of weights using OWA 

operator helps to enhance the final ISHI,w score to accurately represent the 

overall intrinsic hazard level of a molecule. 
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 The next stage is to identify the property prediction methods for all 

properties involved in the design problem. The GC models for properties 

assessed in the sub-indexes are provided in Tables 4.11, 4.14, and 6.2. 

 

7.5.3 Smoothing Sub-index Scores 

 Based on the established inherent safety and health indexes, the 

allocation of sub-index scores is dependent on subjective scaling and 

weighting. The physicochemical properties assessed in the sub-indexes are 

divided into subjective ranges, where each range is then introduced a score 

depending on the authors’ judgement. As mentioned in Section 7.2, the 

main limitation of this method is the discontinuity at the property 

boundary, which is illustrated by the following scenario in Figure 7.2. 

 

 

Figure 7.2: A scenario of two property values with different sub-index 

scores 

 

 Given that there are two molecules with property values of pM and 

pN based on Figure 7.2. pM falls near the upper bound of the “pL to ps1 

range,” which gives it a score of IZ1; while pN is close to the lower bound of 
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the “ps1 − ps2 range,” which returns a score of IZ2. Both property values 

receive different sub-index scores as they fall in two sub-ranges with 

different hazard level. However, according to Figure 7.2, both pM and pN 

are close to one another, so it is possible that they might exhibit a similar 

hazard level. Therefore, the comparison of two property values near to the 

same property boundary but locating at different sub-ranges is not efficient 

as there exists discontinuity at the property boundary where the score 

switches abruptly from one value to another. This issue is addressed in this 

chapter, where the sub-index scores at the property boundary region will 

be smoothened to ensure that there is continuity for the allocation of sub-

index scores at any property value. The resulted general trend for 

smoothened sub-index scores is shown in Figure 7.3 This modification can 

enhance the comparison of hazard level between the two property values 

with similar condition as the scenario in Figure 7.2. 

 

 

Figure 7.3: Revised sub-index with smoothened scores 

 

 In Figure 7.3, the grey regions represent the smoothened regions 

where linear slopes are introduced to transit the scores from one sub-index 
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value to another. The wideness of the smoothened region is determined by 

the value of δ. This value will identify the lower and upper bounds of the 

smoothened region for each property boundary. All smoothened regions 

should possess similar δ value for consistency purpose. To determine δ, a 

10% margin of the property boundary values is applied. In general, a 

design factor of 10% is used for process flows to allow some flexibility in 

process operation (Sinnott, 2005). Therefore, a 10% safety/health factor is 

calculated for all property boundaries in Figure 7.3. Let us assume that the 

safety/health factors for ps1 and ps2 are δ1 and δ2 respectively. From Figure 

7.3, ps2 has a larger numerical value than ps1, so δ2 is larger than δ1. As 

mentioned previously, a similar δ value must be applied for all property 

boundaries. In order to ensure that all property boundaries can attain a 

minimum 10% factor, the selected δ value should take the largest value 

among δ1 and δ2. In this case, δ is equivalent to δ2. In other words, the δ 

value applied for a particular sub-index is the 10% factor of the largest 

property boundary (numerical) value. 

 

7.5.4 Allocation of Sub-index Scores with Disjunctive 

Programming 

 In this chapter, the algorithm to assign sub-index score to the 

molecule depending on its property value is developed. Based on the 

modified sub-index in Figure 7.3, the assigned sub-index score, IZ is given 

by: 
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 Based on Equation (7.13), the property value, p is divided into five 

intervals. The sub-index score in each interval is defined by a distinct 

function. Thus, the sub-index score from the lower property value bound, 

pL to the upper property value bound, pU is never continuous. Disjunctive 

programming as discussed in Section 6.3.2 can be employed to formulate 

these discontinuous functions. The IZ function in Equation (7.13) is 

transformed to the following mixed-integer formulation using four binary 

integer variables (bp, bq, br and bs): 
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where the binary integer variables are subjected to the following criteria: 
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 The binary integer variables in Equation (7.14) act as switches to 

only ‘activate’ a single score function at a time to determine the sub-index 

score. To ensure that the model allocates the correct value to the binary 

integer variables in order to satisfy criteria (7.15) to (7.18), the following 

constraints are also imposed: 
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        psUspsL bδppδppbδpp  1111  (7.19) 

        qsUsqsL bδppδppbδpp  1111  (7.20) 

        rsUsrsL bδppδppbδpp  1222  (7.21) 

        ssUsssL bδppδppbδpp  1222  (7.22) 

 

7.5.5 Molecular Design and Optimisation Model 

Formulation 

 In molecular design phase, the suitable building groups to form the 

potential molecular candidates are selected. Additional structural 

constraints on the molecular groups are implemented to ensure that 

structurally feasible molecules are generated. Only first-order molecular 

groups are considered in order to reduce the complexity of the CAMD 

programming, as the incorporation of disjunctive algorithm has resulted in 

several non-linear constraints [eg. Equation (7.14)]. As for the phase of 

optimisation model formulation, all target properties chosen as the design 

objectives are transformed into the linear membership functions. All 

objectives are simultaneously optimised to generate the optimal molecular 

structure that achieves the design goal. The complete procedures for both 

phases have been presented in Sections 5.3.4.1 and 5.3.5. 

 

7.6 Case Study: Solvent Design for Extraction 

of Carotenoids 

7.6.1 Problem Formulation 

 The same case study conducted in Section 6.4 is applied to 

demonstrate the methodology proposed in this chapter. The objective of 

the case study is to identify a solvent that can replace hexane to extract 

carotenoids from the residual oil found in palm pressed fibre (PPF). The 
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solvent should be able to lower the energy requirement needed for 

evaporation. Thus, it must have low boiling point (Tb) and low heat of 

vaporisation (Hv) so less energy is needed to heat up the solvent to its Tb 

and subsequently vaporise it. Besides, carotenoids should have high 

solubility in the developed solvent. The Hansen Solubility Parameters (HSP) 

are utilised to calculate the solubility of carotenoids in the solvent. The 

solubility is expressed by a parameter known as the distance of a solvent 

from the centre of the Hansen solubility sphere, Ra which can be calculated 

by Equation (6.8). The solvent must also achieve the desirable attributes 

for its safety and health aspects, such as low flammability and toxicity. This 

can be measured by the selected inherent safety and health sub-indexes. 

The total weighted index score, ISHI,w in Equation (7.7) will be used to 

determine the inherent hazard level posed by the solvent. A low ISHI,w score 

is preferred for an inherently safer and healthier solvent. 

 

 Overall, the four main objective functions in this case study is to 

minimise Tb, minimise Hv, minimise Ra, and minimise ISHI,w. Since the 

conventionally used hexane is highly flammable and toxic to aquatic life, 

the flash point (Fp) and acute toxicity (96-h LC50 to fathead minnow) are 

selected as property constraints. The lower bound of Fp is set at -13.3°C, 

which is 10°C higher than that of hexane (-23.3°C). As for acute toxicity 

LC50, the lower bound is set at 100 mg/l, which indicates that the solvent is 

not harmful to the aquatic environment as defined by the United Nations' 

Globally Harmonised System of Classification and Labelling of Chemicals 

(GHS). 

 

 For all the listed target properties, their corresponding property 

estimation models must be identified. The involved GC models have been 

provided in Section 6.4.3.1. 
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7.6.2 Safety and Health Assessment 

 The safety and health assessment on the solvent are measured 

using the selected safety and health sub-indexes that include flammability 

(IFL), explosiveness (IEX), viscosity (Iη), material phase (IMS), volatility (IV), 

exposure limit (IEL), and acute health hazard (IAH). When developing the 

sub-indexes, the range of the sub-index scores is assigned based on the 

importance of the specific sub-index to the plant safety (Heikkilä, 1999) 

and the magnitude of impacts resulted by chemical exposure (Hassim and 

Hurme, 2010a). A more significant sub-index is allocated a larger scoring 

range. Four sub-indexes (IFL, IEX, IEL and IAH) contain the largest scoring 

range of four, while two sub-indexes (Iη and IMS) display the smallest 

scoring range of two. It can be noticed that both flammability and 

explosiveness are the crucial parameters affecting the safety factors of the 

chemicals. As for occupational health, the parameters of exposure limit and 

acute health hazard, which both measure the toxicity of the chemical, 

cause more significant health impacts to the plant workers. 

 

 Among the selected sub-indexes, their lowest scores vary from zero 

to one while their highest scores differ from three to four. The scorings for 

all sub-indexes can be considered consistent as there are no sub-indexes 

with relatively high or low scores. In this work, the applied sub-index 

scores are in their initial forms. No scores normalisation is carried out on 

the seven sub-indexes, as such step causes all sub-indexes to be 

considered as equal importance. Equation (7.7) is applied to calculate 

ISHI,w, where the seven sub-index scores are first sorted in descending 

order. The largest score is then multiplied with the largest weight, the 

second largest score is multiplied with the second largest weight, and so 

on. The proposed method to quantify the overall hazard of solvent ensures 



 

172 

 

that a particular sub-index displaying higher hazard is penalised more, so 

that it has larger impact on the ISHI,w score. 

 

7.6.3 Smoothing Sub-index Scores 

 In this section, the smoothing of flammability sub-index (IFL) is 

demonstrated. IFL evaluates the tendency of a material to burning in air. 

The allocation of IFL scores are shown in Table 4.2, where the two 

properties assessed by this sub-index include flash point (Fp) and boiling 

point (Tb). There are three boundary values for Fp (93.4°C, 37.8°C and 

22.8°C), while only a single boundary value for Tb (37.8°C). Since there is 

only one Tb boundary, the IFL sub-index scores can be presented under two 

Tb scenarios, where the graphical representations are shown in Figure 7.4. 

Figure 7.4 shows the graphical illustration for the IFL sub-index under two 

Tb conditions. For both scenarios, the sub-index scores are similar above Fp 

of 22.8°C. However, the scores differ below Fp of 22.8°C, in which the 

scores increase to four in Scenario 1 (Tb < 37.8°C), while remains at three 

in Scenario 2 (Tb ≥ 37.8°C). Thus, there are only two Fp boundaries in 

Scenario 2, namely Fp at 37.8°C and 22.8°C. At all Fp boundaries, the IFL 

scores switch abruptly from one value to another. In this section, the 

scores at the boundary regions will be smoothened to address the 

discontinuity issue mentioned in Section 7.2. The entire smoothing is 

carried out in two parts; the first part is conducted in terms of Fp, while the 

next part is in terms of Tb. As mentioned previously, the Fp boundaries are 

93.4°C, 37.8°C, and 22.8°C. The 10% margin of the three boundary values 

are 9.34°C, 3.78°C and 2.28°C respectively. From the three margin values, 

the largest value, 9.34°C is chosen as the overall Fp margin. The selection  
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Figure 7.4: Sub-index scores of IFL when (a) Tb < 37.8°C; (b) Tb ≥ 37.8°C 
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Figure 7.5: Determining the range to be smoothened in IFL sub-index 
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Figure 7.6: Smoothened IFL scores 

 

of the largest margin value ensures that this factor is at least 10% of all Fp 

boundaries. Next, a smoothing range is determined for each Fp boundary 

value, where the lower bound is calculated by subtracting 9.34°C from the 

boundary value, while the upper bound is determined by adding 9.34°C to 
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the boundary value. The smoothing regions are shown by the grey zones in 

Figure 7.5. In these regions, the allocation of scores is modified so that the 

scores can transit continuously from one value to another. For each region, 

a linear slope is introduced where it begins from the IFL score at the lower 

bound and decreases linearly to the IFL score at the upper bound. With the 

application of linear slopes, the smoothened IFL scores in terms of Fp are 

shown in Figure 7.6. However, there exists an overlapping of two 

smoothing ranges (shown by the darker grey zone) in Figure 7.6(a) as the 

lower bound for 37.8°C smoothing range is lower than the upper bound for 

22.8°C range. As a result, two linear slopes (illustrated by the two dotted 

lines) are present in the overlapping range. However, any Fp value in the 

feasible range can only be represented by a single score. Hence, a 

composite curve is used on the darker grey region as shown in Figure 

7.6(a) to merge the two linear slopes in which the score transits linearly 

from the higher score at the lower bound (28.46°C) to the lower score at 

the upper bound (32.14°C). Since the IFL scores are now smoothened in 

terms of Fp, the next step is to further smoothen the scores with respect to 

Tb. 

 

 As shown by the two scenarios in Figures 7.4 to 7.6, Tb has one 

boundary value of 37.8°C. The margin value applied in Tb is the 10% factor 

of 37.8°C, which is equivalent to 3.78°C. The smoothened range for Tb is 

between 34.02°C and 41.58°C (37.8 ± 3.78°C). Since Scenario 1 is 

intended for Tb value below 37.8°C, while Scenario 2 represents IFL scores 

for Tb value above and equals to 37.8°C; the scores in Figure 7.6(a) now is 

applied for Tb value below or equals to 34.02°C, whereas the scores in 

Figure 7.6(b) is utilised for Tb value above or equals to 41.58°C. The scores 

in Figures 7.6(a) and (b) will now serve as the lower and upper bound 
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values for the Tb smoothing range respectively. Figure 7.7 shows the 

combined IFL scores from Figures 7.6(a) and (b). 

 

 

Figure 7.7: Combined IFL scores 

 

Table 7.4: Smoothened IFL scores 

Fp (°C)    IFL,low    IFL,up  

    (Tb ≤ 34.02°C)  (Tb ≥ 41.58°C) 

Fp ≥ 102.74°C  1    1 

84.06°C ≤ Fp ≤ 102.74°C 1
68.18

74.102


 pF
  1

68.18

74.102


 pF
 

47.14°C ≤ Fp ≤ 84.06°C 2    2 

32.14°C ≤ Fp ≤ 47.14°C 2
68.18

14.47


 pF
  2

68.18

14.47


 pF
 

28.46°C ≤ Fp ≤ 32.14°C 
 

803.2
68.3

14.32394.0


 pF
 2

68.18

14.47


 pF
 

13.46°C ≤ Fp ≤ 28.46°C 3
68.18

14.32


 pF
  3 

Fp ≤ 13.46°C   4    3 
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 From Figure 7.7, at Fp below 32.14°C, the IFL scores at or below the 

lower bound of Tb smoothened range (34.02°C) differ from that of the 

scores at or above the upper bound (41.58°C). The two sets of scores 

converge at Fp of 32.14°C, and the scores remain similar above that Fp 

value. Therefore, for a molecule with Fp above or equivalent to 32.14°C, 

the IFL score is only dependent on its Fp regardless of the Tb value. For a 

molecule with Fp lower than 32.14°C, if its Tb is in the smoothing range 

(between 34.02°C and 41.58°C), interpolation technique is required to 

determine its IFL score. First, both the Tb lower and upper bound scores are 

identified from Figure 7.7 based on Fp value of the molecule. The lower and 

upper bound scores now represent the IFL scores at Tb of 34.02°C and 

41.58°C respectively. Based on the Tb value, its IFL score can be 

determined through interpolation between the lower and upper bound 

scores. For molecules with Tb below 34.02°C or above 41.58°C, the scores 

are directly determined from the curves in Figure 7.7. The overall 

smoothened IFL scores are summarised in Table 7.4. The other sub-indexes 

are also smoothened using the same technique, as shown in Tables 7.5 to 

7.9. IMS is the only sub-index that is not smoothened, as it measures the 

material state of the molecule without the need to divide the properties 

into sub-ranges. The IMS score for gas, liquid and solid are 1, 2 and 3 

respectively. 

  

 Based on Table 7.4, the final IFL score can be determined by 

Equation (7.23): 
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Table 7.5: Smoothened IEX scores 

Parameter   Score Information Penalty Score 

Explosiveness, IEX 

S = (UEL-LEL) vol%  0 ≤ S ≤ 13  1 

    13 ≤ S ≤ 27  (S − 13)/14 + 1 

    27 ≤ S ≤ 38  2 

    38 ≤ S ≤ 52  (S − 38)/14 + 2 

    52 ≤ S ≤ 63  3 

    63 ≤ S ≤ 77  (S − 63)/14 + 3 

    77 ≤ S ≤ 100  4 

 

Table 7.6: Smoothened Iη scores 

Parameter  Score Information  Penalty Score 

Viscosity, Iη  -1 ≤ log η ≤ -0.1  1 

   -0.1 ≤ log η ≤ 0.1  (log η + 0.1)/0.2 + 1 

   0.1 ≤ log η ≤ 0.9  2 

   0.9 ≤ log η ≤ 1.1  (log η − 0.9)/0.2 + 2 

   1.1 ≤ log η ≤ 2  3 

 

Table 7.7: Smoothened IV scores 

Parameter  Score Information   Penalty 

Volatility, IV  Tb ≥ 165°C    0 

   165°C ≥ Tb ≥ 135°C   (165 − Tb)/30 

   135°C ≥ Tb ≥ 65°C   1 

   65°C ≥ Tb ≥ 35°C   (65 − Tb)/30 + 1 

   35°C ≥ Tb ≥ 15°C   2 

   15°C ≥ Tb ≥ -15°C   (15 − Tb)/30 + 2 

   Tb ≤ -15°C    3 
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Table 7.8: Smoothened IEL scores 

Parameter  Score Information  Penalty Score 

Exposure limit, IEL Vapour (ppm)   

   log PEL ≥ 3.3   0 

   2.7 ≤ log PEL ≤ 3.3  (3.3 − log PEL)/0.6 

   2.3 ≤ log PEL ≤ 2.7  1 

   1.7 ≤ log PEL ≤ 2.3  (2.3 − log PEL)/0.6 + 1 

   1.3 ≤ log PEL ≤ 1.7  2 

   0.7 ≤ log PEL ≤ 1.3  (1.3 − log PEL)/0.6 + 2 

   0.3 ≤ log PEL ≤ 0.7  3 

   -0.3 ≤ log PEL ≤ 0.3  (0.3 − log PEL)/0.6 + 3 

   log PEL ≤ -0.3  4 

 

Table 7.9: Smoothened IAH scores 

Parameter  Score Information  Penalty Score 

Acute health  Oral rat LD50 (mg/kg)   

hazard, IAH  D’ ≥ 3.6311   0 

Let D’ = log LD50 3.0291 ≤ D’ ≤ 3.6311 1.5147(3.6311 − D’) 

   2.9709 ≤ D’ ≤ 3.0291 3.0294(3.0291 − D’) 

       + 0.9119 

   2.3689 ≤ D’ ≤ 2.9709 1.5147(3.0291 − D’) + 1 

   2.0291 ≤ D’ ≤ 2.3689 2 

   1.3689 ≤ D’ ≤ 2.0291 1.5147(2.0291 − D’) + 2 

   1.0291 ≤ D’ ≤ 1.3689 3 

   0.3689 ≤ D’ ≤ 1.0291 1.5147(1.0291 − D’) + 3 

   D’ ≤ 0.3689   4 
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7.6.4 Molecular Design 

 In this case study, the selection of first-order molecular building 

blocks is similar to those chosen in Section 6.4.4. To ensure that feasible 

molecules are synthesised, structural constraints listed in Sections 5.3.4.1 

and 6.4.4 are implemented in the model. 

 

7.6.5 Optimisation Model Formulation 

 In the final stage, the four design objective properties are then 

converted into their respective property operator. The purpose of altering 

the form is to reduce the non-linearity equations in the model. The next 

step is to optimise the property operators of the four objective properties, 

which are ΩTb, ΩHv, ΩRa, and ΩISHI,w. Four degrees of satisfaction, λTb, λHv, 

λRa, and λI are introduced to Tb, Hv, Ra, and ISHI,w respectively for each of 

their linear membership function as shown by Equations (7.24) to (7.27). 

The objective function of the model is given by Equation (5.20), subjected 

to constraints (4.8) and (5.21). For multiple molecular solutions, integer 

cuts method is conducted whereby additional constraints are added into 

the model to synthesise alternate molecular structures. 

 

Tb
Tb λ





0238.33889.7

Ω3889.7
 (7.24) 

Hv
Hv λ





6891.1188.36

Ω88.36
 (7.25) 

Ra
a λ

R






0542.48991.15

8991.15
 (7.26) 

I

wSHI
λ

I






7463.16553.2

6553.2 ,  (7.27) 
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7.6.6 Results and Discussions 

 

 

Figure 7.8: The generated solvents with their molecular structures 

 

 The optimisation model is solved using LINGO 14.0 with a 

computational time of 86 minutes for the first generated solution. The top 

six solvents generated by the proposed optimisation model are shown in 

Figure 7.8. The solvents can be categorised into esters (D1 and D3), 

ketones (D4 and D6) and monocyclic compounds (D2 and D5). Their 

estimated properties are shown in Table 7.10, while the sub-index values 

are summarised in Table 7.11. Solvent D1 is the best solution as it has low 

ISHI,w and moderate Tb and Ra. When comparing the four objective 

properties individually, solvent D2 performs the best in terms of lowest Hv 

and Ra; while solvent D3 offers the lowest ISHI,w and Tb. Hence, solvent D2 

can be regarded as the best candidate substance in the case where the 

decision maker priorities property functionalities and performance, while 

another decision maker can opt for solvent D3 which offers the best safety 

and health features. In their work, Yara-Varón et al. (2016a) reported that 

ethyl acetate (solvent D3 in this case study) offers similar carotenoid 

extraction yield as compared to that of hexane. Therefore, solvents D1, D2 
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and D5 with lower Ra than solvent D3 should exhibit better carotenoid 

extraction than hexane. Even though solvent D6 does not perform the best 

with regards to the four objectives, it still offers the highest Fp. 

 

Table 7.10: The six generated solvents with their properties 

Solvent λ ISHI,w Ra Hv (kJ/mol) Tb (°C) Fp (°C) LC50 (mg/l) 

D1  0.697 1.957 7.432 34.32  86.2 9.6 114.6 

D2  0.687 2.031 4.147 29.08  80.1 -11.9 176.5 

D3  0.687 1.946 7.761 32.89  68.7 4.5 208.0 

D4  0.617 2.024 8.593 30.88  88.6 6.9 853.1 

D5  0.612 2.099 6.804 31.56  89.3 -2.6 875.7 

D6  0.597 2.049 8.208 32.07  109.5 14.0 521.9 

 

Table 7.11: The six generated solvents with their sub-index scores 

Solvent IFL IEX Iη IMS IV IEL IAH ISHI ISHI,w 

D1  3 1 1 2 1 1.09 0.81 9.90 1.957 

D2  3 1 1 2 1 0.86 1.54 10.41 2.031 

D3  3 1 1 2 1 1.02 0.82 9.83 1.946 

D4  3 1 1 2 1 1.34 1.21 10.54 2.024 

D5  3 1 1 2 1 1.58 1.56 11.14 2.099 

D6  3 1 1 2 1 1.48 1.23 10.71 2.049 

 

 In terms of their individual sub-index scores, the difference between 

their safety and health performance is mainly contributed by IEL and IAH. 

These two sub-indexes measured the toxicity of chemicals, where IEL 

examines the chronic toxicity through inhalation, while IAH assesses acute 

toxicity through ingestion. ISHI in Table 7.11 is calculated by summing up 

the seven sub-index values of each solvent. Among the seven sub-index 
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values in Table 7.11, the one with the largest penalty is IFL, which indicates 

that the solvents are easily flammable. In the event where a molecule with 

lower flammability is required, additional integer cuts are introduced to the 

optimisation model. The best solvent with a lower IFL score (less than or 

equals to 2) is 1-ethoxy-2-butanone with a λ value of 0.463, where its 

ISHI,w, Ra, Hv, Tb, and Fp are equivalent to 2.144, 6.599, 37.15 kJ/mol, 

137.7°C, and 53.0°C respectively. Its Ra is lower than the top six solvents 

in Table 7.10, but it has relatively high Tb and Hv, which means that more 

energy is needed to vaporise the solvent to recover carotenoids. Even 

though its IFL has an improved value of 2, but its IEL score has worsened to 

3, indicating that it has higher toxicity than the top six solvents. This also 

increases its overall inherent hazard level as demonstrated by its high 

ISHI,w. 

 

 The introduction of index smoothing and prioritisation in this 

chapter enhances the representation of molecular safety and health 

performance through the calculation of the adjusted index score, ISHI,w. The 

improvement in safety and health measurement can be demonstrated by 

comparing the results in Table 7.11 with the calculation of ISHI,i of the six 

solvents by omitting both index smoothing and prioritisation. In other 

words, the initial index scoring schemes are used to calculate ISHI,i by 

summing up the sub-index scores without allocating weight factors to 

them. The calculated ISHI,i and the individual sub-index values are shown in 

Table 7.12. In Table 7.12, the IFL, IEX, Iη, IMS and IV scores of the six 

solvents remain unchanged, as their property values do not fall near to the 

property boundaries of the five sub-indexes. As for IEL and IAH, the results 

in Table 7.11 show that the property values (PEL and LD50) of the solvents 

fall near to the property boundaries or the edges of their respective 

property sub-ranges, so their IEL and IAH scores are not discrete values. In 
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Table 7.12, all solvents but A5 have a similar IEL score of one, while the IAH 

scores of all solvents but A2 and A5 share the same value of one. Solvents 

A1, A3, A4 and A6 exhibit the lowest ISHI,i score of 10, while A2 and A5 

possess higher hazard with total index scores of 11 and 12 respectively. As 

four solvents share the same ISHI,i, it is difficult to distinguish their inherent 

hazard level. This limitation is addressed with the proposed index 

smoothing and prioritisation in this paper, where the hazard level of each 

solvent can be calculated by ISHI,w shown in Table 7.12. 

 

Table 7.12: The six generated solvents (without index smoothing and 

prioritisation) with their sub-index scores 

Solvent IFL IEX Iη IMS IV IEL IAH ISHI,i 

D1  3 1 1 2 1 1 1 10 

D2  3 1 1 2 1 1 2 11 

D3  3 1 1 2 1 1 1 10 

D4  3 1 1 2 1 1 1 10 

D5  3 1 1 2 1 2 2 12 

D6  3 1 1 2 1 1 1 10 

 

 From the results, the smoothing of scores at property boundary 

offers a better comparison of hazard level among the solvents. For 

instance, the calculated ISHI,i values in Table 7.12 show that solvent A6 is 

less hazardous than A2. However, the calculated ISHI,w values in Table 7.11 

demonstrate otherwise. This is due to the fact the PEL and LD50 (used to 

measure IEL and IAH respectively) of solvent A6 are near to the upper 

boundary (higher degree of hazard) of their respective sub-ranges, thus 

both its IEL and IAH scores as shown in Table 7.11 are penalised more than 

those in Table 7.12. The same happens to solvent A2 where its IAH score in 

Table 7.11 is penalised more than that in Table 7.12. Meanwhile, the PEL of 
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solvent A2 falls near to the lower boundary (lower degree of hazard) of its 

IEL sub-range, thus its IEL score as displayed in Table 7.11 is penalised less 

than that in Table 7.12. This results in the total ISHI,w of solvent A6 to be 

greater than that of A2. The smoothing of scores also addresses the 

limitation of comparing two solvents with property values near to one 

another but are separated by a sharp property boundary. For instance, the 

IEL scores of solvents A5 and A6 without index smoothing are two and one 

respectively, in which their score difference is one. Their PEL values are 

close to one another but they are both separated by a shape scoring edge, 

which results in their IEL scores to be different. After the smoothing of sub-

indexes, their IEL score difference is reduced to 0.1, as determined from 

Table 7.11. Hence, this revision of the sub-index scorings allows the 

comparison of molecular hazard among different alternatives to be done 

more accurately. 

 

 Meanwhile, the introduction of index prioritisation is performed by 

assigning different weights to sub-indexes depending on their severity 

rank. As one of the design objectives is to minimise ISHI,w, the optimisation 

model also takes into account the severity of the individual sub-index score 

when quantifying the overall molecular hazard. Since higher-scoring sub-

index scores are assigned with larger weights, this forces the model to 

minimise the severity of each sub-index score. In the case where weight 

factors are not introduced to the sub-indexes, the model will only minimise 

the summation of sub-index scores (ISHI). As long as ISHI is minimised, it 

does not take into account the severity of each sub-index score. A molecule 

with minimised ISHI can still carry a severe-scoring sub-index that is being 

compensated by few other low-scoring sub-indexes, which is able to lower 

its ISHI. To illustrate the improvement brought about by index prioritisation, 

the values of ISHI are compared with their corresponding ISHI,w values in 
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Table 7.11. It is noted that a higher ISHI value does not guarantee a larger 

ISHI,w value. Even though solvent D2 has lower ISHI than that of solvent D4, 

it does not display the same relationship for their corresponding ISHI,w 

values. For solvent D2, its IAH value is higher than its IEL score, while it 

shows the opposite for solvent D4. Since solvent D2 has a more severe IAH 

score (1.54) than the IEL score of solvent D4 (1.34), solvent D2 is penalised 

more with the application of Equation (7.7) to determine ISHI,w. Thus, the 

results prove that the adjusted index score takes into account the severity 

of each sub-index to help distinguish the safety and health attributes of the 

molecules. 

 

 In this chapter, the weight factors introduced to the sub-indexes are 

determined through the application of pairwise comparison matrix as 

shown in Table 7.3. However, the allocation of the numerical value, aij for 

each pairwise comparison in the matrix is rather subjective, as different 

expert may assign different values of aij depending on his or her 

judgement. In this case, an alternate matrix is employed to generate a 

new set of weight factors for molecular hazard quantification to analyse the 

sensitivity of the results generated by the optimisation model. Higher 

importance is given to the top two sub-indexes with the two largest-

scorings. The new weight factors are 0.4357, 0.2413, 0.1229, 0.0823, 

0.0547, 0.0369 and 0.0261 (representing w1 to w7 respectively). The two 

largest weights have increased, while the remaining weights have been 

reduced. Using the new set of weights to calculate ISHI,w, the top six 

solvents with their properties are shown in Table 7.13. 

 

 According to Table 7.13, the top five solvents are similar to five of 

the six solvents generated using the initial set of weights (as shown in 

Figure 7.8 and Table 7.10). The ranking of the five aforementioned 
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solvents differ slightly as the calculated ISHI,w of the solvents in Table 7.13 

are different from those in Table 7.11. The new molecule in the top six list 

is solvent D7 with an IUPAC name of 2-pentanone, which replaces solvent 

D5 in Table 7.11 as the latter has a larger ISHI,w value (2.230) calculated 

from new set of weights. It is observed that under the results generated 

using the new weight factors, solvent exhibiting better safety and health 

performance (lower ISHI,w) is ranked higher compared to the results 

obtained with the initial weight factors. Hence, the variation in pairwise 

comparison matrix used to determine weights for molecular hazard 

quantification has an impact on the results obtained from the optimisation 

model. In order to produce a pairwise comparison matrix which minimises 

bias in decision-making process and better reflects the actual significance 

impact of each sub-index, it is preferable to acquire the expertise 

judgements from different individuals to compute the geometric mean for 

the representation of overall comparison judgements. 

 

Table 7.13: The six generated solvents with their properties (using 

alternate pairwise comparison matrix) 

Solvent λ ISHI,w Ra Hv (kJ/mol) Tb (°C) 

D1  0.695 2.119 7.432 34.32  86.2 

D3  0.687 2.110 7.761 32.89  68.7 

D2  0.641 2.176 4.147 29.08  80.1 

D4  0.617 2.171 8.593 30.88  88.6 

D6  0.597 2.191 8.208 32.07  109.5 

D7  0.597 2.175 8.832 31.78  103.8 
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7.7 Summary 

 In this chapter, inherent safety and health sub-indexes are 

integrated into the CAMD framework to measure the safety and health 

performance of the generated molecules. The main highlight is the 

development of enhanced method to quantify the overall safety and health 

attributes of the molecules by applying OWA operator to conditionally 

assign weight factors to the sub-indexes based on severity rank. Higher 

severity sub-index score is given a higher weight to further penalise the 

overall risk level of the molecules. AHP approach is employed to assist in 

determining the weight factors given to sub-indexes with different severity 

levels. Besides, the discontinuity of score at the boundary value is 

managed by smoothing the allocation of scores at the boundary value 

region. The smoothening region is determined by using a safety/health 

margin of 10%, and linear transition slope is introduced for the scores 

allocation. A case study has been considered to replace hexane for the 

extraction of carotenoids found in PPF. The results show that the top six 

generated solvents offer high performance with respect to product 

functionality and the safety and health aspects. The adjusted index score, 

ISHI,w as calculated by the OWA operator takes into account the severity of 

all sub-index scores to enhance the representation of overall hazard level 

demonstrated by the solvents. 
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CHAPTER 8 

 

CONCLUSIONS 

 

 This chapter concludes all the research works that have been 

proposed throughout the PhD study. The research gaps in Section 1.3 have 

been addressed through the completion of research scopes presented in 

Section 1.4. The concept of inherent safety and occupational health has 

been successfully adopted in the CAMD framework to formulate molecules 

with the reduced risk level. However, several works that are not conducted 

in this research can be addressed in the future to further enhance the 

integration of safety and health in the CAMD framework. 

 

8.1 Achievements 

 Many past industrial catastrophes have caused by the mishandling 

of hazardous and reactive substances. One way to prevent the potential 

recurrence of such disasters is to replace those dangerous materials with 

less harmful ones. The concept of inherent safety and occupational health 

can be employed, which strives to reduce the amount of hazardous 

chemicals used in a process plant. The search for a suitable chemical 

substitute can be effectively carried out by CAMD, which is a useful tool to 

explore molecular structures that best fulfil the desired functionalities and 

characteristics. Previously, many CAMD problems did not emphasise 

strongly about the integration of safety and health aspects as design 

objectives. Both aspects are often imposed as design constraints, usually 

represented by flammability and toxicity, to eliminate molecules that are 

deemed to be dangerous. It is crucial to conduct a trade-off between the 
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targeted functionalities and the safety and health characteristics, so that 

the best optimal solution with regards to both criteria can be generated. 

 

 The principal objective of this work is to incorporate the safety and 

health aspects in a conventional chemical product design framework using 

CAMD technique. Several research gaps present in the current state of 

CAMD are identified, which result in the establishment of four research 

scopes in this work. The first scope has been addressed in Chapter 4. The 

first stage is to develop a CAMD model to generate optimal molecules with 

the targeted functional performance. In the problem formulation phase, a 

list of target properties is defined to ensure that the molecules can achieve 

the desired property functionalities. In the model development phase, the 

property prediction models for all target properties must be determined to 

estimate the property values of interest. In the molecular design phase, 

the appropriate molecular building blocks to form the molecules are 

selected depending on the types of chemical required for the particular 

design problem. Structural constraints on the molecular groups are 

implemented to prevent the formation of infeasible solutions. In the 

optimisation model phase, the target properties to be optimised are chosen 

as the design objectives, while the remaining properties will serve as 

constraints to be fulfilled. Fuzzy optimisation formulation is applied to 

simultaneously optimise all objectives to generate a set of optimal 

molecular structures. In the second stage, performance analysis is 

conducted on the optimal molecules, where they are evaluated with respect 

to their safety and health attributes. Inherent safety and occupational 

health sub-indexes are utilised to carry out the assessment, which include 

flammability, explosiveness, viscosity, material phase, volatility, exposure 

limit, and acute health hazard. The physical and chemical properties of the 

molecules are used to measure these sub-indexes. Each sub-index is given 
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a penalty score to reflect on the molecular hazard level, and the overall 

safety and health level of a molecule is calculated by the summation of all 

sub-index scores. Molecules with better scores are selected as the chemical 

candidates for a specific chemical process application. The outcome of this 

scope is to evaluate the optimal molecules in terms of multiple safety and 

health indicators, so that molecules with optimised property functionalities 

that also demonstrate favourable safety and health performance are 

produced. 

 

 The second research scope has been addressed in Chapter 5. The 

results in Chapter 4 only guarantee that the molecules are optimised with 

respect to property functionalities, but not the safety and health criteria. In 

the second scope, both safety and health aspects are included as design 

objectives in the molecular design problem. A single-stage CAMD 

framework has been developed to design molecules that are optimised in 

terms of property functional performance and safety and health aspects. 

Similar safety and health sub-indexes are used to evaluate the safety and 

health attributes of the molecules. As the CAMD programming model is 

searching for the optimal molecular structure, the corresponding index 

score must also be simultaneously calculated. Once the model has 

estimated the molecular properties through property prediction models, 

disjunctive programming algorithm is applied to convert the input property 

values to their respective scores. The first and second scopes considered 

the same case study on solvent design for a gas sweetening process to 

replace MEA as CO2-absorbent. The main limitation of using MEA is its high 

volatility that results in high make-up solvent cost. One of the design 

objectives is to address this limitation and the results show that the 

generated solvents have relatively lower volatility than MEA. The solvents 

also demonstrate similar or improved safety and health level than MEA. 
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 In Chapter 6, the third research scope is presented where 

uncertainty management is integrated into the sub-indexes to improve the 

accuracy of the scorings. As the sub-indexes are measured by the 

physicochemical properties of the molecules, the properties are estimated 

through property prediction models. As a result, the sub-index scores given 

to a molecule is highly dependent on the accuracy of the property 

prediction models. The deviation of predicted property value from its actual 

experimental value can result in its corresponding sub-index score to be 

shifted into an inaccurate value. The issue is most notable when the 

estimated value shifts to another property sub-range, thus resulting in a 

different score being assigned to the molecule. The capability and reliability 

of most property prediction models to estimate accurate property values 

can be measured in terms of statistical performance indicators. These 

indicators are applied to manage the property estimation uncertainty on 

the sub-index scores. Uncertain range is identified at each property 

boundary, so that the score can change smoothly from the lower bound to 

the upper bound of the uncertain range. The improved score is able to 

better reflect the overall hazard level of each molecule under uncertainty. 

 

 In the first three scopes, the quantification of the overall molecular 

safety and health level is determined by the summation of all sub-index 

values. However, the results from these three scopes show that certain 

sub-indexes have larger contribution to the final total index score, while 

others have less impact. In Chapter 7, the fourth scope is presented to 

improve the current quantification of hazard level. AHP method has been 

adopted to determine the appropriate weight factors to the sub-indexes, 

while OWA operator ranks the sub-index values in an ordered manner so 

that worse performing sub-index with larger score is given a higher weight, 

and vice versa. This new approach of calculating the overall risk level helps 
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to generate a more conservative solution and minimises the possibility of 

forming molecular structures with highly severe scores. Besides, the 

discontinuity issue in the current sub-index scoring scheme is addressed by 

smoothing the scores at the property boundaries. This ensures a 

continuous change of score at any feasible property value to allow effective 

comparison on safety and health level among alternative solutions. The 

third and fourth scopes have considered the case study on solvent design 

for carotenoid extraction. The aim is to replace the commonly used n-

hexane as the extraction solvent, since it is highly flammable and toxic to 

aquatic life. From the results, the generated solvents possess compatible 

characteristics as to those of n-hexane, such as high carotenoid solubility 

and low heat of consumption needed for solvent recovery. One of the 

proposed solvent, ethyl acetate exhibits the best safety and health level. 

This ester is also selected as one of the best green solvents carried in other 

published work for carotenoid extraction. 

 

 In conclusion, the proposed methodologies in this research work 

consider the trade-off between the two principal objectives: property 

functionalities and safety and health performance. The presented CAMD 

framework is able to synthesise promising chemicals which not only 

achieve the desired functionalities, but also demonstrate low safety and 

health hazard level. The application of chemicals with minimised hazards in 

process plant can assist in reducing the magnitude of consequences or the 

likelihood of occurrence of a possible industrial accident. 

 

8.2 Future Work 

 Throughout this research, there are several important aspects which 

have been encountered that can be addressed in future works. First, 
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property prediction uncertainty is currently only managed on the aspects of 

safety and health. However, this issue of uncertainty should also be 

addressed on the property functionalities, which may affect the subsequent 

product-process design. As each estimated property carries a certain 

extent of uncertainty, the combination of uncertainties may have adverse 

impact on the quality of design. Besides, the uncertainties on the safety 

and health indicators may also result in under or over design of certain 

process equipment. These design situations can either underestimate the 

actual risk impact of a chemical substance, or overestimate the design of 

equipment which brings about additional capital costs. Hence, future work 

can be carried for simultaneous product-process design, and the 

uncertainties resulted from property prediction can be quantified and 

analysed to determine the optimal molecular structure with optimum 

operating process conditions for a specific chemical process application. 

 

 Besides, the optimal molecules generated from the CAMD 

framework should function and behave in the desired manner as their 

properties satisfy the target performance. However, the design of 

molecules purely based on theoretical chemical knowledge and hypothesis 

does not guarantee that these molecules can attain the desired 

functionality performance when they are practically applied in actual 

operating process. Thus, an extension of this research work can be 

considered. The first phase involves the generation of a list of promising 

molecular structures from CAMD programming. In the next phase, 

experimental works are conducted to identify the actual physicochemical 

properties displayed by the shortlisted molecules. The molecules are then 

screened based on their actual property functionality performance. 

Subsequently, the final shortlisted molecules are tested with their process 

performance by carrying out the specific process in a lab-scale basis. The 
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optimum process conditions can be identified through modelling approach 

and the actual results can be analysed to compare the performance 

demonstrated by the conventionally used chemicals and the novel chemical 

candidates proposed in the work. 

 

 Meanwhile, some safety and health parameters are not chosen as 

sub-indexes in this research work as their scores are assigned based on 

non-numerical descriptions, which cannot be easily integrated into the 

mathematical-based CAMD model. Hence, extensive research work has to 

be done for the inclusion of such parameters to cover a broader range of 

safety and health aspects, i.e. heat of reaction, corrosiveness, reactivity, 

and etc. heat This allows the comparison of many safety and health 

characteristics and it provides the user a greater flexibility to prioritise 

certain parameters that are deemed to be significantly more important 

than others, in which such decision depends on the nature of the molecular 

design problem. Environment-related parameters can also be taken into 

consideration in future to provide a complete safety, health and 

environment evaluation on the molecules. This ensures that the designed 

molecules with reduced risk to the people and community will not result in 

much catastrophic impact to the environment and its inhabitants. 

 

 The economic aspects on the application of the generated molecules 

in processing plant that includes the safety and occupational health costs 

should also be taken into consideration in future work. Instead of only 

quantifying the overall hazard of molecules, the sub-index scores should 

also be able to provide process designers with some information on the 

safety and health cost estimations through the installation of protective 

barriers to control hazards posed by the molecules. Besides, the safety and 

health level of different process routes used to manufacture each 
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generated molecule and the cost of manufacturing can also serve as other 

decision-making criteria. The costs can then be applied to calculate the 

economic potential for applying a particular molecule in process plant. This 

economic potential can serve as another design criterion, so that the 

molecular design problem can cover the aspects of property functionalities, 

safety, health, and profit margin.  
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APPENDICES 

 

This chapter illustrates the coding used to develop the CAMD programming 

model with LINGO software (version 14.0). 

 

A.1 Lingo Coding (Chapter 4) 

model: 

 

!Objective function; 

max = lamda; 

 

!Linear membership functions for the objectives; 

 (3.7313-kow_tot)/(3.7313+2.6284) = lamda_p1; 

(tb_tot-5.2373)/(9.3078-5.2373) = lamda_p2; 

 

lamda_p1 >= lamda; 

lamda_p2 >= lamda; 

 

lamda >= 0; 

lamda <= 1; 

 

!Defining the chemical building blocks 

n1 = CH3, n2 = CH2, n3 = CH, n4 = OH, n5 = CH2O, n6 = CH2NH2, 

n7 = CH2NH, n8 = CHNH, n9 = CH3N, n10 = CH2N; 

 

!n1 to n10 represent numbers of each chemical block; 

@GIN(n1); @GIN(n2); @GIN(n3); @GIN(n4); @GIN(n5); @GIN(n6); 

@GIN(n7); @GIN(n8); @GIN(n9); @GIN(n10); 

 

n_tot = n1+n2+n3+n4+n5+n6+n7+n8+n9+n10; 

 

C_number = n1+n2+n3+n5+n6+n7+n8+n9+n10; 

H_number = n1*3+n2*2+n3+n4+n5*2+n6*4+n7*3+n8*2+n9*3+n10*2; 

N_number = n6+n7+n8+n9+n10; 

O_number = n4+n5; 

 

!Group contribution for normal boiling point; 

tb1 = 0.8853; @free(tb1); 

tb2 = 0.5815; @free(tb2); 

tb3 = -0.0039; @free(tb3); 

tb4 = 2.1385; @free(tb4); 

tb5 = 0.9999; @free(tb5); 

tb6 = 2.3212; @free(tb6); 

tb7 = 1.3838; @free(tb7); 

tb8 = 0.7116; @free(tb8); 

tb9 = 1.0505; @free(tb9); 

tb10 = 0.4199; @free(tb10); 

 

!Group contribution for enthalpy of vaporization; 

hv1 = 2.2643; 

hv2 = 4.7607; 

hv3 = 5.0336; 
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hv4 = 24.1639; 

hv5 = 8.5931; 

hv6 = 16.3428; 

hv7 = 11.9165; 

hv8 = 10.9079; 

hv9 = 13.6543; 

hv10 = 7.4283; 

 

!Group contribution for liquid molar volume; 

mv1 = 0.0241; 

mv2 = 0.0165; 

mv3 = 0.0086; 

mv4 = 0.0044; 

mv5 = 0.0228; 

mv6 = 0.0281; 

mv7 = 0.026; 

mv8 = 0.0209; 

mv9 = 0.0259; 

mv10 = 0.0187; 

 

!Group contribution for octanol-water partition coefficient 

(Kow); 

kow1 = 0.3008; @free(kow1); 

kow2 = 0.4352; @free(kow2); 

kow3 = 0.3837; @free(kow3); 

kow4 = -1.0185; @free(kow4); 

kow5 = -0.1449; @free(kow5); 

kow6 = -1.465; @free(kow6); 

kow7 = -0.9465; @free(kow7); 

kow8 = -0.4419; @free(kow8); 

kow9 = -0.3519; @free(kow9); 

kow10 = -0.6373; @free(kow10); 

 

!Group contribution for melting point (Tm); 

tm1 = 0.6699; @free(tm1); 

tm2 = 0.2992; @free(tm2); 

tm3 = -0.2943; @free(tm3); 

tm4 = 3.2702; @free(tm4); 

tm5 = 0.7649; @free(tm5); 

tm6 = 3.4368; @free(tm6); 

tm7 = 2.0673; @free(tm7); 

tm8 = 1.6571; @free(tm8); 

tm9 = 0.9396; @free(tm9); 

tm10 = -0.1982; @free(tm10); 

 

!Group contribution for viscosity; 

vis1 = -1.0278; @free(vis1); 

vis2 = 0.2125; @free(vis2); 

vis3 = 1.318; @free(vis3); 

vis4 = 1.3057; @free(vis4); 

vis5 = 0.6134; @free(vis5); 

vis6 = 0.2902; @free(vis6); 

vis7 = 1.0512; @free(vis7); 

vis8 = 1.8378; @free(vis8); 

vis9 = 0.8715; @free(vis9); 

vis10 = 1.4376; @free(vis10); 

 

!Group contribution for molecular weight (MW); 

mw1 = 15.035; 

mw2 = 14.027; 

mw3 = 13.019; 
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mw4 = 17.007; 

mw5 = 30.026; 

mw6 = 30.05; 

mw7 = 29.042; 

mw8 = 28.034; 

mw9 = 29.042; 

mw10 = 28.034; 

 

!Property Constraints; 

!Equation for normal boiling point; 

tb_tot = 

n1*tb1+n2*tb2+n3*tb3+n4*tb4+n5*tb5+n6*tb6+n7*tb7+n8*tb8+n9*tb9+

n10*tb10; @free(tb_tot); 

 

!Equation for enthalpy of vaporization; 

hv_tot = 

n1*hv1+n2*hv2+n3*hv3+n4*hv4+n5*hv5+n6*hv6+n7*hv7+n8*hv8+n9*hv9+

n10*hv10; 

 

!Equation for liquid molar volume; 

mv_tot = 

n1*mv1+n2*mv2+n3*mv3+n4*mv4+n5*mv5+n6*mv6+n7*mv7+n8*mv8+n9*mv9+

n10*mv10; 

 

!Equation for octanol-water partition coefficient (Kow); 

kow_tot = 

n1*kow1+n2*kow2+n3*kow3+n4*kow4+n5*kow5+n6*kow6+n7*kow7+n8*kow8

+n9*kow9+n10*kow10; @free(kow_tot); 

 

!Equation for normal melting point (Tm); 

tm_tot = 

n1*tm1+n2*tm2+n3*tm3+n4*tm4+n5*tm5+n6*tm6+n7*tm7+n8*tm8+n9*tm9+

n10*tm10; @free(tm_tot); 

 

!Equation for viscosity; 

vis_tot = 

n1*vis1+n2*vis2+n3*vis3+n4*vis4+n5*vis5+n6*vis6+n7*vis7+n8*vis8

+n9*vis9+n10*vis10; @free(vis_tot); 

vis_tot <= 4.60517; 

vis_tot >= -2.302585; 

 

!Equation for molecular weight; 

mw = 

n1*mw1+n2*mw2+n3*mw3+n4*mw4+n5*mw5+n6*mw6+n7*mw7+n8*mw8+n9*mw9+

n10*mw10; 

 

!Properties upper and lower boundaries; 

tb_tot <= 12.787892; 

tb_tot >= 5.22893; 

tm_tot <= 7.977927; 

tm_tot >= 4.262302; 

hv_tot <= 518.3873; 

hv_tot >= 40.3873; 

mv_tot <= 0.208; 

mv_tot >= 0.024; 

mw <= 250; 

mw >= 60; 

vis_tot <= 6.131226; 

 

!Molecular structure constraints; 

n1+n2+n3+n4+n5+n6+n7+n8+n9+n10>0; !a molecule must be formed; 
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n6+n7+n8+n9+n10=1; !N aton can only appear once; 

 

!Special constraints on OH and CH2O; 

n5<=1; 

(0-0.5)*I_n5 < n5-0.5; 

n5-0.5 <= (1-0.5)*(1-I_n5); 

 

n4<=I_n5*3+(1-I_n5); @BIN(I_n5); 

 

!Free bonds (valence) for each group; 

val1 = 1; 

val2 = 2; 

val3 = 3; 

val4 = 1; 

val5 = 2; 

val6 = 1; 

val7 = 2; 

val8 = 3; 

val9 = 2; 

val10 = 3; 

 

!Structural constraint, the molecule generated must not contain 

free bonds; 

(n1*val1+n2*val2+n3*val3+n4*val4+n5*val5+n6*val6+n7*val7+n8*val

8+n9*val9+n10*val10) - (2*(n1+n2+n3+n4+n5+n6+n7+n8+n9+n10-1)) = 

0; 

 

END 

 

A.2 Lingo Coding (Chapter 5) 

model: 

 

!Objective function; 

 

max = lamda; 

 

!Linear membership functions for objectives; 

(13-I_SHI)/(13-10) = lamda_I; 

(3.5933-kow_tot)/(3.5933+2.6284) = lamda_p1; 

(tb_tot-5.2373)/(9.6504-5.2373) = lamda_p2; 

 

lamda_I >= lamda; 

lamda_p1 >= lamda; 

lamda_p2 >= lamda; 

 

lamda >= 0; 

lamda <= 1; 

 

!Defining the chemical building blocks 

1st-order groups 

n1 = CH3, n2 = CH2, n3 = CH, n4 = OH, n5 = CH2O, n6 = CH2NH2, 

n7 = CH2NH, n8 = CHNH, n9 = CH3N, n10 = CH2N 

 

2nd-order groups 

n201 = (CH3)2CH, n202 = CH(CH3)CH(CH3), n203 = CHOH, n204 = 

CH(OH)CH(OH), n205 = CH(OH)CH2(OH), n207 = CH(OH)CH2(NH2), n209 

= CH(OH)CH2(NH), 
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n210 = CH2(OH)CH2(NH), n211 = CH(OH)CH(NH), n212 = 

CH2(OH)CH(NH), n213 = CH(OH)CH2(N), n214 = CH2(OH)CH2(N), n215 

= CH(OH)CH(N), n216 = CH2(OH)CH(N); 

 

@GIN(n1); @GIN(n2); @GIN(n3); @GIN(n4); @GIN(n5); @GIN(n6); 

@GIN(n7); @GIN(n8); @GIN(n9); @GIN(n10); 

@GIN(n201); @GIN(n202); @GIN(n203); @GIN(n204); @GIN(n205); 

@GIN(n207); @GIN(n209); @GIN(n210); @GIN(n211); @GIN(n212); 

@GIN(n213); @GIN(n214); 

@GIN(n215); @GIN(n216); 

 

n_tot = n1+n2+n3+n4+n5+n6+n7+n8+n9+n10; 

n2_tot = 

n201+n202+n203+n204+n205+n207+n209+n210+n211+n212+n213+n214+n21

5+n216; 

@BND(1, n_tot, 13); 

 

C_number = n1+n2+n3+n5+n6+n7+n8+n9+n10; 

H_number = n1*3+n2*2+n3+n4+n5*2+n6*4+n7*3+n8*2+n9*3+n10*2; 

N_number = n6+n7+n8+n9+n10; 

O_number = n4+n5; 

 

!Group contribution for normal boiling point; 

tb1 = 0.8853; @free(tb1); 

tb2 = 0.5815; @free(tb2); 

tb3 = -0.0039; @free(tb3); 

tb4 = 2.1385; @free(tb4); 

tb5 = 0.9999; @free(tb5); 

tb6 = 2.3212; @free(tb6); 

tb7 = 1.3838; @free(tb7); 

tb8 = 0.7116; @free(tb8); 

tb9 = 1.0505; @free(tb9); 

tb10 = 0.4199; @free(tb10); 

tb201 = 0.0071; @free(tb201); 

tb202 = 0.1667; @free(tb202); 

tb203 = -0.1193; @free(tb203); 

tb204_05 = 0.1944; @free(tb204_05); 

tb207_14 = 0.3136; @free(tb207_14); 

 

!Group contribution for enthalpy of vaporization; 

hv1 = 2.2643; @free(hv1); 

hv2 = 4.7607; @free(hv2); 

hv3 = 5.0336; @free(hv3); 

hv4 = 24.1639; @free(hv4); 

hv5 = 8.5931; @free(hv5); 

hv6 = 16.3428; @free(hv6); 

hv7 = 11.9165; @free(hv7); 

hv8 = 10.9079; @free(hv8); 

hv9 = 13.6543; @free(hv9); 

hv10 = 7.4283; @free(hv10); 

hv201 = -0.2279; @free(hv201); 

hv202 = 0.8647; @free(hv202); 

hv203 = 1.265; @free(hv203); 

hv204_05 = -5.0052; @free(hv204_05); 

hv207_14 = 0; @free(hv207_14); 

 

!Group contribution for liquid molar volume; 

mv1 = 0.0241; @free(mv1); 

mv2 = 0.0165; @free(mv2); 

mv3 = 0.0086; @free(mv3); 

mv4 = 0.0044; @free(mv4); 
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mv5 = 0.0228; @free(mv5); 

mv6 = 0.0281; @free(mv6); 

mv7 = 0.026; @free(mv7); 

mv8 = 0.0209; @free(mv8); 

mv9 = 0.0259; @free(mv9); 

mv10 = 0.0187; @free(mv10); 

mv201 = 0.0009; @free(mv201); 

mv202 = -0.0021; @free(mv202); 

mv203 = -0.0004; @free(mv203); 

mv204_05 = 0.0015; @free(mv204_05); 

mv207_14 = -0.0006; @free(mv207_14); 

 

!Group contribution for octanol-water partition coefficient 

(Kow); 

kow1 = 0.3008; @free(kow1); 

kow2 = 0.4352; @free(kow2); 

kow3 = 0.3837; @free(kow3); 

kow4 = -1.0185; @free(kow4); 

kow5 = -0.1449; @free(kow5); 

kow6 = -1.465; @free(kow6); 

kow7 = -0.9465; @free(kow7); 

kow8 = -0.4419; @free(kow8); 

kow9 = -0.3519; @free(kow9); 

kow10 = -0.6373; @free(kow10); 

kow201 = 0.1169; @free(kow201); 

kow202 = 0.0193; @free(kow202); 

kow203 = -0.0449; @free(kow203); 

kow204_05 = -0.1041; @free(kow204_05); 

kow207_14 = -0.0975; @free(kow207_14); 

 

!Group contribution for flash point (Fp); 

fp1 = 21.7458; @free(fp1); 

fp2 = 11.5194; @free(fp2); 

fp3 = -5.1205; @free(fp3); 

fp4 = 78.5878; @free(fp4); 

fp5 = 32.914; @free(fp5); 

fp6 = 63.0277; @free(fp6); 

fp7 = 38.5602; @free(fp7); 

fp8 = 12.2191; @free(fp8); 

fp9 = 49.4137; @free(fp9); 

fp10 = -2.1262; @free(fp10); 

fp201 = 0.1812; @free(fp201); 

fp202 = 3.5328; @free(fp202); 

fp203 = 1.0254; @free(fp203); 

fp204_05 = 8.5848; @free(fp204_05); 

fp207_14 = 5.0306; @free(fp207_14); 

 

!Group contribution for melting point (Tm); 

tm1 = 0.6699; @free(tm1); 

tm2 = 0.2992; @free(tm2); 

tm3 = -0.2943; @free(tm3); 

tm4 = 3.2702; @free(tm4); 

tm5 = 0.7649; @free(tm5); 

tm6 = 3.4368; @free(tm6); 

tm7 = 2.0673; @free(tm7); 

tm8 = 1.6571; @free(tm8); 

tm9 = 0.9396; @free(tm9); 

tm10 = -0.1982; @free(tm10); 

tm201 = 0.0426; @free(tm201); 

tm202 = 0.164; @free(tm202); 

tm203 = -0.0049; @free(tm203); 
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tm204_05 = -0.2099; @free(tm204_05); 

tm207_14 = -0.1908; @free(tm207_14); 

 

!Group contribution for viscosity; 

vis1 = -1.0278; @free(vis1); 

vis2 = 0.2125; @free(vis2); 

vis3 = 1.318; @free(vis3); 

vis4 = 1.3057; @free(vis4); 

vis5 = 0.6134; @free(vis5); 

vis6 = 0.2902; @free(vis6); 

vis7 = 1.0512; @free(vis7); 

vis8 = 1.8378; @free(vis8); 

vis9 = 0.8715; @free(vis9); 

vis10 = 1.4376; @free(vis10); 

vis201 = 0.0142; @free(vis201); 

vis202 = 0.4075; @free(vis202); 

vis203 = -0.2116; @free(vis203); 

vis204_05 = 0; @free(vis204_05); 

vis207_14 = 0.6128; @free(vis207_14); 

 

!Group contribution for permissible exposure limit (PEL); 

pel1 = 0.7723; @free(pel1); 

pel2 = 0.0727; @free(pel2); 

pel3 = -0.6557; @free(pel3); 

pel4 = 1.3612; @free(pel4); 

pel5 = 0.9276; @free(pel5); 

pel6 = 1.9265; @free(pel6); 

pel7 = 1.2126; @free(pel7); 

pel8 = 1.2708; @free(pel8); 

pel9 = 1.1981; @free(pel9); 

pel10 = 0.2724; @free(pel10); 

pel201 = -0.0213; @free(pel201); 

pel202 = 0.0043; @free(pel202); 

pel203 = 0.0954; @free(pel203); 

pel204_05 = 0.2618; @free(pel204_05); 

pel207_14 = 0.3565; @free(pel207_14); 

 

!Group contribution for molecular weight (MW); 

mw1 = 15.035; 

mw2 = 14.027; 

mw3 = 13.019; 

mw4 = 17.007; 

mw5 = 30.026; 

mw6 = 30.05; 

mw7 = 29.042; 

mw8 = 28.034; 

mw9 = 29.042; 

mw10 = 28.034; 

 

!Group contribution for oral rat lethal dosage (LD50); 

ld1 = -0.0742; @free(ld1); 

ld2 = 0.0223; @free(ld2); 

ld3 = 0.1335; @free(ld3); 

ld4 = -0.1955; @free(ld4); 

ld5 = 0.0974; @free(ld5); 

ld6 = 0.045; @free(ld6); 

ld7 = 0.2571; @free(ld7); 

ld8 = 0.2506; @free(ld8); 

ld9 = 0.3338; @free(ld9); 

ld10 = 0.4337; @free(ld10); 

ld201 = -0.0308; @free(ld201); 
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ld202 = 0.0468; @free(ld202); 

ld203 = 0.0219; @free(ld203); 

ld204_05 = 0.0066; @free(ld204_05); 

ld207_14 = -0.0205; @free(ld207_14); 

 

!Property Constraints; 

!Equation for normal boiling point; 

tb_tot = 

n1*tb1+n2*tb2+n3*tb3+n4*tb4+n5*tb5+n6*tb6+n7*tb7+n8*tb8+n9*tb9+

n10*tb10+n201*tb201+n202*tb202+n203*tb203+(n204+n205)*tb204_05 

+(n207+n209+n210+n211+n212+n213+n214+n215+n216)*tb207_14; 

@free(tb_tot); 

 

!Equation for enthalpy of vaporization; 

hv_tot = 

n1*hv1+n2*hv2+n3*hv3+n4*hv4+n5*hv5+n6*hv6+n7*hv7+n8*hv8+n9*hv9+

n10*hv10+n201*hv201+n202*hv202+n203*hv203+(n204+n205)*hv204_05 

+(n207+n209+n210+n211+n212+n213+n214+n215+n216)*hv207_14; 

@free(hv_tot); 

 

!Equation for liquid molar volume; 

mv_tot = 

n1*mv1+n2*mv2+n3*mv3+n4*mv4+n5*mv5+n6*mv6+n7*mv7+n8*mv8+n9*mv9+

n10*mv10+n201*mv201+n202*mv202+n203*mv203+(n204+n205)*mv204_05 

+(n207+n209+n210+n211+n212+n213+n214+n215+n216)*mv207_14; 

@free(mv_tot); 

 

!Equation for octanol-water partition coefficient (Kow); 

kow_tot = 

n1*kow1+n2*kow2+n3*kow3+n4*kow4+n5*kow5+n6*kow6+n7*kow7+n8*kow8

+n9*kow9+n10*kow10+n201*kow201+n202*kow202+n203*kow203+(n204+n2

05)*kow204_05 

+(n207+n209+n210+n211+n212+n213+n214+n215+n216)*kow207_14; 

@free(kow_tot); 

 

!Equation for flash point (Fp); 

fp_tot = 

n1*fp1+n2*fp2+n3*fp3+n4*fp4+n5*fp5+n6*fp6+n7*fp7+n8*fp8+n9*fp9+

n10*fp10+n201*fp201+n202*fp202+n203*fp203+(n204+n205)*fp204_05 

+(n207+n209+n210+n211+n212+n213+n214+n215+n216)*fp207_14; 

@free(fp_tot); 

 

!Equation for normal melting point (Tm); 

tm_tot = 

n1*tm1+n2*tm2+n3*tm3+n4*tm4+n5*tm5+n6*tm6+n7*tm7+n8*tm8+n9*tm9+

n10*tm10+n201*tm201+n202*tm202+n203*tm203+(n204+n205)*tm204_05 

+(n207+n209+n210+n211+n212+n213+n214+n215+n216)*tm207_14; 

@free(tm_tot); 

 

!Equation for viscosity; 

vis_tot = 

n1*vis1+n2*vis2+n3*vis3+n4*vis4+n5*vis5+n6*vis6+n7*vis7+n8*vis8

+n9*vis9+n10*vis10+n201*vis201+n202*vis202+n203*vis203+(n204+n2

05)*vis204_05 

+(n207+n209+n210+n211+n212+n213+n214+n215+n216)*vis207_14; 

@free(vis_tot); 

 

!Equation for lower flammability limit (LFL); 

o2_coef = C_number+H_number/4-O_number/2; 

o2_coef > 0.305531; 
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!Equation for molecular weight; 

mw = 

n1*mw1+n2*mw2+n3*mw3+n4*mw4+n5*mw5+n6*mw6+n7*mw7+n8*mw8+n9*mw9+

n10*mw10; 

 

!Equation for permissible exposure limit (PEL); 

pel_tot = 

n1*pel1+n2*pel2+n3*pel3+n4*pel4+n5*pel5+n6*pel6+n7*pel7+n8*pel8

+n9*pel9+n10*pel10+n201*pel201+n202*pel202+n203*pel203+(n204+n2

05)*pel204_05 

+(n207+n209+n210+n211+n212+n213+n214+n215+n216)*pel207_14; 

@free(pel_tot); 

 

!Equation for oral rat lethal dosage (LD50); 

ld_tot = 

n1*ld1+n2*ld2+n3*ld3+n4*ld4+n5*ld5+n6*ld6+n7*ld7+n8*ld8+n9*ld9+

n10*ld10+n201*ld201+n202*ld202+n203*ld203+(n204+n205)*ld204_05 

+(n207+n209+n210+n211+n212+n213+n214+n215+n216)*ld207_14; 

@free(ld_tot); 

ld_tot2 = 0.0016*mw; 

ld_tot3 = ld_tot+1.9372+ld_tot2; @free(ld_tot3); 

ld_total = ld_tot3-3-@log10(mw); @free(ld_total); 

 

!Properties upper and lower boundaries; 

@BND(5.22893, tb_tot, 12.787892); 

@BND(4.262302, tm_tot, 7.977927); 

@BND(40.3873, hv_tot, 518.3873); 

@BND(0.024, mv_tot, 0.208); 

@BND(60, mw, 250); 

@BND(-2.302585, vis_tot, 4.60517); 

 

!Molecular structure constraints; 

n6+n7+n8+n9+n10=1; !the upper limit number of each group; 

 

n5<=1; 

(0-0.5)*I_n5 < n5-0.5; 

n5-0.5 <= (1-0.5)*(1-I_n5); 

 

n4<=I_n5*3+(1-I_n5); @BIN(I_n5); 

 

!Structural constraints; 

!Defining maximum number of structural groups in a molecule; 

DATA: 

nmax = 13; 

ENDDATA 

 

!Defining valence number; 

SETS: 

Molecular_group_i /1..10/: Valence, gin_i1; 

id_no /1..4/; 

y_i_id(Molecular_group_i, id_no, Molecular_group_i, id_no): 

Binary_y_i_id; 

z_i_id(Molecular_group_i, id_no): Binary_z_i_id; 

w_i_id(Molecular_group_i, id_no): Binary_w_i_id; 

ENDSETS 

 

@FOR(Molecular_group_i: @GIN(gin_i1)); 

@FOR(y_i_id: @BIN(Binary_y_i_id)); 

@FOR(z_i_id: @BIN(Binary_z_i_id)); 

@FOR(w_i_id: @BIN(Binary_w_i_id)); 

 



 

233 

 

DATA: 

Valence = 1 2 3 1 2 1 2 3 2 3; 

ENDDATA 

 

@SUM(Molecular_group_i: (2 - Valence) * gin_i1) = 2; 

@FOR(Molecular_group_i(i2): @SUM(Molecular_group_i(i1)| i1 #NE# 

i2: gin_i1(i1)) >= gin_i1(i2) * (Valence(i2) - 2) + 2); 

 

@FOR(Molecular_group_i(i1): @FOR(id_no(id1): 

Binary_y_i_id(i1,id1,i1,id1) = 0)); 

 

@FOR(Molecular_group_i(i1)| i1 #GE# 2: @FOR(id_no(id1)| id1 

#GE# 2: @SUM(y_i_id(i1,id1,i2,id2)| i2 #LE# (i1-1): 

Binary_y_i_id(i1,id1,i2,id2)) + 

@SUM(y_i_id(i1,id1,i1,id2)| id2 #LE# (id1-1): 

Binary_y_i_id(i1,id1,i1,id2)) >= -Binary_w_i_id(i1,id1))); 

@SUM(Molecular_group_i: gin_i1) + @SUM(w_i_id: Binary_w_i_id) = 

nmax; 

 

@FOR(Molecular_group_i(i)| i #EQ# 1: @FOR(id_no(id)| id #EQ# 1: 

Binary_w_i_id(i,id) = 0)); 

@FOR(Molecular_group_i(i1): @FOR(Molecular_group_i(i2)| i1 #GE# 

(i2+1): @FOR(id_no(id1): @FOR(id_no(id2): 

 

Binary_w_i_id(i1,id1) >= Binary_w_i_id(i2,id2))))); 

@FOR(Molecular_group_i(i1): @FOR(id_no(id1): @FOR(id_no(id2)| 

id1 #GE# (id2+1): Binary_w_i_id(i1,id1) >= 

Binary_w_i_id(i1,id2)))); 

 

@FOR(Molecular_group_i(i1): @FOR(Molecular_group_i(i2): 

@FOR(id_no(id1): @FOR(id_no(id2): 

Binary_y_i_id(i1,id1,i2,id2) = 

Binary_y_i_id(i2,id2,i1,id1))))); 

 

@FOR(Molecular_group_i(i1): @FOR(id_no(id1): 

@SUM(y_i_id(i1,id1,i2,id2): Binary_y_i_id(i1,id1,i2,id2)) = 

Valence(i1)*Binary_z_i_id(i1,id1))); 

 

@FOR(Molecular_group_i(i1): @SUM(z_i_id(i1,id1): 

Binary_z_i_id(i1,id1)) = gin_i1(i1)); 

 

!Special constraints; 

@FOR(Molecular_group_i(i)| i #EQ# 4: @FOR(id_no(id)| id #EQ# 4: 

Binary_z_i_id(i,id) = 0)); 

@FOR(Molecular_group_i(i)| i #GE# 5: @FOR(id_no(id)| id #GE# 2: 

Binary_z_i_id(i,id) = 0)); 

 

@FOR(Molecular_group_i(i1)| i1 #EQ# 4: 

@FOR(Molecular_group_i(i2): @FOR(id_no(id1)| id1 #EQ# 4: 

@FOR(id_no(id2): Binary_y_i_id(i1,id1,i2,id2) = 0)))); 

@FOR(Molecular_group_i(i1)| i1 #GE# 5: 

@FOR(Molecular_group_i(i2): @FOR(id_no(id1)| id1 #GE# 2: 

@FOR(id_no(id2): Binary_y_i_id(i1,id1,i2,id2) = 0)))); 

 

!Constraint for CH3; 

@FOR(id_no(id1): @FOR(id_no(id2): Binary_y_i_id(1,id1,1,id2) = 

0)); 

@FOR(id_no(id1): @FOR(id_no(id2): Binary_y_i_id(1,id1,4,id2) = 

0)); 

 

!Constraint for OH and CH3N; 
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Binary_y_i_id(4,1,9,1) = 0; Binary_y_i_id(4,2,9,1) = 0; 

Binary_y_i_id(4,3,9,1) = 0; 

Binary_y_i_id(4,1,4,2) = 0; Binary_y_i_id(4,1,4,3) = 0; 

Binary_y_i_id(4,2,4,3) = 0; 

 

!Constraint for CH2NH; 

Binary_y_i_id(7,1,4,1) + Binary_y_i_id(7,1,4,2) + 

Binary_y_i_id(7,1,4,3) <= 1; 

Binary_y_i_id(7,1,1,1) + Binary_y_i_id(7,1,1,2) + 

Binary_y_i_id(7,1,1,3) + Binary_y_i_id(7,1,1,4) <= 1; 

 

!Constraint for CHNH; 

Binary_y_i_id(8,1,4,1) + Binary_y_i_id(8,1,4,2) + 

Binary_y_i_id(8,1,4,3) <= 1; 

 

-0.5*(1-I_n8) < n8-0.5; 

n8-0.5 <= 0.5*I_n8; @BIN(I_n8); 

 

Binary_y_i_id(8,1,3,1) + Binary_y_i_id(8,1,3,2) + 

Binary_y_i_id(8,1,3,3) + Binary_y_i_id(8,1,3,4) >= I_n8; 

 

!Constraint for CH2N; 

Binary_y_i_id(10,1,4,1) + Binary_y_i_id(10,1,4,2) + 

Binary_y_i_id(10,1,4,3) <= 1; 

Binary_y_i_id(10,1,1,1) + Binary_y_i_id(10,1,1,2) + 

Binary_y_i_id(10,1,1,3) + Binary_y_i_id(10,1,1,4) <= 1; 

 

Binary_y_i_id(3,1,3,2)+Binary_y_i_id(3,1,1,1)+Binary_y_i_id(3,1

,1,2)+Binary_y_i_id(3,1,1,3)+Binary_y_i_id(3,1,1,4)+ 

Binary_y_i_id(3,2,1,1)+Binary_y_i_id(3,2,1,2)+Binary_y_i_id(3,2

,1,3)+Binary_y_i_id(3,2,1,4) <= 4; 

 

Binary_y_i_id(3,1,3,3)+Binary_y_i_id(3,1,1,1)+Binary_y_i_id(3,1

,1,2)+Binary_y_i_id(3,1,1,3)+Binary_y_i_id(3,1,1,4)+ 

Binary_y_i_id(3,3,1,1)+Binary_y_i_id(3,3,1,2)+Binary_y_i_id(3,3

,1,3)+Binary_y_i_id(3,3,1,4) <= 4; 

 

Binary_y_i_id(3,1,3,4)+Binary_y_i_id(3,1,1,1)+Binary_y_i_id(3,1

,1,2)+Binary_y_i_id(3,1,1,3)+Binary_y_i_id(3,1,1,4)+ 

Binary_y_i_id(3,4,1,1)+Binary_y_i_id(3,4,1,2)+Binary_y_i_id(3,4

,1,3)+Binary_y_i_id(3,4,1,4) <= 4; 

 

Binary_y_i_id(3,2,3,3)+Binary_y_i_id(3,2,1,1)+Binary_y_i_id(3,2

,1,2)+Binary_y_i_id(3,2,1,3)+Binary_y_i_id(3,2,1,4)+ 

Binary_y_i_id(3,3,1,1)+Binary_y_i_id(3,3,1,2)+Binary_y_i_id(3,3

,1,3)+Binary_y_i_id(3,3,1,4) <= 4; 

 

Binary_y_i_id(3,2,3,4)+Binary_y_i_id(3,2,1,1)+Binary_y_i_id(3,2

,1,2)+Binary_y_i_id(3,2,1,3)+Binary_y_i_id(3,2,1,4)+ 

Binary_y_i_id(3,4,1,1)+Binary_y_i_id(3,4,1,2)+Binary_y_i_id(3,4

,1,3)+Binary_y_i_id(3,4,1,4) <= 4; 

 

Binary_y_i_id(3,3,3,4)+Binary_y_i_id(3,3,1,1)+Binary_y_i_id(3,3

,1,2)+Binary_y_i_id(3,3,1,3)+Binary_y_i_id(3,3,1,4)+ 

Binary_y_i_id(3,4,1,1)+Binary_y_i_id(3,4,1,2)+Binary_y_i_id(3,4

,1,3)+Binary_y_i_id(3,4,1,4) <= 4; 

 

n1 = gin_i1(1); n2 = gin_i1(2); n3 = gin_i1(3); n4 = gin_i1(4); 

n5 = gin_i1(5); 

n6 = gin_i1(6); n7 = gin_i1(7); n8 = gin_i1(8); n9 = gin_i1(9); 

n10 = gin_i1(10); 



 

235 

 

 

!2nd-order groups [only the constraints for (CH3)2CH are shown 

here, for the constraints of other 2nd-order groups, please 

contact the authors]; 

 

!(CH3)2CH; 

Binary_y_i_id(3,1,1,1)+Binary_y_i_id(3,1,1,2)+Binary_y_i_id(3,1

,1,3)+Binary_y_i_id(3,1,1,4)-1.5 >= -1.5*(1-I_n20101); 

Binary_y_i_id(3,1,1,1)+Binary_y_i_id(3,1,1,2)+Binary_y_i_id(3,1

,1,3)+Binary_y_i_id(3,1,1,4)-1.5 < 0.5*I_n20101; 

 

Binary_y_i_id(3,2,1,1)+Binary_y_i_id(3,2,1,2)+Binary_y_i_id(3,2

,1,3)+Binary_y_i_id(3,2,1,4)-1.5 >= -1.5*(1-I_n20102); 

Binary_y_i_id(3,2,1,1)+Binary_y_i_id(3,2,1,2)+Binary_y_i_id(3,2

,1,3)+Binary_y_i_id(3,2,1,4)-1.5 < 0.5*I_n20102; 

 

Binary_y_i_id(3,3,1,1)+Binary_y_i_id(3,3,1,2)+Binary_y_i_id(3,3

,1,3)+Binary_y_i_id(3,3,1,4)-1.5 >= -1.5*(1-I_n20103); 

Binary_y_i_id(3,3,1,1)+Binary_y_i_id(3,3,1,2)+Binary_y_i_id(3,3

,1,3)+Binary_y_i_id(3,3,1,4)-1.5 < 0.5*I_n20103; 

 

Binary_y_i_id(3,4,1,1)+Binary_y_i_id(3,4,1,2)+Binary_y_i_id(3,4

,1,3)+Binary_y_i_id(3,4,1,4)-1.5 >= -1.5*(1-I_n20104); 

Binary_y_i_id(3,4,1,1)+Binary_y_i_id(3,4,1,2)+Binary_y_i_id(3,4

,1,3)+Binary_y_i_id(3,4,1,4)-1.5 < 0.5*I_n20104; 

 

Binary_y_i_id(8,1,1,1)+Binary_y_i_id(8,1,1,2)+Binary_y_i_id(8,1

,1,3)+Binary_y_i_id(8,1,1,4)-1.5 >= -1.5*(1-I_n20105); 

Binary_y_i_id(8,1,1,1)+Binary_y_i_id(8,1,1,2)+Binary_y_i_id(8,1

,1,3)+Binary_y_i_id(8,1,1,4)-1.5 < 1.5*I_n20105; 

 

Binary_y_i_id(8,1,1,1)+Binary_y_i_id(8,1,1,2)+Binary_y_i_id(8,1

,1,3)+Binary_y_i_id(8,1,1,4)-2.5 >= -2.5*(1-I_n20106); 

Binary_y_i_id(8,1,1,1)+Binary_y_i_id(8,1,1,2)+Binary_y_i_id(8,1

,1,3)+Binary_y_i_id(8,1,1,4)-2.5 < 0.5*I_n20106; 

 

I_n20107 <= I_n20105; 

I_n20107 >= I_n20106; 

 

n201 = I_n20101+I_n20102+I_n20103+I_n20104+I_n20107; 

@BIN(I_n20101); @BIN(I_n20102); @BIN(I_n20103); @BIN(I_n20104); 

@BIN(I_n20105); @BIN(I_n20106); @BIN(I_n20107); 

 

!Inherent safety and health penalty score; 

!Flammability (I_fl); 

!Fp >= 93.4'C or fp_tot >= 195.8442, penalty score = 1 

Fp < 93.4'C or fp_tot < 195.8442, penalty score = 2 

Fp < 37.8'C or fp_tot < 140.2442, penalty score = 3 

Fp < 22.8'C or fp_tot < 125.2442 and Tb <= 37.8'C or tb_tot <= 

3.566887, penalty score = 4; 

 

!Disjunctive programming algorithm for I_fl; 

(29.4442-195.8442)*I_fl1 <= fp_tot-195.8442; 

fp_tot-195.8442 < (429.4442-195.8442)*(1-I_fl1); 

 

(29.4442-140.2442)*I_fl2 < fp_tot-140.2442; 

fp_tot-140.2442 <= (429.4442-140.2442)*(1-I_fl2); 

 

(29.4442-125.2442)*(1-I_fl3) < fp_tot-125.2442; 

fp_tot-125.2442 <= (429.4442-125.2442)*I_fl3; 
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(1-3.566887)*(1-I_fl4) <= tb_tot-3.566887; 

tb_tot-3.566887 < (26.357763-3.566887)*I_fl4; 

 

(0-0.5)*(1-I_fl5) <= I_fl3+I_fl4-0.5; 

I_fl3+I_fl4-0.5 < (2-0.5)*I_fl5; 

 

I_fl = 2+I_fl1+I_fl2-I_fl5; 

@BIN(I_fl1); @BIN(I_fl2); @BIN(I_fl3); @BIN(I_fl4); 

@BIN(I_fl5); 

 

!Material state (I_ms); 

!Gas (Tm < 25'C or tm_tot < 7.977927 and Tb < 25'C or tb_tot < 

3.38497), penalty score = 1 

Liquid (Tm < 25'C or tm_tot < 7.977927 and Tb >= 25'C or tb_tot 

>= 3.38497), penalty score = 2 

Solid (Tm >= 25'C or tm_tot >= 7.977927 and Tb >= 25'C or 

tb_tot >= 3.38497), penalty score = 3; 

 

!Disjunctive programming algorithm for I_ms; 

 (1-3.38497)*I_ms1 < tb_tot-3.38497; 

tb_tot-3.38497 <= (26.357763-3.38497)*(1-I_ms1); 

 

I_ms = 2-I_ms1; 

@BIN(I_ms1); 

 

!Volatility (I_v); 

!Tb > 150'C or tb_tot > 5.643803, penalty score = 0 

150'C >= Tb > 50'C or 5.643803 >= tb_tot > 3.74937, penalty 

score = 1 

50'C >= Tb > 0'C or 3.74937 >= tb_tot > 3.055987, penalty score 

= 2 

Tb <= 0'C or tb_tot <= 3.055987, penalty score = 3; 

 

!Disjunctive programming algorithm for I_v; 

(1-5.643803)*(1-I_v1) <= tb_tot-5.643803; 

tb_tot-5.643803 < (26.357763-5.643803)*I_v1; 

 

(1-3.74937)*(1-I_v2) <= tb_tot-3.74937; 

tb_tot-3.74937 < (26.357763-3.74937)*I_v2; 

 

(1-3.055987)*(1-I_v3) <= tb_tot-3.055987; 

tb_tot-3.055987 < (26.357763-3.055987)*I_v3; 

 

I_v = 3-I_v1-I_v2-I_v3; 

@BIN(I_v1); @BIN(I_v2); @BIN(I_v3); 

 

!Viscosity (I_vis); 

!0.1 - 1 cp or vis_tot < 0, penalty score = 1 

1 - 10 cp or 0 <= vis_tot < 2.3026, penalty score = 2 

10 - 100 cp or vis_tot >= 2.3026, penalty score = 3; 

 

!Disjunctive programming algorithm for I_vis; 

(-2.302585-0)*I_vis1 < vis_tot-0; 

vis_tot-0 <= (4.60517-0)*(1-I_vis1); 

 

(-2.302585-2.302585)*I_vis2 < vis_tot-2.302585; 

vis_tot-2.302585 <= (4.60517-2.302585)*(1-I_vis2); 

 

I_vis = 3-I_vis1-I_vis2; 

@BIN(I_vis1); @BIN(I_vis2); 

 



 

237 

 

!Explosive limit (I_ex); 

!0 <= ex_range < 20 or o2_coef > 2.679362, penalty score = 1 

20 <= ex_range < 45 or 0.482205 < o2_coef <= 2.679362, penalty 

score = 2 

45 <= ex_range < 70 or o2_coef <= 0.482205, penalty score = 3; 

 

!Disjunctive programming algorithm for I_ex; 

(0-2.679362)*(1-I_ex1) < o2_coef-2.679362; 

o2_coef-2.679362 <= (100-2.679362)*I_ex1; 

 

(0-0.482205)*(1-I_ex2) < o2_coef-0.482205; 

o2_coef-0.482205 <= (100-0.482205)*I_ex2; 

 

I_ex = 3-I_ex1-I_ex2; 

@BIN(I_ex1); @BIN(I_ex2); 

 

!Permissible exposure limit (I_el); 

!Liquid and Vapour 

PEL > 1000 or pel_tot < 1.388279, penalty score = 0 

PEL <= 1000 or pel_tot >= 1.388279, penalty score = 1 

PEL <= 100 or pel_tot >= 2.388279, penalty score = 2 

PEL <= 10 pel_tot >= 3.388279, penalty score = 3 

PEL <= 1 pel_tot >= 4.388279, penalty score = 4; 

 

!Disjunctive programming algorithm for I_el; 

(7.388279-1.388279)*(1-I_el1) >= pel_tot-1.388279; 

pel_tot-1.388279 > (-1.611721-1.388279)*I_el1; 

 

(7.388279-2.388279)*(1-I_el2) >= pel_tot-2.388279; 

pel_tot-2.388279 > (-1.611721-2.388279)*I_el2; 

 

(7.388279-3.388279)*(1-I_el3) >= pel_tot-3.388279; 

pel_tot-3.388279 > (-1.611721-3.388279)*I_el3; 

 

(7.388279-4.388279)*(1-I_el4) >= pel_tot-4.388279; 

pel_tot-4.388279 > (-1.611721-4.388279)*I_el4; 

 

I_el = 4-I_el1-I_el2-I_el3-I_el4; 

@BIN(I_el1); @BIN(I_el2); @BIN(I_el3); @BIN(I_el4); 

 

!Acute health hazard (I_ah); 

!LD50 > 2000 or ld_total < -3.30103, penalty score = 0 

PEL <= 2000 or ld_total >= -3.30103, penalty score = 1 

PEL <= 500 or ld_total >= -2.69897, penalty score = 2 

PEL <= 50 or ld_total >= -1.69897, penalty score = 3 

PEL <= 5 or ld_total >= -0.69897, penalty score = 4; 

 

!Disjunctive programming algorithm for I_ah; 

(2.30103+3.30103)*(1-I_ah1) >= ld_total+3.30103; 

ld_total+3.30103 > (-6.69897+3.30103)*I_ah1; 

 

(2.30103+2.69897)*(1-I_ah2) >= ld_total+2.69897; 

ld_total+2.69897 > (-6.69897+2.69897)*I_ah2; 

 

(2.30103+1.69897)*(1-I_ah3) >= ld_total+1.69897; 

ld_total+1.69897 > (-6.69897+1.69897)*I_ah3; 

 

(2.30103+0.69897)*(1-I_ah4) >= ld_total+0.69897; 

ld_total+0.69897 > (-6.69897+0.69897)*I_ah4; 

 

I_ah = 4-I_ah1-I_ah2-I_ah3-I_ah4; 
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@BIN(I_ah1); @BIN(I_ah2); @BIN(I_ah3); @BIN(I_ah4); 

 

!Summation of sub-index values to calculate total index score; 

I_SHI = I_fl+I_ms+I_v+I_vis+I_ex+I_el+I_ah; @GIN(I_SHI); 

 

END 

 

A.3 Lingo Coding (Chapter 6) 

model: 

 

!Objective function; 

 

max = lambda; 

 

!Linear membership functions for objectives; 

(11.80962-I_SHI)/(11.80962-8.767422) = lambda_I; 

tb_diff = @sqrt((tb_tot-4.0441)^2); 

(2.7261-tb_diff)/(2.7261-0.0032) = lambda_p1; 

(30.8018-hv_tot)/(30.8018-14.0244) = lambda_p2; 

(9.777867-Ra)/(9.777867-3.586346) = lambda_p3; 

 

lambda_I >= lambda; 

lambda_p1 >= lambda; 

lambda_p2 >= lambda; 

lambda_p3 >= lambda; 

 

lambda >= 0; 

lambda <= 1; 

 

!Defining the chemical building blocks 

1st-order groups 

n1 = CH3, n2 = CH2, n3 = CH, n4 = C, n5 = OH, n6 = CH3CO, n7 = 

CH2CO, n8 = CH3O, n9 = CH2O, n10 = CHO, n15 = CH3COO, n16 = 

CH2COO, n25 = CH2(cyc), n26 = CH(cyc), n27 = C(cyc), n28 = 

O(cyc);  

 

@GIN(n1); @GIN(n2); @GIN(n3); @GIN(n4); @GIN(n5); @GIN(n6); 

@GIN(n7); @GIN(n8); @GIN(n9); @GIN(n10); @GIN(n15); @GIN(n16); 

@GIN(n25); @GIN(n26); @GIN(n27); @GIN(n28); 

 

n_tot = n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n15+n16+n25+n26+n27+n28; 

 

C_number = 

n1+n2+n3+n4+n6*2+n7*2+n8+n9+n10+n15*2+n16*2+n25+n26+n27; 

H_number = 

n1*3+n2*2+n3+n5+n6*3+n7*2+n8*3+n9*2+n10+n15*3+n16*2+n25*2+n26; 

O_number = n5+n6+n7+n8+n9+n10+n15*2+n16*2+n28; 

 

!Group contribution for normal boiling point (Tb); 

tb1 = 0.8853; @free(tb1); 

tb2 = 0.5815; @free(tb2); 

tb3 = -0.0039; @free(tb3); 

tb4 = -0.4985; @free(tb4); 

tb5 = 2.1385; @free(tb5); 

tb6 = 2.6245; @free(tb6); 

tb7 = 2.0151; @free(tb7); 

tb8 = 1.5724; @free(tb8); 

tb9 = 0.9999; @free(tb9); 
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tb10 = 0.4724; @free(tb10); 

tb15 = 2.5805; @free(tb15); 

tb16 = 2.1808; @free(tb16); 

tb25 = 0.7067; @free(tb25); 

tb26 = 0.3922; @free(tb26); 

tb27 = -0.2034; @free(tb27); 

tb28 = 0.8691; @free(tb28); 

 

!Group contribution for normal melting point (Tm); 

tm1 = 0.6699; @free(tm1); 

tm2 = 0.2992; @free(tm2); 

tm3 = -0.2943; @free(tm3); 

tm4 = -0.043; @free(tm4); 

tm5 = 3.2702; @free(tm5); 

tm6 = 3.1357; @free(tm6); 

tm7 = 2.9007; @free(tm7); 

tm8 = 1.5327; @free(tm8); 

tm9 = 0.7649; @free(tm9); 

tm10 = 0.1817; @free(tm10); 

tm15 = 2.4227; @free(tm15); 

tm16 = 1.5439; @free(tm16); 

tm25 = 0.5067; @free(tm25); 

tm26 = 0.2691; @free(tm26); 

tm27 = 0.5775; @free(tm27); 

tm28 = 1.3269; @free(tm28); 

 

!Group contribution for octanol-water partition coefficient 

(log Kow); 

kow1 = 0.3008; @free(kow1); 

kow2 = 0.4352; @free(kow2); 

kow3 = 0.3837; @free(kow3); 

kow4 = 0.6325; @free(kow4); 

kow5 = -1.0185; @free(kow5); 

kow6 = -0.3774; @free(kow6); 

kow7 = -0.1855; @free(kow7); 

kow8 = -0.303; @free(kow8); 

kow9 = -0.1449; @free(kow9); 

kow10 = 0.165; @free(kow10); 

kow15 = -0.4615; @free(kow15); 

kow16 = -0.2893; @free(kow16); 

kow25 = 0.1818; @free(kow25); 

kow26 = 0.2934; @free(kow26); 

kow27 = 0.2412; @free(kow27); 

kow28 = -0.4008; @free(kow28); 

 

!Group contribution for flash point (Fp); 

fp1 = 21.7458; @free(fp1); 

fp2 = 11.5194; @free(fp2); 

fp3 = -5.1205; @free(fp3); 

fp4 = -19.7535; @free(fp4); 

fp5 = 78.5878; @free(fp5); 

fp6 = 70.9382; @free(fp6); 

fp7 = 67.479; @free(fp7); 

fp8 = 41.9635; @free(fp8); 

fp9 = 32.914; @free(fp9); 

fp10 = -8.9309; @free(fp10); 

fp15 = 73.7009; @free(fp15); 

fp16 = 50.2088; @free(fp16); 

fp25 = 15.0958; @free(fp25); 

fp26 = 10.5355; @free(fp26); 

fp27 = -15.1444; @free(fp27); 
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fp28 = 24.3976; @free(fp28); 

 

!Group contribution for enthalpy of vaporization at Tb (Hv); 

hv1 = 2.0701; 

hv2 = 2.3353; 

hv3 = 1.6963; 

hv4 = 0.8251; 

hv5 = 16.4887; 

hv6 = 9.619; 

hv7 = 10.1585; 

hv8 = 5.6432; 

hv9 = 5.1006; 

hv10 = 4.3695; 

hv15 = 13.0656; 

hv16 = 13.5635; 

hv25 = 2.2775; 

hv26 = 2.4151; 

hv27 = 2.9031; 

hv28 = 4.7567; 

 

!Group contribution for Hansen solubility parameter - 

dispersion (deld); 

deld1 = 7.5697; @free(deld1); 

deld2 = -0.0018; @free(deld2); 

deld3 = -7.7208; @free(deld3); 

deld4 = -15.4498; @free(deld4); 

deld5 = 8.0236; @free(deld5); 

deld6 = 8.163; @free(deld6); 

deld7 = 0.5557; @free(deld7); 

deld8 = 7.6577; @free(deld8); 

deld9 = 0.1978; @free(deld9); 

deld10 = -7.7099; @free(deld10); 

deld15 = 8.022; @free(deld15); 

deld16 = 0.4586; @free(deld16); 

deld25 = 2.6915; @free(deld25); 

deld26 = -3.7719; @free(deld26); 

deld27 = -7.187; @free(deld27); 

deld28 = 3.9616; @free(deld28); 

 

!Group contribution for Hansen solubility parameter - polar 

(delp); 

delp1 = 1.9996; @free(delp1); 

delp2 = -0.1492; @free(delp2); 

delp3 = -2.7099; @free(delp3); 

delp4 = -4.7191; @free(delp4); 

delp5 = 4.9598; @free(delp5); 

delp6 = 6.052; @free(delp6); 

delp7 = 0.7632; @free(delp7); 

delp8 = 3.086; @free(delp8); 

delp9 = 0.6423; @free(delp9); 

delp10 = -1.918; @free(delp10); 

delp15 = 2.848; @free(delp15); 

delp16 = 1.4477; @free(delp16); 

delp25 = 0.5026; @free(delp25); 

delp26 = -1.7549; @free(delp26); 

delp27 = -2.2674; @free(delp27); 

delp28 = 3.1902; @free(delp28); 

 

!Group contribution for Hansen solubility parameter - H2 bond 

(delh); 

delh1 = 2.2105; @free(delh1); 
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delh2 = -0.215; @free(delh2); 

delh3 = -2.6826; @free(delh3); 

delh4 = -6.4821; @free(delh4); 

delh5 = 11.8005; @free(delh5); 

delh6 = 3.4394; @free(delh6); 

delh7 = -0.0788; @free(delh7); 

delh8 = 3.3464; @free(delh8); 

delh9 = 0.8246; @free(delh9); 

delh10 = -2.1543; @free(delh10); 

delh15 = 5.0132; @free(delh15); 

delh16 = 2.7824; @free(delh16); 

delh25 = 0.6159; @free(delh25); 

delh26 = -0.5171; @free(delh26); 

delh27 = -2.6329; @free(delh27); 

delh28 = 2.802; @free(delh28); 

 

!Group contribution for liquid molar volume (Vm); 

mv1 = 0.0241; 

mv2 = 0.0165; 

mv3 = 0.0086; 

mv4 = 0.0007; 

mv5 = 0.0044; 

mv6 = 0.0345; 

mv7 = 0.0288; 

mv8 = 0.0283; 

mv9 = 0.0228; 

mv10 = 0.0207; 

mv15 = 0.0412; 

mv16 = 0.0365; 

mv25 = 0.0159; 

mv26 = 0.0063; 

mv27 = 0.0006; 

mv28 = 0.0018; 

 

!Group contribution for lower flammability limit (LFL); 

lfl1 = -0.2357; @free(lfl1); 

lfl2 = -0.2334; @free(lfl2); 

lfl3 = -0.2308; @free(lfl3); 

lfl4 = -0.2161; @free(lfl4); 

lfl5 = 0.0599; @free(lfl5); 

lfl6 = -0.3205; @free(lfl6); 

lfl7 = -0.1764; @free(lfl7); 

lfl8 = -0.1921; @free(lfl8); 

lfl9 = -0.1213; @free(lfl9); 

lfl10 = -0.2958; @free(lfl10); 

lfl15 = -0.2264; @free(lfl15); 

lfl16 = -0.6266; @free(lfl16); 

lfl25 = -0.2169; @free(lfl25); 

lfl26 = -0.2941; @free(lfl26); 

lfl27 = -0.1401; @free(lfl27); 

lfl28 = 0.1086; @free(lfl28); 

 

!Group contribution for upper flammability limit (UFL); 

ufl1 = -1.1534; @free(ufl1); 

ufl2 = -0.1445; @free(ufl2); 

ufl3 = 0.8856; @free(ufl3); 

ufl4 = 1.8649; @free(ufl4); 

ufl5 = -0.7578; @free(ufl5); 

ufl6 = -1.1643; @free(ufl6); 

ufl7 = -0.171; @free(ufl7); 

ufl8 = -0.8561; @free(ufl8); 
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ufl9 = 0.2096; @free(ufl9); 

ufl10 = 0.9939; @free(ufl10); 

ufl15 = -1.2311; @free(ufl15); 

ufl16 = 0.077; @free(ufl16); 

ufl25 = -0.4403; @free(ufl25); 

ufl26 = 2.0503; @free(ufl26); 

ufl27 = 1.0217; @free(ufl27); 

ufl28 = -0.0295; @free(ufl28); 

 

!Group contribution for viscosity; 

vis1 = -1.0278; @free(vis1); 

vis2 = 0.2125; @free(vis2); 

vis3 = 1.318; @free(vis3); 

vis4 = 2.8147; @free(vis4); 

vis5 = 1.3057; @free(vis5); 

vis6 = -0.1881; @free(vis6); 

vis7 = 0.9647; @free(vis7); 

vis8 = -0.6902; @free(vis8); 

vis9 = 0.6134; @free(vis9); 

vis10 = 3.6344; @free(vis10); 

vis15 = -0.0358; @free(vis15); 

vis16 = 1.0292; @free(vis16); 

vis25 = -0.0577; @free(vis25); 

vis26 = 0.9455; @free(vis26); 

vis27 = 1.5824; @free(vis27); 

vis28 = 0.0434; @free(vis28); 

 

!Group contribution for fathead minnow 96-h LC50; 

lc1 = 0.6172; @free(lc1); 

lc2 = 0.4464; @free(lc2); 

lc3 = 0.1522; @free(lc3); 

lc4 = -0.1861; @free(lc4); 

lc5 = -0.2125; @free(lc5); 

lc6 = 0.6176; @free(lc6); 

lc7 = 0.4468; @free(lc7); 

lc8 = 0.378; @free(lc8); 

lc9 = 0.2072; @free(lc9); 

lc10 = -0.087; @free(lc10); 

lc15 = 1.5633; @free(lc15); 

lc16 = 1.3925; @free(lc16); 

lc25 = 0.4464; @free(lc25); 

lc26 = 0.1522; @free(lc26); 

lc27 = -0.1861; @free(lc27); 

lc28 = -0.2392; @free(lc28); 

 

!Group contribution for oral rat lethal dosage (LD50); 

ld1 = -0.0742; @free(ld1); 

ld2 = 0.0223; @free(ld2); 

ld3 = 0.1335; @free(ld3); 

ld4 = 0.2641; @free(ld4); 

ld5 = -0.1955; @free(ld5); 

ld6 = -0.0172; @free(ld6); 

ld7 = 0.1931; @free(ld7); 

ld8 = -0.0259; @free(ld8); 

ld9 = 0.0974; @free(ld9); 

ld10 = 0.4987; @free(ld10); 

ld15 = -0.1734; @free(ld15); 

ld16 = -0.0357; @free(ld16); 

ld25 = 0.0305; @free(ld25); 

ld26 = 0.1009; @free(ld26); 

ld27 = 0.2675; @free(ld27); 
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ld28 = 0.0485; @free(ld28); 

 

!Group contribution for permissible exposure limit (PEL); 

pel1 = 0.7723; @free(pel1); 

pel2 = 0.0727; @free(pel2); 

pel3 = -0.6557; @free(pel3); 

pel4 = -1.3404; @free(pel4); 

pel5 = 1.3612; @free(pel5); 

pel6 = 1.4016; @free(pel6); 

pel7 = 1.2601; @free(pel7); 

pel8 = 2.1251; @free(pel8); 

pel9 = 0.9276; @free(pel9); 

pel10 = -0.7462; @free(pel10); 

pel15 = 1.2544; @free(pel15); 

pel16 = 1.6798; @free(pel16); 

pel25 = 0.2678; @free(pel25); 

pel26 = -0.1033; @free(pel26); 

pel27 = -0.6719; @free(pel27); 

pel28 = 1.0976; @free(pel28); 

 

!Group contribution for molecular weight (MW); 

mw1 = 15.035; 

mw2 = 14.027; 

mw3 = 13.019; 

mw4 = 12.011; 

mw5 = 17.007; 

mw6 = 43.045; 

mw7 = 42.037; 

mw8 = 31.034; 

mw9 = 30.026; 

mw10 = 29.018; 

mw15 = 59.044; 

mw16 = 58.036; 

mw25 = 14.027; 

mw26 = 13.019; 

mw27 = 12.011; 

mw28 = 15.999; 

 

!Property Constraints; 

!Equation for normal boiling point (Tb); 

tb_tot = 

n1*tb1+n2*tb2+n3*tb3+n4*tb4+n5*tb5+n6*tb6+n7*tb7+n8*tb8+n9*tb9+

n10*tb10+n15*tb15+n16*tb16+n25*tb25+n26*tb26+n27*tb27+n28*tb28; 

@free(tb_tot); 

tb = 244.5165*@log(tb_tot)-273.15; @free(tb); 

 

!Equation for normal melting point (Tm); 

tm_tot = 

n1*tm1+n2*tm2+n3*tm3+n4*tm4+n5*tm5+n6*tm6+n7*tm7+n8*tm8+n9*tm9+

n10*tm10+n15*tm15+n16*tm16+n25*tm25+n26*tm26+n27*tm27+n28*tm28; 

@free(tm_tot); 

tm = 143.5706*@log(tm_tot)-273.15; @free(tm); 

 

!Equation for octanol-water partition coefficient (log Kow); 

kow_tot = 

n1*kow1+n2*kow2+n3*kow3+n4*kow4+n5*kow5+n6*kow6+n7*kow7+n8*kow8

+n9*kow9+n10*kow10+n15*kow15+n16*kow16+n25*kow25+n26*kow26+n27*

kow27+n28*kow28; @free(kow_tot); 

log_kow = kow_tot+0.4876; @free(log_kow); 

 

!Equation for flash point (Fp); 
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fp_tot = 

n1*fp1+n2*fp2+n3*fp3+n4*fp4+n5*fp5+n6*fp6+n7*fp7+n8*fp8+n9*fp9+

n10*fp10+n15*fp15+n16*fp16+n25*fp25+n26*fp26+n27*fp27+n28*fp28; 

@free(fp_tot); 

fp = fp_tot+170.7058-273.15; @free(fp); 

 

!Equation for enthalpy of vaporization at Tb (Hv); 

hv_tot = 

n1*hv1+n2*hv2+n3*hv3+n4*hv4+n5*hv5+n6*hv6+n7*hv7+n8*hv8+n9*hv9+

n10*hv10+n15*hv15+n16*hv16+n25*hv25+n26*hv26+n27*hv27+n28*hv28; 

hvb = hv_tot+15.4199; 

 

!Equation for Hansen solubility parameter - dispersion (deld); 

deld = 

n1*deld1+n2*deld2+n3*deld3+n4*deld4+n5*deld5+n6*deld6+n7*deld7+

n8*deld8+n9*deld9+n10*deld10+n15*deld15+n16*deld16+n25*deld25+n

26*deld26+n27*deld27+n28*deld28; @free(deld); 

 

!Equation for Hansen solubility parameter - polar (delp); 

delp = 

n1*delp1+n2*delp2+n3*delp3+n4*delp4+n5*delp5+n6*delp6+n7*delp7+

n8*delp8+n9*delp9+n10*delp10+n15*delp15+n16*delp16+n25*delp25+n

26*delp26+n27*delp27+n28*delp28; @free(delp); 

 

!Equation for Hansen solubility parameter - H2 bond (delh); 

delh = 

n1*delh1+n2*delh2+n3*delh3+n4*delh4+n5*delh5+n6*delh6+n7*delh7+

n8*delh8+n9*delh9+n10*delh10+n15*delh15+n16*delh16+n25*delh25+n

26*delh26+n27*delh27+n28*delh28; @free(delh); 

 

!Equation for liquid molar volume; 

mv_tot = 

n1*mv1+n2*mv2+n3*mv3+n4*mv4+n5*mv5+n6*mv6+n7*mv7+n8*mv8+n9*mv9+

n10*mv10+n15*mv15+n16*mv16+n25*mv25+n26*mv26+n27*mv27+n28*mv28; 

mv = mv_tot+0.016; 

 

!Equation for lower flammability limit (LFL); 

lfl_tot = 

n1*lfl1+n2*lfl2+n3*lfl3+n4*lfl4+n5*lfl5+n6*lfl6+n7*lfl7+n8*lfl8

+n9*lfl9+n10*lfl10+n15*lfl15+n16*lfl16+n25*lfl25+n26*lfl26+n27*

lfl27+n28*lfl28; @free(lfl_tot); 

lfl = 4.5315*@exp(lfl_tot); 

 

!Equation for upper flammability limit (UFL); 

ufl_tot = 

n1*ufl1+n2*ufl2+n3*ufl3+n4*ufl4+n5*ufl5+n6*ufl6+n7*ufl7+n8*ufl8

+n9*ufl9+n10*ufl10+n15*ufl15+n16*ufl16+n25*ufl25+n26*ufl26+n27*

ufl27+n28*ufl28; @free(ufl_tot); 

ufl = 129.9552*@exp(ufl_tot); 

ex_range = ufl-lfl; 

 

!Equation for viscosity; 

vis_tot = 

n1*vis1+n2*vis2+n3*vis3+n4*vis4+n5*vis5+n6*vis6+n7*vis7+n8*vis8

+n9*vis9+n10*vis10+n15*vis15+n16*vis16+n25*vis25+n26*vis26+n27*

vis27+n28*vis28; @free(vis_tot); 

vis = @exp(vis_tot); 

 

!Equation for molecular weight; 
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mw = 

n1*mw1+n2*mw2+n3*mw3+n4*mw4+n5*mw5+n6*mw6+n7*mw7+n8*mw8+n9*mw9+

n10*mw10+n15*mw15+n16*mw16+n25*mw25+n26*mw26+n27*mw27+n28*mw28; 

 

!Equation for permissible exposure limit (PEL); 

pel_tot = 

n1*pel1+n2*pel2+n3*pel3+n4*pel4+n5*pel5+n6*pel6+n7*pel7+n8*pel8

+n9*pel9+n10*pel10+n15*pel15+n16*pel16+n25*pel25+n26*pel26+n27*

pel27+n28*pel28; @free(pel_tot); 

 

!Equation for oral rat lethal dosage (LD50); 

ld_tot = 

n1*ld1+n2*ld2+n3*ld3+n4*ld4+n5*ld5+n6*ld6+n7*ld7+n8*ld8+n9*ld9+

n10*ld10+n15*ld15+n16*ld16+n25*ld25+n26*ld26+n27*ld27+n28*ld28; 

@free(ld_tot); 

ld_tot2 = 0.0016*mw; 

ld_tot3 = ld_tot+1.9372+ld_tot2; @free(ld_tot3); 

ld_total = ld_tot3-3-@log10(mw); @free(ld_total); 

 

!Equation for fathead minnow 96-h LC50; 

lc_tot = 

n1*lc1+n2*lc2+n3*lc3+n4*lc4+n5*lc5+n6*lc6+n7*lc7+n8*lc8+n9*lc9+

n10*lc10+n15*lc15+n16*lc16+n25*lc25+n26*lc26+n27*lc27+n28*lc28; 

@free(lc_tot); 

lc_tot2 = lc_tot-I_diol*0.4639-2*I_diester*(n2+n16+n25)*0.1393; 

@free(lc_tot2); 

lc_total = lc_tot2-3-@log10(mw); @free(lc_total); 

(0-1.5)*(1-I_diol) < n5-1.5; 

n5-1.5 <= (2-1.5)*I_diol; @BIN(I_diol); 

(0-1.5)*(1-I_diester) < n15+n16-1.5; 

n15+n16-1.5 <= (2-1.5)*I_diester; @BIN(I_diester); 

 

!Distance of solvent from solubility sphere (Ra) calculation; 

Ra = @sqrt(4*(deld-17.3782)^2+(delp-0.3839)^2+(delh-1.6396)^2); 

 

!Properties upper and lower boundaries; 

log_kow < 2.86; 

fp >= -1.2; 

lc_total < -1.37; 

tb_tot <= 4.7914; 

Ra <= 7.76107; 

 

!Molecular structure constraints; 

n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n15+n16+n25+n26+n27+n28>0; !a 

molecule must be formed; 

n5+n6+n7+n8+n9+n10+n15+n16<=2; !groups containing O-atom cannot 

appear more than two times; 

 

!Structural constraints to differentiate acyclic and cyclic 

compounds; 

n25+n26+n27+n28 <= 30*I_cyc; @BIN(I_cyc); 

n25+n26+n27+n28 >= 3*I_cyc; 

FBN = 2*I_cyc; 

n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n15+n16 <= 30*I_cyc1; 

n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n15+n16 >= I_cyc1; @BIN(I_cyc1); 

n26+n27 <= 30*(I_cyc+I_cyc1-1); 

n26+n27 >= I_cyc+I_cyc1-1; 

 

!Free bonds for each group; 

val1 = 1; 

val2 = 2; 
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val3 = 3; 

val4 = 4; 

val5 = 1; 

val6 = 1; 

val7 = 2; 

val8 = 1; 

val9 = 2; 

val10 = 3; 

val11 = 1; 

val12 = 2; 

val13 = 2; 

val14 = 3; 

val15 = 1; 

val16 = 2; 

val17 = 1; 

val18 = 1; 

val19 = 1; 

val20 = 2; 

val21 = 1; 

val22 = 2; 

val23 = 2; 

val24 = 3; 

val25 = 2; 

val26 = 3; 

val27 = 4; 

val28 = 2; 

 

!Structural constraint, the molecule generated must not contain 

free bonds; 

(n1*val1+n2*val2+n3*val3+n4*val4+n5*val5+n6*val6+n7*val7+n8*val

8+n9*val9+n10*val10+n11*val11+n12*val12+n13*val13+n14*val14+n15

*val15+n16*val16+n17*val17+ 

n18*val18+n19*val19+n20*val20+n21*val21+n22*val22+n23*val23+n24

*val24+n25*val25+n26*val26+n27*val27+n28*val28)-

(2*(n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n11+n12+ 

n13+n14+n15+n16+n17+n18+n19+n20+n21+n22+n23+n24+n25+n26+n27+n28

-1)) = FBN; 

 

!Inherent safety and health penalty score; 

!Flammability (I_fl); 

!Fp >= 93.4'C or fp_tot >= 195.8442, penalty score = 1 

Fp < 93.4'C or fp_tot < 195.8442, penalty score = 2 

Fp < 37.8'C or fp_tot < 140.2442, penalty score = 3 

Fp < 22.8'C or fp_tot < 125.2442 and Tb <= 37.8'C or tb_tot <= 

3.566887, penalty score = 4; 

 

!Disjunctive programming algorithm for I_fl; 

 (29.4442-195.8442)*I_fl1 <= fp_tot-195.8442; 

fp_tot-195.8442 < (429.4442-195.8442)*(1-I_fl1); 

 

(29.4442-140.2442)*I_fl2 < fp_tot-140.2442; 

fp_tot-140.2442 <= (429.4442-140.2442)*(1-I_fl2); 

 

(29.4442-125.2442)*(1-I_fl3) < fp_tot-125.2442; 

fp_tot-125.2442 <= (429.4442-125.2442)*I_fl3; 

 

(1-3.566887)*(1-I_fl4) <= tb_tot-3.566887; 

tb_tot-3.566887 < (26.357763-3.566887)*I_fl4; 

 

(0-0.5)*(1-I_fl5) <= I_fl3+I_fl4-0.5; 

I_fl3+I_fl4-0.5 < (2-0.5)*I_fl5; 
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I_fl = 2+I_fl1+I_fl2-I_fl5; 

@BIN(I_fl1); @BIN(I_fl2); @BIN(I_fl3); @BIN(I_fl4); 

@BIN(I_fl5); 

 

!Material state (I_ms); 

!Gas (Tb < 17.1'C or tb_tot < 3.277354), penalty score = 1 

(17.1'C <= Tb < 32.9'C or 3.277354 <= tb_tot < 3.49612), 

penalty score = (tb_tot-3.277354)/0.218766+1 

Liquid (Tb >= 32.9'C or tb_tot >= 3.49612), penalty score = 2; 

 

!Disjunctive programming algorithm for I_ms; 

 (-273.15-17.1)*(1-I_ms1) < tb-17.1; 

tb-17.1 <= (526.85-17.1)*I_ms1; 

 

(-273.15-32.9)*(1-I_ms2) < tb-32.9; 

tb-32.9 <= (526.85-32.9)*I_ms2; 

 

I_ms = 1+(I_ms1-I_ms2)*(tb-17.1)/15.8+I_ms2; 

@BIN(I_ms1); @BIN(I_ms2); 

 

!Volatility (I_v); 

!Tb > 157.9'C or tb_tot > 5.829124, penalty score = 0 

157.9'C >= Tb > 142.1'C or 5.829124 >= tb_tot > 5.464373, 

penalty score = (5.829124-tb_tot)/0.364751 

142.1'C >= Tb > 57.9'C or 5.464373 >= tb_tot > 3.872485, 

penalty score = 1 

57.9'C >= Tb > 42.1'C or 3.872485 >= tb_tot > 3.630168, penalty 

score = (3.872485-tb_tot)/0.242317+1 

42.1'C >= Tb > 7.9'C or 3.630168 >= tb_tot > 3.156334, penalty 

score = 2 

7.9'C >= Tb > -7.9'C or 3.156334 >= tb_tot > 2.95883, penalty 

score = (3.156334-tb_tot)/0.197504+2 

Tb <= -7.9'C or tb_tot <= 2.95883, penalty score = 3; 

 

!Disjunctive programming algorithm for I_v; 

 (-273.15-157.9)*I_v1 <= tb-157.9; 

tb-157.9 < (526.85-157.9)*(1-I_v1); 

 

(-273.15-142.1)*I_v2 <= tb-142.1; 

tb-142.1 < (526.85-142.1)*(1-I_v2); 

 

(-273.15-57.9)*I_v3 <= tb-57.9; 

tb-57.9 < (526.85-57.9)*(1-I_v3); 

 

(-273.15-42.1)*I_v4 <= tb-42.1; 

tb-42.1 < (526.85-42.1)*(1-I_v4); 

 

(-273.15-7.9)*I_v5 <= tb-7.9; 

tb-7.9 < (526.85-7.9)*(1-I_v5); 

 

(-273.15+7.9)*I_v6 <= tb+7.9; 

tb+7.9 < (526.85+7.9)*(1-I_v6); 

 

I_v = (I_v1-I_v2)*(157.9-tb)/15.8+I_v2+(I_v3-I_v4)*(57.9-

tb)/15.8+I_v4+(I_v5-I_v6)*(7.9-tb)/15.8+I_v6; 

@BIN(I_v1); @BIN(I_v2); @BIN(I_v3); @BIN(I_v4); @BIN(I_v5); 

@BIN(I_v6); 

 

!Viscosity (I_vis); 

!0.1 - 1 cp, penalty score = (vis-0.1)/1.8+1 
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1 - 4.44 cp, penalty score = (vis-1)/6.88+1.5 

4.44 - 6.56 cp, penalty score = 2 

6.56 - 13.44 cp, penalty score = (vis-6.56)/6.88+2 

13.44 - 100 cp, penalty score = 3; 

 

!Disjunctive programming algorithm for I_vis; 

 (0.1-1)*(1-I_vis1) < vis-1; 

vis-1 <= (100-1)*I_vis1; 

 

(0.1-4.44)*(1-I_vis2) < vis-4.44; 

vis-4.44 <= (100-4.44)*I_vis2; 

 

(0.1-6.56)*(1-I_vis3) < vis-6.56; 

vis-6.56 <= (100-6.56)*I_vis3; 

 

(0.1-13.44)*(1-I_vis4) < vis-13.44; 

vis-13.44 <= (100-13.44)*I_vis4; 

 

I_vis = 1+(1-I_vis1)*(vis-0.1)/1.8+(I_vis1-I_vis2)*((vis-

1)/6.88+0.5)+I_vis2+(I_vis3-I_vis4)*(vis-6.56)/6.88+I_vis4; 

@BIN(I_vis1); @BIN(I_vis2); @BIN(I_vis3); @BIN(I_vis4); 

 

!Explosive limit (I_ex); 

!0 <= ex_range < 20, penalty score = 1 

20 <= ex_range < 45, penalty score = 2 

45 <= ex_range < 70, penalty score = 3 

70 <= ex_range <= 100, penalty score = 4; 

 

!Disjunctive programming algorithm for I_ex; 

 (0-20)*(1-I_ex1) < ex_range-20; 

ex_range-20 <= (100-20)*I_ex1; 

 

(0-45)*(1-I_ex2) < ex_range-45; 

ex_range-45 <= (100-45)*I_ex2; 

 

(0-70)*(1-I_ex3) < ex_range-70; 

ex_range-70 <= (100-70)*I_ex3; 

 

I_ex = 1+I_ex1+I_ex2+I_ex3; 

@BIN(I_ex1); @BIN(I_ex2); @BIN(I_ex3); 

 

!Permissible exposure limit (I_el); 

!Liquid and Vapour 

pel_tot < 0.608279, penalty score = 0 

0.608279 <= pel_tot < 1.608279, penalty score = (pel_tot-

0.608279)/1.56 

1.608279 <= pel_tot < 2.168279, penalty score = (pel_tot-

1.608279)/0.56*28/39+25/39 

2.168279 <= pel_tot < 2.608279, penalty score = (pel_tot-

1.608279)/1.56+1 

2.608279 <= pel_tot < 3.168279, penalty score = (pel_tot-

2.608279)/0.56*28/39+64/39 

3.168279 <= pel_tot < 3.608279, penalty score = (pel_tot-

2.608279)/1.56+2 

3.608279 <= pel_tot < 4.168279, penalty score = (pel_tot-

3.608279)/0.56*28/39+103/39 

4.168279 <= pel_tot < 5.168279, penalty score = (pel_tot-

3.608279)/1.56+3 

pel_tot >= 5.168279, penalty score = 4; 

 

!Disjunctive programming algorithm for I_el; 
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 (-1.611721-0.608279)*(1-I_el1) < pel_tot-0.608279; 

pel_tot-0.608279 <= (7.388279-0.608279)*I_el1; 

 

(-1.611721-1.608279)*(1-I_el2) < pel_tot-1.608279; 

pel_tot-1.608279 <= (7.388279-1.608279)*I_el2; 

 

(-1.611721-2.168279)*(1-I_el3) < pel_tot-2.168279; 

pel_tot-2.168279 <= (7.388279-2.168279)*I_el3; 

 

(-1.611721-2.608279)*(1-I_el4) < pel_tot-2.608279; 

pel_tot-2.608279 <= (7.388279-2.608279)*I_el4; 

 

(-1.611721-3.168279)*(1-I_el5) < pel_tot-3.168279; 

pel_tot-3.168279 <= (7.388279-3.168279)*I_el5; 

 

(-1.611721-3.608279)*(1-I_el6) < pel_tot-3.608279; 

pel_tot-3.608279 <= (7.388279-3.608279)*I_el6; 

 

(-1.611721-4.168279)*(1-I_el7) < pel_tot-4.168279; 

pel_tot-4.168279 <= (7.388279-4.168279)*I_el7; 

 

(-1.611721-5.168279)*(1-I_el8) < pel_tot-5.168279; 

pel_tot-5.168279 <= (7.388279-5.168279)*I_el8; 

 

I_el = (I_el1-I_el2)*(pel_tot-0.608279)/1.56+(I_el2-

I_el3)*((pel_tot-1.608279)/0.56*28/39+25/39)+(I_el3-

I_el4)*((pel_tot-1.608279)/1.56+1) 

+(I_el4-I_el5)*((pel_tot-2.608279)/0.56*28/39+64/39)+(I_el5-

I_el6)*((pel_tot-2.608279)/1.56+2)+(I_el6-I_el7)*((pel_tot-

3.608279)/0.56*28/39+103/39) 

+(I_el7-I_el8)*((pel_tot-3.608279)/1.56+3)+I_el8*4; 

@BIN(I_el1); @BIN(I_el2); @BIN(I_el3); @BIN(I_el4); 

@BIN(I_el5); @BIN(I_el6); @BIN(I_el7); @BIN(I_el8); 

 

!Acute health hazard (I_ah); 

!ld_total < -3.73103, penalty score = 0 

-3.73103 <= ld_total < -3.12897, penalty score = 

(ld_total+3.73103)/0.86 

-3.12897 <= ld_total < -2.87103, penalty score = 

(ld_total+3.12897)/0.25794*12897/21500+30103/43000 

-2.87103 <= ld_total < -2.26897, penalty score = 

(ld_total+3.12897)/0.86+1 

-2.26897 <= ld_total < -2.12897, penalty score = 2 

-2.12897 <= ld_total < -1.26897, penalty score = 

(ld_total+2.12897)/0.86+2 

-1.26897 <= ld_total < -1.12897, penalty score = 3 

-1.12897 <= ld_total < -0.26897, penalty score = 

(ld_total+1.12897)/0.86+3 

ld_total >= -0.26897, penalty score = 4; 

 

!Disjunctive programming algorithm for I_ah; 

 (-6.69897+3.73103)*(1-I_ah1) < ld_total+3.73103; 

ld_total+3.73103 <= (2.30103+3.73103)*I_ah1; 

 

(-6.69897+3.12897)*(1-I_ah2) < ld_total+3.12897; 

ld_total+3.12897 <= (2.30103+3.12897)*I_ah2; 

 

(-6.69897+2.87103)*(1-I_ah3) < ld_total+2.87103; 

ld_total+2.87103 <= (2.30103+2.87103)*I_ah3; 

 

(-6.69897+2.26897)*(1-I_ah4) < ld_total+2.26897; 
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ld_total+2.26897 <= (2.30103+2.26897)*I_ah4; 

 

(-6.69897+2.12897)*(1-I_ah5) < ld_total+2.12897; 

ld_total+2.12897 <= (2.30103+2.12897)*I_ah5; 

 

(-6.69897+1.26897)*(1-I_ah6) < ld_total+1.26897; 

ld_total+1.26897 <= (2.30103+1.26897)*I_ah6; 

 

(-6.69897+1.12897)*(1-I_ah7) < ld_total+1.12897; 

ld_total+1.12897 <= (2.30103+1.12897)*I_ah7; 

 

(-6.69897+0.26897)*(1-I_ah8) < ld_total+0.26897; 

ld_total+0.26897 <= (2.30103+0.26897)*I_ah8; 

 

I_ah = (I_ah1-I_ah2)*(ld_total+3.73103)/0.86+(I_ah2-

I_ah3)*((ld_total+3.12897)/0.25794*12897/21500+30103/43000)+(I_

ah3-I_ah4)*((ld_total+3.12897)/0.86+1) 

+(I_ah4-I_ah5)*2+(I_ah5-

I_ah6)*((ld_total+2.12897)/0.86+2)+(I_ah6-I_ah7)*3+(I_ah7-

I_ah8)*((ld_total+1.12897)/0.86+3)+I_ah8*4; 

@BIN(I_ah1); @BIN(I_ah2); @BIN(I_ah3); @BIN(I_ah4); 

@BIN(I_ah5); @BIN(I_ah6); @BIN(I_ah7); @BIN(I_ah8); 

 

!Summation of sub-index values to calculate total index score; 

I_SHI = I_fl+I_ms+I_v+I_vis+I_ex+I_el+I_ah; 

 

END 

 

A.4 Lingo Coding (Chapter 7) 

model: 

 

!Objective function; 

 

max = lambda; 

 

!Linear membership functions for objectives; 

 (2.655308-I_SHIr)/(2.655308-1.746318) = lambda_I; 

(7.3889-tb_tot)/(7.3889-3.0238) = lambda_p1; 

(36.88-hv_tot)/(36.88-11.6891) = lambda_p2; 

(15.89908-Ra)/(15.89908-4.05417) = lambda_p3; 

 

lambda_I >= lambda; 

lambda_p1 >= lambda; 

lambda_p2 >= lambda; 

lambda_p3 >= lambda; 

 

lambda >= 0; 

lambda <= 1; 

 

!Defining the chemical building blocks 

1st-order groups 

n1 = CH3, n2 = CH2, n3 = CH, n4 = C, n5 = OH, n6 = CH3CO, n7 = 

CH2CO, n8 = CH3O, n9 = CH2O, n10 = CHO 

n11 = CH3COO, n12 = CH2COO, n13 = CH2(cyc), n14 = CH(cyc), n15 

= C(cyc), n16 = O(cyc);  

 

@GIN(n1); @GIN(n2); @GIN(n3); @GIN(n4); @GIN(n5); @GIN(n6); 

@GIN(n7); @GIN(n8); @GIN(n9); @GIN(n10); 
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@GIN(n11); @GIN(n12); @GIN(n13); @GIN(n14); @GIN(n15); 

@GIN(n16); 

 

n_tot = n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n11+n12+n13+n14+n15+n16; 

 

C_number = 

n1+n2+n3+n4+n6*2+n7*2+n8+n9+n10+n11*2+n12*2+n13+n14+n15; 

H_number = 

n1*3+n2*2+n3+n5+n6*3+n7*2+n8*3+n9*2+n10+n11*3+n12*2+n13*2+n14; 

O_number = n5+n6+n7+n8+n9+n10+n11*2+n12*2+n16; 

 

!Group contribution for normal boiling point (Tb); 

tb1 = 0.8853; @free(tb1); 

tb2 = 0.5815; @free(tb2); 

tb3 = -0.0039; @free(tb3); 

tb4 = -0.4985; @free(tb4); 

tb5 = 2.1385; @free(tb5); 

tb6 = 2.6245; @free(tb6); 

tb7 = 2.0151; @free(tb7); 

tb8 = 1.5724; @free(tb8); 

tb9 = 0.9999; @free(tb9); 

tb10 = 0.4724; @free(tb10); 

tb11 = 2.5805; @free(tb11); 

tb12 = 2.1808; @free(tb12); 

tb13 = 0.7067; @free(tb13); 

tb14 = 0.3922; @free(tb14); 

tb15 = -0.2034; @free(tb15); 

tb16 = 0.8691; @free(tb16); 

 

!Group contribution for normal melting point (Tm); 

tm1 = 0.6699; @free(tm1); 

tm2 = 0.2992; @free(tm2); 

tm3 = -0.2943; @free(tm3); 

tm4 = -0.043; @free(tm4); 

tm5 = 3.2702; @free(tm5); 

tm6 = 3.1357; @free(tm6); 

tm7 = 2.9007; @free(tm7); 

tm8 = 1.5327; @free(tm8); 

tm9 = 0.7649; @free(tm9); 

tm10 = 0.1817; @free(tm10); 

tm11 = 2.4227; @free(tm11); 

tm12 = 1.5439; @free(tm12); 

tm13 = 0.5067; @free(tm13); 

tm14 = 0.2691; @free(tm14); 

tm15 = 0.5775; @free(tm15); 

tm16 = 1.3269; @free(tm16); 

 

!Group contribution for octanol-water partition coefficient 

(log Kow); 

kow1 = 0.3008; @free(kow1); 

kow2 = 0.4352; @free(kow2); 

kow3 = 0.3837; @free(kow3); 

kow4 = 0.6325; @free(kow4); 

kow5 = -1.0185; @free(kow5); 

kow6 = -0.3774; @free(kow6); 

kow7 = -0.1855; @free(kow7); 

kow8 = -0.303; @free(kow8); 

kow9 = -0.1449; @free(kow9); 

kow10 = 0.165; @free(kow10); 

kow11 = -0.4615; @free(kow11); 

kow12 = -0.2893; @free(kow12); 



 

252 

 

kow13 = 0.1818; @free(kow13); 

kow14 = 0.2934; @free(kow14); 

kow15 = 0.2412; @free(kow15); 

kow16 = -0.4008; @free(kow16); 

 

!Group contribution for flash point (Fp); 

fp1 = 21.7458; @free(fp1); 

fp2 = 11.5194; @free(fp2); 

fp3 = -5.1205; @free(fp3); 

fp4 = -19.7535; @free(fp4); 

fp5 = 78.5878; @free(fp5); 

fp6 = 70.9382; @free(fp6); 

fp7 = 67.479; @free(fp7); 

fp8 = 41.9635; @free(fp8); 

fp9 = 32.914; @free(fp9); 

fp10 = -8.9309; @free(fp10); 

fp11 = 73.7009; @free(fp11); 

fp12 = 50.2088; @free(fp12); 

fp13 = 15.0958; @free(fp13); 

fp14 = 10.5355; @free(fp14); 

fp15 = -15.1444; @free(fp15); 

fp16 = 24.3976; @free(fp16); 

 

!Group contribution for enthalpy of vaporization at Tb (Hv); 

hv1 = 2.0701; 

hv2 = 2.3353; 

hv3 = 1.6963; 

hv4 = 0.8251; 

hv5 = 16.4887; 

hv6 = 9.619; 

hv7 = 10.1585; 

hv8 = 5.6432; 

hv9 = 5.1006; 

hv10 = 4.3695; 

hv11 = 13.0656; 

hv12 = 13.5635; 

hv13 = 2.2775; 

hv14 = 2.4151; 

hv15 = 2.9031; 

hv16 = 4.7567; 

 

!Group contribution for Hansen solubility parameter - 

dispersion (deld); 

deld1 = 7.5697; @free(deld1); 

deld2 = -0.0018; @free(deld2); 

deld3 = -7.7208; @free(deld3); 

deld4 = -15.4498; @free(deld4); 

deld5 = 8.0236; @free(deld5); 

deld6 = 8.163; @free(deld6); 

deld7 = 0.5557; @free(deld7); 

deld8 = 7.6577; @free(deld8); 

deld9 = 0.1978; @free(deld9); 

deld10 = -7.7099; @free(deld10); 

deld11 = 8.022; @free(deld11); 

deld12 = 0.4586; @free(deld12); 

deld13 = 2.6915; @free(deld13); 

deld14 = -3.7719; @free(deld14); 

deld15 = -7.187; @free(deld15); 

deld16 = 3.9616; @free(deld16); 
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!Group contribution for Hansen solubility parameter - polar 

(delp); 

delp1 = 1.9996; @free(delp1); 

delp2 = -0.1492; @free(delp2); 

delp3 = -2.7099; @free(delp3); 

delp4 = -4.7191; @free(delp4); 

delp5 = 4.9598; @free(delp5); 

delp6 = 6.052; @free(delp6); 

delp7 = 0.7632; @free(delp7); 

delp8 = 3.086; @free(delp8); 

delp9 = 0.6423; @free(delp9); 

delp10 = -1.918; @free(delp10); 

delp11 = 2.848; @free(delp11); 

delp12 = 1.4477; @free(delp12); 

delp13 = 0.5026; @free(delp13); 

delp14 = -1.7549; @free(delp14); 

delp15 = -2.2674; @free(delp15); 

delp16 = 3.1902; @free(delp16); 

 

!Group contribution for Hansen solubility parameter - H2 bond 

(delh); 

delh1 = 2.2105; @free(delh1); 

delh2 = -0.215; @free(delh2); 

delh3 = -2.6826; @free(delh3); 

delh4 = -6.4821; @free(delh4); 

delh5 = 11.8005; @free(delh5); 

delh6 = 3.4394; @free(delh6); 

delh7 = -0.0788; @free(delh7); 

delh8 = 3.3464; @free(delh8); 

delh9 = 0.8246; @free(delh9); 

delh10 = -2.1543; @free(delh10); 

delh11 = 5.0132; @free(delh11); 

delh12 = 2.7824; @free(delh12); 

delh13 = 0.6159; @free(delh13); 

delh14 = -0.5171; @free(delh14); 

delh15 = -2.6329; @free(delh15); 

delh16 = 2.802; @free(delh16); 

 

!Group contribution for liquid molar volume (Vm); 

mv1 = 0.0241; 

mv2 = 0.0165; 

mv3 = 0.0086; 

mv4 = 0.0007; 

mv5 = 0.0044; 

mv6 = 0.0345; 

mv7 = 0.0288; 

mv8 = 0.0283; 

mv9 = 0.0228; 

mv10 = 0.0207; 

mv11 = 0.0412; 

mv12 = 0.0365; 

mv13 = 0.0159; 

mv14 = 0.0063; 

mv15 = 0.0006; 

mv16 = 0.0018; 

 

!Group contribution for lower flammability limit (LFL); 

lfl1 = -0.2357; @free(lfl1); 

lfl2 = -0.2334; @free(lfl2); 

lfl3 = -0.2308; @free(lfl3); 

lfl4 = -0.2161; @free(lfl4); 
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lfl5 = 0.0599; @free(lfl5); 

lfl6 = -0.3205; @free(lfl6); 

lfl7 = -0.1764; @free(lfl7); 

lfl8 = -0.1921; @free(lfl8); 

lfl9 = -0.1213; @free(lfl9); 

lfl10 = -0.2958; @free(lfl10); 

lfl11 = -0.2264; @free(lfl11); 

lfl12 = -0.6266; @free(lfl12); 

lfl13 = -0.2169; @free(lfl13); 

lfl14 = -0.2941; @free(lfl14); 

lfl15 = -0.1401; @free(lfl15); 

lfl16 = 0.1086; @free(lfl16); 

 

!Group contribution for upper flammability limit (UFL); 

ufl1 = -1.1534; @free(ufl1); 

ufl2 = -0.1445; @free(ufl2); 

ufl3 = 0.8856; @free(ufl3); 

ufl4 = 1.8649; @free(ufl4); 

ufl5 = -0.7578; @free(ufl5); 

ufl6 = -1.1643; @free(ufl6); 

ufl7 = -0.171; @free(ufl7); 

ufl8 = -0.8561; @free(ufl8); 

ufl9 = 0.2096; @free(ufl9); 

ufl10 = 0.9939; @free(ufl10); 

ufl11 = -1.2311; @free(ufl11); 

ufl12 = 0.077; @free(ufl12); 

ufl13 = -0.4403; @free(ufl13); 

ufl14 = 2.0503; @free(ufl14); 

ufl15 = 1.0217; @free(ufl15); 

ufl16 = -0.0295; @free(ufl16); 

 

!Group contribution for viscosity; 

vis1 = -1.0278; @free(vis1); 

vis2 = 0.2125; @free(vis2); 

vis3 = 1.318; @free(vis3); 

vis4 = 2.8147; @free(vis4); 

vis5 = 1.3057; @free(vis5); 

vis6 = -0.1881; @free(vis6); 

vis7 = 0.9647; @free(vis7); 

vis8 = -0.6902; @free(vis8); 

vis9 = 0.6134; @free(vis9); 

vis10 = 3.6344; @free(vis10); 

vis11 = -0.0358; @free(vis11); 

vis12 = 1.0292; @free(vis12); 

vis13 = -0.0577; @free(vis13); 

vis14 = 0.9455; @free(vis14); 

vis15 = 1.5824; @free(vis15); 

vis16 = 0.0434; @free(vis16); 

 

!Group contribution for fathead minnow 96-h LC50; 

lc1 = 0.6172; @free(lc1); 

lc2 = 0.4464; @free(lc2); 

lc3 = 0.1522; @free(lc3); 

lc4 = -0.1861; @free(lc4); 

lc5 = -0.2125; @free(lc5); 

lc6 = 0.6176; @free(lc6); 

lc7 = 0.4468; @free(lc7); 

lc8 = 0.378; @free(lc8); 

lc9 = 0.2072; @free(lc9); 

lc10 = -0.087; @free(lc10); 

lc11 = 1.5633; @free(lc11); 
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lc12 = 1.3925; @free(lc12); 

lc13 = 0.4464; @free(lc13); 

lc14 = 0.1522; @free(lc14); 

lc15 = -0.1861; @free(lc15); 

lc16 = -0.2392; @free(lc16); 

 

!Group contribution for oral rat lethal dosage (LD50); 

ld1 = -0.0742; @free(ld1); 

ld2 = 0.0223; @free(ld2); 

ld3 = 0.1335; @free(ld3); 

ld4 = 0.2641; @free(ld4); 

ld5 = -0.1955; @free(ld5); 

ld6 = -0.0172; @free(ld6); 

ld7 = 0.1931; @free(ld7); 

ld8 = -0.0259; @free(ld8); 

ld9 = 0.0974; @free(ld9); 

ld10 = 0.4987; @free(ld10); 

ld11 = -0.1734; @free(ld11); 

ld12 = -0.0357; @free(ld12); 

ld13 = 0.0305; @free(ld13); 

ld14 = 0.1009; @free(ld14); 

ld15 = 0.2675; @free(ld15); 

ld16 = 0.0485; @free(ld16); 

 

!Group contribution for permissible exposure limit (PEL); 

pel1 = 0.7723; @free(pel1); 

pel2 = 0.0727; @free(pel2); 

pel3 = -0.6557; @free(pel3); 

pel4 = -1.3404; @free(pel4); 

pel5 = 1.3612; @free(pel5); 

pel6 = 1.4016; @free(pel6); 

pel7 = 1.2601; @free(pel7); 

pel8 = 2.1251; @free(pel8); 

pel9 = 0.9276; @free(pel9); 

pel10 = -0.7462; @free(pel10); 

pel11 = 1.2544; @free(pel11); 

pel12 = 1.6798; @free(pel12); 

pel13 = 0.2678; @free(pel13); 

pel14 = -0.1033; @free(pel14); 

pel15 = -0.6719; @free(pel15); 

pel16 = 1.0976; @free(pel16); 

 

!Group contribution for molecular weight (MW); 

mw1 = 15.035; 

mw2 = 14.027; 

mw3 = 13.019; 

mw4 = 12.011; 

mw5 = 17.007; 

mw6 = 43.045; 

mw7 = 42.037; 

mw8 = 31.034; 

mw9 = 30.026; 

mw10 = 29.018; 

mw11 = 59.044; 

mw12 = 58.036; 

mw13 = 14.027; 

mw14 = 13.019; 

mw15 = 12.011; 

mw16 = 15.999; 

 

!Property Constraints; 
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!Equation for normal boiling point (Tb); 

tb_tot = 

n1*tb1+n2*tb2+n3*tb3+n4*tb4+n5*tb5+n6*tb6+n7*tb7+n8*tb8+n9*tb9+

n10*tb10+n11*tb11+n12*tb12+n13*tb13+n14*tb14+n15*tb15+n16*tb16; 

@free(tb_tot); 

tb = 244.5165*@log(tb_tot)-273.15; @free(tb); 

 

!Equation for normal melting point (Tm); 

tm_tot = 

n1*tm1+n2*tm2+n3*tm3+n4*tm4+n5*tm5+n6*tm6+n7*tm7+n8*tm8+n9*tm9+

n10*tm10+n11*tm11+n12*tm12+n13*tm13+n14*tm14+n15*tm15+n16*tm16; 

@free(tm_tot); 

tm = 143.5706*@log(tm_tot)-273.15; @free(tm); 

 

!Equation for octanol-water partition coefficient (log Kow); 

kow_tot = 

n1*kow1+n2*kow2+n3*kow3+n4*kow4+n5*kow5+n6*kow6+n7*kow7+n8*kow8

+n9*kow9+n10*kow10+ 

n11*kow11+n12*kow12+n13*kow13+n14*kow14+n15*kow15+n16*kow16; 

@free(kow_tot); 

log_kow = kow_tot+0.4876; @free(log_kow); 

 

!Equation for flash point (Fp); 

fp_tot = 

n1*fp1+n2*fp2+n3*fp3+n4*fp4+n5*fp5+n6*fp6+n7*fp7+n8*fp8+n9*fp9+

n10*fp10+n11*fp11+n12*fp12+n13*fp13+n14*fp14+n15*fp15+n16*fp16; 

@free(fp_tot); 

fp = fp_tot+170.7058-273.15; @free(fp); 

 

!Equation for enthalpy of vaporization at Tb (Hv); 

hv_tot = 

n1*hv1+n2*hv2+n3*hv3+n4*hv4+n5*hv5+n6*hv6+n7*hv7+n8*hv8+n9*hv9+

n10*hv10+n11*hv11+n12*hv12+n13*hv13+n14*hv14+n15*hv15+n16*hv16; 

hvb = hv_tot+15.4199; 

 

!Equation for Hansen solubility parameter - dispersion (deld); 

deld = 

n1*deld1+n2*deld2+n3*deld3+n4*deld4+n5*deld5+n6*deld6+n7*deld7+

n8*deld8+n9*deld9+n10*deld10+ 

n11*deld11+n12*deld12+n13*deld13+n14*deld14+n15*deld15+n16*deld

16; @free(deld); 

 

!Equation for Hansen solubility parameter - polar (delp); 

delp = 

n1*delp1+n2*delp2+n3*delp3+n4*delp4+n5*delp5+n6*delp6+n7*delp7+

n8*delp8+n9*delp9+n10*delp10+ 

n11*delp11+n12*delp12+n13*delp13+n14*delp14+n15*delp15+n16*delp

16; @free(delp); 

 

!Equation for Hansen solubility parameter - H2 bond (delh); 

delh = 

n1*delh1+n2*delh2+n3*delh3+n4*delh4+n5*delh5+n6*delh6+n7*delh7+

n8*delh8+n9*delh9+n10*delh10+ 

n11*delh11+n12*delh12+n13*delh13+n14*delh14+n15*delh15+n16*delh

16; @free(delh); 

 

!Equation for liquid molar volume; 

mv_tot = 

n1*mv1+n2*mv2+n3*mv3+n4*mv4+n5*mv5+n6*mv6+n7*mv7+n8*mv8+n9*mv9+

n10*mv10+n11*mv11+n12*mv12+n13*mv13+n14*mv14+n15*mv15+n16*mv16; 

mv = mv_tot+0.016; 
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!Equation for lower flammability limit (LFL); 

lfl_tot = 

n1*lfl1+n2*lfl2+n3*lfl3+n4*lfl4+n5*lfl5+n6*lfl6+n7*lfl7+n8*lfl8

+n9*lfl9+n10*lfl10+ 

n11*lfl11+n12*lfl12+n13*lfl13+n14*lfl14+n15*lfl15+n16*lfl16; 

@free(lfl_tot); 

lfl = 4.5315*@exp(lfl_tot); 

 

!Equation for upper flammability limit (UFL); 

ufl_tot = 

n1*ufl1+n2*ufl2+n3*ufl3+n4*ufl4+n5*ufl5+n6*ufl6+n7*ufl7+n8*ufl8

+n9*ufl9+n10*ufl10+ 

n11*ufl11+n12*ufl12+n13*ufl13+n14*ufl14+n15*ufl15+n16*ufl16; 

@free(ufl_tot); 

ufl = 129.9552*@exp(ufl_tot); 

ex_range = ufl-lfl; 

 

!Equation for viscosity; 

vis_tot = 

n1*vis1+n2*vis2+n3*vis3+n4*vis4+n5*vis5+n6*vis6+n7*vis7+n8*vis8

+n9*vis9+n10*vis10+ 

n11*vis11+n12*vis12+n13*vis13+n14*vis14+n15*vis15+n16*vis16; 

@free(vis_tot); 

vis = vis_tot/2.302585093; @free(vis); 

viscosity = @exp(vis_tot); 

 

!Equation for molecular weight; 

mw = 

n1*mw1+n2*mw2+n3*mw3+n4*mw4+n5*mw5+n6*mw6+n7*mw7+n8*mw8+n9*mw9+

n10*mw10+n11*mw11+n12*mw12+n13*mw13+n14*mw14+n15*mw15+n16*mw16; 

 

!Equation for permissible exposure limit (PEL); 

pel_tot = 

n1*pel1+n2*pel2+n3*pel3+n4*pel4+n5*pel5+n6*pel6+n7*pel7+n8*pel8

+n9*pel9+n10*pel10+ 

n11*pel11+n12*pel12+n13*pel13+n14*pel14+n15*pel15+n16*pel16; 

@free(pel_tot); 

 

!Equation for oral rat lethal dosage (LD50); 

ld_tot = 

n1*ld1+n2*ld2+n3*ld3+n4*ld4+n5*ld5+n6*ld6+n7*ld7+n8*ld8+n9*ld9+

n10*ld10+n11*ld11+n12*ld12+n13*ld13+n14*ld14+n15*ld15+n16*ld16; 

@free(ld_tot); 

ld_tot2 = 0.0016*mw; 

ld_tot3 = ld_tot+1.9372+ld_tot2; @free(ld_tot3); 

ld_total = ld_tot3-3-@log10(mw); @free(ld_total); 

 

!Equation for fathead minnow 96-h LC50; 

lc_tot = 

n1*lc1+n2*lc2+n3*lc3+n4*lc4+n5*lc5+n6*lc6+n7*lc7+n8*lc8+n9*lc9+

n10*lc10+n11*lc11+n12*lc12+n13*lc13+n14*lc14+n15*lc15+n16*lc16; 

@free(lc_tot); 

lc_tot2 = lc_tot-I_diol*0.4639-2*I_diester*(n2+n12+n13)*0.1393; 

@free(lc_tot2); 

lc_total = lc_tot2-3-@log10(mw); @free(lc_total); 

(0-1.5)*(1-I_diol) < n5-1.5; 

n5-1.5 <= (2-1.5)*I_diol; @BIN(I_diol); 

(0-1.5)*(1-I_diester) < n11+n12-1.5; 

n11+n12-1.5 <= (2-1.5)*I_diester; @BIN(I_diester); 
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!Distance of solvent from solubility sphere (Ra) calculation; 

Ra = @sqrt(4*(deld-17.3782)^2+(delp-0.3839)^2+(delh-1.6396)^2); 

 

!Properties upper and lower boundaries; 

fp >= -13.3; 

lc_total < -2; 

 

!Molecular structure constraints; 

n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n11+n12+n13+n14+n15+n16>0; !a 

molecule must be formed; 

n5+n6+n7+n8+n9+n10+n11+n12<=2; !groups containing O-atom cannot 

appear more than two times; 

 

!Structural constraints to differentiate acyclic and cyclic 

compounds; 

n13+n14+n15+n16 <= 30*I_cyc; @BIN(I_cyc); 

n13+n14+n15+n16 >= 3*I_cyc; 

FBN = 2*I_cyc; 

n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n11+n12 <= 30*I_cyc1; 

n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n11+n12 >= I_cyc1; @BIN(I_cyc1); 

n14+n15 <= 30*(I_cyc+I_cyc1-1); 

n14+n15 >= I_cyc+I_cyc1-1; 

 

!Free bonds for each group; 

val1 = 1; 

val2 = 2; 

val3 = 3; 

val4 = 4; 

val5 = 1; 

val6 = 1; 

val7 = 2; 

val8 = 1; 

val9 = 2; 

val10 = 3; 

val11 = 1; 

val12 = 2; 

val13 = 2; 

val14 = 3; 

val15 = 4; 

val16 = 2; 

 

!Structural constraint, the molecule generated must not contain 

free bonds; 

(n1*val1+n2*val2+n3*val3+n4*val4+n5*val5+n6*val6+n7*val7+n8*val

8+n9*val9+n10*val10+n11*val11+n12*val12+n13*val13+n14*val14+n15

*val15+n16*val16)- 

(2*(n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n11+n12+n13+n14+n15+n16-1)) 

= FBN; 

 

!Inherent safety and health penalty score; 

!Flammability (I_fl); 

!Fp >= 102.74'C, I_fl_low = I_fl_up = 1 

84.06 <= Fp < 102.74'C, I_fl_low = I_fl_up = (102.74-

Fp)/18.68+1 

47.14 <= Fp < 84.06'C, I_fl_low = I_fl_up = 2 

32.14 <= Fp < 47.14'C, I_fl_low = I_fl_up = (47.14-Fp)/18.68+2 

28.46 <= Fp < 32.14'C, I_fl_low = 0.394004283*(32.14-

Fp)/3.68+2.802997859, I_fl_up = (47.14-Fp)/18.68+2 

13.46 <= Fp < 28.46'C, I_fl_low = (32.14-Fp)/18.68+3, I_fl_up = 

3 

Fp < 13.46'C, I_fl_low = 4, I_fl_up = 3 
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Tb >= 41.58’C, I_fl = I_fl_up 

34.02 <= Tb < 41.58’C, I_fl = (Tb-34.02)/7.56*(I_fl_up-

I_fl_low)+I_fl_low 

Tb < 34.02’C, I_fl = I_fl_low; 

 

!Disjunctive programming algorithm for I_fl; 

(-73.15-102.74)*I_fl1 < fp-102.74; 

fp-102.74 <= (326.85-102.74)*(1-I_fl1); 

 

(-73.15-84.06)*I_fl2 < fp-84.06; 

fp-84.06 <= (326.85-84.06)*(1-I_fl2); 

 

(-73.15-47.14)*I_fl3 < fp-47.14; 

fp-47.14 <= (326.85-47.14)*(1-I_fl3); 

 

(-73.15-32.14)*I_fl4 < fp-32.14; 

fp-32.14 <= (326.85-32.14)*(1-I_fl4); 

 

(-73.15-28.46)*I_fl5 < fp-28.46; 

fp-28.46 <= (326.85-28.46)*(1-I_fl5); 

 

(-73.15-13.46)*I_fl6 < fp-13.46; 

fp-13.46 <= (326.85-13.46)*(1-I_fl6); 

 

(-273.15-41.58)*I_fl7 < tb-41.58; 

tb-41.58 <= (526.85-41.58)*(1-I_fl7); 

 

(-273.15-34.02)*I_fl8 < tb-34.02; 

tb-34.02 <= (526.85-34.02)*(1-I_fl8); 

 

I_fl_low = 1+(I_fl1-I_fl2)*(102.74-fp)/18.68+I_fl2-

I_fl3+(I_fl3-I_fl4)*((47.14-fp)/18.68+1)+ 

(I_fl4-I_fl5)*(0.394004283*(32.14-fp)/3.68+1.802997859)+(I_fl5-

I_fl6)*((32.14-fp)/18.68+2)+I_fl6*3; 

 

I_fl_up = 1+(I_fl1-I_fl2)*(102.74-fp)/18.68+I_fl2-I_fl3+(I_fl3-

I_fl4)*((47.14-fp)/18.68+1)+ 

(I_fl4-I_fl5)*((47.14-fp)/18.68+1)+I_fl5*2; 

 

I_fl = (1-I_fl7)*I_fl_up+(I_fl7-I_fl8)*((tb-

34.02)/7.56*(I_fl_up-I_fl_low)+I_fl_low)+I_fl8*I_fl_low; 

 

@BIN(I_fl1); @BIN(I_fl2); @BIN(I_fl3); @BIN(I_fl4); 

@BIN(I_fl5); @BIN(I_fl6); @BIN(I_fl7); @BIN(I_fl8); 

 

!Material state (I_ms); 

!Gas (Tm < 25'C or tm_tot < 7.977927385 and Tb < 25'C or tb_tot 

< 3.384970244), penalty score = 1 

Liquid (Tm < 25'C or tm_tot < 7.977927385 and Tb >= 25'C or 

tb_tot >= 3.384970244), penalty score = 2 

Solid (Tm >= 25'C or tm_tot >= 7.977927385 and Tb >= 25'C or 

tb_tot >= 3.384970244), penalty score = 3; 

 

!Disjunctive programming algorithm for I_ms; 

(1-3.384970244)*(1-I_ms1) < tb_tot-3.384970244; 

tb_tot-3.384970244 <= (26.3577631-3.384970244)*I_ms1; 

 

(1-7.977927385)*(1-I_ms2) < tm_tot-7.977927385; 

tm_tot-7.977927385 <= (131.0593178-7.977927385)*I_ms2; 

 

I_ms = 1+I_ms1+I_ms2; 
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@BIN(I_ms1); @BIN(I_ms2); 

 

!Volatility (I_v); 

!Tb > 165'C, penalty score = 0 

165'C >= Tb > 135'C, penalty score = (165-tb)/30 

135'C >= Tb > 65'C, penalty score = 1 

65'C >= Tb > 35'C, penalty score = (65-tb)/30+1 

35'C >= Tb > 15'C, penalty score = 2 

15'C >= Tb > -15'C, penalty score = (15-tb)/30+2 

Tb <= -15'C, penalty score = 3; 

 

!Disjunctive programming algorithm for I_v; 

(-273.15-165)*I_v1 <= tb-165; 

tb-165 < (526.85-165)*(1-I_v1); 

 

(-273.15-135)*I_v2 <= tb-135; 

tb-135 < (526.85-135)*(1-I_v2); 

 

(-273.15-65)*I_v3 <= tb-65; 

tb-65 < (526.85-65)*(1-I_v3); 

 

(-273.15-35)*I_v4 <= tb-35; 

tb-35 < (526.85-35)*(1-I_v4); 

 

(-273.15-15)*I_v5 <= tb-15; 

tb-15 < (526.85-15)*(1-I_v5); 

 

(-273.15+15)*I_v6 <= tb+15; 

tb+15 < (526.85+15)*(1-I_v6); 

 

I_v = (I_v1-I_v2)*(165-tb)/30+I_v2+(I_v3-I_v4)*(65-

tb)/30+I_v4+(I_v5-I_v6)*(15-tb)/30+I_v6; 

@BIN(I_v1); @BIN(I_v2); @BIN(I_v3); @BIN(I_v4); @BIN(I_v5); 

@BIN(I_v6); 

 

!Viscosity (I_vis); 

!vis = -1 - -0.1 or 0.1 - 0.7943 cp, penalty score = 1 

vis = -0.1 - 0.1 or 0.7943 - 1.2589 cp, penalty score = 

(vis+0.1)/0.2+1 

vis = 0.1 - 0.9 or 1.2589 - 7.9433 cp, penalty score = 2 

vis = 0.9 - 1.1 or 7.9433 - 12.5893 cp, penalty score = (vis-

0.9)/0.2+2 

vis = 1.1 - 2 or 12.5893 - 100 cp, penalty score = 3; 

 

!Disjunctive programming algorithm for I_vis; 

(-1+0.1)*(1-I_vis1) < vis+0.1; 

vis+0.1 <= (2+0.1)*I_vis1; 

 

(-1-0.1)*(1-I_vis2) < vis-0.1; 

vis-0.1 <= (2-0.1)*I_vis2; 

 

(-1-0.9)*(1-I_vis3) < vis-0.9; 

vis-0.9 <= (2-0.9)*I_vis3; 

 

(-1-1.1)*(1-I_vis4) < vis-1.1; 

vis-1.1 <= (2-1.1)*I_vis4; 

 

I_vis = 1+(I_vis1-I_vis2)*(vis+0.1)/0.2+I_vis2+(I_vis3-

I_vis4)*(vis-0.9)/0.2+I_vis4; 

@BIN(I_vis1); @BIN(I_vis2); @BIN(I_vis3); @BIN(I_vis4); 
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!Explosive limit (I_ex); 

!0 <= ex_range < 13, penalty score = 1 

13 <= ex_range < 27, penalty score = (ex_range-13)/14+1 

27 <= ex_range < 38, penalty score = 2 

38 <= ex_range < 52, penalty score = (ex_range-38)/14+2 

52 <= ex_range < 63, penalty score = 3 

63 <= ex_range < 77, penalty score = (ex_range-63)/14+3 

77 <= ex_range <= 100, penalty score = 4; 

!Disjunctive programming algorithm for I_ex; 

(0-13)*(1-I_ex1) < ex_range-13; 

ex_range-13 <= (100-13)*I_ex1; 

 

(0-27)*(1-I_ex2) < ex_range-27; 

ex_range-27 <= (100-27)*I_ex2; 

 

(0-38)*(1-I_ex3) < ex_range-38; 

ex_range-38 <= (100-38)*I_ex3; 

 

(0-52)*(1-I_ex4) < ex_range-52; 

ex_range-52 <= (100-52)*I_ex4; 

 

(0-63)*(1-I_ex5) < ex_range-63; 

ex_range-63 <= (100-63)*I_ex5; 

 

(0-77)*(1-I_ex6) < ex_range-77; 

ex_range-77 <= (100-77)*I_ex6; 

 

I_ex = 1+(I_ex1-I_ex2)*(ex_range-13)/14+I_ex2+(I_ex3-

I_ex4)*(ex_range-38)/14+I_ex4+(I_ex5-I_ex6)*(ex_range-

63)/14+I_ex6; 

@BIN(I_ex1); @BIN(I_ex2); @BIN(I_ex3); @BIN(I_ex4); 

@BIN(I_ex5); @BIN(I_ex6); 

 

!Permissible exposure limit (I_el); 

!Liquid and Vapour 

pel_tot < 1.088278863, penalty score = 0 

1.088278863 <= pel_tot < 1.688278863, penalty score = (pel_tot-

1.088278863)/0.6 

1.688278863 <= pel_tot < 2.088278863, penalty score = 1 

2.088278863 <= pel_tot < 2.688278863, penalty score = (pel_tot-

2.088278863)/0.6+1 

2.688278863 <= pel_tot < 3.088278863, penalty score = 2 

3.088278863 <= pel_tot < 3.688278863, penalty score = (pel_tot-

3.088278863)/0.6+2 

3.688278863 <= pel_tot < 4.088278863, penalty score = 3 

4.088278863 <= pel_tot < 4.688278863, penalty score = (pel_tot-

4.088278863)/0.6+3 

pel_tot >= 4.688278863, penalty score = 4; 

 

!Disjunctive programming algorithm for I_el; 

(-1.611721137-1.088278863)*(1-I_el1) < pel_tot-1.088278863; 

pel_tot-1.088278863 <= (7.388278863-1.088278863)*I_el1; 

 

(-1.611721137-1.688278863)*(1-I_el2) < pel_tot-1.688278863; 

pel_tot-1.688278863 <= (7.388278863-1.688278863)*I_el2; 

 

(-1.611721137-2.088278863)*(1-I_el3) < pel_tot-2.088278863; 

pel_tot-2.088278863 <= (7.388278863-2.088278863)*I_el3; 

 

(-1.611721137-2.688278863)*(1-I_el4) < pel_tot-2.688278863; 

pel_tot-2.688278863 <= (7.388278863-2.688278863)*I_el4; 
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(-1.611721137-3.088278863)*(1-I_el5) < pel_tot-3.088278863; 

pel_tot-3.088278863 <= (7.388278863-3.088278863)*I_el5; 

 

(-1.611721137-3.688278863)*(1-I_el6) < pel_tot-3.688278863; 

pel_tot-3.688278863 <= (7.388278863-3.688278863)*I_el6; 

 

(-1.611721137-4.088278863)*(1-I_el7) < pel_tot-4.088278863; 

pel_tot-4.088278863 <= (7.388278863-4.088278863)*I_el7; 

 

(-1.611721137-4.688278863)*(1-I_el8) < pel_tot-4.688278863; 

pel_tot-4.688278863 <= (7.388278863-4.688278863)*I_el8; 

 

I_el = (I_el1-I_el2)*(pel_tot-1.088278863)/0.6+I_el2+(I_el3-

I_el4)*(pel_tot-2.088278863)/0.6+I_el4 

+(I_el5-I_el6)*(pel_tot-3.088278863)/0.6+I_el6+(I_el7-

I_el8)*(pel_tot-4.088278863)/0.6+I_el8; 

@BIN(I_el1); @BIN(I_el2); @BIN(I_el3); @BIN(I_el4); 

@BIN(I_el5); @BIN(I_el6); @BIN(I_el7); @BIN(I_el8); 

 

!Acute health hazard (I_ah); 

!ld_total < -3.631132995, penalty score = 0 

-3.631132995 <= ld_total < -3.029073004, penalty score = 

(ld_total+3.631132995)/0.660205999 

-3.029073004 <= ld_total < -2.970926996, penalty score = 

(ld_total+3.029073004)/0.058146008*0.176145045+0.911927477 

-2.970926996 <= ld_total < -2.368867005, penalty score = 

(ld_total+3.029073004)/0.660205999+1 

-2.368867005 <= ld_total < -2.029073004, penalty score = 2 

-2.029073004 <= ld_total < -1.368867005, penalty score = 

(ld_total+2.029073004)/0.660205999+2 

-1.368867005 <= ld_total < -1.029073004, penalty score = 3 

-1.029073004 <= ld_total < -0.368867005, penalty score = 

(ld_total+1.029073004)/0.660205999+3 

ld_total >= -0.368867005, penalty score = 4; 

 

!Disjunctive programming algorithm for I_ah; 

(-6.698970004+3.631132995)*(1-I_ah1) < ld_total+3.631132995; 

ld_total+3.631132995 <= (2.301029996+3.631132995)*I_ah1; 

 

(-6.698970004+3.029073004)*(1-I_ah2) < ld_total+3.029073004; 

ld_total+3.029073004 <= (2.301029996+3.029073004)*I_ah2; 

 

(-6.698970004+2.970926996)*(1-I_ah3) < ld_total+2.970926996; 

ld_total+2.970926996 <= (2.301029996+2.970926996)*I_ah3; 

 

(-6.698970004+2.368867005)*(1-I_ah4) < ld_total+2.368867005; 

ld_total+2.368867005 <= (2.301029996+2.368867005)*I_ah4; 

 

(-6.698970004+2.029073004)*(1-I_ah5) < ld_total+2.029073004; 

ld_total+2.029073004 <= (2.301029996+2.029073004)*I_ah5; 

 

(-6.698970004+1.368867005)*(1-I_ah6) < ld_total+1.368867005; 

ld_total+1.368867005 <= (2.301029996+1.368867005)*I_ah6; 

 

(-6.698970004+1.029073004)*(1-I_ah7) < ld_total+1.029073004; 

ld_total+1.029073004 <= (2.301029996+1.029073004)*I_ah7; 

 

(-6.698970004+0.368867005)*(1-I_ah8) < ld_total+0.368867005; 

ld_total+0.368867005 <= (2.301029996+0.368867005)*I_ah8; 
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I_ah = (I_ah1-I_ah2)*(ld_total+3.631132995)/0.660205999+(I_ah2-

I_ah3)*((ld_total+3.029073004)/0.058146008*0.176145045+0.911927

477)+(I_ah3-I_ah4)*((ld_total+3.029073004)/0.660205999+1) 

+(I_ah4-I_ah5)*2+(I_ah5-

I_ah6)*((ld_total+2.029073004)/0.660205999+2)+(I_ah6-

I_ah7)*3+(I_ah7-

I_ah8)*((ld_total+1.029073004)/0.660205999+3)+I_ah8*4; 

@BIN(I_ah1); @BIN(I_ah2); @BIN(I_ah3); @BIN(I_ah4); 

@BIN(I_ah5); @BIN(I_ah6); @BIN(I_ah7); @BIN(I_ah8); 

 

!Formulation for OWA operators; 

bin11*I_fl + bin12*I_ms + bin13*I_v + bin14*I_vis + bin15*I_ex 

+ bin16*I_el + bin17*I_ah = r1; 

bin21*I_fl + bin22*I_ms + bin23*I_v + bin24*I_vis + bin25*I_ex 

+ bin26*I_el + bin27*I_ah = r2; 

bin31*I_fl + bin32*I_ms + bin33*I_v + bin34*I_vis + bin35*I_ex 

+ bin36*I_el + bin37*I_ah = r3; 

bin41*I_fl + bin42*I_ms + bin43*I_v + bin44*I_vis + bin45*I_ex 

+ bin46*I_el + bin47*I_ah = r4; 

bin51*I_fl + bin52*I_ms + bin53*I_v + bin54*I_vis + bin55*I_ex 

+ bin56*I_el + bin57*I_ah = r5; 

bin61*I_fl + bin62*I_ms + bin63*I_v + bin64*I_vis + bin65*I_ex 

+ bin66*I_el + bin67*I_ah = r6; 

bin71*I_fl + bin72*I_ms + bin73*I_v + bin74*I_vis + bin75*I_ex 

+ bin76*I_el + bin77*I_ah = r7; 

 

bin11 + bin12 + bin13 + bin14 + bin15 + bin16 + bin17 = 1; 

bin21 + bin22 + bin23 + bin24 + bin25 + bin26 + bin27 = 1; 

bin31 + bin32 + bin33 + bin34 + bin35 + bin36 + bin37 = 1; 

bin41 + bin42 + bin43 + bin44 + bin45 + bin46 + bin47 = 1; 

bin51 + bin52 + bin53 + bin54 + bin55 + bin56 + bin57 = 1; 

bin61 + bin62 + bin63 + bin64 + bin65 + bin66 + bin67 = 1; 

bin71 + bin72 + bin73 + bin74 + bin75 + bin76 + bin77 = 1; 

 

bin11 + bin21 + bin31 + bin41 + bin51 + bin61 + bin71 = 1; 

bin12 + bin22 + bin32 + bin42 + bin52 + bin62 + bin72 = 1; 

bin13 + bin23 + bin33 + bin43 + bin53 + bin63 + bin73 = 1; 

bin14 + bin24 + bin34 + bin44 + bin54 + bin64 + bin74 = 1; 

bin15 + bin25 + bin35 + bin45 + bin55 + bin65 + bin75 = 1; 

bin16 + bin26 + bin36 + bin46 + bin56 + bin66 + bin76 = 1; 

bin17 + bin27 + bin37 + bin47 + bin57 + bin67 + bin77 = 1; 

 

@BIN(bin11); @BIN(bin12); @BIN(bin13); @BIN(bin14); 

@BIN(bin15); @BIN(bin16); @BIN(bin17); 

@BIN(bin21); @BIN(bin22); @BIN(bin23); @BIN(bin24); 

@BIN(bin25); @BIN(bin26); @BIN(bin27); 

@BIN(bin31); @BIN(bin32); @BIN(bin33); @BIN(bin34); 

@BIN(bin35); @BIN(bin36); @BIN(bin37); 

@BIN(bin41); @BIN(bin42); @BIN(bin43); @BIN(bin44); 

@BIN(bin45); @BIN(bin46); @BIN(bin47); 

@BIN(bin51); @BIN(bin52); @BIN(bin53); @BIN(bin54); 

@BIN(bin55); @BIN(bin56); @BIN(bin57); 

@BIN(bin61); @BIN(bin62); @BIN(bin63); @BIN(bin64); 

@BIN(bin65); @BIN(bin66); @BIN(bin67); 

@BIN(bin71); @BIN(bin72); @BIN(bin73); @BIN(bin74); 

@BIN(bin75); @BIN(bin76); @BIN(bin77); 

 

r1 >= r2; r2 >= r3; r3 >= r4; r4 >= r5; r5 >= r6; r6 >= r7; 

 

I_SHI = I_fl+I_ms+I_v+I_vis+I_ex+I_el+I_ah; 
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!Summation of sub-index values to calculate total weighted 

index score; 

I_SHIr = 

0.3543*r1+0.2399*r2+0.1587*r3+0.1036*r4+0.0676*r5+0.0448*r6+0.0

312*r7; 

 

END 


