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Abstract

Continuum neural field models mimic the large scale spatio-temporal dynamics of

interacting neurons on a cortical surface. For smooth Mexican hat kernels, with

short-range excitation and long-range inhibition, they support various localised

structures as well as travelling waves similar to those seen in real cortex. These

non-local models have been extensively studied, both analytically and numerically,

yet there remain open challenges in their study. Here we provide new numerical

and analytical treatments for the study of spatio-temporal pattern formation in

neural field models. In this context, the description of spreading patterns with a

well identified interface is of particular interest, as is their dependence on boundary

conditions.

This Thesis is dedicated to the analyses of one- and two-dimensional localised

states as well as travelling waves in neural fields. Firstly we analyse the effects of

Dirichlet boundary conditions on shaping and creating localised bumps in one- di-

mensional spatial models, and then on the development of labyrinthine structures

in two spatial dimensions. Linear stability analysis is used to understand how spa-

tially extended patterns may develop in the absence and presence of boundary con-

ditions. For the case without boundary conditions we recover the results of Amari,

namely the widest bump among two branches of solutions is stable. However, new

stable solutions can arise with an imposed Dirichlet boundary condition. For a

Heaviside non-linearity, the Amari model allows a description of solutions using

an equivalent interface dynamics. We generalise this reduced, yet exact, descrip-

tion by deriving a normal velocity rule that can account for boundary conditions.

We extend this approach to further treat neural field models with spike frequency

adaptation. These can exhibit breathers and travelling waves. The latter can take
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the form of spiral waves, to which we devote particular attention. We further study

neural fields on feature spaces in the primary visual cortex (V1), where cells re-

spond preferentially to edges of a particular orientation. Considering a general

form of the synaptic kernel which includes an orientation preference at each spa-

tial point, we present the construction and stability of orientation bumps, as well

as stripes.

To date there has been surprisingly little analysis of spatio-temporal pattern for-

mation in neural field equations described on curved surfaces. Finally, we study

travelling fronts and pulses on non-flat geometries, where we consider the effects

of inhomogeneities on the propagation velocity of these waves. In all sections, the-

oretical results for pattern formation are shown to be in excellent agreement with

simulations of the full neural field models.
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1
I N T R O D U C T I O N

In the 20th century, two ground-breaking findings shed light on the foundations

of mathematical neuroscience: (i) large-scale dynamics in real cortical tissue de-

pends on the activity of individual cells, whose anatomical structure comprises

axons (sending signals) and dendrites (receiving signals), (ii) these cells are seen

as electrical units: their task is to conduct signals by reacting to electrical current.

Since Hodgkin & Huxley [1] described the generation and propagation of an action

potential in the giant axon of the squid (1952) via a conductance based model (an

electrical circuit representation of a cell membrane), the field of computational neu-

roscience motivated by experimental studies as well as mathematical and numeri-

cal methods has been an increasingly popular research area. The development of

multi-electrode technology in the late 1950s enabled the characterisation of resting

(non-signalling) membrane voltage of cells in living tissue slices [2]. Shortly after

that, the advent of such tissue slice techniques opened new research routes for the

electro-physiological studies of synaptic transmission, as well as whole cell record-

ing techniques in the 1980s [3]. Hence, research on neural networks and large-scale

neural dynamics, which were relatively unrecognised by the scientific community

until the 1980s, have now been one of the main sources for progress in the field of

mathematical neuroscience. In particular, neural field models describing the coarse-

grained spatio-temporal dynamics of real cortical tissue are now widely studied in
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introduction

this field. These models, initially conceived in the late 1970s by Wilson and Cowan

[4, 5], Amari [6, 7], and Nunez [8], are non-linear spatially extended systems typ-

ically cast as continuum integro-differential equations. Neural field models are

motivated by anatomical and physiological findings, and are commonly used to

describe large-scale cortical dynamics in neuro-imaging experiments.

The research in this Thesis addresses three important aspects of the dynamics of

Amari type neural field models: (i) imposition of Dirichlet boundary conditions,

(ii) the use of an interface dynamics approach to construct solution and analyse

stability, (iii) modelling and analysis of neural fields on non-flat geometries.

Dirichlet boundary conditions

In many partial differential equation models, boundary conditions are usually

needed for describing how activity spreads and how a model interacts with its

environment. Neural field models are typically expressed in the form of integro-

differential equations, whose associated Cauchy problems do not require the spec-

ification of boundary conditions. Hence, the activity of neural dynamics are often

developed on finite as well as infinite domains without regard to the role of bound-

ary conditions in shaping or creating patterns.

Since the size of the brain is evolutionarily restricted by the skull, the cortex has

a limited surface area. In this sense, the importance of imposing boundary condi-

tions is evidenced by the fact that the neural circuits of the neocortex are adapted to

many different tasks, giving rise to functionally distinct areas such as the prefrontal

cortex (for problem solving), motor association cortex (for coordination of complex

movement), the primary sensory cortices (for vision, hearing, somatic sensation),

Wernicke’s area (language comprehension), Broca’s area (speech production and ar-

ticulation), and so on. Thus it would seem reasonable to parcellate their functional

activity by the use of appropriate boundaries and boundary conditions. Previous

work by Daunizeau et al. [9] on dynamic causal modelling for evoked responses

using neural field equations has used Dirichlet boundary conditions. Hence, one
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major topic here is to study the effect of a Dirichlet boundary condition that clamps

neural activity at the boundary to a specific value. Of course other choices are pos-

sible, though this one is one way to enforce a functional separation between cortical

areas [9].

Dimensionally reduced system of equations

Many solutions of neural field models can be described using the notion of an in-

terface. An interface denotes the boundary between high and low states of neural

activity, and can be mathematically defined by a level set condition [10]. It is quite

easy to track an interface in the one-dimensional Amari model with Heaviside fir-

ing rate as the activity reduces to a point or a set of points at threshold crossings.

In two-dimensional systems, we expect the interface dynamics to be more compli-

cated, as in the work of Coombes et al. [11], where the activity reduces to a closed

curve. Here we extend the work in [11] to treat neural field models with boundary

conditions for a generic synaptic kernel.

Outline of the Thesis

Chapter 2

To understand the dynamics of neurons at the macro-level, one should first be famil-

iar with their function, what they do, how they function individually and how they

interact collectively. Hence, in order to better understand the dynamics of neuron

populations, the first Chapter of this Thesis is concerned with the properties and

models of single neurons. We first describe some of the well known single neuron

models; from the Hodgkin & Huxley model to the analytically more tractable leaky

integrate and fire model. We then illustrate the main components and basic prop-

erties of neural field models, for which there is a substantial and growing body of

knowledge with various refinements including threshold accommodation, axonal
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delays, and synaptic plasticity. This Chapter provides the relevant physiological

background for interpreting the neural field models that are treated throughout

this Thesis.

Chapter 3

Neural field models with short-range excitation and long-range inhibition support

spatially localised solutions in the form of spots in two spatial dimensions (known

as bumps in one dimension) [12]. In Chapter 3, we extend the standard Amari

model to study the dynamics of pattern formation (labyrinthine structures) arising

from azimuthal instabilities of a spot, posed on a bounded domain with a Dirichlet

boundary condition. Extending ideas from Coombes et al. [11], we develop a

numerical scheme to evolve the interface dynamics to highlight how a Dirichlet

boundary condition can limit the growth of spreading spatio-temporal patterns.

Studying such models with a Heaviside firing rate non-linearity often allows a

better understanding of the stability of stationary solutions via the construction

of certain integrals over synaptic kernels. Amari’s seminal work developed an

approach for analysing localised solutions of neural field models posed on the real

line, and has recently been extended to the flat planar domain by Coombes et

al. [11], albeit assuming that the synaptic connectivity can be expressed in terms

of a linear combination of zeroth order modified Bessel functions of the second

kind. Here, we remove this restriction and show that the interface dynamics can

be described for more general synaptic kernel functions. Moreover, motivated by

the work of Herrmann et al. [13], the last part of the Chapter 3 is devoted to neural

field models with piece-wise constant interactions, to allow for analytical progress.

Chapter 4

Adaptation is a negative feedback process that diminishes the firing rate activity

of neurons. With the addition of spike frequency adaptation, neural field models

can exhibit activity states such as breathers, travelling waves, and rotating spiral

waves. In this Chapter, we develop a theory for interface dynamics in neural fields
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with adaptation, and show that they are in excellent numerical agreement with di-

rect numerical simulations for localised non-oscillatory labyrinthine structures and

oscillatory breathers. Spiral waves are one of the most common rotating travel-

ling waves that occur throughout nature: from galaxies with millions of light-years

across in diameter, to seashells that are only a couple of centimetres across [14].

These waves also appear in various biological systems, for example, in cardiac

muscle during ventricular fibrillation [15]. In Chapter 4, we concentrate on the

properties of neural fields with a recovery variable, that can also subserve the gen-

eration of planar rigidly rotating spiral waves in cortical tissue [16]. The behaviour

of such travelling waves has previously been analysed for equivalent partial differ-

ential equation models (PDE) on bounded domains with a smooth sigmoidal firing

rate function [16, 17]. We study spiral waves in neural fields using equivalent PDE

models with Dirichlet boundary conditions and very steep sigmoidal firing rate

(that mimics the Heaviside firing rate), and perform their numerical continuation

under parameter variation.

Chapter 5

Another natural extension of the work presented in Chapter 3 and Chapter 4 is to

analyse neural fields on feature spaces. In the first half of this Chapter, we focus

on neural fields of primary visual cortex (the first cortical region that processes

visual information from the eyes), where cells respond preferentially to lines and

edges of a particular orientation [18]. A standard Amari type neural field model (in

one spatial and one orientation dimension) is studied with a generalised synaptic

weight kernel, for which w(r, r′) is modified according to w(r, r′) = w(r, r′|θ, θ′) to

produce orientation preference at each spatial location. The neural field dynamics

of primary visual cortex has recently been studied by Bressloff et al. [18] with

a Heaviside firing rate, and is thus appropriate for a further analysis using an

interface approach. Stationary bump solutions that are found to be organised via

a snaking bifurcation structure are also discussed in detail. The second half of this
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Chapter is concerned with the existence and stability of stripes that are relevant to

understanding visual hallucinations.

Chapter 6

There is no substantial difficulty in formulating neural field models on curved sur-

faces, though to date there has not been much analysis of spatio-temporal pattern

formation in this context. In Chapter 6, we discuss the pertinent differences be-

tween the planar neural field models discussed in previous Chapters and the well

known folded characteristics of real cortex, with its sulci and gyri. We then in-

vestigate the model with different levels of complexity and heterogeneity. In the

presence of adaptation and a piece-wise constant modulation function (describing

a curved cortex), we observe the reflection and compression of waves. Since lo-

cal cortical and cortico-cortical interactions in the brain are highly dependent on

the degree of gyrification, we study travelling fronts in neural fields with various

constraints in terms of the degree of excitability (stronger or weaker synaptic con-

nections) varying between gyri and sulci. We also treat the effect of curvature on

wave speed.

Chapter 7

We end this Thesis in Chapter 7 by briefly reviewing the previous Chapters and

discussing some potential future work on extending neural field equations.
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2
M AT H E M AT I C A L M O D E L S : F R O M N E U R O N S T O N E U R O N

P O P U L AT I O N S

Due to the high complexity of the nervous system, mathematical models of brain

activity have been developed over a wide range of spatio-temporal scales: from

microscopic (single neurons) to meso- and macroscopic (neural networks). Since

the dynamics of the brain can never be fully understood without understanding

the way neurons exchange information, models for analysing the behaviour and

structure of single neurons at the micro level are of great importance. In contrast

to highly chaotic and non-linear dynamics of neurons at the micro-scale, the emer-

gence of smoother and more regular dynamics, in which the constituent particles

are arranged together, is often observed in large-scale systems [19]. The study of

such dynamics allows substantial insights into not only neural functions in various

brain regions but also the basis of complex processes such as cognition, spatial

navigation and memory.

Since neurons are the essential units for information processing, it is worth begin-

ning this Chapter by familiarising ourselves with their elementary structure and

function in §2.1. We then review some of the most common single neuron models

in §2.2 and take an introductory step to networks of neurons for analysing collective

behaviour of spiking neurons. Since neural field modelling is a very well-known

framework that captures spatio-temporal activity on the macroscopic scale, in §2.3,

9



2.1 biological motivation : the cells of the brain

we expand our review by exploring the properties of these models. Neural field

models will be the main focus of this Thesis.

2.1 biological motivation : the cells of the brain

The central nervous system consists of two major types of cells: glial cells and

neurons. Glial cells were discovered in the mid 19th century and are believed to

comprise more than half of the cells in the brain [20]. The name glia comes from

the Greek word ‘glue’, implying that these cells hold neurons together and allow

chemical and electrical impulses to travel faster [21]. Unlike neurons, these cells

do not have an ability to carry electrical impulses. Depending on their function,

there are a couple of types of glial cells in the nervous system, yet the scientific

community has mostly focused on the largest group called astrocytes, particularly

after the 1980s, when experiments performed by Diamond showed that Einstein’s

brain had more astrocytes than neurons [22]. Although the percentage, classifica-

tion and function of the glial cells relative to those of neurons are still under debate,

recent findings suggest that these cells play many important roles ranging from ho-

moeostasis to plasticity in the brain [23]. We refer the reader to [24–27] for further

discussion about glial cells, and concentrate only on the mathematical models of

neurons and their networks.

A typical human brain comprises at least 1010 neurons, each of which has thou-

sands of nerve endings, from which special chemical messengers called neurotrans-

mitters are released into a small gap called the synaptic cleft allowing communication

with neighbouring neurons [28]. At a synapse pre-synaptic neuron and post-synaptic

neurons communicate with one another by releasing and receiving neurotransmit-

ters, respectively.

Since neurons are distinguished from other cells by their remarkable wiring system

(specialised for each neuronal type), it is worth familiarising ourselves with the
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2.1 biological motivation : the cells of the brain

elementary structure of an individual neuron, that can be roughly divided into

three parts: dendrite which detects and processes the neurotransmitters emitted by

pre-synaptic neurons, soma (cell body) which processes the signals received from

dendrites, and axon which generates output and transmits the information from

the neuron to other neurons [29]. Although their morphological and chemical

properties may change depending on their task in the nervous system, almost all

neurons have these three main structures. In Figure 2.1, neurons with various size

and morphology are shown.

Fig. 2.1: Examples of neurons with different morphologies. Some neurons may

have large and widely branched dendritic structures yet a small and un-

branched axon, meaning that these neurons send information to a few

places in the nervous system but receive information from a wide range

of sources. It is also true the other way around: receiving inputs from a

few sources and sending them to many places require a large axon and a

small dendritic tree, e.g a Purkinje cell. Scale bars represent 100 µm. Soma

and dendrites are represented in black and axons are represented in red.

Image modified from [30].
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2.1 biological motivation : the cells of the brain

2.1.1 Mechanism of Action Potential and Sub-cellular Processes

Neurons are specialised for receiving and processing information coming from

other cells, as well as conducting and transmitting information to other cells via

electrical currents known as nerve impulses or action potentials, which propagate

regeneratively along the axon [31]. This process of signal transmission is extremely

complex, involving many types of ions (predominantly Na+, K+, Ca2+, Cl−) with

various intra- and extra-cellular concentrations. Almost all action potentials for a

given neuron look similar to each other, implying that the timing of these impulses

matter (not the shape or form). The duration of an action potential is usually 1− 3

ms. In Fig. 2.2, the first row shows cartoons for resting (A) and depolarised (B)

states of a cell and the second row shows a schematic of a neuron (C), where an

electrical pulse (D) is measured using an electrode placed in the axon (sometimes

soma).

      more K+

less Na+

  
   than otside cell

-75 mV

         

       
           The cell is polarised.

 Semi-permeable 
  membrane

+10 mV

 Semi-permeable 
  membrane

Na+

K+

             The cell is depolarised

Na+  channels open

Action Potential Plateau

Stimulus

    dendrites
soma

axon electrote

Reploarisation Depolarisation

3 mscell is polarised 
    (resting) refractory

A B

C D

-­75

0

+10

Fig. 2.2: An illustration of a cell in its polarised resting state (A) and stimulated

depolarised state (B). Basic structures of a neuron is shown in (C) and an

example for a mechanism of an action potential is shown in (D).
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2.1 biological motivation : the cells of the brain

Broadly speaking, the change in the electrical potential is completed in four main

stages, see Fig. 2.2D. Without any input, in the resting state, the inside of a neuron

is more negatively charged relative to outside of the cell leading to a membrane

potential typically ∼ −75 mV (polarisation) [29], shown in Fig. 2.2A. After an

external stimulus is applied, the permeability of the cell membrane changes due to

the opening of ion channels, allowing an influx of Na+ into the cell and a flow of

K+ the outside of the cell [29]. This avalanche effect is called depolarisation, shown

in Fig. 2.2B. The cell stays in a depolarised state for a certain time period before

it returns back to its resting state, and this is called repolarisation, where sodium

Na+ channels are deactivated. Since sodium Na+ channels which are responsible

for depolarisation of the membrane need to recover from the deactivation, a neuron

can not be excited immediately after an action potential. Thus, membrane potential

resting, depolarisation and repolarisation states are followed by a refractory period,

where a neuron becomes unresponsive after the undershoot of the potential.

After this complex chain of biochemical processes and the propagation of an action

potential along an axon, a chemical synapse can be activated in the synaptic cleft

between a pre-synaptic and post-synaptic neuron. Note that, although it is not in

the scope of this Thesis, neurons can also be connected electrically via gap junctions,

providing direct communication between cells through hemi-channels (connexin

proteins) [32].

Now we expand our perspective to treat neuron populations, and try to give a

glimpse of how large-scale brain dynamics may differ from that of a single neuron.

2.1.2 From Noisy Neurons to Deterministic Neural Networks and Populations

Although the latest advances in mathematical neuroscience have led to a great un-

derstanding about the interplay between cellular (detailed single neuron dynamics)

and complex functions (cognitive and behavioural states), developing a general the-
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2.1 biological motivation : the cells of the brain

ory of the brain function is still a long way off. In this context, mathematical and

numerical techniques to gain insight into the connection between the microscopic

and macroscopic dynamics are key to understand the complexity of the brain. A

recent book by Acton [33] includes an interesting discussion about top-down and

bottom-up approaches in brain modelling. Both approaches emphasise the idea of

bidirectionally: the top-down approach refers to the generation of cellular dynamics

from neural networks in the macroscopic level and the bottom-up approach refers to

the generation of large-scale spatio-temporal dynamics from cell-to-cell interactions

[33]. Although noisy and heterogeneous firing patterns are common features of in-

dividual neurons, it has not been fully understood how heterogeneity at the cell

level translates into heterogeneity at the population level [34]. Neural field models

that predict macroscopic brain activity only take mean firing rate proportion into

account, ignoring all forms of heterogeneity and higher order statistics. This may

seem overly simplistic, yet scientists have revealed that macro-scale activity may

be relatively homogeneous and deterministic, and such homogeneity may result

from a high of single cells being in the same state [35, 36]. For instance, individ-

ual neurons that are physically separated from each other fail to keep synchrony

with the circadian clock; however, the intact cortical tissue demonstrates a robust

24 hour rhythm [36, 37]. This rhythm is driven by the central circadian pacemaker

in the suprachiasmatic nucleus that resides in the ventral hypothalamus and stays

in synchrony with the outside world [38, 39]. See [35, 36, 40, 41] for an overview

various deterministic and homogeneous factors in cell-cell variability, which have

been linked to population dynamics.

In this Thesis, we will ignore complex cellular mechanisms and concentrate only

on the dynamics of network activity using a non-linear and deterministic coarse-

grained model of the neural field, whose synaptic kernels are associated with the

spatial distribution of neuronal synaptic interactions. See [10, 18, 42] for further

discussion.
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2.1 biological motivation : the cells of the brain

2.1.3 Motivation: Columnar Structure of the Cortex

The structure of the cortex can be viewed as a large number of micro- and macro-

columns, each comprising laminar substructures. Due to this laminar organisation,

cortical tissue is often regarded as a two-dimensional structure. For example there

are about a million cortical columns in humans, each of which is considered as an

elementary unit of organisation in the cortex [43]. Perhaps the first steps taken in

understanding the columnar organisation in the cortex can be attributed to Mount-

castle’s work on the cat’s somatosensory cortex in the middle of the twentieth

century, when vertical electrode recordings showed that vertical clusters of neu-

rons extend through the cortical layers of the brain and form cylinders (columns)

of 200− 500 µm width [2, 44, 45]. Using electrical recordings, Mouncastle showed

that neurons that are inside these columns respond to the same stimulation with

similar electrical activity, meaning that these neurons have common receptive field

properties. This is illustrated in Fig. 2.3. In the last few decades, the studies moti-

vated by the idea of cortical columns and their functional organisation have been

associated with various physiological [46, 47] and anatomical [48] bases. For ex-

ample, columnar organisation of the cortex has been comprehensively studied in

somatosensory and visual systems [49].

Following Mountcastle’s pioneering work, in the 1970s, Hubel and Wiesel [50, 51]

showed that neurons with identical receptive fields in cat and monkey visual cortex

are grouped in the vertical direction (known as hypercolumns) and share the same

orientation preference for bars of light. Despite having rather discrete behaviour in

primary somatosensory cortex [49] with no apparent shifts in the receptive fields in

vertical directions, orientation columns in visual cortex smoothly vary in a direction

parallel to the surface of the visual cortex. The columnar structure of the visual

cortex and the mechanism of orientation preference will be studied in Chapter 5.

Several studies have shown that because of the radial migration of cortical neurons
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2.2 neuron models : single neurons

Fig. 2.3: An illustration of Mountcastle’s seminal experiment, where moving an

electrode perpendicular to the cortical surface he observed neurons with

similar responses to a precise stimulation; whereas moving the electrode

laterally to the cortical surface he observed neurons responding to the

same stimulation with a different electrical activity.

during brain development, there are also smaller columns, so called micro-columns,

with a diameter 20− 50 µm, each comprising up to a hundred neurons [2, 52, 53].

We will ignore these definitional issues and focus on the broad aspects of columnar

organisation in the cortex. Our aim throughout this Thesis is not to construct a

detailed model of cortical columns, but to study the macro-scale neural activity

inside these columns, and networks of these columns. For further information

about columnar structure of the cortex we refer the reader to a number of reviews

in [2, 43, 44, 54].

2.2 neuron models : single neurons

As mentioned in §2.1.2, numerous physiological and anatomical hypotheses have

been clarified with the help of experimental findings at the single neuron level.

Therefore it is worthwhile to revisit some of the more popular single neuron models

before we pay attention to models of neuron populations, and neural field models

in particular. Single neuron models can be broadly classified into three main types:
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2.2 neuron models : single neurons

binary neurons, integrate and fire neurons, and conductance based systems [41].

Binary neurons can have only two states with two outputs: firing or non-firing.

Integrate and fire models are the simplest and most well known examples of the

models that captures the essence of excitable behaviour of the membrane, leading

to action potential (spike) generation with a discontinuous fire/reset process.

We start this section by giving some essential properties for electro-physiological

models of cell membrane (usually treated as a capacitor). Then, in §2.2.2, we

overview the Hodgkin & Huxley model [1], that is the most well-known biophys-

ical model of excitable cells. A considerable number of models remain at levels

of complexity in between Hodgkin & Huxley and the Binary models (mentioned

above), including the Fitzhugh-Nagumo [55] and Integrate and Fire models [56, 57].

The Fitzugh-Nagumo model is a two-dimensional simplification of the Hodgkin &

Huxley model, and the one-dimensional integrate and fire model is popular in the

computational neuroscience community for its simplicity. Here the dimension of

the dynamical system is defined by the number of state variables.

2.2.1 Electrical Properties of Cell Membranes: an Introduction

The dynamic properties of the cell membrane are modelled by a capacitor. Figure

2.4 shows a simplified example of a cellular circuit. Here, ionic current can flow

through channels that open or close. These channels are modelled by (non-linear)

resistance. Using Kirchoff’s laws (current balance) the equation describing the

evolution of membrane potential is

C
dV
dt

+ IR = I. (2.2.1)

Here I is an externally injected current and IR is the ionic current. Note that we

only consider the simplest mechanism where only external currents are taken into

17



2.2 neuron models : single neurons
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Fig. 2.4: An illustration of a cellular circuit for an isolated cell, where the membrane

voltage exponentially increases during the injection of a constant current,

and decreases when the current is inactivated. Note that all charge flows

into the cell at the onset of current injection, and gives rise to an accumu-

lated response. Figure is redrawn from [58].
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2.2 neuron models : single neurons

account. However, there are many factors that influence the overall membrane cur-

rent, including the changes in the synaptic currents as well as various ion channels.

2.2.2 The Hodgkin-Huxley Model

Since it is extremely complicated to study a model that illustrates all the ionic basis

of complex neuron membrane, one should decide the most important factors for

understanding the information processing in a model neuron. Knowing that ion

channels play a crucial role for electrical signal transmission across the cell mem-

brane, the first and most comprehensive experiments for understanding the role of

three main ion channels and their role in generating action potential mechanism

were performed by Hodgkin & Huxley on the giant axon of the squid in 1952 [1]. In

addition to sodium (Na+) and potassium (K+) ionic currents, a third ionic current

was considered (mostly due to Cl−). Hodgkin & Huxley obtained the dynamics of

the membrane currents in terms of a system of four non-linear ordinary differential

equations [1]. Their model has motivated the construction of many single neuron

models, some of which are presented in the following sub-sections.

In the setting of the model developed by Hodgkin & Huxley [1], the total current

flowing through membrane is given as

C
dV
dt

+ ∑
i

Ii = I, (2.2.2)

where

∑
i

Ii = n4gK+(V −VK+) + m3hgNa+(V −VNa+) + gL(V −VL). (2.2.3)

Here the Vi, i ∈ {K+, Na+, L} are reversal potentials for potassium, sodium and

leak respectively. These can be determined using the formula for the Nernst poten-

tial [10]. In addition, gK+ , gNa+ and gL denote constant conductance values, and I

denotes any externally injected current. The equations describing m, n, h satisfy

dy
dt

= αy(1− y)− βyy, y = {m, n, h}, (2.2.4)
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2.2 neuron models : single neurons

αn =
0.01(V + 10)
e(V+10)/10 − 1

, αm =
0.1(V + 25)

e(V+25)/10 − 1
, αh = 0.07 eV/20, (2.2.5)

βn = 0.125 eV/80, βm = 4 eV/18, βh =
1

e(V+30)/10 + 1
, (2.2.6)

where the activation of potassium channels (n), activation of sodium channels (m),

and inactivation of sodium channels (h) are dimensionless quantities [1]. Figure 2.5

shows the dynamics of the Hodgkin & Huxley model obtained numerically with

an injected current varied from I = 0 (panels A & B) to I = 80 (panels D & E), as

well as its bifurcation diagram (panel C) and the dynamics of dimensionless quan-

tities (panel D). For more information on biophysical and mathematical aspects of

Hodgkin & Huxley model, we refer reader to comprehensive reviews in [59–61].

In the middle of 1950s, Fitzhugh made the important observation that while the

voltage V and gating variable m evolve on a similar time scale for an action po-

tential, the gating variables n and h evolve at much slower time scales [62]. This

resulted in a two-variable slow-fast phase plane model, showing quantitatively sim-

ilar behaviours to four-dimensional Hodgkin & Huxley model. We now visit this

dimensionally reduced polynomial model for analysing the dynamics of single

neurons.

2.2.3 The Fitzhugh-Nagumo Model

The Fitzhugh-Nagumo model (FHN) which effectively captures the fundamental

properties of action potentials in a single neuron was independently constructed

by Fitzhugh (1961) [55] and Nagumo et al. (1962) [63]. This model not only allows

a simplification of the mathematically more complicated Hodgkin & Huxley equa-

tions [64], but also allows for phase plane methods to gain a better understanding

of spike generation [65, 66]. A second order differential equation introduced by

Fitzhugh [55] is

x′′ + f (x)x′ + g(x) = 0, (2.2.7)
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Fig. 2.5: Dynamics of membrane potential and gating variables for the Hodgkin &

Huxley model are shown. Membrane potentials (panels A & B) and the

behaviour of the gating variables (panels D & E) are plotted for I = 0 µA

and I = 80 µA respectively. Considering the injected current I as a bifurca-

tion parameter, sub- and super-critical Hopf bifurcations that respectively

result in stable or unstable limit cycles are observed, as seen in panel C.

Lastly, panel F shows the dynamics of dimensionless quantities (n, m, h).

Parameters are gK+ = 36 mmho cm−2, gNa+ = 120 mmho cm−2, gL = 0.3

mmho cm−2, VNa+ = 50 mV, VK+ = −77 mV, VL = −54.4 mV, C = 1 µF

cm−2.
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where x′ denotes the derivative of x with respect to time. Here g represents the

oscillatory quantity and f is often regarded as a damping coefficient that controls

the degree to which oscillations are decayed for harmonic oscillators. Replacing

the damping constant with a quadratic function f (x) = p̃(x2− 1) (even), p̃ > 0 and

considering g(x) = x (odd), a simplified model of Van der Pol’s equation [67] is

obtained, and hence the qualitative properties for a wide class of non-linear relax-

ation oscillators can be explored [68]. Since f (x) = p̃(x2 − 1) is an even function,

Lienard transformation [69] can be applied to equation (2.2.7) to obtain a pair of

first order equation given by

x1 = x, x2 =

x∫
0

f (s)ds = p̃
(
x3/3− x

)
. (2.2.8)

After dropping intermediate steps and rescaling x2 = x2/ p̃, (2.2.8) becomes

x′1 = p̃
(
x1 + x2 − x3

1/3
)

, (2.2.9)

x′2 = −x1/ p̃. (2.2.10)

Several terms can be added to explore various dynamics in the model [68]:

x′1 = p̃
(
x1 + x2 − x3

1/3 + x3
)

, (2.2.11)

x′2 = − (x1 − a + bx2) / p̃, (2.2.12)

where 0 < a < 1, 1− 2b/3 < a < 1 and b < p̃2. In fact, this system of equations

can be rewritten with a commonly used FHN notation (x1 = V, x2 = W, x3 = I)

p̃V ′ = h(V)−W + I, (2.2.13)

W ′ = V − βW, (2.2.14)

where h(V) = V(a−V)(V − 1) with β, p̃ > 0 . Note that I is the magnitude of the

applied current and the two variables in the model represent membrane voltage (V)

and recovery (or refractoriness) (W), respectively. Here if the external input I ex-

ceeds some activity threshold, the stable singular point (the brown star in Fig. 2.6B

& 2.6E) in the model destabilises via a Hopf bifurcation, as seen in Fig. 2.6E, &
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2.6F. Thus, for sufficiently large values of current input I, the voltage variable V ex-

hibits oscillatory behaviour with a series of spikes, (shown in Fig. 2.6D), and with

a further increase in I these oscillations drop to the steady state (not shown). The

Fig. 2.6: Time evolution and phase plane diagram for the FHN model with two

different values of the constant drive I. Membrane voltage V (panels A

& D), phase plane diagram with nullclines (dashed lines) of potential V

and recovery W variables (panels B & E) and their cycling behaviour in

time (panels C & F) are shown for I = 0 and I = 0.3 respectively. First

row (I = 0): in the absence of external input, the fixed point (brown dot)

is stable. Second row (I = 0.3): a repetitive spiking activity is seen with

a sufficiently large constant external current, where the stable fixed point

loses its stability. The fixed point loses stability in favour of a stable limit

cycle. Parameters are a = 0.1, β = 0.5 and p̃ = 100.

essential feature of the FHN model is that not only does it allow a detailed phase

plane analysis of limit cycles but also captures the main physiological features of a

neuron. Comprehensive reviews on the derivation of the Hodgkin & Huxley model

and its simplified forms, including various forms of FHN model, can be found in

[41, 70].
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2.2.4 Integrate and Fire Model

The integrate and fire (IF) neuron model is based upon equation (2.2.2) with the

inclusion of a threshold condition, where a spike is characterised only through

its firing times. In other words, after exceeding some firing threshold via either an

external current or an input signal from neighbouring pre-synaptic neurons, a spike

is generated and the membrane voltage V is reset to a resting state which is usually

taken to be zero for simplicity. Although various linear and non-linear forms of

IF models exist in the literature, the best known version is the leaky IF model

(LIF) [57]. Initially proposed by Lapicque (1907) [56], the leaky model has a long

history with wide application in computational and mathematical neuroscience

due to its analytical tractability and ability to capture the qualitative behaviour of

a real neuron [57, 71]. The LIF model is based on equation (2.2.1) where

CV ′(t) = −V(t) + I, tm < t < tm+1. (2.2.15)

Here, the external input I may be constant as well as time dependent. After reach-

ing a certain threshold, a spike is generated at time tm and membrane voltage

immediately resets to a resting value V0, lim
t→tm

V(t) = V0. In Figure 2.7, the time evo-

lution of a LIF model with a constant (A) and time dependent (B) currents is shown.

Considering a time dependent input I(t), one can find an analytical solution for the

voltage:

V(t) = V0e−t/C +
1
C

t∫
0

e−(t−s)/C I(s)ds, (2.2.16)

where V0 denotes the resting value. For simplicity, the spiking time tm is set to

zero.

The IF models have been successfully applied to many problems in neuroscience,

including the estimation of neuron response in sensory and motor behaviours, as

well as their firing rate behaviour [72, 73]. In this context IF neurons have been suc-
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Fig. 2.7: A representation of the voltage (blue) and post-synaptic current (pink) of

a single neuron. Panel (A): voltage with a constant current I = 1.01. Reset

value is chosen to be zero for simplicity. Panel (B): voltage with a time

dependent current in the form I(t) = I1 + I2e−βt, where β controls the rate

of drop of signal. Parameters are β = 1.5, I1 = I2 = 1.01.

cessfully expanded to the network level [41], where the dynamics of i = 1, 2, ..., N

identical neurons can be described by

τV ′i = −Vi + Ii(t), Ii(t) =
N

∑
j=1

Wij ∑
m

η(t− tm
j ), (2.2.17)

where neuron j is a post-synaptic neuron connecting its axons to the dendrites of

pre-synaptic neuron i. Here tm
j denotes mth the firing time for neuron j, Wij denotes

synaptic strength from neuron j to neuron i. The sum over m on the right hand

side of (2.2.17) represents the total post-synaptic response. This model has been

widely studied in the literature to include important aspects of pattern formation,

including travelling waves, spirals, and spots [74, 75]. Since the model given by

(2.2.17) can be challenging for analysing large values of N, one can study average

voltage activity in a neuron population using a continuous approximation with a

mean firing rate, namely using neural field models.

We now introduce a short time averaging over an arbitrary function v :

〈v〉 = 1
T

t∫
t−T

v(s)ds, (2.2.18)
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and a property of delta function in the form of

∞∫
−∞

η(s)δ(x− s)dx = η(x). (2.2.19)

Here one can write the sum over m on the right hand side of (2.2.17) as

1
T

t∫
t−T

dt′∑
m

η(t′ − tm
j ) =

1
T

t∫
t−T

dt′∑
m

∞∫
−∞

dsη(s)δ(t′ − tm
j − s). (2.2.20)

Introducing a function

fi(t) =
1
T

t∫
t−T

∑
m

δ(t′ − tm
i )dt′, (2.2.21)

the average of total input over a short time scale is given by

〈Ii(t)〉 =
N

∑
j=1

Wij

∞∫
0

dsη(s) f j(t− s). (2.2.22)

Here, f j represents the firing rate of neuron j. We can express the short time

average of synaptic voltage in equation (2.2.17) by an activity term ui = 〈Vi〉, so

that the firing rate of neuron j can be written by its average activity f j(t − s) =

f (uj(t − s)) [76]. Replacing the connectivity Wij by a continuous kernel w(x, x′)

due to characteristic spatial structure of the cortex [18], and considering η → 0 for

a slow synaptic process [76], equation (2.2.17) can be rewritten in the form of

u(x, t) =
∞∫

0

dsη(s)
∫
R

dx′w(x, x′) f (u(x′, t− s)), (2.2.23)

where η(t) is commonly chosen as α−function η(t) = αe−αtH(t) and can be ex-

pressed using Green’s function of a linear operator, for which we find
(

1 + 1
α

d
dt

)
η =

δ [10, 18]. This leads to a generic form of a continuum neural field equation in the

form
1
α

ut(x, t) = −u(x, t) +
∞∫
−∞

dx′w(x, x′) f (u(x′, t)). (2.2.24)
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2.3 neural field models

Although single neuron models are able to predict dynamical activity of real neu-

rons with a wide variety of spiking behaviour, such models are difficult to analyse

because of their complexity and thus they are not well suited to describe the be-

haviour of a tissue on the mesoscopic or macroscopic cortical scale [41, 77]. Neural

field modelling is a well known framework that captures spatio-temporal activity

on the macroscopic scale, so that the patterns over large parts of the brain, e.g. cor-

tex, can be explored. The history of neural fields can be traced back to the work

of Beurle in the 1950s, who pioneered the analysis of masses of cells in the brain

considering only excitatory neurons [78]. The first attempt at analysing more real-

istic neural populations was made by Griffith who studied spatio-temporal neural

activity with a partial differential equation approach [79, 80]. The seminal papers

written later on, by Amari [7] and Wilson & Cowan [4, 5], provide the basis for

modern day neural field models, where inhibitory and excitatory populations are

both represented.

2.3.1 The Model: Non-local Integro-differential Equations

Initially described by Brodmann in 1909, a real cortex has a six layered structure

[81]. These layers are the molecular layer (layer I), external granular layer (layer II),

external pyramidal layer (layer III), internal granular layer (layer IV), internal pyra-

midal layer (layer V), and polymorphic or multiform layer (layer VI), from outside

to inside [82]. In 1973, using a one-dimensional two-layer (excitatory and inhibitory

layers) population model, Wilson and Cowan [4, 5] studied synaptic activity of exci-

tatory and inhibitory coupled populations. Later in 1977, assuming that inhibition

is linear and faster than excitation in Wilson and Cowan’s model, Amari [7] sim-

plified their work by constructing a one-dimensional single layer mean field model
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with lateral inhibition (as an approximation of the two-layer model). However,

depending on the functional organisation of neurons in each layer of a cortical

tissue, one may write Amari’s reduced neural field model for each layer. For ex-

ample, see Pinto and Ermentrout’s work on a one-dimensional two-layer Amari

type model for single bump solutions (spatially localised patterns associated with

working memory) [83].

Here, focusing on one spatial dimension, we present a one-layer Amari type neural

field that is typically expressed in the form of an integro-differential equation:

∂u(x, t)
∂t

= −u(x, t) + ψ(x, t), ψ(x, t) =
∞∫
−∞

w(|x− x′|)H(u(x, t)− κ)dx′, (2.3.1)

where u is average membrane voltage, or synaptic activity, at a position x and time

t. Here w is a distance dependent connectivity function, that is often called as the

synaptic kernel.

Synaptic kernel: The kernel w in (2.3.1) represents the spatial distribution of synap-

tic interactions, where positive and negative connection strengths can be considered

as excitatory and inhibitory synaptic strengths, respectively. Typical functional

forms for the kernel are often chosen using exponential functions; considered in

such a way that w(x) → 0 as the distance x → ∞. The most popular used forms

are known as Wizard hat and Mexican hat functions; for example one can study

w(x) = (1− a|x|)e−|x|, (2.3.2)

for a Wizard hat kernel (a > 0) as shown in Fig. 2.8B, where neurons communicate

with short-range excitatory and long-range inhibitory interactions (also known as

lateral inhibition), or for a purely excitatory kernel (a = 0) as shown in Fig. 2.8A.

Interestingly, labeling studies [84] have shown that spatially periodic stripes are

formed by an extensive network of connections in the primate prefrontal cortex1

[85, 86]. Hence, a periodically modulated synaptic connectivity with a decaying

oscillatory behaviour allows a better representation of the interactions which are

1 A specialised cortical area encoding the information for working memory.
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believed to exist in prefrontal cortex. For example Laing et al. [87] studied the

Amari model with the effects of the coupling function:

w(x) = e−b|x| (b sin(|x|) + cos(x)) , (2.3.3)

to study short term working memory, see Fig. 2.8D. In fact, principal pyramidal

cells in a cortical tissue are often surrounded by local inhibitory interactions with

a lateral excitation [88, 89], implying that inverted Mexican hat kernel with short-

range inhibition and long-range excitation (Fig. 2.8C) is another natural choice for

representing synaptic interactions.

Firing rate function : The firing rate evoked by the membrane voltage was taken

to be Heaviside function by Amari. That is

f (u) = H(u− κ) =


1, if u ≥ κ

0, if u < κ

, (2.3.4)

where κ is firing threshold. Studying Amari type models with a Heaviside firing

rate non-linearity often allows substantial insight into solution properties (existence

and stability) via the construction of integrals over kernels. In his original work,

Amari found two bump solutions, the wider of which is always stable. Later in

1979, Kishimoto and Amari [90] showed the existence of a bump solution for a

smooth and monotonically increasing non-linear firing rate function which satisfies

the conditions limx→−∞ f (u(x, t)) = 0 and limx→∞ f (u(x, t)) = 1. An example of

such a firing rate is the sigmoid:

f (u) =
1

1 + e−µ(u−κ)
, (2.3.5)

where µ is the gain parameter and κ is the threshold parameter. Heaviside and

smooth sigmoidal firing rate functions are plotted in Fig. 2.8E and Fig. 2.8F respec-

tively.

Since their initial inception in the 1970s by Wilson and Cowan [4, 5], Amari [6, 7],

and Nunez [8], neural field models have been extensively studied in one-dimensional
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Fig. 2.8: Various synaptic kernels and firing rate functions that have been studied

in the literature to mimic interactions in the brain. A: excitatory kernel, B:

Wizard hat kernel, C: inverted Wizard hat kernel, D: oscillatory kernel, E:

Heaviside firing rate and F: smooth sigmoidal firing rate.

as well as in two-dimensional (planar) settings. This has included both the math-

ematical and numerical analysis of spatio-temporal patterns, and much has been

learnt about localised states, global periodic patterns, and travelling waves. To list

just a few of the common application areas, neural field modelling has shed light

on large-scale brain rhythms [42], geometric visual hallucinations [91, 92], mecha-

nisms for short term memory [93–95], motion perception [96–98], binocular rivalry

[99, 100], and anaesthesia [101]. There are also a number of reviews summarising

work to date, such as [102–106]. For the most recent perspective on the use of neu-

ral field modelling we refer reader to a comprehensive book by Coombes et al. [10].

As mentioned in section 2.2.4, large networks of IF neurons support the dynamics

of pattern formation of bumps as well as travelling waves. Here we will study

similar types of structures in a continuum neural field framework.

In addition to partial integro-differential equations (PIDE) for neural field models

given by (2.3.1) for certain synaptic kernels w, one can describe an equivalent sys-

tem of partial differential equations (PDEs) for a more straight forward numerical
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2.3 neural field models

implementation. Now we quickly overview the link between neural PDE models

and neural PIDE models.

2.3.2 Neural Fields with Partial Differential Equations

Due to the convolution structure on the right hand side of (2.3.1), several techniques

have been developed to transform the system of PIDE into an equivalent form of

PDE [95]. One of these techniques is to apply the Fourier transform to the convo-

lution structure, manipulate and then to take an inverse Fourier transform. This

method can be especially useful for exploiting many standard tools from dynami-

cal systems [103], as well as for facilitating the numerical analysis of the neural field

model [76]. Following the ideas presented by Laing [95], one can write equation

(2.3.1) in the form

F [ut + u] = F [w] (s)F [ f (u)] (s), (2.3.6)

where s is a transform variable (spectral parameter) and F [·] denotes the Fourier

transform. This transformation is achieved assuming that u and w are square inte-

grable functions. Here a specific connectivity function whose Fourier transform

can be written in the form of a rational function of s2 is given by F [w] (s) =

G(s2)/Q(s2), where G and Q are any polynomial functions. For example, consid-

ering the connectivity function w(x) = e−|x|/2 and its Fourier transform F [w] (s) =

(1 + s2)−1, (2.3.6) takes the form

(1 + s2)F [ut + u] (s) = F [ f (u)] (s). (2.3.7)

Here taking the inverse Fourier transform we obtain the PDE form as

(1− ∂xx)(ut + u) = f (u). (2.3.8)

See [17, 76, 95, 103] and Chapter 4 for further details on PDE methods for one- and

two- dimensional neural field models.
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2.3 neural field models

Although we mostly focus on the solutions of neural field models with spatially ho-

mogeneous dynamics throughout this Thesis, neural field models can be analysed

with various heterogeneities and complex feedback mechanisms. Now we will

overview some forms of the heterogeneities which can be described in a neural

field framework.

2.3.3 Neural Field Models with Adaptation and Heterogeneities

Neuronal activity is determined not only by the interactions between neurons but

also by metabolic processes and negative feedback mechanisms. This includes

spike frequency adaptation, axonal delay, threshold accommodation and synap-

tic plasticity. We now briefly describe models of these processes, some of which

will be studied further in later Chapters.

Adaptation: Spike frequency adaptation, which brings neural tissue back to its

resting state after high activity periods, is a common choice to modulate popu-

lation response [107]. This modulation is particularly important for disinhibited

cortices (where inhibition is blocked) for dampening the effects of high excitation.

Investigating a large group of cellular mechanisms, Benda and Herz developed an

universal model to investigate the role of spike frequency adaptation on the mech-

anism of signal processing at the single-neuron level [108]. The first analysis of a

population model with adaptation was performed by Pinto and Ermentrout, who

added a slow recovery variable to the Wilson-Cowan equations to describe the dy-

namics in disinhibited cortex [83]. This can give rise to travelling pulses in one

dimension, and spiral waves in two dimension. Many theoretical studies of pattern
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formation have been motivated by Pinto and Ermentrout’s model, which can be

written as

τ
∂u(x, t)

∂t
= −u(x, t) + ψ(x, t)− ga(x, t), (2.3.9)

∂a(x, t)
∂t

= u(x, t)− a(x, t), (2.3.10)

where the variable a denotes the linear spike frequency adaptation, ψ is the synaptic

input given in (2.3.1), g is coupling parameter, and τ represents a synaptic or mem-

brane time constant. The recovery variable (2.3.10) is comprehensively discussed

in Chapter 4.

Neural fields in feature spaces: Neural field models can be described in feature

spaces, whose geometry is tuned to edge orientation or motion direction [109]. In

the primary visual cortex (V1), cells respond preferentially to lines and edges of

a particular orientation. The model (2.3.1) can be reformulated with an additional

orientation component to obtain a coupled ring model of feature space given by

∂u(x, θ, t)
∂t

= −u(x, θ, t) +
∫
R

∫
S

w(x, θ|x′, θ′)F(u(x′, θ′, t)− κ)dθ′dx′, (2.3.11)

where a standard neural field model that connects points at x and x′ with a weight

w(x|x′) = w(|x− x′|), is replaced by a more general form w(x|x′) → w(x, θ|x′, θ′),

where θ represents an orientation preference at x. This model has recently been

studied for the choice of a Heaviside firing rate [92], and is discussed further in

Chapter 5.

Threshold accommodation: Although standard neural field models are often stud-

ied using a constant threshold that depends neither on the state of the tissue nor

on its history, Hill [110] has argued that this threshold changes gradually depend-

ing on the local synaptic activity. Coombes and Owen called this state dependant

dynamic threshold threshold accommodation [111], and studied neural fields (2.3.1)

using a time and activity dependent threshold in the form

∂κ(x, t)
∂t

= −κ(x, t) + κ0 + g0 ĝ(u(x, t)− κ̃), (2.3.12)
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where ĝ(u) is a non-linear function which controls the accommodation process, g0

is a constant scale, and κ̃ denotes a constant threshold value. We will mostly focus

on constant firing thresholds, yet briefly discuss a piece-wise constant synaptic

threshold that alters in between brain folds in Chapter 6.

Axonal delays: Although many of the scientific papers written on dynamical neu-

ral networks have assumed that there is an instant communication between differ-

ent regions of the brain, the importance of the effects of time delays due to the

finite propagation speed of axons has also been demonstrated in the neural field

framework [17, 112]. Here, the firing rate f may include time delays due to finite

propagation speed [111], by which the synaptic input on the right hand side of

(2.3.1) becomes

ψ(x, t) =
∫
Ω

dyw(|x− y|) f (u(y, t− |x− y|/v)), (2.3.13)

where v denotes the propagation speed of the membrane voltage. For further dis-

cussion on neural field models with axonal delays we refer reader to [76, 111, 113].

We will only discuss neural field equations without axonal delays throughout this

thesis.

Synaptic depression and potentiation: Synaptic connections in the brain are not

fixed. Indeed, all types of synapses are regulated by a variety of short lived and

long lasting processes, some of these lead to a decrease in synaptic strength (de-

pression), while others lead to synaptic potentiation [114]. However, in most cases,

multiple processes are present. This results in a combination of recovery and de-

pression in which synaptic strength is highly dependent on details of the cellular

environment and of stimulation. This phenomenon is referred to as synaptic plas-
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ticity. Following the basic mechanism of the neural field model, Kilpatrick and

Bressloff [113, 115] reformulated (2.3.10) such that

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

w(|x− x′|)q(x′, t) f (u(x′, t)− κ)dy− ga(x, t),

∂q(x, t)
∂t

= −βq(x, t) f (u(x, t)− a(x, t))− 1− q(x, t)
α

,

ε
∂a(x, t)

∂t
= −a(x, t) + γ f (u(x, t)− a(x, t)). (2.3.14)

Here equation (2.3.14) describes synaptic activity u with a synaptic depression and

adaptation [115]. The variable a denotes adaptation and variable q denotes synaptic

scaling factor, by which present synaptic resources can be depleted by β f (u) and

can be also recovered by constant rate α, see [113, 115] for details.

2.4 conclusion & discussion

In this Chapter we have given an overview of how to model dynamics of neurons at

the cellular level, as well as at the population level. Although we have taken several

well known neuron models into account, this is not the whole picture. For example,

there are continuum models such as Morris & Lecar model [116] and Hindmarsh &

Rose model [117], as well as discrete models such as Galves & Löcherbach model

[118] for single neurons, that have been successfully applied for studying the dy-

namical properties of neurons. We have given an overview of some of the popular

single neuron models and discussed their transformation to neural field models.

Here, rather than considering individual neuronal properties, the average activ-

ity is studied along with natural assumptions and simplifications such as firing

rate functions and synaptic kernels shown in Fig. 2.8. For example, neural field

equations are usually chosen to be translation-invariant, namely the synaptic ker-

nel depends on the Euclidean distance between two points. Neural field models

are well-developed frameworks whose qualitative and quantitative properties suc-

cessfully describe large-scale brain dynamics such as motion perception, binocular

35



2.4 conclusion & discussion

rivalry, hallucinations, and anaesthesia to mention a few of the applications. See

reviews [10, 88, 102] summarising work to date. Throughout this Thesis, we will

work with spatio-temporal pattern formation in neural field models, and analyse

the existence and stability for localised patterns (bumps), and for travelling waves.

Bumps (or spots), in one- (and two-) dimensional neural fields, are usually linked

to orientation dependent activity in primary visual cortex [119], short term mem-

ory in prefrontal cortex [18, 87, 120], and motion perception [96]. On the other

hand, travelling waves are associated with spreading neural activity in the cortex

[16, 121].

Neural field models have been extensively studied in idealised one- dimensional or

planar settings. The value attained by the activity variable at the boundary is de-

termined by the initial condition and by the non-local synaptic input. Considering

neural field models on bounded as well as unbounded domains without boundary

conditions has included both the mathematical and numerical analysis of spatio-

temporal patterns, and much has been learnt about localised states, global periodic

patterns, and travelling waves mentioned above. Moreover, ignoring the synaptic

activity on the boundary has been seen as a reasonable argument in the literature

to date. However, the imposition of different boundary conditions may affect the

spatio-temporal evolution of a pattern.

Knowing that very little work has been done on the enforcement of boundary con-

ditions in neural fields, or on their effect in inducing patterned states, we will

revisit the seminal work of Amari (2.3.1) on neural field models and show how to

incorporate Dirichlet boundary conditions in the next Chapter.
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3
T H E D Y N A M I C S O F N E U R A L F I E L D S O N B O U N D E D

D O M A I N S : A N I N T E R FA C E A P P R O A C H F O R D I R I C H L E T

B O U N D A RY C O N D I T I O N S

Following the original approach of Amari [7], a substantial amount of work on

various neurobiological phenomena (see §2.3), both analytically and numerically,

has been developed in one-dimensional neural field models with a great success for

analysing coarse-grained dynamics of interconnected cortical neurons. However,

due to its large surface area (∼ 1600− 4000 cm2 in total) with a small thickness

(∼ 3mm), the cortex is often regarded as a two-dimensional laminar structure [122,

123]. Hence, Amari’s seminal work for analysing localised solutions in one spatial

dimensions has recently been extended to two spatial dimension by Coombes et

al. [11], see also [12, 124, 125]. As mentioned in Chapter 2, the Amari type neural

field models are not only able to describe localised solutions, often called bumps

in one dimensions and spots in two dimensions, but also dynamic states such as

travelling pulses and their transients as well as spreading labyrinthine patterns.

Neural field models have been considered for describing the behaviour of tissue in

bounded as well as unbounded domains; however, studying the role of boundary

conditions in shaping and creating patterns in bounded domains has drawn very

little attention. The exception to this is the work of Laing and Troy [17], but even

here the use of an equivalent PDE formulation means that boundary conditions
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are not chosen to impose any biophysical constraint. Instead, they are chosen to

ensure the smooth decay of localised solutions [17].

Moreover, the Amari approach with a Heaviside firing rate, in either one or two

spatial dimension, effectively tracks the boundary between a high and low state of

neural activity, giving rise to so called interface dynamics, see Chapter 1. Requiring

no information away from the interface, this approach gives a reduced description

of solutions to a neural field model without any approximation. An interface de-

scription for two-dimensional case was originally developed by Coombes et al. [11],

where using a special choice of synaptic connectivity kernel, it was possible to for-

mulate interface dynamics in terms of the shape of an active region, giving rise to

a reduced, yet exact, model.

This Chapter delivers a new interface modelling approach for analysing the solu-

tions of Amari type neural field models with Dirichlet boundary conditions.

3.1 the model

The scalar neural field model that we consider is given by

∂u(x, t)
∂t

= −u(x, t) +
∫
Ω

dyw(|x− y|)H[u(y, t)− κ], (3.1.1)

with Dirichlet boundary conditions

u(x, t)|x∈∂Ω = uBC, (3.1.2)

where uBC represents the activity prescribed on the domain boundary. Here Ω is

a planar domain and ∂Ω is the boundary of the domain Ω ⊆ R2, with x ∈ Ω

and t ∈ R+. The variable u denotes synaptic activity and the function w denotes

anatomical connectivity, for simplicity we only study the case where this depends

on the Euclidean distance ‖ x− y ‖. The function H is the firing rate of the cortical

tissue and will be considered to be a Heaviside function so that the parameter κ
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is interpreted as a firing threshold. It was the essential insight of Amari that the

choice of a Heaviside function allows the explicit construction of localised states

(stationary bumps and travelling pulses) on bounded as well as unbounded do-

mains without regarding the role of boundary conditions. Our key observation

that allows the extension of the Amari approach to handle the boundary condition

(3.1.2) is to impose this constraint by writing the state variable of the system in

terms of a line integral given by

u(x, t) = uBC +
∫

Γ(x)

z(y, t) · dy, (3.1.3)

where z = ∇xu ∈ R2 is the gradient of u.

Here Γ(x) denotes an arbitrary path that connects a point on the domain bound-

ary ∂Ω to the point x within its interior. An evolution equation for z is easily

constructed taking the gradient of (3.1.1) to give

∂z(x, t)
∂t

= −z(x, t) +
∫
Ω

dy∇xw(|x− y|)H[u(y, t)− κ]. (3.1.4)

Namely the reformulation of the original scalar model in terms of the evolution of

its gradient reconstruction using (3.1.3) allows for an interface description that re-

spects Dirichlet boundary conditions. Here, we shall consider equations (3.1.3) and

(3.1.4) as the neural field model with Dirichlet boundary conditions. In the follow-

ing sections we develop the extension of Amari’s interface dynamics to encapsulate

Dirichlet boundary conditions.

To illustrate the approach, we first treat the example of localised states in a one-

dimensional model in §3.2. This provides a useful primer before we develop a

theory for interface dynamics that encapsulates neural activity at the boundary in

a two-dimensional model, presented in §3.3. As mentioned earlier, Amari’s seminal

work has recently been extended to the two-dimensional case by Coombes et al. [11],

albeit assuming that the synaptic connectivity is restricted to a linear combination

of zeroth order modified Bessel functions of the second kind. The first part of §3.3

also shows how to generalise the original treatment in [11], for infinite domains
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without imposing boundary conditions, to handle arbitrary choices of the synaptic

connectivity function (removing the restriction to Bessel functions). In §3.4 we

extend this approach to treat Dirichlet boundary conditions, and in §3.5 we show

explicitly how this approach can be used to handle (circularly symmetric) spots

and their azimuthal instabilities. We consider a standard choice of a Mexican hat

synaptic kernel in §3.2 to §3.5. However, in §3.6 we focus on neural fields with

piece-wise constant kernels, for which calculations simplify. We also develop a

numerical scheme to evolve the interface dynamics in §3.7 and use this to highlight

how Dirichlet boundary conditions can limit the growth of a spreading pattern

arising from the azimuthal instability of a spot. Finally in §3.8 we discuss possible

extensions of the work presented in this Chapter.

3.2 one spatial dimension : a primer

Before we develop the analysis for a two-dimensional neural field model in a

bounded domain with Dirichlet boundary conditions imposed, we first start with

a discussion for the more tractable one-dimensional case. This gives the main

components of our mathematical analyses, as well as that of its equivalent inter-

face dynamics. The one-dimensional version of (3.1.3) and (3.1.4) on finite domain

[−L, L] with a Dirichlet boundary condition is given by

zt(x, t) = −z(x, t) +
L∫
−L

dy wx(|x− y|)H[u(y, t)− κ], (3.2.1)

with

u(x, t) = uBC +

x∫
−L

dy z(y, t). (3.2.2)

Here x ∈ [−L, L], z = ∂xu ∈ R, t ∈ R+, and uBC denotes boundary value imposed

on the left end of the interval, namely u(−L) = uBC. Note that, using the second
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fundamental theorem of calculus, the integral on the right hand side of equation

(3.2.2) is
x∫
−L

∂xu(y, t)dy = u(x, t)− uBC. (3.2.3)

In this setting u(L) is determined by the fixed value of u(−L). Hence some choices

of uBC can result in an even bump, for which u(L) = u(−L) = uBC.

One-dimensional neural field models with long-range inhibition and short-range

excitation are known to support bump solutions. Hence we now focus on a bump

solution, where the edges of the bump xi(t), i = 1, 2, are defined by a level set

condition that takes the form

u(xi(t), t) = κ, i = 1, 2. (3.2.4)

We shall refer to the two bump edges as the interface, as they naturally separate

regions of high and low activity. The differentiation of the level set condition (3.2.4)

and using (3.2.2) generates a rule for the evolution of the interface for a pulse with

a boundary condition according to

ẋi = −
ut(x, t)
z(x, t)

∣∣∣∣
x=xi(t)

= − 1
z(x, t)

x∫
−L

∂tz(y, t)dy
∣∣∣∣

x=xi(t)
, i = 1, 2. (3.2.5)

Once again, applying the second fundamental theorem of calculus for a continuous

function z, we find that the velocity rules for the interface can be written

ẋi =
(κ − uBC)− ψ(x, t) + ψ(−L, t)

z(x, t)

∣∣∣∣
x=xi(t)

, i = 1, 2, (3.2.6)

where

ψ(x, t) =
L∫
−L

dy w(|x− y|)H[u(y, t)− κ] =

x2(t)−x∫
x1(t)−x

dy w(|y|). (3.2.7)

A closed form expression for z(x, t) may also be found by integrating (3.2.1) to give

z(x, t) = η(t)z0(x) +
t∫

0

ds η(t− s) [w(|x1(s)− x|)− w(|x2(s)− x|)] , (3.2.8)

where η(t) = e−tH(t) and z0(x) = ∂xu(x, 0).
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Together with (3.2.8) and (3.2.7), equation (3.2.6) determines the interface dynamics

for a time-dependent spatially localised bump solutions that respects the Dirichlet

boundary condition at x = −L.

Since the Amari model supports a stationary bump solution when the synaptic

connectivity has a Mexican hat shape we now revisit this scenario and choose

w(x) =
1√
cπ

[
a1√
b1

e−x2/b1 − a2√
b2

e−x2/b2

]
, (3.2.9)

where b1, b2, c > 0. Moreover, we will focus on the case that the stationary bump is

symmetric about the origin. In this case, a null interface velocity implies that the

numerator in (3.2.6) vanishes. The formula for ψ given by (3.2.7) will also become

time independent, and if we let

P(x) =
x2∫

x1

w(|x− y|)dy, (3.2.10)

then we have that

κ = uBC + P(−∆/2)−P(−L), (3.2.11)

where we have set x1 = −∆/2 and x2 = ∆/2 so that the bump width is given

by ∆ = x2 − x1. The formula for P is easily calculated as P(x) = p(x; a2, b2) −

p(x; a1, b1), where

p(x; a, b) =
1√
cπ

x2∫
x1

a√
b

e−x2/bdx, (3.2.12)

=
a

2
√

c

[
erf
(

x1 − x√
b

)
− erf

(
x2 − x√

b

)]
. (3.2.13)

Hence, the bump width is determined implicitly by the single equation (3.2.11),

and the bump shape, q(x), is calculated from (3.2.2) as

q(x) = uBC + P(x)−P(−L). (3.2.14)

In Fig. 3.1, we plot the bump width ∆ as a function of time (solid blue and gray

lines in each Fig. 3.1A), and indicate bump shapes (Fig. 3.1B) for direct numerical

simulations (blue) as well as their corresponding interface dynamics (gray) at se-

lected times along the trajectories in each Fig. 3.1A. Comparing direct numerical
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simulations and their corresponding interface dynamics for profiles, only a very

small difference in bump widths is seen (typically less than 0.8%).

Fig. 3.1: A comparison of the results of direct numerical simulations (blue) for a

bump solution of equations (3.2.1), (3.2.2) and (3.2.9) and its equivalent

interface dynamics (gray) with a Dirichlet boundary condition uBC = 0

using equations (3.2.6), (3.2.7) and (3.2.9). The solution profiles (gray) for

interface dynamics are plotted using equations (3.2.14) and (3.2.13). Panel

(A): change in the bump width ∆ over time posed on a domain of Ω =

[−L, L]. Panel (B): shape of the bumps at κ = 0.7 for q(x) (blue) and z(x)

(magenta) for selected times along the branches in each (A). Parameters

are a1 = 14, a2 = 13, b1 = 24, b2 = 150, c = 5, L = 15π.

To determine the stability of the bump solution we can follow the original approach

of Amari and linearise the interface dynamics around the stationary values for xi.

Alternatively we can follow the Evans function approach, reviewed in [126], which

considers perturbations at all values of x (rather than just at the bump edges). Here

we pursue the latter approach, though it is straight forward to check that the former

approach gives the same answer.
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To determine the linear stability of a bump we write u(x, t) = q(x) + eλtũ(x) where

ũ � 1. In this case the corresponding change to z is given by z(x, t) = dq(x)/dx +

eλt z̃(x), where z̃(x) = dũ(x)/dx. Expanding (3.2.1) to first order gives

(λ + 1)
dũ(x)

dx
=

L∫
−L

wx(|x− y|)H′(q(y)− κ)ũ(y) dy. (3.2.15)

For the Dirac-delta function occurring under the integral, we can use the formal

identity

H′(q(x)− κ) = δ(q(x)− κ) =
δ(x− x1)

|q′(x1)|
+

δ(x− x2)

|q′(x2)|
, (3.2.16)

where integrating (3.2.15) from −L to x and demanding that perturbations on the

edge of the domain vanish, namely ũ(−L) = 0, we obtain

(λ + 1)ũ(x) =
ũ(x1)

|q′(x1)|
[w(|x− x1|)− w(|L + x1|)]

+
ũ(x2)

|q′(x2|)
[w(|x− x2|)− w(|L + x2|)] . (3.2.17)

Here q′(x) = P ′(x) = w(|x− x1|)− w(|x− x2|).

From (3.2.17) we may generate two equations for the amplitudes (ũ(x1), ũ(x2)) by

setting x = x1 and x = x2. This gives a linear system of equations that we can write

in the form

[A− (λ + 1)I](ũ(x1), ũ(x2)) = (0, 0), (3.2.18)

where I is a 2× 2 identity matrix and

A =


w(0)− w(L + x1)

|q′(x1)|
w(∆)− w(L + x2)

|q′(x2)|
w(∆)− w(L + x1)

|q′(x1)|
w(0)− w(L + x2)

|q′(x2)|

 . (3.2.19)

For the stability analysis of the Amari neural field model [11], equation (3.2.18) has

two eigenvalues, one of which is always zero due to the translational invariance.

However, boundary conditions break this translational invariance.

Requiring non-trivial solutions gives a formula for the spectrum as det[A− (λ +

1)I] = 0, which yields

λ± = −1 +
TrA±

√
(TrA)2 − 4 detA

2
. (3.2.20)
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3.3 two spatial dimensions without boundary conditions

Hence a bump solution will be stable provided Re λ± < 0. In Fig. 3.2, we plot the

bump width as a function of the threshold κ. We also indicate whether a branch

of solutions is stable by plotting it with a solid (stable) or dashed (unstable) line.

Insets show the shapes of the bumps, albeit the inset in Fig. 3.2B is shown with a

Dirichlet boundary condition uBC = 0. For the case of bounded domain with no

boundary conditions (Fig. 3.2A) we recover the expected Amari result, namely that

there are two branches of solutions and it is the one with widest bump width that

is stable. However, with a posed boundary condition (Fig. 3.2B) we see that new

solutions can arise, and that it is possible for these to be stable with widths that

occupy a large portion of the domain. Here, four coexisting bumps are found for

some values of κ, and two of these bumps are stable. Direct numerical simulations

(not shown) show excellent agreement with the theoretical predictions.

3.3 two spatial dimensions without boundary conditions

Before discussing the extension of §3.2 to two spatial dimensions, it is first instruc-

tive to revisit the scenario without regard to the imposition of boundary conditions.

In this case, the model (3.1.1) with Heaviside firing rate is written in the form

∂u(x, t)
∂t

= −u(x, t) + ψ(x, t), ψ(x, t) =
∫

Ω+(t)

dyw(|x− y|), (3.3.1)

where Ω+ ⊆ R2 is where the domain is active, Ω+ = {x|u(x, t) > κ}. Similar to

one-dimensional case, excited and quiescent regions in a two-dimensional neural

field model are distinguished by determining if synaptic activity is above or below

the firing threshold, namely by an interface between these two states. An interface

description for (3.3.1) was originally developed in [11], albeit for a special choice of

synaptic connectivity kernel. Using properties of Bessel functions, it was possible

to compute two-dimensional integrals in terms of one-dimensional line integrals.
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3.3 two spatial dimensions without boundary conditions
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Fig. 3.2: Effect of Dirichlet boundary condition uBC = 0 on the bifurcation dia-

gram of a bump solution. Panel (A): bump solutions for equation (3.1.1)

with Ω = [−10π, 10π]. Here the bump width is plotted as a function of

threshold using equations (3.2.7) and (3.2.10). Panel (B) : bump solutions

for equations (3.1.3)–(3.1.4) posed on Ω = [−10π, 10π] with the Dirich-

let boundary condition uBC = 0, where the bump width is plotted as a

function of threshold using equation (3.2.11). Stable (unstable) solutions

are indicated with solid (dashed) lines. The insets show the shapes of the

lower (stable) bumps at κ = 0.7 for q(x) (blue) and z(x) (red). The insets

that show the shapes of the bumps near boundary are plotted at κ = 0.23

(A) and κ = 0.7 (B) for q(x) and z(x). Parameters are a1 = 14, a2 = 13,

b1 = 24, b2 = 150, c = 5.
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3.3 two spatial dimensions without boundary conditions

This allowed the interface dynamics to be expressed solely in terms of the shape of

the active region, namely a one-dimensional closed curve.

Here we revisit this approach, together with extension that allows for a far more

general class of synaptic connectivity kernels. This allows us to treat the natural

extension of (3.2.9), namely a radially symmetric difference of Gaussians, giving

rise to the two-dimensional Mexican hat connectivity as shown in Fig. 3.3.

Fig. 3.3: An illustration of a Mexican

hat connectivity function with

local (short-range) excitation

and lateral (long-range) inhibi-

tion using a kernel of radially

symmetric difference of Gaus-

sians given by (3.2.9).

We consider the integro-differential equation given by (3.1.1). We decompose the

domain Ω by writing Ω = Ω+ ∪ ∂Ω+ ∪ Ω− where ∂Ω+ represents the level-set

which separates Ω+ (excited) and Ω− (quiescent) regions. These regions are given

explicitly by Ω+ = {x | u(x) > κ}, Ω− = {x | u(x) < κ}, and ∂Ω+ = {x | u(x) = κ}.

We shall assume that ∂Ω+ is a closed contour or the union of a finite number of

disjoint contours, for all t ∈ R+.

In Fig. 3.4 we show a direct numerical simulation of the full space-time model to il-

lustrate that a Mexican hat synaptic connectivity function can support a spreading

labyrinthine pattern. Similar patterns have previously been reported and discussed

in [11, 127] for both Heaviside and steep sigmoidal firing rate functions. A descrip-

tion of the numerical scheme used to evolve the full space-time model is given later

in §3.7.1.

Differentiation of u(x, t) = κ along the contour ∂Ω+(t) yields

∇xu · d
dt

∂Ω+ +
du
dt

∣∣∣∣
x=∂Ω+

= 0, (3.3.2)
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3.3 two spatial dimensions without boundary conditions

Fig. 3.4: Space time simulations of the field u(x, t) showing a spreading

labyrinthine structure in a two-dimensional Amari model (3.3.1) (on a

large domain [−L, L] × [−L, L]) with a radially symmetric difference of

Gaussians connectivity, namely w(r) = w(r), with w(r) given by (3.2.9)

and a Heaviside firing rate. The colorbar below indicates the values of u.

Parameters are κ = 0.03, a1 = 3.55, a2 = 3, b1 = 2.4, b2 = 3.2, c = 10, and

L = 12π.
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3.3 two spatial dimensions without boundary conditions

and this gives the normal velocity rule:

cn ≡ n · d
dt

∂Ω+ =
ut(x, t)
∇xu(x, t)

∣∣∣∣
x=∂Ω+

, (3.3.3)

where we have introduced the normal vector n = −∇xu/|∇xu| along ∂Ω+. Let us

first consider the denominator in (3.3.3). The temporal integration of (3.1.4) from 0

to t (dropping intermediate steps) gives

z(x, t) = η(t)z0(x) +
t∫

0

dt′η(t′)∇xψ(x, t− t′), (3.3.4)

where η(t) = e−tH(t), z0(x) = ∇xu(x, 0) denotes gradient information at t = 0,

and

∂u(x, t)
∂t

∣∣∣∣
x=∂Ω+(t)

= −κ + ψ(x, t)|x=∂Ω+(t) , (3.3.5)

with

ψ(x, t) =
∫

Ω+(t)

dyw(|x− y|). (3.3.6)

Describing the double integral (3.3.6) in terms of a dimensionally reduced line

integral, we show that the interface dynamics require no knowledge away from

the contour ∂Ω+(t). In this context, the key mathematical idea is to write a ra-

dially symmetric weight kernel w in such a way that Green’s first identity for

a two-dimensional vector field (two-dimensional Divergence theorem) can be ap-

plied. Hence, a relationship between a double integral and a line integral can be

written symbolically as

∫
Ω+(t)

(∇ · F)dx =
∮

∂Ω+(t)

F · nds, (3.3.7)

where ∇ · F is the Divergence operator of a vector field F and n is the unit normal

vector along ∂Ω+. Therefore, the term ∇xψ in (3.3.4) can be constructed as a line

integral using integral vector identity:

∇xψ(x, t) =
∫

Ω+(t)

dy∇xw(|x− y|) = −
∮

∂Ω+(t)

dsn(s)w(|x− y(s)|). (3.3.8)
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3.3 two spatial dimensions without boundary conditions

Thus the denominator in (3.3.3) can be expressed solely in terms of a line integral

around the contour. The same is true for the numerator of (3.3.3),

ut(∂Ω+(t), t) = −κ + ψ(∂Ω+(t), t),

provided that we evaluate ψ using the following identity

ψ(x, t) =
∮

∂Ω+(t)

ϕ(|x− γ(s)|) x− γ(s)
|x− γ(s)| · n(s)ds +KC, (3.3.9)

where

ϕ(r) =
1
r

r∫
∞

xw(x)dx, (3.3.10)

and

K =
∫
R2

dx w(x), C =



1 if x ∈ Ω+

1/2 if x ∈ ∂Ω+

0 if x ∈ Ω−

. (3.3.11)

Here s is a parametrisation for points on the contour γ ∈ ∂Ω+. For details of the

derivation of ψ (3.3.9) see Appendix A1. Hence the normal velocity rule (3.3.3)

can be expressed solely in terms of one-dimensional line integrals involving the

shape of the active region Ω+ (which is prescribed by ∂Ω+). This is a substantial

reduction in description as compared to the full space-time model, yet is exact.

Once again we emphasise that the techniques developed here generalise the orig-

inal treatment by Coombes et al. [11] to tackle any choice of radially symmetric

synaptic kernel. For example, for a synaptic kernel in the form w(x) = K0(βx),

where K0 denotes the modified Bessel function of the second kind zeroth order,

we find that ϕ(r) = −K1(βr)/β using equations (3.3.9), (3.3.10) and (3.3.11). This

recovers the results for dimensionally reduced equations obtained by Coombes et

al. [11].

In the rest of the Chapter, we consider a difference of Gaussians with w(r) given

by (3.2.9). A simple calculation for this choice shows that

K =
√

π/c[a1
√

b1 − a2
√

b2], (3.3.12)
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3.3 two spatial dimensions without boundary conditions

and

ϕ(r) =
1

2r
√

cπ

[
a2
√

b2e−r2/b2 − a1
√

b1e−r2/b1
]

. (3.3.13)

In Fig. 3.5 we show a numerical simulation obtained by the interface method, with

initial data equivalent to that from the full space-time simulation shown in Fig. 3.4.

The excellent agreement between the two figures is easily observed. The full details

-12:

0

12:
t = 0 t = 14.7 t = 29.75 t = 54.95

-12: 0 12:
-12:

0

12:
t = 64.75

-12: 0 12:

t = 74.55

-12: 0 12:

t = 99.75

-12: 0 12:

t = 114.8

Fig. 3.5: A numerical simulation of the interface dynamics for the same scenario as

Fig. 3.4, using (3.3.3) and (3.3.9). Here the threshold condition where u = κ

is given by the solid blue line, whilst the green arrows show the normal

velocity of the moving interface. All parameters as in Fig. 3.4.

of our numerical scheme for implementing interface dynamics are given in §3.7.2.

Here we have shown that the full two-dimensional non-linear integro-differential

system of equations can be reduced to line integrals of vector fields, and thus the

evolution of a full space-time simulation is reduced to the evolution of its interface,

driven by a velocity in the normal direction, seen in Fig. 3.5.

It is worth mentioning that a downside of the technique we develop here for inter-

face dynamics is that one needs to track self interactions, namely splitting activity

on the contour boundary. In this case pinching behaviour in the contour may re-

sult in multiple irregular and disjointed curves. Direct numerical simulations with
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3.4 two spatial dimensions with boundary conditions

(3.3.1) can break into multiple patterns each with an independent boundary. Thus

an improved numerical algorithm would be needed to cope with the evolution of

merging and splitting patterns. On a positive note, such contour surgery algorithms

have previously been developed for describing fluid models [76, 128].

3.4 two spatial dimensions with boundary conditions

Using the notation of §3.3 we now show how to extend the one-dimensional ap-

proach of §3.2 to develop an interface dynamics for a planar Amari model on a

bounded domain with Dirichlet boundary conditions. Revisiting equation (3.1.4)

for the evolution of z, that is

∂z(x, t)
∂t

= −z(x, t) +∇xψ(x, t), (3.4.1)

with ψ given by (3.3.6), the state of the activity with a Dirichlet boundary condition

is given by

u(x, t) = uBC +
∫

Γ(x)

z(y, t) · dy. (3.4.2)

Here z(x, t) = ∇xu(x, t) is a continuous vector field for a differentiable scalar func-

tion u(x, t), and Γ denotes a path that connects a point on the domain boundary ∂Ω

to the point x on the contour ∂Ω+. As for the one-dimensional case, uBC is the value

attained by the activity variable at the boundary. Using the second fundamental

theorem of calculus in two-dimensions, we can write

∫
Γ(∂Ω+(t))

z(y, t) · dy = u(∂Ω+(t), t)− u(ζ(∂Ω+(t)), t), (3.4.3)

where ζ : ∂Ω+(t) → ∂Ω is a mapping from points on the boundary of the active

region to points on the boundary ∂Ω for a particular choice of path Γ. One con-

sequence of this theorem is that, since the vector field z is conservative, the line

integral over z does not actually depend on the path taken by Γ, but depends only

on the end points of Γ.
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3.4 two spatial dimensions with boundary conditions

Now using (3.1.3), the level set condition becomes

κ − uBC =
∫

Γ(∂Ω+(t))

z(r, t) · dr. (3.4.4)

Using Leibniz’s rule:

d
dt

∫
Γ(∂Ω+(t))

z(r, t) · dr = z(∂Ω+(t), t) · d
dt

∂Ω+ +
∫

Γ(∂Ω+(t))

zt(r, t) · dr, (3.4.5)

we may differentiate (3.4.4) with respect to t to obtain the normal velocity rule:

cn ≡ n · d
dt

∂Ω+ =
1

|z(x, t)|

∫
Γ(x)

zt(r, t) · dr
∣∣∣∣

x=∂Ω+(t)
. (3.4.6)

Here the normal vector is given by n = −z/|z| along the contour ∂Ω+. An alterna-

tive derivation of the normal velocity rule is given in Appendix A2. Using (3.4.1)

and (3.4.3) we may write the numerator in the normal velocity rule (3.4.6) as

∫
Γ(∂Ω+(t))

zt(r, t) · dr = uBC − κ + ψ(∂Ω+(t), t)− ψ(ζ(∂Ω+(t)), t). (3.4.7)

Hence, using the formulas for z and ψ from §3.3, namely equations (3.3.4), (3.3.8),

and (3.3.9), then all of the terms in the normal velocity rule (3.4.6) may be expressed

as one-dimensional line integrals. This yields the interface dynamics for Dirichlet

boundary conditions, and once again we see that it is a reduced yet exact alternative

formulation to the full space-time model. The numerical method for implementing

the interface dynamics can be based upon that for an unbounded domain, with a

specific choice for the paths Γ. Each of the paths Γ connects a point x in the interior

of the domain to a point on the boundary, and we set ζ(∂Ω+(t)) to be the end point

of Γ(∂Ω+(t)), see §3.7.2 for details on the numerical scheme.

We do not have to numerically integrate along this path (to determine the normal

velocity), and we need only to determine the values of ψ(x, t) at the two endpoints.

We choose the paths Γ to be straight lines connecting x to its closest point on the

boundary. Figure 3.6 shows a direct numerical simulation computed using the

evolution of the gradient z = ∇xu as well as the corresponding interface dynamics.

We see excellent agreement between the two approaches. The obvious advantage
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3.4 two spatial dimensions with boundary conditions

of the interface dynamics is that one need only evolve the shape of the active region

to fully reconstruct the full space-time dynamics using (3.1.3) and (3.3.8). We see

Fig. 3.6: A spreading pattern (C) governed by the space-time model (3.1.3) and

(3.1.4) with a radially symmetric synaptic connectivity kernel given by

(3.2.9) and a Dirichlet boundary condition uBC = 0 on a domain of size

Ω = [−L, L]× [−L, L]. The corresponding interface dynamics is shown in

(D). Rows (A) and (B) that show the components of the gradient z in the

x and y directions, and these are used to compute the activity of the neu-

ronal tissue shown in row (C). Parameters are κ = 0.05, a1 = 3.55, a2 = 3,

b1 = 2.4, b2 = 3.2, c = 10, and L = 5π.

from Fig. 3.6 that the main effect of the Dirichlet boundary condition is to limit

the spread of a labyrinthine structure and ultimately induce a highly structured

stationary pattern, as expected.
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3.5 spots in a circular domain : dirichlet boundary condition

3.5 spots in a circular domain : dirichlet boundary condition

Given the large amount of historical interest in spot solutions of neural field mod-

els on unbounded domains [12, 124, 127, 129, 130] it is worthwhile to revisit this

specific class of solutions on a finite disc. We shall consider radially symmetric

synaptic connectivity kernels and a disc of radius D with a spot (circularly sym-

metric) solution of radius R. In this case u(r, t) = q(r) with r = |r| for all t, and

q(D) = uBC, with q(R) = κ and q(r) > κ for r < R and q(r) < κ for R < r < D.

We shall denote the corresponding stationary field for ψ by ψ(r), and this is conve-

niently constructed from (3.3.9). In the following, self-consistent equations for sta-

tionary solutions of spots are explicitly constructed and their stability determined.

3.5.1 Construction

To construct circular solutions, we first consider a standard parametrisation for a

circle in the form

r(θ) =

 r cos θ

r sin θ

 , nr(θ) =

 cos θ

sin θ

 , θ ∈ [0.2π),

where the normal vector is obtained by rotating the tangent vector tr(θ) = dr(θ)/dθ

by π/2, in the clockwise direction according to nr = [0 1;−1 0]tr. Using the differ-

ence between displacement vectors:

r(θ)− r′(θ′) =

 r cos θ − r′ cos θ′

r sin θ − r′ sin θ′

 ,

and considering an arbitrary choice of θ = 0, we may write the integral term (3.3.9)

with specific choice of a difference of Gaussians given by (3.2.9) in the form

ψ(r) =
a1√
cπb1

ρ(r; b1)−
a2√
cπb2

ρ(r; b2) +KC, (3.5.1)
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3.5 spots in a circular domain : dirichlet boundary condition

with

ρ(r; α) = −α

2

2π∫
0

dθ
e−Q(θ)

2/α

Q(θ)2 R(r cos θ − R), (3.5.2)

and Q(θ) =
√

R2 + r2 − 2Rr cos θ. Here we also demand that C = 1/2 for points

on the boundary of the spot solution of radius R.

An implicit equation for the radius of the bump is obtained after setting the normal

velocity to zero. Using (3.4.6) and (3.4.7) this yields

κ = uBC + ψ(R)− ψ(D). (3.5.3)

Equations (3.5.2) and (3.5.3) determine interface dynamics for a time-dependent

spot solution that respects the Dirichlet boundary condition ψ(D) = uBC.

3.5.2 Stability Analysis

The stability of spots on unbounded domains has been treated by several authors,

and see [130] for a recent overview. Here we extend this approach to treat a

bounded domain with an imposed Dirichlet boundary condition following very

similar arguments to those presented in §3.2. To determine the linear stability of a

spot we write

u(r, t) = q(r) + eλt cos(mθ)ũ(r), (3.5.4)

where r = (x, y), r = |r|, ũ � 1 and m ∈ N. In this case the corresponding change

to z is given by

z(r, t) = ∇rq(r) + eλt cos(mθ)z̃(r), (3.5.5)

where z̃(r) = ∇rũ(r). Expanding (3.1.4) to first order gives

(λ + 1)z̃(r) =
2π∫
0

dθ cos(mθ)

∞∫
0

r′dr′∇rw(|r− r′|)δ(q(r′)− κ)ũ(r′), (3.5.6)
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3.5 spots in a circular domain : dirichlet boundary condition

where |r − r′| =
√

r2 + r′2 − 2rr′ cos θ. Using properties of the Dirac-delta distribu-

tion we find

∇r

(λ + 1)ũ(r)− ũ(R)
R

|q′(R)|

2π∫
0

dθ cos(mθ) w(|r− r′|)
∣∣
r′=R

 = 0. (3.5.7)

Since the term in square brackets in (3.5.7) is radially symmetric we may integrate

in the radial direction, considering that perturbations vanish on the domain bound-

ary, namely ũ(D) = 0, to obtain

(λ + 1)
ũ(r)
ũ(R)

=
R

|q′(R)|

2π∫
0

dθ cos(mθ)

[
w(|r− r′|)

∣∣
r′=R − w(|r− r′|)

∣∣
r′=R
r=D

]
. (3.5.8)

Setting r = R in (3.5.8) and demanding non-trivial solutions gives an equation for

the eigenvalues λ in the form Em(λ) = 0, m ∈ N, where

Em(λ) = λ + 1− R
|q′(R)|

2π∫
0

dθ cos(mθ)

[
w(|r− r′|)

∣∣
r′=R
r=R
− w(|r− r′|)

∣∣
r′=R
r=D

]
.

(3.5.9)

Thus a spot solution will be stable provided λm < 0 for all m ∈ N where λm is a

zero of Em(λ).

Using the above analysis we find that for a Mexican hat function, given by (3.2.9),

that for large domains a wide and narrow spot can coexist for a sufficiently low

value of the threshold κ. Moreover, the narrow spots are always unstable (to modes

with m = 0, reflecting uniform changes of size), whilst the wider spots can develop

instabilities to modes with m ≥ 2. This is entirely consistent with previous results

for Mexican hat connectivities on an unbounded domain, as reviewed in [130].

We note that on an infinite domain the mode with m = 1 is always expected to

exist due to translational invariance (and would give rise to a zero eigenvalue for

all parameter values). However, on a finite size disc and with a Dirichlet boundary

condition further spots can be induced, with sizes commensurate that of the radius

of the disc. These in turn can be unstable to modes with m ≥ 2. Both of these

scenarios are summarised with the use of Fig. 3.7. Note that, although (3.5.2) is in

closed form, it is a challenge to perform the integral analytically. Thus it is also of
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3.6 piece-wise constant interactions

Fig. 3.7: Spot radius R as a function of κ for a smooth Mexican hat connectivity

given by (3.2.9), with parameters as in Fig. 3.6. Panel (A): infinite domain.

Panel (B): finite domain that is a disc of radius D = 5π, with Dirichlet

boundary condition q(D) = uBC = 0. Linear stability analysis shows

that solid (dashed) lines are stable (unstable). Azimuthal instabilities with

various modes are indicated by the mode shapes.

interest to consider synaptic connectivity kernels for which more explicit progress

can be made. A case in point is that of piece-wise constant functions, that will be

given in the next section.

3.6 piece-wise constant interactions

In the previous sections, we analysed a neural field with a Mexican hat connectivity

(3.2.9), as shown in Fig. 3.3. In contrast to this smooth choice of synaptic kernel,

here we concentrate on neural fields with a piece-wise constant kernel, which have

been far less studied. The exception to this statement being the work of Herrmann

et al. [13], where a piece-wise constant Top hat synaptic kernel was considered.

Therefore, it is now of particular interest to consider piece-wise constant synaptic

kernels for which explicit analytical progress can be made. In the first instance,
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3.6 piece-wise constant interactions

let us consider a piece-wise constant rotationally symmetric Top hat connectivity

defined by

w(r) =


w+ > 0, r ≤ σ

w− < 0, r > σ

, r = |r|, (3.6.1)

where w+ and w− are constant positive and negative synaptic strength factors re-

spectively.

Another natural piece-wise constant choice is the piece-wise constant Mexican hat

shape given by

w(r) =



w+ > 0, r ≤ σ1

w− < 0, σ1 < r ≤ σ2, σ1 < σ2

0, r > σ2

. (3.6.2)

An illustration of a piece-wise constant Top hat and piece-wise constant Mexican

hat functions are shown in Fig. 3.8.

Fig. 3.8: An illustration of a piece-wise constant Top hat (3.6.1) (A) and piece-wise

constant Mexican hat (3.6.2) (B) kernels. Panel (A): synaptic interactions

are positive up to a distance σ (w+ > 0) and negative beyond this distance

(w− < 0). Panel (B): synaptic interactions are positive up to a distance σ1

(w+ > 0), negative between σ1 and σ2 (w− < 0), and zero beyond distance

σ2.

In the following, we show how piece-wise constant caricatures of synaptic con-

nectivity allow simplified calculations for localised solutions of neural fields in
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3.6 piece-wise constant interactions

two-dimensions. We find that localised spots obtained using piece-wise constant

Mexican kernels can destabilise to azimuthal instabilities, which in turn can lead to

the generation of labyrinthine structures. Interestingly, a piece-wise constant Top

hat kernel is more robust to these instabilities.

3.6.1 Construction: No Boundary Conditions

Considering the area Ω+ = {r |ψ(r) > κ} over which the local field is excited, we

revisit stationary solutions of spots (circularly symmetric solutions) of radius R as

ψ(r) = q(r), where

q(r) =
∫∫
|r′|<R

dr′w(|r− r′|), q(R) = κ. (3.6.3)

For the Top hat kernel given by equation (3.6.1), we may split the above integral as

q(r) = w+

∫∫
|r′|<R
|r−r′|<σ

dr′ + w−
∫∫

|r′|<R
|r−r′|>σ

dr′. (3.6.4)

Introducing the area A+(R, σ) as follows

A+(R, σ) =
∫∫

|r′|<R
|r−r′|<σ

dr′
∣∣∣∣
r=R

, (3.6.5)

means that the self-consistent equation for a spot without a boundary condition

takes the form

κ = (w+ − w−)A+(R, σ) + w−πR2. (3.6.6)

Here, the area A+(R, σ) can be calculated in terms of the area of the intersection

between two disks, one of center (0, 0) and radius R, and the other of center r and

radius σ subject to the constraint |r| = R. Using the results from Appendix A3 we

find

A+(R, σ) = A(R, θ0(R, σ)) + A(σ, θ1(R, σ)), (3.6.7)

where A(r, θ) = r2(θ − sin θ)/2 and

θ0(R, σ) = 2 cos−1
(

2R2 − σ2

2R2

)
, θ1(R, σ) = 2 cos−1

( σ

2R

)
, R >

σ

2
. (3.6.8)
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3.6 piece-wise constant interactions

For example, for the special case that R = σ and κ = 0, it is easy to show

A+(R, σ) = 2A(R, 2π/3) = R2(2π/3−
√

3/2), (3.6.9)

and using equation (3.6.6), we obtain the ratio

w+

w−
= 1− π

(2π/3−
√

3/2)
, (3.6.10)

which recovers the result obtained by Herrmann et al. [13].

Another natural piece-wise constant choice for synaptic connectivity is the piece-

wise constant Mexican hat shape given by (3.6.2). Using a similar argument to the

one used for the Top hat connectivity, we find the self consistent equation for a

localised spot

κ = (w+ − w−)A+(R, σ1) + w−A+(R, σ2). (3.6.11)

In Figure 3.9, we show the results of direct numerical simulations at fixed times

for a neural field with a piece-wise constant Mexican hat kernel. These simulations

show the emergence of an exotic mazelike pattern with the symmetries of a square,

and suggest that the spot is unstable to an azimuthal instability with m = 4. Similar

Fig. 3.9: Direct numerical simulations of a spreading pattern governed by the space-

time model (3.3.1) with a radially symmetric piece-wise constant Mexican

hat kernel on a domain of size [−L, L] × [−L, L]. Parameters are w+ =

0.1, w− = −0.004, κ = 0.1, σ1 = 2, σ2 = 10, L = 100. Here, red and

blue regions represent the excited (high activity) and quiescent states (low

activity), respectively.

exotic patterns with a smooth Mexican hat connectivity (3.2.9) have been found and

discussed in §3.3, and see [11, 88, 127] for further discussion.
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3.6 piece-wise constant interactions

3.6.2 Stability Analysis

To determine the linear stability of a spot with a piece-wise constant Top hat ker-

nel, we follow the ideas in §3.5.2. Using equation (3.5.9) for D → ∞, once again we

obtain E1(0) = 0 is always true since a radial solution is rotationally invariant, and

once more we emphasise that the nature of constant piece-wise kernels substan-

tially simplifies the mathematical expressions presented above. For example for

the Top hat function given by (3.6.1) and using the expressions in equation (3.6.8)

it is simple to show that

q′(R) = (w− − w+)
[
A′(R, θ0(R, σ)) + A′(σ, θ1(R, σ))

]
, (3.6.12)

=
σ(w− − w+)

R

√
4R2 − σ2. (3.6.13)

Using the results in Appendix A3 yields

θ0(r, σ) = 2 cos−1
(

R2 − σ2 + r2

2Rr

)
and θ1(r, σ) = 2 cos−1

(
σ2 − R2 + r2

2σr

)
.

(3.6.14)

Furthermore, we obtain

2π∫
0

dθ cos(mθ) w(|r− r′|)
∣∣
r′=r=R = 2

(
w+ − w−

m

)
sin mθ∗, (3.6.15)

where θ∗ is the smaller of the two roots of the equation R
√

2(1− cos θ) = σ for

θ ∈ [0, 2π).

As for the piece-wise constant Top hat kernel, the calculations also simplify for the

piece-wise constant Mexican hat kernel, where we find

q′(R) = (w+ − w−)
[
A′(R, θ0(R, σ1)) + A′(σ1, θ1(R, σ1))

]
+ w−

[
A′(R, θ0(R, σ2)) + A′(σ2, θ1(R, σ2))

]
, (3.6.16)

with

2π∫
0

dθ cos(mθ) w(|r− r′|)
∣∣
r′=r=R =

2
m

[(w+ − w−) sin mθ∗1 + w− sin mθ∗2 ] , (3.6.17)
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3.6 piece-wise constant interactions

where θ∗1 and θ∗2 are the smaller roots of equations R
√

2(1− cos θ) = σ1, and

R
√

2(1− cos θ) = σ2 respectively, with θ ∈ [0, 2π).

In Figure 3.10, plots of the radius R as a function of the threshold parameter κ,

and the spectra of selected profiles are shown for a neural field model without

boundary conditions, with a piece-wise constant Top hat (Fig. 3.10A) and a piece-

wise constant Mexican Top hat (Fig. 3.10B) kernels. Our linear stability analysis of

the stationary circular solutions for the Top hat kernel shows that lower (dashed)

branch of solutions is unstable to uniform changes (expansion or contraction) of

size (m = 0) and the upper (solid) branch is stable. Here, it is straightforward

to show that solutions of spots with Top hat kernels can not lead to azimuthal

instabilities of modes m ≥ 2. In this case, substituting equations (3.6.13) and (3.6.15)

into (3.5.9) for the case where there is no boundary conditions (D → ∞), we obtain

λ = −1 +
2R2

σm
√

4R2 − σ2
sin mθ, (3.6.18)

where λ < 0 for all θ ∈ [π(2n− 1), 2πn], n ∈ Z. Considering the maximum value

of sin mθ is 1, let us assume that λ > 0. Hence we find

2R2

σm
√

4R2 − σ2
> 1, (3.6.19)

which means 2σ < R. This statement is contradictory with the constraint R > σ/2

given in (3.6.8).

However, the piece-wise constant Mexican Top hat kernel readily supports az-

imuthal instabilities of various modes (m ≥ 2). These results are consistent with

those previously found in §3.5.2 and also studied by several authors for smooth

Mexican hat kernels, as in [12, 107, 127, 130].
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3.6 piece-wise constant interactions

Fig. 3.10: Spot radius R as a function of threshold κ for piece-wise constant Top

hat and piece-wise constant Mexican hat kernels using equations (3.6.6)

and (3.6.11), respectively. Panel (A): piece-wise constant Top hat kernel,

with the right panel showing the spectrum for κ = 0.1. Parameters are

w+ = 0.08, w− = −0.002, σ = 4 with constraint 2R > σ. Panel (B):

piece-wise constant Mexican hat kernel, with the right panel showing the

spectrum for κ = 0.1. Parameters are w+ = 0.1, w− = −0.004, σ1 = 2,

σ2 = 10 with constraint 2R > σ2 > σ1.
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3.6.3 Construction: Dirichlet Boundary Condition

We can also extend this approach to treat a finite domain with an imposed Dirichlet

boundary condition (uBC = 0), following very similar techniques to those presented

in §3.5.2. In this case the self consistent equation for a localised spot for a piece-

wise constant Top hat kernel with a Dirichlet boundary condition takes the form

κ = uBC + (w+ − w−) (A+(R, σ)− A+(D, σ)) , (3.6.20)

and, using a similar argument, we find that for a localised spot for a piece-wise

constant Mexican hat kernel with a Dirichlet boundary condition as

κ = uBC + (w+ − w−) (A+(R, σ1)− A+(D, σ1))

+ w− (A+(R, σ2)− A+(D, σ2)) , (3.6.21)

where D is the radius of the disc. Here, A+(r, σ) = A(R, θ0(r, σ)) + A(σ, θ1(r, σ))

with θ0(r, σ) and θ1(r, σ) given by Equation (3.6.14).

In Fig. 3.11, we show the neural field model with boundary conditions (uBC = 0) for

a piece-wise constant Top hat (3.11A) and a piece-wise constant Mexican hat (3.11B)

functions given in (3.6.1) and (3.6.2); where both support only stable solutions for

large values of radii.

3.7 numerical scheme

3.7.1 Numerical Scheme for the Full Space-time Model

We discretise the space into 29 points in each of the x and y spatial directions, and

evolve the resultant set of ordinary differential equations using MATLAB 2015a

with its standard non-stiff ode45 routine. The numerical simulation of the full
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3.7 numerical scheme

Fig. 3.11: Spot radius R as a function of κ for a piece-wise constant Top hat (A) and

a piece-wise constant Mexican hat (B) connectivities given by (3.6.1) and

(3.6.2) in a finite domain, that is a disk of radius D = 20 with Dirichlet

boundary condition q(D) = uBC = 0. Parameter values are as in Fig. 3.10.

Linear stability analysis shows that solutions are stable (solid lines). Here

the figures are plotted considering the constraint R > D− σ for the piece-

wise constant Top hat kernel and R > D − σ1, where σ2 > σ1 for the

piece-wise constant Mexican hat kernel.
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space-time model (3.1.1) without boundary conditions was performed by discretis-

ing the domain on an N by N tensor grid, which requires N4 operations. Due to

the convolution structure of equation (3.1.1), it is possible to decrease the computa-

tional cost of each function evaluation by performing a pseudo-spectral evaluation

of the convolution, using a Fast Fourier Transform (FFT), followed by an inverse

Fast Fourier Transform (IFFT). This reduces the number of operations to O(N2 log

N2) and allows to simulate full space-time neural fields efficiently. For a further

discussion on direct numerical simulations of neural fields using FFTs, see the

numerical schemes presented in [11, 131]. It is worth pointing out that we have

studied neural field models for a Heaviside firing rate throughout this Chapter.

Note that Fourier methods can only be exploited for periodic domains. Since the

model in (3.1.3) and (3.1.4) is not periodic, we used conventional matrix-vector

multiplication for the convolution structure of (3.1.4). In this context, on a N by

N grid, N4 operations is precomputed and stored prior to the time stepping, with

the synaptic kernel given by (3.2.9). Because of the memory constraints, the grid

size for the model in (3.1.3) and (3.1.4) was limited to 27 points. Discretising (large)

domains with a small number of grid points may not always be accurate for nu-

merical simulations of the full space-time model. Therefore, the interface dynamics,

which requires no knowledge away from contour, becomes a practical alternative

for a robust and efficient description of a neural activity.

3.7.2 Numerical Scheme for the Interface Dynamics

Numerical evolution of the interface dynamics is performed based on the compu-

tation of the normal velocity by approximating the numerator and denominator of

equations (3.3.3) and (3.3.9) for unbounded domains, and also that of (3.4.6) and

(3.4.7) for bounded domains with an imposed Dirichlet boundary condition. For

both cases, the interface between the active and quiescent regions is discretised into
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3.7 numerical scheme

a set of points (see Fig. 3.4), the number of which is proportional to the desired ac-

curacy and smoothness of the solution. For a neural field model with a Dirichlet

boundary condition, one also needs to discretise the domain boundary to compute

the line integral (3.1.3) with a specific choice for the paths Γ, that connect points on

the domain boundary to the points on the contour. For simplicity, we have used

a shortest path (3.4.2) which starts on the contour ∂Ω+ and ends on the boundary

∂Ω. Note that, since the evolution of the interface is driven by the normal velocity,

it is also natural to choose paths in the normal direction. However, this would

require more computational time for full space-time simulations, as well as that for

interface dynamics.

Normal and tangent vectors along the interface are efficiently computed using spec-

tral methods via numerical FFT and IFFT [132], allowing very robust and fast com-

putation of the line integrals given by equations (3.3.8) and (3.3.9). Note that, for the

spectral methods, the points along the contour must be evenly spaced at every time

step. This requirement is fulfiled by an interpolation [133]. The contour is displaced

in the normal direction, where a standard trapezoidal rule is used to calculate com-

ponents of the normal velocity. Here, we obtain the new contour using a Forward

Euler method, where ∂Ω+(s, t + ∆t) = ∂Ω+(s, t) + cn∆t with cn(s) = c · n(s, t). As

a pattern grows or shrinks, additional points are added or eliminated to fix the

arclength between points on the contour. We emphasise that the time evolution for

these equi-spaced interface dynamics requires data from the full history of ∂Ω+(t),

in the interval [0, t], see equation (3.3.4). Since saving the history of all contours

is computationally expensive, we always store the last 50 contours, and any other

previously stored data is deleted as its effect on the system vanishes over time,

since η(t) in (3.3.4) is a decaying function. Singular points in the line integral given

by equation (3.3.9) can be either skipped according to a Plemelj-type argument de-

scribed in [134] or set to zero. In fact, the contribution of a single (singular) point

to the solution is very small, so that we can ignore this when we compute the line
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integrals. For a relatively smooth evolution, we consider a time step size of 0.05 (or

smaller) to calculate the line integrals.

3.8 conclusion & discussion

In this Chapter we have introduced a new approach for studying localised solu-

tions of a neural field model on a bounded domain. Focusing on Dirichlet bound-

ary conditions, we have developed a key mathematical idea, namely reformulating

the model using the evolution of its gradient. We have reformulated the normal

velocity rule for an interface framework that respects Dirichlet boundary condi-

tions, and used this to highlight how a Dirichlet boundary condition can limit the

growth of a spreading pattern. Hence, one major topic here is to study the ef-

fect of a Dirichlet boundary condition that clamps neural activity at the boundary

to a specific value. It is also appreciated that continuum neural field models can

be extended to include different properties that can strongly influence the spatio-

temporal dynamics of waves and patterns. For example, heterogeneities may give

rise to wave scattering [135] or even extinction [106]. Therefore another way for

studying biological constraints at the boundary of a bounded domain would be to

impose spatial heterogeneities as in the work of Goulet et al. [135]. The topic we

address in this paper is to ponder the role that a Dirichlet boundary condition can

have on spatio-temporal patterning. Considering Neumann boundary conditions

would be another route; however, we do not pursue this here as localised states

with Neumann boundary conditions could take on the value of the threshold at

the boundary, making mathematical analysis harder (for handling the level set on

the boundary). We have also reproduced the work of Coombes et al. [11] to de-

velop an interface dynamics approach for both one- and two-dimensional systems,

additionally removing the restrictions to Bessel functions in the synaptic kernel. In

this setting, we have focused on localised states, as well as their instabilities. Com-
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pared to the full space-time model for neural dynamics the interface description is

reduced, but it is exact. For all results obtained from numerical simulations, we

have highlighted the excellent agreement between the full space-time model and

the equivalent interface approach in the absence and presence of boundary condi-

tions. Although we mainly focused on the generation of labyrinthine structures

(from unstable spots) with a four fold symmetry, suggesting that the spot is unsta-

ble to an azimuthal instability with 4-mode, the technique we have developed in

this Chapter can treat other simple structures, including stripes and ring structures.

The interface approach studied in this Chapter has been developed for Heaviside

firing rates. An extension of the techniques for developing an interface dynamics

approach to treat smooth sigmoidal firing rates (2.3.5) is a challenge, yet combining

the mathematical techniques we discussed for interface dynamics in this Chapter

with the results presented by Coombes et al. [136] for the approximate solutions of

neural fields with sigmoidal firing rates may allow one to reformulate a normal ve-

locity rule for a neural field model with a Dirichlet boundary condition and smooth

sigmoidal firing rate function.

We have also shown that the analysis of the Amari model simplifies even further

for the choice of piece-wise constant synaptic kernels. These kernels allow the anal-

ysis of localised states in the form of spots as well as their azimuthal instabilities.

Using piece-wise constant kernels the interface approach becomes quasi-analytical,

and the normal velocity of the interface can be calculated by hand rather than

having to be found numerically. Compared to the original model of Amari, we

find that localised states can be induced by the imposition of Dirichlet boundary

conditions on a bounded domain, yet all are shown to be stable near the domain

boundary. Another extension would be to consider doubly periodic solutions with

u(r + l1,2, t) = u(r, t), for linearly independent vectors l1,2 ∈ R2. Because of the pos-

sible contour interactions (splitting and merging behaviour in periodic contours),

developing an interface theory for these periodic (and interacting) solutions is a

challenge. The ideas for a further analysis of doubly periodic solutions, and their
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instabilities will be presented in Chapter 7. Furthermore, given that heterogeneities

can strongly influence the behaviour of neural fields, e.g. giving rise to wave scat-

tering [135] or even extinction [106], it would be interesting to further investigate

the role that a boundary can have on patterning.

In the next Chapter, we study neural field models with a linear form of spike

frequency adaptation (SFA) to mimic a negative feedback process to diminish sus-

tained firing. The effects of an adaptation variable cause a travelling front to tran-

sition to a travelling pulse [83], or allow the generation of planar spiral waves [16].

Since the adaptation is linear, we generalise the interface approach presented in

this Chapter.
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4
I N T E R FA C E D Y N A M I C S I N N E U R A L F I E L D S W I T H

A D A P TAT I O N

Experiments on disinhibited cortex slices suggest that there are various metabolic

processes, apart from inhibition, which restrain the excitatory activity of large scale

neural networks [107, 108]. M-type currents, AHP-type currents and slow recovery

currents are three major types of spike frequency adaptation currents [108]. M-

type currents increase the firing threshold of an action potential in voltage-gated

potassium (K+) channels [108, 137], AHP-type currents are involved in inactivation

of calcium-gated potassium channels [138], and slow recovery currents are linked to

the inactivation of voltage-gated sodium (Na+) channels [107, 139].

Perhaps the first comprehensive analysis of neural field models with adaptation

was developed by Pinto and Ermentrout in Pinto’s PhD thesis in the late 1990s [107,

140]. Concurrently, the existence of travelling pulses in the presence of adaptation

on a ring domain was reported by Hansel and Sompolinsky [141]. Since then, the

slow linear spike frequency adaptation, which brings neurons back to their resting

state after high activity periods, has been a popular choice to modulate neural

response in neural field models.

Prior to this Chapter, we have only studied neural fields for analysing the dynamics

of localised patterns. As indicated earlier, these planar models with the addition of

a linear adaptation component are known to support not only localised states but
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also a wide range of travelling waves, including spiral waves. Here, we begin with

an overview of neural fields with adaptation in §4.1. Coombes et al. [11] outlined

how planar neural field models with linear adaptation could support a range of

travelling waves and breathers. However, they did not develop an equivalent in-

terface description of these models. Next in §4.2 we develop a theory for interface

dynamics in neural fields with adaptation in an unbounded domain, and show that

they are in an excellent numerical agreement with direct numerical simulations for

localised non-oscillatory labyrinthine structures in §4.3 and oscillatory breathers in

§4.4. Then, following Laing’s work [16], we study rotating spiral waves in neural

fields using a partial differential equation (PDE) on a circular domain with a Dirich-

let boundary condition and steep sigmoidal firing rate in §4.6.3, and we perform

their numerical continuation in §4.6.4.

4.1 the model : integro-differential equations

A standard two-dimensional neural field with adaptation that we consider is given

by

∂u(x, t)
∂t

= −u(x, t) +
∫
Ω

w(x− x′) f [u(x′, t)− κ]dx′ − ga(x, t), (4.1.1)

τ
∂a(x, t)

∂t
= α̃u(x, t)− a(x, t), (4.1.2)

where Ω ⊆ R2, x ∈ R2 and t ∈ R+. The field a represents a local slow negative

feedback (g > 0) mechanism that modulates synaptic activity, and τ controls the

time course for the change in recovery variable relative to the change in synap-

tic drive. Further, we shall work with a rotationally invariant isotropic choice of

synaptic kernel, that is w(x) = w(|x|). Other variables are as in previous Chapters.

In this setting, for a Heaviside firing rate, it is convenient to recall equation (3.3.6):

ψ(x, t) =
∫

Ω+(t)

dx′ w(|x− x′|). (4.1.3)
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Here we decompose the domain as Ω = Ω+ ∪ ∂Ω+ ∪ Ω−, where Ω+ = {x ∈

R2|u(x, t) > κ}, Ω− = {x ∈ R2|u(x, t) < κ}, and ∂Ω+ = {x ∈ R2|u(x, t) = κ}. The

system (4.1.1) and (4.1.2) is recast as

∂X(x, t)
∂t

= AX(x, t) + B(x, t), (4.1.4)

with X(x, t) = (u(x, t), a(x, t))T, and

A =

−1 −g

α̃/τ −1/τ

 , B(x, t) =

ψ(x, t)

0

 . (4.1.5)

Here the system of differential equations in (4.1.4) can be solved using the matrix

exponential. Thus, the solution of the system in equation (4.1.4) can be written as

X(x, t) = G(t)X(x, 0) +
t∫

0

G(t− t′)B(x, t′)dt′, G(t) = eAt. (4.1.6)

The G matrix in equation (4.1.6) can be computed with Matlab that easily imple-

ments matrix exponentials using function expm. In components form we have

u(x, t) =
t∫

0

dt′ G11(t′)ψ(x, t− t′) + G11(t)u(x, 0) + G12(t)a(x, 0), (4.1.7)

a(x, t) =
t∫

0

dt′ G21(t′)ψ(x, t− t′) + G21(t)u(x, 0) + G22(t)a(x, 0), (4.1.8)

where the 2-by-2 matrix G has components Gij, i, j = 1, 2. If the matrix A has real

eigenvalues, we obtain

λ± =
Tr A±

√
(Tr A)2 − 4Det A

2
, (4.1.9)

that satisfies Av± = λ±v± with eigenvectors v± ∈ R. We can express G(t) as a

Jordan Normal Form matrix, in the form of G(t) = PeΥtP−1, where Υ = diag[λ+, λ−]

and P = [v+, v−]. If the matrix A has complex eigenvalues, λ± = ξR ± iξ I , we find

Av± = (ξR + iξ I)v± with the corresponding complex eigenvector v± ∈ C. In this

setting we consider G(t) = eξRtPK(ξ It)P−1, where P = [Im(v+), Re(v+)] and

K(φ) =

cos φ − sin φ

sin φ cos φ

 , P =

 0 −g

ξ I ξR + 1

 . (4.1.10)

The components of G(t) are explicitly given in Appendix B1.
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4.2 interface dynamics

Using the results from Chapter 3, we can now construct an extension of the inter-

face dynamics in two-dimensional neural fields with spike frequency adaptation.

Here it is convenient to recall the original neural field model with adaptation given

in §4.1:

ut(x, t) = −u(x, t) + ψ(x, t)− ga(x, t), (4.2.1)

τat(x, t) = α̃u(x, t)− a(x, t), (4.2.2)

where ψ is the non-linear term (second term on the right hand side of equation

(4.1.1)). Similar to the case for g = 0, the normal velocity along the contour of an

active area of synaptic activity for a neural field with adaptation (g 6= 0) is given

by

cn ≡ n · d
dt

∂Ω+ =
y
|z| , (4.2.3)

where we write (y, z) = (∂u(x, t)/∂t,∇xu(x, t)) |x=∂Ω+(t). Here

y(x, t) = G′11(t)u0(x) + G′12(t)a0(x) +
∂

∂t

t∫
0

dt′G11(t′)ψ(x, t− t′), (4.2.4)

z(x, t) = G11(t)∇xu0(x) + G12(t)∇xa0(x) +
t∫

0

dt′G11(t′)∇xψ(x, t− t′), (4.2.5)

with u0(x) = u(x, 0), x ∈ R2. To compute the derivative of the non-linear term

(third term on the right hand side of (4.2.4)) in terms of line integrals, the key step

is to apply Reynolds’ transport theorem (two-dimensional Leibnitz rule), namely

d
dt

∫
Ω+

F(r, t)dr =
∮

∂Ω+

(cn · n)F ds +
∫

Ω+

∂F(r, t)
∂t

dr, (4.2.6)
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where Ω+ denotes the time dependent excited domain. Using the above informa-

tion we obtain

∂

∂t

t∫
0

dt′G11(t′)ψ(x, t− t′) (4.2.7)

=

t∫
0

dt′G11(t′)
∂ψ

∂t
(x, t− t′) + G11(t)ψ(x, 0), (4.2.8)

=

t∫
0

dt′G11(t′)
∮

∂Ω+(t−t′)

dsw(|x− γ(s, t)|) d
dt

γ(s, t− t′) · n(s, t− t′)

+ G11(t)ψ(x, 0).

Hence, to evaluate the right hand side of equations (4.2.4) and (4.2.5), it is enough

to consider

∂ψ(x, t)
∂t

=
∮

∂Ω+

w(|x− γ(s, t)|)n(s, t) · dγ

dt
(s, t)ds, (4.2.9)

=
∮

∂Ω+

w(|x− γ(s, t)|)cn(s, t)ds, (4.2.10)

and

∇xψ(x, t) = −
∮

∂Ω+

w(|x− γ(s, t)|)n(s, t)ds, (4.2.11)

where γ = γ(s, t) denotes points on the contour parametrised by s at time t, namely

γ(s, t) ∈ ∂Ω+ . Using the above combination we find

y(s, t) =
t∫

0

dt′ G11(t′)
∮

∂Ω+(t−t′)

ds′ w(|γ(s, t)− γ(s′, t′)|)cn(s′, t− t′) + y0(s, t),

(4.2.12)

z(s, t) = −
t∫

0

dt′ G11(t′)
∮

∂Ω+(t−t′)

ds′ w(|γ(s, t)− γ(s′, t′)|)n(s′, t− t′) + z0(s, t),

(4.2.13)

where

y0(s, t) =
[
G′11(t)u(x, 0) + G′12(t)a(x, 0) + G11(t)ψ(x, 0)]

∣∣
x=γ(s,t) , (4.2.14)

z0(s, t) = ∇x [G11(t)u(x, 0) + G12(t)a(x, 0)]|x=γ(s,t) , (4.2.15)

G′(t) = A G(t) with G(t = 0) = I (identity matrix). (4.2.16)
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4.3 localised states : labyrinthine structures

Recalling the simple neural field with adaptation given by (4.1.1) and (4.1.2), a

closed form of the pair (u, a) can be alternatively written by integrating (4.2.1) and

(4.2.2) from −∞ to t (and dropping transients):

u(x, t) =
t∫

−∞

dt′G11(t− t′)ψ(x, t′), (4.3.1)

a(x, t) =
t∫

−∞

dt′e−(t−t′)u(x, t). (4.3.2)

Here, G11 is given in (B1.1), and for a Heaviside firing rate, the non-linear term

becomes

ψ(x, t) =
∫

Ω+(t)

w(x− x′)dx′. (4.3.3)

We now consider a mathematically convenient synaptic connectivity of the form

w(r) =
N

∑
i=1

ÂiK0(ϑir), Âi ∈ R and σi > 0, (4.3.4)

where Ka(·) is the modified Bessel function of the second kind of order a. Here

for an appropriate choice of the parameters for Ai and ϑi, Mexican hat connectivity

can be described as

w(r) =
2$

3π

(
K0(r)− K0(2r)− 1

γ
(K0(βr)− K0(2βr))

)
, $, γ, β > 0, (4.3.5)

as shown in Fig. 4.1. Here γ, $ and β are constants.

Fig. 4.1: An illustration of Mexican

hat connectivity function

(4.3.5), describing the in-

teractions among neurons

with local excitation and

lateral inhibition for β =

0.2, $ = 1 and γ = 4.
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4.3 localised states : labyrinthine structures

The components of normal velocity (4.2.3) can be computed in an identical manner

as for the velocity formula we computed for neural field models with no adaptation

in Chapter 3. To evaluate the right hand side of (4.2.4) and (4.2.5) in terms of the

line integrals, the double integral ψ can be reduced to

ψ(x, t) =
1
ϑi

N

∑
i=1

Âi

∮
∂Ω+

dsn(s) · x− γc(s)
|x− γc(s)|

K1(ϑi|x− γc(s)|) + C
2π

ϑ2
i

, (4.3.6)

where γc denotes points on the contour ∂Ω+. Here C = 1 if x ∈ Ω+, C = 0.5 if

x ∈ ∂Ω+ and C = 0 if x ∈ Ω−.

An example of the direct simulation of a localised labyrinthine structure and the

evolution of its interface dynamics are shown in Fig. 4.2, where destabilisation to

azimuthal instability with a four fold symmetry emerging from an initial spot is

observed. Once again compared to the full space-time model for neural dynamics,

Fig. 4.2: Direct numerical simulations of a spreading labyrinthine structure gov-

erned by the space-time model (4.2.1) and (4.2.2) with a Heaviside firing

rate and Mexican hat kernel (4.3.5) on a domain of size [−L, L]× [−L, L]

(A), and their corresponding interface dynamics (B) at fixed times. Param-

eters are α̃ = 1, κ = 0.003, $ = 1, g = 0.05, τ = 1, γ = 4, β = 0.5, L =

15π.

the interface description is reduced, yet requires no approximations.

As for the neural fields with no adaptation in Chapter 3, stationary circular spot

solutions, which we denote by U(r), can be easily analysed in two-dimensional neu-
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ral fields with an adaptation variable, where a spot radius is obtained by replacing

κ with κ(1 + α̃g), and ψ is written as

U(r) =
ψ(r)

(1 + α̃g)
, ψ(r) =

R∫
0

2π∫
0

w(|r− r′|)r′dθdr′, (4.3.7)

where r = (r, θ). Here a saddle-node bifurcation can be found at a critical value of

a radius R for a stationary spot, suggesting that ψ′(R) = 0 (dU/dr = 0). This also

implies the existence of stationary spots under the condition κ < ψ(R)/(1 + α̃g).

As in Chapter 3 we can follow the Evans function approach to determine stability.

A difference between perturbed and unperturbed spots gives rise to a perturbation

δu = ũ − u, with a corresponding change in the radius [11, 76] that we write as

R̃ = R + δR(θ, t). Using (4.3.1), we obtain

δu =

t∫
0

dt′G11(t′)


N

∑
i=1

Âi

2π∫
0

dθ′

 R̃(θ′,t−t′)∫
0

K0(ϑi|r− r′|)r′dr′
∣∣∣∣
r=(R̃(θ,t),θ)

−
R∫

0

K0(ϑi|r− r|)r′dr′
∣∣∣∣
r=(R,θ)

 , (4.3.8)

which reduces to

δu =

t∫
0

dt′G11(t′)
N

∑
i=1

Âi

2π∫
0

dθ′
{

U′(R)δR(θ, t) + RK0(ϑiQ(θ))δR(θ′ − θ, t− t′)
}

.

The equation δu = 0 has a solution in the form δR(θ, t) = δ cos(mθ)eλmt, leading

to the eigenvalue problem

λm = −1 +Wm, (4.3.9)

where

Wm =
R

U′(R)

N

∑
i=1

Âi


2π∫
0

dθ cos(mθ)K0(ϑiQ(θ))

 , (4.3.10)

with Q(θ) = R
√

2(1− cos(θ)). Here, a spot is stable when λm < 0 and an m-mode

pattern instability is obtained when λm > 0. In addition, the mode with m = 1

is always expected to exist due to rotational invariance (and would give rise to a

zero eigenvalue for all parameter values). This agrees with previous results for

Mexican hat connectivities on domains where no boundary condition is used, see

[11, 76, 107, 142] for further discussions.
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4.4 breathers

The inclusion of a linear spike frequency adaptation has a strong effect on the

emergence of more exotic patterns, such as breathers. In Fig. 4.3 we show the direct

numerical simulations of such a spatially localised periodic oscillation, as well as

the evolution of the corresponding interface dynamics. It is worth mentioning that

the very slight discrepancy in phases/amplitudes, as seen in Fig. 4.3C, should be

expected, where the time stepper for the interface is only first order accurate in time,

as opposed to the one used for the space-time formulation, which is fourth order.

Also the spatial accuracies of the two schemes are different. Linear stability analysis

Fig. 4.3: Row (A): direct numerical simulation for a breathing instability for the

model (4.2.1) and (4.2.2) with Mexican hat kernel (4.3.5) and Heaviside

firing non-linearity. Row (B): the equivalent evolution using interface (blue

line) dynamics due to normal velocity (green arrows) given in equation

(4.2.3). Row (C) : comparison of radii as a function of time. Parameters are

α̃ = 0.5, $ = 5, τ = 5, g = 1, γ = 4, β = 0.5, L = 6π.

of these non-stationary states is performed using an Evans function approach. Here
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eigenvalues are determined by the equation δu = 0 for perturbations in the form

δR(θ, t) = δ cos(mθ)eλmt, for which the Evans function Em(λ) is written as

Em(λ) =
1

G̃11(λ)
− (1 + α̃g)Wm = 0, (4.4.1)

where Wm is given in (4.3.10) and G̃11 denotes the Laplace transform of G11 (B1.1),

that can be explicitly computed as

G̃11(λ) =

(
λ +

1
τ

)
1

(λ− λ+)(λ− λ−)
. (4.4.2)

Here a breathing instability can be obtained by considering the m = 0 case. More-

over, the eigenvalues for m = 1 can be found using G̃11(λ) = 1/(1 + α̃g), where

two solutions, from (4.4.2), are determined as λ1 = 0 and λ2 = α̃g − 1/τ. In

this section, breathers are studied in a network of excitation and inhibition using

equation (4.3.5); however, they may also arise in a purely excitable system with

the inclusion of a localised external input [129]. These oscillatory localised pat-

terns are also supported with a sigmoidal firing rate, the steepness of which has

a considerable impact on the existence and stability of breathers. Coombes et al.

showed that breathers generated with a sigmoidal firing rate have smaller ampli-

tudes compared to ones found using a Heaviside firing rate [12]. Moreover, for

a small threshold parameter, a steep sigmoid and a Heaviside non-linearity lead

to persistent and vanishing breathers respectively. Although we only focus on an

adaptive neural field model with the inclusion of excitatory and inhibitory inter-

actions, there are other metabolic mechanisms which can allow the generation of

time periodic and radially symmetric breathers, as well as nonradially symmetric

dynamic instabilities. These include threshold accommodation [111], axonal delays

[143] and synaptic depression [115]. For a comprehensive review of the dynamics

of breathers we refer the reader to [12, 129].

In a very similar fashion to the work described in Chapter 3, it is straightforward

to develop a theory of an interface description for these stationary (Fig. 4.2) and

non-stationary (Fig. 4.3) localised states in the presence of Dirichlet boundary con-

ditions, and their stability can be similarly determined.
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4.5 jacobian of a localised solution (interface description) around

its boundary

In §4.2, we addressed the stability of circularly symmetric solutions; however, one

can also develop a more general approach for an arbitrary closed curve that is

not circular. Moreover, we can also incorporate boundary conditions to ensure the

smooth decay of localised solutions as well as enforce biophysical constraints. Now

we revisit the synaptic activity described by (4.1.7). One way to impose Dirichlet

boundary condition is to find the roots of equation u(x, t)|x∈∂Ω = 0. In this con-

text, one can use a Newton-GMRES method (Generalized Minimal Residual) for

imposing a Dirichlet boundary condition. This method is particularly useful when

an analytical Jacobian is not known in closed form, or is too large to be stored in

memory. Since the analytical construction of the Jacobian is awkward (given the

intricate dependency of ψ on the vector of unknowns), we pursue this approach

here. For this method, the Jacobian acts on a ghost vector (see equation (4.5.1)),

leading to a Jacobian-vector product. One of the most striking properties of the

Newton-GMRES method is that it does not store or form the elements of the ex-

plicit Jacobian. This is particularly convenient for solving large scale systems in

terms of performance, storage and accuracy. For further details about Newton-

GMRES method, we refer the reader to the Jacobian-Free Newton-Krylov (JFNK)

methods overview in [144, 145]. The Jacobian-vector product around a closed con-

tour γc can be calculated using a finite difference technique. Evaluating this on the

domain boundary ∂Ω for (4.1.7) we obtain

J(γD; γc)γ̃ =
u(γD; γc + εγ̃)− u(γD; γc)

ε

∣∣∣∣
γc=γc(s,t)

, (4.5.1)
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where γ̃ = γ̃(s, t) is a ghost vector on which the Jacobian acts. Here γc ∈ ∂Ω+

and γD ∈ ∂Ω. Using a first-order Taylor expansion, an analytical solution of the

Jacobian-vector product (independent from ε) is given as

J(γD; γc)γ̃ =−
t∫

0

dt′G11(t− t′)
∮

∂Ω+

[n(s) · γ̃(s)− ñ(s) · d(s)] w(|d(s)|)
|d(s)|

+ q(s)n(s) · d(s)
|d(s)|2

[
w(|d(s)|
|d(s)| − w′(|d(s)|)

]
, (4.5.2)

where d(s) = γD − γc(s) and q(s) = (γD − γc(s))(γD − γ̃(s))T. Here ñ is the

normal of the ghost vector γ̃. We will present examples of this theory for the

calculation of Jacobian for spiral waves in the next section.

4.6 spiral waves

4.6.1 Biological Background

Spiral waves are one of the most common stationary (self-sustained) rotating travel-

ling waves that appear in two-dimensional excitable media [16, 62]. They have been

observed in a wide range of biological and physical systems, including calcium

oscillations in a frog egg during fertilisation [146], reactions in non-linear homo-

geneous chemical systems [147, 148], spatial dynamics in insect populations [149],

ventricular fibrillations in cardiac systems [15, 16]. In the context of the nervous

system, they have been clearly seen in Electroencephalography (EEG) recordings in

an isolated chicken retina [150] and voltage-sensitive dye imaging of electrical activ-

ity in a turtle visual cortex [151]. Since self-sustained activity of the spirals usually

overrides and prevents the natural propagation of other cortical waves, long-lasting

spirals are usually linked to pathological conditions. For example, spiral waves

have been thought to occur during epileptic seizures, where a short episode of a

large group of overly synchronised firing of neurons may trigger the emergence of

recurrent spiral waves [16, 152]. Rotating spirals have been also reported as pat-
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terns of visual hallucinations, where they are experienced as hallucinatory images

[62, 153, 154].

Fig. 4.4: Wave patterns in a tangential slice of a rat neocortex. Panel (A): alternation

of three different wave patterns: spiral, plane and irregular waves. Panel

(B): oscillation which shows the wave transition. Image taken from [155].

Although spiral waves have been seen in many systems, they were not observed

in a mammalian cortex until a pioneering experiment performed by Huang et al.

on rodent cortical slices [155]. Figure 4.4 shows the results of Huang et al.’s ex-

periments, where the spiral waves alternating between both plane and irregular

waves are obtained from the same field of a 500 µm thick tangential slice of a dis-

inhibited cortical layer in a rat neocortex. The activity in Fig. 4.4 is imaged using a

voltage-sensitive dye. It is also reasonable to assume that cortical activity induced

by spiral waves in an intact brain may differ from that in brain slices: Further work

by Huang (2010) has shown the emergence of spirals in an intact mammalian (rat)

cortex, where the activity was measured during sleep-like states or during pharma-

cologically induced oscillations to ensure a purely excitatory state [156]. These two

works by Huang et al. indicate that the duration and persistence of spiral waves are
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shorter for waves in intact brains compared to those in brain slices, albeit with a

faster drifting of the spiral core in intact brains. This implies that the cortex might

have an internal mechanism to control spiral location and life time in pathological

cases [156]. Although all of these findings are interesting, the evolution of spiral

waves and their effect on cortical activity has not yet been fully understood.

4.6.2 Theoretical Background

From a mathematical point of view, Wiener and Rosenblueth (1946) proposed the

first analysis for spiral waves in an excitable cardiac muscle during cardiac arrhyth-

mia (irregular heartbeat) [157]. Almost 15 years later, Anatol Zhabotinsky, known

as the father of non-linear chemical dynamics, revisited the seminal work of Boris

Belousov, whose attempts on modelling the citric acid (Kreb’s) cycle led to the dis-

covery of a new oscillating reaction [158]. Their pioneering work on non-linear

chemical dynamics showed the evolution of complex spiral waves, and is named

as BZ reaction. Later on, in the 1970s, Winfree published the first systematic math-

ematical work for spiral wave formation in the BZ reaction [147]. Since then, spiral

waves have been primarily found and modelled with modified Fitzhugh Nagumo

models [159, 160], Hodgkin Huxley type systems [161, 162], and particularly with

reaction-diffusion equations [163–166]. The bifurcation analysis of spiral waves in

reaction-diffusion equations on the plane was performed by Sandstede et al. [167]

and Scheel [168], and the analysis of oscillatory reaction-diffusion equations on a

disk was performed by Paullet et al. [169], etc. Although all the aforementioned

models have been used to observe a wide range of spiral dynamics, e.g. spiral

breakup [159], meandering [170] and drifting spirals [165, 171], the only mathemat-

ical work which has been performed to understand the theory behind the structure

of spirals in planar neural fields is that of Laing [16, 95].
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4.6.3 The PDE Model

In this section, we revisit the work of Laing [16], where the neural fields with a

particular choice of synaptic kernel can be expressed in terms of a system of par-

tial differential equations (PDEs) [16, 17]. Formally, if the Fourier transform of the

synaptic kernel F[w](s) is a rational function of a transform variable s, the convo-

lution structure in equation (4.1.1) can be transformed into a PDE. Reproducing

Laing’s [16] results, an example of a spiral wave in a non-local continuum planar

model, (4.1.1) and (4.1.2), with a smooth sigmoidal firing rate function is shown

in Fig. 4.6. Here, a non-negative and decaying connectivity function, for which

the system of equations (4.2.1) and (4.2.2) can be rearranged in terms of Fourier

transforms [16], is

w(r) =
∞∫

0

ζsJ0(rs)ds
s4 + `1s2 + `2

, (4.6.1)

where J0 denotes the modified Bessel function of the first kind of order zero, and ζ

is a scaling parameter. A sigmoidal firing rate function is chosen as

f (u) =
1

1 + e−µ(u−κ)
, (4.6.2)

where µ > 0 is the steepness parameter and κ is the activity threshold.

Here the kernel in equation (4.6.1) can be exploited for transforming the non-local

continuum model (4.1.1) and (4.1.2) into an equivalent system of fourth order PDEs,

allowing the use of computationally inexpensive and well developed algorithms.

We refer reader to [16, 17, 113, 127] for further discussion on numerical methods

for PDEs. An image of a purely excitatory kernel is depicted in Fig. 4.5.

Fig. 4.5: A plot of a purely excitatory

kernel. Synaptic interactions

are only positive for all range

distance.
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A B

Fig. 4.6: A snapshot of the direct numerical simulations of synaptic activity u (A)

and recovery variable a (B) with a monotonically decaying positive kernel

(4.6.1) on a domain of radius R = 35. Rigidly rotating spiral waves are

obtained in the clockwise direction. Red and blue regions represent excited

and quiescent states, respectively. Parameters are α̃ = 1.7, ζ = 3.5, `1 =

1, `2 = 1, µ = 20, τ = 5, κ = 0.2, at time= 300 with a Neumann boundary

condition. Reproduced from [16] using a smooth sigmoidal firing rate

(4.6.2) .

Here we aim to simulate dynamics of spiral waves using a continuum neural field

model [155]. Initial conditions for spiral waves are chosen in polar coordinates in

the form

u(r, θ, 0) =


1, if θ ∈ [0, π]

0, otherwise
,

a(r, θ, 0) =


1, if θ ∈

[
π

2
,

3π

2

]
0, otherwise

,

where red and blue regions represent the excited and quiescent states, respectively.

As seen, we initiate the simulations in such a way that the top half of the synaptic

drive and left half of the adaptation are excited. There are two particular reasons for

considering initial conditions in this form. First, we believe that there should be a

delay between the activity of the neuron population and negative feedback in a real
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tissue. This may arise because neurons are exposed to high dynamical activity just

before the adaptation variable recovers them back to their resting states. Second,

the initial conditions chosen above may reduce computational effort in the case

that spiral wave rotates in the clockwise direction (as in our case). Note that the

effect of coupled excitatory neurons is much greater than the effect of inhibitory

neurons, so inhibition is assumed to be blocked (as in the experiments performed

by Huang et al. [155]). This can be also seen in the model, in which variable a is

not an inhibitory activity so there is no convolution term for equation (4.1.2), and τ

decelerates the effect of the recovery variable a. Spiral wave patterns observed here

and by Laing [16] using equations (4.1.1) and (4.1.2) are consistent with the spiral

waves obtained in experiments conducted by Huang et al. [155].

A two-dimensional Fourier transform, F[·], is applied to both sides of equation

(4.1.1)

F[ut + u + g a](s) = F[w](s)F[ f (u)](s), (4.6.3)

where

F[w](s) =
ζ

s4 + `1s2 + `2
. (4.6.4)

The spatial Fourier transforms of u′′(x) and u′′′′(x) are −s2F[u] and s4F[u], respec-

tively. Here primes represent derivatives in spatial coordinates. Plugging these

expressions into equation (4.6.3) and taking the inverse Fourier transform, we ob-

tain a PDE system of the form[
54 − `152 +`2

] (∂u(x, t)
∂t

+ u(x, t) + g a(x, t)
)
= ζ f (u(x, t)), (4.6.5)

τ
∂a(x, t)

∂t
= α̃u(x, t)− a(x, t). (4.6.6)

We transform the above equations into polar coordinates using a standard change

of coordinates x = (r cos θ, r sin θ). The domain for a spiral wave is taken to be a

disk D of radius R with a Neumann boundary condition in Laing [16], see Fig. 4.6.

However, we choose boundary conditions:

u(R, θ, t) =
∂2u(r, θ, t)

∂2r2

∣∣∣∣
r=R

= 0, (4.6.7)
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leading to a closed pattern. In practice, the adaptation variable a can be written as

a function of u, and is also subject to a boundary condition of the form (4.6.7) for

all θ and t. As a side note, equations (4.1.1) and (4.6.5) are equivalent.

Snapshots for two examples of constantly rotating spiral waves with a steep sig-

moidal firing rate can be seen in Fig. 4.7 and Fig. 4.8. Figure 4.8 is also an example

of Archimedean spiral where the distance between successive parallel turns are

constant and ≈ 0.49. As mentioned earlier, the parameters κ, τ, α̃, and µ repre-
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Fig. 4.7: Direct numerical simulations of two representative spiral fingers for the

synaptic drive u (A) and adaptation variable a (B), governed by the model

(4.6.5) and (4.6.6) with a very steep sigmoidal firing rate (4.6.2). Red and

blue parts denote active and passive states respectively. Parameters are

α̃ = 2.8, ζ = 10.5, τ = 7, κ = 0.5, , µ = 200, R = 35 at time= 300.

sent threshold for the synaptic activity, time constant for the adaptation, adaptation

strength, and steepness parameter of the firing rate function, respectively. These

parameters are related in a certain sense that increasing connectivity parameter ζ

or time constant τ corresponds to decreasing α̃. The domain becomes completely

active (excited) with large values of ζ, and small values of α̃ and κ, whereas the

domain becomes fully passive (quiescent) for small values of ζ, and large values of

α̃ and κ. Varying κ is associated with wave density of the active region. With the

exception of Fig. 4.6 which is recovered from [16], all figures are created with the

very steep sigmoidal firing rate that mimics the Heaviside firing rate non-linearity.
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A B

Fig. 4.8: Direct numerical simulations of the synaptic drive u (A) and adaptation

variable a (B) governed by the model (4.6.5) and (4.6.6) with a steep

sigmoidal firing rate for a large domain of radius R. Parameters are

α̃ = 3.7, `1 = 5, `2 = 4, ζ = 14.4, τ = 8, µ = 200, κ = 0.25, R = 120 at

time = 150.

Once a rigidly rotating spiral wave is obtained, we can observe transitions into

meandering motion, or spiral break-up under a suitable choice of the parameters

and initial conditions, as seen in Fig. 4.9. In Figure 4.9, parameter variation is used

to monitor the behaviour of an one -armed spiral, allowing the formation of rigidly

rotating spiral (A), meandering spiral (B) and spiral break-ups (C). Rigid rotation

refers to the preservation of the spiral shape as it rotates, that is the tip traces out a

circle. Meandering spirals are distinguished from stationary spirals by their more

complicated tip motion. The shape and core location of a one-armed spiral may

change with time when it meanders. This leads to a non-stationary spiral in a

co-rotating frame, as in Fig. 4.9B. Quasi periodic tip motion of the inwardly and

outwardly meandering spirals leads to a very interesting flower-like patterns. For

further discussions, we refer the reader to [172, 173] where Barkley and Winfree

present their “flower gardens”. One should also be aware that a meandering spiral

is different from a drifting spiral. Meandering emerges in unperturbed systems

whereas drifting results from symmetry breaking perturbations [14]. Spiral break-

ups in Fig. 4.9C arise from counter rotating spirals, where the wave trains collide

and give rise to the emergence of other spiral cores. Note that the synaptic drive
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4.6 spiral waves

Fig. 4.9: Direct numerical simulations of various spirals waves are shown every

10 time units (after transients), governed by the model (4.6.5) an (4.6.6)

with a steep sigmoid firing rate. Panel (A): a rigidly rotating spiral wave,

where its core tracing out a circle, is shown with parameters α̃ = 2.8, ζ =

10.5, τ = 7, κ = 0.5, R = 35. Panel (B): spiral wave, rigidly rotating with

α̃ = 2.8, is replaced by meandering motion for α̃ = 2.5. Panel (C): spiral

break-up are seen with parameters α̃ = 3.8, µ = 200, ζ = 14.4, τ = 8, κ =

0.25, R = 50.
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4.6 spiral waves

with active 1st and 3rd quadrants, and adaptation with 2nd and 4th have been used

to initiate spiral break-up.

4.6.4 Stability

The stability of spiral waves has been treated by several authors, and see [16] for an

overview. Consider the evolution equations (4.6.5) and (4.6.6) in a rotating frame

−ω
∂u
∂θ

= −u + L−1 f (u)− ga, (4.6.8)

−ω
∂a
∂θ

=
α̃

τ
u− 1

τ
a, (4.6.9)

where u(r, θ, t) = u(r, θ−ωt) with a rotation speed ω. Here L is the linear operator

and f is the firing rate function. The eigenvalues λ for stability is constructed

according to the eigenvalue problem

J(u) · v = λ · v, (4.6.10)

where the Jacobian for a spiral solution is

J(u) =

ω
∂

∂θ
− I + L−1 f ′(u) −gI

α̃I
τ

ω
∂

∂θ
− I

τ

 . (4.6.11)

Here v = (∂u/∂θ, ∂a/∂θ) denotes a non-zero eigenvector and f ′ is the derivative

of the firing rate function, that is f ′(u) = µ f (u)(1− f (u)) for a firing rate given in

the form of (4.6.2). The family of the spiral solutions can be found by first writing

equation (4.6.9) in terms of u, that is(
I −ωτ

∂

∂θ

)
a(r, θ, t) = α̃u(r, θ, t), (4.6.12)

then plugging this into equation (4.6.8), we write

0 = L
(

α̃g
(

I −ωτ
∂

∂θ

)−1

u + I −ω
∂

∂θ

)
− f (u). (4.6.13)

The rotation speed ω in (4.6.13) is treated as another unknown. To find the pair

(u, ω) in the above equation, we consider an extra condition which pins the phase
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4.6 spiral waves

of the spiral. The pinning condition is chosen such that the average of u (over θ)

at r = R/2 (where R is the radius of the domain) is equal to the value of u at a

fixed point on the circle. The rotation speed ω as a function of α̃ and ζ are shown

in Fig. 4.10 for a smooth sigmoidal firing rate. Here the solutions of (4.6.8) and

(4.6.9) as well as corresponding eigenvalues at three points marked in Fig. 4.10A

are shown in Fig. 4.11.

A B

~

Fig. 4.10: Rotational speed ω is plotted as a function of parameters α̃ (A), and ζ (B)

for the model (4.6.8) and (4.6.9) with synaptic kernel (4.6.1) and smooth

sigmoidal firing rate (4.6.2) . Blue regions are stable solutions, while red

ones indicate unstable. Parameters are ζ = 3.5, κ = 0.6 (A), α̃ = 2, κ = 0.6

(B), with µ = 20, τ = 3, `1 = 1, `2 = 1, R = 35. Recalculated from [10].

Similarly, the rotation speed ω as a function of α̃ and ζ are shown in Fig. 4.12 for

a system with a steep sigmoidal firing rate. Here the solutions of (4.6.8) and (4.6.9)

as well as the corresponding eigenvalues at three points marked in Fig. 4.12A are

shown in Fig. 4.13. It is worth mentioning that the qualitative similarities between

Amari models and those with a steep sigmoidal firing rate are well known [127].

Here we have performed the numerical continuation analysis of spiral waves using

neural fields with a smooth as well as steep sigmoidal firing rate and determined

their stabilities under parameter variation. Since the model with a steep sigmoidal

firing rate function shows qualitatively similar behaviour to a Heaviside firing rate

function, this may open up the possibility of studying numerical continuation using
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4.6 spiral waves

Fig. 4.11: The solutions for synaptic activity u (column A), adaptation a (column

B) and the twelve eigenvalues (column C) with non-zero smallest magni-

tudes are shown for the stability of a spiral at points marked as 1, 2 and

3 in Fig. 4.10A.
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Fig. 4.12: Rotational speed ω is plotted as a function of parameters α̃ (A) and ζ

(B) for the model (4.6.8) and (4.6.9) with synaptic kernel (4.6.1) and steep

sigmoidal firing rate (4.6.2). Blue regions are stable solutions, while red

ones indicate unstable. Parameters are ζ = 10.5, κ = 0.4 (A), α̃ = 2.4,

κ = 0.4 (B), with µ = 60, τ = 3, `1 = 5, `2 = 4, R = 35.

one-dimensional interface dynamics. Note that the synaptic kernel (4.6.1) can be

rewritten in terms of a linear combination of zeroth order modified Bessel functions

of the second kind using the Hankel transform. For example, for a particular choice

of `1 = 5 and `2 = 4,

w(r) = ζ

 ∞∫
0

sJ0(rs)ds
s2 + 1

−
∞∫

0

sJ0(rs)ds
s2 + 4

 , (4.6.14)

=
ζ

6π
(K0(r)− K0(2r)) . (4.6.15)

Hence the line integral representation of the non-linear term ψ is given as

ψ(γc(s, t); t) = − ζ

6π

∮
∂Ω+(t)

n(s′) · A(s, s′)ds′, (4.6.16)

where

A(s, s′) =
γc(s)− γc(s

′)

| γc(s)− γc(s′) |

[
K1(| γc(s)− γc(s

′) |)− 1
2

K1(2 | γc(s)− γc(s
′) |)

]
,

and γc ∈ ∂Ω+. An application of the theory from §4.5, where we determined

the linearisation of a steady state around an arbitrary contour, can be made to the

spiral waves. In Figure 4.14, the numerical (4.5.1) and theoretical (4.5.2) results

for the Jacobian are compared. Fig. 4.14A and Fig. 4.14B show that there is an
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Fig. 4.13: The solutions for synaptic activity u (column A), adaptation a (column

B) and the twelve eigenvalues (column C) with non-zero smallest magni-

tudes are shown for the stability of a spiral at points marked as 1, 2 and

3 in Fig. 4.12A.

Fig. 4.14: A comparison of the results from numerical (4.5.1) and theoretical (4.5.2)

Jacobian (A) for a spiral wave, and 2-norm of these quantities as a func-

tion of a small ε (B).
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excellent agreement between the numerical and theoretical Jacobian. This suggests

that a computationally efficient spectral analysis for the interface dynamics can be

developed as opposed to a standard large matrix stability calculation.

4.7 numerical scheme

We discretise the domain in polar coordinates using 160 points in the angular direc-

tion and 80 points in the radial direction. The Laplacian matrix, M=
[
∇4 − `1∇2 + `2

]
in equation (4.6.5), is obtained using a Kronecker tensor product [174], and evalu-

ated in a sparse form, by which only non-zero elements and their position is stored

in the system. In this setting the Laplacian formula in polar coordinates is explicitly

constructed using

∇2 = Drr ⊗ Iθ +
1
R

Dr ⊗ Iθ +
1

R2 ⊗ Dθθ , (4.7.1)

where R = diag(r). Here Dθθ , Dr and Drr denote spatial derivatives that are com-

puted using finite difference methods in the r and θ direction, and Iθ denotes an

identity matrix in the θ direction. Here the system of differential equations in (4.6.5)

and (4.6.6) is solved in terms of a Mass matrix (M) in the form of Mu̇ = F(u), in-

stead of u̇ = M−1F(u), to avoid the computation of matrix inverse (M−1). The

numerical continuation of (4.6.13) as parameters are varied, shown in Fig. 4.10 and

Fig. 4.12, can be performed using a secant continuation code with MATLAB’s fsolve

function [131]. Since the system of equations for dimensionally reduced interface

dynamics is restricted to the case of Heaviside firing rate function, we show the

evolution of spiral waves using a very steep sigmoidal firing rate mimicking such

non-linearities. However, it is worth mentioning that decreasing the steepness pa-

rameter µ in the sigmoidal firing rate (4.6.2) substantially increases the computation

speed. Owing to the memory constraints, the numerical code for a rigidly rotat-

ing spiral wave is run for a 40-50 time units after it is initiated, then final state is

saved and used as an initial condition for the following 40-50 time units, and this
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process is repeated. The numerical scheme for interface dynamics of labyrinthine

structures and breathers for a neural field model with adaptation was developed

in Chapter 3. Once more, we present here the implementation used in our nu-

merical experiments, which were found to be in excellent agreement with the full

spatio-temporal simulation.

4.8 conclusion & discussion

In this Chapter we have shown that the addition of an adaptation variable to a

neural field model not only supports the emergence of spreading localised struc-

tures, e.g. labyrinths, but also allows the generation of breathers and travelling

waves, e.g. spirals. Coombes et al. [11] developed an interface description for

two-dimensional neural field with no adaptation in unbounded domains, and dis-

cussed how the model in the presence of adaptation could support a range of

localised states, travelling waves as well as breathers. However, they did not devel-

oped an equivalent interface description of these models with adaptation. In this

Chapter, we developed a theory for interface dynamics for neural fields with adap-

tation on a domain without boundary conditions, and showed that they are in an

excellent numerical agreement with direct numerical simulations for labyrinthine

structures and breathers. We also employed the numerical continuation of spiral

waves in the PDE form of the neural field equation with a smooth as well as steep

sigmoidal firing rate, and their stabilities were determined under parameters vari-

ation. Since the model with a very steep sigmoidal firing rate exhibits qualitatively

similar behaviour to one with a Heaviside firing rate, it would be nice to develop

the numerical continuation techniques that merges the stability and the interface

approach in a single computational framework. Note that boundary conditions are

known to have a strong impact on the evolution of spiral waves [16, 175]. In this
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Chapter, we presented all the ingredients for treating continuation directly from

interface framework with an imposed Dirichlet boundary condition.

Regarding the imposition of boundary conditions (u(x, t)|x∈∂Ω = 0) as in Chap-

ter 3, here the influence of different paths, that connect points on the contour to

points on the domain boundary, could also be explored. For a spiral solution using

Newton-GMRES iterative method, Figure 4.15 shows two trials regarding different

distribution of points on the disk.

Fig. 4.15: The first column shows a

spiral contour (blue) and

two different distributions for

points (red) along the disk,

with Dirichlet boundary con-

ditions. The evaluation of

the non-linear term ψ for each

case is shown in the second

column. Here N = 570 with

uniformly distributed points.

As seen in Fig. 4.15A, apart from a small region, the synaptic activity on the disk

boundary is near zero, implying that most of the equations in the system are lin-

early dependent. To avoid this ill-conditioning, the equations can be chosen from

the region where the boundary conditions are violated most, as seen in Fig. 4.15B.

With this choice, Fig. 4.16 shows that Newton-GMRES method is very efficient for

solving very large number of equations in a few iterations.
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Fig. 4.16: Minimal norm residual com-

puted for different number

of points along contour to

solve ψ(δ; γ) = 0 for bound-

ary conditions. N represents

the number of points along

the disk.

However, a related point to consider is that root finding of the system may converge

to a solution that is away from the level-set (on the boundary of the active region).

Therefore, in addition to boundary conditions, one should consider the level-set

condition as a constraint to the Newton- GMRES algorithm to find a solution of a

spiral wave which respects the Dirichlet boundary condition.

In this Chapter we have also investigated various parameter sets and initial condi-

tions to compute rigidly rotating spirals, as well as meandering spiral waves and

spiral break-ups. Due to their changing tip motion, meandering spirals are ana-

lytically much more complicated than rigidly rotating spirals. Barkley has used

an efficient theoretical approach to determine bifurcation theory for quasi-periodic

dynamics of meandering spirals in reaction-diffusion systems, where phase dia-

grams or a so-called bifurcation loci are classified depending on inward-pointing and

outward-pointing petals for meandering spiral tip motion [170]. As we have shown

that neural field model with an adaptation allows the generation of meandering

spirals, a possible extension of this work is to further investigate the existence of

meandering spirals, as well as their bifurcation theory in a neural field framework.

In addition we only concentrate on an uniform medium but a real tissue is highly

heterogeneous, and may lead to spatially drifting spiral waves. Such spiral waves

were previously observed in a heart tissue and modelled using reaction diffusion

systems [165, 171]. Thus, a neural field model with an inclusion of a symmetry

breaking perturbation in the non-uniform media might be another possible route
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to analyse drifting motion of spiral waves. Note that this will arise naturally in a

model when w is not radially symmetric, namely w(|x− x′|) → w(x, x′). Recent

research has shown that there may be distinctive differences between flat planar

and folded cortex for travelling waves [176]. The structure of the cerebral cortex is

highly wrinkled so that more complex and realistic geometries are needed. Since

cortical folding is important for changing the structural and functional capacity of

the cortex, it also presumably plays a crucial role in describing the dynamics of

spirals. The interface description can be amended to higher dimensions. Thus, an-

other possible extension is to analyse the evolution of spiral waves as well as the

corresponding interface dynamics on a sphere or more general and realistic geome-

tries. More discussion on neural field models in general geometries will be given

in Chapter 6.
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5
O R I E N TAT I O N B U M P S A N D S T R I P E S I N A C O U P L E D R I N G

M O D E L

In the previous Chapters we mainly discussed the evolution of spatially localised

solutions and travelling waves in two-dimensional neural field models. We also

showed how a small perturbation at the boundary (at a threshold crossing) or at all

values (rather than just at the threshold crossings) can destabilise these solutions,

see sections 3.2 and 4.3. The models supporting these solutions, such as (2.3.1), are

assumed to be spatially homogeneous and thus the system of integro-differential

equations is translationally invariant. This is reflected by the fact that the synaptic

kernel w in standard neural field models is chosen based on the Euclidean distance

between interacting neurons, namely w(x|x′) = w(|x − x′|). However, from the

anatomical point of view, the micro-structure of the cortex is far from homogeneous

[92, 177].

The visual areas of the cortex comprise almost two third of the brain, and the pri-

mary visual cortex (V1), where cortical maps are found, is the most studied of these

visual processing areas. Cortical maps are associated with specific visual features

in V1, where cells in adjacent locations (in V1) have similar orientation preference

[178–180]. Therefore a straightforward implication of feature maps is to consider

interactions between post-synaptic and pre-synaptic neurons by a more general

function, that is w(x, x′) = w(|x− x′|)J(θ(x)− θ(x′)) [18]. Here the angular compo-
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nent θ(x) represents an orientation preference. One challenge in this approach is

that the orientation preference map has a non-trivial dependence on position [181].

An alternative way is to replace the position x by the pair (x, θ), suggesting that

the hypercolumn is labelled at position x and the orientation preference of neurons

within the hypercolumn is labelled by θ [92]. Thus the activity component in a

neural field model can be replaced by u(x, θ, t) with a generic weight function in

the form of w(x|x′) = w(x, θ, x′, θ′). This mathematical approach has motivated the

development of several recent studies on the primary visual cortex (V1), such as

[18, 91, 92, 106, 182], where spatial heterogeneities in neural fields were analysed.

From the pioneering work of Mountcastle [2] (see §2.1.3 in Chapter 2), we know

that the cortex is organised in a columnar structure; arranged in sheets which are

perpendicular to the surface, so that neurons with similar receptive fields are per-

pendicularly grouped together. This seminal work also motivated Hubel & Wiesel’s

discoveries (1962) on the primary visual cortex (V1) of cats and primates, where the

orientation map for simple and complex cells were found to be arranged in cortical

columns, and neurons in a column preferentially responded to edge of a particular

orientation [50, 51, 183]. Motivated by these experimental studies, there has been a

great interest in developing rigorous mathematical theories of dynamical systems

in V1, including analytical techniques for understanding geometric visual halluci-

nations [18, 91, 154], image processing of visual cell populations [184], as well as

orientation tuning [182, 185, 186]. A notable work is that of Bressloff et al. [92], who

used a two-dimensional coupled ring model for studying the dynamics of periodic

patterns and orientation bumps in V1. This model was developed from a standard

neural field model (see Chapter 3), and previously used for understanding geo-

metrical aspects of rich patterns of cortical activity in V1, see also [18, 102, 187].

A coupled two-dimensional ring model with a Heaviside firing rate non-linearity

used by Bressloff et al. [92] is given by

∂u(x, θ, t)
∂t

= −u(x, θ, t) +
∫
R

∫
S

W(x, θ, x′, θ′)H(u(x′, θ′, t))dθ′dx′, (5.0.1)

103



orientation bumps and stripes in a coupled ring model

where we treat a non-homogeneous weight distribution in the form

W(x, θ, x′, θ′) = w(θ − θ′)J(|x− x′|), (5.0.2)

with (x, θ) ∈ R × S , S = (−π/2, π/2]. Here u(x, θ, t) represents the activity

of populations of interacting neurons in V1 at position x with an orientation pref-

erence θ. The kernel J represents horizontal connections which are reinforced in

patches over the cortical surface and establishes links between neurons with sim-

ilar orientation preferences, and w(θ) denotes a synaptic kernel by which a cell

interacts with other cells depending upon the orientation differences.

We begin with an overview of V1 in §5.1, and introduce a coupled ring model

with a Heaviside firing rate in §5.2. Here, it is of particular interest to extend the

work of Bressloff et al. [92] in several directions. We first recover direct numerical

solutions for orientation bumps presented in [92], and then develop a new anal-

ysis using an interface approach. We also characterise travelling wave solutions

of orientation bumps and determine their linear stability analysis using the level

set description. Since there are various metabolic processes which can modulate

the properties of visual receptive fields, next in §5.3, we consider the coupled ring

model with the addition of a linear spike frequency adaptation variable. In this

case, destabilisation of the varicose, sinusoid and horizontal stripe solutions can be

readily observed. Note that these localised stripe patterns are mostly linked to im-

age translations during visual hallucinations, see [119, 154] for a further discussion.

Here, we only investigate the instabilities that arise of a vertical stripe. Orientation

independent solutions, where the bifurcation diagrams for homogeneous oscilla-

tory and non-oscillatory spatial distribution, as well as those for heterogeneous

spatial distribution are discussed in §5.4. Finally, in §5.5, we construct solutions for

multiple stripes, and conclude this Chapter by giving a brief summary and some

possible extensions.
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5.1 primary visual cortex (v1)

In order to better understand the dynamical behaviour of neurons in V1, it is worth-

while to overview its structure and pathways. The primary visual cortex located

toward the rear of the head, is a part of the cerebral cortex. It is the first cortical

region where visual signals are processed. As seen in Fig. 5.1, each eye can only

see a part of visual field (orange-blue regions).

Fig. 5.1: A schematic picture for image projection. Image modified from [188].

The output from each retina is carried by axons of retinal ganglion cells via optic

nerves. In human, axons from the nasal retina (part of the retina that is close to

the nose) cross over to the other side of the brain in the optic chiasm [189], see

Fig. 5.1. After crossing the optic chiasm, the axons which are collectively called

optic tract terminate in the lateral geniculate nucleus (LGN), namely the visual part

of the thalamus [82, 188]. However, axons from the temporal retina (the part of

retina close to the temple) are projected to their own side of the brain so that visual

information is directly conveyed to LGN [188]. V1 also projects visual information

to the other parts of the cerebral cortex involved in complex visual perception. For

example, axons of neurons in LGN also project to the superior colliculus, rapid eye

movements like saccades are coordinated [190].
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A B

Fig. 5.2: An illustration of a brain slice, showing different regions of visual cortex

in the left and right hemifields (A) as if opened up looking directly at the

back of the head. Regions interpreted with different colours (and indexed

numbers) (B) are mapped to those in the cortex (A). Here 1, 2, 3, and 4 are

regions of the central retina, 5, 6, 7, and 8 represent regions of the near

peripheral visual fields, and regions 9, 10, 11, and 12 represent regions of

the far peripheral visual fields. Modified from [191].

As mentioned earlier, V1 comprises grids of columns that are organised with sim-

ilar properties and serves as a map of the retina. Visual hemispheres are mapped

to the right and left portions of the visual cortex as shown in Fig. 5.2. This topo-

graphic way of working, initiated in the left and right retinas (Fig. 5.2B), is nicely

summarised by Cowan & Bressloff [104]:

“ ...the visual world is mapped onto the cortical surface in a topographic manner, which

means neighbouring points in a visual image evoke activity in a neighbouring regions of

visual cortex. Moreover, one finds that the central region of the visual field has a larger

representation in V1 than the periphery... partly due to a non-uniform distribution of the

retinal ganglion cells [104]”.

R
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Orientation

Fig. 5.3: Orientation tuning curve.

Depending on the orientation of the input

received from LGN, the receptive field of

a single V1 neuron may evoke various re-

sponses, shown in Fig. 5.3. One of the inter-
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esting phenomena about orientation selec-

tivity is that nearby cells tend to organise themselves with the same tuning, which

in turn induces those cells to excite each other [192]. On the contrary, cells further

apart from each other tend to have different orientation preference which encour-

ages them to inhibit each other. Therefore the regions known as orientation columns

naturally emerge throughout the surface of V1. Several physiological studies sug-

gested that neurons that are not within the same hypercolumn (up to several mm

apart from each other) but have similar orientation preferences may interact via

long-range horizontal connections which ramify in periodic patches across the sur-

face of V1 [92, 193, 194].

The orientation preference of a neuron in primary visual cortex continuously changes

as its spatial location changes, except at singular points, known as pinwheel centers;

when neighbouring neurons do not share similar orientation preferences [193, 195].

The studies on these singularities were initiated by Hubel & Wiesel [50, 51]. These

experiments showed the existence of smooth and continuous changes of orienta-

tion preference between pinwheels, with an underlying periodic or quasi-periodic

organisation in the micro-structure of V1 [92]. Note that cells in V1 possess elon-

gated receptive fields. The periodicity of orientation preference is often studied

over the ranges of either θ ∈ (0, π] or (−π/2, π/2] because bars of orientation θ

and π − θ can not be distinguished without cells that respond to edges (elongated

stimuli) of a particular orientation. The reason for emergence of these singular-

ities has remained elusive, yet they are thought to be developmental artifacts of

the visual field or evolutionary adaptations to keep the volume of the cortex to a

minimum [196].
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5.2 orientation bumps in a ring model with no adaptation

An important finding obtained by Bressloff et al. [92] is that periodic feature maps

and patchy horizontal interactions can lead to spatial patterns of activity for orien-

tation tuning, under the assumption that the synaptic kernel is separable, that is, a

product of a function in |x − x′| and one in θ − θ′. In this section we will recover

their results for an orientation bump emerging from a travelling front, and develop

an alternative mathematical framework based upon an interface approach.

5.2.1 Interface Dynamics of Orientation Bumps in V1

Turning our attention to equation (5.0.1) with a Heaviside firing rate, a parametri-

sation of a curve on a cylinder is given by

Ω = {(x, θ) ∈ R x S| θ = s, x = ϕ(s, t)} , (5.2.1)

where s ∈ (−π/2, π/2], ∀t ≥ 0. This parametrisation is particularly helpful when

describing waves: since the orientation component in the above parametrisation is

time independent, an orientation bump has a velocity only in the spatial direction.

Differentiating the level set condition u(x, θ, t) = u(ϕ(s, t), s, t) = κ with respect to

x and t generates a velocity rule:

ẋ = − ut

ux

∣∣∣∣
x=ϕ(s,t)

. (5.2.2)

Here, we use the notation Ω+ = {(x, θ)|u(x, θ) > κ} and ∂Ω+ = {(x, θ)|u(x, θ) =

κ}. A closed form expression for u can be found by integrating (5.0.1) to give

u(x, s, t) = u0(x, s)e−t +

t∫
0

dt′ et′−t
∫

Ω+(t′)

W(x, s, x′, s′)dx′ds′
∣∣∣∣

x=ϕ(s,t)
, (5.2.3)
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where the synaptic activity on a finite domain [−L, L] and without boundary con-

ditions is

∫
Ω+(t)

W(x, θ, x′, θ′)dx′dθ′ =

π/2∫
−π/2

ϕ(s′,t)∫
−L

w(s− s′)J(|ϕ(s, t)− x′|)dx′ds′. (5.2.4)

Here L is the half domain length in the spatial direction.

Since long range horizontal connections in V1 are supported by the axons of ex-

citatory pyramidal neurons [92], horizontal connections which ramify in periodic

patchy columns are usually assumed to be excitatory, and thus can be expressed

by a positive decaying function (J). In addition, depending on the stimulus, a stan-

dard choice of Mexican hat function (positive for small values of θ and negative

for large values of θ) can be considered for local interactions (w). Following the

work of Bressloff et al. [92], we chose an exponential weight distribution for patchy

horizontal connections and a periodic kernel in the angular direction in the form

of

J(x) =
1

2σ
e−|x|/σ, w(θ) =

1
π
[w0 + 2w2 cos(2θ)] , (5.2.5)

where w0, w2 > 0.

Figure 5.4A shows (the results of) direct numerical simulations of the model (5.0.1).

The simulations were started from an initial condition in the form of a uniform

travelling front solution with the addition of a small random perturbation. As

seen from Fig. 5.4, model (5.0.1) effectively demonstrates the emergence of synaptic

activity with a preferred orientation in the visual cortex. In Fig. 5.4B, a numerical

simulation of a travelling orientation bump prescribed by the interface method is

shown. Here, an excellent agreement is found between two figures. The solutions

for a front with various fixed angle and locations are shown in Fig. 5.5. See [92, 182]

for a recent overview of orientation bumps and their instabilities.
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Fig. 5.4: Snapshots from space-time simulations of the full model (5.0.1) for synap-

tic activity u(x, θ, t) with synaptic kernels (5.2.5) are shown. Panel (A):

direct numerical simulations for an orientation bump that emerges from a

travelling front. Panel (B): equivalent interface dynamics (blue line). The

orange arrows shows the normal velocity (5.2.2) of the moving interface

(B), on a domain of [−L, L]× (−π/2, π/2]. The contour is updated only

in the x direction due to the zero velocity in the angular direction. Param-

eters are w0 = 0.5, w2 = 0.55, κ = 0.235, σ = 10, L = 60.
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Fig. 5.5: Travelling wave solutions of the model (5.0.1) with synaptic kernels de-

scribed by (5.2.5) for different fixed values of θ (left) and x (right) at time

t = 45. Dotted line represents threshold value. Parameters are w0 = 0.5,

w2 = 0.55, κ = 0.235, σ = 10.

5.2.2 Travelling Wave Solution

We now derive solutions for travelling waves using an interface approach. Trav-

elling waves with a single threshold crossing (fronts) are described by ϕ(s, t) =

x∗(t) = ct, ∀s ∈ S . Substituting this expression into (5.2.2) for ẋ∗(t) = c, yields

c =

κ −
π/2∫
−π/2

ct∫
−L
W(ct, 0, x′, s′)dx′ds′

∂xu0(ct, s)e−t +
t∫

0
dt′ et′−t

π/2∫
−π/2

ct′∫
−L

∂xW(ct, 0, x′, s′)dx′ds′
, (5.2.6)

=
κ − w0

2

(
1− e−(ct+L)/σ

)
∂xu0(ct, s)e−t +

w0

2σ

(
(1− e−t) e−(ct+L)/σ − σ

σ + c
(
1− e−(σ+c)t/σ

)) . (5.2.7)

See Appendix C1 for computing the integrals in (5.2.6). Using the translational

invariance of the model and taking t → ∞ and |L| → ∞ into account, equation

(5.2.7) simplifies to

c =
σ

2κ
(w0 − 2κ), (5.2.8)

where c > 0. This recovers the formula for the wave speed computed by Bressloff

et al. using an alternative approach, see [92] for further details. The comparison of
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time dependent speed formula (5.2.7) with its asymptotic value (5.2.8) is shown in

Fig. 5.6.

t
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c
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0.2

0.3

0.4
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0.6

0.7

Fig. 5.6: Wave speed (5.2.7) is plotted as a function of time. Here time dependent

velocity obtained from equation (5.2.7) saturates at c = 0.6383 at t = 20

(given by (5.2.8)) on a large domain of size L = 200. Dotted lines represent

the asymptotic value for the speed of a front. Parameters are as in Fig. 5.4.

5.2.3 Threshold Condition

Before we develop a stability analysis for a travelling front using a level set descrip-

tion, it is informative to begin with an explicit calculation of the threshold crossing

condition. The original model (5.0.1) in an unbounded domain takes the form

ut(x, s, t) = −u(x, s, t) +
π/2∫
−π/2

ϕ(s′,t)∫
−∞

W(x, s, x′, s′)dx′ds′, (5.2.9)

whereW(x, s, x′, s′) = w(s− s′)J(|x− x′|).

Making a change of variable (x′ = x− x′), equation (5.2.9) can be rewritten as

ut(x, s, t) = −u(x, s, t) +
π/2∫
−π/2

ds′w(s− s′)
∞∫

x−ϕ(s′,t)

dx′ J(x′). (5.2.10)
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Introducing z = ux and differentiating (5.2.10) with respect to x yields

zt(x, s, t) = −z(x, s, t)−
π/2∫
−π/2

ds′w(s− s′)J(x− ϕ(s′, t)). (5.2.11)

Integrating equation (5.2.11) and dropping all the intermediate steps, we find

z|x=ct = −w0

∫ ∞

0
dt′e−t′ J(ct′). (5.2.12)

Following the work of Coombes et al. [11] (for a one-dimensional neural field), we

introduce a function

J̃(λ) =
∫ ∞

0
dt′e−λt′ J(t′), (5.2.13)

and thus equation (5.2.12) for an interface to study x(t) = ct with speed c > 0 can

be rewritten as

z|x=ct = −
w0

c
J̃
(

1
c

)
. (5.2.14)

Using equation (5.2.10), the change in the activity of the population is

ut|x=ct = −κ −
π/2∫
−π/2

ds′w(s− s′)
∞∫

0

dx′ J(x′), (5.2.15)

= −κ + w0 J̃(0). (5.2.16)

Plugging the expressions (5.2.14) and (5.2.16) into (5.2.2), and using the fact that

π/2∫
−π/2

cos(2m(s− s′))ds′ = 0, ∀s, (5.2.17)

we obtain a threshold condition given by

κ = w0

[
J̃(0)− J̃

(
1
c

)]
, (5.2.18)

where (5.2.13) can be explicitly computed as

J̃(λ) =
1

2(λσ + 1)
. (5.2.19)

Note that the exponential weight distribution (5.2.5) is symmetric. Hence, using

equations (5.2.18) and (5.2.19), one finds the speed of the travelling front

c =
σ

2κ
(w0 − 2κ), (5.2.20)

for 0 < κ < w0/2.
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5.2.4 Linear Stability Analysis

Although the velocity of the front is only in the spatial (x) direction (see page

108), the presence of the ring structure may affect stability [92]. Hence the stability

of an orientation bump should be determined considering a perturbation of the

boundary in both angular and spatial directions. Integrating (5.2.10) and omitting

the intermediate steps for brevity, a closed form for the activity is computed as

u(x, s, t) =
∞∫

0

dt′e−t′
π/2∫
−π/2

ds′w(s− s′)
∞∫

x−ϕ(s′,t−t′)

dx′ J(x′)
∣∣∣∣

x=ϕ(s,t)
. (5.2.21)

Evaluating at ϕ(s, t) = ct gives

u|ϕ=ct = w0

∞∫
0

dt′e−t′
∞∫

ct′

dx′ J(x′). (5.2.22)

To determine stability of the travelling front we consider a relationship between a

perturbed interface ∂Ω̃+ and perturbed front Ω̃+. We refer the reader to [11] for

an overview of details for stability analysis using interface dynamics, and also see

Chapter 3. The perturbation in the activity can be associated to the perturbation in

the interface using a level set, namely

u(x∗, s, t) = ũ(x̃∗, s, t) = κ. (5.2.23)

Thus, the difference between perturbed and unperturbed quantities:

δu(s, t) = ũ|x=x̃∗(s,t) − u|x=x∗(t), (5.2.24)

is determined using the condition δu(s, t) = 0. Let us consider the perturbed

quantity in the form of

x̃∗(s, t) = ct + εϕ̃(s, t), (5.2.25)

where ϕ̃(s, t) = eλt ∑m cos(2ms). Hence the perturbed activity of the population is

found as

ũ(x, s, t) =
∞∫

0

dt′e−t′
π/2∫
−π/2

ds′w(s− s′)
∞∫

x−x̃∗(s′,t−t′)

dx′ J(x′), (5.2.26)
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where the construction of δu(s, t) results in

δu =

∞∫
0

dt′e−t′
π/2∫
−π/2

ds′w(s− s′)

 ∞∫
x̃∗(s,t)−x̃∗(s′,t−t′)

−
∞∫

x∗(t)−x∗(t−t′)

dx′ J(x′),

=

∞∫
0

dt′e−t′
π/2∫
−π/2

ds′w(s− s′)
[
εϕ̃(s′, t− t′)− εϕ̃(s, t)

] ∞∫
ct′

dx′ J′(x′),

=
1
c

∞∫
0

dt′e−t′/c
π/2∫
−π/2

ds′w(s− s′)J(t′)
[
εϕ̃(s, t)− εϕ̃(s′, t− t′/c)

]
. (5.2.27)

Substituting ϕ̃(s, t) = eλt ∑m cos(2ms) in (5.2.27) yields

δu(s, t) =
1
c

∞∫
0

dt′e−t′/c J(t′)
π/2∫
−π/2

ds′w(s− s′)∑
m

[
cos(2ms)− eλt′/c cos(2ms′)

]
εeλt.

Here using the fact
∞

∑
m=1

sin(mπ)

mπ
= 0, (5.2.28)

and considering the components of the connectivity,W(x, s, x′, s′) = w(s− s′)J(|x−

x′|) with the slightly more general choice:

J(x) =
1

2σ
e−|x|/σ and w(θ) =

1
π

[
w0 + 2

∞

∑
m=1

w2m cos(2mθ)

]
, (5.2.29)

we obtain the following Evans function for the travelling front solution ,

Em(λ) = w0 J̃
(

1
c

)
− w2m J̃

(
λ + 1

c

)
, (5.2.30)

where J̃(λ) = 1/[2(λσ + 1)] was described in (5.2.19). It can be seen from equation

(5.2.30) that the zeros of the Evans function satisfy E0(0) = 0 with w0 = w2m. Hence

using (5.2.19) the eigenvalue equation can be explicitly calculated as

λm =
w2m − w0

w0

(
1 +

c
σ

)
. (5.2.31)

This recovers the results obtained in [92] for m = 1 using an alternative approach,

suggesting that

• λ > 0 (unstable) , if w2 > w0,

• λ ≤ 0 (stable), if w2 ≤ w0 or w(θ) = w0 .
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These results of the stability analysis are also supported in Fig. 5.4, where orien-

tation bump emerges from an unstable front. Note that, as expected, the zero

eigenvalue leads to a neutrally stable state.

5.3 stripes in a ring model with adaptation

The direct numerical simulations that arise from instabilities (for a standard neural

field model without features or adaptation) of a stripe were previously shown by

Coombes et al. [11]. As discussed in Chapter 4, the spike frequency adaptation

(a negative feedback process) is often included in neural field models to diminish

sustained firing. Since we consider patchy horizontal connections between pre-and

post-synaptic neurons to be only excitatory, the adaptation variable becomes an

important mechanism to moderate synaptic activity. Before we introduce a new

approach for stripe solutions in a coupled ring model with adaptation, we recall

some findings of the previous Chapters. We consider the standard neural field

model with adaptation,

τut = −u + ψ− ga, at = u− a, (5.3.1)

where the non-linear term ψ involves a non-homogeneous kernel given by

ψ(·, t) =
∫
R

∫
S

W(·, x′, θ′)H(u(x′, θ′, t)− κ)dθ′dx′. (5.3.2)

Here, the parameter τ denotes the time constant for the synaptic activity. As calcu-

lated in §4.1, the solutions (u, a) are given in closed form as

u(·, t) =
∫ t

−∞
dt′G11(t′)ψ(·, t− t′), (5.3.3)

a(·, t) =
∫ t

−∞
dt′e−t′u(·, t− t′), (5.3.4)

where G11 is the first element of the matrix G = eAt and is calculated in a similar

fashion as in (B1.1).

116



5.3 stripes in a ring model with adaptation

So far we have considered an orientation preference map which is periodic (see

equation (5.2.5) ), where neurons with similar orientation preferences interact strongly

with each other. However we can analyse other scales in the absence of this peri-

odic structure. In the rest of this Chapter, we consider generalised kernels of the

form

w(s) = w0 + w2 cos(2ps), (5.3.5)

J(x) =
1

2σ
cos(2kx)e−|x|/2σ, (5.3.6)

where p, k, σ > 0. The kernel J represents horizontal connections which consist

of a natural choice of short-range excitation and long-range inhibition, and w de-

notes the existence of regularly repeating (when p > 1) feature maps. Considering

k > 1 in kernel (5.3.6) leads to oscillations whose amplitude decays in the spa-

tial distribution and also provides inhibitory interactions, parameter σ controls

the rate at which the oscillations in J(x) decay with distance, and parameter p is

associated with frequency, namely the number of oscillations (cycles) that occur

between −π/2 and π/2 in the orientation preference map. Although the choice of

p > 1 is not relevant to periodic orientation maps (p = 1), it might be a proxy for

less preferred interactions as seen in salt-and-pepper orientation preference maps

(more random orientation preference) without periodic structures [197, 198]. This

functional architecture is more likely to be the case for animals that do not have an

orientation preference map, particularly rodents. Thus we now construct a coupled

ring model of visual cortex where orientation selectivity is not random but rather

oscillatory, in which there is also strong preferred interactions for angles differing

by π/p. This can arise for feature map connectivity with p > 1 in equation (5.3.5).

Figure 5.7 shows illustrations of weight kernels for the feature map connectivity

(5.3.5) and horizontal connectivity (5.3.6), respectively.

In a scalar neural field model of Amari type (posed on two dimensions), azimuthal

instabilities of different modes (m) which deform circular solutions can emerge on

the solution branches according to R → R + ε cos(ms), where s ∈ [0, 2π), m ∈
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Fig. 5.7: Plots of the kernels given in equation (5.3.5) and (5.3.6) for various param-

eters of k and p, respectively. Other parameters are w0 = 0.19, w2 = 0.51,

σ = 10.

N and |ε| � 1. For example, instabilities of modes m = 2, 3, 4... which deform

localised states with a smooth Mexican hat connectivity were shown in Fig. 3.7A.

However, in a coupled ring model described by (5.0.1), (5.3.5) and (5.3.6) the type

of the mode for a stripe instability is determined by parameter p. In other words,

stripes can undergo only a single type of azimuthal instability, the mode of which

is pre-determined. We shall investigate the properties of these instabilities in more

detail in the following sub-sections.

In Figures 5.8 and 5.9, we show the results of direct numerical simulations at fixed

times for a ring model (5.3.1) with non-homogeneous kernels (5.3.5) and (5.3.6).

These simulations show the emergence of varicose (rows A) and sinusoidal (rows

B) instabilities (k = 0.1), where the initial stripe is perturbed with ± cos(2pθ), as

seen in Fig. 5.8. The horizontal stripe instabilities with a five fold symmetry can

also be obtained with a purely excitatory kernel (5.3.6) (k = 0), as shown in Fig. 5.9.

These suggest that the stripe is unstable to an azimuthal instability with m = p = 5.
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Fig. 5.8: Direct numerical simulations of varicose (rows A) and sinusoidal (rows

B) instabilities, governed by the model (5.3.1) and (5.3.2), with synaptic

kernels (5.3.5) and (5.3.6). Here the stripe is initiated with a width of

D = 26.3557 (obtained from (5.3.7)), and perturbed with ± cos(2pθ) for

varicose and sinusoidal instabilities, respectively. A plot of the stripe width

as a function of the firing threshold is shown in Fig. 5.10. Parameters are

w0 = 0.19, w2 = 0.51, g = 0.6, κ = 0.2271, k = 0.1 and p = 5.
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Fig. 5.9: Direct numerical simulations of horizontal stripes (rows A) and sinusoidal

(rows B) instabilities, governed by the model (5.3.1) and (5.3.2), with

synaptic kernels (5.3.5) and (5.3.6). The stripe is initiated with the width

D = 25.9769 obtained from (5.3.7), and perturbed with ± cos(2pθ). A plot

of the stripe width as a function of the firing threshold is shown in Fig. 5.10.

Parameters are w0 = 0.19, w2 = 0.51, g = 0.6, κ = 0.3725, k = 0 and p = 5.
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5.3.1 Stripe Construction

A stripe may be described as a long and narrow active area in between two sta-

tionary fronts. Let x = x1 and x = x2 to be two interfaces separating active and

quiescent regions of a vertical stripe. Considering the time independent solutions

of (5.3.1):

u(x, s) =
1

1 + g

π/2∫
−π/2

ds′w(s− s′)
x−x1∫

x−x2

dx′ J(x′), (5.3.7)

the level set condition for a stripe of width D can be written as

u(x1, s) = κ = u(x1 + D, s), (5.3.8)

where x1 = 0 is chosen to be a reference point for the first interface, and thus

x2 = x1 + D is readily obtained. Hence, equation (5.3.7) reduces to

κ =
1

1 + g

π/2∫
−π/2

ds′w(s− s′)
D∫

0

dx′ J(x′), (5.3.9)

that can be explicitly computed as

κ(1 + g) =


w0π

4σAB
[
A(1− e−BD) + B(1− e−AD)

]
, if p ∈ Z

(w0 pπ + w2 sin(pπ))

4pσAB
[
A(1− e−BD) + B(1− e−AD)

]
, otherwise

where A, B = (1± 4σik)/2σ.

5.3.2 Stability Analysis

In order to perform linear stability analysis of a single stripe, we recall time depen-

dent solutions of (5.3.1):

u(x, s, t) =
1

1 + g

π/2∫
−π/2

ds′w(s− s′)
x−x1(t)∫

x−x2(t)

dx′ J(x′), (5.3.10)

and determine the relationship between perturbed and unperturbed quantities, that

are defined by u(x, s, t) = ũ(x̃, s, t) = κ. Hence introducing δui = ui|x=ϕi(s,t) −
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ũi|x̃=ϕ̃i(s,t) we write the condition δui(t) = 0, i = 1, 2 for ∀t. The solution for each

interface of the stripe is given according to

ui(ϕi(s, t), s, t) =
∞∫

0

dt′G11(t′)
π/2∫
−π/2

ds′w(s− s′)

ϕi(s,t)−ϕ1(s′,t−t′)∫
ϕi(s,t)−ϕ2(s′,t−t′)

dx′ J(x′), (5.3.11)

where i = 1, 2 with ϕ1 = 0 and ϕ2 = D. Considering perturbations in each of the

stripe boundaries of the form ϕ̂i(s, t) = ϕi + εi ϕ̃(s, t) one finds

δui =

∞∫
0

dt′G11(t′)
π/2∫
−π/2

ds′w(s− s′)

 ϕ̂i(s,t)−ϕ̂1(s′,t−t′)∫
ϕ̂i(s,t)−ϕ̂2(s′,t−t′)

−
D∫

0

dx′ J(x′),

=

∞∫
0

dt′G11(t′)
π/2∫
−π/2

ds′w(s− s′)

 D+εi ϕ̃(s,t)−ε1 ϕ̃(s′,t−t′)∫
εi ϕ̃(s,t)−ε2 ϕ̃(s′,t−t′)

−
D∫

0

dx′ J(x′). (5.3.12)

Using the above expressions we see that δui(t) = 0 has solutions of the form

ϕ̃i(s, t) = cos(2ms)eλt. Here

∞∫
0

dt′G11(t′)Θi(t′) = 0, (5.3.13)

where we describe Θ1

Θ2

 = A

ε1

ε2

 = 0,

with

A =

[K(0, 0)−K(0, D)]−K(m, 0)e−λt′ K(m, D)e−λt′ ,

K(m, D)e−λt′ [K(0, 0)−K(0, D)]−K(m, 0)e−λt′

 ,

and

K(m, D) =

π/2∫
−π/2

ds′w(s′)J(D) cos(2ms′). (5.3.14)

The difference between perturbed and unperturbed states can be constructed con-

sidering only one of the contour equations, e.g. δu1(t) = 0. Imposing equal am-

plitudes of perturbations, |ε1| = |ε2| = ε, or demanding non-trivial solutions of

(5.3.13) we find

δu1 =

∞∫
0

dt′G11(t′)
{

ε1 (K(0, D)−K(0, 0))− ε2K(m, D)e−λt′ + ε1K(m, 0)e−λt′
}

.

(5.3.15)
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5.3 stripes in a ring model with adaptation

Substituting G11 (B1.1) into (5.3.15), we obtain

ε1 (K(0, D)−K(0, 0))
λ+λ−

=
(λ + 1) (ε2K(m, D)− ε1K(m, 0))

(λ− λ+)(λ− λ−)
. (5.3.16)

Assuming that (ε1, ε2) = ε(1,±1), one finds

K(0, 0)−K(0, D)

λ+λ−
=

(λ + 1) (K(m, 0)±K(m, D))

(λ− λ+)(λ− λ−)
. (5.3.17)

Hence, solving the following two quadratic equations

λ2 − λ
(

λ+ + λ− + λ+λ−M̃±
)
+ λ+λ−

(
1− M̃±

)
= 0, (5.3.18)

with

M̃±(m, D) =
K(m, 0)∓K(m, D)

K(0, 0)−K(0, D)
, (5.3.19)

leads to two pairs of eigenvalues:

λ1,2 =
−B+ ±

√
B2
+ − 4C+

2
, (5.3.20)

λ3,4 =
−B− ±

√
B2
− − 4C−

2
, (5.3.21)

where

B± = −
(

λ+ + λ− + λ+λ−M̃±(m, D)
)

, (5.3.22)

C± = λ+λ−
(

1− M̃±(m, D)
)

. (5.3.23)

The branch with λ = λ1,2 corresponds to sinusoidal perturbations with (ε1, ε2) =

ε(1, 1) and the branch with λ = λ3,4 corresponds to varicose perturbations with

(ε1, ε2) = ε(1,−1). Here, λ2,4 are always negative leading to a stable activity. When

λ3 > λ1, varicose instabilities dominates over sinusoidal instabilities. Note that a

trivial eigenvalue λ = 0 is found when M̃± = 1.

The function given in the equation (5.3.14) can be explicitly computed as,

K(0, D)

J(D)
= w0π + w2

sin(πp)
p

, (5.3.24)

K(m, D)

J(D)
= w0

sin(πm)

m
+ w2C, (5.3.25)
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5.3 stripes in a ring model with adaptation

where

C =



π, if m = p = 0

π/2, if m = p 6= 0

0, if m 6= p

.

Stripes solutions have instabilities of modes with m = p. In Fig. 5.10, we show that

sufficiently small (large) values of w0 in (5.3.5) lead to unstable (stable) branches

respectively. Solid lines represent stable branches and dashed lines represent insta-

bilities of a p-mode (m = p) which deform a stripe.
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Fig. 5.10: Stripe widths (D) as a function of threshold (κ), using the time indepen-

dent model (5.3.7) with synaptic kernels (5.3.5) and (5.3.6), are shown

with sinusoid (A) and varicose (B) perturbations for different values of

k = 0, 0.1, 0.2 (from left to right). Row (C) represents the overall stability

with combination of row (A) and row (B). The points indexed by different

colour spots will be referred in Figures 5.11, 5.12 and 5.13. Parameters

are w2 = 0.51, σ = 2, g = 0.6, p = 5.

In Fig. 5.11, another bifurcation structure is shown for stripe width as a function

of the parameter w0 for various points of interest (indexed by different colour spots
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5.3 stripes in a ring model with adaptation

shown in Fig. 5.10). As for the results in Fig. 5.10, the solution for a vertical stripe

tends to be more stable for large values of w0 in (5.3.5).
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Fig. 5.11: Stripe widths (D) as a function of w0, using the time independent model

(5.3.7) and synaptic kernels (5.3.5) and (5.3.6), are shown with respect to

sinusoidal (row A) and varicose (row B) perturbations for various thresh-

old values of κ. The values of κ are taken from Fig. 5.10. Solid and

dashed lines correspond to the stable and unstable branches respectively.

Parameters are w2 = 0.51, σ = 2, p = 5.

Here lower branches of the bifurcation diagrams (small values of D) are found to

be stable to sinusoid perturbations (row A) and unstable to varicose perturbations

(row B). So far we have used the threshold κ and w0 in (5.3.5) as the main bifurca-

tion parameters. The results are complemented by the findings in Fig. 5.12, where

we apply this framework for a two-parameter diagram. Here we concentrate on

the case where the adaptation parameter g is plotted as a function of decay param-

eter σ in (5.3.6) by solving (5.3.9) for each κ indexed by colour spots in Fig. 5.10.

Here, we find that the system is always unstable for a sufficiently small w0 without

depending on the level of adaptation; however, the same degree of adaptation may

induce further stability for sufficiently large values of w0.
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5.3 stripes in a ring model with adaptation
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Fig. 5.12: The adaptation parameter g for a stripe solution is plotted as a function

of σ with w0 = 0.27 (column A) and w0 = 0.19 (column B). Here only si-

nusoidal perturbations are considered for the model (5.3.7) with synaptic

kernels (5.3.5) and (5.3.6). Solid and dashed lines correspond to the sta-

ble and unstable branches respectively. Parameters are w2 = 0.51, σ = 2,

p = 5.
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5.4 orientation-independent solutions

Eigenvalues that arise from sinusoidal and varicose instabilities with a 5-mode

instability are plotted in Fig. 5.13. Simulations are initiated with two points of in-

terest taken from Fig. 5.10, that are (κ, D) = (0.2271, 21.596) (left) and (κ, D) =

(0.1998, 3.3688) (right). As seen, the varicose instability dominates over the sinu-

soidal instability for small values of active region width, and this agrees the direct

numerical simulations shown in Fig. 5.8 and Fig. 5.9.
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Fig. 5.13: Spectra showing 5-mode instability for solutions shown in Fig. 5.10, in-

dexed by the gray and yellow colour spots. Parameters: k = 0.1,

w0 = 0.19, w2 = 0.51, g = 0.6, σ = 2.

5.4 orientation-independent solutions

Direction selectivity is no doubt one of the most important characteristics of the

cells in V1. However, the results obtained by Chen et al. showed that in addition to

the well established orientation dependent mechanism, there exist also some sort of

orientation independent mechanism underlying the direction selectivity in V1 [199].

Here we investigate orientation independent steady state solutions, and show how

homogeneous oscillatory, homogeneous non-oscillatory and inhomogeneous forms

of pathcy horizontal connectivity (in the spatial direction) give rise to different bi-

furcation structures. The (non)oscillatory kernel is determined depending upon the
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5.4 orientation-independent solutions

parameter k in (5.3.6), where taking k = 0 blocks oscillatory behaviour in spatial

distribution. Depending upon the control parameters, solutions can be organised

in snaking, damped snaking and non-snaking branches. The term snaking refers

that the solution branches of spatially localised (steady) structures oscillates back-

ward and forward [131, 200]. The localised patterns of cortical activity through the

mechanism of homoclinic snaking has been previously associated with orientation

selective activity in V1 [131].

Considering w2 = 0 in (5.3.5) for an orientation independent solution, time depen-

dent equation (5.3.7) becomes

u(x) =
w0π

1 + g

x−x1∫
x−x2

dx′ J(x′), (5.4.1)

where J (5.3.6) denotes patchy horizontal connections. Here, the level set condition

is given as

u(x1) = κ = u(x1 + D). (5.4.2)

Now we construct the explicit solutions of (5.4.1) with homogeneous and inhomo-

geneous choices of patchy horizontal kernel (5.3.6).

5.4.1 Homogeneous Non-oscillatory Spatial Distribution

Considering two threshold crossings x1 and x2 for a stripe, here we show how

purely excitatory horizontal connections lead to a non-snaking bifurcation diagram.

Using equations (5.4.1) and (5.3.6) with x1,2 = ∓D/2, one obtains

u(x)
ρ̃

=


1− e−D/4σ cosh

( x
2σ

)
, if |x| < D

2

e−x/2σ sinh
(

D
4σ

)
, otherwise

where ρ̃ = 2w0π/(1 + g). Note that, for now, we take k = 0 in equation (5.3.6),

blocking oscillations in the spatial distribution of patchy horizontal connections. In

this setting, the threshold condition is κ = ρ̃
(
1− e−D/2σ

)
/2.
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5.4 orientation-independent solutions

In order to determine stability for an orientation independent stripe with homoge-

neous non-oscillating kernel, we consider perturbations of the form x̂i = xi + εieλt

with i = 1, 2 and follow the similar approach as in §5.3.2. Here δu1 can be calcu-

lated as the difference between perturbed and unperturbed quantities:

δu1 = w0π

∞∫
0

dt′G11(t′)
{

ε1 [J(D)− J(0)]− ε2 J(D)e−λt′ + ε1 J(0)e−λt′
}

,

where using G11 in (B1.1), the quadratic equations

λ2 − λ(λ+ + λ− + λ+λ−M̃) + λ+λ−(1− M̃) = 0, (5.4.3)

λ (λ− (λ+ + λ− + λ+λ−)) = 0, (5.4.4)

leads two pairs of eigenvalues arise from sinusoid and varicose perturbations re-

spectively. Here

M̃ =
J(0) + J(D)

J(0)− J(D)
. (5.4.5)

The ideas previously presented by Avitabile et al. [201], to analyse non-snaking

bifurcation diagram for localised bumps in a one-dimensional neural field with

no adaptation, remain valid for an orientation independent coupled ring model

with adaptation. We plot the solutions and their bifurcation diagram in Fig. 5.14,

where a purely unstable branch (to sinusoidal perturbations) is shown. Here a non-

snaking bifurcation branch has a vertical asymptote, due to limκ→w0π/(1+g) D = ∞.

The vertical stripe emerging from varicose instabilities is found either stable or

neutral (not shown).

5.4.2 Homogeneous Oscillatory Spatial Distribution

We will now concentrate on the more complicated and interesting case of k > 0,

k ∈ N in the kernel of patchy horizontal connections (5.3.6), by which inhibitory

interactions with different strengths are included in the spatial distribution. De-

pending on the modulatory parameter k in (5.3.6) and orientation parameter w2 in

(5.3.5), snaking branches occur with a damped symmetry in stripe width D.
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Fig. 5.14: Bifurcation diagram for an orientation independent solution (5.4.1) with

a homogeneous spatial kernel J (5.3.6). Only unstable fronts are obtained

with k = 0 and w2 = 0 (left) . Here D denotes the width of the active

region, that is D = x2 − x1. Selected profiles along the branch are shown

(right). Shading areas in profiles represent the activity above the synaptic

threshold. Parameters are w0 = 0.3, σ = 2, g = 0.6, τ = 1.
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5.4 orientation-independent solutions

We can explicitly construct stationary solutions for a non-zero modulation parame-

ter k given by

u(x)
ρ̃

=



2− Ae−BD/4σ cosh
(

Bx
2σ

)
− Be−AD/4σ cosh

(
Ax
2σ

)
, if |x| < D

2

Ae−Bx/2σ sinh
(

BD
4σ

)
+ Be−Ax/2σ sinh

(
AD
4σ

)
, if x >

D
2

AeBx/2σ sinh
(

BD
4σ

)
+ BeAx/2σ sinh

(
AD
4σ

)
, if x < −D

2

where ρ̃ = w0π/(AB(1 + g)) with A, B = 1± 4σik. Here, the threshold condition

takes the form

κ =
ρ̃

2

(
4− A

(
1 + e−BD/2σ

)
− B

(
1 + e−AD/2σ

))
. (5.4.6)

Figure 5.15 shows that larger values of k lead to snaking behaviour which de-

creases in κ-range as stripe width D increases. The stability for orientation inde-

pendent stripes with a homogeneous oscillatory kernel (k > 0) can be similarly

performed as in §5.4.1, where we consider small perturbations at the threshold

crossings. Moreover, destabilisation to multiple stripes can arise as a result of more

than two threshold crossings with k > 0.2, shown in the profile for D = 10 in

Fig. 5.15. Since the turning points between these branches become difficult to dis-

tinguish for large values of D, stationary points where the stability changes can be

explicitly found according to

dκ

dD
=

w0π

2σ(1 + g)

(
e−BD/2σ + e−AD/2σ

)
= 0. (5.4.7)

This can also be seen from the spectral equations in (5.4.3) and (5.4.5), where M̃ = 1

for λ = 0 is obtained with

J(D) = 0. (5.4.8)

Note that there is a proportional relationship between (5.4.7) and (5.4.8):

dκ

dD
=

w0π

1 + g
J(D), (5.4.9)

which implies that the change in the threshold with respect to the stripe width lin-

early depends upon the synaptic kernel of patchy horizontal connections evaluated

at the stripe width D.
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Fig. 5.15: Bifurcation diagram for an orientation independent solution (5.4.1) with

an oscillatory homogeneous spatial kernel J (k > 0) (5.3.6), exhibiting si-

nusoid perturbations. Here the width of the active region D is plotted

as a function of threshold κ using equation (5.4.6). Depending on the pa-

rameter k, snaking branches are seen with a damped symmetry. Selected

profiles are shown along the branch for k = 0.15 and k = 0.4 (right).

Parameters are w0 = 0.3, σ = 2, g = 0.6, τ = 1.
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5.4 orientation-independent solutions

5.4.3 Heterogeneous Spatial Distribution

The patchy horizontal connections (5.3.6) that only depend on the Euclidean dis-

tance allows the generation of homogeneous solutions with a translational invari-

ance. Incorporating a simple harmonic function (J → J · A) ensures the modulation

of patchy horizontal connections, which in turn breaks the translational invariance.

In this case we find stationary solutions in the form

u(x) =
w0π

1 + g

x2∫
x1

dx′ J(x− x′)A(x′), (5.4.10)

where A is a periodic modulation function given as

A(y) = 1 + ζ̃ cos(y). (5.4.11)

Here, ζ̃ represents the amplitude of the harmonic modulation. The stationary solu-

tions for the spatially heterogeneous system take the form

u(x)
ρ̃

=


ζ̃
[
J (x; Ã) + J (x; B̃)

]
− 2e−D/4σ cosh

( x
2σ

)
+ 2, if |x| < D

2

ζ̃e−x/2σ sinh
(

D
4σ

)(
2
ζ̃
+

eÃ

Ã
+

eB̃

B̃

)
, if otherwise

where

J (x; z) =
1
z

cosh(x)− 1
z

e−Dz/4σ cosh
( x

2σ

)
, (5.4.12)

with ρ̃ = w0π/(1 + g) and Ã, B̃ = 1± 2σik. Here we consider k = 0 for simplicity.

Following our standard stability analysis we obtain, for example

δu2 = w0π

∞∫
0

dt′G11(t′)
{

ε1e−λt′ F̃1(−∞; D) +
[
ε2 − ε1e−λt′

]
F̃2(−∞; D)

}
+
{
−ε2e−λt′ F̃1(−∞; 0)−

[
ε2 − ε2e−λt′

]
F̃2(−∞; 0)

}
, (5.4.13)

where (ε1, ε2) = ε(1, 1) and (ε1, ε2) = ε(1,−1) denote sinusoidal and varicose

perturbations respectively. Here,

F̃1(x; z) =
z∫

x

dyJ(y)A′(D/2− y), (5.4.14)

F̃2(x; z) =
z∫

x

dyJ′(y)A(D/2− y). (5.4.15)
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5.4 orientation-independent solutions

Here f ′ represents derivative of a function f . Using G11 in (B1.1), the quadratic

equations

λ2 − λ(λ+ + λ− + λ+λ−M̃1) + λ+λ−(1− M̃1) = 0, (5.4.16)

λ2 − λ(λ+ + λ− + λ+λ−M̃2) + λ+λ−(1− M̃2) = 0, (5.4.17)

lead to two pairs of eigenvalues corresponding to sinusoidal and varicose pertur-

bations, respectively. Here,

M̃1 =
F̃2(0; D)− F̃1(0; D)

F̃2(0; D)
, (5.4.18)

M̃2 =
[F̃1 − F̃2](−∞; D) + [F̃1 − F̃2](−∞; 0)

F̃2(0; D)
. (5.4.19)

Note that the parameter k in (5.3.6) is fixed to zero for analytical tractability. In

Figure 5.16, snaking behaviour emerges with a consistent non-shrinking symme-

try. As for the oscillatory homogeneous case in §5.4.2, the heterogeneous spatial

distribution allows the instabilities resulting from multiple threshold crossings for

larger values of modulation parameter k (not shown). As reported in [200], there

exist intertwined snaking branches with different symmetries (even/odd branches),

which have not been computed here for brevity.

The work presented here is also in tune with the results for snaking bifurcations

constructed using the Swift-Hohenberg equation, see [200, 201] for further discus-

sion. It should be noted that the imposition of different type of perturbations may

affect the spatio-temporal evolution of a stripe and the conditions for its dynamic

instability. For example, in Fig. 5.16, we have only shown the analysis with a sinu-

soidal perturbation; however, the results of the stability may differ for a varicose

perturbation.
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Fig. 5.16: Bifurcation diagram for orientation independent solutions with a hetero-

geneous spatial kernel, where patchy horizontal connections (5.3.6) are

modulated with A (5.4.11), exhibiting instabilities (left) with sinusoidal

perturbations. D represents the width of the active region. Snaking

branches are seen with a consistent symmetry. Selected profiles along

the branch for k = 0 are shown (right). Parameters are k = 0, w0 = 0.19,

σ = 1/2, g = 0.3, τ = 1, ζ̃ = 0.5.
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5.5 analysis of non-localised stripes

5.5 analysis of non-localised stripes

As mentioned in §5.1, there is a topographic map from the visual images captured

in the eyes to the neural activity in visual cortex. Non-localised striped visual

patterns are one of the most typical patterns of neural activity that have been com-

monly seen during this image translation from the eyes to the visual cortex, for

instance in the case of visual hallucinations [91] (see page 139). In this section

we explicitly construct solutions for these patterns and discuss their stability. An

illustration of a multiple stripe solution is shown in Fig. 5.17.

Fig. 5.17: An illustration of two consec-

utive stripes. D is the width

of the active regions and D2 is

the distance between first (sec-

ond) interfaces of each succes-

sive stripes. D

D2

Considering an infinite number of stripes, the time independent solution takes the

form,

u(x, s) =
1

1 + g

π/2∫
−π/2

ds′w(s− s′) ∑
m∈Z

x2+mD2∫
x1+mD2

dx′ J(x− x′). (5.5.1)

Taking the system with x1 = 0 and x2 = D into account, we can obtain two equa-

tions resulting from both interfaces; however, due to the symmetry of kernel J, the

only existence equation is found to be

κ =
1

1 + g

π/2∫
−π/2

ds′w(s− s′)∑
m

D+mD2∫
mD2

dx′ J(x′). (5.5.2)

An example for spatio-temporal solutions for stationary multi stripes are shown in

Fig. 5.18. Once again we note that the nature of the kernels in spatial (5.3.6) and
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5.5 analysis of non-localised stripes

Fig. 5.18: Direct numerical simulations for the emergence of stationary multiple

stripes , governed by the model (5.3.1) and (5.3.2), with synaptic kernels

(5.3.6) and (5.3.5). Here, the initial conditions are found solving equation

(5.5.2) for D = 3.6189, D2 = 7.4428. Parameters are w0 = 0.8, κ = 0.11,

σ = 2, g = 0.8, k = 0.35.

angular direction (5.3.5) substantially simplifies the calculation in equation (5.5.2),

that is

D+mD2∫
mD2

dxJ(x) =
−1

∑
m=−∞

D+mD2∫
mD2

dx
1

2σ
cos(2kx)ex/2σ +

∞

∑
m=0

D+mD2∫
mD2

dx
1

2σ
cos(2kx)ex/2σ,

=
eAD − 1

4σA

[
−1

∑
m=−∞

eAmD2 +
1

eAD

∞

∑
m=0

e−AmD2

]

+
eBD − 1

4σB

[
−1

∑
m=−∞

eBmD2 +
1

eBD

∞

∑
m=0

e−BmD2

]
, (5.5.3)

where A, B = (1 ± 4σik)/2σ. Using properties for a geometric progression, we

write
−1

∑
m=−∞

eAmD2 =
1

eAD2

∞

∑
m=0

e−AmD2 =
1

eAD2 − 1
. (5.5.4)

Substituting equations (5.5.3) and (5.5.4) in (5.5.2), the existence condition reduces

to

κ =
(w0 pπ + w2 sin(pπ))

p(1 + g)
[F(A) + F(B)] . (5.5.5)

Here

F(x) =
1

4σx (eD2x − 1)

[(
eDx − 1

)
+
(

1− e−Dx
)

eD2x
]

. (5.5.6)

Figure 5.19 shows a bifurcation structure for multiple stripes, where solutions are
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Fig. 5.19: Bifurcation diagrams for multi-stripe solutions (left), where D2 is plotted

as a function of D and D2 − D. Solid and dashed lines represent sta-

tionary solutions and multiple stripe instabilities respectively. Selected

profiles along the branches are shown (right). For each periodic oscilla-

tion in Profile (3), two additional threshold crossings lead to an another

multi stripe instability. Parameters are w0 = 0.8, κ = 0.11, σ = 2, g = 0.8,

k = 0.35.
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5.6 conclusion & discussion

stationary for small values of D and D2 (solid branch). This can be also seen from

Fig. 5.18, where direct numerical simulations of Profile (1) (indexed in bifurcation

diagrams in Fig. 5.19) shows stable activity. However, in Fig. 5.20A, initial stripes

which are wider than some threshold break into stripes with smaller width, im-

plying that another multiple stripe instability is formed. For instance, in Fig. 5.19

(Profile 3), the threshold crossing at D = 12.3 is found by local minima using

ux = 0, uxx > 0.

Studies indicate that there is a topographic map between neural activity in primary

visual cortex and the visual field where objects are captured as a two-dimensional

image in the eye. This retino-cortical map was first modelled by Ermentrout et al.

[91] using a coordinate transformation interpreted as a log- polar transformation,

namely (x, y) = (ln(r), θ). For example if a point in the visual field is described by

(r, θ) in polar coordinates, the corresponding point (via a logaritmic map) in the V1

is described as (x, y) in cartesian coordinates [91, 119]. Figure 5.20B shows that the

vertical stripes of neural activity in the V1 are mapped to circles in the visual field.

5.6 conclusion & discussion

In this Chapter, we have extended the work of Bressloff et al. [92] for patterns of

orientation using a coupled ring model of neural fields with a Heaviside firing rate.

Focusing on the interface dynamics, we have developed a one-dimensional descrip-

tion of orientation bumps using the level set method. We have also considered the

effects of spike frequency adaptation to investigate varicose and sinusoidal insta-

bilities emerging from a vertical stripe. Although many different parameters are

involved in the model and kernels, variations in parameters k (which controls the

oscillations in the spatial distribution kernel (5.3.6)) and p (which controls the os-

cillations in the orientation preference map (5.3.5)) have a particular impact on the
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5.6 conclusion & discussion

Fig. 5.20: Direct numerical simulations for the instabilities of vertical stripes, gov-

erned by the model (5.3.1) and (5.3.2), with synaptic kernels (5.3.6) and

(5.3.5). Row (A): multi stripe instabilities of the neural activity in V1

emerging from an initially regular stripes with a larger width. Row (B):

the stripes of neural activity are translated to corresponding circles in

the visual field. Data has been taken from Profile (3) in Fig. 5.19, where

more than two threshold crossings occur for D = 13.0140, D2 = 17.4682.

Parameters are w0 = 0.8, κ = 0.11, σ = 2, g = 0.8, k = 0.35, L = 80.
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5.6 conclusion & discussion

dynamical behaviour of stripes. We have shown that increasing the parameter k in

horizontal connectivity (5.3.6) leads to an enhanced snaking bifurcation structure.

Moreover, the parameter p in (5.3.5) gives rise to azimuthal instabilities of p-mode,

and any other instabilities are not seen along the solution branches of a stripe.

We have indicated that multiple threshold crossings may occur with k > 0.2, and

this results into multiple stripes spreading across the domain. There are two po-

tential directions for further examining the evolution of multiple stripes. One is to

study stationary multiple stripes after they have been fully formed and the other

is to analyse multiple stripes that evolve from a single stripe. The stability analysis

of the former case can be similarly performed as in §5.3.1, albeit for eigenvalues

computed using a sum over each stationary stripe. The stability analysis of the

latter case is not straightforward as each stripe in the system can be treated with

different forms of perturbations.

In this Chapter we have only studied pattern formation in the spatial direction,

hence it would also be interesting to analyse patterning in the orientation direction.

An investigation of new solutions such as oscillatory patterns, and a further anal-

ysis for their interface dynamics can also be another route for exploring such high

dimensional models with a product structure. Another natural extension of the

work in this Chapter is to analyse neural fields posed on R2× S, incorporating two

spatial dimensions with an additional dimension that reflects the hyper-columnar

structure with orientation preference. In this case it would be interesting to anal-

yse how the extra spatial dimension affects the conditions for stability in a neural

field model with a Heaviside firing rate. Moreover, in the primary visual cortex of

mammals, patchy horizontal connections link V1 neurons with similar orientation

preferences. However, this is not always the case. Rodents have orientation selec-

tive cells but do not have orientation maps [193]. Hence, another extension would

be to investigate the behaviour of a coupled ring model of neural field in the ab-

sence of patchy horizontal connections in primary visual cortex. Furthermore, it
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5.6 conclusion & discussion

would be interesting to develop stochastic forms of the ring model in neural field

theories we considered here, and see how an inclusion of the noise function affects

the dynamics of orientation bumps and patterns of visual processing.
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6
N E U R A L F I E L D M O D E L S O N C U RV E D G E O M E T R I E S

So far we have studied neural field models posed on one- or two- dimensional

flat spaces. However, our brain, which looks like a wrinkled walnut, is far from

being flat. Due to the limited size of our skull, and given the laminar structure

of cortex, the brain encapsulates more cortical area as it gets more wrinkles, and

in turn it can accommodate more neurons and synapses. Therefore, from the first

weeks of embryonic development, folding in the cerebral cortex is seen as a key

phenomenon for the emergent of higher order functions such as intelligence and

cognition [202, 203]. Perhaps the first attempt on modelling the bio-mechanical

development of the folded cortex (six-layered architecture) is due to Richman et al.

[204], who showed that cortical folding emerges as a result of differential growth

rate, where upper cortical layers (layers I-III) grow faster than lower cortical layers

(layers IV-VI). Although the model presented by Richman et al. is able to explain

a mechanical transformation from a planar surface to a realistic folded surface,

its reliance on the differences in the growth rates between cortical layers, without

any reference to neocortical and functional organisation in the cortex, has been

thought of as unrealistic by the scientific community [205]. Before Richman et

al.’s studies, several hypotheses were proposed about the source of cortical folding;

for example, one hypothesis is that gyri and sulci patterns are first formed by a
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neural field models on curved geometries

chemical morphogen, then cortical folding occur when gyri (on top) grow more

than sulci [206, 207]. No proof has been found for this hypothesis.

Here, we study the propagation of a travelling front solution in a standard neural

field model posed on domains with curvature. An idealised Amari model (2.3.1)

posed on a generic manifold with a Heaviside firing rate takes the form

∂u(r, t)
∂t

= −u(r, t) +
∫
M

W(r, r′)H(u(r′, t)− κ)dm(r′), (6.0.1)

where connectivity is described as W(r, r′) = w(d(r, r′)) on the cortical manifold

M (with distance measure dm). Here ifM is planar, the natural description for a

distance between points is d(r, r′) = ||r− r′||2. This choice leads to idealised neural

field equations that are invariant with respect to Euclidean translation. However, if

M is a curve in R2 then the distance between points is described as d(r, r′) = ||r−

r′||Mg and the curved geometryM⊆ R2 can be written by the parametrisation:

M = {r = (x, y) ∈ R2|x = ϕ(s), y = ς(s), s ∈ [0, 1]}. (6.0.2)

Here the distance function can be expressed as d(r(s), r(s′)) = |l(s)− l(s′)| where

l(s) =
s∫

0
dα
√

ϕ′(α)2 + ς′(α)2. This choice leads to a neural field model that is

invariant on manifoldM, ifM is a closed curve.

In §6.1, we overview the structural and functional properties of a folded brain, as

well as the functional interactions between grooves and ridges that make the folds.

Based on the biologically relevant assumptions that we make for possible neural

interactions in a folded cortex in §6.2, the main focus will be on spatio-temporal

synaptic activity on non-planar geometries. For example, in §6.3, we discuss (6.0.1)

a circular domain of radius R, where the connectivity function depends solely on

the arclength distance between interacting neurons. This in fact mimics the dy-

namics of the standard Amari model posed on a real plane with a translationally

invariant synaptic kernel (dependent on the Euclidean distance). Then we extend

our model to include heterogeneity and adaptation on a circular domain, where

we describe reflection and compression phenomenon in travelling pulses (§6.4).
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6.1 biological backround

Considering gyrus (sulcus) as a part of the circumference (arc), next in §6.5, we be-

gin modelling the activity of cortical ridges, as well as the combination of cortical

ridges and grooves that mimic folds in the cortex. Lastly in §6.6 we incorporate the

effects of curvature in the synaptic kernel in (6.0.1) and discuss the dynamics of a

travelling front.

6.1 biological backround

The ridges and grooves which make the cortex (grey matter) folded are called gyri

and sulci respectively [208], and the process forming the cortical folding is known

as gyrification. A recent experiment performed by Mahadevan et al. [207] has

shown that varying size, number and position of the neurons during brain devel-

opment result in the expansion of grey matter relative to white matter. Neuron

bodies and synapses (axon terminals) are located in the grey matter, whilst axons

mostly sit in the white matter of the brain and allow the communication between

neurons [207]. In Figure 6.1, a comparison of different mammalian brains (at the

same scale) shows that animals with a small brain have a smoother brain, whereas

those with a large brain have different degrees of wrinkling [209]. For example, a

human brain cortex has ∼ 2500 cm2 surface area, whereas a shrew has only ∼ 0.8

cm2 [209], see Fig. 6.1. Thus, although the shape and the degree of folding are

essential, the influence of the size of the brain on its functional organisation cannot

be denied. Here we ignore the differences in brain volume, and discuss how the

folded structure of the cortex with neural interactions varying between gyri and

sulci influences the structure and nature of synaptic travelling waves. See [208] for

a recent comprehensive overview about molecular and cellular factors that affect

cortical size and folding.

There is now strong evidence that intelligence and learning are most often associ-

ated with the gyrification in the cortex. For example, when body size against brain

145



6.1 biological backround

Fig. 6.1: Schematic pictures of various mammalian brains plotted at the same scale.

As seen, shrew, rat and squirrel brains are quite smooth compared to no-

tably wrinkled dolphin brains, that appear to be almost twice as folded as

a human brain. Picture reproduced from [209].

146



6.1 biological backround

volume is scaled, mammalian brains have more gyrification than non-mammalian

brains, and the most wrinkled of all these is found to be a human brain, see Fig. 6.1.

The high gyrification in a small volume helps the human brain to generate more

connections and perform higher order functions that distinguish us from other

species [210]. However, abnormal alterations in brain folding may cause signifi-

cant limitations in brain functioning, including intellectual disabilities (difficulties

in learning, problem solving and decision making) [209, 211]. Some people are

born with a disease called lissencephaly (smooth brain syndrome), where they

suffer from severe mental retardation, muscle spasms, learning difficulty, speech

disturbance and the majority die before the age of ten [208, 209, 212]. In addition,

considering the body size and the brain volumes of the mammals presented in

Fig. 6.1, it is often not straightforward to understand if there is an evolutionary

lissencephaly. One interesting example (as an exception) could be that the body

size of the manatee is comparable with that of Bottlenose dolphin; however the

brain size of the manatee is comparable with that of an chimpanzee [209]. This im-

plies that the manatee has a smooth (lissencephalic) brain in comparison to other

mammals measured at the same scale. Note that cortical layers of a normal brain

are much thinner than that of a smooth brain where enormous number of neu-

rons accumulate in thickened layers with a limited lateral expansion that makes

the cortex difficult to bend and form wrinkles [213].

It is known that brain function decreases in the elderly and that short term memory

seems to fade. Although there are various other reasons (e.g reduction in cerebral

blood flow [214]), this may mostly result from the shrinkage of brain tissue in gen-

eral: widening of sulci and shrinkage or the gradual thinning of gyri. Abnormali-

ties in cortical folding have been linked to many chronic long-term fatal conditions.

For example, there are several studies that report a considerable folding reduction

in both hemispheres of patients with chronic schizophrenia [215, 216]. Alterations

or malformations in cortical folding have also been linked to intractable epilepsy

in humans [217, 218]. In addition, it has been shown that cortical gyrification is
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6.2 local cortical interactions in a folded cortex

decreased in patients with severe Alzheimer’s disease, where the width of sulci is

found to be greater compared to controls [219]. As a counter example, preliminary

studies of MRI scans shows that the patients with autism tend to have increased

patterns of gyrification, and this increase will be more notable in children and

teenagers than in adults [220].

6.2 local cortical interactions in a folded cortex

In planar neural field models, it is often assumed that synaptic connectivity is

translationally invariant, namely that it depends on Euclidean distance. However,

since axon terminals lie close to the cortical surface, the synaptic connectivity on

a folded brain mostly relies on geodesic distance [221]. In this sense, we expect

differences between dynamics of planar and non-planar neural tissue.

There have been a few papers addressing how neural interactions via geodesic

paths or shortcuts affect the activity of a neural population. For example, as re-

quired for the information processing in the histological studies of grey matter,

Lo et al. proposed a model of intrinsic grey matter connectivity using data from

a human brain to explain the importance of maximum clustering and minimum

path length between neurons, where excessively long geodesic paths are ignored,

and shortcut interactions are taken into account with a signed distance method to

detect spurious connections [222]. In their setting, the connectivity function was

considered with several constraints: (i) two neurons are connected if they lie within

a specific Euclidean distance. In other words, a circle of a radius R (ambient space)

is drawn around a neuron which should only connect to its target cell within the

circle, (ii) the neurons that are nearby in ambient space but excessively distant on

the cortical surface (geodesically) have non-physical connections and their interac-

tions are ignored. Comparing the cortical activity obtained on a folded domain

with that of an inflated (smooth) domain, Lo et al. found that activity of an in-
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6.2 local cortical interactions in a folded cortex

flated structure is much slower [222]. Here, the radius R of the ambient space is a

key factor, because as R is increased, the neural network will include more distant

connections, implying more folds extending into the white matter [222]. There-

fore, small R would trigger dense and short-range connections, and large R would

trigger sparse and long-range connections. Although the connectivity function

in such simple cortical network models interpolates between standard Euclidean

and geodesic distance metrics, it can still provide insight into the effect of brain

morphology on dynamics. Now we discuss some factors that may affect neural

interactions and the consequences for waves travelling across gyri and sulci.

In real brain, axons of neurons usually tend to follow the surface of the cortex.

Namely, if axons travel for a large distance they usually follow the contour surface

of grey matter; however, neurons may also connect via shortcuts, particularly for

very local (short-range) interactions [222, 223]. This implies that, although neurons

in close proximity are more likely to connect using shortcuts and geodesic paths,

spatially separated neurons tend to connect on geodesic paths. Note that neurons

and brain regions that are spatially close have a relatively high probability of being

connected, whereas connections between spatially remote regions are less likely

[224].

Local cortical connections may be myelinated as well as unmyelinated. The speed

of conduction for unmyelinated nerve fibres is 0.5− 2 mm/sec, whereas that for

the myelinated ones is 4− 70 mm/sec [225]. The fibres along the neurons that are

far from each other are most likely to be myelinated. Hence long-range connections

may trigger cortical waves to move faster, while short-range connections may lead

to slower wave propagation. However, the neural field activity is the sum of the

great number of individual neurons which often involve a mixture of myelinated

and unmyelinated connections. Therefore, further research is needed to model the

tissue with the mixture of fibre types.
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6.2 local cortical interactions in a folded cortex

Hence, cortical waves which travel along myelinated fibres propagate faster than

those travel along unmyelinated fibres, implying that the velocity of cortical waves

is expected to be slow in regions where neurons are locally connected. Thus a

potential implication is that long-range connections may trigger cortical waves to

move faster, while short-range connections lead to slower wave activity in the cor-

tex.

Another important factor which affects local cortical connections is the thickness

between brain wrinkles. For example, the thickness of a gyrus in human cerebral

cortex (2.7 ± 0.3 mm on average) is found to be greater than that of sulci (2.2 ± 0.3

mm on average), and the number of neurons is found to be larger in gyri compared

to that in sulci [122, 226, 227]. Moreover, recent analyses of DTI (diffusion tensor

imaging) and HARDI (high angular resolution diffusion imaging) data by Deng et

al. have confirmed that gyral regions are connected by much denser fibre tracks

than sulcal regions, where stronger interactions occur in gyri [228, 229]. Inspired

by these findings and motivated by the fact that DTI derived fibres determine the

structural organisation for functional connectivity, Deng et al. hypothesise that gyri

serve as global functional interaction units, whereas sulci are seen as local func-

tional units [228, 230]. In addition, their experimental results demonstrated that

there are differences in terms of functional connectivity strengths, where interac-

tions among gyral-gyral regions is strong, is weak among sulcal-sulcal regions, and

moderate between gyral and sulcal regions [228]. A straightforward implication of

these results is that gyri are mostly seen as central units of functional connections,

that communicate with neighbouring sulci as well as distant gyri and other dis-

tant cortical areas, while sulci are able to exchange information with neighbouring

gyri as well as other areas of the cortex through gyri (indirectly), see [228–230] for

further discussion. All these findings are summarised in Fig. 6.2.
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6.3 travelling pulses in neural fields on circular domains

Fig. 6.2: A diagram illustrating functional connections between gyri and sulci. In-

teractions are strong within gyri (red), weak within sulci (green), and mod-

erate between them (grey). Gyri can make long-range connections through

fibres (black lines), as well as short-range connections among neighbour-

ing gyri and sulci. Sulci, on the other hand, make short-range connections

with their neighbouring cortical regions. Image reproduced from [228].

6.3 travelling pulses in neural fields on circular domains

Before we analyse the properties of neural field models posed on non-planar do-

mains with a Heaviside rate, it is informative to start with a discussion for neural

fields posed on a circle, for which (6.0.1) can be written as

ut(θ, t) = −u(θ, t) + ψ(θ, t), ψ(θ, t) = R
∫

Ω+(t)

dθ′w(R(θ − θ′)), (6.3.1)

where Ω+ = {θ|u(θ, t) > κ}. Here R is the radius of the circle, θ ∈ [−π, π] and

t ∈ R+. We point out that, in this case, the model is still translation-invariant,

therefore we expect that a travelling pulse can be achieved either in the presence of

an adaptation variable, or in the presence of an asymmetric synaptic kernel. Here

we consider a horizontally shifted Mexican hat connectivity as

w(θ) =
1

2π

(
e−|θ+θs| − 1

γ
e−β|θ+θs|

)
, (6.3.2)
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6.3 travelling pulses in neural fields on circular domains

where θs is the shifting parameter (the kernel is shifted right if θs < 0, and left if

θs > 0). Hence a time dependent solution for a pulse with two threshold crossings

at θ1(t) and θ2(t) on a circular domain is given by

q(θ, t) = R
θ−θ1(t)∫

θ−θ2(t)

w(Rθ′ − θs)dθ′. (6.3.3)

Here the pulse width is ∆θ = θ2(t) − θ1(t). Considering q(θ2) = q(θ1) = κ, the

threshold condition takes the form

κ

R
=

∆θ∫
0

dθw(Rθ − θs) = W(∆θ)−W(0), (6.3.4)

where

W(θ) =

θ∫
−∞

w(Rθ′ − θs)dθ′. (6.3.5)

The profile u(θ) for the pulse solution is given by the formula

u(θ)
R

= W(θ − θ∗(t) + ∆θ/2)−W(θ − θ∗(t)− ∆θ/2), (6.3.6)

where θ∗ = θ∗(t) is the time dependent center of the pulse. In Figure 6.3 we show

time simulations of the model (6.3.1) with periodic boundary conditions, where a

slight decrease in the threshold value κ leads to a transition from a travelling pulse

to an inverted travelling pulse. In Figure 6.4, we show solution branches for the

pulse width as a function of firing rate threshold and radius on a circular domain,

and we obtain similar results to one-dimensional neural fields posed on a real line

(see Chapter 3).

Considering a pulse center at θ = θ∗ allows us to define two threshold crossings at

θ1 = θ∗ − ∆θ/2 and θ2 = θ∗ + ∆θ/2. As seen from (6.3.6), the activity at the center

of the pulse is u(θ∗) = R [W(−∆θ/2)−W(∆θ/2)]. Note that the size and shape of

the pulse does not change as it travels in the θ direction. A global maximum exists

for a symmetrical yet shifted kernel, if q′(θ) = 0 and

q
′′
(θ)

R
= w

′
(R(θ − θ∗ + ∆θ/2)− θs)− w

′
(R(θ − θ∗ − ∆θ/2)− θs) < 0.
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6.3 travelling pulses in neural fields on circular domains

A

B

Fig. 6.3: Time simulations of the model (6.3.1) with synaptic connectivity function

(6.3.2) and Heaviside firing rate simulated on a circle of radius R = 6π

with periodic boundary conditions. Panels (A): a travelling pulse with

κ = 0.06. Panels (B): transition into an inverted travelling pulse (that

settles after t = 1000) with κ = 0.05. Right panels: time simulations shown

on a cylinder. Other parameters are β = 0.5, γ = 3, θs = −0.2 with a mesh

of N = 210 points.
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6.3 travelling pulses in neural fields on circular domains

(i)

(ii)

A B C

Fig. 6.4: Panel (A): full solution branches of the pulse width ∆θ as function of firing

threshold κ for a fixed radius of R = 6π. Panel (B): pulse width ∆θ as

a function of radius R for a fixed threshold κ = 0.06. A saddle node

bifurcation occur at the turning point which separates stable (upper) and

unstable (lower) branches (A). In panel (C) the radius R of the circle is

shown as a function of firing threshold for a fixed pulse width ∆θ = 0.1.

The insets in (A) show the profiles of a pulse for R = 6π with κ = 0.06 (i)

and κ = 0.05 (ii) time= 2000. The initial condition used in the simulations

is u = 2/ cosh(10θ). Parameters are β = 0.5, γ = 3 and θs = −0.2.

However, depending on the parameter space, a local minimum with q
′′
(θ) > 0 can

be found at the center of a sufficiently wide pulse.

As discussed in Chapter 3, an interface between active and quiescent regions can

also be described by the level set condition u(θi(t), t) = κ. The propagation velocity

is then obtained by differentiation as

ci =
R [W(θi − θ1)−W(θi − θ2)]− κ

uθi

. (6.3.7)

Here W is given by (6.3.5) and the denominator is

uθi(t)
R

=

∞∫
0

e−s [w(R(θi(t− s)− θ1(t))− θs)− w(R(θi(t− s)− θ2(t))− θs)]ds.
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6.4 reflection and compression on circular domains

For a single pulse, it is also possible to calculate the change in the pulse width

∆θ(t) = θ2(t)− θ1(t) with respect to time, that is

d∆θ(t)
dt

=
dθ2(t)

dt
− dθ1(t)

dt
(6.3.8)

= R
(

1
uθ2

− 1
uθ1

)
(W(0)−W(∆θ)− κ) . (6.3.9)

Here if uθ1 and uθ2 are constant, the equilibrium solution to (6.3.4) is stable when

d
d∆θ

∆θ∫
0

w(Rθ − θs)dθ = w(R∆θ − θs) < 0. (6.3.10)

6.4 reflection and compression on circular domains

The heterogeneities in the cortex may result in changes in the nature of wave prop-

agation. For example reflection and compression behaviour in cortical waves have

been found by Weifeng et al.[231] in their pioneering experiments performed on

rat’s visual cortex, where they state

“A primary wave originated in the monocular area of V1 and was compressed when propa-

gating to V2. A reflected wave initiated after compression and propagated backward into V1.

The compression occurred at the V1/V2 border, and local GABAA inhibition is important

for the compression [231].”

Goulet et al. studied reflection and compression behaviour of waves using a three

component planar neural field model that is obtained from the combination of the

Pinto - Ermentrout model (where inhibition is blocked) and the Wilson - Cowan

equations [135]. Here numerical studies were performed with a smooth sigmoidal

firing rate. In this section we explore the reflection and compression of cortical

waves using a simple neural field model with adaptation and a Heaviside firing

rate posed on a circular domain, that is

τut = −u + ψ− ga, at = u− a, (6.4.1)
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6.4 reflection and compression on circular domains

where

ψ(θ, t) =
∫
Ω

w(d(θ, θ′))A(θ′)H(u(θ′, t)− κ) dΩ(θ′), (6.4.2)

with

w(θ) =
1

2π

(
e−|θ| − 1

γ
e−β|θ|

)
, A(θ) =


am, if θ ∈ R1

ap, if θ ∈ R2

. (6.4.3)

Here R1 and R2 denote the regions where the excitability of the synaptic drive (ψ)

changes according to a piece-wise constant function A in (6.4.3). This is demon-

strated in Fig. 6.5, where reflection and compression patterns for a travelling pulse

are shown for periodic boundary conditions. Considering a travelling wave prop-

agating from region R1 to region R2 (or vice versa), partial block of excitability in

the medium leads to compression on the border between R1 and R2, as shown in

Fig. 6.5A. In this setting, region R1 is less excitable relative to R2. As the wave is

being compressed (Fig. 6.5A), for which the width of the active region in R1 (low

excitability) is thinner than that is in R2 (high excitability), a small delay occurs

in the synaptic activity. If the delay is sufficiently long, the activity in R2 may be

re-excited and the wave propagating from R2 to R1 can reflect backwards as shown

in Fig. 6.5B. The latency in reflected and compressed cortical waves have been

previously discussed by Ermentrout et al. [135, 232], who suggests that the char-

acterisation of the excitable behaviour of the medium (Class I or Class II) can be

determined by understanding how the wave switches between rest and oscillation.

Although the system with Class I excitability (one equilibrium) becomes oscillatory

in the presence of high input, the system with Class II excitability undergoes a sad-

dle node bifurcation, where the saddle node point indicates that the spike can be

generated with an arbitrarily long latency, see [135, 232] for a further discussion.

In Figure 6.6, we show the change in the pulse width as a function of time for

compressed and reflected pulses respectively. As seen from Fig. 6.6B the pulse is

compressed for a small time period (with a decreasing velocity) before it reflects

backward.
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R1

R2
R2 R2

R1

R1

R1

R1

R1

A B C

Fig. 6.5: Wave propagation in an inhomogeneous neural field model (6.4.1) and

(6.4.2) posed on a circular medium with a Heaviside firing rate and peri-

odic boundary conditions. The borders between R1 (less excitable) and R2

(more excitable) regions occur at θ1 = −2π/3 and θ2 = 2π/3. Panel (A):

pulse compression, where the pulse width decreases (increases) as it trav-

els from high (low) excitable region R2 (R1) to low (high) excitable region

R1 (R2). Panel (B): pulse reflection, where the pulse is reflected backwards

as it attempts to enter from region R2 to R1. Panel (C): reflection pattern

for a pulse is followed by a compression. Parameter values are κ = 0.03,

g = 1, τ = 0.2, k = −0.2, γ = 4, β = 0.4, R = 5π, ap = 1, and am = 0.8 (A),

am = 0.5 (B), am = 0.75 (C), with a mesh of N = 210 points.
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Fig. 6.6: The change in the pulse widths for compressed and reflective waves shown

in Fig. 6.5A and Fig. 6.5B respectively. Parameters are same as Fig. 6.5. For

a sufficiently large domain, we expect saturation in the speed and pulse

width of a reflected wave.
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6.5 gyral-sulcal circular segments

6.5 gyral-sulcal circular segments

Now we move away from circular domain and consider the gyrus and sulcus as

parts of the circumference (arc) that is cut off from a circle by a chord.

In Fig. 6.7, we show a real line incorporated with an upward circular narrowing (A),

downward circular narrowing (C) as well as their combination (D) posed on a large

domain [−L, L]. As an example, a geometric interpretation for an upward circular

narrowing of radius R, with a central angle of θg between the line defined by (−l, 0)

and (l, 0) is shown in Appendix D1. Here the combination of planar and folded

geometries, e.g. M =M− ∪Mg ∪M+, can be given by the parametrisations:

M− = {r = (x, y)|x = s, y = 0, s ∈ [−L,−l]},

Mg = {r = (x, y)|x = R cos(s), y = R sin(s) + h0, s ∈ [θ1, θ2]} ,

M+ = {r = (x, y)|x = s, y = 0, s ∈ [l, L]},

with

θ1 = −
π − θg

2
and θ2 = π − θ1,

where θg = 2 sin−1 (l/R), see Appendix D1. Now we consider the model (6.0.1)

with a simple exponentially decaying synaptic connectivity W(r, r′) = w(d(r, r′))

where

w(d(r, r′)) =
1

2σ
e−d(r,r′)/σ, (6.5.1)

where σ is the decay parameter and d is the distance function. An example of how

one can introduce heterogeneity along the manifold is given in equation (6.5.2).

Here the connectivity kernel can be described as a combination of arclength (with

a strength Υ) and Euclidean distance (with a strength 1− Υ). The list below gives
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6.5 gyral-sulcal circular segments

Fig. 6.7: Schematic illustrations of upward and downward circular narrowings com-

bined with planar domains from both sides. Panel (A) and Panel (C) re-

spectively show upward and downward narrowings, where r and r′ points

may connect through Euclidean distance, as well as arclength distance.

Panel (B): total synaptic strength computed for points interacting in be-

tween each region of the domain (in Panel A); each of them is written in

equation (6.5.2). For example W−g is a synaptic connectivity matrix be-

tween r ∈ M− and r′ ∈ Mg. Panel (D) : a combination of the upward and

downward circular narrowings with radii of Rg and Rs respectively. Here

the circle of radius Ra denotes the ambient space, by which two neurons

are only connected if they lie within a specific Euclidean or arclength dis-

tance (see §6.2). The heights hg and hs denote apothems (see §D1) of the

circles with radii Rg and Rs for gyri and sulci, respectively.
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6.5 gyral-sulcal circular segments

the components of the connectivity function shown in Fig. 6.7B on the domain

shown in Fig. 6.7A.

W−− = ‖r1 − r′1‖2

W−g = ‖r1 − ξ1‖2 + Υ‖ξ1 − r′2‖Mg + (1− Υ)‖ξ1 − r′2‖2

W−+ = ‖r1 − ξ1‖2 + Υ‖ξ1 − ξ2‖Mg + (1− Υ)‖ξ1 − ξ2‖2 + ‖ξ2 − r′3‖2

Wgg = (1− Υ)‖ξ2 − r′2‖2 + Υ‖ξ2 − r′2‖Mg

Wg+ = Υ‖r2 − ξ2‖Mg + (1− Υ)‖r2 − ξ2‖2 + ‖ξ2 − r′3‖2

W+− = W−+, W+g = Wg+, Wg− = W−g

W++ = ‖r3 − r′3‖2.

(6.5.2)

Here ξ1 = (−l, 0) and ξ2 = (l, 0), and ‖ · ‖2 and ‖ · ‖Mg denote Euclidean and ar-

clength distances respectively. At this point it is evident that translation invariance

is no longer present in the model for Υ < 1 in (6.5.2), as the distance d(r, r′) is

effectively heterogeneous. Once more it should be pointed out that even though

the connectivity matrix W is described in a piece-wise manner, the connections that

only depend on the arclength distance (Υ = 1) allow the generation of solutions

with a translation invariance along the manifold, if the manifold is a closed curve.

In the rest of the chapter, we will only consider cases in which connectivity along

the manifold is homogeneous (Υ = 1). Figure 6.8 shows time simulations of the

model (6.0.1) with no adaptation, posed on a domain with a combination of real

lines (M− andM+) and upward oriented narrowings (Mg) with periodic bound-

ary conditions. We find a wave front that propagates with constant speed along the

manifold, but that slows down considerably on both sides of the upward narrowing

when speed is considered purely from the point of view of an observer tracking

movement in the x-direction. This distinction clarifies that the point of view and

particular measure taken by an observer changes the observed wave speed.
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Fig. 6.8: Simulations of the model (6.0.1) with synaptic kernel (6.5.1) and Heaviside

firing rate, posed on a large domain [−L, L] with periodic boundary con-

ditions. The synaptic kernel is described as a function of the arclength

distance. Panel (A): a domain with a series of flat lines and upward circu-

lar narrowings. Panel (B): distance from the left boundary as a function

of space is compared between planar (green) and curved (blue) domain.

Panel (C & D) : space-time simulations for a front solution which travels

with a time dependent speed for a specific observer tracking the move-

ment in the x-direction. Panel (E): synaptic kernel matrix W is plotted as a

function of two-dimensional grid coordinates X and Y, that are based on

the coordinates contained in vectors x and y. Panel (F): arclength distance

is presented as a function of time, where a travelling wave propagating

with a constant speed along the manifold can be observed. Parameters are

Rg = 50, hg = 0, σ = 1, κ = 0.1, L = 300, with a mesh of 210 points.
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6.5 gyral-sulcal circular segments

6.5.1 Heterogeneities in the Synaptic Interactions

In this section, we study neural fields (6.0.1) with a Heaviside firing rate and synap-

tic modulation posed on a domain with gyri and sulci (shown in Fig. 6.7D). The

model (6.0.1) with modulation takes the form

∂u(r, t)
∂t

= −u(r, t) +
∫
M

w(d(r, r′))H(u(r′, t)− κ)Ã(r′)dm(r′), (6.5.3)

where

w(r) =
1

2σ
e−|r|/σ, Ã(r) =



am, if r ∈ Ms

ap, if r ∈ Mg

ao, if r ∈ M+ and r ∈ M−

. (6.5.4)

Here, Ã is a piece-wise constant modulation, andMs,Mg andM+,− denote sulci,

gyri and flat domains, respectively. We consider the parametrisation of the model

as in (6.0.2). The synaptic kernel described in equation (6.5.2) for an upward nar-

rowing can be extended to include a combination of gyri and sulci. Here we nu-

merically explore how the piece-wise constant modulation Ã in (6.5.4) affects the

local and overall speed of a front solution.

In Figure 6.9, time simulations of the model (6.5.3) whose associated kernel solely

depends on arclength distance (Υ = 1 in (6.5.2)) posed on a domain with gyri

and sulci (given in Fig. 6.7D) are shown. Simulations without any constraints

(with an arclength dependent homogeneous kernel) are presented in Fig. 6.9A,

where the propagation speed significantly decays on both edges of upward and

downward narrowings for an external observer tracking the movement in the x

direction. As discussed in §6.2, an ambient space is described by a circle of radius

Ra. The interactions between neurons that are excessively away from each other,

namely the neurons that do not lie within the same ambient space, are ignored in

Fig. 6.9B, and we find that causes a slower overall wave propagation in the system.

As mentioned in §6.2 the gyri are dense, namely stronger neural interactions are
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6.6 curvature

considered in manifold Mg (increased ap in (6.5.4)). Thus, a considerably faster

propagation is observed in the upward narrowing, when the excitability (synaptic

efficacy) is increased by 20% through a piece-wise constant modulation (6.5.4) as

shown in Fig. 6.9C. On the contrary, increased excitation in sulci and decreased in

gyri (opposite to the literature) in Fig. 6.9D lead to slower propagation in gyri. Note

that the piece-wise modulation Ã affects the speed at which a wave travels along

the manifold. Since there are two sulci and one gyrus in the system, increased

excitation in gyri and decreased excitation in sulci lead to a slower overall front

propagation, whereas decreased excitation in gyri, increased in sulci result in a

faster overall front propagation. The change in the connectivity function for each

of these cases is shown in Fig. 6.10. Although there is a lack of clear evidence in the

literature to prove that waves are slow in sulci and fast in gyri, Deng et al. showed

that gyri are denser with strong neural interactions [228] and Lo et al. pointed

out that, compared to an inflated domain, activation of the network is significantly

faster in a folded cortical domain, and that is due to strong neural interactions [222].

Combining the ideas presented in [222] and [228], where strong neural interactions

lead to faster wave propagation, we suggest that cortical waves may be faster in

gyri compared to those in sulci.

6.6 curvature

Curvature has been widely used as a fundamental property in pattern classifica-

tions in the cortex [233]. This includes a curvature based mesh model for analysing

gyrification of the cortical surface [234]. Moreover, the results obtained by Lo et

al. [222] indicated that the network activation, as well as connectivity structure in

the grey matter, is closely associated with the local curvature of the population net-

work. The curvature is calculated as the reciprocal of the osculating circle radius

(the radius of the curvature) at every point on a curve, see Fig. 6.11. In a generic
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X

A

B
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D

Fig. 6.9: Time simulations of the model (6.5.3) for a front solution with synap-

tic kernel (6.5.4) and Heaviside firing rate, posed on a large manifold

M = M− ∪ Ms ∪ Mg ∪ Ms ∪ M+ on a domain [−L, L], shown in

Fig. 6.7D. Here the synaptic kernel is chosen to be only a function of ar-

clength distance. Panel (A): time simulations of the model without any

constraints (control). Panel (B): excessively long geodesic distances are not

connected in the model, namely w(r, r′) = w(d(r, r′)) if d(r, r′) < Ra and

w(r, r′) = 0 otherwise, where d(r, r′) denotes the arclength distance be-

tween r and r′. Panel (C): the excitation in downward circular narrowing

Ms is decreased compared to that in upward circular narrowingMg using

a piece-wise modulation (6.5.4) where am = 0.8 and ap = 1.2. Panel (D):

the excitation in downward circular narrowingMs is increased compared

to that in upward circular narrowing Mg where am = 1.2 and ap = 0.8.

Other parameters are ao = 1, Rg = Rs = 40, hg = hs = 20, κ = 0.2, σ = 0.8,

L = 150, with a mesh N = 210 points.
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Fig. 6.10: Connectivity functions (6.5.4) are plotted for two individual points (one

in the gyrus shown in the first row and the other in the sulcus shown in

the second row) in the x direction in the presence of various constraints.

Here dashed lines show the changes (height: ∆h and weight: ∆w) in con-

nectivity depending on (i) the ambient space Ra and (ii) piece-wise con-

stant modulation Ã (6.5.4). Panels (A): control case where simulations

are performed for a synaptic kernel w in (6.5.4) as a function of arclength

distance. Panels (B): synaptic kernel with an ambient space of radius

Ra = 2, where a smaller spreading (compared to A) is observed. Panels

(C): connectivity for denser sulci (opposite to the literature), where excita-

tion is increased by 20% in sulci and decreased by 20% in gyri compared

to flat domain in which ao = 1. Panels (D): connectivity for denser gyri,

where excitation is decreased by 20% in sulci, and increased by 20% in

gyri. Note that r = (x, y) = (−70,−50) and r = (0, 50) are the spatial

locations of the points in sulcus and gyrus respectively, and the domain

is truncated for plotting purposes.
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6.6 curvature

sense, for a tangent line which is drawn in a way that it makes an angle φ with the

positive x axis, the curvature (K) can be described as the rate of change in φ with

respect to arclength. Thus using the formula of the arclength, one can find the rate

K at which the tangent line turns. For example, for a given equation y = f (x) we

write

K =
dφ

ds
=

f ′′(x)

[1 + f ′(x)2]3/2 . (6.6.1)

The propagation of cortical waves on a folded brain may be characterised by the

A B

C D

Fig. 6.11: An illustration of the concept of curvature at particular points in a curve,

where curvature is measured as the reciprocal of the radii of osculating

circles at those points. Green and red colours in circles represent negative

and positive displacement, respectively. Image taken from [235].

curvature [235, 236]. Thus, in this section, we study the propagation of a travelling

front solution using the neural field model (6.0.1) posed on a real cortical domain.

In Figure 6.12 we show the real data extracted from a human cortical slice. Here

one-dimensional data from left and right superior frontal gyrus of a labeled brain

scan (created using the methods in [237]) is discretised using the image reading

features of Matlab and the software GetData Graph Digitizer [238], see Fig. 6.12(B

& C). We note that the resulting curve (blue line in Fig. 6.12C) has a different aspect

ratio with respect to the original cortical manifold (pink line in Fig. 6.12B). A small
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6.6 curvature

stretching along the y-axis has been used to amplify slightly the effects of curvature

on the speed of the cortical activity, so that the variations in speed are more clearly

visible.
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Fig. 6.12: The one-dimensional data extracted from the left and right superior

frontal gyrus of an adult human brain. Panel (A & B): the labeled brain

scan created by The Scalable Brain Atlas (Neuromorphometrics, Inc) [237].

Panel (C): one-dimensional data obtained from the region of the left and

right superior frontal gyrus shown in pink in Panel (B). Note that the

aspect ratio of the curve in panel C is different from that in panel B. In

panel C, we consider a stretch in the y-axis so that the effects of curvature

on the propagation speed of a wave are clearly visible.

We now consider a synaptic kernel whose decay parameter depends on the signed

curvature at each point, that is

w(d(r(s), r(s′)), s′) =
1

2σ1(s′)
e−d(r(s),r(s′)))/σ2(s′), (6.6.2)

where σ1 and σ2 are given by curvature dependent functions:

σ1(s) = β11K(s) + β21, (6.6.3)

σ2(s) = β12K(s) + β22, (6.6.4)

with a signed curvature described using the parametrisation (6.0.2) as:

K(s) = ϕ′(s)ς′′(s)− ς′(s)ϕ′′(s)√
ϕ′(s)2 + ς′(s)2

. (6.6.5)
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6.6 curvature

Here β11 and β12 are curvature scaling parameters and β22 is used to impose a

constant decay in the synaptic kernel if curvature radius gets infinitely large (e.g.

K ≈ 0 for almost planar regions). Illustrations of curvature K and curvature de-

pendent decay length scale σ2 are shown in Fig. 6.13.
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Fig. 6.13: Plots of the curvature K (6.6.5), and curvature dependent decay length

scale σ2 (6.6.4) in the synaptic kernel (6.6.2). Since the synaptic kernel is

subject to exponential decay, one should choose appropriate parameter

values for β12 and β22 such that σ2 is always positive. Here we choose

β12 = 1 and β22 = 1.5.

In Fig. 6.14 we show time simulations for three different cases to explore the effects

of constant and curvature dependent functions of σ1 and σ2 in the synaptic kernel

(6.6.2), and assume there exist no difference in terms of local cortical interactions

between gyri and sulci. As seen from Fig. 6.14A, we find a wave front that propa-

gates with a constant speed along the cortical manifold, where β11 = β12 = 0 and

β21 = β22 = σ0 (σ0 is a constant) in (6.6.3) and (6.6.4). Fig. 6.14B shows time sim-

ulations where decay length scale σ2 in the kernel (6.6.2) is curvature dependent.

This effectively induces heterogeneity in the model. In Fig. 6.14C, time simulations

of the model (6.0.1) for the weight kernel (6.6.2), where both σ1 and σ2 depend on

curvature. In this case (Fig. 6.14B & C) the weight kernel depends on the position
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6.7 conclusion & discussion

due to varying curvature along the cortical surface, and thus the speed at which

the wave travels should also change along the surface. Since the decay length scale

σ2 is a decreasing function of curvature K, high curvature should give short de-

cay lengths (shorter range kernel) and slower propagation even along the cortical

manifold. This can be also observed from Fig. 6.15, where time as a function of

arclength distance is plotted for each case in Fig. 6.14 (last column) and the speed

of the front is seen to be curvature dependent due to the heterogeneous synaptic

kernel.

6.7 conclusion & discussion

Over the past two decades, there has been a growing interest in understanding

how the cortex develops and gets its folds. The studies on cortical gyrification

particularly have shed a light on important pathways underlying many neurolog-

ical disorders [207]. This includes the cases where people born with a smooth

(lissencephalic) brain, as well as people with a severe Alzheimer’s disease where

folding decreases after a certain age. Although planar neural field models provide

a good approximation for the spatio-temporal evolution of synaptic activity in neu-

ron populations, in this Chapter, we have been interested in studying how neural

activity propagates through more realistic geometries, and how it differs from the

activity on planar domains. Here the most obvious extension is to develop stability

analysis of stationary solutions in (one- and two-dimensional) neural field models

on non-planar geometries, and compare them with the stability of solutions in flat

neural field models.

The wrinkles of our brain are not uniformly distributed. For instance the back of

the neocortex is much less folded than the front lobe of neocortex [209], where

highly folded cortical areas are usually linked to higher cognitive functions such as

learning and decision making. On the other hand, less folded cortical areas such
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A

B

C

Fig. 6.14: The model (6.0.1) is simulated for one-dimensional data extracted from

the left and right superior frontal gyrus of an adult human brain. Panel

(A): time simulations for a homogeneous kernel where σ1 and σ2 in (6.6.2)

are constants with β11 = β12 = 0 and β21 = β22 = σ0. Here the arclength

distance as a function of time is a straight line (as expected) for a front

propagating with a constant speed along the cortical manifold. Panel

(B): time simulations for a heterogeneous synaptic kernel (6.6.2) where σ2

(6.6.4) is a curvature dependent function and σ1 (6.6.3) is a constant with

β11 = 0 and β21 = σ0. Panel (C): time simulations for a heterogeneous

synaptic kernel where σ1 (6.6.3) and σ2 (6.6.4) are both curvature depen-

dent along the manifold. Parameters are σ0 = 1.5 (A), σ0 = 1.5, β12 = 1,

β22 = 1.5 (B), β11 = β12 = 1, β21 = β22 = 1.5 (C) for a fixed threshold

κ = 0.15, with a mesh of 210 points.
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Fig. 6.15: The times for threshold crossing as a function of arclength distance for

the three different cases presented in Fig. 6.14, where a wave travelling

with a constant speed (red line), and waves with slower propagation (blue

and black lines) along the manifold can be observed with homogeneous

(constant σ1 and σ2) and heterogeneous kernels (curvature dependent σ1

and σ2 in (6.6.2)), respectively.
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as primary visual cortex can be an easier application area for understanding how

the geometrical structure (curvature) of the domain affects pattern formation. Note

that the planar neural field model presented in Chapter 5 for the primary visual

cortex, where the feature space is defined by orientation, can be easily extended to

general geometries. Hence it would be interesting to see how curvature affects the

stability and existence of an orientation bump, using a neural field model incorpo-

rating feature space.

A human embryo has a tiny smooth brain in its early stage of development, yet cor-

tical folding is completed as it reaches 40 weeks [209]. Hence we do not get more

wrinkles as we grow and learn. Although we do not develop new gyri and sulci,

the connections between neurons in our brain keeps changing with various electro-

chemical processes. This process is attributed to cortical plasticity as mentioned in

§2.3.3. Therefore, it would be interesting to analyse the planar neural field model

of synaptic depression and recovery, presented by Kilpatrick and Bressloff [115], on

geometrically more realistic domains.

There is a considerable literature on travelling depression waves in migraines that

result in visual hallucinations called auras which propagate across the visual field,

see [236, 239] for further details. The visual auras are interesting features in itself

since the hallucinatory impressions help to improve the understanding of human

cortical organization [236, 240]. Dahlem et al. pointed out that depression waves

march slowly (minutes to hours) across the visual field and their velocity changes

depending on the wave-front curvature [236]. Similar to the wave-front curvature,

the folded geometry of the cortex is known to affect the speed at which a wave

travels. It has been revealed that a wave moves faster in the region of increas-

ing curvature, and it propagates slowly in the region with decreasing curvature

[236, 241]. Therefore, studying neural field models on folded geometries becomes

a worthwhile future direction to better understand the existence and velocity of

depression waves in migraine aura that propagates across the gyri and sulci.
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6.7 conclusion & discussion

One should note that studying realistic geometries is only one of the main stages

of cortical folding. Other phenomenons such as cortical growth, development and

accommodation should also be considered in more realistic models. For example

see [209] for a computational model that addresses some of these key elements of

brain growth.
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7
C O N C L U S I O N

7.1 summary of the results

In this Thesis, we have studied dynamic features of localised states and travelling

waves in neural field models on bounded domains in the presence and absence

of Dirichlet boundary conditions. We have been interested in the behaviour of

both one- and two-dimensional models as well as their dimensionally reduced in-

terface descriptions. Therefore, we have split this Thesis into four main parts: (i)

spatio-temporal activity of localised structures and their interface dynamics in flat

neural fields with Dirichlet boundary conditions, (ii) interface dynamics in flat

neural fields with a linear spike frequency adaptation supporting localised states,

breathers and travelling waves (including spiral waves), (iii) patterns of orientation

bumps and stripes in inhomogeneous neural fields that incorporate feature selectiv-

ity, (iv) dynamics of travelling fronts and pulses in neural fields posed on non-flat

geometries.

In Chapter 2, we reviewed some of the well known single neuron models, and

discussed various aspects of Amari type neural field models such as those with

spike frequency adaptation, threshold accommodation and plasticity. This is par-

ticularly useful for understanding later Chapters. The study of Amari type neural
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7.1 summary of the results

field models with a Heaviside firing rate remains a topic of interest in mathemat-

ical neuroscience. After showing some numerical results of the full space-time

simulations, our aim was to write the normal velocity in terms of the shape of

the boundary between active and quiescent regions. This level-set approach for

interface dynamics in neural fields with no boundary conditions was initially de-

veloped by Coombes et al. [11] with a particular choice of synaptic kernel (a linear

combination of modified Bessel function of the second kind zeroth order). Here

we have extended their theory in Chapter 3 to construct interface dynamics for a

generic synaptic kernel, as well as with an imposed Dirichlet boundary condition.

The two-dimensional integral term is reduced to a line integral along the interface.

The key point for this reduced formulation is the use of Green’s theorem for the

model without adaptation and the Reynold’s transport theorem for the model with

adaptation. Hence, we can list the important contributions of Chapter 3 as: (i) the

generation and understanding of labyrinthine structures in neural fields with an

imposed Dirichlet boundary condition, (ii) the derivation of the motion of their in-

terface dynamics via a level-set condition, (iii) simplified calculations for localised

states with piece-wise constant caricatures of the synaptic kernel. The techniques

presented in this Chapter are generic and applicable to a broad range of problems

in which interface dynamics and boundary conditions can be explored, see Chapter

7.2.

In Chapter 4 we treated neural fields with a linear spike frequency adaptation vari-

able that allows the generation of breathers and travelling waves such as spiral

waves. Spiral waves are rotating travelling waves that occur in excitable media,

where their persistence is often strongly dependent on the choice of boundary

conditions. The key contributions of this Chapter can be listed as (i) develop-

ing a theory for interface dynamics for neural fields with adaptation, where we

show that there exists an excellent numerical agreement between two-dimensional

space-time simulations and one-dimensional interface dynamics for labyrinthine

structures and breathers in infinite domains, (ii) performing the numerical contin-
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7.1 summary of the results

uation of spiral waves using the numerical eigenvalues of the full Jacobian matrix

for a two-dimensional PDE neural field, (iii) presenting the constituent parts for

developing the continuation problem using an interface approach with an imposed

Dirichlet boundary condition. Since the system with a very steep sigmoidal firing

rate shows qualitatively similar behaviour to a Heaviside firing rate, a straightfor-

ward extension would be to develop the numerical continuation techniques that

merges the stability and the interface approach in a single computational frame-

work. In this context, testing the theory presented in §4.5 on a spiral solution,

we have already opened up the possibility to determine stability directly from the

interface dynamics.

In Chapter 5, we studied neural field equations that take orientation features into

account in a model of primary visual cortex. Here, the first part was dedicated

to the existence and the stability of orientation bumps and the second part cen-

tered on the study of single and multiple stripe solutions in a ring model of neural

fields. Here we extended the work of Bressloff et al. [92] by studying (i) a new

analysis of orientation bumps using an interface approach, (ii) a characterisation of

travelling wave solutions of orientation bumps and their stability using a level set

description, (iii) the analysis of stripe solutions and their instabilities using neural

fields with adaptation, where we consider orientation preference map with strong

preferred interactions for angles differing by π/p (p > 1), (iv) orientation indepen-

dent solutions with homogeneous oscillatory, homogeneous non-oscillatory as well

as heterogeneous patchy horizontal connectivities.

Due to the brain being far from flat, formulating neural field models on non-flat

geometries was the topic of Chapter 6. Since axons lie close to the cortical sur-

face, neurons mostly interact via geodesic distances on a folded cortex. If the

connectivity kernel depends only on geodesic distances, the neural field model is

translation-invariant on a manifoldM (ifM is a closed curve). One can also intro-

duce heterogeneity on the manifold by considering a combination of Euclidean and
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7.2 future directions

geodesic distance, namely Υ < 1 in equation (6.5.2). In this case, the assumption

of translation invariance is no longer sensible. Another way to introduce hetero-

geneity on the manifold is to modulate the strength and spatial decay of synaptic

input (see pages 162 and 166), where we multiply the kernel w by a piece-wise

modulation Ã and consider the decay length scale σ as a function of curvature.

For a homogeneous kernel that depends on the arclength distance, the speed at

which the wave propagates varies in the x-coordinate; yet it is constant in the ar-

clength coordinate. If the neural field model is modulated, then we expect to see

change in the wave speed even along the manifold in the arclength coordinate. In

this Chapter we analysed (i) travelling pulses in homogeneous and inhomogeneous

neural field models on a circular domain (a circle of radius R), where it is possible

to observe reflection and compression patterns, (ii) several aspects of folded brain

geometry, including heterogeneity in the cell density and curvature for neural field

models posed on folded structures.

7.2 future directions

In addition to possible future work described at the end of each Chapter, we list

here some other possible research directions building on the work presented in this

Thesis.

In the last part of Chapter 3, we investigated neural fields with piece-wise constant

Top hat and piece-wise constant Mexican hat kernels. One can further consider

doubly periodic solutions with u(r + l1,2, t) = u(r, t), for linearly independent vec-

tors l1,2 ∈ R2. From equation (3.6.3) the doubly periodic stationary solution is

given by

U(r) = ∑
m,n∈Z

∫∫
|r′+ml1+nl2|<R

w
(
|r− r′|

)
dr′, (7.2.1)

subject to the constraint U(R) = κ.

177



7.2 future directions

Note that one obvious caveat to all of the Chapters is that the interface approach

is restricted to Amari style models with a Heaviside firing rate. Nonetheless the

qualitative similarities between Amari models and those with a steep sigmoidal

firing rate are well known. In Figure 7.1, numerical solutions of the full neural

field model with a sigmoidal firing rate show the evolution of patterns starting

from doubly periodic solutions. For example in 7.1A, we observe destabilisation

of a hexagonal tiling into an overlapping concentric circular-like pattern. In Figure

7.1B the pattern destabilises to large spots that are compressed and trapped by

surrounding small spots. We see a regularly deforming pattern which looks like

a chequered flag in Figure 7.1C, and lastly the initial conditions destabilise to a

star-like pattern in Figure 7.1D. A further analysis of doubly periodic solutions can

be performed, including the use of numerical continuation methods to determine

solutions and their stabilities by considering the ideas in [131], with a focus on

numerical continuation.

In Chapter 4, we investigated various parameter sets and initial conditions to com-

pute rigidly rotating spirals, meandering spirals and spiral break-ups. Since mean-

dering spirals are prominent due to their quasi-periodic motion, a possible exten-

sion of this work is to further investigate their existence and behaviour in a neural

field model with adaptation. To characterise the behaviour of the spiral, the system

of equations for the dynamics of the spiral tip should be derived. Following the

ideas presented by Foulkes [14], who derived the equations of the spiral tip motion

that depend on rotational as well as translational speed, one can further investigate

meandering spirals in neural field models. Moreover, for spiral waves, we have only

concentrated on an uniform medium but a real tissue is highly heterogeneous, and

may lead to spatially drifting spiral waves. Such spiral waves have previously been

observed in heart tissue and modelled using reaction diffusion systems [165, 171].

Thus, a neural field model with the inclusion of a symmetry breaking perturbation

in the non-uniform media might be another possible mechanism to generate the

drifting motion of spiral waves.
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7.2 future directions

Fig. 7.1: Various space time simulations of two-dimensional neural field model

with a piece-wise constant Mexican hat kernel posed on a large domain

[−L, L] with periodic boundary conditions. Panels (A) and (B) are sim-

ulated with a sigmoidal firing rate function of the form F(u) = 1/(1 +

e−µ(u−h)). Panels (C) and (D) are simulated with a Heaviside firing rate.

Parameters are (A): w+ = 0.1, w− = −0.004, µ = 6, σ1 = 2, σ2 = 10,

h = 0.12, with L = 150, (B): w+ = 0.1, w− = −0.004, µ = 10, σ1 = 2,

σ2 = 10, h = 0.23, with L = 80 , (C): w+ = 0.1, w− = −0.004, σ1 = 2,

σ2 = 10, h = 0.14, with L = 80, (D): w+ = 0.1, w− = −0.004, σ1 = 2,

σ2 = 10, h = 0.283, with L = 100.
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7.2 future directions

In Chapter 5, we studied the coupled ring model of neural fields posed on R× S.

The analysis of the model posed on R2 × S, namely incorporating two spatial di-

mensions with an additional dimension that reflects the hyper-columnar structure

with an orientation preference, is a natural extension. In this case, we mentioned

in Chapter 5 that it would be interesting to analyse how the extra spatial dimen-

sion affects the conditions for solution stability. Since the state variable on R2 × S

is periodic in the angular direction and not periodic in the spatial directions, a

standard matrix-vector multiplication is needed to evaluate the relevant integral

operator. However, computing and storing a full matrix in three dimensions may

result in practical memory constraints, and we thus require better numerical tech-

niques. Apart from Chapter 4, we have mainly worked with localised patterns that

have only one connected region of activity. However, neural field models also sup-

port multiple patterns which may be either connected to each other or disconnected

from each other, e.g. multiple bumps. A potential future extension is to study the

construction and stability of these type of solutions. For example, considering the

model given by (5.3.1) and (5.3.2) with initial conditions different from a vertical

stripe (that we have focused on, in Chapter 5), we expect to observe various insta-

bilities, leading to the evolution of spreading connected multi bumps as shown in

Fig. 7.2. In addition, one can also expand the ideas presented in Chapter 3 to tackle

the problem of interface dynamics of multiple bumps in the presence and absence

of boundary conditions.

Finally it is worth pointing out that the curved nature of the brain may affect the ex-

istence and stability of waves and patterns. For example a pulse which is stable on

a flat domain may lose its stability in a non-flat domain, since dynamics of neural

field models may change with a kernel that depends on the curvature. Moreover,

the level set condition leads to an interface that may not have a constant normal

velocity on a curved domain. Since cortical folding is important for changing the

structural and functional capacity of the cortex, it also plays a crucial role in the dy-

namics of spirals. Interestingly the interface dynamics is not limited to the line or
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7.2 future directions

Fig. 7.2: Time simulations of the model given by (5.3.1) and (5.3.2) with synaptic

kernels (5.3.5) and (5.3.6), and a Heaviside firing rate posed on a large

domain [−L, L]× (−π/2, π/2]. Connected multiple bumps fill the domain

over time. Parameters are D = 23.5619, w0 = 0.1, w2 = 0.49, κ = 0.053,

σ = 4, g = 0.5, k = 0.1 with L = 140.
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7.2 future directions

plane and can be generalised to other manifolds. Thus, another possible extension

is to analyse the evolution of spiral waves as well as the corresponding interface

dynamics on a sphere or more general and realistic geometries. Moreover, the ex-

tension of folded neural field models to include space dependent delays is another

possible direction. Space dependent delays arising from axonal interactions in flat

neural fields are studied in [242, 243] and delays arising from dendritic interactions

are comprehensively studied in [244, 245]. Hence there is no substantial difficulty

in formulating non-flat neural field models with delay, such as in the recent work

of Visser et al. [246] for spheres.

In summary the treatment of neural fields with boundary conditions is a relatively

unexplored area of mathematical neuroscience whose further study should pay

dividends for the understanding of neuroimaging data that shows functional seg-

regation of activity. As discussed in [9] a natural way to achieve this in a neural

field setting is to use Dirichlet boundary conditions. Moreover, deriving dimension-

ally reduced equations of the full non-linear integral equations allows a spatially

reduced but exact formulation of these dynamics. Neural field theory remains a

vibrant part of mathematical neuroscience, and I look forward to making further

contributions, in the areas outlined above.
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A
A P P E N D I X

a1 expressing ψ in terms of contour integrals

In this Appendix, we derive the identities (3.3.9) and (3.3.10). This allows us to

represent the double integral for the non-local input ψ(x, t) given by (3.3.6) as an

equivalent line-integral. We recall divergence theorem for a generic vector field F

on a domain B with boundary ∂B,

∫
B

(∇ · F)dx =
∮

∂B

F · nds, (A1.1)

where n is the unit normal vector on ∂B. We consider a rotationally symmetric two-

dimensional synaptic weight kernel w(x) = w(r) which satisfies
∫
R2

dxw(x) = K, for

some finite constant K, and we introduce a function g(x) : R2 → R such that

w(x) = (∇ · F)(x) + g(x). (A1.2)

Now considering a function ϕ(r) : R+ → R which satisfies the condition limr→∞ rϕ(r) =

0, the vector field can be written using polar coordinates, that is F = ϕ(r)(cos θ, sin θ) =
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A1 expressing ψ in terms of contour integrals

ϕ(r) x/|x| with x = r(cos θ, sin θ). Transforming the expressions K and g into polar

coordinates, integrating equation (A1.2), and using the divergence theorem, yields

K =

∞∫
0

2π∫
0

rw(r, θ)dθdr =
∞∫

0

2π∫
0

r [∇ · F + g] (r, θ)dθdr, (A1.3)

=
∮

F · n ds +
∞∫

0

2π∫
0

rg(r, θ)dθdr, (A1.4)

where the line integral is described over a circle of radius R → ∞. Therefore, the

weight kernel can be written in the form

K = 2π lim
R→∞

R ϕ(R) +
∞∫

0

2π∫
0

rg(r, θ)dθdr. (A1.5)

Since the line integral vanishes, we may set g(x) = K δ(x). We can now deduce the

equation for ϕ(r) by writing

w(r) =
∂

∂r
[ϕ(r) cos θ]

∂r
∂x

+
∂

∂θ
[ϕ(r) cos θ]

∂θ

∂x

+
∂

∂r
[ϕ(r) sin θ]

∂r
∂y

+
∂

∂θ
[ϕ(r) sin θ]

∂θ

∂y
,

=
∂ϕ

∂r
(r) +

1
r

ϕ(r), r > 0. (A1.6)

The integration of (A1.6) yields

ϕ(r) =
1
r

r∫
∞

xw(x)dx. (A1.7)

Using the above results means that (3.3.6) can be evaluated as

ψ(x, t) =
∫

Ω+(t)

dyw(|x− y|)

=
∮

∂Ω+(t)

dsF(|x− γ(s)|) · n(s) +K
∫

Ω+(t)
dyδ(x− y)

=
∮

∂Ω+(t)

ds ϕ(|x− γ(s)|) x− γ(s)
|x− γ(s)| · n(s) +KC. (A1.8)

Here γ ∈ ∂Ω+, and the integration over the Dirac-delta function gives C = 1 if x is

within Ω+, C = 0 if x is outside Ω+, and C = 1/2 if x is on the boundary of Ω+.
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A2 an alternative derivation for normal velocity

a2 an alternative derivation for normal velocity

The results obtained in §3.4 can also be established using a first order Taylor ex-

pansion and fundamental theorem of calculus. Here following the techniques de-

scribed in §3.2 we write

u(x, t) = uBC +
∫

Γ(Ω+(t))

∇yu(y, t)dy. (A2.1)

Considering the level set condition u(Ω+(t), t) = κ and uBC = 0, and differentiating

(A2.1) with respect to time yields

∂

∂t

∫
Γ(Ω+(t))

∇yu(y, t)dy = 0, (A2.2)

with ∫
Γ(Ω+(t+dt))

z(y, t + dt) · dy =
∫

Γ(Ω+(t+dt))

(
z(y, t) + ∂tz(y, t) +O(dt2)

)
· dy. (A2.3)

This leads to

0 = ∂t

∫
Γ(Ω+(t))

∇yu(y, t)dy,

= lim
dt→0

1
dt

 ∫
Γ(Ω+(t+dt))

z(y, t + dt) · dy−
∫

Γ(Ω+(t))

z(y, t) · dy

 ,

=
∫

Γ(Ω+(t))

zt(y, t) · dy + lim
dt→0

1
dt

 ∫
Γ(Ω+(t+dt))

z(y, t) · dy−
∫

Γ(Ω+(t))

z(y, t) · dy

 ,

=
∫

Γ(Ω+(t))

zt(y, t) · dy + lim
dt→0

1
dt

[u(Ω+(t + dt), t)− u(Ω+(t), t)] ,

=
∫

Γ(Ω+(t))

zt(y, t) · dy + lim
dt→0

[
u(Ω+(t) + cndt +O(dt2), t)− u(Ω+(t), t)

]
,

=
∫

Γ(Ω+(t))

zt(y, t) · dy + cn · ∇u(Ω+(t), t).

The velocity formula is obtained as

cn · z(Ω+(t), t) = −
∫

Γ(Ω+(t))

zt(y, t) · dy. (A2.4)
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A3 circular geometry for a piece-wise constant top hat kernel

a3 circular geometry for a piece-wise constant top hat kernel

Consider a portion of a disk whose upper boundary is an (circular) arc and whose

lower boundary is a chord making a central angle φ0 < π, illustrated as the shaded

region in Fig. A.1A.

The area A = A(r0, φ0) of the (shaded) segment is then simply given by the area of

the circular sector (the entire wedge-shaped portion) minus the area of an isosceles

triangle, namely

A(r0, φ0) =
φ0

2π
πr2

0 −
1
2

r0 sin(φ0/2)r0 cos(φ0/2) =
1
2

r2
0 (φ0 − sin φ0) . (A3.1)

The area of the overlap of two circles, as illustrated in Fig. A.1B, can be constructed

Fig. A.1: The area of the total shaded segment is r2
0(φ0 − sin φ0)/2 (A). Overlap of

two circles shows the area of active region (B).

as the total area of A(r0, φ0) + A(r1, φ1). To determine the angles φ0,1 in terms of

the centres, (x0, y0) and (x1, y1), and radii, r0 and r1, of the two circles we use the

cosine formula that relates the lengths of the three sides of a triangle formed by

joining the centres of the circles to a point of intersection. Denoting the distance

between the two centres by d where d2 = (x0 − x1)
2 + (y0 − y1)

2 so that

r2
1 = r2

0 + d2 − 2r0d cos(φ0/2), r2
0 = r2

1 + d2 − 2r1d cos(φ1/2). (A3.2)
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Hence

φ0(d, r1) = 2 cos−1
(

r2
0 + d2 − r2

1
2r0d

)
, φ1(d, r1) = 2 cos−1

(
r2

1 + d2 − r2
0

2r1d

)
.

(A3.3)
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A P P E N D I X

b1 components of g matrix

Real eigenvalues satisfy Av± = λ±v± with eigenvectors v± ∈ R. Here matrix

A is given in equation (4.1.5), and G(t) in equation (4.1.6) is computed as a Jordan

Normal Form matrix, namely in the form of G(t) = PeΥtP−1 where Υ = diag[λ+, λ−]

and P = [v+, v−].

We can explicitly compute the components of G(t) for real eigenvalues of matrix A

(4.1.5):

G11(t) =
1

λ+ − λ−

{(
λ+ +

1
τ

)
eλ+t −

(
λ− +

1
τ

)
eλ−t

}
, (B1.1)

G12(t) =
α

τ(λ− − λ+)
(eλ+t − eλ−t), (B1.2)

G21(t) =
τ

α(λ+ − λ−)

(
λ+ +

1
τ

)(
λ− +

1
τ

){
eλ+t − eλ−t

}
, (B1.3)

G22(t) =
1

λ+ − λ−

{(
λ+ +

1
τ

)
eλ−t −

(
λ− +

1
τ

)
eλ+t

}
, (B1.4)

with

λ± =
Tr A±

√
(Tr A)2 − 4Det A

2
. (B1.5)
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B1 components of g matrix

If the matrix A has complex eigenvalues, λ± = ξR ± iξ I , we find Av± = (ξR +

iξ I)v± with the corresponding complex eigenvector v± ∈ C. In this setting we

consider G(t) = eξRtPK(ξ It)P−1, where P = [Im(v+), Re(v+)] and

K(φ) =

cos φ − sin φ

sin φ cos φ

 , P =

 0 −g

ξ I ξR + 1

 . (B1.6)

Thus the eigenvalues of the matrix A is complex, the components of G(t) is found

as Gij = Hij(t)eξRt/gξ I where

H11(t) = −ξ I(ξR + 1) sin(ξ It) + gξ I cos(ξ It), (B1.7)

H12(t) =
(
−g2 − (ξR + 1)2) sin(ξ It), (B1.8)

H21(t) = ξ2
I sin(ξ It), (B1.9)

H22(t) = ξ I(ξR + 1) sin(ξ It) + gξ I cos(ξ It). (B1.10)
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c1 wave speed using interface dynamics

For a coupled ring model (5.0.1) with a synaptic kernel given by equation (5.2.5),

the velocity rule for the interface approach becomes semi-analytical, in that many

of the terms required for the computation of the normal velocity can be calculated

by hand rather than have to be found numerically. Hence, an explicit calculation

for the components of the velocity in (5.2.6) can be written as

π/2∫
−π/2

ct∫
−L

W(ct, 0, x′, s′)dx′ds′, =
1

2σπ

π/2∫
−π/2

ds′
[
w0 + 2w2cos(2s′)

] ct∫
−L

e−|ct−x′|/σdx′,

=
w0

2σ

ct∫
−L

e−|ct−x′|/σdx′,

=
w0

2

(
1− e−(ct+L)/σ

)
, c ≥ 0. (C1.1)

Denominator of the velocity formula in equation (5.2.7) is given as

π/2∫
−π/2

cτ∫
−L

∂xW(ct, 0, x′, s′)dx′ds′, =
w0

2σ2

cτ∫
−L

(ct− x′)e−|ct−x′|/σ

|ct− x′| dx′,

=
w0

2σ
e−ct/σ

(
e−L/σ − ecτ/σ

)
, (C1.2)
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C1 wave speed using interface dynamics

where

∫
(ct− x′)e−|ct−x′|/σ

|ct− x′| dx′ =
σ

2

[
e(ct−x′)/σ

(
sgn(ct− x′)− 1

)
−e(x′−ct)/σ

(
sgn(ct− x′) + 1

)]
. (C1.3)
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d1 circular narrowing
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Fig. D.1: A cartoon for an upward circu-

lar narrowing.

Here we study a planar domain com-

bined with a circumference of radius R

as seen in Fig. D.1, where (−l, 0) and

(l, 0) denote the points at which the cir-

cumference intersects the real line. Con-

sidering an apothem h0 from the center

of the circle to the midpoint of the chord

(drawn from −l to l), one can easily see

that l =
√

R2 − h0
2. Here using the geo-

metrical properties of an circle we find

θg = 2 sin−1
(

l
R

)
. (D1.1)

Here a part of the circumference (arc) is parametrised from (π − θg)/2 to π − θ1.

Similar calculations can simply be written or downward circular narrowings that

mimics sulci, as well as for negative values of h0, implying a decrease in the ampli-

tude of the arc.
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