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Abstract

The science of brain function has a long and vibrant history. Recent tech-

nological developments have dramatically improved and facilitated data acqui-

sition from a variety of methodologies to monitor brain activity, ranging from

electroencephalography to opto-genetics. This highlights a need for concomi-

tant theories of brain function. Such theories can act as a bridge between

descriptions of the brain pertaining to data at different levels, from molecular

to behavioural, using methods of mathematics, physics, and computer science.

The models presented in this thesis do not incorporate all the biophysical,

anatomical and physiological data collected to date. Rather, the focus is on

simplified models that contain sufficient detail to explain the essence of the

phenomena considered. Moreover, they are constructed to allow the application

of analytical mathematical tools to explore their behaviour.

In particular, this thesis proposes parsimonious neural models that aim to

explain the mechanism by which humans and animals can navigate using spatial

memory. The material presented ranges over a number of levels of description,

and utilises a variety of mathematical techniques. A common theme throughout

is the use of ideas from nonlinear dynamical systems to gain insight into neural

mechanisms, ranging from activity patterns of cells underlying navigation, to

the derivation of temporal difference reinforcement learning algorithms to solve

reward based problems.

This work presents three main contributions. Firstly, it analytically deter-

mines which model parameters contribute to the observed difference in wave-

length scale of the formed activity patterns in computational models for grid

cells. Moreover, this thesis explores extensions to these models in order to find

a neural mechanism that could account for the difference in wavelength scale.

It is shown, after analysing the linear stability of spatially homogeneous steady
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states to spatio-temporal perturbations, that the addition of axo-dendritic con-

nections provides a mechanism for the difference in wavelength scale.

Secondly, based on recent research, this work proposes a different type of

model, a network of spiking neurons, to uncover the mechanisms, related to re-

bound spiking, for variation in scale of grid cell firing fields. Travelling waves are

observed on computer simulations of this model. The analytical construction

of such waves is accomplished using techniques from the field of non-smooth

dynamical systems. Moreover, the dispersion curve, that determines how wave

speed varies as a function of the period, is constructed. Such dispersion curve

exhibits a wide range of long wavelength solutions. In order to exhibit how the

variation of parameters affects the maximum allowed period, a wave stability

analysis is developed. This work entails and broadens the use of non-standard

analysis techniques.

The final part of the thesis makes a direct link to experiments, combining

reinforcement learning theory and computer simulations to shed light on the

neurocomputational mechanisms underlying behaviour of rats in a variation

of the Morris watermaze experiment. Particularly, the simulation employs a

continuous time actor-critic framework, in which the actor and critic are repre-

sented as firing rate neural networks. The ability of the artificial rats to learn

and reach the different goal locations is measured under different variations of

the model.
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1
INTRODUCTION

According to the Merriam-Webster dictionary, neuroscience is defined as the

branch of the life sciences that deals with the anatomy, physiology, biochem-

istry or molecular biology of the nerves and nervous tissue, and especially with

their relation to behaviour and learning [1]. In order to understand how the

brain works, theories and technologies have been proposed with insights from

other sciences, such as biology, physics, chemistry, psychology, and mathemat-

ics [2]. Neuroscience is therefore an intrinsically interdisciplinary field. Some

of the quantitative approaches to neuroscience include: advanced data analysis,

dynamical and statistical modelling, and theory (of neural function) [3]. Ad-

vanced data analysis consists of developing tools to obtain more understanding

from neural data on multiple scales. These scales include the biophysical (cel-

lular), the circuit, and the systems level [4]. The data obtained can be used

to construct dynamical and statistical models that test the role of a specific

mechanism. More sophisticated models can be developed in order to describe a

theory to unify observations at different levels of description. Theories can also

explain certain neural phenomena by identifying minimal structures or dynam-

ics involved in that phenomena. Other theories see the brain as a computational

unit and try to describe its function using algorithms. Theories about the brain

are developed and studied in the field of theoretical neuroscience. On the other

hand, computational neuroscience concerns data analysis, and the development

of dynamical and statistical models. However, some computational neuroscien-

tists study the brain as a computer [5], overlapping with the field of theoretical
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introduction

neuroscience, and hence the terms computational and theoretical are sometimes

used interchangeably.

The field of computational neuroscience started with the paper of Hodgkin

and Huxley (see [6]) in which they describe the action potential in the giant

axon of the squid, using nonlinear partial differential equations, fitted to elec-

trophysiological data [7]. There has been a development of new mathematics

inspired by the simplification of the equations presented in the Hodgkin and

Huxley model, giving rise to the field of mathematical neuroscience [7]. For

example, neural fields treat the interaction of billions of neurons as a contin-

uum in order to provide a simpler description of a population with properties

amenable to mathematical analysis [8]; although other theories emphasise need

for electrophysiological properties in mathematical models [9].

The interpretation of the brain as a computer dates back to the seminal

work of Marr [10]. His main interest was to understand how perception, feeling

and thought are achieved by the brain. These phenomena can be understood

as information-processing phenomenon. Marr identified three levels at which

any machine carrying out an information processing task must be understood,

namely, computational theory, representation1 and algorithm, and hardware

implementation. The computational theory contains separate arguments about

what is computed and why, and it proposes an operation that is defined uniquely

by the constraints it has to satisfy. Although Marr assumed that these three

levels are separable, some authors do not make that assumption [11].

Recently, there has been an increased activity in the fields of theoretical

and computational neuroscience, due to the technological improvement in the

devices used to measure brain activity and in advances in computer hard-

ware. Futhermore, the fields of theoretical and computational neuroscience

have gained great support due the concern to avoid or replace, through mathe-

matical and computer models, the use of animals in experiments [12].

1 A representation is a formal system for making explicit certain entities or types of information,

together with a specification of how the system does this.
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The aim of this thesis is to use the approach of mathematical neuroscience

to gain knowledge about brain function, particularly navigation and spatial

memory. A variety of perspectives are used to achieve this. For example, Chap-

ter 3 examines how generic recurrently connected neural networks can gener-

ate spatio-temporal patterns. This is relevant to uncovering the mechanisms

whereby grid cells can achieve different spatial scales of firing field patterns.

Grid cells are spatially modulated neurons that fire at certain locations, known

as firing fields, forming a hexagonal pattern. Such firing fields, and their vary-

ing scales, are known to be important for determining our sense of “space”. In

Chapter 3, the attention is restricted to rate models and various levels of bio-

logical reality are included, ranging from synaptic responses to axonal delays.

The main method of analysis is that of linearisation and separation of variables.

Chapter 4 explores a different type of model, an integrate-and-fire model, in

order to find an alternative mechanism for the different observed spatial scales

of grid cells’ firing patterns, by considering recent experimental discoveries of

grid cells intrinsic properties. Computational simulations of the proposed model

show the emergence of travelling waves whose orbits are subsequently mathe-

matically described. Moreover, the Evans function for defining the stability

of such travelling waves is derived using techniques of non-smooth dynamical

systems. Importantly, the resulting mechanism for long wavelength pattern of

this model is directly linked with experimental evidence.

A variation of the Morris watermaze task, the delayed-matching-to-place task,

is simulated using an algorithm called reinforcement learning in Chapter 5. The

aim of this simulation is to study how navigation towards a hidden location,

without complete knowledge of the environment, can be achieved using neural

rate models. Here, associations between the environment and neural activity

are made and updated while exploring. The rules governing the update of such

associations are derived.

This thesis starts by outlining the key theoretical concepts in Chapter 2 and

concludes with some general remarks and future work in Chapter 6. The rele-
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vant biological details and experimental evidence for each model are introduced

throughout.
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2
BACKGROUND

This chapter gives a brief description of the physiology and function of neurons,

concentrating on the key components that are relevant to the models introduced

and discussed in later chapters, and based on the work in [2, 4, 8].

A typical neuron consists of three main structures: the dendritic tree, the cell

body or soma, and the axon. The dendritic tree processes the signals received

from the axons of surrounding neurons in the form of an electric potential.

The electric potential diffuses along the dendritic tree to the soma where it is

processed. Alternatively, the contact of the axon to target neurons, also known

as synapses, can be directly on the soma.

If the total potential at the soma exceeds a certain threshold value, the neu-

ron produces a short electrical spike or action potential that is transmitted to

the surrounding neurons via the axon, as shown in Figure 2.1. Both the den-

dritic tree and axon are branched structures so one neuron can receive electrical

potential from, or send action potentials to, several thousand other neurons.

When an action potential arrives at a synapse, the presynaptic neuron acti-

vates voltage-dependent calcium (Ca2+) channels producing an influx of Ca2+.

Such an influx leads to the secretion of a neurotransmitter that binds to recep-

tors in the target (postsynaptic) neuron, causing ion-conducting channels to

open. This process is described in the inset of Figure 2.1. Depending on the na-

ture of the ion flow, the action potential arrival can either produce an increase

in electrical potential (excitatory synapse) or a decrease (inhibitory synapse).
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background

Figure 2.1. Schematic representation of the sypnatic process in neurons. Arrows denote

the direction of the electrical impulses arriving to the dendrites from the axons

after being processed in the soma. Figure obtained from https://commons.

wikimedia.org/wiki/File%3AChemical_synapse_schema_cropped.jpg cre-

ated by US National Institutes of Health, National Institute on Aging, via

Wikimedia Commons
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2.1 firing rates

The cell is polarised when, under resting conditions, the potential inside the

cell membrane is about -70 mV relative to the surrounding bath (0 mV). This

potential difference is maintained by ion pumps located in the cell membrane

that respond to changes in voltage and ion concentration. The cell hyperpo-

larises when positively charged ions flow out of the cell or negatively charged

ions flow into the cell, making the membrane potential more negative. Depo-

larisation corresponds to (positive) ionic current flowing into the cell, making

the membrane potential less negative. Thereby, the neuron generates an action

potential when it is sufficiently depolarised to raise the membrane potential

above a threshold level. After a cell spikes, a few milliseconds must pass before

it can initiate another spike, this period is called the absolute refractory period.

In fact, for a longer period, lasting tens of milliseconds, it remains difficult to

generate an action potential. Such period is called the relative refractory period.

Figure 2.2 illustrates the action potentials recorded at different locations of a

neuron.

2.1 firing rates

Figure 2.2 shows different types of action potentials (spike events). It is believed

that action potentials convey information predominantly through their timing.

In view of this, and their brief duration, they are often simply characterised by

a spike sequence. Such a spike sequence can be represented as

ρ(t) =
n∑
i=1

δ(t− ti), (2.1)

where ti is the time of the ith spike, and δ is the Dirac-δ function that represents

a infinitesimally narrow, idealised spike. Here ρ(t) is called the neural response

function.

Despite the trial-to-trial variability in spike sequences observed at a neuron,

in most cases (since the number of synaptic inputs to most neurons is very

large), the quantities of relevance to network dynamics are relatively insensitive

to such fluctuations [4]. Therefore, it is often acceptable to use firing rates to
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2.1 firing rates

Figure 2.2. Action potentials (B-E) recorded at different locations of a neuron (A). The

action potential illustrated in B shows an initial depolarisation followed by two

spikes. After these spikes the cell hyperpolarises and then depolarises again.

Note that the spike times and the subthreshold activity is different at different

cell locations. Figure taken from [13].

characterise neural responses. A time-dependent firing rate can be constructed

according to a time and ensemble average:

r(t) =
1

∆t

∫ t+∆t

t
dτ〈ρ(τ )〉. (2.2)

Here 〈ρ(τ )〉 is the trial-average neural response function and ∆t > 0 defines

the window for temporal averaging. Note that r(t)∆t is the probability that a

spike occurs during the times t and t+ ∆t.

The response of a neuron to a given stimulus can be characterised by the

number of action potentials fired during the presentation of such stimulus. As-

suming that the stimulus is held constant over a trial, the average firing rate

〈r〉 is the average number of action potentials fired over trials and divided by

the trial duration T :

〈r〉 = 1
T

∫ T

0
dt r(t). (2.3)

This firing rate can be written as a function of a given stimulus s, i.e., 〈r〉 = f(s).

The function f(s) is known as the neural response tuning curve. The form of

the tuning curves depends on the stimuli. For example, neurons in the primary
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2.2 cell dynamics

visual cortex of a monkey have Guassian-like response curves to a bar of light

moved across the receptive field, as shown in Figure 2.3.

2.2 cell dynamics

The electrical signal of relevance in the nervous system is the difference in

electrical potential between the interior and exterior of a neuron. Therefore

the dynamics of a neuron can be described as an electrical circuit composed

of resistors and capacitors, an example of such circuit is shown in Figure 2.4.

Here, the cell membrane acts as a capacitor because it is impermeable to most

charged molecules. The ion channels act as conductances (inverse of resistances)

because they allow ions, predominantly sodium (Na+), potassium (K+), Ca2+

and chloride (Cl−) to move into and out of the cell in response to voltage changes

(voltage dependent channels) and both internal (Ca2+-dependent channels) and

external signals (synaptic receptor channels); thus lowering the effective mem-

brane resistance to ion flow. The channels are further categorised into passive,

active and ligand-gated. Passive signifies that the channel conductance does not

depend on the cell’s membrane potential, whereas active signifies that it does.

A ligand-gated channel requires the binding of a helper molecule (the ligand)

to open the channel [2]. The resultant membrane conductance depends on the

density and type of channels.

The amount of current required to change the membrane potential at a given

rate can be determined by using the standard equation for a capacitor that

relates voltage and charge as:

Q = CmV , (2.4)

where Cm is the capacitance, V the voltage across the membrane and Q the

amount of excess negative charge on the inside surface of the neuron’s cell

membrane. Differentiation with respect to t gives the evolution equation

Cm
dV
dt =

dQ
dt . (2.5)

9



2.2 cell dynamics

Figure 2.3. (A) Right: Activity recorded from a neuron in the primary visual cortex of

a monkey. Left: Bar of light (black bar) moved across the receptive field of

the cell (square dotted box) at different angles. The motion of the light is

indicated by the arrows. (B) Average firing rate of a cat neuron in the visual

cortex plotted as a function of the orientation angle of the light bar stimulus.

Figure taken from [4].

R C

I

Figure 2.4. Diagram of a typical resistor-capacitor circuit depicting a neuron. Here the

capacitor (C) and the resistor (R) lie in parallel.
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2.2 cell dynamics

The membrane potential can be shifted away from its resting value by the

injection of a small constant current. Denoting the shift in potential by ∆V

and the injected current by Ie, Ohm’s law gives:

∆V = IeRm, (2.6)

where Rm is the membrane resistance.

When the neuron is inactive, the flow of ions into the cell matches that

out the cell, thereby the potential is at an equilibrium point. The potential

changes when the balance of ion flow is modified by the opening or closing of

ion channels. Following [14], and assuming that the potential is at equilibrium,

the probability Pin of finding a specific ion inside the cell can be compared to the

probability Pout of finding it outside (using concepts of statistical mechanics).

Such a comparison is given by the Boltzmann distribution

Pin
Pout

=
exp

(
− Ein
kBΓ

)
exp

(
−EoutkBΓ

) , (2.7)

that depends on the energy the ion has inside (Ein) and outside (Eout) the cell.

Here kB is a constant called the Boltzmann factor and Γ is the temperature

(in Kelvin). The difference between the energy of the ions inside or outside the

cell is caused by the difference in the electrical energy. This energy is given by

zeV , where z is the valence of the ion, e the electronic unit charge, and V the

electric potential. Therefore

Pin
Pout

= exp
(
−ze (Vin − Vout)

kBΓ

)
. (2.8)

The voltage difference between the inside and outside of the cell can be

obtained by manipulating (2.8), yielding

E = Vin − Vout =
kBΓ
ze

ln Pout
Pin

, (2.9)

in which E is commonly called the reversal potential and conventionally Vout =

0. The above equation is known as the Nernst equation and relates the prob-

ability of finding an ion at some location to its concentration at this location.

The conductances tend to move the membrane potential of the neuron towards

11



2.2 cell dynamics

its reversal potential. When V > E, positive current will flow outward, whereas

when V < E positive current will flow inward. If conductances have reversal

potentials near to the resting potential then they pass little net current and

their primary impact is to change the membrane resistance.

Following [4], the total membrane current per unit area of cell membrane, im,

is given by

im =
∑
i

gi(V −Ei), (2.10)

where Ei is the reversal potential of channel type i, V −Ei is the driving force,

and gi is the conductance per unit area.

The rate at which charge builds up (dQ/dt in (2.5)) is equal to the amount of

current entering the neuron (given by the sum of (2.6) and (2.10)). Therefore

cm
dV
dt = −im +

Ie
A

(2.11)

where A is the total surface area of the neuron, cm = Cm/A is the specific

membrane capacitance and im is, by convention, positive when positive ions

leave the neuron and negative when positive ions enter the neuron.

If all the active conductances are ignored and the total membrane conduc-

tance is modelled as a single passive leakage term, im = gL(V −EL) with gL a

constant, then the passive compartment model for neuronal dynamics is given

by

τm
dV
dt = EL − V +RmIe, (2.12)

where Rm = rm/A is the total membrane resistance and τm = cmrm the

membrane time constant. Here rm = 1/gL is the specific membrane resistance.

2.2.1 Active Membrane

Membrane conductances change over time and most of the interesting electrical

properties of neurons arise from non-linearities associated with active membrane

conductances [4]. Experimental evidence shows that ion channels fluctuate

rapidly between open and closed states. Because there is a large number of
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2.2 cell dynamics

channels and they fluctuate independently of each other, the fraction of channels

open at a given time can be approximated with the probability that any channel

is in an open state. Therefore, the value of the conductance per unit area of

membrane due to a set of channels of type i, gi, at any given time is determined

by

gi = giPi, (2.13)

where gi is called the maximal conductance (given by the product of the con-

ductance of an open channel by the density of the channels) and Pi is the

probability of finding any given channel in an open state.

2.2.1.1 Voltage-Dependent Conductance

The ion channels that produce the so-called persistent conductance can be

thought of as pores with a gate that opens or closes depending on the volt-

age across the membrane. When the gate opens, it activates the conductance,

whereas when it closes, the conductance is deactivated. An example of a persis-

tent conductance is the delayed-rectifier K+ conductance that is responsible for

repolarising a neuron after an action potential. For this type of conductance

the probability that the gate is open, PK , increases when the neuron is depo-

larised and decreases when it is hyperpolarised. Moreover, the gate opens when

k identical subgates open, thus

PK = nk, (2.14)

where n is called the gating variable and is the probability that any one of

the k independent subgates is in an open state. The gating variable changes

according to a law of mass action

dn
dt = αn(V )(1− n)− βn(V )n, (2.15)

where αn(V ) is the opening rate and βn(V ) is the closing rate. Usually (2.15)

is written as

τn(V )
dn
dt = n∞(V )− n, (2.16)
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2.2 cell dynamics

where τn(V ) is the time constant

τn(V ) =
1

αn(V ) + βn(V )
, (2.17)

and

n∞(V ) =
αn(V )

αn(V ) + βn(V )
(2.18)

describes the steady-state levels of activation of the K+ conductance.

There is another type of channel that opens transiently and is controlled by

two gates with opposite voltage dependences. The conductance generated by

such channels is therefore called transient. One example is the fast open Na+

conductance with

PNa = mkh, (2.19)

where m is the activation variable and h is the inactivation variable. Whilst

m behaves like n in (2.14), h decreases when the neuron is depolarised and

increases when it is hyperpolarised. Thus, m and h are described by equations

identical to (2.16) with αm,αh and βm, βh fitted accordingly. Because h is

an inactivation variable, it approaches 1 at hyperpolarised voltages and 0 at

depolarised voltages, and therefore h∞(V ) is flipped relative to m∞(V ) and

n∞(V ). All gating variables in modern conductance based models of active

membrane are described by equations similar to (2.16). The rate functions

αj = αj(V ) and βj = βj(V ) can be fitted to data, as in the famous Hodgkin

and Huxley model [6].

A hyperpolarisation-activated conductance is controlled only by an inactiva-

tion gate that opens when the neuron is hyperpolarised. This type of conduc-

tance is studied in Chapter 4.

2.2.1.2 Synaptic Conductance

The probability of an open channel Psyn for a synaptic conductance depends on

the probability Ps that a postsynaptic channel opens (or fraction of channels

opened), given that neuro transmitter was released by the presynaptic terminal,
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2.2 cell dynamics

and the probability Prel that the presynaptic terminal released the transmitter

after the arrival of an action potential. Therefore, Psyn is given by

Psyn = PsPrel. (2.20)

The probability that the channel is open changes over time according to

dPs
dt = αs(1− Ps)− βsPs. (2.21)

Here, the closing rate of the channel, βs, is usually assumed to be constant

whereas the opening rate αs depends on the concentration of transmitter avail-

able for binding to the receptor.

One common way to describe a postsynaptic conductance for an isolated

presynaptic release that occurs at time t = 0, reaches its peak at t = 1/α,

and after which decays with time constant 1/α, is to use the so-called alpha

function given by

η(t) = α2t exp(−αt)H(t), (2.22)

where H(t) is the Heaviside step function defined by

H(t) =


1, if t ≥ 0

0, otherwise
. (2.23)

Thus, the postsynaptic conductance change is given by

g(t) = gη(t− T ), (2.24)

where T is the arrival time of a pre-synaptic action potential. The change

arising from a train of action potentials, with firing times tm, can hence be

written as

g(t) = g
∑
m
η(t− tm). (2.25)
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2.2 cell dynamics

Following [8], the above equation can be written as the Green’s function of a

linear differential operator1, Q, so that Qη = δ, where

Q =

(
1 + 1

α

d
dt

)2
. (2.26)

Therefore, an equivalent form for (2.25) is

Qg = g
∑
m
δ(t− tm) = gρ(t), (2.27)

where ρ(t) is the neural response function in equation (2.1).

2.2.2 Quasi-Active Membrane

A passive membrane model (2.12) cannot accomplish certain kinds of specific

neural dynamics. For example, resonances, which describe the increase in the

likelihood of firing when the neurons have inputs at specific preferential fre-

quencies. In order to exhibit these specific neural dynamics, the model has

to include more information relating to the ion channel activity. Interestingly,

Coombes et al. [15] showed that a linearisation of the channel kinetics about

rest may describe adequately such cell dynamics, simplifying the Hodgkin and

Huxley type model described in §2.2.1.1. Following their work, a generic ionic

membrane current of the form

I = I(V ,w1, . . . ,wN ), (2.28)

is considered, where V is a voltage and wk are gating variables that satisfy (2.16).

Thus, the steady state of the current is given by I = I(V ,w1,∞(V ), . . . ,wN ,∞(V )).

Taking small perturbations about the steady state of the form

(V ,w1, . . . ,wN ) = (V + δV ,w1,∞(V ) + δw1, . . . ,wN ,∞(V ) + δwN ), (2.29)

1 In general, the Green’s function G = G(t, s) at a point s corresponding to a linear operator

L is any solution of LG(t, s) = δ(t− s), where δ denotes the Dirac-delta function. This

identity is used to solve differential equations of the form Lu(t) = f(t), by multiplying

LG(t, s) = δ(t − s) by the function f(s) and integrating with respect to s. Thus, the

solution of the differential equation is given by u(t) =
∫
G(t, s)f(s)ds.
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2.2 cell dynamics

and substituting in (2.28) yields

δI =
δV

R
+

N∑
k=1

∂I

∂wk

∣∣∣∣
ss
δwk, (2.30)

where the resistance R is defined by R−1 = ∂I/∂V |ss and ss refers to the steady

state. Using (2.15) the evolution of the perturbations in the gating variable can

be written as(
∂

∂t
+ αk + βk

)
δwk =

[
dαk
dV −wk,∞

∂ (αk + βk)

∂V

]
δV . (2.31)

Substituting (2.31) in (2.30) gives

δI =
δV

R
+

N∑
k=1

δIk, (2.32)

where (
rk + Lk

d
dt

)
δIk = δV , (2.33)

with

r−1
k = τk

∂I

∂wk

[
∂αk
∂V
−wk,∞

∂ (αk + βk)

∂V

]∣∣∣∣∣∣
ss

, (2.34)

Lk = τkrk. (2.35)

Now, considering a general current balance equation of the form

C
dV
dt = −gL(V − VL)− I(V ,w1, . . . ,wN ), (2.36)

the following linearised equations are obtained

C
dV
dt = −V

R
−

N∑
k=1

Ik,
1
R

= gL +
1
R

, (2.37a)

Lk
dIk
dt = −rkIk + V . (2.37b)

This describes an “LCR” circuit (see Fig. 2.5), in which the current I responds

as though the resistance R is in parallel with N impedance lines. Each of these

is a resistance rk that is itself in series with an inductance Lk. In §3.5 a quasi-

active model of cell dynamics is proposed in order to account for the resonant

behaviour seen experimentally in grid cells.
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RC

r

L

Figure 2.5. An “LCR” circuit depicting a quasi-active membrane model (2.37), in which

the membrane acts as a capacitor that is in parallel with a resistance R and an

inductance L.

2.3 dendrites

Membrane potentials measured in the soma, dendrite and axon of a cell can take

different values as shown in Figure 2.2. Potential differences between different

parts of a neuron cause ions to flow within the cell, which tends to equalise

these differences. The intracellular medium provides a resistance to such a flow.

This resistance is highest for long, narrow stretches of dendritic or axonal cable.

Following [8], the conservation of electrical current in such a cylindrical element

of a neuron may be described by the so-called cable equation.

Let V (ξ, t) denote the membrane potential at position ξ along an infinite

uniform cable at time t measured relative to the resting potential of the mem-

brane. Let τ be the cell membrane time constant, λ the space constant, and r

the membrane resistance, then the uniform (infinite) cable equation is

τ
∂V (ξ, t)

∂t
= −V (ξ, t) + λ2∂

2V (ξ, t)
∂ξ2 + rI(ξ, t), ξ ∈ (−∞,∞), (2.38)

where the source term I(ξ, t) corresponding to external input injected into the

cable is included. Let I(ξ, t) be the response to a unit impulse at ξ′ at t = 0,

and take V (ξ, 0) = 0, then the dendritic potential at the point ξ behaves as

V (ξ, t) = rG∞(ξ − ξ′, t)/τ , (2.39)
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2.4 oscillatory interference models

with

G∞(ξ, t) =
1√

4πDt
e−t/τe−ξ

2/(4Dt)H(t). (2.40)

Here D = λ2/τ is the diffusion constant and (2.40) is the Green’s function

for the relevant operator. Note that the Green’s function determines the linear

response to the unit impulse at ξ′ at t = 0.

Due to the linearity of (2.38), the solution for any given input can be con-

structed as a superposition of (2.40). Therefore the general solution of (2.38)

is given by

V (ξ, t) =
r

τ

(∫ t

−∞
dt′

∫ ∞
−∞

dξ′ G∞(ξ − ξ′, t− t′)I(ξ′, t′)

+
∫ ∞
−∞

dξ′ G∞(ξ − ξ′, t)V (ξ′, 0)
)

. (2.41)

The full details are shown in Appendix A. Note that the spatio-temporal distri-

bution of delays, expressed by the Green’s function in (2.41), is generated by

the diffusion along the dendritic tree. The dynamics induced by incorporating

dendritic processing to a neural network are studied in §3.6.

2.4 oscillatory interference models

Some of the neural models proposed in this thesis are compared with models

in the literature, for example, the oscillatory interference models. Thus a brief

introduction to this type of model is given here.

The voltage fluctuations of the brain over time can be recorded using elec-

troencephalography (EEG), in which electrodes are placed along the scalp or

directly on the brain (via an invasive surgery). Sometimes the recorded activity

can be irregular or exhibit oscillations; for example, the hippocampal EEG of

a rat can exhibit theta (sinusoidal 7-12 Hz waves), or highly irregular activity

over a larger frequency domain [16]. The type of activity exhibited in the EEG

depends on the behaviour of the rat. When it is walking, exploring, running,

swimming, rearing, and jumping the EEG has theta activity; whereas, when

the rat is doing other activities that do not require any displacement movement,
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2.5 network models

the EEG activity is irregular. Interestingly, the activity from a single neuron

exhibits theta only when the rat is near to a particular location z. O’Keefe and

Recce proposed a model for this phenomenon [16]. In their model a neuron is

an oscillator that receives input from at least two different rhythmic generators

at slightly different frequencies. Thus, throughout most of the environment

these generators cancel each other, but at the location z the frequency of one of

the oscillators increases slightly relative to the other. Assuming that the rat is

moving at a constant speed and direction, the activity y of the neuron is given

by

y = 2a cos [0.5(k1 + k2)x− 0.5(ω1 + ω2)t] · sin [0.5(k1 − k2)x− 0.5(ω1 − ω2)t] ,

(2.42)

where a is a constant, x represents the position of the rat at time t, k is the

spatial propagation number of each wave and ω is the angular frequency of

the temporal component. Modified versions of this model have been used to

represent the activity of some type of neurons used in navigation (see [17] for

a review).

2.5 network models

2.5.1 Neural Field Models

In order to construct a network model, the total synaptic input received by a

neuron, as a result of anatomical connectivity, is considered. The total synaptic

input is defined by Dayan and Abbot [4] as the total current delivered to the

soma as a result of all conductance changes resulting from presynaptic action

potentials.

Let us define the total synaptic current as Isyn = gsyn(V − Vsyn), where

Vsyn is a reversal potential and gsyn a conductance as defined in (2.27). Then,
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2.5 network models

assuming (as in [8]) that a neuron spends most of its time close to rest, such

that Vsyn − V ≈ Vsyn, and absorbing the factor Vsyn in gsyn, yields

Isyn ' gsyn = g
∑
m

∫ t

−∞
dsη(t− s)δ(s− tm). (2.43)

Using an alternative representation with the Green’s function η(t) (2.43) can

be rewritten as

Qgsyn = g
∑
m
δ(t− tm). (2.44)

Due to the complexity of simulating, analysing and interpreting networks

of spiking neurons, the outputs of neurons are usually modelled as firing rates.

These firing rate models avoid the short time scale dynamics of action potentials

and model a slower collective behaviour. Here, η is assumed to be sufficiently

slow (i.e. 1/α→ 0) so that the short-time average, defined by

〈x〉t =
1

∆t

∫ t

t−∆t
x(s)ds, (2.45)

of the left hand side of (2.44) is approximately constant. Applying (2.45) to the

right hand side of (2.44) gives the so-called instantaneous firing rate function,

f . This function is assumed to be a function of the drive alone for a single

neuron experiencing a constant drive. For synaptically interacting neurons,

the drive is directly proportional to the conductance state of the presynaptic

neuron, thus f = f(gsyn). Therefore, a model for a single neural population

with self-feedback is given by

Qgsyn = wf(gsyn), (2.46)

where w represents the strength of coupling, and for excitatory synapses w > 0

whereas for inhibitory, w < 0.

Now consider the case that neurons are arranged in a tissue where the anatom-

ical connectivity between two neurons, with spatial coordinate x, y ∈ D respec-

tively, is w(x, y). Then the total synaptic input to the neuron at the spatial

coordinate x at time t is given by

Isyn(x, t) ' gsyn(x, t) =
∫ t

−∞
dsη(t− s)

∫
D

dy w(x, y)f(gsyn(y, s)). (2.47)
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2.5 network models

The synaptic input plays a major role in the network models presented in this

thesis. Chapters 3 and 4 study the emergent activity from a network with

inhibitory connectivity. In the former, rate functions are used to describe the

dynamics of synaptic currents whereas in the later spike trains are used. In

Chapter 5 plasticity is considered, in which the synaptic weights can also evolve

dynamically.

2.5.2 Continuous Attractor Network Models

In order to represent a group of neurons with the same characteristics, namely

a subpopulation or pool of neurons, some computational models use nodes [18].

A node receives some input rini from other nodes, does some local processing

and distributes the generated output rout to other nodes. Here rini , rout ∈ R,

although binary variables may also be used. The most basic type of node is

called a sigma node. This type of node has several inputs rini that it processes

to generate only one output rout as follows

rout = ψ (h) = ψ

(∑
i

wir
in
i

)
, (2.48)

where ψ is known as the activation or gain function and wi is the weight of

the input i. The node sums up all the weighted inputs and the resulting value

h =
∑
iwir

in
i is known as the activation of the node. Note that (2.48) describes

the single node response to an external input, not considering its evolution over

time. In order to describe the time dynamics of a sigma node, the following

assumptions are needed: 1) the processing done by the sigma node in (2.48)

takes a fixed time length τ ; 2) the continuous node integrates only a fraction

∆t/τ of the input ∑iwir
in
i in each time step ∆t < τ ; and 3) the node has to

remember its previous values to which the new input is added. Hence,

h(t+ ∆t) = h(t) +
∆t
τ

∑
i

wir
in
i . (2.49)
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Note that h will continue to grow without bounds as long as the input is ap-

plied2. In [18], this problem is solved by gradually leaking a small amount of

the input that the node has integrated before. This small amount is called the

forgetting factor. Now, if the forgetting factor is set on the same time scale as

the integration of new input in (2.49), then

h(t+ ∆t) =
(

1− ∆t
τ

)
h(t) +

∆t
τ

∑
i

wiri, (2.50)

Note that if ∆t = τ then (2.48) is obtained. After taking the limit ∆t → 0

(2.50) gives the temporal dynamics of the activation of a sigma node

τ
dh(t)

dt = −h(t) +
∑
i

wiri; (2.51)

which has the following analytical solution

h(t) = h(0)e
−t
τ +

∑
i

wiri
(
1− e

−t
τ

)
. (2.52)

Note that if ∑iwiri = 0, the activity of the node just decays exponentially in

time. On the other hand if the input is positive, it slows down the exponential

decay of h; and if the input is negative, it decreases the activation of the node.

But in all cases, h → ∑
iwiri as t → ∞. Thus, regardless of the input value,

setting the forgetting factor on ∆t/τ ensures that the activation of the node

will settle to a define value, guaranteeing its stability.

Now, consider a network of N sigma nodes, where hi represents the activation

of the ith node. Such a network is recurrently connected and the strength of

input from node j to node i is represented by wij . The dynamics of this network

is given by
1
τ

dhi(t)
dt = −hi(t) +

1
N

∑
j

wijrj(t) + Iexti(t), (2.53)

where Iexti(t) is an external input to the system, τ is a time constant and

rj(t) = ψ(hj(t)). The dynamics of such a system evolve in time and eventually

settle down to a single stable equilibrium state, a collection of equilibrium states,

or a periodic oscillation, depending on the initial conditions. In computational

2 The solution of (2.49) in the limit when ∆t→ 0 is h(t) =
∑
i wir

in
i

τ
t+ h(0).
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neuroscience these models are known as attractor networks and there are many

types depending on the attractor states. These attractor states are used to

represent the “memory” of the system, in the sense that the system will be

able to retrieve such a memory when noise in the system or in the connections

is present (i.e., the system evolves to the attractor state). For example, the

continuous attractor allows a continuum of stable equilibrium states, or at least

closely related states that approximately form a continuum, and are well-suited

to represent two-dimensional variables, such as location in a room [19]. Thus,

continuous attractor network (CAN) models have been used to model parts of

the brain related to spatial memory (see [19] for a review). One such model is

studied in Chapter 3.

In attractor network models, the attractor states refer to states of activity in

the network. Generally, there is no anatomical correspondence between attrac-

tor states in the network and the physical locations in brain [19]. For example,

in 1D CAN models of head-direction (HD) cells3, nodes are conceptualised as

being arranged in a circle (or ring), where the location of each node in the

circle with respect of the circle’s centre represents the preferred firing direction

of one or a pool of HD cells as shown in Figure 2.6. Nearby nodes code for sim-

ilar preferred directions although experimental evidence shows that nearby HD

cells have different preferred firing directions [20]. Particularly, in the model

proposed by McNaughton et al. [21], neighboring nodes are connected by strong

excitatory synapses and nodes that are far apart (in the circle) are connected

with inhibitory synapses. The strength of these connections is proportional to

the angular distance between the nodes on the circle. This symmetric connectiv-

ity between nodes results in a “bump” of activity on the ring (attractor state),

because the excitatory circuitry reinforces the activity of other nearby nodes,

whereas the inhibitory connections force nodes further away to be silent. It is

3 Head-direction cells fire whenever a subject’s head points in a particular direction in an

allocentric coordinate frame [19]. Different head-direction cells fire at different preferred

directions. An allocentric coordinate is based on the external environment (independent of

the subject’s location). Thus, in this frame, the subject’s head points to the north, east, etc.
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important to note that the heading of the animal changes when it is wandering

an environment. Therefore, the location of the activity bump has to change

accordingly to the node that encodes for that particular heading direction. In

order to achieve this, an asymmetric input modulated by the rat’s velocity and

heading direction is added to the HD nodes. Such input is higher to the nodes

whose preferred heading direction is similar to the animal’s heading direction.

The resulting model is a CAN model. It is important to note that node loca-

tion represents the preferred head direction and not physical location of the cell.

Despite this fact CAN models of HD cells can explain a number of properties

of the HD system such as the firing of HD cells in the same preferred direction

across multiple environments and the preservation of cell preferred firing in the

dark [19].

2.6 summary

This chapter gave a short description of different types of models that are

commonly used to study neural phenomena, from single neuron activity fluctu-

ations due to the influx of ions, through to tissue activity arising mainly from

the connections between neurons. The type of model that will be implemented

in the following chapters will depend on the phenomena described in each one;

for example, in Chapter 4 the microscopic detail of ion channel fluctuations is

included, whereas Chapter 5 studies the overall activity of different groups of

neurons.
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Figure 2.6. Model of Head-Direction cells. Top: Purple circles represent the nodes arranged

on a black dotted circle. Note that each node codes for a different preferred

firing direction that is displayed next to the node. Red lines denote excitatory

connections and blue dashed lines denote inhibitory connections. The thickness

of these lines represents the strength of the connections. For simplicity only

the connections of the node coding for a preferred direction of 90◦ are shown.

Bottom: Orange line represents the bump of activity formed when the subject

head points to east (90◦) direction.
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3
MECHANISMS FOR LONG WAVELENGTH PATTERNING

IN F IR ING RATE NEURAL NETWORKS

3.1 introduction

The aim of this chapter is to investigate the classes of neural network models

that can support long wavelength spatial patterns. Such patterns can be of

physiological significance in a wide range of settings. Here, the motivation is

to understand the mechanisms that can underlie the so-called grid cell firing.

Grid cells are neurons in the Medial Entorhinal Cortex (MEC), that fire at

multiple locations when an animal is wandering in an open two-dimensional

environment, defining a periodic triangular array that covers the entire surface

of the environment making a grid-like pattern, hence the name [22] (Fig. 3.1).

These cells fire at the same position regardless of changes in the animal’s speed

and direction, and firing persists in the absence of visual input. Grid cells are

therefore believed to correspond to the animal’s own sense of location. For their

discovery in 2005 [22], May-Britt and Edvard Moser were awarded the Nobel

Prize in Physiology and Medicine in 2014 (together with John O’Keefe).

The MEC is organised in layers that are embedded one above the other and

have different thickness. Each of these layers are characterised by a dominant

type of cell and by their principal inputs and/or outputs within the layer and

to other brain regions. Although grid cells can be found in all MEC layers,

experiments in rats done by Boccara et al. [23] showed that the number of grid

cells decreases from superficial layers (II and III) to deeper layers (V and VI) of
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Figure 3.1. Trajectory of a rat (blue line) running on a cylinder with a diameter of 180 cm.

Red, green and yellow dots correspond to the locations of the spikes of three

different cells recorded simultaneously in layer II at the dorsocaudal pole of the

Medial Entorhinal Cortex. Experimental data was obtained by Hafting and it

is available on the Moser Group website http://www.ntnu.no/cbm/moser.

the MEC. Boccara et al. also found grid cells in pre- and parasubiculum, but

their proportion was comparable to deep layers of MEC. The MEC provides

input to the hippocampal formation, that consists of dentate gyrus, subiculum,

CA1, CA2 and CA3; as shown in Figure 3.2. Particularly, layer II of MEC

projects to the dentate gyrus, CA3 and CA2, and layer III projects to CA1

and the subiculum [24]. The principal neurons of the Entorhinal Cortex (EC)1

are generally pyramidal cells or modified versions, the so-called stellate cells

[25]. Stellate cells form the large majority of principal neurons in MEC II.

Couey et al. [26] showed that MEC II stellate cells are mainly interconnected

via inhibitory interneurons (with short axons) and that excitatory connections

between stellate cells are essentially absent.

The hippocampal formation along with the presubiculum, parasubiculum,

and entorhinal cortex are believed to provide a metric representation of the

environment [27]. There are other spatially modulated cell types in the hip-

pocampal formation besides grid cells, namely place cells, head direction cells,

boundary cells and cells that encode object location. Place cells are found in

the CA1 and fire selectively to spatial locations, whereas head direction cells

1 Here principal neurons refers to the neurons that receive most of the incoming axons and are

the major output source of output.
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Figure 3.2. Anatomy of the entorhinal cortex (EC) in a rat brain, showing its main con-

nectivity to the hippocampal formation (HF), the parasubiculum (PaS) and

the presubiculum (PrS). The HF consists of dentate gyrus (DG), subiculum

(S), and Cornu ammonis fields 1 to 3 (CA1, CA2 and CA3 respectively). The

EC is divided in lateral entorhinal cortex (LEC) and medial entorhinal cortex

(MEC). Other abbreviations: OB, olfactory bulb; POR, postrhinal cortex; rf,

rhinal fissure; PER, perirhinal cortex. (A) Schematic lateral view of the left

hemisphere of the rat brain. (B) Horizontal section taken from the dotted

square in (A). Here the connections of the MEC and LEC with different parts

of the HF are illustrated. (C) Position of the EC in the left hemisphere of the

rat brain from a posterolateral view. Pink to blue shadow shows the dorsal to

ventral dimension of the LEC and MEC. (D) Rat brain showing the HF of the

right hemisphere. The colour-code shows the areas of the HF receiving input

form dorsal (pink) and ventral (blue) EC. Figure modified from [25].
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3.1 introduction

encode the animal’s head direction in the horizontal plane, independent of lo-

cation. Boundary cells fire whenever a boundary is at a particular distance

and direction from the current location of the animal, independent of head

direction. Some neurons in the lateral EC that typically fire in response to

non-spatial cues, such as odour, can encode the relative distance and direction

to the current or previous location of specific objects within an environment.

The grid pattern formed by grid cells firing locations (firing fields) can be de-

scribed by three parameters: the spacing between the firing fields of a grid cell,

the tilt of the grid relative to a reference axis (orientation) and the displace-

ment in the x and y directions relative to an external reference point (spatial

phase). The firing fields of neighbouring cells in MEC II have similar spacing

and orientation, and different spatial phase [22]. When grid cells were discov-

ered it was noticed that the size and spacing between these firing fields increase

from dorsal to ventral positions in the MEC [22] (as illustrated in Fig. 3.3).

After the discovery of grid cells a number of computational models for grid-

like firing patterns were proposed. Those models fall into two classes: oscillatory

interference models and CAN models [17]. The first class uses interference

patterns generated by multiple membrane-potential oscillations to explain grid

formation [28] (see §2.4). The second class uses activity in local networks with

specific connectivity to generate the grid pattern and its spacing [29, 30] (see

§2.5.2). Recently these models have evolved due to new experimental findings

and a new class of “self-organised” models has been proposed [31–33], whereby

grid cells are formed by a self-organised learning process that borrows elements

from both former classes.

The majority of grid cell models require the rat’s running velocity and direc-

tion as an input for grid firing fields formation. However, the models proposed

by Kropff and Treves [34], and Dordek et al. [35] demonstrated the emergence

of grid cells without rat’s velocity input, instead they used place cell inputs.

These models are based on experimental evidence showing that grid cell activ-

ity disappears when place cells are inactivated [36], and that place cells develop

earlier than grid cells in rat pups [37]. Interestingly, the model proposed by
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3.1 introduction
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Figure 3.3. Scale, orientation, and phase of grid cell firing in Medial Entorhinal Cortex

(MEC). Different colours represent different positions in the dorso-ventral axis

of the MEC. The width of the circles shows the changes in scale and spacing

of their firing fields along the dorso-ventral axis.

Dordek et al. exhibits a dependence between the place cell firing field size and

the resulting grid spacing. This dependence is supported by experimental data

exhibiting that the size of the place cell firing fields increases from dorsal to

ventral positions of CA3 [38] (on similar fashion than the grid cell firing fields).

The model in [35] is a single layer neural network with place-like input cells

connected to grid cell outputs by feedforward weights that are learned via a

Hebbian rule.

Conceptually, computational models of grid cells are useful to explain the

formation of grid-like firing patterns, but in most cases they lack experimen-

tal evidence [19]. Moreover, some of these models fail to include the known

inhibitory recurrent connectivity of the MEC II, or to explain the differences

in the scale of firing fields of grid cells recorded at different locations of the

dorsoventral axis of MEC [32]. For example, CAN models, such as those de-

scribed in [26,29,39], are often criticised due the lack of evidence that patterns

(or attractor states) are formed in the brain tissue. Additionally, experimental

evidence shows that nearby grid cells in the tissue differ in their response fea-

tures2; although nearby cells have the same spacing and orientation, they have

different spatial phase [22]. This challenges the conception of a CAN model

2 Here the features of grid cell response are the spacing between the firing fields, their orienta-

tion and spatial phase.
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3.1 introduction

because in these models neighboring nodes, representing neurons, have similar

values in all their features. However, Yoon et al. [40] provided evidence that

grid cells can be represented as CAN. In order to show this phenomena, Yoon et

al. [40] analysed data from simultaneously recorded grid cells of a rat exploring

an environment. First, they described the periodic tiling of the grid firing fields

(emerging from different grid cells) with six parameters related to the angles (θ

and ψ), length (λ1 and λ2) and location of their primary lattice vectors3. Figure

3.4 describes the first four parameters. The other two parameters are obtained

by measuring the displacement of the central activity peak from the centre of

the environment. Notably, cells recorded with the same or nearby tetrodes

had similar values in four of these parameters. The parameters with different

responses were those related to the location of the firing field centres, i.e., the

spatial phase. Then, Yoon et al. modified the environment and recorded the

activity of the same neurons. Although the individual cell responses changed,

the grid parameter ratios and relative spatial phases between simultaneously

recorded neurons remained constant, showing that relationships between cell

pairs were conserved despite deformations of single neuron response. These

experiments demonstrate that the recurrently connected network of grid cells

is stable to deformations in the environment (that induce a change in a sin-

gle cell activity). Importantly, because the cell-cell relationship is conserved

when the single cell response changes it is hypothesised that the connectivity

between cells plays a major role in the stability of grid cell response: without

the connections between cells, the changes of single cell activity, induced by

deformations to the environment, would destabilise the network and the firing

fields of the deformed environments would not resemble the hexagonal firing

fields obtained from grid cells. Interestingly, in CAN models the coupling be-

tween neurons plays a major role in the stability of the network [18, 19, 40],

therefore the experimental evidence from Yoon et al. supports the hypothesis

that the brain computes using continuous attractors. In CAN models of grid

3 The primary lattice vectors are related to the vertices of the hexagonal patterns formed at

the locations in the rat’s trajectory where the activity of a single grid cell is higher.
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3.1 introduction

cells, the nodes are arranged in a 2D sheet with periodic boundary conditions,

and the value of the features of grid cell response can be obtained from the

position of the nodes. Note that the patterns generated in the 2D sheet of grid

cells (nodes) correspond to states of activity in the network. These patterns

are hexagonal because they represent the features of grid cells. Unlike the HD

model described in §2.5.2, neighboring nodes in the model have close physical

proximity in the brain.

In many of the continuous attractor models of grid cells, such as the models

proposed by Couey et al. [26], and Burak and Fiete [39], a hexagonal activity

pattern is formed in a 2D sheet of neurons (Fig. 3.5 Top). This hexagonal

pattern is generated by the coupling between nodes, and its hexagonal shape

represents the features of grid cell response. Once the pattern is formed, it is

translated in response to velocity and head-direction signals that arise as the

rat navigates an environment. This induces a single cell response, such as the

one shown in Figure 3.1. The resulting firing fields can be obtained by recording

the firing events (or cell activity) of a single cell in a 2D neural sheet at the

rat’s position in the environment. Figure 3.5 gives a schematic depiction of

these models.

In this chapter it is assumed that the size and spacing of the grid cell firing

fields are proportional to the size and spacing of the patterns generated in the

2D neural sheet. However, the computational models in [26, 39] only relate

Figure 3.4. Spatial grid parameters used by Yoon et al. [40]. Here (λ1,λ2) describe the two

primary axis lengths. Note that θ and ψ correspond to two different angles. Red

dots correspond to the location of activity peaks recorded during an experiment.

Figure taken from [40].
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3.1 introduction

Figure 3.5. Continuous attractor model for grid cell activity. Top: Snapshots of the popu-

lation activity at different times when the 2D network is driven by a constant

velocity input in the rightward direction. The activity of a single neuron is

recorded by an electrode (green line) and it is shown by the circle above the

electrode. Here gray represents inactivity whereas yellow means that the cell is

active. Bottom: Response avarege firing rate of the recorded cell, as a function

of the simulated rat’s position within the enclosure. Colour-coded red for high

average firing rate and blue for low. Figure adapted from [39].
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3.2 a simple model of grid cell activity

the change of size and spacing of the grid cell firing fields with the parameters

that control the connectivity between cells. For example, simulations done

by Couey et al. [26] exhibit larger firing fields when increasing the ratio of

inhibition. On the other hand, Beed et al. [41] showed that there are more

inhibitory inputs onto dorsal stellate cells in MEC II than ventral stellate cells

using a combination of electrophysiological and optical approaches. Thus, the

mechanism proposed by Couey et al. contradicts the experimental evidence

given by Beed et al. because there is a strongly decreasing gradient of inhibition

along the MEC dorsoventral axis while the size and spacing of the grid cell firing

fields increase from dorsal to ventral positions along the MEC. Therefore the

aim of this chapter is to find biological mechanisms and parameters not related

to neural connectivity that control the size and spacing of grid cell firing fields.

3.2 a simple model of grid cell activity

In this section a continuum version of the attractor model proposed first by

Couey et al. [26] is studied, which can be written as

τ
∂s(x, t)
∂t

+ s(x, t) = gf
(∫

R2
W
(
x− x′, l

)
s(x′, t)dx′ + I + Ivel(x, t)

)
.

(3.1)

Here s = s(x, t) is the measure of neural activity as a function of the neuron

location on a two dimensional plane, x = (x, y) ∈ R2, at time t; f is a threshold-

linear function defined by

f(z) =


z, if z > 0

0, if z ≤ 0
, (3.2)

g is constant gain; and τ is the neural time constant. I is a constant exter-

nal input that could be generated by direct or indirect connections from the

hippocampus. The model receives head-directional input tuned to its preferred

direction through the term Ivel(x, t) = αv(t) cos (ϕ(t)− θ(x)), where α is the

velocity modulation; v(t) is the animal velocity at time t; and ϕ(t) is the ani-

mal head direction at time t. Here, θ(x) represents the preferred head direction

35



3.2 a simple model of grid cell activity

of each neuron, so that there is an increase in firing rate when the animal is

oriented this way.

Motivated by experimental observations, Couey et al. proposed that neurons

are connected to each other via a pattern that follows a simple all-or-none

unstructured inhibitory connectivity defined by

W (x, θ) = W0H
(
R−

√
(x− l cos(θ))2 + (y− l sin(θ))2

)
, (3.3)

where H is the Heaviside function given by (2.23). Thus each neuron only

receives inhibition of constant magnitude (i.e. W0 < 0) within a radius of

connectivity, R. Note that in this CAN model, the distance between neurons

are related to the features of grid cells response (the spacing and size of firing

fields and their relative phases) and not to the physical locations in the neural

tissue. Therefore, the size of R represents the number of inhibitory inputs to the

node located at x in the 2D sheet. Furthermore, the connectivity has an offset, l,

in the network space according to the preferred direction of each cell, θ = θ(x).

The combination of the head-directional input and the offset enables the grid

activity on the network to translate with the animal’s movement, as illustrated

in Figure 3.5. Couey et al. hypothesised that this type of connectivity forms

stable hexagonal patterns when there is no head-directional input or offset

(i.e., when α = l = 0) because the neurons only inhibit other neurons nearby.

This inhibition may be exceeded by input (I); however, the remaining activity

inhibits nearby firing via (3.3) so that areas of activity settle in positions where

the distance between them is maximised, namely the vertices of a hexagonal

grid. However, the next section shows that this type of connectivity, with

α = l = 0, can also form stripe patterns.

Here, it is assumed that the rat is stationary (setting α = 0) in order to

study the scale of the emergent patterns. Because there is no head-direction

input, the patterns do not translate and the model can be further simplified by

assuming l = 0. Thereby, the continuous attractor model proposed by Couey
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3.2 a simple model of grid cell activity

et al. is now simplified to an attractor model. This simplified model can be

written as:

τ
∂s(x, t)
∂t

+ s(x, t) = gf
(∫

R2
W
(
x− x′

)
s(x′, t)dx′ + I

)
, (3.4)

where

W (x) = W0H
(
R−

√
x2 + y2

)
= W0H (R− |x|) . (3.5)

Considering that current pattern formation theory assumes the firing rate

function to be differentiable everywhere (see Appendix B and [8,42] for details),

it is replaced by the sigmoid function suggested in [43]

f(x) = µ lnβ
(
1 + eb(x+c)

)
. (3.6)

Note that this function behaves like x for large x > 0 and for large x < 0 it

behaves like e−|x|, making a good smooth approximation to the threshold-linear

function (Fig. 3.6a). Figure 3.6b shows that this choice of f forms hexagonal

patterns in direct numerical simulations of the attractor model.

3.2.1 Linear Stability Analysis

In order to investigate the conditions under which patterns can arise from this

model a linear stability analysis is performed by introducing small spatially

heterogeneous perturbations around a spatially homogeneous steady state. The

linearised system solution is a good predictor of the emergent patterns close to

bifurcation. Patterns are formed if such system is unstable to perturbations

that grow exponentially in time. This growth is not indefinite, it is saturated

in the long-term by the nonlinear terms of the full model.

First, let s(x, t) = s be the spatially homogeneous steady state. Substitution

into (3.4) gives

s = gf
(
s
∫

R2
W (x− x′)dx′ + I

)
= gf

(
sW + I

)
, (3.7)

where

W = W0

∫
R2
H (R− |z|) dz = W0

∫ 2π

0

∫ R

0
rdrdφ = πW0R

2 < 0, (3.8)

37
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Figure 3.6. (a) Sigmoid firing rate function in (3.6). Inset: Zoom of the function near the

origin. Parameters: µ = 0.5, β = 0.8, b = 10, c = −1. (b) Simulation snapshot

at t = 500ms of a simple model of grid cell activity s(x, t) in (3.4) using the

sigmoid rate function in (a). Parameters: R = 15, W0 = −0.02, µ = 0.5,

τ = 10, g = 1, I = 3. Simulation details are given in Appendix C.

and r = |x|. Figure 3.7 shows a plot of the steady state. Note that the steady

state always exists due the negative slope of the right hand side of (3.7) induced

by W .

Then, linearisation around the steady state, by letting s(x, t) → s+ s(x, t),

s(x, t)� 1 in (3.4), and taking the Taylor expansion of f about Ws+ I gives

(after dropping the quadratic terms)

τ
∂s(x, t)
∂t

+ s(x, t) = gγ
(∫

R2
W
(
x− x′

)
s(x′, t)dx′

)
, (3.9)

where γ = f ′(Ws+ I). This linearised system has solutions of the form

s(x, t) = Aeik·xeλt, k = (k1, k2) ∈ R2, λ ∈ C, (3.10)

where λ is the growth-rate and k = |k| is the wave-number. Note that the per-

turbation is spatially periodic with wavelength 2π/k. This perturbation either

grows or decays exponentially in time depending on ν = Re(λ) with the emer-

gent temporal frequency of oscillations given by ω = Im(λ). If max(Re(λ)) < 0

for all k ∈ R, k 6= 0, then the steady state is linearly stable because the per-

turbation tends to zero in the limit t→∞. An instability occurs when for the

first time there are values of k for which the real part of λ is non-negative; these
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Figure 3.7. Steady State of a simple model of grid cell activity (3.8). Here the green circle

represents the intersection between s̄ (blue line) and gf
(
sW + I

)
(red line).

Parameters as in Figure 3.6

values are termed ‘critical’ and denoted kc, λc = νc+ iωc. A Turing bifurcation

point is defined as the smallest value of some parameter for which there exists

some non-zero critical wave-number kc satisfying νc = 0. It is said to be static

if ωc = 0 and dynamic if ωc 6= 0. The dynamic instability is often referred to

as a Turing-Hopf bifurcation and generates a global pattern with wave-number

kc, which moves coherently with a speed c = ωc/kc, i.e. as a periodic travelling

wave train. If the maximum of the dispersion curve4 is at kc = 0 then the

mode that is first excited is another spatially uniform state. If ωc = 0 then

the system evolves to another homogeneous state since no pattern exists. This

type of instability is called bulk instability. If ωc 6= 0, a coherent network oscilla-

tion emerges with frequency ωc. Substituting (3.10) in (3.9) gives the following

so-called dispersion relation between λ and k

λ(k) =
1
τ

(
gγW̃ (k;R,W0)− 1

)
. (3.11)

Here

W̃ (k;R,W0) = W0

∫ R

0

∫ 2π

0
eirk cos(φ)rdφdr

= W02π
∫ R

0
J0(rk)rdr =

W02πR
k

J1(Rk), (3.12)

4 Here the dispersion curve is the plot of Re (λ) against k.
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3.2 a simple model of grid cell activity

is the 2D Fourier transform of W . Here Jl, l ∈ {0, 1}, denotes the Bessel

function of the first kind given by

Jn(z) =
1

2πin
∫ 2π

0
eiz cos(φ)einφdφ, (3.13)

and the fact thatW is radially symmetric has been used. Note that W̃ (k;R,W0) ∈

R, ∀k, therefore λ(k) ∈ R, ∀k. A plot of W̃ (k;R,W0) is shown in Figure 3.8.

The homogeneous steady state is stable if λ(k) < 0 ∀k. Figure 3.8 shows

that W̃ (k) has a positive maximum at ±kc. Therefore there is a bifurcation

point γ = γc = 1/(gW̃ (kc)) such that λ(k) < 0 for all k 6= kc with λ(kc) = 0.

At this point the system goes from stable with γ < γc to unstable where γ > γc

and there exists a range of values of k ∈ (kc1 , kc2) for which λ(k) > 0, as shown

in Figure 3.9.

At the bifurcation point the system becomes unstable due to the excitation

of the pattern eikc·x, and beyond this bifurcation point there is a set of growing

patterns that are ultimately determined by the full nonlinear model. Since

λ(k) ∈ R ∀k, the bifurcation pattern is static and spatially periodic with

wavelength 2π/kc (Figs. 3.6b, 3.10). Furthermore, it can be predicted if the

emergent patterns will form stripes or spots near the bifurcation point (see

Appendix B). For example, Figure 3.10 shows the different types of patterns

that can arise depending on the parameters of the firing rate.

If the gain, g, or magnitude of inhibition, W0, are varied in the proposed

model, the critical wave-number will remain the same. In fact the only way

to alter kc is by changing the connectivity radius because this is the only pa-

rameter that moves the location of maxk W̃ (k). It can be seen in Figure 3.11a

that when R (which relates to the number of inhibitory inputs) is increased

kc decreases, and therefore the wavelength of the patterns increments, making

the grid spacing and size bigger. Furthermore, in Figure 3.11b it is shown that

the relationship between R and 1/kc is linear. However, experimental evidence

shows that the inhibitory inputs in stellate cells of the MEC decreases from

dorsal to ventral parts [41] and that the size and spacing of grid cell firing

fields increase along the dorso-ventral axes [22], exhibiting an opposite trend
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Figure 3.8. The 2D Fourier transform (W̃ (k;R,W0) defined in (3.12)) of the inverse Top

Hat function plotted in the inset (W (x;R,W0) defined in (3.5)). Parameters:

R = 15, W0 = −0.02.
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Figure 3.9. The eigenvalue λ of (3.11) as a function of k for different values of γ (corre-

sponding to a simple model for grid cell dynamics (3.4)). The yellow circle

represents the bifurcation point (λ(kc) = 0) whereas the green ones indicates

the set of k ∈ (kc1 , kc2) where the system is unstable (λ(k) > 0). Parame-

ters: R = 15, W0 = −0.02, τ = 10, g = 1, I = 3. For the firing rate function:

µ = 0.5, β = 0.8 and for the cyan, blue and magenta lines b = 10, 4.9340, 3.0886,

c = −1,−1.1417,−1.3089 respectively.
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Figure 3.10. Resulting patterns in a simple model of grid cell activity (s(x, t) in (3.4)) after

t = 1500ms. Parameters: τ = 10, R = 15,W0 = −0.02, g = 1, I = 3, β = 0.8,

γc = 0.5347, kc = 0.3423. (a) Striped pattern using b = 10, µ = 0.0891

and c = −0.6839. (b) Spotted pattern using b = 4.9340, c = −1.1417 and

µ = 0.5. Details for the simulation are in Appendix C, and the details for

pattern selection are found in Appendix B.

from that described by the proposed model. Thus changing R is an unrealistic

biological mechanism to control the size of patterns.

In the following sections other possible mechanisms for grid cell dynamics

are proposed. First, in §3.3 adaptation is added to this simple model, and

then second order synapses are implemented in §3.3.2. Then, §3.4 investigates

if the delays arising from neural interactions can account for the difference of

pattern scales in the grid cell firing fields. In §3.5 resonances are included, and

in §3.6 dendrites (and various types of axo-dendritic connections) are modelled.

Finally, in §3.7 resonances are included to the axo-dendritic connections in

§3.6 in order to investigate if local tissue parameters unrelated to the network

connectivity can give rise to long wavelength patterns.

3.3 model with adaptation

Some neurons have an intrinsic negative feedback that lowers the firing rate

of a neuron called spike-frequency adaptation. Curtu and Ermentrout showed
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Figure 3.11. The critical wave-number kc (λ(kc) = 0 in (3.11)) (a) and its reciprocal (b) as

a function of the connectivity radius R for a simple model of grid cell activity

(3.4). Here the new steady state (3.7) is calculated for each radius and the

firing rate function parameters b and c (3.6) are changed accordingly in order

to get the critical value of γc. Other parameters: W0 = −0.02, τ = 10, g = 1,

I = 3. For the firing rate function: µ = 0.5, β = 0.8.
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Figure 3.12. Resulting patterns in a simple model for grid cell activity (s(x, t) in (3.4))

after t = 1500ms. Parameters: τ = 10, W0 = −0.02, g = 1, I = 3, β = 0.8.

(a) R = 20, µ = 0.5, b = 4.5213, c = −1.2562, kc = 0.2568 and γc = 0.3008

(b) R = 25, µ = 0.1746, b = 4.7134, c = −1, kc = 0.2054 and γc = 0.1925.

Note that the pattern wavelength increases due to the decrease in kc when

increasing R (see Fig. 3.11). Details for the simulation and pattern selection

are in Appendix C and Appendix B respectively.
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3.3 model with adaptation

in [44] that different patterns can emerge from a network of excitatory and

inhibitory cells with adaptation depending on the strength and time constant

of adaptation. Hence, an adaptation term is added to the simplified model (3.4).

It is investigated if patterns can be formed in the inhibitory network (3.5) and

if so whether their scale can be related to adaptation parameters. The new

system is given by:

τ
∂s(x, t)
∂t

+ s(x, t) = gf
(∫

R2
W
(
x− x′

)
s
(
x′, t

)
dx′ + I − ha(x, t)

)
,

(3.14a)

τa
∂a(x, t)
∂t

+ a(x, t) = s(x, t), (3.14b)

where a(x, t) represents the neural adaptation and h, τa > 0 represent the

strength and time constant of adaptation, respectively. Typically adaptation is

thought of as a slow local negative feedback, hence τa > τ .

3.3.1 Linear Stability Analysis

Let (s(x, t), a(x, t)) = (s, a) be the spatially homogeneous steady state, then

substituting in (3.14) gives

s = gf
(
Ws+ I − ha

)
, a = s, (3.15)

whereW is defined in (3.8). Linearisation around the steady state is performed

by letting (s(x, t), a(x, t))→ (s, a) + (s(x, t), a(x, t)). Substituting into (3.15)

and seeking solutions of the form

(s(x, t), a(x, t)) = (s0, a0) eik·xeλt, k = (k1, k2) ∈ R2, (3.16)

gives (after Taylor expanding)

λτs0 + s0 = s0gγ
(
W̃ (k;R,W0)− ha0

)
,

λτaa0 + a0 = s0.
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3.3 model with adaptation

Here W̃ (k;R,W0) is given by (3.12) and γ = f ′
(
Ws+ I − ha

)
. The above

system can be rewritten in a matrix formλτ + 1− gγW̃ gγh

−1 λτa + 1


s0

a0

 =

0

0

 . (3.17)

Requiring non-trivial solutions, the following characteristic polynomial is ob-

tained:

ττaλ
2 + α0λ+ α1 = 0, (3.18)

where α0 = τa
(
1− gγW̃

)
+ τ and α1 = 1− gγW̃ + gγh. The values of λ in

(3.18) can be either real or complex. Therefore the linear system will destabilise

when one or both eigenvalues become positive. Writing λ = ν + iω, ν,ω ∈ R,

and substituting into (3.18) gives the following system

ττaν
2 − ττaω2 + α0ν + α1 = 0, (3.19a)

2ττaνω+ α0ω = 0. (3.19b)

Note that the steady state of the system, given by (3.15), depends on the

choice of g, I, the connectivity parameters (R and W0) and the strength of

adaptation h. Hereinafter a parameter not related to the steady state is chosen

to be the bifurcation parameter, in order to not interfere with the existence

of the steady state. Here, τa is the bifurcation parameter. At the bifurcation

point ν = 0, k = kc and τa = τac in (3.19), which gives

τac
(
1− gγW̃ (kc)

)
+ τ = 0, ω2

c =
1− gγW̃ (kc) + gγh

τacτ
> 0. (3.20)

As in the previous model (3.4) W̃ (kc) = maxk W̃ (k). It can be seen in Figure

3.13 that when τa < τac (magenta line), ν(k) < 0 ∀k, therefore the system is

stable. Whereas if τa > τac (cyan line) then there is a range of k for which the

system is unstable. The curves in Figure 3.13 are described by (after solving

(3.19a) and (3.19b))

ν2 + ω2 +
2ν
τa

=
gγh

ττa
− 1
τ2
a

. (3.21)

In contrast to the model without adaptation (3.4), here the bifurcation is dy-

namic and has an emergent temporal frequency of ω =
√
(−τ/τac + gγh) / (ττac).
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Figure 3.13. Spectral picture given by (3.21) of the model with adaptation (3.14) for differ-

ent values of the adaptation time constant, τa = 8.4095 (magenta), 10.9095

(blue) and 13.4095 (cyan). Parameters: R = 15, W0 = −0.02, τ = 10 , g = 1,

I = 3, h = 1; and for the firing rate function: β = 0.8, µ = 0.5, b = 10 and

c = −1.

Moreover, varying other parameters, (such as τ , data omitted), do not affect

the critical wave-number since it only depends on R (via W̃ (k) as in a simple

model for grid cell activity in §3.2). Therefore adaptation fails to provide a

mechanism to explain the change in size and spacing of grid cells.

3.3.2 Model with Adaptation and Second Order Synapses

Here, second order synapses are introduced into (3.14a), yielding the new sys-

tem:(
1 + τ

∂

∂t

)2
s(x, t) = gf

(∫
R2
W
(
x− x′

)
s
(
x′, t

)
dx′ + I − ha(x, t)

)
,

(3.22a)(
1 + τa

∂

∂t

)
a(x, t) = s(x, t). (3.22b)
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3.3 model with adaptation

As in §3.3.1 a linear stability analysis is performed and the non-trivial solu-

tions of the linearised system are given by the dispersion relation ε(λ, k) = 0

with

ε(λ, k) = λ3τ2τa + λ2
(
2ττa + τ2

)
+ λ

(
2τ + τa

(
1− gγW̃ (k)

))
−gγW̃ (k) + 1 + ghγ. (3.23)

The dispersion relation can have either 3 real or 1 real and 1 complex con-

jugate pair of eigenvalues; stability is lost when the real part of one of the

eigenvalues becomes positive. Assuming λ ∈ C, λ = ν + iω, the dispersion

relation in (3.23) can be rewritten as

ε(ν + iω, k) ≡ G(ν,ω, k) + iH(ν,ω, k) = 0, (3.24)

where

G(ν,ω, k) = Re (ε(ν + iω, k)) = τ2τa
(
ν3 − 3νω2

)
+
(
2ττa + τ2

) (
ν2 − ω2

)
+
(
2τ + τa

(
1− gγW̃ (k)

))
ν − gγW̃ (k) + 1 + ghγ, (3.25a)

H(ν,ω, k) = Im (ε(ν + iω, k)) = τ2τa
(
3ν2ω− ω3

)
+
(
2ττa + τ2

)
2νω

+
(
2τ + τa

(
1− gγW̃ (k)

))
ω. (3.25b)

Note that (3.25) is not, on its own, a system providing ωc, kc and the bifurca-

tion parameter τac . A third equation can be obtained considering that at the

bifurcation point dν/dω = 0. The implicit function theorem gives the following

equivalent condition:
dG
dω

dH
dk −

dH
dω

dG
dk = 0. (3.26)

The system of equations (3.25) and (3.26) is numerically solved using Matlab’s

fsolve function. The linearised system loses stability when τa > τac and the

complex conjugate pair of eigenvalues become positive as shown in Figure 3.14.

Here kc corresponds to the value of k that maximises W̃ (k) and it remains the

same when varying other model parameters not related to the connectivity.

When computing the solution to (3.25) and (3.26), care must be taken to

ensure that the critical point obtained corresponds to maxk W̃ (k) rather than
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3.4 model with delays

to mink W̃ (k). Including adaptation and second order synapses in the model

results in a dynamical bifurcation but not a mechanism to change the size and

spacing of the patterns.

3.4 model with delays

So far, the modifications to the simple model for grid cell activity (3.4) have

failed to give a mechanism by which the size and spacing of the patterns can be

controlled by parameters independent of the connectivity. Following the work

of Roxin et al. [45], in this section a delay, D, is added to the simplified model

(3.4) in order to investigate its effects. The interactions between neurons involve

delays on the order of milliseconds due to the velocity of the propagation of

action potential or processes within the neurons. The new model is given by:

τ
∂s(x, t)
∂t

+ s(x, t) = gf
(∫

R2
W
(
x− x′

)
s
(
x′, t−D

)
dx′ + I

)
. (3.27)

Let s(x, t) = s be the spatially-homogeneous steady state, then substituting

into (3.27) gives (3.7). Linearising about the steady state and looking for

solutions of the form (3.10) gives the following dispersion relation

ε(λ, k) = λτ + 1− gγe−λDW̃ (k) = 0, (3.28)

where γ = f ′(Ws+ I). Assuming λ ∈ C, with λ = ν + iω, then the linearised

system has a dynamic bifurcation when ν = 0 and

τω = − tan(ωDc). (3.29)

Figure 3.15a shows the spectral picture at the bifurcation point with Dc given

by (3.29). Although the chosen Dc and ωc 6= 0 in Figure 3.15a correspond to

the solution of (3.29) (green circles at ν = 0), the system has an eigenvalue

that is already unstable (green circle at ν > 0). Such an instability occurs when

λ ∈ R, λ = 0 and

1 = gγcW̃ (kc). (3.30)
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Figure 3.14. Spectral picture for the model with adaptation and second order synapse

(3.22) for diffent values of τa. Red lines represent G(ν,ω, k) = 0 (3.25a), blue

lines H(ν,ω, k) = 0 (3.25b), the green circles the eigenvalues. Parameters:

W0 = −0.02, R = 15, τ = 10 , g = 1, I = 3, h = 10. For the firing rate

function: β = 0.8, µ = 0.5, b = 10, c = −1. In (a) the system is stable,

(b) is at bifurcation point and in (c) the complex conjugate eigenvalues are

unstable.
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3.5 resonant model

Note that (3.30) is the same condition as the one for the simple model for grid

cell activity (3.11). Hence, kc is the value that maximises W̃ (k) and its value

remains the same when varying the other parameters.

In conclusion, the addition of delays in this model did not fulfil its purpose,

namely to find a mechanism to vary the size and spacing of the patterns. This

is because the system loses stability when the real eigenvalue becomes positive

before the dynamic bifurcation from (3.29) occurs. The bifurcation point is

the same as in the model described in §3.2 and, as discussed there, changing

parameters other than the connectivity radius do not affect the critical wave-

number and therefore the pattern scale.

3.5 resonant model

In vitro experimental evidence shows that stellate cells in dorsal Entorhinal

Cortex exhibit higher temporal frequencies of subthreshold membrane potential

oscillations compared to lower frequencies in cells from more ventral Entorhinal

slices [46]. Hence, in this section a model combining elements of quasi-active

membrane models (§2.2.2) that can account for subthreshold oscillations, with

network dynamics (§2.5) is proposed. Suppose a neuron at position x = (x, y)

has voltage V (x, t) and current I(t) that evolve according to

C
dV
dt = −V

R
+ Isyn − I, (3.31a)

L
dI
dt = V − rI, (3.31b)

where

Isyn =
∫ t

−∞
dt′ η(t− t′)

∫
R2

dx′W (x−x′)f(V (x′, t′)) ≡ η ∗W ⊗f(V ). (3.32)

Here Isyn represents synaptic activity (see §2.5.1) and η is the α-function given

in (2.22). The temporal convolution is represented by ∗ whereas ⊗ describes

spatial convolution.
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Figure 3.15. Spectral picture for the model with delays (3.27). Red lines represent Re (ε),

blue lines Im (ε) (ε given by (3.28)), and the green circles the eigenvalues. (a)

Dynamic bifurcation when D = Dc, b = 10 and c = −1, γ = 1.0838. (b)

Bifurcation when γ = γc, b = 4.9341, c = −1.1417. Parameters: W0 = −0.02,

R = 15, τ = 10 , g = 1, I = 3. For the firing rate function: β = 0.8, µ = 0.5.

Let (V (x, t), I(x, t), Isyn(x, t)) = (V , I, Isyn) be the homogeneous steady

state, then substituting into (3.31) gives

V =
Isyn

R
−1

+ r−1
, I =

V

r
, (3.33)

where Isyn is defined by

Isyn = η ∗W ⊗ f(V ) =
∫ t

−∞
dt′ η(t− t′)

∫
R2

dx′ W (x− x′)f(V )

= Wf

(
Isyn

R
−1

+ r−1

)
. (3.34)

Now, linearisation about the steady state yields

C
dV
dt = −V

R
+ Isyn − I, (3.35a)

L
dI
dt = V − rI, (3.35b)

Isyn = γη ∗W ⊗ V , (3.35c)

where γ = f ′(V ). Seeking solutions of the form eλteik·r
(
V0, I0, Isyn0

)
gives the

dispersion relation

ε(λ, k) = γW̃ (k)η̂(λ)−
(
Cλ+

1
R

+
1

Lλ+ r

)
= 0. (3.36)
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3.5 resonant model

Here W̃ is given by (3.12), and ̂ denotes the Laplace transform defined by

ψ̂(s) =
∫ ∞

0
e−stψ(t)dt, (3.37)

such that
∫ t

−∞
η(t− t′)eλt

′
dt′ = eλt

∫ ∞
0

(
−α2 d

dαe−αt
′
)

e−λt
′
dt′ = eλt (λ/α+ 1)−2

= eλtη̂(λ). (3.38)

As in §3.3.2 it is convenient to rewrite (3.36) in the form (3.26) with

G(ν,ω, k) = γα2W̃ (k)−
(
(α+ ν)2 − ω2

)
Ψ1 + 2ω2 (α+ ν)Ψ2, (3.39a)

H(ν,ω, k) = −
(
(α+ ν)2 − ω2

)
ωΨ2 − 2ω (α+ ν)Ψ1, (3.39b)

and

Ψ1 = Cν +
1
R

+
Lν + r

(Lν + r)2 + (Lω)2 , (3.40)

Ψ2 = C − L

(Lν + r)2 + (Lω)2 . (3.41)

The chosen bifurcation parameter is C because it is unrelated to the I current

dynamics and does not influence the steady state. Figure 3.16a shows the

spectral picture at the bifurcation point of (3.36). As in §3.3.2, with these

parameters the maximum of the dispersion curve is at kc = 0 (Fig. 3.16b) and

the mode that is first excited is a spatially uniform steady state. But when α

or L are increased a Turing-Hopf bifurcation is found with kc = maxk W̃ (k)

(Figs. 3.16c, 3.16d). Unlike the previously studied models (§3.2, 3.3, 3.5) if

the bifurcation parameter is increased (i.e., C > Cc) then the system is stable,

whereas if it is decreased (i.e., C < Cc) the system is unstable.

When varying other model parameters (α and L) the critical wave-number

for the Turing-Hopf bifurcation does not change. Here, the wave-number is

again given by kc = maxk W̃ (k), as in the simple model of grid cell activity

(§3.2). Thus, the resonance fails to provide a mechanism for different spatial

scales.
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Figure 3.16. (a) Spectral picture (3.36) for the resonant model (3.31) at C = Cc. Red lines

represent (3.39a), blue lines (3.39b) and green circles the eigenvalues (i.e, when

ν = 0). At the bifurcation point C = Cc = 15.4133 and k = kc = 0.3424.

Parameters: R = 1, L = 20, α = 0.1. Here, the connectivity is given by

W0 = −0.02, R = 15. For the firing rate funciton: β = 0.8, µ = 0.5, b = 10,

c = 1. (b),(c) and (d) Plots of Re (λ) = ν as a function of k for different set

of parameters. Orange circle represents the value of kc given by the fsolve

function in Matlab. In (b) the same set of parameters as in (a) are used, and

it shows that the computed value of kc does not correspond to the critical value.

An accurate solution for the bifurcation point is obtained when varying the

parameters α and L. The new parameters are: in (c) α = 0.25, Cc = 51.0409,

L = 20; and in (d) α = 0.1, Cc = 90.3996, L = 40.
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3.6 model with dendrites

3.6 model with dendrites

So far neurons have been treated as point objects, disregarding some of their

various components. In particular, dendrites are known to play a critical role

in integrating synaptic inputs [15]. Here, the previous models are expanded to

include dendritic processing (as described in §2.3), and axo-dendritic connec-

tions as in [8]. The dendritic tree can act as a spatio-temporal filter: it receives

temporal inputs from different neurons at fixed points, and these inputs gen-

erate a response at the soma which depends on the time for signals to diffuse

along the branches of the tree [47]. Work by Mainen and Sejnowski supports

the hypothesis that the difference in firing patterns between neocortical neurons

may be caused by their dendritic morphology [48].

The proposed model is an effective single population model in two (somatic)

spatial dimensions, and a further dimension representing position along a (semi-

infinite) dendritic cable. The firing rate in the somatic (cell body) layer is taken

to be a smooth function of the cable voltage at the soma, which is in turn

determined by the spatio-temporal pattern of synaptic currents on the cable.

The voltage V (ξ, x, t) at position ξ ≥ 0 along the semi-infinite passive cable

with somatic coordinate x ∈ R2 can then be written as in §2.3:
∂V

∂t
= −V

τ
+D

∂2V

∂ξ2 + ρIsyn(ξ, x, t). (3.42)

Here, Isyn(ξ, x, t) is given by (3.32) and ρ > 0 is a constant of proportional-

ity representing the strength of the synaptic input. Unlike previous sections,

W (ξ, x) describes the axo-dendritic connectivity and it is assumed that it can

be decomposed in the product form

W (ξ, x) = δ(ξ − ξ0)W (x), (3.43)

where ξ0 is a fixed distance from the soma. Of importance in what follows

will be the “drive” at the soma, V (ξ = 0, x, t), which is denoted henceforth by

h(x, t). For no flux boundary conditions, ∂V (ξ, x, t)/∂ξ|ξ=0 = 0, and assuming

vanishing initial data, the solution to (3.42) at ξ = 0 becomes

h(x, t) ≡ V (ξ = 0, x, t) = ρ(G⊗ Isyn)(ξ = 0, x, t); G = 2G∞. (3.44)
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3.6 model with dendrites

Here the operator ⊗ denotes spatio-temporal convolution over the (ξ, t) coordi-

nates and G∞(ξ, t) is given by (2.40). Note that in obtaining (3.44), the result

of the Green’s function (between two points ξ and ξ′) for the semi-infinite cable

with no flux boundary conditions can be written as G∞(ξ − ξ′, t) + G∞(ξ +

ξ′, t), has been used. Therefore,

h(x, t) = ρ
∫ t

−∞
ds′

∫ ∞
0

dξ′ G(ξ′, t− s′)Isyn(ξ′, x, s′). (3.45)

3.6.1 Linear Stability Analysis

The spatially homogeneous steady state h(x, t) = h of (3.45) is given by

h = 2ρWf(h)
∫ ∞

0
ds 1√

4πDs
e−s/τe−ξ

2
0/(4Ds)

= ρWf(h)


√
τe−

√
ξ2
0
Dτ

√
D

 . (3.46)

Note that this steady state depends on all the parameters in the model, which

makes the analysis difficult. One way to avoid this difficulty is to add an

external drive Iext to the synaptic input, thus Isyn → Isyn + Iext in (3.42)

where

Iext(ξ) = −f(h)
∫

R2
dx′ W (ξ, x− x′). (3.47)

Substitution in (3.45) gives

h(x, t) = ρ
∫ t

−∞
ds′

∫ ∞
0

dξ′ G(ξ′, t− s′)
(
Isyn(ξ

′, x, s′) + Iext(ξ
′)
)

, (3.48)

that admits only the trivial spatially homogeneous steady state, h̄ = 0. Because
Iext is constant with respect to the somatic coordinate x and time, the addition
of this current to the synaptic input does not affect the analysis since it is
dropped in the linearisation about h, which yields

h(x, t) = ργ

∫ t

−∞
ds′

∫ ∞
0

dξ′G(ξ′, t− s′)
∫ s′

−∞
dsη(s′− s)

∫
R2

dx′W (ξ′, x−x′)h(x′, s),

(3.49)

where γ = f ′(h). Seeking solutions of the form h(x, t) = h0eλteik·x and substi-

tuting in (3.49), the following spectral equation is obtained:

1 = ργη̂(λ)W̃ (k)Ĝ(ξ0,λ), (3.50)
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where

Ĝ(ξ,λ) =
∫ ∞

0
G(ξ, s)e−λs

′
ds′ = e−ϕ(λ)ξ

Dϕ(λ)
, ϕ2(λ) =

1/τ + λ

D
, (3.51)

is the Laplace transform of G (defined by (3.44); see Appendix D for details).

The dispersion relation is given by

ε(λ, k) = (λ+ α)2 − α2ργW̃ (k)Ĝ(ξ0,λ) = 0. (3.52)

3.6.2 Numerical Scheme for the Dispersion Relation

Due to its complexity, it is problematic to solve the dispersion relation (3.52)

using Matlab’s fsolve function in the system of equations described in §3.3.2.

Thus, a simple numerical scheme is used by taking λ = ν + iω and ε(ν +

iω, k) = G(ν,ω, k) + iH(ν,ω, k), in which

1. A value of the bifurcation parameter is chosen and Matlab’s fsolve

function is used to find ν and ω satisfying G(ν,ω, k) = 0 = H(ν,ω, k)

for a range of k. Here, the selected bifurcation parameter is ρ due its

linearity in (3.52).

2. A maximum value of ν(k) is found and if it is less than 0, then the

bifurcation parameter is less than its critical value and therefore it is

increased.

3. The process in 2) is repeated until maxk(ν) ≥ 0, and the first value of ρ

for which this occurs is the critical value of the bifurcation parameter.

Although the solution accuracy to the dispersion relation under this numer-

ical scheme depends on the choice of increments in ρ and the selected mesh

for the range of k, its construction gives a good approximation for the critical

wave-number.

Figure 3.17 shows the spectral pictures at the bifurcation point with different

values of ξ0. When ξ0 = 2 there is a static Turing bifurcation (Fig. 3.17a)

whereas when ξ0 = 2.5, kc = 0 and ωc 6= 0 resulting in a homogeneous dynamic
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bifurcation, hence the system will evolve to a coherent network oscillation with

temporal frequency ωc, as shown in Figure 3.17b. Moreover, the exact value

when the bifurcation changes can be determined by performing the continuation

of ξ0 (Fig. 3.18) or other model parameters: D, τ and α (data not shown).

These numerical continuation results show that when there is a static pat-

terned bifurcation, the critical wave-number is given by maxk W̃ (k) as in pre-

vious models. Hence, dendrites and a separable axo-dendritic connectivity fail

to provide a mechanism to change the size and spacing of the patterns.

3.6.3 Model with Correlated Axo-Dendritic Connections

Here, the effects of variation in the spatial locations of synapses along the

dendritic tree are investigated by using a correlated weight distribution as in

Bressloff and Coombes [47]. This weight distribution is based on the idea that

synapses tend to be located further away from the soma in the dendritic tree as

the separation between neurons increases, and that they excite the postsynaptic

neuron at the contact point. Thus, the axo-dendritic connectivity function is

given by

W (ξ, x) = δ(ξ − ξ0 − κ |x|)W (x). (3.53)

Seeking solutions of the form h(x, ξ) = h0eλteik·x in the linearised system (3.49)

gives

h0eλteik·x = ϑ(λ)
∫ t

−∞
ds′

∫ ∞
0

dξ′G(ξ′, t− s′)eλs
′
∫

R2
dx′W (ξ′, x− x′)eik·x

′

= ϑ(λ)
eλteik·x
Dϕ(λ)

∫ ∞
0

dξ′e−ϕ(λ)ξ
′
δ(ξ′ − ξ0 − κ

∣∣∣x′∣∣∣) ∫
R2

dx′W (x′)eik·x
′

= ϑ(λ)
eλteik·xe−ϕ(λ)ξ0

Dϕ(λ)

∫
R2

dx′W0H(R−
∣∣∣x′∣∣∣)eik·x′e−ϕ(λ)κ|x′|

= ϑ(λ)
eλteik·xe−ϕ(λ)ξ0

Dϕ(λ)
2πW0

∫ R

0
J0(rk)re−ϕ(λ)κrdr, (3.54)

where ϑ(λ) = ργh0η̂(λ). Therefore

1 = ργη̂(λ)
e−ϕ(λ)ξ0

Dϕ(λ)
Ω(λ, k), (3.55)

57



3.6 model with dendrites

ν

ω

ξ
0
= 2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

(a)

ν

ω

ξ
0
= 2.5

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

(b)

Figure 3.17. Spectral picture (3.52) for the model with dendrites (3.42) and different values

of ξ0. Here, red line represents the real part of (3.52) and the imaginary part

is represented with a blue line. Green circles are the eigenvalues. Parameters:

D = 1, τ = 5, α = 0.1. Hereinafter, unless stated otherwise, the connectivity

is given by W0 = −0.02, R = 15 and for the firing rate funciton: β = 0.8,

µ = 0.5, b = 10, c = −1. (a) Static bifurcation with kc = 0.3424, ωc = 0,

ρc = 435.94. (b) Dynamic bifurcation with kc = 0, ωc = 0.2035, ρc = 496.11.
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Figure 3.18. Continuation of ξ0 at the bifurcation point for the model with dendrites (3.42).

Other parameters are as in Figure 3.17. The blue dotted line represents

the value of ξ0 for which the bifurcation changes from a static patterned

(ωc = 0, kc 6= 0) to a dynamic homogeneous one (ωc 6= 0, kc = 0).
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3.6 model with dendrites

with

Ω(λ, k) = 2πW0

∫ R

0
J0(rk)re−ϕ(λ)κrdr. (3.56)

The dispersion relation is given by

ε(λ, k) = (λ+ α)2 − α2ργ
e−ϕ(λ)ξ0

Dϕ(λ)
Ω(λ, k) = 0. (3.57)

In order to find the critical wave-number, the numerical scheme given in

§3.6.2 is implemented with ρ as the bifurcation parameter. Figure 3.19 shows

the continuation with other parameters for the critical wave-number (magenta)

and critical temporal frequency (cyan). Note that the model can either exhibit

a static patterned bifurcation or a dynamic homogeneous one depending on

the value of other parameters (κ in Fig. 3.19a, τ in Fig. 3.19b and D in Fig.

3.19c), as in the model without the axo-dendritic connections. As before, there

is no effect in the critical wave-number when varying α or ξ0. However, there

is a small change in the wave-number when varying the parameters D, τ or κ

(see Fig. 3.20). Importantly, the variation in the critical wave-number is due

to their nonlinear relation with kc in the dispersion relation via Ω(λ, k) (see

(3.57)).

Adding axo-dendritic connections changes the relationship between kc and

the dispersion relation, resulting in a different critical wave-number than in the

previous model (given by maxk W̃k). Although the axo-dendritic connections

gave a mechanism for changing the pattern scale, such variation is insignificant

when compared with the variation obtained when changing the radius of con-

nectivity in the simple model of grid cell activity (see Fig. 3.11). Note that the

variation in scale when varying different parameters has the same magnitude

(Fig. 3.19). Thus, when adding the head-direction and velocity inputs (from

the animal trajectory) to the model, the change in size of the resulting firing

fields would not resemble the change seen in experimental data.

59



3.6 model with dendrites

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

κ

k
c

ω
c

k c
/ω

c

(a)

2 4 6 8 10
0

0.1

0.2

0.3

0.4

τ

k
c

ω
c

k c
/ω

c

(b)

5 10 15 20
0

0.1

0.2

0.3

0.4

D

k
c

ω
c

k c
/ω

c

(c)

Figure 3.19. Parameter continuation for the model with correlated Axo-Dendritic connec-

tions (3.53). Dotted blue line indicates the parameter value for which the

type of bifucation switches. (a) shows the continuation on κ, (b) on τ and (c)

on D. Parameters: α = 0.1, τ = 5, D = 1, ξ0 = 0.2, for (b) κ = 0.1 and for

(c) κ = 0.15.
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Figure 3.20. Plot of Re (λ) as a function of k in the dispersion relation (3.57) for the model

with correlated axo-dendritic connections. Different colours denote different

vales of κ. (b) Zoom of (a), yellow circles represent the critical values of k for

different κ. Parameters: α = 0.1, τ = 5, D = 1, ξ0 = 0.2.

3.6.4 Gaussian Axo-Dendritic Connections

In §3.6.3 there was a small change in the critical wave-number when varying

model parameters. Here, with the aim of having a more realistic description of

the synapses, it is assumed that the synapse contact point on the postsynaptic

neuron has a delimited area and that the strength of the input varies around

the centre of this area. Therefore a smooth version of the dendritic connection

is introduced and it is investigated if such a connection increases the range of kc
that is obtained when performing continuation of the parameters. The smooth

version of the dendritic connection is defined as

W (ξ, x) = Λ(ξ − ξ0 − κ |x|)W (x), Λ(ξ) =
e−ξ2/σ2

√
2πσ2

. (3.58)

Here σ can be interpreted as the width of the connection point. Thus for σ → 0

the connectivity with the δ-function given by (3.53) is recovered.

The dispersion relation for this type of connectivity is given by

ε(λ, k) = (λ+ α)2 − α2ργ
e−ϕ(λ)ξ0eϕ2(λ)σ2/4

2
√

2Dϕ(λ)
Ω(λ, k) = 0, (3.59)
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where

Ω(λ, k) = 2πW0

∫ R

0
erfc

(
ϕ(λ)σ2 − 2 (ξ0 + κr)

2σ

)
J0(rk)e−κrφ(λ)rdr. (3.60)

Here, erfc(z), ∀z ∈ C, is the complementary error function defined by

erfc(z) = 1− erf(z) = 2√
π

∫ ∞
z

e−t
2
dt, (3.61)

where the error function, erf(z), is defined by

erf(z) = 2√
π

∫ z

0
e−t

2
dt, (3.62)

For the numerical scheme in §3.6.2, the freely available code in [49] is used since

Matlab’s error function is only defined for real numbers.

There is a small variation in kc when taking ρ as the bifurcation parameter

and varying σ (Fig. 3.21). However, this variation in the wave-number has the

same magnitude with that obtained in the model where the contact point is

a δ-function. Moreover, when comparing with the results given in §3.6.3 and

taking a small σ it can be seen that the resulting wave-number is the same

(Fig. 3.22). Although the results are the same, this Gaussian version of the

connection is used hereinafter because it will facilitate the simulations in §3.7.

3.6.5 Smooth Version of Inverse Top Hat Somatic Connectivity

In the last section a new model parameter, the width of the connection area

at the dendritic tree σ, is introduced when the δ-function dendritic connection

is replaced by a Guassian one. This provides a mechanism for changing the

pattern scale, but the variation in the scale is small. Now, it is investigated if

a smooth somatic connection kernel could give a greater variation. Thus, the

somatic connection is modified to

W (x) =
W0
2 (tanh (ς (R− |x|)) + tanh (ς (R+ |x|))) . (3.63)

As shown in Figure 3.23a the smoothness of the connectivity depends on ς. The

dispersion relation is the same as in (3.59), but now Ω(λ, k) is given by

Ω(λ, k) = 2π
∫ ∞

0
erfc

(
ϕ(λ)σ2 − 2 (ξ0 + κr)

2σ

)
J0(rk)e−κrφ(λ)W (r)rdr.

(3.64)

62



3.6 model with dendrites

0 2 4 6
0

0.1

0.2

0.3

σ

k
c

ω
c

k c
/ω

c

Figure 3.21. Continuation in σ for the model with Gaussian axo-dendritic connections

(3.58). Blue dotted line signals the value of σ where the bifurcation changes

from a dynamical homogeneous to a static patterned. Parameters: D = 1,

τ = 5, α = 0.1, κ = 0.15, ξ0 = 0.2
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Figure 3.22. Comparison between the different types of dendritic connections (Guassian

(3.58) vs. δ-function (3.53)) in the model with correlated axo-dendritic connec-

tions. (a) shows the critical wave-number whereas (b) the critical bifurcation

parameter. Here α = 0.1, τ = 5, D = 1, ξ0 = 0.2, σ = 0.1.
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3.6 model with dendrites

As shown in Figure 3.23b, for ς = 0.15 (cyan dots) the range of critical wave-

numbers resulting from the continuation of a parameter, in this case κ, is slightly

bigger than when using a inverse Top Hat connectivity described in (3.5) (black

dots), but as ς is further decreased the range of wave-numbers decreases until

for ς ≤ 0.1, kc = 0 ∀k.

The range of pattern wavelengths found when taking a smooth representa-

tion of the somatic connectivity is not sufficient to illustrate the hypothesised

different scales in grid cell activity along the dorsoventral axis of the MEC by

computational models of grid cells [26, 39]. Moreover, the patterns disappear

when increasing the smoothness of the connectivity.

3.6.6 Inverse Mexican Hat Somatic Connectivity

It was shown in §3.6.5 that a wider range of critical wave-numbers can be

obtained when using a smooth somatic connectivity, though such a range is

insuffient to achieve a large difference in the scale of emerging patterns. Now,

the idea that grid cells may also receive a positive input from neurons (I in

(3.4)) is incorporated by proposing an inverse Mexican Hat connectivity such

as that employed in [39]. Such a connectivity exhibits a short range inhibition

and a long range excitation (Fig. 3.25a). In this situation, inhibitory cells

connect directly to the dendritic tree of excitatory cells, whereas excitatory

cells connect via the axon to both excitatory and inhibitory cells as shown in

Figure 3.24. Here the somatic connectivity is given by

W (x) = α1e−|x|σ1 + α2e−|x|σ2 , (3.65)

and the dispersion relation is the same as in (3.59), with Ω as in (3.64). Figure

3.25b shows that with this type of connectivity the critical wave-number varies

with κ. Furthermore, this range of kc increases when the difference between

the inhibition and excitation of the proposed connectivity increases. Unlike

the previous models with correlated axo-dendritic connections, when κ is small

there is a homogeneous static bifurcation (i.e kc = ωc = 0) and a Turing-Hopf
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Figure 3.23. (a) Smoothed Top Hat function as in (3.63) for different values of ς. (b)

Continuation of κ in the model with Gaussian axo-dendritic connections with

the somatic connectivity in (a). Different colours represent different values

of ς and black dots correspond to the simulation with a inverse Top Hat

connectivity as in Figure 3.22a.

Figure 3.24. Diagram of a neural tissue consisting of two types of neurons: pyramidal

(orange) and stellate (blue). Stellate cells inhibit pyramidal cells that excite

each other in their dendritic tree (orange line) depending on the separation in

the soma (triangle). Note that the pyramidal neurons axon (red line) branch

to contact different neurons whereas stellate cell just inhibit one pyramidal

neuron.
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3.7 resonant model with axo-dendritic connections

bifurcation when κ increases. If κ is increased further, then the bifurcation is ho-

mogeneous dynamic (i.e kc = 0, ωc 6= 0). Hence, with this type of connectivity

it is possible to have temporal oscillations with frequency ωc 6= 0.

Figure 3.25c shows that the range of critical wave-numbers is similar when

varying the time constant, τ , and diffusion constant, D. In these cases, the

bifurcations are always dynamic and the critical wave-number converges to a

fixed value when the parameters increase. Thus, this model gives a mechanism

for different pattern wavelengths. Unfortunately, there is no experimental evi-

dence that the time or diffusion constant changes along the dorso-ventral axis

of the MEC. Likewise, it is improbable that κ changes along this axis.

3.7 resonant model with axo-dendritic connections

In §3.6.6 a mechanism for different pattern wavelengths was found, but lacks

experimental support. Therefore, a membrane current I is added, as in §3.5,

based on the fact that temporal frequency of subthreshold oscillations changes

across the dorso-ventral axis of MEC [46]. Moreover, recent experimental data

from layer II stellate cells of MEC shows that the time constant of Ih currents

changes between dorsal and ventral neurons [50]. For numerical convenience,

the model is now one dimensional in the soma and dendritic coordinate, with

V = V (ξ,x, t), x, ξ ∈ R. This model can be described by
∂V

∂t
= −V

τ
+D

∂2V

∂ξ2 −
1
C

(I − gIs) , (3.66a)

L
dI
dt = −rI + V . (3.66b)

As in §3.6, Isyn −→ Isyn + Iext in order to facilitate linear analysis. Travelling

waves (Fig. 3.26) were observed when simulating the system. Therefore, a linear

stability analysis is performed in order to validate the observed wave-number.

Taking h = V (0,x, t) as in §3.6.1, linearising via small perturbations of the

form h(ξ,x, t) = h0eλteikx gives the dispersion relation

ε(λ, k) = 1− gγη̂(λ)e
(
σ2ϕ2(λ)

4 −ϕ(λ)ξ0

)
√

2CDϕ(λ)
Re (Ω1(k) + Ω2(k)) = 0, (3.67)
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Figure 3.25. (a) Inverse Mexican Hat somatic connectivity (3.65) for various parameter

choices. Cyan: α1 = 0.05, α2 = −0.1, σ1 = 0.075, σ2 = 0.12. Magenta:

α1 = 0.15, α2 = −0.3, σ1 = 0.07, σ2 = 0.15. Blue line indicates the inverse

Top Hat connectivity. (b) Continuation in κ of a model with Gaussian axo-

dendritic connections and somatic connectivities as in (a). Circles represents

the resulting critic wave-number for different connectivity parameters (colour-

coded as in (a)). Purple squares represent the resulting critical temporal

frequency in the system with parameters as the ones in magenta. (c) Contin-

uation in τ and D. Here, κ = 0.15 and the somatic connectivity parameters

are the same as the ones represented in magenta in (a). Other parameters as

in Figure 3.22.
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Figure 3.26. Activity in the soma V (0,x, t) = h(x, t) resulting from the simulation of the

resonant model with axo-dendritic connections (3.66) (See Appendix E for

details). Parameters: α1 = 1, α2 = −4, σ1 = 0.5, σ2 = 1, τ = 1, D = 5,

α = 0.1, σ = 1, κ = 0.5, L = C = r = 1, g = 163620, ξ0 = 2.

where η̂(λ) is defined in (3.38) and γ = f ′(0). Following the calculations of

Appendix D gives

ϕ2(λ) =
1
D

(
λ+

1
τ
+

1
C (Lλ+ r)

)
. (3.68)

Here

Ωj(k) =
αj

(σj + ϕ(λ)κ+ ik)

(
erfc (φ) + e−φ

2
eψ

2
erfc (ψ)

)
, (3.69)

where

φ =
ϕ(λ)σ2 − 2ξ0

2σ , ψ =

(
σj +

2κξ0
σ2 + ik

)
σ

2κ . (3.70)

Here g is the bifurcation parameter. Importantly, the analysis predicts the

critical wave-number obtained in the simulations (see Appendix E for details).

Figure 3.27a shows the critical wave-number when varying κ. Interestingly,

ωc remains constant throughout this variation. Thus, the bifurcation changes

from patterned to homogeneous as κ increases and it is always dynamic. When

varying τ and D (Fig. 3.27b) the system goes from a homogeneous state to
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a patterned dynamic bifurcation. As in the model without resonance in §3.6,

the critical wave-number converges to a fixed value when the time or diffusion

constants are increased. On the other hand, when varying the parameters r

and L involved in the current dynamics, the change in kc is minimal compared

to that observed under variation of κ, τ and D.

Because L is proportional to the time scale of the current (see §2.2.2 for

details), a significant change in the critical wave-number was expected when

varying that parameter. Nevertheless, the change obtained is insufficient to

show vastly different spatial scales in the generated patterns. Therefore, the

resonant model with axo-dendritic connections presented in this section was

not able to relate the experimental evidence of change in Ih current time scale

across the MEC with different pattern spatial scales.

3.8 conclusions

In order to find a mechanism that relates the different scales in the grid cell’s

firing fields with model parameters, a simple model of grid cell activity (based

on the Couey et al. model [26]) was proposed and simulated. The spatial scale

was related to the model parameters by performing a linear stability analysis.

As shown in [26], this spatial scale is associated with the difference in size of the

grid cell firing fields. Unfortunately, the model in §3.2 only allows the control

of the firing field spatial scale via the neural connectivity distance, R. This

parameter is the one used to change the spatial scale in grid cell firing in the

models proposed by Couey [26], and Burak and Fiete [39]. Such structural

changes in connectivity within the MEC are not physiologically reasonable.

Therefore, in this chapter, a series of physiologically-based components were

added to the basic model in (3.4) with the aim of uncovering a mechanism for

grid cell dynamics that accounts for the difference in spatial scale independent

of the connectivity.

Firstly, in §3.3 adaptation was added to the simple model and a Turing-Hopf

bifurcation was found. However, there was no change in the critical wave-
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Figure 3.27. Continuation for different parameters in the resonant model with axo-

dendritic connections (3.66). Plots show the resulting critical wave-number

when varying κ (in (a)), L, r, τ and D (colour-coded in (b)). Parameters as

in Figure 3.26.

number when varying other model parameters unrelated to the connectivity.

Thus, second order synapses was implemented in the model (§3.3.2), together

with adaptation, but similar results were obtained. Next, delays were included

in the simple model (§3.4) and a static patterned bifurcation was found; how-

ever, as in the simple model, the spatial scale only depended on connectivity

parameters. Then, in §3.5 current dynamics were included into the simple

model while conserving its connectivity. A Turing-Hopf bifurcation was found

but the spatial scale was controlled only by the radius connectivity.

Consequently, in §3.6 dendritic processing was added to the simple model.

It was found, by performing continuation of model parameters, that the bifur-

cation changes from a static patterned to a dynamic homogeneous one. Small

changes in the wave-number were observed when assuming axo-dendritic con-

nections and varying model parameters, such as the time and diffusion con-

stants, and the strength of the axo-dendritic connection. After noticing that

the range of wave-numbers is slightly increased when taking a smooth version of

the somatic connectivity in the neuron, an inverted Mexican Hat connectivity

was suggested, as in [39]. Importantly, a significant change in the critical wave-
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number was found when varying κ, τ or D. However, there is no experimental

evidence that supports the variation of such parameters in grid cells.

Finally, in view of experimental evidence that states that the time constant of

the Ih current varies along the dorso-ventral axis of the MEC [50], axo-dedritic

connections with inverse Mexican Hat somatic connectivity were introduced to

the resonant model in §3.7. Travelling waves were observed when performing

simulations in 1D and the resulting wavelength was determined analytically.

Nevertheless, the continuation of the current time constant showed a minimal

variation of the critical wave-number.

In summary, although mechanisms that associate the change of scale in the

grid cells with model parameters (unrelated to their connectivity) were found,

there is no experimental evidence to supports them. The next chapter explores

more fully nonlinear models of the Ih currents in spiking networks and estab-

lishes that the distributions of such rebound current is a more viable mechanism

for the local control of grid cell firing patterns.
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4
AN INTEGRATE -AND -F IRE NETWORK MODEL FOR

GRID CELL DYNAMICS

4.1 introduction

In the previous chapter, a variety of firing rate network models was proposed

in order to find a mechanism for the different scales of grid cell firing fields,

based on their inhibitory connectivity and resonance properties. This chapter

explores a different type of model inspired by experimental evidence that neural

rebound spiking may provide a mechanism for differences in spacing of grid cell

firing fields [51]. Thus, an integrate-and-fire network model with postinhibitory

rebound (PIR) is proposed. The PIR modifies the intrinsic excitability of a neu-

ron by evoking one or more spikes in response to the cessation of a prolonged

hyperpolarising step or to a brief hyperpolarising stimulus [52]. When neu-

rons are coupled with mutual inhibition, the PIR initiates a rhythmic activity

pattern.

Some of the intrinsic properties of grid cells, like the theta rhythmic firing,

have been addressed by the oscillatory interference models that use interfer-

ence patterns generated by multiple membrane potential oscillations (MPOs)

to explain grid formation [53]. This type of model takes into account the theta

rhythmic firing of grid cells (5-12 Hz) and the fact that the spiking output in-

creases in frequency as the animal approaches the centre of the grid cell firing

field, known as phase precession, and is suggestive of a spike-timing code [54].

Moreover, there is experimental evidence that the frequency of intrinsic MPOs
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4.1 introduction

decreases along the dorsal-ventral axis of MEC II [46]. Hence, these oscillations

are hypothesised to play a role in grid field spacing. Other properties of grid

cells, such as their inhibitory connectivity, are ubiquitous in MEC stellate cells,

that are believed to represent the majority of the grid cell population [46]. Inter-

estingly, the rapid membrane time constant and resonant behaviour1 of stellate

cells was studied before the discovery of grid cells. The resonant behaviour

of stellate cells has been directly linked to a high density of hyperpolarisation-

activated cyclic-nucleotide-gated (HCN) channels [55]. These channels generate

the so-called Ih current that can cause a depolarising rebound2 spike after a

hyperpolarising current is injected. As mentioned in §3.7, there is experimental

evidence that the time constant of both the fast and slow component of Ih is

significantly faster for dorsal versus ventral stellate cells of the MEC II [50].

Some grid cell models have considered the intrinsic biophysical properties

of stellate cells. For example: Navratilova et al. [56] incorporated post-spike

dynamics that contribute to the theta precession, and the group headed by

Hasselmo included HCN channels in their models [51, 57–60]. Hasselmo [51]

proposed a spiking network model of MEC that can generate consistent firing

fields despite the changes in direction3 and running speed of the rat. This

model shows that a difference of grid cell firing field spacing can be obtained

by manipulating the speed of the rebound response of stellate cells. As men-

tioned previously, the rebound spiking is generated by Ih current dynamics; and

therefore changing the parameters related to the Ih current in the model affects

the firing field spacing. In the model proposed by Hasselmo [51], stellate cells

are connected via inhibitory interneurons which receive input from the medial

septum and head-direction cells. In [51], the running speed of the simulated

rat is controlled by changing the frequency of the medial septum input or by

increasing the inhibitory interneurons’ input strength to stellate cells, whereas

1 Here, resonant behaviour refers to the increase in the likehood of firing when the neurons

have inputs at a preferred resonant frequency.
2 In general, a rebound is a overshoot of a membrane potential above its resting level [52].
3 In the model proposed in [51], the simulated rat is constrained to a narrow rectangular

environment, hence it can go only towards the left or the right ends of such an environment.
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the direction is selectively controlled by head-direction input to inhibitory in-

terneurons. The emergent stellate cell activity and firing fields are shown in

Figure 4.1. Note that the activity of stellate cells (Fig. 4.1b) resembles a pe-

riodic travelling wave whose period relates to the spacing of the firing fields

(Fig. 4.1c). Importantly, a change in the spacing of grid cell firing fields can

be obtained by shifting only a single parameter influencing the intrisic rebound

spiking and the resonant frequency of stellate cells. Additionally, this model

exhibits phase precession in response to phasic medial septum input, theta cy-

cle spiking and the loss of the spatial periodicity of grid cell firing fields upon

a reduction of input from the medial septum. However, the study of computa-

tional spiking models is heavily reliant on computational approaches, and hence

analytical insight is somewhat limited. Analytical insight is important because

it allows predictions of the model behaviour under parameter variation and also

determines which parameters control the spacing of grid cell firing fields.

This chapter proposes a new spiking network model (§4.2) motivated by

the observations of Hasselmo [51]. The proposed model includes ideas from

models of the Ih current (particularly from the model in [61]). In order to allow

for analytical insight, only one population of stellate cells is modelled without

(medial septum or head-direction) input. Computational simulations of the

proposed model show periodic travelling waves with a period controlled by the

dynamics of the Ih current. Hence, the focus of this chapter is to determine

analytically the relationship between the model parameters and the travelling

wave period. It is assumed that these periodic travelling waves resemble the

activity of grid cells and that the temporal period of such travelling waves relates

to the spacing between firing fields, as in the model proposed by Hasselmo [51]

(see Fig. 4.1). But the specific relationship between the spacing of the firing

fields of a simulated rat trajectory and the model parameters is not addressed

in this work.

Here, a piecewise linear (PWL) function for HCN channel activation is pro-

posed with the aim to describe analytically the travelling wave and maximum

wavelength emerging from simulations. The travelling wave orbit is constructed
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Figure 4.1. Model proposed by Hasselmo [51] using resonance and rebound spiking in me-

dial entorhinal cortex. (a) Local circuit containing two populations (T1 and

T2) of stellate cells (S), inhibitory interneurons (I) and medial septal input

(MS). Numbers indicate the number of the cell within a population. Arrows

indicate the connections between neurons. (b) Membrane potential of stellate

cells in larger populations (16 stellate cells in each population) with (i) slow

and (ii) fast rebound. Activity in population T1 is represented by black lines

and in population T2 by blue lines. Note that the rebound spiking occurs in a

subset of stellate cells and shifts progressively across the population. The bot-

tom traces of these plots show the activity of both populations of interneurons

(light blue and green). (c) The line denotes the trajectory of the simulated

rat, going from one end to the other. Dots represent the position of the simu-

lated rat where the firing events of a single stellate cell occurred (firing fields).

The spacing between the firing fields is wider when the stellate cells have slow

rebound. Figure adapted from [51].
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4.2 the model

in §4.3 and its stability is analysed in §4.4 using techniques from non-smooth

dynamical systems. Furthermore, the stability analysis is validated in §4.5.

Continuation of the parameters related to the Ih current is performed in §4.6.

4.2 the model

In this section a linear IF model is proposed instead of the Izhikevich style

model (see [9] for this type of model) used by Hasselmo [51]. In the model,

a spike is generated when the voltage exceeds a certain value Vth, after which

it is reset to the value Vr, and the voltage evolution is described by (2.11).

Additionally, the HCN channel dynamics are incorporated and a smooth inverse

Top Hat synaptic connectivity in one spatial dimension is used (as in §3.6.5),

based on experimental observations in [26], instead of the local circuit inhibitory

and excitatory connectivity between different populations of stellate cells and

interneurons proposed by Hasselmo. Further, a refractory process is included,

such that the voltage is held at Vr after a spike event for a duration of τR. This

refractory process disallows the generation of a burst of spikes; and therefore,

simplifies the model behaviour which in turn facilitates the tractability of the

analysis. Numerical simulations are performed in order to investigate if the

proposed model is able to exhibit travelling waves, as those described in the

model by Hasselmo (but without the bursting behaviour).

From (2.43) the synaptic current for this model is rewritten as

Isyn(x, t) = gsynψ(x, t), (4.1)

where gsyn is the overall strength of synaptic conductance and

ψ(x, t) =
∑
m∈Z

∫ ∞
−∞

dyW (x− y)η(t− Tm(y)), x ∈ R, t > 0. (4.2)

Here W is assumed to be symmetric, thus W (x) = W (|x|) and η is a synap-

tic filter given by (2.22). Particularly, the following smooth inverse Top Hat

connectivity is used:

W (x) =
W0
2 (tanh (ς (R− |x|)) + tanh (ς (R+ |x|))) . (4.3)
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4.2 the model

Figure 4.2 shows this connectivity function. Note that Tm(x) in (4.2) repre-

sents the time of arrival of the mth presynaptic spike at position x generated

according to

Tm(x) = inf
{
t | V (x, t) ≥ Vth; t ≥ Tm−1(x) + τR

}
, m ∈ Z. (4.4)

The Ih current is initially modelled as in §2.2.1 with a single inactivation gate,

so that

Ih(x, t) = ghnh(x, t)(Vh − V (x, t)), (4.5)

where

τh(V )
∂nh
∂t

= nh,∞(V )− nh. (4.6)

Here nh,∞ is a sigmoid with

nh,∞(V ) = [1 + exp((V − V1/2)/k)]
−1 , (4.7)

and fits to experimental data give V1/2 ≈ −10 mV (with respect to rest) and

k ≈ 10 [62,63] (Fig. 4.3c). The time constant τh can vary from tens to hundreds

of ms [50]. For simplicity, the voltage dependence of τh is neglected and it is

viewed as a fixed constant model parameter.

Numerical simulations for this model are performed as described in Appendix

F. Travelling waves were observed after applying a hyperpolarising current to

a set of neurons for a few milliseconds (Fig. 4.3a).

Bearing in mind that the goal of this chapter is to mathematically analyse

the emerging waves, the model is reduced by:

−40 −20 0 20 40

−10

−5

0

x

W
(x
)

Figure 4.2. Connectivity function W in (4.3) with ς = 0.5, R = 25 and W0 = −10.
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4.2 the model

• Absorbing Vh in gh since Vh is typically larger than V , which suggests

Vh − V ' Vh.

• Translating the rest state from V = −60 mV to V = 0 mV.

• Approximating nh,∞ with a PWL function (Fig. 4.3c).

Importantly, numerical simulations show similar results after these changes (Fig.

4.3b). Therefore, the model describing the voltage V = V (x, t) for the neuron

at position x ∈ R and time t adopted in this chapter is given by:

C
∂V (x, t)

∂t
= −glV (x, t) + Ih(x, t) + Isyn(x, t). (4.8)

Here Ih(x, t) = ghnh(x, t), with nh(x, t) governed by (4.6) (in which τh(V ) is

constant for simplicity) and the PWL approximation of nh,∞(V ) given by

nh,∞(V ) =



1, V ≤ V−

1
2 −

V−V1/2
4k , V− < V ≤ V+, V± = V1/2 ± 2k.

0, V ≥ V+

(4.9)

Figure 4.3b shows an example of the emerging travelling waves in the sim-

plified system (see Appendix F for simulation details). The spiking activity is

initiated after applying a hyperpolarising current to a set to neurons. The pe-

riod and speed of the travelling wave can be easily calculated using a raster plot

such as that shown in Figure 4.3d. Note that there are some boundary effects.

These boundary effects arise because the network is aperiodic, i.e., the opposite

edges of the line, where neurons are arranged, are disconnected. Hence, neurons

at the edges connect with fewer neurons; and therefore, receive less inhibitory

input. Figure 4.3e shows that nh activates when the neuron is hyperpolarised,

as expected for HCN channels. Importantly, the emergence of travelling waves

is robust to the selection of duration and strength of the initial hyperpolarising

current, as well as the set of neurons where the current is applied. Indeed, it

emerges even from initial hyperpolarisation of a randomly chosen set of neu-

rons (data omitted). Such variations in initialisation (independent of model

parameter choice) do influence the period and speed of the resulting travelling
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Figure 4.3. (a) Simulations of a spiking neural field model (4.8) with a sigmoid function

for the Ih activation (4.7). Here, the voltage traces at a subset of locations

throughout the system are shown as a function of time. (b) Same as (a) but

with a piecewise linear (PWL) function for Ih activation (4.9) (blue line in (c)).

(c) Activation function for nh from experimental data [63] (after translating

the steady state from 60mV to 0mV) for fast dorsal (green line) and ventral

(red line) activation; and slow dorsal (black line) and ventral (magenta line)

activation. Blue line: PWL fit of nh,∞ given by (4.9) with V1/2 = −10 mV and

k = 10. (d): Raster plot of the complete system in (b), each dot represents a

spike at a certain location and time. (e) Evolution of the voltage (blue line)

and nh (green line) in time for a neuron (taken from the simulation in (b)).

Paramenters: C = 1µ Fcm−2, τh = 400 ms, Vh = 40 mV, gl = 0.25 mS/cm−2,

gh = 1 mS/cm−2, τR = 200 ms, Vth = 14 mV, Vr = 0 mV. For the synaptic

input gsyn = 15 mS/cm−2, W0 = −10, R = 25, ς = 0.5 and α−1 = 20ms.

Here, an initial hyperpolarisation current of -30mV was applied to a set of 500

neurons (at the top in (d)) from t = 1000 ms to t = 1250 ms. The system

consists of 5000 neurons. Numerical methods for simulation are provided in

Appendix F.
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4.3 travelling wave framework

wave. The speeds can be either positive or negative, and for simplicity only the

positive ones are considered in the following analysis (the negative wave speed

can be obtained by symmetry).

4.3 travelling wave framework

As shown in Figure 4.3 the system settles to a travelling wave with a well

defined speed and period. In order to understand how Ih controls the emergent

scale of such waves, the vector X = (V ,nh) ∈ R2 is introduced and the model

is written in terms of the PWL evolution equation that governs the system

behaviour between one spiking event and the next:

∂X(x, t)
∂t

= A(x, t)X(x, t) + Ψ(x, t), Tm−1(x) ≤ t < Tm(x), (4.10)

where A and Ψ are defined depending on V , or whether the system is in the

refractory state. The dependence on V dictates the value of the proposed PWL

description of nh∞ (4.6). In this way, the evolution of the system is described

by (4.10) with the appropriate selection of A and Ψ depending on the state of

the system. In detail:

A(x, t) =


AR =

0 0

0 −1/τh

 , Tm−1(x) ≤ t < Tm−1(x) + τR

Aµ, Tm−1(x) + τR ≤ t < Tm(x)

, (4.11)

with

Aµ =



A0 =

 −1/τ ghg
−1
l /τ

−1/(4kτh) −1/τh

 , V− < V < V+

A− =

−1/τ ghg
−1
l /τ

0 −1/τh

 , V ≤ V−

A+ = A−, V ≥ V+

. (4.12)
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4.3 travelling wave framework

In (4.12) the ordering V− < Vr < V+ < Vth has been assumed and τ = C/gl

has been introduced. Similarly Ψ is defined by

Ψ =



ΨR =

 0
1/2−(Vr−V1/2)/(4k)

τh

 , Tm−1(x) ≤ t < Tm−1(x) + τR

Ψµ =
gsyng

−1
l

τ ψ

1

0

+ bµ, Tm−1(x) + τR ≤ t < Tm(x)

, (4.13)

where

bµ =



b0 =

 0
1/2−(Vr−V1/2)/(4k)

τh

 , V− < V < V+

b− =

 0

1/τh

 , V ≤ V−

b+ =

0

0

 , V ≥ V+

. (4.14)

The above notation allows indication of the state of the system, whether it is

refractory (labelled by R) or if not refractory and has a voltage in the range

(V−,V+) (labelled by 0), (−∞,V−] (labelled by −) or [V+,∞) (labelled by +),

see Figure 4.3c.

In order to describe the emerging travelling waves, solutions of (4.10) of the

form X(ξ, t) are investigated, where ξ = t− x/c and c is the (constant) wave

speed. Therefore X(ξ, t) is given by(
∂

∂t
+

∂

∂ξ

)
X(ξ, t) = AX(ξ, t) + Ψ(ξ, t). (4.15)

The system eventually settles to a stationary travelling wave, as shown in Figure

4.3. This wave is denoted by X(ξ, t) = Q(ξ) = (V (ξ),nh(ξ)) and satisfies the

travelling wave equation:

dQ(ξ)
dξ = AQ(ξ) + Ψ(ξ). (4.16)
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4.3 travelling wave framework

A firing event in the periodic wave is described by Tm(x) = x/c−m∆, where ∆

is the period of the wave such thatQ(ξ+m∆) = Q(ξ) andm ∈ Z. Substituting

in (4.2) gives

ψ(ξ) = ψ(x, t)|Tm(x)=x/c−m∆ = c
∑
m∈Z

∫ ∞
0

dsη(s)W (c(s− ξ) + cm∆) .

(4.17)

Hence Ψ(ξ) in (4.16) is obtained from (4.13) under the replacement of ψ(x, t)

by ψ(ξ). Since ψ(ξ) is ∆-periodic it can be expressed in terms of a Fourier

series as

ψ(ξ) =
∑
p∈Z

ψpe−2πipξ/∆, ψp =
1
∆
W̃
(2πp
c∆

)
η̃
(
−2πp

∆

)
, (4.18)

where ˜ denotes the Fourier transform, given by (A.3), of the connectivity

matrix W in (4.3) and the α-function in (2.22), namely

W̃ (k) = W0
π

ς

sin (kR)

sinh (πk/(2ς)) , η̃(k) =
α2

(α+ ik)2 . (4.19)

Here, the result that c∆∑m eikcm∆ = 2π∑p δ(k − 2πp/(c∆)) was exploited,

where ∑p δ(k − 2πp/(c∆)) represents an infinite sequence of unit impulses

spaced at 2πp/(c∆) with Fourier transform (c∆
∑
m eikcm∆)/(2π) [64]. Note

that both expressions in (4.19) decay as a function of k, and therefore the

infinite sum in (4.18) can be naturally truncated.

The formal solution to (4.16) is constructed using variation of parameters:

Q(ξ) = G(ξ, ξ0)Q(ξ0) +
∫ ξ

ξ0
dξ′G(ξ, ξ′)Ψ(ξ′), (4.20)

where G is a matrix exponential given by

G(ξ, ξ′) = T
{

exp
(∫ ξ

ξ′
dsA(s)

)}
, (4.21)

with T a time-ordering operator T {A(t)A(s)} = H(t− s)A(t)A(s) +H(s−

t)A(s)A(t), in whichH(t) is the Heaviside step function defined in (2.23). Note

that in this case A is piecewise constant, thereby simplifying the evaluation of

G. Accordingly, the solution is broken into parts distinguished by the label

µ ∈ {R, 0,−,+}, such that the solution of (4.16) is explicitly given by (4.20)
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4.3 travelling wave framework

with G(ξ, ξ′) = G(ξ − ξ′) and G = Gµ, where Gµ(ξ) = exp(Aµξ). The shape

of the periodic travelling wave can be constructed in a self-consistent manner

by patching together solutions Qµ for each domain, as shown below.

4.3.1 Travelling Wave Orbit Construction

Properties of matrix exponential are used in order generate a useful representa-

tion of (4.20) for each domain. A general matrix exponential can be written in

the form eAt = P eΛP−1, where Λ = diag(λ+,λ−) comprises the eigenvalues

of A given explicitly by

λ± =
1
2

(
Tr(A)±

√
(Tr(A))2 − 4det(A)

)
, (4.22)

and the associated eigenvectors are given by q± = (1, (λ± − A11)/A12)T , so

that P = [q+, q−]. By using this representation for matrix exponentials in

conjunction with (4.18), a domain specific trajectory for µ ∈ {0,+,−} can be

written as

Qµ(ξ) = Gµ(ξ − ξ0)Qµ(ξ0) +A−1
µ [Gµ(ξ − ξ0)− I2] bµ

+
gsyng

−1
l

τ

∑
p∈Z

ψpPµdiag(Z+
µ (ξ, ξ0),Z−µ (ξ, ξ0))P

−1
µ

1

0

 , (4.23)

where

Z±µ (ξ, ξ0) =
eλ±µ (ξ−ξ0)e−2πipξ0/∆ − e−2πipξ/∆

λ±µ + 2πip∆
. (4.24)

Note that if µ = R the system is refractory with V (ξ) clamped at V = Vr,

and the corresponding AR in (4.11) is singular (its determinant is equal to zero).

In this case, only the evolution of the gating variable nh (4.6) is considered, and

using the PWL activation function (4.9) gives

nh(ξ) = nh(ξ0)e−(ξ−ξ0)/τh +
(1

2 −
Vr − V1/2

4k

) [
1− e−(ξ−ξ0)/τh

]
, (4.25)

instead of (4.23).

Figure 4.4 shows a periodic travelling wave in the (V ,nh) phase-plane. This

figure was obtained by plotting the solution of the system (4.23) for the different
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4.3 travelling wave framework

system domains (except when µ = R for which (4.25) is used and V is clamped

at V = Vr). The translational invariance of the system allows the choice

of any point as the travelling wave origin. For simplicity ξ = 0 is selected,

corresponding to the system immediately after firing.

• From ξ = 0 to ξ = τR the system remains clamped at Vr with nh evolving

according to (4.25) and ξ0 = 0 (blue line).

• Then it evolves according to (4.23) with µ = 0 and initial data determined

by QR(ξ0) = (Vr,nh(τR)), until V (ξ) reaches V±, after which the domain

changes to µ = − or µ = + in (4.23), and appropriate initial data is

selected depending on the value of V achieved first. Although some of

the travelling wave orbits emerging from the performed simulations are

restricted to V > V−, for completeness it is assumed that after µ = 0 the

system switches to µ = − (cyan line in Fig. 4.4).

• The system stays in the state where V < V− until it returns to V = V−

(green line in Fig. 4.4). Here the initial data is determined by Q−(ξ0) =

Q0(ξ1 + τR).

• Then the system evolves according to (4.23) with µ = 0 and initial con-

ditions given by Q0(ξ0) = Q−(ξ2 + ξ1 + τR) (yellow line in Fig. 4.4).

• Finally, when V = V+, µ = + in (4.23) with Q+(ξ0) = Q0(ξ3 + ξ2 + ξ1 +

τR) until V (ξ) = Vth (orange line in Fig. 4.4), thus closing the orbit.

Here the time of flight for the trajectory is denoted by ξ1 for Vr ≥ V > V−

(between release from refractoriness and reaching V = V−), by ξ2 for V− ≥

V , by ξ3 for V− ≤ V < V+, and by ξ4 for V+ ≤ V < Vth. The period of

the orbit is given by ∆ = τR + ξ1 + ξ2 + ξ3 + ξ4. Note that the wave orbit

in Figure 4.4 is discontinuous because of the voltage reset after one period.

The theoretical orbits constructed in this way are in excellent agreement with

numerical simulations, as shown in Figure 4.4.

In the above construction there are six unknowns (nh(0), c, ξ1, ξ2, ξ3, ∆) re-

lated by five nonlinear algebraic equations
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Figure 4.4. Orbit of a travelling wave. The travelling wave starts at ξ = 0 where V is

clamped at Vr, hence nh evolves according to (4.25) until ξ = τR and the system

is released from the refractory period (blue line). Then it evolves according to

(4.23) with µ = 0 until V (τR + ξ1) = V− (cyan line) when it switches to

µ = − until V (τR + ξ1 + ξ2) = V− (green line). Afterwards, it goes back to

µ = 0 (yellow line) before switching to µ = + when V (τR + ξ1 + ξ2 + ξ3) = V+

(orange line). The orbit ends when V = Vth and V is reset (pale orange). Black

dotted line: activity in the (V ,nh) plane of a neuron at position x = 0 when

the simulation in Figure 4.3b settles to a travelling wave. Purple lines: values

of V denoting the different domains of the system (µ in (4.23)). Parameters

as in Figure 4.3. Here ∆ = 393.53, c = 0.0779, ξ1 = 8.2622, ξ2 = 20.8468,

ξ3 = 145.3176, nh(0) = 0.4323.

85



4.4 wave stability

1. V (∆) = Vth (firing condition),

2. nh(∆) = nh(0) (periodicity condition),

3. V (τR + ξ1) = V− (switching condition),

4. V (τR + ξ1 + ξ2) = V− (switching condition),

5. V (τR + ξ1 + ξ2 + ξ3) = V+ (switching condition),

whose simultaneous solution determines the dispersion relationship for the wave

speed as a function of the period c = c(∆). Figure 4.5 shows a dispersion curve

constructed in this way for positive speeds. The corresponding curve for nega-

tive speeds is symmetric with respect to the ∆-axis (not shown). Interestingly,

a wide range of allowed wavelengths can co-exist (with different speeds) as seen

in simulations with various choices of initial hyperpolarisation strength and du-

ration. Note that the constructed orbits change along the dispersion curve, the

ones corresponding to small periods have V < V−, whereas orbits with larger

periods have V > V−. However, the periods of orbits found in simulations are

restricted to small values on the dispersion curve. Therefore, the aim of the rest

of this chapter is to investigate the maximum period to which the travelling

waves can settle. In order to achieve this, an analysis of wave stability under

parameter variation is needed.

4.4 wave stability

The model proposed in this chapter poses potential mathematical difficulties

for standard approaches for linear stability analysis, such as that employed in

Chapter 3, since:

• The perturbations of the state variables also affect the times of firing.

• The model switches when V = V±, and hence is non-smooth.

• There is a discontinuity in the model when it resets after firing.
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Figure 4.5. Dispersion curve c = c(∆) for a periodic travelling wave (red dots) in the system

(4.16). Asterisks represent values of the emerging travelling waves in simula-

tions initiated with different strength and duration of an initial hyperpolarising

current, applied to different subset of neurons. Light green corresponds to the

simulation in Figure 4.4. Inset: travelling wave orbits constructed theoretically

for different periods. For small periods and on the upper branch, constructed

orbits visit the domain where V < V−. Parameters as in Figure 4.3.
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• After firing the voltage is clamped for a period of time τR.

Therefore, here the stability for a spiking neural field model with refractoriness

is determined by constructing an Evans function. Such function was first used

to determine the stability of action potentials in the Hodgkin-Huxley model [65],

and more recently extended to certain classes of neural firing field models [66].

To facilitate the analysis, the spike-train that determines the synaptic drive

in (4.2) is exposed by writing

ψ(x, t) =
∑
m∈Z

∫ ∞
−∞

dyW (|x− y|)
∫ t

−∞
dsη(t− s)δ(s− Tm(y)). (4.26)

An alternative expression can be obtained for the spike events δ(t− Tm(x)) by

noting that for a fixed x:

δ(t− Tm(x)) = |Vt(x,Tm(x))| δ(V (x, t)− Vth), (4.27)

where the subscript t denotes partial differentiation with respect to t. The

following property of Dirac δ functions has been used :

δ(γ(x)) =
∑
n

∣∣∣γ ′(xn)∣∣∣−1
δ(x− xn), γ(xn) = 0, γ ′(xn) 6= 0. (4.28)

Substituting (4.27) into (4.26) gives

ψ(x, t) =
∑
m∈Z

∫ ∞
−∞

dyW (|x− y|)
∫ t

−∞
dsη(t− s) |Vt(y,Tm(y))| δ(V (y, s)−Vth).

(4.29)

A co-moving frame is considered in order to describe how perturbations of a

periodic travelling wave evolve in time. In this co-moving frame the solutions

are of the form V (x, t) = V (ξ, t) with ξ = t− x/c; and the firing events are

defined as functions ξm(t) according to the threshold condition V (ξm(t), t) =

Vth. Using (4.28) yields

δ(ξ − ξm(t)) =
∣∣∣V ξ(ξm(t), t)

∣∣∣ δ(V (ξ, t)− Vth). (4.30)

Substitution of (4.30) in (4.29), together with the assumption that V ξ ' Vt

close to a periodic orbit, gives

ψ(x, t) =
∑
m∈Z

∫ ∞
−∞

dyW (|x− y|)
∫ t

−∞
dsη(t− s)δ(s− y/c− ξm(s))

= c
∑
m∈Z

∫ ∞
0

dsη(s)W (|c(s− ξ) + cξm(t− s)|) ≡ ψ(ξ, t). (4.31)

88



4.4 wave stability

For a periodic wave ξm(t) = m∆; therefore ψ(ξ, t) is independent of t and

(4.31) is equal to (4.17).

To analyse stability, small perturbations to this trajectory are considered.

Note that the firing times of the perturbed and unperturbed trajectories will

differ by a small amount defined here by δξm(t), such that a perturbed firing

time ξ̌m(t) is given by

ξ̌m(t) = m∆ + δξm(t). (4.32)

Substitution in (4.31) gives the corresponding perturbation of ψ(ξ, t) as ψ̌(ξ, t) =

ψ(ξ) + δψ(ξ, t) where

δψ(ξ, t) = c2
∑
m∈Z

∫ ∞
0

dsη(s)W ′ (|c(s− ξ) + cm∆|) δξm(t− s). (4.33)

4.4.1 Perturbed Firing Event Characterisation

In order to describe how the perturbation behaves when the system passes

through the values V+,V−, and Vth, an indicator function is introduced. This

function is denoted by h(X(ξ, t);ϑ) = V (ξ, t)− Vϑ, where ϑ ∈ {+,−, th}, and

allows one to define the travelling wave coordinate values at which switching

events occur as h(X(ξ, t);ϑ) = 0. As in §4.3 X(ξ, t) = Q(ξ) denotes an

unperturbed travelling wave trajectory, whereas a perturbed one is given by

X̌(ξ, t) = Q(ξ) + δX(ξ, t), (4.34)

with δX small. Let ξ = ξs(t) denote when an unperturbed trajectory passes

through the switching manifold, and

ξ̌s(t) = ξs(t) + δξs(t), (4.35)

for a perturbed trajectory. Taylor expanding the indicator function gives:

h(X̌(ξ̌s, t)) = h(X̌(ξs + δξs, t)) = h(Q(ξs + δξs) + δX(ξs + δξs, t))

' h(Q(ξs) +Qξ(ξ
−
s )δξs) +∇Qh(Q(ξs + δξs)) · δX(ξs + δξs, t)

' h(Q(ξs)) +∇Qh(Q(ξs)) ·Qξ(ξ−s )δξs +∇Qh(Q(ξs)) · δX(ξs, t). (4.36)

89



4.4 wave stability

Here

X(ξ±s , t) = lim
ε↘0

X(ξs ± ε, t), (4.37)

ensures that the partial derivative in ξ is well defined. By definition h(Q(ξs)) =

0 = h(X̌(ξ̌s, t)); substitution in (4.36) gives

∇Qh(Q(ξs)) ·
[
δX(ξs, t) +Qξ(ξ

−
s )δξs

]
= 0, (4.38)

where ∇Qh(Q;ϑ) = (∂V , ∂nh)(V − Vϑ) = (1, 0). Rearranging terms yields

δξs(t) = −
δV (ξs, t)
Vξ(ξ−s )

. (4.39)

The above equation defines the perturbed switching event in terms of the dif-

ference between the perturbed and unperturbed trajectories. In the case of a

firing event, (4.39) transforms to:

δξm(t) = −
δV (m∆, t)
Vξ(m∆−)

. (4.40)

Hereinafter, it is assumed that the perturbed trajectory is separable in the

sense that it can be decomposed into a periodic function in the travelling wave

coordinate and an exponential in time. Thus

δX(ξ, t) = δX(ξ)eλt, δX(ξ) = δX(ξ +m∆), m ∈ Z. (4.41)

Finally, substituting (4.40) with (4.41) in (4.33) results in δψ(ξ, t) = δψ(ξ;λ)eλt,

with δψ(ξ;λ) = δV (0)f(ξ;λ), and

f(ξ;λ) = − c2

Vξ(0)
∑
m∈Z

∫ ∞
0

dsη(s)W ′ (|c(s− ξ) + cm∆|) e−λs. (4.42)

4.4.2 Evolving Perturbations through Switching Manifolds

Now that the effect of perturbations on the synaptic component of the proposed

model through the firing events has been described, it is possible to analyse how

such perturbations evolve. Linearisation around the travelling wave by setting

X(ξ, t) = Q(ξ) + δX(ξ, t) in (4.15) with perturbations of the form (4.41) gives:

d
dξ δX(ξ) = A(ξ;λ)δX(ξ) + δΨ(ξ;λ), (4.43)
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4.4 wave stability

where

δΨ(ξ;λ) = gsyng
−1
l

τ
δψ(ξ;λ)

1

0

 , (4.44)

and A(ξ;λ) = A(Q(ξ))− λI2, with A(Q(ξ)) defined in (4.11) and depending
on the position along the periodic orbit; I2 denotes the 2× 2 identity matrix. As
in §4.3, the solution for the orbits with V > V− can be written using a variation
of parameters formula, matrix exponentials and (4.42) in the following way

δX(ξ) =



GR(ξ;λ)δX(0), 0 ≤ ξ < τR

G0(ξ − τR;λ)δX(τR)

+
∫ ξ
τR

dξ′G0(ξ − ξ′;λ)Jf(ξ′;λ)δX(0), τR ≤ ξ < τR + ξ1

G+(ξ − (τR + ξ1);λ)δX(τR + ξ1)

+
∫ ξ
τR+ξ1

dξ′G+(ξ − ξ′;λ)Jf(ξ′;λ)δX(0), τR + ξ1 ≤ ξ < ∆

. (4.45)

Here Gµ(ξ;λ) = exp ([Aµ − λI2] ξ) and

J =
gsyng

−1
l

τ

1 0

0 0

 . (4.46)

This solution can be extended for the orbits with V < V−. Note that there

is a jump in the Jacobian at V = V± (switching manifolds), V = Vth (firing

threshold) and when the system is released from the refractory period. The

evolution of perturbations through these points needs careful handling. First,

the discontinuity in the Jacobian due to the firing event is addressed following

Coombes et al. [67]. Note that after a firing event, there is a jump in the voltage

from Vth to Vr, whereas the value of nh is continuous (see Fig. 4.6). Figure 4.7

shows that the perturbed trajectory can reach the threshold before or after the

unperturbed trajectory. To describe how the perturbed trajectory resets after

reaching the threshold, a vector function that governs the discontinuity at the

firing event is introduced as g(X(ξ, t)) = (Vr,nh(ξ, t))T . For the unperturbed

trajectory Q(ξ+m) = g(Q(ξ−m)) (with the notation in (4.37)), meaning that

after firing the voltage is clamped to Vr and nh evolves freely. Similarly, for the

perturbed trajectory

X̌(ξ̌+m, t) = g(X̌(ξ̌−m, t)). (4.47)
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4.4 wave stability

Taylor expanding (4.47) and using (4.41) gives

X̌(ξ̌+m, t) ' Q(ξ+m) +Qξ(ξ
+
m)δξm + δX(ξ+m)eλt, (4.48)

and

g(X̌(ξ̌−m, t)) ' g(Q(ξ−m)) +∇TQgT (Q(ξ−m))δξmQ(ξ−m)

+ ∇TQgT (Q(ξ−m))δX(ξ−m)eλt, (4.49)

with

∇TQgT =

(
∂V

∂nh

)
(Vr nh) =

0 0

0 1

 . (4.50)

Rearranging terms and using Q(ξ+m) = g(Q(ξ−m)), X̌(ξ̌+m, t) = g(X̌(ξ̌−m, t)) and

(4.40), gives

δX(ξ+m) ' −Qξ(ξ+m)
(
− δV (0)
Vξ(0−)

)
+

 0

nhξ(0−)
(
− δV (0)
Vξ(0−)

)
+ δnh(0−)



=


Vξ(0+)δV (0)
Vξ(0−)

nhξ (0
+)δV (0)

Vξ(0−)
−

nhξ (0
−)δV (0)

Vξ(0−)
+ δnh(0−)

 . (4.51)

The above can be written as an expression for the perturbation after the unper-

turbed firing event ξ = ξ+m = m∆+ = 0+ in terms of the perturbation before

the unperturbed firing event ξ = ξ−m = m∆− = 0−:

δX(0+) ' KfireδX(0−), (4.52)

where

Kfire =

 0 0(
nhξ(0+)− nhξ(0−)

)
/Vξ(0−) 1

 , (4.53)

is called a “saltation matrix” and it describes how to propagate perturbations

through the different domains. Note that Vξ(0+) = 0 because the voltage is

clamped after the firing event.

The dynamics through the switching manifolds (from µ = 0 to µ = +) are

continuous for the perturbed and unperturbed trajectories, i.e. Q(ξ+s ) = Q(ξ−s )

and X̌(ξ̌+s , t) = X̌(ξ̌−s , t), as can be seen in Figure 4.8. Therefore, g for these
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Figure 4.6. Evolution of the system (4.16) during one period. Top: V as a function of ξ.

Bottom: nh as a function of ξ. Red dots denote the points where the system

changes dynamics, first from the refractory period at ξ = τR to the domain

µ = 0. Then it evolves until V = V+ at ξ = τR + ξ1, when it switches to

the domain µ = +. There is a discontinuity in V when it reaches threshold

at V (∆) = Vth and is reset to V = Vr for a duration of τR. Note that at this

point nh is continuous.
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Figure 4.7. Unperturbed (blue line) and perturbed (red and green line) trajectories for V

in (4.23) at the firing event. The unperturbed trajectory is the same as in

Figure 4.6 (Top).
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4.4 wave stability

cases is defined by g(X(ξ, t)) = (V (ξ, t),nh(ξ, t))T (guaranteeing continuity),

so that the gradient operator in (4.50) becomes the identity: ∇TQgT = I2.

Similar calculations as for (4.48) and (4.49) yield

δX(ξ+s ) ' −Qξ(ξ+s )
(
−δV (ξs)
Vξ(ξ−s )

)
+Qξ(ξ

−
s )

(
−δV (ξs)
Vξ(ξ−s )

)
+ δX(ξ−s ), (4.54)

so that

δX(ξ+s ) ' KsδX(ξ−s ), (4.55)

where Ks = I2.

The propagation of perturbations through the refractory state is harder to

determine because this occurs over a finite time scale τR, unlike the firing events

and switching that are instantaneous. As shown in Figure 4.9 the perturbation

δξ at a firing event ξ = ξm is propagated for a time τR before new dynamics are

encountered with δξ given by (4.40). Setting ξR = ξm + τR as the time when

the unperturbed trajectory changes dynamics, and ξ̌R = ξ̌m + τR as the time

when the perturbed trajectory does, the continuity of a solution after releasing

from refractoriness can be guaranteed by following the same reasoning as with

the switching events with ξm = 0, yielding

δX(ξ+R ) ' −Qξ(ξ
+
R )

(
− δV (0)
Vξ(0−)

)
+Qξ(ξ

−
R)

(
− δV (0)
Vξ(0−)

)
+ δX(ξ−R). (4.56)

Here Vξ(ξ−R) = 0, since the system is in the refractory state, and nhξ(ξ
+
R ) =

nhξ(ξ
−
R). Thus, substitution into (4.56) gives

δX(ξ+R ) ' KrefδX(0) + δX(ξ−R), (4.57)

where

Kref(ξs) =

Vξ(ξ+R )/Vξ(0−) 0

0 0

 . (4.58)

In conclusion, the perturbations can be mapped using saltation matrices as:

• δX(0+) = KfireδX(0−), through the firing event.

• δX(τ+R ) = δX(τ−R ) +KrefδX(0−), through the refractory period.
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Figure 4.8. Unperturbed (blue line) and perturbed (purple line) trajectories for V in (4.23)

at the switching event from the domain µ = 0 to µ = + (red dots). Note the

continuity of the trajectory through this switching. The unperturbed trajectory

is the same as in Figure 4.6 (Top).
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Figure 4.9. Unperturbed (blue line) and perturbed (pink line) trajectories for V in (4.23)

showing the propagation of the perturbation δξm for ξ = τR when it is released

from the refractory period and the dynamics change. Note the continuity of

the trajectory through this switching. The unperturbed trajectory is the same

as in Figure 4.6 (Top).
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• δX((τR + ξ1)+) = KsδX((τR + ξ1)−), through the switch from the do-

main µ = 0 to µ = +. In general the same formula is used in the switches

between µ = 0 and µ = ±.

4.4.3 Spectral Equation Determination

The results of §4.4.2 provide a full description of the evolution of wave pertur-

bations. Here the stability of the travelling waves is determined by exploiting

this result. For convenience, the function Fµ(ξ, ξ0;λ) is introduced:

Fµ(ξ, ξ0;λ) =
∫ ξ

ξ0
dξ′Gµ(ξ − ξ′;λ)Jf(ξ′;λ), µ ∈ {0,+,−} . (4.59)

Combination of (4.59) and (4.45) allows a description of the perturbation after

one period as δX(∆) = Γ(λ, ∆)δX(0), where

Γ(λ, ∆) = F+(∆, τR + ξ1;λ)

+ G+(∆− (τR + ξ1);λ)Ks

[
F0(τR + ξ1, τR;λ)

+ G0(τR + ξ1;λ) [GR(τR;λ)Kfire +Kref]

]
. (4.60)

The spectral condition ε(λ, ∆) = 0 is obtained by enforcing the ∆-periodicity

of the perturbations, here

ε(λ, ∆) = |Γ(λ, ∆)− I2| , (4.61)

where ε(λ, ∆) is the Evans function for the periodic wave. As for the construc-

tion of the trajectory, a Fourier representation is used in (4.42) for numerical

convenience. Thus f(ξ;λ) = ∑
p∈Z fp(λ) exp(−2πipξ/∆), where

fp(λ) = −
1

Vξ(0)
2π
∆2 ipη̃

(
−iλ− 2πp

∆

)
W̃
(2πp
c∆

)
, (4.62)

for Re (λ+ α) > 0. Substituting in (4.59) and using properties of matrix

exponentials gives:

Fµ(ξ, ξ0;λ) =
∑
p
fp(λ)Pµdiag

(
S+
µ (ξ, ξ0;λ),S−µ (ξ, ξ0;λ)

)
P−1
µ J , (4.63)
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where λ± is defined by (4.22) and

S±µ (ξ, ξ0;λ) = e(λ
±
µ−λ)(ξ−ξ0)e−2πipξ0/∆ − e2πipξ/∆

λ±µ − λ+ 2πip/∆
. (4.64)

Figure 4.10 shows the eigenvalues of the system (green dots) when the wave

is stable (Fig. 4.10a) and unstable (Fig. 4.10b). Consider the decomposition

λ = ν + iω and ε(ν + iω,λ) = G(ν,ω) + iH(ν,ω), so that the eigenvalues are

obtained by simultaneously solving the pair of equations G(ν,ω) = 0 (red line)

and H(ν,ω) = 0 (blue line). Note that the system has a dynamic bifurcation

for large ∆.

As expected, the travelling wave periods resulting from simulations are pre-

dicted to be stable. However, these periods are small compared to the maximum

stable ∆ determined by the stability analysis derived in this section. Due to

the discrepancy between the maximum travelling wave periods resulting from

simulations and from the stability analysis, a validation of the analytical results

is presented in next section.

4.5 validation of the analytical results

4.5.1 Zero Eigenvalue

Note that in Figure 4.10 there is always a zero eigenvalue. Hence it is important

to stablish its persistence when ∆ (or another parameter) varies. Differentiating

(4.16) with respect to ξ gives

d
dξ

dQ
dξ = A

dQ
dξ +

dΨ(ξ)

dξ . (4.65)

Combining (4.42) and (4.18) results in

δψ(ξ; 0) = δV (0)
Vξ(0)

dψ(ξ)
dξ . (4.66)

Substituting the above equation in (4.43) with λ = 0 gives

δX(ξ) =
dQ
dξ . (4.67)
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Figure 4.10. Zeros of the Evans function (4.61). These occur at the intersection (green dots)

of G(ν,ω) = 0 (red curve) and H(ν,ω) = 0 (blue curve) where G = Re (ε)

and H = Im (ε). (a) ∆ = 460, all the eigenvalues have ν ≤ 0, hence they are

stable, wheareas they are instable in (b) with ∆ = 470. Other parameters as

in Figure 4.3.

Hence a perturbation tangential to the travelling wave orbit is neutrally stable,

as expected from translation invariance of the system.

4.5.2 Test against Simulations

In this subsection, the accuracy of the stability analysis in §4.4 is confirmed

by comparison with appropriate numerical simulations. The initial values for

these simulations were taken from the theoretical travelling wave orbit at t = 0

and x = −ξ/c in a domain sufficiently large to have periodicity two. It is

assumed that neural activity was already spread through the network, so that

some of the neurons had recently fired, and the time that these neurons had

been refractory had therefore to be inferred. To avoid boundary effects the

domain was taken to be periodic. Note that the spatial mesh size is crucial

for numerical accuracy: small distance between neurons ∆x, and therefore a

large mesh, is required for the initial values of X(x, t) at t = 0 so that the

transformation from the theoretical travelling wave in ξ coordinates to (x, t)

coordinates x = −ξ/c is accurate (note that c values are small).
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4.6 parameter continuation

Figures 4.11a and 4.11c show that the simulated trajectories (red line) ini-

tiated with a travelling wave orbit corresponding to a neutrally stable period

stay on (or close to) the theoretical orbit (blue line). On the other hand, Fig-

ures 4.11b and 4.11d show that the simulated trajectories diverge from the

theoretical travelling wave orbit when initiated with a period predicted to be

unstable.

4.6 parameter continuation

This model provides a mechanism for the generation of periodic traveling waves,

with a wavelength that depends on model parameters, and is given by the

velocity of wave propagation c multiplied by the wave period ∆. Moreover,

the model assumptions are biophysically reasonable. The work in [50] shows a

difference in the Ih current time constant of stellate cells (that are believed to

represent a large fraction of the grid cell population [46]) along the MEC dorso-

ventral axis, whereas [22,68] show that grid cells from more ventral portions of

MEC II have larger grid field size compared to more dorsal portions. Figure

4.12a shows the dispersion curve for different values of τh. For small values

of τh, the dispersion curve and the set of stable periods is small, whereas for

large values of τh it increases. Note that the maximal stable period increases

with the Ih current time constant τh, thus agreeing with experimental data

from [50]. Figures 4.12b, 4.12c and 4.12d show the set of stable periods (blue)

delimited by its maximum and minimum period (black line). Note that for the

strength of Ih current, gh, there is no significant change on the maximal period

(Fig. 4.12d) unlike the time constant τh (Fig. 4.12b) and connectivity radius R

(Fig. 4.12c). Although the scale of the travelling patterns can be controlled by

varying τh, the maximal stable period for the travelling wave is more sensitive

to changes in the connectivity radius than in the Ih time constant.

99



4.6 parameter continuation

−40 −20 0 20
0.3

0.35

0.4

0.45

0.5

V

n h

(a)

−40 −20 0 20
0.3

0.35

0.4

0.45

0.5

V

n h
(b)

−40 −20 0 20
0.3

0.35

0.4

0.45

0.5

V

n h

(c)

−40 −20 0 20
0.3

0.35

0.4

0.45

0.5

V

n h

(d)

Figure 4.11. Orbits of the the travelling waves emerging from the IF network model: The-

ory (blue) (4.10) vs simulations (red) (4.8) for different periods. Here the sim-

ulations were initiated with the values corresponding to theory until t = 3000

ms. At the predicted stable periods (∆ = 385 lower branch for (a) and ∆ = 455

for (c)), the simulated trajectories stayed close to the theory, whereas for the

unstable periods (∆ = 385 upper branch for (b) and ∆ = 470 for (d)) the

simulated trajectories diverged from the theory (as expected). The unstable

trajectories either evolve to a travelling wave with smaller period (d) or to

random activity (b). Parameters as in Figure 4.3.
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Figure 4.12. Continuation of travelling wave solutions as a function of various system pa-

rameters. (a) Dispersion curve c = c(∆) for τh = 360, 400, 600, 800 ms. The

green line corresponds to τh = 360 ms, cyan to τh = 400 ms, light blue

τh = 600 ms and dark blue τh = 800 ms. Solid lines represent periods where

system is stable, while dashed lines represent where it is unstable. Yellow

dots representing the values where the stability is lost. (b) Continuation of τh.

This graph shows the maximum and minimum periods (black line) for which

the system is stable for different values of τh. Thus, the blue zone correspond

to the stable periods for a given τh (solid lines in (a)) whereas the green zone

corresponds to the unstable periods. (c) and (d) same as (b) but for a given

radius connectivity R and gh respectively. Other parameters as in Figure 4.3.
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4.7 conclusions

Based on anatomical and electrophysiology constraints, a spiking network model

that exhibits a wide range of long wavelength travelling wave solutions was

proposed. To facilitate analysis a PWL function for the HCN channel activa-

tion function was used and a refractory period was imposed. After performing

numerical simulations (details in Appendix F) travelling waves were observed

whose orbit was described theoretically using techniques from the field of non-

smooth dynamical systems. In order to determine the maximum allowed period,

a wave stability analysis was developed. Importantly, using techniques from

non-smooth dynamics, in §4.4.2 it was described how to handle the perturba-

tions of the travelling wave orbit in time (by employing a co-moving framework)

through the switching manifold discontinuities inherited from the HCN chan-

nels and the firing events. In the analysis presented in this chapter it was

explained how these techniques can be extended, to evolve perturbations of the

travelling wave through the refractory period, as well as be applied to switching

and firing events. Using parameter continuation (§4.6), a relationship between

the maximal period and the model parameters was established. Furthermore,

it was demonstrated that the maximal period of the travelling wave increases

with the Ih time constant τh which represents an alternative mechanism for

modulating pattern wavelength independent of the connectivity radius. Note

that unlike other spiking models of grid cell activity (and in general most of

the LIF models for neural activity) that are explored predominantly with nu-

merical simulations, the mathematical tractability of model proposed in this

chapter allows a description of existence and stability, and therefore to predict

the maximal stable period for a given parameter set.
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4.7.1 Further Work

In the model proposed in this chapter, a refractory period was imposed to sim-

plify the analytical description of the wave orbit. Hence, the model presented

a single spike instead of the burst of spikes seen in the model proposed by Has-

selmo [51]. The analysis presented in this chapter could be extended to the case

where the refractory period is removed and the cell activity exhibits a burst of

spikes, where all the spikes in the burst are contained within a period of the

travelling wave.

The 1D spatial model simulations and analysis presented in this chapter has

been published in Bonilla-Quintana et al. [69], along with additional simulations

of the model in 2D. Thus a similar analysis to that presented in this chapter

can be applied in order to predict the scale of emerging patterns. One of the

major challenges to achieve this is to parametrise the shape of the 2D travelling

wave.

The wave stability analysis described in §4.4 can also be applied to models

with different types of neural connectivity or/and currents (with a correspond-

ing PWL caricature of their activation function) due to its general form. Indeed,

it would be interesting to extend the analysis to cover multiple currents with

multiple gating variables4, especially as K+ and Na+ currents have previously

been taken into account in models based on experimental data that describe

the resonance properties of grid cells [63].

4 Particularly, in the presented model the two currents refer to the synaptic and the Ih current.
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5
A NAVIGATION MODEL US ING F IR ING F IELDS

5.1 introduction

In Chapter 3 the relationship between the activity pattern formed by a con-

tinuous attractor neural network model and the resulting grid cell firing field

was discussed. Nevertheless, the question of how these firing fields could be in-

volved in navigation was not addressed. A firing field is obtained by recording

the action potentials of a neuron while an animal is traversing an environment.

The firing fields formed by grid cells and place cells are different. A grid cell

fires when the rat is at different locations, resulting in a hexagonal firing field

pattern, whereas a place cell just fires when the rat is at a certain spot. Figure

5.1 shows the firing fields from grid and place cells. In this figure the action

potentials are represented as dots in the trajectory.

Since the discovery of grid cells, there has been a consensus that this type

of cell is involved in the maintenance of estimates of current location by using

self-motion signals to estimate travelled distances and directions [70]. Such

computations are known as path-integration. Fiete et al. [71] noted that if grid

cells were the hypothesised path-integrator, they must represent position with

high resolution to minimise the accumulation of errors. They proved that a

small number of grid cell firing fields with different spatial scales can uniquely

specify the position on a large environment. As discussed in §3.1, grid cell fir-

ing fields increase their spatial scale from dorsal to ventral recording positions

in the MEC II. Moreover, Stensola et al. [72] showed that such increments in
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Figure 5.1. Firing Fields and anatomical locations of a place cells (Top) and grid cells

(Bottom). Left: recorded action potentials of a place (orange dots) and a grid

(blue dots) cell while a rat explores an environment. Here the gray line rep-

resents the rat’s trajectory. Right: cell location in the rat brain. Place cells

are found in the hippocampus and grid cells are found in the entorhinal cor-

tex. Image by Mattias Karlen c©The Nobel Assembly at Karolinska Institutet,

available at https://www.sciencenews.org/sites/default/files/images/

fig1-2_advanced-medicineprize2014-2.png.

spatial scale are discrete. The total number of discrete modules formed by grid

cells with common scale is hypothesised to be fewer than 10 [73], giving an ex-

perimental basis for the work in [71]. The importance of these discrete modules

to navigation was recently studied by Wei et al. [74]. They proposed that the

grid system implements a hierarchical code for space, where modules with small

spatial scale provide precise location; whereas modules with large spatial scale

resolve ambiguity. In this system, the modules are organised to minimise the

number of neurons required to encode location with a given resolution across

a range equal to the largest spatial period. Moreover, by using these assump-

tions, Wei et al. were able to explain the triangular lattice structure of two

dimensional grid cell firing fields and predict a geometric progression of spatial

scales.

Superficial layers of the MEC form a major spatial input to the hippocam-

pus [75]. A natural question to ask is: how can the firing of grid cells in the

MEC, when a rat is at multiple locations (forming a periodic grid in the envi-
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5.1 introduction

ronment), be transformed into place cell firing that occurs when the rat is at a

specific location (see Fig. 5.1)? In order to answer this question computational

models that transform periodic grid cell firing fields into place fields have been

proposed (see Cheng et al. [76] for a review). One example is the goal-directed

navigation model1 proposed by Erdem et al. [77] composed of a network of

head direction cells, grid cells, place cells and prefrontal cortex cells. In this

model place cells recieve synaptic input from a population of grid cells with

different spatial scales. However, recent discoveries indicate that grid cells are

not always crucial to place cell function [70]. Moreover, Poucet et al. [78] state

that navigation based on grid cells alone (termed pure self-motion navigation)

cannot remain accurate over indefinite distances or times, due to discrepancies

between computed and true positions accumulating, unless the system resets

to the true position using landmarks. They proposed a theory based on the

idea that circuits controlling navigation receive information about the animal’s

location in its surroundings as well as self-motion. Interestingly, goal-directed

navigation models were proposed before the discovery of grid cells, based only

on place cell activity. Furthermore, these models are able to replicate experi-

mental results. For example, Foster et al. [79] simulated experiments in which

animals are able to find a hidden goal location from different starting positions.

Moreover, their artificial animal reaches the goal location more rapidly in each

trial as in experiments. In their work, Foster et al. employed an algorithm

called temporal difference learning that is a method of reinforcement learning

to solve the goal-directed task (see §5.2 for a short introduction).

Most goal-directed navigation models mimic maze experiments that were

first performed by Tolman during the 1930s and 1940s in order to answer the

question of how animals remember certain places. Roughly speaking, maze

experiments consist of placing a rat within an enclosed maze environment, that

additionally contains a reward (food) at a given (hidden) goal location. The rat

must explore the environment in order to find the reward. In these experiments,

the rat learns to take the quickest route towards the goal, thereby allowing

1 The objective of a goal-directed naviagation model is to find a (hidden) goal location.
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investigation of navigation and learning processes in a controlled way. Tolman

proposed that animals discover relationships between places and events as they

explore the environment. Importantly, he suggested that exploration leads

gradually to the formation of a cognitive map that enables the creation of

detours and shortcuts in the presence of obstacles [80, 81]. It was not until

1971, with the discovery of place cells in the rat hippocampus by O’Keefe, that

evidence was obtained that such a map structure of the spatial environment

could indeed be formed in the brain [82].

In this chapter a navigation-based model using reinforcement learning is pro-

posed. In order to outline the algorithms on which this model is based, first

an introduction to reinforcement learning is given in §5.2. Then, the model is

constructed and compared to previous models in the literature (§5.3). In §5.4 a

new task is modelled in order to determine if the proposed model is capable of

learning different goal locations, that change every day, after the first trial each

day. Furthermore, in §5.4.2 the effects of adding landmarks to the environment

are investigated, and in §5.4.3 the performance of the agent is studied under

variation in the size and spacing of place cell firing fields.

5.2 reinforcement learning

Here an introduction to reinforcement learning (RL), based on the seminal work

of Sutton and Barto [83], is presented. These authors define RL as a computa-

tional approach to learning, based on the idea that humans (and animals) learn

from interacting with the environment. In RL the learner (agent) is not told

what to do, but instead discovers which actions give more reward by trying

them. Note that this idea is similar to that proposed by Tolman for the forma-

tion of a cognitive map in the sense that the learning process occurs through

interactions with the environment, and it is therefore natural to use reinforce-

ment learning to simulate maze tasks. At the beginning of such tasks, the goal

location is unknown for the rat, so it explores the environment until it reaches
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the goal location where it receives a reward. On the subsequent trials2, the rat

will have some information about the goal location that influences its decision

of where to go (action) in order to reach the goal location more efficiently.

In order to state a general maze task in a reinforcement learning framework,

first some key concepts must be defined. Here, the rat is referred to as the agent:

it takes the decisions in view of its current state (here defined by its position

in the maze). A policy defines the learning agent’s way of behaving at a given

time. It can be seen as a map linking previously explored locations to actions

to be taken when in these locations. On the other hand, a reward function

maps each state (or state-action pair) of the environment to a single number;

a reward. The reward function is given by the environment in the sense that

the agent cannot change it. Instead the agent changes its policy based on the

reward at each time step. At each time step, the agent estimates a state-value

function that gives a notion of “how good” it is for an agent to be in a given

state. This value function is the total amount of reward an agent can expect

to accumulate over the future, starting from its current state. The agent also

estimates “how good” it is to choose an action in a given state with an action-

value function for a given policy. Note that RL is based on three processes:

sensation (information about the environment), action, and goal. Therefore, it

can be defined as learning how to map situations to actions, so as to maximise

the reward signal it receives in the long run.

In more formal terms, the agent and the environment interact at every time

point t, the agent receives some representation of the environment’s state st ∈ S,

where S is the set of possible states, and based on that, it selects an action

at ∈ A(st), where A(st) is the set of available actions at state s at time t.

As a consequence of this action, the agent transitions to a new state st+1 and

receives a reward rt+1 ∈ R on the next time step. The policy πt(s, a) is defined

as the probability of taking the action a at time t if the agent is on state

s. The state-value function for state s, V π(s), is the expected accumulative

2 A trial begins when the rat is put on the environment and finishes when the rat finds the

goal location and obtains a reward.
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reward when starting in s and following π thereafter. The action-value function,

Qπ(s, a), is the expected accumulative reward starting from s, taking action a,

and thereafter following policy π. In RL, the actions taken by the agent may not

only affect the immediate reward but also the subsequent situation, that could

lead to subsequent rewards. This gives rise to the notion of a delayed reward.

For this reason such models are often termed temporal difference learning.

An example of an artificial maze experiment on a square lattice, where every

square represents a position, is presented in Figure 5.2 in order to illustrate

the above. A trial starts when the agent is put on a square and ends when

it reaches the goal location and receives a reward. In this maze example the

reward function is set to the value 1 on the goal location and -1 everywhere else,

so the agent is encouraged to reach the goal location as fast as possible from

any location. Since the goal location is hidden, the agent can not take a direct

path towards it. Instead, it must explore the environment until it reaches the

goal location. The artificial rat makes a decision of where to move at each time

step based on previously obtained rewards, or it can make a random movement

with the aim to explore other areas. One of the challenges of this RL approach

is the trade-off between exploration and exploitation: actions that were already

taken and led to a reward must be repeated, but also unexplored actions must

be taken in order to discover other rewards. As indicated in Figure 5.2, the

agent is constrained to a discrete lattice and it can choose to move only north,

south, west or east. Dark blue arrows indicate the “chosen” path; other example

paths are shown for comparison. From the starting position the agent could

have chosen a better route by initially travelling east instead of north (light blue

arrows). The advantage of reinforcement learning is that the agent can explore

options leading to better routes, such as the one shown by purple arrows. Here

the agent, instead of following a known route (dark blue arrows), chooses to

turn left after three time steps.

In Figure 5.2, after reaching the goal at sN = goal, the agent’s policy changes

on the previous location sN−1 to go south because it is the action that yields the

most reward (on the dark blue route). The estimated value function decreases
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with the distance of the goal location: the rat first explores, reaches the goal

(dark blue arrows route), and back-propagates the information about the goal

by assigning some discounted value to the proximal states. Now, suppose that

in the next trial the rat follows the same path (purple route). Although it

previously reached the goal location, the value assigned to going north on the

third time step is very low (it took many steps to reach the goal), so the

rat chooses to take another action in order to gain more reward. The goal

location is then reached in three steps instead of seven, increasing the value of

that location. The policy is changed accordingly. Note that the calculation of

the value functions V π(s) and Qπ(s, a) at any time requires knowledge of the

reward function of the future states which (in this maze example) is unknown

by the agent. Therefore an estimation is used instead. Finding the estimation

v(s) of V π(s) is the so-called prediction problem in RL, whereas improving

the policy defines the control problem. The estimation of the value function is

updated at every time step.

5.2.1 Temporal Difference Learning

Temporal difference (TD) methods learn directly from raw experience by updat-

ing the estimate state-value v(s), based on a difference between two estimates

at two different times, without waiting for a final outcome (i.e. they bootstrap).

For now, the estimated state-value function is given by a number, but it also

can be a parametrised function, which will be shown in §5.2.2. Imagine that

the agent is at location s at time t, st, where it takes an action that leads it to

state st+1. In this new state the agent observes a reward rt+1. Then the value

at the earlier location v(st) is adjusted to be closer to the value of the later

state v(st+1) given the reward:

v(st)← v(st) + α [rt+1 + γv(st+1)− v(st)] , (5.1)

where 0 ≤ γ ≤ 1 is the discount rate and α > 0 is a small, so-called, step-size

parameter, which influences the rate of learning. Note that the value update
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Figure 5.2. A general maze task. The rat (agent) is constrained to a discrete version of a

maze (environment). On each square (location) the rat perceives its environ-

ment and makes a decision on which action to take. The allowed actions are

going north, south, east or west (red arrows). The aim of the task is to learn

which actions to take in order to minimise the number of movements required

to reach the goal location from any location. Dark blue, purple and light blue

arrows indicate different example paths from the agent’s current position to

the goal.
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is based on an existing value estimate of the previous locations. For example,

let s1 = start → s2 = B → s3 = C → . . . → sN = D → sN+1 = goal denote

the sequence of locations that the agent followed on the first trial (in Fig. 5.2

each location is represented as a square in the lattice). At the start of this trial,

the estimated value function is similar for all the states because it is assumed

that the environment is unknown by the agent. Consequently, the estimated

value function does not change until the agent receives a reward. For simplicity,

assume that only the goal location has a (positive) reward. After reaching the

goal location the agent updates the estimated value of the previous state v(D)

by some fraction of the reward rN+1 obtained at the goal location using (5.1).

Thus, the estimated value of state D is larger than the rest of the states. The

policy πN (D, a) is changed accordingly by increasing the probability of taking

the action a that led to the goal location. On the following trial, the rat follows

the state sequence s1 = start → s2 = B′ → . . . → sM = C ′ → sM+1 = D.

Because the estimated value function at state D is larger than the one at state

C ′, v(C ′) increases and is larger than for the rest of the states but v(D) > v(C ′),

in this way, the information of the goal location is back-propagated. Also, it is

more probable that the agent takes the action that leads to the goal location

from state D due to the change of policy on the first trial.

5.2.1.1 Actor-Critic Methods

The TD learning method gives a solution for the prediction problem in RL.

Nevertheless, the solution for the control problem has not yet been addressed.

There are many TD methods that solve such problem based on the idea that

the policy and the estimated value function updates should interact in such a

way that both of them move towards the optimal value. For example, the actor-

critic method has a separate memory structure to represent explicitly the policy,

independent of the state-value function [83]. The policy structure is known as

the actor and the estimated state-value function is known as the critic. Hence,

the critic criticises the actions selected by the actor. The learning is on-policy:

the critic learns about and criticises the policy followed by the actor at each
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time step. The critic employs a TD error to evaluate if the action taken, at, by

the actor at state st is better or worse than expected. The TD error is given

by:

δt = rt+1 + γv(st+1)− v(st). (5.2)

Note that δt is the change in the estimated state-value function in (5.1). There-

fore, if the error is positive then the tendency to select at should be strength-

ened, whereas if the TD error is negative, it suggests that the tendency should

be weakened.

5.2.1.2 Eligibility Traces (TD(λ) Method)

So far, the state-value function update (5.1) considers only the values of the

previous and the current states. However, a temporary record of the occurrence

of visiting a state or of taking an action can also be implemented. Such a

record is called an eligibility trace. For example, let the event be visiting a

location in the maze task example in Figure 5.2, then each time that the agent

visits that particular location, the eligibility trace will increase, otherwise it

decreases. This kind of eligibility trace is called an accumulating trace because

it accumulates the times that a state has been visited by the agent, then fades

away gradually when the state is not visited, as shown in Figure 5.3.

The TD(λ) algorithm implements an eligibility trace. Let et(s) ∈ R+ denote

the eligibility trace for state s at time t. On each step, the eligibility trace for

Figure 5.3. Accumulating eligibility trace for a state over time. On each time step, the

eligibility trace decays by γλ if the state is not visited, if the state is visited it

is incremented by 1.
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the current state is incremented by 1, and the eligibility traces for all other

states decay by γλ:

et(s) =


γλet−1(s), if s 6= st

γλet−1(s) + 1, if s = st

, ∀s ∈ S, (5.3)

where γ is the discount rate in (5.2). Henceforth, λ, 0 ≤ λ ≤ 1 is the trace-decay

parameter. The TD error signal is given by (5.2) and the state-value update to

all recently visited states (i.e., et(s) 6= 0) is proportional to the TD error

vt(s)← vt(s) + αδtet(s), ∀s ∈ S, (5.4)

where “recently” is defined by γλ.

5.2.2 Generalisation and Value Function Approximation

In the general maze task (Fig. 5.2) most locations will have never been experi-

enced, and the only way to learn anything at all is to generalise from previously

explored locations to the locations that have never been seen. Thus, a combina-

tion of reinforcement learning methods with a generalisation method is needed.

In particular, here the sparse state-value function V π(s) data obtained from

visited locations is employed to approximate this function over the entire do-

main. The approximate value function at time t, Vt, will be represented as a

parameterised functional form with parameter wt, i.e. Vt = Vt(s;wt). In this

way Vt depends on wt, which varies from time step to time step. The mean-

square error between Vt and the true value function V π over some distribution

(weighting the errors of different states), P , is given by

MSE(wt) =
∑
s∈S

P (s) [V π(s)− Vt(s;wt)]2 . (5.5)

This can be minimised using wt if it is assumed that Vt is a smooth differentiable

function of wt for all s ∈ S, where wt is a column vector, and that on each time

step there is full knowledge of the corresponding V π(st). A good strategy is to

try to minimise the error between the state-value function and the approximate
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value function for the corresponding state at time t. Gradient-descent methods

do this by adjusting the parameter vector, after the agent arrives at state s at

time t and computes V π(st), by a small amount in the direction that would

most reduce the error on that step:

wt+1 = wt −
1
2α∇wt [V

π(st)− Vt(st;wt)]2

= wt + α [V π(st)− Vt(st;wt)]∇wtVt(st;wt), (5.6)

where α is a positive step-size parameter3, and ∇wtVt(st;wt) denotes the vector

of partial derivatives of Vt(st;wt) with respect to wt. Note that wt is propor-

tional to the negative gradient of the observed V π(st) squared error. This is

the direction in which the error falls most rapidly.

As discussed in §5.2, the agent needs to use an estimation of the state-value

function V π(st), v(st). Thus, the general method for state-value prediction is

given by substitution into (5.6) to yield:

wt+1 = wt + α [v(st)− Vt(st;wt)]∇wtVt(st;wt). (5.7)

Note that in (5.7) an estimation, v, of the state-value function, V π, for the state

s at time t is combined with a generalisation of V π(st) to other unexplored

states, Vt(st;wt). A good estimation of V π(st) is achieved using the TD(λ)

method when the TD error is zero, which using (5.2) gives v(st) = rt+1 +

γv(st+1). Now, assuming that the estimated value at state s and time t is given

by a parametrised function instead of just a number, i.e. v(st) = Vt(st;wt),

the learning process occurs through parameter updates at each time step:

wt+1 = wt + αδtet, (5.8)

where δt is the TD error given by

δt = rt+1 + γVt(st+1;wt)− Vt(st;wt). (5.9)

Here et is a column vector of eligibility traces, one for each component of wt,

updated by

et = γλet−1 +∇wtVt(st;wt), (5.10)
3 Note that α is also in (5.1) and in both equations denotes the amount of change that is

assigned to the updated value at each time step.
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with e0 = 0. Note that the increments on the eligibility trace differs from that

in (5.3), since the increments are proportional to the gradient of Vt and thus

generalise to other states.

5.2.3 Coarse Coding

Until now, locations have been represented as a square in the discrete lattice

environment (Fig. 5.2). However, locations in a 2D environment can have a

continuous representation as a vector with two real components using coarse

coding. In coarse coding, a state is represented with features that overlap.

For example, in the artificial maze the environment can be represented by

overlapping circles instead of a lattice (see Fig. 5.4). The overlapping circles

are the features and they represent the agent’s location by determining whether

a feature is present in the current state or not. In Figure 5.4 a feature is present

if the agent is at a location inside a particular circle or not. For example, when

the agent is at state X there are three features present, and if it moves to state

Y on the next time step, only one of these features remains present. Note that

the representation of the states with features allows the agent to move in a

continuous state space. Instead of moving to a different square in a lattice, it

moves to different states where some of the features are shared between them.

This allows a generalisation between states.

To formalise the above, let φs,i represent the value of the ith feature present

at state s, then the approximate state-value function can be given by

Vt(s;wt) =
n∑
i=1

wt,ig(φs,i), (5.11)

where φs is a column vector with the same number of components as wt and g

is a function. Note that if g(φs) = φs then Vt(s) is linear in the parameters.

There are different types of feature depending on the value assigned to represent

the features. For example, a binary feature (see Fig. 5.4) assigns a value of 1 if

the corresponding feature is present at the current state and 0 otherwise.
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X

Y

Figure 5.4. Coarse coding. There are three features present at state (location) X repre-

sented by three overlapping gray circles. Note that state X and state Y have

one feature in common, so there will be slight generalisation between them.

5.2.3.1 Radial Basis Functions

Other type of features can be continuous-valued reflecting various degrees to

which the feature is present. This type of features are called radial basis function

(RBF) features, and typically these features have a Gaussian response that

depends only on the distance between the state and the feature centre ci, which

is relative to the feature’s width σi

φs,i = exp
(
−‖s− ci‖

2

2σ2
i

)
. (5.12)

Importantly, some theoretical models of place field formation also use Gaussian

functions to represent place cell firing fields [84]. Hence, it is natural to use

RBF features in the maze.

5.2.4 Reinforcement Learning in Continuous Time and Space

Doya [85] considered a more realistic approach to learning, in which TD meth-

ods are formulated for continuous time nonlinear dynamical systems instead of

discrete time step iterations. This approach is more suitable for the maze task
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because it allows the agent to take continuous actions in response to real valued

sensory input. Doya considered a continuous time deterministic system,

ṡ(t) = f(s(t), a(t)), (5.13)

where s ∈ S ⊂ Rn is the state and a ∈ A ⊂ Rm is the action. Here ˙ denotes

the derivative with respect to time. The immediate reward for the state and

the action is given by

r(t) = r(s(t), a(t)). (5.14)

The goal of this formulation is to find a policy,

a(t) = π(s(t)), (5.15)

that maximizes the cumulative future reward,

V π(s(t)) =
∫ ∞
t

e−
t′−t
τ r(s(t′), a(t′))dt′ (5.16)

for any initial state s(t). Here τ is the time constant for discounting future

rewards. The value function V ∗ for the optimal policy π∗ is defined as

V ∗(s(t)) = max
a[t,∞)

[∫ ∞
t

e−
t′−t
τ r(s(t′), a(t′))dt′

]
. (5.17)

The above integral can be evaluated using the principle of optimality. This

principle was described by Bellman [86] as: “an optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions

must constitute an optimal policy with regard to the state resulting from the

first decision”. According to this principle the integral in (5.17) can be divided

into two parts [t, t+ ∆t], corresponding to the initial decision, and [t+ ∆t,∞).

After solving the resulting integrals and taking ∆t → 0, the condition for the

optimal value function at time t is found:

1
τ
V ∗(s(t)) = max

a(t)∈A

[
r(s(t), a(t)) + ∂V ∗(s(t))

∂s(t)
f(s(t), a(t))

]
, (5.18)

which is the Hamilton-Jacobi-Bellman (HJB) equation for infinite-horizon, dis-

counted reward problems and is used to solve optimization problems in contin-

uous time systems. The optimal policy is given by

a(t) = π∗(s(t)) = argmaxa∈A
[
r(s(t), a) + ∂V ∗(s(t))

∂s(t)
f(s(t), a)

]
. (5.19)
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The change of the value function over time under the policy π is given by differ-

entiating (5.16) with respect to time, which yields V̇ π(s(t)) = V π(s(t))/τ −

r(t). Because states and actions are continuous, the state-value function can-

not be computed exactly over the entire domain (since all locations cannot be

visited; see §5.2.2). Therefore, a value function approximation is needed. Let

V (s(t);w) denote the parametrised approximation of the state-value function,

then the continuous version of the TD error is given by

δ(t) = r(t)− 1
τ
V (s(t)) + V̇ (s(t)). (5.20)

As in the discrete case, the objective is to bring the TD error to zero. This

can be achieved by implementing a gradient descent algorithm to minimise |δ|2

where

ẇi = ηδ(t)

[
1
τ

∂V (s;w)
∂wi

− ∂

∂wi

(
∂V (s;w)

∂s

)
ṡ(t)

]
. (5.21)

Here η is a learning rate.

In order to derive a continuous version of the eligibility traces, Doya consid-

ered an impulse of reward at time t = t0 in (5.16), to give

V π(t) =


e−

t0−t
τ , t ≤ t0

0, t > t0

. (5.22)

Because the value function is linear with respect to the reward, the correction

of the value function for an instantaneous TD error δ(t0) (Fig. 5.5) is

Vc(t) =


δ(t0)e−

t0−t
τ , t ≤ t0

0, t > t0

. (5.23)

Therefore, he proposed the following update of wi given δ(t0)

ẇi = ηδ(t0)
∫ t0

−∞
e−

t0−t
τ
∂V (s(t);w)

∂wi
dt ≡ ηδ(t0)ei(t). (5.24)

Note that the above equation reflects an eligibility trace in the sense that the

exponential term fades as t→ −∞. Hence the influence of the reward pulse is

higher for previously visited states. In this way information about the reward
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location is back-propagated as in the discrete case. The continuous version of

TD(λ) is given by

ẇi = ηδ(t)ei(t), (5.25)

ėi(t) =
1
κ
ei(t) +

∂V (s(t);w)
∂wi

, (5.26)

where 0 < κ ≤ τ is the time constant for the eligibility trace.

Doya also developed a continuous version of the actor-critic algorithm where

the TD error is used to improve the policy. He considered the following policy

implemented by the actor:

a(t) = g
(
A(s(t);wA) + σnn(t)

)
, (5.27)

where A(s(t);wA) ∈ Rm is a function approximation with parameter vector

wA, n(t) ∈ Rm is noise, and g is a monotonically increasing output function.

The size of the perturbation σn decreases as the performance improves; and the

parameters are updated as:

ẇAi = ηAδ(t)n(t)
∂A(s(t);wA)

∂wAi
. (5.28)

The inclusion of the noise term allows the agent to explore different actions

for every state, as in Gullapalli’s stochastic real valued unit algorithm [87].

The actions become more deterministic (i.e., the noise decreases) as the agent

learns about the best route towards the goal location; and therefore allows a

good balance between exploitation and exploration.

t

Vc

t0

Figure 5.5. Update for the value function estimate Vc(t) for an instantaneous TD error δ(t)

at t = t0. Here the instantaneous TD error is corrected by an exponentially

weighted increase in V (t) for t < t0.
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5.3 maze task using firing rate neural networks

Frémaux et al. [88] proposed a model of a maze task with reinforcement learning

using a continuous time actor-critic framework with spiking neurons. Their

model is based on experimental evidence that dopamine, a neurotransmitter

associated with pleasure, is released in the brain when a reward event occurs.

Dopamine has also been shown to modulate spike-timing-dependent plasticity,

and hence their choice of a spiking network. However, there is experimental

evidence that dopamine is related to the state of desire (i.e., wanting a reward)

rather than pleasure (i.e., liking a reward) [89].

Figure 5.6 shows a description of the model architecture proposed by Frémaux

et al. in [88]. The actor and the critic are represented by two neural populations

receiving information about the environment via place cell activity. The critic

network computes the TD error that would strengthen or reduce the connections

between place cells and the actor/critic neurons. The maze in Frémaux et al.

has a square shape, with a U-shaped obstacle around the goal location, which

is in the maze centre. The objective of the task is for the agent to learn the

shortest path towards the goal, for any of the four starting locations.

In this section, a new model of this maze task is proposed using firing rate

descriptions for the critic and the actor. Implementing firing rate instead of

spikes decreases the computational cost of the simulations and facilitates math-

ematical analysis. In this model a trial starts when the agent (an artificial rat)

is put at an initial state (a location in the maze) x ∈ R2, x = (x, y). After the

trial starts, the jth place cell’s instantaneous firing rate is updated to

ρPj (x(t)) = ρP exp
−‖x(t)− xj‖2

σ2
P

 , (5.29)

where ρP is constant and xj is the location of the firing field centre encoded

by the jth place cell, j = 1, 2, . . . ,NP . The firing field centres are arranged

on a uniform grid. Note that RBF features are used to represent the firing

rates of place cells. The artificial rat senses its position in the environment

only through place cell information. The presynaptic activity in place cells
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5.3 maze task using firing rate neural networks

Figure 5.6. Maze task simulation by Frémaux [88]. Bottom: maze environment. Blue

dots represent the centres of the place cell fields. Blue shadow shows how the

activity of a place cell decays as the distance from the centre of its firing field

increases (5.29). Grey line: evolution of the agent from the starting position

(blue crosses) until it reaches the goal location (green disk). During the trial

the agent avoids the obstacles (red U-shaped obstacle around the goal location

and red lines delimiting the maze). Centre right: critic neurons that compute

the TD error. Top right: expected future reward (value map) encoded by the

critic. Centre left: actor neurons connected in such a way that a neuron excites

nearby neurons while inhibiting all other neurons. Top left: the most probable

actions that the agent can take (policy map). Figure taken from [88].
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5.3 maze task using firing rate neural networks

generates activity in the postsynaptic neurons of the critic and the actor. The

agent receives a reward R when it reaches the goal location and is punished

(via negative reward) when it runs into a wall. Thus, the reward R only occurs

at precise times. However, to motivate the agent to achieve the goal as quickly

as possible there must be temporal decay of the reward. This is modelled by a

decaying reward rate function r(t) that instantaneously updates when a reward

R happens.

Importantly, because the rate model proposed here is deterministic it allows

for the implementation of eligibility traces for the learning rule, as proposed

by Doya [85], instead of having to simulate the so-called “neutral state” pro-

posed by Fremaux et al. [88], in which learning continues for three seconds after

reaching the goal location without place cell input. This “neutral state” resem-

bles an eligibility trace and was used by Fremaux et al. to overcome problems

associated with the inherent noise of spiking neurons.

5.3.1 The Critic

As stated previously, the value function estimation is performed by the critic.

Here the critic is represented by a population of NC independent neurons whose

activity, uCi (t), evolves according to

QCuCi (t) = ε0

NP∑
j=1

wPCij (t)ρPj (t), QC =

(
1 + τm

d
dt

)(
1 + τs

d
dt

)
, (5.30)

where ε0 is a scaling constant and i = 1, . . . ,NC . Here a matrix wPC ∈

RNC×NP is used for the parameters instead of a vector since the critic is rep-

resented as a population of neurons. Hence wPCij represents the connection

between the jth place cell and the ith critic neuron. For the firing rate func-

tion ρC , an exponential function is chosen

ρCi (u
C
i ) = µ exp(β(uCi −Θ)). (5.31)

The value function is given by

V (x(t)) =
v

NC

NC∑
i=1

ρCi (t) + V0, (5.32)
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where v and V0 are constants. Here the value function is a smooth function

of the place cell activity V (x(t);wPC) = V (ρC(uC(ρP (x(t));wPC))), and

therefore a nonlinear function of the RBF features. The TD error and the

parameter updates using the proposed rate networks and elegibility traces are

derived in Appendix G. The parameter updates can be interpreted as a form

of Hebbian-TD4 error rule in the sense that presynaptic activity of place cells

induces a change in the postsynaptic activity of critic neurons through a reward

modulated signal.

5.3.1.1 Linear Track Simulation

In order to test if the proposed rate model can achieve similar results to the

spiking neuron model in [88], a linear track simulation is performed. In this

set up, the maze in Figure 5.6 is replaced with a rectangular track; with the

goal placed at some distance ahead of the agent’s starting position. The agent’s

choice is therefore clamped to the action of going straight towards the goal (and

so actor neurons are not simulated). This simplified scenario allows a study of

the critic learning in isolation. At the beginning of each trial, the artificial rat is

placed in the maze at the same starting position from which it will run straight

to the goal location. The trial finishes when the rat arrives at the goal location

at time t = tend, and receives an instant reward R.

Figure 5.7 shows the results after 20 trials (for simulation details see Ap-

pendix H). The resulting value map, representing the expected reward at any

location at the end of the trial, is shown in Figure 5.7a. It is notable that,

although the rat ran straight to the goal location, information about the goal

location is spread to nearby locations due to the use of the value function

approximation and coarse coding.

Figure 5.7b shows the value function (5.32) for all the trials, colour-coded

from blue (first trial) to red (last trial). On the first trial (dark blue line)

4 Here Hebbian refers to the conjecture of Donald Hebb. This conjecture states that if input

from neuron A often contributes to the firing of neuron B, then the synapses of A to B should

be strengthened [4].
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the critic does not have knowledge of the goal location, and hence the value

function is close to zero. For subsequent trials, the value function increases

near to the goal location due to the strengthened connections wPC between the

presypnatic activity of the recently visited place cells (before the reward) and

the postsynaptic activity of critic cells. After the initial trials, the information

about the reward is back-propagated via the eligibility trace. After 20 trials,

the value function (dark red line) is close to the correction of the value function

Vc(t) in (5.23) (black dotted line).

Figure 5.7c shows the TD error given by (5.20) for all the trials colour-coded

as above. There is a peak at the end of the trial due to the instantaneous reward

obtained at the goal location, which decreases as the agent learns. Smaller

changes in the TD error are seen before reaching the goal location due to the

back-propagation of information. For example, before reaching the goal location

at trial 20 (dark red line) the agent anticipates a reward that is not received at

that position, hence δ is negative.

Importantly, the results achieved in this simulation are similar to those ob-

tained in the spiking neuron model proposed by Frémaux et al. [88] . Moreover,

it suggests that all the modifications to the Frémaux et al. model made here

are reasonable. These modifications comprise: the change from spike to firing

rate based models, the implementation of continuous eligibility traces instead

of a “neutral state”, and the derivation of the learning rules for the critic. The

environment and task description, as well as the architecture remain the same.

5.3.2 The Actor

The actor chooses which action to take in order to maximize the reward. Here

the actor is modeled as a network of NA neurons, each coding for a different

direction of motion. The activity of the actor evolves according to

QAuAl (t) = ε0

NP∑
j=1

wPAlj (t)ρPj (t) + ε1

NA∑
k=1

wAAlk (t)uAk (t) + σnnl(t), (5.33)
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Figure 5.7. Linear Track Simulation. (a) Value Map representing the expected reward

at any location in the environment after 20 tirals. Cyan dots represent the

centres of place cells and cyan lines delimit the linear track maze. The agent

is placed at the start position and its action is forced to go to the right at a

constant speed (blue arrows) until it reaches the goal location at tend = 6700

ms. (b) Value function as a function of time for each trial (colour-coded from

dark blue in trial 1 to dark red in trial 20), black dotted line represents Vc =

δ(tend) exp(−(tend − t)/τr), t < tend as in Figure 5.5. (c) TD error δ as a

function of time. Inset: zoom at times before receving the reward R at the

goal location. Colour-coded as in (b). Simulation details are in Appendix H.

126



5.3 maze task using firing rate neural networks

with l = 1, . . . ,NA,

QA =

(
1 + τϑ

d
dt

)(
1 + νϑ

d
dt

)
, (5.34)

and where ε0 and ε1 are constants. Here n(t) is a low-pass filtered noise

τnṅl(t) = −nl(t) + Ωl(t), (5.35)

where Ω denotes normal Gaussian noise. The size of the perturbation σn is

modulated by the performance, such that the noise decreases as the performance

increases. Hence

σn = σn0 min [1, max [0, (Vmax − V (t)) / (Vmax − Vmin)]] , (5.36)

where Vmin is the minimal level of expected reward, whereas Vmax is the max-

imal. Here σn0 > 0 is a constant. The first term on the right hand side of

(5.33) represents the connections between place cells and actor cells (analogous

to the corresponding term in (5.30)). The next term in (5.33) gives the lateral

feedback of actor cells, the connectivity wAA ∈ RNA×NA excites neurons nearby

and inhibits all other neurons. This term promotes the formation of a single

bump of activity. During early trials the bump will be formed at a random po-

sition (driven by noise), but on learning the appearance of the bump becomes

more deterministic (due to the strengthening of synaptic weights between place

and actor cells and the decrease of the noise perturbation σn in (5.33)). This

results in a good exploration/exploitation balance. The activity of the actor

differs from that in [88] in that a noise term is added explicitly. Note that in the

model proposed by Frémaux et al. there is a form of noise due to the spiking

activity whereas here it is added in order to promote exploration.

The agent’s choice is to go towards the direction coded by the actor cell with

maximum activity. Let θl be the direction coded by the lth actor cell, then the

state evolution is given by

ẋ(t) = s

(
cos(θ∗)
sin(θ∗)

)
, θ∗ = θ

(
max

[
ρA(uA;wPA)

])
, (5.37)
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where s is a constant speed and ρA = ρC as given by (5.31). Here, the update

of the weights between presynaptic place cells and postsynaptic actor cells is

given by

ẇPAlj = ηAδ(t)
∂ρA(uAl ;wPA)

∂wPAlj
, (5.38)

where ηA is the constant learning rate of the actor and δ(t) is the TD error

given by (5.20). With this learning rule the connection between neurons form-

ing the bump activity of actor cells and the recently visited place cells will be

strengthened when δ(t) > 0 and weakened when δ(t) < 0. Note that the bump

of activity formed by the connectivity of actor cells and the chosen ρA5 en-

sures generalisation across the actor neurons because actions coding for similar

direction will be reinforced according of the performance of the action.

5.3.3 Simulation Results

In order to confirm that the rate network model for the actor and critic dy-

namics proposed in this work can achieve similar results to those in Fremaux

et al. [88] (Fig. 5.6) 20 trials were simulated. On each trial the agent starts at

one of 4 randomly-chosen starting positions. The maze is a square environment

with a circular goal location at the centre surrounded by a U-shaped obstacle,

as shown in Figure 5.8. The trial ends when the agent reaches the goal loca-

tion and gets an instantaneous reward Rgoal or when t > tmax, at which point

the agent is removed from the maze. All the agent’s trajectories are shown in

Figure 5.8a, and exhibit a good exploration/exploitation balance, covering a

large proportion of the maze. Figure 5.8b shows the time taken by the agent to

find the goal location at each trial. It can be seen that at early trials the agent

was not able to find the goal location from any starting location, except on

the third trial when the agent found the goal location starting at the western

starting position. After the sixth trial, the agent reached the goal location in

5 Note that ρA is an exponential function, so the change in wPA will be proportional to its

derivative. See Appendix I for details.
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most of the trials, starting at any of the initial positions. It was easier for the

agent to find the goal location when it started at the northern location due to

the obstacle.

Figure 5.8c illustrates how the trajectories starting from the southern location

change as the agent learns the goal location. The first time the agent started at

the southern start location was on the fifth trial (blue line), the agent was not

able to find the goal location and was removed from the maze after tmax ms.

The following occasion was on the ninth trial (aqua line). This time, instead of

staying in the same area as in the fifth trial, the agent moved to the western

part of the maze, and when it approached the goal location it remained close

to it. This is because the agent was able to exploit information about the goal

location, via its value function, obtained from western starting positions on

trials 3 and 7, and from north starting position on trial 8. At trial 11 (light

green) the artificial rat followed a similar path as in trial 9, but avoided the

interior wall of the U-shaped obstacle. On the next trial (12, lime green), the

agent took the same route as in trials 9 and 11, but then it chose to go right

instead. Note that since the southern starting position is far from the goal

location (due to the obstacle), the information about the goal location had not

yet back-propagated sufficiently; allowing the agent to explore other options.

Eventually, however, it reached the north part of the maze where it found the

goal location. On trial 16 the agent was not able to reach the goal location.

This could have been due to the fact that the synaptic weights between the

place and actor cells decreased in locations at the top left corner of the maze,

allowing the noise term to take control, which translated to randomly chosen

actions.

Figure 5.9 shows the value maps for this task on different trials. Initially,

synaptic weights between the place and critic cells were randomly selected (Fig.

5.9a). After seven trials (Fig. 5.9b) these weights decreased near the maze and

obstacle walls, due to the negative reward received when a collision occurred.

The value map has its highest value in the unexplored top right corner. In

Figure 5.9c the value map after trial 14 has low values even near the goal
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Figure 5.8. (a) Colour-coded trajectories from an agent during 20 simulated trials of the

maze task. Here earlier trials are represented by dark blue lines, and later trials

by dark red lines. The goal location (green cicle) is surrounded by a U-shaped

obstacle. Starting positions are represented by green crosses equidistant from

the goal location. Blue dots denote the place cell firing fields centres. (b) Time

in seconds taken by the agent to find the goal location at each trial, starting

at the North (green), South (magenta), East (blue) and West (red) starting

postions. (c) Trajectories starting at southern starting location, x = (0,−7.5),

corresponding to the trial numbers 5, 9, 11, 12 and 16. Simulation details and

parameters are presented in Appendix I.
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location due to collisions with the obstacle’s internal walls. After all the trials

the value map (Fig. 5.9c) has a bump of activity on the north part of the maze,

near the goal location due to the back-propagation of the information about the

goal location. Note that near the goal location the value function decreases due

to the negative reward from colliding with the walls. Other bumps of activity

are seen in unexplored areas.

Figure 5.10 shows the policy map (how likely it is that the agent chooses a

certain direction). Because the initial synaptic weights between place and actor

cells were randomly chosen, the initial policy map (Fig. 5.10a) is also random.

After 7 trials (Fig. 5.10b) it can be seen that the policy dictated directions

around the top left corner of the maze are weak, and hence the associated

actions are effectively random. Note that there is also a change of preferred

direction around the goal location. For later trials (Figs. 5.10c and 5.10d)

the policy map changes due to collision with the walls, rather than from the

learning of the goal location.

These results show that the proposed firing rate description of the actor activ-

ity and action selection (and therefore the state evolution) are able to achieve

good performance in the task proposed by Frémaux et al. [88]. Simulations

where only the actor activity was changed from the one in the spiking model

show the same behaviour (data not shown), validating the firing rate description

of the actor activity proposed here.

The rate description of the critic and actor activity proposed in this section

embedded in the continous time framework proposed by Frémaux et al. [88]

showed good performance. The agent was able to reach the goal location in less

time as it explored (and learned using reinforcement learning) the environment.

First, the critic component of the model was studied. The spiking activity

was transformed to a rate description. Furthermore, the implementation of

eligibility traces for the learning rules, instead of a “neutral state”, has a more

solid theoretical basis. It was shown that after 20 trials the value function

converges to the theoretical value.
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(a) (b)

(c) (d)

Figure 5.9. Value map (colour map) representing the learning of the place-critic cell synap-

tic weights by the agent on the maze task in Figure 5.8 before the beginning

of the task (a), and after trials 7 (b), 15 (c), and the last trial (d). Simulation

details and parameters are presented in Appendix I.
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Figure 5.10. Policy map (vector field) representing the learning of the place-actor cell

synaptic weights by the agent on the maze task in Figure 5.8 before the

beginning of the task (a), and after trials 7 (b), 15 (c), and last trial (d).

Simulation details and parameters are presented in Appendix I.
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As with the critic, rate activity was considered for the actor. Additionally,

a noise component was included to the actor activity in order to promote ex-

ploration. This was modulated by the performance, so if the agent was near

to the goal location the noise was decreased. However, it was noted that when

the agent collided with the walls and received a negative reward, the synaptic

weights between the place and critic/actor cells decreased to a point that noise

dominated and actions were taken randomly. This randomness is necessary to

avoid further collision with the walls, but in later trials it in fact prevented the

artificial rat from reaching the goal location.

A further modification to [88] is that the preferred direction was chosen based

on the direction coded by the actor neuron with highest activity, instead of

multiplying the activity of each actor neuron by its preferred direction. This

methodology gives similar results in simulations and was chosen because in the

next section the agent is forced to go in a certain direction towards the goal

location, if it is unable to reach it within a given time; hence the agent either

chooses the direction coded by the actor cell with higher activity or the forced

direction. Both action selection choices gave similar results for this task.

The learning rules for the synaptic weights between the place and actor cells

were updated using the TD error and the change of the actor firing rate with

respect to the weights. Eligibility traces for the actor were not used because the

bump of activity formed on the actor slowly changes location over time, allowing

the actor to have some memory of the actions taken on previous states (the

weights between actor and place cells are updated proportionally to the position

and amplitude of this bump). Importantly, it was observed that the agent learns

how to avoid collision with walls instead of reaching the goal location because

the received negative reward has a stronger learning impact than the positive

reward at the goal location.
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5.4 delayed-matching-to-place watermaze task

In this section the proposed model with rate firing activity for the critic and

actor is implemented on a delayed-matching-to-place (DMP) watermaze task,

motivated by the experiments in Bast et al. in [90]. The DMP water maze task,

illustrated in Figure 5.11a, is a variation of the Morris water maze task. In both

tasks, a rat is placed into the so-called watermaze, a circular tank filled with

opaque water and surrounded by spatial cues, that contains a hidden escape

platform. Because swimming fatigues the rat, it is highly motivated to find

the platform. In the DMP task, the platform location changes each day. The

DMP task spans 8 days with 4 trials each day. Each trial starts from one of 4

possible initial positions chosen at random. Interestingly, in experiments rats

show one trial learning, whereby the the latency and pathlength travelled to

find the platform steeply declines from trial 1 to 2, with little further reductions

on the subsequent trials, as shown in Figure 5.11. There is also evidence that

rats improve their overall efficiency on the task, with latencies and pathlengths

during trial 1 tending to reduce across days.

Foster et al. [79] presented a model that simulates the DMP task using rein-

forcement learning in an actor-critic discrete time framework. In their model,

the critic is represented by a single cell, whereas the actor is represented by a

population of 8 independent neurons, each coding for a different direction. The

actor and the critic receive information about the environment via place cells.

The actions are chosen stochastically. However, this simple structure is unable

to solve the DMP task, and therefore Foster et al. added a second component

to their model: a network that learns spatial coordinates, using inputs from

place cells. This component computes which direction the agent needs to swim

in order to reach the goal location from its current position. This direction is

integrated to the actor-critic component by adding an action that represents

the agent’s preference for swimming in the direction offered by this coordinate

system.
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Figure 5.11. (a) Delayed-matching-to-place watermaze task. Left: maze environment.

Blue dots represent the centres of place cell firing fields. Red circles repre-

sent the goal locations. Blue shadow shows how activity of a place cell decays

as the distance from the centre of its firing field increases (5.29). Black line:

trajectory of the agent from the starting position (black croses). When the

agent reaches the goal location (filled red circle) it receives a reward. Top

right: actor neurons. Bottom right: critic neurons. (b) Latencies (mean

± SEM-standard error of mean) to reach the platform are plotted for the 4

different trials each day, across 8 days, for the DMP task. Figure modified

from [90], 89 rats were used in this experiment.
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The aim of implementing the rate model on a DMP task is to test if the

agent can learn to find to the goal location in an environment taken from real

experiments, without the presence of obstacles. Moreover, it is of interest to

determine if the proposed model is capable of one trial learning. Such a model

will allow the exploration of hypotheses of the effects of hippocampal lesions in

behaviour (as those in [90]). This could be done by representing the lesions as

perturbations in the connectivity between place cells and critic/actor cells, and

assessing the behaviour as the agent’s performance during the task.

5.4.1 Simulation Results

The actor and critic evolution is simulated as in §5.3. In order to avoid the

slow learning due to the agent colliding with the walls that was observed in

the previous task, it is assumed that the artificial rat prefers to swim towards

the maze centre when it is near the walls. This is implemented by modifying

the initial synaptic weights between the place and actor cells at the maze wall

accordingly. This modification is realistic since the rats learn to avoid the

walls and swim towards the goal location in “pre-training” sessions. Previous

place cell models, as in [84], have implemented boundary-related information;

furthermore, there is experimental evidence that a type of neuron, so-called

border cells, fire at the walls or boundaries of an enclosure [91].

The trial ends when the agent reaches the selected hidden platform, but

unlike the previous task, when t > tmax the agent is guided towards the goal

location by forcing it to take a specific action until it reaches the goal location

and obtains a reward, as in experiments [90]. Note that the size of the maze

is larger than in the previous study (the area of the maze in §5.3 is 400 cm2

and the area of the watermaze in this section is ≈ 31416 cm2), so the place cell

firing function parameters are changed as a consequence. The place cell firing

field centres are arranged in concentric circles. Simulation details can be found

in Appendix J.
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5.4 delayed-matching-to-place watermaze task

The agent trajectories are shown in Figure 5.12. Note that at the start

of a trial the agent swims towards the maze centre, and, moreover, it avoids

collision with the wall during the experiment, due to the initial modification

to the weights described above. Figure 5.13 shows the changes in the value

function during the experiment. The peak of activity after the fourth trial

every day is located near to the selected goal location, showing that the critic

is able to learn the new location each day. The change of the peak location

between days 2 and 3 can be seen in Figure 5.14, after the first trial on day 3

(Fig. 5.14e) there are 2 peaks of activity, one corresponding to the goal location

from the previous day and the other signaling the new goal location. After the

third trial on day 3, the peak of activity corresponding to the previous goal

location vanishes due to the negative TD error computed when the agent does

not receive the expected reward at that location.

On the other hand, the actor performance is poor. As shown in Figure 5.15,

although the policy map is able to change towards the goal direction, such

changes do not back propagate far enough to enable the agent to take shorter

paths towards the goal. This could be due the difficulty of gaining knowledge

of the value of all the possible actions across the maze.

Figure 5.16 shows the latency time of this experiment. The agent was able

to find the hidden platform in 20 trials, but it had to be led to the goal on 12

trials (accounting for more than one third of the trials). There is no one trial

learning in Figure 5.16. It is noticeable that on days 5 and 8 the agent showed

an improvement by reducing steeply the latency within two trials.

5.4.2 Visual Cues

As mentioned above, the proposed firing rate critic-actor framework is inca-

pable of achieving one trial learning as in experiments done in [90]; therefore,

additional mechanisms are included in order to improve the performance. For

example, visual cues are available outside the watermaze during the experi-

ments and are believed to play a key role in the rat’s ability to orientate itself.
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Figure 5.12. Colour-coded trajectories for 4 trials on the DMP task for different days. Here

trajectories of trials 1,2,3,4 are represented by the blue, cyan, yellow and red

line respectively. Black dots are the centres of place cell firing fields and

black crosses are the starting locations. The magenta circle represents the

chosen escape platform for a given day, and green small circles are the goal

locations for the other days. Simulation details and parameters are presented

in Appendix J. 139
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(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4

(e) Day 5 (f) Day 6

(g) Day 7 (h) Day 8

Figure 5.13. Value map of the DMP task in Figure 5.12 after 4 trials for each day. Simu-

lation details and parameters are presented in Appendix J.
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5.4 delayed-matching-to-place watermaze task

(a) Day 2, Trial 1 (b) Day 2, Trial 2

(c) Day 2, Trial 3 (d) Day 2, Trial 4

(e) Day 3, Trial 1 (f) Day 3, Trial 2

(g) Day 3, Trial 3 (h) Day 3, Trial 4

Figure 5.14. Evolution of the value map of the DMP task in Figure 5.13 after each of the

4 trials for days 2 and 3, showing how the peak of activity changes location

from the past (day 2) to the new (day 3) goal location. Here the selected goal

locations are represented by cyan circles. Simulation details and parameters

are presented in Appendix J.
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Figure 5.15. Policy map of the DMP task in Figure 5.12 after 4 trials for each day. Simu-

lation details and parameters are presented in Appendix J.
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Figure 5.16. Latencies to reach the platform are plotted for the 4 different trails each

day (dots) across 8 days (lines) of the experiment in Figure 5.12. Red line

represents t = tmax.

Therefore, 8 visual cues are added to the environment and the algorithm is

modified in the following way:

• On the first trial of each day the simulation is performed without any

visual input. When the agent finds the hidden platform it is assumed

that the agent relates the three nearby cues to the found goal location

(see Fig. 5.17). One of these visual cues corresponds to the nearest cue

from the goal location and the other two visual cues are adjacent to the

former one.

• During trials 2, 3 and 4 the agent uses the nearby cues to check its relative

position to them every 10 s, for 2.5 s or less. During this period the agent

first checks if it is near the goal location (yellow zone in Fig. 5.17). If the

agent is near the goal location, the checking ends. If not, the agent checks

if it is facing any of the selected visual cues (purple asterisks in Fig. 5.17),

and if so the checking ends. If not, the agent receives a punishment with

strength Robst/5 and is forced to go in the opposite direction with a step

length of |δ(t)|.

Figure 5.18 shows the agent’s trajectories during an experiment. Note that

on days 1 to 3 the performance is better than in later days, and moreover this

performance is better in comparison with the experiment without visual cues.
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Figure 5.17. Navigation using visual cues. Blue dots: place cell firing field centres. Red

disk: escape platform. Magenta stars: visual cues outside the watermaze;

cyan stars: selected cues nearby the goal location. The yellow zone represents

the zone near the escape platform. There are two synthetic rats in this maze

illustrating different locations of an agent during a trial, and how these loca-

tions relate to the goal location. The agent at the top is not in the zone near

to the goal location (i.e., it is outside the yellow zone) but is facing one of the

selected visual cues, therefore no punishment is applied. The synthetic rat at

the bottom is outside the yellow zone and is not facing any of the selected cues,

thus it is forced to change direction and receives an instantaneous negative

reward.
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5.4 delayed-matching-to-place watermaze task

The learning by the critic is represented by the value maps in Figure 5.19. As

in the experiment without visual cues, the critic is able to learn the location of

the selected escape platform each day; however, unlike that experiment, there

are some locations inside the watermaze that have more negative values due to

the punishment received when the agent was in a poor position relative to the

goal location and nearby cues.

Importantly, the addition of visual cues to the simulation translates to an

improvement in learning the optimal choice of direction by the actor, as can

be seen in the policy map shown in Figure 5.20. On the other hand (with the

exception of days 1-3 as noted above), if the overall performance of the agent is

measured as the reduction of the latency time after the first trial every day and

across the days (see Fig. 5.11), then the experiment with visual cues (Fig. 5.21)

actually shows poorer performance than that without (Fig. 5.16). In fact, in

the experiment with visual cues the agent had to be guided to the goal location

more times than in the one without visual cues.

In order to reduce any bias due to a specific set of platform positions across

days and starting positions across the experiments, the simulation with and

without visual cues were run with the same escape platforms and starting posi-

tions (described in Appendix K). Also, to avoid bias due to a specific selection

of initial weights between the presynaptic place cells and postsynaptic actor

and critic cells, the same experiment was performed with 15 synthetic rats

with different initial weights. Figure 5.22 shows the resulting latency (mean

± SEM) for the experiment with (Fig. 5.22b) and without (Fig. 5.22a) visual

cues. The use of visual cues improves the latency on days 4 and 6, but on early

days (1-3) the agents not using visual cues had better performance. Also, on

day 5 and 7 the group without visual cues reached the escape platform in less

time on average.

In conclusion, the implementation of visual cues shows a better learning by

the actor, but this does not translate to an improvement of the overall perfor-

mance of the task. Changes to the position checking (relative to the visual cues)

frequency and duration does not improve the performance. Actually, when the
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Figure 5.18. Colour-coded trajectories for 4 trials, from blue (trial 1) to red (trial 4), on

the DMP task with visual cues for each day. Black dots: centres of place cells

firing fields, black crosses: starting locations. Magenta circle represents the

chosen escape platform whereas green small circles are the other platforms.

Asteriks: visual cues, the magenta ones represent the cues nearby the goal

location. Simulation details and parameters are presented in Appendix J.
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(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4

(e) Day 5 (f) Day 6

(g) Day 7 (h) Day 8

Figure 5.19. Value map of the DMP task with visual cues in Figure 5.18 after 4 trials for

each day. Simulation details and parameters are presented in Appendix J.
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Figure 5.20. Policy map of the DMP task with visual cues in Figure 5.18 after 4 trials for

each day. Simulation details and parameters are presented in Appendix J.
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Figure 5.21. Latencies to reach the platform are plotted for the 4 different trails each day

(dots) across 8 days (lines) of the experiment with visual cues in Figure 5.18.

Red line represents t = tmax.

frequency and/or the duration of the checking increases, the weights between

place cells and actor neurons decreases, due to the punishment received when

the agent is not in the zone near the goal location or facing a selected visual

cue. Thus, making the agent more likely to make random choices. Addition-

ally, weights between place cells and critic neurons decrease, and sometimes

this leads to a disruption of learning by the critic. Importantly, a decrease of

the punishment when the agent is far from the goal location and not facing

toward any of the visual cues decreases the performance of the actor.

5.4.3 Increase in Size and Spacing of Place Cell Firing Fields

In this subsection the effect of increasing the size and spacing of place cell

firing fields is investigated. Here, the centres of the place cell firing fields are

distributed on a square grid, similar to the grid used for the maze task in

§5.3, instead of concentric circles. Visual cues are not implemented. As shown

in Figure 5.23, the new distribution of place cell firing fields centres allows

the agent to trace more direct paths towards the goal location is some cases.

Although the number of place cell firing fields decreased from 58 to 25, the

critic shows good performance, as illustrated in Figure 5.24. The policy map

in Figure 5.25 shows a performance similar to that on Figure 5.15.
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Figure 5.22. Latency mean (blue squares) ± SEM (black lines) for 4 trials across 8 days for

the DMP task. Maze with (b) and without (a) visual cues. Here 15 artificial

rats were simulated using the protocol in Appendix K

Although the latencies to reach the platform are similar for both firing fields

distributions for a particular agent (Figs. 5.16 and 5.26a), important differences

were found when comparing the latency mean for 15 artificial rats with the

experimental protocol in Appendix K (Figs. 5.22a and 5.26b). For example, on

the first trial of the first day, the agents spend more time (on average) trying to

find the goal location in the maze with larger firing fields, but these agents were

more effective on the later trials of that day. In general, there is a reduction of

the latency for the DMP task using the maze with larger place cell firing fields,

although on the first trial on days 2 and 4 all the agents were unable to find

the goal location and had to be guided.

The agents were not capable of one-trial learning on the DMP task with an

increase in size and spacing of place cell firing fields, however, they showed an

important decreased in the mean latency time to find the goal location. This

results suggest that the distribution of the place cell firing field are crucial to

the performance of the agent.
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Figure 5.23. Colour-coded trajectories for 4 trials, from blue (trial 1) to red (trial 4), on

the DMP task with increase in size and spacing of place cell firing fields, for

each day. Black dots: centres of place cells firing fields, black crosses: starting

locations. Magenta circle represents the chosen escape platform whereas green

small circles are the other platforms. Simulation details and parameters are

presented in Appendix J. Except here NP = 25 and σP = 50.
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(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4

(e) Day 5 (f) Day 6

(g) Day 7 (h) Day 8

Figure 5.24. Value map of the DMP task with increase in size and spacing of place cell

firing fields in Figure 5.23 after 4 trials for each day. Simulation details and

parameters are presented in Appendix J. Except here NP = 25 and σP = 50.
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Figure 5.25. Policy map of the DMP task with increase in size and spacing of place cell

firing fields in Figure 5.23 after 4 trials for each day. Simulation details and

parameters are presented in Appendix J. Except here NP = 25 and σP = 50.
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Figure 5.26. Plots of latencies to reach the platform for the DMP task with increase in size

and spacing of place cell firing fields. (a) The latency of the agent in Figure

5.23 for the 4 different trails each day (dots) across 8 days (lines). Red line

represents t = tmax. (b) Latency mean (blue squares) ± SEM (black lines) for

4 trials across 8 days. Here 15 artificial rats were simulated using the protocol

in Appendix K.

5.5 discussion

In this chapter an actor-critic framework using firing rate neural models was

proposed in order to simulate a DMP task. First, §5.3 showed that the rate ver-

sion of the actor and critic neural networks, using elegibility traces as proposed

by Doya [85], can achieve similar results as the model with spiking activity

in [88] (first on a linear track and then on a square maze). Then, the model

was tested on the DMP task in §5.4, for which an improvement of the latency

time after the first trial in some cases was obtained. It was observed that the

critic was able to learn a new goal location each day, but the performance of

the actor was poor.

In order to improve the model performance, and based on experimental obser-

vations, visual cues were added in §5.4.2. This addition improved the learning

by the actor. However, the implementation of visual cues did not improve

the latency time on average (in comparison with the simulation without visual

cues). A change in the distribution of the place cell firing field centres, size and
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spacing, was implemented in §5.4.3. A decrease on the latency was observed,

although the agent performance was worse at the first trial for some days.

5.5.1 Further Work

In order to improve the model, a sensitivity analysis of the model parameters

should be undertaken. For example, the model presented in this chapter has

lateral connectivity between actor neurons. Such connectivity allows reinforce-

ment of actor neurons coding for similar directions of motion. Nevertheless,

other models for the DMP task use independent actor neurons, e.g. Foster

et al. [79]. Therefore, it would of interest to quantify the effect of the lateral

connectivity strength of the model by varying ε1 in (5.33) and analysing the re-

sulting policy maps and latency time. Similarly, the performance of the model

could be studied under variation of actor population size and range of encoded

directions. Other measure of performance could be implemented, namely, the

performance of the agent on a probe trial, implemented on animal tasks in [90].

On a probe trial, the platform does not come up until 60 s after starting the

second trial of a given day. There are no modifications to the other trials in

that day. In the probe trial the performance is measured as the time that the

rat spends within a radius of the goal location. If the rat spends most of the

time in this area, then it demonstrates a good search preference, in the sense

that the animal does not reach the goal location randomly.

Furthermore, if ε1 = σn = 0 in (5.33) then, following Doya [85], the policy

can be implemented using (5.27) with

A(s(t);wA) =
NP∑
j=1

wPAlj (t)
ρPj (t)∑NP
i=1 ρ

P
i (t)

, (5.39)

and the strength between place cell and actor neurons can be updated according

to (5.28). Other methods of action selection, as the stochastic action selection
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in [79], could be implemented. In such methods the swimming direction θl is

chosen stochastically with probability Pl related to the actor activity:

Pl =
exp

(
2uAl (t)

)
∑NA
i=1 exp

(
2uAi (t)

) . (5.40)

The above method corresponds to the softmax action selection rules in [83].

The implementation of visual cues could be improved to better reflect exper-

imental reality. Discussion with T. Bast, associate professor at the School of

Psychology (University of Nottingham), indicates that after the first trial, the

rats rapidly arrive at a zone near the goal location. In most experiments, rats

stay in this zone until they reach the goal location. This can be implemented

by making the agent rely on information about the selected cues at the begin-

ning of trials 2 to 4 until it reaches the zone near the goal location, where the

information about the environment is only obtained by place cell activity.

The action selection could be improved by assuming two components of re-

sponding to a stimulus, namely, the Pavlovian and the instrumental, as pro-

posed in Huys et al. [92]. Here the stimulus can be thought of as the activity of

place cells, and the response as the selection of the agent swimming direction.

The difference between the two elements of responding is that the Pavlovian

response is based on a learned expectation of gain or loss given a particular

stimulus and is independent of the of the reward or punishment given to the

agent as a consequence of its actions; whereas the instrumental response varies

in time proportionally to the action outcome. Huys et al. proposed a variation

of the learning rules in order consider the effects of Pavlovian and instrumen-

tal responses in learning. Such variation could be implemented in the model

proposed in this chapter.

The distribution and size of the place cells firing fields could be improved in

view of experimental data that suggests that the environment is represented by

a finite continumm of scales of place cell firing fields, depending on the location

of the cell in the hippocampus [38]. Moreover, as suggested in [83], learning

methods for the RBFs can be applied, and such methods, as proposed by Poggio

and Girosi in [93], change the centres and widths of place cells firing fields.
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5.5 discussion

If these improvements translate into one trial learning of the DMP task,

hypotheses about brain malfunction could be tested in the model by including

brain damage, as in experiments done in [90]. Brain damage could be simulated

by changing the learning parameters or adding noise to the place cell activity.
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6
CONCLUS IONS AND FURTHER WORK

In this thesis mathematical and computational approaches have been used to

understand brain function. Particularly, how intrinsic neural mechanisms can

affect neural activity, as well as how neural activity can give rise to higher

brain functions, such as navigation and spatial memory. It has been shown

how mathematical tools and numerical simulations complement each other to

gain further knowledge of a certain phenomena. For example, in Chapter 3

various models of grid cell activity were proposed in order to find a biophysically

reasonable mechanism for long wavelength patterns. The linear stability of the

proposed models was analysed and numerical continuation of the parameters

was implemented in order to establish a relationship between the parameters

and the wavelength of the resulting patterns. Importantly, the addition of

dendritic processing and the implementation of axo-dendritic connections to

the model resulted in a mechanism for long wavelength patterns. Results were

tested against numerical simulations and showed excellent agreement. However,

the proposed mechanism lacked experimental evidence.

Consequently, in Chapter 4 a IF network model of grid cell activity was pro-

posed, based on experimental evidence. Firstly, this model was simulated in

order to ascertain if it could exhibit the required activity pattern. Subsequently,

the emergent travelling waves were described mathematically. Moreover, the

Evans function, which determines wave stability, was derived and numerical con-

tinuation of the model parameters was performed. Importantly, it was shown

that the maximum stable period of the travelling waves, that is believed to be
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related to the scale of grid cell firing fields, can be controlled by the properties

of the Ih current.

In Chapter 5 a navigation task using a reinforcement learning algorithm

in a continuous actor-critic framework with firing rate models was presented.

Although the learning rules for this algorithm were derived mathematically,

the objective of this chapter was to describe how the brain is able to achieve

navigation using computational operations in the spirit of Marr [10]. The agent

was not able to show one trial learning, however, it was capable of learning new

goal locations each day. Further components need to be added to the presented

algorithm in order to achieve one trial learning.

Overall, the models proposed in this work described neural activity related

to navigation and spatial memory at different levels. This neural activity was

analytically studied and/or numerically simulated. Some models fail to provide

the expected mechanisms, however their study allowed deeper understanding

of the relationship between the model components and the resulting activity.

Although in each chapter possible further work was outlined, in the following

sections other generalisations are discussed.

6.1 extension to 2d

The models presented in §3.7 and Chapter 4 were assumed to have a 1D so-

matic coordinate for numerical convenience. The emergence of travelling waves

was observed in these models. Thus, they could be extended to 2D in order

to investigate under which conditions travelling waves can arise. Moreover, the

emergent patterns could be studied by applying a weakly nonlinear analysis

(as in [8]) and therefore, the conditions under which hexagonal patterns are ob-

tained, resembling those of the CAN models of grid cells, could be determined.

Actually, numerical simulations of the IF network model for grid cell dynam-

ics in Chapter 4 have been extended to 2D in [69]. Due to the computational

cost, these simulations were performed using GPUs. Under certain initial condi-

tions, they show a periodic travelling wave moving downward. In order to study
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6.2 sensory information

such travelling wave solutions, first a change from spatio-temporal coordinates

(x, y, t) to a travelling wave framework ξ must be performed. For example, in

the work by Terman [94] this transformation is given by ξ = (x, y) · v + θt,

where v ∈ R2 is some unit vector, and θ > 0 is the wave speed. Since the trav-

elling wave observed in [69] moves downward, it can be assumed that v = (0, 1).

This change of coordinates can be used to construct the travelling wave orbits

and derive their stability.

6.2 sensory information

One natural extension of this work is the integration of sensory information to

the presented models. In Chapters 3 and 4 the proposed models can be driven

by sensory input, whereas in Chapter 5 sensory input is needed by the agent to

gain information about the environment and be able to perform a maze task.

Recently, theoretical approaches of how information integration could occur

in the brain have been proposed [95, 96]. Most of these approaches are based

on the head direction cell system but they can be extended to other systems.

Generally, it is assumed that sensory inputs are ambiguous and that the brain

is able to extract reliable information from these inputs.

One problem of integrating sensory information is selecting which of the

inputs present at some time are the most reliable in order to achieve an optimal

information integration. Jeffery et al. [95] studied how sensory information from

different visual stimulus can be optimised to infer heading direction. In their

model each sensory input (visual cue) is represented by a Gaussian curve, with

centre at the heading direction activated by the sensory input and the height of

the curve’s peak denoting the intensity of such input. There are situations where

the system receives input from two visual cues and the information of these

cues has to be integrated to have optimal information about heading direction.

These cues can be at different fixed locations or can change position between

trials, thereby losing reliability. Jeffery et al. propose that because some sensory

inputs are more reliable than others, the optimal information integration can
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6.2 sensory information

be achieved by strengthening the connections between the sensory neurons and

head direction for a stable cue, and weakened otherwise. Here, a cue is stable

if a set of sensory cells always activate the same set of head direction cells.

A Bayesian approach has been used by Zhang et al. [96] to infer heading

direction using ambiguous information from two different sensory stimulus (re-

lated to different parts of the brain), optical flow and body acceleration. Their

model uses two reciprocally connected CAN, each receiving information from

different sensory stimulus. Each neuron in these networks codes for a preferred

head direction value, uniformly distributed in parameter space. Zhang et al.

show that optimal information integration is achieved by combined sensory in-

puts from different sources; moreover, the results obtained are improved when

both sensory stimuli are presented. This type of approach can be used to infer

the location on a maze by extending the description of the CAN to 2D.
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A
CABLE EQUATION SOLUTION

In order to find (2.40), the Green’s function for the cable equation (2.38) is

solved with I(ξ, t) = δ(ξ)δ(t), an impulse at ξ = 0 and t = 0. In this case

(2.38) can be rewritten as

∂V (ξ, t)
∂t

+
V (ξ, t)
τ

−D∂
2V (ξ, t)
∂ξ2 =

r

τ
δ(ξ)δ(t). (A.1)

Applying the Fourier transform with respect to the spatial variables gives

∂Ṽ (k, t)
∂t

+
Ṽ (k, t)
τ

+Dk2Ṽ (k, t) = r

τ
δ(t), (A.2)

where the Fourier transform and its inverse are defined by

f̃(k) =
∫ ∞
−∞

e−ikxf(x)dx, f(x) =
1

2π

∫ ∞
−∞

eikxf̃(k)dk. (A.3)

Note that (A.2) can be solved using an integrating factor. Thus

Ṽ (k, t) = r

τ
e−t(1/τ+Dk2)H(t), (A.4)

where H(t) is the Heaviside function defined by (2.23). Now, applying the

inverse Fourier transform to (A.4) gives

V (ξ, t) =
r

2πτ e−t/τH(t)
∫ ∞
−∞

e−tDk
2
eikξdk =

r

τ
G∞(ξ, t), (A.5)

with G∞(ξ, t) as in (2.40).
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B
AMPL ITUDE EQUATIONS

In order to be able to predict the type of emergent patterns in the model

proposed in §3.2, the relevant amplitude equations are derived following Chapter

1 in [8].

First, the system given by (3.4) with f the threshold-linear function, defined

in (3.2), is analysed. Note that the linear stability analysis is the same as

that in §3.2.1 because the quadratic terms are discarded, giving the dispersion

relation (3.11) with γ = f ′(sW + I) = 1. Since γ is fixed, g is chosen to be

the bifurcation parameter, therefore W̃ (kc) = 1/gc. In order to derive the

amplitude equations, a perturbation expansion for s is adopted

s = s+ εs1 + ε2s2 + ε3s3 + . . . . (B.1)

Time t is rescaled according to T = ε2t, and g is set to g = gc + ε2∆. Here

|ε| � 1 and ∆ is a measure of the distance from the bifurcation point. After

equating powers of ε, the following hierarchy of equations is obtained

s = g
(
sW + I

)
, (B.2a)

Ls1 = 0, (B.2b)

Ls2 = ∆
(
sW + I

)
, (B.2c)

Ls3 = ∆W ⊗ s1 − τ
ds1
dT , (B.2d)

where

Ls = s− gcW ⊗ s, (B.3)
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amplitude equations

and [W ⊗ s](x, t) =
∫

R2
W
(
x− x′

)
s(x′, t)dx′ denotes spatial convolution. Note

that (B.2a) fixes the steady state and (B.2b) is linear, with solutions of the form

s1(x, y,T ) = A1(T )eikcx +A2(T )eikcy + c.c., Aj ∈ C. (B.4)

These solutions will form stripes if A1 = 0 and A2 6= 0 (or vice versa) and spots

if A1,A2 are both non-zero. The null-space of L is spanned by
{
e±ikcx, e±ikcy

}
.

Note that Lsn = hn(s, s1, s2, .., sn−1), therefore the Fredholm alternative

method can be used to obtain solvability conditions from which the amplitudes

A1,A2 can be found. It has been shown in [8] that L is self-adjoint with respect

to the inner product defined by

〈U ,V 〉 = 1
|Ω|

∫
Ω
U∗(r)V (r)dr, (B.5)

with Ω = (0, 2π/kc) × (0, 2π/kc) and ∗ denotes complex conjugation. Note

that

〈s1,Lsn〉 = 〈Ls1, sn〉 = 0. (B.6)

Therefore the solvability conditions are given by

〈
{
e±ikcx, e±ikcy

}
,hn〉 = 0, n ≥ 3. (B.7)

Using the fact that 〈einkcx, eimkcx〉 = δn,m andW ⊗ s1 = W̃ (kc)s1, the following

amplitude equations are obtained for the threshold linear firing rate function

(for which f ′′(s̄) = 0 and f ′′′(s̄) = 0):

τ
dA1
dT =

∆
gc
A1, τ

dA2
dT =

∆
gc
A2. (B.8)

In order to obtain the phase θ and the amplitude R of A, the system coordinates

are changed to polar coordinates by taking Aj = Rjeiθj , thus

dR1
dT =

∆
τgc

R1, dθ1
dT = 0, dR2

dT =
∆
τgc

R2, dθ2
dT = 0, (B.9)

and the steady state is given by (R1, θ1,R2, θ2) = (0, θ10 , 0, θ20) which implies

that A1 = A2 = 0, suggesting that no stable patterns will form. Therefore, the

theory fails to predict the spatial patterns formed by the model (3.4) with the

threshold-linear firing rate. In fact, the theory above assumes that f is C3.
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amplitude equations

Now, in order to predict the patterns generated by a simple model of grid cell

activity in §3.2, f is changed to be a smooth differentiable the sigmoid function,

described in (3.6), with γ = f ′
(
sW + I

)
as the bifurcation parameter, such

that W̃ (kc) = 1/(gγc) and setting γ = γc + ε2∆, results in the following

hierarchy equations

s = gf
(
sW + I

)
, (B.10a)

Ls1 = 0, (B.10b)

Ls2 = gγ2 (W ⊗ s1)
2 , (B.10c)

Ls3 = g∆W ⊗ s1 + 2gγ2 (W ⊗ s1) (W ⊗ s2) + gγ3 (W ⊗ s1)
3 − τ ds1

dT ,

(B.10d)

with L as in (B.3) and γ2 = f ′′
(
sW + I

)
/2, γ3 = f ′′′

(
sW + I

)
/6. As above,

the amplitude equations for A1,A2 are obtained using the solvability conditions.

Note that s2 ∼ s2
1, thus it can be assumed that

s2 = α0 + α1e2ikcx + α2e−2ikcx + α3e2ikcy + α4e−2ikcy + α5eikc(x+y)

+ α6e−ikc(x+y) + α7eikc(x−y) + α8eikc(−x+y) + φs1. (B.11)

Therefore

W ⊗ s2 = α0W + W̃ (2kc)
(
α1e2ikcx + α2e−2ikcx + α3e2ikcy + α4e−2ikcy

)
+W̃

(√
2kc

) (
α5eikc(x+y) + α6e−ikc(x+y) + α7eikc(x−y) + α8eikc(−x+y)

)
+φW̃ (kc) s1. (B.12)

The constant values of α0, . . . ,α8 are obtained by substituting (B.11) and (B.12)

in (B.10c), and balancing terms to give

α0 =
2γ2

(
|A1|2 + |A2|2

)
gγ2

c

(
1− gγcW

) , α1 =
γ2A2

1

gγ2
c

(
1− gγcW̃ (2kc)

) ,

α3 =
γ2A2

2

gγ2
c

(
1− gγcW̃ (2kc)

) α5 =
2γ2A1A2

gγ2
c

(
1− gγcW̃

(√
2kc

)) ,

α7 =
2γ2A1A∗2

gγ2
c

(
1− gγcW̃

(√
2kc

)) α8 =
2γ2A∗1A2

gγ2
c

(
1− gγcW̃

(√
2kc

)) . (B.13)
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amplitude equations

The amplitude equations are then given by

γcτ
dA1
dT = A1

(
∆− Υ |A1|2 −Φ |A2|2

)
, (B.14a)

γcτ
dA2
dT = A2

(
∆− Υ |A2|2 −Φ |A1|2

)
; (B.14b)

where

Υ = − 1
gγ2

c

[
2γ2

2

(
2W

1− gγcW
+

W̃ (2kc)
1− gγcW̃ (2kc)

)
+

3γ3
g

]
, (B.15)

Φ = − 2
gγ2

c

[
2γ2

2

(
W

1− gγcW
+

2W̃ (
√

2kc)
1− gγcW̃ (

√
2kc)

)
+

3γ3
g

]
. (B.16)

As above Aj is set to Aj = Rjeiθj to yield

dR1
dT =

R1
γcτ

(
∆− ΥR2

1 −ΦR2
2
)

, dθ1
dT = 0,

dR2
dT =

R2
γcτ

(
∆− ΥR2

2 −ΦR2
1
)

, dθ2
dT = 0. (B.17)

There are 3 solutions for this system: R1 = 0, R2
2 = ∆/Υ with Υ > 0 or vice

versa, and R2
1 = R2

2 = ∆/ (Υ + Φ) with Υ + Φ > 0. In order to predict which

type of pattern will be formed in the system (3.4), conditions for the stability

of (B.17) are derived. After linearising about the steady state and looking for

solutions of the form χ(T ) = eλTχ0, where χ is the perturbation vector and χ0

is constant, the characteristic polynomial λ2Λ(λ) = 0 is obtained, where

Λ(λ) = (τγc)
2
λ2 − τγcλ

(
2∆− (3Υ + Φ)

(
R2

1 +R2
2
))

+
(

∆− 3ΥR2
1 −ΦR2

2
) (

∆− 3ΥR2
2 −ΦR2

1
)
− (2ΦR1R2)

2 .(B.18)

Therefore, the solution that forms stripes (A1 = 0,A2 6= 0 ⇒ R1 = 0,R2 6= 0

or vice versa) will be stable when Φ > Υ > 0. Spotted patterns will be formed

when Υ > Φ and Υ + Φ > 0. In Figure 3.10 it is shown that spots or stripes

are selected depending on the firing rate parameters values. For Figure 3.10a

Φ = 20.9096 > Υ = 10.669, whereas for Figure 3.10b Υ = 12.1 > Φ = 11.4904.

Spots are also selected in Figure 3.12, where Υ = 1.5227 > Φ = −0.3367 for

Figure 3.12a, and Υ = 0.3678 > Φ = 0.0435 for Figure 3.12b.
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C
S IMULATION DETAILS FOR A S IMPLE MODEL OF GRID

CELL ACTIV ITY

Here the 2D simulation method of the system (3.4) is presented. Let si denote

the activity of the cell at position xi where xi = (xi, yi), xi, yi ∈ 1, 2, ...,N (and

therefore ∆x = 1), with N = 27. Then the discrete version of the continuous

system in (3.4) is given by:

dsi
dt =

1
τ

−si + gf

∑
j

Wijsj + I

 , (C.1)

where

Wij = W0H
(
R−

√
(xi − xj)2 + (yi − yj)2

)
. (C.2)

The domain is assumed to be periodic, so that the topology of the network is

a torus. The system was simulated using an Euler method with ∆t = 1ms and

initialised with random activity. Figure 3.6b shows the resulting activity s after

500ms for a mesh of size N ×N .
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D
LAPLACE TRANSFORM OF THE GREEN ’ S FUNCTION

In order to obtain equation (3.51) the Laplace transform, defined by equation

(3.37), is applied to the system (3.42). This gives

λV̂ (ξ,λ) = − V̂ (ξ,λ)
τ

+D
∂2V̂ (ξ,λ)

∂ξ2 + ρÎs(ξ,λ). (D.1)

Rearranging terms results in(
ϕ2(λ)− ∂2

∂ξ2

)
V̂ (ξ,λ) = ρ

D
Îs(ξ,λ), ϕ2(λ) =

λ+ 1/τ
D

. (D.2)

Now, changing variables to χ = ϕ(λ)ξ gives(
1− ∂2

∂χ2

)
V̂ (χ,λ) = ρ

Dϕ2(λ)
Îs(χ,λ). (D.3)

The Green’s function is found by applying the Fourier transform to the homo-

geneous problem of (D.3) (as in Appendix A), to give

(1 + k2)
˜̂
V (k,λ) = 1. (D.4)

The inverse Fourier transform is given by

V̂ (χ,λ) = 1
2π

∫ ∞
−∞

eikχ
(1 + ik)(1− ik)dk = iRes

(
eikχ

(1 + ik)(1− ik)

)
. (D.5)

Using the residue theorem yields

Ĝ(χ) =


e−χ/2 if χ > 0,

eχ/2 if χ < 0
=

e−|χ|
2 , (D.6)

and the general solution is given by

V̂ (χ,λ) = 2
∫ ∞

0
dχ′Ĝ(χ− χ′) ρ

Dϕ2(λ)
Îs(χ

′,λ). (D.7)
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laplace transform of the green’s function

Changing to the original variables yields

V̂ (ξ,λ) = ρ
∫ ∞

0
dξ′Ĝ(ξ − ξ′,λ)Îs(ξ′,λ), (D.8)

with Ĝ(ξ,λ) defined as in (3.51).
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E
S IMULATIONS OF THE RESONANT MODEL WITH

AXO-DENDRIT IC CONNECTIONS

Here the 1D numerical simulation of the system (3.66) is presented. In order

to be able to solve the system on a finite domain, the voltage variable is written

in matrix form V ∈ RN×M , where N is the dimension of the soma coordinate

vector x and M the dimension of the dendrite coordinate vector ξ. Here x ∈

[−a, a] where a is adjusted so that the domain comprise around five times

the wavelength; ξ ∈ [0, d] with d proportional to
√
Dτ (the space constant in

(2.38)). Thus, Vi,j refers to the voltage at the dendritic position ξj of the cell

at position xi.

Finite differences are used to approximate the diffusion term in (3.66). Hence

∂2V

∂ξ2 '
Vi,j+1 − 2Vi,j + Vi,j−1

(∆ξ)2 , (E.1)

where ∆ξ = ξj+1 − ξj for all j, thus ∆ξ = d/(M − 1). Aperiodic boundary

conditions were implemented in the dendritic space.

The injected current can be rewritten using the differential operator of the

Green’s function η(t), which gives
(

1 + 1
α

d
dt

)2
A =

∫
R

dx′ W (x− x′, ξ)f
(
h
(
x′, t

))
, A = Iinj − Iext(ξ). (E.2)
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simulations of the model with axo-dendritic connections

Therefore, the system given in (3.66) can be approximated by

dVi,j
dt = −Vi,j

τ
+D

Vi,j+1 − 2Vi,j + Vi,j−1

(∆ξ)2 − 1
C

(
Ii,j − gIinji,j

)
,

dIi,j
dt =

1
L
(−rIi,j + Vi,j) ,

dAi,j
dt = α

(
Ãi,j −Ai,j

)
,

dÃi,j
dt = α

(
Bi,j − Ãi,j

)
,

where (
1 + 1

α

d
dt

)
Ai,j = Ãi,j , Iinji,j = Ai,j + Iextj , (E.3)

and

Bi,j =
N∑
l=1

W (xi − xl, ξj)f(hl)∆x, (E.4)

with hl = V (xl, ξ = 0) and ∆x = 2a/N . Note that I,A, Ã,B ∈ RN×M ,

whereas f , gext ∈ RN are measured just at the soma V (xi = 0, ξj). Aperiodic

boundary conditions were implemented in the somatic space.

Matlab’s ode45 solver was used to evolve the system from the initial con-

ditions (Vi,j , Ii,j ,Ai,j , Ãi,j) = (0, 0,−Iextj ,−Iextj ). Figure 3.26 shows the evo-

lution of the voltage at the soma. Figure E.1a shows the voltage at the soma

for different times whereas Figure E.1b gives the wave-number calculated using

the power spectrum (see caption for details). For the chosen parameters the

resulting value of kc is kc = 0.33 (see Fig. 3.27), showing that the simulation

and the theory agree. Moreover, it demonstrates that the numerical choices

(domain size for the somatic and dendritic coordinate, ∆x and ∆ξ) are right.
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simulations of the model with axo-dendritic connections
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Figure E.1. (a): Plot of the voltage at the soma (ξ = 0) taken at different times (colour-

coded) from the simulation in Figure 3.26. (b): Periodogram using Fourier

Transforms on the voltage at the soma, at different times (as in (b)). The

periodogram shows a peak at the preferred spatial frequency. Around t = 750

there is a clear frequency preference at kc = 0.32936 in the simulation.
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F
S IMULATIONS OF AN INTEGRATE -AND -F IRE

NETWORK MODEL FOR GRID CELL DYNAMICS

In order to solve (4.8) on a finite domain in x ∈ (−L,L), x is written as a

vector in RN , with V ,nh,ψ ∈ RN . As in Appendix E, the differential operator

for η is used, and the discretization of ψ is evolved according to(
1 + 1

α

2 d
dt

)
ψi =

∑
j

Wij

∑
m∈Z

δ(t− Tm(xj))∆x, (F.1)

where xj is the position of the jth cell, ∆x = xj−xj−1, ∀j, with ∆x = 2L/(N −

1). As in [97] it is convenient to write ψi as the solution to

1
α

dψi
dt = yi − ψi, (F.2)

1
α

dyi
dt = −yi, (F.3)

with yi discontinuously updated according to yi → yi + αWij∆x at times

Tm(xj), and Wij = W (xi − xj). Table 1 shows the pseudocode that was

implemented in Matlab for the system X = [V ;nh;ψ; y], where

dVi
dt =

1
C

(−glVi + ghnh,i + gsynψi) , (F.4)
dnh,i

dt =
1
τh

(nh,∞(Vi)− nh,i) , (F.5)

with ψi given by (F.2) and yi by (F.3). The evolution of the system X was

done using the RK4 method.
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simulations of an integrate-and-fire network model

Comments : X(t) denotes the state of the network at time t.
F is the list of the firing events and their locations.
tR is a vector with entries storing the amount of time that each neuron has been
in the refractory state (0 otherwise).
ts is given by V (ts) = Vth.
Pseudocode:
Initialise network t = 0, X(t) = 0, tR = 0.
while t ≤ tmax do

Set tnew = t+ ∆t
Set L = ∅
Evolve X from t to tnew
for j = 1,N do

if Vj(tnew) ≥ Vth and tRj = 0 then
Add Vj(tnew) to L

end
end
if L 6= ∅ then

Set H = ∅
Interpolate V (tnew) ∈ L
Find t∗ = minL ts
Set tnew = t∗

Evolve X from t to tnew
for j = 1,N do

if Vj(tnew) ≥ Vth and tRj = 0 then
Add (tj ,xj) to F
Add j to H
for i = 1,N do

Set yi → yi + α∆xWij

end
end

end
end
Set δ = tnew − t
for j = 1,N do

if j ∈ H or tRj 6= 0 then
Set tRj = tRj + δ

Set Vj(tnew) = Vr
if tRj ≥ τR then

Set tRj = 0
end

end
end
Set t = tnew

end
Algorithm 1: Evolution of the network
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G
DERIVATION OF THE TD ERROR AND LEARNING

RULES

Here the TD error and learning rules for the maze task in §5.3 are derived.

First, the solution for the critic evolution (5.30) is approximated by

uCi (t) =
∫ t

0
GC(t− t′)gi(t′)dt′ = (GC ∗ gi)(t), (G.1)

where ∗ represents a temporal convolution and GC is the Green’s function for

the differential operator QC , given by

GC(t) = ε0
e−t/τm − e−t/τs

τm − τs
H(t), (G.2)

with H(t) the Heaviside step function and gi(t) taken from (5.30),

gi(t) =
NP∑
j=1

wPCij (t)ρPj (t). (G.3)

The solution for the critic activity allows the calculation of the derivative of

the value function

dV (x(t))
dt =

d
(
v
NC

∑NC
i=1 ρ

C
i (t) + V0

)
dt =

v

NC

NC∑
i=1

dρCi (t)
dt , (G.4)

where

dρCi (uCi (t))
dt =

∂ρCi
∂uCi

∂uCi
∂t

=
∂ρCi
∂uCi

∂(GC ∗ gi)(t)
∂t

=
∂ρCi
∂uCi

(
∂GC

∂t
∗ gi

)
(t). (G.5)

Now, defining

ψi(t) =

(
∂GC

∂t
∗ gi

)
(t), (G.6)
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derivation of the td error and learning rules

and taking the Laplace transform, as defined by (3.37), results in

ψ̂i(λ) = (λĜC(λ)−GC(0))(ĝi(λ)) = λĜC(λ)ĝi(λ). (G.7)

The last term in the above equation was obtained by applying the the convolu-

tion theorem and assuming GC(0) = 0. Here ĜC(λ) is given by

ĜC(λ) =
ε0

(1 + λτm)(1 + λτs)
. (G.8)

Rearranging the terms in (G.7) and taking the inverse Laplace transform yields

(
1 + τm

d
dt

)(
1 + τs

d
dt

)
ψi(t) = ε0

dgi
dt . (G.9)

Substitution of (5.32) and (G.4) in (5.20) gives the TD error

δ(t) =
v

NC

NC∑
i=1

∂ρCi
∂uCi

ψi(t)−
1
τr

 v

NC

NC∑
i=1

ρCi (t) + V0

+ r(a(t), x(t))

=
v

NC

NC∑
i=1

(
∂ρCi
∂uCi

ψi(t)−
1
τr
ρCi (t)

)
− V0
τr

+ r(a(t), x(t)). (G.10)

The parameter update from (5.25) and (5.26), are now given by

dwPCij (t)

dt = ηcδ(t)eij(t), (G.11)

deij(t)
dt =

1
κ
eij(t) +

∂V (x(t);wPC)
∂wPCij

. (G.12)

Note that the eligibility trace e has the same dimensions as the parameter

matrix wPC . Here the derivative of the value function approximation with

respect to the parameters is given by

∂V (x(t))
∂wPCij

=
∂

∂wPCij

 v

NC

NC∑
k=1

ρCk (t) + V0

 =
v

NC

NC∑
k=1

∂ρCk (t)

∂wPCij
, (G.13)

where
∂ρCk (u

C
k (t))

∂wPCij
=
∂ρCk
∂uCk

∂uCk
∂wPCij

. (G.14)
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derivation of the td error and learning rules

The derivative of the critic activity with respect to the weights is calculated

using the solution for the critic activity (G.1) in the following way

∂uCk
∂wPCij

=
∫ t

0
GC(t− t′)

NP∑
l=1

∂wPCkl (t′)

∂wPCij
ρPl (t

′)dt′

=
∫ t

0
GC(t− t′)

NP∑
l=1

δkiδjlρ
P
l (t
′)dt′

= δki

∫ t

0
GC(t− t′)ρPj (t′)dt′ = δki

(
GC ∗ ρPj

)
(t), (G.15)

where

δij =


1, if i = j

0, if i 6= j

. (G.16)

Substitution into (G.13) gives

∂V (x(t))
∂wPCij

=
v

NC

NC∑
k=1

∂ρCk
∂uCk

δki
(
GC ∗ ρPj

)
(t) =

v

NC

∂ρCi
∂uCi

(
GC ∗ ρPj

)
(t). (G.17)

In order to be able to computationally implement the above equation, let

ξj(t) =
(
GC ∗ ρPj

)
(t) and apply the Laplace transform to find

ξ̂j(λ) =
(
ĜC(λ)

) (
ρ̂Pj (λ)

)
. (G.18)

After substituting ĜC(λ) with (G.8) and rearranging terms gives

(1 + λτm) (1 + λτs) ξ̂j(λ) = ε0ρ̂
P
j (λ), (G.19)

which upon inverse Laplace transform yields:(
1 + τm

d
dt

)(
1 + τs

d
dt

)
ξj(t) = ε0ρ

P
j (t). (G.20)
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H
L INEAR TRACK S IMULATION

In this simulation 20 trials were performed. The environment is a narrow rect-

angle of size 40 cm × 4 cm centred around the origin. A trial starts when the

agent is put at a starting position and ends when the goal location is reached.

The starting point is at x = (x, y) = (−17.5, 0) and the goal location is at

x ≥ 16. For each trial the agent obtains the activity of the place cell by apply-

ing (5.29) to its current position. Because the action choice is clamped to go

directly towards the goal location placed to the right of the initial position, the

state evolves as
dx(t)

dt = s

(
1
0

)
, (H.1)

where s > 0 is constant speed and therefore the action taken is given by a =

(cos(x), sin(y)). Then, the activity of the critic is updated using (5.30). For

computational convenience a new variable zC ∈ RNC is introduced which gives

the following system:

duCi (t)
dt =

1
τs

(
zCi (t)− uCi (t)

)
, (H.2)

dzCi (t)
dt =

1
τm

(
ε0gi(t)− zCi (t)

)
, (H.3)

with i = 1, 2, . . . ,NC . Here g(t) is given by (G.3). After updating the critic

activity, the TD error (G.10) is calculated, with the critic firing rate obtained by

applying (5.31) to uC(t) and the activity of ψ(t) is given by (G.9). Expanding

and rearranging terms results in

ψi(t) + (τm + τs)
dψi(t)

dt +
dqi(t)

dt = 0, (H.4)
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linear track simulation

where qi(t) = τmτs
dψi(t)

dt − ε0gi(t). This gives the following system

dψi(t)
dt =

qi(t) + ε0gi(t)

τmτs
, (H.5)

dqi(t)
dt = −ψi(t)− (τm + τs)

(
qi(t) + ε0gi(t)

τmτs

)
. (H.6)

The reward rate term r(t) is given by the difference of two decaying traces:

r(t) =
ra(t)− rb(t)
τa − τb

, (H.7)

where

dra(t)
dt = −ra

τa
, (H.8)

drb(t)
dt = −rb

τb
. (H.9)

The reward R instantaneously update the traces when the agent reaches the

goal (R > 0) or when the agent bumps into a wall (R < 0) in the following way

ra(t)→ ra(t) +R, rb(t)→ rb(t) +R. (H.10)

The critic weights’ evolution is described by (G.11) and (G.12). In order to

calculate the final term on the right-hand side of (G.12), (G.20) is used. Here,

γ is introduced so that the system can be solved numerically. Thus

dξj(t)
dt =

1
τs

(γj(t)− ξj(t)) , (H.11)

dγj(t)
dt =

1
τm

(
ε0ρ

P
j (t)− γj(t)

)
, (H.12)

with j = 1, 2, . . . ,NP . Substitution into (G.12) gives

deij(t)
dt =

1
κ
eij(t) +

v

NC

∂ρCi
∂uCi

ξj(t). (H.13)

Parameters:

• For the place cell firing rate function (5.29): ρp = 1 Hz, σP = 2 cm

and the place cell centres are arranged on a grid with spacing σP that

covers all the environment plus a distance of σP . In this case there are

115 centres, so that NP = 115.
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linear track simulation

• For the critic dynamics (5.30): τm = 20 ms, τs = 5 ms, ε0 = 1 mV×ms.

• For the critic firing rate (5.31): µ = 0.5 Hz, β = 0.1 mV−1, Θ = 0 mV.

• For the value function (5.32): v = 1 [reward units], NC = 100 and

V0 = −0.515 [reward units] × ms.

• For the TD error (5.20): τr = 3000 ms. The rates for the reward traces

are τa = 200 ms for (H.8) and τb = 10 ms for (H.9), whereas the in-

stantaneous reward when reaching the goal location is R = 200 [reward

units]. The time constant of the eligibility trace (5.26) is κ = τr. For the

critic learning rate value in the synaptic weight update (5.25) ηC = 50

ms[reward units]−1mV−1 is chosen.

The system was evolved using Euler’s method with a time-step ∆t = 0.2ms.

The system was solved simultaneously for all the variables: x ∈ R2, uC , zC ,ψ, q ∈

RNC , ra, rb ∈ R, ξ, γ ∈ RNP , and the weight and eligibility matrices wPC , e ∈

RNC×NP . The speed of the agent is s = 0.005cm/ms. All the variables were

initialised with zero activity, except the weight matrix whose entries were ran-

domly drawn from a normal distribution with mean equal to 0.1 and standard

deviation of 0.005. The weights were constrained to the range 0 ≤ wPC ≤ 0.65,

to avoid negative or runaway values.

For the value map in Figure 5.7a the value function (5.32) was calculated for

every point on a spatial mesh with spacing of 0.1 cm.
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I
S IMULATION OF THE MAZE TASK

Here the maze is a square area of 20 cm × 20 cm centred around the origin.

The goal is a circle located at the origin with radius of 1 cm surrounded by a

U-shaped obstacle of size 10 cm × 2 cm on three sides. As in the linear track

simulation, the place cell centres are arranged on a grid with spacing σP .

Here 20 trials are simulated. At each trial, the starting position was randomly

selected from four possible positions at x ∈ {(±7.5, 0), (0,±7.5)} cm. The state

evolution is given by (5.37) and the place cell activity is obtained by applying

(5.29) to the agent’s current position. The critic is simulated as in Appendix

H. For the actor dynamics zA ∈ RNA is introduced:

dzAl (t)
dt =

1
νϑ

(
zAl (t)− uAl (t)

)
, (I.1)

duAl (t)
dt =

1
τϑ

(
ε0hl − zAl (t)

)
, (I.2)

hl =
NP∑
j=1

wPAlj (t)ρPj (t) +
ε1
ε0

NA∑
k=1

wAAlk (t)uAk (t) +
σn
ε0
nl(t), (I.3)

where n evolves according to (5.35). The connectivity within the lth and kth

action cells is given by

wlk =
w−
NA

+w+
f(l, k)∑
k f(l, k)

, f(l, k) = (1− δlk) exp(ζ cos(θl − θk)), (I.4)

where θl = 2lπ/NA, for l = 1, 2, . . . ,NA.
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simulation of the maze task

The synaptic weights between place and actor cells are updated via the

method outlined for the critic updates in Appendix H, which gives

dξAj (t)
dt =

1
νϑ

(
γAj (t)− ξAj (t)

)
, (I.5)

dγAj (t)
dt =

1
τϑ

(
ε0ρ

P
j (t)− γAj (t)

)
, (I.6)

with j = 1, 2, . . . ,NP . Therefore

dwPAlj (t)

dt = ηAδ(t)
∂ρAl
∂uAl

ξAj (t). (I.7)

Here an instantaneous negative reward Robs was given every time that the

agent collides with the wall. On these occasions, the state was updated ac-

cording to ∆xδ(t)Ψ(x(t)), where Ψ(x(t)) is a unit vector that points perpen-

dicularly inward from the obstacle surface, and ∆x a constant. A trial ends

when the goal location is reached and an instantaneous reward Rgoal is given,

or when t = tmax = 50 ms. The simulations were run simultaneously using

Euler’s method (∆t = 0.2 ms) for x ∈ R2, uC , zC ,ψ, q ∈ RNC , ra, rb ∈ R,

ξ, γ, ξA, γA ∈ RNP , uA, zA,n ∈ RNA , and the weight and eligibility matrices

wPC , e ∈ RNC×NP , and wPA ∈ RNA×NP . As in the linear track case, all the

variables were initiated with zero activity except the weight matrices whose

entries were randomly drawn from a normal distribution with mean equal to

0.1 and standard deviation of 0.005. Here 0 ≤ wPC ,wPA ≤ 0.65.

Parameters for the actor are: NA = 180, νϑ = 20 ms, τϑ = 50 ms and ε1 =

1/30 mV × ms. For the lateral connections w+ = 30, w− = −60, ζ = 8. The

learning rate ηA = 5 ms[reward units]−1mV−1. For the noise component τn = 1

ms, σn0 = 1, Vmax = 0.1 mV, and Vmin = −0.515 mV. The speed of the agent

is s = 0.01cm/ms and ∆x = 5 cm. Due to the change of dimensions relative

to the linear track problem NP increases to 169. Here ηC = 20 ms[reward

units]−1mV−1, and for the TD error τr = 500 ms, κ = 2τr/3. The rewards

are Rgoal = 400 [reward units] and Robs = −0.00005 [reward units]. Other

parameters are as in Appendix H.
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simulation of the maze task

The policy map was obtained by obtained by choosing the direction of the

cell with maximum h′l = ρA(
∑NP
j=1w

PA
lj ρPj ) times the sum of h′. For plotting,

Matlab’s quiver function was used.
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J
S IMULATION OF THE DMP TASK

Here the DMP task is simulated by solving the same system as in Appendix

I. The environment has the same dimensions as in [90]. The maze has a 1

m radius and the escape platform each have a 12 cm diameter, distributed

along two concentric circles with radii of 70 cm and 40 cm. The centres of the

escape platforms are located at x ∈ {(±p1,±p1), (p2,±p3), (±p3, p2)} where

p1 = 49.4975 cm, p2 = 0 cm and p3 = 40 cm. The place cell firing fields

centres are located in concentric circles with σP separation between and within

the circles. Here NP = 58, σP = 25 cm. The starting positions are at x ∈

{(±95, 0), (0,±95)}.

If the rat is not able to reach the goal location after tmax = 120 s, then it is

guided towards it: a straight line between the goal location and the rat current

position is traced and the following actions are forced to follow this line. The

weights between the place and the actor cells are updated according to this

forced action, so that (5.38) is given by

ẇPAlj = ηAδ(t)Υl
∂ρA(uAl ;wPA)

∂wPAlj
, (J.1)

where Υl = 0.5 if the direction of the traced straight line corresponds to the

preferred direction of the lth actor cell, and is 0 otherwise. When the agent

collides with the wall it takes a step in the opposite direction of length |δ(t)|.

Other parameters are as in Appendix I except for: Rgoal = 500 [reward units],

τr = 3000 ms, κ = τr/3 for the TD error, the strength of lateral connectivity

ε1 = 1/28 mV × ms; the learning rates ηA = 10 [reward units]−1mV−1 and
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simulation of the dmp task

ηC = 15 [reward units]−1mV−1. There is an increase in the speed, relative to

the square maze problem, s = 20 cm/s and a decrease in the noise σn0 = 0.5.
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K
EXPERIMENTAL PROTOCOL USED FOR F IGURE 5 . 2 2

Table K.1 shows the selected escape platforms for each day and the starting

positions for each trial. The escape platforms and starting positions are shown

in Figure K.1.

Starting Position

Day Platform Trial 1 Trial 2 Trial 3 Trial 4

1 2 E W S N

2 5 W N E S

3 4 N S W E

4 7 S E W N

5 3 E S W N

6 6 S N W E

7 8 W E N S

8 1 N W S E

Table K.1. Table indicating the starting position and goal location for each trial across

the days.
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experimental protocol used for figure 5.22

1 2 3

4

567

8W

N

E

S

Figure K.1. Watermaze showing the platform (red circles) numbers and the names of the

starting positions (blue crosses).
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