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Abstract

The aim of using semantic technologies in domain knowledge modeling is to
introduce the semantic meaning of concepts in knowledge bases, such that they
are both human-readable as well as machine-understandable. Due to their pow-
erful knowledge representation formalism and associated inference mechanisms,
ontology-based approaches have been increasingly adopted to formally represent
domain knowledge. The primary objective of this thesis work has been to use
semantic technologies in advancing knowledge-sharing of Underutilized crops as
a domain and investigate the integration of underlying ontologies developed in
OWL (Web Ontology Language) with augmented SWRL (Semantic Web Rule
Language) rules for added expressiveness.

The work further investigated generating ontologies from existing data sources
and proposed the reverse-engineering approach of generating domain specific
conceptualization through competency questions posed from possible ontology
users and domain experts. For utilization, a semantic search engine (the Onto-
CropBase) has been developed to serve as a Web-based access point for the Un-
derutilized crops ontology model. Relevant linked-data in Resource Description
Framework Schema (RDFS) were added for comprehensiveness in generating fed-
erated queries.

While the OWL/SWRL combination offers a highly expressive ontology lan-
guage for modeling knowledge domains, the combination is found to be lacking
supplementary descriptive constructs to model complex real-life scenarios, a nec-
essary requirement for a successful Semantic Web application. To this end, the
common logic programming formalisms for extending Description Logic (DL)-
based ontologies were explored and the state of the art in SWRL expressiveness
extensions determined with a view to extending the SWRL formalism. Subse-
quently, a novel fuzzy temporal extension to the Semantic Web Rule Language
(FT-SWRL), which combines SWRL with fuzzy logic theories based on the valid-
time temporal model, has been proposed to allow modeling imprecise temporal
expressions in domain ontologies.
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3.4.3.3 The Protégé-OWL API . . . . . . . . . . . . . 134

3.5 The Fuzzy Temporal Semantic Web Rule Language (FT-SWRL)
Extension — Design Methodology . . . . . . . . . . . . . . . . . 134
3.5.1 FT-SWRL Model Design Approach and Motivation . . . . 135
3.5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 137

3.5.2.1 The Valid-Time Temporal Model . . . . . . . . 138
3.5.2.2 SWRL Temporal Ontology . . . . . . . . . . . 138
3.5.2.3 SWRL Temporal Built-ins . . . . . . . . . . . . 140
3.5.2.4 Fuzzy Sets and Membership Functions . . . . . 140
3.5.2.5 The FT-SWRL Model Scope . . . . . . . . . . 142

3.5.3 The FT-SWRL Ontology: Representing Fuzzy-temporal
Facts using OWL/SWRL . . . . . . . . . . . . . . . . . . 143
3.5.3.1 FT-SWRL Model Entities: Classes, Properties,

Domain and Ranges . . . . . . . . . . . . . . . 145
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4 Results: Case Studies 148
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Doctoral Thesis viii



Ontology-based Knowledge Systems

4.2 Case Study 1: Ontology Engineering — The Underutilized Crops
Ontology (UC-ONTO) Development, Standardization and Exten-
sion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.2.1 The UC-ONTO Development: Domain Knowledge Gath-

ering and Conceptualization . . . . . . . . . . . . . . . . 149
4.2.2 Conceptualization from Scratch . . . . . . . . . . . . . . 149
4.2.3 Conceptualization from Heterogeneous data sources . . . 150
4.2.4 Conceptualization from Competency Questions . . . . . . 153

4.2.4.1 UC-ONTO Visualization . . . . . . . . . . . . 157
4.2.5 Ontology Reuses for UC-ONTO . . . . . . . . . . . . . . 159
4.2.6 UC-ONTO Standardization . . . . . . . . . . . . . . . . 160

4.2.6.1 Alignment and Merging of UC-ONTO Fragments161
4.2.6.2 Alignment of UC-ONTO with Upper-Crop On-

tologies . . . . . . . . . . . . . . . . . . . . . 163
4.2.6.3 Natural Language Annotations for UC-ONTO . 163

4.2.7 The UC-ONTO Extension with SWRL Rules . . . . . . . 164
4.3 Case Study 2: Ontology Utilization — The Onto-CropBase Se-

mantic Search Engine . . . . . . . . . . . . . . . . . . . . . . . . 167
4.3.1 Onto-CropBase Functionalities . . . . . . . . . . . . . . . 167

4.3.1.1 Concept Search . . . . . . . . . . . . . . . . . 168
4.3.1.2 Query Answering . . . . . . . . . . . . . . . . 168
4.3.1.3 Map Interface . . . . . . . . . . . . . . . . . . 170
4.3.1.4 Paging . . . . . . . . . . . . . . . . . . . . . . 170

4.4 Case Study 3: Ontology Language Extension — The Fuzzy-Temporal
Extension of Semantic Web Rule Language (FT-SWRL) . . . . . 173
4.4.1 The SWRL Fuzzy Temporal Ontology . . . . . . . . . . . 173
4.4.2 SWRL-FT Built-ins: Semantics Definition . . . . . . . . 175

4.4.2.1 Fuzzy Duration Built-ins . . . . . . . . . . . . 176
4.4.2.2 Fuzzy Count Built-ins . . . . . . . . . . . . . . 177
4.4.2.3 Fuzzy Granularity Built-ins . . . . . . . . . . . 177
4.4.2.4 Fuzzy Set Granularity Built-ins . . . . . . . . . 177
4.4.2.5 Fuzzy Date Granularity Built-ins . . . . . . . . 178
4.4.2.6 Imprecise Temporal Approximation Built-ins . . 178

Doctoral Thesis ix



Ontology-based Knowledge Systems

4.4.3 Reasoning Paradigm for FT-SWRL Ontology Model . . . 178
4.4.3.1 SWRL-FT Built-ins Fuzzification . . . . . . . . 179

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5 Analysis of Results and Discussion 189
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.2 The Underutilized Crops Ontology (UC-ONTO) Evaluation . . . . 190

5.2.1 Modularization, Depth and Structure . . . . . . . . . . . . 190
5.2.2 UC-ONTO Metrics — Measuring the Ontology Size and

Expressiveness . . . . . . . . . . . . . . . . . . . . . . . 191
5.2.3 UC-ONTO Evaluation using Competency Questions . . . 193
5.2.4 SWRL Rules Extension — Functional Evaluation . . . . . 201
5.2.5 Decidability, Reasoning and query processing . . . . . . . 208

5.3 The Onto-CropBase Evaluation . . . . . . . . . . . . . . . . . . . 210
5.3.1 Domain Experts Evaluation . . . . . . . . . . . . . . . . 212

5.3.1.1 Tasks and Queries . . . . . . . . . . . . . . . . 213
5.3.1.2 Data Capturing . . . . . . . . . . . . . . . . . . 214
5.3.1.3 Onto-CropBase Usability — Labels, Function-

ality, Navigation and Visual Outputs . . . . . . 215
5.3.2 Comparison with Other Semantic Search Engines . . . . . 216
5.3.3 Scalability of the Onto-CropBase Tool . . . . . . . . . . . 218

5.4 The Fuzzy-Temporal SWRL Model Evaluation . . . . . . . . . . 219
5.4.1 FT-SWRL Ontology Modularization, Depth and Structure 219
5.4.2 FT-SWRL Ontology Metrics . . . . . . . . . . . . . . . . 220
5.4.3 FT-SWRL Model Built-ins Usability and FT-SWRL Rules

Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.5 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . 224

6 Conclusion 227
6.1 Summary of Major Contributions . . . . . . . . . . . . . . . . . . 228
6.2 Limitations and Suggestions for Improvement . . . . . . . . . . . 230
6.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 232

Doctoral Thesis x



Ontology-based Knowledge Systems

List of Figures

1.1 Thesis Ontology fragment showing Concepts from the research
context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Thesis Ontology graph showing detailed thesis concepts.
Note: we omit the details of AI components and the philosophical
background of ontologies for brevity and focus. . . . . . . . . . . 14

2.1 The Semantic web language stack[1] . . . . . . . . . . . . . . . . 19
2.2 Layered architecture of ontology languages . . . . . . . . . . . . 20
2.3 OWL family of ontology languages . . . . . . . . . . . . . . . . 21
2.4 OWL Evolution and Contextual Relationship with SWRL . . . . . 23
2.5 Gene Ontology Search Tool (The AmiGO2) showing information

on major crop (Rice). [2] . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Gene Ontology Search Tool (The AmiGO2) showing lack of in-

formation on underutilized crop (Bambara groundnut). [2] . . . . 30
2.7 The Plant Ontology Search Tool showing information on major

crop (Rice). [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 The Plant Ontology Search Tool showing lack of information on

underutilized crop (Bambara groundnut). [3] . . . . . . . . . . . . 32
2.9 The Crop Ontology Curation Tool showing information on major

crop (Maize). [4] . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 The Crop Ontology Curation Tool showing lack of information on

underutilized crops. [4] . . . . . . . . . . . . . . . . . . . . . . . 34
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Chapter 1

Introduction

This thesis deals with the problems of semantic heterogeneity in domain knowl-
edge representation, integration, and sharing, the goal of which is to achieve con-
sistent and reliable knowledge systems. As a foundation of any Knowledge Repre-
sentation System (KRS), ontological analysis helps to clarify the structure of do-
main knowledge, disambiguates conflicting terminologies and ensure consistent
vocabulary. We categorize ontology-based knowledge systems into two broad cat-
egories: reference and legacy ontology-based knowledge systems. The reference
ontology-based systems utilize ontologies simply as standardization models for
existing knowledge bases. Whereas, the legacy ontology-based systems uphold
ontologies as ’part and parcel’ of a knowledge system. Basic tasks of ontological
knowledge modeling crossroads between the knowledge representation field of AI
(Artificial Intelligence) and the Semantic Web project, which employs semantic
technologies and techniques to extend the existing World Wide Web into the Web
of linked-data.

In the succeeding sections of this chapter, an overview of the research area is
introduced in Section 1.1 and Section 1.2, highlights the motivation and problem
statement behind the tasks of Ontology-driven CropBase knowledge system. The
research questions were further discussed in Section 1.3 highlighting the existing
research gaps followed by formulated questions to be answered during the course
of the project. The thesis Aims, objectives and Methodology is then presented in
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Section 1.4. This is followed by a brief summary of the thesis contributions in
Section 1.5 and a thesis ontology visualization is shown in Section 1.6 highlight-
ing the relationships between the research contexts. Lastly, the overall outline of
the thesis is presented in Section 1.7.

1.1 Background: Overview of the Research Area

Knowledge representation in the field of AI involves the use of principles and
structures to preserve information in a way that facilitate inference. However, due
to the divergent nature of application domains and the methodologies employed
in knowledge engineering, similar information can appear to be entirely different.
This is either due to inconsistencies in nomenclature or the diversity of knowl-
edge structures involved, the latter often resulting in greater ambiguity. Moreover,
these ambiguities and inconsistencies in domain knowledge remain the major ob-
stacles to sharing data and knowledge among disparate researchers. Such prob-
lems are not uncommon in crop-related research areas such as the Crops for the
Future Research Center (CFFRC), where researchers from different background
must work together to produce reliable knowledge systems that will aid users in
decision-making on Underutilized Crops (UCs) and their products. Moreover, lit-
tle information exists on UCs and the available knowledge is usually available in
informal sources on the web, such as Wikipedia. However, such information are
not entirely authoritative and usually incomplete, thus not suitable for critical de-
cision support. In essence, a standard vocabulary (ontology) needs to be shared
and adhered to by researchers in order to interface the correlated research goals
for the center.

Due to their powerful knowledge representation formalism, associated infer-
ence mechanisms, and semantic interoperability among divergent resources, on-
tologies have been increasingly adopted as knowledge modeling tools, by experts
from different application domains. Moreover, considering the hierarchical nature
of crop-related taxonomies and the promising role of semantic web applications in
the future of decision support systems, an Ontology-driven knowledge represen-

tation system was proposed to standardize the vocabulary of underutilized crops
knowledge (for the CFFRC and its partner organizations) and to help in devel-
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oping such applications that will aid users in decision-making on underutilized
crops.

Ontology is one of the knowledge representation tools for the Semantic Web
[6], designed to provide explicit specification of concepts in a particular domain.
As a web of data [7], ambiguities and inconsistencies are bound to exist in the
Semantic Web as data moves across applications, enterprises, as well as commu-
nity boundaries. As such, formalized domain knowledge representation standards
are needed and more importantly, ontologies are supported by logic programming
rules for added expressiveness, with inference mechanisms and reasoning tools to
ensure consistency of stored knowledge.

This ability to reason about knowledge consistency and infer new knowledge
from existing facts, make ontologies not only useful in the semantic web but also
a decent alternative to static knowledge-bases for decision support systems. In
this research work, we proposed an ontology-driven CropBase knowledge sys-
tem for underutilised crop research and development. The tasks will contribute
to Knowledgebase population and continued platform development. Research ac-
tivities will include design and implementation of an ontology-driven integration
tool that will enable access to information and assist in decision making for crop
growers. We discuss more on the definition of ontologies and their role as knowl-
edge repositories in Chapter 2.

1.2 Motivation

With the United Nation’s decade long efforts on food security, there is an awaken-
ing on the need to revitalize the cropping of neglected (underutilized) crop species,
many of which have the potentials of providing food security and nutritional sus-
tainability [8, 9]. As the name implies, Underutilized Crops are those that are
currently neglected though previously grown and consumed with considerable nu-
tritional or market value [10]. However, lack of formal technical knowledge was
identified as one of the constraints to research and development on these group of
crops. The Crops for the Future (CFF)1, is one of the research bodies dedicated

1http://www.cffresearch.org/
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for research and development on Underutilized Crops and with various researchers
working on related projects, there is the need for standardized knowledge repre-
sentation framework for efficient knowledge-sharing and integration of its diverse
sources.

Due to their wide acceptance as knowledge-sharing and integration tools, do-
main ontologies have been effectively utilized as knowledge management tools
most especially in the field of Life-Sciences. In this thesis, we explore the ontology-
based knowledge systems and propose the use of ontologies with relevant se-
mantic web technologies to advance knowledge standardization and information-
exchange on underutilized crops as a domain, with the ultimate goal of developing
an efficient knowledge model for a farming decision support system.

1.2.1 Problem Statement

The Ontology-based domain knowledge model in Web Ontology Language (OWL),
being both human as well as machine understandable, aims to serve as integration
point for Underutilized Crops meta-data and provide efficient knowledge-sharing
formalisms for data exchange among researchers, data sources and across knowl-
edge systems.

However, while various crops ontologies do exist, as discussed in Chapter 2,
they mostly conceptualize major crops with little to no information on the un-
derutilized crops — the main focus of the Crops for the Future (CFF). These
ontologies moreover, are mostly developed through tedious methodologies and
using highly inexpressive ontology languages with little chances of utilization.
Moreover, ontology contents typically focus on representing the crop anatomy,
genes and their physiological structures, which only serves as collective nomen-
clature targeting few domain experts and therefore not suitable for wider sharing
and reuse. These confirms the CFF assertion that ”Underutilized crops are also
those under-represented” 2.

The lack of efficient knowledge models on underutilized crops is a major re-
search problem [10] and typically represents a common challenge to knowledge-

2Crops for the Future (CFF) 2015: http://cffresearch.org/FutureCrop-@-
LandingArticle.aspx#Underutilised Crops

Doctoral Thesis 4



Ontology-based Knowledge Systems

sharing and terminological standardization. Furthermore, the inexpressiveness of
these ontology languages leads to various inconsistencies in domain knowledge
gathering and utilization thereby resulting in insufficient knowledge systems for
decision making, among others.

With the proposed UC-ONTO development methodology using the Web On-
tology Language (OWL) and the Semantic Web Rule Language (SWRL) for added
expressiveness, an Underutilized Crops Ontological knowledge system will be de-
veloped to provide a consistent model for standardization of underutilized crops
concepts and related terminologies as well as provide an efficient knowledge-
sharing formalism for the underutilized crops meta data. In a nutshell:

”The study addresses the problems of semantic heterogeneity in do-
main knowledge representation, integration and sharing — the goal
of which is to achieve consistent and reliable knowledge systems.”

1.3 The Research Questions

Following the review of essential literature, we first identified key areas of existing
research gaps on the use of semantic technologies (ontology-based systems) to
advance the knowledge management of crops, as follows:

• Insufficient knowledge models on underutilized crops — As mentioned ear-
lier, we quickly realized that most of the underutilized crops (UCs) were
also under-represented. This is not only true for the semantic knowledge
models but also in the main literature. Furthermore, with the major focus of
our data sources (the CFFRC), being to create, share and utilize the undoc-
umented knowledge regarding the farming practices of UCs for their entire
value-chain (farm to market), the need for ontological models to formally
represent the domain facts cannot be overemphasized.

• Research gaps in Applications and Ontology Utilization — While this is
not peculiar to the crops knowledge domain, it is a widely accepted fact
in the Semantic Web community that there are more ontologies being de-
veloped than they are being utilized. This can be seen from the thousands
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of ontologies deposited in various repositories 3 but with only a handful of
applications that utilize such ontologies.

• Research gaps in ontology modeling languages — With focus on the widely
accepted semantic web ontology languages, our initial experiments of de-
veloping the Underutilized Crops Ontology models quickly exposes the ex-
pressive limitations of both OWL and its rule extension, the semantic web
rule language (SWRL). For one, OWL can neither comprehensively express
incomplete knowledge, nor queries temporal information inherent in a do-
main knowledge. Whereas, the SWRL formalism is lacking expressive con-
structs for managing complex temporal knowledge such as the imprecise
temporal expressions (ITEs), which commonly exists in expert narratives of
domain facts and processes.

To address these research gaps, we discuss several research questions regard-
ing ’ontology-based knowledge systems’ for underutilized crops. However, the
two main research questions can be summarized in the following:

The use of ontologies to standardize knowledge representation in the

field of Crops, and how Semantic Web agents can utilize those on-

tologies with relevant linked-data to aid users in decision making on

Underutilized Crops and their products.

More specifically, the following questions were asked to come up with the
above research statements:

Q1. Can the Semantic Web technologies (esp. ontologies) be realized and uti-
lized in the Agricultural domain?

Q2. How can the available crops data be effectively modeled to provide a stan-
dard representation model of relevant concepts and terminologies?

The resulting model should allow defining new terminologies, aligning and
merging existing models, checking for consistencies and overall classification of
concepts.

3https://www.w3.org/wiki/Ontology repositories
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Q3. Can the problem of ambiguity in dealing with concepts/terms be resolved
using ontologies? Furthermore, can the ontologies sufficiently provide a con-
trolled vocabulary of terms and concepts that can describe the underutilized-crop
domain?

The resulting ontology is expected to standardize underutilized crop knowl-
edge representation across contributing databases.

Q4. Can the resulting ontologies and other data sources be annotated with rele-
vant semantic techniques to provide a semantically interlinked data for underuti-
lized crops?

This linked data can be used in conjunction with our domain ontologies to pro-
vide a pool of knowledge for the Semantic Web (SWeb) agents to make informed
decisions when answering user queries.

Q5. Can Semantic Web Applications be developed as interactive decision sup-
port systems that utilize the available knowledge in the ontologies to answer user
queries relevant to the underutilized crops domain?

Q6. How can the ontology development languages be enhanced to effectively
represent and query imprecise temporal information inherent in domain knowl-
edge ?

1.4 Aims, Objectives and Methodologies

The aim of the thesis is thus to formally model the factual knowledge on underuti-
lized crops and related concepts using OWL-based ontologies and utilizing those
ontologies with relevant linked-data, to serve as knowledge bases for farming de-
cision support system. The choice to develop the underutilized crops ontology
in OWL (Web Ontology Language) was made in order to utilize its expressive
powers (see Sections 3.2 and 4.2.1) and with OWL being the standard ontology
language for the Semantic Web, approved by the World Wide Web Consortium
(W3C) 4, efforts to provide the crop ontologies in OWL format will undoubtedly

4http://www.w3.org/Consortium/
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enhance knowledge-sharing and integration in the field of underutilized crops.
Moreover, semantic web applications can be developed to easily utilize such on-
tologies. To this end, a semantic search tool called the Onto-CropBase was de-
signed and developed (see Sections 3.4 and 4.3). The limitations of the expressive
powers of OWL motivates the semantic web community to consider the use of
SWRL rules for added expressiveness (see Chapter 2.8.3) and the thesis further
explored the expressive limitations of the SWRL formalism leading to the evolu-
tion of a new language extension (The FT-SWRL model) for representing impre-
cise temporal expressions commonly found in domain knowledge was proposed
(See sections 3.5 and 4.4).

To achieve the goals of the proposed research, we apply the following method-
ology:

1. Studying existing information: analyzing existing vocabularies in the do-
main of Crops (focusing on underutilised crop, e.g. Bambara groundnut)
and identify potential problems and semantic ambiguities. Identify and
collect information sources required for the development of the knowledge
tool.

2. Underutilized Crops ontology design and development: combine existing
crop terminologies and expand them with new information concerning un-
derutilised crops and other relevant knowledge. Express this information in
Web Ontology Language (OWL) augmented with the declarative assertions
of the Semantic Web Rule Language (SWRL) for comprehensive modeling.
The ontology engineering approach incolves:

i. Concepts generation through Data sources, Competency questions,
ontology reuses and reflexive ontology development.

ii. Populate the Ontologies with relevant data sets from available knowl-
edge sources.

iii. Develop domain-specific, user-defined rules (SWRL rules) to de-
scribe complex concepts of the knowledge domain.

3. CropBase tool: the tool will utilize the underutilized crops ontology as the
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main knowledge source for answering user queries. It combines the ontol-
ogy with relevant knowledge linked as RDF datasets for completeness.

Data Sources, Tools and Target Audience. Other relevant research de-
sign considerations include:

4. The Data Sources: major knowledge sources for our research includes ex-
perimental data (published and unpublished) from the Crops for the Future
(CFF) researchers and partners. Others includes, collaborative ontology
development environments focusing on crops ontologies and individually
sourced domain knowledge from other collaborative CFF research projects.

5. Tools: for flexibility and cost effectiveness, we rely heavily on open-sourced
development tools and platforms. For the ontology development, we select
Protégé5 ontology editor as the development tool being a rich open-source
development environment with vibrant community of developers and user
support. For the CropBase tool however, Java Enterprise Edition (Java EE)
and the Apache Jena6, a java system for RDF, were used in the Eclipse
Integrated Development Environment for the development of the semantic
search engine. Other various tools were also utilized but omitted here for
brevity.

6. Stakeholders: targeted (expected) users of our ontologies and tools include
all persons and/or organizations interested in underutilized crops and their
products, such as: CFFRC and its partners, Farmers, Agricultural organiza-
tions, etc.

1.5 Contributions

This thesis explored the field of semantic technologies and ontology-based knowl-
edge systems, their approaches, frameworks and practices all of which led to the

5http://protege.stanford.edu/
6https://jena.apache.org/
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following novel contributions:

The thesis investigated the ontology development and standardization approaches
and the integration of ontologies with logic programming rules for added expres-
siveness. Due to their powerful knowledge representation formalism and asso-
ciated inference mechanisms, ontology-based approaches have been increasingly
adopted to formally represent domain knowledge. The thesis then proposed the
use of ontologies to advance knowledge-sharing of underutilized crops as a do-
main and investigated the integration of those ontologies in OWL (Web Ontology
Language) with SWRL (Semantic Web Rule Language) rules for added expres-
siveness, see Sections 3.2 and 4.2.1. From the investigations, it can be concluded
that ontology development in the agricultural domain can best be tackled through
’knowledge reuse’ of existing upper domain ontologies.

As regards the techniques for ontology generation, an extensive investigation
is on the existing methodologies of ontology development is presented, counting
their major benefits and drawbacks. The thesis summarized these methodologies
as either from scratch or through ontology reuse. In either case, extra tasks of
’ontology versioning and assembly’ were recommended to manage the problem
of tracking ontology versions and how they can best be assembled into a coherent
domain specification respectively. Moreover an investigation on how to gener-
ate ontologies from existing data sources in presented with a reverse-engineering
approach of generating domain specific conceptualization through ’Competency
Questions’ posed from possible ontology users to the domain experts. A valida-
tion of these techniques was undertaken through detailed case studies presented,
where we pioneered the first SWRL-enabled underutilized crops ontology (UC-
ONTO) in OWL. The ontology specifies the basic information of the underutilized
crops focusing on the farming practices of Bambara groundnut as an exemplar
crop.

While the ontological knowledge modeling is imperative, of equal importance
is the standardization of this knowledge. In this area, the thesis show how the
Competency Questions, designed at the beginning of ontology development pro-
cess, can be used to check the quality of the knowledge model by posing them as
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queries. The responses can always be measured in comparison with the elicited
knowledge from the domain experts and inconsistencies can be remedied. This
and other ontology standardization approaches mentioned in Section 4.2.6 helps
in better understanding of ontologies, which can lead to further reuse.

Regarding ontology utilization, a model was proposed and implemented on
the ontology-based semantic searching of linked data. A semantic search engine
called the Onto-CropBase, was provided as a case study, which serve as web-
based access point for the underutilized-crops ontology model. The knowledge
base integrated other domain knowledge in the form of linked-data in Resource
Description Framework (RDF) schema for comprehensiveness. Presented here in
Sections 3.4 and 4.3, the model emphasized the ’hybrid integration’ approach to
linked-data management, which allows for generating federated SPARQL queries
through the semantic search engine. Whereas successful ontology development
efforts help to strengthen semantic knowledge modeling and representation, the
ontology utilization though has remained a challenge in the semantic web com-
munity. Efforts such as the Onto-CropBase tool [11], will greatly help in advocat-
ing the dissemination of knowledge, from the numerous ontological knowledge
bases, to non-technical stakeholders for informed decision-making. From the pre-
liminary evaluation of the tool, it was concluded that the ontology-based semantic
search system can efficiently serve as a first-hand information portal on underuti-
lized crops knowledge domain.

Regarding the limitations of expressive powers of OWL and SWRL as ontol-
ogy and rule languages for the semantic web respectively, an extended expressive-
ness formalism is proposed to the duo to allow for modeling even more complex
scenarios. Specifically a SWRL model is proposed to handle Imprecise tempo-
ral expressions commonly found in domain knowledge. While the OWL/SWRL
combination offers a highly expressive ontology language for modeling knowl-
edge domains with higher degree of flexibility, the combination is found to be
lacking supplementary descriptive constructs to model complex real-life scenar-
ios – a necessary requirement for a successful Semantic Web. To this end, the
thesis explored the common logic programming formalisms for extending De-
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scription Logic (DL) ontologies and investigated the state-of-the-art in SWRL ex-
pressiveness extensions, proposed over time. A novel fuzzy temporal extension to
the Semantic Web Rule Language (FT-SWRL) is then proposed, which combines
fuzzy theories based on valid-time temporal model. The FT-SWRL formalism,
presented in Sections 3.5 and 4.4, offers a standardized approach for modeling
imprecise temporal information in OWL ontologies. The SWRL fuzzy temporal
model is introduced in two parts: a SWRL fuzzy temporal ontology and a set of
imprecise temporal built-ins. While the ontology model defines the necessary lin-
guistic terminologies and variables, the SWRL fuzzy temporal built-ins defines
the semantics for operation on the data modeled using the fuzzy temporal ontol-
ogy model.

1.6 Thesis Context Ontology

As earlier mentioned, the thesis context intersects two main areas of research,
namely, the knowledge representation of AI and the Semantic Web. In Fig. 1.1,
we present our thesis context in a form of ontology for highlighting the contextual
relationship between the components of the thesis and the underlying research
areas.

Figure 1.1: Thesis Ontology fragment showing Concepts from the research con-
text

Doctoral Thesis 12



Ontology-based Knowledge Systems

While the field of AI has been around for decades, the Semantic web vision
was outlined in [6] in the early 2000’s. In terms of data semantics, the Semantic
Web leverages existing techniques of AI, though implementations are achieved
through new set of semantic web technologies as clearly shown in Fig. 1.2. Built
on the basic RDF technology (see Fig. 2.1), knowledge representation on the
semantic web focus on graph data model, which is a simple interconnection of
pieces of data. However, more AI comes to play a role with the layering of on-
tologies, rules and logic layers aimed to allow more expressiveness in knowledge
representation, reasoning and inference. We discuss more on ontologies and the
Semantic Web in Chapter 2.

1.7 Thesis Outline

The studies leading to this thesis are outlined here. The thesis comprises six chap-
ters, each organized to highlight the evolved nature of our contributions. The
chapters are introduced as follows:

• Chapter 1: Introduction set the stage for ontology-based knowledge sys-
tems, highlighting the background of the study, motivation, aims and the
research objectives. Followed by the research questions, methodology of
the research, a summary of our contributions and a thesis context ontology
to graphically highlight the research context.

• Chapter 2: Literature and Methods focuses on six key dimensions, which
consolidate the reviewed literature; following the chapter introduction, Sec-
tion 2.2 discusses the ontology and the semantic web. Ontologies as knowl-
edge management tools are then discussed highlighting the classifcation of
ontologies followed by exploring the relevant works of ontologies in the
Crops domain. The ontology development approaches, ontology develop-
ment environments, and ontology evaluation are then discussed followed by
the literature on extending ontologies with logic programming rules. The
expressiveness extensions of the SWRL were then explored with a critical
review of their decidability requirements. Ontology-based search engines
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Figure 1.2: Thesis Ontology graph showing detailed thesis concepts.

Note: we omit the details of AI components and the philosophical background of
ontologies for brevity and focus.
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are then discussed to highlight the relevant works. Lastly, a review on on-
tology language extensions is presented with a focus on research efforts in
managing temporal uncertainties in OWL ontologies, followed by the chap-
ter summary

• Chapter 3: Research Methodology explores the research methods and ap-
proaches for ontology engineering, ontology utilization and the ontology
language extension. Following the chapter introduction, the next section
highlights the ontology engineering methodology for the Underutilized crops
Ontology (UC-ONTO). The Ontology development with Protege section
highlights development process of ontologies using the Protege ontology
development environment. This is followed by the Onto-CropBase develop-
ment methodology highlighting the knowledge base integration approach,
the semantic search interface design and the selection of the mediator com-
ponent. Lastly, the model design of the Fuzzy temporal semantic web rule
language (FT-SWRL) extension is then presented discussing the design of
the pioneer FT-SWRL model followed by the Chapter summary.

• Chapter 4: Results: Case Studies describes the results as implementation
cases of the pioneer underutilized crops ontology(UC-ONTO), the Onto-
CropBase semantic search engine and the proposed FT-SWRL model. Fol-
lowing the chapter introduction, case study one describes the results of
our Ontology engineering, standardization and extension with SWRL rules.
This is followed by the Ontology utilization case study describing the Onto-
CropBase semantic searching and functionalities. The Ontology Language
extension case study describes the model implementation of the Fuzzy Tem-
poral SWRL model and lastly, the Chapter summary.

• Chapter 5: describes The Analysis of Results and Discussions highlight-
ing the validation of the case studies development process. Following the
chapter introduction, three main sections were presented in the chapter: The
Underutilized crops ontology evaluation is first discussed following the key
metrics of ontology evaluation and the validation of the SWRL rules exten-
sion of the UC-ONTO. This is followed by the Onto-CropBase evaluation
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highlighting the domain experts evaluation, comparison with relevant tools
and an analysis of the scalability of the Onto-CropBase tool. Lastly, the
FT-SWRL model evaluation is discussed highlighting the metrics of the FT-
SWRL ontology followed by the format and usability of the FT-SWRL rules
and built-ins respectively. A discussion and summary is then presented with
a general overview of the main sections.

• Chapter 6: Conclusion of the thesis begins with a summary of the ma-
jor contributions followed by a discussion of the technical limitations and
suggestions for improvement as future works. Lastly, a summary of the
research conclusion is presented as the concluding remarks.
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Chapter 2

Literature Review

2.1 Introduction

This chapter gives an overview of the research context and the related works in
ontology-based knowledge systems. The chapter is structured as follows: It first
introduce ontologies and the semantic web in Section 2.2 including an overview
on the evolution of web ontology language (OWL) from the Description Logics
(DL), the expressiveness of OWL-DL, and the OWL-2 profile. An overview of on-
tologies in the Crops domain is presented in Section 2.4 to highlight the relevance
and state-of-the-art of the knowledge domain. This is followed by discussion of
the literature behind ontologies as knowledge management tools in Section 2.3
and the relevant approaches to ontology engineering methodologies in Section
2.5. The discussion categorizes ontology modeling tasks into three: ontology en-
gineering from domain facts, ontology reuses and ontology standardization for
improvement. Section 2.6 gives an overview of some of the popular ontology
development environments highlighting their comparable advantages and limita-
tions. The next section explores the ontology evaluation strategies in 2.7 with
emphasis on the ontology evaluation through domain experts and competency
questions. Common logic programming formalisms for extending DL-based on-
tologies are presented in Section 2.8 highlighting the motivations, concerns and
the decidability requirements for each formalism. Suitability of the Semantic Web
Rule Language (SWRL) as an example formalism for extending OWL ontologies
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was established by exploring its compatibility, limitations, syntax and semantics
among others. Various SWRL expressiveness extensions were then discussed in
Section 2.9 followed by a study of their decidability and completeness. Ontology-
based search engines were reviewed in Section 2.10 highlighting the comparable
literatures behind keyword-based versus semantic search systems. Section 2.11
explores the relevant works on ontology language extensions focusing on manag-
ing temporal imprecisions in domain knowledge representation and lastly, Section
2.12 gives a brief summary of the reviewed literature.

2.2 Ontology and The Semantic Web

The Semantic Web is envisioned as an extension to the current web of documents.
It is also described as Web of linked data [6]. The semantic web project, which
uses ontology as its knowledge model, aims to connect conceptual data from dif-
ferent sources and enrich them with semantic annotations for the comprehension
of both humans and machines. One major goal of the Semantic Web is to pro-
vide markup services that enables access to information from various sources in
the Web. Hence, the Semantic Web is more concerned on the meaning of data
as compared to the current World Wide Web (WWW), which is more concerned
with human readable structure with little emphasis on machine inference. Figure
2.1 below shows the Semantic Web Stack.

Ontology on the other hand, is a term borrowed from philosophy and is widely
quoted as ”an explicit specification of a conceptualization” [12]. ’Conceptualiza-
tion’ is any simplified version of knowledge that we wish to represent for some
purpose. Ontology is also defined as any common vocabulary employed and
adopted to share information in a given domain [13]. By adding semantics to
domain concepts, ontologies help to model a knowledge base that is both human
understandable as well as machine readable. As such, developing ontologies re-
quires a reasoner to be invoked to detect inconsistencies and for inference. Com-
monly used reasoners include Pellet, HermiT, Fact++, KAON2, Cerebra Engine
and RACER among others [14].

Designed to be the knowledge modeling language for an open-web of linked
data [15, 16], ontologies are often developed as foundational specifications, do-
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Figure 2.1: The Semantic web language stack[1]

main conceptualizations, as well as task-specific domain ontologies. The foun-
dational ontologies explain generic concepts, domain ontologies explain the vo-
cabulary of a scoped knowledge area, and application or task ontologies describes
activities or specific application vocabulary in a domain. We discuss ontology
classification citing examples in Section 2.3.2.

2.2.1 Preliminaries

• Clausal Logic (CL) [17] is a particular kind of First-Order Logic (FOL)
— a powerful formalism used to express relationships between objects in a
given knowledge domain through quantified variables and predicates. CL
provides the basis for Logic Programming (LP) through its fragment called
Horn Clause Logic (HCL).

• A Horn-Clause is logic program rule containing disjunctions of literals (rule
atoms) with at most one positive literal [18]. A finite collection of Horn
clauses together with ground facts are referred to as logic programs (LP).
Simply put, LPs are a finite set of rules and facts.

• Datalogs on the other hand, are function-free horn-clauses, having only vari-
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ables and constants as terms.

• Description Logic (DL) [19] is basically a decidable fragment of FOL that
allows modeling of knowledge domains using concepts (classes), the binary
relations between them (called roles or properties), and individual instances
(facts). Being decidable, the DL forms the basis of most domain modeling
(ontology) languages including OWL.

• Decidability: In the context of this work, decidability refers to the ability
of a Reasoner to achieve inference within a finite amount of time [20] e.g.
checking the consistency of logical consequences of ontology axioms and
return true or otherwise. That is, given any ontology, a set of rules, and a
sentence, the Reasoner can check that the sentence is entailed by the ontol-
ogy and rules. More importantly, there exists a terminating procedure.

2.2.2 Semantic Web Technologies

The Resource Description Framework (RDF), its schema RDFS and the Web On-
tology Language (OWL) are the common ontology languages for the semantic
web. Fig. 2.2, shows these languages arranged in layers of syntax and semantics.

Figure 2.2: Layered architecture of ontology languages [21].

In principle, RDF is an XML-based language designed to identify and describe
information in a web page or any object on the web. It is lightweight and flexible.
The basic elements of RDF are resource, property and statement. As explained
in [22], the expressive limitations of Resource Description Framework (RDF) and
its Schema in describing some application domains brought about the need for
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OWL ontologies on the web and thence necessitates the development of expres-
sive ontology development languages. A summary of the web ontology language
evolution is presented in Fig. 2.3 showing the OWL family tree.

RDF/RDFS

FRAMES

DL

Description Logic

DAML

OIL

DARPA Agent

Markup Language

Ontology

Inference Layer

OWL 1 OWL 2

OWL 2 EL

OWL 2 QL

OWL 2 RL

Figure 2.3: OWL family of ontology languages

The earliest is the extension of RDF by the Defence Advanced Research Agency
(DARPA) and W3C to develop ”DAML” (DARPA Agent Markup Language), an
ontology language that have more expressive capacity than RDF to allow agents’
interaction on the web [23]. As shown in Fig. 2.3 the DAML ontology language is
designed to further incorporate the flexibilities of RDF with the expressive powers
of FRAMES knowledge representation language [24]. Frames-based knowledge
model represents domain knowledge using Classes to represents objects, Slots to
represent named binary relationships between the Classes and Facets, which de-
scribes a named ternary relationship between classes and primitive data types. The
quest for higher expressiveness of domain ontology languages influenced by the
available implementation tools, such as RDF and FRAMES, leads to the evolution
of the ’Ontology Inference Layer’ (OIL). The OIL [25] is a DL-based ontology in-
terchange language that combines the conceptual definition of Description logics
with the explicit knowledge representation formalism of frames while remaining
compatible with the RDF schema. Hence the name, ontology interchange lan-
guage.

With the introduction of the Semantic Web however, it became imperative to
have a web-based ontology language, an effort that leads to the adoption of Web
Ontology Language (OWL 1). OWL 1 is also termed as OWL-Full, due to its
full expressive powers combined from the DAML and OIL ontology languages.
In order to achieve reasoning over OWL ontologies, a subset of OWL-Full that
completely conforms to the DL framework is extracted as the ’OWL-DL’. Hence,
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at the cost of decidability, the OWL-Full subsumes the OWL-DL in terms of ex-
pressiveness. Furthermore an OWL-Lite profile is defined as a subset of OWL-DL
and becomes the least expressive though highly tractable fragment of the web on-
tology language OWL 1. In essence, the web ontology language (OWL-DL) gives
a very expressive and decidable ontology language and since OWL-DL utilizes
the extensive research on DL, it serves as the foundation for the recent language
profiles of OWL version 2 — discussed below.

2.2.3 The OWL-2 Profile

The Web Ontology Language version 2 (OWL 2) [26] is a formally recommended
ontology language for the Semantic Web and much like its predecessor, OWL
1, it allows logical domain modeling by defining and describing classes, individ-
uals, their properties and relationships with each other or data values, with the
addition that OWL 2 ontologies are exclusively stored as Semantic Web docu-
ments. Specifically, the current version OWL 2 is able to provide a wider range
of constructs for expressing concepts such as transitive and inverse properties,
cardinality restrictions, as well as inheritance, among others. By targeting
specific modeling needs of the web, it is thence divided into three sub profiles,
viz. the ’OWL 2 Expressive Language’ (OWL2EL), ’OWL 2 Query Language’
(OWL2QL), and the ’OWL 2 Rules Language’ (OWL2RL) [27, 28]. These sub-
languages offer different expressiveness and computational desirability.

The ’OWL 2 RL’, which lays the foundation for the Semantic Web Rule Lan-
guage (SWRL) (see Fig. 2.4: OWL Evolution and Contextual Relationship with
SWRL), is suitable for rule-based applications. It enables additional rules (such
as horn clause rules written in the SWRL language) to be added to ontologies for
more expressive descriptions of application domain. SWRL is an OWL-based rule
language, which utilizes the abstract syntax of OWL extended with horn clauses
(having antecedent and consequence) for rule assertions. The SWRL formalism
is discussed in Section 2.8.2 and the Fig. 2.4 below, summarizes the contextual
relationship between OWL profiles and SWRL.

Reasoning tasks over OWL 2 RL ontologies are achieved in Polynomial times
and due to its ability to manipulate RDF triples directly, it is used for applications
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Figure 2.4: OWL Evolution and Contextual Relationship with SWRL

that need to access data directly or where data manipulation is important. The
profile allows extending ontology with rules and OWL 2 RL semantics can be im-
plemented using traditional rule-based engines [29] — the forward or backward
chaining rule engines, including CLIPS and Jess. As such, the profile is basically
more expressive than OWL 2 EL and OWL 2 QL, and allows developing applica-
tions with scalable reasoning while retaining the expressive power of OWL 2.

2.2.3.1 Reasoning in OWL Ontologies

One of the key benefits of using DL-based ontologies and of using ontology (in
general) over other knowledge representation techniques as a whole is the ability
to invoke a reasoner to process those ontologies [30]. Processing ontologies by
a reasoner involves testing the hierarchy definition of classes in the ontology and
then automatically compute the class hierarchy and also infer additional classifi-
cation. Reasoning in OWL ontologies also helps to provide consistency checking,
where a reasoner checks based on the given class definition whether or not a class
can have any individual instances. This helps to avoid impractical classification
of concepts in OWL ontologies.
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Common DL-based reasoners available in open ontology development envi-
ronments include the Pellet reasoner, HermiT, and Fact++, among others. During
ontology development, a reasoner needs to be invoked to maintain consistency
and reasoning can be performed continuously at development time and during
ontology run time. For very large ontologies such as SNOMED-CT ontology
containing over 400, 000 clinical concepts [31], reasoning is crucial at the design
and development time to ensure correct and consistent classification. Also during
query evaluations at run time, reasoning is needed to ensure correct inference of
relationships between concepts and also to support rules execution.

2.2.3.2 The Language Expressiveness of OWL-DL

In DL-based languages, factual knowledge during individual assertions and ter-
minology definitions are stored as formulas in First Order Logic (FOL). However,
restrictions are usually attached to these formulas to ensure decidability and ef-
ficient reasoning over the ontology they represent [32]. These restrictions also
specify the degree of expressiveness of the DL as compared to FOL, which can
express almost everything, though is undecided in terms of computational com-
plexities such as space and time.

To achieve decidability, OWL ontologies are generally restricted to their cor-
responding DL expressiveness algorithms and the OWL-DL has the expressive
equivalence of a SHOIN (D) algorithm. The basic OWL-DL restrictions, repre-
sented by these letter-symbol keys are described below:

• S — An abbreviation of an Attributive (Concept) Language with Comple-
ment (ALC) extended with transitive roles. The Attributive Language (AL)
is the basic DL language that allows the use of Concept intersection (∩),
universal restrictions (∀), limited existential quantification (∃) and atomic
negation of concepts (¬), which do not appear on the left-hand-side of ax-
ioms.

The ALC or short form S, is obtained when AL is extended with the full
concept negation, i.e. complement of any concept, not only atomic con-
cepts, can be expressed in the ALC such as for example, the Top concept
(> ≡ C ∪ ¬C) and Floor concept (⊥ ≡ C ∩ ¬C), where C is any concept.
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In owl, the Top concept is called ’Thing’ (owl:Thing) and all classes are
subclasses of ’Thing’, while the floor concept is considered as ’Nothing’.

• H— An abbreviation ofALC extended with the role hierarchy (owl:subPropertyOf

relationship).

• O— An abbreviation ofALC extended with Nominals (enumerated classes
e.g. owl:oneOf or object value restrictions such as owl:hasValue relation-
ship).

• I — An abbreviation of ALC extended with Inverse roles or properties,
which allow expressing relationships in opposite directions (e.g. owl:hasPart

and owl:isPartOf ).

• N — An abbreviation of ALC extended with a Number or cardinality re-
striction. Semantics: ≥ n R.C or ≤ n R.C, where C is domain concept, n is
the cardinality.

• D — The data values expressiveness (D), which is sometimes attached to
the algorithm as subscript (SHOIN(D)), denotes the abilities of DL and its
family of languages, to use data values, datatype, and datatype properties to
further express domain facts.

2.3 Ontologies as Knowledge Management Tools

Information Science and knowledge management practices, involves the develop-
ment of tools and techniques for acquisition, representation, usage, preservation,
as well as evolution of human knowledge. In order to use existing information to
create knowledge, knowledge engineers need to understand and generate semantic
relationships that are bound to exist between various terms, keywords and facets
of domain knowledge. This can be made easier through the use of ontologies,
which provides an explicit specification of terms, keywords or concepts in a given
domain. These semantics, added to keywords using an ontology language, are
human readable as well as machine process-able and thus gives an edge to using
ontologies as tools for knowledge management. Moreover, in the article presented
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in [33], which explore the roles of biomedical ontologies in knowledge manage-
ment and data integration, the author further highlights the roles of ontologies
in knowledge management systems (KMS) to include: annotation or indexing of

resources, retrieval of data and information, data exchange and integration, pro-

viding semantic interoperability among domain concepts, as well as knowledge

discovery.
While biomedical ontologies are specifically mentioned in his article for do-

main referencing, these roles are without doubt applicable to other domain ontolo-
gies, including our underutilized crops domain. For example, we developed the
UC-ONTO as domain ontology for underutilized crops that provide semantic re-
lationships between crops-related terms and further integrate them with other crop
data sources in RDFS to enhance information retrieval through a semantic search
engine called the Onto-CropBase. Detailed description of the Onto-CropBase
tool, including the comparable study semantic vs keyword-based searching, is
presented in [11] and discussed here in Section 4.3.

2.3.1 Description Logics (DL) Based Knowledge Representa-
tion

The logical formalism behind ontological knowledge representation is known as
description logic (DL). Being a decidable fragment of first-order predicate logic
(FOL), DL is a collection of logic based knowledge representation formalisms
designed for precise description and reasoning about the concepts in an applica-
tion domain and the relations between them. DL uses logical symbols (operators,
quantifiers, equalities, etc.) and variables combined with signatures of non-logical
symbols such as unary predicates — which defines the domain concepts as Classes
and the binary predicates — which define the number of individuals in a given
class or the Roles and their multiplicity — which describes the relations between
concepts. Typically, a DL axiom consists of these atomic concepts and individ-
uals to represent complex knowledge of an application domain. As an example,
consider a simple DL ontology described using axioms (2.1)-(2.3) that intuitively
expresses the domain facts: ”Bambaragroundnut is a Legume Crop which has
Leaf, Stem and Root as part of its Features and Leaf-spot is a disease of Bambara-
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Groundnut”.

BambaraGroundnut v Crop u ∃isPartOf · (Legumes u (∃hasFeatures · Features u

∀features · (Leaf t Stem t Root))) (2.1)

LeafSpot ≡ Disease u ∃affects · Leaf (2.2)

BambaraGroundnut(BambaraGroundnutInd) (2.3)

The ability to efficiently model a knowledge domain and the decidable com-
putational characteristics, various ontology languages have been influenced by
the DL syntax and semantics leading to the evolution of traditional ontology lan-
guages, such as the Ontolingua, OKBC and F-Logic, among others [34]. With the
introduction of the Semantic Web however, it became imperative to have a web
ontology language with higher expressiveness. As mentioned in Section 2.2.2,
this effort that leads to the serial development of various ontology markup lan-
guages such as SHOE, RDF, RDFS, DAML and OIL, OWL 1 and more recently
the OWL 2 language profiles.

DL-based knowledge representation systems usually involves two important
components called the T-Box and A-Box. The ’T-Box’ or terminology-box con-
tains the ontology concepts (owl:Classes) and Roles (owl:Properties) also called
the terminologies. While the ’A-Box’ or assertion-box contains assertions of indi-
vidual instances from the ontology terms. Example axioms in the T-Box could be
the DL axioms (2.1) and (2.2) defined above in the simple Crop ontology, while
a member of A-Box could be the third axiom (2.3) which asserts the individual
”BambaraGroundnutInd” into the ontology as a member of the ”BambaraGround-
nut” class.

2.3.2 Classification of Ontologies

Ranging from generic taxonomies to specific application-level knowledge mod-
els, Ontologies can basically be categorized into three [35, 36] namely: (i) The
foundational ontologies, (ii) Domain ontologies and (iii) Application or Task-level
ontologies.

Doctoral Thesis 27



Ontology-based Knowledge Systems

Foundational Ontologies also called ’Upper-level’ or ’Reference’ ontologies,
explain generic concepts and provide general taxonomies with multi-domain knowl-
edge. The Unified Foundational Ontology (UFO) [37], Basic Formal Ontology
(BFO) [38], General Formal Ontology (GFO) [39], and the GFO-Bio [40] among
others, are common examples of foundational ontologies. Foundational ontology
being a repository of general knowledge provides a means for semantic evaluation
of lower ontologies such as the domain ontologies.

Domain ontologies on their part provide conceptual and more descriptive def-
inition of terms within scoped domain boundaries, usually for an organization or
knowledge community. They usually comprise of domain concepts, their rela-
tionships and individual instances. They offer a common vocabulary for sharing,
reuse and standardizing knowledge of a specific community or domain of dis-
course. Larger domain ontologies are sometimes referred as upper-domain, such
as BIOTOP [41], which is an upper-domain ontology for molecular biology link-
ing smaller domain ontologies with the BFO, FAOs AGROVOC [42, 43, 44],
which has in the past thirty years grown from simple multilingual agricultural
index to a Linked-Open-Data (LOD) set. Other example domain ontologies in-
cludes the Crop Ontology [4], Plant ontology [3], Gene Ontology [2]. For the
purpose of our onto-cropbase tool [11], a domain-level ontology UC-ONTO [45]
describing the underutilized crops and their farming practices, was developed to
serve as knowledge base.

Application ontologies describe activities or specific application’s vocabulary
in a domain. Developed to be used for specific applications, application ontologies
usually utilize the domain ontologies by restricting its conceptualizations to model
a specified application or task. For example, the Food Ontologies for nutritional
applications in [46, 47, 48] and ’sensor ontologies’ for manufacturing application
reviewed in [49]. The availability and popularity of standardized domain-level
ontologies greatly affect the development of application-level ontologies, reduc-
ing the process in most cases, to a simple task of narrowing down existing domain
ontologies into task-specific ontologies. However, new domain/user-specific con-
cepts can be easily generated from competency questions and user queries, when
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involved in the knowledge generation process. These newly-generated concepts
may need to be harmonized with the existing ones, leading to the Ontology stan-
dardization process — see Section 2.5.4.

In the subsequent subsections, we briefly discuss some of the common ap-
proaches of generating domain ontologies. These approaches, depending on the
nature of the ontology development and knowledge engineers involved may be
combined together or individually employed at different stages of the ontology
development.

2.4 Ontologies in the Crops Domain

As stated earlier, information on underutilized crops is usually dispersed among
different resources: research papers, implicit knowledge, from the domain experts
at CFF, etc. However, as common terminologies for the crop domain already exist
in the literature, we model our ontology based on those standard terms obtained
from popular agricultural ontologies such as the AGROVOC, Plant and Crop On-
tologies among others. This section discusses the life-sciences domain ontologies
with emphasis on the crops domain. We present the popular crop-related ontolo-
gies highlighting the expressiveness provided by their development language and
showing their inadequacy in representing underutilized crops knowledge. Subse-
quently, we highlight the benefits of ontologies in crops knowledge modeling.

2.4.1 The Gene Ontology

The Gene Ontology [2] is a popular biological upper-domain ontology developed
by the Gene Ontology Consortium to establish standards in the representation
of gene-related knowledge for various species of organisms. It is designed as a
collaborative community-based ontology development effort providing gene on-
tologies with three components: molecular functions, biological processes and
cellular components, their annotations as well as tools to access and process the
ontologies [50]. Like many existing biological ontologies, the Gene Ontology
is developed using the java-based open-source OBO-Edit environment and there-
fore available mostly in the OBO format . OWL versions of these ontologies
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are provided though. However, as explained earlier, OBO ontologies even when
converted to OWL formats, lacks the expressiveness provided by OWL.

Figure 2.5: Gene Ontology Search Tool (The AmiGO2) showing information on
major crop (Rice). [2]

Figure 2.6: Gene Ontology Search Tool (The AmiGO2) showing lack of informa-
tion on underutilized crop (Bambara groundnut). [2]

2.4.2 The Plant Ontology

Considering it as a comparative tool for plant anatomy and genomic analysis [3],
the Plant Ontology is developed to provide formal specification of terms that de-
scribe plant anatomy, morphology and growth stages with the first and later de-
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veloped as components of the whole ontology. Plant Ontology utilizes the data
model available in the Gene Ontology (GO) [2], for annotating the plant anatomy
and growth stage ontologies with gene expressions and phenotype data from the
GO. Similar to the Gene Ontology, the Plant ontology is also guided by the OBO
Foundry ontology for seamless collaboration with other biological ontologies [3]
and most of the ontology is available in the OBO format . However, some parts
of the ontology are available in the OWL format. For efficient comparison of dis-
parate data with similar terms, such as that of genomics, the use of ontologies is
necessary for data curation and analysis as it helps to provide common structured
vocabulary that permits automated reasoning.

Figure 2.7: The Plant Ontology Search Tool showing information on major crop
(Rice). [3]

2.4.3 The Crop Ontology Curation Tool

Citing data management, accessibility and retrieval challenges as the main motiva-
tion, Generation Challenge Program (GCP) 1 developed the Crop Ontology to fa-
cilitate community sharing of crop-related information by semantically character-
izing and annotating historic generic crop data sets (traits, phenotype, germplasm,
breeding, etc.) [51, 4]. With a simple web-based interface and the help of seman-
tic experts as moderators of the ontologies, the Crop Ontology platform allows

1http://www.pantheon.generationcp.org

Doctoral Thesis 31



Ontology-based Knowledge Systems

Figure 2.8: The Plant Ontology Search Tool showing lack of information on un-
derutilized crop (Bambara groundnut). [3]

community-based collaborative ontology development, where users can create
and add their own ontologies to the pool. Originally in Open Biomedical Ontol-
ogy (OBO) formats, the Crop ontology has evolved to utilize more terminological
standards such as RDF and OWL [52].

With OWL being a widely used standard for developing ontologies, the effort
to provide Crop Ontologies in RDF and OWL format, will help in knowledge-
sharing between among researchers. This is basically due to the high expressive
power provided by OWL language constructs, the efficient reasoning support, and
the added advantage of using rules to integrate OWL ontologies with declarative
languages such as SWRL. Moreover, Semantic Web applications can be developed
to utilize OWL ontologies.

From the foregoing exploration, it can be seen that the ontologies are able
to provide an efficient and comprehensive hierarchical representation of their do-
mains with common roles between concepts being of the form ’is-a’ and ’part-of’
relationships, which simply put, denotes that a concept is either a subtype of the
connecting concept or that of the root/ancestral concept. However, they seem to
lack complex representation of roles or relationships between concepts, which
is one of the major differences between ontologies and hierarchical taxonomies
such as thesauri. In a similar gesture, authors of ’Crop Ontology: vocabulary for
crop-related concepts’ in [52], have suggested the use of OWL-DL in their future
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Figure 2.9: The Crop Ontology Curation Tool showing information on major crop
(Maize). [4]

works of for added expressiveness and complex domain modeling.

2.4.4 Contributions of Ontologies in Crops Modeling

Based on the analysis of ontology development literature above, the contribu-
tion of ontologies to domain knowledge modeling includes the Standardization of
domain knowledge, Organization and sharing of domain information, as Integra-
tion tools and for domain knowledge comparisons. Other non-direct advantages
include the Separation of domain knowledge from operational knowledge. More-
over, domain ontologies are useful for developing semantic applications. These
contributions are not exclusive to the crop domain as they are mostly generic ad-
vantages brought about by ontologies. A text book detail on benefits of ontologies
in domain knowledge modeling, with a focus on Bioinformatics domain, is pre-
sented in [53].

More specifically, contribution of ontology to the crops domain can be summa-
rized in the following points: (i) For organization and sharing of crops information
and meta-data — leading to standardization (e.g. FAO’s AGROVOC, CFF’s UC-
ONTO, etc.) (ii) For organization and sharing crop information (iii) As integrative
comparative tools (iv) Separation of Crops knowledge from Operational knowl-
edge in enterprise applications, and also (v) Useful for developing semantic web
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Figure 2.10: The Crop Ontology Curation Tool showing lack of information on
underutilized crops. [4]

applications.
These contributions are however not exclusive to the crop domain as they are

mostly generic advantages brought about by ontologies and the semantic web
project. Though, as explained earlier, ease of knowledge comparability by on-
tologies is more pronounced in the field of life sciences. A review on the recent
trends and application of ontologies citing examples from other domain ontolo-
gies is presented in [54] and a text book detail on the ’uses of ontologies in
bio-informatics’ is given in [53].

2.5 Ontology Engineering Methodologies

2.5.1 Generating Ontologies from Scratch

Developing ontologies from scratch is usually associated with upper-domain on-
tologies. This is because, upper-level ontologies being generic taxonomies that
are proposed as foundational standards, usually have no ancestral ontologies that
can be reused. However, exceptional cases in mid-level (domain and application)
ontology development may require similar approach, especially when creating pi-
oneer domain ontologies such as the Underutilized Crop Ontology (UC-ONTO)
[45]. However, analogous to software development tasks, there is yet an agreed-
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upon fool-proof methodology for ontology development. What is certain, though,
is that ontology development is iterative. The iterative nature of domain ontol-
ogy development is highlighted by many researchers such as by [55], and [56] —
who highlighted that in addition to the repetitive nature, ontology development
is also fast becoming a collaborative effort. The collaborative Web Protégé is
thence introduced in [56] as a tool to support the collaborative nature of ontology
development. Key participants in ontology development efforts may include the
knowledge engineers, domain experts and social engineers among others.

In a more holistic approach proposed in [23], ontology development is recom-
mended to begin with the following tasks: (i) Define the scope of the knowledge
domain, (ii) Define the purpose of developing the ontology, and (iii) Identify the
potential users of the ontology. In essence, determining the expected size of the

ontology and precisely knowing the application domain it will cover, while having
its users in mind during the entire development process, greatly helps in smooth-
ing the domain ontology development process.

In our opinion however, an ontology implementation must follow the dedi-
cated object modeling approach, where: (i) Knowledge engineers or Ontologist
should first identify the classes for the ontology — this can be done through
competency questions or simply through identify key domain concepts from the
knowledge source, (ii) secondly, arrange the classes in a taxonomic order (i.e.
super-class-subclass relationships), (iii) defining the object and data-type proper-
ties (relationships), and finally (iv) asserting individual instances as values.

As such, these steps were performed repeatedly for developing each compo-
nent version of the UC-ONTO, leading to the final complete version. Two final
stages were termed versioning and assembly. In (v) Versioning, we assign a label
to represent each ontology fragment, specifying where it fits to the larger ontol-
ogy. While in the (vi) Assembly stage, all the smaller ontologies are put together
and the reasoner is invoked to assert the overall classification and check for con-
sistency. The complete UC-ONTO development methodology is summarized in
Section 3.2.
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2.5.2 Ontology Generation from Heterogeneous Data Sources

Domain knowledge typically exists in different sources and formats. These sources,
which usually contain the domain knowledge as well as the meta-knowledge, can
sometimes be used as knowledge sources feeding into the ontology development
process. In this subsection, we discuss the semi-automated approach to generating
ontologies from external data-sources such as the structured sources e.g. relational
databases (RDBs), semi-structured sources e.g. Extensible Mark-up Language
(XML), and unstructured knowledge existing as texts. Automatic generation of
ontologies from data sources is still an ongoing research trend and in order to en-
hance knowledge reuse and smooth the migration from the current web of docu-
ments to the Semantic Web of data, ontology development has to address the chal-
lenges of heterogeneous data sources. Various researchers have proposed tools
and techniques for generating ontologies from heterogeneous data sources such
as relational database to OWL (RDB2OWL) and XML to OWL (XML2OWL)
add-ins in Protégé, among others [57, 58, 59, 60].

For the development of the Underutilized crops ontology (UC-ONTO), con-
ceptualization approaches were proposed or tested and eventually utilized to gen-
erate the pioneer OWL2-based Crops ontology. These conceptualization approaches
include: Concept generation from structured and unstructured data such as XML,
RDF, PDF, Word files, Excel sheets and research notebooks.

2.5.2.1 Generating OWL Concepts from XML and RDB Files

The ’XML to OWL’ tab in Protégé ontology editor allows generating OWL con-
cepts directly from an XML document by converting every data root in the XML
tree into a class and resulting list in the root as their individual instances. Where
as for generating ontologies from relational tables an ’RDB2OWL’ [58] Protégé
plug-in may be employed. The relational data to OWL mapping is achieved
through an XML2OWL as intermediary. In essense, the plug-in generates OWL
ontologies by converting tables into XML trees and then using the XML to OWL
conversion to complete the process. Relationships between concepts are defined
by the table meta-data.

Generating OWL ontology from an XML document in Protégé involves load-
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ing the XML instance document into the XML2OWL converter and then gen-
erating the OWL concepts into existing ontology using the ’import’ tab — see
Fig. 4.2. However, in order to avoid inconsistencies and cluttering of existing on-
tologies, an empty OWL-DL ontology file needs to be created before loading the
XML file and the XML-Tab should only be created in the active ontology that one
intends to accommodate the XML instances. This is because once the ’import’
button is clicked, Protg directly append the instances generated from the XML
documents to the active ontology. Moreover, as there is an option to inspect the
XML tree before the importation, careful inspection needs to be done to ensure
correct XML documents are used — the process is irreversible.

However, while these approaches help to easily generate OWL classes, proper-
ties and in some cases instances, the resulting ontologies are usually inconsistent
with few to no-relationships generated among concepts. Moreover, while these
tools deals with the heterogeneity at initial stage of the ontology development, in-
consistent ontologies can be managed through ontology matching, alignment and
merging — discussed in Section 2.5.4 ontology standardization approaches. We
present a detailed discussion on dealing with heterogeneous ontologies and data
sources in [61].

2.5.3 Ontology Reuse: Generating an Ontology from Ontolo-
gies

As suggested in the 5-star scheme of the Semantic Web [62], it is always advisable
during ontology development to ’reuse’ existing ontologies. This can be achieved
by ’importing’ relevant ontologies to use them as-is or ’adopt’ some of their spe-
cific domain features. Adoption is usually applied when importing upper-domain
ontologies that needs to be extended with more specific concepts and terminolo-
gies. We discuss the process of ontology import using the Protégé ontology editor
in Section 3.3.7 of the Methodology Chapter. Importing ontologies does not only
simplifies and speedup the ontology development process but also helps to ensure
the use of standard vocabularies for a given knowledge domain or community of
discourse. For example, in the field of agriculture, where various upper-level on-
tologies exist (cf. Section 2.4), the ontology reuse approach is commonly applica-
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ble. The ontology-reuse approach no doubt saves a great amount of development
time on the part of knowledge engineers and helps in generating richer as well as
standardized vocabularies.

2.5.4 Ontology Standardization Approaches

A notable stage in the ontology development process is the standardization of
the concepts and roles defined in the ontology. Domain ontology standardiza-
tion typically involves merging, matching and alignment of (imported) ontologies
and the use of foundational ontologies to streamline concept definitions. Other
forms of ontology standardization approaches involve domain expert’s validation
of the model as well as providing natural language annotations — for ambigu-
ous concepts or terminologies. An effective ontology standardization results in
general understanding and acceptance of the resulting ontologies — leading to
further reuse. It also helps to minimize inconsistencies in nomenclature across the
knowledge domain. In the following subsections, we briefly highlight the com-
mon ontology standardization approaches.

2.5.4.1 Matching, Alignment and Merging of Ontology Fragments

Ontology development typically involves reusing other ontologies and to this
reuse and the iterative nature of ontology development, there is a need for con-
tinuous alignment, matching and ultimately merging two or more ontologies. On-
tology alignment is commonly associated and sometimes even confused, with on-
tology matching. In [63], the authors clearly differentiate the terms as follows:

Ontology Matching involves examining two or more ontologies with the aim
of finding relationships, similarities or correspondence between them. The result
of ontology matching is the Alignment of the respective Ontologies, where se-
mantic relationships between concepts in the two ontologies are identified. While
Matching is simply to find correspondences, Ontology Merging on the other hand
is action oriented as it involves creating a new ontology from two or more over-
lapping ontologies without changing the sources. Another concept worthy of note
is Ontology Mapping, which is a directed matching of two or more ontologies,
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where entities of one ontology are mapped to at-most one entity of another ontol-
ogy.

Tools for ontology merging (by extension matching and alignment) exist, such
as Protégé’s PROMPT [64] which basically use bridge axioms (also called artic-
ulation axioms) to integrate entities of one ontology into the entities of another.
Similar to schema integration of databases, ontology merging uses the bridge ax-
ioms to find similar concepts basis of ontology merging. Due to its clearly defined
user interface, its step-by-step informative feedback during the process, the merg-
ing tool available in recent version of Protégé is often used for resolving termino-
logical conflicts and ontological differences — including in the work presented in
this thesis.

Concepts Alignment with Foundational Ontologies Upper-level ontologies,
being repositories of a more general basic knowledge, provides a means for se-
mantic evaluation of lower ontologies such as the domain and application-level
ontologies. Moreover, being standards themselves, upper-level or foundational
ontologies can be employed to enhance standard concept definitions for lower do-
main ontologies. Upper-level ontologies commonly consist of general taxonomies
describing multi-domain knowledge. Examples of foundational ontologies, in-
clude: the Unified Foundational Ontology (UFO) [37], Basic Formal Ontology
(BFO) [38], General Formal Ontology (GFO) [39], and the GFO-Bio [40], among
others. Larger domain ontologies such as BIOTOP [41], which is upper-domain
ontology for molecular biology linking smaller domain ontologies with upper-
level ontologies such as the BFO, can also be employed to standardize the con-
ceptual definitions of smaller domain-level ontologies. The standardization can
be achieved through imports of relevant sections of the foundational ontology or
by simply aligning the concept definitions in the domain ontology with that of
the upper-level ontologies, so that similar terminologies and concept definitions
appears in both the domain and foundational ontology. Where the fragment of the
foundational ontology is available, it can be merged with existing domain ontolo-
gies or used as a foundation for the development of new domain ontology.
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2.6 Ontology Development Environments (ODEs) —
An Overview

2.6.1 The Protégé Ontology Development Environment

Protégé ontology-based knowledge development environment provide full support
for the OWL 2 profile and the Semantic Web Rule Language (SWRL). It has
a flexible and user-defined interface arranged in tabs and movable widgets, as
shown in the Fig. 2.11 below. More importantly it provides support for user-
defined rules using the ’Rule’ plug-in and rules tab, where users can write OWL
2 RL and SWRL rules for manipulating ontologies with Rule-based Reasoners
(such as Pellet and Hermit) that can reason over the rules without having to use
a rule-based engine. Figure 2.11 shows the ’Active Ontology’ interface showing
the Ontology IRI, version IRI, language, the Ontology Imports tab, the Ontology
Metrics tab, etc.

Other tabs, can be created using the Windows views menu. For ease of on-
tology development, various tabs have been added to the Protégé ODE such as
the Individuals tab, the OWL Viz and OntoGraf for ontology visualization and the
Ontology Differences tab, for automatic identification of differences between two
or more loaded ontologies. Others are the DL and SPARQL query tabs, the SWRL
rules tab and the Datatype creator tab — as shown in the second layer of the tab
menu. The first layer however, shows the default tabs (Entities, Classes, Object
and Datatype Properties) that are inherent in the Protégé installation. figure 2.11

2.6.2 The TopBraid Composer Integrated Development Envi-
ronment

The TopBraid Composer (TBC) is another W3C standards compliant ODE for
developing, managing and testing ontological knowledge models. Developed by
TopQuadrant2, TBC is an enterprise-class development environment for develop-
ing Semantic Web ontologies and building semantic applications. It is integrated
with the AllegroGraph plug-in to provide a scalable RDF backend. With a pub-

2https://www.topquadrant.com/

Doctoral Thesis 40



Ontology-based Knowledge Systems

Figure 2.11: Protégé Ontology Editor Interface showing Ontology summary page.

lishable API for developing web-based applications, the Top Braid Composer can
integrate various knowledge models and data sources into a consistent semantic
web application.

As shown in Fig. 2.12, the TBC main interface also provides the Class, Prop-
erties and Statement views with the Ontology Statistics view as an equivalent of
the Ontology Metrics of the Protégé ODE. It also provides the Ontology imports
view, the Instances view, Domain and Relevant views of selected concepts. These
and the fact that the TBC also provides a drag-and-drop semantic web application
development framework, makes it much simpler and flexible to work with and
hence suitable even to non-technical experts in developing domain ontologies and
semantic web application.
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Figure 2.12: Top Braid Composer Ontology Editor showing Ontology Statistics
page. [Image source: http://semanticommunity.info]

Cost: While the Protégé ODE is free and open-source tool with a rich com-
munity support for developers, the TBC ODE is licensed with a with a cost of
licensing options ranging from 500 to 3500 USD. As such for a social enterprise
application and not for profit projects such as the Underutilized Crops ontology
development, the Protégé becomes an optimum choice for the ontology develop-
ment tool.

Flexibility and Automation: However, the TBC3 provides some value for money
as it helps to automate some of the complex ontology development processes.
Moreover, the TBC makes developing semantic web applications to utilize the
developed ontological knowledge base easier, as it provides an integrated devel-
opment environment with simulated web browser capabilities. Unlike the Protege
ODE where separate API is needed to connect between the ontology data sources,
linked-data, and web services, the TBC allows the complete process within a sin-
gle IDE with rich set of libraries and GUI-based application development tools.
Nevertheless, the open-source based Protege is still a better choice for developers
due to the available API and large community of users for support.

3https://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
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2.7 Ontology Evaluation

Ontology evaluation is an important step in the ontology development process
which concerns the assessment of a given ontology based on identified criteria.
This is particularly useful where ontology reuse — an important and highly en-
couraged approach, is advocated in order to identify whether a given ontology
has fit to be reused for a particular purpose or application domain. However,
despite its importance, there is yet an agreed-upon qualitative or quantitative ap-
proach for assessing the quality of ontologies. Nevertheless, there are several
methodologies proposed by researchers over time. Common ontology evaluation
techniques and their goals have been categorized in [65] to include the following:
Vocabulary evaluation, Hierarchy or taxonomy evaluation, Contextual evaluation,
Application-based evaluation, and Data-driven evaluation techniques. In all these
cases, the ontology is evaluated based on the initial requirements of the ontology
model and hence an efficient competency question document would help to guide
the evaluation process.

In their quest for a qualitative approach to ontology evaluation, the authors
of [66] proposed a Peer-review based ontology evaluation methodology. This
approach allows non-authors of ontologies to provide some sort of qualitative rat-
ings for ontology contents with a view to selecting the best fit for an application
domain. A framework was then proposed to develop an ontology of metedata el-
ements that can be used to measure the quality of ontology features. While this
approach seems typical and simple, it is however difficult to provide peer-reviews
on ontologies that are of particular knowledge domain. This does not only re-
quires domain experts but requires Ontologists that also double as domain experts
in order to efficiently evaluate the quality of contents as well as the conceptualiza-
tion in domain ontologies. Moreover, as ontology reuse is a recommendation, not
a requirement to ontology development, this will make the process of ontology
engineering more difficult and tedious than it already is.

Another qualitative approached highlighted in [67] is termed Full Ontology
Evaluation Approach (FOEVal), which can be employed to evaluate both local
as well as searched ontologies. The main approach of the FOEval method is to
utilize certain Metrics that can be used to evaluate an ontology based on its pur-
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pose, users and domain coverage. Example metrics includes the completeness
of ontologies, comprehensiveness, as well as the level of details, among others.
An overall score is then computed for the ontology based on the weighted aver-
age for each metrics. Other notable evaluation approach to ontology evaluation
is the User-centered evaluation approach [23, 66, 68], where intended users as
well as domain experts of the ontology specialization are employed to validate
the contents, structure and vocabulary of an ontology. This approach was tested
in [68] where the authors obtained expert opinions on the validity of the domain
ontologies. Further validation employs the users of the ontologies to measure the
ontological commitment based on the user satisfaction.

From the evaluation approaches explored, a more comprehensive and flexible
evaluation method to be proposed and adopted is the use of competency questions
to evaluate ontologies.

Ontology Evaluation using Competency Questions. While competency ques-
tions are highly relevant in determining the goal and scope of ontologies, they are
also equally useful during the evaluation process [23]. This is because, the ques-
tions identified during the ontology requirements stage can easily serve as a good
starting point to plan the test cases. Furthermore, the answers elicited from domain
experts would not only help to validate the vocabularies but also highlights the tax-
onomy as well as content accuracy. As such, these competency questions can be
converted into competency queries to the completed ontology model. These can
be easily asserted through DL-queries and SPARQL queries to check the preci-
sion and recall of the information provided by an ontological knowledge model.
Where the query results do not match the answers to the competency questions,
the ontology can thus be modified or extended to provide the desired validation
metrics. However, one of the challenges to adopting CQs for ontology evaluation,
as highlighted in [69], is the lack of supporting tools for competency questions
management. The authors then proposed a ”CQ Checker’, a java-based model to
support the requirement specification phase of ontology development using CQs.

The detailed methodology for Competency questions management are de-
scribed in Section 3.2.1 and the use of Competency questions for evaluating the
Underutilized Crops Ontology (UC-ONTO) is presented in Section 5.2.3
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2.8 Logic Programming (LP) Rules in the Semantic
Web

In the field of AI, extending knowledge bases with rules falls under the impress of
hybrid knowledge bases (hybrid-KBs), where a domain conceptual model (ontol-
ogy) and a rule-base are combined to form the knowledge-base of a given appli-
cation system. Understanding such hybrid-KBs depends considerably on under-
standing the semantics of its component ontology and rule languages. Usually, a
single interpretation is possible, where similar semantics are involved. However,
where the combination involves different semantics, separate interpretations are
required for the ontology and the rule base. Moreover, understanding these differ-
ences helps knowledge engineers to effectively decide when choosing a compati-
ble rule formalism that can be used to extend a given ontology model.

Despite its success in achieving hierarchical definition and efficient classifica-
tion of domain concepts when compared to its predecessor the RDF, OWL itself
suffers expressive limitations, such as its lack of support for composite role defi-
nition between concepts. Hence, there is the need for a more expressive domain
modeling language than OWL as established by various researchers citing both
theoretical and practical examples [70, 71, 72, 73, 74, 75]. Rule formalisms were
consequently adopted to provide the needed support for more expressive power to
the OWL language both being fragments of the classical logic.

In the semantic web project, integration of OWL-DL and SWRL provides
many advantages that cannot be achieved using either OWL DL or Horn rules
alone. Moreover, extending ontologies with rules is favored due to the wide accep-
tance of rules in knowledge modeling and the success of Rule-based formalisms
in commercial applications among others. The expressive limitations of OWL and
the choice for Rules are not just mere coincidences. While OWL-DL ontologies
provides simple, reusable and easy to understand knowledge models, they lack
the expressiveness offered by rules. Furthermore, the rule formalisms apart from
being in common practice, provides an efficient reasoning support to ontologies
with the added expressiveness.

The LP rules are syntactically if−then statements consisting of an antecedent
and consequent — also called the rule body (B) and head (H) respectively. They
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are usually of the following form:

H ←− B1+, ..., Bn+, notB1−, ..., notBk− (2.4)

And the semantics ensures that the condition in the rule’s head be evaluated
to true whenever the conditions in the body are satisfied. However, there are
variants to the basic format above such as rules with disjunctions in their heads
or those extended to handle classical negations, etc. We discuss more on rule
expressiveness extensions focusing on the SWRL formalism in the next chapter.

2.8.1 Need for LP Rules in Ontologies — Motivations for Aug-
menting Ontologies with LP Rules

As established from the reviewed literature [76, 77, 78, 79], comprehensive do-
main modeling using ontologies usually requires integration with user-defined
rules. This may be due to advantages offered by the rule formalisms such as their
wide acceptance, successful commercialization of rule-based applications, and the
available reasoning tools to provide inferences. In the Semantic Web community,
the use of rules to integrate ontologies is rooted in the blueprint of the seman-
tic web stack. Comparable to ontologies, logic programming (LP) rules on the
Semantic Web are designed to help with data integration. Rules are particularly
important where an extra logical assertion may lead to a discovery of new relation-
ships between concepts. As such, for a comprehensive domain modeling, there is,
therefore, a need for augmenting ontologies with the declarative expressiveness of
logic programming rules. An example case study highlighting our experience in
ontology extension with the Semantic Web Rule Language (SWRL) is presented
in Section 4.2.7.

In essence, the expressive limitation of OWL and the choice for Rules is not
a mere coincidence. While OWL-DL ontologies provide simple, reusable and
easy to understand knowledge models, they lack the expressiveness offered by
rules. Furthermore, the rule formalisms apart from being in common practice, also
provide an efficient reasoning support to ontologies with an added expressiveness
[80]. The following advantages followed by suitable examples from our case
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study shows how SWRL rules can enhance the limited expressive powers of OWL
ontologies:

• Rules allow declarative Assertions: Due to the declarative nature of rules
axioms, they can be used to easily express complex domain concepts and
assert solutions to hard problems.

• Logic and Data Separation: Using rules allow the separation of data or facts
about a domain (ontology) from the logic (rules). This aid in change man-
agement as business logic not concepts usually changes.

• Tools Integration: Various tools that support rule-based development and
reasoning exist. Example includes: CLISP, Jena, Protégé, etc.

• Built-ins and user-defined built-in libraries: Domain-specific rule assertions
complements ontologies and increase the expressive powers of a reasoning
system. The ability to incorporate standard as well as user-defined built-
ins in SWRL provides added domain-specific expressiveness and the type
of reasoning information that can be achieved. For example, if Days After

Sowing (DAS) is greater than 50 then ”flowering” is expected. Here, greater

than 50 is an integer constraint called datatype predicates — defined as a
pseudo-built-in in SWRL.

Bambaranut(?b), DAS(?d), GrowthStage(?g), F lowering(?f),

swrlb : greaterThan(?d, 50) −→ GrowthStage(?g, ”flowering”)

(2.5)

• Expressing Domain Properties: In addition to ontology relations, other non-
explicit domain relations that do not appear directly from concepts classi-
fication can be specified using rules. Common examples where rules are
needed is when expressing dependencies between relationships or proper-
ties such as expressing dependencies between two or more ontology proper-
ties. Example, the concept ”if two crops share a similar cultivation region,
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then the two crops can be planted together” can be modeled easily with a
SWRL rule as follows:

Bambaranut(?b),Millet(?m), CultivationRegion(?cr),

hasCultivationRegion(?b, ?cr), hasCultivationRegion(?m, ?cr)

−→ canP lantTogether(?b, ?m) (2.6)

• Expressing Queries: LP rules are also useful in modeling user queries. Note
that queries are usually rules written without a value in the consequent.
Since our work includes query-answering, such as: find all possible in-
stances of a certain Crop type in a given geographical region. This can
easily be written as a SWRL rule with no consequence and the results of
such rules can be displayed as automated queries. An example:

Crop(?crop), hasCultivationRegion(?crop, ?region) (2.7)

The above rule (2.7) will return all crops stored in the ontology and their
cultivation region properties.

In what follows, Section 2.8.2 reviews the various Logic Programming (LP)
formalisms for extending DL-based ontologies focusing on those formalisms that
are compatible with OWL — the modeling language of our underutilized crops
ontology (UC-ONTO) [45]. Furthermore, an evaluation is provided of their added
expressiveness and their required conditions for decidability. For completeness,
the motivations and common concerns for integrating ontologies and rules were
discussed.

2.8.2 Common Rule Formalisms for Extending Ontologies

Due to the nature of syntactic or semantic integration between components, for-
malisms for integrating rules with ontologies can be categorized as either hybrid
(loose integration) or homogeneous (tight integration) approaches [62]. In the
homogeneous approach, common syntax and/or semantics are shared by both the
rule and ontology component. For example, SWRL has a uniform model theoretic
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semantics with its component OWL axioms and is therefore homogeneous Other
homogeneous formalisms include: DL+Log [81], KAON 2 [82], CLASSIC [83],
CARIN [84], extended-CARIN and r-hybrid KBs [20].

In the hybrid approaches however, the semantics of the rule language is con-
siderably different from that of the ontology language. In such cases, an interface
is sometimes needed for exchanging knowledge between the ontology and rules,
such as the use of Answer Set Programming (ASP) in ’dl-programs’ [85, 86].
Other hybrid approaches include the ’AL-Log’ formalism [87, 88], disjunctive
Al-Log and disjunctive dl-programs. Though other formalisms exist in which the
ontology and rules component of the KB uses a single vocabulary with no explicit
separation such as in the ”logic of Minimal Knowledge and negation as Failure”
or simply put, the Hybrid MKNF [87]. Some of the formalisms were briefly de-
scribed below.

2.8.2.1 The SWRL Formalism

The semantic web rule language (SWRL) [89] is a W3C recommendation that
extends the Web Ontology Language (OWL)[90] with horn-clause rules. This al-
lows declarative representation of complex domain information that may not be
possible in OWL alone. OWL being the recommended ontology language for the
semantic web [6], has shown considerable expressive powers over other ontol-
ogy languages, especially its predecessor, the Resource Description Framework
(RDF)4. However, while OWL ontologies provide simple, reusable and easy to
understand domain knowledge models, they lack the declarative expressiveness
offered by rules. As evidently shown in the semantic web architecture (Fig.2.1),
Rules are projected to support ontologies for efficient domain knowledge rep-
resentation and the semantic web rule language (SWRL) is one of such rules
languages syntactically closest to OWL. Expressive limitations of the RDFS and
OWL formalisms can thus be augmented by the capabilities of rules designed
for the complex assertion of facts that goes beyond simple declaration of domain
concepts. Moreover, being in common practice with well-established logics, rules
such as SWRL, offers an efficient reasoning support to ontologies with of course

4https://www.w3.org/RDF/
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the benefit of added expressiveness.

SWRL Evoultion: SWRL is an expressive rule language designed to enable
declarative assertions using OWL concepts. It is fashioned as the union of Horn
logic (HL) and Description logic (DL) in order to achieve higher domain expres-
siveness and reasoning capacity than when using OWL alone. In other words,
SWRL is a direct extension of OWL that utilizes its model-theoretic semantics
and its syntax basically stemmed from the combination of DL-based OWL and
HL-based Rule-ML. Classical SWRL rules include positive, function-free horn-
clauses written as implications — consisting of an antecedent (body of the rule),
as well as consequent(or head of the rule) — see example rule 2.8. A SWRL-
enabled ontology thus contains an OWL Knowledge base and set of horn-clause
rule axioms.

SWRL Syntax and Semantics In its human readable form, both SWRL’s rule
body (B) and rule head (H) typically consist of a conjunction of atoms, which can
contain a combination of OWL constructs and axioms. Such constructs can be
either in the form of OWL-DL class descriptions — of the form C(x), individual-
valued properties — P(x,y), data-valued properties — Q(x,y), OWL same indi-
viduals — sameAs(x,y), OWL different individuals — differentFrom(x,y), or the
specific built-in functions — builtIn(r, x, ). Where ’x’ and ’y’ are either variables
representing OWL classes, properties, and individual data values (in which case
preceded by a ’?’) or OWL individuals themselves, and ’r’ is any SWRL built-in
function — such as swrlb:greaterThan(), swrlb:Multiply() etc.

atomB1 ∧ atomB2... ∧ atomBn −→ atomH1 ∧ atomH2... ∧ atomHn (2.8)

Note that SWRL Rules are written with either ∧ or comma(,) to denote a con-
junction (we use them interchangeably in this thesis) and the semantics ensures
that the condition in the rules head be evaluated to true whenever the conditions
in the body are satisfied. However, there are variants to the basic format above
such as rules with disjunctions in their heads or those extended to handle classical
negations, etc. The aim of this review is to explore such various expressiveness
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extensions attributed to the SWRL formalism.

Decidability of SWRL Rules Even though SWRL offers an unrestricted op-
portunity of combining ontologies and declarative assertion of rules, it however,
does so at the expense of decidability. As clearly pointed out in [91], ”there is
undoubtedly no inference engine that can draw exactly the same conclusion as the
SWRL semantics”. This is due to the highly expressive nature of the formalism
and SWRL being in first-order horn clause is unlike its complement OWL-DL,
undecidable. Therefore, for SWRL ontologies to be decidable, a restriction needs
to be placed on the rule axioms. To achieve decidability, SWRL rules are made
to conform to DL-Safety, which is a name for a restriction imposed on the rule
axioms such that they contain only known concepts [80]. In essence, variables in
DL-safe SWRL atoms must be bound only to those concepts or individuals that are
known to exist in the ontology. DL-based reasoners (such as Pellet, HermiT and
Fact++, etc) are needed to reason over SWRL rules. While the DL-safety may
result in an incomplete deduction of knowledge in a given ontology, inferences
from DL-safe rules are always formally sound.

However, as is the case with other logic programs, such efforts to keep the
SWRL formalism within decidable language constructs and computationally fea-
sible inferences, have resulted in considerable limitations to the ontology rule
language. This is evidently discussed in Section 2.8.3, and thus leading to var-
ious expressiveness extensions of SWRL proposed over time. In what follows,
we briefly compare the A-Box and T-Box decidability requirements followed by
highlights in Section 2.8.3 on the strategic importance of SWRL in OWL ontolo-
gies — a reasonable justification for our study. For brevity, reasoning paradigm
in SWRL is not discussed here and we refer the interested reader to [92].

T-Box versus A-BOX Decidability: Depending on the inference-subject in-
volved, the DL-safety can be interpreted in terms of the T-Box (Concepts or Ter-
minology Box) or the A-Box (Individuals or Facts Assertion Box) of a given on-
tology. In terms of the T-Box, DL-Safety imposes a limitation that ”only those
concepts or terms previously defined in the ontology can be used in the SWRL
rules” — meaning that no new or unknown concept may be added to the termi-
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nology box. Whereas in relation to the A-Box, the DL-Safety can be interpreted
thus: ”variables used in the consequent of a rule must have also appeared in its
antecedent” — which implies that no anonymous or loosed individuals can be
introduced into the ontology’s A-Box.

Understanding these limitations can thus make it easier to design new SWRL
extensions that stay within the decidable fragment of the DL, thereby allowing the
inference engines or Reasoners to complete inferences within a finite time. Where
such design cannot be easily achieved, a syntactic limitation or manual restriction
were usually imposed on the use of the new extensions as discussed in details in
Section 2.9.8.

SWRL [93] is an expressive rule language designed to enable rule assertions
using OWL concepts in order to achieve higher reasoning capacity than when
OWL alone is used. SWRL is a direct extension of OWL that utilizes its model
theoretic semantics and its syntaxes adopted from the combination of OWL and
Rule-ML [70]. In SWRL + OWL combination, the OWL axioms are extended
to include horn-clause rules written as implications consisting of a body (an-
tecedent) as well as head (consequent) as shown in Rule listing (2.5). SWRL on-
tology therefore, contains an OWL KB and a set of horn-clause rules. In SWRL,
the rule’s body and head typically consists of conjunctions of atoms, which can
either be empty or contain a combination of OWL constructs and axioms — Class
and properties descriptions, individuals, built-in functions etc. For more detailed
discussion on SWRL built-in functions, abstract syntax and semantics see [93]
and for reasoning techniques employed in SWRL, interested reader is referred
to [70, 94, 95].

Decidability Requirement — DL-safety: Even though SWRL offers an unre-
stricted opportunity of combining ontology with rules, SWRL rules being in first-
order horn clauses are generally undecidable. The authors of [96] clearly points
out that ’there is undoubtedly no inference engine that can draw exactly the same
conclusion as the SWRL semantics’. To achieve decidability, SWRL rules are
made to conform to DL-Safe Rules, which restricts rule axioms to contain only
known concepts [82]. That is, variables in the DL-safe SWRL atoms must bind
only to those concepts or individuals that are known to exist in the Class assertions

Doctoral Thesis 52



Ontology-based Knowledge Systems

(T-Box) or individual assertions (A-Box) of the ontology. Special Reasoners such
as Pellet and Hermit are needed to reason over SWRL rules. While the DL-safety
may result in incomplete deduction of knowledge in a given ontology, inferences
from DL-safe rules are always formally sound. More on the SWRL formalism in-
cluding its advantages and limitations were discussed in 2.8.3. While, the SWRL
expressiveness extensions were explored in Section 2.9.

2.8.2.2 The AL-Log Formalism

The AL-Log representation language is a successful combination of the descrip-
tion logic (ALC) and the DATALOG [97] — a deductive database query language
based on the logic programming paradigm. The combination, which allows the
specification of DL constraints in datalog clauses, exploits the structuring power
of DL (the T-Box) in the deductive database systems [88]. An AL-Log system
consists of structural and relational sub-systems. The former allows for express-
ing terminological knowledge (about classes, roles, individuals), while the latter
allows expressing relational knowledge. In order to overcome some of the ex-
pressive limitations, a more expressive profile of the AL-Log called disjunctive
AL-Log was proposed by [98], which utilizes the non-monotonic features of dis-
junctive datalogs (DATALOG¬∨) such as negation as failure and disjunctions.

Decidability Requirement: Whereas SWRL uses DL-Safety to ensure decid-
ability — with no syntactic restrictions imposed on the language, this is not al-
ways the case for other formalisms. Usually, restrictions have to be imposed on
either the rules syntax or the level of semantic integration between the two compo-
nents. However, since DL concepts in AL-Log are only used as constraints in the
component datalog clauses, the rules can therefore be applicable only to named
objects. Hence Al-Log rules are DL-safe equivalent and therefore decidable.

2.8.2.3 The CARIN Formalism

Similar to AL-Log, the CARIN family of rule languages also extends DL ontolo-
gies with function-free horn-clauses in the Herbrand model semantics. However,
CARIN [87], differs from AL-Log in that both class names and those of proper-
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ties are allowed to appear in rule bodies as predicates. That is not only having
properties as typed constraints for concepts that already appear in rules, as is the
case in AL-Log. CARIN also derives its semantics from the combination of its
component languages — the description logic and horn-clauses.

Decidability Requirement: CARIN instantiations are decidable where non-
recursive rules are used. However, for generality, some restrictions need to be
imposed. The authors argue that decidability and sound reasoning is possible in
CARIN where Weak-DL is employed but with a further syntactic restriction in
the rules head. Such rules are also called Role-Safe rules [87, 84]. However, for a
rule to be role-safe, at least one variable from each role-literal must occur in some
non-DL atom, and that variable must not appear in the consequent of the rule.

2.8.2.4 DL + Log and the Hybrid MKNF Formalisms

Similar to the disjunctive AL-Log formalism, DL+Log knowledge representa-
tion formalism involves extending DL ontologies with a disjunctive logic program
rules (specifically, the disjunctive datalogs DATALOG¬∨) [81, 20, 99]. It should
be noted however, that while the Al-Log formalism safely integrates the ALC
fragment of DL and Datalog rules, DL+Log on its part, provides a weak-safe in-
tegration of any DL fragment with a disjunctive Datalog.

Decidability Requirement: For the DL+Log rules to be decidable, variables
must appear only in positive atoms in the rule’s body and those that appear in
the head must also appear in the non-DL atoms — called ’weak safeness’. An
extended version of this formalism is the ’Hybrid MKNF’ [87], which is also a
combination of DL ontologies with disjunctive logic programs. The basic differ-
ence is the interpretation of the rule components. In DL+Log, rules are interpreted
either according to ’stable model semantics’ where non-monotonic semantics are
used or as ’material implications’ where the rules are in first order semantics.
However, in Hybrid MKNF as the acronym suggested, they are interpreted based
on the Lifschitz’s logic of ’Minimal Knowledge and Negation as Failure’ [100].

Doctoral Thesis 54



Ontology-based Knowledge Systems

2.8.2.5 The dl-programs

The dl-programs also extends DL ontologies with extended logic programs (non-
monotonic using both classical and default negation). The main idea behind the dl
programs KBs is that the logic program rules can be used to query the component
DL ontology. Thus enabling new information embedded as queries to be added
into the ontology. This in turn influences the resulting inference due to results or
answers from the queries — interpreted according to the answer-set semantics [85,
101]. Hence, information flow is bi-directional in dl-programs knowledge bases,
as facts can be exchanged between the ontology and rules components.

Decidability Requirement: As earlier stated, in order to achieve finite infer-
ence on most hybrid knowledge bases, restrictions are usually imposed on either
the rules component syntax or on the level of semantic integration between the
rule and ontology components [82]. Similarly, for dl − programs to be decid-
able, the restriction goes that both universal and existential restrictions are not
allowed in the rules body and head respectively. Due to such restrictions, the
dl-programs formalism is found to be considerably less expressive than either of
its components (OWL and hornclauses). On the other hand, homogeneous for-
malisms (such as SWRL) are found to be significantly more powerful than either
of their components (the OWL-DL or horn-clause).

The Table 2.1 below summarizes the common formalisms discussed, high-
lighting their components, degree of integration, logic program formats, and their
required condition(s) for decidability:
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Formalism Components
Integration

Integration
Type

LP format Condition for
decidability

AL - Log Integrates ontolo-
gies (expressed in
ALC fragment of
DL) with positive
Datalog rules.

Loose
Integration
(Safe-
interaction)

Datalog
(function-free)
clauses (Uses
only unary
predicates
i.e. classes in
rules)

Decidable (Only
LP predicates
may appear in the
rule consequent
and DL frag-
ments are used as
constraints in the
antecedent)

CARIN Extends AL-Log
to include DL
roles. i.e., inte-
grates ontologies
expressed in any
DL fragment
and function-free
Horn-clauses.

Tight
Integration
(generally
unsafe
interaction)

Datalog
Clauses (Al-
low both
classes &

properties to
appear in rules
i.e. unary
and binary
predicates)

Role-Safe rules
(Guarantees
decidability
for Weak-DL -
ALCNR)

Disjunctive
Datalog
(DL +
Log ¬∨)

Integrates ontolo-
gies expressed
in any DL
fragment and
negative datalogs
(DATALOG¬∨).

Tight
Integration
(weakly-
safe inter-
action)

Negative Dat-
alog clauses

Weak Safeness
(variables in rules
must appear in
positive non-DL
atoms)

Hybrid
MKNF

Integrates DL
ontologies and
disjunctive logic
programs.

Tight
Integration
(Full inte-
gration)

Negative
Datalogs
(Interpreted
according to
the logic of
MKNF)

The disjunctive
Datalogs must be
DL-safe
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Formalism Components
Integration

Integration
Type

LP format Condition for
decidability

dl-
programs
(DLP)

Integrates (inter-
section of) DL
ontologies and
extended logic
programs.

Loose
Integration

Non-
monotonic
Datalogs (with
both classical
and default
negation)

Rule body No
universal restric-
tions. Rule head
No existential
restrictions.
(Generally de-
cidable but less
expressive)

SWRL Integrates (union
of) DL on-
tologies ex-
pressed in OWL-
DL/SHOIN(D)
and extended
logic programs.

Tight
Integration
(Medium
syntactic
separation)

Datalog Horn
Clauses

DL-Safeness
DL atoms may
also occur in the
rule consequent
(Generally Un-
decidable and
highly expres-
sive)

Table 2.1: Summary of Formalisms for Extending Ontologies and Rules

2.8.3 Why SWRL?

As shown in the case studies section, SWRL formalism was selected to extend
the web ontology modeling by adding if-then rules. As discussed earlier, rules
generally allow efficient declarative assertions in domain knowledge modeling.
However, the semantic web rule language (SWRL) is particularly important in the
semantic web knowledge modeling as it allows both the assertion of facts in OWL
ontologies as well as their retrieval. Information retrieval is achieved through
its slightly modified Semantic Web Query language(SQWRL), which is an SQL-
extended version of SWRL for querying OWL ontologies [102]. The flexibility
for users to define application-specific methods (user-defined built-ins) as exten-
sion to the SWRL formalism is an important feature that makes SWRL formalism
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indispensable where domain modeling using OWL is considered. Regarding the
added expressiveness of SWRL to the OWL language, the authors of [103] sum-
marize some of the basic advantages of SWRL as follows:

(a). The ability to use class names or their descriptions as predicates.

(b). The use of equalities and inequalities, and

(c). Allowing conjunctions of atoms in both SWRLs antecedent and consequent.

These syntactic advances, coupled with the numerous expressiveness advan-
tages of logic programming rules enables SWRL to achieve complex representa-
tion of domain knowledge — making the formalism indispensable in the Semantic
Web project. Further reasons for our focus on the SWRL formalism include the
facts that:

(d). SWRL axioms can be used in transferring characteristics from one class
or property to another without sub-classing — which goes beyond the ex-
pressive powers of OWL. A commonly cited example of this transferring
property is the composite property assertion, popularly referred to as ’the
uncle relationship’.

(e). SWRL rules allow inference of new individuals using existential operators
(e.g. swrlx:makeOWLThing), some of which are defined as built-ins in the
formalism (see Section 2.9.6). The ability of SWRL to achieve existential
quantification as well as syntax extension through the use of user-defined
built-ins, no doubt goes beyond the expressive powers of OWL and even
those of the classical horn clause rules.

(f). Lastly, SWRL being a semantic extension of OWL have enjoyed consid-
erable experts’ commitment and engaging support from the Semantic Web
research community.

Consequently, the compatibility of the SWRL formalism with OWL and also
the RuleML, makes it easier and sometimes even compelling, for researchers in-
terested in semantic web rules to equally extend SWRL’s capabilities whenever
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the corresponding OWL language is augmented with additional syntax and se-
mantics. A similar view was upheld in [5], where the authors affirms that the
added expressiveness of OWL to cover negative property assertions inspired them
to consider a corresponding SWRL extension. SWRL’s negation extensions were
first described and analyzed in [104].

Limitations of SWRL However, despite the expressive powers obtained from
SWRL, the combination (of OWL and SWRL) is yet to guarantee an all-inclusive
domain modeling language. The classical SWRL formalism cannot appropriately
represent various real-world scenarios. For example, expert opinions, which forms
a considerable part of every domain knowledge, are typically in the form of im-
precise facts. Thus requiring formalisms that are capable of representing domain
facts based on some degree of certainty or partial truth. Likewise, in legacy soft-
ware models, much of formalized domain facts, such as business rules may only
hold where other fragments of existing knowledge remain valid. Therefore, accu-
rate representation of such scenarios requires knowledge exclusion, prioritization

of facts, as well as knowledge retraction, among others. These forms of knowl-
edge modeling scenarios are crucial to the effectiveness of expert systems and
their related applications. With common examples found in information fusion,
multimedia information processing, automated ontology merging and alignment,
among others. In the remainder of this subsection, however, we highlight some of
the commonly cited limitations of the classical SWRL formalism as follows:

• Limitation in modeling imprecise domain knowledge. The evolutionary
and sometimes inconsistent nature of human knowledge necessitates rep-
resenting vague or imprecise domain information. Hence, the inability of
SWRL to represent inherently vague domain knowledge and business un-
certainties is therefore, a huge setback in modeling real-world scenarios on
the semantic web. This has led to the various fuzzy and probabilistic exten-
sions of the semantic web rule language.

• Lack of Non-monotonic constructs. Rule-based modeling of a knowl-
edge domain involves expressing domain facts or situations of domain ob-
jects, through the use of ’if-then’ statements. This ordered representation
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of fact, basically reflects the ordered nature of the human knowledge —
which typically includes ordering or setting a precedence of activities, lead-
ing to the addition of new facts to existing knowledge bases. The inability of
SWRL to comprehensively model non-monotonic facts such as existentials,
quantifiers, rule exclusion, and prioritization, etc., were also considered as
weighty limitations that cannot be otherwise ignored. Moreover, it has been
shown that deductive forms of inference, where new facts get inferred from
the absence of other facts, cannot be represented by the SWRL formalism
[105].

• Removal of Facts. Further examples of realistic scenarios encountered in-
clude the need for ’unlearning’ facts in knowledge bases, i.e. removal of
facts. Constructs needed to model and achieve such scenarios were found
to be lacking in the classical SWRL definition.

• Lack of Support for Modeling Complex Scientific Knowledge. Other
limitations include the SWRL’s inability to efficiently model scientific and
engineering knowledge domains, especially those involving complex math-
ematical formulas and constraints [106]. The lack of precise constructs to
handle complex engineering formulas usually leads to the development of
voluminous set of rules to explain few facts.

2.8.4 Common Concerns when Augmenting Ontologies with
Rules

Key concerns when integrating ontologies and rules include, the expressiveness
or representational adequacy of the combined KR formalism, the inference or rea-
soning capability of the combination, and maintaining their individual complete-
ness or decidability [107]. Major concerns when integrating ontologies and rules
may be summarized in the following questions: ’What will be the representational

adequacy of the resulting KR formalism?, What is the inference mechanism of the

combination? and How can the individual completeness and decidability be main-

tained?’ We briefly highlight the more generic semantic and reasoning problems
that must be considered, at least theoretically, when combining ontologies with
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rules

• Monotonicity vs Non-monotonicity: DL-based languages (e.g. OWL) are
naturally monotonic and based on the Open-World Assumption (OWA) while
logic program rules usually works on the Close-World Assumption (CWA)
and therefore non-monotonic. Recall that in OWA, existence of a thing
is assumed to be true unless it is stated that it is false. In other words,
something that cannot be found in a KB shall not be assumed absent un-
less it is explicitly stated — a notion always assumed in ontologies but not
in logic programming (rules). Common examples are the classical nega-
tion and negation as failure (NAF), which is supported in rules but not in
the ontologies. As such, these inconsistencies must be taken into account
when using rules on top of the ontologies. In our case, the problem is less
pronounced as both OWL and SWRL, being descendants of DL, are non-
monotonic in nature.

• Naming Conventions: Similarly in naming conventions, rule formalisms
are usually based on the Unique Name Assumptions (UNA), where a con-
cept name is assumed to be uniquely belonged to an individual instance.
Whereas recent Ontology languages, operate under the Non-Unique Name
Assumptions (non-UNA) such as for example, the ability to assign a sin-
gle name to a class and individual in OWL 2. Unlike their predecessors
however, OWL-DL and its OWL 2 progenies do not support the UNA,
which means that a single individual can be referenced by two or more
names. Thus, combining ontologies and rules always leads to the question
of ’How to successfully integrate and reason over the semantics of non-
UNA of OWL with the UNA of rule formalisms’.

• Decidability: another important aspect that must not be ignored when con-
sidering the integration of ontologies and rules includes the availability of
reasoning tools to classify and assert the consistency of the combination.
Recall, that the combination of ontologies and rules are not always decid-
able. As such, clear-cut conditions for achieving decidability of a combina-
tion must also be considered. For example, the OWL + SWRL combination
is undecidable unless the rules are kept within the DL-Safety restriction.
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These concerns need to be addressed and their effects evaluated during the
selection of the rule formalism for integrating an ontology KB. However, a simple
way out as found in our survey is to employ those components (the ontology and
rules languages) that share similar syntax and semantics thereby resulting in a KB
that can be easily classified within a single reasoning tool.

2.9 Semantic Web Rule Language Expressiveness Ex-
tensions

As mentioned in the previous section, despite the high expressive powers of the
semantic web rule language, the OWL/SWRL combination does not guarantee a
comprehensive ontology modeling language. Classical SWRL definition is found
to be lacking descriptive constructs to model complex real-life scenarios. This has
led to the proposals of various expressiveness extensions to the classical SWRL
formalism, ranging from simple mathematical built-ins to language extensions
that allow modeling of vague facts and predictive knowledge using SWRL rules.

This chapter explores the limitations of SWRL and reviews the available SWRL
expressiveness extensions proposed over time5. The chapter is organized as fol-
lows: Section 2.8.2.1 gives a detailed overview of the SWRL formalism, high-
lighting its evolution, syntax and semantics, the need for SWRL in OWL, as well
as its expressive limitations. This is followed by the essence of the chapter in
Section 2.9, where we discuss, with running examples, the various expressiveness
extensions added to the SWRL formalism. In order to ascertain their viability, the
decidability requirements of the reviewed extensions were discussed next in Sec-
tion 2.9.8. Section 2.9.7 provides a discussion on the added expressiveness with a
table of summary categorizing the extensions alongside their added syntaxes and
semantics. As a prelude to our novel SWRL extension, we discuss the relevant
works in fuzzy temporal representation and reasoning in Section 2.11. Lastly, the
chapter summary is presented in Section ?? leading to subsequent phases of the
report.

5Manuscript titled: Towards Comprehensive Domain Modeling on the Semantic Web - a Re-
view of SWRL Expressiveness Extensions is submitted to the Journal of Web Semantics, Elsevier,
Manuscript Number: JWS-D-17-00081, March, 2017.
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SWRL extensions are originally defined in [70] as bindings that provide a
mapping between variables used in the SWRL rules to objects of a given domain.
As previously mentioned much of SWRL’s extensions were inspired by their cor-
responding OWL extensions. This is usually achieved by modifying the OWL’s
abstract syntax and semantics to adapt to the SWRL canonic mode. This leads
to various proposals that are beneficial to the advancement of both the OWL and
SWRL languages. The remainder of this section highlights some of the expres-
siveness extensions designed to address the commonly encountered limitations of
the classical SWRL.

2.9.1 Fuzzy and Probabilistic Extensions — Dealing with Un-
certainties and Incomplete Knowledge

Knowledge from domain experts is usually not without doubts and imperfections.
This imperfect nature of real-world information processing necessitates the long-
started efforts by the AI community to deal with vague knowledge representation.
Notable early efforts in the field of classical domain modeling have attempted to
improve the expressivity of Description Logic (DL) to cover uncertainties through
Fuzzy Logic (FL) as discussed in [108] and probabilistic extensions [109], among
others. Likewise, SWRL is found to be inadequate in expressing practical prob-
lems that involve vague or imprecise domain knowledge which is bound to be
common in ontologies or the Semantic Web as a whole. Moreover, even with the
success of semantic web in data provisioning, writing business and engineering
rules using SWRL still remains a challenge. This is due to the fact that SWRL,
much like other Semantic Web languages, stemmed from classical logics (see
Figure 2.4), which are known to be incapable of modeling vague or imprecise
information.

As highlighted in [110], other scenarios that require modeling of imprecise
facts can be found in multimedia processing, ontology alignment, and information
fusion, among numerous others. In response, SWRL has since received signifi-
cant advancements to handle imprecise domain knowledge. One famous uncer-
tainty reasoning techniques involve the combination of fuzzy logic with SWRL
and another involves extending SWRL formalism with probability theories. This

Doctoral Thesis 63



Ontology-based Knowledge Systems

section reviews some of these advancements and briefly discusses their individual
approaches.

2.9.1.1 The Fuzzy-SWRL Extension (F-SWRL)

Expressiveness: By imposing fuzzysets theory — precisely, the ’R-implication’
of fuzzy logics [111], new semantics were defined by Horrocks et al. for a fuzzy
extension of SWRL (f-SWRL) [110]. A fuzzy set is defined by its degree of in-
dividual membership (w) called weighted-degree or truth-value and usually com-
puted from a membership distribution function. The fuzzy membership function
does not only specify whether an element belongs to a given set or otherwise but
also how much. Analogous to fuzzy sets, f-SWRL rules uses a truth value be-
tween ’0 and 1’ to express the degree of confidence for individual membership in
a given class or property and also to express weights or importance of each atom
in a SWRL rule.

Syntax and Semantics: Class and property definitions in f-SWRL have the fol-
lowing form C(x) ∗ w and P (x, y) ∗ w, respectively. While a rule in f-SWRL is
of the form:

Antecedent * wa −→ Consequent * wc. Where w ∈ [0, 1].
For example, the following f-SWRL rule (retained from [110]), declares that ”be-
ing healthy is more important than being rich to determine if one is happy”:

Rich(?p) ∗ 0.6 ∧Healthy(?p) ∗ 0.8 −→ Happy(?p) ∗ 0.9 (2.9)

Where: Rich, Healthy, and Happy are fuzzy class URI refs, ?p is an individual
valued variable and 0.6, 0.8 and 0.9 are the assigned weights of the corresponding
fuzzy atoms.

In a nutshell, f-SWRL extends SWRL with fuzzy-based class and property defi-
nitions as well as fuzzy rule axioms. The result is that f-SWRL axioms are able
to represent such information that says how much a concept is believed to be true
and which facts are more important than others when making decisions. Users
can, therefore, represent vague domain knowledge with f-SWRL rules by assert-
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ing the degree of confidence or otherwise of a given fact.

Implementation and Efficiency: In assigning a predetermined weight on the
consequent atom, the f-SWRL extension is shown to be suitable for writing fuzzy
rules with atomic consequents and thereby making rule prioritization. This ab-
solute form of prioritization, however, becomes a problem whenever new rules
are introduced in the KB, as then all the existing weight values may have to be
readjusted. Moreover, the proposal does not present a way of resolving such con-
flicts. As such, more support is needed for f-SWRL to deal with non-atomic fuzzy
rules, i.e. rules with more than one atom in the consequent. Furthermore, com-
plete fuzzy-rule declaration needs to be considered in f-SWRL since representing
uncertainties in domain knowledge requires more than just fuzzy class and prop-
erty definitions. Based on our evaluation, much of the f-SWRL proposal is still
theoretical as neither implementation efforts nor practical scenarios were men-
tioned. Likewise, the fuzziness of the extension has been critically questioned by
the authors of [112], asserting that syntax and semantics proposed in f-SWRL do
not actually solve much of the fuzzification problem. For an abstract literature on
fuzzysets theory and fuzzy logics, we refer the interested reader to [111].

2.9.1.2 The Vague-SWRL Extension

Highlighting their argument against f-SWRL’s inability to provide a substantial
fuzzy extension to SWRL, the Vague-SWRL extension was proposed in [113].

Expressiveness: In this proposal, the authors argues that the use of single mem-
bership degree to describe a fuzzy set — such as the single weight function in f-
SWRL extension, is insufficient in representing vague information. Consequently,
based on the theory of Vague sets [114], the authors propose the Vague-SWRL
as another fuzzy extension of SWRL. Vague Sets are themselves an extension
of fuzzy sets, where the degree of membership to a set is evaluated using two
weighted intervals — as opposed to a single degree of membership employed in
fuzzy sets. As such, Vague-SWRL rules uses an added weight value (w2) called
’a second-degree weight’ denoting further degree of membership to support and
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balance an initial weight (w1). By introducing w2, the proposal promises a more
accurate representation of imprecise domain knowledge than a single membership
fuzzy class and properties assertions of f-SWRL.

Syntax and Semantics: As presented in [114], the general form of vague-SWRL
is written as:

(vc * fdw) (vcv * sdw) ... ∧ (vp * fdw) (vpv * sdw) ... −→ (vc * w) or

(vp * w)

Where, ’vc’ = vague classes, ’fdw’ = first-degree weights, ’vcv’ = vague class
values corresponding to ’vc’ and ’sdw’ = second-degree weights. Similarly, ’vp’
= vague properties, ’vpv’ = vague property values and ’w’ = the atomic weights.
The vague values, also called the membership intervals, are calculated as:

vcv/vpv = [tv(x), 1− fv(x)]

And the ’sdw’, also referred to as the ’vagueness’ or second degree of mem-
bership, is calculated as the difference:

w2 = [(1− fv(x))− tv(x)]

Where, ’tv (x) is the true membership function of x, fv(x) its false membership
function, and 0 ≤ tv(x) + fv(x) ≤ 1

Example Case. Consider the following additional information (membership de-
grees) added to rule (1): ”P is rich with a true value of 0.6 and a false value of

0.3. Also, P is healthy with a true value of 0.3 and a false value of 0.2”.
With this additional info, we can represent the parameters:

vcv(Rich) = [0.6, 0.7] and vpv(isHealthy) = [0.3, 0.8]

Hence, the vague-SWRL form of rule (1) can then be written thus:

[Rich(?p) ∗ 0.6][0.3] ∧ [Healthy(?P ) ∗ 0.8][0.1] −→ Happy(?p) ∗ 0.9 (2.10)
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Here, 0.9 is the degree to which the consequent holds following the evaluation
of the antecedent.

Implementation and Efficiency: As vague sets subsumes fuzzy sets, vague-
SWRL ultimately subsume its corresponding f-SWRL rule in terms of expres-
siveness. By comparing rules 2.9 and 2.10, it can be seen that unlike f-SWRL,
vague-SWRL is more than just a conjunction of weighted atoms. The added ef-
fort in the form of vcv and vpv are calculated to represent the uncertainties in the
fuzzy membership classes Rich, Healthy, and Happy. Moreover, by specifying the
upper and lower bounds of membership intervals (through the true and false val-
ues), vague-SWRL rules are more justifiably accurate in representing imprecise
knowledge using fuzzy class and properties. Vague-SWRL is also claimed, by the
authors, to be in ”an acceptable form of the Rule Interchange Format (RIF)”. A
comparable extension, Vague-RuleML[115], is also proposed for the rule markup
language (Rule ML).

However, similar to f-SWRL, the Vague-SWRL only represents fuzzy infor-
mation for class and property memberships, which may be inadequate in repre-
senting practical uncertainties involved in knowledge domains and the semantic
web. Also, a fair understanding of vague sets and vague knowledge representa-
tion is required to efficiently model fuzzy information using vague-SWRL rules.
Hence, there is a need to improve the proposal with richer fuzzy modeling syn-
taxes to handle imprecise domain knowledge beyond the borders of class and
property memberships — the SWRL-F extension below gives a good example.

2.9.1.3 The SWRL-Fuzzy Extension (SWRL-F)

The SWRL-F extension [108] was proposed as another Fuzzy Logic (FL) exten-
sion to the SWRL formalism. However, unlike f-SWRL and vague-SWRL exten-
sions, which were based on the fuzzy sets principle, the SWRL-F extension ex-
presses fuzzy reasoning in SWRL rules using a ’fuzzy control system’ approach.

Expressiveness: In this approach, the main ontology remains intact while a
fuzzy ontology consisting of SWRL-F rule-base is added to model any ambigu-
ous domain knowledge using logical variables. The fuzzy ontology is needed to
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define inherent fuzzy domain knowledge using fuzzy: sets, terms, variables and
fuzzy values as entities. These entities were defined as classes with their respec-
tive object and data properties. Modelling a fuzzy fact requires the use of the
fuzzy terms to calculate a fuzzymatch for the respective instances.

Syntax and Semantics: SWRL-F introduces a special object property called
’fuzzymatch’ for each fuzzy set. The fuzzymatch is used when designing SWRL-
F rules to match corresponding Fuzzy-Variables with designated Fuzzy-Values
from each respective fuzzy set. For example, the following SWRL-F rule (adopted
from [108]) can assert the vague facts; ”Persons with good health status are al-

ways very happy” and can be written using SWRL-F rule as:

Person(?p)∧ hasHealthStatus(?p, ?s)∧ fuzzymatch(?s, goodHealthStatus)

∧ isHappy(?p, ?h) −→ fuzzymatch(?h, V eryHappy) (2.11)

Here, the fuzzymatch attribute is used in the antecedent of the rule to calculate
the degree of membership for the ’HealthStatus’ variable (?s) — as employed in
the fuzzy term ’goodHealthStatus’ denoting the fuzzy set in this instance. While
used in the Consequent, the fuzzymatch variable allows binding the new value
’VeryHappy’ to the fuzzy value ’isHappy’, giving SWRL a chance to express the
wooly term, ’very happy’.

Implementation and Efficiency: In essence, the fuzzy ontology and SWRL-F
rules are only added where necessary to handle uncertain domain knowledge rep-
resentation. Furthermore, the authors claim that the new rule language, SWRL-F,
is supported with an exclusive publicly-available ontology development environ-
ment having a test execution engine. However, several attempts at finding the link
currently present an empty wiki page. An apparent limitation to the SWRL-F im-
plementation is that some of the current OWL2 constructs cannot be utilized in the
SWRL-F rules. Moreover, running the SWRL-F rules requires a modified version
of the SWRL-Jess tab in Protégé ontology editor — an implementation require-
ment that may be difficult to domain experts. Moreover, using the language to
model vague domain knowledge also requires an in-depth understanding of fuzzy
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logic and representation scheme.
On the other hand, due to its adoption of a well-established approach — the

fuzzy control system approach, SWRL-F offers a more pragmatic and justifiable
approach to fuzzy extension of SWRL as compared to its siblings, f-SWRL and
vague-SWRL. The use of the ’fuzzymatch’ attribute also makes SWRL-F suitable
for developing semantic web applications with queries that require fuzzy infer-
encing from facts separately stored in the main ontology. In addition, since by
design the SWRL-F fuzzy ontology is separated from the domain ontology, rea-
soner inferences are thus limited only to the SWRL-F rulebase. This is desirable
nonetheless, as the modularity avoids introducing inconsistencies to the main on-
tology.

2.9.1.4 Fuzzy Non-monotonic Extension of SWRL (f-NSWRL)

The f-NSWRL [116], presents yet another fuzzy SWRL extension for dealing with
non-monotonicity as well as uncertainties in domain information using SWRL
rules.

Expressiveness: This extension is basically an advancement of the fuzzy-SWRL
extension (Section 2.9.1.1) to incorporate a non-monotonic knowledge, specifi-
cally the knowledge negation (called classical negation) and Negation as Failure
(NAF), which involves knowledge modeling based on the absence of positive facts
in a KB. This is also referred to as Closed World Negation (CWN). Citing the
importance of expressing classical negation and the NAF in handling rule excep-
tions, the authors asserts the motivations for f-NSWRL extension of SWRL — as
a non-monotonic as well as a fuzzy extension of the SWRL formalism.

Syntax and Semantics: In its simplest form, the f-NSWRL uses the ’Not’ and
’¬’ symbols as operators to extend the original f-SWRL’s fuzzy classes and prop-
erties definition. As an example, consider the addition of the following informa-
tion to modify rule 2.9 in an attempt to determine if a person is happy; ”Person

p is rich and p is definitely not hungry but the health status of p is not known”

Decision rules based on the above statement can be expressed using f-NSWRL as
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follows:

Healthy(?p) ∗ 0.8 ∧ (¬Hungry(?p)) ∗ 0.5 −→ Happy(?p) ∗ 0.9 (2.12)

Healthy(?p) ∗ 0.8 ∧ not(Hungry(?p)) ∗ 0.5 −→ Happy(?p) ∗ 0.9 (2.13)

Note the difference in the use of the two operators as highlighted in the two
equations. While the classical negation (¬) is used to negate the assertion that
Person (?p) is hungry in rule 2.12 and the NAF used in 2.13 to test the absence
of an assertion that ’p is hungry’. A quick interpretation of the two rules is that
rule 2.12 simply declares that ’A person must be not hungry and healthy to be
happy’. Whereas rule 2.13 declares that ’a person is happy if she is healthy and is
not known to be hungry’.

Implementation and Efficiency: Apart from handling negation and uncertainty,
other notable aspects of the f-NSWRL proposal include a proposed markups in
’RuleML’ for translating f-NSWRL to other rule languages and also procedures
to handle rule prioritization — for setting rule precedence in cases of conflict-
ing consequents. However, the proposal failed to mention the semantics of these
extensions nor the inference mechanism for implementing a supporting Reasoner.

We discuss more on specific Non-monotonic extensions of SWRL in Section
2.9.2 below.

2.9.1.5 The Bayesian Extension of SWRL (Bayes-SWRL)

In order to allow modeling of predictive knowledge and the representation of in-
herently probabilistic domain knowledge (such as Statistical information) on the
semantic web, various probabilistic extensions were proposed — to the semantic
web languages. These include among others, the Probabilistic RDF (pRDF) and
Probabilistic OWL (PR-OWL) [117], Bayes-OWL[118] and Bayes-SWRL [119].

Expressiveness: While Fuzzy Logic extensions of SWRL focus on represent-
ing the degree of certainty or otherwise of domain knowledge in SWRL-enabled
ontologies, probabilistic extensions of SWRL such as Bayes-SWRL are more con-
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cerned with representing predictive knowledge based on an existing partial knowl-
edge in the domain ontology or knowledgebase. Based on the Bayesian Networks
of probability theory [120] and in line with the corresponding Bayesian OWL ex-
tension [118], the Bayes-SWRL extends the SWRL formalism with the ability to
model probabilistic knowledge. This is achieved by combining SWRL with the
expressive capabilities of the Bayesian Logic Programs thereby enabling proba-
bility assertions during inference.

Syntax and Semantics: The Bayes-SWRL extension naturally adopts the orig-
inal SWRL’s abstract syntax and semantics with the addition of few innovative
symbols and patterns to represent the probability variable (the p-variable) and re-
lated terms — such as the Conditional Probability Table (CPT). Similar to the
fuzzy weights (w) assigned to Vague-SWRL rule atoms, the Bayes-SWRL also
use a Probability variable to assign probabilities to rules atoms in both the an-
tecedent and/or consequent atoms. The probability value also ranges from [0, 1]
and is optionally added to the rule atoms, with its values predefined in a condi-
tional probability table supplied to the consequent atom in the form of an XML
file. In its human readable syntax, Probability values of imprecise atoms are at-
tached with an asterisk (*) to the rule atoms. While the CTP file path is attached
using the ’@’ symbol (as shown in rule 2.14 below). In this form, a Bayes-SWRL
that asserts that ”It might rains with a certain probability, if it is cloudy and hu-

mid” can be written as:

Cloudy(?cl) ∗ p(cl) ∧ isHumid(?hm) ∗ p(hm) −→

Rainfall(?r) ∗ p(r)@”RainfallCPTs.xml” (2.14)

Where: the p-variables, * p(cl), * p(hm) and *p(r), represents the probability
values for cloudy, humid and rainfall, respectively. Assuming probable rainfall
chances were calculated, for optimal cloudy and humid conditions, in the supplied
RainfallCPTs.xml file. A more detailed description of the abstract syntax and
semantics of Bayes-SWRL can be found in [119].
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Implementation and Efficiency: The proposal of Bayes-SWRL is equipped
with a reasoning algorithm implemented by extending an existing OWL-DL rea-
soner based on the tableaux algorithm, the Pellet reasoner, to interpret the added
syntax based on the defined probabilistic semantics. It is also equipped with a user
interface for checking rules conflict and viewing the inference process, among oth-
ers.

In our opinion, the extension is effective as it is able to provide a well-defined
syntax and semantics for modeling uncertainties. However, the extension being a
by-product of BLP and SWRL automatically inherits the constraints of both for-
malisms. Hence for Bayes-SWRL rules to be decidable, the DL-safety restriction
must be adhered to by its reasoner. Similarly, the BLP preconditions apply to a
Bayes-SWRL rule, such as: firstly, a consequent atom can only be influenced by a
finite number of random variables — thereby adopting the closed world assump-
tion. While this may not pose any serious threat to domain modeling, it how-
ever, limits the capabilities of Bayes-SWRL to represent NAF. Secondly, in the
inference relation between atoms, there can be no cycle in the dependency graph.
Hence expressing relationships is severely limited. Thirdly, a probability of any
consequent atom can only be influenced by the probabilities of corresponding an-
tecedent atoms in the same rule. Meaning that, probabilities defined in previous
rules cannot be reused in new rules. Therefore, contrary to the non-monotonic
nature of the real-world knowledge, especially those found in the semantic web,
this precondition demonstrates a monotonic limitation of Bayes-SWRL knowl-
edge bases. Moreover, while the conditional probability of a Bayes-SWRL rule
is based on a well-founded semantics, as is the case with pDatalogs [109], the
declaration of an arbitrary set of probable states for the ground atoms beforehand,
poses some close-world expressive limitation for modeling continuously evolving
knowledge domains.

2.9.2 SWRL Non-monotonic Extensions

With the proposed extension of the OWL2 profile to handle negative property as-
sertions, there is a corresponding effort to also extend SWRL with non-monotonic
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operations — notably presented in [104] and [5]. Moreover, since SWRL for-
malism basically involves OWL constructs coupled with rule axioms, any OWL
extension inherently results in a new SWRL extension. While non-monotonic ax-
ioms involve constructs that produce knowledge bases conforming to the Closed
World Assumption (CWA), monotonic constructs generally follow the Open World
Assumption (OWA), as required in the Semantic Web environment. As such, the
semantics of these non-monotonic extensions to SWRL have to be carefully mod-
eled to keep the new rules decidable. For brevity of scope, we present here only
the non-monotonic extensions added to the SWRL formalism. These include deal-
ing with negation and removal of Facts, rules exclusion and prioritization among
others. For a detailed description of Monotonicity and the applications of non-
monotonic logic in rules, we refer interested readers to [5].

2.9.2.1 The ’not’ operator — Weak Negation or Negation as Failure (NAF)

Owing to its monotonic background inherited from Description Logics, and the
OWA of ontologies, the original SWRL formalism does not support negation as
failure (NAF) — as that will logically violate the open-world assumption. As
such, both its antecedent and consequent can contain only positive conjunctions
of atoms or facts.

Expressiveness: Hence, the NOT operator (also called weak negation) was in-
troduced to allow for expressing negation of facts. Negation of facts simply
means, modeling the absence of positive, known or existing facts in a knowledge-
base. It should be noted here that whenever a negation of membership is intended,
a strong negation (also called complement) is easily achieved in SWRL using the
owl:complementOf class description.

Syntax and Semantics: Abstract definition of the not operator is depicted in the
following table:

Example Case. The following Non-monotonic SWRL rule declares that ”A

person that does not have a ’spouse property’ is automatically a member of the

Singles class”:

Doctoral Thesis 73



Ontology-based Knowledge Systems

SWRL
Elements

Pattern Matching (P) Condition Test

P (x; y)
Q(x; y)

(?xP?y)
(?xQ?y)

S(P ) = True

not(P (x; y))
not(Q(x; y))

(?z rdf : type owl:NegativeProperty)
(?z rdf : subject ?x)

(?z rdf : predicate [P or Q])
(?z rdf : object ?y)

S(P ) = False

Table 2.2: Syntax of Weak Negation (NAF) [5]

Person(?p) ∧ Not(hasSpouse(?p, ?s)) −→ Single(?p) (2.15)

For the complement operator or Strong Negation (as previously discussed in
f-NSWRL — see Section 2.9.1.4), using the above example, we can write the rule
by testing the existence of ’P’ in the married class, as follows:

Person(?p) ∧ Married(?m) ∧ (notMarried(?p)) −→ Single(?p) (2.16)

Where, the ’not’ enclosed in the bracket together with the ’Married’ class name,
denotes the complementOf relationship for the married class.

Implementation and Efficiency: However, a special reasoner is required to
run extensions having the weak negation (NAF) as shown above. On how to
express the semantics of NAF, the ’non-monotonic inference process’ has been
highlighted in [5]. On the other hand, the classical or strong negation can be eas-
ily achieved in OWL and subsequently in SWRL, using the owl:complementOf

class description, which can also be employed in the SWRL rules — as shown in
rule 2.16.
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2.9.2.2 The Quantifiers — Exists, ForAll, and notExists operators

The Quantifiers were introduced in SWRL axioms to handle incomplete facts,
when used in the antecedent (body of the rule) and for removing facts, when used
in the rule’s consequent (head). In this set of expressiveness extensions, two types
of fact quantification were introduced here. First, the Existential quantifiers — the
Exists (∃) and notExists(@) used to assert an existence and otherwise respectively,
of at objects in a knowledge base (KB). Secondly, the Universal quantifier —
ForAll (∀), which generalizes some assertion on group of objects in a KB.

We discuss the notExist extension here. While the Exists and ForAll quantifiers
with their example use cases, will be discussed in Section 2.9.4 as part of the
SWRL existential extensions.

Expressiveness of ’notExist’ Quantifier Due to the different semantic inter-
pretations attributed to the antecedent and consequent sides of rule axioms, the
notExist quantifiers can be used to achieve different assertion of facts (expressive-
ness) depending on which side they are placed in a SWRL rule. These assertions
are presented in the following scenarios:

1. notExists Operator in the Antecedent — Checking for missing facts: To
handle missing information as facts, the ’notExists’ and ’Exist’ quantifiers
were proposed to allow some action to be taken where certain facts are not
defined in the KB. This is useful because due to the OWA of SWRL KBs, it
is not always feasible to write rules that, for example, enumerate or test-out
for all individuals or properties. In such cases, asking for the existence or
otherwise of a particular individual or property offers a simple solution. For
example, the following rule (2.17) checks for the absence of participants
with spouses in a booking register and asserts the status of the register.

Participant(?p) ∧ hasBooking(?p, ?b) ∧ notExists(hasSpouse(?p))

−→ bookingStatus(?b, ”SinglesOnly”) (2.17)

2. notExists Operator in the Consequent — Removal of Knowledge: Con-
versely, using the NotExist operator in the consequent of a SWRL rule,
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results in the removal of knowledge. For example, rule 2.17 above may
need to be retracted whenever a married participant made a booking and the
’hasSpouse’ property get added to the ontology. Instead of deleting the rule
manually, a better option, would be to change the ’bookingStatus’ informa-
tion using another rule (2.18), as follows:

Participant(?p) ∧ hasBooking(?p, ?b) ∧ hasSpouse(?p)

−→ notExists(bookingStatus(?b, ”SinglesOnly”))

∧ bookingStatus(?b, ”Mixed”) (2.18)

A clearer example is also presented in the mail list update function shown in
rule 2.19, where the ’notExist’ operator is used to test whether a member of a
workgroup exist in a membership mailing list before adding them to an Alumni
mail list:

Workgroup(?g) ∧ Alumni(?a) ∧ hasMember(?g, ?a) −→

notExists(mailListMember(?a, ?g) ∧ AlumniMailList(?a) (2.19)

Syntax and Semantics of the ’notExist’ Quantifier In continuation of the def-
inition of the Non-monotonic operators, the Table 2.3 below shows the notExists
constructs and is used as is, in the human-readable syntax of SWRL. The seman-
tics hold that S(P) becomes universally satisfiable for any unbound elements (A,
B Z) associated to the notExist operator.

SWRL Elements Pattern Matching (P) Condition Test
NotExist(A,B, ...Z) (A), (B), ..., (Z) S(P ) = U

Table 2.3: Syntax of notExist Extension to SWRL [5]

Implementation and Efficiency: As shown in the example rules 2.17, 2.18 and
2.19, implementation of the notExists operator is simple and usually depends on
the side of the inference operator it appears. A notable efficient use of the oper-
ator is where there are conflicting facts in a knowledge base, the use of notExists
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operator help in retraction of a rule to restore consistency. As such, the concept of
rule’s ’precedence’ and ’rule retraction’ is strongly advised in the inference pro-
cess of [5]. Consequently, this paves the way for our next SWRL extension — the
dominance and mutex operators in the next section.

2.9.3 Rules Ordering and Priority Extensions

Introduced to define relationships between rules and their semantics, the ’dom-
inance’ and ’mutex’ constructs are extensions meant to control the behavior of
SWRL rules execution.

Expressiveness: Precisely, the dominance operator is used to specify the order
of rule execution by assigning a precedence of one rule over another. In contrast,
the mutex operator is non-symmetric and designed to assert the complete exclu-
sion of a rule due to the execution of other rules.

Syntax and Semantics: As defined in [121], the dominance operator is defined
as dominance (Rx, Ry), where Rx and Ry are rule names, and with a semantic
meaning that ”rule Rx has more priority in the execution order than Ry”. Fur-
thermore, the dominance operator is designed to be transitive, thereby suitable for
handling the addition of new rules into a rule base.

As an example, consider the execution of rules 2.17 and 2.18 above. We may
want to run the ’Mixed-Status’ rule (rule 2.18) first to check if there are married
participants in the knowledge base before asserting the ’Singles’ booking status in
rule 2.17. To set this ordering, we can write the dominance operation as follows:

dominance (Rule10, Rule9) (2.20)

Whereas in its syntactic format, the mutex operator is written thus: Mutex

(Rx, Ry), asserting the fact that ”rule Ry will not be executed in the event that
rule Rx is already executed”. Continuing to the hypothetical example above, we
may want to completely skip executing the ’Singles Only’ rule (2.17) in the event
that the booking status is explicitly known to be ’Mixed’. This can be achieved
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that through thus:
Mutex (Rule10, Rule9) (2.21)

Implementation and Efficiency: However, these extensions requires specially
modified Reasoners for inference and are yet to be formally accepted as part of
standardized SWRL definition.

2.9.4 Existential Extensions — Dealing with Quantification of
Individuals

As explained earlier, owing to DL-Safety restrictions, SWRL-enabled ontologies
can not introduce new individuals (see Section 2.8.2.1). Moreover, with SWRL
being the combination of OWL-DL and DataLog RuleML — which do not allow
existential quantification in its consequent, it becomes even more difficult to assert
new individuals into a classical OWL/SWRL ontology. However, as the authors
of [122] puts out,

”It sometimes becomes necessary during inference and where certain
conditions are met, to introduce new individuals to an ontology”

Addition of new individuals to a knowledge base is commonly referred to as ’ex-
istential quantification’ and in what follows, we discuss the various SWRL exten-
sions proposed for achieving that.

2.9.4.1 The X-SWRL Extension

Expressiveness: To achieve existential quantification in SWRL, new operators
were defined and the new extension referred to as extended semantic web rule
language (XSWRL) [122]. The direct extension defines new operators to achieve
the addition of new individuals to existing classes of SWRL ontologies.

Syntax and Semantics: XSWRL uses similar syntax and semantics of the clas-
sical SWRL with the only difference being that rules in XSWRL use an additional
operator that allows for introducing new individuals. This is achieved through the
use of ’existentially quantified variables’ in the rule’s consequent — represented
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by prefixing them with an exclamation mark (!). Universally quantified variables
are represented with the usual question mark (?), as in the original SWRL defini-
tion. As an example, consider the rule assertion that ”All members of a project

Workgroup should be Engineers”.

Workgroup(?g) −→ Engineer(!e) ∧ hasMember(?g, ?e) (2.22)

Implementation and Efficiency: From the XSWRL’s prototype implementa-
tion, presented in [122], it can be understood that by defining the semantics of
’!’ (the existential operator) into the SWRL abstract semantics, reasoning over
XSWRL rules can be achieved using existing DL-Reasoners such as Racer and
Fact++. However, it remains to be seen of such implementation and whether the
extension will be practically utilized by the semantic web community. This is
because: contrary to the classical SWRL, XSWRL rules with non-atomic con-
sequents and having joint existential variables cannot be split into multiple rules
with atomic consequents. This, makes it difficult to assign rule-preference or pri-
oritize rule execution of XSWRL rules. Recall, that the concept of DL-Safeness
ensures decidability in SWRL rules by limiting the consequent variables to only
those that previously occurs in the antecedent. As such, further restrictions must
be placed on the use of the existential variables declared in XSWRL to ensure
decidability. To this end, the authors declare the added restriction:

”Do not construct a rule, which has existentially quantified variables,
to form acyclic chain between its atoms or with atoms from other
rules”

. Though this may restrict the expressiveness of the XSWRL language, but it
ensures that infinite chains are safely avoided. Hence, XSWRL rules need to be
tracked manually to ensure that their executions will not lead to a cyclic chain of
existential quantification. However, this manual restriction, can be overly tedious
or impracticable in very large ontologies.
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2.9.4.2 SWRL First Order Logic Extension (SWRL-FOL)

Expressiveness: In an attempt to extend SWRL towards the expressiveness of
First-Order Logic, notably to achieve the quantification of individuals, a SWRL-
FOL extension was proposed in [123]. Analogous to the FOL Rule Markup Lan-
guage 6, the proposal defines an abstract syntax and semantics for the SWRL-FOL
extension. It shows how SWRL can be extended, to utilize the expressive powers
of FOL, by extending the component OWL axioms to include function-free FOL
assertion axioms.

Syntax and Semantics: SWRL FOL proposal defines an abstract syntax of the
expressive extensions and further provided the model theoretical semantics for
their interpretations. In their abstract syntax, SWRL-FOL ontologies contain sets
of OWL axioms, facts, and horn-clause rules with additional FOL axioms or as-
sertions. These assertions however, introduces some extensions to the original
SWRL format, such as the limitless use of ’conjunctions’ and/or ’disjunctions’ in
the FOL formula and the use of constructs such as negation, ’ForAll’, ’Exists’, etc.
over unary and binary predicates. However, the semantic interpretations of these
assertions are defined as ’bindings’ which maps every variable to an element in
the domain. See SWRL built-ins extensions in Section 2.9.6 for more details on
predicate bindings.

Example: Consider the Workgroup members assertion in rule 2.22. An alter-
native expression using the direct Exists element defined in FOL-SWRL can be
written as:

Workgroup(?g) −→ ∃mMember(?m) ∧ Engineer(?m) (2.23)

Implementation and Efficiency: What we noted here is that the proposal in
[123] is largely theoretical and as the authors of [122] puts out, its practical imple-
mentation is still open for discussion. This however, is due to the usual concerns
of decidability and the lack of Reasoners that can achieve inferences over the FOL
sentences. Nevertheless, considering its extensive definition and the general uti-

6http://ruleml.org/fol/
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lization of FOLs, no doubt the SWRL-FOL extension can help to provide a good
foundational framework for FOL-based SWRL extensions.

2.9.4.3 SWRL Constraints Interchange Format (CIF-SWRL) Extensio

In their motivation, the authors of CIF-SWRL [124] explains that knowledge fu-
sion in an open distributed environments such as the semantic web, involves data
gathering from various network sources, which also include the constraints on
how the data can be used. As such, utilizing these constraints directly using
the SWRL rules can help to achieve existential quantifications. This lead to the
proposed CIF-SWRL — an extension of SWRL to express fully quantified con-
straints.

Expressiveness: the Constraint Interchange Format (CIF) extension of SWRL
(CIF-SWRL) is an advancement of the SWRL formalism towards the constraint
satisfaction problem (CSP). While in most cases, the target is simply to improve
the SWRL formalism (rule layer) for better domain modeling, in CIF-SWRL ex-
tension, the objective is to improve SWRL to handle CSPs in the Logic layer of
the Semantic Web and the aim is to allow the quantification of these constraints
so that new individuals can be introduced into the knowledge base.

Syntax and Semantics: To allow expressing fully-quantified constraints using
the CIF-SWRL rules, the proposal aligns the original features of CIF with the
SWRL definition to form a single modeling language. In essence, the extension
introduce constraints — defined as quantified implications, to solve the problem of
existential quantification in the classical SWRL. These constraints are expressed
using an interchange format, such as the First-order logic (FOL)-based CIF, to
form relevant constraint satisfaction problems that serve as inputs to constraint
solver. To illustrate the CIF/SWRL added syntax, we quote the following rule
assertion: ”Every workgroup must contain at least 1 member who is a Professor”

(∀?g ∈ Workgroup) −→ (∃?p ∈ Professor) ∧ hasMember(?g, ?p) (2.24)

Meaning: For all Workgroup g, there exists a Professor p, who is also a mem-
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ber of the workgroup. The rule above shows the directly added symbols, ’ForAll
(∀) and Exists (∃), which are both subsets of a ’Quantifiers’ class — defined in
the CIF-SWRL expressiveness extension.

Implementation and Efficiency: The CIF-SWRL extension comes about as an
advancement of an existing CSP, which uses OWL ontology as a data model and
SWRL rules for expressing constraints. Beside the use of quantification symbols,
CIF/SWRL also claims to introduce nested quantified implications, which sup-
posedly allows for multiple-quantification of individuals in a rule. The proposal
features the technical details of CIF-SWRL extension, including the abstract syn-
tax and semantics, with an illustrative application to a use case. However, the
featured implementation does not fully explain a reasoning strategy for inference
on CIF-SWRL rules. Other forms of non-monotonic extensions, precisely the
representation of ’disjunction’ and ’negation’, were also mentioned as work-in-
progress.

The Semantic Web Constraint Language (SWCL) Recognizing the need to
improve the CIF/SWRL extension to handle more than just logical constraints,
a complimentary extension of CIF-SWRL called the Semantic Web Constraint
Language (SWCL) was proposed in [125] and subsequently applied in [126]. The
rationale being that by incorporating other constraint satisfaction problems. such
as the mathematical constraints, CIF-SWRL will can extend its applicability to
problem areas beyond simple decision problems. The SWCL is then defined as
an OWL-based extension for modeling mathematical constraints to solve basic
optimization problems in the semantic web. It includes the proposal of a Uni-
fied logic and Constraint problem solver — alleged to be a semantic-web-based
decision-making framework for implementing case scenarios using the SWCL.

2.9.4.4 SWRL Epsilon Extension

Proposed in [127], the Epsilon existential extension of SWRL is another exten-
sion to the SWRL syntax and semantics — designed to allow quantification of
individuals into OWL ontologies using SWRL rules.
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Expressiveness: In this SWRL existential extension, the authors uses a new
operator the Hilbert’s Epsilon (ε), to denote existential quantification. However,
the main objective of the proposal is to achieve structural computation in OWL
and subsequently, in the SWRL formalism.

Syntax and Semantics: The epsilon operator is employed to define a ’terminol-
ogy constructor’ (εXφ(X)), which on inference, is expected to return anonymous
individuals as ’values of class X’ as results of an existential formula function
∃X : φ(X). The syntax of the epsilon extension is defined by simply extending
the abstract syntaxes of the ’i-objects’ and ’d-objects’ of SWRL to represent the
epsilon terminology. While highlighting the limitations of procedural attachments
such as SWRL built-ins, and the inefficiencies involved in using first order logic
extensions, the semantics of the epsilon extension were described in [127] with
theories and technical case study showing the use of the new operator. However,
the discussion failed to show the usability of the new operator in SWRL rules and
no supporting reasoners were mentioned.

Implementation and Efficiency: In order to utilize the epsilon extension, an
in-depth understanding of the theory of Hilberts Epsilon operator seems to be
inevitable. As no example SWRL rules were presented on how to utilize the
new operator, implementation of the epsilon extension is still open for discussion.
Moreover, the new operator seems to only increase the complexity of the SWRL
formalism in achieving existential quantification when compared to the previous
existential extensions discussed.

In addition, it should be noted that a turn-around fashion of creating new in-
dividuals in SWRL rules is possible with the use of the followings: (i) the OWL
class construct owl:someValuesFrom — thereby achieving existential quantifica-
tion as class assertions. (ii) Alternatively, the SWRL built-in swrlx:makeOWLThings

(discussed as part of SWRL Builtin extensions in Section 2.9.6), also allow di-
rect creation of individuals in SWRL-enabled ontologies. Though, inference on
the swrlx:makeOWLThings built-in will result in free individuals that cannot be
classified into the ontology. (iii) SWRL can also achieve existential quantifica-
tion using the restriction owl:someValuesFrom to directly creates new individuals

Doctoral Thesis 83



Ontology-based Knowledge Systems

into OWL classes. Even though the resulting quantification does conform to DL-
safeness, such existential formulation using a restriction can be hard to implement
in practice and has been criticized as being inconvenient.

2.9.5 SWRL Extension for Advanced Mathematical Support

As a semantic web rule language, modeling knowledge for, and across, all types
of domains should be possible using the SWRL formalism. This includes com-
plex mathematical equations, typically used in engineering applications. While
SWRLs mathematical built-ins support the basic arithmetic operations such as
addition, subtraction, comparison, string and Boolean operations, etc. There is,
therefore, a need for extending SWRL to handle complex mathematical and en-
gineering computations such as polynomials, integration, differentiation, summa-
tion, etc.

2.9.5.1 The OpenMath Extension of SWRL

To this end, Lopez and others in [128] propose the combination of SWRL built-ins
with the ’OpenMath’7 model to provide advanced mathematical support in SWRL.
The OpenMath is an extensible representation standard as well as an evolving
interchange framework for sharing and publishing mathematical objects and their
semantics. It is basically, a markup language and a representation standard for
mathematical objects.

Expressiveness: The aim of SWRL-Openmath extension is to allow express-
ing scientific knowledge using formulas. Using the functionalities of OpenMath,
an additional SWRL built-in swrlbext:mathext (with three basic arguments) was
designed to extend the SWRL built-ins ontology class. In essence, the ’SWRL-
OpenMath’ extension extends the SWRL formalism with a feature that evaluates
and reason over mathematical expressions. By using the built-in (swrlbext: math-
ext) to define functions as instances of the Formula class, the OpenMath extension
enables the representation of complex math operations such as integration, differ-
entiation, polynomials, etc.

7http://www.openmath.org/
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Syntax and Semantics: The mathematical expressions are represented using
the OpenMath XML functions. The function parameters, which are assumed to be
already defined in the OWL ontology, are then supplied as part of the SWRL rules.
To allow reuse of the math functions, a ’Formula’ class is defined to represent the
OpenMath expressions as datatype values using a special datatype property called
hasOMExpression. The result of the expression i.e. the parameters supplied and
the formula itself, comprises the three arguments defined in the built-in extension
swrlbext:mathext as described in the proposal.

Implementation and Efficiency: Apart from utilizing complex operators and
their semantics, the use of OpenMath instead of the classical mathematical oper-
ators also helps to separate the mathematical and problem semantics in writing
SWRL rules, thereby giving more clarity to rules representation.

However, the short proposal only gives an overview of the extension with a
draft of a methodology showing how the combination can be achieved and men-
tion of possible implementation using ’Bossam’ and ’Mathematica’. Moreover,
neither the implementation details nor testing of the extension can be found. In
our opinion, the OpenMath extension introduces a rather complex approach to
handle formulas in SWRL as compared to mathematical built-ins approach. In ad-
dition, the proposal failed to discuss reasoning supports for the OpenMath SWRL
extension and is curiously silent on the overall decidability of the combination.

2.9.6 SWRL Built-in Extensions — Addressing SWRL limita-
tions through Built-ins

Discussion on SWRL extensions can never be complete without mentioning the
SWRL built-ins8. Simply put, SWRL built-ins are procedural attachments used to
augment the expressive powers of the original SWRL language definitions. More
formally, a SWRL built-in is defined as ”a predicate that takes one or more vari-
ables as arguments and evaluates to true if the argument satisfies the predicate”.
SWRL built-ins consist of the ’core built-in libraries’ for common operations in-
volving constraints, lists, string, comparison, Boolean, URIs, and date operations

8http://www.daml.org/2004/04/swrl/builtins.html

Doctoral Thesis 85



Ontology-based Knowledge Systems

— preceded by the namespace qualifier swrlb:. Moreover, SWRL built-ins are es-
pecially useful as they allow special definition of domain-specific, arbitrary meth-
ods called ’user-defined built-ins’ — an important feature of the SWRL formalism
that allows users to define new built-in libraries for special tasks. Core built-ins
such as the mathematical operators, and built-ins for string and date operations
were defined in the original SWRL specification.

Implementation: Defining SWRL built-in extension is possible either directly
in OWL or through their corresponding java implementations made possible by
the SWRLBuiltInBbridge. The SWRLBuiltInBbridge is a component of the open-
sourced SWRLTab of the Protégé ontology editor, which allows the manipulation
of SWRL built-ins using Java. User-defined OWL-based built-in definitions can
be achieved by simply adding them as new instances to the swrl:Builtin class pre-
defined in the SWRL definition ontology. Relevant built-ins are usually grouped
together in a single OWL file, which can be imported into any domain ontology
for utilization. A Java implementation of the built-ins, wrapped in a JAR file is
however needed in the Protégé-OWL plugins directory for the Built-in bridge to
make the necessary run-time linkages. A good example is the SWRL-Inference
and Query tool, popularly termed as the SWRL-IQ — originally defined as a ”plu-
gin for Protégé version 3.x that allows users to edit, save, and submit queries to an
underlying inference engine based on XSB Prolog.” The built-in extension (swrl-
extension.owl) basically contains user-defined predicates, implemented for use in
the SWRL Inference and Query Tool (SWRLIQ).

In what follows, we briefly review some of the most popular as well as stan-
dardized SWRL built-in extensions, such as the temporal built-ins, the mathemat-
ical built-ins, the semantic web query language (SQWRL), and the Existential
built-ins of SWRL:

2.9.6.1 SWRL Temporal Built-ins

Due to the limited temporal support in both OWL and SWRL, another notable
example in the SWRL expressiveness extensions is the SWRL Temporal Built-in
Library [129].
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Expressiveness: Defined as part of the SWRL-API’s built-in library, the tem-
poral built-ins are hierarchically defined in the SWRL temporal ontology. The
SWRL temporal model is designed to allow easy representation of temporal knowl-
edge in SWRL-based ontologies. The temporal ontology provides a standard
model for modeling the temporal domain facts. As a result, the built-ins allow
temporal reasoning on OWL ontologies using SWRL rules.

Syntax and Semantics: The temporal built-ins provide a rich set of temporal
operators such as before, after, during, duration, contains, overlaps, etc. and are
normally preceded by the name-space qualifier ’temporal:’. Based on the time
data they operate, the SWRL temporal built-ins were categorized into basic and
advanced mode. In the basic mode, SWRL temporal built-ins operates on argu-
ments supplied by the XML Schema’s ’date’ and ’dateTime’ data types — sup-
plied as xsd:String with values such as second, hour, day, time, week, month, year,
etc. Whereas in the advanced mode, the SWRL temporal built-ins works on time
information that is completely encoded using the ’valid-time’ temporal model .

As an example, a rule that asserts the ’Fellow’ membership rank by catego-
rizing all registered Workgroup members with registration dates before the year
2000 can be written as:

WorkgroupMember(?m) ∧ hasRegDate(?m, ?rd) ∧

temporal:before(?rd,′ 2000′) −→ FellowMembers(?m) (2.25)

2.9.6.2 SWRL-M Built-ins — A Complex Mathematical Built-in Library.

Expressiveness: Apart from the basic arithmetic operations available in the orig-
inal SWRL definition, a SWRL-M built-in extension, was recommended to allow
SWRL rules to handle more mathematical expressions. Defined as part of the
SWRL Inference and Query Languages (SWRLIQ) [130], the extension intro-
duces complex math operations as an advancement to the core mathematical built-
in library. It is efined as part of the SWRL Mathematical Ontology and written
with the prefix swrlm: as its pseudonym.
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Syntax and Semantics: Common mathematical operations allowed in SWRLM
built-in library include among others; the square root operation, swrlm:sqrt(?x, a)

and the evaluate expressive function, swrlm:eval(?x, ”expression”). The latter
is designed to support the evaluation of the ontology variable x against standard
constants and functions such as pi (π), epsilon (ε), Lin (ln), etc. For example, a
SQWRL query that ”returns a random number between 0 and 1” can be written
as:

Swrlm : eval(?x, ”rand()”) −→ sqwrl : select(?x) (2.26)

Efficiency: The SWRL-M built-in provides a simple and efficient way of deal-
ing with complex math operations — especially when compared to the Open-
Math extension (Section 2.9.5.1). However, the simplicity also has its price as the
SWRL-M built-ins collection falls short in representing many advanced mathe-
matical expressions, some of which are highlighted in Section 2.9.5.

The restriction is a classical issue of modeling languages, i.e. the need to
balance between tractability and degree of expressiveness. And as mathematical
extensions involving recursive functions in rules usually makes inference non-
terminating — and thence entailment undecidable, there is the need for careful
design of built-in functions to ensure that predicates introduced remain decidable.

2.9.6.3 SWRLX Built-ins — The SWRL Existentials Built-in Library

Considering the need to create new individuals using the classical SWRL defi-
nition and without relying on external extensions, the SWRL existential built-in
(swrlx:makeOWLThings) is defined in [131]. It is defined in the SWRLX Ontol-
ogy and written using the ’swrlx:’ prefix. The built-in is designed to ease ex-
plorative modeling in SWRL. Specifically, the existential quantifications — see
Section 2.9.4. Creating new individuals using SWRL built-in can be of particular
importance, especially in the execution of mapping rules.

Syntax and Semantics: Using the SWRLX built-in model, creating new indi-
viduals is made possible using the swrlx:makeOWLThings method, which has at
least one free variable as its argument. The semantics being that the the method
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will create a new individual of type owl:Thing and binds it to the free variable in
the its argument. In essence, the axiom: swrlx:makeOWLThings(?x, ?y) — ”will
cause a new individual to be created and bounded to ?x for every value of the
matching variable ?y in the rule”.

Now consider an example SWRLX rule (2.27) that: asserts a new individual

for every membership ID of the WorkgroupMembers class and then asserts the

new individual into the Editors class

WorkgroupMember(?m) ∧ hasMemberID(?m, ?mID) ∧

swrlx:makeOWLThings(?ed, ?mID) −→ Editors(?ed) (2.27)

Efficiency and Decidability: Creating new individuals using SWRL built-in
can be of particular importance, especially in the execution of mapping rules.
The advantage of swrlx:makeOWLThings method over other existential quantifi-
cations is that it offers a simple and direct method of creating new individuals
in SWRL-based ontologies. However, as the new individuals created will sim-
ply be of type ’owl:Thing’, it cannot be further classified by a reasoner into any
particular class type. This may result in redundant unbounded individuals in the
main ontology. As such an efficient and careful use of the built-in requires that
a class be predefined in the ontology to collate the new individuals created. An-
other safe implementation, as the authors advised, will be to completely avoid
storing the new individuals into the main ontology. However, SWRL built-ins still
remains limited in extending the semantic web rule language to represent non-
conventional domain knowledge. While those already defined, could benefit from
well-documented constructs with more efficient syntax and semantics.

To summarize, SWRL built-in definitions no doubt increases the expressive-
ness of SWRL and the possibility of user-defined SWRL built-ins means that
domain-specific extensions can always be defined to extend SWRL’s expressive
powers. Other built-ins not expanded in our discussion here, includes the query
extension built-ins such as the OWL-Axioms: the T-Box, A-Box, and R-Box built-
in libraries, which allows querying knowledge stored in the: terminology box, the
assertions box and the Relations sets of OWL ontologies. Note: special query
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built-ins were grouped together to form the Semantic Query Web Rule Language
(SQWRL) built-ins [102]. In our opinion, improved syntax of the various built-in
extensions with well-defined semantics that can be inferred within the DL-safety
restriction, is highly desirable. As that will help to improve their usability.

2.9.7 Summary of SWRL Language Extensions

As categorically summarized in Table 2.4, various extensions to SWRL syntax
and semantics have been proposed and justified as necessary expressiveness ex-
tensions of the rule language. While we present them as six categories for clar-
ity, the extensions can be basically summarized into four categories, viz. the (i)
Uncertainty management extensions — comprising of the fuzzy and probabilis-
tic extensions, (ii) the Non-monotonic extensions — comprising of the negation,
quantifiers, rules ordering and prioritization, as well as the existential extensions,
(iii) the Advanced mathematical extension featuring the SWRL-OpenMath exten-
sion, and lastly, (iv) the SWRL Built-in extensions.

SWRL
Extension

Added Syntax Added Semantics Extension
Type

Fuzzy-
SWRL
(f-SWRL)

Fuzzy class assertion:
C(x) * w.
Fuzzy property asser-
tion: P(x,y) * w.
Where: w ∈ [0, 1].

Introduces a truth
value ’w’, to specify
degree of confidence
for individual mem-
bership in a Class or
Property.

Fuzzy
Extension

Vague-
SWRL

Introduces a second-
degree weight, w2 to f-
SWRL syntax.

Denote second degree
of membership:
w and w2 specifies
the upper and lower
bounds of member-
ship intervals in a
Class or Property.

Fuzzy
Extension
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SWRL
Extension

Added Syntax Added Semantics Extension
Type

SWRL
Fuzzy
(SWRL-F)

Introduce a fuzzy
matching operator:
fuzzymatch(?x,
’fuzzy-value’)

Matches correspond-
ing fuzzy variables
with designated fuzzy
values from fuzzy
sets.

Fuzzy
Extension

Fuzzy Non-
monotonic
SWRL
(f-NSWRL)

Fuzzy weight (w),
’Not’ and ’¬’ opera-
tors.

Same as the F-SWRL
and Negation exten-
sions.

Fuzzy-
Non-
monotonic
Extension.

Bayes-
SWRL

Probability weight
(the p-variable, p)
Class assertion:
C(x) * px.
Property assertion:
P(x, y) * pxy.
Where: p [0, 1].

The p-variable (p)
matches the prob-
ability of Class or
Property assertions
with predefined values
in a conditional prob-
ability table (CPT).

Probabilistic
Extension

Negation The ’not’ and ’¬’ op-
erators

Negation of existing
concepts and asserting
negative facts

Non-
monotonic
Extension

SWRL
Quantifiers

Exists (∃X) operator Asserts new instances
of the quantified vari-
able x.

Non-
monotonic

notExists (@X) opera-
tor in antecedent

Check for missing
facts.
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SWRL
Extension

Added Syntax Added Semantics Extension
Type

notExists (@X) opera-
tor in consequent

Removal of Knowl-
edge

forAll (∀X) Group-wise assertions

Dominance Dominance operator:
dominance(Rx, Ry),
R = rule identifier

Implies: Rule Rx has
more priority in the
execution order than
Ry

Rules
Ordering
(Priority)

Mutex Mutex operator:
Mutex(Rx, Ry), R =
rule identifier

Implies: Rule Ry will
not be executed in the
event that Rx is al-
ready executed

Rule
Exclusion

Extended
SWRL
(XSWRL)

Existential operator’!’
e.g. existentially
quantified variable
(!x)

Creates new individ-
uals that satisfy the
variable, x.

Non-
monotonic
Existential
Extension

SWRL-
FOL/
CIF-SWRL

The ’ForAll (∀)’ and
’Exists (∃)’ operators

Imposes first order
logic (FOL) quantifi-
cation operations on
the SWRL variables

FOL
Extensions

Epsilon Ex-
tension

The terminology con-
structor εXφ(X)

Creates new individu-
als as ’values of’ class
X.

Quantification
extensions
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SWRL
Extension

Added Syntax Added Semantics Extension
Type

SWRL
OpenMath

The math built-in:
swrlbext : mathext

Uses the functionali-
ties of OpenMath to
create additional built-
ins

Advanced
Math Ext.

SWRL Tem-
poral

Duration operations,
Allen’s Temporal
intervals, add/sub-
tract operations e.g.
temporal:before(T1, T2)

Implements temporal
operations as predi-
cates on valid-time
data

Built-in
Extensions

SWRLM Complex Mathe-
matical operations
(evaluate, square-
root, natural log) e.g.
swrlm : eval(?area,

”width * height”,

?width, ?height)

Implements mathe-
matical functions as
predicates

Built-in
Extensions

SWRLX Existential Built-in
e.g. swrlx:make-

OWLThings(?x, ?y)

Creates new individu-
als of type owl : Thing

Built-in
Extensions

Table 2.4: Table of Summary for SWRL Extensions

In the fuzzy extension category, we discussed the SWRL-F, Vague-SWRL, F-
SWRL, and FNSWRL, all of which were aimed at extending SWRL to enable the
representation of uncertainties or incomplete information. The extensions basi-
cally involve the use of fuzzy logic principles, specifically the fuzzy and vague
sets, to extend the description logic of the SWRL formalism. Their similarity
is apparent in their use of the fuzzy weight to denote the degree of membership
for individual instances of the fuzzy class or property within a SWRL axiom.
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An exception to this similarity is the ’F-SWRL extension’ — which introduces
a fuzzymatch operator for representing uncertainties based on the principles of
fuzzy control system. A probabilistic extension of the SWRL formalism, ’Bayes-
SWRL’, was also discussed as another uncertainty-handling or predictive model-
ing extension of SWRL. Bayes-SWRL uses the Bayesian Networks of probability
theory to manage predictive knowledge modeling using SWRL rules. See Section
2.9.1.5 for details.

Various non-monotonic expressiveness extensions of SWRL have been geared
towards solving the classical negation and the negation as failure (NAF). The
negation extensions were included here only for completeness as the issues have
been thoroughly addressed both in the mainstream OWL and the SWRL’s abstract
syntaxes. It is safe to assume that these numerous proposals with their justifica-
tions lead to the advancement of the abstract definitions to handle the knowledge
negation. Other expressiveness extensions discussed in the non-monotonic cate-
gory include the existential extensions — introducing existential operators with
syntax such as: the exclamation mark ’!’ in the X-SWRL extension, the existential
(∃) and Universal (∀) quantifiers in Section 2.9.2, the ’ε operator in the SWRL ep-
silon extension, and the makeOWLThing operator proposed in the SWRLX built-in
definition. All these extensions were recognized to allow a safe creation of indi-
vidual instances to an OWL class or property, except the makeOWLThing built-in
— where the resulting instance is beyond the inference of existing OWL reason-
ers.

As domain knowledge is ever-evolving, there is sometimes the need to control
the execution of rules or even retract some facts based on new found information.
These challenges were addressed through rules ordering (using the ’dominance’
operation), rule exclusion (using the ’mutex’ operation) and facts removal, using
the notExists operator (@). These extensions (See Sections 2.9.2—2.9.4), which
obviously entails the essence of non-monotonicity, were thence summarized in
Table 2.4 as non-monotonic extensions of SWRL.

Advanced mathematical extensions of SWRL language through built-ins were
also discussed. The category introduces a special built-in extension based on the
OpenMath language syntax and semantics. The ’SWRL-OpenMath’ extension
involves the use of OpenMath functionalities to enable expressing mathematical
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formulas and scientific equations in SWRL. Another more classical approach in
this categoryis the ’SWRLM extension’, which introduces advanced math opera-
tions, beyond those in the core SWRL definition. SWRLM extension handle op-
erations such as the square-root (swrlm:sqrt), natural log (swrlm:ln), etc. Another
important built-in extension is the SWRL Temporal extension, which do not di-
rectly falls under any of the above four categories, was also discussed to highlight
how time-related domain information and temporal facts can be expressed using
SWRL rules. See Sections 2.9.5—2.9.6 for details. We present a compacted sum-
mary of these extensions and their component syntax and semantics in Table 2.4
below.

2.9.8 Decidability and Completeness of the SWRL Expressive-
ness Extensions

From the foregoing review of the various expressiveness extensions added to
SWRL, one may be interested in asking the question, ’What could be the largest
decidable extension of the semantic web rule language?’ and while an obvious
answer could be ’the DL-Safe extensions’, there is still the need to evaluate which
assemblage of these extensions can still remain decidable. Where the combination
is no longer DL-safe, then what restrictions could be imposed for the combination
to remain decidable. This is particularly important in achieving inference and to
ensure usability of these extensions.

In practical terms, Decidability refers to the ability of a Reasoner to classify
and achieve inference over a given piece of ontology within a finite time. While
basic SWRL rules can be kept decidable through the DL-Safety restriction, most
of the SWRL expressiveness extensions can hardly be kept decidable by employ-
ing similar restriction. Such extensions that work within the fringes of decid-
ability, such as the existential extensions, need to be carefully tailored to ensure
that their usage do not cause inconsistencies to the resulting ontology. For exam-
ple, the XSWRL extension [122], which adds new individuals using existentially
quantified variables is clearly non Dl-safe and therefore, undecidable. This is be-
cause, unbounded variables are bound to be introduced into the ontology, possibly
creating anonymous individuals or cyclic chains in rule execution. As such for the
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XSWRL extension to be decidable, the authors make the following suggestion:

i. ”Do not construct a rule which has existentially quantified variables to form
acyclic chain between its atoms”.

ii. ”Do not construct a rule which has existentially quantified variables and
other rules to form cyclic chain among their atoms”.

In what follows, we briefly discuss the conditions needed to maintain the decid-
ability of the reviewed SWRL extensions:

On Decidability of the Non-monotonic SWRL Extensions: As the authors
of [5] described, decidability issues involving unbound variables can be resolved
through careful management of their syntax or semantics during the inference
process. For example, in the case of the ’not’ Operator — negation as failure
(see Table 2.2). Here, decidability is achieved by controlling the appearance of
the unbound variable in the consequent of the SWRL rule. In essence, the un-
bound variable (?z), whose inference can result in anonymous negative property
assertions from the new elements not(P (x; y)) and not(Q(x; y)), was deliberately
introduced so as not to use the bounded variables ′?x′ or ′?y′ in the consequent of
the extended SWRL syntax. In effect, while the negation of the object or datatype
property assertions P or Q holds, the resulting unbound variable (?z) that hold
this momentary value will not appear in any other case or rule atoms and there-
fore the knowledge base remains decidable.

Similarly, in order to preserve the decidability of the main ontology while us-
ing the proposed NotExists (@) quantifier (see Table 2.3), the unbounded variable
introduced is semantically defined to match all the individual IDs available in the
ontology. In other words, the free variable is interpreted to be ’universally satisfi-
able’. This condition ensures that the execution of the operator does not result in
any modification of the existing ontology and therefore remains decidable.

Other forms of the non-monotonic SWRL extensions, such as the ’Mutex’ and
’Dominance’ operators, do not have a direct consequence on the content of the
ontology and therefore may not affect its decidability or otherwise. However, the
Mutex and Dominance operators, which controls and prioritizes the sequence of
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rule executions respectively, can be used to control the Decidability of SWRL on-
tologies during the inference process. This is because, by enabling the Reasoner
to block and/or schedule rule execution plan, they mimic the feature of the infer-
ence process. As such, undecidable rule fragments can be dominated or muted
where necessary to achieve consistency.

Decidability of Fuzzy SWRL Extensions: Theoretically, the decidability of
f-SWRL extension is not debatable considering that the extension simply intro-
duces weighted values (see Section 2.9.1.1) to justify the importance of certain
facts over others. Specifically, the class assertion, property assertion and rules ax-
ioms of SWRL were extended to show the degree of confidence of such assertions.
As such, f-SWRL ontology — and by extension the Vague-SWRL ontology, can
be assumed decidable as long as their OWL class and property axioms conform
to the DL-safety restrictions. While the semantics of the fuzzy axioms, such as
class and property inclusion axioms may have different interpretations from the
original SWRL, the concepts introduced in most of the fuzzy-based SWRL ex-
tensions reviewed, do not seem to invalidate the DL-Safeness principle and can
therefore, be expected to remain decidable. This can be seen from the fact that
no new concepts or anonymous individuals are expected from these extensions
nor the interpretation of their syntax — which in most cases is closely similar to
the original SWRL. For example, the comparable SWRL-F extension (see Section
2.9.1.3) introduces the concept of fuzzy ontology as a separate entity to maintain
consistency. As such its inference has no direct influence to the consistency of
the main ontology. Inherently, the Decidability of this extension also follows the
DL-Safety restriction of the SWRL rules.

Decidability of SWRL First Order Logic (FOL) Extensions: FOL-based lan-
guages are generally undecidable and logical formalisms extending FOL, such
as the SWRL-FOL, are usually so — unless where they are restricted by some
semantic or syntactic completeness theorems. The SWRL FOL extension(see
Section 2.9.4.2) introduces assertion axioms that contain first-order formulae.
However, the restriction is that quantified variables must be bound to their cor-
responding OWL typed quantifiers — meaning that no ’free’, ’anonymous’ or
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’unbounded’ variables should exists in the rules. In such cases, the decidability
of SWRL-FOL extension can also be said to be inherent in the DL-safety restric-
tion of the component SWRL ontology. As the authors of SWRL introductory
paper [70], expressed regarding the semantic interpretation of FOL assertions;
”An ontology is consistent if-and-only-if it is satisfied by at least one interpreta-
tion” Moreover, neither n-ary predicates nor functions were directly included in
the SWRL-FOL abstract syntax as they do not fit with OWL and by extension the
SWRL paradigm.

Decidability of SWRL Built-in Extensions: Built-in extensions basically means
that the extension utilizes the abstract syntax and semantics of the SWRL rule lan-
guage. As such, poses no decidability issues as long as the extensions are used
within the DL-safety limits.

Most of the SWRL mathematical and temporal extensions were added as built-
in predicates to the original SWRL definition in order to avoid the decidability and
complexity overheads. Other cases, where major extensions were added, such as
the ’OpenMath’ extension discussed in Section 2.9.5.1, the functionalities were
strategically added based on a distinct separation between the mathematical and
problem semantics. This is possible considering the fact that the mathematical
functions operates on existing domain knowledge as input. Moreover, as the
OpenMath extension also uses the built-in (swrlbext: mathext) to define func-
tions as instances of the Formula class, which are then solved using a constraint
solver. Due to the modularity, the main ontology is thus free of the inconsistencies
that may arise during math operations. Hence the extension basically follows the
decidability of basic SWRL built-ins, the DL-safety.

2.10 Ontology Utilization: Ontology-based Seman-
tic Search Engines

Information Retrieval (IR), which involves searching and/or browsing of stored
data, is the process of discovering specific portion of a large collection of stored
information that satisfies certain user requirements [132]. Various forms of in-
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formation searching for logically stored data do exist and are described in various
terms.

2.10.1 Keyword-based Information Retrieval

The commonest IR method is the keyword search, a strategy frequently employed
by traditional search engines, where indexed documents can be retrieved based on
their lexical matches to the search keyword. Another form of search approach, of-
ten employed to compliment keyword-based searches, is the faceted search [133].
In this approach, to searching or browsing to be precise, information discovery is
achieved through filtering of facet values. A faceted search combines the tech-
niques of direct keyword search and a navigational search. A Navigational search

is a form of directory-based search approach and as argued by the authors of
[133]:

”The use of faceted searches for querying RDF data is known to have
solid background and various theoretical frameworks that work fairly
well in the life-sciences domain”

This has lead to the evolution of semantic semantic searching where more special-
ized domain ontologies are employed to serve as guide to the search engines by
defining relevant concepts instead of rigidly matching keywords in the knowledge
pool. Semantic search approach is discussed below.

2.10.2 Semantic Searching

Semantic search is an application under the Semantic Web where search engines
try to understand the meaning of search terms before exploring the knowledge
base for relevant results. By adding semantic tags into documents, and using stan-
dard definition of domain concepts usually provided by ontologies, a semantic
search is able to return precise search results as it understands the meaning of
search keywords and queries performed by the end users. While the general idea
of a semantic web is to allow users to search for information from various sources
and domains, the concept of semantic search is used to define intelligent search-
ing of information from a single domain [134]. In essence, the ontology-based

Doctoral Thesis 99



Ontology-based Knowledge Systems

semantic search involves defining a possible metadata for the stored contents us-
ing ontologies or other semantic annotations to retrieve matching concepts, their
relationships and instances via unique identifiers (URIs).

A combination of these two search approaches was proposed in [135], and
termed as Hybrid Search. The hybrid search simply combines the functionalities
by employing the semantic search where search terms are explicitly defined in the
ontology and where the ontology falls short of describing the search keyword, the
system basically works as a traditional search engine. As our knowledge base also
involves RDF datasets that are semantically enhanced and linked together using
a global OWL ontology (the UC-ONTO), we simply employ the semantic search
approach as detailed in Section 3.4.

2.10.2.1 Ontology-based Semantic Search — Relevant Approaches

Various tools for semantic data exploration and browsing have been developed to
allow utilization of available RDF datasets and ontological knowledge bases. In
the field of crops and life sciences domain, tools such as CO Curation tool [52],
SemFacet [133], do exist among many others. The crop ontology curation tool is
a curation and annotation website that provides a search engine for exploring the
CO including various URL lists for browsing the ontology. In addition, the tool
also allows uploading and creating ontologies in the OBO format with available
RDF dumps and a web service API for download. While the CO curation tool may
have been motivated by the need to disseminate CO knowledge, a stand-alone tool,
SemFacet was developed by Zhou and others, for querying arbitrary life sciences
ontologies. According to the authors, the tool allows the use of keyword search as
well as faceted navigation for querying ”ontology-enhanced RDF datasets”. The
tool’s interface shows a navigation map, which enables search refocusing from
one object to another and search results can be filtered based on relevant facet
names and values.

Another domain-specific, ontology-based semantic search engine is presented
in [136], which is developed for querying agricultural information. The search
engine relies on a domain ontology developed in RDF and a web-based interface
consisting of a keyword based search engine. With little or no structure, text-
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based query results are also returned in another text box on the interface. Other
more generic semantic search engines include SemSearch [137], SHOE [138],
SWSE [139] and Swoogle [140]. The Swoogle search engine, which is one of
the early search and metadata engine for the Semantic Web, is able to discover
matching keywords from thousands of ontologies, documents, and terms. It allows
end users to select preferred data sources before submitting a query and construct
relations between resulting documents.

In line with the basic features provided by these systems, the Onto-CropBase
semantic search engine presented in Section 4.3 employs the keyword based search
engine and complement it with a faceted navigation for browsing the initial search
results from the keyword search. Initial search results from the knowledgebase
are returned as lists of subjects with navigational links categorized for each data
source. In doing so, the user is given a choice to navigate the search results based
on available datasets. Details of the Onto-CropBase design and development ap-
proaches were described in Section 3.4.

2.11 Ontology Language Extensions Review: Man-
aging Temporal Uncertainties in OWL Ontolo-
gies

Conceptual domain modeling in the field of the Semantic Web is often achieved
through Description Logic (DL)-based ontology languages such as OWL and is
typically guided based on the basic set theory. Modeling imprecise temporal ex-
pressions (ITEs) that depend on unstructured vague time data is still a challenge
and due to their limited syntax and semantics, current domain modeling languages
require that temporal information is asserted as definite time-points. However,
such limitations may lead to unfounded approximations and quickly translate to a
loss of information in modeling the real-world, especially in application ontolo-
gies. Hence, there is a need for a comprehensive ontology language for handling
temporal uncertainties (vague expressions of time) commonly found in the real-
world narration of domain facts.
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In this section, we review the relevant research approaches that handle rep-
resentation and reasoning about fuzzy-temporal expressions, as well as language
extensions that have been proposed to manage temporal expressions with uncer-
tainties in the semantic web community. The aim of which is to extend the se-
mantic web rule language with necessary constructs to manage the modeling of
temporal uncertainties in OWL ontologies. We discuss more on our motivations
for the Fuzzy Temporal Extension of SWRL (FT-SWRL) in Section 3.5.1.

2.11.1 Fuzzy Temporal Knowledge Representation and Rea-
soning

On the issue of modeling temporal uncertainties, there are two types of temporal
uncertainties to be modeled: the imprecise dating of events and vague descrip-
tions of time data [141]. As a domain modeling knowledge, the fuzzy temporal
extension of SWRL aims to manage the latter by providing a formalism for repre-
senting imprecise time expressions. Even though there is yet a formally accepted
and standardized fuzzy-temporal reasoning system for the ontological knowledge
bases, other logically validated fuzzy temporal reasoning systems have been pro-
posed and developed over time. The following works on fuzzy temporal repre-
sentation and reasoning offer an extensive literature and guide to developing new
formalisms such as FT-SWRL.

A fuzzy temporal constraint satisfaction problem is defined in [142] as a new
formalism for modeling flexibility and managing uncertainty into the interval-
based temporal logic originally defined by J. Allen in [9]. The authors describe
a reasoner based on Interval Constraint Network (ICN), which they claimed, can
manage both the crisp and fuzzy temporal information containing uncertainties.
Basic reasoning tasks described in this work involves the temporal consistency
management and temporal query answering. The issue of consistency, as men-
tioned elsewhere, is important in all logical networks to achieve inference and this
includes the fuzzy temporal networks.

A similar approach was presented in [143], where the authors proposed a mod-
eling and reasoning system for managing fuzzy temporal information commonly
found in medical records. Here, an existing temporal reasoning system called
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’TimeText’, which allow representation of temporal information in clinical texts
or narratives was extended to allow uncertain temporal data. The extension also
proposed the use of fuzzy temporal constraint network (FTCN) with a proposed
solution involving the three-state, staircase possibility distribution function. By
exploring the complexity of possibility distributions in solving fuzzy temporal
reasoning problems, the work relies heavily on the advances of [144] — where
the authors defined a propositional temporal language based on the fuzzy tem-
poral constraints (FTCs). The proposal in [144] describes formal syntax and se-
mantics based on possibilistic models and an inference mechanism based on FTC
inference rules, with cited use cases in the medical domain. For more on FTRR
systems, we refer interested readers to [145, 146, 147, 148] among others.

2.11.2 Fuzzy Temporal Knowledge Representation in OWL On-
tologies

Relevant works on temporal reasoning in the semantic web have focused more on
the representation and reasoning of definite temporal information. Basic tempo-
ral ontologies are representations of time-stamps to allow modeling time-specific
domain information. Most common temporal ontologies represent the basic meta-
data about time information; specifically, the ’points in time’ data and others are
simply domain-specific models for modeling crisp temporal data. Though, fewer
efforts have aimed at providing consistent standards for reasoning on the temporal
data. Notable efforts in this category includes: the SWRL Temporal [129], tem-
poral OWL (tOWL) [149], the OWL Time Ontology [150] and its extensions such
as in [151, 152, 153]. Others include: the Clinical Narratives Temporal Ontology
(CNTRO) [154] and CHRONOS [155] — which, as the authors claimed, handles
both qualitative as well as quantitate temporal facts. These works (and numerous
others) have extensively discusses temporal modeling on the semantic web.

However, real-life temporal information (including expert narratives) are usu-
ally inundated with non-crisp temporal description of events, procedures, etc.
Nevertheless, the basic temporal models have provided groundworks for defin-
ing much of the fuzzy temporal representation models.
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A notable fuzzy model for representing temporal uncertainties in ontologies is
presented in [156] — which basically discusses the application of fuzzy tempo-
ral reasoning over historic data. Following a modular semantic approach, fuzzy
set operations were employed to achieve the fuzzification of basic Allen inter-
vals [157] into fuzzy temporal intervals. However, due to its added flexibilities of
second-order theory, KAON2 9 is selected as the target framework for the exten-
sion and not OWL directly. Moreover, to efficiently model temporal specifications
using the model, an in-depth expertise in fuzzy interval logic is necessary. A factor
we try to avoid by introducing the fuzzy temporal built-ins in our FT-SWRL spec-
ification. Thus giving users the simple natural language terminologies for mod-
eling imprecise temporal information while hiding the technical implementation
details. Moreover, importing the SWRL-FT ontology helps to achieve modeling
consistency in the use of the fuzzy temporal SWRL rules.

2.12 Summary

In this chapter, the ontology generation and standardization approaches were ex-
plored and the integration of OWL ontologies with LP rules for added expressive-
ness. It discusses available literatures ranging from Semantic web technologies
and the relevant works in ontological knowledge modeling to language extensions
of OWL and SWRL formalism.

Based on the reviewed works, ontologies have been widely used as knowl-
edge modeling tools and have been effectively used in the field of life-sciences as
Knowledge-sharing and integration tools. Regarding the techniques for ontology
generation, we briefly highlight the situations and process of creating ontologies
from scratch, followed by the benefits of ontology reuse. Generating ontologies
from existing data sources is also discussed and the practice of generating domain-
specific concepts through competency questions. These techniques were put to the
test in our first case study in Section 4.2, where we give detailed description with
examples of our underutilized crops ontology development and standardization.
While the ontological knowledge modeling is imperative, of equal importance is

9http://kaon2.semanticweb.org/
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the standardization of this knowledge. Commonly employed techniques in the
early development stage involves reuse of existing standards and alignment of
newly generated ontologies with foundational ontologies for standardization. In-
volving domain experts during the ontology development also greatly improves
the quality of the knowledge model and also minimize the inconsistencies in
nomenclature. For later stages, continuous update and merging of new concepts
into existing ontologies and providing natural language definition for ease of ref-
erence, help to ensure ontology standardization. As mentioned earlier, despite
the expressive powers of ontologies, rules are necessary for modeling declarative
knowledge and for expressing complex roles — such as composite relations be-
tween concepts that are not easily expressible with OWL alone. Logic program
rules were widely used for integrating ontologies and SWRL rules are shown to
be widely accepted for integrating OWL ontologies. Other reasons for the combi-
nation of ontologies with rules is the advantages offered by rule formalisms, such
as their wide acceptance, the commercialization of rule-based applications and
the availability of reasoning engines to provide inferences over their knowledge
bases.

From the Semantic Web point of view, which is the driving force for most
ontology developments, the use of rules to integrate ontologies was embedded in
the imprint of the semantic web stack. This may be a driving point for many re-
searchers and Knowledge engineers to consider embedding rules into ontologies,
so as to utilize in full, the technologies offered by the semantic web. Moreover,
query writing as well as ease of detailed specification of factual domain knowl-
edge may be considered other driving force for this harmonious integration. When
selecting suitable rule languages for integrating with OWL ontology, compatibil-
ity is the main concern. The most compatible rule language for extending OWL
ontologies is the SWRL, which is basically a rule extension of the OWL itself.
Compatible languages result in simplicity in the knowledge modeling and valida-
tion process since there is a tight semantic inter-operability between the ontology
and the rule language.

The chapter further introduces the SWRL formalism, highlighted its expres-
sive limitations and present a review of the state-of-the-art of expressiveness ex-
tensions proposed to tackle these language limitations. The review discusses the
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various: fuzzy and probabilistic extensions of SWRL, such as the non-monotonic
extensions, existentials, advanced mathematic extensions, as well as the SWRL
built-in extensions. From the explored literature, it is evident that much of the
available SWRL extensions have been directed towards solving three major issues,
namely: (i) the uncertainties in domain knowledge, (ii) the non-monotonicity —
for handling evolving knowledge bases, and (iii) the modeling of mathematical
formulas and scientific knowledge. As the selected rule formalism for extending
the underutilized crops ontology (UC-ONTO) [45], the review of common SWRL
expressiveness extensions is undertaken with the aim of asserting the SWRL’s
overall expressiveness and to consider enhancing the SWRL language with fur-
ther expressiveness for managing temporal uncertainties — imprecise temporal
expressions commonly found in (crops) domain knowledge descriptions. To this
end, Section 3.5 proposes the pioneer fuzzy temporal extension of the Semantic
Web Rule Language.

In the following chapter, research methodologies and contributions in the ex-
perimental development of the Underutilized Crops Ontology (UC-ONTO) are
presented. This is followed by methodologies for ontology utilization through
the Onto-cropBase semantic search tool designed to utilize the UC-ONTO as its
knowledge base. Lastly, the modeling approaches and preliminaries of the pro-
posed Fuzzy-temporal extension of SWRL were presented.
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Chapter 3

Research Methodology

3.1 Introduction

This chapter presents the ontology engineering methodologies of the Underuti-
lized Crops Ontology (UC-ONTO), followed by the design approaches of the
Onto-CropBase semantic search tool and lastly, the model design of the Fuzzy-
Temporal Semantic Web Rule Language (the FT-SWRL model). The chapter is
organized as follows: Section 3.2 presents the UC-ONTO development method-
ology highlighting our approach and novel contributions in generating domain
ontologies using Competency Questions (CQs). This is followed by the detailed
ontology development approaches and design choices in Section 3.3, with illustra-
tions from the domain of discourse and the Protégé Ontology Development Editor
(ODE). Section 3.4, presents the notable design choices considered in developing
the Onto-CropBase tool, highlighting its knowledge base integration approach,
architectural framework, interface design and search engine approach as well as
the selection of the mediator component. In Section 3.5, the FT-SWRL model
design is presented with preliminary technologies and the pioneer FT-SWRL on-
tology design highlighting its various entities and hierarchy. Lastly, the chapter is
summarized in Section 3.6.
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3.2 The UC-ONTO Development Methodology

Comparable to software engineering methodologies, various ontology design strate-
gies have been proposed and practiced over the last decade. Common exam-
ples include the Methontology, Enterprise Ontology development approach, the

Onto-Knowledge, and DILIGENT methodologies [158]. These approaches were
presented in details in Section 2.5 among others. In theory, ontology develop-
ment follows a standard engineering approach that heavily utilizes ’reusability’.
However, in practice, considering the indirect nature of knowledge acquisition
and modeling, these development methodologies can best be applied according
to the ontology requirements and nature of the development approach. As such,
other ontology generation approaches were proposed, tested and utilized while
others adopted. In what follows, the methodological framework for our ontology
engineering was presented highlighting the different conceptualization strategies
utilized for efficient domain knowledge gathering. The Protégé ontology editor
illustrates the various stages in the ontological knowledge modeling in Section
3.3.

The ontology engineering methodologies discussed in Section 2.5 of the lit-
erature include the generic approaches to ontology engineering from the scratch,
which were found to be more ideal in theories than in practice. Others are on-
tology generation from competency questions as well as ontology reuses. Based
on the general guidelines advised in the work of Noy and Mcguinnes [23], the
METHONTOLOGY [159], DILIGENT [160], and the Onto-Knowledge method-
ology, a comprehensive ontology modeling strategy is summarized here. The UC-
ONTO development methodology takes into effect, the practicalities involved in
domain knowledge elicitation as well as the current technologies available for on-
tology development. The process of the UC-ONTO development, which can also
be replicated for any domain ontology engineering, can be summarized as follows:

(i) Ontology requirements specification.

(ii) Domain knowledge gathering and conceptualization.

(iii) Modular implementation of Ontology fragments.
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(iv) Standardization of Ontology fragments.

(v) Versioning and Assembly.

However, a more detailed description of the methodology highlighting the nu-
merous activities for each stage is given below:

(i) Ontology requirements specification.

a. Identify Users, Scope and Purpose of the Ontology.

b. Decide on the Nature of Ontology Development — heavily reuse or
from Scratch.

c. Ontology Language Selection and relevant technologies. Note: For
a taxonomy an OWL language is ideal, while for Data manipulation
vocabulary, an RDF Schema is sufficient.

d. Development Tool selection — For an open-source project and experi-
enced Ontologists, the Protege ODE is ideal. While for non-ontologist,
a licensed ODE such as TopBraid Composer may be considered.

(ii) Domain knowledge gathering and conceptualization.

a. Conceptualization from Data sources.

b. Conceptualization from Competency questions.

c. Reuse: importing other Ontologies.

Note: ’Conceptualization’ is any simplified version of knowledge that we
wish to represent for some purpose.

(iii) Modular Implementation of Ontology fragments.

a. Generate Sub-ontologies (for Applications, non-domain concepts) as
fragments of larger Domain Ontology.

(iv) Standardization of Ontology fragments.

a. Alignment and Merging of Ontology fragments.
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b. Concepts alignment with foundational ontologies.

c. Annotations: natural language definition of domain concepts.

(v) Versioning and Assembly.

a. Create link-points for Ontology fragments.

b. Import (or manually assemble) all Modular fragments into Larger On-
tology.

c. Create a version tracking for each Ontology development round through
Annotations and Datatype creators.

d. Create/Update ontology header to include versioning info.

(vi) Ontology Extension with Logic Programming Rules (Optional).

These ontology development guidelines help to structure the ontology engi-
neering process by identifying important but non-obvious aspects, such as the
target users of the ontology, supporting tools, and specifying what values can be
allowed for properties. Other aspects that are apparent and also common to all
methodologies — such as defining domain terms and roles, asserting their hierar-
chy, and filling the concept slots with individual instances — performed iteratively
for each source of data to populate the underutilized crops ontology. Similarly, our
user-defined SWRL rules were added iteratively while ensuring the consistency of
the ontology by invoking the Reasoner.

3.2.1 Generating Ontologies from Competency Questions

As the major purpose of a knowledge base is likely to answer user queries for ease
of decision making, queries can be designed to identify such basic questions that
an ontology model must answer. These questions are commonly referred to as
Competency Questions (CQs) and since domain-specific ontology development
process involves both the knowledge engineers as well as domain experts, the
latter can then provide the required responses that can serve as knowledge input
to the ontology model. The resulting set of CQs and their answers can thus serve
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as the starting point from which typical domain concepts can be generated and
their relationships and instances outlined.

The basic steps involved in generating ontologies from competency questions
can be outlined thus:

(i) Identify Competency Questions — the possible queries that the tool will an-
swer based on its Users’ (Researchers, Farmers, general public, Agronomists,
etc.) perception.

(ii) Eliciting the answers to competency questions with the help of domain ex-
perts.

(iii) List out the terms or concepts identified from the competency questions and
answers.

a. Classify the terms.

b. Identify the relationship between them.

c. Assert repetitive facts (Individual instances) as class members.

In practice moreover, CQs can be used to support the entire ontology devel-
opment life-cycle, with new concepts added to the ontology as the question-and-
answer base grows. As such, CQs provide a good starting point for generating
ontologies by extracting specific domain concepts and their relationships from the
questions and answers — usually from domain experts and data stores. As noted
in [23], the CQs being representatives of knowledgebase requirements, serve as
pointers to the overall scope of ontologies. Moreover, the lists of CQs can pro-
vide a good starting point for generating ontologies by extracting specific domain
concepts found in both the questions and their possible answers (usually from the
domain experts).

As they are in natural language and less formal when compared to the software
engineering requirement specifications, CQs helps non-logicians to approach on-
tology development, understand its scope and subsequently evaluate the final do-
main ontology. Furthermore, CQs can be posed as queries during ontology eval-
uation, to ascertain whether the knowledgebase achieves its intended purpose. A
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framework for evaluating ontologies against their corresponding CQs was pro-
posed in [161].

3.2.1.1 List of Competency Questions for UC-ONTO Development

Though the list of competency questions can never be exhaustive, we present some
examples of the CQs used to elicit the underutilized crops domain knowledge.
The questions focuses on the main underutilized crop Bambara Groundnut as a
reflection of the data availability from the domain experts.

• What are the commonly cited Underutilized Crops?

• Which UCs characteristics should a Farmer consider when planting a par-
ticular UC?

• Is Bambara groundnut a Seasonal or an Annual plant?

• What are the Soil types/Temperature/Rainfall requirements for an optimum
yield of an UC?

• What are the best conditions for Bambara groundnut farming?

• What other Regions of Cultivation match the farming centers of Bambara
Groundnut?

• Which Country has the highest yield of Bambara Groundnut in the year
2016?

• What are the good Landraces of Bambara groundnut for Nigeria?

• Does Bambara groundnut nutrients make up a complete food?

• What are the nutrition components of a particular Crop?

• Which part of Bambara Groundnut stores the food?

• How many days does it take for Bambara groundnut to flower/produce
food/harvest?
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• What happens to the yield of Bambara groundnut if the annual or Seasonal
rainfall is moderate?

• What type of root does Bambara groundnut possess to survive the draught?

• What are the unique features of Bambara groundnut as compared to other
Legumes?

• What are the commercial products of Bambara groundnut?

• Does Bambara groundnut grows better in a Mixed farming or Crop Rota-
tion?

• What are the best candidates for mixed farming with Bambara groundnut?

• What are the common Pests and Diseases of Bambara groundnut?

• What other names is Bambara groundnut called around the World?

• Which farm input or fertilizer is often used for Bambara groundnut?

It should be noted here that our competency queries and responses for the
underutilized crops ontology (see Section 4.2.6), which were elicited in the form
of ”if (question) then (answer)” statements, sets the stage for designing the SWRL
rules used to extend the UC-ONTO. That is, where the conceptual relationship
cannot be asserted as a hierarchy, we simply adopt the rule assertion format of
the CQs. The approaches of extending ontologies with logic programming rules
were previously discussed in Section 2.8 and the example SWRL rules added to
the UC-ONTO were presented in Section 4.2.7.

In essence, the ontology engineering methodologies were put into practice
in the next Chapter, which discussed in Section 4.2, the development process of
the Underutilized Crops Ontology (UC-ONTO). In the next sub-section however,
we discussed the ontology modeling using the Protégé Ontology Development
Environment (ODE).
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3.3 Ontology Development with Protégé ODE

3.3.1 Naming Conventions

Best practices for naming conventions were adhered to during the ontology devel-
opment with class names beginning with a capital letter and no spaces e.g. Under-

utilizedCrops, BambaraGroundnut etc. and properties or relations beginning with
a small letters, also with no spaces e.g. hasLocalName, hasFeatures. Whereas,
Individual instances and concept names that are not class or property names, begin
with a capital letter but use a hyphen or underscores (Protégé’s default) in some
cases to make it readable e.g. Leaf-spot.

The complete ontology with classes, properties, facts, rules and individuals
instances rendered in OWL is available for download (as .owl file) in the below
link1.

3.3.2 Entities Assertion — Classes and Hierarchy Definition

The basic ontology components are Classes and OWL has a predefined Class an-
cestor called the ’Top’ concept class or ’Thing’ in which all concepts (Classes,
properties and individuals) in an OWL ontology belongs as sub-entities. Domain
concepts or Classes are added as successors of the ’owl:Thing’ super class.

Defining a class in Protégé is achieved either using the ’Entities’ or ’Classes’
tab as shown in Figure 3.1. The Entities tab allows a generic overview of a Con-
cept — Classes (top-left) or Properties (bottom-left) with their most relevant con-
cepts such as the ’Annotations and Usage’ features in the top-right corner and
’Description’ of the concept in the bottom-right. An ’Entity’ in Protégé ODE is
analogous to a ’Concept’ in Ontologists terms — as they involves all meaningful
terms in an ontology such as Class, Property (Object and Datatypes), Individual
instances and Annotations.

For compactness, all Crops related terminologies in the Underutilized Crops
ontology will be defined under the ’DomainConcepts’ Class as an ancestral class,
followed by the ’UnderutilizedCrops’ class to contain only those terminologies of
crops that are categorized as underutilized. Due to the research focus of CfFF as

1https://drive.google.com/file/d/0B1FHDywt7JQlWWNhMzRjWmRuNVk/view
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the data-source and the domain data availability, a focus class for the Ontology is
the ’BambaraGroundnut’ class added as a direct subclass of the ’Underutilized-
Crops’.

Classification and Hierarchy definition of concepts can be achieved through
the Class hierarchy tab or through ’Restrictions’ added as ”Domain’ and ’Ranges’.
Other method of achieving hierarchical representation is through ’Rules’ added as
constraints and which will be inferred once a Reasoner is invoked to check the
consistency of an ontology — See section 5.2.5. The class hierarchy tab allows
adding classes either as subclass of another or as sibling classes as shown by the
plus signs directly under the class hierarchy tab in Figure 3.1.

Figure 3.1: Entities Assertions tab showing Class Definition

3.3.3 Entity Assertions — Object and Datatype Properties

Properties, roles or relationships in OWL ontology is of two types, the ’Object
Property’, which describes the relationship between two Classes and the ’Datatype
Property’, which describes a relationship between Individual instances and their
respective primitive data values such as strings, integer, etc. As shown in Fig. 3.2,
the Entities tab in Protégé or the respective Property tabs can be used to assert ob-
ject or datatype properties. Another important modeling parameter for managing
relations between objects in OWL ontologies is the ’Property Characteristics’ tab
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(bottom-middle), which allows asserting the nature or restriction of the property
type.

Based on the common logical conclusions of relationships between concepts,
the following Property characteristics are allowed in the Protégé Property asser-
tions tab:

1. Functional vs Inverse Functional property — where the value of the rela-
tionship is a one-to-one (unique) between concepts or where the role is a
one-to-many relationship.

2. Transitive property — where the relationship between concepts involves a
sandwich or transferable roles. It is usually enforced by the reasoner to
generate transitivity where they exist between concepts.

3. Symmetricity vs Asymmetric property — where relations are mirror images
between concepts (e.g. spouse) or the reverse is the case, the antisymmetric
characteristic is imposed by the reasoner.

4. Reflexive vs Irreflexive property — where the role or relationship is between
concepts that are interchangeable or subclass of themselves (e.g. Person is-
a Person). Irreflexivity is asserted where concepts or individual can not be
interchanged.

Example: The property hasLocalName which describes the typical names of
a crop (e.g. Bambara Groundnut) in its locality, can be asserted as ’functional’
because the receiving class LocalNames (Property Range) can contain only those
names for BambaraGroundnut (the Domain) class. Therefore any member of the
class should be a unique local name for Bambara Groundnut as related by the
inverse property isLocalNameOf.

3.3.3.1 Property Domain and Ranges

The OWL property Domain and Range as described above have different interpre-
tation with the mathematical domain and range. Instead of restricting individuals
into a given domain and range or used as data-type checks as traditionally known,
in OWL modeling they are simply used as axioms during reasoning process to
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Figure 3.2: Entities Assertion tab showing the Top Object Property and its Char-
acteristics

notify the Reasoner that only those classes that belongs to the domain (originat-
ing class) and range (the recipient class) of the property can be inferred. As an
example, consider the use of domain and range on the hasLocalName property
above. Now, should we add the malay local name of say ’Orange’ as another fact
into our ontology, i.e. ”Orange hasLocalName Oren”. Then without defining a
domain and range of the hasLocalName property, it will be inferred at reasoning
time that Oren is also a local name of BambaraGroundnut class because it is will
be found in the LocalName class. However, by adding that the domain and range
of a property, such inconsistent knowledge modeling are easily avoided.

3.3.4 Entity Assertion — Individual Instances

Individuals or Class members list can be asserted in the ’Individuals tab’ or from
the ’Class tab’ added directly as members, by clicking the plus sign beside the
’Members’ sub-tab in the ’Descriptions tab — see Fig. 3.1. In the Individual
tab however, untyped instances can be added and their Property assertions such
as Object and Datatype properties or their negations. Equivalent instances that
shares similar class types, e.g. Human and Person can be described using the
Same Individual As sub tab. While disjoint individuals can be described using the
Different Individuals sub-tab.
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3.3.5 Reasoning and Queries

3.3.5.1 Description Logic (DL) Queries

DL Query is a simple and powerful ontology searching mechanism used to search
for class expressions in a consistent ontology. The Ontology needs to be clas-
sified (by invoking a Reasoner) before running a DL Query over it. DL queries
are written using an easy to use syntax called ’Manchester OWL Syntax’ which
is a user-friendly, human readable syntax that allows writing class or individual
expressions as queries and the results will be displayed in the ’Query Result’ tab.
Unlike the XML/RDF and OWL/XML syntaxes for OWL 2, it is a frame-based
format where complete information about a Class, Individual, or property is col-
lected in a single assembly called frame.

An example DL query in Manchester syntax to retrieve ”a class with at least
one feature” and :another class with exactly a ’leaf’ as its feature”, from our Crop
Ontology in DL will be thus:

• hasFeatures some Features

• hasFeatures value ’Leaf’

Figure 3.3: DL Query tab showing Reasoner not Initialized error

As shown in the figure 3.3, a reasoner need to be initialized and inference
achieved before a DL query can be written. This is to ensure that the ontol-
ogy is consistent before answering, which helps to avoid incomplete information
retrieval. See section 3.3.5.3 for details on ontology inference and consistency
checking.
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3.3.5.2 SPARQL Queries — for Large and Federated Queries

As earlier explained, the building block of Semantic Web data is the Resource
Description Framework (RDF) triple graph, and SPARQL is the query language
for manipulating the RDF graph data. SPARQL is a recursive acronym which
stands for: ’SPARQL Protocol and RDF Query Language’. SPARQL queries
can contain a combination of RDF triples with disjunctions and/or conjunctions
of classes and properties. The subject, object, and predicate triples in SPARQL
queries contain variables which will be used to match existing graph patterns in
the Ontology knowledge base.

SPARQL Query Format: In its basic form, the SPARQL contains a ’SELECT’
and ’WHERE’ clauses, just as in SQL Queries, see the Listing below:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?subject ?object

WHERE {?subject rdfs:subClassOf ?object }

ORDER BY

GROUP BY ...

Note that the PREFIXes are imports for the RDF syntax namespaces (rdf-syntax-
ns), OWL syntax (owl), XML Schema (XMLSchema) and RDF Schema (rdf-
schema) respectively. They are standard prefixes needed to access, retrieve and
presents the ontology data correctly. Other prefixes are added below these stan-
dard prefixes to show the path to any participating ontology or data source for the
SELECT statement. Hence, various data sources can be searched at once through
the federated SPARQL query feature. We highlight the resulting case study of the
SPARQL searching in our Onto-CropBase tool in Chapter 4.

3.3.5.3 Consistency Checking

As earlier discussed, developing ontologies requires a Reasoner to be invoked to
ensure consistency and infer additional knowledge from asserted axioms. Com-
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monly used reasoners available in the Protégé ODE includes the Pellet, HermiT,
Fact++, and Pellet Incremental [14]. To check for the consistency of ontologies,
the Reasoner tab provided in the Protégé menu provides the list of default rea-
soners and their reasoning strategy. For more explicit reasoning, the ’Reasoner
Configuration’ sub tab is selected to configure what pre-computation tasks needs
to be done. For a simple ontology development, it is recommended that the default
setting be allowed, were the Reasoner plug-ins decides the pre-computation task
such as ’Initialization, Classification, and Realization’.

Figure 3.4: Reasoner Inferences Selection in Protégé ODE

In the preferences display, users can chose from check-boxes (See Fig. 3.4)
which inferences will be realized and displayed in the ODE. Selectively un-checking
some of the boxes to disable the automatic inference of unnecessary inferences,
such as disjoint classes, super-properties, etc, will go a long way in improving
the Reasoner performance and speed. Moreover, as shown in Fig. 3.3, an active
reasoner is also needed to allow writing SWRL rules and for DL query execution.
As such, it is strongly advisable that the reasoner is always active during ontology
development to avoid introducing intractable inconsistencies.

Doctoral Thesis 120



Ontology-based Knowledge Systems

3.3.5.4 Adding Query Results to Ontologies

Due to the complex and eliciting nature of queries, an ’Add to Ontology’ option is
provided during DL query (See Fig. 3.3) writing to enable the assertion of the ex-
act query results into the ontology — as a new class. This helps to avoid repeated
query writing and allow for efficient knowledge extraction from ontologies.

Figure 3.5: Reflexive Ontology Generation - Adding Query Results in Protégé
ODE

This reflexive ontology generation approach, though rarely mentioned, is highly
efficient in enhancing the knowledge elicitation process in domain ontologies.
However, as shown in Fig. 3.5, a new class need to be created which can lead
to further alignment of the main ontology. For easier utilization of this feature, a
separate class ”QueryResults” can be created as a sibling class to the ’Domain-
Concept’ class to collate all new queries. This will help to avoid inconsistencies
and ease of management of the main ontology.

3.3.6 Rules Assertion: Adding User-defined SWRL Rules in
OWL Ontologies

Writing SWRL rules in the Protégé ODE requires creating the Rules tab as the de-
fault installation does not provide the rules assertion option. However, the ”Rule”
View is already available in the Window menu − > Views − > Ontology Views
− > Rules.

As shown in Figures 3.6 and 4.9, A plus sign is provided in the rules tab to
allow adding user defined rules in SWRL. Rules are added as OWL axioms by us-
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Figure 3.6: SWRL Rules Assertion tab in Protégé showing SWRL Rule format

ing known classes, object properties, data types and individual names. These were
added as conjunctions, separated by a comma, to represent an if-then declarative
assertion of domain facts. The antecedent is thus separated from the consequence
using the dash and the greater than signs (− >) to show the direction of the infer-
ence. Rules added can be ’edited, deleted, explained by asserting annotations and
their inferences can be questioned’ using the ’O, X, @ and ?’ symbols respec-
tively as seen in the right-hand side Fig. 3.6. While any class names can be used
in writing SWRL rules, known classes are encouraged in accordance to the DL-
Safety restriction (See Section 2.8.2.1) to avoid inconsistencies and decidability
of the main ontology.

3.3.7 Ontology Reuses: Ontology Imports in Protégé Ontology
Editor

Importing an ontology or set of ontologies into an open ontology file in Protégé
is achieved through the ’Direct Imports’ sub-menu in the Active ontology tab
or using the File menu tab. Clicking the plus sign of the Imports menu starts
the Ontology import wizard which helps to semi-automate the ontology import
process. Following options are available for importing ontologies: (i) from a
local file or from ontologies located somewhere on the web. For the latter, the
URL that points to the file that contains the ontology needs to be specified, i.e.
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the physical URL rather than the ontology URI. (ii) Other import options include
importing ontologies from the ontology libraries, which goes through all available
ontology repositories (in the local host) and presents their IRIs for the user to
chose from. (iii) Lastly, loaded ontologies already in the Protégé workspace can
also be imported into a particular ontology — called Ontology gathering. Indirect
imports of ontologies can also be achieved by directly copying ontology concepts
of one ontology into another.

Once an ontology is imported, the next task involves creating conceptual links
between the different ontology entities. Where the imported ontology is needed
without modification or alignment, the required classes, properties or data values
needed are then asserted and the Reasoner invoked to check for consistency. How-
ever, as most ontologies are only needed inorder to reuse some of their concepts
in another existing ontology, there is a need to sometimes ’merge’ ontologies after
importing them. We discuss the ontology standardization approaches in Section
2.5.4.

3.3.8 Ontology Merging and Alignment

3.3.8.1 Ontology Merging with PROMPT

Built initially as a plug-in to Protg 2000 Knowledge Base Tool, PROMPT [162]
is a comprehensive Ontology Mapping and Merging algorithm with the options
to ’Compare’ ontology versions, ’Map’ two ontologies, ’Extract’ or import a part
of one ontology to another and ’Merge’ together two ontologies. It also has a
’Move frames’ option as an added support for Frame-based ontologies (PROMPT
is a feature of Protg 3.5 which have support for OWL using Protg-OWL knowl-
edge model). Moreover, PROMPT provides useful suggestions and feedback to
the user during the process and where a conflict exists, PROMPT will direct the
user to the affected Classes. Another useful feature of PROMPT is that it allows
preference during merging such that one of the two ontologies can be selected as
preferred and the merging process will be favored towards the preferred ontology
and PROMPT will automatically resolve conflicts (naming, restrictions, etc) in its
favor.

On the more recent versions of the Protégé ontology editor however, merging
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Figure 3.7: PROMPT Interface for Managing Multiple Ontologies in Protégé 3.5

ontologies is achieved through the ’Refactor’ tab — see Fig. 3.8. This allows
similar process of merging ontologies as described with the PROMPT plug-in,
with the options to merge two or more ontologies to create a new ontology or
simply merge into an existing ontology. At the final stage of the ontology merging
process, a different ontology rendering format can be selected.

It should be noted however, ontology merging is usually semi-automated as
user intervention is necessary from start to finish — especially where there is a
conflict in naming convention of concepts. The user then has to choose which
concept name to keep or discard and from which ontology. The process is more
tedious for merging very large ontologies and it becomes overly tedious if the
ontologies have many comparable class names.

We present our case study of using the merging tool including the challenges
involved in Section 4.2.6.

3.3.9 Annotations and Natural Language Definition of Con-
cepts

Due to the technical jargons and specialized keywords associated to their ter-
minologies, many domain-specific ontologies are not easily comprehensible by
others (non-experts in the domain), leading to low reusability and conformism.
However, a natural language definition of domain-specific concepts or terminolo-
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Figure 3.8: Ontology Merging Process in Protégé ODE

gies can help in alleviating most of the technical ambiguities and increase the
usability and interoperability of such ontologies. Simply put, the lack of natu-
ral language definitions of concepts is a serious hindrance to understanding much
domain-specific ontologies, thousands of which are available online. Two main
approaches were suggested in [163] for improving domain ontologies using the
natural language definition of concepts, namely — the use of Annotations (such
as labels, comments etc) and standardized naming patterns.

Creating New Annotations: User-defined Annotations In the Annotation de-
sign pattern, use of rdfs:label and rdfs:comment constructs — for annotating do-
main concepts with widely known keywords and providing comments on ambigu-
ous terms, is highly advised in ontologies. Whereas, the Naming design pattern
approach, advises on the use of standard naming conventions for domain termi-
nologies. Such as, the use of capital letter to begin names of classes and small
case letter for properties, among other naming conventions as advised and agreed
upon by professionals in the domain of discourse.

In essence, providing natural language definition of ontological concepts greatly
improves its acceptance and usability among humans and machines alike. We
highlight with examples on using natural language annotations for standardizing
our UC-ONTO in Section 4.2.6.
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3.4 The Onto-CropBase Development Methodology

Utilizing the rapidly growing collection of semantic data is one of the contempo-
rary challenges in the field of life sciences. In the last decade, with the advance-
ment of semantic technologies in design and development of domain-specific de-
cision support systems, various RDF datasets, SPARQL endpoints, OWL ontolo-
gies as well as generic taxonomies have been developed. Ontologies being explicit
specifications of domain knowledge, as widely quoted in [12], are known to en-
hance the semantics of data so that it can be easily interpreted by machines and of-
ten enable consistent, precise and human-understandable queries over such data.
While these developments strengthen semantic knowledge modeling and repre-
sentation, of equal importance is the retrieval and dissemination of the knowl-
edge to non-technical stakeholders for informed decision-making. As such, user-
friendly tools with communal access and customized presentation views needs to
be considered beyond the usability offered by desktop applications. To this end, a
web interface for exploring the UC-ONTO through concept-based semantic search
engine was designed and developed. The tool is termed as the Onto-CropBase —
which is a web-app developed to serve as an interactive gateway to the underuti-
lized crops ontological knowledgebase, enhanced with additional linked-datasets
in RDF2.

In this section, the design strategy and methodology employed in the devel-
opment of the Onto-CropBase tool were discussed and as explained earlier, the
Onto-CropBase tool was designed to comprise three major components: (i) the do-

main ontologies component—consisting of a global ontology developed in OWL
2 and local ontologies in RDFS, (ii) the mediator component—provided by the
Jena API, and (iii) the ontology-based semantic search engine—developed using
J2EE3. In what follows, the ontology-based integration strategies employed in de-
veloping the Onto-CropBase tool were discussed.

Details of the design and development of the domain ontology has been pre-
sented in Sections 4.2 and 3.2 respectively. The methodology discussed includes
the process of converting available crops data and metadata from XML to OWL

2Details of the Onto-CropBase design and development is published in our paper: The Onto-
CropBase — A Semantic Web Application for Querying Crops Linked-Data [11].

3http://www.oracle.com/technetwork/java/javaee/overview/index.html
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Figure 3.9: Onto-CropBase architecture showing the tool’s components

format in order to easily generate relevant domain concepts. This is also pre-
sented with practical details in our paper [61]. Hence, the overall framework of
the Onto-CropBase tool is based on an open-source solution as shown in Fig. 3.9.
The methodology and detailed description of the Onto-CropBase components are
presented in the following subsections.

3.4.1 Knowledge base Integration: Linking UC-ONTO with
Relevant Data sources

To allow interoperability between the UC-ONTO and other crops data involved in
the knowledgebase and due to the modularized nature of the ontologies involved,
a connection needs to be made between the various components data sources to al-
low writing the federated queries. This is particularly useful when answering user
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queries that require pulling information from two or more data sources. Com-
mon procedure of integration involves the use of mappings between terms in the
relevant ontologies, i.e., where two or more ontologies are involved, termed as,
inter-ontology mapping. Another approach involves the linking of the ontologies
with the actual information within the data sources, i.e., where data sources other
than ontologies are involved in the integration process. By definition, ontology

mapping is a directed matching of two or more ontologies in which entities of one
ontology are mapped to at-most one entity of another ontology [164].

Ontology-based integration of data sources can be generally categorized into
three approaches, namely, the single ontology approach, multiple ontologies ap-

proach and the hybrid approach [165]. The single ontology method follows the
centralization of all data sources and shared vocabulary into a global ontology.
This method is suitable when all data sources used for the integration share the
same view of the domain. While in the multiple ontologies approach, each data
source is separately described by its own local ontology with inter-ontology map-
ping between relevant terms. This method is suitable for decentralized data sources
that do not need a common vocabulary. The third approach, hybrid ontology in-

tegration, involves a combination of the single ontology and multiple ontology
approaches. In this approach, the ontology of each data source is developed sep-
arately and mapped to a shared vocabulary (global ontology) to allow interoper-
ability.

For the Onto-CropBase development, the hybrid approach was employed to
integrate our UC-ONTO with the RDF data sources or ontologies due to the par-
ticular advantage that new sources can be easily added without modifying exist-
ing mappings. This suits comfortably with our ever-evolving underutilized crops
knowledgebase, the UC-ONTO, as it ensures that the knowledgebase can be eas-
ily extended in the future to accommodate data from other heterogeneous sources
like RDFs, relational databases, excel and web documents. The architecture of
the hybrid ontology approach is shown in Fig. 3.10 (left) and a textbook discus-
sion on the three approaches with example use cases is presented in [165]. It
should be noted that apart from achieving interoperability between data sources,
ontology-based integration has the following added advantages: global conceptu-

alization, mapping support, metadata representation, as well as support for high-
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level queries, among others [166].

Figure 3.10: Hybrid approach to ontology integration (left) and an MVC adapted
design concept for Ontology-based Applications (right).

3.4.2 Interface Design and Search Engine Approach

Main features in the Onto-CropBase interface include a search space, a map for
location info and a results panel. These three main features are available in all
sections of the tool. The home page of the Onto-CropBase tool is designed with a
form-based search engine and as location data is critical to crop-based knowledge
systems especially that of the underutilized crops, a map interface is provided to
display the crops location data. The map interface is embedded using the Google
Maps JavaScript API version 3, which enables map features in a web application,
including styled maps, place data, 3D buildings, and geocoding, among other
features. The map information is extracted from the named location’s east-west

bound longitude and north-south bound latitude elements. The following design
approaches makes up for the Onto-CropBase features:
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3.4.2.1 Search Approach.

In the Onto-CropBase search engine, a search begins with a keyword entered in
the Search area and the query results are returned as a set of navigational links
based on the subjects of the data sources—using their title annotation provided in
the corresponding local ontology, see Fig. 4.12. Users can then browse the list of
subject titles to explore the remaining information. Clicking on a particular sub-
ject will present the RDF assertions as subjects and objects pairs. For example, in
Fig. 4.12, Subject number 3 is a caption for Carbohydrate of Bambara groundnut
and the corresponding object asserted as its value is High (65%).

3.4.2.2 Query Language.

SPARQL is used as the query language, which is a recursive acronym for SPARQL
P rotocol And RDF Query Language (SPARQL), and a standard query language
for retrieving information stored in RDF graph or triples [167]. A basic structure
of a SPARQL query includes the SELECT, CONSTRUCT, ASK, and DESCRIBE
statements followed by the WHERE clauses and GROUPBY clauses where appli-
cable, see example in Listing 3.2. As mentioned earlier, we employ the Jena-ARQ
[168], a query engine for Jena that supports SPARQL RDF Query language. This
allows for federated user queries across the local ontologies using the correspond-
ing terminologies of concepts found in the global ontology as search phrases.
Recall that the local ontologies are linked to the global ontology using their URIs
which is also supplied into the SPARQL queries.

3.4.2.3 Query Design.

Queries entered in the Onto-CropBase search space are embedded in a Java code
containing a SPARQL query and the concepts are parsed as ’text strings’ to the
QueryFactory method. The SPARQL’s SELECT query is first executed on the
global ontology (the UC-ONTO) to retrieve the relevant concepts matching the
search keywords in the global ontology. An OPTIONAL query pattern, as shown
in Listing 3.2, is provided to recursively explore all the RDF datasets linked to
the UC-ONTO through their URIs. The use of the OPTIONAL construct allows
the Jena-ARQ query engine to search for all relevant triples with inferences from
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the local RDF ontologies without a query execution failure — i.e. it acts as an
exception condition in the event that the optional data does not exist. Moreover,
the use of OPTIONAL query also helps to ensure that all non-optional facts are
returned from at least, the global ontology. For example in the map query, in the
event that one of the RDF subjects returned is a location data, a setMap object is
then used to obtain the set of longitudes and latitudes of the location, for display
on the map interface. The size of the resulting subject-predicate-object (SPO)
triples, is also calculated for each dataset to determine the number of pages to be
returned for each search result. In the case of Onto-CropBase, we set the capacity
to 10 triple sets per page so as to allow the map view stay in focus.

1. "PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>"+
2. "PREFIX rdf: <http://.../1999/02/22-rdf-syntax-ns#> "+
3. "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> "+
4. "PREFIX ucnames: <http://.../ontologies/2015/Naming#>"+
5. "PREFIX agronomy: <http://.../ontologies/2015/agrono#>"+

6. SELECT distinct ?subject ?object " +
7. WHERE { " + " " + "
8. OPTIONAL " + " {?subject rdf:value ?object ." + "
9. ?subject rdf:type ucnames:"+ className +".} "+" "+"
10. OPTIONAL " + " {?subject rdf:value ?object . " + "
11. ?subject rdf:type agronomy: "+ className + ".}"}

Listing 3.1: SPARQL query showing the use of SELECT and OPTIONAL
constructors

The above listing shows example uses of the SELECT and OPTIONAL con-
structors in a SPARQL query to retrieve distinct subject-object pairs from two lo-
cal ontologies: ucnames and agronomy. Note that the prefix declarations, lines
1 through 6, allow for abbreviating URIs, so that the short names can be used
instead of the URIs in the query body.

3.4.2.4 The Query Processing.

As mentioned earlier, Jena-ARQ is employed as a query engine for executing our
SPARQL queries. This is achieved through a sequence of five iterative steps as
follows:

1. String to Query parsing: where the text string parsed to the QueryFactory
method is structured from a query string to a Query object.
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2. Algebra Generation: Next step is the algebra generation, which involves
translation of the Query object to a SPARQL algebra expression using the
SPARQL specification algorithm.

3. High-level Optimization: Third step is the optimization of the algebra ex-
pression generated in (2) and is called high-level optimization and transfor-
mation. Here, a Transformer class applies a transform code to convert or
replace the algebra expression tree with more efficient expressions. Exam-
ple of transform code function is in replacing the equality filter with more
efficient graph pattern in algebraic expressions.

4. Low-level Optimization: In the next step, the final query plan is determined
and is called the Low-level optimization. This involves deciding the order
in which to evaluate the basic graph patters transformed earlier. However,
this stage can be carried out concurrently with the fifth step,

5. Evaluation of the query plan: this involves executing the algebra expres-
sions to generate the solution graph patterns, returned as sets of facts in
SPO triples.

However, these steps can be extended and modified to allow searching for different
graph-pattern implementations. Moreover, the final step (evaluation of the query
plan), can also be enhanced to suit specific application requirements.

3.4.3 Selection of the Mediator Component

In compliance with the standards of Model-View-Controller (MVC) software ar-
chitecture [169], the Onto-CropBase was also designed to have a robust control
module handling the interaction between the thin web interface and the ontology-
based semantic data model. Considering the design paradigm for ontology based
applications in Fig. 3.10 (right), it is possible to make the following assertion: ’In
order to develop a semantic web application (SWAP), a mediator component—the

controller, is needed as the programmatic environment that can interact with the
semantic data—the model, to allow visualization on the states of the model—the

views’. Common open-source choices for a mediator component in developing
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SWAPs include the OWL API [170], Protégé-OWL API [171], and the Apache
Jena framework [172], among others. Detailed comparison of these common tools
and applications can be found in [173].

3.4.3.1 The Jena API Distribution

The Apache Jena [172], is a java-based, free, as well as open-source programming
tool for developing semantic web and linked-data applications. Firmly rooted in
RDF, the framework consists of inter-connected APIs that can be invoked into
an application code to manipulate an RDF data or knowledge model. Basic Jena
APIs include Ontology, RDF, SPARQL, Inference and Storage APIs. The generic
nature of the Jena’s Ontology API, OntModel, makes it capable of handling other
ontology languages that can be serialized in RDF format. A scalable Triple Store
Database (TDB), which implements SPARQL specifications, is also provided in
the Jena distribution for storing and retrieving RDF data. With regards to infer-
ence, a set of predefined Reasoners such as: the RDFS rule reasoner, Transitive
reasoner, OWL-Lite Reasoners, and a Generic rule reasoner are available in the
Jena distribution [168]. Moreover, Reasoners need not always be explicitly spec-
ified while working with the Jena Ontology API, as appropriate reasoner can be
accessed to generate inferences by the query engine based on existing ontology
configuration.

3.4.3.2 The OWL API

This is also an open source and java-based reference tool for creating as well
as manipulation of OWL ontologies [174]. Centered on the web ontology lan-
guage (OWL), it allows working directly with OWL axioms without having to
be serialized in to RDF, as required by the Jena API. Moreover, the OWL API
provides interfaces for OWL 2 with parsers and writers available for: RDF/XML,
OWL/XML, OWL Functional Syntax, Turtle, KRSS and the OBO format. Various
Reasoners such as Fact++, HermiT, Pellet, etc. are also embedded for inferenc-
ing [170].
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3.4.3.3 The Protégé-OWL API

Considered as an extension to the OWL API, the Protégé-OWL API [171], is an-
other open source java-based tool designed for manipulating both OWL and RDF
models. The Protégé-OWL API also uses Jena for parsing, thereby providing
some of the available Jena services. The API is provided in a standard Protégé
installation. Notable improvements in the OWL API over its predecessors, is its
ease of implementing graphical user interfaces (GUIs) for users based on their
working ontology or data models and also the ability to control internal represen-
tation of the ontologies using the GUIs. Various DL-based Reasoners are also
available in the Protégé-OWL API.

Consequently, due to its rich documentation, stability in handling RDF data
and the availability of rule-based and non-rule-based Reasoners, we chose the
’Apache-Jena’ to serve as the connecting point between our ontology-based model
and the user interfaces or views. Moreover, our primary choice of a java-based
development for the Onto-CropBase tool, is another deciding factor for choosing
Apache Jena as the mediator. Nevertheless, there are other java-based tools that
provide a complete development environment for SWAPs, by shielding the user
from the need to bother with the above connections. Commonly known example
include the Stardog RDF database [175] among others.

3.5 The Fuzzy Temporal Semantic Web Rule Lan-
guage (FT-SWRL) Extension — Design Method-
ology

Despite the advancements of ontology languages, there still exists a wide research
gap in achieving consistent representation formalisms for managing temporal un-
certainties in domain ontologies. Modeling imprecise temporal expressions that
depend on unstructured vague time data is still a challenge in the field of semantic
web. Moreover, considering the diverse nature of information on the web (and by
extension, the semantic web) — which to some considerable proportion involves
experts as well as novice’s narratives of events, the advancement of the semantic
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web no doubt requires an even more expressive modeling formalisms. The pur-
pose of this research, therefore, is to bridge this gap by introducing a consistent
fuzzy-temporal extension that can be used to represent and reason over uncertain-
temporal domain knowledge in the semantic web. As described in [141], there
are two types of temporal uncertainties — the imprecise dating of events and the
fuzzy description of temporal data. The FT-SWRL aims to provide a new formal-
ism for representing the latter in ontologies (i.e. modeling fuzzy temporal data)
using SWRL rules. The new extension is defined as a new fragment of the existing
SWRL Temporal formalism, where a fuzzy temporal ontology has been developed
to extend the temporal ontology and new set of built-ins defined to represent the
semantics of the imprecise temporal expressions for the reasoning purposes.

By defining the fuzzy temporal SWRL ontology (SWRL-FTO) as a reference
model and designing relevant built-in operators, the FT-SWRL extension will
surely improve the usability of the existing SWRL temporal formalism. While
the basic temporal SWRL rules can represent interval operators such as those
described as Allens temporal operators [157], utilizing such operators will be in-
complete without some degree of fuzziness in the knowledge base. Moreover,
fuzzification of imprecise temporal expressions from a single time stamp or in-
terval to a more realistic set of possible time intervals, usually results in a wider
range of temporal operations, such as overlaps, meets, and contains. Regardless
of the overheads, such modeling scenario confirms the assertion that FT-SWRL
does not only help to represent fuzzy temporal information in OWL ontologies but
can also help to improve the utilization of its existing temporal model operators.

3.5.1 FT-SWRL Model Design Approach and Motivation

As mentioned earlier, the aim of proposing the FT-SWRL extension is to provide
a consistent representation model for managing both temporal data and the impre-
cise temporal expressions commonly found in domain facts. This is achieved by
extending the formalisms of the Semantic Web Rule Language with fuzzy tempo-
ral constructs, syntactically defined as in a fuzzy temporal SWRL ontology model
and built-ins. As such, FT-SWRL enabled ontologies are expected to consistently
model such dynamic and uncertain phenomena that are otherwise difficult to man-
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age using the basic OWL/SWRL constructs or temporal models. For instance, in
the current OWL/SWRL definitions, expressions involving approximate tempo-
ral assertions such as around 4pm, about 4 hours, few weeks ago, etc. cannot be
easily represented nor efficiently extracted from OWL ontologies.

In essence, the FT-SWRL extension is designed to provide the syntactical and
semantic extensions in the existing SWRL formalism for handling imprecise tem-
poral information by providing fuzzy-grounded classes and property constructs,
built-ins, and annotation properties to encode fuzzy-temporal information in the
SWRL formalism. We extend the SWRL-Temporal model with such commonly
utilized Imprecise Temporal Expressions (ITEs) found in descriptions of domain
facts. This is particularly important where the knowledge to be represented is in
the form of expert opinions or natural language narratives of experts, with no prior
knowledge of ontological domain modeling. As in the motivational case study
[45], where we use SWRL-enabled ontologies to model the farming practices of
underutilized crops — a field that significantly relies on local farmers expertise
alongside the scientific knowledge. Consider the representation of following facts
on underutilized crops (Bambaranut) domain:

• Bambara groundnut requires a growth period of about 110 to 150 days for
the crop to be developed.

• Bambara beans take around 7 to 15 days to germinate. Seed stored for about

12 months germinate well, but longer storage results in loss of viability.

• Flowering starts 30 to 35 days after sowing and may continue until the end
of the plants life.

• Pod and seed development take place approximately 30 to 40 days after
fertilization. This takes up to 30 days after fertilization. The seed develops
during a further 10 days. [176]

While handling time-related data alone or managing uncertainties in a do-
main knowledge are in themselves difficult tasks. Nonetheless, there is a need to
model such real-world issues that require the representation of time changes and
the uncertainties brought about by these changes or imprecise temporal relations
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between events. For example, a given class (GrowthStage) in our Underutilized-
Crops ontology[45] can have different individual instances asserted depending on
the planting date of a crop (represented as hasDateOfSowing datatype property).
However, temporal measurements and time itself are not fixed or definite data and
therefore the time inputs are merely estimates. As such the use of descriptors,
such as about, approximately, around followed by a time value merely confirms
that such information is imprecise — and hence the need to be modeled as such.
Other common application areas of fuzzy-temporal modeling for handling impre-
cise temporal expressions include the medical domain, multimedia, market trends
analysis, and natural language applications in virtual assistants (e.g., Siri in Apple,
Cortana by Microsoft and Google-Now), among others.

3.5.2 Preliminaries

As the use of ontologies in enterprise applications is becoming pervasive, effective
representation and communicating of fuzzy domain facts cannot be overestimated.
As such, various language extensions have been inspired by the fuzzy set theory to
enable representing non-crisp or vague facts into ontology models. These exten-
sions (discussed earlier in Section 2.11) were mainly rooted in the fuzzy extension
of the underlying description logic, leading to the serial evolution of both OWL
and SWRL fuzzy language extensions, including the Fuzzy-OWL[177], Fuzzy-
SWRL [178], SWRL-Fuzzy [108], and Vague-SWRL [113] among others.

Similarly, though with a much lesser magnitude, temporal ontologies and lan-
guage extensions have been proposed for handling time-related information in
the semantic web. As presented in Section 2.11, available ontologies include the
OWL Time ontology [150], which basically describes the general concepts of
time as entities. This is due to the logic-based function-free approach of OWL –
meaning that temporal arguments cannot be added to the supported binary rela-
tionships. Whereas, available temporal language extensions include the Temporal
SWRL among others, which aim to provide basic constructs to describe temporal
facts in a knowledge domain with some degree of consistency [129]. The SWRL-
Temporal model provides a standard mechanism for representing and managing
temporal information based on the Valid-time temporal model — commonly used
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to represent temporal information in knowledge-based systems [179].

3.5.2.1 The Valid-Time Temporal Model

A valid time temporal model [179] helps to provide a simple and consistent ap-
proach for modeling temporal information (called facts or propositions). In this
model, a temporal proposition is either true or valid as specified in its associated
timestamp — called the valid time. Such timestamps can be either specific time
instants or intervals (time period between time instants). A special time-interval
called Duration is characterized by two arguments: the Granularity — which is a
unit measure for temporal data e.g,. days, hours, seconds, etc. and the Duration
count — usually an integer. However, Duration can also be specified using two
’time instants’ (with xsd:dateTime as arguments).

From the literature, basic temporal objects have been commonly classified into
three distinctive references as follows:

(i) Points in time which defines a single temporal point on the timeline. Ex-
ample: 13:00, now, date, etc.

(ii) Time Intervals defining the temporal relationship between two time-points.
Example: 13:00 14:00, 23 December, etc.

(iii) Duration or relative expression of intervals. Example: 2 weeks, 6 years,
many hours, etc. usually represented as counts of a time granularity.

Based on the valid-time temporal model, the Fuzzy Temporal SWRL model
was proposed in [129] by defining two important entities: the SWRL Temporal
Ontology and the SWRL Temporal Built-ins. We briefly discuss them below.

3.5.2.2 SWRL Temporal Ontology

The SWRL temporal ontology4 defines the OWL constructs that can be used to
represent the valid-time temporal model. It hierarchically defined the collection
of entities that allow modeling interval-based temporal information in OWL on-
tologies. It has the default prefix: temporal and in its complete form, the ontology

4http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl
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also defines the built-ins (SWRL temporal built-ins) for processing and reason-
ing about the SWRL valid-time temporal model. In the ontology (see fragment
view in Fig. 3.11), a temporal fact is represented as an ’Extended Proposition’
to separate the temporal ontology from the domain ontology. This helps to main-
tain consistency and allows easy manipulation of the temporal fragment of the
ontology without affecting the main ontology.

Figure 3.11: SWRL Temporal Ontology showing ValidTime class hierarchy

The ontology further defines individuals for the granularity class to include
(Years, months, days, hours, minutes, seconds and milliseconds) and a set of
built-ins that can be used in the SWRL rules to perform temporal reasoning in
OWL ontologies. Built-ins defined in the ontology can be classified into three
categories: (i) The duration operators — for reasoning about time durations, with
constructs: duration, durationLessThan, durationEqualTo, durationGreaterThan

and their inverses), (ii) the standard Allen temporal operators — for reasoning
about qualitative temporal information using the calculus of binary relations on
intervals. The built-in implementation has constructs, such as equals, before, af-

ter, meets, metBy, overlaps, overlappedBy, contains, during, starts, startedBy, fin-

ishes, finishedBy, and their inverses, and (iii) the add operator — implemented
to achieve addition and subtraction comparison of time intervals. The construct
is written as temporal:add. It should be noted here that, in the standard interval
calculus, all intervals are assumed to have proper and distinct time, with clear-cut
beginnings and ends. This limitation forms the basis of our study, as tempo-
ral events and time-related processes in the real-world are usually non-crisp and
inexact. And representing them as exact facts will no doubt result in logically
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inefficient models and knowledge-based systems relying on such information can
never be sufficiently intelligent.

3.5.2.3 SWRL Temporal Built-ins

A powerful feature of the SWRL formalism, is the ability to extend its definition
with user-defined methods for writing application-specific rules. Similar to func-
tions used in rule engines, the SWRL built-ins are predicates that accepts one or
more arguments and operate on them during rule execution. Due to the limited
temporal support in both OWL and SWRL, the SWRL Temporal Built-in Library
is added as an expressiveness extension to the original SWRL definition. Defined
as part of the SWRL-API’s built-in libraries, the temporal built-ins are hierar-
chically defined as part of the SWRL temporal ontology. The temporal built-ins
provide a rich set of temporal operators designed to allow temporal operations
on information described using the temporal ontology. Thus, the built-ins allow
temporal reasoning about OWL ontologies using SWRL rules.

Syntax and Semantics: In the basic mode, SWRL temporal built-ins operates
on arguments supplied by the XML Schemas ’date’ and ’dateTime’ data types
provided as xsd:String with values, such as second, hour, day, time, week, month,
and year. These were also defined in the basic OWL temporal ontology (OWL
Time)5. Whereas, in the advanced mode, the SWRL temporal built-ins work on
time information that is completely encoded using the valid-time temporal model.
As an example, a rule that asserts a ’Fellow’ membership rank to existing work-
group members, with registration dates before the year 2000, can be written as:

Workgroupmember(?m), hasRegDate(?m, ?rgd), temporal:before(?rgd, ’2000’)

−→ FellowMembers(?m).

3.5.2.4 Fuzzy Sets and Membership Functions

In contrast to probability theory, the Fuzzy theory is a generalization that studies
and facilitates analysis of uncertainties in systems where such uncertainties are

5https://www.w3.org/TR/2016/WD-owl-time-20160712/
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born due to vagueness (fuzziness) in the available domain knowledge — rather
than due to randomness (probability) alone [180, 181]. The logic being that asser-
tion of ’truth’ or otherwise of a given fact can be represented by a varying degree
on the closed interval [0, 1] — denoting the classical false and true values. A pool
of real numbers denoted by (0, 1) in-between the interval represents the varying
degrees of truth (w). Consequently, Fuzzy Sets [181] have been widely used for
modeling uncertainties, where knowledge of a domain is incomplete or marred
with vagueness. In contrast to crisp set theory, where an object simply belonged
to a given set or otherwise, in fuzzy set theory, membership to a set is subjected to
the given weight or degrees of truth (w). In fuzzy conceptualization, objects can
belong (or otherwise) to a given class with some degree of certainty. We briefly
highlight the formal definitions of fuzzy sets as follows:

Definition 1: In a classical set theory, the membership function (µ or MF) of
an element (x) belonging to a given set (A) is represented thus:

µA(x) = 1 ⇐⇒ X ∈ A, 0 ⇐⇒ X /∈ A. (3.1)

However, in a fuzzy set theory, there is more to this crisp representation, where
an additional information is provided to denote the degree of certainty that the
element (x) belonged or otherwise to the given set (A). In such cases, the fuzzy
membership function is written as:

µA(x) = 1 ⇐⇒ X ∈ A, 0 ⇐⇒ X /∈ A, w if X partially belongs to A.

(3.2)
Where w is a weighted degree function such that 0 < w < 1.
In essence, the membership function µA(x) is continuous in a fuzzy set theory

with a range of [0, 1] = w called the degree of truth for the membership. An
arbitrary curve is usually designed to represent the input space, also called the

universe of discourse and the mapping of the membership value on this input
space is the membership function (µ). The following also hold true in a fuzzy set
theory:

µ−A(x) = 1− µ−A(x). (3.3)
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µA∩B(x) = min(µA(x), µB(x)). (3.4)

µA∪B(x) = max(µA(x), µB(x)). (3.5)

We define a Fuzzy Temporal extension of SWRL as a fusion of these basic
concepts with the aim of introducing a fuzzy representation and reasoning model
for temporal information using the SWRL rules. Our work focused on the com-
plete stages of the fuzzification process, as defined in [182], where we first define
the linguistic terminologies and variables in the SWRL-FT ontology and new set
of fuzzy temporal Built-ins — presented in Section 4.4. We chose suitable mem-
bership functions for some selected imprecise temporal expressions and demon-
strate how we can generate their corresponding fuzzy values based on the mem-
bership functions as presented in Section 4.4.3. In the next sub-section, we present
the state-of-the-art of the fuzzy temporal representation and reasoning system.

3.5.2.5 The FT-SWRL Model Scope

Since it is such an enormous task to generalize all fuzzy set theories into an ontol-
ogy rule language extension, we adopt the bottom-up approach where we begin
with introducing fuzziness from the peripherals of SWRL by extending existing
temporal model. This has the advantage of working with existing tools during
implementation and without introducing inconsistencies to main ontologies. As
such, our proposal does not focus on modeling rudimentary time concepts and
terminologies but relies mainly on existing standards that are already compatible
with SWRL, such as the OWL time ontology and XML schema temporal data
types — the xsd:(date, dateTime, and duration), among others. Moreover, the
SWRL temporal model, presented in [129], serves as the basis for the adopted
crisp valid-temporal model. In essence, our primary focus is providing an ex-
tended abstract syntax and semantics for fuzzy temporal representation in the
SWRL language. This allows modeling imprecise temporal facts using fuzzy tem-
poral modifiers (a collection of fuzzy terms and variables) defined as constructs.
We focused on the Semantic Web Rule Language (SWRL) and its fuzzy tempo-
ral extension largely due to its semantic integration with OWL and the ability of
SWRL to assert domain knowledge into ontologies, as well as extract them using
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its query functionality available as an SQWRL (SWRL query language) [183].

3.5.3 The FT-SWRL Ontology: Representing Fuzzy-temporal
Facts using OWL/SWRL

The fuzzy-temporal extension of the SWRL language is designed to support mod-
eling and reasoning with imprecise temporal expressions (ITEs) in OWL ontolo-
gies. To this end, a fuzzy temporal ontology is developed to define a consistent
model that can be used to represent all fuzzy-temporal facts. The ontology also
includes the definition of relevant SWRL built-ins, which extends the existing
SWRL built-in library, to allow reasoning operations about the modeled fuzzy-
temporal information. As explained earlier, the original SWRL temporal model
follows the valid-time temporal model — where temporal facts are modeled as
intervals of time-points. Hence, as the name implies, the FT-SWRL extension
basically extends the syntax and semantics of the SWRL temporal model (more
specifically the ’Advanced SWRL Temporal model’) with appropriate fuzzy syn-
tax and semantics.

While classical SWRL temporal ontology serves as a reference standard for
modeling crisp temporal information, the SWRL-FT ontology is its carefully ex-
tended version with the ability to handle imprecise temporal expressions in do-
main knowledge representation. The ontology has a default prefix: fuzzytemporal,
and the hierarchical representation of the ontology is presented in Listing 2 below:

Listing 3.2: The SWRL Fuzzy-Temporal Ontology (SWRL-FTO)

owl:Thing

owl:Entity

owl:Proposition

temporal:ExtendedProposition \equiv TemporalProposition (Time related event class

)

temporal:hasValidTime //object property

temporal:hasDuration //object property

temporal:ValidTime (Valid Crisp times of events: instants or period)

temporal:hasDuration //object property

temporal:hasGranularity //object property

temporal:ValidInstants (event occurs at a single instant)

temporal:hasTime(xml:dateTime) //Datatype property
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temporal:ValidPeriod (event occurs over an interval of time)

temporal:hasStart(xml:dateTime) //Datatype property

temporal:hasFinish(xml:dateTime) //Datatype property

temporal:Duration (Temporal Expressions denoting interval-based temporal

information)

temporal:hasCount (xml:Integer)

temporal:hasGranularity

temporal:Granularity (years, months, days, hours, minutes, secs, milliseconds)

(Temporal)

_________________________________________________________________________________

(Fuzzy temporal)

fuzzytemporal:FuzzyTemporalProposition (Vague temporal fact)

fuzzytemporal:hasFuzzyTime //object property

fuzzytemporal:hasFuzzyModifier //object property

fuzzytemporal:hasFuzzyDuration //object property

fuzzytemporal:FuzzyTime (Vaguely known time data)

fuzzytemporal:hasFuzzyDuration //object property

fuzzytemporal:FuzzyTimeInstant \equiv FuzzyTimePoint

fuzzytemporal:FuzzyTimePeriod

fuzzytemporal:minFuzzyTime

fuzzytemporal:maxFuzzyTime

fuzzytemporal:FuzzyDuration (Vague interval-based temporal information)

fuzzytemporal:hasFuzzyCount //object property

fuzzytemporal:hasFuzzyGranularity //object property

fuzzytemporal:FuzzyCount (cycles, times, twice, several, many, long-time,

this, next, last, etc.)

temporal:hasCount (XML:Integer) //Datatype property

temporal:hasGranularity (temporal:Granularity) //Datatype property

fuzzytemporal:FuzzyGranularity (weeks, weekend, fortnight, quarter, noon, etc.)

fuzzytemporal:SetGranularity (Yearly, Monthly, Weekly, daily, hourly,

perMinute,

perSeconds, perHour, perWeek, perYear)

fuzzytemporal:DateGranularity (past, present, currently, recently, nowadays,

ago, since, lately, earlier, etc.)

fuzzytemporal:FuzzyModifiers (Imprecise Temporal Expressions - ITEs e.g. about

, around, approx, within, a few, several, many, until, always, very).

fuzzytemporal:hasWeightedValue \equiv hasWeightDegree)[0,1] // Functional

datatype prop.

fuzzytemporal:hasMembershipFunction (args: weighted sum) //datatype prop.

fuzzytemporal:WeightValues (0 < w < 1) // Possible Weight Intervals

fuzzytemporal:MembershipFunction

fuzzytemporal:mfName (gaussmf, sigmoidmf, gbellmf, etc.)

fuzzytemporal:mfCurve (plots of membership functions)

The Listing 3.2 above defines the OWL entities as a reference model for rep-
resenting fuzzy temporal domain knowledge in OWL ontologies. The listing also
shows the hierarchical layout of the OWL entities with the type of relationships
that exists between them. For obvious reasons, it began with the original temporal
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entities defined in the SWRL temporal model followed by the extended fuzzy-
temporal ones defined as the SWRL fuzzy-temporal model. These include the
fuzzy temporal proposition, the fuzzy modifiers and their membership function,
fuzzy granularity, fuzzy counts, fuzzy time instants and fuzzy durations.

3.5.3.1 FT-SWRL Model Entities: Classes, Properties, Domain and Ranges

A summary of the fuzzy temporal entities is presented in Table 3.1: Fuzzy Tem-
poral Classification with their properties, and in Table 3.2: Fuzzy Temporal Rela-
tions highlighting their types, domain, and range.

Fuzzy Temporal Class Sub-classes Properties
FuzzyTemporal-
Proposition

hasFuzzyTime
hasFuzzyModifier
hasFuzzyDuration

FuzzyTime FuzzyTimeInstant
FuzzyTimePeriod

hasFuzzyDuration

FuzzyTimePeriod minFuzzyTime
maxFuzzyTime

FuzzyDuration hasFuzzyCount has-
FuzzyGranularity

FuzzyCount hasCount hasGranular-
ity

FuzzyGranularity SetGranularity Date-
Granularity

FuzzyModifiers hasWeightedValue has-
MembershipFunction

WeightValues
MembershipFunction mfName

mfCurve

Table 3.1: Summary of SWRL Fuzzy Temporal Entities
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Note: Even though the essence of the FT-SWRL extension is to handle impre-
cise temporal extensions found in domain language narratives, we still introduce
some added concepts (e.g. week, quarter, and fortnight) to the original SWRL
temporal ontology. Moreover, to accommodate our new constructs, new container
classes need to be added leading to the design of a new fuzzy-temporal ontology
from scratch. Hence the above description is that of the fuzzy temporal ontology
containing an extended temporal ontology that is set towards modeling natural
language description of domain knowledge in OWL ontologies. This approach,
will no doubt allow flexible modeling of time-related events.

3.6 Summary

In this chapter, a framework for representing domain knowledge using OWL and
SWRL rules was presented in Section 3.2. The framework describes the method-
ologies involved in the UC-ONTO engineering and standardization approaches as
well as the use of competency questions to generate ontology concepts. The exper-
imentation of ontology development with Protégé is also presented highlighting
the modeling, standardization, extension with rules and querying the ontological
knowledge model. Ontology utilization approach through ontology-based seman-
tic search engine is further presented in Section 3.4. The methodology highlights
the Onto-CropBase development approaches, which includes knowledge base in-
tegration, interface and search engine design as well as the selection of the me-
diator component for managing the front and back ends of the tool. Lastly, the
chapter presented the modeling approaches of the FT-SWRL model in Section
3.5, highlighting the model design, motivational examples from the crops domain
followed by the fuzzy temporal ontology model and its entity hierarchies.

In the following chapter, experimentation results are discussed describing the
underutilized crops ontology (UC-ONTO), the Onto-CropBase tool and the FT-
SWRL model as case studies.
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Fuzzy Temporal
Relation

Role Type Domain Range

hasFuzzyTime Object property FuzzyTemporal-
Proposition

FuzzyTime

hasFuzzyModifier Object property FuzzyTemporal-
Proposition

FuzzyModifiers

hasFuzzyDuration Object property FuzzyTemporal-
Proposition
FuzzyTime

FuzzyDuration

hasFuzzyCount Object property FuzzyDuration
FuzzyCount

hasFuzzyGranu-
larity

Object property FuzzyDuration FuzzyGranularity

hasWeightedValue Datatype prop.
(Functional)

FuzzyModifiers WeightValue
(xml:Decimal)

hasMembership-
Function

Datatype prop. FuzzyModifiers MembershipFunction

hasCount Datatype prop. FuzzyCount xml:Integer

hasGranularity Datatype prop. FuzzyCount temporal:Granularity

Table 3.2: SWRL Fuzzy Temporal Relations summary showing Domain and
Range
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Chapter 4

Results: Case Studies

4.1 Introduction

This chapter presents case study implementations of the underutilized crops ontol-
ogy (UC-ONTO), the Onto-CropBase semantic search engine and the FT-SWRL
model ontology implementation. The chapter is structured into the following main
sections: Section 4.2, presents the UC-ONTO1 model highlighting its knowledge
gathering and conceptualization of relevant terminologies. UC-ONTO standard-
ization techniques are also presented in Section 4.2.6 followed by its extension
with the SWRL rules in Section 4.2.7.

This is followed by the ontology utilization case study in Section 4.3, which
presents the Onto-CropBase semantic search engine with an overview and picto-
rial presentation of its basic functionalities in Section 4.3.1. The FT-SWRL model
implementation is then presented in Section 4.4 highlighting the pioneer SWRL
fuzzy temporal ontology implementation in Section 4.4.1 and the fuzzy tempo-
ral built-ins providing the semantic definition of the ontology concepts in Section
4.4.2. The reasoning paradigm of the model is presented in Section 4.4.3 and
lastly conclude in Section 4.5 with the chapter summary.

1Details of UC-ONTO design and development is published in our papers: (i)Advancing Un-
derutilized Crops Knowledge using SWRL-enabled Ontologies — A survey and early experiment
[184] and (ii) An Ontological Approach for Knowledge Modeling and Reasoning Over Heteroge-
neous Crop Data Sources [61].
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4.2 Case Study 1: Ontology Engineering — The Un-
derutilized Crops Ontology (UC-ONTO) Devel-
opment, Standardization and Extension

4.2.1 The UC-ONTO Development: Domain Knowledge Gath-
ering and Conceptualization

As earlier mentioned, underutilized crops are also significantly under-represented [8].
As such, standardized information on the underutilized crops is generally scarce
and considering that major crop ontologies are usually in the OBO format, a
knowledge gathering process from scratch has to be considered. This is to al-
low modeling of those specialized concepts and data-values that are most relevant
to the Underutilized Crops. For the development of the Underutilized crops ontol-
ogy as case study, various conceptualization approaches were proposed or tested
and eventually utilized to generate the pioneer OWL2-based Crops ontology with
added user-defined rules in Semantic Web Rule Language (SWRL). These con-
ceptualization approaches, as discussed in details in Chapter 3 include: (i) Con-
ceptualization from unstructured data such as PDF, Word files, Excel sheets and
research notebooks. (ii) Conceptualization from structured heterogeneous data
sources such as XML and relational databases, and (iii) Conceptualization from
Competency questions, which describes a pre-requisite queries for the ontological
knowledge base. In what follows here, the resulting knowledge gathered through
these approaches is presented in details.

4.2.2 Conceptualization from Scratch

The knowledge gathering task was thus structured into three major stages as fol-
lows: first going through the available data sources to extract the domain concept
names and relevant terminologies (e.g. Bambara Groundnut) that will be asserted
as individuals of the UnderutilizedCrops class. At the same time, noting other
related terminologies such as Rainfall, Temperature, Landrace, etc. The second
stage involves assigning the relationships that exists between these concepts — the
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object properties and between concepts and their data values — the datatype prop-
erties. Lastly, a hierarchy is defined and individual instances that shares common
object properties into classes and subclasses. In collaboration with the domain
experts from CFF2, these steps were repeated to create the initial version of the
underutilized crops ontology-based knowledge model, which was continuously
enhanced as the cropbase knowledge evolved.

A summarized Bambara Groundnut vocabulary, extracted from unstructured
data sources, is shown in Table 4.1 and the hierarchical representation of the con-
cepts is depicted in Fig. 4.1.

Figure 4.1: Key Concepts of the Underutilized Crops Ontology

4.2.3 Conceptualization from Heterogeneous data sources

As explained in Section 4.2.2, available information on underutilized crops is
usually scattered across various sources and formats — both structured and un-
structured. Moreover, as majority of the available knowledge exist in the form
of published articles and XML-based web documents, an ’XML to OWL conver-
sion’ was used where possible to generate domain-related concepts from XML
documents to the web ontology format. This is achieved through the XML2OWL

2Crops for the future: http://www.cropsforthefuture.org/
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Bambara Groundnut (BG) Vocabulary, Source: CFFRC
Class BambaraGroundnut
Super Class UnderutilizedCrops
Ancestor Class Family Legumes
Type Bunch Seed Crop
Alias Vigna Subterranea
Region West Africa
Properties High nutritional value, Pest persistent Crop, Highly tolerant
Features Leaf, Stem, Roots, Pods, Seed
Soil Require-
ments

PH level:5.0 − 6.5, Soil Type:Loamy (heavy loam, light
loams), Sandy soil

Rainfall Moderate (500− 1200 mm) Seasonal rain
Temperature Optimum temp.:20 − 28oC Base temp.:10 − 12.3oC Ger-

mination temp.:30− 35oC
Flowering takes 30 − 50 days and depends on: day length, temperature

and Landrace. BG is a ’short-day’ crop (grows at elevation up
to 1600 m).

Germination: Emergence takes about 7− 15 days.
Harvesting usually between 90− 170 DAS (days after sowing).
Pests Spidermites
Pests Control Spidermites (Tetranyches Cinnabarinnus), can be controlled

by Pesticides e.g. Phytosiulus Persimilis.
Nutrients and
Minerals

Protein: 16− 25%, Carbohydrate: 42− 65%, Lipid (oil): 6%.
Dominant minerals — Ca, K, Mg, Na, P, Cu, Fe, Zn.

Growth
Phases:

Vegetative phase, Reproductive phase(Phase has stages).

Cultivation BG is traditionally cultivated by small-scale farmers (major-
ity Women Farmers) mostly in extreme tropical environments
without access to irrigation and/or fertilizers.

Growth Depends on Landrace and Environmental Condition (e.g.
Drought, Cold, Heat, Soil Moisture (same as Soil water),
Evapotranspiration) BG is drought tolerant (not drought es-
cape or avoidant) i.e. Maintains positive tugor at low water
potential. BG needs moderate Soil moisture.

Life Span Averagely 4 months after sowing (120 DAS) or when leaves
begin to turn yellow in color.

Purpose/Uses For Human consumption

Table 4.1: Summarised Bambara Groundnut Vocabulary
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tab available in the Protégé ontology editor, which can generate OWL concepts
directly from XML files. As shown in Fig. 4.2, the conversion process simply
represent every XML node in the XML tree as a class in the resulting .owl file and
the lists or slots of the XML nodes, are asserted as relations. However, due to the
diverse nomenclature of the resulting concepts, we import some upper-domain on-
tologies and then undertake the process of ontology merging, which incorporates
the matching and alignment of the resulting OWL concepts with standardized ter-
minologies from the upper-domain ontologies.

Figure 4.2: Generating OWL concepts from XML data source using XML2OWL

In the case of dealing with other sources such as text documents and relational
database (RDB) tables, we further utilize the features of XML-Tab — another
plug-in available in Protégé. The ’XML tab’ help to convert the source documents
into XML before being passed into the XML-to-OWL converter. Though ’RDB to
OWL’ conversion may be possible, the process was found to be overly tedious and
crude. As such, the XML files have to be created from the data stored in text files
and relational tables using the XML-Tab plug-in. In the article, An ontological

approach for knowledge modeling and reasoning over heterogeneous crop data

sources [61], we discuss the XML-to-OWL conversion of XML documents to
OWL concepts in great details, highlighting the step-wise procedures as well as
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the merging process of the resulting ontology fragments.

4.2.4 Conceptualization from Competency Questions

As the goal of developing the UC-ONTO is partly to serve as a knowledgebase
for a farming decision support system, there is a need to identify the basic ques-
tions that the intended knowledgebase must answer. To achieve this, we identify
the competency questions for our UC-ONTO based on the possible queries that
a farming system should answer from target users, i.e. farmers, researchers, and
interested public. As such, possible competency question can be elicited thus:
Which underutilized crop can be grown with the least seasonal rainfall?. Simi-
larly, the competency questions designed in the early stage of our ontology de-
velopment were used to elicit the domain concepts while interacting with domain
experts as respondents. However, for effective knowledge elicitation and ease of
modeling, the questions were limited to a particular crop, the Bambara groundnut.

To further highlight the conceptualization process, some of the classes, proper-
ties and example individuals that can be immediately deduced from each question
were shown in the following table. Note that for brevity, possible classes and
properties already defined were not repeated as the questions list progress.

Competency Question Possible
Classes

Object
Property

Datatype
Property

What are the commonly cited
Underutilized Crops (UC)?

Crops, Under-
utilizedCrops

hasMembers

Which UCs characteristics
should a Farmer consider
when planting a particular
UC?

UC-
Characteristics,
Farmer

has-
Characteristics,
isGrownBy

hasPlantingDate

Is Bambara groundnut a Sea-
sonal or an Annual plant?

CropType,
Bambara-
Groundnut

hasCropType,
is-a,
isMemberOf

hasType
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Competency Question Possible
Classes

Object
Property

Datatype
Property

What are the Soil type-
s/Temperature/Rainfall
requirements for an optimum
yield of an UC?

Soil, Tempera-
ture, Rainfall,
Yield

hasRequirements,
hasSoilTypes,
hasTemperatur-
eRequirement,
hasRainfallRe-
quirement

What are the best conditions
for BG farming

hasOptimumTemp,
hasOptimum-
Rainfall,
hasOptimum-
SoilType

What other Regions of Culti-
vation match the farming cen-
ters of Bambara Groundnut?

CultivatnRegion,
FarmingCen-
ters, Economi-
cRegion

hasCultivation-
Region

hasFarmingCenter

Which Country has the high-
est yield of Bambara Ground-
nut in the year 2016?

Area, Country,
Territory, Time,
Year, Duration,
Week, Calendar

hasYieldCount,
belongsTo

hasCountry,
hasDuration

What are the good Landraces
of Bambara groundnut for
Nigeria?

Landraces hasLandrace hasCountry

Does Bambara groundnut nu-
trients make up a complete
food?

Nutrition, Food hasNutrient-
Contents

hasCount,
hasUses
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Competency Question Possible
Classes

Object
Property

Datatype
Property

What are the nutrition com-
ponents of a particular Crop?

Carbohydrate,
Minerals,
Protein, Fats,
Lipid

Which part of Bambara
Groundnut stores the food?

FoodPart,
Features

hasPart,
hasFeatures

How many days does it take
for Bambara groundnut to
flower/produce food/harvest?

GrowthStages,
Harvest, Days

hasGrowthStage,
hasHarvestType

hasDaysAfterSowing

What happens to the yield of
Bambara groundnut if the an-
nual or Seasonal rainfall is
moderate?

Rainfall (Sea-
sonal, Annual),
Category
(Moderate,
Heavy, Low)

hasRainfall,
hasYield

hasAnnualYieldCount,
hasSeasonal-
YieldCount

What type of root does Bam-
bara groundnut possess to
survive the drought?

CropFeatures
(Leaf, Root,
Stem), Draught

hasFeature hasRootType,
hasLeafType,
hasStemType,
hasWeather-
Problems

What are the unique features
of Bambara groundnut as
compared to other Legumes?

CropType
(Legume,
Herbaceous,
etc)

hasCropType

What are the commercial
products of Bambara ground-
nut?

Products, Uses,
Commercial-
Products

hasUses hasCommercialProduct,
hasCommer-
cialValue
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Competency Question Possible
Classes

Object
Property

Datatype
Property

Does Bambara groundnut
grows better in a Mixed
farming or Crop Rotation?

FarmingType
(Mixed,
CropRotation,
etc)

hasFarmingType

What are the best candidates
for mixed farming with Bam-
bara groundnut?

hasMixedFarming-
Candidate

What are the common Pests
and Diseases of Bambara
groundnut?

Pests, Disesaes hasPests,
hasDiseases

isDiseaseOf,
isPestOf

What other names is Bambara
groundnut called around the
World?

Name (Sci-
entificName,
CommonName,
etc)

hasName hasScientificName,
hasOther-
Names, isLo-
calNameOf,
isScientific-
NameOf

Which farm input or fertil-
izer is often used for Bambara
groundnut?

FarmInputs
(Fertilizer,
Implements)

hasFarmInputs hasFertilizer,
hasBestInput

Table 4.2: Competency Questions for UC-ONTO

With the help of domain experts and existing knowledge sources, we explore
the questions and answers to list out relevant terminologies and concept names as
possible classes and properties for the ontology. Finally, the listed concepts were
then hierarchically organized and their relationships asserted to complete the de-
velopment of the ontology fragments. Example fragments for our UC-ONTO
include the Naming ontology, Nutrition ontology, Agronomy, Cultivation and Pro-

duction ontology, among others. These modular fragment of ontologies were as-
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sembled together to form the UC-ONTO.

Figure 4.3: Fragment of UC-ONTO in the Protégé ODE showing class hierarchy
(left tab), Individual instances (middle tab), Annotations (top-right), Individual
Descriptions and Properties (bottom-right tab).

From Fig. 4.3, the DomainConcept class is shown implemented as the ances-
tral class for all the crop-related concepts. The class hierarchy or terminology as-
sertion box (T-Box) contains all the major classes and their sub-classes. The arrow
besides each concept highlights that it is a super-class with sub-classes under it.
The UC-ONTO contains underutilized crops knowledge ranging from crop fea-
tures, cultivation requirements, crop management practices, Pests and Diseases,
Origin, Production, Uses, etc. Relationships between the concepts were added to
express their roles and membership restrictions as shown in the ’Object properties
list’ of Fig. 4.4 (left). Where as data types that express the property values of
Individual instances is shown in the ’Datatype Properties list’ of Fig. 4.4 — on
the right.

4.2.4.1 UC-ONTO Visualization

Due to the nature of logical axiomatization of ontology assertions, visualization
of concepts is of great importance. The large collection of entities and individu-
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Figure 4.4: UC-ONTO Objects and Datatype Properties Implementation in
Protégé ODE

als (e.g. 15,000 different crops-related concepts are available in the UC-ONTO)
makes it necessary to provide single-entity views of ontology concepts inorder
to make meaningful use of the results. This is in addition to the search systems
designed to utilized the UC-ONTO — See Section 4.3 below. The Protégé ODE
allows for efficient visualization of ontologies using two different plug-ins, the
Onto-graph and OWL-viz as shown in the interface in Fig. 2.11.

An Onto-graph visualization of UC-ONTO concepts hierarchy is shown in
Fig. 4.5. While a single-entity visualization of the ’BambaraGroundnut’ instance
highlighting its logically asserted object and datatype properties is shown in Fig.
4.6. As shown in both figures, each directed line represents a relationship be-
tween the two objects — similar to the RDF relation of subject-predicate-object.
Relationships are color-coded and grouped together for ease of referencing. Such
flexibility and logical structuring of the ontology knowledge model is one of its
many advantages over traditional databases as discussed in the Introduction chap-
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ter. An OWL-viz visualization of the UC-ONTO is also provided in Fig. 5.17.
More results of the UC-ONTO implementation and visualizations are presented
in the UC-ONTO evaluation in Section 5.2 and the Appendix A1.

Figure 4.5: UC-ONTO visualization showing the Crops and related concepts hi-
erarchy.

4.2.5 Ontology Reuses for UC-ONTO

As stated earlier, one of the benefits of developing ontology for a domain is knowl-
edge reuse. Considering the relevant ontologies available for the crops domain
(see Section 2.4), we utilize some existing ontologies by importing such ontolo-
gies having shared concepts with the underutilized-crop domain. Similar approach
has been proposed in [185], where AGROVOC is used as a base vocabulary to
develop theCropOnt— describing crop production life cycle for individual farm-
ers.

Relevant ontologies aligned to the UC-ONTO include theCrop and Farming
Ontologies. These ontologies were merely utilized for their standard concepts in
the agricultural domain and since they are of various versions and mostly very
large, we import only small fragments where necessary. In cases, where the con-
cepts from our initial knowledge gathering stage (Section 4.2.2) are sufficient, we
proceed to simply align these concepts by using standardized terms from imported
ontologies to add meaning to our existing underutilized crops concepts. Whereas,
upper-level ontologies added as direct imports to the UC-ONTO include the OWL-
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Figure 4.6: UC-ONTO visualization showing the Crops and related concepts hi-
erarchy.

temporal ontology [150], SWRL built-ins [186], and the FAOs geopolitical ontol-
ogy [187], among others. These ontologies, being significant in describing crops
knowledge and mostly in the OWL format, can be easily integrated without pos-
ing compatibility problems or inconsistencies. Information integration from the
reused OWL Time ontology, SWRL built-ins and FAO Geo-ontology for example,
can be of the following scenarios: while expressing the DAS (Days of Sowing)
of a crop in days or weeks, using the comparison operators (e.g. >,<,=, etc.)
and when expressing the geolocation data of a given crop or related concept (e.g.
region, country or place of cultivation), respectively.

4.2.6 UC-ONTO Standardization

Following the development approaches discussed in Section 4.2.1, various frag-
ments of the UC-ONTO are developed and that means overlapping concepts are
bound to exist among other minimal inconsistencies. As such there is a need for
standardizing these ontology fragments into a coherent standard that can serve as a
reference model for the underutilized crops domain. We first employ the ontology
merging technique for streamlining the various versions of the UC-ONTO using
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the upper domain ontologies for referencing and alignment. We then annotate the
domain-specific concepts with natural language definition of terms, adding an-
notations such as labels and comments to ambiguous domain concepts. This is
followed by augmenting the ontology with expressive if − then LP rules (using
SWRL) to express deeper relationships and indirect conditions necessary for mod-
eling domain knowledge. In what follows, we briefly summarize our approaches
to the UC-ONTO standardization. The ontology integration with SWRL rules is
presented in the next section.

4.2.6.1 Alignment and Merging of UC-ONTO Fragments

During ontology development, a need may arise to merge two or more versions
or fragments into a single ontology. As a means of dealing with heterogeneous
ontologies, Protégé 3.5 provide the PROMPT [162] Plugin, a tool for merging,
mapping, and or aligning two ontologies. In our case, we are concerned only with
merging two ontologies to achieve homogeneous and coherent ontology. We em-
ploy the Prompt tool only for the sake of merging the ontologies resulting from
XML sources. However, for the later stage of development, the merging is much
simpler as less user intervention is required using the later versions of Protégé
(e.g., Protégé 4.2). We discuss the theory and tools for ontology merging, match-
ing and alignment in Section 2.5.4.1 of the Literature.

Merging Ontologies in Prompt involve a series of semi-automated steps, since
it requires user intervention when there is a conflict. It is a tedious process for
large source ontologies and a very tedious one if those ontologies have many sim-
ilar classes. In its simplest form, the process involve three stages as follows: (i)
Loading source ontologies and selecting the merging algorithm — we select the
lexical matching algorithm, which detect the lexical similarities between classes
(as shown in Fig. 4.7). (ii) The matching process — after scanning the two on-
tologies or when there is a conflict (such as identical class names with different
properties), Protégé presents the user with merging suggestions for further ac-
tions. Finally, (iii) the Conflict resolution step — this is continuously repeated
whenever Protégé encountered a conflict until all classes are merged. We present
detailed descriptions including results and discussion of the merging process for
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UC-ONTO development in [61]. In its simplest form, the merging process can be
summarized thus:

• Loading the source ontologies.

• Selecting a merging algorithm — usually the lexical matching: which de-
tects the lexical similarities between concepts, and then

• Authorization — to drive the merging process.

• Conflict Resolution — where there is a conflict (such as identical class
names with different properties), the tool presents the various merge-options
for user selection.

Figure 4.7: Ontograph showing fragment of UC-ONTO hierarchy

Figure 4.7 shows the merging conflict presented to the user for intervention.
The tool detects a similarity between two frames: ’Pest Persistence’ and ’Pest
Resistance’. The merging suggestions are shown in the lower tab, where the first
entry shows the suggested name by the Protégé Prompt tool, where Pest Persis-
tence should be merged into the Pest Resistance.
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Note that, from our experience, we identify the following as common chal-
lenges while using the Protégé merging tool:

(i) Ensuring that all classes have been copied or merged successfully, which is
difficult for large ontologies.

(ii) Realignment of the resulting ontology — this involves reclassification of
merged concepts and setting the correct object properties.

(iii) Where the ontology is part of a hybrid-KB, it will need to be re-integrated
and checked against inconsistencies with the concepts in the SWRL rule
base.

4.2.6.2 Alignment of UC-ONTO with Upper-Crop Ontologies

Due to their wide acceptance, upper-domain ontologies can be employed to pro-
vide standard concept definitions into lower ontologies. As mentioned earlier, rel-
evant ontologies imported into our UC-ONTO include the farming and crops on-
tologies from ’Seamless project’3, the OWL-time ontology, and FAOs geopolitical
ontology, added as direct imports. As these ontologies are domain-independent
and available in the OWL format, integrating them into the UC-ONTO poses nei-
ther compatibility problems nor introduce inconsistencies. However, other popu-
lar ontologies such as Plant Ontology [188] and GCPs crop ontology [189] are
found to be incompatible with our ontology, due to the differences in format
(OBO) and ontological commitment. Nevertheless, their vocabularies were fre-
quently consulted for standardizing common concepts and term definitions, such
as the growth stages of Legume crops (being the family containing Bambara
groundnut) among others.

4.2.6.3 Natural Language Annotations for UC-ONTO

As discussed earlier, a natural language definition of domain-specific terms can
help in alleviating most of the ambiguities and increase the usability, interoper-
ability of domain ontologies. In our approach, we utilize the annotation design

3http://www.seamless-ip.org/

Doctoral Thesis 163



Ontology-based Knowledge Systems

pattern by collaborating with the underutilized crops domain experts for basic
definition and explanation of domain-specific concepts in common language —
see Fig. 4.8. Moreover, regarding the naming conventions of concepts, domain
experts as well as relevant standard ontologies such as the crop ontology [189],
were frequently consulted for standardization. For example, in the ontology, all
crops related concepts are grouped together under the DomainConcepts as super
class and all other concepts such as ’Area’, ’TimeZone’, etc. offered by imported
ontologies, are composed as siblings. The UnderutilizedCrops class contains the
subclass BambaraGroundnut, which dominates most of the object properties and
data-type property modeling in the current version of UC-ONTO.

Figure 4.8: Annotations for Bambaragroundnut Concept

4.2.7 The UC-ONTO Extension with SWRL Rules

As explained earlier, the integration of OWL ontologies and LP rules provides
many advantages that cannot be achieved using either OWL or rules alone. In
this section, we present the implementation of SWRL rules into the underutilized
crop ontology. However, as SWRL rules cannot introduce new terms into the
ontology — a safety requirement for its decidability, the addition of our SWRL
rules was made to conform to the DL-safety restriction. By using only those
concepts already defined in the OWL ontology, the rules were added to enable
more complex domain modeling and to express such conditions that are otherwise
difficult or even impossible using OWL constructs. An example is shown in the
use of SWRL rule to determine the current development stage of a crop based
on the planting date, also called days after sowing (DAS). We use the SWRL
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mathematical built-ins (swrlb:lessThanOrEqual and swrlb:lessThanOrEqual) for
comparison of the datatype property DAS with the number of days for each stage
of development, as depicted in rule 4.1. A fragment of our SWRL rule base in
shown in Fig. 4.9:

BambaraGroundnut(?bg) ∧ DAS(?das) ∧ GrowthStage(?gs) ∧

hasAverageDAS(?bg, ?d) ∧ greaterThanOrEqual(?das, 30)∧

lessThanOrEqual(?das, 50) −→ hasGrowthStage(?bg, ”Flowering”)

(4.1)

This rule, which is hard to be expressed using OWL, will assert a new prop-
erty (hasGrowthStage)to the Bambara groundnut instance with a datatype value
of ”Flowering”.

Moreover, if this growth stage needs to be added into the GrowthStage class,
then the following rule can do the trich:

BambaraGroundnut(?bg) ∧ GrowthStage(?gs) ∧

hasGrowthStage(?bg, ”Flowering”)∧ swrlx : makeOWLThing(”Flowering”, ?gs)

−→ GrowthStage(”Flowering”) (4.2)

The above rule 4.2 uses the SWRL existential built-in (swrlx:makeOWLThing),
which can create an individual instance of the Growth Stage class anytime the
hasGrowthStage(Flowering) property of the Bambara groundnut class is attained
— meaning that the days after sowing of Bambaragroundnut DAS > 30 and DAS
6 50. This also highlights the advantage of rules such that the assertion can be
added pending to the firing conditions of the rule.

As shown in the rules interface depicted in Fig. 4.9, simple assertions are also
possible as an alternative to class/property definitions in OWL. Example is pro-
vided in rule 4.3, where we assert a featureOf (inverse: hasFeature) relationship
between members of BambaraGroundnut class and those of Properties class.

BambaraGroundnut(?bg) ∧ Properties(?p) −→ hasFeatures(?bg, ?p)

(4.3)
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Figure 4.9: Fragment of SWRL Rules showing Assertions for UC-ONTO
Note: The Protégé rules tab uses comma instead of (∧) to represent conjunction.

The rule highlights the flexibility of the SWRL formalism and the fact that it sub-
sumes the OWL language in terms of expressive powers — in the sense that most
OWL assertions can be achieved using SWRL but not vice-versa.
We then continue to assert other rules that are not easily expressed in OWL to
achieve more comprehensive domain modeling — thereby extending the expres-
siveness of the underutilized crops ontology. For example, rule 4.4, which asserts
the specific feature to a Bambara groundnut’s ’leaf’ instance, is written thus:

BambaraGroundnut(?bg) ∧ Leaf(?l) ∧ hasFeature(?bg, ?l)

−→ hasLeafType(?l, ”Trifoliate”) (4.4)

The above SWRL expression can be interpreted thus; if it ascertained that
’BambaraGroundnut’ class has a ’Leaf’ feature, then it will be asserted that the
leaf-type is ”Trifoliate”. Since features such as leaf are not exclusive to Bambara
Groundnut, then unless the leaf individual is related to Bambara Groundnut, the
leaf type ’Trifoliate’, will not be immediately asserted. Such rules that are based
on certain conditions being true or otherwise are hard to be expressed with OWL
concept definitions. These and many more rule assertions were achieved using the
SWRL formalism ensuring unbounded domain modeling with ease. We discuss
the validation process of the added SWRL rules below with more results of the
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ontology development and example DL queries to confirm the decidability of the
rule assertions.

4.3 Case Study 2: Ontology Utilization — The Onto-
CropBase Semantic Search Engine

In this section, implementation of the ontology-based semantic search engine (The
Onto-CropBase) is discussed. The Onto-CropBase is an ontology-driven search
tool which serve as a web-based access point for the underutilized-crops ontology
model. The tool utilizes the UC-ONTO — as the global ontology, extended with
linked data in RDF — the local ontologies, integrated to serve as its knowledge
base. As earlier presented in the design methods in Section 3.4, major discussion
points are thus the functionalities offered by the tool in exploring the UC-ONTO
knowledge model with the implementation details.

In its simplest form, the Onto-CropBase tool consists of a web interface, de-
picted in Fig. 4.10, which in the background utilizes the Java Server Pages (JSP)
and servlets components of the web application. These components contain java
codes that invoked the Jena and Pellet reasoner APIs integrated with the data
model (ontologies), to accept user queries, fire the SPARQL query engine to
probe the linked data models, and present search results to the user. Using the
Apache Server, the Web application components are packaged and deployed as
Web Archive (WAR) file, which is searchable using a specified URL.

4.3.1 Onto-CropBase Functionalities

Since the Onto-CropBase tool aims to provide an information retrieval interface
for exploring an ontological knowledgebase integrated with relevant linked-data,
the following are provided as its major functionalities: (i) provision for a keyword-
based semantic search engine, (ii) query answering and presentation of query re-
sults, (iii) navigating the ontology and search results, and (iv) a map interface,
showing relevant crop location information. The keyword-based search engine
was developed as the first and single most important component of the Onto-
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CropBase tool, allowing federated searches with a single user query over the
knowledge bases. As location data is critical to crop-based knowledge systems
especially that of the underutilized crops, a map interface is provided to display
the crops location data.

Information provided by the tool is designed to be presented in a simple and
straight forward fashion with minimum ambiguity. We briefly highlight here,
some of the available functionalities:

4.3.1.1 Concept Search

Exploring the knowledgebase in the Onto-CropBase tool typically starts with the
search space — see the home page in Fig. 4.10. The search query is matched
against relevant concept definitions in the global ontology. Where a concept match
is found, the RDF triples in the corresponding local ontologies are probed through
their linked URIs and the associated triples are returned with a map view of the
origin or farming area of the specific underutilized crop(s). However, the map on-
tology is searched separately according to the location data associated to the crop
(where applicable), This is asserted through Google Maps’ JavaScript API4.We
use the API version 3 for the Onto-CropBase map rendering.

4.3.1.2 Query Answering

User queries containing keywords entered in the search engine are compiled into
SPARQL queries, as shown in the Listing 4.1 below. The queries were designed
to provide search results based on classes, entities, and textitmap area. The media-
tor, Jena-API, first loads the ontologies and the ARQ query engine uses the search
keywords to generate a query plan. The results of executing the query plan gener-
ate an RDF data satisfying the query pattern, called the Result Set. The result sets
are then passed to the filtering object, which returns only matching triple objects
from each dataset as the final answer to the query. Ordering of the answer triples
is achieved using a binding hierarchy generated by the query engine. This binding
hierarchy reflects the query patterns and the final query output are presented based
on the initial values to be resolved.

4https://developers.google.com/maps/documentation/javascript/

Doctoral Thesis 168



Ontology-based Knowledge Systems

Figure 4.10: The Onto-CropBase Home Page

...

"PREFIX uconto: <http://www.nottingham.edu.my/ontologies
/2014/Ontology-uco#>" +
"PREFIX ucnutrition: <http://.../ontologies/2015/nut#>" +
"PREFIX ucnames: <http://.../ontologies/2015/Naming#>" +
"PREFIX agronomy: <http://.../ontologies/2015/agrono#>" +
SELECT distinct ?subject ?object " +
WHERE {" + " ?subClass rdfs:subClassOf uconto:" +
className + " . " + " " + " } " ;

Listing 4.1: A SPARQL example query to display all classes

An example SPARQL query to request all classes in the global OWL ontol-
ogy is shown in Listing 4.1 above. However, in order to query all the instance
assertions matching the above subject from any of the local ontologies (e.g. the
agronomy local ontology), the example SPARQL query can be written thus:
...

SELECT DISTINCT ?subject ?property ?object" + "
WHERE {" + " ?subject a agronomy:" + "queryString
"+" . " + " ?subject ?property ?object . " +"}
ORDER BY ?subject" ;

The results of the above queries are presented as set of navigational links
grouped under the titles of their source ontologies — as shown in Fig. 4.11. Click-
ing on a particular dataset title shows the detailed information as subject and ob-

ject pairs — as shown in Fig. 4.12.
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Figure 4.11: Onto-CropBase showing concept search (Underutilized Crops) and
results as link titles.

4.3.1.3 Map Interface

Consistent with the location data imported from the FAO’s geopolitical ontol-
ogy [190], the Onto-CropBase tool is also designed to show the underutilized
crops location data (where applicable and available) using the Crop Origin or
Cultivation Region assertions. As explained earlier, Google Map is used as a base
map for the location-based data and the information is extracted from the named
location’s elements — the ’east-west bound longitude’ and ’north-south bound
latitude’. The map location data can help users to get a clear picture of crops’
origin, cultivation regions, and locations where similar crops can be cultivated,
among other information.

4.3.1.4 Paging

As shown in the figures. 4.12 and 4.13, the Onto-cropBase search results are de-
signed to be presented in a series of numbered rows showing the RDF result sets in
the form of subject-object pair and with a maximum of 10 rows per page. Where
the resulting information exceeds ten rows, a new page is automatically created
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Figure 4.12: The Onto-CropBase tool showing title result (Bambara groundnut)
and detailed facts.

with page counts similar to those found in the commercial search engines. Sim-
ilarly, user can navigate these pages by clicking on the desired page number at
the bottom of the search results. This allows the map interface to stay in focus
throughout the navigation process giving users continuous access to the location
data.

Further discussion of the Onto-CropBase tool and its evaluation is presented
in Section 5.3. The evaluation highlights the performance measurement of the
semantic search functionality. This is followed by the domain experts’ evalua-
tion of the tool and its comparison with relevant tools in Sections 5.3.1 and 5.3.2
respectively.
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Figure 4.13: The Onto-CropBase tool showing more result pages: facts No. 8-15
(top) and facts No. 16-23(bottom).

Doctoral Thesis 172



Ontology-based Knowledge Systems

4.4 Case Study 3: Ontology Language Extension —
The Fuzzy-Temporal Extension of Semantic Web
Rule Language (FT-SWRL)

The FT-SWRL Model While fuzzy temporal knowledge modeling has been
around since the early days of AI, the semantic web domain has seen fewer ad-
vancements in the temporal uncertainty modeling. Relevant research efforts have
focused mostly on the uncertainty management or the representation of the tempo-
ral data as a domain. In FT-SWRL extension, we go beyond the simple structured
time data in ontologies to provide additional syntax and semantics that enable the
representation of vague temporal facts in the semantic web. The new semantic
web rule language extension can handle the modeling of uncertainties that exists
in the time domain, defined in the SWRL-FT ontology and with the possibility of
reasoning and inference through the SWRL fuzzy temporal built-ins. Both pre-
sented in this section and followed with example FT-SWRL rules.

In this section, we present a fuzzy temporal extension to the semantic web
rule language (FT-SWRL), which combines fuzzy theories based on the valid-time
temporal model, to provide a standard approach for modeling imprecise temporal
domain knowledge. FT-SWRL5 introduces a fuzzy temporal model for the seman-
tic web, which consists of two important components: (i) a SWRL fuzzy temporal
ontology (SWRL-FTO), which formally specify the linguistic terminologies and
variables of the FT-SWRL model and (ii) a set of fuzzy temporal built-ins for
defining their semantics. The fuzzification process of the fuzzy temporal built-ins
is presented in Section 4.4.3, with example FT-SWRL rules demonstrating their
possible usage in modeling imprecise temporal expressions.

4.4.1 The SWRL Fuzzy Temporal Ontology

As shown in Fig. 4.14 below, in order to preserve the modular feature of the orig-
inal temporal model, the SWRL Fuzzy-temporal ontology (SWRL-FTO) begins
with the FuzzyTemporalProposition class, which is the class for all fuzzy-timed

5Manuscript titled: FT-SWRL — A Fuzzy Temporal Extension of the Semantic Web Rule Lan-
guage. is submitted to the International Journal of Approximate Reasoning, Elsevier, March, 2017.
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events i.e. events associated with imprecise temporal expressions. This is defined
as a sibling of the temporal:ExtendedProposition class — designed to represent
entities or propositions that extend over time and with the benefit of separating
the temporal ontology from the main ontology for consistency. Similarly, the
FuzzyTemporalProposition class will allow introducing consistent fuzzy model
without interfering with either the main or temporal ontology. Hence it serves as
the range of all the fuzzy temporal built-in expressions defined in the ontology.
The FuzzyTemporalPropositionclass has three object properties: hasFuzzyTime

— with a range over the FuzzyTime class, the hasFuzzyDuration — with a range
over the FuzzyDuration class and the hasModifier property — with a range over
the FuzzyModifier class. See Fig. 4.15 for the objects and datatype property as-
sertions of the FT-SWRL ontology.

Figure 4.14: FT-SWRL Ontology fragment showing Entities Implementation in
Protege ontology editor

The FuzzyTime class represents the fuzzy time values of the fuzzy tempo-
ral propositions based on the evaluated fuzzy modifiers or ITEs. A FuzzyTime
can be either a FuzzyTimeInstant or a FuzzyTimePeriod — with a range over
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the xsd:dateTime class. The two describe instantaneous as well as period-based
events. Where the time of occurrence of an instantaneous or single timed event
is imprecise, then we use the FuzzyTimeInstant (sameAs: FuzzyTimePoint) and
FuzzyTimePeriod is used where the event happens over two imprecisely-timed
points (period). FuzzyDuration class helps to represent such ITEs containing du-
rations not defined as dateTime data, e.g. ’this weekend’, ’within 3 weeks’, ’after
several hours’ etc. As such, it has two subclasses as FuzzyCounts and FuzzyGran-

ularity.
FuzzyTemporalPropositions as sets of temporal facts are categorized as Set-

Granularities (e.g. weekly, perHour, daily, etc.) — a subclass of the FuzzyGranu-
larity class. Whereas, those that basically compare the object propositions with a
current date (e.g. past 3 weeks, since last year, 2 weeks ago, etc.) are sub-classed
as DateGranularities.

TheFuzzyModifier class represents the fuzziness of specific fuzzy temporal
information or ITEs contained in the fuzzy temporal propositions. It has two
object properties: hasWeightedValue and hasMembershipFunction which ranges
over the WeightValues class and MembershipFunction class respectively. Corre-
sponding values of the membership function and weight values are assigned to
each ITE as functional datatype properties. It represents fuzzy functions for such
ITEs as about, around, approx, within, a few, several, many, until, always, very,

etc. — and are defined as a set of SWRL built-ins that can be used for temporal
operations on the entities defined by the fuzzy temporal ontology. In the following
sub-section, we briefly highlight these built-ins and the intuitions behind them.

4.4.2 SWRL-FT Built-ins: Semantics Definition

The SWRL fuzzy temporal built-ins are defined to allow temporal operations on
imprecise temporal information during domain knowledge modeling. By defining
selected ITEs as part of the SWRL built-in sets, FT-SWRL extends SWRL for-
malism, and equally the OWL language, with constructs to implement fuzzy tem-
poral semantics within ontologies. This will allow the combination OWL/SWRL
to handle fuzzy temporal knowledge for the first-time, without relying on exter-
nal frameworks for reasoning over imprecise temporal data. Using the SWRL-FT

Doctoral Thesis 175



Ontology-based Knowledge Systems

Figure 4.15: FTSWRL Ontology Objects Properties Implementation in Protege
ontology editor

built-ins, imprecise temporal data can be encoded following the SWRL-FT on-
tology model and processed based on the valid-time temporal model for efficient
knowledge representation and retrieval. Following the fuzzy temporal entities
classification in Section 3.5.3, the following terminologies were defined as the
first set of the SWRL fuzzy-temporal built-ins:

4.4.2.1 Fuzzy Duration Built-ins

The Fuzzy Duration built-ins were defined to operate on imprecise temporal du-
rations. In this context, FuzzyDuration is considered as a temporal expression
containing fuzzy Count at a specified base granularity. Unlike the fuzzytempo-

ral:FuzzyTimePeriod which can be specified by two fuzzy times instants (fuzzytem-

poral:FuzzyTimeInstants), the fuzzy duration involves expressions such as ”few
weeks”, ”several hours” etc. where the first part (few, several) are the fuzzy
counts and the latter (weeks, hours) are the base granulaarity of the receiving
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proposition. As such, the FuzzyDuration built-in method requires a FuzzyCount

and FuzzyGranularity as its arguments.
Other operators associated with the FuzzyDuration include the fuzzyDura-

tionLessThan, fuzzyDurationEqualsTo, and fuzzyDurationGreaterThan built-ins:
As a sub-built-in of the temporal:Duration predicate, the FuzzyDuration built-ins
inherently includes these operators for comparable inference among consistent
FuzzyDuration instants having bounded arguments. Moreover, inverses of these
built-ins may well be considered for completeness.

4.4.2.2 Fuzzy Count Built-ins

These built-ins are designed to implement the imprecise counts on temporal data.
Example cases include: ’several, many, long-time, this, next, last, cycles, times,
twice, etc’. In their basic form, usage of these built-ins requires that they take
the FuzzyGranularity as argument and after applying the relevant fuzzy opera-
tions defined by their semantics, returns a multiplier or comparison count of the
granularity.

4.4.2.3 Fuzzy Granularity Built-ins

These built-ins are designed to implement the imprecise granularities for an xsd:dateTime
class. Example cases include: ’weeks, weekend, fortnight, quarter, noon, etc’.They
extend the original SWRL Date, Time and Duration built-ins6.

4.4.2.4 Fuzzy Set Granularity Built-ins

These built-ins are designed to implement the imprecise set granularities for the
xsd:dateTime class. They extend the FuzzyGranularity Built-ins to denote set-
wise granularities for recurring events. Example cases include: ’Yearly, Monthly,
Weekly, daily, hourly, perMinute, perSeconds, perHour, perWeek, perYear, etc’.

6http://www.daml.org/2004/04/swrl/builtins.html#8.5
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4.4.2.5 Fuzzy Date Granularity Built-ins

These built-ins are designed to implement the imprecise date granularities for an-
notating the xsd:dateTime class. They extend the FuzzyGranularity Built-ins for
comparison operations between the current time and the transaction time (tem-
poral proposition object). Example cases include: ’the past, present, currently,
recently, nowadays, ago, since, lately, earlier, etc’. Hence it requires two optional
arguments; the event time and the current time — in xsd:dateTime instant or du-
ration.

4.4.2.6 Imprecise Temporal Approximation Built-ins

As their name implies, these built-ins are designed to implement the vague tem-
poral approximations. Example case includes: ’about, around, approx, within, a
few, until, before, very, after, etc’). The built-ins take argument representing the
FuzzyTime of the temporal fact to apply the relevant fuzzy temporal operations on
them. The operation also requires two more arguments representing the Count and
FuzzyGranularity as follows: fuzzytemporal:about(?FuzzyTime, ?Count, ?fuzzy-
Granularity).

Where the Count or Granularity arguments are missing, the default count = 1
and a base granularity of the temporal fact will be used. Nevertheless, the built-
ins can be further expanded with more predicates as far as the tractability and
semantics of the language can allow. Moreover, inverses of these built-ins (where
applicable) can be considered as future extensions.

4.4.3 Reasoning Paradigm for FT-SWRL Ontology Model

The original SWRL temporal extension basically defines temporal interval opera-
tions as built-ins and neither contain inference rules for time expressions nor trans-
lation rules from natural language expression to times. However, the FT-SWRL
proposal can lead the way in providing a consistent model for defining fuzzy tem-
poral inference rules for (some of) the commonly encountered imprecise temporal
expressions (ITEs). To this end, we propose the fuzzification of the interval-based
temporal logic in order to achieve a complete OWL-based reasoning for the fuzzy
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temporal built-ins. This is particularly important as it can enable the OWL/SWRL
combination to enforce temporal semantics as well as handling vague temporal
knowledge. Moreover, with the SWRL Query language (SQWRL) able to handle
such temporal reasoning, querying temporal information from OWL ontologies
will be highly improved.

For efficient representation and reasoning about the fuzzy temporal informa-
tion encoded in FT-SWRL rules, we define the fuzzy times of the ITEs using care-
fully selected membership functions superimposed on their interval-based tempo-
ral definitions. The fuzzy membership functions were selected based on their
correspondences to the imprecise temporal expressions using the weighted value
(w) as the gauge of the temporal information as it approached the true value (T).
However, we give some formularized restrictions to these weighted values within
which the statements are found to be a close-enough representation of the tem-
poral information. We focused on the frequently used ITEs found in the crops
domain knowledge narratives — as earlier presented in 3.5.1.

4.4.3.1 SWRL-FT Built-ins Fuzzification

Following the linguistic terminologies and variables definition in the SWRL-FT
ontology and Built-ins, we describe the Fuzzification [182, 148] of the SWRL-FT
built-ins that will serve as translation rules during fuzzy temporal reasoning. In
what follows, we chose suitable membership functions for some selected impre-
cise temporal expressions and demonstrate how we can generate their correspond-
ing fuzzy values based on the membership functions:

Fuzzy temporal term ’about’ (T), where: T = fuzzy duration inter-
val.

sameAs Around (T), approximately (T), nearly (T).
Super Class FuzzyModifier (annotation: Approximation-

ITEs)
Properties hasWeightDegree, hasFuzzyTime, hasModi-

fierFunction
Required arguments WeightDegree, FuzzyTime
Fuzzy MF Gaussian (Gaussmf)

Table 4.3: Fuzzy temporal term about
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As shown in Fig. 4.16: Membership Function for ’about (T)’ fuzzy tem-
poral expression, we use the Gaussian membership function (gaussmf) to define
the fuzziness as a set over the about temporal expression as the universal set of
discourse. Based on the semantic definition of the ’temporal approximation’ key-
words such as about, around, etc, the use of such imprecise times is usually where
the narrator refers to time units that are close to the exact time (of an event or pro-
cess) and when such assumed times are up to a complete granularity. For example,
the statement ”Bambara beans germination time is around/about/approximately 1
to 2 weeks”. Here, the granularity (of weeks) is used to show that an event — the
germination of Bambara beans, may happen either in the first or the second week.
This can basically be represented by the Gaussian MF (gaussmf), with the tem-
poral value T = 7 days or 1st week as the peak-value (weight degree w = 1). The
peak time can then be approached from either direction with increasing certainty
(as ’w’ tends to 1) until the actual time (truthTime T) of the event is reached. As
such, the required information needed to model the approximation keyword will
simply be ’the weighted degree of truth’ of the information source.

Figure 4.16

The fuzzy time (fT ) for each ITE can then be calculated based on the as-
signed membership distribution function and weighted value. For the approxima-
tion ITEs, we calculate the minimum fuzzy time (min fT ) and maximum fuzzy
times (max fT ) as the border-points for the resulting fuzzy temporal membership
function as follows:
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min fT = [T − (1− w) ∗ T/2] (4.5)

max fT = [T + (1− w) ∗ T/2] (4.6)

min fT < fT < max fT (4.7)

Where:

• T is the valid time unit in the temporal expression.

• w is the weighted truth degree of the expression (or information source).

• (1 − w) ∗ T/2 is the distribution function for determining the fuzzy time
based on the ’w’ values.

• fT is the fuzzy time based on the weightedValue(w).

• min fT is the lower-bound fuzzy time for the about (T) expression.

• max fT is the upper-bound fuzzy time for the about (T) expression.

• Note: the intuition in the distribution function is that the higher the degree
of certainty (w), the closer the fuzzy times (fT−−) / fT++)) becomes to the
actual valid time (T) on both sides.

With the above equations (4.5 - 4.7), we simplified the fuzzification of the ITE
by calculating the possible minimum and maximum valid times for the expression.
We use T/2 as a simplified distribution of the fuzzy variable (w) for the ’about (T)’
expression, which implies that the fuzzy time can take values from T − T/2 for
the possible times before T, to the T + T/2 possible timestamps after T. This is
found to be consistent with our explanation that the about/around/approximately
ITEs are commonly used to describe imprecise times (or events) that are within 1
or 2 granularities to the expected or precise time.

Example: Consider the expression; ”Flowering time of Bambara nut is around
30 days from the date after sowing” Therefore, the parameters are: T = 30 days,
suggested values from the ’about MF’ for w = (0.3 0.7). Now assuming w = 0.4,
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then:

min fT = [30− (1− 0.4) ∗ 30/2] = 21 days] ⇒ very early (4.8)

and

max fT = [30 + (1− 0.4) ∗ 30/2] = 39 days] ⇒ very late (4.9)

The resulting parameters can be easily interpreted thus: ”The flowering is

early if it occurs before 30 days and after 21 days. It is late if it occurs after 30

days but before the 39th day — thereby enabling the assertions of fuzzy terms
late and early in to the knowledge base. Moreover, as the keywords, ’before’
and ’after’ are already defined as part of Allen’s interval algebra [157], therefore
reasoning operations with other relevant data (e.g. other flowering times) can
easily generate a consistent temporal network that can infer additional knowledge.
Moreover, this approach, as explained earlier, can be easily applied on existing
temporal ontologies by introducing the temporal fuzzification (through the ITE
built-ins from FT-SWRL rules) to generate the available fuzzy times (fT ). Such
modeling scenario help to confirm the earlier assertion that FT-SWRL will not
only allow managing fuzzy temporal information in OWL ontologies but also help
to improve the utilization of existing temporal operators.

Using similar approach, we fuzzify other relevant ITEs such as ’few (T)’,
’within (T)’, ’before (T)’, and ’after (T)’ as shown below. These ITEs were se-
lected as the first set of SWRL fuzzy temporal built-ins as they are the most fre-
quent expressions (based on surveys presented in [191]) found in domain knowl-
edge descriptions and natural language processors.

The ’within (T)’ Built-in: From the previous example, if the statement reads:
”Bambara beans germinate within 2 weeks from the date of sowing” it can be seen
that the ’within’ keyword is usually employed to express the maximum possible
times that an event happens. Here we may use the ’2 weeks’ as the peak value. We
use the Trapezoidal membership function (trapmf see Fig. 4.17) to represent the
progression of the fuzzy time as the weight-value (w) increases until the flat top
— where the valid-time (T) may be reached (i.e. w = 1). However, the sharp drop
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Fuzzy temporal term ’Within’ (T), where: T = fuzzy duration inter-
val or granularity (e.g. done within a week).

sameAs in less than (T), in under (T), at most (T), in
no more than (T), etc.

Super Class FuzzyModifier (annotation: Time closure op-
erator)

Properties hasWeightDegree, hasFuzzyTime, hasModi-
fierFunction

Required arguments WeightDegree, FuzzyTime
Fuzzy MF Trapezoidal (trapmf)

Table 4.4: Fuzzy temporal term within

of the trapezoidal space function at the right-hand side corresponds to the small
possible increment above the valid time (T++). This follows the semantics of the
’within’ operator where a small addition to a transaction time will still be valid e.g.
’15 to 17 days’ may still be referred as within 2 weeks in a fuzzified knowledge
base (FKB). Note, however, a triangular membership function (trimf) can also be
used, for simplicity, to represent the fuzzy space of the ’within’ operation or where
the valid time is a fuzzy instant time.

Figure 4.17: Membership Function for ’within (T)’ Fuzzy Temporal Expression

For the ’within’ built-in, we calculate the minimum fuzzy time (min fT ), the
left-hand side of the trapezoid and the maximum fuzzy times (max fT ) at the right,
as the border points for the resulting fuzzy temporal value as follows:

min fT = [T − (1− w) ∗ T ] (4.10)
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max fT = [T + (1− w) ∗ T ] (4.11)

min fT < fT < max fT (4.12)

Where: (1−w)∗T is the distribution function for determining the fuzzy times
based on the ’w’ values. Note: the intuition in the distribution function is that the
higher the degree of certainty (w), the closer the fuzzy times (fT−−) / fT++))
becomes to the actual valid time (T) on both sides.

Fuzzy temporal term ’Few (T)’,, where: T = granularity (e.g. com-
pleted in ’a few’ days).

sameAs a few (T), a little (T), more or less (T), etc.
Super Class FuzzyModifier
Properties hasWeightDegree, hasFuzzyTime, hasModi-

fierFunction
Required arguments FuzzyTime, WeightDegree
Fuzzy MF Bell membership function (gbellmf)

Table 4.5: Fuzzy temporal term few

The ’few (T)’ Built-in: From the previous example, if the statement reads:”The
Bambara beans will germinate in few weeks if moderate rainfall continues”, shows
the use of the ’few’ operator to express a flexible time increment without any spec-
ified amount or granularity. However, it usually represents small changes in time,
which can sometimes be negligible. As discussed in [191], the use of this ITE is
common in natural language narratives when the imprecise time referred to is very
close to the actual time. We use the Gaussian bell membership function (gbellmf
see Fig. 4.18) — which has gentle curves near the peak value, to represent the
small progression of the fuzzy time as the weight value inchess towards the flat
top (w = 1).

For the few (T) built-in, we calculate the minimum fuzzy time (min fT ), the
left-hand side of the bell and the maximum fuzzy times (max fT ) at the right, as
border points for the resulting fuzzy temporal value as follows:

min fT = [T − (1− w) ∗ 0.75T ] (4.13)
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Figure 4.18: Membership Function for ’a-few (T)’ Fuzzy Temporal Expression

max fT = [T + (1− w) ∗ 0.75T ] (4.14)

Where: (1 − w) ∗ 0.75T the distribution function for determining the fuzzy
times based on the w values. Similarly, as the degree of certainty (w) tends to 1,
the fuzzy times (fT−−) / fT++)) tends to the actual valid time (T) from both sides.

Fuzzy temporal term ’before (T)’,, where: T = date, time or granu-
larity (e.g. happens before 3pm/7 days).

sameAs until, earlier than, previously, prior to, at
most, etc.

Super Class FuzzyModifier
Properties hasWeightDegree, hasFuzzyTime, hasModi-

fierFunction
Required arguments FuzzyTime, WeightDegree (w = 0.6 1 )
Fuzzy MF S-membership function (smf)

Table 4.6: Fuzzy temporal term before

The ’before (T)’ Built-in: Consider the statement: ”Bambara beans usually
germinate before 30 from the date of sowing. This shows the use of ’before’ ITE
to express that germination do or will take place before 30 days (the peak period)
after planting. However, it is not clear how close or far away the germination will
be from the specified time. We use the S-membership function (smf — see Fig.
4.19) to represent the progression of the fuzzy time with the increasing degree of
truth from the bottom to the top of the S-function — where the fuzzy time may be
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equal to the valid time (T) i.e. w = 1. The continuous flat after the curve shows
that we are not interested in times after the actual valid time (T++). Hence the
fuzziness is only on the left-hand side of the valid time to express (with some
certainty) how close or far away the calculated fuzzy time is from the valid time.
Which follows the semantics of the ’before’ keyword — used to safely express
possible times prior to a known valid time. For example, 29, 20 or even 2 days
may still be referred as ’before a month’ in a fuzzy knowledge base based on the
degree of certainty (w).

Figure 4.19: Membership Function for ’before (T)’ Fuzzy Temporal Expression

Similarly, we calculate the (min fT ) and (max fT ) as border points for the
resulting fuzzy temporal value as follows:

min fT = [T − (1− w) ∗ T/2] (4.15)

max fT = T (4.16)

Note that as the S-function is designed here as the left-half of the Gaussian
function, the minimum fuzzy times and calculated parameters are the same as the
’about’ built-in. The exception being that ’before’ built-in has a maximum fuzzy
time of T as the degree of certainty (w) tends to 1. Hence, the consistency is
preserved as fT 6 T .

The ’after (T)’ Built-in: Consider the statement: ”Bambara bean plant begins
flowering after 30 days from the date of sowing” shows the use of the ’after’ as

Doctoral Thesis 186



Ontology-based Knowledge Systems

Fuzzy temporal term ’after (T)’,, where: T = date, time or granu-
larity (e.g. arrive shortly ’after’ 13:00 hours).

sameAs Later than (T), afterwards (T), subsequent to
(T), etc.

Super Class FuzzyModifier
Properties hasWeightDegree, hasFuzzyTime, hasModi-

fierFunction
Required arguments FuzzyTime, WeightDegree (w = 0.6 1 )
Fuzzy MF Z-membership function (zmf)

Table 4.7: Fuzzy temporal term after

ITE to express that flowering happens after a month (the peak period). However,
it cannot be ascertained how close or far away the flowering may start from the
’30 days’ after planting. In this case, we use the z-membership function (zmf see
Fig. 4.20) to represent the regression of the fuzzy time with the decreasing degree
of truth from the top of the curve — where the suggested valid time is known (w
= 1). The continuous flat line before the curve shows that we are not interested
in the time before the actual valid time. Hence the fuzziness is only on the right-
hand side of the valid time (T++). This also follows the natural semantics of the
’after’ temporal expression, where it used to safely express possible transaction
times that follows a known valid time. For example, 31, 32 or even 1000 days
may still be referred to as ’after a month’ in a fuzzy knowledge base. However,
the built-in uses the weight value (w) as determining factor to safely express the
possible times.

Hence, for the ’after’ built-in operator, which is basically the opposite of ’be-
fore’, we represent the (min fT ) and (max fT ) as border points for the resulting
fuzzy temporal value as follows:

min fT = T (4.17)

max fT = [T − (1− w) ∗ T/2] (4.18)

Similarly, the maximum fuzzy time and other parameters are the same as the
right-hand-side of the ’about’ built-in with a minimum fuzzy valid-time of fT > T

as the degree of certainty (w) tends to 1.
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Figure 4.20: Membership Function for ’after (T)’ Fuzzy Temporal Expression

4.5 Summary

In this chapter, the case studies describing the experimentation of ontology engi-
neering, ontology utilization and ontological language extensions were presented.
The first case describes the implementation of the underutilized crops ontology
(UC-ONTO) describing the results of the knowledge acquisition and conceptual-
ization process, the UC-ONTO standardization through merging and alignment,
as well as its extension with SWRL rules for added expressiveness. The chap-
ter further presents the ONto-CropBase tool as a second case study describing
the implementation of the UC-ONTO based semantic search engine. The tool’s
functionalities realized were presented highlighting the design intuitions behind
the search interface, search results presentation as well as the tool’s navigation.
Lastly, the language extension case study presents the implementation results of
the FT-SWRL model describing the pioneer fuzzy temporal ontology and built-
ins. Fuzzification of the fuzzy temporal built-ins to provide a semantic definition
and possible reasoning strategy is further explored and presented as the reasoning
paradigms for the FT-SWRL model.

In the following chapter, an evaluation of the case studies is discussed leading
to three main discussion sections: the UC-ONTO evaluation, the Onto-CropBase
evaluation and lastly the FT-SWRL model evaluation.
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Chapter 5

Analysis of Results and Discussion

5.1 Introduction

This chapter presents an analysis and discussion of the case study results pre-
sented in the preceding chapter. The chapter is structured as follows: Section
5.2 discusses the UC-ONTO evaluation highlighting the ontology metrics, depth
and structure, followed by the evaluation of the UC-ONTO using competency
questions. A functional evaluation of the ontology extension with SWRL rules is
presented in Section 5.2.4 and the decidability of the ontology is also evaluated
through reasoning and queries in Section 5.2.5.

The Onto-CropBase tool’s evaluation and discussion is presented in Section
5.3, which discusses the performance measurement of semantic searching fol-
lowed by an analysis of domain experts’ evaluation of the tool in Section 5.3.1.
Comparison of the Onto-CropBase with other relevant tools is discussed in Sec-
tion 5.3.2 and the scalability of the tool is discussed in Section 5.3.3. FT-SWRL
model evaluation is discussed in Section 5.4 with the ontology’s modularization,
depth and structure discussed in Section 5.4.1 followed by the ontology metrics
evaluation in Section 5.4.2. The usability and rule format of the FT-SWRL model
built-ins is further discussed in Section 5.4.3 and lastly, conclude in Section 5.5
with the chapter summary.
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5.2 The Underutilized Crops Ontology (UC-ONTO)
Evaluation

The previous chapter presented the development process leading to the current
version of the underutilized crops ontology (UC-ONTO) [192] using the Protégé
4.2 ontology editor. The ontology currently consists of core SWRL built-ins,
OWL-time ontology, and FAO geopolitical ontology as direct imports. This is
because these ontologies being domain-independent and available in the OWL
format can stand-alone without posing compatibility problems and inconsisten-
cies. As such, in line with the recommendation of ontology reuse, the ontologies
are imported into UC-ONTO and utilized for added meaning to the underutilized
crops data.

5.2.1 Modularization, Depth and Structure

From the inferred conceptual hierarchy of the UC-ONTO, depicted in Fig. 5.1,
it can be seen that the ontology is modularized into specialized ontologies such
as, Naming Ontology, Agronomy, Nutrition, Farming Ontology, etc. These are
aligned together to form a larger ontology model for the underutilized crops do-
main. Individual instances added to the UC-ONTO through the local ontologies
in RDFS, includes Bambara groundnut, Taro, Moringa, Tef, and Wing Bean.

While details on the development methodology and the aspects of the UC-
ONTO (such as agronomic, physiological traits) are excluded for brevity, the on-
tology is available for download as .owl file in the link1 and for collaborative
development, an interactive version of the ontology is also available in the Web-
Protégé — see Fig. 5.2 and accessible through the link2. At a glance, the compo-
sition of the UC-ONTO is as follows: In the ontology, all crops related concepts
were grouped together under the DomainConcepts as an ancestral class for all
underutilized crops concepts and their direct relations. Whereas, non-crop info
such as Entity, Temporal, Soil, T emperature, T imeZone, etc. and all other
related concepts — offered by imported ontologies, were composed as siblings

1https://drive.google.com/file/d/0B1FHDywt7JQlWWNhMzRjWmRuNVk/view
2https://webprotege.stanford.edu/#Edit:projectId=1475900a-1753-4de5-b411-57cf03d8086c
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Figure 5.1: A conceptual hierarchy from the Protégé ontology editor showing
fragment of UC-ONTO.

of the Domain Concept class. Crops terminologies are further grouped under the
UnderutilizedCrops class which contains four main sub-classes and instances:
Taro, Tef, Millet and BambaraGroundnut class, also added as sub classes
(an expressive feature allowed in OWL 2). These instances dominates most of
the object and data-type property assertions available in the current version of the
UC-ONTO as shown in Fig. 5.1 and 5.2 respectively.

5.2.2 UC-ONTO Metrics — Measuring the Ontology Size and
Expressiveness

As discussed in Section 2.7, domain ontologies can also be evaluated based on
their depth and contents. The ontology metrics tab in Protégé gives a first-hand
information on the amount of concepts, individuals, data values and the relation-
ships both asserted and inferred — also known as ’Axioms’. Other important
information that can be provided by the ontology metrics tab is the ’DL expres-
sivity’ of an ontology, which depicts the depth of expressiveness of an ontology
based on the complexity of asserted conceptualization. We describe the expres-
siveness of OWL 2 language in Section 2.2.3.2.

As shown in Fig. 5.3, the current version of the Underutilized Crops ontology
has: over 53,000 axioms, with over 1500 different crop related concepts (classes,
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Figure 5.2: The Web-Protégé collaborative ontology development environment
showing UC-ONTO.

properties and individuals). The fact that there is a high ratio between the concept
to axioms count (1:50 approx) shows that the ontology is well versed in logical
assertions that a simple connection of vocabulary — as usually is the case in tax-
onomies and dictionaries. This logical maturity of ontologies is also highlighted
by Protégé by providing a separate count of the ’Logical axioms count’, which is
seen to be exactly 48,533 as shown in Fig. 5.3.

Regarding the expressiveness metric, UC-ONTO’s expressivity is shown to
conform to the SROIN (D) algorithm — see Fig. 5.3. This shows that the
ontology is highly expressive as it reached the highest expressiveness allowed by
the OWL 2 language, as described in the literature review in Section 2.2.3.2. The
expressiveness equivalence of the SROIN (D) algorithm implies that:

(i) The UC-ONTO knowledge model involves an Attributive Language with
Complement ALC extended with the Role R hierarchy and roles (proper-
ties) transitivity. In other words, the knowledge model involves a Termi-
nology box (T-Box) as well as an individuals Assertion box (A-Box) —
represented by S.
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Figure 5.3: UC-ONTO Metrics showing Expressivity, Axioms, classes and prop-
erty count.

(ii) Added expressiveness implied are the enumerated classes O, inverse role
assertions I, and cardinality restrictions N — discussed in details Section
2.2.3.2.

(iii) The letter R refers to the presence of role inclusions, local reflexivity Self,
and the universal role U, as well as the additional role characteristics of tran-
sitivity, symmetry, asymmetry, role disjointness, reflexivity, and irreflexiv-
ity.

One noticeable difference is the expressiveness SROIN (D) of UC-ONTO
(OWL 2) instead of SHOIN (D) of OWL-DL expressivity described in Section
2.2.3.2. This shows the fact that the current version of OWL 2 is evolving beyond
the expressive powers of its predecessor, the OWL-DL in that it allows higher
expressiveness with regards to the property assertions as much as OWL-DL allows
for classes.

5.2.3 UC-ONTO Evaluation using Competency Questions

Competency Questions (CQs) posed as queries to ontological knowledge bases
provides a good measure of the ontology quality. Moreover CQs can be used
to check whether the functional and non-functional requirements of an ontology
have been realized based on the accuracy of query results, the comprehensiveness
of domain coverage and conceptualization among other things. Based on the UC-
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ONTO’s competency questions designed and enumerated in Section 3.2.1, some
of the queries proposed to evaluate the UC-ONTO are presented as follows:

Query No. For the Underutilized Crops Ontology (UC-ONTO),
find:

Q1. List of common Underutilized Crops (UCs).

Q2. The Characteristics/Features of Underutilized crops.

Q3. The agronomy and properties of Bambara groundnut.

Q4. Its optimum growing conditions.

Q5. The Soil/Rainfall/Temperature requirements for growth of
Bambara groundnut.

Q6. The regions of cultivation of Bamabara groundnut.

Q7. Country of Origin and Landraces of Bambara groundnut for
a selected country.

Q8. Nutrient components of Bambara groundnut.

Q9. The food parts of the UC.

Q10. The number of days after sowing for Bambara groundnut to
begin flowering.

Q11. The rainfall characterization for Bambara groundnut.

Q12. Root type of Bambara groundnut plant.

Q13. List the commercial products of Bambara groundnut.

Q14. The common Pests and Diseases of Bambara groundnut.

Q15. Other local names for Bambara groundnut.

Table 5.1: Competency Queries for the UC-ONTO Evaluation

From the list of queries above, the UC-ONTO can thus be evaluated based on
contents and structure such as hierarchy of classes, properties, individuals, dis-
joint classes, intersection and union of classes among others. In what follows, we
present some test results from running DL-queries over the underutilized crops
ontology as shown in Table 5.1. For each query, the part of the model explored
have been highlighted to further understand the query results. Moreover, the tests
were categorized into three cases, (i) Complete — if the test results have com-
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pletely answered or fulfilled the modeling requirements. (ii) Partial — where the
results partially answered the modeling requirement, thereby highlighting the in-
formation to be added into the ontology. (iii) Failed — where the test results have
completely failed to answer the competency query and therefor the ontology need
to be modified or extended.

Query Model Probed Competency
Status

Q1. Class enumeration (List of Individual instances) Complete

Figure 5.4: DL Query showing results of Competency Query 1.

Query Model Probed Competency
Status

Q2. Class enumeration (List of Individual instances) Complete

Figure 5.5: DL Query showing results of Competency Query 2.
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Query Model Probed Competency
Status

Q3. Class enumeration (List of Individual instances) Complete

Figure 5.6: DL Query showing results of Competency Query 3.

Query Model Probed Competency
Status

Q4. Data type Property assertions Complete

Figure 5.7: DL Query showing results of Competency Query 4.
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Query Model Probed Competency
Status

Q5. Intersection of Classes (Instances list) Partial

Figure 5.8: DL Query showing results of Competency Query 5.

Query Model Probed Competency
Status

Q6. Joint class enumeration (Individual instances) Complete

Figure 5.9: DL Query showing results of Competency Query 6.
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Query Model Probed Competency
Status

Q7. Joint class enumeration (Individual instances) Complete

Figure 5.10: DL Query showing results of Competency Query 6.

Query Model Probed Competency
Status

Q8. Class enumeration, Properties and Datatype Infer-
ences (logical assertions)

Complete

Figure 5.11: DL Query (left) and Inferred Property assertions (right) showing
results of Competency Query 8.
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Query Model Probed Competency
Status

Q9. Class intersections (Individual instances) Complete

Figure 5.12: DL Query showing results of Competency Query 9.

Query Model Probed Competency
Status

Q13. Class Enumeration (Individual Instances) Complete

Figure 5.13: DL Query showing results of Competency Query 13.
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Query Model Probed Competency
Status

Q14. Property Assertions (Logical Inferences) Complete

Figure 5.14: Inferred Property assertions showing results of Competency Query
14 (Pests and Diseases of Bambara groundnut).

Query Model Probed Competency
Status

Q15. Joint Class enumeration (Individual Instances) Complete

Figure 5.15: DL Query showing results of Competency Query 15.

The competency status for Query 5 is considered to be partial as only the rain-

Doctoral Thesis 200



Ontology-based Knowledge Systems

fall requirements are presented. The complete information on Bambara groundnut
growth requirements were asserted as combination of class instances, object and
datatype properties as shown in the results of Queries 4, 8 and 14.

Results for Competency Queries 10 — 12 were not found in the first instance
of the evaluation and therefore had to be added. We use the SWRL rules assertions
to extend the existing knowledge model to incorporate the required conditions for
the queries — as shown in the SWRL validation results in the next sub-section.
More precisely, Query 10 has been answered by the assertion of SWRL Rule No.
6. Followed by Query 11 which was answered by the assertion of Rules 8 and 10
respectively. Whereas, Query 12 was answered through the assertion of Rule No.
11. These queries and various other assertions were validated to show the usability
of SWRL rules in extending the UC-ONTO knowledge model as highlighted in
the SWRL validation table.

5.2.4 SWRL Rules Extension — Functional Evaluation

The UC-ONTO extension with SWRL rules is also described with example rules
written using the SWRL tab to specify complex domain facts, This gives more
flexibility through declarative class and property assertions in the UC-ONTO.
Fig. 5.16 shows the reasoner inferences on the SWRL rules (righ) highlighted
as ’Property assertions of the Bambara groundnut class.

Inferences on OWL assertions is also possible by invoking any of the DL rea-
soners available in the Protégé development environments. As mentioned earlier,
common reasoners include the Hermit, Fact++, Pellet reasoner etc. The Pellet
[193] is found to be more suitable for inference on SWRL rules. We briefly dis-
cuss the Reasoning and query processing in the next sub-section.

SWRL Validation Similarly, the user-defined SWRL rule assertions were vali-
dated by writing DL queries to check their resulting inference or otherwise. Some
of the Rule assertions from Fig. 5.16 are discussed below highlighting their syn-
taxes, purpose and the results of their execution validated:
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Rule 

 

SWRL Syntax 

R1.  BambaraGroundnut(?x), Properties(?y)  hasProperty(?x, ?y) 

  This rule asserts that every member of BambaraGroundnut (BG) class hasProperty in 

Properties class. 

Validation Result: see Fig. R3: Data property tab showing Reasoner inferences below. 

 

R2.  BambaraGroundnut(?b), CultivationRegion(?z), Sandy(?x), 

hasSoilType(?z, ?x)  hasBetterGrowth(?b, true), hasEasyHarvest(?b, 

true) 

  This rule will assert the Boolean data-types properties hasBetterGrowth and 

hasEasyHarvest of BG class to true if the Cultivation region of BG has a Sandy soil type. 

Validation Result: see Fig. R3: Data property tab showing Reasoner inferences below. 

 

R3.  BambaraGroundnut(?b), CultivationRegion(?z), LightLoam(?y), 

hasSoilType(?z, ?y) hasBetterGrowth(?b, true) 

  

 Here, if the Cultivation region has Light-loam as soil type, the rule will assert that BG 

has Better growth. 

 

Validation Result: see Fig. R3: Data property tab showing Reasoner inferences below. 
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Fig. R3: Reasoner inference on SWRL rules (Data properties asserted and Inferred) 

 

R4.  BambaraGroundnut(?y), Features(?x), Leaf(?z), hasFeatures(?y, ?x), 

isFeatureOf(?z, ?y) hasLeafType(?y, "Trifoliate") 
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  Here, if it is true that BG has a feature and the feature is a leaf, then it will assert that the 

leaf type is ‘trifoliate’. Since features such as leaf are not exclusive to BG, then unless 

the leaf individual is related to BG individual, the type ‘trifoliate’ will not be asserted. 

Note: Property assertions based on conditions, such as this, are impossible to be 

expressed in OWL 2 alone. 

 

R5.  Pods(?y), Root(?x), Seed(?z), containsPart(?x, ?y), containsPart(?x, 

?z), hasPart(?y, ?z)  FoodPart(?x) 

  This rule tests for ‘Food parts’ of BG from the set of individuals in the ontology, If a 

Root contains a Pod and also contains Seed and Seed and Pod are symmetrically related 

(with hasPart relation) then Root should be asserted in to the ‘FoodPart’ class of BG. 
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R6.  BambaraGroundnut(?x), DAS(?z), GrowthStage(?y), hasGrowthStage(?x, 

?y), hasAverageDaysAfterSowing(?y, ?b), hasCurrentDaysAfterSowing(?z, 

?a), equal(?a, ?b)  CurrentStage(?y) 

  This rule uses the SWRL built-in ‘swrlb: equal’ to compare the number of days BG is 

planted and the number of days asserted for the different growth stages (e.g. Flowering 

AverageDaysAfterSowing = 50) if it founds a match, then it will be asserted as the current 

stage of BG. 

 

(Querying all members of GrowthStage class)                    (Querying those that are also in CurrenStage) 

R7.  BambaraGroundnut(?x)  hasBestSoilType(?x, "Sandy"), 

hasOptimumPhValue(?x, "5.0 - 6.5"), hasOptimumRainfall(?x, 

"Moderate"), hasOptimumTemp(?x, "20 – 28oC") 

 

  This rule is an optimum condition test for Bambara Groundnut (BG). It can be 

implemented as a result of a query ‘‘what are the best conditions for BG farming’’ 
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R8.  BambaraGroundnut(?y), ModerateAnnualRainfall(?x), 

CurrentStage(?Flowering), hasRainfallRequirement(?y, ?x)  

High-Yield-and-Successful-Growth(?y, true) 

  This rule asserts to true that BG has High-Yield-and-Succesful-Growth if its current 

stage is flowering and rainfall is moderate annually. 

 

R9.  BambaraGroundnut(?x), Features(?y), Stem(?z), hasFeatures(?x, ?y), 

isFeatureOf(?z, ?x) hasStemType(?x, "Short-lateral stems which 

bears Leaves") 

  A version of rule 4 that asserts that if Stem is a feature of BG then it has a “Short-lateral 

stem which bears leaves” as the Stem type. 
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Wrong value (No results)                                                           Correct value(returns result) 

R10.  BambaraGroundnut(?y), ModerateSeasonal(?x), CurrentStage(?Flowering), 

hasRainfallRequirement(?y, ?x)   High-Yield-and-Successful-

Growth(?y, true) 

  Similar to rule 8, however, this rule asserts to true that BG has High-Yield-and-

Successful-Growth if its current stage is flowering and rainfall is moderate seasonally. 

(Has to be written separate since SWRL rules cannot have disjunctions. 

Validation Result: see Fig. R3: Data property tab showing Reasoner inferences above. 

R11.  BambaraGroundnut(?x), Features(?y), Root(?z), hasFeatures(?x, ?y), 

isFeatureOf(?z, ?x) hasRootType(?x, "Well developed tap-root") 

  A version of rule 4 that asserts that if Root is a feature of BG then it hasRootType “Short 

Well developed tap-root”. 
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Figure 5.16: Some SWRL Rules of the UC-ONTO and their inference

5.2.5 Decidability, Reasoning and query processing

Interactive ontology development environments such as Protégé allows for mea-
suring ontology performance both at the design stage as well as at run-time. This
is achieve via a reasoner to compute the ontology classification and ensure con-
sistency. As such, during query writing, a reasoner needs to be active and the
ontology classified before writing any DL Queries.

The conceptualization, hierarchy and user-defined SWRL rules were also vali-
dated by writing DL queries to check their inference or otherwise by the reasoner.
For example, the query result of rule 4.1, which determines the current ’growth
stage’ of a BambaraGroundnut plant is depicted in Fig. 5.17 (right). The re-
maining inferences are results of the rules listed in the SWRL rule tab as shown
in Fig. 5.16 — precisely those of rules 1, 2, 3, 8 and 10, on the rule tab. The rules
basically assert data-type properties to theBambaraGroundnut individual based
on the inference provided by the Pellet reasoner. Fig. 5.17 below gives a graphic
overview of the concepts, roles and rules specified in the UC-ONTO (left) with the
non-visualized assertions highlighted as inferences of Bambara groundnut prop-
erties.

Example DL-queries written at the run-time is depicted in Fig. 5.18. DL-
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Figure 5.17: Graphic view of concepts in UC-ONTO (left) and Inferences on
BambaraGroundnut individual (right)

queries allows writing Select queries in the Protege editor by simply writing class
names — hence the name DL-query. Conjunctions and disjunctions of classes
is also possible through the logical operators: ’AND’, ’OR’ — as shown in the
second DL-query, which evaluates the intersection of the ’GrowthStage’ and ’Cur-
rentStage’ classes of the Bambara groundnut concept. Unlike the first DL query,
which shows two instances of the ’GrowthStage’ class, the intersection of the two
classes is shown to contain only one instance, the ’Flowering Stage’. This shows
that the Current Growth Stage of the crop, as asserted by rule 4.1, is Flowering
stage. Similarly, non-visualized assertions are highlighted as inferences of Bam-
bara groundnut properties on the right of Fig. 5.18.

As explained in the Preliminaries Section in 2.2.1, Decidability refers to the
ability of a reasoner to classify an ontology and achieve inference over a finite
time. That is, given any ontology, a set of rules, and a sentence, the Reasoner can
check that the sentence is entailed by the ontology and rules. As such, where an
inference is achieved within a finite time, an ontology can be said to be decidable.
From the query results and reasoner inferences shown, it can be concluded there-
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Figure 5.18: DL-query Evaluations showing resulting Inferences

fore that the UC-ONTO is decidable. More importantly, the results for each query
is returned within a reasonable amount of time.

This is achieved through careful modeling and conceptualization, where the
domain concepts and their relationships are carefully added with proper restric-
tions through the domain and ranges. Furthermore, the SWRL rules can be kept
decidable through the DL-Safety restriction, where only concepts already defined
in the main ontology were utilized in wirting the SWRL rules. In order to maintain
the decidability of the ontology, the DL reasoner was consistently active through-
out the stages of the ontology development. Hence, any inconsistency introduced
can be normalized immediately without accumulating beyond tracking. Never-
theless, there are cases, where the development have to backtrack and restore to
an earlier consistent version of the ontology — especially in the early stages. A
good advice to ensuring a consistent ontology is not only to keep the reasoners
active for every development session but also to use the available interchangeably
to utilize their various strengths in achieving consistency.

5.3 The Onto-CropBase Evaluation

In order to measure how well an information retrieval system meets the require-
ment needs of its end-users, a series of formal and informal evaluations are nec-
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essary. We briefly discussed some of these evaluation strategies as compared to
the Onto-CropBase tool’s functionalities. Moreover, being an interactive gate-
way to relatively new sets of crops data, where the stakeholders may include both
experts and novice users, there is a need to ensure adequate usability of the Onto-
CropBase tool with end-user satisfaction. In this section, we discuss the evalua-
tion framework for our tool and present the preliminary evaluation results for the
prototype.

As highlighted in [194], usability of semantic search engines such as the Onto-
CropBase, can be evaluated based on the search query input types – such as nat-
ural language, view-based or facets, as well as type of end-users involved in the
evaluation process, i.e. novice or expert users. The onto-cropbase being ontology-
based and with natural language hierarchical presentation of search result offers
more user friendly queries. This is due to the guidance provided by the users as
the hierarchical data allows users to understand the structure of the data they are
exploring. Moreover, it allows users to input queries using keywords or sentences
as guided in the controlled natural language vocabulary – the ontology.

Performance Measurements for Semantic Search Engines Various method-
ologies exist for evaluating the efficiency of large Information Retrieval Systems
(IRS) and commonly used evaluation strategies includes the Cranfield Paradigm
[195], The TREC (Text Retrieval Conference) series [196]. While the Cranfield
experiments advocates the use of a benchmark called test collection, with a set of
search tasks and relevant judgements to measure the search results based on the
retrieved lists as compared to the original document collection. The TREC series
among others uses a set of standardized approaches such as interactive or user-
based retrieval, precision and recall, tasks-specific evaluation, as well as domain-
specific search evaluations, among numerous tracks. The domain-specific evalua-
tion – Dynamic domain track is a subject of interest for the future evaluation of the
Onto-cropbase. However, at this stage, a more generic semantic search engines
evaluation methodology as suggested by Elbedweihy et al. in [197] can be applied
in which the focus is on evaluating the following criterions: ’Query expressive-
ness’, ’Usability’ — including ’user satisfaction’ and ’efficiency’, ’scalability’,
’quality of documentation’, and ’search performance’ — including speed of exe-
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cution, precision and recall.
In the case of the Onto-CropBase tool, these suggestions were applied in the

course of two stages namely, (i) the Comparison evaluation, where the tool was
evaluated based on its available features and components as compared to existing
system and (ii) the Performance evaluation by domain experts to test the usability
of the tool. In the first case, the Onto-CropBase was evaluated conventionally,
by considering its pre-designed requirements and further comparing it with sim-
ilar tools that are considered successful in the related field, as discussed in the
following scenarios. In the second case however, being a prototype version, the
performance testing of the Onto-CropBase tool follows a flexible usability evalua-
tion approach, where the evaluation success is measured entirely based on the end
user’s perception and ability to effectively utilize the tool – something difficult to
be accurately measured.

5.3.1 Domain Experts Evaluation

When employed as evaluators in the usability evaluation of domain-specific knowl-
edge systems, domain experts can provide excellent insights into the effectiveness
of a knowledge model [198]. As such, domain experts walk-through’s were em-
ployed (in a natural setting) as part of the Onto-CropBase tool’s evaluation pro-
cess. Unlike in a uncontrolled usability testing condition, the ’natural setting’
allows users (testers) to freely interact with the system as they would in real-life.

As earlier mentioned, the Onto-CropBase tool has been primarily designed
to be used by users seeking first-hand information on underutilized crops, rather
than for software agents. To evaluate the suitability of the Onto-CropBase tool
and the quality of information provided by the ontological knowledge system, two
approaches were considered. The first approach employ the services of domain
experts — including those actively involved in the domain knowledge modeling
while the second test condition involves novice users. In either case however,
some level of technical expertise is recognized, as all participants are familiar with
traditional search engines. An average usability evaluation session of 15 minutes
is designated per user with the first 5 minutes spent introducing the tool and the
possible query patterns it accepts (keywords, concept names or short sentences
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containing relevant terms in the ontology). The next session allow users to carry
out tasks without any help from trainers and in the end the users were asked to
express their concerns or satisfaction verbally or by filling out the usability test
form as shown in the Appendix — Section A.2.

5.3.1.1 Tasks and Queries

Information searching in the Onto-CropBase tool basically involves natural lan-
guage concept searching, where users can simply type sentences containing search
keywords and the query engine searches the linked data (the RDF ontologies) for
matching concepts and their related entries. As shown in the search results cap-
tured in Fig. 4.12, test queries ranges from domain-specific keywords, to short
natural language sentences containing relevant terminologies. Moreover, where
users were allowed to take imaginative steps to explore the Onto-CropBase tool.
However, the following basic tasks were selected both for the novice and expert
users:

(i) Find all underutilized crops available in the UC-ONTO — A simple task
to explore the different ontological datasets using one keyword ’underuti-
lized’.

(ii) Find the details of the Bambara groundnut information — This task is
aimed at testing the users’ understanding of the results presentation flow
from the search engine. As search results are presented as list of subjects
with clickable links, the user is expected to simply click a subject to reveal
its detailed information.

(iii) Find and compare the Optimum germination temperature of Moringa and

Bambaragroundnut — While this task involves two different datasets and
may be tricky even to technical users, a simple query consisting of the key-
word ’optimum’ followed by the name of the crops will suffice to get the
relevant search results. Thanks to the ’concept search’ feature of the Onto-
CropBase semantic search tool.

Such basic tasks were performed during the evaluation process to test usability
of the tool as well as its effectiveness in answering user queries. However, the fol-
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lowing list describes the basic assumptions upheld during the usability evaluation
of the Onto-CropBase prototype:

Assumptions In line with the general procedure of software evaluation paradigm
and in order to establish an effective scope that will simplify the evaluation pro-
cess, some of the following facts were presumed regarding the onto-CropBase
tool:

• Users: both novice and experts are assumed to have basic understanding of
information searching using computers.

• Only OWL ontologies (UC-ONTO) and local RDF datasets stored in our
local host server were used as the test data with no external RDFS or remote
Sparql end-points.

• Location data is subject to the accuracy of latitude and longitude supplied
in the knowledgebase.

• Due to the size and restrictive nature of the vocabulary involved, the auto-
mated evaluation such as the speed of query execution, precision and recall
are assumed to be satisfactory. As such no detailed metrics are important in
this stage.

5.3.1.2 Data Capturing

In order to collect user responses, a usability test form is provided as an option.
In other cases, especially with the domain experts, a verbal interview is recorded
based on the task and questions provided in the usability test form — see Sec-
tion A.2 of the Appendix. As shown in the form, a simple demographic data is
collected to identify the user expertise, position, department and/or specialization.
This helps to identify the users as either underutilized-crops domain experts or as
domain novices. The next section of the form explains the tasks to be undertaken
during the testing process as described earlier in Section 5.3.1.1. This is followed
by the acceptability measurement where a simple scoring scale is used to measure
how well the users agree or disagree to the following statements regarding the
components and functionalities of the Onto-CropBase tool:
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• Domain coverage and Datasets are sufficient.

• Information presented is relevant.

• Information presented is useful and relatively accurate.

• Searching (Query) style is clear and easy to use.

• User Interface (labels, fonts, instructions) is clear and Informative.

• Search results presentation is understandable.

• Navigating the search tool and results is easy.

Lastly, the domain experts were asked to identify specific features or compo-
nents as liked-features, the disliked features and additional features, if any, they
would like to see in the next version of the system.

Even though there were no time limits during the experts’ evaluation process,
the domain experts identified some usability problems and offer few design sug-
gestions. However, much insights were provided into the structure of the knowl-
edge presented by the search engine as well as comments on the validity of the
information delivered. Nevertheless, the domain experts’ suggestions, such as
those recorded in Table 5.2, were considered highly critical and therefore given
much priority in the subsequent design and development. More detailed evalua-
tion results are discussed briefly in the following sub-headings:

5.3.1.3 Onto-CropBase Usability — Labels, Functionality, Navigation and
Visual Outputs

From the summary of responses, all five domain experts and seven novice users
involved agreed on the question that the information provided by the tool is ’rel-
evant’ and that the tool is ’simple’ to use. In essence, the usability of the Onto-
CropBase tool was found to be acceptable even for non-technical experts. Sim-
ilarly, almost all the end users exposed to the Onto-CropBase tool were able to
freely navigate its functionalities without much intervention.
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Figure 5.19: The Onto-CropBase interface showing the search results navigation
and Map interface

Moreover, the user feedbacks highlighted some of the ’most-liked’ features of
the tool to be: simple search interface, familiarity of search language, the map fea-

ture, grouping and paging of search results among others (See Fig. 5.19. Whereas
some features were not favored especially by the expert users as they complaint
against the restrictive nature of the search domain, lack of look-up queries, and

storage of query results, lack of ordering os search results and lack of image to

show concept hierarchies. These sentiments are further summarized in Table 5.2
and categorized according to the relevant component of the Onto-CropBase for
clarity and further actions.

5.3.2 Comparison with Other Semantic Search Engines

As part of the preliminary validation and to ensure that desired functionalities are
provided by the Onto-CropBase tool, we compare its features with those of ex-
isting ontology-based knowledge systems. For effective validation, we focus on
relevant existing systems from the field of life-sciences, such as the Crop Ontol-
ogy curation tool [52], and Semantic Faceted Search Engine (SemFacet) [133].
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Onto-CropBase
Component

Approved
Features

Dislikes

Domain coverage and
Datasets

Precision of facts Restrictive nature of the
search domain

Input and Query Style Natural language
search

No look-up for frequent
searches

User Interface and
Input

Simplicity of Search In-
terface

—

Query Results and
Presentation Style

The Map interface

Page grouping of
search results

No image presentations

Unordered Query
results

Table 5.2: User Perceptions of the Onto-CropBase Features

The comparison is presented in Table 5.3. It shows that our Onto-CropBase tool’s
basic functionalities, such as the concept-based search and navigational presenta-
tion of search results, are relevant and effective approaches as employed in those
systems. In addition, the map-view feature offered by the Onto-CropBase tool,
its simplicity, as well as the highly precise search results are commendable for
the semantic search system. This is partly, due to the domain-specific ontolo-
gies employed and the fact that the global ontology (UC-ONTO), which guides
the conceptual definitions is also purposely and carefully developed for the Onto-
CropBase tool.

Features Onto-CropBase Crops
Ontology [52]

SemFacet [133]

Knowledge Domain Crops (Specific) Crops (Generalized) Life-Sciences
Search Type Keyword + Concept Keyword + hierarchy

navigation
Keyword + Faceted
navigation

Ontology Format OWL2 + RDF OBO OWL2 + RDF
Result Visualization Text + Map Text + Image Text + Image
Data Curation None Keyword + hierarchy None

Table 5.3: Comparison of features for Onto-CropBase, Crop Ontology and Sem-
facet.
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However, we observed the need to provide a visualization of hierarchical rela-
tions between concepts to enhance the information presentation— a need already
mentioned by some of our end users. Another useful functionality not currently
covered by our tool is the implementation of an ’ontology-based faceted search
mechanism’. This is important in ontology-based searches as it helps to portray
the inner structure of the ontology as a guide for efficient probe of the knowl-
edgebase. Nonetheless, we considered these functions to be of lower priority as
compared to the domain-specific integration of the ontological knowledge models
and the current features of the Onto-CropBase search engine. Though they may
well be included in the future releases of the tool.

5.3.3 Scalability of the Onto-CropBase Tool

In terms of scalability, the Onto-CropBase being a linked-data based knowledge
system is by nature scalable. This is due to the fact that the SPARQL federated
queries, which involve all available components of the knowledgebase represented
by their ’prefixes’, are designed to be explored for semantically related concepts.
As such only a search term that have information in all component ontologies will
result in data generated from the entire ontologies. While the searching always
goes through all available knowledge sources thereby making the average search
time to be the same for all queries, the search results however depends on the
universality of the search concept in the knowledge base. That is, where a search
term is contained in many linked ontologies, a larger search result is presented.
Whereas, if the search term only involves few linked data then a smaller search
result is presented. As such, typical search results (as shown in Figures 4.11, 4.12,
etc) shows the inherent scalability function of the Onto-CropBase search engine,
whereby large result-sets were presented in cases where the ’search concept’ in-
volves querying larger ontologies, and vice-versa.
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5.4 The Fuzzy-Temporal SWRL Model Evaluation

5.4.1 FT-SWRL Ontology Modularization, Depth and Struc-
ture

From the conceptual hierarchy of the FT-SWRL ontology, depicted in Fig. 5.20
below, it can be seen that the ontology model is highly modularized to enable ef-
ficient representation of time domain as well as representing imprecision in time
expressions. The FT-SWRL model defines fuzzy temporal concepts and how they
relate to each other and the temporal facts that can utilize them from a domain
ontology. It defines specialized ontologies such as, Temporal Concepts, Tem-

poral propositions, Resources, Fuzzy Temporal Concepts, Fuzzy Counts, Fuzzy

Granularity, etc. These were structured together to form a larger ontology fuzzy-
temporal model for representing temporal uncertainties in domain ontologies such
as the UC-ONTO. Individual instances added to the FT-SWRL ontology to rep-
resent indivisible fuzzy-temporal objects (as shown earlier in Fig. 4.14 includes
about, approximately, few, around, before, etc. among others. Natural language
comments and annotations were provided for the concepts to serve as first-hand
documentation for ease of use of the FT-SWRL ontology model as exemplified in
Fig. 5.22.

Figure 5.20: A conceptual hierarchy visualization of the FT-SWRL Ontology.

AS the FT-SWRL model is built to incorporate a time ontology model, it goes
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deep and wide in representing the time domain as well as the fuzzy-temporal do-
main. Two main classes in the ontology are the Temporal Concepts and the Fuzzy
Temporal Concepts. As imprecise temporal expressions can not be explicitly rep-
resented without first representing the temporal domain, the time ontology [151]
structure was adopted to serve as the starting point for the temporal concept defini-
tions. This is further extended to incorporate the Date-time description as well as
Valid time description leading to the formulation of classes such as the Temporal
Duration class, which defines the time expressions that incorporates granularities
(e.g. 2 weeks) and Temporal Entity — which have Time Instants (e.g. 2:00 pm)
and Time Intervals such as 13:00 -14:00.

Similarly, the Fuzzy Temporal Concepts class contains such sub-classes as
Fuzzy Temporal Entity, which defines Fuzzy Time Interval and Fuzzy Time Inter-
vals. Other classes include the Fuzzy Modifier class, which holds the imprecise
temporal expressions (E.g. a few, about, around, etc) that are often employed to
modify a simple definite temporal statement into an imprecise one. Furthermore,
the Fuzzy Count and Fuzzy Granularity classes were defined to contain those im-
precise granularities such as always, cycles, every-time, etc. Another important
class is the Fuzzy Membership Function which contains the mathematical model
representation of members of the Fuzzy Modifier class, including their Member-
ship Function Name (mfName) and Membership Function Curve (mfCurve).

5.4.2 FT-SWRL Ontology Metrics

As described in the UC-ONTO evaluation in Section 5.2.2, a look at the ontology
metrics can help to ascertain the expressiveness, number of concepts, individuals,
data values and the relationships contained in an ontology. As shown in Fig.
5.21, the FT-SWRL ontology have over 700 axioms with 43 different classes,
67 different object and property counts as well as 64 individual assertions. Also
similar to the UC-ONTO there is a high ratio between the concepts and axioms
count, which shows that the ontology is logically sound beyond simple list of
terminologies.

The expressiveness metric of the FT-SWRL ontology borders around theALCH
OIN (D) algorithm. This shows that the ontology is moderately expressive. The
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Figure 5.21: FT-SWRL Ontology Metrics showing Expressivity, Axioms, classes
and property count.

expressiveness equivalence of theALCHOIN (D) algorithm implies that the FT-
SWRL Ontology model consists of an ’Attributive Language with Complement
ALC’ with the Role and Hierarchies H. This is extended with expressiveness of
enumerated classes O, inverse role assertions I, cardinality restrictions N , and
data type assertions D. The OWL expressiveness algorithm is discussed in details
in Section 2.2.3.2.

5.4.3 FT-SWRL Model Built-ins Usability and FT-SWRL Rules
Format

As described in [186], user-defined SWRL built-ins can be used directly in SWRL
rules. However, in order to use them and their extensions, such as the SWRL-FT
built-ins, they need to first be imported into the main ontology by importing their
definition — in this case, the SWRL-FT ontology. Final implementation of the
SWRL-FT ontology requires defining the fuzzy temporal built-ins as instances
of the original swrl:Builtin class. This is followed by their corresponding java
implementations through the SWRLBuiltInBbridge 3. The SWRLBuiltInBridge
is a component of the SWRLTab (available in the protégé ontology editor) that
allows the manipulation of SWRL built-ins using Java. Relevant built-ins are
usually grouped together in a single OWL file — which can then be imported
into any domain ontology for utilization. Considering the scope and goal of this
thesis, which is to define an extended ontology model for representing a Fuzzy-

3http://protege.cim3.net/cgi-bin/wiki.pl?SWRLBuiltInBridge#nid88T
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Temporal expressions, the final implementation stage is left for further exploration
and evaluation in the future works as discussed in Section 6.2.

Nevertheless, a detailed discussion on the fuzzification of the fuzzy temporal
built-ins is presented in Section 4.4.3. However, in what follows we give some
example FT-SWRL model classes and properties in Table 5.4 to highlight possible
usability of the built-ins library. This is followed by example FT-SWRL rules to
explain the formats by modeling some of the imprecise temporal facts on Bambara
groundnut crop as highlighted in the FT-SWRL model motivation in Section 3.5.1.

Fuzzy Temporal Class Sub-classes Example Terms (ITEs)/
Phrases

FuzzyTemporal-
Proposition

Event time (e.g. hasGermination-
Time), Date of Events (e.g has-
DateOfSowing), etc.

FuzzyTime FuzzyTimeInstant
FuzzyTimePe-
riod

Several hours, within three
weeks, This Weekend, before
2:00pm, etc.

FuzzyCount Cycles, Next, Previous, this, Sev-
eral, within, etc.

FuzzyGranularity SetGranularity
DateGranularity

Weeks, Fortnight, Noon, Quarter,
Weekend, etc. (granularities not
defined in the Granularity class)

SetGranularity Yearly, Monthly, Daily, Weekly,
Hourly, Per-minute, per-second,
etc.

DateGranularity Ago, Earlier, Lately, Nowadays,
Recently, Past, Since, Until, etc.

FuzzyModifiers about, around, within, a few, ap-
proximately, before, after, dur-
ing, etc.

MembershipFunction mfName
mfCurve

Bell, Gaussian, Sigmoid, Z-
function, etc.
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Fuzzy Temporal Class Sub-classes Example Terms (ITEs)/
Phrases

Table 5.4: Example of Fuzzy Temporal SWRL Entities

The Table above shows the FT-SWRL entities for handling imprecise tempo-
ral expressions (ITEs), which is a pioneer reference model for representing fuzzy
temporal domain knowledge in OWL ontologies. As the model is aimed at model-
ing those ITEs that are common to all knowledge domains and due to the reusable
nature of ontologies, as discussed in details in Section 2.3 of the literature, the
FT-SWRL model is thus applicable as a reusable reference model to all and not
just the Underutilized Crops domain.

Figure 5.22: A conceptual hierarchy from the Protégé ontology editor showing
fragment of FT-SWRL Ontology.

As highlighted in Fig. 5.22, natural language definition of the concepts were
provided as annotations and comments to aid users in understanding the FT-
SWRL model. More example use of the fuzzy temporal SWRL concepts is high-
lighted in the sample FT-SWRL rules below:

1. ”Bambara beans take around 1 to 2 weeks to germinate”
BambaraBeans (?bb)∧ hasGerminationTime(?bb, ?gt)∧ fuzzytemporal:around(?gt,
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’2’, temporal:weeks) −→ GerminationPeriod(?bb, True).

2. ”Bambara beans germinate within 15 days from the date of sowing”
BambaraBeans (?bb)∧ hasDateOfSowing(?bb, ?dos)∧ fuzzytemporal: within(?dos,

’15’, temporal:days) −→ GerminationPeriod(?bb, True)

3. ”Bambara beans will germinate in few weeks if moderate rainfall contin-
ues”
BambaraBeans (?bb) ∧ hasModerateRainfall(?bb, ?mdR) ∧ hasGermina-

tionTime(?bb, ?gt) ∧ fuzzytemporal:few(?gt, temporal:weeks) −→ Germi-

nationPeriod(?bb, True)

4. ”Seeds stored for about12 months germinate well, but longer storage results
in loss of viability”
Seed (?s) ∧ hasStorageTime(?s, ?st) ∧ fuzzytemporal:before(?st, 12, tem-

poral:months) −→ GerminationPeriod(?bb, True).

Seed (?s) ∧ hasStorageTime(?s, ?st) ∧ fuzzytemporal:after(?st, 12, tempo-

ral:months) −→ GerminationPeriod(?bb, False)

5.5 Discussion and Summary

In the first major section (5.2) of this chapter, an ontological knowledge model
for representing underutilized crops information using OWL and SWRL rules is
evaluated. The framework of the model, presented in Section 3.2, describes on-
tology (UC-ONTO) engineering and standardization approaches as well as the in-
tegration of OWL ontologies with rules for added expressiveness. Regarding the
techniques for ontology generation, previous chapters have explored the method-
ologies and experimentations that highlights the process of creating ontologies
from scratch, from other heterogeneous data sources, through competency ques-
tions, as well as the benefits of ontology reuse — as shown in Section 4.2.1. The
practice of generating domain-specific concepts through competency questions is
highly emphasized with the detailed methodology and practice presented in the
preceding chapter. Whereas the validation of ontologies using the competency
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questions is discussed in this chapter and shown to be a good source of compe-
tency queries for evaluating the contents and structure of ontologies as well as
a good foundation for rule formation. Ontology standardization is as important
as the knowledge acquisition process. Different standardization approaches were
implemented including alignment, merging and natural language annotations of
domain concepts.

Based on the reviewed literature, experimentation and validations of the rule
assertions of UC-ONTO, SWRL Rules are shown to be necessary in OWL on-
tologies for expressing complex scenarios and modeling user queries to utilize
the ontological knowledge base. This is chiefly due to the semantic compatibility
between the two languages. Using DL-queries and Reasoner inferences, Section
5.2.4 of this chapter presented an evaluation that consists on querying the knowl-
edge base to check that the query results are consistent with the added rules. This
includes validation of the ontology and SWRL rules by writing appropriate DL
queries. In conclusion, ontology development in the agricultural domain no doubt
requires knowledge reuse of existing upper domain ontologies. Where the inten-
tion is to utilize the knowledge base for decision support, competency questions
positively influences the knowledge elicitation, modeling process, as well as the
validation of ontologies.

Sections 3.4 and 4.3 presented the methodology and case study of the Onto-
CropBase semantic search engine respectively and Section 5.3 — of this chapter
describes the evaluation process of the tool. The Onto-CropBase tool demon-
strates an ontology utilization approach, which is semantic web application for
browsing the underutilized-crops ontology (UC-ONTO) extended with relevant
linked data in RDF. Basic tool’s functionalities provided a web-based user inter-
face with a search engine for querying the ontology-based knowledge model. At
the center of the knowledgebase, is an OWL 2 ontology, serving as a global ontol-

ogy containing shared concepts from integrated local ontologies or RDF datasets.
The functionalities of Onto-CropBase as validated through domain experts and in
comparison with relevant tools, provided for ease of use and help in asserting the
effectiveness of the Onto-CropBase as an ontology-based search engine. With a
simple search space, click-able links for exploring the results and page-wise pre-
sentation of the search details with informative captions and labels, gives the tool
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a natural feel-and-touch of a search engine. In essence, the preliminary evalua-
tion of the tool, shows it can serve as first-hand information portal for basic facts
on underutilized crops – one basic requirement of the thesis. Though, there are
still open issues to be considered in the future as discussed in the ’limitations and
future works’ in Section 6.2 of the following chapter.

As the effectiveness of the Onto-CropBase search results depends entirely on
the data source (UC-ONTO), which in turn depends on the expressive powers
of the OWL/SWRL language (see Section 2.2.3.2), a language extension of the
SWRL formalism was proposed in Section 3.5 with a case study example imple-
mented in Section 4.4, and subsequently the ontology model evaluated in Section
5.4 of this chapter. The FT-SWRL model provides a knowledge representation
formalism for managing temporal imprecisions in domain knowledge. With the
current OWL/SWRL combination, temporal information can only be stored by
associating each piece of knowledge with a fixed time stamp. However, when
capturing domain expert’s narratives involving imprecise temporal expressions, it
becomes imperative to associate some sense of vagueness to the captured temporal
facts for accurate representation of the domain knowledge. Due to the expressive
limitations of the current OWL/SWRL formalism, time-dependent vague expres-
sions of domain facts cannot be captured into the UC-ONTO. Numerous exten-
sions were reviewed in Section 2.9 and yet imprecise temporal extension of SWRL
is missing. To this end, the new language extension of SWRL, the FT-SWRL
model was proposed and the ontology model implemented. The ontology defines
the required language terminologies and built-ins to serves as reference standard
for fuzzy temporal modeling. The validation process in Section 5.4 also discusses
the fuzzification process (with examples) of some of the newly defined built-ins
to support their semantic evaluation using carefully designed fuzzy membership
functions and inference rules. Furthermore, example FT-SWRL rules were also
presented to demonstrate the rules format. In conclusion, considering the depth,
modularity and size of the proposed FT-SWRL model, it can thus serve as a formal
specification for handling imprecise temporal expressions in OWL ontologies.

The following chapter presents the thesis conclusions, summarizing the major
contributions, their limitations and suggestions for improvement as future works.
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Chapter 6

Conclusion

The thesis presented a study on ontology-based knowledge systems and explored
the approaches and practice of semantic knowledge modeling towards an ontology-
driven CropBase knowledge system. The project involves three major studies in
the areas of ontology modeling, ontology utilization, and ontological language ex-
tensions. In the area of ontology modeling, a framework for representing domain
knowledge using OWL and SWRL rules was presented leading to the development
of a pioneer SWRL-enabled Underutilized Crops Ontology (UC-ONTO) in OWL.
In the area of ontology utilization, an ontology-based semantic search engine was
proposed leading to the realization of the Onto-CropBase semantic search tool
that utilizes the UC-ONTO as a knowledge base. While in the ontology language
extension, the expressive limitations of the OWL/SWRL combination were ex-
tended with the proposal of the Fuzzy Temporal Semantic Web Rule Language
(The FT-SWRL model). This leads to the development of the first fuzzy tempo-
ral SWRL ontology that defines the OWL entities and built-ins for representing
imprecise temporal expressions in ontologies.

The motivations of the thesis and research context were introduced in Chap-
ter 1, followed research questions, aims, and objectives among others. While
in Chapter 2, the literature behind the semantic web technologies and the re-
lated methods in ontology-based knowledge modeling were explored in details.
Ontology-based knowledge modeling task was categorized into three: ontology
engineering from domain facts, ontology standardization for improvement, and
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extending ontologies with the expressiveness of logic programming rules for mod-
eling complex domain knowledge. Chapter 3 discusses the research methodolo-
gies highlighting the ontology engineering methods for the UC-ONTO, the Onto-
CropBase design and development approaches as well as the FT-SWRL model
design approach. Chapter 4 then presented the case studies on the implementation
of the UC-ONTO, the Onto-CropBase and the FT-SWRL model highlighting the
experimentation details and implementation experiences. Chapter 5 presents the
analysis and discusses the evaluation of the case study results.

In what follows, the remainder of this chapter summarizes the major contri-
butions of the thesis and their technical limitations followed by suggestions for
improvement. Lastly, the possible directions for further research were discussed.

6.1 Summary of Major Contributions

The initial contribution, mainly presented in Sections 3.2, 4.2.1 and 5.2, involves
the development of the first OWL-based, SWRL-extended underutilized crops on-
tology (UC-ONTO) [184], which serve as a formal specification of facts repre-
senting the underutilized crops domain knowledge. Notable design choices in-
volves the use of competency questions for domain knowledge gathering and
conceptualization. With regards to the ontology development methodology, we
recommended the tasks of ’ontology versioning and assembly’ to be considered
during ontology development. The ontology versioning helps to manage the prob-
lem of tracking ontology changes, while ontology assembly describes how those
changes can best be assembled into a coherent domain specification. Following
investigations of the expressive capabilities of the OWL ontology language, it
was concluded that the ontology development requires the integration with logic
programming (LP) rules for added expressiveness. This thesis shows how the se-
mantic web rule language (SWRL), as an examplar LP rule, can be employed to
extend the OWL ontologies. Based on our observation however, the current us-
ability limitations of SWRL rules and its expressiveness extensions may be due
to the following reasons: (i) Lack of readily-available reasoners that can draw
inference on the SWRL extensions within decidable portion of the language. (ii)
Modeling real-world problems using SWRL is still at the research stage, with little
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large-scale developmental efforts. (iii) Furthermore, the availability of alternative
rule and query languages such as SPARQL and RuleML that are able to achieve
(though usually in a turnaround fashion), some of the current limitations of the
SWRL formalism.

Another major contribution, presented in Sections 3.4, 4.3 and Section 5.3,
deals with the issue of ontology utilization through ontology-based semantic search-
ing. While successful ontology development efforts helps to strengthen the se-
mantic knowledge modeling and presentation, succeeding challenges involves the
retrieval and dissemination of the ontology knowledge to non-technical stakehold-
ers for informed decision-making. The thesis addresses this challenge through
the Onto-CropBase tool, a flexible semantic web application for exploring the
underutilized-crops ontology (UC-ONTO) — integrated with other relevant crops
datasets in RDF. The tool provides a web-based user interface with a search engine
for querying ontology-based knowledge models. At the center of the knowledge-
base, is the OWL ontology (UC-ONTO), serving as a global ontology containing
shared concepts from the integrated local ontologies (the linked RDF datasets).
Preliminary evaluations confirms that the Onto-CropBase can serve as a first-hand
information portal for information on underutilized crops and their products. Fur-
thermore, the tool was also found to be usable even to non-technical or domain
experts.

From the ontology utilization approaches, the Onto-CropBase implementation
and usability assessment, it is clear that ontology standardization is as important
as the knowledge acquisition process itself. This leads to the investigation of var-
ious ontology standardization approaches as discussed in Section 2.5.4. The UC-
ONTO standardization approaches recommends the domain experts’ validation
of fact assertions, alignment with upper level ontologies as well as an ontology
standardization approach through Competency Questions posed to the ontologi-
cal knowledgebase, to ascertain its quality of response as compared to the domain
experts’ opinion — see Section 5.3..

The limitations of the Web Ontology Language (OWL) and the Semantic
Web Rule Language (SWRL) for added expressiveness leads to the study of the
SWRL’s expressiveness extensions presented in Section 2.9. This in turn leads to
the next major contribution of the thesis, which involves the engineering of the
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pioneer fuzzy temporal extension of SWRL (the FT-SWRL model) for managing
temporal uncertainties commonly found in domain knowledge. This is particu-
larly useful in order to capture the true nature of domain processes and domain
experts’ narratives, which are usually imprecise and time-dependent. Therefore,
Sections 3.5, 4.4, and 5.4 presented the FT-SWRL model design approach, the
case study implementation, and the evaluation of the model respectively. The
fuzzy temporal extension to the Semantic Web Rule Language (SWRL) com-
bines fuzzy theories based on the valid-time temporal model to provide a ref-
erence model for managing imprecise temporal expressions in OWL ontologies.
FT-SWRL extension introduces a fuzzy temporal model for the semantic web,
which consists of the FT-SWRL ontology and FT-SWRL built-ins for the syntac-
tic and semantic definition of the fuzzy temporal concepts respectively. Reasoning
paradigm for the FT-SWRL constructs is discussed, which involves the fuzzifica-
tion of selected temporal expressions using carefully selected membership and
weight functions followed by example rule assertions to highlight the FT-SWRL
rules format. Considering the conceptual definitions, depth, modularity and ex-
pressiveness of the FT-SWRL ontology, led to the conclusion that the pioneered
FT-SWRL model can serve as a formal specification for handling imprecise tem-
poral expressions on the semantic web.

6.2 Limitations and Suggestions for Improvement

As both the ontologies and their representation formalisms are ever-evolving, it
is believed that the works presented in this thesis are not the end but beginnings
of more research in ontology-based knowledge systems. Moreover, the contribu-
tions also raised new questions in some cases and leave room for improvements
in others.

From the reviewed SWRL expressivenes extensions for example, there is a
need to further evaluate the practicalities of the theoretical SWRL extensions re-
viewed and further validate their decidability and inferences. There is also the
need for a special fuzzy reasoner for checking the completeness of these theo-
retical fuzzy SWRL extensions. Standardization of these SWRL extensions is
another research gap identified in the review, as some of the extensions can only
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be utilized in specific application domains while others were found to be generic.
With the continuous development efforts on the expressive powers and usability
of SWRL formalism, it can undoubtedly evolve into a complete ontology rules
language for the Semantic Web community, one that is both comprehensive in its
expressive powers and computationally viable in achieving inference.

From the Onto-CropBase tools point of view: Regarding the ontology-based
semantic search tool, future efforts can focus on enriching the backend model with
more crops-related RDF datasets and SPARQL endpoints, to allow integration of
remote datasets for comprehensive search results. This will require migrating the
Mediator component of the semantic search tool from the current ’Apache Jena’
version to the new ’Apache Fuseki’ version — which its developers claimed can
deliver local ontologies as RDF data over http. Hence, automating the data inte-
gration process and further expanding the knowledgebase of the onto-CropBase
search engine. Moreover, the user interface can be enhanced with navigation-
hierarchy or facets to highlight the structure of the knowledge base for more effi-
cient user queries. Lookup and comparison tables can also be designed to compare
some of the domain facts, such as comaparing the nutritional info of underutilized
crops with that of major crops. Lastly, a more specialized location-based infor-

mation on underutilized crops can be added to highlight soil types and climate
requirements, among other features.

From the Fuzzy Temporal SWRL (FT-SWRL) Model point of view: More
imprecise temporal expressions need to be incorporated into the FT-SWRL model
for comprehensiveness. A complete reasoning system for the FT-SWRL rules also
need to be considered in order to achieve the required fuzziness in domain knowl-
edge modeling. This can be achieved through modifying the existing ’SWRL-API
Temporal model’ to support the newly-defined fuzzy-temporal operators. More-
over, by leveraging the implementation mechanism for SWRL extensions, such as
described in [199], the FT-SWRL model can be efficiently documented and fully
realized to allow modeling and reasoning over imprecise temporal domain knowl-
edge. Furthermore, a fuzzy temporal semantic web query language (FT-SQWRL)
extension may as well be considered in the future for exploring FT-SWRL ex-
tended ontologies.
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6.3 Concluding Remarks

From the thesis contributions, summarized in 6.1, most of the proposed research
questions have thus been elicited. In particular, the UC-ONTO design, devel-
opment methodologies and case study, affirms that ontologies can be effectively
utilized in the agricultural domain as a formal specification of the domain knowl-
edge. Similarly, the ontology Standardization approaches and results show that
’ontology reuses’ and their alignment with upper-level ontologies are particu-
larly necessary for efficient modeling of the domain knowledge. Furthermore, the
UC-ONTO’s extension with the expressiveness of SWRL rules, concludes that
comprehensive domain modeling using OWL ontologies ultimately requires the
declarative assertiveness of logic programming rules.

Furthermore, the FT-SWRL model particularly the Fuzzy temporal ontology,
which provides the hierarchical definition of fuzzy temporal terms and their re-
lationships, helps to conclude that OWL and SWRL formalisms as ontology de-
velopment languages can be enhanced with additional expressiveness constructs
— in this case, through the fuzzification of interval-based temporal logic, to ef-
fectively represent imprecise temporal expressions inherent in domain knowledge
description.

In essence, the thesis findings conclude that ontologies can be employed to
standardize domain knowledge representation and further shows that Semantic
Web applications (such as the Onto-CropBase tool) can utilize such domain on-
tologies with relevant linked-data to provide efficient and reusable information
systems for informed decision-making on Underutilized Crops and their related
products.
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Appendix A.

A1. More Results in Pictures

Figure 6.1: Bambaranut Instance (middle) with inferred class hierarchy (left) and
Property assertions (bottom right)
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Figure 6.2: Bambara groundnut assertion showing Anonymous ancestors and in-
ferred class members

Figure 6.3: Ontograph showing fragment of UC-ONTO hierarchy
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Figure 6.4: Object Property assertions showing Reflexivity with Domain and
Range

Figure 6.5: Rules interface containing some user-defined SWRL rules.
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Figure 6.6: Graph-viz Protégé plug-in showing top-level Concepts of the UC-
ONTO with their hierarchies
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Figure 6.7: 2015 Research Showcase Poster - Onto-CropBase

Figure 6.8: 2014 Research Showcase Poster - Future Web for the Future Crops
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A2.   Domain Expert’s Evaluation  

Name (Optional)  

Department/ Specialization  

Position  

Age (Optional)  

Tasks: 

Kindly explore the Onto-CropBase Semantic Search Engine for relevant information as guided by 

the Underutilized Crops Ontology (UC-ONTO) introduced earlier and perform the following tasks: 

 

1) Find all underutilized crops available in the UC-ONTO. 

2) Find the details of the Bambara groundnut information. 

3) Find and compare the Optimum germination temperature of Moringa and Bambara groundnut. 

Component/Features Strongly 

Disagree  

Slightly 

Disagree 

Neutral Slightly 

Agree 

Strongly 

Agree 

Domain coverage and Datasets are sufficient      

Information presented is relevant      

Information presented is useful and relatively 

accurate. 
     

Searching (Query) style is clear and easy to 

use. 
     

User Interface (labels, fonts, instructions) is 

clear and Informative.  
     

Search results presentation is understandable.      

Navigating the search tool and results is easy      
 

Fill out below the features/components you like, the dislikes and those additional features you would 

like to see in the next version of the system. 

Liked Features Dislikes Additional Features 
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Appendix B. 
 

B1.  Summary of Research Activities and Awards 

No. Planned Milestone Milestone due 

(MM/YY) 

Obstacles or Issues 

1. 1 Initial Project Plan  Nov- Dec. 2013   

2. 2 Project Requirements Design and Specification Jan - Feb. 2014   

3. 3 Formulation of Research Question. 
 

March - May 

2014 

  

4. 4 Literature Review on Crop Ontologies and the use of 

Semantic technologies for domain knowledge 

modeling (to be published). 

 

Review on Logic Programming and Rule Languages – 

focusing on the Description Logics (DL), Horn-logic (HL) 

and their family of languages. 

June - Oct. 

2014 

Not much is published on 

crop-related semantics. 

5. 5 Initial Experiment: Development of Underutilized 
Crops Ontology Model -UC-ONTO version 1. 
 

Results presented at a workshop in Joint International 

Semantic-Web Conference (JIST 2014), Chiang Mai, 

Thailand. 

Oct. - Dec. 

2014 

Lack of readily available 

domain (underutilized 

crops) data 

6. 6 Ontology standardization and integration with other 

linked-open-data sources (e.g. FAO’s geopolitical 

ontology). 

Jan. - Mar. 

2015 

  

7. 7 Study on the 'Logic', 'Proof' and 'Trust' Layers of the 

Semantic Web 

April - June 

2015 

Beyond the current 

research problems as 

understood during the 

literature review. Also the 

A. Milestone achievements 
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final results may not help 

towards achieving the 

research aim.  

8. 8 Study on the linked-open data approaches and the 

Annotation of ambiguous concepts in the UC-ONTO 

with Natural Language. 

June -July 2015   

9. 9 Development of Ontology-based Knowledge Support 
System. (The Onto-Cropbase) – published. 
 
MYGeoExplorer Development: A collaboration work on 

the use of Ontologies and Linked-data to enhance the 

representation and querying of Geospatial 

information. A case study of the MyGDI (Malaysian 

Geographic Data and Information) System. 

Results presented in the International Conference on 

Research and Innovation in Information Systems (ICRIIS 

2015), Malacca, Malaysia. 

Aug. - Dec. 

2015 

  

10. 1

0 

Preliminary Evaluation of the Prototype Application. Jan -Feb. 2016 Lack of availability of 

domain experts for 

testing 

11. 1 Second Year Report writeup, submission and viva March – April 

2016  

- 

12. 2 UN Research Showcase 2016 (Press release and Poster 

presentation) 

April 2016 - 

13. 3 Conference paper extension – Manuscript drafted on 

‘Ontology Development Practices in Agriculture’ 

March – April 

2016 

- 

14. 5 Validation and Evaluation of The Onto-CropBase 

(Underutilized crops Semantic Search Engine). 

May 2016 - 

15. 6 Attended the BDAS’16 Conference in Krakow, Poland 

to present a paper on the Onto-CropBase Tool 

29th  May – 4th 

June 2016 

-  

16. 7 Break + Mobility to the UK campus (July – Sept) June 2016 -  

17. 8 Proposal of a language extension to the Semantic Web 

Rule Language (SWRL) Knowledge Representation 

formalism –employed in the development of the 

Underutilized Crops ontology. 

July 2016 -  

18. 8

.

1 

Feasibility study on the proposed ‘Complete Semantic 

Web Rule Language (C-SWRL)’ – a proposal to unify all 

July – Aug 

2016 

Proposal too large and 

vague for the allotted 

time. Also, not very 
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SWRL extensions based on Translational Logic & 

Complexity analysis. 

relevant in crops data 

modelling. 

19. 8

.

2 

Feasibility study on the proposed SWRL-DL extension 

(To provide language constructs for automatic 

ontology development and for ontology learning) 

August 2016 Requires collaboration 

with experts on Machine 

Learning. 

20. 8

.

3 

Feasibility study on Agri-SWRL extension – a SWRL 

extension for converting agricultural vocabularies, e.g. 

Agrovoc, to Ontologies. 

Sept – Oct 

2016 

Literature review shows 

that Agrovoc is already in 

OWL-DL format.  

Plus, ontology vs Thesauri 

Lexicalization study is too 

large (out of scope).  

21. 1

0 

Preparation of manuscript on the reviewed Semantic 

Web Rule Language (SWRL) extensions. 

Review and inclusion of the Probabilistic Extensions 

and Decidability studies of all reviewed Extensions. 

Oct. – Nov. 

2016 

- 

22. 1

1 

Proposal and manuscript draft on Fuzzy Temporal 

Extension to the SWRL language (FT-SWRL) 

Nov. - Dec. 

2016 

- 

23. 1

2 

Doctoral Training Partnership Week 2016 

International Conference on Future Agriculture, CFF, 

Malaysia. 

 (Best Presentation Award) 

Dec. 2016 - 

24. 1

3 

Thesis organization and submission. Jan. - March 

2017 

- 

B. Project Achievements. 
 

Publications: 

[1] Lawan, A., Rakib, A., Alechina, N.: Towards Comprehensive Domain Modeling on the 

Semantic Web – a Review of SWRL Expressiveness Extensions. Submitted to the Journal of 

Web Semantics, Elsevier, Manuscript Number: JWS-D-17-00081, March, 2017. 

[2] Lawan, A., Rakib, A., Alechina, N.: FT-SWRL - A Fuzzy Temporal Extension of the Semantic 

Web Rule Language. Submitted to: International Journal of Approximate Reasoning, 

Elsevier, March, 2017 

 [3] Lawan, A., Rakib, A., Alechina, N., and Karunaratne, A., 2016: The Onto-CropBase - A 

Semantic Web Application for Querying Crops Linked-Data. In ‘Beyond Databases, 
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Architectures and Structures. Advanced Technologies for Data Mining and Knowledge 

Discovery’ Volume 613 of the series Communications in Computer and Information 

Science, pp 384-399. 
 

[4] Rakib, A., Lawan, A., and Walker, Sue., 2014: An ontological approach for knowledge 

modelling and reasoning over heterogeneous crop data sources. In: Pattern Analysis, 

Intelligent Security and the Internet of Things, Advances in Intelligent Systems and 

Computing, Volume 355, 2015, pp 35-47. 
 

[5] Panchanathan, S., Lawan, A., and Rakib, A. 2015: MyGeo-Explorer: A semantic search 

tool for querying geospatial information. In ARPN Journal of Engineering and Applied 

Sciences, Vol.10(23), 2015. 
 

[6] Lawan, A., Rakib, A., Alechina, N., and Karunaratne, A., 2014: Advancing Underutilized 

Crops Knowledge using SWRL-enabled Ontologies - A survey and early experiment. In: CEUR 

Workshop Proceedings of The Second International Workshop on Linked Data and 

Ontology in Practice, Vol-1312, Pages 69-84, 2014. 

 

Conferences Attended: 

Dec. 2016 3rd Doctoral Training Partnership (DTP) Week 2016, Crops for the Future (CFF), Malaysia. 

28th May – 4th 

June 2016 

12th International Conference ‘Beyond Databases, Architectures and Structures (BDAS 

2016), Ustron, Poland. 

April, 2016 Research Showcase 2016, UNMC, 1-day Poster Presentation session, by Research Training 

and Development Unit of UNMC. 

8th – 10th  Dec. 

2015 

 

4th International Conference on Research and Innovation in Information Systems (ICRIIS) 

2015, Malacca, Malaysia. By Malaysian Association for Information Systems Chapter 

(MyAIS). 

11th Feb. 2015 Annual Research Talk, Faculty of Science, University of Nottingham, Malaysia Campus. 

8th – 10th  Dec. 

2014 

2014 Fourth World Congress on Information and Communication Technologies (WICT), 

Malacca, Malaysia. Machine Intelligence Research Labs (MIRLABS). 

9th – 11th  Nov. 

2014 

4th Joint International Semantic Technology (JIST 2014) Conference, Chiang Mai, Thailand. 

By Language and Semantics Laboratory, National Electronics and Computer Technology 

Centre (NECTEC), Thailand. 

8th May, 2015 Research Showcase 2015, UNMC, 1-day Poster Presentation session, Research Training 

and Development Unit of UNMC. 
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[159] M. Fernández-López, A. Gómez-Pérez, and N. Juristo, “Methontology:
from ontological art towards ontological engineering,” in Proc. Symposium

on Ontological Engineering of AAAI, 1997.

[160] H. S. Pinto, C. Tempich, and S. Staab, “Diligent: Towards a fine-grained
methodology for distributed, loosely-controlled and evolving engingeering
of ontologies,” in Proceedings of the 16th European Conference on Artifi-

cial Intelligence, pp. 393–397, IOS Press, 2004.

[161] C. Bezerra, F. Freitas, and F. Santana, “Evaluating ontologies with com-
petency questions,” in International Joint Conferences on Web Intelligence

(WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 284–285, Nov
2013.

[162] N. F. Noy, “Ontology management with the PROMPT plugin,” in Proceed-

ings of the 7th International Protégé Conference, July 2004.
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