

THE UNIVERSITY OF NOTTINGHAM

FACULTY OF ENGINEERING

SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING

THESIS (PhD)

HYBRIDIZED TRAJECTORY GENERATION AND

MANY-OBJECTIVES OPTIMIZATION FOR

MULTI-AGENT QUADROTOR UAVS

AUTHOR: PREMEELA THARUMANATHAN

FIRST SUPERVISOR: DR.HAIDER A. F. ALMURIB

SECOND SUPERVISOR: DR. NANDHA KUMAR

for my fantastic family, friends and supervisors.

CONTENTS

1. INTRODUCTION

1.1 Problem Statement

1.2 Objectives

1.3 Contributions

1.4 Methodology

1.5 Thesis Outline

2. LITERATURE REVIEW

2.1 Quadrotor Aerial Vehicles

2.1.1 Quadrotor Developments

2.1.2 Quadrotor Flights across Various Environments

2.2 Trajectory Planning for Quadrotor UAVS

2.2.1 MA-SPREAD Path Planning Algorithms

2.2.2 MA-FORMATION Trajectory Planner

2.3 Multi-Agent Quadrotor Missions

2.3.1 Objectives of Spread Flight

2.3.2 Objectives of Flights in Formation

2.4 Trajectory Optimization for Multiple Agents

2.4.1 Multi-Objectives Optimization

2.4.2 Many-Objectives Dominance and Diversity Balance

2.4.3 Many-Objectives Dimensionality Reduction

2.5 Summary

3. MULTI-AGENT QUADROTOR TRAJECTORY

 PLANNING

3.1. Three-Dimensional Environment Design

3.1.1. High Rise Cityscape Environment

3.1.2. Highly Cluttered Indoor Environment

3.1.3. Mountainous Terrain

3.2 Multi-Agent Rapidly Exploring Randomised Forest

3.2.1 Rapidly Exploring Randomised Forest

3.2.2 MA-RRF Path Planning

3.2.3 MA-RRF Initial Path Population

3.3 Genetic Algorithm Operators

3.3.1 Path Planning with Genetic Algorithm

3.3.2 Path Population & Natural Selection

3.3.3 Parent Selection

3.3.4 Path Crossover Operator

3.3.5 Path Mutation Operators

3.3.6 Path Repair & Pruning

3.4 Multi-Agent Quadrotor Closed-Loop Control System

1

1

2

10

10

14

17

18

19

22

26

27

34

42

42

46

50

54

55

57

58

59

60

60

63

65

67

68

69

76

84

87

87

89

90

91

94

96

3.4.1 Multi-Agent Smooth Trajectory Generation

3.4.2 Quadrotor Mathematical Model

3.4.3 Closed-Loop Control System Design

3.4.4 Individual Agent Control System

3.5 Summary

4. TRAJECTORY OPTIMIZATION FOR MULTI-

AGENT QUADROTOR UAVS

4.1 Multi-Agent Quadrotor Objective Functions

4.2 MA-SPREAD Application

4.2.1 MA-Spread Trajectory Combinations

4.2.2 MA-Spread Control System

4.2.3 MA-Spread Objective Functions

4.3. Multi-Agent Quadrotor UAVs in Formation Flight

4.3.1 Free Space Surface Extraction

4.3.2 Formation Shape Planner

4.3.3 Multi-Agent Formation Trajectories

4.4.2 MA-Formation Control System

4.3.4 MA- Formation Objective Functions

4.4 Large Dimensional Many-Objectives Optimization

4.4.1 Multi-Objectives Optimization

4.4.2 Well Minimized Set of Solutions

4.4.3 Diverse Set of Solutions

4.5 Dimensionality Reduced Many-Objectives Optimization

4.5.1 Many-Objectives Optimization

4.5.2 Dimensionality Reduction

4.5.3 Adaptive Niching

4.6 Summary

5. MULTI-AGENT QUADROTOR UAVS IN SPREAD

AND FORMATION FLIGHT MISSIONS

5.1 MA-Spread Dimensionality Reduced Many-Objectives

 Parameters

5.2 MA-Spread across a High-Rise Cityscape

5.2.1 Many Objectives Values

5.2.2 Trajectory Population

5.2.3 Types of Simulation Models

5.3 MA-Spread across a Highly Cluttered Indoor Environment

5.3.1 Many Objectives Values

5.3.2 Trajectory Population

5.3.3 Types of Simulation Models

5.4. MA-Spread across a Mountainous Terrain

5.4.1 Many Objectives Values

5.4.2 Trajectory Population

96

99

103

105

111

113

115

119

120

121

123

128

130

132

135

137

140

143

143

146

148

150

151

153

156

157

159

160

161

162

166

173

175

176

180

186

188

189

193

5.4.3 Types of Simulation Models

5.5. MA-Formation Dimensionality Reduced Many-Objectives

 Parameters

5.6. MA-Formation across a High-Rise Cityscape

5.6.1 Many Objectives Values

5.6.2 Trajectory Population

5.6.3 Types of Simulation Models

5.7. MA-Formation across a Highly Cluttered Indoor Environment

5.7.1. Many Objectives Values

5.7.2. Trajectory Population

5.7.3 Types of Simulation Models

5.8. MA-Formation across a Mountainous Terrain

5.8.1. Many Objectives Values

5.8.2. Trajectory Population

5.8.3 Types of Simulation Models

5.9 Summary

6. CONCLUSION

6.1 Research Purpose and Findings

6.2 Relationship with Previous Studies

6.3 Limitations of This Thesis

6.4 Issues within the Research Process

6.5 Implications of Results

6.6 Future Recommendations

6.7 Contributions to Research

199

201

202

202

206

211

213

213

217

222

223

224

228

233

234

236

236

238

242

244

246

247

248

ABSTRACT

This research generates a large collection of optimized trajectories for

multi-agent quadrotors. The hybridized algorithm extracts trajectories with

various trade-off for all agents without discrimination. This allows the

resources of all agents to contribute towards the completion of a task.

Two variations of multi-agent quadrotor missions are applied within this

work. The first is spatially spread flight mission, MA-SPREAD whereas

the second is formation flight, MA-FORMATION. The trajectories are

designed within three environments: i) Highly Cluttered Indoor, ii)

Cityscape and iii) Mountainous terrain. The initial path nodes are

generated through a sampling based planner. Here, Rapidly Exploring

Random Trees is expanded into Multi-Agent Rapidly Exploring Random

Forest. These paths are used to form the initial population for Genetic

Algorithm. Next, we apply Many-Objectives Optimization towards the

optimization of all agents and its objectives.

This study strikes a balance between diverse and well minimized solutions

through dimensionality reduction. Result shows that the algorithm can

successfully find a diverse set of well minimized solutions within each

environment. The end user will be supplied with high resolution visual

imagery of each test environment and well-organized data that defines the

trade-offs of each trajectory. These easy to understand information will

assist the end user in making a final choice regarding the best multi-agent

quadrotor trajectories for their mission.

LIST OF PUBLICATIONS

1. Premeela T.Nathan, Haider A. F. Almurib, Nandha T.Kumar,

“Optimization of Nonlinearities through Control Techniques of the

Quadrotor Aerial Vehicle”, IEEE International Conference on Modeling,

Simulation and Applied Optimization, ICMSAO 2011. (presented)

2. Premeela T. Nathan, Haider A. F. Almurib, Nandha T.Kumar, “A

Review of Autonomous Multi-Agent Quad-rotor Control and

Applications”, IEEE International Conference on Mechatronics, ICOM

2011. (presented)

3. Haider A. F. Almurib, Premeela T. Nathan, Nandha T.Kumar,

“Search and Rescue through Control Techniques of the Quadrotor Aerial

Vehicle”, IEEE International conference on Instrumentation, Control,

Information Technology and System Integration, SICE 2011. (presented)

4. Premeela T. Nathan, Haider A. F. Almurib, Nandha T.Kumar,

“Many-Objectives Optimization and Formation Flight Design for

Quadrotors”,Applied Soft Computing, 2016. (submitted)

1

CHAPTER 1: INTRODUCTION

This research designs a standardized platform that generates a large population of well

minimized trajectories for multi-agent quadrotors. It is focused towards long distance

trajectory planning across partially known environments. The quadrotors will fly across

high-rise cityscapes, highly cluttered indoor environments and mountainous terrains.

Initially, mapping the free space across the three-dimensional environments with a variety

of challenges is prioritized. Next, a path planning algorithm that can generate paths for

many agents simultaneously is designed. This work also aims to define objective functions

that effectively distinguish the pros and cons of each trajectory. The values of these

objective functions must be obtained through a stable multi-agent quadrotor control

system. Lastly, this research aspires to design an algorithm that is capable of ranking and

maintaining a diverse collection of trajectories across generations.

Here, we apply modified versions of Rapidly Exploring Random Trees, Genetic

Algorithm and Dimensionality Reduced Many Objectives Dominance Optimization.

Firstly, initial path waypoint generation and repair is performed through a multi-tree

rapidly exploring random trees algorithm. Then, a modified genetic algorithm is designed

to produce a diverse population of trajectories across all iterations. Thirdly, a standardized

definition of the quadrotors’ physical constraints and mission limitations are represented

by a collection of objectives functions. The values of these objective functions are

estimated through a multi-agent control system. Next, the collective optimization of a

group of quadrotors for two different missions is performed through dimensionality

reduced many-objectives optimization. The trajectories are ranked based on their objective

values and diversity. In this research, both spread and adaptive formation flights are

explored. With spatially spread flights, each agent’s trajectory is designed independently.

In this case, it is the combination of all the agents’ independent trajectories that is

optimized. For the second application, the trajectories of each agent and their designed

formation shapes are optimized. This algorithm optimizes the multi-agent trajectories as a

collective where the resources of all agents are equally important.

1.1 PROBLEM STATEMENT

Any path planner must consider the different challenges that can arise when planning and

optimizing the trajectories of multiple agents simultaneously. Firstly, there must be access

to a speedy control system that is used to predict the motion and state derivatives of each

agent. Secondly, many works chose to generate the trajectories for each agent individually.

A system that generates the best paths for all agents without sacrificing the performance of

any agent is preferable. Thirdly, researchers have often chosen to focus on a few

environments and objectives only. There is a necessity for a system that is adaptable to

different types of terrains, tasks and objectives. A trajectory optimization algorithm that

2

can produce paths for a variety of terrains whilst considering many objectives

simultaneously can be highly advantageous.

Next, end users are typically provided with a small collection of possible paths.

There is a shortage of algorithms that can provide the end user with a large collection of

diverse and well minimized trajectories. A large and diverse selection pool that contains

30 different options means that the end user has many possible choices. Lastly, any

information regarding the trade-offs of each path can aid the end user in determining the

best choice for their mission. Recent studies show that there is a lack of planners that do

not require predetermined objective preferences. Also, many works do not provide full

visual imagery or include in-depth knowledge regarding the benefits of each solution

within the population. This research aims to fill these needs through the application of a

multi-agent quadrotor trajectory generation and optimization algorithm.

1.2 OBJECTIVES

The objectives for this study is as stated below:

a) CONSTRUCT AND MAP FREE SPACE

The first objective of this study is to construct and quickly identify the free space within

three-dimensional test environments that mimic real-life flight challenges. The

environments are not derived from real-life environments. The test spaces are designed to

imitate the main structure of real-life environments. Thus, the simulated spaces can be

randomly generated and look different for each experiment. Achieving this objective can

be difficult because there needs to be a balance between accuracy and processing time. The

path planner will be ready to design multi-agent quadrotor UAV trajectories for flight if

the simulated test environments are similar to its real-life counterparts. On the other hand,

a highly accurate environment requires a lot of detail within its space and this will increase

the path planner’s processing time. Finding a balance between these two conflicting goals

is the key to achieving this objective.

The initial simulation environments that were used within this research project were

focused on simple cylindrical obstacle shapes as shown in Figure 1.1(a). Here, a real-time

simulated model of the quadrotor UAV was applied as well. This real-time model was

viewable by the user while the algorithm is running. Thus, the image changes as the

algorithm progresses. It contained the full mathematical model of the quadrotor within its

PD control system. The rotational and translational movements of the quadrotor were

visible on screen during the path planning process. Next, an indoor space that mirrors office

lots and homes was introduced as can be seen in Figure 1.1(b). A forest test space as defined

in Figure 1.1(c) was also created to mimic outdoor multi-agent flights. The issue with these

3

initial simulations of a high-resolution environments and multi-agent quadrotors is that it

was computationally heavy. The path planning algorithm wasn’t given full access to the

processing system. This is because the real-time on-screen visuals of the many agents

required a large portion of the processing power. It became obvious that these methods

wouldn’t work as the trajectory planning and optimization algorithm became more

complex. Finally, an attempt to reach this objective is shown in Figure 1.1(d-f). Three

highly challenging environments were designed. They are the cityscape, highly cluttered

indoor space and mountainous terrain. The on-screen simulation was removed in favour of

simple X shaped markers to define the movements of the quadrotors. The test environments

were designed to be more accurate in definition as well. The end user can view these high-

resolution images at the end of the simulation process as opposed to during path planning

process.

b) STANDARDIZE THE MISSIONS OF MULTI-AGENT QUADROTORS.

The secondary objective of this research project is to identify and generalize the various

applications of multi-agent quadrotor UAVs. Achieving this target will allow the end user

to apply the standardized platform towards a variety of multi-agent missions as opposed to

just one. The challenging aspect of this objective is creating one path planning and

optimization algorithm that caters to the needs of both multi-agent spatially spread and

formation flight missions. These various multi-agent missions have been generalized into

the MA-Spread and MA-Formation mission as shown in Figure 1.2(a-b).

The initial simulations within this study were performed with two very different

algorithms. There was one for formation flights and another for basic spread flights. This

approach proved to be extremely tedious because it required separate programs within

Fig. 1.1 Various MATLAB/SIMULINK simulated environments.

Real-time simulation of (a) Quadrotor UAV. (b) Indoor flight of multi-agent quadrotors. (c) Formation flight across forestation.

High resolution imagery of (d) Cityscape. (e) Highly cluttered indoor space. (f) Mountainous terrain.

4

many subsections for both missions. It became clear that a singular algorithm for both

missions was more cost and time effective. There are certain subsections within the

standardized algorithm that can be kept simple for one mission but may be more complex

to accommodate both missions. The MA-Spread mission requires independent flight

trajectories for all agents whereas the MA-Formation only needs one formation reference

trajectory. Similarly, the MA-Spread mission doesn’t require close spaced flight structures

whereas the MA-Formation does. This study attempts to achieve this objective by giving

the end user the option of simplifying the algorithm. This can be accomplished by a simple

change in the constant values of variables such as number of agents and type of mission.

The MA-Spread algorithm designs paths for 4 agents that fly in different directions. The

MA-Formation designs formation paths and shapes for 8 agents that fly near each other.

Both mission use the same algorithm with one additional section for MA-Formation. Here,

the algorithm is designed to automatically include the dynamic formation shape planner

and its objectives if the MA-Formation mission is chosen.

c) PLACING SAFETY ZONES

Third objective for this study is to quickly and adequately define all the obstacles and their

safety boundaries within each test environment. Achieving this objective requires the

consideration of the same issues that were present in the first objective. The first challenge

is to accurately define the height and shape changes within each obstacle. The second

challenge is to identify the size of the safety boundary around each obstacle. This objective

must be achieved with minimal processing time and complexity. Most importantly, the

proper identification of the obstacles and its safety zones must produce multi-agent

quadrotor UAV paths that have no collision points.

In the beginning, the algorithm was designed without placing safety zones around

the obstacles as shown by the red path in Figure 1.3. This process can be used if the path’s

discrete nodes are not converted into smooth continuous trajectories for UAVs. On the

other hand, the trajectories will collide with the sharp corners of the obstacles if minimal

jerk splines are used. Next, standard sized safety zones were used for each test

environments. This method achieves its objective but it causes the path planning algorithm

Fig. 1.2 The two types of multi-agent quadrotor UAV missions.

(a) MA-Spread spatially spread multi-agent flight mission. (b) MA-Formation multi-agent formation flight mission.

5

to design nondiverse paths. This is because each test space has different types of obstacles.

Boundary sizes that are too large will limit the placement of path nodes across each test

space. This will generate a collection of similar paths. The agents will collide with the

many sharp corners of the buildings within the cityscape if the boundaries are too small.

The narrow corridors of the indoor environment can close if the boundaries are too large

as shown by the green path in Figure 1.3. Similarly, the small and gradual changes in height

within the mountainous terrain aren’t represented if the boundaries are too large. This

research projects aims to achieve the third objective by applying different sized safety

planes and boundaries across the three environments. The sizes of planes are defined based

on the characteristics of each test space. This method will produce paths that are diverse

and do not contain any collision points as shown by the blue path in Figure 1.3.

d) GENERATE DIVERSE PATHS FOR THE INITIAL POPULATION.

The most important objective of any path planning algorithm is to generate highly diverse,

collision free paths for the initial population of the optimization process. This study

requires an offline, long range, multi-agent UAV path planner. This objective can be

achieved in two steps. The first goal of the path planner is to fully explore the free space

across three different test spaces. The second goal is to quickly extract a diverse and large

collection of multi-agent paths. A few different path planners were applied throughout the

course of this research project. The first was a basic shortest path algorithm such as

Dijkstra's algorithm. Then, Virtual Potential Function (VPF) was used to plan paths for

multiple agents. Next, consensus algorithm was implemented for multi-agent formation

flight. These planners weren’t fast enough or required a high amount of processing time.

Some of the planners couldn’t handle both the MA-Spread and MA-Formation missions.

Finally, a sampling-based planner was applied. This last choice showed a lot of

potential in terms of achieving the objective of this study. A step-by-step diagram that

describes the multi-agent sampling-based planner is presented in Figure 1.4 (a-e). The

Rapidly Exploring Randomized Trees (RRT) free space mapping and path planning

Fig. 1.3 The different sizes of safety zones around an obstacle.

6

algorithm begins by placing a root node (black) at the initial points of the multi-agents.

Sample points (green) are then connected to the root node to form a tree branch (black).

This study combines the trees through tree-to-tree linkages (green) to create a forest. The

process is repeated until the environment is fully explored. To fully achieve this objective,

a diverse collection of multi-agent paths must be quickly extracted. It is important that a

well organised database is created. It is also crucial to implement a path filtration process

to remove nondiverse paths from the tens of thousands of unique paths.

e) UNIQUE POPULATION OF PATHS FOR EACH GENERATION.

The fifth objective is to create and maintain a diverse population of multi-agent paths for

each generation. This objective can be split into a few goals. The first is to hybridize the

MA-RRF paths to create new path populations for the optimization algorithm. The

algorithm must be able to select suitable paths to merge together. It must also be able to

create new collision free paths. The second goal is maintaining the level of path diversity

across the many generations. This can be done by constantly creating new connections

between path nodes.

The algorithm that will be able to reach these goals is Genetic Algorithm (GA).

This planner can be applied as a refined path planner that uses the initial RRT path nodes

as reference points. It is used to hybridize two paths to create two more new paths. It is

also capable of exploring areas that are close in proximity to make minor improvements to

these newly hybridized paths. Figure 1.5(a-c) shows the different stages that will be

implemented within the GA. Figure 1.5(a) shows two parent paths that have the same initial

and destination point. A crossover point is selected and the nodes within the two paths are

switched as defined in Figure 1.5(b). Lastly, a singular node is chosen within these new

paths as the mutation point. The coordinates of the nodes as shown in Figure 1.5(c) will be

changed based on the type of mutation that is applied. These stages will allow the full path

planning algorithm to achieve this objective.

Fig. 1.4 The initial steps of the MA-RRF free space mapping and path planning algorithm.

(a) Set the roots of each tree. (b) Connect sample points to the nearest tree. (c) Create forest links. (d) Further expand each tree.

(e) Connect more forest links.

7

f) TRAJECTORIES THAT ARE SUITABLE FOR QUADROTORS.

Another objective of this research project is to design time-based, collision free, smooth

trajectories that are suitable for multi-agent quadrotor UAVs. Smooth and minimal jerk

trajectories are especially important for formation flights because it allows the agents to

maintain their formation structure with ease. There are a few hurdles that need to be

overcome to achieve this goal. The first is to design path nodes that have an appropriate

distance from all obstacles. A smooth trajectory will follow the same direction of the path

nodes but there will be some changes along certain subsections such as sharp corners. An

example of this can be seen in Figure 1.6 where the red path defines the smooth spline that

follows the initially planned grey path nodes.

The secondary challenge that occurs when trying to achieve this objective is finding

a balance between maintaining and removing nodes across a path. Some nodes can be

considered redundant because they do not add new information in terms of path direction.

This can be tested by checking the difference in direction and curvature between three

neighbouring nodes. Still, the maintenance of these nodes along the sharp corners of a path

will create a smooth trajectory that is collision free. This objective can be achieved by using

an adaptive method that only removes nodes across path sections that don’t contain sharp

bends. As shown in Figure 1.6, it also adds nodes to sections that contain aggressive turns

with angles that are less than 90o.

g) PARALLEL RUN CLOSED-LOOP MULTI-AGENT CONTROL SYSTEM.

The seventh objective of this study is to model a noncomplex, parallel run, closed-loop

multi-agent quadrotor UAV control system. The control system must overcome three

Fig. 1.5. The three types of operators that are applied within GA.

(a) The two selected parent paths for the same agent. (b) Single point crossover. (c) External node mutation operator.

Fig. 1.6. The designed path nodes and its minimal jerk smooth spline.

8

challenging stages to achieve this goal. The first stage is to implement a suitable

mathematical model. This model will be designed to simulate the translational and

rotational movements of the quadrotor UAV. Next, a fast and minimal error control system

will be designed. This subsection will allow the control system to predict the path tracking

error of the quadrotors as shown in Figure 1.7. The value of the error is important because

it defines if a designed path can be followed by a real-life quadrotor. Lastly, the control

system for the individual agent must be expanded into a parallel run multi-agent quadrotor

control system.

The first control system that was designed for this research project was a Linear-

quadratic regulator (LQR) controller with a full model of the quadrotor UAV. This control

system can produce minimal control signal overshoot and error. The disadvantage of this

controller was that it was complex in design. The secondary controller that was

implemented was a PID control system alongside the nonsimplified mathematical model

of the UAV. The control system that can achieve this objective is a more simplified version

of the quadrotor UAV’s mathematical model. This study will apply a PD controller with a

simplified mathematical model for the control system. The system runs in series because

the input of each subsection is dependent on the output of the previous subsection. It is fast

and easily expandable into a multi-agent system.

h) DEFINE A SET OF MULTI-AGENT QUADROTOR OBJECTIVES.

The next objective of this study is to mathematically and simplistically define a set of multi-

agent quadrotor UAV mission-based objectives. The many objectives will be a collection

of objective functions that have been applied with quadrotor UAVs. It considers objectives

that consider a variety of missions, environments and sensors. Figure 1.8 shows an example

of the objectives that are often considered within path planning algorithms. It can be

challenging to convert real-life concerns into noncomplex mathematical equations. It is

important that the equations are simplistic and easy to compute because they are used so

often throughout the optimization algorithm. The objective functions do not have to be

highly accurate since they exist to provide an indicator as to the trade-offs of each

trajectory. A more accurate model can be applied in a smaller scale with a more modest

sized population. This is out of the scope of this study since it only considers a large sized

multi-agent path population.

FEEDBACK (x, y, z,𝜙, 𝜃,𝜓)

TRANSLATIONAL

CONTROLLER

ROTATIONAL

CONTROLLER

SYSTEM

DYNAMICS

Path tracking error Quadrotor’s predicted path

Quadrotor’s planned

path

Fig. 1.7 The prediction system for the quadrotor UAV.

9

 x, y, z,𝜙, 𝜃, 𝜓

i) WELL MINIMIZED YET DIVERSE FINAL SET OF TRAJECTORIES.

As previously defined, this research aims to minimize the values of the many objectives as

opposed to finding the Pareto optimal solution set. Thus, the ninth objective of this study

is to develop a well minimized and diverse final set of multi-agent trajectories for end users.

There are two challenges that need to be overcome to achieve this objective. Firstly, it is

important that the optimization algorithm can minimize the values of the many objective

functions that are applied within this study. Secondly, the algorithm must be able to

maintain a diverse set of trajectories so that the end user has a variety of multi-agent

quadrotor trajectory options with various trade-offs in terms of objective values.

Initially, only a few objectives were considered. An aggregated function was used

to minimize the values of these objectives simultaneously. Here, a basic multi-objective

optimization algorithm was found to be sufficient. Later, the project was expanded to

include both MA-Spread and MA-Formation missions. Both missions have their own costs

and limitations. The algorithm needs to be able to minimize the values of many objectives

at the same time. Thus, a many objectives optimization algorithm is implemented within

this study. Dimensionality reduction and adaptive niching will be used to preserve well

minimized solutions across generations. The progression of the Dimensionality Reduced

Many-Objective Optimization (DRMOO) algorithm is shown in Figure 1.9.

This algorithm breaks the full objective set into smaller objective subsets. This is

performed gradually by identifying objectives that do not conflict with the other objectives

within its set. This is achieved by identifying objectives that do not contribute to the path

ranking process within the optimization algorithm. Thus, the removal of a nonconflicting

objective doesn’t affect the rank of each path. These sets are then used in rotation for a

constant number of generations. The rotation of both the full and smaller objective sets will

allow the DRMOO algorithm to perform both local and global optimization

simultaneously. The usage of the objective subsets will promote local optimization for the

objectives within the current set. On the other hand, applying the full objective set promotes

Path tracking error

Path curvature

Distances from

obstacles

Quadrotor’s translational and

rotational movements
Path length

Flight time

Agent-to-agent

distances

Fig. 1.8 The many different objectives that can be applied during a multi-agent quadrotor UAV mission.

10

global optimization for all objectives. This algorithm can achieve its objective of producing

a diverse and well minimized set of multi-agent trajectories.

j) PROVIDE ORGANIZED AND UNDERSTANDABLE INFORMATION.

The final objective is to provide well organized and easily understandable information

regarding the trade-offs of each multi-agent trajectory. This objective can be achieved in

many ways. The end user may prefer a variety of multi-agent path options during the

decision-making process. The most common way that researchers present their designed

paths is through visual imagery. A high-resolution 3D image can be very useful because it

allows the end user to rotate and zoom into the planned paths. Another popular method of

analysing big amounts of data is through graphs. The changing values of the variables

within the algorithm can be easily evaluated with graphs. Next, tables can be used to

display and compare important data. Database management and visualization will allow

the end user to view the results in an organized manner. These options will only present a

small amount of information to the end user. Big data analysis software such as

MATLAB/SIMULINK can be used to display all the data across many generations. This

way, the end user has easy access to a large amount of information. The data must be stored

within a database that is well organized. The achievement of this objective is possible with

the implementation of these options.

1.3 CONTRIBUTIONS

The first contribution of this study is the development of a multi-agent RRT. A method for

merging trees and extracting thousands of unique paths per agent is presented. Secondly, a

modified GA is developed to produce a diverse population of trajectories for all agents at

each generation. Another contribution of this study is its parallel run multi-agent quadrotor

control system. The simulated movements of the quadrotor show if the planned paths are

dynamically feasible, trackable and do not collide with obstacles. This work also presents

a high-resolution formation planner. This leads to formation shapes that quickly adapt to

10 6 12

7 8 9

4 5 6

1 2 3

4 5 6

1 2 3

4 5

1 2 3

4 5

1 2

3 6

1 2 4

3 6 5 10 12

7 8 9

4 5 6

1 2 3

iter (t) iter (t+1) iter (t+2) iter (t+3) iter (t+4) iter (t+5)

Local Pop(iter (t-1))

Global Pop(iter (t))

Local Pop(iter (t+1))

Full objective set Objective subset 1 Objective subset 1 Full objective set

Nonconflicting objective is

placed into Objective subset 2

Local Pop(iter (t+2)) Local Pop(iter (t+3)) Local Pop(iter (t+4))

11 11

Fig. 1.9 The timeline of the DRMOO algorithm.

11

the changes within its environment. Next, each objective function is well defined to

simulate real-life spread or formation flights. These objectives are applicable to many

environments, quadrotor variations or sensory systems. Lastly, the DRMOO successfully

finds a diverse set of well minimized trajectories for both scenarios. The results of this

study show that all objectives are minimized or well-maintained without the extreme

degradation of one objective over the other. The end user is presented with additional post

processing knowledge and high-resolution imagery of each trajectory. This data can be

easily understood and accessed when the end user attempts to choose the best path.

1.4 METHODOLOGY

This research performs trajectory planning and optimization for multi-agent quadrotors that

is tested across two different applications. The algorithm is run on Windows 7, Intel ®

Xeon (R) CPU E3-1230 V2, 3.30GHz, 8GB RAM, 64-bit operating system. Here, we apply

modified versions of Rapidly Exploring Random Trees (RRT), Genetic Algorithm (GA)

and Dimensionality Reduced Many Objectives Dominance Optimization (DRMOO). Each

subsection that is shown in Figure 1.10 has been modified to suit and benefit from a multi-

agent system. This combination produces an algorithm that creates a final population of

diverse and well minimized trajectories for all quadrotors. This standardized platform is

applied for both independent and formation flight missions. These trajectories are designed

within three challenging environments which are highly cluttered indoor spaces, cityscapes

and mountainous terrains. This study focuses on long distance trajectory planning across

known environments. It can adapt to various terrains, tasks and objectives.

Firstly, a sampling based planner is applied to map the free space across each

terrain. With a multi-agent system, multiple trees can be generated to further speed up the

exploration process. The Multi-agent Rapidly Exploring Random Forest (MA-RRF)

trajectory planner is designed to fully harness the advantages of having a multi-agent

system. Initially, the start node of each agent is set as the root node of their RRT tree. The

algorithm begins with separate trees and constantly checks for possible collision free

linkages between them. The creation of the forest is done through the linking of open

branches on different trees within the environment. Through this process, the individually

rooted trees are quickly merged into a full forest. The tree branches and forest links must

be efficiently stored in order to quickly extract the path nodes. A mutual database is

constructed to store all the free space mapping information and tree branches from each

agent. Tree branches that are within close ranges of any agent’s goal node are also stored.

This allows all agents to access the constantly updated shared database. This also increases

efficiency and reduces the complexity of planning paths for many agents. The extraction

of paths begins once the forest has fully explored the free space. Here, the algorithm

extracts the many forest linkages that are formed between the different trees. The nodes for

12

each path are obtained across multiple tree subsections. This process produces a large

collection of unique paths per agent. Finally, a filtration system is applied to remove paths

that are similar in direction since the optimization process requires a diverse set of paths.

 The many-objective optimization algorithm requires a population of thirty

solutions at each generation. In this study, we apply GA for the generation of new

trajectories at each generation. GA isn’t used to generate the initial population because it

requires more time to fully explore and extract feasible paths on its own. Thus, the path

nodes that are designed by the MA-RRF algorithm will form the initial population for the

optimization process. The basic GA requires additional modifications to create and

maintain a collection of diverse paths across generations. This is extremely important

because paths will converge towards similar directions especially within extremely

constricted spaces. In this study, both the parent and child paths must produce nodes that

don’t exceed the similarity threshold to survive the selection process. Thus, GA will

compare the paths within both generations. Next, single point crossover and three types of

mutation are applied. In most cases, the newly generated child path is filled with collision

points after undergoing the crossover and mutation process. Due to this, MA-RRF is

applied to perform speedy path repair. Lastly, four additional post processing operators are

applied. Any repetitive loops that are within the child paths are removed. Child paths that

hold too few nodes for spline creation are padded with additional nodes. More nodes are

also generated across the path sections with turns that are smaller than 90 degrees. Lastly,

a similarity test is performed to compare the new child path to the current population. If

the offspring is collision free and passes through these post processing steps successfully,

it is stored as a member of the next generation.

The new generation of multi-agent paths will be converted into trajectories through

the application of fifth order splines. These smooth trajectories are used as input for the

parallel run multi-agent control system. This system is a combination of the control system

and mathematical model of each agent. The control system executes parallel simulation for

all agents on a multi-thread processing system. The estimated translational and rotational

movement of the quadrotors will then be used to estimate the values of the many objective

functions. In this study, twelve objective functions are defined for multi-agent spread (MA-

Spread) mission. Eight are standard objectives whereas four objectives are specific to the

MA-Spread mission. The standard objectives are shown in Section 4.1. The objectives that

are specifically designed for spatially spread flight is shown in Section 4.2.3. With MA-

Spread, thirty randomized combinations of four agents’ flight paths are optimized for each

generation. Each generation produces a new set of path combinations. These paths are a

mesh of parent paths that are maintained across generations and newly planned paths. This

method ensures that the resources of all agents are taken into consideration at each stage

of the algorithm.

13

The formation flight (MA-Formation) missions also apply twelve objective

functions. Here as well, eight are standard objectives and four are specific to formation

flight missions. The standard objectives are shown in Section 4.1. The objectives that are

specifically designed for formation flight is shown in Section 4.3.4. With the MA-

Formation application, thirty formation reference paths are designed at each generation.

These formation reference trajectory nodes are applied as the reference coordinates for the

dynamic formation planner. Here, the formation planner works in high resolution. This

level of resolution is advantageous for full obstacle clearance and the design of adaptive

formation shapes. Both the multi-agent trajectories and its formation designs are applied

towards determining the values of the many objective functions.

Lastly, this study applies DRMOO to generate smaller objective subsets. DRMOO

promotes the creation of subsets that contain three or more conflicting objective functions.

The objective subsets are created by comparing the number of nondominated solutions that

remain within a population before and after the removal of an objective function. The

objective function is found to be nonconflicting if the number of nondominated solutions

remains similar despite its removal. This is because nonconflicting objectives make

minimal contributions to the ranking process. The objective function is removed from its

subset, placed within another subset and retested for redundancy as the iterations progress.

As the algorithm progresses, these objective subsets are used in rotation. The full objective

set with twelve objectives is reintroduced at the end of each interval. The application of

both the full objective set and subsets allow the algorithm to perform both local and global

optimization simultaneously. Also, no objectives are fully eliminated. This is advantageous

in cases where an error has been made in determining nonconflicting objectives. At each

generation, the solutions are ranked based on the current objective set. Next, adaptive

niching is performed on the remaining population to determine which are most diverse.

The average distances between all solutions are used to determine the current niche radius.

This process encourages the degradation of crowded solutions and the enhancement of

cluster representative solutions. Both the trajectory population’s ranking and niching

process collectively maintain solutions that are well minimized and diverse.

This hybridized trajectory planning algorithm is a mesh of MA-RRF, GA and

DRMOO. It successfully generates a large collection of trajectories for multiple quadrotors

simultaneously. Here, all objectives are minimized or maintained without the extreme

degradation of one objective over the other. The end user is delivered easily interpretable

knowledge to make a final decision. It has optimized a team of quadrotors collectively as

opposed to individually. The path planner utilizes algorithms have the advantage of parallel

processing. The control system, sampling based planner, genetic algorithm and many

objectives optimization are designed to run on any multi thread system.

14

Dimensionality Reduced

 Objective Subsets

Parallel Run Multi-Agent Control System:

START: MA-Spread Algorithm

Environment free space mapping:

1. Detect and design safety zone cubes around obstacles.

2. Extract and divide free space into grid blocks.

Input:Online imagery of partially known environment,

Number of agents, Sensory limitations, Multi-

agent quadrotors’ parameters and constraints,

Trajectory combination population size, MA-

Spread objective functions.

MA-RRF path planner:

MA-RRF FOREST LINKS

MA-RRF similarity filter:

1. Compare the nodes between all paths.

2. Extract unique paths.

AGENT 1

RRT TREE

AGENT 2

RRT TREE

AGENT 3

RRT TREE

AGENT 4

RRT TREE

Objectives Subset 1

Objectives Subset k


MA-SPREAD

OBJECTIVES

Objectives Full Set

GA Multi-Agent Path Selection & Crossover:

1. Select surviving path combinations for parent population.

2. Randomized selection of two parent paths for each agent.

3. Perform single point crossover.

GA Multi-Agent Path Mutation:

MUTATION 1:

INTERNAL NODE

MUTATION 2:

EXTERNAL NODE

MUTATION 3:

NODE DELETION

MA-RRF path repair:

1. Detect collision point within new child path.

2. Declare first start node for forest at the beginning of the

collision point.

4. Declare first goal node for forest at the end of the collision

point.

5. Spread more start nodes as roots for other trees across the

environment.

5. Run MA-RRF.

6. Extract collision free bridge between the first start and goal

node.

7. If threshold iterations reached, declare child unfeasible, delete

offspring;

GA path processing & filtering:

PATH LOOPS REMOVAL ADAPTIVE PATH PADDING

PATH SIMILARITY CHECK EXTREME CURVATURE

PADDING

Store child path in new generation

Minimum paths per

agent obtained?

BSpline: Convert all paths into smooth trajectories

MA-SPREAD Path Combinations:

MULTI-AGENT

COMBINATION

AGENT 1

PATH

AGENT 2

PATH

AGENT 3

PATH

AGENT 4

PATH

QUADROTOR

MATH

MODEL

CONTROL

SYSTEM  ssssss zyx  ,,,,,
AGENT’S

TRAJECTORY

MA-SPREAD Objective Function Values:

Determine estimated values for all 12 objectives

Many-Objectives Dimensionality Reduction:

1. Determine the number of dominant solutions within current set.

2. Remove a randomly chosen objective temporarily from its current

objective set.

3. Determine the number of dominant solutions within the reduced set.

4. If the number of dominant solutions remains unchanged, remove the

objective permanently and place into a different objective set.

5. Place removed objective within a new objective subset.

Trajectory Combination Ranking:

1. Apply current objective subset.

2. Sort solutions based on if solutions are dominant based on the current

objective subset.

3. Extract dominant solutions and store within new generation.

Parent population

full?

Trajectory Combination Niching:

1. Define adaptive niche size.

2. Calculate normalized distance between all solutions.

3. Generate sharing function for each solution.

4. For each solution, compute niche count.

5. Perform niche count sorting.

6. Store most diverse paths within new generation.

Termination point

reached?

Fig. 1.10 Flow chart of MA-SPREAD trajectory planning algorithm.

Upload final generation’s paths to quadrotor UAVs

YES

YES

YES

NO

NO

NO

15

1.5 THESIS OUTLINE

This thesis comprises of two main sections. The first half of the thesis lays the groundwork

for the full multi-agent quadrotor UAV path planning and optimization algorithm. It shows

the reader the different algorithms such as MA-RRF, GA and DRMOO that are merged to

create the entire trajectory planning algorithm. These chapters will define the various

theories within each algorithm and the reason they were chosen. It also defined the structure

of each algorithm through mathematical equations. The reader will also be able to view the

different missions, objectives and environments that are applied in this thesis. The second

part of this thesis shows the results of the multi-agent path planning and optimization

algorithm. Here, the best trajectories for each mission are presented in a variety of forms.

The data that is derived from the final population of trajectories is displayed in graphs,

tables and high-resolution imageries. These two subsections of the thesis will collectively

show the theory, results and analysis of the unified algorithm.

Chapter 2 describes the different literatures that inspired the direction that was

taken in this research project. It discusses and analyses the relevant research that have been

produced by previous researchers, start-ups and large corporations. This chapter begins by

describing the history of the quadrotor and the physical modifications that have been

performed across the years. It also shows that the quadrotor has been applied within many

challenging environments. Next, the chapter proceeds to define the different path planning

algorithms that have been used for both the spatially spread and formation flight missions.

This section leads to the analysis of the many objectives and limitations that are often

applied within these two missions. Lastly, this chapter shows the various optimization

methods that have been applied with multi-agent systems. It also defines the different types

of many-objectives optimization algorithms that have been published. The chapter closes

by analysing a specific subsection of many-objectives optimization which involves

dimensionality reduction.

Then, Chapter 3 describes the theory and structure of the two hybridized path

planners that are applied within this study. It describes the creation of the multi-agent

quadrotor UAVs’ hybridized paths by both the MA-RRF and GA planners. This chapter

starts by illustrating the three test spaces that are applied within this study. Next, the

framework of the MA-RRF planner is presented. Here, the MA-RRF planner acts as the

initial path planner. This section shows the reader the free space sampling and mapping

process. The results display the initial path population that has been designed for the MA-

Spread and MA-Formation missions. Next, GA acts as a more refined path planner that

hybridizes the nodes of the MA-RRF paths to create new generations of trajectories. This

chapter continues by defining the different operators and post processing procedures that

are used within GA. Finally, the basic structure of the quadrotor UAV’s mathematical

model and control system is defined. The reader is shown how these sections collectively

16

form a multi-agent quadrotor control system. This control system defines the translational

and rotational movements of an agent. Thus, the data gives the reader an insight as to the

trajectories that can be tracked by a real-life agent.

Chapter 4 describes the many objectives that are applied within the MA-Spread and

MA-Formation missions. It also shows how these objectives are used within the DRMOO

optimization algorithm. This chapter begins by defining the standardized objectives that

are used for both missions. The next section defines the MA-Spread mission and its specific

objectives. Here, the reader can see that the independent trajectories of four agents are

optimized as a collective team. This part of the thesis also defines the estimated data that

flows across the many parts of the algorithm when it is applied within the MA-Spread

mission. Then, this chapter describes the MA-Formation mission. Similar to the prior

subsection, the objectives that are used only for the MA-Formation missions are also

mathematically defined. In this case, the formation reference trajectory, its shapes and the

independent trajectories of eight agents are optimized simultaneously. The variables that

are applied within the optimization process are defined by a high-resolution formation

planner. Lastly, the structure of the DRMOO many-objectives optimization algorithm is

presented within this chapter. This section shows the reader the different concepts that are

used within the DRMOO algorithm such as dimensionality reduction and adaptive niching.

Thus, the reader can understand the reasons why the DRMOO is suitable for optimizing a

large collection of objectives and multi-agent trajectories.

This thesis presents the results of the multi-agent quadrotor UAV trajectory

planning and optimization algorithm. The results for the two missions across three test

environments are shown in Chapter 5. Each section begins by showing the changing values

of the number of dominant solutions and the level of diversity across generations. The next

part of each section shows the results of the final trajectory population. It allows the reader

to analyse the level of optimization that has occurred from the first to final generation. The

results and its data are displayed in table form and high-resolution imagery. Each section

closes with detailed data regarding the objective values for each solution within the

trajectory population. This part defines the pros and cons of each option to the reader.

Finally, the conclusion of this study is presented in Chapter 6. This chapter analyses the

implications, limitations and contributions of this research project.

17

CHAPTER 2: LITERATURE REVIEW

The design for a trajectory planner of multi-agent UAVs is heavily dependent on its

real-life application. Today, most users still prefer remote controlled multi-rotor aerial

vehicles. Still, unmanned versions are gaining popularity amongst elite users. This elite

group comprises of users with access to funds and current research. Thus, most UAV

systems are designed for governmental bodies, large corporations, research facilities

and entrepreneurs. These end users will be applying the UAVs towards many different

applications. The UAV that is most commonly used is the quadrotor. The four-rotor

aerial vehicle is easily expandable to form a multi-agent system. Implementing a

cooperative multi-agent system means that there is potential that missions can be

completed at a much faster rate. Multi-agent quadrotors are frequently used for

collective missions such as search and rescue or reconnaissance. The quadrotors can

also be applied for target tracking as well as forming ad hoc wireless networks. Delivery

companies are also attempting to transport light weight packages across urban

environments. The most popular application of the quadrotor is for the creation of

media content. Quadrotors are being used by journalists and scientists to capture high

definition videos. Here, the various sensory systems that operate simultaneously can

efficiently collect data for terrain mapping and wildlife research. Similarly, many

hobbyists apply the quadrotor for capturing photographs of important family events.

Some of these applications are simplistic and only require a path planning

algorithm that is easy to implement. On the other hand, more complex missions will

benefit from a well-designed trajectory planning algorithm. A multi-agent system can

be challenging because each agent within a team can be an asset or a liability. A path

planning algorithm must be capable of harnessing the resources of each agent within its

team. This research generates a large collection of optimized trajectories for multi-agent

quadrotors. It can adapt to all types of terrains, tasks and objectives. This chapter

presents background information on the various algorithms that form the final trajectory

planning algorithm. Firstly, the history of the quadrotor aerial vehicle is presented.

Here, we define the quadrotor’s physical changes through time. This section also

describes the various environments that the multi-agent quadrotors fly across. Next, the

many objectives that are typically applied within different quadrotor missions are

discussed. The two applications that are highlighted within this research are multi-agent

spread and formation flights.

The next section defines the different trajectory planning algorithms that have

been used for aerial vehicles. In this study, focus is placed upon sampling based

planners such as rapidly random exploring trees. Lastly, the various algorithms that are

used for trajectory optimization is presented. Researches that apply multi-objective

optimization towards path planning are explored. In this work, emphasis is placed upon

optimization through genetic algorithm. The concepts that are introduced in multi-

objective optimization algorithms are used to optimize many objectives as well. This

18

section also shows the different methods that are used to improve the many-objectives

optimization process. The studies that are presented within this literature review are

used as the building blocks for this research. All three subsections are improved upon

and hybridized to form the final multi-agent quadrotor trajectory planning algorithm.

2.1 QUADROTOR AERIAL VEHICLES

These days, there are many variations of the multi-rotor aerial vehicle. Each variation

is typically named based on the number of rotors that are attached to the vehicle. The

most commonly available multi-rotor system is the quadrotor or quadcopter. It is an

aerial vehicle that has four rotors that is easily designed and assembled. It is typically

made with durable materials such as carbon fibre and high-resistance plastic.

The quadrotor can be used for both small and large scale cooperative flight

missions. This vehicle is often used in both research facilities and businesses. Thus, its

commercial popularity has caused a drop in its manufacturing costs. Similarly, it is

manufactured across many countries and can be easily purchased online or off-the-

shelf. Quadrotors are often equipped with many types of sensory systems that can

transmit real-time data. Progresses in measurement units and electronics have also

produced an increase in the data processing capabilities of UAVs. The quadrotor is also

capable of vertical take-off and landing as well as highly aggressive manoeuvres. Many

users have chosen to use multi-rotor systems as opposed to fixed wing vehicles due to

its high level of stability. The surging popularity of the quadrotor within the consumer

market is due to its ability to remain stable whilst delivering clear imagery in real-time.

It can undertake aggressive turns and capture videos at high definition. The fast

evolution of the quadrotor and its software shows that it can be easily expandable to a

large sized multi-agent system. This study aims to fully utilize the advantages of using

the quadrotor for multi-agent missions.

This research has chosen to plan optimal trajectories for the quadrotor UAV

within complex three-dimensional environments. In comparison to fixed wing and

other rotary winged UAVs, the choice of applying the multi-agent platform to

quadrotors is due to its benefits outweighing its disadvantages as follows,

• Good agility in missions that require high manoeuvrability. The quadrotor is

highly manoeuvrable. Highly aggressive turns are performed smoothly with

minimal obstacle buffer region.

• Increase in payload capacity. The quadrotor creates more lift thrust than

conventional helicopters. Therefore, it can lift higher payloads. Multi-agent

quadrotors offer more lift as a collective and can manage heavier weights.

• Performs Vertical Take Off and Landing (VTOL). Spinning directions of the

rotors are set to balance the moments. The balance that is achieved by the four

19

rotors eliminates the need for a tail rotor. Thus, the quadrotor can hover above

targets unlike fixed wing UAVs. This reduces fuel consumption.

• Hard to reach areas made easily accessible. The quadrotor is capable of

manoeuvring across narrow passages as well as highly cluttered spaces.

• Cost effective and simple to build. It offers a great platform for autonomous

unmanned aerial vehicle research projects. It can be easily obtained through

online shopping or off the shelf at malls. It is cheap enough for hobbyists as

well.

• Risks to humans are reduced. The quadrotor is suitable for applications such as

investigations, rescue missions and film making.

This section explores three types of quadrotor variations which are physical structure

miniaturization, environment based hybridization and passenger transportation. These

variations show that the quadrotor can be modified to complete any application or move

across any environment.

2.1.1 QUADROTOR DEVELOPMENTS

The initial structure of the quadrotor or quadcopter began with the design of rotary

winged Gyroplane No.1. The aerial vehicle was designed in year 1907 by Louis

Breguet, Jacques Breguet and assisted by Professor Charles Richet [1]. Figure 2.1(a)

shows a minimalistic structure that is made from steel. The corners of the Gyroplane

No.1. are attached with rotors that are stacked upon each other. This basic design was

further improved in 1922 by Georges de Bothezat as shown in Figure 2.1(b). His

helicopter closely resembles the cross-frame physicality of the modern quadrotor. This

design has six wide blades at the end of its four arms [2]. Both manually controlled

designs were heavy and capable of short flights at low altitudes. Tests show that these

vehicles were unstable due to the lack of a proper control or landing system. These

quadcopters would have required high costs of production. Also, the energy that was

being supplied to the vehicles was insufficient. Though imperfect, these models have

inspired the development of today's helicopter. Thus, the idea of placing multiple rotors

to produce lift and aggressively manoeuvre across test spaces has inspired countless

variations of multi-rotor vehicles designs.

 Fig. 2.1. (a) Gyroplane No.1 [1] (b) Georges de Bothezat's helicopter [2]

20

The design of the Gyroplane No.1 is large and cannot be flown across smaller spaces.

A reduction in size is necessary to use these unmanned vehicles across constrained

spaces. One of the most popular quadrotor that is low cost is the Parrot AR. Drone [3-

4]. It comes in a variety of colours, multiple real-time games and live video feed. It is

28 x 28 inches in size and 13.4 ounces in weight when its hull is attached. The second

version of the drone is controlled by a smart phone and comes fully equipped with WiFi

network. The quadrotors are also produced with a high definition camera. Spare parts

are repairable or purchasable online. Thus, the average user can easily assemble and fly

the Parrot AR. Drone.

As shown in Figure 2.2, some designers have chosen to further reduce the size

of the quadrotor. The Parrot Minidrone Rolling Spider that weighs 55 grams was

released in August 2014 [5]. It is also capable of connecting to both the Android and

Apple tablet’s operating software. The Lil' Draganflyer Nano Quadrotor is extremely

small. It is and built for indoor or outdoor flights that have minimal amount of wind

resistance [6]. These miniature drones are capable of environment mapping across

workspaces and homes. It is the ideal tool for surveillance that requires the drone to fly

over and under clutter. The probability of damage towards civilians, pets and home

goods is minimal. More importantly, it also fills the need for UAVs required by

academic or research facilities. There are less dangerous and easier to control within

tight spaces as compared to a full sized, high speed quadrotor. Here, smaller scaled

versions of test environments can be constructed indoors for experiments. Both the

control and navigation of multi-agent UAVs can be performed safely. The information

that is obtained from these miniature versions can be highly valuable before attempting

to fly larger drones across more dangerous locations.

Another form of structure manipulation is the hybridization of ground and aerial

motion. Samples of these designs are shown in Figure 2.3. The B is designed with the

traditional wheeled vehicle in mind except each wheel contains a rotor [7]. It is a

hybridization of the remote-controlled car and the quadrotor. The benefit of this design

is its ability to easily switch between flight and on the ground driving. Similarly, the

Hybrid Exploration Robot for Air and Land Deployment (HERALD) integrates legs

with wheels. This hybridization allows the HERALD’s to have seven degrees of

freedom [8]. Besides wheeled designs, avian inspired graspers have also been attached

to the quadrotor. This allows the UAV to perch and conserve fuel when necessary [9].

These quadrotors are capable of navigating across many types of terrains such as

 Fig. 2.2. (a) Parrot Minidrone Rolling Spider [4] (b) Lil' Draganflyer Nano Quadrotor [6]

21

disaster sites or mountainous terrains. In these cases, it can be dangerous for humans to

transport the quadrotors towards its take-off location. It is advantageous for the

quadrotor to be able to move on ground without human interference.

Recent developments show that there is an interest in using the quadrotor for

transporting passengers or payloads. In this case, a trajectory planner must be capable

of generating paths that consider the common direction of all agents. Most studies focus

on payload transportation by flying in formation. As shown in Figure 2.4, there are

some works that have modified the physical structure of the quadrotor. The first manned

multicopter system was successfully flown by E-Volo in 2011 [10]. Here, the maximum

payload of the quadrotor is enhanced by connecting a few agents across a singular

structure. Figure 2.4(a) shows a structure that connects four quadrotors to carry more

payloads. In this experiment, a human passenger is successfully lifted off the ground.

Another variation of a manned quadrotor is the Hoverbike helicopter [11]. This model

has combined the structure of a motorbike with the rotors of an aerial vehicle. The

difference between the Hoverbike and the typical quadrotor design is the overlapping

of two rotors to reduce size. The design comes with the option for manned or unmanned

flight with a maximum of 270kg take-off weight. Whilst a commercial model isn't

currently for sale, the rapid progression of the quadrotor shows that it can be used as a

privately owned aerial vehicle in the future.

The physical variations that have been described show that the quadrotor can easily

be modified. Thus, these agents can be used for a variety of applications. The aerial

vehicle is typically flown across locations that can be hazardous for humans. This is

because there can be extreme and sudden changes in terrain height. Besides

understanding the physical structure of the quadrotor, it is also important that the

designer of a trajectory planning algorithm considers all possible environments.

 Fig. 2.3. (a) The B [7] (b) HERALD [8] (c) Avian inspired graspers on a quadrotor [9]

 Fig. 2.4. (a) E-Volo's first manned multicopter [10] (b) Hoverbike [11]

22

2.1.2 QUADROTOR FLIGHTS ACROSS VARIOUS ENVIRONMENTS

The quadrotor can fly across many terrains that have different weather conditions. A

path planner that can adapt to a variety of environments is highly advantageous for the

end user. Preliminary knowledge on the type of environments and its challenges can be

beneficial for the designer of the algorithm. Prior studies that experiment across both

natural and manmade spaces can provide insight in terms of mapping, obstacle

detection, safety and fuel consumption. This section explores outdoor environments

with different weather conditions such as mountainous terrains, seas, forests, ice-

covered landmasses and volcanoes. It also analyses manmade buildings with high

amounts of clutter such as cityscapes, offices and residential areas. The information that

is obtained from these studies will provide guidance for the development of a

standardized trajectory planner that can accommodate the variations within these

terrains.

Aerial vehicles are most commonly used for surveillance and photography. This

is performed through high definition image and video capturing. The application of the

quadrotor towards real-time image capturing allows humans to define unknown areas

across the world. Future research will be aided by the data that is collected from these

rotary vehicles. Deep sea exploration has proven to be an extremely challenging task

for human divers. In the past year, there have been researchers that attempt to fly the

quadrotor over and into seas. Researchers at Rutgers University have developed a

quadrotor that can travel across air and manoeuvre underwater [12]. Figure 2.5(a)

shows that the quadrotor can successfully transition between flying above and under a

pool of water. The drone can perform low speed vertical and horizontal motions

underwater. The quadrotor, Pars is being developed by The RTS Lab for search and

rescue of potential drowning victims [13]. The drone is shown in Figure 2.5(b). Initially,

the drone uses a ship as a base station. The drone takes off from its base station and

flies over the sea to locate missing victims. The quadrotor is powered by solar energy

and performs localization through satellite data. These drones will be able to transmit

data such as wind speed, water turbulence and sea levels. The agents will provide

imagery of different sea creatures and their habitats. It also allows the user to detect

traces of hazardous pollution as well as ship wreckages. One advantage of sea

exploration is the lack of obstacles that exist within the agent’s path. The pathway is

clear and path planning can be easily executed.

 Fig. 2.5. (a) Rutgers University underwater drone [12] (b) Rescue drone, Pars by RTS Lab [13]

23

Another popular test space is outdoor locations such as forestation and mountainous

terrains. For geographical explorers, the UAV is used to map mountainous terrains at

high altitudes. Mountainous terrains can be unsafe for humans to explore without prior

information. Here, the unmanned vehicle proves to be an asset in determining the

oxygen density at high altitudes or identifying sudden drops across the terrain.

Microdrones GmbH has created a quadrotor that can fly at high altitudes [14]. As shown

in Figure 2.6(a), the microdrone can fly across the Alps whilst sending real-time

imagery. The path planner had to quickly replan certain sections of the trajectory due

to an error in determining amount of the snow across the mountain peaks. The multi-

agent unmanned system as shown in Figure 2.6(b) is often used across forests to collect

a variety of data. Information such as animal population, the variance of fruits, plant

health, environmental pollution and the water levels across the soil can be easily

obtained. Forests are built with obstacles of varied heights in the form of trees that

produce either compact or spread growth of leaves. The quadrotor can handle these

challenges given its small size and aggressive manoeuvring.

Path planning outdoors can be complex and challenging. In [15], real-time

generation of waypoints for a quadrotor is performed within a forest environment. Here,

onboard motion estimation and path planning are implemented within a small forest

with sparse trees. Mixed-integer optimization is performed in [16] where an obstacle

free outdoor space is divided into convex regions. Adapting this algorithm towards

more cluttered environments will be challenging since the planner neatly divides the

spaces into large convex regions. Study [17] implements a low-resolution visibility-

graph across an outdoor test space that contains restricted airspaces. The quadrotor’s

path planner is only capable of avoiding obstacles of similar height. Expanding these

algorithms towards a more cluttered environment would require a higher sampling rate.

Most algorithms are designed to perform in a singular type of environment. An adaptive

trajectory planning algorithm is necessary for the quadrotors to successfully complete

tasks in different environments that hold different sets of complexities.

Another location that limits human exploration is environments with extreme

temperatures or atmosphere toxicity. Here, the quadrotor performs better than humans.

As visible in Figure 2.7, the agents can collect data across unexplored places such as

the Antarctica. A DJI Phantom 2 quadrotor that was fitted with a GoPro Hero3 action

Fig. 2.6. (a) Quadrotor flight across high altitude environments [14] (b) Navigating around forestation [18]

24

camera perished whilst flying into Iceland's Bardarbunga volcano [19]. Despite self-

destruction, the quadrotor could capture unseen views of the core of the volcano in real-

time. Similarly, Tohoku University in Japan is developing an unmanned aerial that

collaborates with ground robots for cases of sudden volcanic eruptions that are

happening frequently in the country [20]. Forest fires are a common occurrence in

Australia. Drones can provide a view of the damage caused by the fire. This allows the

authorities to quickly evacuate any residential areas that are nearby. It is also highly

risky for humans to be around war zones. Today, the military system is slowly replacing

manned vehicles with unmanned options. K-MAX dual rotor robocopters were

successfully deployed across Afghanistan for autonomous cargo delivery that weighs

over 750 pounds [21]. These unmanned aerial robots are advantageous because they are

less prone to human error or causalities if it crashes.

The most common test space for the commercial quadrotors is manmade structures such

as indoor environments or cityscapes. Cityscapes pose a threat in terms of narrow

passages with extreme bends. Navigation accuracy is necessary for successful flights

across the buildings and tall beams. In a city setting, drones are especially useful for

human and vehicle traffic mapping. The data provided by drones can be used in

collaboration with smart phone applications on traffic analysis. The Halton Regional

Police of Canada has successfully integrated the use of drones for surveillance [22].

Real-time view of crimes, accidents and individuals that need assistance are beneficial

for city authorities. Quadrotors are often used for load transportation. Study [23] applies

both a delivery truck and its quadrotor across a residential neighbourhood. The delivery

truck is set to stop at multiple points across the environment. The quadrotor then

completes the last leg of the delivery process. Both vehicles collectively reduce the

operation time by one third. Still, the algorithm isn’t readily applicable towards more

complex terrains.

The indoor environment poses an extreme hazard to these aerial vehicles as the

percentage of clutter as compared to free space is high. The addition of narrow entry or

exit ways such as windows and doors are similarly challenging. As shown in Figure

2.8, the Parrot AR Drone 2.0 allows the integration of personal systems such as tablets

or smart phones for the navigation for the quadrotor. It is built on the idea that anyone

can fly a drone given its simplicity. The drone can be used for indoor flight by attaching

its indoor hull [24]. The probability of GPS connectivity indoors may not be guaranteed

but the wireless connection that exists in most homes allow for instant navigation. It

Fig. 2.7. Quadrotor flight across sea ice and volcanoes [19-20]

25

also enables high definition video streaming between a tablet and its drone. The

wireless connection does have the disadvantage of limiting the flight range to a short

distance. AD* search algorithm is applied in [25] to design short term waypoints for a

quadrotor that resides within an indoor space. The issue with defining waypoints for a

short distance of 20cm is there is a risk of motion towards an obstacle filled region.

This can cause the agent to turn around constantly. Similarly, [26] designs a MILP for

the trajectory planning across an indoor environment for both the agent and their load.

Two subsystems are defined where the first defines the agent with a load whereas the

second holds the agent alone. Kinodynamic Rapidly Exploring Random Trees* (RRT)

is applied by [27] towards path planning for a quadrotor flying across two windows. In

this paper, authors combine both the UAV's control and dynamics along with trajectory

planning. Information Rich RRT is applied by [28] to maximize information gathering

capabilities of the quadrotor as it flies within a cluttered environment. The planner is

also tested within a small sized indoor space. These indoor based path planners would

find it tough to plan trajectories across mountainous terrains that have gradual peaks

everywhere. Possible future collisions, increased complexity and run time can occur

due to the short-term planning that is implemented in these studies.

Our research applies a path planning algorithm that adapts to many types of

environments. The planner can adapt to test spaces that may require low or high-

resolution mapping. It is also able to overcome any physical challenges such as sharp

bends, narrow passages, high amounts of clutter and gradual terrain peaks. Thus, the

end user is given the flexibility of applying the designed algorithm within any

environment as opposed to just one.

2.2 TRAJECTORY PLANNING FOR QUADROTOR UAVS

Path planning is typically used to solve the problem of navigating an unmanned robot

or UAV from an initial point to a desired destination. In most cases, there are several

limitations and constraints that must be adhered to when designing a feasible path. A

trajectory planner is applied to provide the end user with an optimal path that satisfies

the defined environmental, dynamic and mission constraints.

Fig. 2.8. Quadrotor flight through tablet control across indoor and cityscapes [29-30]

26

Firstly, different environments can restrict the motion of a robot in a variety of

ways. As described in the previous section, there has been a lot of progress in the variety

of environments that the quadrotor UAV can move across. Urban environments have

narrow passages and high amounts of clutter across its space. Mountainous terrains or

forestations have spaces that are made up of dense flora and fauna. It also has extreme

low and high peaks. Trajectory planners must be capable of mapping these

environments into either an obstacle region or free space with an acceptable level of

accuracy. Secondly, it is also important to consider the dynamic constraints that define

each robot. Quadrotors can vary in size, shape, speed and motion. The dynamic model

of the aerial vehicle must be based on the physical structure of the quadrotor that is

chosen for the path planning experiment. Lastly, the type of mission that requires the

agent to fly from its start to goal node can introduce additional limitations. These

constraints come in the form of cost functions or objectives that must be considered

during a mission.

As previously described, multi-agent quadrotors are often used for a variety of

missions. In this study, the missions that are implemented involve multiple agents. The

usage of a team of agents can be advantageous but the expansion of an individual

platform towards a multi-agent system is a complex process. The trajectory planner

must be capable of executing the task that is assigned to each agent simultaneously.

These missions can be generalised into two categories which are independent or

coupled multi-agent flights. In the case of independent flight, the agents have

individually designed trajectories that are free from coupling with the other agents.

Here, each agent is provided with its own initial and desired goal node. Independent

missions as shown in Figure 2.16 are defined within this study as MA-Spread. Common

applications that require the agents to spread across its test environment are such as

target tracking, real-time surveillance, rescue missions, wilderness inspection and urban

space mapping.

On the other hand, some missions require the trajectories of all agents to be

coupled to one another. Cooperative flight is performed through the collective design

of trajectories for all agents simultaneously. Here, the path that is designed for one

agent is dependent on its neighbouring agent. In this case, the relative distance between

all agents is constantly monitored. The distance between any two neighbouring agents

is defined based on the current desired formation shape. Thus, the level of coupling of

one agent within a formation to another agent is high. Coupled missions as shown in

Figure 2.17 are defined as MA-Formation within this research. Flights in formation are

used to perform missions such as payload transportation, providing different camera

angles, collection of different sensory data and wildlife management.

This section aims to define the different trajectory planners that are often

applied towards the multi-agent spread and formation flights. Popular path planners

such as sampling, grid and roadmap based planners are discussed in section 2.2.1. These

planners can generate individual paths for agents that are flying independently. These

27

paths can be directly applied within the MA-SPREAD application. On the other hand,

these independent paths are used as reference trajectories for the MA-FORMATION

application. Thus, section 2.2.2 presents formation planning algorithms that design

paths for agents within a formation structure. Trajectory planners for flight in formation

often apply a leader-follower system, virtual structure or artificial potential function.

2.2.1 MA-SPREAD PATH PLANNING ALGORITHMS

The process of designing optimal paths for a UAV can be complex. As previously

defined, the designer must consider the many constraints that exist within a robotic

system and its environment. Expanding this system into a multi-agent system

introduces many new challenges for the designer. Therefore, the designer is required to

consider issues such as the number of agents, collision avoidance, communication

topologies, sensory data fusion and completion of tasks.

Trajectory planning for a multi-agent quadrotor system can be broken down into

two stages. The first stage involves the mapping of the test environment. The mapping

process can be done through three different well-established approaches. The designer

of a path planner can choose to apply any one of them: grid based mapping, sampling

based mapping or polyhedral roadmaps. The mapping process creates a geometric

model of the world where both the obstacles and free space are well defined. It also

produces a weighted graph that mathematically defines the free space. This graph

defines the connections between the edges and vertices that are spread across the test

environment. The second stage of path planning extracts the best path from the

collection of collision free edges. A popular form of grid path extraction for multi-agent

robots is through the shortest path Dijkstra's algorithm [31]. Here, collision free nodes

are placed within a queue and are defined by a weight. The weight of each node is

dependent on the collective cost of the nodes that begin from the start node. The value

of each node is constantly revaluated as the planner attempts to define the best path.

The best path has vertices with the lowest collective cost. An expansion of the Dijkstra's

algorithm is A* and its own extension, D*. In these variations, the objectives of the

mission can be used to further determine the most optimal path.

In grid based planning algorithms, the test environment is broken down into

grids. The possible horizontal movements of the UAV are shown in Figure 2.9. In [32]

a low-resolution grid map is generated for path planning across a three-dimensional test

space. Then, initial path planning is performed using A* algorithm. The authors

conclude that the paths that are generated through the course grid map are discontinuous

at each segment. This is because at the end of each grid segment, the agents are required

to perform aggressive manoeuvres to progress from node to node. Grid mapping can be

difficult to implement because the size of each grid is defined by the resolution

completeness that is required by the end user. Smaller sized grid cubes will increase the

processing time of the algorithm. It also has the advantage of producing a more optimal

path. Some studies have opted to implement adaptive sized grids to minimize

28

processing time whilst maintaining a high resolution. The size of the grids also affects

the number of nodes within the environment. In this case, the authors have chosen to

maintain larger sized grids whilst implementing a higher-level path smoothening

algorithm to minimize jerk cost.

The application of A* algorithm after grid based mapping is advantageous. The

combination of the mapping and path search algorithm has simplistic steps that don't

require a large amount of data processing or storage. The disadvantage of this simplicity

is it can cause evaluations of redundant nodes. Study [33] performs adaptive path

planning for three quadrotors that are flying across an indoor environment. Here, a

combination of grid mapping and closed loop RRT (CL-RRT) is applied. The algorithm

calculates a cost values for each grid block. This cost map is used to create bias in the

CL-RRT’s sampling process. This process can be challenging to replicate because grid

based path planners are effective when the environment is well mapped. The shortest

paths can only be discovered if the obstacles are clearly defined during the mapping

process.

Another algorithm that is frequently applied towards path planning for

quadrotors is Virtual Potential Function (VPF). This algorithm is also known as

Artificial Potential Function (APF). VPF performs node to node transitions based on

the summation of the attractive and repulsive forces of each grid cube. The attractive

field is proportional to the distance between the goal and current flight coordinates of

the agent. The repulsive field is inversely proportional to the distance between

neighbouring agents and obstacles within the environment. The repulsive field can be

designed like a penalty cost within an objective function. A high value can be assigned

to the repulsive field when there are obstacles within close range. Real-time flocking of

multi-agent quadrotors is presented in [34]. Here, the distances between four quadrotors

is maintained through a smooth collective potential function. The agents take more than

a minute to arrive at their desired agent-to-agent distances even though the test

environment has no obstacles. The most challenging part of VPF is determining the

potential value for all agents. This process will require a large amount of processing

time. The path planning algorithm will be especially slow within high dimensional test

environments or when there are many obstacles.

Fig. 2.9. Possible horizontal movements of a UAV across neighbouring grid blocks.

29

Study [35] shows the progression of three quadrotors across a forestation.

Figure 2.10 shows the potential field for the three quadrotors as they manoeuvre across

the forest. The potential field for the goal coordinates of each agent is shown in blue

tones. On the other hand, the undesired locations such as the start nodes are highlighted

in red. Possible agent-to-agent collisions are also avoided by creating a repulsive field

around neighbouring agents. Thus, the advantage of the algorithm is that it can be easily

applied towards dynamic obstacles. The algorithm also finds it tough to avoid local

minima due to its dependence on local information. It is possible for an agent to be

trapped within a local minimum. This can be disadvantageous for path planners that are

looking for globally optimum solutions. Thus, designers that wish to apply VPF must

also implement an additional local minimum recovery system.

Combinatorial trajectory planners are also used to navigate UAVs across various test

spaces. This path planner creates roadmaps by making collision free connections

between the boundaries of each obstacle. Roadmaps can be generated through several

methods. Combinatorial path planners can choose to apply vertical cell decomposition,

visibility graph, shortest-path roadmap or Voronoi diagram. The advantage of applying

combinatorial methods is its level of completeness. It can find a feasible path or report

that a path doesn’t exist. The Stanford Testbed of Autonomous Rotorcraft for Multi-

Agent Control (STARMAC) compares the usage of VPF and visibility graph towards

designing paths for a fleet of quadrotors [36]. Their work concludes that both methods

are simplistic and can generate paths quickly. The path that is generated by the visibility

graph is shorter but travels closely along all obstacles. On the other hand, VPF generates

a path that is longer but has better obstacle clearance. Both algorithms have the

disadvantage of designing paths that are dynamically infeasible when used

independently. The GRASP lab tests three variations of controllers for multi-robot

deployment [37]. The study makes a comparison between a Voronoi-based coverage

Fig. 2.10. Path planning through Artificial Potential Function for spread flight [35].

30

control task, probabilistic minimum variance task, and a task using VPF. Their research

concludes that discrete mapping functions such as the Voronoi diagram provides less

robustness to errors. Continuous mapping functions can produce paths that are easier to

track and produce less error.

Study [38] applies a Voronoi-based coverage control for cooperative multi-

quadrotor pursuit of an evader. Here, the path nodes of each quadrotor are designed

based on a Voronoi diagram that defines the no-fly region. The designed paths move

the quadrotors around the no-fly region whilst successfully trapping the evader within

it. In this case, the test space is highly simplistic with two obstacles. The disadvantage

of applying combinatorial methods is that they are exact algorithms where the

boundaries of the obstacles must be well defined. This algorithm is only able to produce

an optimal path if there are minimal approximations in determining the corners of each

obstacle. If the obstacles aren’t well defined, the path nodes may avoid narrow passages

and tight spaces. It is also highly challenging to create roadmaps within three

dimensional environments. These studies have only tested their algorithms within two-

dimensional test environments.

Sampling based algorithms such as probabilistic roadmap (PRM), Rapidly-

exploring Random Trees (RRT) and its variations have been used for planning the paths

of UAVs across different terrains. Random sampling based algorithms are preferred

due to its simplicity and the ability to promote coverage completeness with speed. The

key to the sampling based algorithm is its randomized distribution of sample points

across the environment. This pushes the focus of the path planner towards mapping the

environment as fast as possible. No limitations that are placed on the number of

iterations that is required to produce a feasible path. This allows for high levels of

flexibility in terms of complexity and running time. It is the end user that decides the

level of optimality that is required. The larger the amount of sample points, the more

refined the resolution of obstacles and its edges within the space.

PRM generates a roadmap by creating collision free connections between the

random sampling points. Study [39] generates trajectories for multi-agent quadrotors

through SAFETY-PRM. This algorithm maps environments that have inaccuracies and

uncertainties due to sensory error. Their work shows that the SAFETY-PRM algorithm

is capable of mapping collision free paths despite mapping errors. Results show that the

algorithm requires many samples to fully map the distorted environment. Like other

roadmap based algorithms, PRM generates many redundant connections between the

sample points. [40] also applies PRM towards trajectory generation for a quadrotor

within a three-dimensional environment. The test environments such as indoor spaces

and caves are used within their work. This study combines PRMs with Nonlinear

Programming (NLP) to generate dynamically feasible paths. Results show that the

PRM-NLP hybrid algorithm can generate optimal paths across these complex

environments in a short amount of time. The authors conclude that sampling based

algorithms such as PRM can be further sped up through parallel processing.

31

After analysing the trade-offs between the different path planners, this research

performs initial path planning through another sampling based planner which is RRT.

This algorithm has many advantages such as:

• The algorithm is probabilistically and resolution complete. The basic RRT

algorithm is often applied due to its ability to fully explore a space within a short

amount of time. With a multi-agent system, multiple trees can be generated to

promote better coverage and speed up the exploration process.

• The concept of RRT is direct and noncomplex in nature. Unlike prior path

planning algorithms, RRT doesn’t require explicit construction of the obstacles

within its test space. It performs free space mapping through random sampling

of the environment. These samples connect to form collision free path

subsections and are easily stored and extracted from a mutual database.

• Creates minimal buffer range between path nodes and obstacles. This process

easily maps narrow passages and sharp corners without a large buffer space

between the obstacles and the agents. Thus, shortest paths are easily obtained.

• Minimal redundant nodes. The sample points are well spread across the test

environment. There are no limitations that are placed on the distance between

two samples unlike path planners that use grid blocks. This reduces the number

of redundant nodes across a path.

• Easy implementation of heuristic function. The end user can optimize the

sampling process by introducing a heuristic function. The sample nodes can be

biased towards the goal node, obstacle free zones or shortest distance.

The RRT planer is inspired by the way tree branches in nature grow within their

environments. A tree trunk is rooted at a location and has many branches attached to it.

These branches continuously build upon each other. This creates a parent and child

relationship between the main branch and its smaller branches. In time, the branches

are well spread across the forest. Trees that are older in age typically have more dense

branches and leaves. As shown in Figure 2.11, RRT applies the same concept of parent

and child branches that are used to build full trees. The creation of the parent-child

connection is less complex than building a roadmap. Firstly, each tree is rooted at the

UAVs predefined start and the goal nodes. Sample points are then placed across the test

space and are connected to the nearest collision free tree branch. The planner works by

incrementally building these branches as the iterations progress. These branches

quickly spread across the test environment and become denser with time. Some works

implement multiple trees that are rooted at different locations. The branches of these

trees explore different areas of the test space and advance towards each other using a

32

greedy heuristic. This allows the end user to implement high resolution mapping when

necessary.

Like other sampling-based planners, many variations of the RRT algorithm apply

adaptive sampling methods. This encourages its usage within complex environments.

The end user has the option of placing a larger number of samples across narrow

passages or highly cluttered areas. The user is also able to implement path optimization

during the sampling process. In this case, the sample points are connected to the branch

with the lowest cost value. Other strengths of the RRT algorithm is its speed, intuitive

progression of nodes, near optimality and free space probabilistic completeness. Thus,

the application of randomly-exploring random trees as a tool for path planning is

advantageous. The final path can be filled with aggressive bends due to the structure of

the tree branches. The addition of trajectory smoothening mechanism can reduce the

impact of extreme bends within a path. Smooth splines that create minimal jerk

trajectories can be applied after the path planning process. Splines are easy to

implement in comparison to other polynomial equations because can generate a

trajectory for an entire path simultaneously through a simple recursive function.

Numerous studies apply sampling-based algorithms such as RRT because it can

promote complete coverage with speed. Research by [41] focuses on applying closed-

loop RRT (CL-RRT) with an autonomous ground vehicle. This real-time application of

RRT with a dynamically unstable vehicle shows that it can generate path nodes with

speed. Many authors have chosen to explore modified versions of RRT. In study [42],

RRT* is used for initial path generation. These initial paths are then transformed into

trajectories through polynomial splines. The algorithm can perform well with one

quadrotor. Expanding the RRT* algorithm towards a multi-agent system will require a

higher sampling rate and processing time. In a bid to reduce complexity, the algorithm

doesn’t fully consider the dynamic capabilities of the quadrotor. The authors of [43]

apply Information-Rich RRT (IRRT) to maximize information gain whilst minimizing

travel distance. The IRRT can plan paths for both cooperative and non-cooperative

Fig. 2.11. Single RRT tree across cityscape environment

33

multi-agent quadrotors. In both cases, the agents are planning paths independently

whilst broadcasting path information. Thus, the agents may perform sampling across

similar areas. This can be disadvantageous because the agents are collecting redundant

information. The algorithm can benefit from additional optimization.

Next, Desaraju and How [44] design a decentralized path planner for multi-

agent teams in complex environments using RRT (DMA-RRT). Their algorithm allows

an agent to modify the paths planned by other agents. This option allows each agent to

make improvements that reduce collective costs of a group. Thus, the global

performance of a team is preferred over individual excellence. A token system based

on potential improvement is used to decide which agent plans their path next. To

implement the DMA-RRT algorithm, two subsections should work together. Here, the

first section is the individual component that implements agent path planning. The

second section oversees the interaction component processes between agents. This

section ensures that all the information is shared between all agents. Results show that

a significant reduction in run time isn't seen with a small number of agents. Study by

[45] also applies a modified RRT towards multi-UAV planning in obstacle rich

environments. The anytime RRT algorithm must be able to avoid static, pop-up and

dynamic obstacles within the free space. The RRT algorithm is used to carry out a new

search from the current location of the UAV if the agent encounters anything

dangerous. Path replanning is also performed if an agent deviates from the designed

path. Results show that the algorithm can avoid high amounts of clutter and finding a

path within a short time.

Biderectional or multi directional RRTs (mRRT) are more current variations of

the basic RRT algorithm. Recent times show progress in the multi-tree RRT [46] field.

Here, more than one tree is constructed in series or parallel. This allows the trees to be

rooted at different locations across the environment. The idea of multiple trees is

advantageous because there is more coverage within a shorter amount of time. The

mRRT can also expand across places of interest such as local minima or dead ends. The

application of mRRT towards multi-agent UAV system is best with the merging or

creating connections between trees. This allows the sharing of information and

cooperative path planning. Study [47] applies a multi-directional Rapidly Exploring

Random Graph (mRRG) where the tree is expanded towards multiple directions. This

method produces faster space coverage and pathway generation since there are more

branches. The process of mapping can be further improved by the using multiple trees

[48]. Research by [49] uses transition-based RRT where a few trees are built from

different root locations. The algorithm is only implemented for the extraction of a

singular path.

The next variation of the RRT algorithm is the hybridization of multiple

extracted trajectories. Work by [50] applies RRT for the generation and merging of

pathways between protein conformations. Here, 100 paths are extracted through the

basic RRT algorithm. The nodes within these paths undergo clustering, hybridization

34

and ranking. The aim of the hybridization process is to create one superior path. The

clustering and merging of these paths are based on the values of the objective function

that is used. Whilst this process is effective for one path, implementing it for a large

collection of paths will be more complex. This is due to the high number of comparisons

that are necessary between each path’s nodes.

Our study applies both the multi-tree and hybridization process. Here, the CL-

RRT includes the limitations and constraints that are present within the quadrotors.

Processing time is reduced by sharing sampling points and mapping information

between all agents. These initial paths are then applied towards the creation and

optimization of new paths.

2.2.2 MA-FORMATION TRAJECTORY PLANNER

The prior subsection defined the path planning algorithms that are used to generate

paths for each agent independently. In most cases, similar algorithms are applied to

generate the reference path for agents in formation flight. These reference paths are

transformed into trajectories for each agent within a formation. The variety of methods

that are used by researchers to design and maintain formation flight is discussed within

this subsection. Many works have taken inspiration from Reynolds’ three rules of

flocking behaviour [51] when designing a path planner for formation flight:

1. Maintaining cohesion: The agents constantly steer towards the average position of

its neighbouring agents.

2. Creating separation: Agents are to fly away or maintain a safe distance from its

neighbouring agents.

3. Preserve alignment: The multi-agent system heads in the same direction.

Planning for multi-agent flight in formation requires a three-stage system. Firstly, the

design of the reference trajectory across the test environment is performed. Next, a

formation planner is utilized to design the formation shapes across the trajectory.

Lastly, the trajectory for each agent is generated based on both the reference path and

formation shape. As shown in Figure 2.12, flight in formation means that the trajectory

of each agent has a high level of coupling with its neighbouring agents. The most

popular method for formation planning is the leader-follower system. In this case, the

following agents track the movements of the leading agent. Here, the agents are

required to maintain a set distance from a reference trajectory. Formation flights are

often successful through the usage of consensus algorithm. In this case, the agents

communicate with each other and cooperatively maintain their desired formation shape.

VPF is also often applied for formation flight. The structure of the algorithm remains

the same as typical MA-SPREAD path planners. The only difference here is that the

attraction force is proportional to the distance between the following agent and the

35

leading agent. The attraction force can also be proportional to a formation reference

path. Another common way of generating the trajectories for the agents in formation is

through a virtual structure. Here, the independent trajectory for each agent is based on

the desired formation shape as shown in Figure 2.12. Lastly, behaviour based systems

that mimic the motions of animals in nature such as birds and herds are also used for

formation planning.

As previously described, the leader-follower formation system is extremely popular in

current times. The downside to this system is its full dependence on the leading agent.

In centralized systems, the collapse of the formation is possible in the event of a faulty

leading agent. Many researchers have attempted to reduce the risks that come with a

leader-follower system whilst maintaining its simplicity. Work by [52] produces paths

for a leader-follower multi-agent quadrotor system. The following agent is required to

maintain a fixed distance and angular deviation from the leading agent. Their research

uses fuzzy logic and GA to preserve the trajectories of the following agents in case

connection is lost with the leading agent. Here, an estimation of the leader’s path must

be obtained. Even though their work tries to minimize the damage that can occur from

a centralized system, there can be a large error when estimating the trajectory of the

leader. It would be tough to minimize the estimation error especially when sudden and

aggressive manoeuvrings are performed by the leading quadrotor. Another group of

researchers have published multiple papers on the leader-follower system for

quadrotors [53-55]. Their work tests the stability of the system by arbitrarily switching

or adding weights to the formation topology. This process allows the formation team to

have more than one leader or have its leader be interchangeable. Results show that the

agents still achieve consensus with a switched topology. More stability can be

introduced by reducing the impact of a faulty leader. In this case, any healthy agent can

be switched to the leading agent. Still, there is dependence on the leader’s reference

signal to plan the paths for the following agents.

A modified leader-follower (MLF) system is applied towards transporting a

suspended payload [56]. The authors utilize four quadrotors with a suspended load in a

ring topology. Unlike previously discussed works, the MLF system creates dependence

AGENT 1

AGENT 3

AGENT 2
AGENT n

Fig. 2.12. Rigid formation structure based on the desired formation shape.

36

between both the leader and its follower. The movements of the leading agent are

affected by the feedback that is received by its following agents. Results show that both

the following and leading agents can cooperatively change velocities during a fault and

maintain formation. Another study that creates dependence between the leader with its

followers is [57]. This work stabilizes the movement of the leader through a reference

frame that is formed by virtual followers. These virtual vehicles are placed at a

predefined distance vector. Here, the control law pushes the leading agent to maintain

the desired distance from its follower as opposed to the other way around. The same

team designs the trajectory of a following agent through the positional derivatives of

the leading agent [58]. This study shows the ability of the real follower in tracking the

motion of the virtual follower. The virtual follower moves like a trailer. Thus, the

trajectory for the virtual trailer contains the positional derivatives of the leading agent.

This system works like a fully decoupled path planner once the agents are flying/online.

The following agents independently track the path of their virtual trailers. These works

are innovative and are challenging the high level of coupling that exists within the

leader-follower system. Still, the agents are dependent on each other to change and

maintain a formation shape. This can be challenging in environments that have a large

amount of clutter. The error of one agent is always propagated to the others within its

team.

Artificial potential function (APF) is often applied for the generation of

formation trajectories. Figure 2.13 shows the APF forces that are applied whilst

defining the next node within the formation path. The blue coloured areas define the

attractive force whereas the red areas define the repulsive force. The cumulative force

for the leading agents is similar to the independent MA-SPREAD scenario as shown in

Figure 2.10. With the following agents, the attractive forces are used to keep agents

close to the leading agents and in formation. The repulsive forces are used to avoid

collisions with neighbouring agents. This can be seen in Figure 2.13 where the blue

area is close to the current location of the leading agent. Whereas, the red areas are

defined as the parts of the terrain that are far away from the leading agent. Applying

APF for multi-agent flight can be highly advantageous in test spaces that have many

dynamic obstacles. The simplicity of the APF equations allows the agent to quickly

detect a moving obstacle and plan a new direction. Defining both forces constantly is

important for successful formation maintenance. Due to this, APF requires constant

sampling of the environment which leads to a high processing time. Thus, APF can be

beneficial for short distance formation planning but will increase in complexity across

large or high dimensional spaces. Another disadvantage of APF is the possibility of an

agent being trapped in local minima. This situation happens when the summation of the

attractive and repulsive force is zero. In this case, the agent is trapped in this location.

Thus, the path planner is incapable of exiting the local minima and moving towards the

goal node without additional help.

Research by [59] shows the basic application of APF for formation planning

with a team of three quadrotors. Their potential function is a sum of three forces. The

37

first force defines the position error of the agents based on the desired formation shape.

Next, collision avoidance is taken into consideration by determining the distances

between neighbouring agents. Lastly, the final force pushes the agents to track the

trajectory of a virtual leader. Many modifications have been introduced to simplify the

full potential function. Work by [60] uses APF to design the trajectories of six

quadrotors that transition between three different formation shapes. Initially, the agents

form a two-dimensional star shape. They then move to create a rectangular and

triangular shape. Here, only close-range obstacles are considered within the path

planning algorithm. This process reduces the processing time that is required to

determine the repulsive forces.

The same team further simplifies the repulsive force equation by eliminating the

need for agent-to-agent collision avoidance in [61]. The authors perform strategic goal

node assignment for a group of 10 quadrotors. Each agent is assigned a goal node whilst

transitioning from one formation shape to another. The path planner designs a trajectory

that allows each quadrotor to fly from to their goal node without colliding with any of

their neighbouring agents. There is no need to constantly define the agent-to-agent

repulsive force if the goal node of each agent is well assigned. Though both these

studies have attempted to simplify the APF equations, it is performed in a 2D

environment with no more than two small circular obstacles. These improvements may

be negligible in highly cluttered 3D environments. Researchers have also attempted to

reduce the effects of being trapped within local minima. Study [62] implements a wall-

following system to guide an agent out of the local minima region. It is a simple system

that tells the agents to fly close to the obstacle’s boundary and escape local minima.

There are two disadvantages to this system. The boundaries of each obstacle must be

accurately defined so that there are no collisions whilst wall-following. The agents will

also have to travel longer distances. A path planner that isn’t affected by local minima

will produce shorter paths.

Fig. 2.13. Path planning through Artificial Potential Function for formation flight [35].

38

Consensus algorithm (CA) is constantly applied for multi-agent formation

planning. This provides more robustness as compared to previously defined centralized

leader-follower configuration generated with APF. Consensus produces a decentralized

structure where the death of an agent or the loss of communication link is not

detrimental to global coordination. Here, graph theory is applied. A graph is modelled

as a collection of vertices and edges. An edge (communication link) is a connection

between two vertices (agents). Next, an adjacency matrix is applied to imply the options

for networking from agent to agent. A team of multi agents that exchange data are

typically modelled by directed or undirected graphs. Directed graphs are graphs which

have a direction associated with each edge. Undirected graphs promote two-way

communications between the vertices and its edges. Multi-agent systems that are well

connected can reach consensus quicker than partially connected systems as shown in

Figure 2.14. The communication topology is often assumed to be time varying due to

vehicular motion or communication dropouts. These can be caused by propagation loss,

diffraction and noise disturbances.

CA minimizes processing speed by focusing on agents that are within each

other’s communication range. The downfall of communication links between agents

can be overcome as well. This is due to the inclusion of multi-agent network topology

within the formation control structure. Thus, consensus algorithm creates fully

distributed and fault-tolerant formation architectures. As with centralized structures,

fully distributed systems can have some disadvantages. An agent can be left out of the

communication chain if connection is lost with its neighbouring agent. A distributed

system also requires the full collaboration of all agents to form different formation

shapes. This process can require a lot more time than a centralized system since the

cooperation of all agents are important.

There are a few current works that have applied CA towards maintaining the

formation shapes of multi-agent quadrotors. Study [63] uses a sliding mode control with

CA for path planning and tracking. Three quadrotors are required to fly from their initial

position and form a triangular formation structure. Their work shows that many types

of communication topology can be used to achieve consensus. These agents perform

formation flight with a fixed, directed spanning tree or undirected network graph. In all

cases, the quadrotors could create and maintain its formation shape in less than 5

seconds. Still, the study assumes that all agents know their desired trajectories and have

the same trajectory within an obstacle free space. Similarly, study [64] applies the

algorithm with three quadrotors that aim to maintain a rotating triangular formation

structure. The multi-agents have a directed communication topology. As previously

defined, this can be dangerous if an agent loses communication with its neighbour.

Work by [65] combines a leader-follower system with CA towards formation

planning for a group of quadrotors. The agents have indirect contact with the leading

agent as well as its team mates. It removes the need for all agents to be directly

connected to their leader. Thus, the positional information can be passed on despite

39

losing contact with the leading agent. The same team aims to include obstacle

avoidance into their algorithm by implementing APF as well [66]. Here, only agent-to-

agent collision avoidance is tested. Each agent has a cylindrical shaped safety zone

around it. These safety zones define the value for the APF’s repulsive force. In these

studies, very simplistic conditions are applied. They don’t really challenge the

capabilities of the CA. The running time of the planner will be much longer when the

agents should transition between multiple shapes. Predicting the flight time that is

required by each agent between formation shapes can be challenging with CA. Another

challenge with CA is its ability to plan paths that avoid obstacles. It must be used in

collaboration with another algorithm to effectively avoid all obstacles within the test

environments.

Upon weighing the pros and cons of each method applied for formation planning, this

research applies a virtual structure (VS) or virtual rigid body for fast and stable

formation flight. There are many benefits to using a virtual rigid body:

• This system isn’t fully centralized or decentralized. There is less coupling

between agents. Each agent is less affected by the death and faults of their

neighbours. Here, both the VS and the reference trajectory are used to create

independent paths for each agent. Figure 2.15 shows a circular VS that is used

to generate the trajectories for 10 agents. Initially, it is centralized in the sense

that a reference trajectory is necessary. Once in flight, the agents are flying

independently and are fully decentralized.

• The application of a closed loop multi-agent UAV prediction system. The

independent trajectories can be easily applied for an estimation system that

2 4 6 8 10 12 14 16 18 20

10

20

30

40

50

60

70

80

90

STRONGLY CONNECTED NETWORK

TIME (s)

IN
F

O
R

M
A

T
IO

N
 S

T
A

T
E

,
P

O
S

IT
IO

N
 (

m
)

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

5 10 15 20 25 30 35 40

10

20

30

40

50

60

70

80

90

UNDIRECTED NETWORK

TME (s)

IN
F

O
R

M
A

T
IO

N
 S

T
A

T
E

,
P

O
S

IT
IO

N
 (

m
)

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

CONSENSUS ACHIEVED, t~20s

CONSENSUS ACHIEVED, t≈8S

`

CONSENSUS ACHIEVED, t≈20S

`

Fig. 2.14. Speed of convergence for strongly connected and undirected network.

40

predicts the movement of each agent. Thus, a group of heterogeneous

quadrotors with different physical capabilities can be flown simultaneously. The

trajectories will be dynamically feasible for each individual agent based on their

physical capabilities.

• It also removes the dangers of lost communication links between agents. The

agents can maintain their formation structure since they are tracking

independent trajectories. These trajectories are not dependent on their

neighbouring agents. Thus, only basic collision avoidance is required between

two agents whilst they are flying in formation.

• Minimal positional and rotational error propagation. Here, each agent is

supplied with an independent control system. The lack of coupling between

each agent during flight reduces the propagation of any agent’s error across the

team.

• Easy execution of many complex formation shapes. The compression or

spreading of the multiple agents in formation can be performed by changing the

shape of the virtual body. This can be advantageous for environments that have

large amounts of clutter or narrow spaces.

• No need to define the environment or its obstacles. The virtual body changes

shape and size based on the free space contour around each path node. If this is

well executed, each agent doesn’t require much information regarding its

environment. Thus, only dynamic obstacles need to be identified.

There are a few researchers that have applied virtual structures as shown in Figure 2.15

within their formation planner. [67] addresses one of the challenges that can occur when

designing VS across a multi-agent quadrotor formation trajectory. In most cases, the

shape of the VS determines the positional and rotational derivatives of all the agents in

formation. They acknowledge that the agents within a team may not all be capable of

achieving and maintaining a designed VS. This happens when the VS progresses faster

across the reference trajectory in comparison to the agents. Thus, the agents are

incapable of tracking their trajectories. Their work introduces trajectory replanning if

an agent is lagging. The replanning process slows down the entire formation so that the

lagging agent can keep up. If this isn’t possible, the other agents progress without the

faulty quadrotor. Another study implements a virtual rigid body with a group of

quadrotors [68]. This system decouples the virtual body’s movements from the

trajectories of each agent. Here, the quadrotors are required to transform into six

different formation shapes. Results show that the agents can transit between these

shapes quickly. This shows that a formation path planner that is decoupled from its

shape planner can minimize processing time. The disadvantage of this system is that

the formation paths are not proven to be dynamically feasible. Also, the formation

shapes are randomly determined because the test spaces have no obstacles within them.

41

Formation planning with virtual rigid bodies is ideal for this thesis. The concerns that

are raised within prior works are tackled within this research.

In this thesis, the formation shapes for eight quadrotor agents are designed based on the

obstacle free space contour around the agents. The contour is mapped through the radius

of free space at all angles from the formation waypoint. The virtual structures across

the formation path are designed based on the size of the free space contour. Next, our

formation planner designs both rigid and nonrigid shapes for long distance flights. It is

capable of a high number of shape changes that adapt to its environment. No limitations

are applied upon the network topology since the agents will be tracking independent

trajectories. The quadrotors will maintain a safe range from each other using sensory

data. Thus, this system collectively produces a formation planner that is high resolution

and adaptive to complex environments.

2.3 MULTI-AGENT QUADROTOR MISSIONS

With any real-life decisions, the pros and cons of all options are weighed before making

a choice. Objective functions are defined as mathematical representations of the pros

and cons of various options. Thus, different choices produce different objective

function values. Ideally, the best choice is one that considers all objectives fairly

without extreme sacrifices of one cost function over the optimization of another. In

reality, achieving fairness is extremely hard. Similarly, when designing the trajectory

for a multi-agent system, various objectives are applied to form a collection of

trajectory choices. These choices can be narrowed down based on the user’s

preferences. The accurate detection of necessary objectives is important as complexity

increases with the number of cost functions. In cases where too few objectives are

present, the final trajectory will be biased only to those objectives present. This can

cause degradation in costs that were not defined. Here, the various types of objective

functions that are applied within multi-agent trajectory generation algorithms are

discussed.

Fig. 2.15. Path planning for 10 agents in formation through a spherical virtual structure.

42

2.3.1 OBJECTIVES OF SPREAD FLIGHT

In this study, multi-agent spread missions are defined as tasks that require the agents to

fly across the terrain independently. An example of spatially spread flight is shown in

Figure 2.16. Thus, the path for each agent is designed based on their predefined start

and goal nodes. Common spread missions are target tracking, search and rescue,

environmental mapping, human-assisted navigation, load lifting and agricultural

surveillance. In most cases, the agents are used to collectively explore uncertain areas.

Trajectory planners that are designed for quadrotors are often focused on path length

and altitude, aggressive manoeuvring, path tracking error, time optimality as well as

fuel consumption. It is also important that these planners also consider minimizing

possible collisions and network decay. Lastly, efficient environment mapping is

encouraged through the exploration of uncertain areas and the reduction of redundant

sensory data.

The most common requirement for a trajectory planning algorithm is to generate the

shortest path. This objective is highly important because it minimizes the fuel

consumption thus leading to a longer flight time. The shortest path is influenced by the

path’s node-to-node distance which also takes into consideration the altitude of the

UAV. Target tracking is a popular application for multi-agent quadrotors. In many

cases, the agents should maintain visual contact with a few targets simultaneously. This

process is made up of two sections which is target searching and tracking. In [69], the

path planning algorithm minimizes two objectives which are the travel distance and

target pose uncertainty. The aggregated cost function allows the end user to define the

importance of finding the shortest path. The level of importance of an objective within

a cost function is set through predetermined weights. Another objective that facilitates

the extraction of the shortest path is the minimization of goal deviations. This cost

penalizes node to node progressions that move further away from the goal node. A

swarm of 20 micro quadrotors are flown across a known indoor environment in [70].

This study aims to minimize the goal node cost through optimal goal assignment. Here,

Fig. 2.16. Independent multi-agent quadrotor flight across an indoor space.

43

the goal nodes aren’t attached to an individual agent. Each agent is free to progress

towards any goal node to minimize the total cost function.

The advantage of using UAVs as opposed to ground robots is its ability to fly

across three dimensional spaces. Path planners must consider the altitude of each agent.

Quadrotors often fly at higher altitudes because it avoids colliding with obstacles across

each terrain. Still, flights at higher heights require a large amount of fuel, thrust and

climb. Thus, a multi-agent path planner must be able to determine the best flight altitude

for each mission. As previously mentioned, the transportation of loads has become a

common application for multi-agent quadrotors [71]. It is important for the agents to

maintain flight at certain heights due to the load that is placed beneath them. The load

lifted by the agents can crash against the ground if it is flown at a low height. On the

other hand, it can cause an increase in fuel consumption if flown at high heights. Faust

et.al. generate trajectories for a quadrotor with a suspended payload [72]. Path nodes

are placed at an appropriate height with low amounts of oscillations. These costs are

prioritized to minimize load swinging. Wang et.al. aims to design trajectories for

quadrotors that are flying across a partially known indoor environment [73]. The

agent’s mission is to follow the smooth trajectory through a window and drop payload

at a designated target location. In this case, the flight height is extremely important

since each window creates a border around the agent and its payload. Similarly, the

possibility of applying the multi-agent quadrotors for cooperative constructions is

explored in [74]. These agents are required to construct structures such as cubic,

pyramid, tower and wall using nodes and beams. Here, the altitude of each agent is

determined by the location of the building blocks and the height of the structures within

the construction site.

Another objective function that offers the end user flexibility is the smoothness

of a path. The application of multi-agent quadrotors is advantageous because it is

capable of aggressive manoeuvring at high speeds across various terrains. The agents

must be capable of flying across sharp bends with minimal vibrations whilst

transmitting real-time imagery. Many studies prefer to choose smoother paths that

allow the quadrotors to transition from node-to-node smoothly. Study [75] attempts to

improve the quadrotor’s ability to undertake aerobatic manoeuvres with minimal error.

The authors apply a control system that can compensate for any altitude error during

turns. The control system produces a much flatter trajectory by predicting that a sudden

increase in thrust will occur during sharp bends. Polynomial trajectory planning for

aggressive quadrotor flight is presented in [76]. Their work implements a cost function

that penalizes the squares of the positional derivatives. Here, the end user can define if

the minimization of jerk, snap, crackle or pop value is preferred.

Many studies are focused on obtaining trajectories that encourage minimal path

tracking error. Tracking error is dependent on the feasibility of the designed path. The

path planner should consider the size, thrust and speed limitations of each agent. A

quadrotor simulator for outdoor flight is designed by [77]. Their model implements

44

both environmental and mechanical factors to estimate and minimize position error.

Research by Tomic et. al. design a platform for search and rescue missions within

indoor or outdoor environments [78]. The system architecture merges data fusion,

mission control and path planning subsystems to effectively track paths. Experiments

show that the quadrotor can estimate and follow the desired position with minimal error.

The quadrotor is often applied across different environments and weathers. In harsh

environments, it can be difficult for the quadrotor maintain minimal path tracking error.

Guerrero et. al. tests a trajectory planning in known wind fields for unmanned

quadrotors [79]. In this case, the planner must be capable of designing and tracking

trajectories despite windy situations. Here, the path cost function is a combination of

constant and varying wind variables. These studies show that it is advantageous for

trajectory planners to include path smoothness within its chosen cost functions. The

agents may not be capable of tracking these paths in real-life if these constraints aren’t

considered at the initial stage of path planning.

 Another field that is constantly explored by researchers is the creation of time

optimal trajectories. The paths are constructed to mimic real-life flights. Here, the

physical limitations of each agent are taken into consideration. Study [80] generates

time optimal paths for quadrotors that guarantee dynamic feasibility. These trajectories

are designed to allow the quadrotor to complete the mission within minimal flight time

without exceeding its speed and acceleration limitations. Many studies also aim to

prioritise trajectories with minimal fuel consumption. Chamseddine et. al. [81] produce

works on the planning and replanning of minimal energy trajectories for a quadrotor.

Focus is placed on obtaining paths with minimal flight time despite actuator constraints

and faults. The path planner is assisted by faults-tolerant control (FTC). Study [82] uses

different sized quadrotors for the Sensing Unmanned Autonomous Aerial VEhicles

(SUAAVE) project. These agents are used for search and rescue operations. Extracting

paths with minimal flight time can be challenging when multiple objectives are

considered at the same time. This study prioritizes objectives such as the amount of

energy consumption, possible collisions and obstacle avoidance. The amount of data

sharing between agents is also considered for trajectory planning. Another study that

combines energy management with other objectives is [83]. Here, the path planner aims

to conserve and recharge the energy required by a swarm of quadrotors. The batteries

are recharged through Ground Recharge Stations (GRS) that are placed across the test

environments. Other objectives that are considered are such as the mission status,

number of agents and possible faults. Thus, the path planner must be capable of finding

paths with minimal fuel consumption without sacrificing the minimization of other

objectives.

Multi-agent quadrotors that fly independently can collide with each other if the

position of each agent isn’t considered. A robust communication network between all

agents is important for agent-to-agent collision avoidance. A minimal decay connection

allows each agent to estimate the states of other agents with high accuracy. Defining

the network topology and possible delays between the agents within a team is

45

prioritized in study [84]. Proper estimates of each agent’s state are only possible with a

stable communication link that has minimal data packet loss. This objective is highly

dependent on the transmission range of the antennas that are used on the quadrotor

agents. The communication between agents is also extremely important for avoiding

agent-to-agent collisions. In [85], five quadrotors flew autonomously whilst avoiding

agent-to-agent and obstacle collisions. Here, some agents are able to fly across short

and direct paths. The remaining agents had to fly across longer paths to avoid colliding

with another agent. Thus, finding a balance between obtaining the shortest path whilst

avoiding collision becomes challenging. Similarly, [86] applies 50 simulated

quadrotors towards creating and displaying a 3D animation of a human in motion. The

position error of the agents must be well minimized to avoid collisions whilst properly

shaping and visualizing each animation. These studies show that it is very important for

designers of a multi-agent system to maintain a good communication link between the

agents.

Quadrotors are also capable of efficient information collection through sensory

fusion. Multiple agents are typically spread across unknown environments to perform

real-time mapping. Here, trajectory planners must encourage their agents to fly across

uncertain areas within the terrain. This process reduces the amount of redundant sensory

data by prioritising paths that are diverse in direction. In [87], quadrotors are deployed

simultaneously to increase situational awareness and track targets within its test

environment. Similarly, study [88] applies a multi-agent quadrotor system towards

aiding operators in humanitarian demining. The agents are used to provide aerial

imagery of harsh environments. There are two objectives that are important in both

these studies. The first is to maximize the amount of space exploration and the second

is to minimize similar data collection. Work by Soltero et.al. prioritizes the

maximization of information collected within unknown environments [89]. Their

algorithm designs paths for a quadrotor that flies across dynamic environments. These

environments rapidly change as the quadrotor flies across them. Results show that the

adaptive path planner can map the environment and producing a path within a small

number of iterations. Similarly, study by He et. al produces trajectories through a Belief

Roadmap algorithm within GPS denied environments [90]. The algorithm can properly

identify obstacles within the free space through non-uniform sampling despite sensory

limitations. The works that are described placed a lot of importance in collecting

adequate information for environment mapping, target tracking and path planning.

In real life, many objectives are important to the successful completion of a spread

mission. The objectives are typically tailored to an application. Many works choose to

exclude some objectives or create a priority system that reduces the importance of

certain objectives. More flexibility and knowledge can be obtained when the focus is

on the optimization of all objectives. This research chooses to optimize all objectives

equally through many-objectives optimization.

2.3.2 OBJECTIVES OF FLIGHTS IN FORMATION

46

The second application that is explored within this study is flight in formation. An

example of formation flight is shown in Figure 2.17. Quadrotor UAVs are capable of

aerial flights whilst maintaining precise patterns. Formation flights are crucial for tasks

such as payload transportation, security patrols, search and rescue or environment

mapping at hazardous sites. Studies on multi-agent formation flight have implemented

a variety of objective functions. Like spread missions, paths that have minimal length,

altitude, goal deviations and aggressive manoeuvring are prioritized. Time optimal

trajectories that have minimal flight time are also preferred by most researchers. A

highly important objective for formation flight is the reduction of positional error. The

minimization of each agent’s positional error will also create a reduction in possible

agent-to-agent collisions. The cost functions that are unique to formation flights are

based on the designed formation shapes. Here, many works apply objective functions

that minimize the number of formation shape changes, scale complexity, maintenance

and rise time.

Firstly, multi-agent formation flights require a fast and robust control system. This

process allows the agents to maintain their positions whist transitioning between

changing formation shapes. The control system is used to minimize the positional error

for the quadrotors that are flying in formation. Most studies implement a double layer

control system. The lower layer of the multi-agent control system holds the individual

trajectory and mathematical model for each agent. On the other hand, the higher layer

holds a controller that minimizes the position error of all the agents collectively. A

robust control system is applied towards a group of homogeneous quadrotors in [91].

A two-level controller is applied. In this case, both the quadrotor and its formation

control system are cascaded. They aim to minimize both the individual agent motion

error as well as collective formation error. Research with a swarm of multi-agent

quadrotors is performed by [92-93]. Their study aims to generate feasible flight paths

for 20 quadrotors with extreme roll and pitch angles. The 20 quadrotors are further

divided into smaller groups. The control system for each agent within a formation is

Fig. 2.17. Multi-agent quadrotor flight in formation across a forest.

47

defined by their position error. The error function is a combination of an agent’s local

and global positional error. The local error defines the positional error of an agent

within its group. The global error is defined by the agent’s position within the entire

group of 20 agents. Unlike spread missions, the minimization of each agent’s positional

error is the most important objective for any formation trajectory planner. It allows the

agent to maintain their formation shape and avoid possible collisions.

 There are two types of formation structures which are rigid and nonrigid shapes.

In some studies, the agents are required to maintain a singular rigid structure across an

entire trajectory. An example of a rigid formation structure is shown in Figure 2.18. In

[94] a collective flight front must be maintained despite the introduction of

communication noise. Consensus algorithm is used to define the network topology and

implement cooperative control. The study shows that algorithm can keep a uniform

front when maintaining noncomplex formation designs. It will require more time and

constant communication to reach consensus with dynamic shapes. Missions such as

payload lifting need rigid formation shapes. Here, the distances between each agent do

not change with time. A system that allows agents to grasp and transport a payload is

presented by [95]. Here, the transportation of four various shapes of wood planks is

executed with quadrotors. The agents and its payload are mathematically modelled as

a singular entity. This study applies a centralized control system to estimate the

position, velocity and rotation of each quadrotor. It also uses a decentralized control

system to predict the angular velocity of the agents. The combination of both

centralized and decentralized control systems produces trajectories that are dynamically

feasible. The estimated positional derivatives of each agent determine if the agent can

maintain the rigid formation shape across its trajectory. It is highly important that the

agents maintain their formation structure to successfully transport a payload.

Next, the design of adaptive formation structures allows the agents to change shapes

when encountering narrow passages or obstacles. Tasks such as target tracking can be

accomplished with nonrigid formation shapes. Nonrigid formation structures are more

flexible and allow the agents to change shapes whilst flying. In [96] the formation

topology for four quadrotors is defined through three different behaviours. The first

Fig. 2.18. Multi-agent quadrotor flight in formation across a forest with a payload.

48

topology requires a constant network graph. The second topology is unconstrained and

allows disconnection within the network. Lastly, the final topology allows shape

changes whilst remaining connected. Whilst the study only performs two shape

changes, it shows that a formation planner must be as flexible as possible. There are

many formation shapes that are often used with quadrotors. Study [97] performs

formation flying with three Qball-X4 quadrotors. Here, a variety of formation shapes

such as line abreast, triangular as well as cross formation are tested. Results show that

the quadrotors can achieve these shaped whilst satisfying Reynold’s rules of flocking.

Flocking behaviour is described as a swarm of agents that can maintain separation,

alignment and cohesion whilst flying. The agents within a formation must avoid any

possible collisions with neighbouring agents. All agents must also fly at the same

velocity and direction of their fellow teammates. These rules can be used as guidelines

for successful nonrigid formation planning.

Current works often test the ability of a multi-agent quadrotor system to adapt

to different formation shapes across their planned trajectory. In this case, most objective

functions minimize the number of shape changes and its complexity in terms of scale.

The complexity of formation design is dependent on the difference between two

consecutive formation shapes. The structure of the formation can either scale up or

down in size. Research by [98] uses a team of three KMel K500 quadrotors to perform

agile manoeuvring whilst maintaining their formation structure. The agents are set to

transition from a line to a triangular formation shape and then returning to their initial

shape once again. Their work highlights the importance of designing a planner that

generates short and dynamically feasible trajectories that remain collision free whilst

the agents transition between formation shapes. Analysis in [99] shows that the multi-

agent quadrotors are capable of transitioning between many shapes. Here, the

quadrotors progress from a tandem formation to an alongside, triangular and extended

triangular structure. The study prioritizes objectives such as collision avoidance, good

communication network, time optimality as well as minimal positional error. Due to

this, the agents can maintain a less than 3m positional error despite strong winds. Both

these studies show that there are many similarities between the spread and adaptive

formation mission. Researchers still want paths that are short, collision free,

dynamically feasible and energy efficient.

Another important factor that must be considered when designing paths for

formation flights is the amount of time that is dedicated towards changing formation

shapes. The rise time is defined by the time difference between two formation shapes.

The initial time begins when the agents begin to change shape. The rise time ends when

the agents successfully achieve the desired formation shape. Study [100] presents a

trajectory planning and replanning algorithm for quadrotors. The authors highlight the

importance of measuring the rise time of a trajectory. It is shown that if the rise time of

a formation is small then the agents move too quickly and fail to track their desired

trajectory accurately. The opposite is true for longer rise times where the flight time

and fuel consumption are increased. Thus, it is important that the formation planner

49

strikes a balance when designing the formation trajectory and its control system.

Research [101] presents a time-varying formation control system for five quadrotors

that takes into consideration the different velocities of each agent. The quadrotor swarm

can achieve the predefined time-varying formation structures through consensus-based

formation control protocols. Here, the formation rise time can be estimated through the

varying velocities of each agent. The five quadrotors can achieve the predefined time-

varying formation within 200 seconds. This time-varying formation planner makes it

possible for the agent to track the designed paths within a feasible rise time and minimal

error. Similarly, study [102] aims to improve the formation rise time that is required by

a group of multi-agent quadrotors. This is achieved by improving the convergence

speed within a formation control system. In this case, the agents required less than 100

seconds to create a uniform front. This objective function measures the complexity of

a formation trajectory. The longer the rise time, the more complex the formation shapes

across the planned trajectory. Most researchers prefer trajectories that avoid all

obstacles without the need for highly complex formation shapes.

These studies perform optimization of multiple objectives with an aggregated

function. More flexibility and knowledge for the end user can be obtained when the

focus is on the optimization of all objectives. Firstly, our study applies a fully

decentralized control system. This control system runs in parallel through a multi-

threaded processing unit. Thus, the multi-agent control system can run simultaneously.

It minimizes the risks that come with a centralized system and reduces simulation time.

Lastly, the equal optimization of all objectives is performed within this study through

many-objectives optimization.

2.4 TRAJECTORY OPTIMIZATION FOR MULTIPLE AGENTS

In real-life scenarios, important decisions require the comparison of each choice's pros

and cons. As humans, we analyse these options for their advantages and disadvantages.

Then, we pick the option with minimal disadvantages. The minimization of negative

criterions is the key to optimization. In certain cases, one may want a set of good options

as opposed to a singular one. The ability to produce various options is advantageous

because it gives the user additional flexibility. The end user can pick the best choice

out of a few good options. This is where multi-objective optimization (MOO) performs

best. As shown in Figure 2.19, there are various MOO algorithms that can be used for

path planning. MOO algorithms can analyse high amounts of data in the form of many

solutions. MOO evaluates the cost values of each solution at each generation. It then

eliminates the weaker solutions through comparisons. As iterations progress, the

number of optimal solutions increase through the weeding out of suboptimal solutions.

The most common variation of MOO is optimization through scalarization.

Here, solutions are often ranked through a weighted sum equation. This equation is

formed by merging multiple objective functions. The advantage of this method is its

simplicity. The weighted sum equation is easily modifiable by the end user. The weight

50

values of each cost can be used to create bias within the ranking process. The negative

aspect of this process is assigning these weight constants can be tough. Most users don't

have preferences or a full understanding as to which objectives are to be given priority.

These weight values can cause an unwanted bias within the search space. Thus, it leaves

the end user with suboptimal solutions. The lexicographic method sorts the cost

functions in order of importance. This process is known as the lexicographic order.

Here, lower priority objectives are optimized if they do no negatively impact the higher

priority objectives. The disadvantage here is similar to the weighted sum method. Prior

knowledge of the importance of each cost function must be available. The first multi-

objective genetic algorithm is the vector evaluated GA (VEGA). VEGA was

implemented by Schaffer in 1984 [103]. In this case, optimization is achieved through

the application of objective vectors. The entire search space is randomly divided into a

few groups. The number of groups is the same as the number of objectives that are

being optimized. The fitness of each solution subpopulation is optimized with differing

objectives. Thus, VEGA produces the best solution for each objective since each

solution group is optimized in one direction. VEGA fails to deliver when the user

requires a solution that optimizes all objectives.

There are also optimization algorithms that apply Pareto dominance. Two terms that

are often used within these algorithms are the Pareto Frontier and Pareto Optimal

Solutions. Both terms are based on the following definitions:

MULTI-OBJECTIVE OPTIMIZATION

GENERAL OPTIMIZATION SCALARIZATION OPTIMIZATION PARETO OPTIMIZATION

WEIGHTED SUM APPROACH

GOAL ATTAINMENT METHOD

EPSILON-CONSTRAINT

METHOD (ɛ-CONSTRAINT)

VECTOR EVALUATING

GENETIC ALGORITHM

(VEGA)

LEXICOGRAPIC METHOD

NON-ELITIST ELITIST

MULTI-OBJECTIVE GENETIC

ALGORITHM (MOGA)
NONDOMINATED SORTING

GENETIC ALGORITHM (NSGA-II)

DISTANCE-BASED PARETO

GENETIC ALGORITHM (DPGA)

PARETO-ARCHIVED

EVOLUTION STRATEGY (PAES)

NONDOMINATED SORTING

GENETIC ALGORITHM (NSGA)
STRENGTH PARETO

EVOLUTIONARY ALGORITHM

(SPEA, SPEA-II)

NICHE PARETO GENETIC

ALGORITHM (NPGA)

PREDATOR-PREY EVOLUTION

STRATEGY

Fig. 2.19. Multi-objectives optimization algorithms

51

• Pareto optimal solution. It is a solution where the values for all objectives are

better than the solution that it dominates. These solutions are ranked as

dominant/nondominated. A good collection of Pareto optimal solutions must be

diverse and optimal.

• Pareto frontier. The curved Pareto front is formed by all the Pareto optimal

solutions. These solutions form a graph that clearly defines a boundary between

optimal and suboptimal solutions. The dimensionality of the Pareto front is

dependent on the number of objective functions.

The approximation of the Pareto front can be highly beneficial to the end user. It allows

the user to view solutions that are both diverse and optimal. The pros and cons of each

option are also easily viewable. The multidimensional Pareto frontier is determined

through the classifications of solutions. Here, solutions are ranked across the search

space based on their Pareto optimality. These algorithms aim to maintain a balance

between Pareto front convergence and solution diversity. Initially, Fleming and

Fonseca implement multi-objective genetic algorithm (MOGA) in year 1993 [104]. The

concept of fitness assignment through ranking introduced within their study. The rank

of a solution is determined through the number of solutions that dominate it. Here, the

minimal value of one is set for solutions that are never dominated. After dominance

ranking, the level of diversity of a solution is tested through niching. The terms that are

often used within the niching process are:

• Niche radius. Niche is used to define the spatial distribution of the solutions

within the high dimensional space. The niche size defines the radius of

similarity between solutions within objective space. The niche size dictates the

probability of detecting a higher or lower number of optima.

• Sharing function. This function tests if a solution is within the niche radius of

another. If the solution is further than the niche radius, it is given a value of

zero. On the other hand, solutions that have many close-range neighbours have

a higher sharing value.

• Niche count. The cumulative value of the sharing function for each solution is

used to define the final niche count. The application of niche count defines if a

solution's niche is crowded. It determines how many solutions are within a

solution's niche radius.

• Shared fitness. The shared fitness of each solution is determined through the

division of the raw fitness with the niche count. The shared fitness value ensures

that solutions that are optimal but have many close-range neighbours within the

52

search are penalized. Thus, diverse solutions are maintained within the

population until the next iteration.

These concepts are the building blocks for many GA based optimization programs such

as Nondominated Sorting Genetic Algorithm (NSGA), Niche Pareto Genetic Algorithm

(NPGA) and Strength Pareto Evolutionary Algorithm (SPEA). These algorithms differ

in the way that the convergence and diversity mechanism are implemented. Srinivas

and Deb [105] present a new fitness assignment scheme through NSGA. Here,

nondominated solutions are ranked into different fronts across the search space. This

algorithm evaluates the search space front by front as opposed. This has the benefit of

avoiding early elimination of solutions which can occur when the entire population is

evaluated as a whole. Each new front contains solutions that are less optimal than the

prior front. The final fitness value of each solution is dependent on the front that it

resides within. Solutions closest to the Pareto front have better fitness values. This

procedure preserves solutions within each rank to create diversity. Next, solutions that

are within the same front are tested for diversity. Similar to MOGA, a shared fitness

value determines if a solution is maintained or discarded. Later, NPGA is proposed by

Horn et. al. in 1994 as a non-elitist MOO [106]. This algorithm differs from the

previous algorithm through its application of binary tournament selection method with

raw fitness values. It reduces the processing time since it doesn’t require the

determination of shared fitness values.

 Elitist algorithms such as NSGA-II and SPEA maintain a percentage of the best

solution from the previous iterations for the selection process. In this case, the offspring

are directly compared to their parents for survival of the fittest. NSGA-II also sorts the

population into ranked fronts. It differs from the original NSGA because the total

population is made up of both the parent and child population [107]. Despite its

benefits, processing of the population is increased twofold with elitism. For diversity

management, crowding distance is introduced. Here, the crowding tournament selection

operator is applied for the creation of offspring. The crowding distance calculates the

proximity of the solution's closest neighbours within the search space. The value of the

crowding distance is obtained by drawing a virtual cuboid around the solution with its

edges touching the nearest neighbours. The advantage of this algorithm is the removal

of the niching variable which can be tough to determine.

SPEA was introduced in 1998 where an external population set is created out of

the previously maintained elites. This external population is compared with the new

generation elites [108]. This promotes the constant updating of the elite population as

the generations go by. The algorithm differs from the others based on its strength fitness

function and clustering method. The strength value is based on the number of solutions

that a member of the elite population dominates. The cluster distance is determined

through the Euclidean distance between all pairs of clusters. As SPEA progresses,

clusters that are similar can be merged into one large cluster. Diversity is maintained

by removing a representative solution from a cluster. The representative solution is

53

defined as the centroid of its cluster. As with the previous algorithm, SPEA eliminates

the need for niche radius determination. The disadvantage of SPEA is the added

complexity of managing both the external and current populations.

 Each MOO differs from the other and can be applied towards various

applications. The level of complexity and amount of processing time are key factors in

deciding which multi-objective algorithm suits the optimization problem. Likewise, the

Pareto frontier convergence and diversity are also important when choosing a suitable

MOO algorithm.

2.4.1 MULTI-OBJECTIVES OPTIMIZATION

The MOO algorithms that are were discussed in the prior section has often been applied

within studies that utilize quadrotor UAVs. This section analyses evolutionary

algorithms that have been specifically used for path planning. Firstly, we look at the

application of GA specifically towards trajectory generation. The process of path

optimization requires a large population of trajectories. At each iteration, the algorithm

performs a selection process that maintains optimal trajectories across future

generations. In most cases, optimization is performed through an aggregated cost

function. However, some studies have applied multi-objective optimization as well.

Genetic algorithm (GA) is used in [109] to obtain the best path for a quadrotor.

Here, the cost function is a summation of node to node distance and a penalty value for

close range obstacles. The application of GA without modifications required a large

population of 500 members and 500 iterations to determine the fittest path. Thus, the

basic algorithm would require a long run time as well as a large amount of data

processing. Both GA and adaptive GA (AGA) are compared in [110]. This study

generates paths for a quadrotor that is used for ground sensor detection. In this case, the

adaptive crossover and mutation operators are dependent on the costs of each path. The

authors show that these adaptive operators produce shorter trajectories in comparison

to the basic GA. The disadvantage of this adaptive process comes in the form of added

complexity. The user must be able to determine the operators accurately.

Work by [111] utilizes modified breeder genetic algorithm (BGA) with B-spline

curves. This algorithm aims to generate paths across mountainous terrains. The authors

consider different objectives with an aggregated weighted function. The number of

costs applied is based on if the planner is operating online or offline. A balance between

maintaining path diversity and optimality is done with an adaptive selection percentage.

The feasibility of the generated paths cannot be guaranteed without the addition of the

UAVs dynamics. Evolutionary algorithm (EA) for realistic scenarios is tested in [112]

through the evaluation of 11 different objectives. This algorithm considers properties

of real life UAVs, terrains, radars and missiles. In this case, different levels of priority

are applied to the objective functions and constraints. As with the application of

54

weighted cost functions, the priority levels for each objective creates a bias within the

population. This reduces chances of all costs being best optimized.

A comparison between the performance of parallel run particle swarm

optimization (PSO) and GA for real-time path planning is researched in [113]. The

application of parallel processing leads to a faster run time. Here, the algorithm

performs migrations between subpopulations at every 10 generations. The authors

conclude that GA outperforms PSO in terms of speedier convergence towards the first

feasible trajectory. On the other hand, PSO produces more refined paths. NSGA-II and

B-spline curves are applied within [114] towards offline path planning for multiple

agents. Here, two planners for free flight and pre-specified flight points are designed.

The multi-objective optimization algorithm is applied with dual conflicting objectives.

The costs considered are the paths’ length and height. The study shows that the

extraction of global Pareto optimal solutions can be highly challenging even with a

small number of objectives.

Building upon these prior studies, this thesis presents a modified version of

genetic algorithm (GA). Here, GA is used with multi-agent RRT towards creating a

large population of trajectories. In comparison to previously discussed works, this

hybrid path planner is used in collaboration with a many-objective optimizer.

2.4.2 MANY-OBJECTIVES DOMINANCE AND DIVERSITY BALANCE

Real life flights require the consideration of many objectives simultaneously. Many

studies choose to minimize the complexity of optimizing many objectives by

prioritizing certain cost functions. In this case, it is important that all objectives are

minimized or maintained without the extreme degradation of one cost over the other.

In this thesis, many-objective optimization is applied to provide a diverse and optimal

solution set for end users. The term many-objectives optimization is typically dedicated

to the optimization of more than three objectives simultaneously that are often

conflicting in nature. This algorithm is designed with an understanding that there is

never just one optimal solution that is best in regard to all cost functions.

Many-objectives optimization is an expansion of the multi-objective

optimization algorithms. They both vary in terms of additional mechanisms for

balancing the Pareto front solutions diversity and convergence. The basic multi-

objective algorithm is incapable of processing many objectives effectively. There are

many challenges that can occur when the optimization of many objectives is treated as

an extension of MOO. When implementing many-objectives, the main disadvantage is

the loss of Pareto front convergence due to the large amount of nondominated solutions.

This causes the algorithm to lose its ability to make adequate comparisons between the

solutions during ranking. The second issue with optimizing many objectives is the

number of solutions that are required to fully map the Pareto frontier. Higher number

of objectives leads to a higher dimensionality Pareto front. Lastly, visualizing high

55

dimensional Pareto fronts can be highly challenging. This is especially true for frontiers

that are higher than three dimensions. The Pareto front provides the end user with visual

information regarding the trade-off values between each solution. Thus, providing the

end user with equivalent data is important for the decision-making process.

Ideally, the population convergences towards the Pareto front with diverse

solutions maintained. To achieve this, the basic MOO algorithm must be modified.

Thus, the field of many-objectives optimization fulfils that need. Whilst being a new

research area, a few studies have explored the potential application of many-objective

optimization. There are researchers that have implemented many objectives within their

optimization process. There are three methods that allow researcher to improve the

selection pressure within their optimization algorithm. The options to choose from are

as stated below,

1. Redefining the domination relation between solutions.

2. Modification of the diversity management system.

3. Dimensionality reduction.

 There are many works that redefine the domination relation between solutions

to increase selection pressure. The ranking is often improved with an aggregated

weighted cost function [115]. This process merges the many objectives into a single

function. As previously defined, the disadvantage of using weights is it creates bias

during the optimizations process. Similarly, it also requires the end user to provide

predetermined weight values. This can be challenging because the end user doesn’t

have prior knowledge of how much each cost function can be minimized. In many

cases, its application comes at the cost of the deterioration of individual objectives.

Another method for improving the ranking process is through the usage of fuzzy logic.

Fuzzy-based dominance for many-objectives is undertaken by He et. al [116]. Progress

in the fuzzification of Pareto optimality is shown in [117-118]. Here, the fuzzy set

defines a broader spectrum of dominance between solutions. Typically, a solution is

defined as dominant if it has better values for all objectives. In some studies, the sorting

of solutions is performed by reducing the strictness of the ranking process. Here,

solutions can be declared as dominant if most objectives are dominated. Selection

pressure is also improved through alternative dominance criterions such as Pareto -

dominance, -dominance, k-dominance or preference weighting [119- 120]. Many of

these studies improve on the ranking process by reducing the diversity of the solution

set. This can be a disadvantage for end users that prefer a variety of solutions.

Some researchers modify the typical diversity management design to increase

the selection pressure during the ranking process. Popular diversity operators are such

as niching [121], crowding distance [122], clustering [123] or k-th nearest neighbour

[124]. Adra and Fleming [125] apply a diversity management operator (DMO) as well

as an adaptive mutation operator. They reduce the impact of both the operators with

dynamic activation and deactivation of the diversity mechanism. This process can be

56

complex because the system must be capable of accurately determining when the

diversity mechanism needs to be shut off. Recently, shift-based density estimation

(SDE) strategy [126] is employed where the shifting of solutions based on its

convergence value. In a pursuit to redefine both the dominance relation and diversity

maintenance in many-objectives optimizations, [127-128], Zou et. al.[129]

demonstrate the application of L-optimality towards a new definition of the fitness

function that applies the principle of the minimal free energy in thermodynamics.

Whilst the modification proves promising, the assessment of the algorithm is limited to

less than ten objectives due to the computing power necessary for the resulting

hypervolume. Similarly, [130] applied a grid based criterions [131] [132] to efficiently

create a difference between each solution thus defining grid ranking and grid crowding

distance for qualitative comparisons. The issue with redefining or minimizing the

effects of the diversity mechanisms is that the Pareto frontier is often partially mapped.

Thus, the end user is left with a set of representative solutions instead of a well spread

Pareto optimal solution set.

This thesis applies Many-Objectives Optimization for the optimization of multi-

agents and its objectives. The three challenges of applying many objectives are dealt

within this research. This study aims to strike a balance between diverse and optimal

solutions through dimensionality reduction. Here, the end user is supplied with high

resolution visual imagery as well as organized data. The additional knowledge will

assist the end user in making a final choice.

2.4.3 MANY-OBJECTIVES DIMENSIONALITY REDUCTION

Many studies have chosen to perform dimensionality reduction or sorting of the many

objective functions. This is performed through objective clustering, preference-inspired

approaches and the application of corner sort. Corner sort is implemented by [133] and

[134] to minimize the complexity of many objectives optimization. Minimal objective

comparisons are necessary to determine dominance when only the corner solutions of

the Pareto front are compared. The disadvantage of this process is it requires the

accurate identification of corner solutions. This can be challenging with high

dimensional Pareto fronts that have a large number of objectives.

The next option for implementing dimensionality reduction is through the

creation of objective subsets. Preference-inspired Co-EA (PICEA) is used in [135] to

optimize preference based objective subsets. Here, the fitness of each solution is

determined through the evaluation of both the full set and current objective subset. The

combination of these sets promotes convergence towards an optimal final population.

The usage of objective subsets is presented in [136]. These subsets contain random

combinations of the full objective set. These subsets are applied in rotation across a

constant number of generations. Both these papers aim to increase the selection pressure

through merging of both local and global dominance. The disadvantage of randomly

created subsets is it can lead to less efficient use of processing time. This is because the

57

comparison of nonconflicting objectives can be redundant when determining dominant

solutions.

Another popular option for increasing selection pressure is through objective

reduction. Objectives that are not crucial towards the mapping of the Pareto front are

deemed unnecessary. Objective clustering is applied in [137]. The deletion of redundant

objectives is performed within clusters that hold nonconflicting objectives. Study [138]

identifies redundant objectives through eigenvalue and correlation matrix analysis.

Objectives that are found to be nonconflicting are removed from the full objective set.

Both studies are performed under the assumption that the determination of redundant

objectives is highly accurate. Unfortunately, this leaves no room for error in cases

where a nonredundant objective is eliminated.

In this research, we apply dimensionality reduction to increase selection

pressure without the absolute removal of any objectives. Here, the objective subsets are

not created randomly. It is performed by evaluating the level of conflict between

objective pairs within each subset. This process minimizes the chances of full

elimination of an objective function and leaves room for possible error.

2.5 SUMMARY

This chapter presents studies, researches and inventions that have inspired the design

of the multi-agent quadrotor’s optimal path planning algorithm. Firstly, the

development of the quadrotor is discussed. It shows the various sizes and types that are

available within the current market. It also defines the large number of missions and

applications that use the quadrotors. The missions have different objectives and test

environments. All of this information shows that the quadrotor can be extremely robust

and flexible. It is the ideal vehicle for a multi-agent UAV system.

Next, the two main applications that require a multi-agent UAV system are

defined. The first is the spatially spread flight scenario where the quadrotors are

required to fly independently within a team. They must collaborate to successfully

complete missions such as reconnaissance or search and rescue. The second application

that is presented is multi-agent formation flight with quadrotors. In this case, the

trajectories of each agent are highly dependent on each other. Both applications utilize

similar path planning algorithms to generate feasible paths. Here, sampling-based path

planning algorithms such as Rapidly Exploring Randomized Trees are defined in detail.

The last section presents the various multi-objective and many-objective optimization

algorithms. Focus is placed upon both Genetic Algorithm and Dimensionality

Reduction Many Objective Optimization.

The literature review that is presented will be used as an inspiration for the

multi-agent quadrotor optimal trajectory planner within this study. The next chapter

presents the Multi-Agent Rapidly Exploring Randomized Forest (MA-RRF) and GA

58

hybridized path planners. Firstly, the three test environments are presented. The various

challenges that exist in each test space are discussed. The MA-RRF algorithm is then

used to map the test environments with speed. Finally, initial feasible paths for GA of

the four quadrotors are shown. These paths will form the initial population for the

optimization process. Lastly, the mathematical model and the control system for all

agents are described in detail.

59

CHAPTER 3: MULTI-AGENT QUADROTOR TRAJECTORY

PLANNING

A path planning algorithm typically performs two things which are mapping the free

space within an environment and path extraction. Three test environments that pose

different challenges are presented in this chapter. Each test space will test the ability of

the trajectory planning algorithm to design paths across a variety of environments.

This study aims to fill the gap of planning paths across long range environments

with minimal moving obstacles. All of these environments are randomly generated and

different for each experiment. They are designed to imitate the major structures within

their real-life versions. These environments only simulate static obstacles. Despite the

exclusion of dynamic obstacles, this algorithm is applicable in disaster zones that contain

many static obstacles. One example is war zones with abandoned buildings or toxic

chemicals. Another example is the to perform surveillance above rainforests at high

altitudes above the trees. These environments may contain some dynamic obstacles that

can be avoided with the usage of an ultrasonic sensor. The agents can perform a swift

obstacle avoidance turns and return to their planned path.

Firstly, a high-rise cityscape that possesses maze like narrow passages is shown.

Next, a highly cluttered indoor environment is developed. This space simulates real life

rooms with windows and doors. Each room contains hardware and furniture at variant

heights. The clutter in each room is modelled through randomly placed cubes. Lastly, a

mountainous terrain that has sudden and gradual terrain height changes is displayed. This

space will test the capabilities of the path planner in terms of obstacle avoidance.

This chapter also presents two path planners that will collectively generate nodes

for the multi-agent trajectories. Both path planners are designed to plan hybridized paths.

Initially, the path nodes for each quadrotor are generated through the Multi-Agent

Rapidly Exploring Randomized Forest (MA-RRF) planner. Here, both free space

mapping and path extraction are performed. Each MA-RRF path hybridizes branches

from different trees and forest links. Thus, a path is a hybrid of many tree branches.

Later, the suboptimal trajectories that were designed by MA-RRF will form the initial

path population for the many-objectives optimization algorithm. New paths for the next

generations are constructed through the crossover and mutation process within Genetic

Algorithm (GA). These paths will be hybridizing different sections of the initial MA-

RRF paths in order to create new path populations. This means a path by GA is a mesh of

the parent paths by MA-RRF.

The final step for successful path planning is the path repair process. This is

60

necessary because the GA operators often create path subsections that collide with

obstacles. In this study, the MA-RRF algorithm is reapplied within GA to repair the new

generation paths. The planner quickly maps the obstacle and generates a feasible route

between the collision points. These new paths will undergo multiple post processing steps

in order to maintain the level of diversity within the population. The child paths that

survive the filtration process will be combined with their parents. These paths will form

the current generation of multi-agent quadrotor paths.

Lastly, this chapter defines the mathematical model and control system of a

quadrotor UAV. These two subsections will form the closed-loop control system for the

agents. The previously designed trajectories will be used as the input for the quadrotor

UAV control system. The information that is generated by the control system will be

used to predict the values of the many objectives that are presented within Chapter 4 of

this thesis. These cost estimations will then be used in Chapter 5 to slowly filter out

suboptimal or non-diverse trajectories.

3.1. THREE-DIMENSIONAL ENVIRONMENT FREE SPACE MAPPING

In this study, two methods of free space mapping are utilized. Both a sampling-based

planner and grid blocks are used to map the simulated environments. In this study, only

the mountainous terrain is defined through grid blocks. This is because the small and

gradual changes within the environment can be computationally exhaustive to accurately

define. All of the other test environments do not require grid free space mapping during

the path planning process. A quick sampling-based planner is used to map and spread

nodes across the test spaces. In this case, the obstacles and free space do not need to be

well defined prior to the sampling process. The parameters for both the free space

mapping processes are shown in Table 3.1. The obstacles within all test spaces have

buffer regions that are placed around them. These boundaries will reduce the possibilities

of obstacle collisions.

3.1.1. HIGH RISE CITYSCAPE ENVIRONMENT

Cityscapes around the world are urban spaces that are made up of many buildings.

Drones are commonly used for surveillance or filming important social events. They are

typically used by photographers and journalist to document newsworthy events. This

creates a large pool of real-time data that can be instantly shared between the local

people. The UAVs can be applied for crowd and human traffic management during

natural disasters. In recent times, multi-agent quadrotors have also been used for payload

delivery. Companies such as Amazon have attempted to perform air delivery service for

their customers. Many entrepreneurs have opened small businesses within the city to

manufacture and test quadrotors. These drone hardware companies will continue to create

61

TABLE 3.1. SIMULATION ENVIRONMENT PARAMETERS

new jobs within their cities. Thus, quadrotors are no longer an unfamiliar sight for city

folk. Many cities have introduced their own drone-related regulations in order to protect

the privacy of their citizens. The quadrotors can continue to operate within a city as long

as the users comply with these rules. Both leaders and regular citizens are often in

conversation about the impact of deploying drones across a city. The popularity of the

quadrotor within cities shows that a path planner must be capable of designing

trajectories across high rise cityscapes.

Most cities around the world have a few common characteristics. It is important to

define the structures that collectively create a cityscape. The most visible section of any

Environment Description Value

Cityscape

Test Space Size 230 x 230 x 200 m3

Grid Size 15 x 15 x 15 m3

Number of Skyscrapers 18

MA-RRF Buffer Region 5 m

Safety Zone Boundary 6 m

Obstacle Sampling Distance 5 m

Highly Cluttered

Indoor

Test Space Size 120 x 120 x 120 m3

Grid Size 15 x 15 x 15 m3

Number of Rooms 5

Number of Random Sized Cubes/Room 6

Number of Windows 5

Number of Doors 5

MA-RRF Buffer Region 1.5 m

Safety Zone Boundary 6 m

Obstacle Sampling Distance 2.5 m

Mountainous

Terrain

Test Space Size 65 x 65 x 70 m3

Grid Size 15 x 15 x 15 m3

Size of Peak Obstacles 8 x 8 x corner peak height m3

MA-RRF Buffer Region 1.5 m

Safety Zone Boundary 6 m

Obstacle Sampling Distance 4 m

Fig. 3.1. Top and side perspective of a cityscape environment.

62

urban space is its buildings. As previously defined, many people live or travel daily into

the city for job opportunities. Similarly, youth and children often come to the city to

study. Families come together to enjoy the many restaurants or any forms of

entertainment. Thus, the buildings within a city are made up of large corporations, small

sized offices, shops, hospitals and schools. These structures can be built with different

shapes, sizes and height. Still, most buildings are square and simple in design. Next, there

are all types of clutter within an urban space. There are street lamps, plants and vehicles

that are placed on the ground. Buildings regularly have billboards, lights or a balcony

attached to them as well. Another defining characteristic of a developed city is its roads.

Urban spaces are often filled with large crowds and heavy road traffic. The streets are

travelled by people on foot or different modes of transportation. The roads within cities

are unlike those in underdeveloped areas. City roads are narrow and have many sudden

turns. It moves across tight spaces between buildings. All of these characteristics show

that there is a lot of activity that occurs at the ground level of a city. It is important that

the multi-agent quadrotors fly above crowds and around buildings.

This study recreates this test space with a simulated three-dimensional cityscape

environment as shown in Figure 3.1. The clutter that is typically placed within an urban

environment isn’t included within this simulation. The purpose of the cityscape

environment is to test the path planner’s ability to plan paths within long range narrow

passages. The planner aims to create well minimized trajectories where sharp cornered

turns exist between city buildings. Large rectangular cubes form the buildings within the

simulated high-rise cityscape test space. These cubes are spaced closely to one another

across the environment. This environment is not made of buildings with various heights.

Based on prior experimentation, the path planner will seek nodes that exist above the

buildings. This is because the spaces above buildings are less constrained than the narrow

passages between them. Thus, this simplifies the challenges of navigating across real life

high rise cityscape environments. Here, all the buildings are maintained at a similar

height in order to force the path planner to fly between buildings as opposed to just above

buildings. This creates an extremely constrained environment that challenges the

trajectory planner in a way that the other environments do not. The agents must fly at

higher heights and be capable of avoiding the corners of each building. The agents must

also be capable of undertaking extreme manoeuvres as they fly from one road to another.

Next, mapping the free space within the cityscape is paramount to creating paths

that are collision free and diverse. The boundaries for this environment are the most

simplistic out of all the simulated environments. This is due to the unvarying heights and

width of the buildings. It can be tough to determine the size of the boundaries around

each building. If the boundary is placed at a large distance from the building, it promotes

safer turns for the quadrotors. The downside to this is larger boundaries can cause the

narrow passages to become too tight for many agents to travel at once. It also reduces the

63

number of diverse paths because it limits the spread of the sample points. On the other

hand, boundaries that are placed too close to their building can be dangerous for the

multi-agents. This increases the chances of possible collisions especially at sharp corners.

Thus, the size of the boundary should strike a balance between the two extremes. After

the free space mapping is complete, the sampling of the obstacles is performed. The

sample points aid in defining the formation shapes across each trajectory. Three-

dimensional high-resolution sampling is not necessary for multi-agent formation flights.

As shown in Figure 3.2, obstacle sampling is only performed across the roof of each

building. Here, the distance between the sample points and path nodes can provide

sufficient information for the formation flight planner.

3.1.2. HIGHLY CLUTTERED INDOOR ENVIRONMENT

The second test space as shown in Figure 3.3 is a highly cluttered indoor environment.

This simulated environment mimics spaces such as domestic residences or employment

venues. This environment is extremely different from the other two test spaces because it

is placed within the interior of a building. Firstly, the largest consumer market is made up

of hobbyists. One variety of a quadrotor that is used indoor is the Parrot AR. Drone that

is controlled by Apple products. The drone comes equipped with a high-resolution

camera that allows for real-time recording and sharing. Family parties and ceremonies

can be instantly recorded. It connects to an indoor wireless connection and uploads flight

information online. This process creates a community of users that share a common

hobby. The second group of people are business owners that are manufacturing their own

quadrotors. Initial testing of the quadrotor is often performed indoors. Lastly, multi-agent

quadrotors are often flown by researchers within their laboratories. These experiments are

safely conducted with nets enclosing the agents inside it. Thus, there are a large number

of users that fly quadrotors within indoor spaces. This shows that a path planner must

consider the challenges that occur within the interior environments.

Fig. 3.2. Cityscape environment’s safety boundaries and boundary plane sampling.

64

Similar to cities, indoor environments have a few common characteristics. Identifying

these characteristics is important for designing a realistic indoor test space. There are

different obstacles within this space. Interior spaces are made up of walls, windows,

doors, furniture and electronics. Most rooms have a large amount of clutter that are

scattered at various heights. The clutter is a representation of the typical ground furniture,

high level shelves, hanging light fixtures, gadgets and electronic equipment. It also

includes other decor objects. All of these objects are constrained within extremely small

spaces that are used by humans daily. Thus, the trajectory planner must be capable of

obstacle avoidance. This is achieved by planning paths that move above and below all

clutter. It forces the agents to perform aggressive manoeuvres around its obstacles.

Another challenge that this environment poses is its constricted entry points. These entry

points are either doors or windows that allow the quadrotors to transition from one area to

another. It is highly challenging to detect entry points across large walls. If the planner

fails to accurately detect these doors and windows, the rooms in between them will be

neglected in the path planning and optimization process.

This research recreates this test space with a simulated three-dimensional highly

cluttered indoor environment as shown in Figure 3.3. The walls are pieced together with

gaps that represent the doors and windows. Each window has a different size. Many

homes have pets that live with their owners indoors. Here, entry ways for pets are also

included. The clutter within rooms is simulated through various sized cubes. These cubes

are randomly generated across each room. The end user has the option of introducing

more clutter in order to test the capabilities of the path planner. Next, the obstacles within

the simulated indoor environment have boundaries placed around them. Table 3.1 shows

that the boundaries are placed much closer to the obstacles in comparison to the cityscape

environment. This is because the entry points for each room are already small in size.

Boundaries that stick out too much can close up the entry point. It also stops the agents

from transitioning between rooms. Thus, a balance must be struck between safety and

space exploration.

Fig. 3.3. Top and side perspective of a highly cluttered indoor environment.

65

Lastly, the obstacles are sampled to provide markers for the formation planner. As

shown in Figure 3.4, the sampling process is more complex than the cityscape

environment. This test space will require varied height sampling to properly define the

formation shapes across a trajectory. It also requires a higher sampling rate. Sampling is

performed on the top portion of each wall and clutter block. The sampled planes also

define the height of the obstacles. They are only a threat to the flight trajectory node if the

waypoint is within the lower and upper height limit of the obstacle blocks. The free space

contours around these obstacles can be extracted by determining if the path waypoint is

above or below any obstacle.

3.1.3. MOUNTAINOUS TERRAIN

The last terrain that is generated by fractals is the mountainous terrain as shown in Figure

3.5. Quadrotors are often used across mountainous terrain for a variety of reasons. As

with the prior test environments, many wildlife photographers and journalists use the

quadrotor to capture valuable data. National Geographic photographers have used

quadrotors for many years. These aerial vehicles are flown across Borneo rainforests,

Serengeti ecosystem and volcanoes. In some cases, the quadrotor is used to capture

imagery of the wildlife within the mountainous terrain. Next, the vehicle is also used for

search and rescue. There have been emergency situations that have occurred within

forestations such as fires or landslides. The quadrotor is capable of providing real time

imagery to the rescue team. Lastly, the multirotor system is also deployed across

mountains to evaluate environmental issues such as deforestation or destruction of animal

habitats. It allows the law makers to create rules that minimize extreme climate changes

and labour abuses. All of these applications prove that it would be advantageous to have a

path planning system that is capable of navigating across mountainous terrains.

Fig. 3.4. Highly cluttered indoor environment’s safety boundaries and plane sampling.

66

There are many key characteristics that define a mountainous terrain. The simulated test

space is designed based on these characteristics. It is an environment that is filled with

trees of different heights. The trees can grow tall and create a dense forest. There are

smaller sized plants such as ferns and flowering shrubs. It also has rivers and pathways

that progress across the terrain. With most mountains, the changes in height occur

gradually from the ground level. Similarly, in this study, the terrain isn’t filled with many

sudden high peaks. Here, there aren’t any extreme height differences between each peak.

Figure 3.5 shows gradual height differences across the environment. Focus is placed on

generating trajectories between the peaks instead. This is because there aren’t many

researchers that have flown the quadrotor at extremely high altitudes. Quadrotor UAVs

do not have adequate fuel to make trips that are long range and require a high vertical

climb. This may change in the future when batteries have a longer discharge rate.

The free space mapping process of the mountainous terrain is more complex than

the prior two test spaces. Here, high resolution free space mapping is necessary for

efficient obstacle avoidance and formation planning. The obstacles within this terrain are

mapped with high accuracy. The mountainous terrain is unlike the cityscape and indoor

environment where boundary planes are easily placed around each obstacle. The gradual

height differences across the mountainous terrain are difficult to capture if there isn’t any

separation between them. Due to this, the path planner can’t design path that allow the

agents to fly close to the peaks. This reduces the chances of finding the shortest path.

Firstly, the peaks within the terrain are divided into equal sized obstacles. This process

creates a large number of smaller sized obstacles within the terrain. The planner must

strike a balance between accurate terrain free space mapping and processing time. The

height of each obstacle is defined based on the mountain peaks that are within it. Next,

safety boundaries are places across all obstacles. Lastly, sample points are spread across

the top plane of the safety boundaries as shown in Figure 3.6. These sample points will

assist the formation planner in extracting the free space around the path nodes.

Fig. 3.5. Top and side perspective of a mountainous terrain.

67

 This environment requires the multi-agent quadrotors to fly collectively whilst

avoiding peaks. The mountainous terrain's exploration is limited to 90% of the highest

peak. This is to avoid flight over all peaks and force the algorithm to plot paths between

peaks. The quadrotors are required to fly through sudden height changes in terrain in the

form of peaks and lows. It is important that the agents successfully avoid local minima

and reach their destination. The multi-agent trajectories within this final environment are

simplistic in nature. There aren’t many sharp corners or narrow passages. There is a lot

freer space than the prior two test spaces. The challenging aspect of this terrain is the

high resolution free space mapping that is required. Thus, the path planner is required to

generate a diverse set of paths that do not cause any possible collisions with the mountain

peaks.

3.2 MULTI-AGENT RAPIDLY EXPLORING RANDOMISED FOREST

Numerous studies apply sampling based algorithms such as rapidly exploring random

trees (RRT) because it is able to promote complete coverage with speed. In this research,

we apply modified versions of RRT path planner, GA and many-objectives optimization.

The optimization process requires a large population of trajectories at every generation.

Here, both MA-RRF and GA are used to supply the many-objectives optimization

algorithm with a diverse set of multi-agent trajectories. Each subsection has been

modified to suit and benefit from a multi-agent system. As previously defined, this

combination produces an algorithm that creates a final population of diverse and well

minimized trajectories for all quadrotors.

Firstly, initial path waypoint generation is performed through a hybridized version

of the RRT algorithm. RRT is used because GA requires a larger amount of time to fully

Fig. 3.6. Mountainous terrain’s safety boundaries and plane sampling.

68

explore an environment. RRT is capable of free space mapping and extracting paths at a

much faster rate. On the other hand, GA is capable of merging a few good paths to create

a larger collection of good paths. The combination of both algorithms reduces free space

mapping time and maintains good paths across generations. The MA-RRF planner

generates the initial population of paths for the two-stage path planning algorithm. The

second stage applies a modified GA to produce a diverse population of trajectories across

all iterations. Here, GA hybridizes different subsections of the initial MA-RRF paths to

create new generation paths. MA-RRF is also reapplied for the path repair of child

trajectories after the crossover and mutation process within GA.

This version of the basic RRT planner aims to generate a large collection of paths

for each agent simultaneously. With a multi-agent system, multiple trees can be generated

to further speed up the exploration process. Thus, the MA-RRF trajectory planner is

designed to fully harness the advantages of having a multi-agent system. It is also able to

function within all types of environments. The MA-RRF algorithm is tested across three

environments that have a variety of challenges.

3.2.1 RAPIDLY EXPLORING RANDOMISED FOREST

The application of RRT is based on its ability for quick exploration of large unexplored

areas of space despite high amounts of obstacles. This lends to the fast extraction of

feasible paths within high-dimensional free space for vehicles with high degrees of

freedom such as the quadrotor. Most studies that apply the RRT planner typically use a

single tree [31].

The standard RRT algorithm is defined below. The algorithm begins by defining

the root of its tree at the initial position of the UAV,
freeinit Xx  . Next, a sample point,

randx is placed randomly across the test space,
freeX . This sample point is connected to

the root of the tree if there is no obstacle between them. An input, u is applied to connect

and minimize the distance between the two nodes. This connection creates the first tree

branch, newx . As the tree grows, the random sample points are then connected to the

nearest collision free branch, nearx on the tree, T . The two nodes that create each tree

branch are stored within the database as a parent and child node. The input, u is also

stored within the database as well. The end point of the branch is defined as the child

node. This relationship simplifies the extraction process of the final path. The free space

mapping process continues until a termination point is met. The termination point is often

defined by the tree’s closeness to the goal node. Thus, the RRT algorithm is stopped

when a tree branch is within close range of the UAV’s destination. Lastly, a feasible path

is obtained by extracting the parent nodes of all connecting branches in reverse until

reaching the initial node.

69

There are a few variations of the standard RRT planner. The most popular is the

single-tree search. This program can be improved by introducing a cost function that

creates bias towards the goal node. Thus, the sample nodes connect to tree branches that

are near in distance and also close to the goal node. The next option is a balanced

bidirectional search. Here, two trees are utilized in an attempt to reduce run time. One is

rooted at the UAVs start node whereas the other is placed at the goal node. The algorithm

constantly attempts to connect these two trees. After a connection is made, the path can

be extracted from the branches of both trees.

STANDARD ALGORITHM Rapidly-Exploring Random Trees

Input: Initial state
initx

Output: RRT graph  with K number of vertices

GENERATE_RRT (tKxinit ,,)

1:)(. initxinitT ;

2: for 1k to K do

3: randx RANDOM_STATE () ;

4: nearx NEAREST_NEIGHBOR (,randx)

5: u SELECT_INPUT (
nearrand xx ,)

6: newx NEW_STATE (tuxnear ,,)

7:)(_. newxvertexadd

8:),,(_. uxxedgeadd newnear

9: Return 

Lastly, more than two trees can be generated with a multi-tree RRT system. There is an

added complexity with multi-tree systems. The additional trees can be introduced at the

beginning or in between the simulation process. The designer can choose to create more

trees in locations that are tough to reach. Expanding the standard RRT into multiple

individual RRT trees still causes an increase in processing time. The algorithm must

continue to expand these trees whilst searching for possible connections between them.

Thus, these connections must be made strategically in order to minimize complexity.

Similarly, each tree connector must be stored properly within the database. The path

extraction process will be highly challenging since the path subsections are made up of

many different trees. In order to improve the basic algorithm, MA-RRF is presented as an

alternative. This study implements a multi-tree program that generates a large collection

of diverse paths.

3.2.2 MA-RRF PATH PLANNING

70

This section presents a sampling based planner for solving multi-agent path planning

problems in high-dimensional configuration spaces. Here, MA-RRF is applied in an

attempt to generate a large collection of feasible paths for each agent simultaneously.

This multi-tree system tries to maintain a balance between space exploration and

processing speed. There aren’t many works that have implemented a multi-tree sampling

based planner for multi-agent UAV systems. This study aims to improve on the basic

multi-tree RRT free space mapping algorithm by strategically placing links across the

individual agent’s trees. These tree-to-tree links are used to merge the tress into a full

forest, MA-RRF. In this case, not all collision free links are explored. The algorithm

attempts to create forest links that are diverse in location. There also shouldn’t be too

many or too little links between different agent’s trees. This increases the possibility of

obtaining a diverse collection of paths.

The second challenge of coordinating a multi-tree system is creating a storage

system that allows the end user to comprehend the progression of each forest branch.

This storage system must also minimize the time required to extract the final paths for the

multi-agent system. In this research, a mutual database is constructed where data from the

free space mapping and multi-agent paths are stored. This shared database is used by all

agents. Thus, it allows the agents to have access to a shared database that is constantly

updated by their neighbouring agents. Many variables are systematically stored within the

database. These variables include the relationship between each parent and child branch

of each tree. It also contains the relationship of the open tree branches that create the

forest links. Due to this, duplicate branches and unnecessary links are easily avoidable.

The nodes for each path can be located across many trees. This shared database will

allow the algorithm to recursively extract each path subsection. This increases efficiency

and reduces the complexity of running a multi-agent quadrotor path planner.

The full Multi-Agent Rapidly Exploring Random Forest is shown in Algorithm I-

IV. This research tests the algorithm with four agents, AN that are spread across each test

space. The building of the MA-RRF begins by defining the initial location of each

quadrotor. As previously defined, this work presents two multi-agent applications which

is MA-Spread and MA-Formation. The first application requires a collection of paths for

multiple agents that are flying independently. Thus, the MA-RRF algorithm is applied as

defined in Algorithm I. On the other hand, the second application only requires a

collection of reference paths. This is similar to path planning for one agent. The end user

has the option of using the multi-tree system for one agent. Virtual agents can be placed

around the test spaces to define the root of each tree. In this study, the database of paths

that have been generated for the MA-Spread scenario is reapplied for the MA-Formation

application. Here, the paths that were generated for the first agent are used as the

reference path for the formation flight.

71

This work assumes the the environment is a known, randomly simulated, test

environment with static obstacles. It also assumes that the end user requires multi-agent

paths for long range flights. The chosen paths will be broadcasted to the agents after the

optimization process. The initial free space mapping that is performed across each test

space is applied as the input for the free space mapping algorithm. Here, the safety

regions around each obstacles is defined as a no fly zone. The MA-RRF planner allows

the end user to define the level of diversity that is required for the initial population of the

GA. This is set through the similarity threshold, thresholdS . Next, each tree is rooted at the

start,)(0ti and the goal configurations,)(fi t of each agent. These roots are used to

expand the individual trees for the first iteration.

ALGORITHM I MA-RRF Path Planning Algorithm

Input: Number of agents, }.....,,1{ ANi 

 Updated multi-agent obstacles database,
obs

 Number of iterations/sample points,
ft

 Agent's current state ,  )()()()(0000 txtxtxti


 Agent's desired state ,  )()()()(ffffi txtxtxt 

 Goal node range,
goald

Link connection range,
linkd

Path node similarity range,
similard

 Similarity ratio threshold,
thresholdS

Output: MA-RRF Forest, 

 Number of tree branches,
i

 Number of forest links, RRFl

 Multi-agent feasible paths, i

1:][,0 0 ftttt 

2: Place safety boundaries around all obstacles

3: Initial number of branches, 0branchesk

4: Initialize forest,  with roots at)(0ti

5: while
ftt 

6: for each agent i

7: Generate random sample node across free space,
sample

8: Run Tree Expansion (ALGORITHM II)

9: if added branch,
sample is within the distance of goald from the agent's goal node

)(fi t

72

10: Store as
goali

11: end

12: Update forest,  multi-tree links (ALGORITHM III)

13: end

14: ttt 

15: end

16: Run Path Extraction (ALGORITHM IV)

17: Run Redundant Path Pruning (ALGORITHM V)

Algorithm II shows the connection process between MATLAB’s uniformly distributed

randomly generated sample node and an agent’s tree branch. As priorly discussed, the

expansion of nodes for individual tree, i replicates the expansion process for the

standard RRT algorithm. A sample node is placed across the environment and is

connected to the nearest collision free branch on the agent’s tree. This algorithm tests if

the link between two nodes is collision free by checking if the node-to-node line

intersects with the boundary plane of any obstacle. The parent-child relationship between

each tree branch is stored within the shared database under the agent’s name. In the MA-

RRF planner, this process is repeated for each agent. Thus, four sample points are

generated across the test space for each agent. Each agent’s tree continues to build

branches and expand within the same environment. These parallelly generated trees

quickly explore space around them and also advance towards each other through the use

of a simple greedy heuristic. These open branches within these individual trees will be

used to build the full MA-RRF forest,  .

ALGORITHM II Tree Expansion

1: Determine distances between agent’s tree branch end node, i and random sample node,
sample

2: Identify tree branch end node,
neighbouri, that is closest to the to sample node

3: if
obssampleneighbouri  ,

4: Add new collision free branch to tree, newi

5: 1 branchesbranches kk

6: else no feasible branch connection exists

7: terminate and rerun main program (ALGORITHM I)

8: end

The most crucial portion of the MA-RRF algorithm is the creation of the forest.

Algorithm III shows the steps that are undertaken to merge the individual trees within the

test space. Initially, there is close to zero links within a test space. This is because the

trees are not within close range of each other. Connecting trees within extremely

constricted environments can be challenging as well. In this case, the algorithm can not

find collision free links between the trees. As the algorithm progresses, more sample

73

nodes have been spread across the environment. This allows the trees to expand and the

open branches of these trees are soon within each others range. The open branches are

connected to create a connection between the different trees. These links create the

backbone of the final forest.

At the initial stages of building the MA-RRF planner, all possible linkages were

considered. If two open branches within two different trees are within close range of each

other,
linkd it is flagged as a possible connection. Then, testing is performed to determine

if it is a collision free link. If an obstacle free linkage is possible, a new connection

between trees is created and stored into the database. There are two issues that arise with

this method of linking individual RRT trees.

Figure 3.7(a) shows that the number of links increases exponentially to the

number of tree branches that are created across a test space. From experimentation, it is

found that the creation of too many links leads to the extraction of paths with high

similarity. This is due to the large number of links that connect similar subsections

between different trees. Thus, this leads to a final collection of highly identical paths.

This shows that many of the links that were created are redundant. The second challenge

that arises with this manner of linking trees is that it leads to longer processing time

during path extraction. The large number of links creates a huge number of unique but

similar paths. The algorithm will have to extract each path individually which increases

the total run time of the MA-RRF planner. These paths will contain many similar

subsections and be removed from the database during the final filtering process.

Here, linkage is applied where dissimilar links between trees are encouraged.

These dissimilar links connect different parts of the MA-RRF forest. This increases the

possibility of obtaining a diverse collection of multi-agent paths. It also aims to reduce

the processing time that is required during the extraction of unique path subsections. A

cost function could be introduced in order to create strategically placed links but this

would increase the complexity and processing time of the MA-RRF planner considerably.

On the other hand, a simpler method is implemented as shown in Algorithm III.

When a new branch is added to an agent’s tree, it is an open branch. The algorithm

chooses one neighbouring agent’s tree at random. Then, the open branch attempts to

create a link with the nearest collision free branch within the other agent’s tree. The

simulation process in Figure 3.7(b), shows that this method simplistically reduces the

number of links within the entire forest. It also requires each tree to attempt a connection

with a different tree at every iteration. The links are stored within the shared database

with variables such as the two endpoint nodes and the trees that they originate from.

74

ALGORITHM III Forest creation

1: Merge trees generated by each agent into forest,








 


1

ANn

n

2: Randomly choose a neighbouring agent, ij 

3: for chosen tree,
j

4: Determine if the endpoint of current agent’s new open branch,
sample is within the range,

linkd of

other agent’s tree branches.

5: if open tree branches are within close range of each other

6: if connection is collision free,
obssamplej  

7: Add link between trees,
obsRRFl  into multi-agent shared database

8: end

9: end

10: end

11: Update forest, 

After testing for possible links between trees, the algorithm tests if the newly added

sample node,
sample is within close range,

goald of the goal nodes. As previously defined,

each agent has its own destination node,)(fi t . The endpoint of a forest branch,
goal

that is close to an agent’s goal node can be a part of its own or any neighbouring agent’s

tree. This process of finding more
goal is repeated at every iteration until the free space

mapping process is completed. After the MA-RRF forest is full generated, the algorithm

outputs a set of nodes that close in distance to the goal nodes of each agent.

In the first case, both the tree branch, igoal   and the close-range goal node,

)(fi t are from the same agent, i . The extraction of the path from initial node to the

goal node is performed through Algorithm IV with the identification of intermediate

nodes. This process is similar to the basic RRT path extraction process. In the second

case, the tree branch, ijgoal  originates from one agent whereas the goal node is for

another agent, i . The complexity of extracting a unique path across multiple trees is

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

NO SAMPLES

N
O

 C
O

N
N

E
C

T
IO

N
S

FOREST LINKS

TREE BRANCHES

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16
x 10

4

NO ITERATIONS

T
O

T
A

L
 M

A
-R

R
F

 F
O

R
E

S
T

 L
IN

K
S

MA-RRF FOREST LINKS

RANDOM AGENT

ALL POSSIBLE LINKS

Fig. 3.7. (a) MA-RRF’s tree branch and forest links (b) Links of all agents vs. one random agent’s tree branch.

75

higher. The previously stored linkages are paramount to successful extraction of a high

number of unique paths. The various connections between the two trees can be obtained

by extracting the forest linkages between those two trees. Each link connects a different

set of nodes between the two trees. Thus, each unique link creates another unique

collision free path. Each unique path is a mesh of three subsections. The first section

holds the nodes from the agent’s initial point to the start of the tree-to-tree link. The

second subsection contains the nodes within the tree-to-tree link. Lastly, the endpoint of

the tree-to-tree link to the goal node is extracted to complete the path.

ALGORITHM IV Path Extraction

1: for each agent, i

2: for each branch within 50m of the agent's goal node, goali

3: if branch near goal node is within agent's tree, igoali  

4: Identify feasible paths intermediate nodes obsii ttt  )()(

5: else branch near goal node is within another agent's tree, ijgoali 

6: Extract possible linkages, RRFl between trees i and
j within forest.

7: Identify feasible path’s intermediate nodes
obsji ttt  )()(

8: end

9: end

10: end

The end user has the option of generating paths that are a mesh of all four trees by

extracting all the possible links between all trees. This process will produce a larger

number of unique paths but it will require a longer processing time. In this study, each

path is a combination of two trees only. At this stage, each agent has tens of thousands of

unique feasible paths. These paths will be applied as the GA’s initial population within

the optimization process. This initial population must be filled with diverse paths. This

work defines path diversity through the direction that the path takes across each

environment. An initial path population that is diverse will produce a variety of new

paths across each generation. Thus, the final stage of the MA-RRF process is the

derivation of non-similar paths.

 Algorithm V defines the MA-RRF’s path pruning process. The unique paths that

have been extracted for an agent are compared to one another. This process aims to filter

out paths that are too similar in direction. Firstly, the node-to-node distance, lkd ,

between two paths is calculated. Then, if two nodes are within close range of each other,

similard it is considered as a similar node. In this study, mdsimilar 10 . Each path is then

assigned many similar nodes, sN . Next, the similarity ratio, S for each path is

76

determined by comparing the number of similar nodes with its total nodes. If the number

of similar nodes exceeds the similarity threshold, thresholdS it is labelled as non-unique

and removed from the agent’s path database. Each path is compared to all the other paths

to assure that there aren’t two highly similar paths within the agent’s initial path

population. This filtration process lays the foundation for trajectory diversity within the

next stages of the algorithm.

ALGORITHM V Redundant Path Pruning

1: for each agent, i

2: for each feasible path, i

3: Initial number of similar nodes, 0sN

4: for each path node,
ii 

5: Determine distance,
jid ,
 between current node i and other path nodes, ijj , .

6: if
similarji dd ,

7: Number of similar nodes in current path, 1 ss NN

8: end

9: end

10: Calculate similarity ratio,
totals NNS 

11: if similarity ratio,
thresholdSS 

12: Remove path from database

13: end

14: end

15: end

3.2.3 MA-RRF INITIAL PATH POPULATION

The MA-RRF path planner provides the end user with a large database of information.

The output data from the planning and free space mapping process is easily viewable

through high resolution imagery. The MA-RRF forest progression is shown across all

three test environment. Figure 3.8, 3.10 and 3.12 show the trees that are created by four

agents across each test environment. Here, each agent’s tree branch is defined by its

different colours. The MA-RRF forest links are shown in black. These figures highlight

the challenges that are present within these different test spaces. Similarly, the final path

collection in Figure 3.9, 3.11 and 3.13 also show the end user the possible trajectories

that each quadrotor will track during real life flights. It can be seen that the paths are well

spread across the environments and are diverse in direction.

The end user is also presented with knowledge regarding the number of unique

collision free paths that were initially extracted. Table 3.2 shows the number of iterations

and linkages that are present within each test environment. The number of iterations that

77

is required for each environment is dependent on the minimal number of paths that can be

extracted after the path pruning process. The initial population for the next stage GA will

require a collection of diverse paths in order to create the new generation paths. Here, the

impact of using different similarity thresholds when filtering similar paths is shown as

well. More than triple digit paths are expected for 80% similarity threshold whereas there

are double digit paths with less than 65% similar nodes. Lastly, a minimum of single digit

number of paths is expected when 50% similarity threshold is applied. The minimum

number of paths allows the user to make an easy comparison between similarity

percentages versus number of paths for all the test spaces. It helps the end user to

determine the level of diversity that is required within the final path population.

The first test space is the high-rise cityscape environment. There are three

challenges that presented itself during the planning process. Firstly, the size of the

boundaries around the buildings must create a balance between forest progression and the

avoidance of building edges. The sharp edges must be safely avoided by all agents.

Another issue with the cityscape environment is progression of the MA-RRF forest isn't

as quick as the other environments. The surrounding safety zones will further restrict the

progression of the individual trees since the roads between the buildings are already

narrow. Lastly, it can be difficult for the MA-RRF algorithm to attempt to merge two

trees together within this test space. Each high-rise building is created to be equal in

height. This means that the tree branches from different trees are constantly separated by

a building. It can be tough to create tree-to-tree links unless the open branches are within

the same narrow road.

Figure 3.8 shows that MA-RRF forest progression across the tall buildings. As

visible, the free space is fully explored by the tree branches from the ground to the roof of

the buildings despite space constrictions. The MA-RRF forest and its individual trees are

bounded to the spaces that are in between the buildings. There are no safety zone

breaches. Thus, the branches are able to maintain a good distance from all building edges.

The imagery also proves that the individual trees aren’t as well spread as the other test

environments. Each agent’s tree is denser in areas that are close to its root node. There

are many tree-to-tree linkages across the middle area of the cityscape environment. Table

3.2 shows that the MA-RRF planner is run for 700 iterations within the cityscape test

space. It requires more sample points per agent in comparison to the indoor environment

and mountainous terrain. The high-rise cityscape environment requires 700 sample nodes

per agent in order to generate the similar number of diverse paths. The algorithm is run

for a longer period because it allows the individual tress to cross over to the other parts of

the environment. This will encourage linking between all trees. The narrow passages that

exist between buildings constrict the number of long range links within the MA-RRF

78

forest. Thus, the cityscape space has the lowest ratio of amount of links over iterations

between all three environments.

 Next, the path extraction and pruning process produces the final paths that create the

initial GA path population. Table 3.2 shows that the cityscape environment has the lowest

ratio of unique paths per iteration. This is due to the low number of links between the

individual trees. It is also caused by the low number of forest branches that are close to

the goal nodes of all agents. Another pattern that emerges from the data is the relationship

between the maximum number of unique and diverse paths. Agent 3 has the highest

number of near-to-goal nodes and unique paths. It also has the most number of non-

similar paths after the path pruning process. Figure 3.9 shows the paths designed by the

MA-RRF algorithm for four agents within the high-rise cityscape environment. The paths

with less than 65% similarity are applied within the multi-agent quadrotor trajectory

optimization algorithm. Here, each colour defines one path. With all four agents, it can be

seen that a diverse set of paths have been designed by the path planner. These paths are

well spread by width and height of the free space narrow passages between the buildings.

Some paths have nodes across lower ground level whereas others are placed are higher

heights. The MA-RRF path planning algorithm has successfully designed paths that do

not have any collision points with the surrounding buildings.

The second test environment is the highly cluttered indoor space. Similar to the

cityscape environment, this test space has its own set of challenges. Firstly, the MA-RRF

forest must be capable of detecting the small number of entry points across the indoor

space. These entrances are small in comparison to the size of the walls that hold them.

The safety zones that are added around each entry way adds further complexity. A

constant issue during early experimentation is the definition of safety zones around the

smaller windows. A balance in boundary size must be struck between being too large or

small in range. The small entry points become even smaller with the addition of large

sized buffer regions. Thus, it can be highly challenging for the free space mapping

algorithm to detect it. The forest branches cannot penetrate the large boundary and cross

over to the next room. The application of smaller radius boundaries instead can cause the

branches to collide with the sharp corners of the windows. Secondly, the varying sized

clutter within each room must be adequately mapped by the MA-RRF forest. These

obstacles vary in size and are floating in three dimensional spaces unlike the cityscape

environment. The branches must progress over and under the many clutter cubes. Lastly,

creating forest links that bridge trees in different rooms can be difficult. Only a few tree

branches are able to make a connection between two nodes that are within different

rooms. Similarly, it can be hard to create tree-to-tree links that bridge two rooms. The

forest links must also be capable of making multi-tree connections within each room.

79

TABLE 3.2. MA-RRF EXPERIMENTAL RESULTS.

Environment
Iterations

(run time)

No

Forest

Links

(colour)

No Agent

(colour)

Initial Position

(m)

Target Position

(m)

No

Near

Goal

Nodes

Unique

Paths

 Filtered

Paths

 Filtered

Paths

(run time)

Filtered

Paths

CITYSCAPE
700

(0.084s)

2443

(black)

1

(green)
[60,220,10] [230,100,190] 18 7578

80%

105

65%

22

50%

(1014.74s)

4

2

(magenta)
[220,200,5] [20,40,195] 11 2047 65 18 4

3

(blue)
[200,10,10] [25,180,185] 29 7799 110 26 8

4

(red)
[40,75,5] [200,230,195] 13 2489 44 10 5

HIGHLY

CLUTTERED

INDOOR

750

(0.159s)

5778

(black)

1

(green)
[80,105,80] [20,-5,20] 50 37399

80%

121

65%

18

50%

(325.79s)

6

2

(magenta)
[98,-5,50] [10,105,30] 85 65761 193 18 5

3

(blue)
[10, -5, 90] [90,105,10] 51 43076 116 15 8

4

(red)
[20,105,70] [90, -5, 10] 47 39281 174 34 6

MOUNTAIN

TERRAIN

500

(0.047s)

5758

(black)

1

(green)
[9.74,9.85,36.74] [60.89,55.04,46.49] 79 58007

80%

735

65%

75

50%

(1692.14s)

17

2

(magenta)
[62.27,9.82,27.22] [6.15,55.19,47.50] 208 151052 1290 60 8

3

(blue)
[4.75,55.05,44.63] [61.30,9.67,47.87] 678 494242 3693 135 15

4

(red)
[59.78,62.46,47.84] [7.63,9.73,35.11] 762 528869 3328 88 12

1S 2S 3S

79

Fig. 3.8. MA-RRF full space exploration across the cityscape environment.

(g) Top view of agent 4’s paths. (h) Side view of agent 4’s paths.

Fig. 3.9. MA-RRF diverse paths extracted across the cityscape environment.

(a) Top view of agent 1’s paths. (b) Side view of agent 1’s paths.

(c) Top view of agent 2’s paths. (d) Side view of agent 2’s paths.

(e) Top view of agent 3’s paths. (f) Side view of agent 3’s paths.

start

goal

goal

goal

goal

start

start

start

80

Figure 3.10 shows the forest progression across the highly cluttered indoor space. Similar

to the cityscape environment, each agent’s tree is shown in a different colour. The MA-

RRF forest links are shown in black. Initially, the size of the obstacles safety zone is

estimated through multiple test simulations. This boundary size creates a balance between

MA-RRF forest progression across each room and collision avoidance. It can be seen that

the MA-RRF branches are capable of exploring different rooms through various entry

points. The algorithm is capable of identifying all entry points despite the lack of

windows and doors. This allows a few branches to transition between rooms and creates

nodes across the entire environment. Thus, full free space exploration is successfully

performed from ground to ceiling of the environment. Table 3.2 shows that the highly

cluttered indoor space proves to be the most challenging environment. Here, 750 sample

points per agent is necessary to extract a high number of diverse paths from the

environment. This is because of the minimal number of entry points that are placed

across each wall. On the other hand, a large amount of forest links is created due to the

long run time as well as the availability of free space inside each room.

The branches of the MA-RRF forest create the GA’s initial path population. Table

3.2 shows that the number of filtered paths based on similarity is a very small percentage

of the unique paths. This occurs despite the high number of unique paths that were

extracted. The indoor space extracts almost ten times the number of unique paths in

comparison to the cityscape test space. It also has a higher number of near-to-goal nodes.

The reason for the lack of diverse paths is due to the constraints of the small number of

entry points. This direction that paths can take is limited to just these windows and doors.

Also, the large sized obstacles within a room force these paths to avoid it through similar

translational and angular motions. Agent 2 has the most number of unique paths but it

doesn’t have the highest number of diverse paths. This means that the paths that were

designed for agent 2 are many but are similar in direction. The diverse collection of paths

for all four quadrotor agents is shown in Figure 3.11. Based on prior experimentation,

paths with less than 65% node similarity will progress to the optimization stage. This

decision is made to encourage the recombination, mutation and maintenance of diverse

paths during the initial generations. The four agents are able to progress across different

entry points and reach every room. The path nodes for all agents are well spread. The

most important criterion is the planner's ability to avoid any collisions. The paths of each

agent flow over and under the clutter in order to avoid any possible collisions.

The last test environment is the mountainous terrain. It has a larger amount of free

space in comparison to both the other environments. Still it has many small sized peaks

and some large peaks across the terrain. It can be difficult to set a constant start and goal

node for the agents because the peaks are always in a different location within different

simulations of the terrain. Therefore, the start and goal nodes for each agent is randomly

generated across the four corners of the terrain. It is accepted as the initial and goal nodes

81

Fig. 3.10. MA-RRF full space exploration across the indoor environment.

 (g) Top view of agent 4’s paths. (h) Side view of agent 4’s paths.

Fig. 3.11. MA-RRF diverse paths extracted across the indoor environment.

(a) Top view of agent 1’s paths. (b) Side view of agent 1’s paths.

(c) Top view of agent 2’s paths. (d) Side view of agent 2’s paths.

(e) Top view of agent 3’s paths. (f) Side view of agent 3’s paths.

goal

start

goal

start

goal

start

goal

start

82

if it doesn’t collide with any mountain peaks. An example of these random nodes with

decimal values are shown in Table 3.2. In this test space, the MA-RRF forest must be

able to avoid all the various sized peaks. During many early simulations, the branches

could avoid areas with larger ripples across peaks. However, the branches tend to collide

with locations that contain smaller changes in height. These are areas where the path

nodes would slightly graze the corners of these smaller peaks. This is because the safety

boundaries are positioned through an approximation of terrain heights. It is based on the

peak height at all four corners of each grid. This produces an angled diagonal top plane.

In this case, the other ripples within the grid are not represented. An improvement was

made by positioning the safety zone based on the maximum height of all minor peaks

within a grid. Now, all minor peaks within each grid are accurately represented. This

method reduces processing time and produces collision free paths. Thus, a full collision

free forest is created by MA-RRF algorithm for the mountainous terrain.

Figure 3.12 shows the progression of the forest across the mountainous terrain. The

branch of each tree is defined with a different colour as with the other environments. The

linkages between different trees are shown in black. As predicted, the MA-RRF forest

easily progresses across the terrain. The imagery shows that the forest can explore

between high peaks and lower depths within the mountainous terrain. Many paths tend to

exist at higher heights which have larger amounts of free space if the local minima aren’t

well explored. The MA-RRF forest is denser across the high peaks of the mountain. This

is due to the large amount of free space that is present between the mountain peaks. On

the other hand, it is sparse at areas that are closer to the ground level. The bases of the

mountains have narrow passages between them. This constricts the progression of the

tree branches across the lower parts of the terrain. Still, the planner has been able to

successfully map the free space across the entire terrain. Table 3.2 shows that the

mountainous terrain easily extracts the minimum number of paths. These paths are

designed within 500 sample points per agent. This test space requires the lowest sampling

rate between all environments. It also manages to create the highest number of forest

links. This is because it is the least constrained environment amongst all the test spaces.

Next, the unique paths for the team of four quadrotors are extracted from the MA-

RRF forest. The average numbers paths per agent post the exploration and filtration

process is the highest. This is because the mountainous terrain has the most number of

near-to-goal nodes as well. Many forest branches have been able to reach the large

amount of free space around each goal node. Still, the number of unique paths for each

agent differs greatly unlike the other environments. Some goal nodes are more easily

reachable than the others due to the variation in height. It also depends on the number of

peaks that surround the goal node. Here, the paths with less than 50% similarity are

83

Fig. 3.12. MA-RRF full space exploration across the mountainous terrain.

(g) Top view of agent 4’s paths. (h) Side view of agent 4’s paths.

Fig. 3.13. MA-RRF diverse paths extracted across the mountainous terrain.

(a) Top view of agent 1’s paths. (b) Side view of agent 1’s paths.

(c) Top view of agent 2’s paths. (d) Side view of agent 2’s paths.

(e) Top view of agent 3’s paths. (f) Side view of agent 3’s paths.

goal

start

goal

start

goal

start

goal

start

84

maintained within the initial population. The various paths for each quadrotor are shown

in Figure 3.13. The planner has designed collision free paths with waypoints within an

environment with different levels of elevations. It is shown that the paths for all four

agents have nodes at various heights. It can be seen that neither the mountain peaks nor

local minima are neglected. The diversity in terms of grid exploration is less than the

prior two environments. There is a decrease in paths that progress across the valleys

between high peaks that are close in distance. Thus, a higher percentage is applied for the

path filtration process.

These diverse and collision free paths will be applied as the building blocks for

the next stages. It will be possible to maintain a good spread of solutions with various

trade-offs across many generations if the initial MA-RRF paths are truly diverse. As

previously defined, these paths will be hybridized by GA to form the initial population

for the many-objectives optimization process.

3.3. GENETIC ALGORITHM

Evolutionary algorithms (EA) are inspired by the concept of 'survival of the fittest' within

a population. This concept is derived from the parent-child genetic relationship that exists

within the human population, wildlife and nature. Two parents that contain certain

genetic characteristics will often produce an offspring. This new offspring will have a

mix of both the parent’s genetic material. These genes are made from a combination of

dominant and recessive characteristics. Thus, the offspring will appear to have the traits

of the dominant gene. In many cases, the offspring of two parents aren’t exactly similar

to their ancestors. This is because external factors such as nutrition or environmental

changes can cause a mutation in the genetic makeup of an individual. The genetic

materials and their variations describe process of evolution. The variation that exists

within a new generation allows it to survive for a longer time than its ancestors. The same

variations can also cause it to live a shorter lifespan. The process of evolution slowly

removes genetic material that can be harmful and maintains characteristics that promote a

longer lifespan. Humans often pick partners that appear to be healthy. Thus, each new

generation contains children with good health as well.

The population of any species continues to promote the creation of healthy

individuals. In this case, the objective of evolution is to preserve a species and avoid

extinction. The cost functions that describe the lifespan of an individual can be defined

through their ancestors, diet, lifestyle and environment. Individuals with the best cost

function values are maintained within its species. These concepts can be applied within

an optimization problem. Most optimization problems require an algorithm that can

quickly find the best solutions within a search space. It needs an algorithm that can

effectively detect the minimum point within complex cost surfaces. It must also be

85

capable of converging towards search areas that contain solutions with good

characteristics. This creates a final population that is filled with good solutions. Then, the

end user will have the option of picking the best solution for their optimization problem.

The most commonly utilized EA is genetic algorithm (GA). The basic process of

GA is shown in Figure 3.14. GA is ideal for the generation of well minimized and diverse

trajectories for multi-agent quadrotors. This is due to its large population size per

iteration. It allows the end user to generate a large collection of paths for multiple agents

simultaneously. It is also suitable for solving many-objectives problems. The selection

process within GA can be assisted by the many-objectives optimization methods. Here,

the ranking of solutions at each generation can be performed by a many-objectives

optimization (MOO) algorithm. These trajectories will be ranked by MOO based on the

objective values of the many objectives functions that are considered within GA. The

MOO algorithm promotes the maintenance of trajectories that are well minimized and

diverse across generations. The application of elitism within the selection process will

also allow the end user to keep well minimized trajectories across generations. These

trajectories will remain untouched throughout the optimization process. GA is suitable for

a multi-agent system because it is able to run on parallel computers. In this case, it can be

further sped up because GAs can be broken down to as many parallel computations of the

solutions per generation simultaneously. The level of parallelism is only dependent on

computing power thus easily expandable to fit swarms of agents.

The understanding of biological reproduction mechanisms is necessary for the application

of GA. The various steps within the GA are natural selection, mutation and genetic

recombination. The parent selection process can be implemented through top to bottom

pairing, tournament selection and random pairing. The most simplistic method would be

the top to bottom pairing of solutions. Here, selection starts at the top of the population

POPULATION

GENETIC ALGORITHM

EVOLUTIONARY CYCLE

CROSSOVER

MUTATION

MODIFICATION

DISCARDED

SOLUTIONS

SELECTION

OBJECTIVE

FUNCTIONS

UAV

TRAJECTORIES

CONTROL

SYSTEM

Fig. 3.14. Genetic algorithm evolutionary cycle.

86

pairing odd and even rows together. Another highly utilized selection method is

randomized pairing. This process requires no sorting and requires minimal processing

time. There are two types of this pairing which are the unweighted and weighted version.

A popular weighted random parent pairing is the roulette wheel weighting. Tournament

selection is equally as popular where random members of the population are chosen to

compete through comparisons with one another. This study applies a 50% selection rate

as shown in Table 3.3. Thus, half of the previous population is maintained within the next

generation’s parent population. Figure 3.15 shows how GA is applied within this

research. It can be seen that the simplistic unweighted random pairing is used for the

parent selection process.

After the selection of two parents, two new child solutions are created from them.

The next generation is built through the GA’s crossover and mutation process. The

crossover process picks apart the parents into subsections and merges these subsections to

create new offspring. Many variations of the crossover operator exist such as the single-

point crossover, partially matched crossover (PMX), order crossover (OX) and cycle

crossover (CX). Flowchart 3.15 shows that the single-point crossover is utilized in this

study. Next, the mutation operator introduces an element of randomness within the

offspring. This process diversifies the new solutions from their parents. It also allows the

algorithm to explore new search areas. There can be negative consequences if the

mutation probability is too high. Large changes within an offspring can destroy a good

solution. Thus, it is important that the algorithm creates minor changes within an

offspring. There are many variations of the mutation operator. Popular versions are the

external, internal, and omission mutation operator. It can be seen in Flowchart 3.15 that

this work applies all three versions.

The new offspring are often filtered based on their feasibility and level of

similarities. Many works remove redundant information from their solution population.

Redundant data can be introduced within an offspring during the crossover and mutation

process. The removal of unnecessary information allows the algorithm to run more

efficiently. Similarly, feasibility check is often performed to determine if the child

solution will be a viable candidate for the next generation. This process is highly

dependent on the application of the GA. Another important post processing option is to

maintain a child population that is dissimilar from the parent population. Here, the

percentage of uniqueness of the new offspring can be tested. As shown in Figure 3.15,

both of these post processing options are utilized within this multi-agent trajectory

generation and optimization algorithm. Lastly, the final population of parent and child

solutions is created. This population will be carried forward to the next generation’s

selection process. The algorithm is run continuously until a termination point is met.

87

3.3.1. PATH PLANNING WITH GENETIC ALGORITHM

The initial population for GA is comprised of the paths that were created by the MA-RRF

sampling based planner. There are many studies that choose to apply GA as a standalone

algorithm for path planning. The algorithm is suitable for applications that have a small

number of agents or a narrow search area. This research performs path planning for many

agents within highly complex three-dimensional environments. GA will require a long

running time to fully search the entire test space. In this research, the search space is

initially mapped by MA-RRF. It quickly identifies the obstacle free regions and generates

feasible path nodes for all agents. This process reduces the amount of free space that

needs to be searched by GA. It also allows GA to execute more refined multi-agent path

planning. Here, GA is not beginning with an arbitrary set of path nodes. The initial MA-

RRF path nodes will serve as an indicator as to the distance and possible directions to

move towards. This research aims to use GA to create and move the initial path nodes

towards more optimal areas within the search space. The application of GA towards

trajectory generation as is shown in Figure 3.14 requires additional modifications such as

the addition of a path repair mechanism. These changes are defined within the flowchart

in Figure 3.15. The variables that are applied along with the GA path planner are

presented in Table 3.3.

Any application GA requires a set of input variables. These input variables will be

manipulated in order to create a desired output. In this work, the input variables are the

initial MA-RRF paths that are obstacle free and diverse in direction. Then, the offspring

paths that are designed by the GA will be applied as the input for future generations. The

optimization algorithm will test to see if the current input creates the desired output.

Here, the output is defined as the values of the many objectives that are used within the

MA-Spread and MA-Formation application. The value of each objective function will be

estimated by a multi-agent quadrotor control system. Lastly, the multi-agent trajectories

will be ranked based on their predicted objective values. GA requires the assistance of a

many-objectives optimization algorithm in order to complete the path selection process.

MOO will be used to define the level of diversity and optimality of each path. Thus, GA

will be able to identify paths that are worth maintaining within the next generation’s

population. Trajectories that are highly ranked by the MOO algorithm will be used as the

parent paths for the new offspring.

3.3.2. PATH POPULATION & NATURAL SELECTION

The selection process for parent population is based on this study’s dual application. This

work aims to optimize the trajectories of  quadrotors for spread and formation

flights. For MA-Spread, the best path combination,)(tC for all agents defines the paths

88

 NO YES

START: Genetic Algorithm

Input: Feasible path nodes,
pruned ; Environment obstacle database,

obs ;

Population size,
popN ; Probability of crossover,

c ; Probability of

mutation, m ; Selection rate,
s ;

Reproduction of 'Parent' Chromosomes:

Surviving chromosomes,
popskeep NN  ;

Population: Perform selection by discarding suboptimal paths,
keeppopdiscarded NNN  ;

Store New Population:):1(keeppopnewgen NNN 

Genetic Algorithm Operators:

while
popnewgen NN 

Selection: Apply random permutation to select two ‘parents’,
21, pp  ;

Crossover: Random single point crossover between two parents is performed;

Mutation: Random internal, external or omission mutation is performed on new child paths.

Detection and Removal of Path Loops:

Offspring,
21, cc  is tested for looping,

Detect original,
loopbegin and repeated nodes,

loopend ;

Unnecessary nodes within loops are removed,

):(),:(21 loopendloopbegincloopendloopbeginc   ;

Path Feasibility Check :

Run repair process for nodes within obstacles,

):(),:(21 collisionendcollisionbeginccollisionendcollisionbeginc   ;

Retest feasibility, if unfeasible, delete offspring;

Store next iteration population:
newgenN

popnewgen NN 

Run Dimensionality

Reduced

Many Objectives

Optimization

Fig. 3.15. Genetic Algorithm Flow Chart.

89

that are maintained for each agent. The team of quadrotor’s collective objective values

will be used as the selection criterion for the parent population. During each selection

process, the best path combinations are maintained within the next generation’s

population. The trajectories,
Ai it  ,.....1),(for all agents are stored within the

database based on its path combination. There will be repetitions of individual agent

trajectories within different combinations. Thus, the number of unique trajectories per

agent varies depending on the survival of the combination that holds it.

The second application is MA-Formation where the population contains the best

formation reference trajectories,)(tformation . This reference path is needed to define the

formation structure of the entire team of quadrotors. These formation shapes will define

the trajectories of each individual agent. The objective functions in the MA-Formation

mission are dependent on the formation shapes and flight paths of each agent. Here, the

formation reference trajectories that produce minimal objective values are maintained

within the next generation. In comparison to MA-Spread, all of the formation reference

trajectories within a population are unique. The GA that is applied within this research is

standardized to both applications. The only variable that requires changing is the number

of agents. This study applies a 50% selection rate as shown in Table 3.3.

 

FORMATIONMA

SPREADMA

for

for

t

ttttC
N

formation

A

pop













)(

)()()()(21 

 (3.1)

where t = path nodes.

 TABLE 3.3. GENETIC ALGORITHM CONSTANT PARAMETERS

Parameter Description Value Parameter Description Value

Npop Population Size 30 µinternal Internal Mutation Percentage 0.33

µs Selection Rate 0.50 µomission Omission Mutation Percentage 0.33

µexternal External Mutation Percentage 0.33 Nc Number of crossover points per path 1

rexternal External Mutation Radius 50 m Nm Number of mutation nodes per path 1

3.3.3. PARENT SELECTION

The two parent paths are picked from the pool of trajectories of each agent. The first

constraint for next generation trajectory is that both chosen parent trajectories,)(1 tp ,

)(2 tp must be from the same agent’s database. These paths must hold identical initial

and goal nodes as visible in Figure 3.16. This facilitates in the construction of new paths

that are tailored to the start and final nodes that were initially defined for each agent.

)()(0201 tt pp  (3.2)

)()(21 fpfp tt  (3.3)

90

The path diversity amongst the parent population is maintained through a filtration

process. This is based on user defined thresholds. Prior experimentation shows that the

parent population will continue to converge towards similar directions without additional

diversity management. This is especially true for multi-agent flights within extremely

constricted spaces. In this study, the initial population prioritises higher levels of diversity

whereas later populations have a less strict diversity threshold. As previously discussed, a

similarity filter is applied with the trajectories created by the MA-RRF stage where the

threshold is set to less than 65% between nodes of two trajectories. Thus, this facilitates a

diverse initial parent population. As the algorithm proceeds, the filtration process is less

strict where the threshold is set to no more than 75% similarity. This method maintains

well minimized solutions within the parent population despite having lower levels of

uniqueness. The random selection of parents will always pair two diverse parents since

the population maintains a minimum diversity measurement through generations.

3.3.4. PATH CROSSOVER OPERATOR

The creation of the next generation offspring is dependent upon the mating process of

both parents. The child paths are generated by the crossover and mutation operators.

Based on previous experimentation, single point crossovers have a higher chance of

producing feasible paths. It is also noncomplex. Alternative methods of crossover can

increase repetitive path looping within trajectories and require longer periods for path

repair. Table 3.3 shows that the number of crossover points for a two parent paths is one

node per path. This leads to a single point crossover for both the parent paths.

Single point crossover for path planning can be executed in two ways. Both

options are performed considering all nodes within the parent paths except for the initial

and goal node. The first method requires the algorithm to identify a common node

between both parent paths. Chances of finding a common node are high because the paths

are progressing towards the same destination node. The common node is used as the

crossover point for both parent paths. The advantage of using a common node is it creates

Fig. 3.16. Genetic Algorithm Selected Parents.

91

feasible child paths. Through simulation, it has been identified that this method also has

the disadvantage of creating less diverse child paths. The second method randomly

selects a node within each parent path. These nodes will be set as the crossover points for

each parent. This method produces the opposite effect. It produces highly diverse paths

that contain a small number of obstacle collision points. This research chooses to apply

the second option because path diversity is extremely important for the optimization

process. Randomised selection of crossover points within the selected parent paths,
1ct ,

2ct is performed as shown in Figure 3.17. This process produces offspring paths,)(1 tc ,

)(2 tc ,

)],...,(,),...,([)(1221011 fcpcpc ttttt  (3.4)

)],...,(,),...,([)(1112022 fcpcpc ttttt  (3.5)

As shown in Figure 3.18, single point crossover is performed upon the two selected

parent paths. This process results in two offspring that are a mesh of both paths. This

method creates offspring that are diverse and have minimal number of collide points.

3.3.5. PATH MUTATION OPERATORS

The mutation operator is applied towards both offspring after the completion of the

crossover process. Applying the mutation operators can be a constructive or destructive

force for the newly generated offspring. High levels of mutation may create diverse but

Fig. 3.18. Genetic Algorithm Parent Paths Crossover within Cityscape Environment.

Fig. 3.17. Single point crossover with selected parents.

)(01 tp

)(02 tp

)(11 tp

)(12 tp

)(21 tp

)(22 tp

)(31 tp

)(2 fp t

)(1 fp t)(01 tp

)(02 tp

)(11 tp

)(12 tp

)(2 fp t

)(21 tp)(31 tp)(1 fp t)(22 tp

)(1 tc

)(2 tc

92

unfeasible paths. Table 3.3 shows that the number of mutation nodes for two new child

paths is one node per path. Thus, mutation is performed on a single node per path only.

This causes higher probability of mutation for shorter paths. This means that the mutation

process has a larger impact on the new offspring. On the other hand, longer paths have a

lower probability of mutation.

The three chosen methods of performing single point path mutation are internal

node, external coordinate and node omission mutation. Table 3.3 shows the probability

that each mutation is applied. In this study, each mutation method is given an equal

opportunity to run because they each have their own benefits. Thus, all three mutation

methods are run in series and repeated again in a loop. Each mutation operator is applied

at a rate of 1/3 for each generation. The first method that is applied is the internal node

mutation as shown in Figure 3.19. Here, two random nodes,
1mt ,

2mt are extracted from

both offspring and exchanged in placements. In this case, the replacement nodes are

obtained internally from both offspring paths.

)],...,(,)(,),...,([)(1112211011 fmcmcmcc tttttt   (3.6)

)],...,(,)(,),...,([)(1221112022 fmcmcmcc tttttt   (3.7)

s.t.
0ttm  ,

fm tt 

With the second method, a random node from offspring is selected and removed from the

offspring as shown in Figure 3.20. An externally sourced node from the three-

dimensional environment is set in its place. These external nodes,
1et ,

2et must be within

the user defined search radius range, externalr and obstacle free space to be considered as an

option. Table 3.3 shows that in this study, a search radius of only 50 meters is used for

finding the external mutation node. This means that GA doesn’t explore the full

environment unlike MA-RRF. This Is because GA is meant to be a more refined planning

algorithm that improves the initial MA-RRF paths. The initial MA-RRF path planning

process has already fully explored the search area.

Both methods of internal and external mutation are complementary to the

algorithm. Internal mutation maintains optimal nodes from both parents. External

mutation is implemented here due to its ability to produce offspring that can differ from

their parent paths. This is because the new mutation node will continue to promote free

space exploration and diversity as the generations’ progress.

Fig. 3.19. Genetic Algorithm internal node mutation with selected parents.

)(01 tc

)(02 tc

)(11 tc

)(12 tc

)(21 tc

)(22 tc

)(31 tc

)(2 fc t

)(1 tc

)(2 tc

)(01 tc

)(02 tc

)(11 tc

)(21 tc

)(12 tc

)(22 tc

)(31 tc

)(2 fc t

93

)],...,(,)(,),...,([)(111111011 fmcemcc tttttt   (3.8)

)],...,(,)(,),...,([)(122212022 fmcemcc tttttt   (3.9)

s.t.
externalmeexternalm rtxtxrtx )()()(111

,
externalmeexternalm rtxtxrtx )()()(222

externalmeexternalm rtytyrty )()()(111

,
externalmeexternalm rtytyrty )()()(222

externalmeexternalm rtztzrtz )()()(111

,
externalmeexternalm rtztzrtz )()()(222

Lastly, the omission mutation is based on the deletion of a random node within both paths

is shown in Figure 3.21.

)],...,(,),...,([)(11111011 fmcmcc ttttt   (3.10)

)],...,(,),...,([)(12212022 fmcmcc ttttt   (3.11)

s.t.
0ttm  ,

fm tt 

The removal of a node from the offspring path encourages connections between nodes

that were not initially immediately connected. Offspring paths that have lesser nodes will

have larger distances between nodes thus the removal of a node creates significant

impact. On the other hand, paths that have a larger number of nodes with smaller

distances between them will experience fewer changes in direction. The omission

mutation can also create unfeasible subsections within offspring. These subsections will

require repair and encourage diversity between parents and offspring.

As shown in Figure 3.22, the offspring that are created after undergoing crossover

and mutation are not collision free. These newly generated paths can contain path loops

as well. Some node-to-node subsections within the child path may contain extreme bends

that require the quadrotors to perform aggressive manoeuvrings. Thus, it is crucial that

the resultant offspring paths undergo post processing. The algorithm attempts to repair

the path subsections that contain collision points. This research reapplies the previously

defined sampling based MA-RRF planner for path repair. It performs path repair by

Fig. 3.21. Genetic Algorithm omission node mutation with selected parents.

Fig. 3.20. Genetic Algorithm external node mutation with selected parents.

)(01 tc

)(02 tc

)(11 tc

)(12 tc

)(21 tc

)(22 tc

)(31 tc

)(2 fc t

)(1 tc

)(2 tc

)(01 tc

)(02 tc

)(11 tc)(1et

)(22 tc

)(31 tc

)(2 fc t

)(01 tc

)(02 tc

)(11 tc

)(12 tc

)(21 tc

)(22 tc

)(31 tc

)(2 fc t

)(1 tc

)(2 tc

)(01 tc

)(02 tc

)(11 tc

)(22 tc

)(31 tc

)(2 fc t

)(2et

94

bridging nodes that have any obstacles between them. This repair process allows the path

population to maintain diverse offspring within its population.

3.3.6. PATH REPAIR & PRUNING

The child paths that were created by the GA’s crossover and mutation operators can be

filled with sections that collide with obstacles. There are a few methods that can be used

to make these paths collision free. Through initial experimentation, the deletions of these

unfeasible child paths prove to be extremely time consuming. This is due to the fact that

collision free children are tough to produce organically. This is especially true within an

environment with a high number of obstacles. This causes the GA to run for long periods

in a bid to find feasible offspring paths. The second tried method is the removal of just

the collision points within a child path. This is performed post the crossover and mutation

stage. In most cases, it is the newly created collision filled waypoints that define the

uniqueness of a child path. It is these waypoints that allow the offspring to be different

from their parents’ population. Thus, deleting these waypoints from the child path

reduces its diversity. The diversity filter will test the waypoint differences between parent

and child paths. The chances of the child path progressing to the next generation are

greatly reduced when a diversity check is performed.

The last method requires a path repair algorithm. Many studies have performed

path repair on unfeasible subsections within their designed paths. The MA-RRF planner

is able to generate a feasible solution within seconds. This makes it the optimum

algorithm for redesigning any path subsections that contain collision points. The MA-

RRF algorithm is applied to reroute the path and successfully transform the child path to

a collision free trajectory. Further experimentation shows that MA-RRF planner is the

quickest and best method for producing and maintaining diverse paths within the

Fig. 3.22. Genetic Algorithm Child Paths External Mutation within Cityscape Environment.

95

population. The MA-RRF path repair algorithm is run after the crossover and mutation

process. Firstly, the root of the first tree is placed at the initial collision point. Next, the

goal node is situated at the end of the collision point within the child path. Lastly,

additional tree root points are spread across the corners of the environment. The MA-

RRF algorithm is run for a set number of iterations. In this study, the repair algorithm is

run for no more than 100 iterations. This allows the MA-RRF forest to quickly spread

across the environment and search for alternate routes.

After the mapping process is complete, the algorithm tests if there are any forest

branches that are close to the goal node. The path repair process is terminated once this

branch is identified. In most cases, an alternative route is easily available. A new feasible

path that bridges the collision points is extracted within seconds. The algorithm removes

any nodes that are redundant. The offspring is then tested for its level of diversity and

added into the population. In some cases, the path repair process terminates at 100

iterations. This happens before the planner is able to extract an alternative route. This

means that bridging the collision points is too complex and requires a longer run time. In

this case, the offspring is marked as unfeasible and removed from the population.

Figure 3.23 shows that only one offspring survives the path repair and pruning

process. This method can be challenging to implement within highly complex

environments with many obstacles. It can mean that no child paths are extracted if the

repair process takes more than 100 iterations. In these cases, the termination point can be

increased to a higher value to allow the MA-RRF trees to explore the environment

further. In this study, the MA-RRF repair process has proven to be effective because it

can repair enough paths to fill its population at each generation. This allows the algorithm

for all variations of test spaces to continue to run for many generations. It also provides

the same advantages over other algorithms as it did for the initial path planning process.

This sampling based planner searches the entire test space randomly which speeds up the

exploration process. Thus, quickly extracting feasible path nodes.

Next, this study applies a fully decentralized control system for multi-agent

quadrotors. The trajectories that are designed by GA will be used as the input for the

parallel run multi-agent control system. This system is a combination of the control

system and mathematical model of each agent. This system will allow the end user to

predict the motion and the derivatives of each quadrotor.

96

3.4. MULTI-AGENT QUADROTOR CLOSED-LOOP CONTROL SYSTEM

In this research, a noncomplex nested control system is applied. This control system

executes the simulated model for all agents in parallel on a multi-thread processing

system. Thus, it reduces the collective simulation time for all agents simultaneously.

Firstly, the paths that were generated for each agent by the GA path planner are converted

into time based trajectories. This is achieved by implementing minimal jerk smooth

splines. Then, the nodes within these smooth trajectories will be applied as the desired

coordinates within each agent’s control system. In this section, the structure of the

individual quadrotor’s control system is illustrated and simulated. The movement of each

quadrotor will be estimated by its mathematical model and control system. This multi-

layered control system is shown to adequately define the kinematics and dynamics of the

quadrotor UAV.

3.4.1 MULTI-AGENT SMOOTH TRAJECTORY GENERATION

The paths that are generated by the GA process are not continuous and can contain

extreme bends. These paths are transformed into minimal jerk trajectories by converting

the paths into smooth splines as shown in Figure 3.24. Smooth splines are ideal for

trajectory planning because it minimizes the effects of sudden changes across the

trajectory. Path subsections can also be redesigned without having to replan the entire

path. The end user has flexibility when creating splines of different orders. In many

works, smooth splines are used to minimize the third derivative of the quadrotor’s

displacement. This produces minimal jerk trajectories. Similarly, the designer can

generate UAV trajectories with minimal snap, crackle or pop by changing the highest

degree of the spline equation.

Fig. 3.23. Genetic Algorithm Repaired Child Path within Cityscape Environment.

97

This research focuses on long distance planning across large test environments. Each

path contains multiple waypoints. Designing continuous trajectories that have many

waypoints can be challenging. As shown in Figure 3.25, a breakpoint is where two curve

segments meet. The continuity of a curve at a breakpoint describes if the quadrotors

transition between a breakpoint with the same velocity or acceleration. Curves that lack

in continuity can cause agent-to-agent collisions as well as an increase in path deviation

due to aggressive movements. The transition between two waypoints can cause the agent

to perform sudden movements. Thus, it is important that the agents move between the

waypoints with minimal jerk and continuity.

 Singular Spline

 Piecewise Spline

Here, fifth order splines are designed to minimize sudden jerks within each trajectory.

Nonuniform splines are implemented so that the start and goal nodes of each path are

preserved. These splines are constricted to adhere to continuity laws in order to generate

smooth and accurate trajectories. The waypoints of each path are applied as the control

points for the smooth splines. The number of control points is based on the number of

nodes within the path. These control points are used as a guide when generating a smooth

spline. Similarly, splines of fifth order will reduce overshoots within the quadrotor’s

control system. This will ensure continuity for the roll and pitch angles’ second order

derivatives. The smooth spine trajectory,)(t is obtained through,

Fig. 3.25. Singular Spline, Piecewise Spline.

Fig. 3.24. Smooth splines for four agents across high rise cityscape environment.

breakpoint

98

)()(....)()(
0

,,00, tBxtBxtBxt
m

q

dqqddmm 


 (3.12)

s.t. 12  md

11   md ttt

where 1m corresponds to the number of control points

qx are coordinates of the control points

 1d the degree of the curve

 t is the knot vector

dqB ,

 is the basis functions of the curve

The basis functions are determined recursively. The value of the basis functions are based

on the previously determined knot values. Initially, the basis function for the first degree

is calculated by,



 


1

1,
0

1
)(

mm

m

ttt

otherwise

if
tB (3.13)

Next, the basis function for degrees that are larger than one is produced by the equation

below,

)()()(1,1

1

1,

1

, tB
tt

tt
tB

tt

tt
tB dm

mdm

dm
dm

mdm

m
dm 
































 (3.14)

where

mj

mjd

dj

if

if

if

dnt

dmt

t

m

m

m













2

1

0

These splines are highly adaptable based on the requirements of the end user. In this

study, control points that are redundant to the spline formation are removed. Redundant

point are nodes that do not contribute to a change in the direction of a quadrotor. This

reduces the processing time of the multi-agent control system. One disadvantage of this

process is it can create large distances between each waypoint. The closeness of a spline

to its control points is often determined by the space between two waypoints. The further

away the control points are, the further away the spline curve is from its boundaries. It is

important to strike a balance between the waypoint-to-waypoint distances. Redundant

nodes shouldn’t be maintained but the waypoints must not be too far from each other

especially around sharp corners.

99

Thus, some sections of the path are padded with more control points. In most

paths, there are portions that require the quadrotors to perform aggressive turns. The

aggressiveness of a node-to-node curvature is reduced by the addition of control points.

This is performed by increasing the number of control points across sections that contain

bends that are smaller than 90 degrees. The purpose of this adaptability is to reduce the

possibility of safety zone breaches. This often occurs around the corners of obstacles as

displayed in Fig.3.26(a). All the three of test environments in this study have many

obstacles. The smooth splines must be able to avoid all obstacles. Firstly, the algorithm

detects extreme curvatures within the paths that are designed by GA. Then, additional

nodes are placed strategically around these bends as shown in Fig.3.26(b). This creates

splines that follow the contour of the control points at turns.

The waypoints of the smooth trajectories are applied as the desired coordinates for the

multi-agent control system. The closed-loop control system generates the estimated

positional and rotational derivatives for each agent. This process shows the feasibility of

the designed paths. The path planner must be able to produce paths that each quadrotor

UAV is capable of tracking during flight. Paths that produce a large deviation error will

face a higher chance of being removed from its population. This error will be determined

in the next section through the difference in node-to-node distance between the predicted

and planned path.

3.4.2 QUADROTOR MATHEMATICAL MODEL

The mathematical model that is shown below will be used to define the motion of a

quadrotor UAV. This model will be used with a simple PD control system. This

combination simulates a fast yet minimal error UAV controller. The nonlinear dynamic

model in Figure 3.27 is derived under the following assumptions:

Fig. 3.26.(a) Non-adaptive smooth trajectory (b) Adaptive smooth trajectory.

100

a) The structure is rigid.

b) The structure is symmetrical about the centre of mass.

c) The centre of mass and the body fixed frame origin are assumed to coincide at the

centre of the quadrotor’s frame.

d) The propellers are rigid.

e) The thrust and drag are proportional to the square of the propeller speed.

The velocity vector, V consists of the quadrotor’s linear velocity, Bv and its angular

velocity,
B . The velocity values are obtained from the quadrotor’s body frame,

][][rqpwvuvV BB   (3.15)

Here, we employ Newton’s second law of motion. It provides the equations for the net

force, netF and moment, netM of the quadrotor’s body frame:

][][BBBnet mvmv
dt

d
F   (3.16)

][][BBBnet II
dt

d
M   (3.17)

where I represents the 3x3 identity matrix

 m equals the mass of the UAV.

The inertial moments for the three-dimensional axes are defined as,



















ZZ

YY

XX

I

I

I

I

00

00

00

 (3.18)

where ZZYYXX III ,, = inertial moments.

Fig. 3.27. Main structure of the Quadrotor.

101

The quadrotor creates angular motion about three axes,][zyx which are called the

Euler angles,][ . These angles are called the roll, pitch and yaw angles. The

angular velocity of the quadrotor is determined by,



































r

q

p

T













 (3.19)

Whereas, it’s translational motion is produced across the three positional axes,  zyx .

The translational velocity of the UAV is represented by,



































w

v

u

R

z

y

x
T







 (3.20)

The vector for linear accelerations that act on the vehicle’s body frame, }{B are

transformed to inertial frame, }{E through consecutive rotation matrices,































ccscs

cssscssscccs

cscssssccscc

R (3.21)
































c

c

c

s
sc

tcts

T

0

0

1
 (3.22)

The system's equation (3.16) and (3.17) are then expanded to,







































 







































pvqu

rupw

qwrv

cgc

cgs

gs

F
m

w

v

u

z 





0

0
1







 (3.23)











































































pq
I

II

pr
I

II

qr
I

II

I

M

I

M

I

M

m
r

q

p

ZZ

YYXX

YY

XXZZ

XX

ZZYY

ZZ

z

YY

y

XX

x

1






 (3.24)

102

The expansion of these equations can be viewed in detail within [140].

By expanding equation (3.20), the kinematic equations that define the translational flight

of the structure are,

wccvscusz

wsccssvccsssuscy

wssccsvcsscsuccx







)()()(

,)()()(

,)()()(













 (3.25)

The dynamic equations that portray the rotational movements of the quadrotor’s structure

are obtained from equation (3.19). As shown below,

r
c

c
q

c

s

rsqc

rtcqtsp







)()(

,)()(

,)()(




















 (3.26)

The translational and rotational motion of the quadrotor is controlled by its four motors.

The force and moments that act on the quadrotor are defined by equations (3.27) - (3.30).

The quadrotor hovers when the speeds of all the rotors equal. Similarly, translational

motion is created by increasing or decreasing the speed of the propellers. The total thrust

that is generated by all four propellers is,

)(4321 TTTTkF bZ 

(3.27)

Rotational motion is performed by changing the speed of just a pair of propellers. The

rolling moment that is created around the x-axis is defined as,

)(24 TTlkM bx 

(3.28)

The pitching moment is defined as the angular movement around the y-axis,

)(13 TTlkM by 

(3.29)

Lastly, the yawing moment is executed around the z-axis,

)(3142 TTTTkM dz  (3.30)

where l is the distance from the centre of gravity to the centre of the propeller

bk is derived from aerodynamic contributions and

dk considers air drag.

 iT Individual motor’s thrust

103

Next, this open loop model is expanded to form the closed-loop control system. A robust

PD controller is designed for the individual quadrotor. Here, the performance of the

control system with both the full and simplified mathematical model is evaluated. The

movements of the multi-agent quadrotors are analysed by obtaining these variables.

3.4.3 CLOSED-LOOP CONTROL SYSTEM DESIGN

Research on the quadrotor’s control system have increased significantly in the last

decade. The significance of this particular research as opposed to the others is its focus on

multi-agent quadrotors. The basic singular quadrotor has a relatively simple structure and

control system. Optimizing a multi-agent system can be much more complex. Whilst

most multi-agent controllers perform satisfactorily, many are unable to cope with real life

flights. This work also tests the planning and control of the quadrotor UAV within

different environments and constraints. The designed control system must strike a

balance between error minimization and speed of processing.

Here, a noncomplex nested control system is applied. This control system

executes parallel simulation for all agents simultaneously on a multi-thread processing

system. As displayed in Figure 3.28, the control system consists of three layers,

1) Outer controller: x translational controller and y translational controller

2) Inner controller: z translational controller, yaw rotational controller, roll rotational

controller and pitch rotational controller

3) Agent’s system: quadrotor’s mathematical model

The smooth splines of fifth order,)(s are used as the input for the multi-agent control

system. The output of the closed-loop estimator is the predicted flight paths for AN

agents. The predicted motion defines the dynamics of each agent’s flight trajectory as

segments between the initial,)(initt and goal,)(goalt nodes. The predicted flight path is

defined as,















 obsgoalgoal

obsinit

ttt

ttt

t





)(

)(

)(

1

1



(3.31)

where 0)( initt , 0)( goalt

The desired matrix is represented by the coordinates of the smooth spline waypoints,

104

 )(),(),(),(),(),()(ttttztytxtr ddddddd   (3.32)

Whereas, the current translational and rotational matrix is generated by the control

system,

 )(),(),(),(),(),()(ttttztytxtr  (3.33)

The control system is applied to minimize the positional error. The positional error is

produced by the difference between the desired and current flight path. Thus, the error

between desired and output states is defined by,

dp rre  (3.34)

 dv rre 

 (3.35)

where
pe is the positional error

 ve is the error on velocity

The control system generates nondimensional speed control input, U for the quadrotor’s

mathematical model. The input signal for the motors will be used to estimate the

movements of each quadrotor. The control signal is related to the brushless motor speeds

through,

 ][4321 UUUUMMMF zyxZ 

(3.36)

The first input computes the desired lift force for the quadrotor,

zvzdzpzp ekekr 1
 (3.37)

cc

mgr
U


 1

1
 (3.38)

The positional control along the x-axis and y-axis is controlled by the roll and pitch

angular changes. The values are determined by,

xvxdxpxpx ekekU  (3.39)

yvydypypy ekekU  (3.40)

The nested control signal from the x and y control system, xU ,
yU from (3.39), (3.40)

produces the desired values for the roll and pitch controller,
d ,

d .

105

yxd UcUs   (3.41)

yxd UsUc   (3.42)

These are then applied as input for the roll and pitch control system,

vdpp ekekU  2 (3.43)

vdpp ekekU  3
 (3.44)

Finally, the yaw control system is independently run,

vdpp ekekU  4 (3.45)

As previously stated, this mathematical model is applied to the control system. The

closed-loop control system shows the translational and rotational changes of the

quadrotor whilst it transitions along a planned trajectory. In this study, the control system

is tested with a simplified version of the mathematical model in order to promote speed

and efficiency. This model is defined in the next section. These characteristics are

obtained without a large compromise on the accuracy of the quadrotor’s mathematical

model. The next section shows that the simplification of the model is necessary within a

complex multi-agent UAV system.

3.4.4 INDIVIDUAL AGENT CONTROL SYSTEM

This section presents the nested control system. The chosen control system needs to

create a balance between accuracy and simplicity. A highly complex multi-agent control

system can affect the computing time immensely due to the increase in the number of

agents. Both the MA-Spread and MA-Formation missions require parallel processing of

four to eight agents. The control system for all agents must run simultaneously. In these

cases, a noncomplex and minimal error system is best implemented. This study applies

the constants in Table 3.4 during the MATLAB/SIMULINK simulation of the closed

loop multi-agent quadrotors control system.

Based on Equations 3.23-3.24, the estimated translational and rotational

movements of the quadrotor are related to the control signals in Equations 3.38 -3.45 by,

106

INNER CONTROLLER (roll, pitch angle) OUTER CONTROLLER (x , y-axis)

 CONTROL SYSTEM (z-axis, yaw angle)





)(

),(

tek

tek

pp

zpzp



dt

tde
k

dt

tde
k

d

d

zd
zd

)(

,
)(







pzp ee ,

dzd ee ,
desiredz),(

desiredz),(

measuredz),(

measuredz),(

)(),(41 tUtU

INNER STATE

CONVERSION

PROCESS

dt

tde
ktek

dt

tde
ktek

d
dpp

d

dpp

)(
)(

,
)(

)(











desired

desired



 ,

measuredmeasured  ,

)(

),(

te

te





)(),(32 tUtU

measured

 ,, YX


T

0


T

0

],,,,,[ssssss zyx  

initiala initialv

dt

tde
ktek

dt

tde
ktek

yd

ydypyp

xd
xdxpxp

)(
)(

,
)(

)(





desireddesired yx ,

measuredmeasured yx ,

)(

),(

te

te

y

x

)(),(tUtU yx









Fig. 3.28. Closed Loop Nested Control System.

107

TABLE 3.4. CONSTANT PARAMETERS

Parameter Description Value Units

g Gravity 9.81 ms-2

b Proportionality Constant 3.13x10-5

d Drag 9x10-7

m Mass 0.4794 kg

IXX x axis Inertial 0.0086 kgm2

IYY y axis Inertial 0.0086 kgm2

IZZ z axis Inertial 0.0172 kgm2

[kp , kd] [proportional, derivative constant] [0.14,0.08]







































 







































pvqu

rupw

qwrv

cgc

cgs

gs

U
m

w

v

u







1

0

0
1






 (3.46)











































































pq
I

II

pr
I

II

qr
I

II

I

U

I

U

I

U

m
r

q

p

ZZ

YYXX

YY

XXZZ

XX

ZZYY

ZZ

YY

XX

4

3

2

1






 (3.47)

The mathematical model of a vehicle is simplified without sacrificing the accuracy of the

quadrotor’s movements. The simplification of the quadrotor model is often performed

through the assumption of small rotational values where the Coriolis terms within

equation (3.46) and (3.47) such as pr , pq and qr are assumed to be negligible. This

assumption is implemented within this work because the paths are planned at a high

resolution. The distance and angular difference between two waypoints are not large.

Equations (3.25-3.26) that define the translational flight of the agents are simplified to,

gcc
m

U
z

cscss
m

U
y

sscsc
m

U
x







)(

,)(

,)(

1

1

1













 (3.48)

Whereas, the dynamic equations that describe the rotational movements are similarly

reduced to,

4

3

2

1

,

,

U
II

II

U
I

l

I

II

U
I

l

I

II

ZZ

YX

YY

XZ

XX

ZY








 









 









 














 (3.49)

108

The many-objective optimization algorithm often runs for a few generations before

obtaining a well minimized set of solutions. At each iteration, its population represents

multiple trajectories for many agents. Thus, the optimization algorithm makes many calls

to the parallel control system. Figure 3.29 shows that the quadrotor UAV is able to reach

its destination within 10 seconds.

The speed of processing and minimal error of the simplified control system is ideal for

this multi-agent quadrotor UAV system. This fast controller will also have an impact on

the entire optimization algorithm because it will be utilized during many generations.

In this research, the simplified model of the quadrotor is used for the closed-loop

control system. The quadrotor’s rotational and translational output signal from its control

system is shown in Figure 3.30-3.31. The path nodes across this path are spread no

further than 2 meters apart. Here, Figure 3.30 shows the ability of the control system to

track the planned path across a terrain. It shows that the output signals for all three

positional axes can follow their desired coordinates with minimal error. Similarly, Figure

3.31 shows the roll, pitch and yaw signal output from the controller. The results show that

the controller can keep up with the rotational turns across the path.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
NESTED PD CONTROL SYSTEM : SIMPLIFIED QUADROTOR MATH MODEL

SIMULATION TIME

X
 P

O
S

IT
IO

N
 (

m
)

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3
NESTED PD CONTROL SYSTEM : SIMPLIFIED QUADROTOR MATH MODEL

SIMULATION TIME

Y
 P

O
S

IT
IO

N
 (

m
)

0 10 20 30 40 50 60
0

2

4

6

8

10

12
NESTED PD CONTROL SYSTEM : SIMPLIFIED QUADROTOR MATH MODEL

SIMULATION TIME

Z
 P

O
S

IT
IO

N
 (

m
)

0 10 20 30 40 50 60
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
NESTED PD CONTROL SYSTEM : SIMPLIFIED QUADROTOR MATH MODEL

SIMULATION TIME

R
O

L
L

 A
N

G
L

E

0 10 20 30 40 50 60
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
NESTED PD CONTROL SYSTEM : SIMPLIFIED QUADROTOR MATH MODEL

SIMULATION TIME

P
IT

C
H

 A
N

G
L

E

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-4

NESTED PD CONTROL SYSTEM : SIMPLIFIED QUADROTOR MATH MODEL

SIMULATION TIME

Y
A

W
 A

N
G

L
E

 (d) roll-angle output signal. (e) pitch-angle output signal. (f) yaw-angle output signal.

Fig. 3.29. Simplified model closed loop nested control system translational and rotational signal.

 (a) x-axis output signal. (b) y-axis output signal. (c) z-axis output signal.

109

(a) x-position output signal.

(b) y-position output signal.

0 50 100 150 200 250 300 350 400 450

60

80

100

120

140

160

180

200

NO NODES

X
-P

O
S

IT
IO

N

QUADROTOR PATH TRACKING

PLANNED PATH

CONTROL SYSTEM OUTPUT

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

NO NODES

Y
-P

O
S

IT
IO

N

QUADROTOR PATH TRACKING

planned path

control system output

0 50 100 150 200 250 300 350 400 450
0

50

100

150

NO NODES

Z
-P

O
S

IT
IO

N

QUADROTOR PATH TRACKING

planned path

control system output

(c) z-position output signal.

Fig. 3.30. Quadrotor’s closed loop control system translational output signal.

110

(a) roll angle output signal.

(b) pitch angle output signal.

0 50 100 150 200 250 300 350 400 450

-1

-0.5

0

0.5

1

NO NODES

R
O

L
L

 A
N

G
L

E
 (

ra
d

)

QUADROTOR PATH TRACKING

0 50 100 150 200 250 300 350 400 450

-0.6

-0.4

-0.2

0

0.2

0.4

NO NODES

P
IT

C
H

 A
N

G
L

E
 (

ra
d

)

QUADROTOR PATH TRACKING

0 50 100 150 200 250 300 350 400 450
-4

-3

-2

-1

0

1

2

3

4
x 10

-3

NO NODES

Y
A

W
 A

N
G

L
E

 (
ra

d
)

QUADROTOR PATH TRACKING

(c) yaw angle output signal.

Fig. 3.31. Quadrotor’s closed loop control system rotational output signal.

111

3.5 SUMMARY

This research performs path planning for multi-agent quadrotor UAVs within three

different test environments. Each environment holds a different set of challenges for the

path planning algorithm. The first test space was the high-rise cityscape. The next space

was the highly cluttered indoor environment. Lastly, a mountainous terrain was also used

within this study. The results show that the obstacles within all of these test spaces were

well mapped. Each obstacle had a safety boundary placed around them. The resulting

images show that each environment required a different sized safety zones. This is

because narrow roads can be closed off if the boundaries are too big. On the other hand,

the agents can collide with the corners of the obstacles if the boundaries were too small.

This shows that it is important to consider the characteristics of each environment before

setting the value of any variable.

This chapter also showed the planning of the initial path population for four

quadrotor UAVs. The MA-RRF algorithm was shown to be an expansion of the basic

RRT path planner. The simulation results of each test space showed that the MA-RRF

forest was able to quickly map the environments. It was capable of creating strategically

placed forest links between the individual trees. The results also showed that the multi-

agent sampling-based planner capable of quickly extracting tens of thousands of feasible

paths. The MA-RRF multi-agent paths then underwent a diversity based filtration

process. The findings within this chapter show that the MA-RRF planner has successfully

created a diverse initial path population for the optimization process.

Next, GA was used to hybridize the MA-RRF paths and produce a diverse

population of trajectories across all iterations. The results show that using the MA-RRF

for repairing child trajectories can be highly beneficial. Four post processing GA

operators were also implemented to further improve the survivability of these new child

paths. Then, the path population was converted into smooth trajectories. These minimal

jerk trajectories were used as the desired coordinates for the quadrotor UAV control

system.

Lastly, this chapter focused on the modelling and testing of the quadrotor UAV’s

control system. The current chapter describes the important factors that must be

considered when modelling the multi-agent quadrotors. Here, the mathematical model of

the individual quadrotor was presented in its simplified form. The results showed that a

fast and minimal error control system was chosen in comparison to a highly accurate one.

The images also show that the output of the controller successfully predicts the control

signals that define the collective speed and thrust of these quadrotors. It was able to

estimate the translational and rotational movements of the quadrotor UAV. Collectively,

MA-RRF, GA and closed-loop quadrotor UAV control system form a hybridized path

112

planner that continuously generates a tested collection of feasible trajectories for the

optimization process within Chapter 4.

The next chapter shows the many objectives functions that are applied for both

the MA-Spread and MA-Formation missions. The optimization of the multi-agent

quadrotor UAV trajectories is performed as a team for both missions. The MA-Spread

mission optimizes the combination of multi-agent trajectories. The objectives in the MA-

Spread mission are dependent on the team’s terrain exploration. On the other hand, the

MA-Formation mission optimizes the formation reference trajectory at every generation.

The estimated objective values are used by the Dimensionality Reduced Many-Objectives

Optimization (DRMOO) algorithm to sort the trajectories based on their level of

optimality and diversity. The trajectories that are ranked highest are maintained within

the selection process and progress into the new generation of trajectories. The algorithm

is designed to focus on the minimization of all objectives as opposed to mapping the

Pareto front with full accuracy. This is the final step within the multi-agent quadrotor

UAV trajectory planning and optimizing algorithm.

113

CHAPTER 4: TRAJECTORY OPTIMIZATION FOR MULTI-

AGENT QUADROTOR UAVS

This research presents an offline long-range path planner that generates a large

population of optimized trajectories for multiple autonomous quadrotors. It is capable of

adapting to a variety of terrains, tasks and objectives. The missions that are typically

undertaken by UAVs are generalized into two types. They are either defined as spatially

distributed flight (MA-Spread) or dynamic formation flight (MA-Formation). This allows

the end user to implement a standardized platform that is applicable towards many

variations of real world multi-agent cooperative tasks. The first application is designed

for missions that require independent multi-agent flight paths. This means that there is

only a small amount of coupling between the neighbouring quadrotor UAVs. These

agents have their own trajectories without being highly dependent on their neighbouring

agent’s flight direction. Formation flights are also a popular application for multi-agent

quadrotors. In this case, the agents are highly dependent on their team mates. The

trajectory for each agent is designed based on the formation’s reference path and the

desired formation shape.

The hybridized multi-agent quadrotor UAV trajectory planner and control system

was presented in the previous chapter. They are both modified to suit the two variations

of multi-agent systems. The hybridized MA-RRF and GA path planner is capable of

generating a group of paths for the MA-Spread mission. It is also able to create a

collection of formation reference paths for the MA-Formation task. This work shows that

the same platform can be utilized even though both of these missions are the opposite in

terms of agent-to-agent coupling. Thus, it can be used for missions where the agents are

highly dependent on each other to complete a mission. It can also be applied for missions

where the agents fly independently to accomplish a task. A common theme between these

two differing missions is that they require solutions that consider the multi-agent system

as a singular entity. The algorithm must be able to generate trajectories with various

objective trade-offs for all agents without discrimination. Some multi-agent trajectories

may have better values for certain objectives in comparison to the other. The collective

objective values of each team of agents will be used to rank the trajectories within the

optimization process. This allows the resources of all agents to contribute towards the

completion of a task. It is a more efficient path planning algorithm in terms of managing

the resources of a team of agents.

The smooth paths that were designed by the MA-RRF and GA planner will be

used as the input for the two missions that are tested within this research project. Firstly,

the flights trajectories for the agents within the MA-Spread mission are generated

independently. Here, it is the combination of all the agents’ independent trajectories that

114

is optimized. The trajectories of the four quadrotors within each path combination is

applied to the objective functions as a collective. Thus, it is the combination of the

independent flight paths that is used within the optimization process. The best

combinations of agent paths are chosen as parents for the next iteration. Secondly, the

MA-Formation application optimizes the formation’s reference trajectory at each

generation. The MA-RRF and GA path planners are used to generate a collection of

formation reference paths. Then, formation shapes are designed based on the amount of

free space that is around each reference nodes. Finally, the trajectories for each agent is

generated based on the reference nodes and its formation shapes. Paths with higher

complexities in formation shapes will be removed from the population. On the other

hand, paths with more simplistic formation changes are maintained as parents for the next

generation.

In this chapter, the individual agent’s closed-loop control system will be expanded

into a multi-agent control system for both missions. The data that is generated by the

control system will be used to predict the values of the sixteen objectives. In these

missions, different constraints need to be considered to simulate complex real-life multi-

agent flights. In many cases, a selected number of objectives are considered

simultaneously. These objective functions are often based on the dynamics and

limitations of the quadrotor UAVs. It can also take into consideration the constraints of

its environment and chosen mission. This chapter defines the mathematical equations for

the many objective functions that are implemented in this research project. This study

assumes that some of the sixteen objectives are conflicting in nature. Initially, we present

the standard objective functions that are applied for both MA-Spread and MA-Formation

scenarios. Next, the objective functions that are designed for multi-agent quadrotor

independent flight, MA-Spread are defined. Lastly, the objectives that are utilized within

the multi-agent quadrotor formation flight application, MA-Formation is shown.

Lastly, this chapter defines the parameters within the Dimensionality Reduced

Many Objectives Optimization (DRMOO) algorithm. The DRMOO is used to rank the

hybridized trajectories that are produced by GA and MA-RRF according to their level of

optimality and diversity. The values of the many objective functions will be estimated

with a closed-loop control system. Then, DRMOO will be used to rank the trajectories

based on their estimated objective values. The aim of the DRMOO algorithm is to

produce a final population of multi-agent trajectories that contain various strengths and

weaknesses for these differing terrains. It is important that all of the many objectives are

considered to be equally essential. In the next chapter, the results show that the DRMOO

algorithm can be implemented as a standard platform for any multi-agent scenario or

application.

115

4.1 MULTI-AGENT QUADROTOR OBJECTIVE FUNCTIONS

This section presents a standardized definition of the multi-agent quadrotors’ physical

constraints. It also takes into consideration the mission limitations such as environmental

factors. These eight objectives are applicable to both the MA-Spread and MA-Formation

missions. The constraints and limitations are represented by a collection of objective

functions. These objective functions are not wholly based on the mean values between

agents as with swarm or consensus theory. In this study, the definition of each objective

function is dependent on the data that it represents. It is also not combined into a sum of

aggregated data between all agents. Here, each objective is considered to be equally

important. These objective functions are easily applicable to a variety of environments. It

is changeable to accommodate many physical variations of the quadrotor. The end user

can also consider other modes of communication, sensors, control methods and

measurement units.

Firstly, the paths that are generated by the GA path planner will be converted into

time based trajectories. Then, the nodes of these trajectories will be used as the input for

the multi-agent control system. The control system outputs the estimated flight

trajectories for all
AN agents simultaneously. The dynamics of the output trajectory by

the control system is defined by,

  )(),(),(),(),(),()(ttttztytxt  (4.1)

t = node number across smooth spline trajectory

The predicted flight path is split into node-to-node segments between the initial,)(initt

and goal nodes,)(goalt ,















 obsgoalgoal

obsinit

ttt

ttt

t





)(

)(

)(

1

1

 (4.2)

where, 0)( initt , 0)( goalt

Each agent’s positional states and derivatives will be used to predict the values of the

many objective functions. As previously defined in Section 1.4, there are eight standard

objective functions that are applied for both the MA-Spread and MA-Formation

applications. These eight standard objectives for both missions are defined below:

116

When designing trajectories for a multi-agent UAV system, the most important

criterion for end users is the flight distance from the defined initial to goal node. The first

objective, 1 is designed to maintain the shortest paths.

 A

A
t

t

NAdttdt

goal

init

A
,...1,)()(

1

1    (4.3)

s.t
maxmin)(  t

where
A

d = segment length

The second objective, 2 aims to maximize trajectories that hold many nodes at lower

heights of the terrain. In this case, the reduction of flight time by all agents is prioritized.

This cost function is adjustable based on the preference of the end user. The equation is

easily modifiable to preserve higher nodes if flights at elevated altitudes are preferred.

This option can be used by end users that require a larger view of the terrain.

   
A

t

t

ATA

P

goal

init

NAdtthtz
N

t
1

2 ,...1,)()((
1

)( (4.4)

where Th = terrain height

 PN = number of nodes within flight trajectory

Most studies implement cost functions that evaluate the trajectories of all agents as a

whole. These objective functions are often used to assess the entire path from the initial

to destination node. On the other hand, objective 3 optimizes the node-to-node

progression. This allows the user to view the advantages and disadvantages of a path

based on smaller subsections. This is performed by testing if two continuous nodes

deviate further from the goal node. Paths that advance directly towards its goal as

opposed to taking longer routes are maintained across generations.

dttbt
A

)()(
3

1

3   (4.5)

s.t


 


otherwise

tdif
b

,1

0)(,0 3

3





where 




goal

init

t

tt

AgoalAAgoalA dttttttd 22

3))1()(())()(()( (4.6)

Quadrotor UAVs have the advantage of manoeuvring across path curvatures with agility

and speed. An adaptive cost function, 4 allows the end user to rank less aggressive

117

trajectories over paths that require extreme manoeuvring. The user can easily modify this

objective function to ensure minimum jerk, snap or pop by changing the degree of the

derivative. This study chooses to minimize the state derivatives of a trajectory as opposed

to the path curvature to obtain smoother paths. It can be changed to maximize fast turns if

flights at maximum velocity are preferred.

  















 


A
t

tt

An

A

n

P

goal

init

NAndt
dt

td

N
t

1

2

4 ,...1,6:3,
)(1

)(

(4.7)

where n =degree of smoothness

One way of measuring the feasibility and real-life applicability of the designed path is

through its estimated trajectory error. The cost function,
5 compares both the GA

planned trajectories,)(tA with the predicted flight path,)(tA of the quadrotor, A.

Estimating the motion of the heterogeneous multi-agent quadrotors is accomplished

through the application of a closed-loop control system. One input node from the GA

planned trajectory equals to one output node from the control system. Thus, both

variables are of the same type and same parameterization. The system consists of a nested

PD control system and the mathematical model the different sized quadrotors. This

function tells the user that if the designed paths have a high spline deviation, it requires

the addition of more midpoint nodes across the path. This shortens the node-to-node

distances and minimizes the deviation error.

 A

A
t

t

AA

P

NAdttt
N

t

goal

init

,...1,))()((
1

)(
1

2

5     (4.8)

Obtaining time optimal trajectories can be a priority for end users with time constraints.

The objective, 6 defines the optimality of a designed path by comparing two values.

The first value is the estimated node-to-node controlled flight velocity, estAv ,
 of the

designed smooth spline. The second value is the direct waypoint-to-waypoint flight,
Ald

time at estimated optimal velocity, optimalAv , . The optimal velocity is different from the

maximum velocity of a quadrotor. The estimated optimal velocity for an agent across a

path is obtained from the output of the agent’s control system. This value changes every

time the control system applied for each trajectory at each generation. This is because

some paths may have complex turns and movements which causes the agents to move at

different velocities. The ideal velocity changes based on the complexity of a path. In this

study, the optimal velocity is estimated by obtaining the highest velocity value across the

118

entire path. The quadrotor’s flight time from a direct node-to-node flight at ideal speed is

compared to its estimated flight time across a smooth spline to test if the agent is able to

fly to the best of its ability. Here, paths that promote flights close to the ideal flight

velocity are preserved within the population.

 A

A

estA

t

t

optimalAl NAdttvtddtvtdt
A

goal

init

A
,...1,))()(())(()(

1

,,6 













   (4.9)

where
A

d = smooth spline node to node trajectory distance

(max),, axisxAoptimalA vv 

The next objective, 7 functions to determine the flight time of a multi-agent trajectory

combination. Quadrotors can fly fast and lift loads. These loads come in the form of

measurement units, imaging, networking and sensory electronics. Efficient use of fuel is

necessary to promote longer flight time.

   
A

A

t

t

AA NAtftft

goal

init
1

7 ,...1),1()()( (4.10)

f(t)= estimated node-to-node flight time from agent’s control system

The avoidance of collisions with obstacles is another important criterion for autonomous

flights across challenging terrains. Cost function 8 detects the number of no-fly zones,

boundaryk , that are breached. This function is used to minimize the risks of agent loss due

to avoidable obstacle collisions.

obskboundarykk Nkdd ,....1,)()(,,,    (4.11)

where d = obstacle boundaries buffer range

 k = obstacle planes

The objective function defines the number of safety zones that have been breached by the

entire team of quadrotors. Trajectories that require the agents to fly too close to the

obstacles are slowly filtered out of the population.

 A

t

t

A

NAdttbt

goal

init

,...1,)()(8

1

8    (4.12)

119

s.t.


 


otherwise

tif
b boundarykA

,1

)(,0 ,

8




As previously defined, these eight objective functions and constraints are applicable for

both independent, MA-Spread and dependent, MA-Formation UAV flight missions. The

end user is also given the option of including costs that are specific to either the MA-

Spread or MA-Formation mission. The objective function within each mission is

dependent on the costs that are considered by researchers that study multi-agent UAV

flights. Spatially Spread flights are often used for missions that require the agents to

Spread across the environment and collect as much data as possible. On the other hand,

formation flights are used for payload transportation or target tracking. This gives the end

user the flexibility of using the objective functions that are suitable for their mission.

4.2 MA- SPREAD APPLICATION

Multi-agent unmanned aerial vehicles (UAV) systems are frequently used for complex

missions such as search and rescue, reconnaissance, terrain mapping, wildlife research,

target tracking as well as forming ad hoc wireless networks. Today, quadrotors can be

purchased for a low cost and modified to transmit data from many types of sensory

systems. It is easily expandable to a large sized multi-agent system. The popularity of the

quadrotor within the consumer market is due to its ability to hover and deliver clear

imagery in real time. It has the ability to undertake aggressive turns and capture videos at

high definition. These agents are currently being used by media content creators,

journalists, scientists, delivery companies, governmental bodies as well as hobbyists.

Implementing a multi-agent system means that there is potential that the same mission

can be completed at a much faster rate.

This research aims to analyze and implement a standardized platform for

simultaneous multi-agent trajectory generation and optimization algorithm that is

applicable towards many variations of real world multi-agent cooperative tasks. Missions

typically undertaken by independent UAVs are generalized as spatially distributed flight

scenarios. This hybridized algorithm is designed to produce feasible smooth trajectory

solutions for a multi-agent system. It takes into consideration the many objectives that are

based on the purpose and constraints of the MA-Spread mission. Here, we present the

objectives that are specifically designed for Spread flight. Performance analysis of the

hybridized algorithm is presented through the flight simulation of the multi-agent

quadrotors. These independent agents are Spread across multiple wide-area test

environments.

120

4.2.1 MA- SPREAD TRAJECTORY COMBINATIONS

In this research, the optimization of a group of agents is performed by applying the team

as one entity. The agents in the spatially distributed cooperative flight missions are often

supplied with their own trajectories. Here, the best path that is assigned to an individual

agent may introduce shortcomings to its neighbouring agents. The best path for an agent

can cause possible inter-agents collisions with other agents. This causes the other agents

to take longer routes to avoid any collisions. There is also a chance that the entire team

could return with minimal collective terrain exploration. This is because the agents may

fly over similar areas. One can assume that the best path for an individual agent may not

necessarily lead to minimum cost values for the entire team. It is important to generate

the well minimized paths for all agents collectively. This ensures that the cost values for

the team as a whole is optimized.

Therefore, optimization within the MA-Spread application is performed for a

collective set of paths. The paths that are generated by GA are used for various

combinations of the multi-agent’s flight paths. A set number of path combinations are

created at each generation. The number of combinations is based on the population size

of the optimization algorithm. The level of diversity between the combinations is based

on the number of unique trajectories that are maintained within an agent’s path

population. The possible number of path combinations is equal to the binomial

coefficient,

1)...1(

)1)...(1(















cc

c

c NN

NNNN

N

N
 (4.13)

where N = number of paths per agent of current generation

 cN = number of combinations

This research tests the MA-Spread application with a team of four quadrotors. Figure 4.1

shows the way each path combination is stored within the database. It is these

randomized combinations,)(tCi
 of flight paths that are optimized for each generation.

This process is designed to promote the maintenance of the well minimized collective

trajectory within the final generation.

   AAi NAttttC ,,1;)()()()(21   (4.14)

where i = number of multi-agent path combinations

 A = quadrotor agent

121

Each path combination is applied one by one into the multi-agent control system. This

study uses a population of 30 path combinations, i. The path combinations hold paths for

four different quadrotors, A. The path nodes of each agent are defined as the desired

coordinates for the closed-loop control system. As previously defined, the state

derivatives for all four agents are obtained simultaneously through parallel processing on

a multi-thread system. The estimated state values from the control system are then used

as the input for the objective functions. The cost values for the current path combination

are used by the many-objectives optimization algorithm for the ranking process. The

combination of multi-agent’s paths that are both diverse and well minimized is ranked

higher than combinations that are suboptimal.

Lastly, the best combinations from previous generation are stored as the next

generation’s parent population. The database stores the paths from each combination

according to its agent. Thus, the number of unique paths per agent is dependent on the

combinations that survive the selection process. This means that the path database for an

individual agent can contain duplicate paths. This study implements elitism within the

GA’s selection process. New path combinations are generated from the current parent

population and the new child trajectories.

4.2.2 MA-SPREAD CONTROL SYSTEM

An expansion of the single agent’s hierarchy is performed to include the parallel

simulation of four quadrotor UAVs simultaneously. The multi-agent architectures show

the impact of having a control system within an optimization algorithm. Both the input

and output data for the control systems are extremely important because it determines the

type of cost functions that can be implemented. The control systems are simulated with

MATLAB/SIMULINK on a multi-thread processing system. The data from the control

system flows from the lower level control loops to the higher-level trajectory planning

algorithm. These different layers can be implemented for a group of heterogeneous

quadrotor UAVs despite their differences in hardware or software. Thus, simplifying the

framework of the multi-agent control system is beneficial for many real-world

applications.

  )()()()(21 ttttC Ai  



 )()()()(211 ttttC A 

 )()()()(212 ttttC A 

)(1,1 t1A

2A

3A

4A

)(2,1 t)(3,1 t)(4,1 t

)(1,2 t)(2,2 t)(3,2 t)(4,2 t

)(1,3 t)(2,3 t)(3,3 t)(4,3 t

)(1,4 t)(2,4 t)(3,4 t)(4,4 t

 Fig. 4.1. MA-Spread randomized combinations of multi-agent flight trajectories.

122

Figure 4.2 shows the information flow across the trajectory planning algorithm for

the MA-Spread mission. In this study, four quadrotors, 4:1i will fly independently

across a variety of test spaces. Initially, the control system requires the constraints and

limitations of each agent. This can be obtained from the physical structure of the

quadrotor’s hardware and its electronics. As previously defined, free space mapping and

path planning is performed by MA-RRF and GA. The free space mapping process

produces data such as the obstacles and their boundaries,
obs . It also divides the obstacle

free three-dimensional space, 3 into grid blocks, G . The size of each grid block,
gV

is predefined based on the size of the test space. An initial collection of paths,

)(0tN ipopparent is provided by MA-RRF as input for the GA. Independent paths are

designed for all four agents without interference from the motion of their neighbouring

agents. Each agent has a new collection of paths at each generation,)(iterinewgen tN . These

paths are converted into trajectories by creating minimal jerk splines,)(ti .

This information flow across the different subsections of the MA-Spread system

will form the input for the multi-agent control system. Various path combinations,)(tC j

are formed from the trajectories that were developed for each agent. These trajectory

combinations are applied within the control system one by one. At each iteration, the run

time of the control system is defined through the number of nodes within the current

combination’s longest trajectory. Next, the control system and mathematical model for

each quadrotor is run in parallel. The data that is required by each agent’s estimator are

the desired coordinates and angular rotations. This information is required by the agent’s

control system. Each subsection of the control system is able to calculate and reduce the

positional error of a quadrotor. The initial values of an agent’s position and its derivatives

are also required by the integrator within the estimator.

The secondary part of a control system is its output data. The information must be

easily accessible and understandable to the end user. The estimator’s output data is stored

within a shared database after each trajectory combination has passed through the system.

The values for each iteration are stored based on the path combination that was applied.

This makes it easy for the end user to identify which path combination is the best choice

at the end of the optimization process. The values that are directly obtained from the

control system are the predicted flight path of each agent,)(ti as well as its derivatives.

Similarly, the predicted rotational values and its derivatives are also obtained straight

from the estimator. The output of each subsection within the control system provides the

estimated path deviation, pe for each agent. Lastly, the predicted flight time,
flightt for the

entire team is also attained at the end of the simulation process.

123

All of the output data is crucial for determining the values of the objective

functions within the MA-SPREAD application. The estimated values will be used to

predict the flight time of all the agents. It will also provide insight as to the number of

possible agent-to-agent or obstacle collisions. The estimated flight paths show the

aggressive turns that the agents are required to perform. The end user is most interested in

the cost functions that are designed specifically for the MA-SPREAD mission. Thus, the

control system tells the user about the multi-agent team’s collective sensory coverage and

overlap across each test space. It also provides the changes in the network topology

between each agent during flight. These objective functions will allow the many

objective optimization algorithm to rank the path combinations. The combinations are

ranked based on their level of dominance,)(min iterantdo tN
and diversity,)(itertnc . The ranking

system, DRMOO will be elaborated in the end of this chapter.

4.2.3 MA-SPREAD OBJECTIVE FUNCTIONS

The data from the previously defined control system will be used to estimate the values

of the 12 objectives that are within the MA-Spread mission. Four new objective functions

are used in addition to the standard 8 objective functions. These four objective functions

cater specifically to the application of Spread flight missions. Here, the optimization

algorithm aims to maintain multi-agent paths that maintain connectivity whilst mapping

the free space of the terrain. It also aspires to minimize agent-on-agent collisions and

redundant sensory data. The parameters that are applied within the MA-Spread

application are shown in Table 4.1 [141-142]. A team of four quadrotors is used within

this mission. Two different quadrotor models are applied in this study to create a more

flexible system. Both of these models are different in size and weight.

TABLE 4.1: MA-Spread PARAMETERS

Description Value Description Value

Number of Flight Paths Combinations 30 Maximum Agent Velocity 10ms-1

Number of agents 4 Number of Gaui 330X-S Agents 2

Redundancy Similarity Threshold 0.75
PN Gaui 330X-S Agent’s Size 0.533m

Sensory Overlap Terrain Block Size 30m3 Gaui 330X-S Agent’s Maximum Fuel 15mins

RF Network Range Threshold 0.75
A Number of Fyetech Agents 2

Safety Zone Obstacles Boundary obs 6m Fyetech Agent’s Size 0.705m

Minimum Agent-to-Agent Distance 10m Fyetech Agent’s Maximum Fuel 10mins

124

Fig. 4.2. MA-Spread closed-loop nested control system.

. output

FREE SPACE

MAPPING

CREATE FREE

SPACE 3D GRID

BLOCKS

INITIAL PATH

PLANNING

MA-RRF

obs

PREDEFINED

PARAMETERS

&

START AND

GOAL NODES

NEW GENERATION

PATH PLANNING

 GA

MA-RRF

FOREST

SMOOTH

TRAJECTORIES

 SPLINES

MULTI-AGENT

CONTROL SYSTEM

PARALLEL CONTROL  

 

 

 

 

 

 

 

 

 

 

 






































































































GOVERLAPPINDATA SENSORYmin

COVERAGE TERRAINmin

BOUNDARIES SAFETY OF BREACHmin

AVOIDANCE COLLISIONmin

TOPOLOGY IONCOMMUNICATmin

NCONSUMPTIO ENERGYmin

TRAJECTORY OPTIMAL TIMEmin

ERROR DEVIATION PATHmin

SDERIVATIVE OF ONMINIMIZATImin

NPROGRESSIO ADVANCEDmin

 ALTITUDE FLIGHTmin

 ONOPTIMIZATI TRAJECTORYmin

12

11

10

9

8

7

6

5

4

3

2

1

























AGENT 1

TREE
AGENT 1

CHILD

AGENT 1

MATH MODEL &

CONTROL SYSTEM

MANY

OBJECTIVES

OPTIMIZATION
SELECTION

OF PARENT

POPULATION

AGENT 2

MATH MODEL &

CONTROL SYSTEM

AGENT 3

MATH MODEL &

CONTROL SYSTEM

AGENT 4

MATH MODEL &

CONTROL SYSTEM

AGENT 1

SPLINES

AGENT 4

PARENT

MULTIPLE

AGENT PATH

COMBINATION

RANKING

NICHING

DOMINANCE

SORTING

gV
G

3



AGENT 2

TREE

AGENT 3

TREE

AGENT 4

TREE

][
010101 zyx

][
020202 zyx

][
030303 zyx

][
040404 zyx

AGENT 2

CHILD

AGENT 3

CHILD

AGENT 4

CHILD

AGENT 2

SPLINES

AGENT 3

SPLINES

AGENT 4

SPLINES

)(01 tN popparent

)(02 tN popparent

)(03 tN popparent

)(04 tN popparent

)(1 iternewgen tN

)(2 iternewgen tN

)(3 iternewgen tN

)(4 iternewgen tN

)(1 t

)(2 t

)(3 t

)(4 t

AGENT 1

PARENT

AGENT 2

PARENT

AGENT 3

PARENT Ndominant (titer)

)(itertnc

)(1 iterpopparent tN

)(2 iterpopparent tN

)(3 iterpopparent tN

)(4 iterpopparent tN

][iii 

][iii  

][
iii zyx

][
iii zyx 

dp rre 

0ttt fflight 

)(ti

GENERATE MA-Spread

PATH COMBINATIONS

 )()()()(41 ttttC Aj  

 )()()()(211 ttttC A 

 )()()()(312 ttttC A 



)(tC j

125

The first objective within the MA-Spread application is based on maintaining

communication between the agents. Communication disruption occurs when the distance

between two agents are further than the network signal range. The amount of signal

decay grows larger as the agent-to-agent distance becomes longer. The effects of signal

decay are such as data packet corruption or loss. Retransmission of these lost data can

cause a delay in the prediction of possible collisions as well as shared free space

mapping. Figure 4.3 shows the progression of four agents within the mountainous

environment. In the first image, the distance between agents at each sample time is small.

On the other hand, with the second image, there exists longer waypoint distances between

the quadrotors that can cause network decay. This objective function attempts to

minimize the network decay by reducing the distances between the agents.

The network between quadrotor agents is defined through an adjacency matrix. The

matrix entry ija is defined as,

 

otherwise

NjiAAif
a

Aji

ij

,...,1,,

,

,

0










 (4.15)

where
 ji AA 

= connection exists between agent i and agent j

s.t.


 


otherwise

dtddif GijG

,0

)(,1 max,min,


Ideally, a fully connected graph,  )(, tAVG f  is maintained when all agents are within

the maximum network range, Gd . A well-connected system as shown in Figure 4.4(a)

allows for minimal delay data exchange between shared database and the agents.

Function, 9 serves as a measure of agent-to-agent connectivity. It is used to penalize

trajectories that cause connection losses between the agents.

Fig. 4.3. Collective multi-agent paths with less and more network decay across mountainous terrain.

126

 dttb

goal

init

t

t

)(99  

 (4.16)

s.t.


 


otherwise

Gtaif
b

fij

,0

)(,1
9

There can be possible collisions between agents during the simultaneous operation of a

team. This can happen especially when the agents are all flying in different directions.

Possible collision detection is estimated based on two criterions, the distance between

agents,
ijd and the time of collision. The estimated position of each agent at a time

period can be used to test if the agents are too close to each other.

   AA

t

t

ij

t

t

ij

t

t

ijij NjNidttztzdttytydttxtxtd

ooo

,...1,,...1,)()(,)()(,)()()(
111

  (4.17)

s.t.
max,,min,)(xijxijxij dtdd  ,

max,,min,)(yijyijyij dtdd  ,
max,,min,)(zijzijzij dtdd 

This objective penalizes collective trajectories that hold possible collision points. It

allows the end user to either replan the spline subsection or choose a collision free

trajectory instead.

dttbt

goal

init

t

t

)()(1010   (4.18)

s.t.


 


otherwise

tttdtddif
b

collisionijijijij

,1

,)(,0 max,min,

10

Missions such as reconnaissance and surveillance require the agents to Spread across an

environment. The agents within these missions collect a large amount of sensory data.

Here, the maximization of uncertain terrain coverage is paramount. In this study, we

assume free space mapping from a height with three-dimensional grid mapping. The

number of grids, totalgN , per environment is defined by,

 Fig. 4.4. Multi-agent (a) fully connected (b) partially network topology.

A1

A2

A4

A3 A3
A2

A1
A4

127

gV
G

3



 (4.19)

The amount of free space coverage by each agent defines the amount of sensory data that

is collected

by the entire team. Figure 4.5 shows the progression of four agents across the

cityscape environment. In the first image, it is visually visible that the flight trajectories

of all agents successfully explore a high percentage of the terrain. On the other hand, in

the secondary figure, the agents fly across duplicate areas. This minimizes the amount of

terrain coverage and reduces the amount of surveillance data that can be collected by the

entire team. It can also cause an increase in the collection of redundant sensory data.

Cost function,
11 prioritizes trajectories where the quadrotors fly across

uncertain areas. This reduces flights across areas that have been well mapped across

generations. Each grid block is given the value of zero initially. As the algorithm

progresses, the value of each grid block,
gridN increases based on the number of times an

agent flies across it. Thus, the minimization of this cost function maintains trajectories

that have flown over environments that are more uncertain or hard to reach

.  A

t

t

grid

G

g

A

NAbgN

goal

init

,...1,)(11

11

11   




 (4.20)

s.t.



 


),,(),,(),,(

0

1
11

guguguglglgl zyxzyxzyx

otherwise

if
b

where
gV = three-dimensional grid cube volume

),,(gugugu zyx = grid cube upper limit

),,(glglgl zyx = grid cube lower limit

 Fig. 4.5. Multi-agent high and low terrain coverage across cityscape environment.

128

The integration of measurement sensors on each agent within a team can cause the

repetition of observational data. There is a need for faster assessment of sensory data.

Thus, repetitive real-time sensory data are redundant and a liability. Figure 4.6 shows the

progression of multi-agents across an indoor environment. It is clearly visible that in

comparison to the agents’ paths in the first image, the secondary image shows trajectories

that map the same areas of free space. The agents accumulate redundant sensory data and

neglect to map areas within the other rooms.

Cost function, 12 encourages the removal of trajectories that fly across the same

grid blocks. This is performed through the detection of overlapping flight areas. Each

grid block is given the value of zero when ranking each path combination. It then has a

value of one if there is an overlap.

 
A

t

t

goal

init

b
1

1212 

 (4.21)

s.t.

   



 


AAgugugujjjiiiglglgl NjNizyxzyxandzyxzyx

otherwise

if
b

,...1,,...1),,,(),,(),,(),,(

0

1
12

The 12 objectives that have been defined will be applied within the many-objective

optimization process. These standardized MA-Spread objective functions are applicable

to any number of agents as well as within any type of environment.

4.3. MULTI-AGENT QUADROTOR UAVS IN FORMATION FLIGHT

Along with Spread flight scenarios, there is a lot of recent interest in multi-robot motion

in formation. There are many examples of flight in formation within nature. History

shows us that many animals move and hunt in packs. Birds often fly as a collective flock.

Insects also work as a team to transport food across far distances. The reason for this is

Fig. 4.6. Multi-agent low and high sensory data replication across indoor environment.

129

that a collective group is stronger and more effective than a singular individual.

Formation flights are crucial to applications such as payload transportation or military

missions such as security patrols. It is also often used for search and rescue missions at

hazardous disaster sites. The agents in formation are required to perform cooperative

sensory angular coverage and aerial flights whilst maintaining precise patterns. A group

of agents that fly close together can perform many tasks that spatially spread agents can’t.

This study has chosen to expand the standardize platform to include formation

flight. This is due to the simplicity of path planning for a swarm of agents that fly in a

formation structure. The trajectory planning for all agents is often done through the

expansion of a singular leading agent’s trajectory. This means that the basic trajectory

planning process is much simpler than the MA-Spread application. The complexity of

formation planning exists in the planning of the formation structure. The level of

difficulty further increases when studies aim to create formation structures that adapt to

their environment. Thus, the MA-Formation mission requires a multi-level program in

addition to the basic path planning algorithm. It is these additional stages that make the

MA-Formation application tougher to design in comparison to the MA-Spread mission.

Multi-agent flights in formation introduce the additional complexity of preserving

designated formation shapes whilst navigating through waypoints within a trajectory.

These agents must fly closely whilst avoiding probable inter-agent collisions and

environmental hazards.

There are four stages that exists within a formation planning algorithm. Some

works implement all subsections whereas some only experiment with certain areas of

formation planning. The first level is the design of the formation’s reference trajectory.

This process can be executed with most path planning algorithms. The second level

involves the accurate free space mapping of the test environment. The formation planning

algorithm must be capable of defining the amount of free space that exists around each

path node. This can be performed in low or high resolution. The higher the free space

mapping resolution, the more adaptable the formation shaped will be. The third stage

involves the planning of the formation structures across the trajectory. There are two

varieties of structures that can be applied. The using either rigid or nonrigid formation

shapes is dependent on the mission at hand. Lastly, the trajectories for all agents can be

designed from the reference trajectory and its formation structures. In this study, all four

stages are implemented in order to provide the end user with a high level of flexibility.

Missions typically undertaken by UAVs in formation are generalized as dynamic

contour maintenance formation flight (MA-Formation). This research implements a

standardized platform for trajectory generation, coordination of agents in formation and

130

an optimization algorithm. It is applicable towards any variation of real world multi-agent

cooperative tasks.

4.3.1 FREE SPACE SURFACE EXTRACTION

The first stage of formation planning has been described in the previous chapters. The

paths containing waypoints for the formation flight are generated by GA and used as

input for the formation planner. These paths are transformed into minimal jerk smooth

splines. The time-based trajectory nodes are than applied as the reference coordinates for

the dynamic formation planner. The planning of the formation shapes from initial

towards the defined goal position is essential for collision free flights. In this study, the

formation shape for
AN agents are designed based on the obstacle free space between

close range obstacles and the agents. This formation planning algorithm creates

symmetrical formation shapes. This constraint forces the formation shapes to constantly

expand and contract across the trajectory. Thus, the symmetrical shapes fully test the

algorithm.

This section describes the second stage of the formation planning process which is

defined in Figure 4.9. Here, the free space of the environment is accurately mapped.

Initially, six planes are constructed around each obstacle as shown in Figure 4.7. these

planes form a cube that defines the space that the obstacle resides. The size of each cube

is dependent on the free space mapping resolution of the test environment. Higher

resolution free space mapping is essential for environments where the obstacles are not

separately defined such as the mountainous terrain. Here, the mapping resolution of the

free space is defined by the amount of height changes within the terrain. In these test

spaces, there will be a high amount of obstacle planes. The number of formation

reference trajectories is defined by the GA’s population size. In this study, the formation

planning algorithm is designed to be highly adaptive to the environment. Thus, each

waypoint within a formation reference trajectory will be used to define the formation

shapes of the quadrotors. The end user has the option of maintaining this highly accurate

formation planner. They can also reduce the complexity and level of accuracy by

designing the formation shapes for every few waypoints.

After placing the planes around all obstacles, the formation planner begins to

extract the free space surface around each path waypoint. The algorithm needs to identify

obstacle planes that are within close range of the current waypoint. Initial

experimentation applied a more simplistic approach where the middle point of each plane

is considered for the waypoint-to-plane distance measurement. It was found that for

131

Calculate Free Space Contour Radius around Current Node:

Obstacle Sampling:

Identify Plane’s Vertical or Horizontal Distance:

planes that are longer in width or height, the centre point doesn't accurately define its

distance from the waypoint. This is due to the fact that the corners of longer planes may

be closer to the waypoint in comparison to the centre point. The plane may be neglected

in the mapping of the free space contour because the distance of the centre point appears

at a far distance. Thus, full sampling of all planes is applied instead. This produces more

precise definition of the boundaries of the free space contour that will be relied on for the

design of the formation shape at each waypoint.

Sample points are placed across the surface of these planes. The sampling rate is

defined by samplesR . These sample points are used to detect the shortest distance between

current waypoint,),,(ccc zyx and each plane. Firstly, the closest sample point for each

Input: Total path nodes,
nodesN ; Environment

database,
obs ; Path population size,

popN ;

Sampling Rate,
samplesR ;

Environment Mapping: 1,1  nodespath 

Identify obstacles and place planes around all borders.

Place samples with sampling rate of
samplesR across all

boundary planes within the test environment.

Samples per row,
maxmin :: obssamplesobs xRx

Samples per column,
maxmin :: obssamplesobs yRy

Extract Closest Obstacle Plane within Danger Zone:

Calculate the distance between current waypoint and each

sample point

2

22

int
)(

)()(

samplenode

samplenodesamplenode

sampletowaypo
zz

yyxx
d






Identify nearest sample point,
nearobssampled 

 nodesnodes N

poppath N

TERMINATE

&

RUN DYNAMIC FORMATION SHAPE PLANNER

1 nodesnodes 

1

1





nodes

pathpath





formationS

nearobs

Fig. 4.9 Flowchart of dynamic multi-agent formation planner.

START: MA-Formation Free space surface extraction

Fig. 4.7 Sampling of obstacle planes

around each waypoint.

Fig. 4.8 (b) Determining the size of the free space contour.

Fig. 4.8 (a) Identifying the nearest sampling point on each close-

range obstacle plane and its distance from the current waypoint.

srx

132

plane identified. This leads to the identification of the nearest plane for each waypoint.

This close-range plane is stored within the database if it within the waypoint’s danger

zone. The planner then identifies if the close-range plane is parallel or perpendicular to

the path. Then the radius of the free space surface around the waypoint is identified. This

is done by defining the normal or tangential distances between the waypoint and the

nearest plane as shown on Figure 4.8 (a). The vertical distance,
vertd is extracted if the

plane is perpendicular to the path. On the other hand, the horizontal distance,
horid is

obtained if the plane is parallel to the path. This process produces a more precise

definition of the free space surface’s radius.

The surface as shown in Figure 4.8 (b) is mapped through the radius of free space

at all angles from the formation waypoint. The depth of the surface is easily defined by

the free space above and below the waypoint. This value can be obtained by evaluating

the obstacle that are above and below the current waypoint. Then, this space between the

obstacles defines the height of the free space surface,
sz .

The free space surface between the nearest obstacles and current waypoint is

defined as,

],,[),,(sssformation rzryrxzyxS  (4.22)

where obsobsobs zyx ,, = nearest obstacle boundary planes

],,[],,[,,, RobsRobsRobszyx zzyyxxrxrxrx 

= free space contour radius

The formation shape around each waypoint is designed based on the obstacle free space

contour around the agents. The radius of the surface will determine if the quadrotors will

be well spread or constricted to a small space whilst flying together. The accuracy of the

formation planner is extremely important for tight spaces within the test environment.

This is because there can be a risk for obstacle or agent-to-agent collisions across narrow

passages.

4.3.2 FORMATION SHAPE PLANNER

The formation structure for the 8 quadrotors can be designed since the free space surface

for each waypoint has been determined. The formation shape matrix for each agent, A is

designed based on the free space surface’s radius at each waypoint. The adaptive

formation planner is capable of designing formation shapes for three possible cases.

Firstly, the end user can define a default formation shape that can be used for formation

flights across large spaces. This default shape allows the agents to maintain close-range

flight despite the lack of near-range obstacles Next, a danger zone formation shape is

133

used for narrow passages and tight spaces. Lastly, the agents are spread across the free

space surface in areas that aren’t too wide or narrow. All three of these formation

structures are shown in Figure 4.10. The agents are designed to always maintain a safe

distance from their neighbouring agents. In this study, the sizes of the quadrotors within

the images are exaggerated in order to clearly show the changes in formation shape. The

end user has the flexibility of changing the minimum agent-to-agent distances and default

formation shape.

The first case is applied when there are no obstacles are within close sight. Here, a default

formation shape,
shapeF is applied. The default shape has the most number of agents per

row in comparison to the other formation shapes. This shape is necessary to keep the

agents in formation despite there being a large amount of free space around the agents.

This allows them to quickly change into a smaller sized formation shape in the future. It

is only applied whenever there are no obstacles within close range. In this study, a dual

row formation shape is set as the default design. This divides the agents into two rows as

seen in Figure 4.11 whilst considering the collision free distance,
ijd between agents.














 AA

A

NN

N

shape
AA

AA
tF





1)2/(

2/1
)((4.23)

 Fig. 4.10. Variations in formation shapes across a trajectory.

shapedefaultF

shapeadaptiveF shapedangerF

1A 2A 42/ AA
AN 

ijdd 12 ijdd 48

1row

2row

5A

3A

6A 7A 8AA
AN 

 Fig. 4.11. Default formation shape.

134

The second case is applied for waypoints where the obstacles are within immediate range

or extended narrow passages. This formation shape is defined through the free space

contour between the waypoint and obstacles. The agents are spread across the obstacle

free contour as seen in Figure 4.12. The number of agents per row is now defined as,

),,(),,(zyxdzyxSN ijformationR  (4.24)































AR

RR

R

NNR

NN

N

shape

AA

AA

AA

tF









1)*(

21

1

)(
 (4.25)

where R = formation matrix row number

RN = number of formation rows

The last case is used when obstacles are within the danger zone. Thus, obstacles are

within close proximity to the formation waypoints. Here, the formation shape is reduced

to a one column or row matrix as seen in Figure 4.13. The formation can be guaranteed

successful flight across the danger zone until reaching a vaster free space.



















AN

shape

A

A

tF 
1

)((4.26)

The last level within the dynamic formation planner creates independent trajectories for

each agent. This allows the closed loop controller to simulate the flight paths for each

1row

2row

3row

1A 2A 3AA
RN 

4A 5A 62 AA
RN 

7A 8AA
AN 

ijdd 12 ijdd 36

 Fig. 4.12. Adaptive formation shape.

135

agent individually. The predicted trajectories will let the optimization algorithm know if

the formation trajectories and its formation shapes are feasible for real life flight.

4.3.3 MULTI-AGENT FORMATION TRAJECTORIES

This section designs the flight trajectory for each quadrotor. The agents will be flying

independently once they have received their desired coordinates. This process eliminates

some of the coupling that exists in typical formation flight. This means that there is

minimal coupling in the form of dependency between the movements between two

agents. Each agent flies in their own direction whilst maintaining their formation shape.

Thus, the agents will be able to fly collectively even if there is a faulty agent within their

team. They will still be able to maintain their formation structure despite the removal of

an agent or its communication link.

Figure 4.14 shows an example of how the agents are spread across the free space

surface. The constant distance vector for each agent,

))(),(),((AzAyAxv heightrowcolumni 

is defined by the formation shape at each reference waypoint. Here, the formation

reference trajectory’s waypoints are used as the centre point for the formation structures.

Firstly, the radius of the free space surface is used to define the amount of space that exist

at the left and right of the centre point,

],[ssleft ryrxx  (4.27)

1A

2A

4A

3A

5A

6A

7A

8A

1row

ijdd 12

 Fig. 4.13. Danger zone formation shape.

136

],[ssright ryrxx  (4.28)

Next, the agents that are within the same row are divided across this space. The x-axis

coordinates for each agent is defined by,

rightijleftcolumn xdxAx ::)( (4.29)

The y-axis coordinates for each agent is determined based on the row that it belongs to,

)1()( rowijrow NdAy (4.30)

Lastly, the z-axis coordinates for all agents,)(Azpath
 is the same as the formation

reference path’s z-coordinate,)(tzR . This means that the agents fly at the same altitude.

The flight trajectory of each agent,)(tA is based on the reference trajectory’s

rotational and translational movements,  R . It is also dependent on the previously

defined distance vector between the centre of the formation structure.

  iRA vRtt )()((4.31)

where,  

   

   


















100

0cossin

0sincos





R

The path waypoints for each agent are,

Fig. 4.14. Variations in formation shapes across a trajectory.

leftx

rightx

rowy

rowN

137

 (4.32)

(4.33)

(4.34)

All three stages of the dynamic formation planner are completed with speed and

accuracy. Both the multi-agent quadrotor trajectories and its formation designs are then

applied towards determining the values of the many objective functions.

4.3.4 MA- FORMATION CONTROL SYSTEM

The control system for the MA-Formation application has the same controller and

quadrotor’s mathematical model as the MA-Spread mission. Similarly, most of the

information flow across the entire trajectory optimization algorithm remains the same.

There are some modifications to the control system that are designed specifically for

multi-agent quadrotor formation flight. The MA-Formation mission has two planners as

shown in Figure 4.15. There is one for trajectory planning and another for formation

planning. The control system must test the feasibility of the data that is generated by both

these planners. It has to determine if the agent’s planned trajectory can be tracked. The

estimator must also determine if all the agents can collectively track the designed

formation shape as well.

In this research, eight quadrotors, 8:1i are flown in formation across different

terrains. Firstly, the control system requires predetermined input parameters for the

default formation shape,
defaultF as well as the minimum agent-to-agent distances,

minijd .

The MA-RRF and GA path planners are only used to plan the reference trajectory for the

formation flight. Thus, the path planning process is much faster than the MA-Spread

mission. It is extremely important that the control system is able to predict the flight path

of each agent. This means that each agent must be provided with its own trajectory. Here,

a formation planner is used to design the trajectory of an individual agent,)(ti . The

formation planner extracts the free space contour,),,(zyxS formation that exists around

each waypoint in the reference trajectory,)(treference . Next, the planner defines the

formation shapes,)(tFshape that fit within the free space contours. Lastly, the trajectories

for each agent is designed based on the formation shapes across the reference path. This

process creates a decentralized system where each agent flies independently. Thus, the

control system for each agent isn’t dependent on its neighbouring agents and can be run

in parallel. Each controller requires the same input data. As with the previous application,

the estimator requires the desired positional coordinates and rotational angles. It also

needs the initial values for the quadrotor’s position and its derivatives.

)()(

),cos()()sin()()()(

),sin()()cos()()()(

tztz

AyAxtyty

AyAxtxtx

RA

rowcolumnRA

rowcolumnRA











138

As with the MA-Spread mission, the output of the control system will determine

the values of the many objective functions. The MA-Formation task has some of the

same costs as the prior independent flight application. The parallel run control system

produces the predicted positional and rotational data for the team. These values are

obtained from the quadrotor’s mathematical model that also provides information on an

agent’s velocity and acceleration. This information is compared with the planned

trajectories. It is an indicator that the agents are not able to maintain their formation

structure when their path deviation error is high. The flight time is also predicted through

the collective flight time of all eight agents. The objective functions that are directly

related to formation flights require predicted data such as the number of formation shape

changes, shapeF . It also relies on the estimated formation rise time, riset of each agent.

The rise time that is obtained by the controller is the time it takes for each agent to morph

from its previous formation structure,
beforet into a new shape, aftert . This data shows the

complexity of the formation shape changes across each trajectory. Lastly, the estimated

distance between neighbouring agents,
ijd is highly important for formation flight. This

allows the optimization algorithm to determine if the agents are capable of maintaining

their relative positions whilst flying.

The predicted flight paths of all eight agents will determine if the reference

trajectories and formation shapes are feasible for real life flight. Formation reference

trajectories that are not feasible will not be maintained within the next generation’s

population. The many objectives optimization algorithm will rank less complex

formation trajectories above those with complicated shape changes. The DRMOO

ranking system will be described in further detail within the end of this chapter.

139

Fig. 4.15. MA-Formation closed-loop nested control system.

FREE SPACE MAPPING &

CREATION OF OBSTACLE

BOUNDARIES

INITIAL PATH PLANNING

MA-RRF
obs

DEFAULT Formation

STRUCTURE &

PARAMETERS

NEW GENERATION

Formation REFERENCE

PATHS

GA
MA-RRF

FOREST

CONVERT

POPULATION INTO

SMOOTH SPLINES

MULTI-AGENT

CONTROL SYSTEM

PARALLEL CONTROL

 
 

 
 

 
 
 

 
 
 
 

 






































































































TIME RISE FORMATIONmin

 CEMAINTAINAN FORMATIONmin

CHANGES SHAPE FORMATIONmin

BOUNDARIES SAFETY OF BREACHmin

COMPLEXITY SCALE FORMATIONmin

NCONSUMPTIO ENERGYmin

TRAJECTORY OPTIMAL TIMEmin

ERROR DEVIATION PATHmin

SDERIVATIVE OF ONMINIMIZATImin

NPROGRESSIO ADVANCEDmin

 ALTITUDE FLIGHTmin

 ONOPTIMIZATI TRAJECTORYmin

12

11

10

9

8

7

6

5

4

3

2

1

























Formation TREE 1

CHILD

PATHS

AGENT 1

MATH MODEL &

CONTROL SYSTEM

AGENT 2

MATH MODEL &

CONTROL SYSTEM

AGENT 3

MATH MODEL &

CONTROL SYSTEM

AGENT 4

MATH MODEL &

CONTROL SYSTEM

AGENT 5

MATH MODEL &

CONTROL SYSTEM

AGENT 6

MATH MODEL &

CONTROL SYSTEM

AGENT 7

MATH MODEL &

CONTROL SYSTEM

AGENT 8

MATH MODEL &

CONTROL SYSTEM

VIRTUAL TREE 2

VIRTUAL TREE 3

VIRTUAL TREE 4 Formation START

& GOAL NODES

Formation REFERENCE TRAJECTORY

WAYPOINT’S

FREE SPACE CONTROUR

EXTRACTION

MANY

OBJECTIVES

OPTIMIZATION

SELECTION

OF PARENT

POPULATION

Formation

REFERENCE

PATH

RANKING

NICHING

DOMINANCE

SORTING

][iii 

][iii  

][
iii zyx

][
iii zyx 

dp rre 

0ttt fflight 

)(tFshape

)(tdij

before

afterrise

t

tt





)(ti
)(iterpopparent tN

)(iternewgen tN)(0tN popparent

)(treference

defaultF

MULTI-AGENT

Formation SHAPE PLANNING

INDIVIDUAL AGENT

 Formation TRAJECTORY

PLANNING

][
000 zyx

][000 

],,[

),,(

sss

formation

rzryrx

zyxS

)(tFshape

)(ti

)(itertnc

Ndominant (titer)

140

4.3.5. MA- FORMATION OBJECTIVE FUNCTIONS

In addition to the standardized objective functions, four objective functions specifically

catered to the application of formation flight scenarios is shown below. The data from the

flight predictions of all agents is used to determine the values of the 12 objectives. The

parameters applied within these objectives are shown in Table 4.2 [141-142]. These

objective functions are designed to mimic the costs and constrains faced by multi-agent

quadrotor UAVs in real life formation flights.

TABLE 4.2: MA-Formation PARAMETERS

Description Value Description Value

Population size 30 Obstacles Plane Detection Range 20 m

Selection Rate 0.5 Default Number of Agents/Row 4

Safety Zone Obstacles Boundary obs 6m Default Number of Column/Formation 2

Number of Gaui 330X-S Agents 4
Agent-to-Agent Minimum and

Maximum Distance
[2, 3] m

Gaui 330X-S Agents Maximum

Fuel
15mins

Formation Minimum and Maximum

Maintenance Distance
[1.5, 3.5] m

Number of Fyetech Agents 4 Redundancy Similarity Threshold 32.5%

Fyetech Agents Maximum Fuel 10mins Obstacles Plane Detection Range 20 m

samplesR [city, indoor, mount] [5,2.5,4] m

The next cost function minimizes the number of formation shape changes within a

trajectory. Firstly, this cost reduces the complexity of the formation flight mission by

choosing paths with minimal shape changes. Secondly, it allows the end user to plan for

load lifting. This cost function is extremely significant for the transportation of payloads

through a team of quadrotors that requires the attachment of the load to the agents be

maintained throughout flight. The first image of Figure 4.16 shows a formation trajectory

that requires shape contractions and expansions. Whereas, the second maintains the same

shape which is necessary for load lifting. If the objective value is 013  , this

trajectory is rejected for payload transportation. Here, the rigidity of the formation is

imperative for successful transportation.

Fig. 4.16. Trajectories of nonrigid and rigid formation shapes across mountainous terrain.

141

dttb

goal

init

t

t






1

)(1313  (4.35)

s.t.



 


otherwise

tFtFif
b

shapeshape

,0

)()1(,1
13

where)(tFshape
= formation shape matrix

Formation design conservation requires the cooperation of all agents within its team to

maintain designated relative distance between neighbouring agents. There may be a break

is formation if the designed trajectory requires the agents to manoeuvre aggressively

around sharp bends. Similarly, if the contraction and expansion of formation shapes are

too extreme for the allocated time, the formation design becomes unattainable in real life

flights. If trajectories that are infeasible for formation maintenance are detected, the

optimization process will gradually reduce its occurrence within its population.

Cost function, 14 tests if the agents are retaining their formation shape at each

sample time. In this case, the estimated formation flight is compared to the formation

shape designed by the planner. Trajectories with hard to follow shapes are slowly filtered

out of the population.

  max,min,

1

1414 ,,...1,)(ijijA

A
t

t

fffNAdttb

goal

init

   (4.36)

s.t.


 


otherwise

ftftif
b

AA

,0

)()(,1
14

where)(tfA = agent's position relative to neighbouring agents

 f = distance between neighbouring agents

 ijf = formation maintenance buffer range between neighbouring agents

The complexity of formation changes within a trajectory is measured through the scale of

shape expansion or contraction required. This cost function is applied to determine the

ratio of between two formation shape changes.

 A

A
t

t

NAdttb

goal

init

,...1,)(
1

1

1515  




 (4.37)

142

s.t.


 


otherwise

tFtFiftNtN
b

shapeshapecolcol

,0

)1()(),1(/)(
15

Cost function, 16 measures the percentage of total flight time that is dedicated into

changing formation shapes. It can tell the user if the changes in formation shapes across

the current path are complex and require more time in comparison to the shapes across

another formation path. Thus, the user can identify if the longer flight time is due to the

formation shape planning or the formation path length itself. As shown in Figure 4.17,

the rise time is derived from its previous formation shape, beforet to the period where all

agents have merged into the next formation shape, aftert . These values are obtained from

the control system. Thus, this cost function measures the percentage of total flight time if

the formation that is dedicated to morphing into changing formation contours.

dtttt

goal

init

t

t

beforeafterrise 16

 (4.38)

s.t.

  A

AA

before NA
otherwise

ftftift
t ,...1,

,0

)1()1(),1(




 



  A

AA

after NA
otherwise

ftftift
t ,...1,

,0

)()(,




 



The values of these 12 objective functions will be used to rank and sort the formation

trajectories across each generation. The ranking process will be performed by a many-

objectives optimization algorithm. In this thesis, the DRMOO algorithm is utilized to

perform the sorting of the multi-agent trajectories for both the MA-Spread and MA-

Formation missions.

Fig. 4.17. Rise time between previous formation to the next formation shape across indoor environment.

beforet

aftert

riset

143

4.4. LARGE DIMENSIONAL MANY-OBJECTIVES OPTIMIZATION

When attempting to plan trajectories for various real-world missions, the complexity of

processing high-dimensional becomes apparent. In this study, the difficulties and

challenges of the simultaneous optimization of many objectives for multi-agent

quadrotors within different terrains is presented. The target for applying many-objective

optimization towards trajectory generation for multi-agent quadrotors is to provide a

diverse yet well minimized solution set to users. When trying to optimize many

objectives, it promotes an understanding that there is never just one optimal solution that

is best in regard to all cost functions. This study also aims to remove the need for prior

determination of the possibility of optimizing many objectives as opposed to just a few.

This platform allows the user to evaluate the pros and cons of various criterions through

visual three-dimensional environment mapping as well as data driven analysis when

deciding which trajectories to implement for real-time flight. Thus, the end user is

provided numerical value for the trade-off variations in cost values for each solution

within the set of optimized trajectories.

The initial suboptimal trajectories developed by the MA-RRF algorithm for all

three test environments are applied as input for the optimization process. Using Genetic

Algorithm, these trajectories are meshed to create new paths through the crossover and

mutation process. Next, the control system prior produced is applied to generate

predictions of the cost values of all objectives. Based on these estimations, the process of

optimization is run to rank and filter suboptimal and non-diverse trajectories. Here, we

evaluate the capabilities of the hybridized Dimensionality Reduced Many Objectives

Optimization Algorithm to produce a batch of well minimized trajectories where all

objectives are considered to be equally essential. These trajectories are with various

strengths and weaknesses for these differing terrains. Through these experiments, it is

shown that the algorithm can be implemented as a standard platform for any multi-agent

scenario or application.

4.4.1 MULTI-OBJECTIVES OPTIMIZATION

Multi-objectives optimization is often applied towards real life problems that require a

well minimized solution. Humans perform simple optimization processes in their daily

lives. Most people are required to transport themselves to their workplaces daily. It is

important that a person picks the optimal form of transportation. An error in judgement

can lead to the individual being extremely late to work. In this case, the possible

transportation options are a car, bicycle, motorcycle, bus or train. The multiple objectives

that are involved in this optimization problem are the total cost, travel time, comfort and

walking distance. All objectives are of equal importance. Some of these objectives will

144

also conflict with each other. The individual may also have constraints that need to be

considered such as a monthly budget or office hours.

The multi-objective optimization problem can be defined by:

Minimize/Maximize M objective functions:
im Mmf ,...,2,1),( (4.39)

Subject to: J Inequality constraints
ij Jjg ,...,2,1,0)( (4.40)

K Equality constraints
ik Kkh ,...,2,1,0)( (4.41)

Upper and lower bounds nixxx U

ii

L

i ,...,2,1,)()(

where solution X is a vector of n decision variables:
T

nxxx),....,,(21

There are two popular methods for applying multi-objective optimization. The two

options differ based on when the end user’s preferences are applied within the

optimization process. The first option is the preference-based multi-objective

optimization method. This option is often used by many researchers because of its

simplicity in application. There are some optimization problems that can be solved with

the end user’s preferences in mind. These are problems where the end user knows the

level of importance of each objective. These preferences will be used to set the weight of

each objective within the aggregate cost function. Here, a composite objective function,

totalf is formed from the multiple objectives.

]1,0[),(
1




mm

M

m

mtotal ff
i

 (4.42)

The preferences of the end user are defined through the weights,
m that are attached to

each objective. The value of each weight is proportional to the importance of its objective

function. In this case, the end user is supplied with a singular optimal solution at the end

of the optimization process. There are some studies that aim to find a collection of

solutions by applying a variety of weight values. This process will require the intuition of

an individual that is experienced with the objectives within the mission’s optimization

problem.

A less subjective method would be the optimization of all objectives equally

without any prior preferences. This method more closely mimics real life optimization

problems. It also removes the bias that can push the algorithm to minimize certain

objectives only. Firstly, all the possible solutions are considered. The objective values for

each solution is evaluated. Then, all solutions are compared to each other. This process

determined which option provides better trade-off values for all objectives. The options

145

that contain well minimized cost functions are maintained within the solution set. This

procedure continues until there are no better solutions. Finally, the end user received a

detailed breakdown of the objective values for each solution. It offers the end user

information about the amount of optimization that is possible for each objective.

Each transportation option in the previously discussed problem produces different

values for each of the objective function. Thus, each option has different trade-offs in

terms of advantages and disadvantages. For example, driving a car may be comfortable

but it comes at the expense of paying for more fuel. On the other hand, taking a train

means lower levels of comfort but the tickets are cheaper. An individual needs to know

the trade-off of each option in order to make a knowledgeable decision. Thus,

optimization is defined as a tool for finding and comparing different solutions. It is

important to understand that since there are multiple conflicting objectives that are being

optimized, there can never be one solution that optimizes all objectives. There are many

good solutions with different trade-offs. The final solution set will be made up of

multiple optimal solutions that are defined based on their objective values. The individual

gets to compare these good solutions and select the best transportation method based on

their personal preferences. Thus, it is advantageous that the user doesn't need to define

prior preferences. They have the flexibility to evaluate these optimal solutions post

optimization.

In this research, the secondary method of multi-objective optimization is applied.

No prior preferences are applied within this study. Multi-objective optimization

algorithms require a large population of feasible solutions. A large population allows the

algorithm to retain a variety of solutions with different objective values across the

generations. It also increases the solution search space and reduces the chances of

premature termination before finding well minimized solutions. This work aims to

produce a diverse population of well minimized trajectories for multi-agent quadrotors.

This means that the end user is supplied with a large collection of options to compare and

choose from.

Many researchers have shown that evolutionary algorithms are ideal for multi-

objective optimization. Algorithms such as GA are capable of generating a large

collection of multi-agent quadrotor paths as an input. Similarly, it also produces a large

amount of multi-agent quadrotor paths as an output. GA also allows the end user to

introduce elitism during the selection process at each generation. Thus, the optimization

algorithm is able to maintain good solutions within the population whilst searching for

new ones.

146

GA alone isn’t suitable for many-objectives optimization because its simplistic

ranking process can’t identify which solutions are better than the other in regard to all

twelve objectives. It requires a more refined algorithm to perform the sorting process at

each generation. This is explained in more detail in Section 4.2.2-4.5.3. Here, a variation

of MOO, many-objective optimization algorithm will assist the GA in sorting and

ranking these solutions. This is performed by maintaining dominant and diverse

solutions. The targets of a many-objectives optimization algorithm can be defined as:

1. To find a collection of solutions that is optimal.

2. To maintain a diverse set of optimal solutions.

These two targets allow the optimization algorithm to preserve solutions with multiple

trade-offs across generations. Both targets are often conflicting with each other. In many

cases, an optimal solution can be similar to other solutions within the population.

Likewise, a solution with different trade-offs in terms of cost values may not be an

optimal solution. All optimization algorithms have a tough challenge of creating a

balance between both goals.

4.4.2 WELL MINIMIZED SET OF SOLUTIONS

As previously defined, the first objective of a multi-objective optimization algorithm is to

identify well minimized or dominant solutions. Pareto-optimal solutions are a popular

term for a set of dominant solutions. This term originates form the Pareto-optimal front.

The Pareto frontier is defined as the curvature obtained when all the Pareto optimal

solutions are joint together and viewed as a whole as shown in Figure 4.18. The Pareto

frontier plays an important role in the implementation of multi-objectives optimization. In

a situation where a large number of solutions are being considered, some method for

ranking them must be applied to reduce weaker solutions. The approximation of the

multidimensional Pareto frontier is determined through the classifications of solutions.

The designer of a MOO algorithm must be able to identify these optimal solutions and

understand the importance of finding them.

The end user applies a MOO algorithm to find solutions to a problem that has

many costs. This means that the optimization algorithm must place equal importance to

all objectives. The end goal of the algorithm is to produce a set of solutions that minimize

all costs simultaneously. These solutions are called the dominant or nondominated

Pareto-optimal solution set. Firstly, any member of the Pareto-optimal set dominates

other solutions that are not within the set. Thus, this optimal solution has better costs

values than the other non-optimal solutions in regard to all objectives. Secondly, no

solution within the dominant set can be said to be better than the other with respect to all

147

objectives. In this case, solutions within the dominant set will produce different variations

of minimal cost values. They will be better than each other regarding some objectives

only.

These rules allow the algorithm to identify if a solution is optimal. A solution
Af1

is said to dominate solution
Bf1

 if both conditions are met:

1. Solution
Af1

 is no worse than
Bf1

 in terms of all objectives.

2. Solution
Af1

 is strictly better than
Bf1

 in at least one objective.

Here, solution A,
Af1

 is defined as dominating solution B,
Bf1

 when both conditions are

fulfilled. Firstly, solution B is dominated by A. Figure 4.18 shows that both of the

objective values for solution A are better than B. Secondly, solution A is non-dominated

by B. It can be seen that solution B doesn’t have any objective values that are more

minimized than A. Lastly, solution A is non-inferior to B. Figure 4.18 shows two

solutions A and B are located across different areas of the graph. Initially, solution A is

classified as a nondominant solution and B as a dominated solution. As the iterations

progress, there will be other solutions that dominate solution A as well. Slowly, the

dominant solution set will slowly converge towards the Pareto optimal frontier. This will

be accomplished through the constant comparison and maintenance of nondominated

solutions.

There are many studies that are capable of identifying the Pareto-optimal solution

set. It can be tougher to obtain the Pareto frontier with more complex problems. Some

works choose to focus on converging towards the Pareto frontier instead. This way, an

PARETO

FRONTIER

O
B

J
E

C
T

IV
E

 2

DOMINATED

SOLUTIONS

UNFEASIBLE

SOLUTION POINT

UTOPIA SOLUTION

OBJECTIVE 1

DOMINANT

SOLUTIONS

f1A f1B

f 2
A

f 2

B

A

Fig. 4.18. Optimal and suboptimal solutions across the Pareto frontier.

148

approximation of the Pareto optimal solutions is performed. The ranking process that is

applied can be highly advantageous for real life problems even though the Pareto-optimal

solution set isn’t identified. It is a tool to remove suboptimal solutions and maintain the

best solutions within a population. It still offers the end user a collection of solutions that

offer minimal costs and various trade-offs.

4.4.3 DIVERSE SET OF SOLUTIONS

The second goal of a multi-objective optimization algorithm is to maintain a diverse set

of well minimized solutions. Typical diversity mechanisms such as the mutation operator

may not be sufficient for maintaining a variety of solutions. In many cases, additional

means of diversity management must be implemented when dealing with multiple

objectives.

There are different varieties of diversity management solutions. In this research,

niching is used to identify solutions that are diverse. In biology, an environmental niche

is a term that is used to define locations that contain organisms that cater specially to a

particular species. Similarly, a niche market is a business term that identifies consumers

that enjoy similar products. The common theme in all these definitions is that a niche

describes a group of similar organisms or behaviours. The members of a niche

collectively form a cluster. These concepts can also be used for diversity management

within mathematical problems that have multiple objectives. The term niche is now

applied within many MOO algorithms to group together solutions that have similar

objective values.

It is essential that an MOO algorithm produce a good Spread of various trade-off

well minimized solutions amongst different objectives. The representatives of all solution

optima are necessary to allow higher-level information to select the best solution.

Working with multiple objectives produces many optimum solutions in the form of

global and local optima as shown in Figure 4.19. Here, the algorithm gives priority

towards the adequate representation and maintenance of the many local and global

optima through generations. If the number of solutions within a cluster are too large, its

optima is over represented within the population whereas, is the cluster size is too small,

the optima becomes under represented. The algorithm must strike a balance between

maintaining similar clusters of well minimized solutions at the risk of the removal of

diverse clusters of suboptimal solutions.

In this study, a niche function is used to define the spatial distribution of the

solutions within the high dimensional space. There are three variables within the niche

function. The first is the Euclidean distance between two solutions,
ijd . Next, a sharing

149

function,)(ijdSh is used to define the level of similarity between two solutions. The

third variable is the niche size, share which is shown in Figure 4.20. This variable

defines the radius of similarity between solutions within objective space. Two solutions

that are at a distance that is less than the niche size is considered to be a part of the same

cluster. Thus, value of the niche size dictates the probability of detecting a higher or

lower number of optima.

For each solution,
solNj ...,,1 the distance with all other solutions, solNi ...,,1 is

calculated through,

   f

n

nn

j
n

i
nij Nnd ...,,1,()

1

min,max,   

 (4.43)

where fN = number of objectives that need to be minimized

The sharing function,)(ijdSh creates the comparison between two solutions as to

sharing of each optimum.

Fig. 4.20. Adaptive niche radius within of clusters of solutions.

Fig. 4.19. Global and local optima of different objectives.

LOCAL

MAXIMA

LOCAL

MINIIMA

GLOBAL

MAXIMA

GLOBAL

MINIMA

)(tn

t

share

)(ti)(tj

ijd

150



 


otherwise

difd
dSh

shareijshareij

ij
,0

,1
)(


 (4.44)

The summation of the sharing function defines the niche count, inc for each solution is

then used as a measure of the percentage of the total solutions that belong to a certain

optimum. The application of niche count defines if a solution's niche is crowded. It

determines how many solutions are within a solution's niche radius. It encourages the

degradation of crowded solutions and the enhancement of cluster representative

solutions.

)(iji dShnc (4.45)

As previously defined, this research combines a number of diversity management

systems such as path mutation, similarity filtering and niching. This gives the algorithm

the best chance at producing and keeping highly diverse Pareto-optimal solutions

throughout the first to final generations.

4.5 DIMENSIONALITY REDUCED MANY-OBJECTIVES OPTIMIZATION

As initially described, this planning and optimization algorithm aims to generate a large

collection of trajectories for multi-agent quadrotors. This section describes the DRMOO

algorithm in detail. There are two main components within the DRMOO algorithm. The

first subsection is the ranking of solutions through the creation of objective subsets. This

study utilizes dimensionality reduction in order to generate smaller objective subsets

[133,136]. The algorithm begins with the full objective set and creates objective subsets

that hold no less than three cost functions. The full objective set and its subsets are used

in rotation. Thus, the algorithm is able to perform both local and global optimization

simultaneously. Whilst this process does mimic multi-objective optimization, the full set

of objectives is still maintained within the algorithm.

The secondary subsection of the algorithm involves the maintenance of diverse

trajectories within the solution population. This study applies adaptive niching in order to

identify clusters of similar solutions [139]. The adaptive niche radius changes across

generations based on the average distance between neighbouring solutions. This adaptive

diversity operator allows the algorithm to effectively identify local optima within the

search space. Each cluster of solutions only requires a small number of representative

solutions. The niching process penalizes solutions that are within crowded clusters.

Similar solutions within these crowded clusters are slowly removed from the population

151

as the generations’ progress. This way only the representative solutions of each local

optima is maintained.

The combination of dimensionality reduction and adaptive niching will transform

the typical multi-objective optimization into an effective many-objectives optimization

algorithm. The end user will be able to optimize many objectives within the multi-agent

quadrotor trajectory planning algorithm.

4.5.1 MANY-OBJECTIVES OPTIMIZATION

Many-objectives optimization is an extension of multi-objective optimization. There is

one key difference between the two varieties of optimization algorithms. The term many-

objectives optimization is typically dedicated to the optimization of more than three

objectives,)(t simultaneously that are often conflicting in nature. In this study, the

values of all objectives are minimized across generations. Any objective that needs to be

maximized can be converted to a minimization problem by multiplying the equation with

-1. The many-objective optimization problem is defined as,

 fn Nnttttt ...,,1,)](.....,),(),(),(min[)](min[321   (4.46)

where Nf = number of objectives

Most real-life issues can be solved in many ways. It is very rare that a problem only has

one possible solution. Similarly, it is important to consider many costs before choosing a

solution. Each solution will have its own advantages and disadvantages. This algorithm is

designed with an understanding that there is never just one optimal solution that is best in

regard to all cost functions. Whilst many studies choose to simplify and prioritize certain

cost functions, real life flights require the consideration of many objectives

simultaneously. As previously defined, there are works that do consider many objectives

through an aggregated weighted cost function. The disadvantage of using weights is it

creates bias during the optimizations process. Similarly, it also requires the end user to

provide predetermined weight values. This can be challenging because the end user

doesn’t have prior knowledge of how much each cost function can be minimized.

Another way to solve a problem that has many costs is through multi-objectives

optimization. The concepts that are applied within multi-objective optimization

algorithms are also used within many-objective optimization problems. The solutions

within a population can be ranked by comparing their level of dominance and diversity.

One important factor to consider when applying these concepts to many-objective

optimization is that it is a much more complex problem. The number of objective

functions is higher in comparison to a basic multi-objective optimization problem. Thus,

152

some changes must be introduced when applying these concepts towards many

objectives.

The first challenge that occurs when applying many objectives within a typical

multi-objectives optimization algorithm is that the selection pressure is greatly reduced.

The optimization process involves two sections which are the ranking of well minimized

solutions and the maintenance of diverse solutions at each generation. The ranking of

solutions is highly challenging when dealing with many objectives. This occurs because

the selection pressure towards optimal solutions are reduced due to the extensive number

of dominant solutions within the population. Most solutions are labelled as dominant

because it is difficult to dominate a solution in regard to all objectives. Thus, the

algorithm is incapable of sorting the solutions based on their level of dominance. In this

case, priority is skewed towards obtaining diverse solutions that may not be part of the

optimal solution set. There is a crucial need for an additional mechanism to drive the

optimization process towards maintaining both optimality and diversity.

The next challenge that occurs within a many objectives optimization algorithm is

the visualization of the Pareto frontier. In most multi-objective optimization studies, the

authors are able to present proof of convergence. The images presented will show that the

solutions within the final population have converged towards the Pareto front. This

provides reassurance that the final solutions are indeed optimal. The image will also show

the level of diversity within the final population. The Pareto frontier allows the end user

to measure the effectiveness of the optimization algorithm. The visualization of the

Pareto frontier within a many objectives optimization is extremely difficult. In some

cases, it can be impossible. This is because the dimension of the frontier is dependent on

the number of objectives that is implemented. A typical multi-objectives problem uses

three or less objectives. This means that the Pareto frontier is a two or three-dimensional

image. On the other hand, the Pareto front becomes a high dimensional image when

many objectives are applied. Proof of convergence can be challenging when the Pareto

front cannot be visualized.

Here, we apply dimensionality reduction towards increasing selection pressure

without the absolute removal of any objectives from the many-objectives optimization

process. The algorithm optimizes the population the best it can until a termination point is

obtained. It prioritizes the maintenance of well minimized solutions within the population

as opposed to obtaining the Pareto optimal front. Thus, the solutions that are presented to

the end user are well minimized and diverse.

153

4.5.2 DIMENSIONALITY REDUCTION

In this study, a hybrid Pareto ranking algorithm that combines dimensionality reduction

and partial Pareto dominance is applied. Initially, dimensionality reduction is applied to

reduce the number of objectives that are optimized at one time. This process creates

smaller groups of objective subsets from the full many objective set. Then, Partial Pareto

dominance is utilized to rotate the smaller objective sets across generations [136]. This

algorithm is used to increase selection pressure without the absolute removal of any

objectives from the many-objectives optimization process. A flowchart that describes the

optimization algorithm is presented in Figure 4.21.

This algorithm is based on the level of conflict that exists between a collection of

objective functions. It aims to approximate the amount of dependency between two

objectives. The GA designed trajectories are used to estimate the values of each objective

function. There are two types of relationships that can occur between two objectives. In

the first case, the progression of two objective functions may show that the values of one

objective increases with time whereas the other decreases. This shows that the two

objectives are in conflict with one another. There is a low level of coupling or

dependency between these two objectives. This is because the minimization of one

objective will cause the maximization of the other objective. It is important to maintain

both objectives within the optimization process since they must be independently

minimized. In the second case, the values of two objectives increase or decrease together.

This means that there is minimal conflict between the two objective functions. One can

assume that if two objectives are minimized simultaneously, the algorithm only needs to

consider one objective to optimize the other. This renders the nonconflicting objective

redundant within the optimization process. The identification of redundant or

nonconflicting objectives can be useful for a many-objectives optimization algorithm.

The redundant objectives can be removed from the objective set without causing many

changes to the ranking of the solutions. Thus, it allows the algorithm to increase selection

pressure by comparing only a few objectives at a time.

 There have been studies that apply dimensionality reduction within their works.

In most cases, objectives that are considered to be redundant to the optimization process

are removed from the objective set permanently. In this research, a nonconflicting

objective function isn’t removed for good. The DRMOO algorithm also leaves room for

error in case an objective is wrongly labelled as redundant. Here, the objective function is

removed from its current objective subset and placed within another objective subset. The

algorithm continues to test if the objective function is redundant within its new set. This

way, there is a higher chance that the objectives within an objective subset are

nonredundant and conflicting in nature. Each objective is also given equal importance

154

Closed-Loop States Control Model:

Objective Subsets

 NO
fTtiter )(YES

Fig. 4.21 Many-Objectives Optimization Algorithm Flow Chart.

.

MULTI-OBJECTIVE

COST FUNCTIONS

][iJ 

ELITISM

BASED SELECTION

))((tfitnesssort i

OFFSPRING

REPRODUCTION

)(),(21 tt cc 

QUADROTOR

MATH

MODEL

PD NESTED

CONTROL

SYSTEM

Formation SHAPE

DESIGN)(tFshape

TRAJECTORY

GENERATION

)(s

Input: GA Generated Trajectories,)(t ; Updated environment sensor

fusion database,
obs ; Maximum Iterations,

fT ; Number of control

points, 1n ; Degree of Polynomial, 1d ;

Continuous Smooth Spline Trajectory Generation:

Number of nodes within offspring path,))((1 tsizen  ;

Define degree of continuity based on level of curvature smoothness,

T

o

d t)( ;

Determine knot vector for nonuniform spline,
mt ;

Obtain Trajectory in terms of recursive basis functions,)()(
0

, tBxt
m

q

dqq


 ;

Many-Objectives Niching &Nondominated Ranking:

Define adaptive niche size,
share

Calculate normalized distance between all solutions,
ijd

Generate sharing function for each solution,)(ijdSh

For each solution, compute niche count,
)(iji dShnc

Sort nondominated solutions and perform ranking,

For final population slots within last rank, perform niche count sorting.

START: Dimensionality Reduced Many-Objectives Optimizer

);(),(),(txtxtx sss


 ssssss zyx  ,,,,,

Terminate;

Determine best trajectory;

Objectives Set 1

Objectives Set k

MA-MISSION

OBJECTIVES



155

through Partial Pareto optimization. Each of the many objectives is still equally important

despite being broken into smaller subsets. This is executed by rotating the objective

subset that is being used within the algorithm. Some studies that have applied this

concept randomly create objective subsets. In this case, the algorithm is less efficient

because there is a high chance of nonconflicting objectives being within the same subset.

In this research, a more strategic manner of creating objective subsets is utilized through

dimensionality reduction.

The algorithm begins with the full set of objectives. At set interval points, an

objective function that is considered to be nonconflicting is removed from its original set

and placed into a new subset. This process continues until there are a few objective

subsets. As the algorithm progresses, these objective subsets are used in rotation. At the

end of each interval, the full objective set is reintroduced. The application of both the full

objective set and subsets allow the algorithm to perform both local and global

optimization simultaneously. Also, no objectives are fully eliminated. This is

advantageous in cases where an error has been made in determining nonconflicting

objectives.

First, the full objective set,
fullJ is defined as the initial set prior to partitioning.

Next, the partitioning of the objective functions is initialized. An objective function is

selected at random from the current objective set,)(tn and removed to create,
newJ . The

ratio,  is used to identify if the chosen objective function doesn’t conflict with the

other objectives within its set [133]. This ratio is applied based on the concept that if an

objective is nonconflicting, it doesn’t contribute to the ranking process. The ranking of

the solutions is possible without the inclusion of a nonconflicting objective within its set.

Thus, the number of dominant solutions remains within the same range despite the

removal of a nonconflicting objective.

]1,0[,   
current

JremovedJ NN (4.47)

where
currentJN = total dominant solutions within current set

removedJN = total dominant solutions if the objective function is removed from

its current set

Parameter
threshold determines the cut-off point where the removal of an objective

function is acceptable. Upon exceeding the threshold value, the objective function

perceived to be redundant is removed from its current set and merged into a new set.

thresholdnnew ifttJ  )]([)((4.48)

156

As the algorithm progresses, more objective functions may be found redundant within the

new. Thus, the initialization of more new sets,
setsJ begin to hold more combinations of

objectives. This is only performed after every constant number of iterations as to partition

the objectives at a steady rate. As the DRPPD progresses, each objective set is always

inspected for nonconflicting objectives.

)]();();(;)([)(....21 tJtJtJtJtJ psubsetsubsetsubsetfullfsets  (4.49)

 where p = number of objective subsets

The partitioning of the cost functions is halted when each set is reduced to a minimum of

three objectives. Both the full and multiple subsets of the objectives are used in rotation

as the algorithm progresses through iterations. The population set at each generation is

the combination of the previous globally and current locally optimized solutions.

The approximation of optimal solutions is performed through the classifications

of solutions. The decision vector, t is dominant for a many-objective optimization

problem if there exists for no other, t

}...,,1{),()(fnn Nntt  (4.50)

where  = full solution set

The solutions are ranked and stored into the new generation’s parent population. In some

cases, the dominant solutions do not fill the parent population. Thus, niching is performed

on the remaining population in order to determine which are most diverse.

4.5.3 ADAPTIVE NICHING

In this study, the removal of solutions that are similar and maintenance of dissimilar

solutions is executed through adaptive niching. Based on experimentation, the application

of adaptive niching parameter by varying the radius of a niche,
share through each

generation produces a better balance between trajectory diversity and dominance in

comparison to a constant niche radius [139]. At each generation, the distance between

each solution and its nearest neighbour is determined. The average of nearest neighbour

distances,
avgd of all solutions is,

),2,1,(,)(min popji
ij

avg Njid 


 (4.51)

157

The average distance of the solution population is then used to determine the current

niche radius.

others

Nif

Nd

c pop

pop

N

i

avg
share

f

2

1














 (4.52)

The sharing function,)(ijdSh creates the comparison between two solutions as to

sharing of each optimum. The summation of the sharing function defines the niche count,

inc for each solution is then used as a measure of the percentage of the total solutions

that belong to a certain optimum. The adaptive adjustment of the niche radius is based on

the changing sizes of clusters within the objective space. It encourages the degradation of

crowded solutions and the enhancement of cluster representative solutions. Thus, the

adaptive niche radius allows the maintenance of clusters of solutions that represent

different optima.

The next chapter will show the effectiveness of the hybridized trajectory planner

in terms of producing a collection of optimized and diverse set of solutions. The MA-

RRF, GA and DRMOO will be applied collectively for both the MA-Spread and MA-

Formation missions.

4.6 SUMMARY

This chapter defines the 16 objective functions that are applied for both the MA-Spread

and MA-Formation application. There are 8 costs that are applied for both missions.

There are also 8 more costs that are designed specifically for each mission.

The next section described the optimization process within the MA-Spread

mission. The algorithm is designed to optimize the paths for individual agents on separate

flight directions. Here, no agent is given priority over the other. Thus, the performance of

any agent isn’t degraded for the sake of the other. This is achieved by optimizing the

combination of multi-agent paths at each generation. The MA-Formation formation

configuration design was also defined within this chapter. A dynamic formation planner

is run before the optimization process. High resolution obstacle detection and free space

contour definition is paramount to the efficient planning of formation shapes. Thus, the

dynamic formation planner designs formation shapes that allow the agents to morph into

the free space contour seamlessly. The algorithm aims to derive well minimized reference

trajectories that encourage formation maintenance and minimize complexity. Here,

emphasis is placed on collision avoidance, formation rise time and the number of

158

variations of formation design per path. Lastly, the DRMOO ranking algorithm is defined

in detail. This algorithm combines both partial dimensionality sorting with full high

dimensionality optimization. The algorithm is designed to focus on the minimization of

all objectives as opposed to mapping the Pareto front with full accuracy.

In the next chapter, we then utilize the many-objectives optimization algorithm to

show its versatility and robustness within the MA-Spread and MA-Formation application.

The minimizations of the objective functions within both missions are analysed. The

results will show the algorithm’s ability to sort and rank the path combinations at each

generation. The final generation’s well minimized and diverse multi-agent trajectories

within the three test environments are also presented.

159

CHAPTER 5: MULTI-AGENT QUADROTOR UAVS IN SPREAD

AND FORMATION FLIGHT MISSIONS

The previous chapters have presented the different subsections that make up the offline

long-range multi-agent quadrotor UAV path planning algorithm. Firstly, Chapter 3 showed

how the combining MA-RRF and GA can lead to a path planner that uses a multi-agent

UAV system to its advantage. These algorithms can generate a large collection of

hybridized paths for multiple agents across many generations. Next, Chapter 4 presented

16 different objective functions that will be used by the DRMOO algorithm to rank the

multi-agent trajectories. The feasibility of each designed path and the values for each

objective function can be estimated by the parallel run multi-agent quadrotor UAV control

system. Lastly, this chapter will evaluate the effectiveness of the path planning and

optimization algorithm within the MA-Spread and MA-Formation missions. Both

applications are fully tested across three environments which are the high-rise cityscape,

highly cluttered indoor and mountainous terrain.

The first section presents the simulation results for the MA-Spread spatially spread

flight scenario. In MA-Spread, the algorithm faces the challenge of navigating 4 agents

whilst gathering sensory data through full exploration across different terrains. Here, the

various combinations of paths produced by the algorithm at the final iteration for all three

environments are shown. The second part of this chapter presents the simulation results of

the trajectory planner within the MA-Formation mission. This application requires the

algorithm to generate a collection of well minimized formation reference trajectories for 8

quadrotors. In MA-Formation, the MA-RRF paths of one agent are applied as the initial

formation reference trajectory population. These reference trajectories will be used as the

input for the dynamic formation planner. The results within this chapter will show if the

dynamic formation planner can create fast and adaptive formation shapes across all

environments. It also determines if the formation planner can generate independent

trajectories for each agent within its constantly changing formation structure.

This chapter showcases a variety of results and findings within both the MA-Spread

and MA-Formation missions. In the beginning, the results of the optimization algorithms’

operators are analysed for both applications. Here, the development of the dimensionality

reduced ranking process and adaptive niching are shown. It is important to note that this

work isn’t attempting to obtain a solution set that converges towards the Pareto frontier. It

is more focused on applying the concepts of many optimization algorithms. This project

implements the Pareto optimal ranking process to maintain good solutions within a

population. Thus, the goal of the algorithm is to continue to minimize the objective values

whilst maintaining a diverse solution population. The multi-agent quadrotor UAV

trajectories within each mission must have different strengths and weaknesses so that the

160

end user is presented with a diverse collection of solutions. Next, the values for all 16

objectives across all generations are presented. The final generation is chosen based on the

minimization of all objectives as well as the diversity of the trajectories. The final values

for each objective function is shown and analysed. Finally, the path combinations that are

maintained within this final generation are shown through three-dimensional imagery.

Lastly, the objective values for each combination is presented in table form.

This chapter aims to show the variety of information that will be presented to the

end user at the end of the trajectory optimization process. It defines the importance of

providing easy to understand knowledge for the end user so that they can make a

knowledgeable choice for their mission. It also allows the end user to compare each path

option visually. It also allows the end user to take into consideration their post-processing

objective preferences. The data that is presented here is only the results of the final

generation out of many iterations. It is important to note that there are thousands more

options in the other generations if the end user requires even more variety.

5.1 MA-SPREAD DIMENSIONALITY REDUCED MANY-OBJECTIVES

PARAMETERS

Firstly, the progression of the adaptive operators is shown in Figure 5.1-5.2 for Cityscape

1, Indoor 1 and Mountain 1. The constant that were used in the MA-Spread application are

shown in Table 5.1. Each objective subset is run for 5 iterations with a singular run of the

full set of objectives. These figures show the changes that occur in terms of dominance and

diversity.

Figure 5.1 shows that there are reoccurring peaks where a large percentage of the

population are nondominated solutions. Here, most solutions are ranked as dominant when

the full objective set is considered. Thus, the only manner of comparing solutions is

through its level of diversity. This causes the members of each generation to be filled with

suboptimal solutions. Convergence towards optimality is possible with the introduction of

objective subsets during intervals. This can be seen through the existence of lower peaks

that occur during the rotation of objective subsets. The ranking of solutions based on

dominance is possible given that a smaller number of solutions are nondominated. As long

as these low peaks frequently dip below half of the population size, the future generation

parent population remains partially filled with nondominated solutions.

Adaptive niching is applied for secondary ranking of remaining solutions. Figure

5.2 and shows the changes of niche radius size by adapting to the diversity of the current

population. If a constant value for niche radius was used, the increase or decrease in

distances between solutions as the generations’ progress won't be represented. With many-

161

objectives optimization, the sizes of clusters will vary as the algorithm evolves. With

adaptive niching, solutions that are similar in estimated objective values are gradually

removed from the population leaving representative solutions of various clusters to survive

to the next generation. Even though the distances between clusters do not increase

immensely, maintenance of the niche radius within a small range shows the preservation

of diverse solutions across generations.

5.2. MA-SPREAD ACROSS A HIGH-RISE CITYSCAPE

The cityscape environment holds many unique challenges for trajectory planning and

optimization algorithm. This test space has a large amount of narrow passages that are

similar to a maze. The buildings are tall and don’t allow the agents to fly above it. Thus,

the designed paths must not collide with these buildings. It must also contain minimal

aggressive turns across the building’s sharp corner bends.

There are three varieties of information that are provided to the end user for

Cityscape 1. These are tables, graphs and imagery. Figure 5.3-5.4 shows the progression

of the objective values at each generation. Next, Table 5.2 shows the average cost values

of the entire trajectory population for the final generation. The paths for all four quadrotors

are presented in Figure 5.5. Lastly, Figure 5.6-5.8 shows the various numbers of

combinations within the final population. Table 5.3 is attached to compare of these

combinations in terms of their trade off values for all objective functions. Post

determination of the best combination for the end user needs can be performed based on

these values. Here, we evaluate the best and worst choices between the presented

combinations. This section shows that the hybridized algorithm successfully produces a

collection of path combinations. These combinations are well optimized and there are

different advantages to each choice.

5 10 15 20 25 30 35 40 45
0

20

40
MOUNTAINOUS TERRAIN

GENERATIONS

10 20 30 40 50 60 70
0

20

40
HIGHLY CLUTTERED INDOOR

N
U

M
B

E
R

 O
F

 N
O

N
D

O
M

IN
A

T
E

D
 S

O
L

U
T

IO
N

S

10 20 30 40 50 60
0

20

40

NONDOMINATED SOLUTIONS
HIGHRISE CITYSCAPE

10 20 30 40 50 60
0.4

0.6

0.8

ADAPTIVE NICHE
HIRGH RISE CITYSCAPE

10 20 30 40 50 60 70
0.4

0.6

0.8
HIGHLY CLUTTERED INDOOR

N
IC

H
E

 V
A

L
U

E
5 10 15 20 25 30 35 40 45

0.4

0.6

0.8
MOUNTAINOUS TERRAIN

GENERATIONS

Fig. 5.1. Number of dominant solutions within the population.

Fig. 5.2. Adaptive niche radius across generations.

162

5.2.1 MANY OBJECTIVES VALUES

As previously defined, each environment is run for 100 generations. It is important that all

the objectives are given the time to optimize their values. The final generation is chosen

based on the minimization of the many objectives. The final generation can be chosen if

the cost values do not decrease any further. The values for each objective are easily

obtained from the shared database. The choice for the final generation is also dependent on

the level of diversity within the path population. The end user can see if the paths within

the population are varied in direction through the imagery that is provided.

 Figure 5.3-5.4 shows the progression of all objectives across the generations for

the Cityscape 1 environment. The graphs show that initially most objectives decrease at a

fast rate. The values of the cost functions then decrease at a slower rate as the generations’

progress. The final generation is set at the 62nd iteration. This is because objective 2,6,8,9

and 12 only meet their minimal point after the 50th generation. There is no increase in the

mean values of all objective functions. The graphs also show that the values for objective

2 and 5 are well maintained. The Cityscape 1 environment has extremely narrow passages.

The agents often fly across similar areas. Thus, in most combinations the path nodes are

well spread across the height of the environment. Due to this, it can be tough to minimize

the height cost. The value of the spline deviation error isn’t an issue as it is still maintained

at a very small value. This cost is also difficult to optimize because it is dependent on the

control system as well as the node-to-node distance within a path. On the other hand, all

the other costs are well minimized.

Table 5.2 shows that the mean values of all the 12 objectives at the 62nd iteration.

The data shows that the cost values are well minimized or maintained within the final

generation. It shows that the spline deviation cost is maintained across generations. The

altitude cost is slightly minimised by 5%. Similarly, the number of safety zone breaches

has a minor reduction of 2%. The amount of highly explored space is reduced by 12%

whereas the number of sensory data overlap is minimized by 22%. These values aren’t as

high as the reduction within the other environments because of its constricted nature. There

isn’t much space for the agents to move between the buildings. Despite this, Figure 5.5

shows that the narrow passages are well explored.

All the other objectives are well minimized with a more than 30% reduction in

value. The path length for the trajectory combinations is reduced by 37%. This shows that

the paths are much shorter than the initial MA-RRF paths. The number of goal node

deviations is also minimized by 45%. This proves that the paths move more directly to the

goal node as well. Next, the jerk cost for the path combinations is lessened by 40%. The

lower value of the jerk cost shows that the paths hold less aggressive turns across the

163

building’s sharp corners. The cost for time optimality shows that the agents are able to fly

at a speed that is 50% faster. Similarly, the flight time has reduced from about 50 to 30

minutes per agent. The path combinations allow the agents to maintain connectivity at 51%

more than the initial population. Lastly, there is 77% less possible collisions between the

quadrotors in a team. Table 5.3 shows that nearly all combinations have zero possible

collisions except for a few. The data shows that the trajectory optimization algorithm for

the MA-Spread mission across the Cityscape 1 environment successfully minimizes the

cost functions.

(a) Path length objective values across generations. (b) Flight height objective values across generations.

 (c) Goal deviations objective values across generations. (d) Jerk cost objective values across generations.

(e) Spline deviation error objective values across generations. (f) Time optimality objective values across generations.

10 20 30 40 50 60

2000

2500

3000

3500

4000

4500

5000

GENERATIONS

P
A

T
H

 L
E

N
G

T
H

 (
m

)

OBJECTIVE 1

mean

min

max

10 20 30 40 50 60

70

80

90

100

110

120

130

140

150

160

GENERATIONS

F
L

IG
H

T
 H

E
IG

H
T

 (
m

)

OBJECTIVE 2

mean

min

max

10 20 30 40 50 60
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

GENERATIONS

G
O

A
L

 D
E

V
IA

T
IO

N
S

 (
n

o
 n

o
d

e
s
)

OBJECTIVE 3

mean

min

max

10 20 30 40 50 60

60

80

100

120

140

160

180

GENERATIONS

J
E

R
K

 (
m

/s
3

)

OBJECTIVE 4

mean

min

max

10 20 30 40 50 60

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

GENERATIONS

S
P

L
IN

E
 D

E
V

IA
T

IO
N

 E
R

R
O

R
 (

m
)

OBJECTIVE 5

mean

min

max

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

GENERATIONS

T
IM

E
 O

P
T

IM
A

L
IT

Y
(

ra
ti
o

)

OBJECTIVE 6

mean

min

max

Fig. 5.3. MA-Spread Cityscape: Progression of the objectives 1-6 across generations.

164

(a) Flight time objective values across generations. (b) Connection breaches objective values across generations.

(c)Possible collisions objective values across generations. (d) Safety zone breaches objective values across generations.

(e) Uncertain grid coverage objective values across generations. (f) Sensory overlap objective values across generations.

10 20 30 40 50 60
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
4

GENERATIONS

F
L

IG
H

T
 T

IM
E

 (
s
)

OBJECTIVE 7

mean

min

max

10 20 30 40 50 60

200

300

400

500

600

700

800

GENERATIONS

N
E

T
W

O
R

K
 T

O
P

L
O

G
Y

 (
n

o
 c

h
a

n
g

e
s
)

OBJECTIVE 8

mean

min

max

10 20 30 40 50 60
0

50

100

150

200

250

300

GENERATIONS

C
O

L
L

IS
IO

N
 A

V
O

ID
A

N
C

E
(n

o
 c

o
ll
is

io
n

s
)

OBJECTIVE 9

mean

min

max

10 20 30 40 50 60
500

1000

1500

2000

2500

3000

GENERATIONS

S
A

F
E

T
Y

 R
A

N
G

E
(n

o
 b

re
a

c
h

)

OBJECTIVE 10

mean

min

max

10 20 30 40 50 60

1000

1500

2000

2500

3000

3500

4000

GENERATIONS

T
E

R
R

A
IN

 C
O

V
E

R
A

G
E

(g
ri

d
 u

n
c
e

rt
a

in
ty

 v
a

lu
e

)

OBJECTIVE 11

mean

min

max

10 20 30 40 50 60
60

80

100

120

140

160

GENERATIONS

S
E

N
S

O
R

Y
 O

V
E

R
L

A
P

(n
o

 g
ri

d
 b

lo
c
k
 o

v
e

rl
a

p
)

OBJECTIVE 12

mean

min

max

Description Value Description Value Description Value Description Value

Number of Paths

Combinations
30 Minimum Agent-to-Agent Distance 10m

Population

size
30

rexternal 50m

Number of agents 4 Number of Gaui 330X-S Agents 2
Selection

Rate
0.5

[dij,min , dij,max] [-5, 5] m

Terrain Grid Block Size 30m3 Gaui 330X-S Agents Maximum Fuel 15mins dgoal 50m tcollision 1

Network Decay Range 0.75 Number of Fyetech Agents 2 dlink 10m threshold 0.8

Obstacles Boundary Size obs 6m Fyetech Agents Maximum Fuel 10mins dsimilar 10m c 1

Fig. 5.4. MA-Spread Cityscape 1: Progression of the objectives 7-12 across generations.

TABLE 5.1: MA-SPREAD PARAMETERS

165

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 5006.70 136.90 6136.00 176.24 0.13 2.70 15420.00 776.00 290.00 2314.00 4050.90 159.00

mean 3802.20 111.35 4761.50 137.77 0.11 1.21 11400.00 388.80 47.00 1698.30 2398.10 116.97

min 2998.10 92.35 2895.00 105.45 0.08 0.16 8259.40 148.00 0.00 1087.00 1188.00 87.00

62

max 2937.30 127.93 3389.00 97.61 0.13 2.58 12036.00 346.00 112.00 2517.00 3281.70 119.00

mean 2393.10 106.21 2626.30 82.81 0.11 0.61 7986.50 191.90 10.87 1668.60 2111.40 90.87

min 2058.80 79.16 1896.00 63.92 0.08 0.06 5660.10 150.00 0.00 989.00 1344.90 64.00

 %
37.06 4.62 44.84 39.89 0.00 49.59 29.94 50.64 76.87 1.75 11.96 22.31

TABLE 5.2: MA-Spread HIGH RISE CITYSCAPE 1 MANY-OBJECTIVES OPTIMIZATION RESULTS.

166

5.2.2 TRAJECTORY POPULATION

The MA-Spread mission requires the optimization algorithm to minimize the cost of the

entire team of agents as a singular entity. Each path combination is sorted and ranked

according to their collective objective values. Thus, the number of unique paths per agent

at each generation is dependent on the path combinations that survive the selection process.

Figure 5.5 shows the unique paths that have been maintained within the 62nd

population. The individual paths for each agent are presented in a different colour. There

are no obstacle collisions despite the large number of buildings. Similarly, the paths are

capable of smoothly bending around sharp corners. The usage of minimal jerk fifth order

splines is proven to be useful in minimizing the number of aggressive manoeuvres. The

images show that the paths for an agent are diverse and well spread across the terrain. This

means that the level of diversity that was seen within the initial MA-RRF paths has been

maintained across generations. It also shows that each path combination is diverse as well.

Each agent’s paths could create thousands of possible combinations. The optimization

algorithm must be capable of only maintaining combinations that produce minimal cost

values. Figure 5.6-5.8 shows how these unique paths create different path combinations.

The 30 path combinations make up the entire population for the final generation.

The paths within the Cityscape 1 environment for the four agents are shown through

various colours. Figure 5.6-5.8 shows the path nodes of the first to last agent which is

shown in magenta, red, blue and green. In many cases, the best choice in terms of an

objective isn’t apparent to the naked eye. Firstly, this is because the imagery needs to be in

three dimensions to view the progression of the path in all directions. Secondly, this is due

to the adaptive nature of the path nodes. The objective values will differ for each

combination since the paths are padded based on their node to node distances as well as

curvatures. It is the data that is provided to the end user that clearly shows the trade-off

values for each choice.

The first combination has many nodes across the lower part of the terrain. It has the

minimum altitude cost. On the other hand, combination 29 has the most nodes across higher

parts of the Cityscape 1 environment. Thus, it has the maximum altitude cost. Combination

5 produces flight paths that allow the agents to fly faster than quadrotor’s average velocity.

This option has the minimal value in terms of time optimality and as well as the best

coverage of uncertain terrain. Combination 6 is comprised of paths that produce the

shortest paths, least goal deviations, lowest jerk cost and minimum fuel consumption.

Figure 5.6(f) shows that all the agents fly directly towards their destinations except for

agent 2. Table 5.3 shows that most of the combinations produce trajectories that have zero

possible collisions. Choosing combination 10 leads to paths that have the highest amount

167

of possible agent-to-agent collisions. Figure 5.6(j) shows that there are many path

subsections where the agents are flying within proximity of each other.

The option with the least number of communication network decay is combination

12. Here, the agents do not fly further than the communication range at each point in time.

Option 16 has the least number of sensory data overlap whereas option 20 has the most. It

can be seen in Figure 5.7(f), the paths progress across different sections of the terrain

without too many overlaps. Similarly, Figure 5.7(j) shows that many nodes cross the same

areas within the terrain. Combination 24 has paths with many consecutive sharp turns

which contribute to a high jerk cost. Lastly, option 30 produces paths with minimal possible

collisions and safety zone breaches. Figure 5.8(j) shows that many nodes are places away

from the boundaries of the buildings. Each path combination is well minimized and has its

own advantages. Thus, the end user can make a final decision based on their priorities.

As expected, all combinations have been well minimized as seen with the reduction

or maintenance of mean values in Table 5.2. This proves that the many-objectives

algorithm successfully optimized the trajectory planning process for spread flight within

the Cityscape 1 environment through the approximation of the Pareto front. The hybridized

algorithm may not have fully extracted Pareto optimal solutions but has provided a diverse

as well as minimized collection of trajectories. Based on post processing preferences, the

strengths of each combination will aid in the final solution choice.

168

(a) Top view of agent 1’s paths within the final generation. (b) Side view of agent 1’s paths within the final generation.

(c) Top view of agent 2’s paths within the final generation. (d) Side view of agent 2’s paths within the final generation.

(e) Top view of agent 3’s paths within the final generation. (f) Side view of agent 3’s paths within the final generation.

(g) Top view of agent 4’s paths within the final generation. (h) Side view of agent 4’s paths within the final generation.

 Fig. 5.5. MA-Spread Cityscape 1: Final generation’s multi-agent unique trajectories.

start

goal

start

start

start

goal

goal

goal

169

(a) Multi-agent trajectories within combination 1. (b) Multi-agent trajectories within combination 2.

 (c) Multi-agent trajectories within combination 3. (d) Multi-agent trajectories within combination 4.

 (e) Multi-agent trajectories within combination 5. (f) Multi-agent trajectories within combination 6.

 (g) Multi-agent trajectories within combination 7. (h) Multi-agent trajectories within combination 8.

 (i) Multi-agent trajectories within combination 9. (j) Multi-agent trajectories within combination 10.

Fig. 5.6. MA-Spread Cityscape 1: Multi-agent path combination 1-10 for the final generation.

170

 (a) Multi-agent trajectories within combination 11. (b) Multi-agent trajectories within combination 12.

 (c) Multi-agent trajectories within combination 13. (d) Multi-agent trajectories within combination 14.

 (e) Multi-agent trajectories within combination 15. (f) Multi-agent trajectories within combination 16.

 (g) Multi-agent trajectories within combination 17. (h) Multi-agent trajectories within combination 18.

 (i) Multi-agent trajectories within combination 19. (j) Multi-agent trajectories within combination 20.

Fig. 5.7. MA-Spread Cityscape 1: Multi-agent path combination 11-20 for the final generation.

171

 (a) Multi-agent trajectories within combination 21. (b) Multi-agent trajectories within combination 22.

 (c) Multi-agent trajectories within combination 23. (d) Multi-agent trajectories within combination 24.

 (e) Multi-agent trajectories within combination 25. (f) Multi-agent trajectories within combination 26.

 (g) Multi-agent trajectories within combination 27. (h) Multi-agent trajectories within combination 28.

 (i) Multi-agent trajectories within combination 29. (j) Multi-agent trajectories within combination 30.

Fig. 5.8. MA-Spread Cityscape 1: Multi-agent path combination 21-30 for the final generation.

172

CITYSCAPE 1

Spread

COMBINATION

PATH

LENGTH

(meters)

ALTITUDE

COST

(meters)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

ERROR

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no breach)

TERRAIN

COVERAGE

(% free space)

SENSORY

DATA

OVERLAP

(grid block

overlap)

1 2386.49 79.16 2287.00 76.92 0.13 0.28 6759.67 153.00 0.00 1636.00 1578.29 72.00

2 2937.28 94.22 2733.00 90.12 0.12 0.13 9747.77 201.00 0.00 1401.00 1446.83 99.00

3 2227.84 104.82 2401.00 67.33 0.13 0.12 7034.58 160.00 0.00 1315.00 1777.68 98.00

4 2438.70 94.48 2487.00 72.41 0.13 0.23 5988.06 155.00 0.00 1245.00 1500.64 98.00

5 2653.05 112.69 2685.00 85.40 0.12 0.06 7422.19 269.00 8.00 1381.00 1344.90 107.00

6 2058.81 91.50 1896.00 63.92 0.12 0.19 5660.12 158.00 0.00 1607.00 1699.26 86.00

7 2524.89 105.50 2119.00 84.40 0.12 0.11 6503.21 153.00 0.00 1352.00 2022.23 88.00

8 2554.88 88.43 2888.00 84.03 0.12 0.36 9734.61 160.00 0.00 2193.00 1905.15 96.00

9 2406.43 96.00 2383.00 84.69 0.11 0.42 7669.07 238.00 0.00 1459.00 2194.56 95.00

10 2157.09 113.96 1999.00 79.17 0.11 0.37 6348.65 172.00 112.00 1899.00 2015.74 78.00

11 2318.55 104.72 2818.00 75.09 0.13 0.15 6005.96 226.00 0.00 2096.00 1603.62 102.00

12 2656.35 81.70 2656.00 85.65 0.13 0.14 7215.72 150.00 0.00 2062.00 1697.65 104.00

13 2121.26 104.57 2429.00 74.47 0.11 0.16 6734.19 171.00 0.00 2078.00 2072.60 99.00

14 2629.37 104.10 2757.00 92.07 0.10 1.91 9524.38 213.00 0.00 1066.00 2337.02 76.00

15 2415.26 119.05 2565.00 86.05 0.11 0.13 6323.50 302.00 0.00 1266.00 1747.79 85.00

16 2095.86 93.32 2114.00 69.75 0.12 0.28 5795.51 346.00 0.00 1268.00 1437.06 64.00

17 2510.99 98.32 2581.00 83.94 0.12 0.31 7854.32 158.00 0.00 1070.00 2171.54 93.00

18 2170.38 122.61 2568.00 80.13 0.11 2.31 8489.86 212.00 0.00 1737.00 2328.13 89.00

19 2747.60 106.84 2813.00 83.62 0.11 0.48 12035.59 195.00 0.00 2517.00 1524.13 118.00

20 2604.30 99.61 3008.00 95.05 0.12 0.63 7332.55 307.00 0.00 1227.00 1880.87 119.00

21 2147.71 122.60 3068.00 90.74 0.08 2.58 8964.75 180.00 60.00 1528.00 3143.11 110.00

22 2162.45 111.69 2186.00 72.45 0.11 0.31 7369.78 160.00 38.00 1727.00 2325.91 87.00

23 2425.23 106.44 2492.00 90.72 0.11 0.15 7881.72 155.00 48.00 1010.00 2120.43 81.00

24 2624.97 111.30 2958.00 97.61 0.10 0.40 9299.75 189.00 0.00 1739.00 2668.80 86.00

25 2388.72 115.41 3023.00 81.97 0.10 0.43 10744.93 160.00 0.00 2387.00 2788.20 90.00

26 2320.35 115.26 3389.00 90.74 0.09 2.48 9821.61 160.00 0.00 2368.00 2826.54 79.00

27 2484.46 117.01 2951.00 91.67 0.10 2.14 10347.60 186.00 10.00 2109.00 3005.95 81.00

28 2131.98 121.21 2232.00 82.67 0.10 0.27 7678.80 153.00 50.00 2046.00 2203.98 80.00

29 2323.86 127.93 3371.00 85.34 0.10 0.35 8454.96 160.00 0.00 2279.00 3281.74 84.00

30 2167.38 121.84 2931.00 86.31 0.09 0.43 8851.32 155.00 0.00 989.00 2690.90 82.00

TABLE 5.3: MA-Spread HIGH RISE CITYSCAPE 1 FINAL GENERATION’S RESULTS.

173

5.2.3 TYPES OF SIMULATION MODELS

Three different simulation models are presented for the cityscape environment. The first

environment was discussed within Section 5.2.1-5.2.2. This section compares the

performance of the algorithm across two more cityscapes. These environments have

different number of buildings that are placed at random locations. Table 5.4 shows the

differences between these models. The simulations that were performed with Cityscape 2

and 3 prioritized lower running time to test the abilities of the algorithm to plan paths across

a variety of test spaces.

Firstly, in Cityscape 2 and 3, the algorithm is sped up by increasing the maximum

distances between two neighbouring path nodes. Only nodes that are more than 20 meters

apart are padded with additional nodes between them. This means that the agents will have

less stop points across their final trajectories. Secondly, a path in Cityscape 2 and 3 is only

sampled once to generate a smooth spline. On the other hand, the paths within Cityscape 1

in Section 5.2.2 was maintained across generations. These paths were resampled at every

generation so that the path became smoother at every generation. The data in Figure 5.9-

5.10 and Table 5.5-5.6. shows the effects of using low resolution paths with less nodes as

opposed to high resolution path with more nodes.

The results in Table 5.5 and 5.6 show that all objectives but one is well minimized within

both the Cityscape 2 and 3 environments. In fact, six out of the twelve objectives are

minimized at a larger percentage than Cityscape 1. The paths in both these environments

have less nodes in comparison to Cityscape 1 due to their lower sampling rate. This means

that the quadrotors are flying longer distances and any deviation from their smooth paths

can accumulate over distances. Thus, the spline deviation cost in Cityscape 2 and 3 isn’t

easily minimized. On the other hand, Cityscape 1 has a higher sampling rate across

generation which reduces the error propagation across two nodes. The control system can

minimize the small amount or error across them.

These results show that the algorithm is applicable within a variety of cityscape

simulations. The user has the option of increasing the node-to-node sample rate to

minimize the spline deviation error. They also have the option of reducing the processing

time by reducing the sampling rate. The results within Table 5.5 and 5.6 show that the

spline deviation is well within the safety distance of 2 meters between two agents.

SIMULATION HIGH-RISE

CITYSCAPE 1

HIGH-RISE

CITYSCAPE 2

HIGH-RISE

CITYSCAPE 3

RANDOM BUILDINGS 18 25 25

BUILDING SIZE 20m<length<150m 10m<length<50m 8m<length<48m

ROADS narrow wide wide

MAX DISTANCE BETWEEN NODES 2m 20m 20m

SPLINE SAMPLE RATE 5 samples/iteration 5 samples/simulation 5 samples/simulation

TABLE 5.4: MA-Spread HIGH RISE CITYSCAPE1-3 PARAMETERS.

174

(a) Top and side view of agent 1’s paths. (b) Top and side view of agent 2’s paths.

 (c) Top and side view of agent 3’s paths. (d) Top and side view of agent 4’s paths.

 (a) Top and side view of agent 1’s paths. (b) Top and side view of agent 2’s paths.

 (c) Top and side view of agent 3’s paths. (d) Top and side view of agent 4’s paths.

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 4862.24 152.71 990.00 95.86 2.22 7.62 2401.31 79.00 38.00 71.00 175.30 220.00

mean 3154.39 126.79 672.83 75.12 0.93 3.35 1617.19 35.90 6.20 34.10 48.59 157.26

min 1995.19 97.90 335.00 47.19 0.47 0.87 837.92 10.00 0.00 4.00 3.92 110.00

75

max 1995.45 138.05 320.00 32.90 1.77 3.70 1006.89 29.00 4.00 45.00 55.75 112.00

mean 1590.42 107.86 241.23 25.93 1.50 0.93 521.86 12.07 0.40 26.80 22.87 84.03

min 1371.73 71.49 150.00 20.59 1.13 0.30 346.67 9.00 0.00 11.00 0.13 71.00

 % 49.58 14.93 64.15 65.48 -61.02 72.29 67.73 66.38 93.55 21.41 52.93 46.57

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 4447.09 144.49 1011.0 106.49 1.37 7.84 2221.89 101.00 32.00 53.00 284.82 218.00

mean 2894.31 114.45 668.63 72.62 0.84 2.77 1461.17 24.30 2.93 23.47 112.80 141.03

min 1712.58 85.87 195.00 28.06 0.51 0.00 513.09 10.00 0.00 4.00 7.41 73.00

64

max 1740.61 129.29 259.00 28.34 1.75 3.56 752.16 44.00 8.00 35.00 29.00 83.00

mean 1576.41 107.30 200.33 25.07 1.53 1.05 466.14 17.20 0.60 15.70 9.43 72.67

min 1347.41 80.64 100.00 20.54 1.37 0.00 329.23 9.00 0.00 2.00 0.00 55.00

 % 45.53 6.25 70.04 65.48 -82.14 62.07 68.10 29.22 79.52 33.11 91.64 48.47

TABLE 5.5: MA-Spread CITYSCAPE 2: MANY-OBJECTIVES OPTIMIZATION RESULTS.

Fig. 5.9. MA-Spread Cityscape 2: Final generation’s multi-agent unique trajectories.

Fig. 5.10. MA-Spread Cityscape 3: Final generation’s multi-agent unique trajectories.

 TABLE 5.6: MA-Spread CITYSCAPE 3: MANY-OBJECTIVES OPTIMIZATION RESULTS.

start

goal

start

goal

goal

goal

start

start

start

goal

start

start

start

goal

goal

goal

175

This path planning and optimization algorithm contains many large and small subsections.

Table shows the running time per generation for the for the MA-Spread mission within the

cityscape test spaces. Here, the running time for the main subsections is compared to the

time it takes to run the GA, MA-RRF Repair and DRMOO collectively. In this case, the

smaller subsections of the algorithm are not identified individually.

As previously defined, the paths that were generated across the Cityscape 1 are high

resolution. Here, the node-to-node distance is no more than 2 meters. This produces paths

that are easily trackable by the quadrotors and have minimal spline deviation error values.

This advantage comes at the expense of a longer running time as shown in Table 5.7.

Cityscape 2 and 3 that have lower resolution paths have a much shorter running time in

comparison to Cityscape 1. These environments also have much lower running times for

the multi-agent control system and the calculation of MA-Spread objective values.

Table 5.7 also shows that the GA operators can create two child paths within 5

seconds. It is the MA-RRF path repair process that requires more processing time. One

main subsection of the MA-RRF path repair process is the collision check that is required

when mapping the free space around obstacles. The collision check is also performed to

identify which nodes are redundant within a planned path. In a small sized space, a collision

check can run fast due to the minimal number of obstacles. In this study, large spaces with

many obstacles will require the algorithm to perform many collision checks for each

sample node. These results show how different parameters can affect the error, running

time and resolution of the paths across the high-rise cityscape environments. The

adjustments of these parameters can be tuned according to the user’s preferences.

5.3. MA-SPREAD ACROSS A HIGHLY CLUTTERED INDOOR

ENVIRONMENT

The next simulated environment for the MA-Spread application is the highly cluttered

indoor space. This test environment challenges the path planner through its narrow entry

points and varying sized clutter across each room. It can be difficult to maintain a diverse

set of trajectories because the small number of entry ways between each room. This means

that the quadrotors are forced to fly across the same doors and windows as they progress

across the test space. There is a large amount of randomly placed clutter across each room.

MA-SPREAD

ALGORITHM CITYSCAPE 1

(sec)

CITYSCAPE 2

(sec)

CITYSCAPE 3

(sec)

GA + MA-RRF Repair + DRMOO 5758.21 913.96 627.77

GA 4.973 0.09 % 1.11 0.12 % 0.67 0.11 %

MA-RRF Repair 1963.49 34.10 % 332.67 36.40 % 155.11 24.71 %

PD Control System 372.15 6.46 % 129.66 14.19 % 129.06 20.56 %

Spread objectives 480.96 8.35 % 161.90 17.71 % 144.99 23.10 %

Collision Check 2867.92 49.81 % 440.00 48.14 % 230.65 36.74 %

TABLE 5.7: MA-Spread HIGH RISE CITYSCAPE 1-3 RUNNING TIME.

176

The path planning algorithm is capable of avoiding the clutter but the agents are once again

restricted to flying in similar directions. The results show that the path planning algorithm

is capable of minimizing the objectives whilst maintaining a diverse collection of paths.

The results for Indoor 1 are presented in this section. Figures 5.11 and 5.12 shows

the progression of the 12 objectives across all generations. Table 5.8 shows the average

values of all path combinations for each objective within the final generation. The

termination point for the Indoor 1 space is set at the 77th generation. This is the point where

most objectives have been sufficiently minimized and path diversity is maintained. Next,

the unique paths for each agent are shown in Figure 5.13. These paths will form the path

combinations that are shown within Figure 5.14-5.16.

5.3.1 MANY OBJECTIVES VALUES

Figure 5.11 and 5.12 shows the max, mean and min value changes that occur with the 12

objectives across 77 generations for Indoor 1. All objectives have been well minimized.

The spline deviation error is maintained which is similar to the cityscape environment. As

previously defined, the error is small in value and dependent on the control system. The

algorithm is capable of maintaining the deviation error without an increase in value. It also

shows that although most objectives are well minimized before the 50th generation,

objective 2, 3 and 6 required more time to sufficiently reduce in value.

Table 5.8 shows that all the 12 objectives in the final generation are well minimized

or maintained. The value for the altitude cost has a small reduction of 3% in comparison to

the initial MA-RRF path population. The Indoor 1 environment has a larger number of

obstacles in comparison to the cityscape space. These obstacles make it difficult for the

paths to only progress across the lower parts of the terrain. The path planning algorithm is

also able to generate path nodes that avoid all clutter and walls. Despite this, the number

of safety zone breaches is reduced by 38%. The space between rooms is large and can

encourage communication network decay. At the 77th generation, the number of broken

agent-to-agent connection is decreased by 39%.

All of the other objectives are minimized more than 40% in comparison to the first

generation. The path length for each combination is minimized by more than half. It is 53%

less in length. Similarly, the number of goal deviations, flight time and jerk cost is

minimized by 51%. The agents are able to fly at a speed that minimizes the time optimality

cost by 46%. These reductions are difficult to accomplish because there are many path

deviations that occur due to the clutter within the environment. The agents must

aggressively manoeuvre around each obstacle and this may cause them to fly further away

from the goal node. It also requires a large amount of time and fuel to move up and down

177

across the clutter. In comparison to the cityscape, there is a larger amount of possible agent-

to-agent collisions because the agents are all squeezing through the same entry points. The

algorithm is able to reduce this value by 65%. Lastly, the amount of well mapped grid

blocks that are visited is reduced by 49%. This means that the agents are visiting more

uncertain areas. There is also a reduction of 42% in sensory overlap data. Overall, the

algorithm is successful in producing a high percentage of objective value minimization.

(a) Path length objective values across generations. (b) Flight height objective values across generations.

(c) Goal deviations objective values across generations. (d) Jerk cost objective values across generations.

(e) Spline deviation error objective values across generations. (f) Time optimality objective values across generations.

10 20 30 40 50 60 70

1000

1500

2000

2500

3000

GENERATIONS

P
A

T
H

 L
E

N
G

T
H

 (
m

)

OBJECTIVE 1

mean

min

max

10 20 30 40 50 60 70

20

25

30

35

40

45

50

55

GENERATIONS

F
L

IG
H

T
 H

E
IG

H
T

 (
m

)

OBJECTIVE 2

mean

min

max

10 20 30 40 50 60 70

2000

3000

4000

5000

6000

7000

8000

GENERATIONS

G
O

A
L

 D
E

V
IA

T
IO

N
S

 (
n

o
 n

o
d

e
s
)

OBJECTIVE 3

mean

min

max

10 20 30 40 50 60 70
20

30

40

50

60

70

80

90

GENERATIONS

J
E

R
K

 C
O

S
T

 (
m

/s
3

)

OBJECTIVE 4

mean

min

max

10 20 30 40 50 60 70
0.02

0.03

0.04

0.05

0.06

0.07

GENERATIONS

S
P

L
IN

E
 D

E
V

IA
T

IO
N

 (
m

)

OBJECTIVE 5

mean

min

max

10 20 30 40 50 60
0

1

2

3

4

5

6

GENERATIONS

T
IM

E
 O

P
T

IM
A

L
IT

Y
(

ra
ti
o

)

OBJECTIVE 6

mean

min

max

Fig. 5.11. MA-Spread Indoor 1: Progression of the objectives 1-6 across generations.

178

(a) Flight time objective values across generations. (b) Connection breaches objective values across generations.

(c) Possible collisions objective values across generations. (d)Safety zone breaches objective values across generations.

(e)Uncertain grid coverage objective values across generations. (f)Sensory overlap objective values across generations.

10 20 30 40 50 60 70

0.5

1

1.5

2

2.5

x 10
4

GENERATIONS

F
L

IG
H

T
 T

IM
E

 (
s
)

OBJECTIVE 7

mean

min

max

10 20 30 40 50 60 70

500

1000

1500

2000

2500

GENERATIONS

N
E

T
W

O
R

K
 T

O
P

O
L

O
G

Y
(n

o
 l
o

s
s
)

OBJECTIVE 8

mean

min

max

10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

GENERATIONS

C
O

L
L

IS
IO

N
 A

V
O

ID
A

N
C

E
(n

o
 c

o
ll
is

io
n

s
)

OBJECTIVE 9

mean

min

max

10 20 30 40 50 60 70
1

2

3

4

5

6

x 10
4

GENERATIONS

S
A

F
E

T
Y

 R
A

N
G

E
(n

o
 b

re
a

c
h

)

OBJECTIVE 10

mean

min

max

10 20 30 40 50 60 70

1000

1500

2000

2500

3000

3500

4000

GENERATIONS

T
E

R
R

A
IN

 C
O

V
E

R
A

G
E

(g
ri

d
 u

n
c
e

rt
a

in
ty

 v
a

lu
e

)

OBJECTIVE 11

mean

min

max

10 20 30 40 50 60 70
20

40

60

80

100

120

140

GENERATIONS

S
E

N
S

O
R

Y
 O

V
E

R
L

A
P

(n
o

 g
ri

d
 b

lo
c
k
 o

v
e

rl
a

p
)

OBJECTIVE 12

mean

min

max

Fig. 5.12. MA-Spread Indoor 1: Progression of the objectives 7-12 across generations.

179

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 3142.70 49.93 8104.00 92.32 0.06 5.99 23307.00 1349.00 1050.00 43600.00 6819.70 138.00

mean 2471.20 35.41 6752.90 72.57 0.05 3.61 16834.00 774.47 320.33 30744.00 5513.30 95.17

min 1615.70 27.99 4878.00 48.70 0.04 2.29 11940.00 360.00 0.00 20213.00 3413.90 60.00

77

max 1381.00 50.57 3920.00 43.45 0.07 3.79 11445.00 2052.00 494.00 26197.00 4308.10 75.00

mean 1167.70 33.28 3216.50 35.61 0.05 1.96 8067.80 475.87 111.33 19017.00 2794.40 54.77

min 1000.20 21.95 2528.00 26.95 0.04 0.00 5599.70 296.00 0.00 12986.00 1953.30 35.00

 %
52.75 6.02 52.37 50.93 0.00 45.71 52.07 38.56 65.25 38.14 49.32 42.45

TABLE 5.8: MA-Spread HIGHLY CLUTTERED INDOOR 1 MANY-OBJECTIVES OPTIMIZATION RESULTS.

180

5.3.2 TRAJECTORY POPULATION

The unique paths for each agent within the 77th generation for Indoor 1 are shown in Figure

5.13. Each unique trajectory is displayed in a different colour. The paths for all agents are

diverse in nature with the exception of agent 2. The trajectories for agent 2 have many

nodes across the lower part of the Indoor 1 space. Still, Figure 5.13(b) shows that there are

paths that span across each room.

The final population of path combinations is presented in Figure 5.14-5.16. These

solutions are made up of the best combinations of each agent’s unique paths. The paths of

the four quadrotor agents within the Indoor 1 environment are marked in brown, black,

blue and green. The first combination holds paths with the least number of possible agent-

to-agent collisions. It also has the minimal value for time optimality as well as sensory data

overlaps. Figure 5.14(a) shows that the paths for each agent are well spread and allow to

agents to maintain a safe distance from each other. This also means that the agents collect

sensory data from different parts of the environment. Figure 5.14(b) shows that

combination 2 allows the agents to effectively fly across obstacles with the least number

of safety zone breaches. The agents fly either above or below the clutter within each room.

Option 10 is another great choice for the end user. It has minimal costs for the

number of goal node deviations, jerk cost and flight time. Figure 5.14(j) shows that many

of the agents fly directly towards their goal nodes. Combination 12 is the best choice if the

end user requires minimal network decay between all agents during a mission. Figure

5.15(b) shows that the agents are always within close proximity of each other. It can be

seen in Figure 5.15(e) that option 15 produces paths at a lower altitude. This combination

has the minimal cost in terms of flight height since many of the nodes are located at the

lower parts of the environment. Combination 16 has the maximum cost for goal node

deviation. Figure 5.53(f) shows that the path in blue for agent 3 travels a large distance

away from the goal node before redirecting itself towards it. The most common goal for

end users is to determine which combination produces the shortest paths.

Figure 5.16(j) shows that combination 20 provides the paths with minimal travel

distance. Three out of the four agent travel directly from the start to goal node. On the other

hand, option 23 contains the paths with the most length. This would be an unfavourable

choice for an end user that prioritises minimal flight time. Combination 29 offers the end

user paths that travel across uncertain areas of the environment. This option allows the

quadrotors to fly across areas that are least mapped within the cluttered rooms. Lastly,

option 30 is the path with the most fuel consumption. It also produces paths that require

the agents to fly at a less optimal speed. Figure 5.16(j) shows that the paths require the

agents to perform many turns and travel further distances.

181

(a) Top view of agent 1’s paths within the final generation. (b) Side view of agent 1’s paths within the final generation.

(c) Top view of agent 2’s paths within the final generation. (d) Side view of agent 2’s paths within the final generation.

(e) Top view of agent 3’s paths within the final generation. (f) Side view of agent 3’s paths within the final generation.

(g) Top view of agent 4’s paths within the final generation. (h) Side view of agent 4’s paths within the final generation.

Fig. 5.13. MA-Spread Indoor 1: Final generation’s multi-agent unique trajectories.

start

start

start

start

goal

goal

goal

goal

182

 (a) Multi-agent trajectories within combination 1. (b) Multi-agent trajectories within combination 2.

 (c) Multi-agent trajectories within combination 3. (d) Multi-agent trajectories within combination 4.

 (e) Multi-agent trajectories within combination 5. (f) Multi-agent trajectories within combination 6.

 (g) Multi-agent trajectories within combination 7. (h) Multi-agent trajectories within combination 8.

 (i) Multi-agent trajectories within combination 9. (j) Multi-agent trajectories within combination 10.

 Fig. 5.14. MA-Spread Indoor 1: Multi-agent path combination 1-10 for the final generation.

183

 (a) Multi-agent trajectories within combination 11. (b) Multi-agent trajectories within combination 12.

 (c) Multi-agent trajectories within combination 13. (d) Multi-agent trajectories within combination 14.

 (e) Multi-agent trajectories within combination 15. (f) Multi-agent trajectories within combination 16.

 (g) Multi-agent trajectories within combination 17. (h) Multi-agent trajectories within combination 18.

 (i) Multi-agent trajectories within combination 19. (j) Multi-agent trajectories within combination 20.

Fig. 5.15. MA-Spread Indoor 1: Multi-agent path combination 11-20 for the final generation.

184

 (a) Multi-agent trajectories within combination 21. (b) Multi-agent trajectories within combination 22.

 (c) Multi-agent trajectories within combination 23. (d) Multi-agent trajectories within combination 24.

 (e) Multi-agent trajectories within combination 25. (f) Multi-agent trajectories within combination 26.

 (g) Multi-agent trajectories within combination 27. (h) Multi-agent trajectories within combination 28.

 (i) Multi-agent trajectories within combination 29. (j) Multi-agent trajectories within combination 30.

Fig. 5.16. MA-Spread Indoor 1: Multi-agent path combination 21-30 for the final generation.

185

INDOOR 1 Spread

COMBINATION

PATH

LENGTH

(meters)

ALTITUDE

COST

(meters)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

ERROR

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no breach)

TERRAIN

COVERAGE

(% free space)

SENSORY

DATA

OVERLAP

(grid block

overlap)

1 1085.39 25.46 2812.00 32.69 0.06 0.00 6142.79 449.00 0.00 19387.00 2486.97 35.00

2 1307.61 41.94 3219.00 35.30 0.06 1.76 7153.15 302.00 86.00 12986.00 2154.57 66.00

3 1294.82 50.57 2823.00 39.62 0.07 1.55 6156.02 333.00 182.00 18346.00 2237.28 69.00

4 1175.48 37.76 2986.00 30.05 0.06 1.56 6137.03 302.00 0.00 19138.00 2389.77 57.00

5 1203.98 39.71 2852.00 39.40 0.06 2.04 7548.68 362.00 212.00 16623.00 2405.72 62.00

6 1177.20 34.54 2745.00 32.41 0.06 1.68 6431.61 333.00 0.00 16357.00 2051.55 60.00

7 1030.11 25.86 2955.00 33.23 0.05 1.98 7595.15 378.00 104.00 18041.00 2954.37 48.00

8 1296.04 34.83 3611.00 36.81 0.06 2.05 8359.28 502.00 138.00 20248.00 2571.84 57.00

9 1354.69 39.10 3448.00 43.45 0.06 2.13 7886.36 351.00 114.00 18861.00 2909.62 75.00

10 1079.67 45.29 2528.00 26.95 0.06 1.09 5599.68 454.00 0.00 17030.00 3026.33 52.00

11 1141.77 28.30 3469.00 39.31 0.05 2.31 9080.41 821.00 0.00 23208.00 2492.55 61.00

12 1225.28 42.75 2927.00 35.01 0.06 1.40 6250.70 296.00 0.00 17162.00 1981.50 74.00

13 1193.03 33.20 3042.00 35.71 0.06 0.14 6898.99 305.00 98.00 16176.00 3065.71 63.00

14 1312.48 28.62 3602.00 36.33 0.05 1.89 8493.41 647.00 114.00 18781.00 3474.56 52.00

15 1163.66 21.95 2997.00 40.44 0.05 1.62 9758.43 333.00 136.00 22119.00 2329.10 57.00

16 1135.44 24.25 3920.00 31.99 0.06 2.54 8329.20 389.00 346.00 14520.00 4308.08 39.00

17 1053.53 33.04 3007.00 32.61 0.06 0.56 7294.01 388.00 150.00 13163.00 3088.96 54.00

18 1156.17 35.58 3072.00 34.02 0.06 1.70 6428.79 2052.00 220.00 19749.00 2450.70 46.00

19 1061.08 28.36 3237.00 34.23 0.05 1.72 9336.19 304.00 52.00 18136.00 3475.99 44.00

20 1000.19 34.39 3094.00 34.49 0.05 2.56 7466.83 388.00 494.00 22386.00 3100.97 46.00

21 1289.80 30.68 3458.00 42.46 0.05 2.73 9933.63 671.00 246.00 23122.00 3863.67 46.00

22 1216.31 31.72 3591.00 35.50 0.05 2.73 9515.10 567.00 0.00 19438.00 3449.72 58.00

23 1381.01 31.53 3386.00 39.29 0.06 2.23 8998.37 296.00 126.00 17870.00 2245.42 66.00

24 1151.37 38.26 3230.00 36.45 0.05 2.24 7760.31 296.00 96.00 20409.00 3109.21 52.00

25 1087.80 31.88 3695.00 35.40 0.05 2.93 9371.13 304.00 0.00 20294.00 2784.12 48.00

26 1084.84 28.77 3162.00 33.22 0.05 1.68 7486.46 399.00 108.00 15716.00 3046.03 51.00

27 1095.03 26.74 3766.00 36.59 0.04 2.45 9455.15 320.00 204.00 18036.00 3044.83 57.00

28 1082.19 32.22 3181.00 31.66 0.05 2.67 8954.63 514.00 114.00 21135.00 2730.27 45.00

29 1107.19 33.69 3215.00 38.79 0.04 3.18 10768.54 656.00 0.00 26197.00 1953.30 59.00

30 1088.22 27.41 3464.00 34.91 0.04 3.79 11445.30 564.00 0.00 25882.00 2648.52 44.00

TABLE 5.9: MA-Spread HIGHLY CLUTTERED INDOOR FINAL GENERATION’S RESULTS.

186

This shows that even well minimized path combinations have their own disadvantages. As

with the cityscape environment, all of the combinations within the Indoor 1 space are well

minimized and have a variety of trade off values. The end user is able to use their post

processing preferences in order to determine the best trajectory combination for their

mission.

5.3.3 TYPES OF SIMULATION MODELS

Like the cityscape environment, three different simulation models are presented for the

indoor environment. The first environment was discussed within Section 5.3.1-5.3.2. This

section compares the performance of the algorithm across two more indoor test spaces.

These environments vary in number of randomly placed clutter per room. Table 5.10 shows

the differences between these models. The algorithm is sped up by increasing the maximum

distances between two neighbouring path nodes within the Indoor 2 and 3. Only nodes that

are more than 20 meters apart are padded with additional nodes between them. Also, a path

in the Indoor 2 and 3 spaces is only sampled once to generate a smooth spline.

The results of Indoor 2 in Table 5.11 -5.12 show that all the objectives except three are

minimized at a larger percentage in comparison to Indoor 1. Similarly, all the objectives

within Indoor 3 are minimized at a larger percentage in comparison to Indoor 1. The largest

difference between the three environments is the increase in the spline deviation error

across generations. This issue exists for the same reason that it occurs in Cityscape 2 and

3. These paths are designed with larger node-to-node distances which can lead to larger

error propagation. The agents still do not deviate more than the minimum neighbour-to-

neighbour distance of 2 meters.

 The data for all three environments shows that the algorithm can perform well

within the different variations of the indoor space. It can avoid different amounts of

randomly placed clutter that vary in size. The user has the option of running a longer yet

high resolution path planner as shown in Indoor 1. They also can run a much faster version

of the algorithm with lower resolution paths as designed in Indoor 2 and 3 as shown in

Table 5.13. The completion time for the algorithm across all three indoor variations

SIMULATION HIGHLY

CLUTTERED

INDOOR 1

HIGHLY

CLUTTERED

INDOOR 2

HIGHLY

CLUTTERED

INDOOR 3

RANDOM CLUTTER 8 6 4

CLUTTER SIZE 1m<length<35m 2m<length<35m 2m<length<30m

MAX DISTANCE BETWEEN NODES 2m 20m 20m

SPLINE SAMPLE RATE 5 samples/iteration 5 samples/simulation 5 samples/simulation

TABLE 5.10: MA-Spread HIGHLY CLUTTERED INDOOR 1-3 PARAMETERS.

187

(a) Top and side view of agent 1’s paths. (b) Top and side view of agent 2’s paths.

(c) Top and side view of agent 3’s paths. (d) Top and side view of agent 4’s paths.

TABLE 5.11: MA-Spread INDOOR 2: MANY-OBJECTIVES OPTIMIZATION RESULTS.

(a) Top and side view of agent 1’s paths. (b) Top and side view of agent 2’s paths.

(c) Top and side view of agent 3’s paths. (d) Top and side view of agent 4’s paths.

TABLE 5.12: MA-Spread INDOOR 3: MANY-OBJECTIVES OPTIMIZATION RESULTS.

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 3017.45 59.40 838.00 73.51 1.68 8.18 2416.35 51.00 786.00 6104.00 383.89 121.00

mean 1785.07 42.11 554.17 54.35 0.68 3.90 1425.83 27.17 84.07 2327.50 192.85 85.73

min 938.45 24.90 156.00 21.03 0.33 1.14 308.02 12.00 0.00 354.00 51.16 37.00

60

max 1169.44 39.66 226.00 22.96 1.84 3.59 1017.14 38.00 64.00 1131.00 178.67 47.00

mean 979.45 30.77 177.60 19.63 1.51 1.46 391.28 19.73 25.13 697.53 113.84 37.00

min 858.65 20.91 139.00 15.93 1.19 0.00 240.18 10.00 0.00 413.00 53.22 26.00

 % 45.13 26.93 67.95 63.88 -122.06 62.57 72.56 27.38 70.11 70.03 40.97 56.84

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 2940.20 54.43 1100.00 91.18 0.78 6.45 2700.72 570.00 404.00 3738.00 478.13 121.00

mean 2116.15 40.58 750.50 68.74 0.55 3.66 1805.09 61.23 36.07 2107.37 235.62 90.20

min 1404.37 20.65 422.00 47.71 0.37 2.14 832.33 17.00 0.00 747.00 66.13 59.00

60

max 1327.94 49.91 238.00 28.54 1.73 4.11 708.55 30.00 40.00 1023.00 118.83 57.00

mean 972.29 36.27 187.10 20.74 1.36 1.73 404.08 17.27 13.73 639.83 57.58 39.43

min 848.65 27.10 147.00 15.86 1.01 0.54 251.64 11.00 0.00 434.00 20.17 26.00

 % 54.05 10.62 75.07 69.83 -147.27 52.73 77.61 71.79 61.94 69.64 75.56 56.29

Fig. 5.17. MA-Spread Indoor 2: Final generation’s multi-agent unique trajectories.

Fig. 5.17. MA-Spread Indoor 3: Final generation’s multi-agent unique trajectories.

goal

start

start

start

start

goal

goal

goal

start goal

start

goal

start

goal

start

goal

188

are faster than the cityscape environments because it is smaller in size and contains more

free space. It also shows similarities with the cityscape environments where the collision

check process requires the most processing time. This is because for each MA-RRF repair

node, the algorithm must test if the sample node collides with any obstacle. The indoor

environment contains many clutter and entryways that need to be considered.

The percentage of processing time for the indoor environments is different for all

three variations. Indoor 1 uses a significant amount of time on calculating the MA-Spread

objectives. On the other hand, the control system within the Indoor 2 simulation uses a

larger percentage of the total time. Lastly, Indoor 3 requires the highest amount of time for

the child path repair process.

The results for the indoor environment show how different values for the variables

can affect the error, running time and resolution of the paths. These variables can be tuned

according to the user’s preferences.

MA-SPREAD

ALGORITHM
INDOOR 1

(sec)

INDOOR 2

(sec)

INDOOR 3

(sec)

GA + MA-RRF Repair + DRMOO 2095.60 735.51 792.88

GA 0.62 0.03 % 0.72 0.10 % 0.70 0.09 %

MA-RRF Repair 153.41 7.32 % 207.84 28.56 % 374.28 47.21 %

PD Control System 281.50 13.43 % 156.10 21.22 % 93.12 11.74 %

Spread objectives 504.62 24.08 % 65.86 8.95 % 137.55 17.35 %

Collision Check 591.78 28.24 % 426.55 57.99 % 584.79 73.76 %

5.4. MA-SPREAD ACROSS A MOUNTAINOUS TERRAIN

Lastly, the mountainous terrain brings different challenges to the MA-Spread application.

The final environment has simplistic trajectories due to its large amount of free space

between peaks. It is different from the cityscape and indoor environment that maintains

uniform side planes. It can be challenging because it requires accurate high resolution free

space mapping in order to avoid collisions between the agents and the mountain peaks.

Here, the quadrotors are required to fly through sudden height changes in the terrain. The

changes in height are in the form of mountain peaks and lows. This means that the

environment is split into small sized grid blocks in order to accurately map the constant

height changes. Thus, this environment holds a huge number of small sized obstacle blocks.

Similar to the prior environments, the different trade-off values for the 12 objective

functions are evaluated in this section. Firstly, the progression of the objectives across

generations for Mountain 1 is shown in Figure 5.18-5.19. Then, the minimization of the

cost functions for the entire population in the final generation is shown in Table 5.14. The

unique paths for all four agents are presented in Figure 5.20. Lastly, the imagery of each

TABLE 5.13: MA-Spread HIGHLY CLUTTERED INDOOR 1-3 RUNNING TIME.

189

path combination within the final population is shown in Figure 5.21-5.23. The objective

trade-off values for each combination are shown in Table 5.15.

5.4.1 MANY OBJECTIVES VALUES

The variations of the values for each objective in Mountain 1 are shown in Figure 5.18 and

5.19. The 12 objectives within this environment reach their minimal value at a faster rate

in comparison to the other test spaces. This could be due to the noncomplex trajectories

and large amount of free space within the terrain. Most objectives reach their minimum

points within 40 generations. The only exception to this is objective 7 and 10. The

termination point for the optimization algorithm is set at the 48th iteration. Here as well,

the graphs show that all the objectives are not degraded across generations. They are either

minimized or maintained in comparison to the first generation.

Similar to the last two test spaces; Table 5.14 shows that all the objectives in the

final generation are well minimized or maintained. It shows that two objectives have been

maintained across the 48 generations. These are the altitude and spline deviation cost.

Three cost functions are minimized by less than 40% reduction in value. The number of

agent-to-agent connection loss is lowered by 29%. Flights across well mapped areas are

decreased by 26% whereas the number of sensory overlap data is reduced by 19%.

All of the other objectives are minimized by more than 40%. The path lengths for

all four quadrotors are lowered by 52% in comparison to the initial MA-RRF paths. Next,

the number of goal node deviations is also minimized by 55%. The mountainous terrain

doesn’t require the agents to perform many sharp turns. Thus, the jerk cost for the team of

agents is reduced by 63%. Similarly, the time optimality cost is lessened by 65%. The

shorter and more direct paths lead to a 60% reduction of fuel consumption. The number of

agent-to-agent possible collisions is minimized by 45%. Lastly, the number of safety zone

breaches is reduced by 57% despite the large number of obstacles within the Mountain 1

terrain.

190

(a) Path length objective function across generations. (b) Flight height objective values across generations.

(c) Goal deviations objective values across generations. (d) Jerk cost objective values across generations.

(e) Spline deviation error objective values across generations. (f) Time optimality objective values across generations.

5 10 15 20 25 30 35 40 45

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

GENERATIONS

P
A

T
H

 L
E

N
G

T
H

 (
m

)

OBJECTIVE 1

mean

min

max

5 10 15 20 25 30 35 40 45

85

90

95

100

GENERATIONS

F
L

IG
H

T
 H

E
IG

H
T

 (
m

)

OBJECTIVE 2

mean

min

max

5 10 15 20 25 30 35 40 45

4000

6000

8000

10000

12000

14000

16000

GENERATIONS

G
O

A
L

 C
O

S
T

 (
n

o
d

e
s
)

OBJECTIVE 3

mean

min

max

5 10 15 20 25 30 35 40 45
4

6

8

10

12

14

16

18

20

GENERATIONS

J
E

R
K

 C
O

S
T

 (
m

/s
3

)

OBJECTIVE 4

mean

min

max

5 10 15 20 25 30 35 40 45
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

GENERATIONS

S
P

L
IN

E
 D

E
V

IA
T

IO
N

 (
m

)

OBJECTIVE 5

mean

min

max

5 10 15 20 25 30 35 40 45

0

1

2

3

4

5

6

GENERATIONS

T
IM

E
 O

P
T

IM
A

L
IT

Y
 (

 r
a

ti
o

)

OBJECTIVE 6

mean

min

max

Fig. 5.18. MA-Spread Mountain 1: Progression of the objectives 1-2 across generations.

191

(a) Flight time objective values across generations. (b) Connection breaches objective values across generations.

(c) Possible collisions objective values across generations.(d) Safety zone breaches objective values across generations.

(e)Uncertain grid coverage objective values across generations. (f)Sensory overlap objective values across generations.

5 10 15 20 25 30 35 40 45

1

1.5

2

2.5

3

3.5
x 10

4

GENERATIONS

F
U

E
L

 C
O

S
T

 (
s
)

OBJECTIVE 7

mean

min

max

5 10 15 20 25 30 35 40 45

500

1000

1500

2000

2500

3000

GENERATIONS

N
E

T
W

O
R

K
 T

O
P

O
L

O
G

Y
(n

o
 l
o

s
s
)

OBJECTIVE 8

mean

min

max

5 10 15 20 25 30 35 40 45

0

200

400

600

800

1000

1200

1400

GENERATIONS

C
O

L
L

IS
IO

N
 A

V
O

ID
A

N
C

E
(n

o
 c

o
ll
is

io
n

s
)

OBJECTIVE 9

mean

min

max

5 10 15 20 25 30 35 40 45

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

GENERATIONS

S
A

F
E

T
Y

 R
A

N
G

E
(n

o
 b

re
a

c
h

)

OBJECTIVE 10

mean

min

max

5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

x 10
4

GENERATIONS

T
E

R
R

A
IN

 C
O

V
E

R
A

G
E

(g
ri

d
 u

n
c
e

rt
a

in
ty

 v
a

lu
e

)

OBJECTIVE 11

mean

min

max

5 10 15 20 25 30 35 40 45

10

15

20

25

30

35

GENERATIONS

S
E

N
S

O
R

Y
 O

V
E

R
L

A
P

(
n

o
 g

ri
d

 b
lo

c
k
 o

v
e

rl
a

p
)

OBJECTIVE 12

mean

min

max

Fig. 5.19. MA-Spread Mountain 1: Progression of the objectives 7-12 across generations.

192

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max
2691.70 103.34 15665.00 20.47 0.02 3.90 33746.00 1611.00 1414.00 175256.00 9591.20 34.00

mean 1664.50 96.63 9692.00 15.07 0.01 2.14 22413.00 703.13 369.00 68478.00 4729.10 21.93

min 1204.90 88.68 6559.00 10.96 0.00 0.00 12674.00 464.00 0.00 23420.00 1287.10 14.00

48

max 860.49 101.44 4889.00 6.88 0.02 2.50 11465.00 678.00 622.00 43183.00 7356.30 21.00

mean 803.32 96.87 4320.80 5.59 0.02 0.74 8980.60 497.23 202.33 29513.00 3479.50 17.77

min 769.36 93.02 3911.00 4.66 0.01 0.00 7837.60 399.00 0.00 21756.00 1169.70 12.00

 %
51.74 -0.25 55.42 62.91 -100.00 65.42 59.93 29.28 45.17 56.90 26.42 18.97

TABLE 5.14: MA-Spread MOUNTAIN TERRAIN 1 MANY-OBJECTIVES OPTIMIZATION RESULTS.

193

5.4.2 TRAJECTORY POPULATION

The path combinations within the final population for Mountain 1 are made up of each

agent’s unique paths. These paths are presented in Figure 5.20. Each path is defined by

different colours. It is difficult to maintain a certain level of diversity within the

mountainous terrain because the mountains are spread across large areas. The free spaces

between the mountain bases are also large. The paths in each generation are reduced in size

through redundant node pruning. Thus, the diverse paths are reduced to nodes that span

across similar areas. The cityscape and indoor test space have many smaller sized obstacles

within the environment. Thus, the solution population after the path pruning process is still

diverse in nature.

Next, the path combinations within the final generation are shown in Figure 5.21-

5.23. The paths for all four agents are shown within its imagery with nodes marked in

black, blue, green and brown. Combination 1 produces paths that have the minimum value

for flight time. Figure 5.21(a) shows that the paths are simplistic and easy to track. It also

allows the agents to fly faster than the average velocity. This leads to the minimum value

for time optimality. The choice with the least number of possible agent-to-agent collisions

is combination 2. Similarly, combination 5 produces paths with the lowest amount of

safety zone breaches. These two options are preferable for the end user that requires paths

with little replanning. Combination 10 has many advantages such as providing the

minimum value for number of goal node deviations, uncertain space coverage and sensory

data overlap.

Figure 5.22(g) shows that in combination 17, all four agents fly at a close range to

one another. This maintains full network connectivity between all agents. Option 19 has

the lowest value for the jerk cost. On the other hand, choice 21 has the highest value for

jerk cost within the final population. Figure 5.22(i) and Figure 5.22(a) show that both path

combinations contain sharp turns. The difference between the two options is that the agents

are able to fly across the sharp turn smoother in combination 19. Another option that

provides the end user with many positive trade-off values is combination 25. Here, the

multi-agents are given the shortest paths with many nodes at lower parts of the terrain. It

also has the minimum value for spline deviation error. Thus, it shows that these paths are

easy to track by the quadrotors.

Table 5.15 shows that there are more combinations that contain possible agent-to-

agent collisions within the Mountain 1. This is because the paths of all agents fly across

similar regions in comparison to the other test spaces. Still, this is based on a default safety

range. The number of possible collisions can be reduced if a smaller safety radius is

applied. As with all the previous environments, the end user is delivered a large number of

194

multi-agent path choices with adequate information to describe the benefits of each one.

The end user is free to make a knowledgeable decision of the best trajectories for the

mountainous terrain based on the trade-off values between all 30 combinations.

(a) Top view of agent 1’s paths within the final generation. (b) Side view of agent 1’s paths within the final generation.

(c) Top view of agent 2’s paths within the final generation. (d) Side view of agent 2’s paths within the final generation.

(e) Top view of agent 3’s paths within the final generation. (f) Side view of agent 3’s paths within the final generation.

(g) Top view of agent 4’s paths within the final generation. (h) Side view of agent 4’s paths within the final generation.

Fig. 5.20. MA-Spread Mountain 1: Final generation’s multi-agent unique trajectories.

start

goal

start
goal

start goal

start

goal

195

 (a) Multi-agent trajectories within combination 1. (b) Multi-agent trajectories within combination 2.

 (c) Multi-agent trajectories within combination 3. (d) Multi-agent trajectories within combination 4.

 (e) Multi-agent trajectories within combination 5. (f) Multi-agent trajectories within combination 6.

 (g) Multi-agent trajectories within combination 7. (h) Multi-agent trajectories within combination 8.

 (i) Multi-agent trajectories within combination 9. (j) Multi-agent trajectories within combination 10.

Fig. 5.21. MA-Spread Mountain 1: Multi-agent path combination 1-10 for the final generation.

196

 (a) Multi-agent trajectories within combination 11. (b) Multi-agent trajectories within combination 12.

 (c) Multi-agent trajectories within combination 13. (d) Multi-agent trajectories within combination 14.

 (e) Multi-agent trajectories within combination 15. (f) Multi-agent trajectories within combination 16.

 (g) Multi-agent trajectories within combination 17. (h) Multi-agent trajectories within combination 18.

 (i) Multi-agent trajectories within combination 19. (j) Multi-agent trajectories within combination 20.

 Fig. 5.22. MA-Spread Mountain 1: Multi-agent path combination 11-20 for the final generation.

197

 (a) Multi-agent trajectories within combination 21. (b) Multi-agent trajectories within combination 22.

 (c) Multi-agent trajectories within combination 23. (d) Multi-agent trajectories within combination 24.

 (e) Multi-agent trajectories within combination 25. (f) Multi-agent trajectories within combination 26.

 (g) Multi-agent trajectories within combination 27. (h) Multi-agent trajectories within combination 28.

 (i) Multi-agent trajectories within combination 29. (j) Multi-agent trajectories within combination 30.

Fig. 5.23. MA-Spread Mountain 1: Multi-agent path combination 21-30 for the final generation.

198

MOUNTAIN

Spread

COMBINATION

PATH

LENGTH

(meters)

ALTITUDE

COST

(meters)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

ERROR

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no breach)

TERRAIN

COVERAGE

(% free space)

SENSORY

DATA

OVERLAP

(grid block

overlap)

1 775.94 97.63 4097.00 4.95 0.02 0.00 7837.64 502.00 46.00 22210.00 2533.49 18.00

2 819.03 97.26 4736.00 5.02 0.02 0.00 8388.11 678.00 0.00 31671.00 1630.52 17.00

3 827.79 101.44 4251.00 5.62 0.02 1.65 8090.87 473.00 34.00 26051.00 2874.54 17.00

4 802.37 98.19 4591.00 4.84 0.02 0.00 8123.32 558.00 0.00 27796.00 2834.86 19.00

5 860.49 98.84 4457.00 5.56 0.02 0.00 8834.80 487.00 264.00 21756.00 2655.35 20.00

6 809.20 98.50 4227.00 5.15 0.02 0.00 8842.75 482.00 278.00 30449.00 4055.77 16.00

7 791.09 97.71 4079.00 5.60 0.02 1.78 8138.84 455.00 222.00 26681.00 2685.42 20.00

8 781.37 96.63 3969.00 5.42 0.02 0.00 8318.60 533.00 462.00 27512.00 3032.11 19.00

9 797.93 95.26 4227.00 6.18 0.01 2.37 9846.23 487.00 622.00 28386.00 5008.92 19.00

10 834.97 99.43 3911.00 6.01 0.02 0.00 8190.06 416.00 0.00 24761.00 1169.71 12.00

11 854.99 97.95 4881.00 5.74 0.02 6.66 8628.93 654.00 0.00 29430.00 2698.25 21.00

12 811.36 96.26 4561.00 5.73 0.01 1.94 10115.02 528.00 278.00 23470.00 7356.25 19.00

13 783.72 96.93 4172.00 4.90 0.02 0.00 8028.42 480.00 0.00 31138.00 2089.35 19.00

14 833.09 94.96 4724.00 5.54 0.01 1.62 10260.27 483.00 0.00 34395.00 4695.93 17.00

15 785.81 97.87 3989.00 5.69 0.02 0.04 8212.90 429.00 0.00 25294.00 2181.49 17.00

16 793.98 98.40 3992.00 5.93 0.02 0.00 8171.43 483.00 0.00 30473.00 1941.90 19.00

17 769.53 95.58 3913.00 5.48 0.02 2.40 8438.44 399.00 320.00 29903.00 2166.27 20.00

18 774.76 95.54 4029.00 5.39 0.02 0.00 8858.86 533.00 432.00 28775.00 3149.36 19.00

19 849.40 98.60 4720.00 6.88 0.02 0.00 9186.07 522.00 234.00 25863.00 4267.29 19.00

20 817.60 99.15 4187.00 6.50 0.02 0.16 8993.65 422.00 556.00 27923.00 4079.19 18.00

21 775.68 97.58 4079.00 4.66 0.02 0.00 7910.34 424.00 110.00 27073.00 1943.75 16.00

22 799.89 97.68 4506.00 4.68 0.02 0.00 8099.52 504.00 82.00 27802.00 2216.82 15.00

23 790.54 96.44 4146.00 5.60 0.01 2.01 9626.14 448.00 352.00 23124.00 6853.11 18.00

24 792.75 98.09 4233.00 5.04 0.02 0.00 8758.21 469.00 278.00 27758.00 3579.86 12.00

25 769.36 93.02 4571.00 6.21 0.01 1.89 11176.87 519.00 0.00 38357.00 6644.91 15.00

26 783.02 93.10 4167.00 5.98 0.01 2.13 10421.76 583.00 292.00 43183.00 4577.02 19.00

27 810.97 93.48 4377.00 5.83 0.02 0.07 9334.68 587.00 198.00 33249.00 3010.23 20.00

28 812.59 95.20 4563.00 6.69 0.01 2.50 11464.58 405.00 328.00 33934.00 4921.29 16.00

29 777.66 93.90 4380.00 5.24 0.01 0.00 9639.19 479.00 430.00 36343.00 4853.62 20.00

30 812.67 95.59 4889.00 5.77 0.02 1.62 9481.31 495.00 252.00 40634.00 2677.00 17.00

TABLE 5.15: MA-Spread MOUNTAINOUS TERRAIN FINAL GENERATION’S RESULTS.

199

5.4.3 TYPES OF SIMULATION MODELS

Here, three different simulation models are presented for the mountainous terrain. The first

mountainous terrain was discussed in Section 5.4.1-5.4.2. This section compares the

performance of the algorithm across two more terrains. These environments vary in number

of randomly placed high peaks. Each terrain also varies in size. Table 5.16 shows the

differences between these models. The algorithm is sped up by increasing the maximum

distances between two neighbouring path nodes within Terrain 2 and 3. Only nodes that

are more than 20 meters apart are padded with additional nodes between them. Similarly,

a path in Terrain 2 and 3 spaces is only sampled once to generate a smooth spline.

Like the previous two test spaces, the results for the Terrain 2 and 3 in Table 5.17-5.18

shows that the algorithm struggles to minimize the spline deviation error when the

distances between two nodes are increased. One difference in this test space is that the

objective value for flight height of a team of quadrotors also shows a slight increase.

Despite this, the results show that the other 10 objectives are minimized at a larger

percentage for Terrain 2 and 3 when compared to Terrain 1. These results show that the

algorithm can minimize the values for at least 10 objectives for different terrains with

different path resolution and running time. It able to perform across smaller and larger sized

terrains with high peaks. The agents can maintain the minimum neighbour-to-neighbour

distance of 2 meters across all three terrains.

The running time for all three terrains are shown in Table 5.19. The results here

show similarities with both the cityscape and indoor environments. The part of the

algorithm that requires the most running time in the mountainous terrain is also the

collision check process. The mountainous terrain is a highly challenging environment

because the entire grid is filled with obstacles in the form of large and small peaks. The

results in Table confirm this because more than 80% of the processing time is dedicated to

avoiding these peaks. One difference between the mountains in comparison to the other

test spaces is that Mountain 3 with low resolution paths required more time than the high-

resolution Mountain 1 terrain. This occurs because Mountain 3 challenges the path planner

in a unique way because it has a large and wide spread mountain peak in the centre of the

test

SIMULATION MOUNTAINOUS

TERRAIN 1

MOUNTAINOUS

TERRAIN 2

MOUNTAINOUS

TERRAIN 3

RANDOM LARGE PEAKS 15 6 6

TERRAIN SIZE 129x129x 107 65x65x 255 65x65x99m

MOUNTAIN SIZE 30m<length<80m 5m<length<48m 25m<length<40m

MAX DISTANCE BETWEEN NODES 2m 20m 20m

SPLINE SAMPLE RATE 5 samples/iteration 5 samples/simulation 5 samples/simulation

TABLE 5.16: MA-Spread MOUNTAINOUS TERRAIN 1-3 PARAMETERS.

200

 (a) Top and side view of agent 1’s paths. (b) Top and side view of agent 2’s paths.

 (c) Top and side view of agent 3’s paths. (d) Top and side view of agent 4’s paths.

TABLE 5.17: MA-Spread MOUNT 2: MANY-OBJECTIVES OPTIMIZATION RESULTS.

 (a) Top and side view of agent 1’s paths. (b) Top and side view of agent 2’s paths.

 (c) Top and side view of agent 3’s paths. (d) Top and side view of agent 4’s paths.

TABLE 5.18: MA-Spread MOUNT 3: MANY-OBJECTIVES OPTIMIZATION RESULTS

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 1709.66 212.60 564.00 47.49 0.85 5.90 1711.45 250.00 622.00 2980.00 449.26 28.00

mean 1026.34 180.29 322.93 33.30 0.53 2.19 995.48 42.47 81.87 1129.50 108.79 16.23

min 572.85 150.07 110.00 16.25 0.24 0.00 379.20 4.00 0.00 435.00 5.10 6.00

61

max 690.26 198.78 122.00 10.26 1.36 1.67 450.92 126.00 22.00 547.00 56.33 12.00

mean 538.58 189.13 67.93 7.89 0.86 0.21 213.55 79.07 8.53 392.23 12.67 6.70

min 450.22 176.03 30.00 5.63 0.57 0.00 107.27 68.00 0.00 270.00 1.33 1.00

 % 47.52 -4.90 78.96 76.31 -62.26 90.51 78.55 -86.18 89.58 65.27 88.35 58.72

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 948.30 78.55 556.00 34.21 0.61 6.31 1396.20 137.00 582.00 2024.00 225.49 13.00

mean 609.09 70.16 321.07 23.70 0.33 2.62 937.32 21.50 83.40 1083.43 42.25 7.40

min 325.64 57.81 26.00 6.48 0.17 0.00 138.79 3.00 0.00 275.00 0.46 3.00

84

max 402.00 76.86 93.00 8.47 0.74 3.38 428.68 19.00 42.00 558.00 42.50 10.00

mean 324.95 71.07 51.23 6.70 0.57 0.74 214.70 6.50 21.27 379.50 7.97 3.00

min 272.61 64.06 18.00 4.96 0.40 0.00 115.55 4.00 4.00 240.00 0.00 0.00

 % 46.65 -1.30 84.04 71.73 -72.73 71.67 77.09 69.77 74.50 64.97 81.14 59.46

Fig. 5.24. MA-Spread Mountain 2: Final generation’s multi-agent unique trajectories.

Fig. 5.25. MA-Spread Mountain 3: Final generation’s multi-agent unique trajectories.

start

goal

start

goal

start goal

start

goal

start

goal

start goal

start goal

start

goal

201

space. This reduces the amount of free space across the terrain which encourages paths that

move in similar directions. The algorithm will continue to perform collision checks as it

searches for diverse paths. This results in a much longer running time in comparison to

Mountain 2. These results show that reducing the processing time may not be as simple as

reducing the resolution of a planned path. The running time can also be influenced by the

complexity of the test space as well.

MA-SPREAD

ALGORITHM MOUNT 1

(sec)

MOUNT 2

(sec)

MOUNT 3

(sec)

GA + MA-RRF Repair + DRMOO 1664.12 644.60 3569.16

GA 3.80 0.23 % 1.24 0.19 % 9.26 0.26 %

MA-RRF Repair 131.12 7.88 % 241.24 37.42 % 1427.64 40.00 %

PD Control System 146.62 8.81 % 75.00 11.64 % 63.59 1.78 %

Spread objectives 178.90 10.75 % 86.24 13.38 % 72.58 2.03 %

Collision Check 1330.75 79.97 % 521.02 80.83 % 3387.32 94.91 %

5.5. MA-FORMATION DIMENSIONALITY REDUCED MANY-OBJECTIVES

PARAMETERS

Firstly, the variables within the dimensionality reduced many-objectives optimization for

Cityscape 1, Indoor 1 and Mountain 1 is shown in Figure 5.26 and 5.27. Table 5.20 shows

the constants within the MA-Formation application. The approximation of well minimized

and maintenance of diverse solutions is achieved through the combination of

dimensionality reduced ranking as well as adaptive niching. Each objective subset is run

during for 5 iterations with a singular run of the full set of objectives. These figures show

the changes that occur within the current population in terms of dominance and diversity.

These parameters show if the population remains at least as diverse as the initial MA-RRF

population. It also describes if the dimensionality reduced many-objectives ranking process

can increase the selection pressure within each generation.

Figure 5.26 presents the number of nondominated solutions that are obtained at

each generation. It shows that there are reoccurring peaks across generations. These peaks

represent the large amount of dominant solutions within the population when the full

objective set is applied. In this case, diverse solutions are favoured over well minimized

solutions. The ranking of solutions based on dominance is possible post dimensionality

reduction. The lower peaks show that a smaller number of solutions are nondominated

when objective subsets are applied instead. This shows that the dimensionality reduced

objective subsets will increase the selection pressure by reducing the number of dominant

solutions. It allows the algorithm to slowly move closer towards both local and global

optima.

Figure 5.27 shows the changing values of the adaptive niche radius. The radius is

capable of adapting to the level of diversity within the current population. This process

TABLE 5.19: MA-Spread MOUNTAINOUS TERRAIN 1-3 RUNNING TIME.

202

maintains representative solutions of various clusters across the generations. The average

distance between the solutions and their nearest neighbours are maintained or increased

throughout the generations. The only environment that shows a decline in its average

distance is the mountainous terrain. In such cases, it is possible for the end user to pick a

different termination point if a well spread set of the solutions is highly important.

5.6. MA-FORMATION ACROSS A HIGH-RISE CITYSCAPE

First, the algorithm is applied within the high-rise cityscape environment. There are three

varieties of information that are provided to the end user. These are tables, graphs and

imagery. Figure 5.28-5.29 shows the progression of the objective values at each generation

for Cityscape 1. Next, Table 5.21 shows the average cost values of the entire formation

reference trajectory population for the final generation. The formation reference paths for

the quadrotors are presented in Figure 5.30. Lastly, Figure 5.31-5.33 shows the various

formation structures that are within the final population. Table 5.22 is attached to compare

of these combinations in terms of their trade off values for all objective functions. Post

determination of the best combination for the end user needs can be performed based on

these values. Here, we evaluate the best and worst choices between the presented formation

configurations. This section shows that the hybridized algorithm successfully produces a

collection of formation reference trajectories. All of the formation configurations are well

optimized and have different advantages.

5.6.1 MANY OBJECTIVES VALUES

Similar to the MA-Spread application, the termination point is dependent on two factors.

The first is the amount of cost minimization. The second criterion is the level of diversity

within the population. Here, most objectives required more than 50 generations to reach a

minimal value. The mean, max and min values for each objective across 68 generations are

shown in Figure 5.28-5.29. The figures show that all objectives have reduced in value when

compared to the initial MA-RRF path population.

10 20 30 40 50 60 70 80
0

10

20

30

GENERATIONS

MOUNTAINOUS TERRAIN

10 20 30 40 50 60 70 80 90 100
0

10

20

30

N
U

M
B

E
R

 O
F

 N
O

N
D

O
M

IN
A

T
E

D
 S

O
L

U
T

IO
N

S

HIGHLY CLUTTERED INDOOR
10 20 30 40 50 60

0

10

20

30

NONDOMINATED SOLUTIONS

HIGH RISE CITYSCAPE

10 20 30 40 50 60
0

1

2

3

N
IC

H
E

 V
A

L
U

E

ADAPTIVE NICHE

HIGH RISE CITYSCAPE

10 20 30 40 50 60 70 80 90 100
0

1

2

3
HIGHLY CLUTTERED INDOOR

10 20 30 40 50 60 70 80
0

1

2

3

GENERATIONS

MOUNTAINOUS TERRAIN

Fig. 5.26. Number of dominant solutions within the populations.

Fig. 5.27. Adaptive niche radius across generations.

203

(a) Path length objective values across generations. (b) Flight height objective values across generations.

(c) Goal deviations objective values across generations. (d) Jerk cost objective values across generations.

(e) Spline deviation error objective values across generations. (f) Time optimality objective values across generations.

 (g) Flight time objective values across generations. (h) Formation scaling ratio objective values across generations.

10 20 30 40 50 60

4000

6000

8000

10000

12000

14000

GENERATIONS

P
A

T
H

 L
E

N
G

T
H

 (
m

)

OBJECTIVE 1

mean

min

max

10 20 30 40 50 60
20

40

60

80

100

120

140

160

GENERATIONS

F
L

IG
H

T
 H

E
IG

H
T

 (
m

)

OBJECTIVE 2

mean

min

max

10 20 30 40 50 60

1000

2000

3000

4000

5000

6000

7000

8000

GENERATIONS

G
O

A
L

 C
O

S
T

 (
n

o
d

e
s
)

OBJECTIVE 3

mean

min

max

10 20 30 40 50 60
50

100

150

200

250

GENERATIONS

J
E

R
K

 C
O

S
T

 (
m

/s
3

)

OBJECTIVE 4

mean

min

max

10 20 30 40 50 60
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

GENERATIONS

S
P

L
IN

E
 D

E
V

IA
T

IO
N

 (
m

)

OBJECTIVE 5

mean

min

max

10 20 30 40 50 60

5

10

15

20

25

GENERATIONS

T
IM

E
 O

P
T

IM
A

L
IT

Y
 (

 r
a

ti
o

)

OBJECTIVE 6

mean

min

max

10 20 30 40 50 60

1

2

3

4

5

6

7

8

9

x 10
4

GENERATIONS

F
U

E
L

 C
O

S
T

 (
s
e

c
)

OBJECTIVE 7

mean

min

max

10 20 30 40 50 60
0

5

10

15

20

GENERATIONS

F
O

R
M

A
T

IO
N

 S
C

A
L

IN
G

(r

a
ti
o

)

OBJECTIVE 8

mean

min

max

Fig. 5.28. MA-Formation Cityscape 1: Progression of the objectives 1-8 across generations.

204

(e) Safety zone breaches objective values across generations. (f) Formation changes objective values across generations.

(g) Formation maintenance objective values across generations. (h) Formation rise time objective values across generations.

TABLE 5.20: MA-FORMATION PARAMETERS

Table 5.21 shows that all the 12 objective functions have been well minimized. Two

objectives were minimized with less than 30% reduction in value. The altitude cost is

lessened by 14% whereas the spline deviation cost is lowered by 10%. All the other

objectives are minimized by a much larger percentage. The collective path length is

reduced by 33%. This means that the final generation’s multi-agent formation trajectories

are shorter than the initial MA-RRF paths. The number of goal node deviations and flight

time is also lessened by 38%. Similarly, the quadrotors can fly at a speed that produces

optimal flight time. This leads to a reduction of 51% for the time optimality cost. All of the

formation trajectories are able to avoid obstacles but there are still some safety zone

breaches. The amount of safety zone breaches is lowered by 30%. The formation scaling

cost and rise time is lessened by 66%. The number of formation shape changes is also

reduced by 67%. Lastly, the number of formation shape violations is reduced by 54%.

10 20 30 40 50 60

2000

4000

6000

8000

10000

12000

14000

16000

GENERATIONS

S
A

F
E

T
Y

 R
A

N
G

E
(n

o
 b

re
a

c
h

)

OBJECTIVE 9

mean

min

max

10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

GENERATIONS

F
O

R
M

A
T

IO
N

 D
E

S
IG

N
(n

o
 v

a
ri

a
ti
o

n
s
)

OBJECTIVE 10

mean

min

max

10 20 30 40 50 60
0

5

10

15

20

GENERATIONS

F
O

R
M

A
T

IO
N

 M
A

IN
T

A
IN

A
N

C
E

(n
o

 v
io

la
ti
o

n
s
)

OBJECTIVE 11

mean

min

max

10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

GENERATIONS

F
O

R
M

A
T

IO
N

 R
IS

E
 T

IM
E

 (
s
)

OBJECTIVE 12

mean

min

max

Description Value Description Value Description Value Description Value

Population size 30 Fyetech Agents Maximum Fuel 10mins g 9.81ms-2 IYY 0.0086 kgm2

Selection Rate 0.5 Similarity Threshold 32.5% b 3.13x10-5 IZZ 0.0172kgm2

Safety Zone Obstacles

Boundary
 obs 6m MA-RRF Max Repair Iterations 100

d 9x10-7
c 1

Number of Gaui 330X-S

Agents
4 samplesR [city, indoor, mount] [5,2.5,4] m

m 0.4794kg
threshold 0.8

Gaui 330X-S Agents

Maximum Fuel
15mins Default Number of Agents/Row 4

l 0.225m
dform 2m

Number of Fyetech Agents 4 Default Number of Columns 2 IXX 0.0086 kgm2 [kp , kd] [0.14,0.08]

Fig. 5.29. MA-Formation Cityscape 1: Progression of the objectives 9-12 across generations.

205

ITER

PATH

LENGTH

(meters)

ALTITUDE

COST

(meters)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

SAFETY

RANGE

(no breach)

Formation

SCALING

(ratio)

Formation

DESIGN

(no variations)

Formation

MAINTAINANCE

(no violations)

Formation RISE

TIME

(sec)

1

max 13872.00 155.57 8383.00 259.16 0.25 13.13 44726.00 14974.00 22.42 43.00 20.00 167.56

mean 7410.10 105.44 4789.20 132.45 0.20 7.20 27569.00 8658.50 10.36 20.13 10.17 71.14

min 3987.20 75.93 2246.00 78.20 0.13 2.34 12404.00 5825.00 3.25 6.00 4.00 22.24

68

max 7504.40 141.67 5397.00 125.17 0.24 14.76 35182.00 9503.00 7.08 14.00 15.00 52.40

mean 4942.30 90.78 1997.20 82.21 0.18 3.56 16956.00 6067.90 3.49 6.70 4.70 24.36

min 3621.60 61.40 1249.00 65.01 0.13 1.64 11091.00 3097.00 0.75 1.00 0.00 3.51

 %
33.30 13.90 58.30 37.93 10.00 50.56 38.50 29.92 66.31 66.72 53.79 65.76

TABLE 5.21: MA-Formation HIGH RISE CITYSCAPE 1 EXPERIMENTAL RESULTS.

206

5.6.2 TRAJECTORY POPULATION

The diverse set of formation reference trajectories within the final generation of Cityscape

1 is shown in Figure 5.30. It shows that the paths are well spread across the environment

and offer then end user a variety of options. It also has path nodes at various heights across

the cityscape space. These formation reference trajectories will be sued to generate the

formation shapes. These formation structures will then generate independent paths for all

agents. Figure 5.31-5.33 shows the various trajectories for 8 quadrotors that are flying in

formation.

 (a) Top view of formation reference paths within final generation. (b) Side view of formation reference paths within final generation.

First, the algorithm is applied within the Cityscape 1. The results show that formation path

10 as defined in 5.31(j) produces the shortest paths for all 8 agents. This is proven in its

image as well. The quadrotors will fly across the most direct route towards their goal node.

Next, configuration 28 has the minimal value for the height cost. Its image in 5.31(h) shows

that this path has a majority of nodes across the lower parts of the terrain.

The 6th formation configuration has the lowest jerk cost and the least number of

goal node deviations. 5.31(f) displays a path that isn’t the most direct route but it often

leans towards the destination point as it moves from node to node. The image also shows

that the agents do not perform extremely sharp turns whilst flying across sharp building

corners. Then, the data confirms that configuration 1 is the path that offers the least spline

deviation error. It also has the minimum value for the four formation-based objective

functions.

Fig. 5.31(a) shows that configuration 1 is a path that is easy to track. Its image also

proves that it has the least number of formation shape changes with only one transformation

from the default to danger zone formation structure. The single file formation shape proves

to be a simple shape to maintain since this reference path has the minimal value for the

formation maintenance, scale ratio and rise time objectives.

Fig. 5.30. MA-Formation Cityscape 1: Final generation’s multi-agent unique formation reference trajectories.

start

goal

207

(a) Formation trajectories within configuration 1. (b) Formation trajectories within configuration 2.

(c) Formation trajectories within configuration 3. (d) Formation trajectories within configuration 4.

(e) Formation trajectories within configuration 5. (f) Formation trajectories within configuration 6.

(g) Formation trajectories within configuration 7. (h) Formation trajectories within configuration 8.

(i) Formation trajectories within configuration 9. (j) Formation trajectories within configuration 10.

 Fig. 5.31. MA-Formation Cityscape 1: Multi-agent formation configuration 1-10 for the final generation.

208

(a) Formation trajectories within configuration 11. (b) Formation trajectories within configuration 12.

(c) Formation trajectories within configuration 13. (d) Formation trajectories within configuration 14.

(e) Formation trajectories within configuration 15. (f) Formation trajectories within configuration 16.

(g) Formation trajectories within configuration 17. (h) Formation trajectories within configuration 18.

(i) Formation trajectories within configuration 19. (j) Formation trajectories within configuration 20.

 Fig. 5.32. MA-Formation Cityscape 1: Multi-agent formation configuration 11-20 for the final generation.

209

(a) Formation trajectories within configuration 21. (b) Formation trajectories within configuration 22.

(c) Formation trajectories within configuration 23. (d) Formation trajectories within configuration 24.

(e) Formation trajectories within configuration 25. (f) Formation trajectories within configuration 26.

(g) Formation trajectories within configuration 27. (h) Formation trajectories within configuration 28.

(i) Formation trajectories within configuration 29. (j) Formation trajectories within configuration 30.

 Fig. 5.33. MA-Formation Cityscape 1: Multi-agent formation configuration 21-30 for the final generation.

210

FORMATION

PATH

LENGTH

(meters)

ALTITUDE

COST

(meters)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

Formation

SCALING

(ratio)

SAFETY

RANGE

(no breach)

Formation

DESIGN

(no variations)

Formation

MAINTAINANCE

(no violations)

Formation

RISE TIME

(sec)

1 3881.78 69.11 1668.00 67.38 0.13 2.46 20619.32 0.75 4732.00 1.00 0.00 3.51

2 4222.73 87.73 1311.00 75.41 0.14 1.75 14367.82 2.08 6943.00 3.00 1.00 10.92

3 4842.24 77.44 1837.00 84.89 0.18 1.65 12362.06 2.42 5843.00 5.00 3.00 18.79

4 4508.10 103.55 1736.00 74.58 0.19 3.73 20957.01 3.25 6052.00 7.00 6.00 24.24

5 4811.37 100.96 1547.00 76.21 0.18 1.76 11842.05 2.42 5336.00 5.00 3.00 14.97

6 4133.84 72.09 1249.00 65.01 0.14 1.81 13448.12 2.08 6653.00 3.00 1.00 11.05

7 5336.90 88.91 2202.00 83.26 0.21 3.62 15060.34 7.08 5117.00 13.00 5.00 52.40

8 4029.60 79.52 1407.00 71.39 0.15 2.29 16998.73 2.08 6719.00 3.00 1.00 10.92

9 5500.35 131.01 1538.00 82.56 0.24 3.78 18775.72 4.92 5047.00 11.00 12.00 38.29

10 3621.64 90.93 1318.00 69.14 0.15 4.10 24913.41 2.75 7671.00 4.00 4.00 14.03

11 4167.28 68.17 1428.00 73.58 0.18 2.65 14320.98 2.92 6355.00 6.00 5.00 20.32

12 4315.16 80.76 1446.00 75.61 0.19 3.05 15783.24 3.25 6682.00 7.00 7.00 24.64

13 4543.93 93.67 1840.00 77.75 0.18 2.41 14519.76 2.92 5808.00 6.00 4.00 21.73

14 4317.83 82.46 1449.00 75.33 0.14 1.65 14021.98 2.08 6925.00 3.00 1.00 11.05

15 5147.14 106.61 2403.00 97.52 0.16 4.35 17313.23 5.08 7686.00 9.00 4.00 32.60

16 4885.22 87.98 1598.00 75.22 0.19 2.09 12931.85 2.92 5791.00 6.00 5.00 22.50

17 6575.93 113.59 2973.00 113.85 0.20 5.22 22374.67 4.75 6487.00 10.00 7.00 40.54

18 7504.35 90.76 5397.00 125.17 0.16 14.76 35182.02 6.42 9503.00 11.00 15.00 39.37

19 4972.19 71.16 1892.00 88.90 0.22 3.77 12806.65 4.42 4053.00 9.00 9.00 36.35

20 5449.11 85.65 2303.00 85.46 0.16 2.66 16567.31 1.75 6452.00 3.00 1.00 10.65

21 5667.64 109.09 1593.00 84.78 0.19 2.63 14932.32 2.58 6299.00 6.00 3.00 27.04

22 5048.32 77.69 1919.00 85.08 0.19 2.04 12570.86 2.92 6221.00 6.00 5.00 23.03

23 4836.96 105.47 1641.00 77.15 0.18 1.87 11978.54 2.42 5384.00 5.00 3.00 15.08

24 4312.87 103.84 1672.00 74.31 0.18 3.02 15336.59 3.08 6050.00 6.00 6.00 18.92

25 5354.37 141.67 2520.00 99.53 0.18 6.50 23124.92 4.92 7086.00 10.00 7.00 31.48

26 5269.13 84.38 2176.00 93.10 0.23 3.54 11091.38 6.92 3097.00 14.00 5.00 52.35

27 4435.37 73.80 1745.00 79.49 0.19 2.25 11581.52 3.75 4616.00 7.00 5.00 25.35

28 6272.84 61.40 3408.00 81.04 0.16 4.98 22174.22 2.92 9462.00 6.00 2.00 21.27

29 5868.15 114.18 3365.00 82.42 0.16 8.04 27069.24 4.75 3616.00 9.00 4.00 32.19

30 4438.11 69.86 1336.00 71.05 0.19 2.48 13654.08 4.08 4352.00 7.00 7.00 25.32

TABLE 5.22. MANY-OBJECTIVES VALUES OF FINAL GENERATION MA-Formation SOLUTIONS WITHIN HIGH RISE CITYSCAPE 1

211

The data shows that choice 14 has the best value in terms of time optimality. The agents in

Fig. 5.32(d) are able to fly across their trajectories at a close to ideal flight speed. Lastly,

formation configuration 26 has the minimal value for flight time and number so safety zone

breaches. Fig. 5.33(f) displays multi-agent paths that do not come too close to the

boundaries of each building within the cityscape. This process of evaluation allows the end

user to pick the best choice based on their post processing preferences.

5.6.3 TYPES OF SIMULATION MODELS

This section compares three variations of the high-rise cityscape environments. The

differences between each environment is similar to the MA-Spread application in Table.

The results of the first cityscape environment was shown in Section 5.6.1-5.6.2. The data

for Cityscape 2 and 3 is shown in Table. The simulations that were performed with

Cityscape 2 and 3 prioritized lower running time in order to test the abilities of the

algorithm to plan paths across a variety of test spaces.

The images show that the formation paths were planned at high resolution where

the distance between two formation shapes is no more than 2 meters. This means that the

agents are constantly testing the environment for nearby obstacles and the best formation

shape to maintain. The downside of having a high-resolution formation planner is that it

requires more running time. This is because one path can contain a large number of nodes.

Likewise, the advantage of this system is its minimal spline deviation error. This is because

the tracking error isn’t propagated over large distances.

Figure 5.34-5.35 and Table 5.23-5.24 present the results for formation flight across

Cityscape 2 and 3. The hybridized multi-agent path planner is able to generate collision

free formation reference paths at the final generation for both environments. It is also able

to minimize the objective values for all but the spline deviation error. The reason for this

is because the node-to-node distances are much larger in order to minimize running time.

This can be remedied by reducing the node-to-node distances.

The results in Table 5.25 show the difference in running time for one generation in

the three different variations of the cityscape test spaces. The data shows that there is a

large difference between the results in the MA-Spread and the MA-Formation missions.

(a) Top view of formation reference paths within final generation. (b) Side view of formation reference paths within final generation.

Fig. 5.34. MA-Formation Cityscape 2: Final generation’s multi-agent unique formation reference trajectories.

start

goal

212

Here, a much smaller percentage of the running time is spent on collision check. This is

because the algorithm only generates one formation reference trajectory. Thus, it is enough

to perform collision check for one agent as opposed to the entire team. Another difference

between the two missions is the running time of the parallel run control system. The MA-

Formation mission requires more time to simulate the movements of eight agents.

The data shows that the formation planner, uses a large percentage of the running

time as well. This process includes sampling of the obstacle boundary planes and the

identification of the nearest sample point for each path node. This process can be time

consuming because each obstacle will contain many sampling points across it boundaries.

Then, the algorithm generates the obstacle free space surface for the formation shape

planning. This part is completed at a faster rate. Table shows that Cityscape 2 and 3 run

the MA-Formation algorithm at a much faster rate than Cityscape 1. As with the MA-

Spread simulations, the running time can be manipulated by reducing the resolution of the

path planning process.

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 13665.35 158.82 4851.00 134.13 1.24 3.76 8325.56 1025.00 27.75 78.00 34.00 571.91

mean 6699.28 105.24 2797.17 69.86 0.69 1.60 4180.25 316.47 13.53 36.00 14.63 258.56

min 2794.21 52.17 1005.00 23.22 0.37 0.35 1078.29 32.00 4.58 12.00 4.00 87.02

89

max 5825.25 142.51 1857.00 38.65 1.06 3.24 2631.69 793.00 11.25 28.00 15.00 211.09

mean 3298.11 87.49 1191.70 27.47 0.81 1.29 1317.84 195.00 6.17 15.80 5.77 119.28

min 2687.42 60.37 1007.00 19.01 0.52 0.82 1068.25 0.00 1.50 5.00 1.00 37.58

 % 50.77 16.87 57.40 60.68 -17.39 19.74 68.47 38.38 54.40 56.11 60.56 53.87

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 13902.94 157.59 5199.00 137.65 1.04 4.29 9500.91 954.00 19.00 52.00 27.00 376.06

mean 6640.78 108.86 2812.23 70.79 0.57 2.24 4414.45 220.90 10.75 29.03 12.83 201.42

min 2947.16 49.95 1067.00 18.39 0.40 0.40 1175.29 0.00 1.08 3.00 1.00 23.31

62

max 3834.34 142.56 1487.00 34.08 0.95 2.10 1533.00 486.00 8.50 23.00 13.00 178.55

mean 3050.60 73.48 1272.67 24.07 0.71 1.57 1335.17 141.87 4.54 12.00 5.13 86.06

min 2756.27 36.26 1020.00 16.40 0.40 1.15 1068.79 0.00 0.00 1.00 0.00 0.00

 % 54.06 32.50 54.75 66.00 -24.56 29.87 69.75 35.78 57.77 58.66 60.02 57.27

TABLE 5.24: MA-Formation HIGH RISE CITYSCAPE 3 EXPERIMENTAL RESULTS.

TABLE 5.23: MA-Formation HIGH RISE CITYSCAPE 2 EXPERIMENTAL RESULTS.

(a) Top view of formation reference paths within final generation. (b) Side view of formation reference paths within final generation.
Fig. 5.35. MA-Formation Cityscape 2: Final generation’s multi-agent unique formation reference trajectories.

start

goal

213

MA-FORMATION

ALGORITHM CITYSCAPE 1

(sec)

CITYSCAPE 2

(sec)

CITYSCAPE 3

(sec)

GA + MA-RRF Repair + DRMOO 3641.21 641.91 562.39

GA 1.14 0.03 % 0.34 0.05 % 0.52 0.09 %

MA-RRF Repair 144.82 3.98 % 62.27 9.70 % 35.67 6.34 %

Identify nearest obstacle sample node 835.80 22.95 % 117.19 18.26 % 123.56 21.97 %

Generate free space surface 527.60 14.49 % 109.92 17.12 % 63.21 11.24 %

PD Control System 848.87 23.31 % 210.25 32.75 % 216.66 38.52 %

Formation objectives 460.40 12.64 % 44.19 6.88 % 46.07 8.19 %

Collision Check 265.84 7.30 % 103.20 16.08 % 62.93 11.19 %

5.7. MA-FORMATION ACROSS A HIGHLY CLUTTERED INDOOR

ENVIRONMENT

The next simulated environment for the MA-Formation application is the highly cluttered

indoor space. This environment challenges the formation planner to design shapes that

continue to expand and contract across the entry points. It must be able to detect the

boundaries of all clutter and design the most suitable formation structure for each path

waypoint.

The results for the Indoor 1 test space are presented in this section. Figures 5.36

and 5.37 shows the progression of the 12 objectives across all generations for Indoor 1.

Table 5.26 shows the average values of all path combinations for each objective within the

final generation. The termination point for the indoor space is set at the 110th generation.

This is the point where most objectives have been sufficiently minimized and path diversity

is maintained. Next, the unique paths for each agent are shown in Figure 5.38. These paths

will form the path combinations that are shown within Figure 5.39-5.41. The cost values

for all 30 formation configurations are defined in Table 5.27.

5.7.1. MANY OBJECTIVES VALUES

Next, the objective values for the formation trajectories within the Indoor 1 environment

are presented in Figure 5.36-5.37. Out of all the experiments, this MA-Formation

application required more than 100 iterations for the objectives to settle into their minimum

values. In this case, almost all of the 12 objectives reached their minimal values after the

80th generation. This is because the environment is extremely challenging for formation

flight. The agents must expand and contract often as they fly across rooms. The agents

must do so much more often than the cityscape or mountainous terrain. This means that the

formation-based objective functions will influence the values of all of the other cost

functions as well.

Similar to the cityscape environment, Table 5.26 shows that all 12 objective

functions have been well minimized or maintained. The spline deviation error has been

maintained across generations. The altitude cost has a 26% reduction in value when

TABLE 5.25: MA-Formation HIGH RISE CITYSCAPE RUNNING TIME.

214

compared to the initial MA-RRF paths. Next, the agents fly at a closer to optimal speed

with a minimization of 48% in the time optimality ratio. All of the other objectives have

been minimized with a more than 50% reduction in value. The multi-agent quadrotor

formation path lengths are 59% shorter than the first generations. The number of goal

deviations is also reduced by a large amount of 76%. Each formation trajectory is less

aggressive since the jerk cost is minimized by 61%. The amount of fuel that is required by

the team of agents is lessened by 63%. An important objective within the indoor space is

the number of safety zone breaches. The formation planner is capable of producing

trajectories that avoid all obstacles. Still, some safety zones may be breached by the

formation structure. Here, the number of safety breaches is lowered by 57%. Lastly, all of

the formation-based objectives are reduced in value by more than 57% each.

(a) Path length objective values across generations. (b) Flight height objective values across generations.

(c) Goal deviations objective values across generations. (d) Jerk cost objective values across generations.

(e) Spline deviation error objective values across generations. (f) Time optimality objective values across generations.

0 10 20 30 40 50 60 70 80 90 100 110
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

GENERATIONS

P
A

T
H

 L
E

N
G

T
H

 (
m

)

OBJECTIVE 1

min

mean

max

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

GENERATIONS

F
L

IG
H

T
 H

E
IG

H
T

 (
m

)

OBJECTIVE 2

max

min

mean

0 10 20 30 40 50 60 70 80 90 100 110
0

1000

2000

3000

4000

5000

6000

7000

8000

GENERATIONS

G
O

A
L

 C
O

S
T

 (
n

o
d

e
s
)

OBJECTIVE 3

max

min

mean

0 10 20 30 40 50 60 70 80 90 100 110
20

40

60

80

100

120

140

160

180

200

GENERATIONS

J
E

R
K

 C
O

S
T

 (
m

/s
3

)

OBJECTIVE 4

max

mean

min

0 10 20 30 40 50 60 70 80 90 100 110
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

GENERATIONS

S
P

L
IN

E
 D

E
V

IA
T

IO
N

 (
m

)

OBJECTIVE 5

max

mean

min

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

GENERATIONS

T
IM

E
 O

P
T

IM
A

L
IT

Y
 (

ra
ti
o

)

OBJECTIVE 6

max

mean

min

Fig. 5.36. MA-Formation Indoor 1: Progression of the objectives 1-6 across generations.

215

(a) Flight time objective values across generations. (b) Formation scaling ratio objective values across generations.

(c) Safety zone breaches objective values across generations. (d) Formation changes objective values across generations.

(e) Formation maintenance objective values across generations. (f) Formation rise time objective values across generations.

0 10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

1.5

2

2.5

3
x 10

4

GENERATIONS

F
U

E
L

 C
O

S
T

 (
s
e

c
)

OBJECTIVE 7

max

mean

min

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

GENERATIONS

F
O

R
M

A
T

IO
N

 S
C

A
L

IN
G

 (
ra

ti
o

)

OBJECTIVE 8

max

mean

min

0 10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

GENERATIONS

S
A

F
E

T
Y

 R
A

N
G

E
 (

n
o

 b
re

a
c
h

)

OBJECTIVE 9

max

mean

min

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

40

45

GENERATIONS

F
O

R
M

A
T

IO
N

 D
E

S
IG

N
 (

n
o

 v
a

ri
a

ti
o

n
s
)

OBJECTIVE 10

max

mean

min

0 10 20 30 40 50 60 70 80 90 100 110
0

2

4

6

8

10

12

14

16

18

GENERATIONS

F
O

R
M

A
T

IO
N

 M
A

IN
T

E
N

A
N

C
E

 (
n

o
 v

io
la

ti
o

n
s
)

OBJECTIVE 11

max

mean

min

0 10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

GENERATIONS

F
O

R
M

A
T

IO
N

 R
IS

E
 T

IM
E

 (
s
e

c
)

OBJECTIVE 12

max

mean

min

Fig. 5.37. MA-Formation Indoor 1: Progression of the objectives 6-12 across generations.

216

ITER

PATH

LENGTH

(meters)

ALTITUDE

COST

(meters)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

SAFETY

RANGE

(no breach)

Formation

SCALING

(ratio)

Formation

DESIGN

(no variations)

Formation

MAINTAINANCE

(no violations)

Formation RISE

TIME

(sec)

1

max
9492.40 55.02 7077.00 191.65 0.30 10.51 23327.00 41386.00 22.17 42.00 17.00 147.44

mean
6999.70 35.21 4695.10 140.10 0.26 7.06 16766.00 28167.00 15.00 28.00 10.77 106.36

min
3022.90 9.95 1485.00 69.10 0.22 2.40 6919.40 7988.00 5.33 11.00 4.00 45.42

110

max 4765.80 48.79 2332.00 83.53 0.33 8.80 14009.00 20190.00 11.17 18.00 8.00 75.14

mean 2885.90 26.17 1137.90 54.95 0.26 3.64 6163.70 12150.00 6.39 11.43 4.40 44.16

min 2109.10 9.91 623.00 35.93 0.22 2.09 4303.50 6152.00 3.50 7.00 2.00 24.67

 %
58.77 25.67 75.76 60.78 0.00 48.44 63.24 56.86 57.40 59.18 59.15 58.48

TABLE 5.26: MA-Formation HIGHLY CLUTTERED INDOOR 1 EXPERIMENTAL RESULTS

217

5.7.2. TRAJECTORY POPULATION

Next, the unique formation reference trajectories within the final population for Indoor 1

are presented in Figure 5.38. The image shows that the path planner faced the same

challenges within the MA-Spread application. Many path nodes are placed at lower parts

of the terrain where there is less clutter. There are some nodes that are spread across the

higher parts of each room. Still, there is diversity in terms of room exploration. It can be

seen that the paths are well spread across the different rooms and entry points.

 (a) Top view of formation reference paths within final generation. (b) Side view of formation reference paths within final generation.

The independent trajectories for each quadrotor are shown in Figures 5.39-5.41. The

formation configuration that produces the shortest paths is option 28. This choice also has

the minimal value for both the jerk cost and spline deviation error. In Fig.5.41(h), it can be

seen that this path is the most direct route out of all the other options. The agents will be

able to fly beneath the clutter easily and move straight towards the goal node without many

sharp turns. Next, formation configuration 11 has the lowest value for the altitude cost.

Fig.5.40(a) clearly shows that the path nodes are mostly spread across the lower ends of

the rooms. Choosing option 19 means that the end user obtains multi-agent formation paths

that have the minimum value for the node-to-node goal deviation objective. Fig.5.40(i)

shows that this option doesn’t have the most direct paths but it keeps moving towards the

goal node as it progresses from node-to-node.

Fig.5.39(b) displays configuration 2 with formation paths that moves swiftly

towards the destination point. Here, the quadrotors will be capable of flying at a close to

ideal speed and reach within the minimum flight time. Option 4 has multiple advantages

such as having paths that produce the minimal values for safety zone breaches, number of

formation shape changes and scaling ratio. It can be seen in Fig.5.39(d) that this choice has

the least number of formation structure changes when compared to the others. Lastly,

option 1 has the lowest cost values for the formation maintenance and rise time objectives.

This means that the agents will be capable of maintaining the adaptive formation shapes

that were designed by the high-resolution formation shape planner.

Fig. 5.38. MA-Formation Indoor 1: Final generation’s multi-agent unique formation reference trajectories.

start

goal

218

(a) Formation trajectories within configuration 1. (b) Formation trajectories within configuration 2.

(c) Formation trajectories within configuration 3. (d) Formation trajectories within configuration 4.

(e) Formation trajectories within configuration 5. (f) Formation trajectories within configuration 6.

(g) Formation trajectories within configuration 7. (h) Formation trajectories within configuration 8.

(i) Formation trajectories within configuration 9. (j) Formation trajectories within configuration 10.

Fig. 5.39. MA-Formation Indoor 1: Multi-agent formation configuration 1-10 for the final generation.

219

(a) Formation trajectories within configuration 11. (b) Formation trajectories within configuration 12.

(c) Formation trajectories within configuration 13. (d) Formation trajectories within configuration 14.

(e) Formation trajectories within configuration 15. (f) Formation trajectories within configuration 16.

(g) Formation trajectories within configuration 17. (h) Formation trajectories within configuration 18.

(i) Formation trajectories within configuration 19. (j) Formation trajectories within configuration 20.

Fig. 5.40. MA-Formation Indoor 1: Multi-agent formation configuration 11-20 for the final generation.

220

(a) Formation trajectories within configuration 21. (b) Formation trajectories within configuration 22.

(c) Formation trajectories within configuration 23. (d) Formation trajectories within configuration 24.

(e) Formation trajectories within configuration 25. (f) Formation trajectories within configuration 26.

(g) Formation trajectories within configuration 27. (h) Formation trajectories within configuration 28.

(i) Formation trajectories within configuration 29. (j) Formation trajectories within configuration 30.

 Fig. 5.41. MA-Formation Indoor 1: Multi-agent formation configuration 21-30 for the final generation.

221

PATH

LENGTH

(meters)

ALTITUDE

COST

(meters)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

Formation

SCALING

(ratio)

SAFETY

RANGE

(no breach)

Formation

DESIGN

(no variations)

Formation

MAINTAINANCE

(no violations)

Formation

RISE TIME

(sec)

1 2814.99 39.79 1034.00 52.12 0.24 2.11 4887.58 4.25 8029.00 7.00 2.00 24.67

2 2328.44 9.96 823.00 42.01 0.28 2.09 4303.48 5.75 10808.00 10.00 3.00 34.56

3 2593.69 15.65 951.00 43.67 0.28 3.01 5223.73 5.92 12010.00 10.00 5.00 39.80

4 2551.88 34.65 675.00 52.75 0.24 2.83 4687.25 3.50 6152.00 7.00 3.00 27.38

5 2940.19 15.76 1531.00 53.53 0.26 4.21 6980.92 6.92 12827.00 12.00 4.00 42.31

6 2261.12 34.92 752.00 46.14 0.24 2.37 4351.05 4.17 6232.00 8.00 4.00 29.17

7 3325.23 25.79 1099.00 58.70 0.31 2.85 5486.34 7.83 13799.00 15.00 4.00 61.47

8 2398.95 15.97 910.00 50.93 0.26 2.52 5190.94 6.17 13217.00 11.00 3.00 43.96

9 2887.90 37.42 1485.00 65.27 0.27 3.10 5743.11 7.25 13405.00 13.00 5.00 52.03

10 2614.50 26.28 819.00 56.75 0.28 3.28 5409.61 6.25 7084.00 12.00 3.00 40.95

11 2211.27 9.91 882.00 41.36 0.26 2.65 4465.18 5.42 11976.00 9.00 3.00 31.39

12 3305.67 12.24 1731.00 57.51 0.24 4.68 7540.63 7.00 14131.00 14.00 5.00 48.84

13 2452.57 41.36 998.00 49.22 0.24 2.56 4752.95 4.50 6547.00 8.00 4.00 30.42

14 2977.96 34.10 1547.00 48.95 0.23 3.62 7550.83 5.50 17146.00 11.00 4.00 46.35

15 2936.27 28.10 882.00 51.20 0.28 2.47 4874.77 4.75 14141.00 8.00 3.00 30.80

16 3725.31 26.15 2332.00 82.97 0.25 5.75 8171.98 11.17 12406.00 18.00 8.00 68.10

17 2912.50 43.74 1372.00 60.03 0.23 4.07 6380.42 6.25 9717.00 10.00 4.00 39.00

18 2984.19 26.64 1164.00 52.28 0.26 4.05 6428.26 6.42 20190.00 12.00 5.00 44.42

19 3153.72 25.63 623.00 52.72 0.28 2.98 5315.24 6.33 13129.00 11.00 5.00 48.35

20 4765.83 26.89 1809.00 83.53 0.26 5.66 9053.17 10.25 15734.00 18.00 8.00 75.14

21 2375.88 14.13 744.00 41.49 0.24 3.02 4737.46 4.75 13336.00 8.00 3.00 28.75

22 3511.39 46.97 1429.00 67.26 0.27 8.81 14009.35 6.83 14119.00 13.00 6.00 52.32

23 2664.33 17.89 848.00 56.97 0.28 3.23 5561.15 8.75 17886.00 14.00 5.00 51.33

24 2826.59 14.78 968.00 53.74 0.33 3.41 5695.03 7.00 13719.00 12.00 4.00 44.37

25 3425.18 48.79 1427.00 65.71 0.26 6.99 10159.35 7.58 12713.00 15.00 7.00 58.43

26 2767.86 36.72 695.00 54.34 0.30 3.11 5453.25 9.42 11393.00 17.00 8.00 74.52

27 2184.48 13.49 716.00 42.89 0.26 2.87 4464.23 5.92 13005.00 11.00 3.00 45.72

28 2109.07 13.35 679.00 35.93 0.22 2.65 4496.40 4.25 10542.00 7.00 2.00 27.86

29 3697.76 19.96 1945.00 68.31 0.23 4.97 7682.65 6.25 12838.00 11.00 5.00 40.82

30 2873.60 28.16 1266.00 60.20 0.25 3.35 5853.55 5.50 6281.00 11.00 4.00 41.59

TABLE 5.27. MANY-OBJECTIVES VALUES OF FINAL GENERATION MA-Formation SOLUTIONS WITHIN HIGHLY CLUTTERED INDOOR 1

222

5.7.3 TYPES OF SIMULATION MODELS

This section compares three variations of the highly cluttered indoor environments. The

differences between each environment is similar to the MA-Spread application in Table.

The results of the first cityscape environment was shown in Section 5.7.1-5.7.2. The

simulations that were performed with Indoor 2 and 3 prioritized lower running time to test

the abilities of the algorithm to plan paths across a variety of test spaces.

The results for Indoor 2 and 3 are shown in Table 5.28-5.29. Figure 5.42-5.43 shows

that the algorithm is able to generate smooth formation reference trajectories across all

indoor environments. The data shows that the algorithm is able to minimize 10 of the

objectives at a larger percentage in comparison to Indoor 1. Similar to the other

environments, these lower resolution formation reference paths will produce a larger spline

deviation error which can be improved with a higher sampling rate like Indoor 1.

 TABLE 5.28: MA-Formation HIGH RISE INDOOR 2: EXPERIMENTAL RESULTS

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 7714.15 62.04 2961.00 87.74 2.45 4.42 8338.69 12589.00 13.92 27.00 12.00 125.35

mean 4667.89 42.74 1636.07 58.58 0.76 2.58 4774.93 5809.93 6.06 11.90 4.87 61.05

min 1356.00 21.63 102.00 14.31 0.24 0.26 550.32 714.00 0.33 1.00 0.00 4.08

78

max 2403.25 59.48 279.00 21.83 2.62 2.19 1063.02 2061.00 1.50 3.00 2.00 23.85

mean 1381.57 32.82 106.10 14.39 1.66 1.05 601.18 1012.63 0.50 1.17 0.10 5.47

min 642.85 17.00 39.00 8.89 1.02 0.34 424.39 322.00 0.00 1.00 0.00 0.00

 % 70.40 23.21 93.51 75.44 -118.42 59.14 87.41 82.57 91.75 90.17 97.95 91.04

(a) Top view of formation reference paths within final generation. (b) Side view of formation reference paths within final generation.

Fig. 5.42. MA-Formation Indoor 2: Final generation’s multi-agent unique formation reference trajectories.

(a) Top view of formation reference paths within final generation. (b) Side view of formation reference paths within final generation.

Fig. 5.43. MA-Formation Indoor 3: Final generation’s multi-agent unique formation reference trajectories.

start

goal

start

goal

223

TABLE 5.29: MA-Formation HIGH RISE INDOOR 3: EXPERIMENTAL RESULTS

Table 5.30 shows the running time per generation for all three indoor environments that

have different parameters. There is one major difference between the results of the indoor

and cityscape test space. Here, the formation planning across the indoor environment

requires the most processing time. The generation of the free space contour across all three

indoor variations uses a large percentage of time. Indoor 1 uses the most amount of total

time since it has the largest amount of clutter.

Like most of the simulations, the lower resolution formation paths in Indoor 2 and

3 have a much lower running time than Indoor 1. These results show that these parameters

can be changed to influence the performance of the algorithm.

MA-FORMATION

ALGORITHM INDOOR 1

(sec)

INDOOR 2

(sec)

INDOOR 3

(sec)

GA + MA-RRF Repair + DRMOO 5231.72 951.05 1019.16

GA 1.01 0.02 % 0.26 0.03 % 0.36 0.04 %

MA-RRF Repair 90.07 1.72 % 36.81 3.87 % 158.88 15.59 %

Identify nearest obstacle sample node 2621.95 50.12 % 338.72 35.62 % 301.19 29.55 %

Generate free space surface 1045.53 19.98 % 175.35 18.44 % 171.39 16.82 %

PD Control System 528.79 10.11 % 218.27 22.95 % 178.84 17.55 %

Formation objectives 426.61 8.15 % 56.05 5.89 % 69.25 6.79 %

Collision Check 256.44 4.90 % 122.05 12.83 % 282.07 27.67 %

5.8. MA- FORMATION ACROSS A MOUNTAINOUS TERRAIN

Lastly, this section presents the multi-agent quadrotor formation paths and their shapes

across the mountainous terrain. Similar to the indoor environment, this terrain challenges

the formation planner in terms of obstacle avoidance. Here, the number of obstacles is

significantly higher than the other test spaces. The gradual mountain peaks that are placed

all around the terrain can pose a threat to the quadrotors that are in the outer columns of

the formation structure. It is important that the formation planner is capable of generating

well minimized paths that do not collide with any peaks.

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 6799.37 71.35 2667.00 85.28 1.64 4.01 7179.17 14201.00 12.33 21.00 10.00 96.09

mean 4110.06 54.28 1431.63 50.93 0.75 1.99 3852.27 7057.10 5.32 9.67 2.90 48.09

min 1627.59 30.71 115.00 17.52 0.27 0.23 584.36 863.00 0.50 1.00 0.00 4.34

95

max 3395.39 63.00 395.00 33.01 2.38 3.73 1635.93 2109.00 2.00 4.00 1.00 29.29

mean 1915.91 35.66 190.00 20.11 1.69 1.32 762.49 1248.30 0.79 1.63 0.20 10.09

min 1253.74 17.56 98.00 13.56 1.02 0.76 568.65 647.00 0.00 1.00 0.00 0.00

 % 53.38 34.30 86.73 60.51 -125.33 33.49 80.21 82.31 85.15 83.14 93.10 79.02

TABLE 5.30: MA-Formation HIGHLY CLUTTERED INDOOR RUNNING TIME.

224

The different trade-off values for the 12 objective functions are evaluated in this

section. Firstly, the progression of the objectives across generations for Mountain 1 is

shown in Figure 5.44-5.45. Then, the minimization of the cost functions for the formation

trajectories in the final generation is shown in Table 5.31. The unique formation reference

paths for the agents are presented in Figure 5.46. Lastly, the images of each formation

configuration within the final population are shown in Figure 5.47-5.49. The cost trade-off

values for each configuration are shown in Table 5.32.

5.8.1. MANY OBJECTIVES VALUES

The mean, max and min values of all 12 objectives are shown below. Many of the

objectives reach its minimum point after the 80th generation. One obvious pattern that exists

in most objectives is the maintenance of the max value across 81 generations. Analysis of

the formation trajectory population shows that one path has been maintained through many

iterations. This path provides the maximum values for most of the objective functions. The

reason it was kept despite its disadvantages is because it is highly diverse in comparison to

the rest of the population.

The average values for the formation configuration population is shown in Table

5.31. The values of three objectives are reduced at less than 10%. The number of nodes at

higher parts of the mountainous terrain is lowered by 7%. Both the spline deviation error

and number of safety zone breaches are minimized by 5%. All of the formation-based costs

are minimized by less than 40%. The values of the rest of the many cost functions are

reduced by more than 40% in comparison to the initial MA-RRF path population. The

formation trajectories are 51% shorter in length. Similarly, the paths are more direct since

the number of goal node deviations is lessened by 42%. The agents in formation are

required to perform less aggressive turns with a reduction in jerk value of 50%. Lastly, the

quadrotors are able to fly at a more than 69% optimal speed as well as less than 61% fuel

consumption.

225

(a) Path length objective values across generations. (b) Flight height objective values across generations.

(c) Goal deviations objective values across generations. (d) Jerk cost objective values across generations

(e) Spline deviation error objective values across generations. (f) Time optimality objective values across generations.

10 20 30 40 50 60 70 80
500

1000

1500

2000

2500

3000

3500

GENERATIONS

P
A

T
H

 L
E

N
G

T
H

 (
m

)

OBJECTIVE 1

mean

min

max

10 20 30 40 50 60 70 80

45

50

55

60

65

GENERATIONS

F
L

IG
H

T
 H

E
IG

H
T

 (
m

)

OBJECTIVE 2

mean

min

max

10 20 30 40 50 60 70 80
1000

2000

3000

4000

5000

6000

GENERATIONS

G
O

A
L

 C
O

S
T

 (
n

o
d

e
s
)

OBJECTIVE 3

mean

min

max

10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

GENERATIONS

J
E

R
K

 C
O

S
T

 (
m

/s
3

)

OBJECTIVE 4

mean

min

max

10 20 30 40 50 60 70 80

0.15

0.2

0.25

0.3

GENERATIONS

S
P

L
IN

E
 D

E
V

IA
T

IO
N

 (
m

)

OBJECTIVE 5

mean

min

max

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

GENERATIONS

T
IM

E
 O

P
T

IM
A

L
IT

Y
(

ra
ti
o

)

OBJECTIVE 6

mean

min

max

Fig. 5.44. MA-Formation Mountain 1: Progression of the objectives 1-6 across generations.

226

(a) Flight time objective values across generations. (b) Formation scaling ratio objective values across generations.

(c) Safety zone breaches objective values across generations. (d) Formation changes objective values across generations.

(e) Formation maintenance objective values across generations. (f) Formation rise time objective values across generations.

10 20 30 40 50 60 70 80
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

GENERATIONS

F
U

E
L

 C
O

S
T

 (
s
e

c
)

OBJECTIVE 7

mean

min

max

10 20 30 40 50 60 70 80

1

2

3

4

5

6

GENERATIONS

F
O

R
M

A
T

IO
N

 S
C

A
L

IN
G

(r

a
ti
o

)

OBJECTIVE 8

mean

min

max

10 20 30 40 50 60 70 80

0.5

1

1.5

2

2.5

3
x 10

4

GENERATIONS

S
A

F
E

T
Y

 R
A

N
G

E
(n

o
 b

re
a

c
h

)

OBJECTIVE 9

mean

min

max

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

GENERATIONS

F
O

R
M

A
T

IO
N

 D
E

S
IG

N
(n

o
 v

a
ri

a
ti
o

n
s
)

OBJECTIVE 10

mean

min

max

10 20 30 40 50 60 70 80
1

2

3

4

5

6

GENERATIONS

F
O

R
M

A
T

IO
N

 M
A

IN
T

A
IN

A
N

C
E

(n
o

 v
io

la
ti
o

n
s
)

OBJECTIVE 11

mean

min

max

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

GENERATIONS

F
O

R
M

A
T

IO
N

 R
IS

E
 T

IM
E

 (
s
e

c
)

OBJECTIVE 12

mean

min

max

Fig. 5.45. MA-Formation Mountain 1: Progression of the objectives 5-12 across generations.

227

ITER

PATH

LENGTH

(meters)

ALTITUDE

COST

(meters)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

SAFETY

RANGE

(no breach)

Formation

SCALING

(ratio)

Formation

DESIGN

(no variations)

Formation

MAINTAINANCE

(no violations)

Formation

 RISE TIME

(sec)

1

max
3303.10 60.27 5844.00 68.98 0.24 11.25 16523.00 29666.00 5.67 11.00 6.00 38.44

mean
1698.50 53.74 3018.10 37.95 0.19 4.21 6821.60 11793.00 2.32 4.17 2.03 13.47

min
692.93 44.83 1488.00 14.27 0.14 1.29 1983.30 4187.00 0.75 1.00 1.00 2.69

81

max
2924.90 60.27 5250.00 59.51 0.22 5.55 12318.00 29666.00 3.00 5.00 3.00 17.61

mean
831.16 50.21 1759.20 18.96 0.18 1.30 2681.20 11172.00 1.78 2.93 1.43 9.03

min
597.27 44.85 1411.00 13.53 0.13 0.88 1892.70 4128.00 0.75 1.00 1.00 2.70

 %
51.07 6.57 41.71 50.04 5.26 69.12 60.70 5.27 23.28 29.74 29.56 32.96

TABLE 5.31: MA-Formation MOUNTAINOUS TERRAIN 1 EXPERIMENTAL RESULTS

228

5.8.2. TRAJECTORY POPULATION

The unique formation reference paths for Mountain 1 are displayed in different colours

within Figure 5.46. The image shows that each formation reference trajectory has nodes all

across the terrain. The trajectories that are designed for the mountainous terrain are more

simplistic and less diverse than the paths within the other test environments. This is due to

the large amount of free space between the mountain peaks. The initial paths before path

pruning are diverse in direction. The path pruning process removes redundant nodes and

causes the paths to converge towards the centre of the large open space. Due to this, unlike

other test environment, many paths share the minimal values for certain objectives. Still,

the algorithm succeeds in free space mapping and avoiding all of the small peak changes.

 (a) Top view of formation reference paths within final generation. (b) Side view of formation reference paths within final generation.

Lastly, the formation paths and their shapes for the mountainous terrain are shown in

Fig.5.47-5.49. Firstly, formation path 30 has the minimal value for the path length. Fig

5.49(j) shows that the paths are very direct and short in comparison to the other options.

The option with the most nodes at lower parts of the terrain is configuration 12. The data

can be seen and confirmed by Fig 5.48(b). Choice 4 has the lowest value for the goal

deviation cost. On the other hand, option 29 has the minimal jerk cost. Next, configuration

2 as shown in Fig 5.47(b) has the minimum value for both the spline deviation error and

formation rise time. It can be seen that the agents will only have to transition between two

shapes and fly across an easy to follow path.

Option 6 produces paths that allow the quadrotors to fly at close to ideal velocity

whereas choice 8 requires minimal fuel consumption. Configuration 1 is displayed in Fig

5.47(a). This path is lengthy in comparison to the other paths. The reason that this path was

maintained across generations is due to its diversity in direction. It also has the minimal

value for the formation shape scaling ratio. Lastly, formation configuration 5 has the lowest

values for the number of safety zone breaches, formation shape changes and maintenance.

Fig 5.47(e) shows that the agents will only have to morph into two different shapes. The

data that is presented within this section will aid the end user in their final choice of

formation trajectory.

Fig. 5.46. MA-Formation Mountain 1: Final generation’s multi-agent unique formation reference trajectories.

start

goal

229

(a) Formation trajectories within configuration 1. (b) Formation trajectories within configuration 2.

(c) Formation trajectories within configuration 3. (d) Formation trajectories within configuration 4.

(e) Formation trajectories within configuration 5. (f) Formation trajectories within configuration 6.

(g) Formation trajectories within configuration 7. (h) Formation trajectories within configuration 8.

(i) Formation trajectories within configuration 9. (j) Formation trajectories within configuration 10.

Fig. 5.47. MA-Formation Mountain 1: Multi-agent formation configuration 1-10 for the final generation.

230

(a) Formation trajectories within configuration 11. (b) Formation trajectories within configuration 12.

(c) Formation trajectories within configuration 13. (d) Formation trajectories within configuration 14.

(e) Formation trajectories within configuration 15. (f) Formation trajectories within configuration 16.

(g) Formation trajectories within configuration 17. (h) Formation trajectories within configuration 18.

(i) Formation trajectories within configuration 19. (j) Formation trajectories within configuration 20.

 Fig. 5.48. MA-Formation Mountain 1: Multi-agent formation configuration 11-20 for the final generation.

231

(a) Formation trajectories within configuration 21. (b) Formation trajectories within configuration 22.

(c) Formation trajectories within configuration 23. (d) Formation trajectories within configuration 24.

(e) Formation trajectories within configuration 25. (f) Formation trajectories within configuration 26.

(g) Formation trajectories within configuration 27. (h) Formation trajectories within configuration 28.

(i) Formation trajectories within configuration 29. (j) Formation trajectories within configuration 30.

Fig. 5.49. MA-Formation Mountain 1: Multi-agent formation configuration 21-30 for the final generation.

232

PATH

LENGTH

(meters)

ALTITUDE

COST

(meters)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

Formation

SCALING

(ratio)

SAFETY

RANGE

(no breach)

Formation

DESIGN

(no variations)

Formation

MAINTAINANCE

(no violations)

Formation RISE

TIME

(sec)

1 2924.93 60.27 5250.00 59.51 0.14 5.55 12318.18 0.75 29666.00 1.00 1.00 2.79

2 1105.06 58.57 2280.00 23.41 0.13 1.99 4743.08 0.75 8207.00 1.00 1.00 2.70

3 951.62 49.69 1653.00 23.70 0.18 1.39 2831.75 1.50 9109.00 2.00 1.00 6.74

4 614.41 48.36 1411.00 16.64 0.18 0.99 2018.02 1.25 9521.00 3.00 2.00 9.95

5 876.16 58.23 1859.00 17.45 0.15 1.15 2870.64 0.75 4128.00 1.00 1.00 3.07

6 713.92 52.29 1509.00 16.75 0.17 0.88 1895.92 1.50 6869.00 2.00 1.00 5.57

7 769.73 51.16 1687.00 17.78 0.15 1.03 2329.84 0.75 9180.00 1.00 1.00 2.73

8 752.21 52.52 1421.00 18.55 0.19 0.89 1892.70 1.25 5644.00 3.00 2.00 10.19

9 760.52 50.62 1723.00 17.98 0.14 1.12 2478.31 0.75 11033.00 1.00 1.00 2.72

10 636.00 45.22 1645.00 13.85 0.16 1.11 2219.50 1.50 14434.00 2.00 1.00 5.39

11 690.47 47.71 1549.00 16.31 0.18 1.07 2117.08 1.75 11661.00 3.00 1.00 9.05

12 705.04 44.85 1567.00 14.39 0.21 1.04 1934.22 2.50 15188.00 4.00 1.00 11.53

13 656.59 47.09 1425.00 17.06 0.22 1.02 2029.97 1.75 11629.00 5.00 3.00 17.61

14 613.38 47.31 1437.00 14.46 0.18 1.03 2025.87 1.75 11550.00 3.00 1.00 8.88

15 713.76 48.48 1612.00 15.35 0.20 1.09 2029.27 2.50 10644.00 4.00 1.00 11.63

16 711.69 46.67 1540.00 15.03 0.21 1.06 1947.43 2.50 12823.00 4.00 1.00 11.78

17 685.16 46.25 1579.00 16.38 0.21 1.08 2040.63 2.00 13261.00 4.00 2.00 12.58

18 710.73 46.58 1564.00 16.31 0.22 0.99 1951.60 2.75 12211.00 4.00 2.00 12.04

19 822.71 49.69 1791.00 17.77 0.21 1.35 2666.35 2.75 10261.00 5.00 2.00 14.20

20 687.28 48.10 1582.00 16.79 0.18 1.07 2109.43 2.25 12823.00 3.00 2.00 9.30

21 692.90 49.13 1602.00 17.41 0.18 1.36 2665.32 2.25 12100.00 3.00 2.00 9.39

22 972.52 51.53 2074.00 21.39 0.20 1.39 2785.92 3.00 12096.00 4.00 2.00 13.53

23 830.35 50.77 1677.00 21.05 0.20 1.27 2408.46 2.00 11055.00 4.00 2.00 13.36

24 768.07 52.27 1456.00 19.43 0.22 1.20 2195.93 2.50 7056.00 4.00 1.00 12.48

25 806.16 53.85 1516.00 17.95 0.22 1.03 2075.27 2.75 5984.00 4.00 2.00 12.80

26 716.47 52.65 1557.00 17.84 0.19 0.97 1940.41 1.25 5806.00 3.00 2.00 10.18

27 688.09 47.81 1551.00 16.38 0.18 1.09 2110.20 1.75 11428.00 3.00 1.00 9.01

28 1146.71 57.58 2217.00 24.71 0.15 1.82 3597.32 1.50 10734.00 2.00 1.00 5.53

29 614.79 45.12 1598.00 13.53 0.16 1.07 2186.60 1.25 14760.00 2.00 1.00 5.37

30 597.27 45.78 1443.00 13.70 0.18 1.05 2021.15 1.75 14298.00 3.00 1.00 8.80

TABLE 5.32. MANY-OBJECTIVES VALUES OF FINAL GENERATION MA-Formation SOLUTIONS WITHIN MOUNTAINOUS TERRAIN 1

233

5.8.3 TYPES OF SIMULATION MODELS

This section compares three variations of the mountainous terrain test space. The

differences between each environment is similar to the MA-Spread application. The results

of the first terrain was shown in Section 5.8.1-5.8.2. The simulations that were performed

with Terrain 2 and 3 prioritizes lower running time to quickly test the abilities of the

algorithm to plan paths across a variety of test spaces.

The data or Terrain 1 and 2 is shown in Table 5.33-5.34. The final formation

reference trajectories are also displayed in Figure 5.50-5.51. The images show that the

formation planes are able to design path nodes that avoid all mountain peaks successfully.

This was done by identifying the small and large peaks with accuracy. The values of ten

objectives are well minimized across generations. There is a slight increase in altitude cost

and spline deviation error. These results show that the algorithm is capable of adapting to

various terrains.

TABLE 5.33: MA-Formation HIGH RISE MOUNT 2: EXPERIMENTAL RESULTS.

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 4924.62 218.80 2131.00 79.87 2.17 5.91 5513.61 10621.00 11.42 34.00 21.00 220.70

mean 2152.87 182.17 1027.43 30.23 0.82 2.59 2443.22 3328.90 5.59 14.47 6.83 91.96

min 578.19 120.12 31.00 4.28 0.21 0.14 157.96 477.00 1.67 5.00 1.00 32.33

84

max 1489.84 227.98 311.00 17.92 2.21 3.89 551.64 1841.00 6.67 15.00 8.00 117.99

mean 1037.48 184.15 129.47 11.10 1.35 1.81 374.30 1021.33 4.24 9.67 3.57 71.06

min 511.88 150.67 5.00 2.76 0.63 0.29 71.85 72.00 0.50 1.00 0.00 7.19

 % 51.81 -1.09 87.40 63.28 -64.63 30.06 84.68 69.32 24.15 33.17 47.73 22.73

(a) Top view of formation reference paths within final generation. (b) Side view of formation reference paths within final generation.

Fig. 5.50. MA-Formation Mountain 2: Final generation’s multi-agent unique formation reference trajectories.

(a) Top view of formation reference paths within final generation. (b) Side view of formation reference paths within final generation.
Fig. 5.51. MA-Formation Mountain 3: Final generation’s multi-agent unique formation reference trajectories.

start

goal

start

goal

234

TABLE 5.34: MA-Formation HIGH RISE MOUNT 3: EXPERIMENTAL RESULTS.

Table 5.35 shows the running time for all three variations of the mountainous terrain for

the MA-Formation mission. The results here show similarities with the MA-Spread

mission across the mountainous terrains. It shows that the collision check for formation

flight also requires a large percentage of the running time. One exception is Mountain 2

which uses most of its running time on the parallel run control system for eight agents. It

also utilizes 10-20% of its running time on two of the formation planning algorithms.

As with the other simulations, these results show that the algorithm can minimize

the values of many objectives. It also shows that fast initial testing can be performed with

lower resolution paths.

MA-FORMATION

ALGORITHM MOUNT 1

(sec)

MOUNT 2

(sec)

MOUNT 3

(sec)

GA + MA-RRF Repair + DRMOO 2601.70 610.03 700.55

GA 4.28 0.16 % 0.42 0.07 % 0.83 0.12 %

MA-RRF Repair 266.95 10.26 % 23.00 3.77 % 70.65 10.08 %

Find nearest obstacle sample node 397.14 15.26 % 132.47 21.72 % 140.63 20.07 %

Generate free space surface 274.01 10.53 % 102.86 16.86 % 83.99 12.00 %

PD Control System 257.78 9.91 % 214.89 35.23 % 145.49 20.77 %

Formation objectives 118.94 4.57 % 53.99 8.85 % 36.60 5.22 %

Collision Check 1417.04 54.47 % 80.80 13.24 % 263.38 37.60 %

5.9 SUMMARY

This final chapter presented the simulation results for the MA-RRF, GA and DRMOO

algorithm across two different multi-agent quadrotor UAV missions. This path planner has

utilized algorithms that have the advantage of parallel processing. Here, a control system,

sampling based planner, evolutionary algorithm and many objectives optimization

algorithm are designed to run on any multi-thread system. Thus, the processing time for

both missions can be greatly reduced with a more advanced processing system.

The results show that the trajectory planning algorithm has successfully generated

a large collection of trajectories for multiple quadrotors within the MA-Spread application.

Firstly, the images prove that the path planner is capable of both high and low-resolution

ITER

PATH

LENGTH

(m)

ALTITUDE

COST

(m)

GOAL

COST

(nodes)

JERK

COST

(m/s3)

SPLINE

DEVIATION

(m)

TIME

OPTIMALITY

(ratio)

FUEL

COST

(sec)

NETWORK

TOPOLOGY

(no loss)

COLLISION

AVOIDANCE

(no collisions)

SAFETY

RANGE

(no

breach)

TERRAIN

COVERAGE

(no free)

space grids

SENSORY

OVERLAP

(no grid

block)

overlap

1

max 3436.49 83.81 2337.00 50.31 1.69 11.37 4985.10 12889.00 9.67 28.00 14.00 191.51

mean 1765.44 69.15 1192.97 24.74 0.56 4.53 2530.76 3593.73 3.05 9.00 4.50 54.42

min 480.30 40.67 64.00 2.69 0.19 0.11 71.19 148.00 0.00 1.00 0.00 0.00

56

max 1068.99 82.82 438.00 11.26 1.92 2.46 525.65 1318.00 4.00 10.00 5.00 77.59

mean 746.27 73.76 164.13 7.21 1.24 1.17 278.21 576.93 2.09 5.53 1.87 38.33

min 641.20 65.46 73.00 4.79 0.56 0.54 162.06 12.00 0.00 1.00 0.00 0.00

 % 57.73 -6.67 86.24 70.86 -121.43 74.26 89.01 83.95 31.48 38.56 58.44 29.57

TABLE 5.35: MA-Formation MOUNTAINOUS TERRAIN RUNNING TIME.

235

free space mapping. It is also able to extract collision free paths within all three test

environments. A large collection of multi-agent paths was generated by MA-RRF and GA.

These versions of the basic algorithm have been successfully modified for diverse path

generation. Secondly, the findings for MA-Spread show that the resources of all agents

have contributed towards each mission. It has optimized a team of quadrotors collectively

as opposed to individually. Thirdly, the motions of all four quadrotors were well estimated

through the closed-loop control system. Lastly, the results show that the 12 objectives for

MA-Spread task were either well minimized or maintained across generations.

Next, the outcome of the MA-Formation application is a multi-layer system that

successfully performs many-objectives optimization across 12 different objectives.

Initially, environment free space mapping and the creation of free space contours between

obstacles was accomplished. Next, the images show that both the MA-RRF and GA are

capable of generating a population of reference paths across all test environments. Then,

the results show that the dynamic formation planner is capable of designing formation

shape for all 8 agents accordingly. Here, the images prove that formation planner can work

in high resolution. This level of resolution is advantageous for the full obstacle avoidance

and the design of adaptive formation shapes. Later, the independent trajectories for each

agent were applied as input for the multi-agent control. Here, the estimated values of all

objectives aided in the ranking of each formation trajectory. Lastly, the many-objectives

optimization process was implemented through dimensionality reduction. The final results

show that the algorithm is able to find a diverse set of solutions for each scenario. Similarly,

all objectives are minimized or maintained without the extreme degradation of one cost

over the other. Thus, the end user was provided with a variation of solutions where

formation speed, rigidness or simplicity can be used as the final decision factor.

One important consequence of this chapter is that the end user is delivered all of

these findings in an easily interpretable manner in order to make a final decision. The data

is well organized and the images are in high resolution. All of these results will allow the

end user to successfully implement their own post-processing preferences.

236

CHAPTER 6: CONCLUSION

This research generated a large collection of optimized trajectories for multi-agent

quadrotors. The hybridized algorithm extracted trajectories with various trade-off values

for all agents without discrimination. This allows the user to check the availability of the

resources of all agents to contribute towards the completion of a task. This study created a

balance between diverse and optimal solutions through dimensionality reduction. The

results showed that the algorithm performs successfully in finding a diverse set of optimal

solutions within each environment. The end user is supplied with high resolution visual

imagery and well-organized data on the multi-agent quadrotor UAV trajectories. The

additional knowledge will assist the end user in making a final choice.

6.1. RESEARCH PURPOSE AND FINDINGS

The main goal of this study was to create a multi-agent quadrotor system of at least three

agents. The designed multi-agent quadrotor system must be capable of executing simple

tasks cooperatively. As the study progressed, these targets became either more refined or

expanded in terms of the study areas that it covered.

Firstly, a variety of cooperative tasks were explored. Some of the multi-agent

quadrotor missions that were explored were load lifting, target tracking as well as search

and rescue. Designing a separate system for these tasks proved to be time consuming and

complex. One of the themes that emerged from these various tasks is that they can be

divided into two distinct cooperative missions. This study finds that most multi-agent tasks

can be generalized into either spatially spread or formation flight. The purpose of this

research was realigned to design a standardized platform for most multi-agent missions.

Thus, the end user is awarded a high level of flexibility when implementing this platform

towards their desired mission.

Secondly, a mathematical model of the quadrotor must be used to simulate the

movements of each agent. In the beginning, an accurate representation of the quadrotor’s

body and rotor’s forces was implemented. An LQR control system was used to simulate

the changes in the quadrotor’s movements. This study finds that simulating a highly

accurate and minimal error system will require a much larger amount of time in comparison

to a more simplistic version. This delay is expanded further when multiple agents are

simulated simultaneously. It became necessary to find a balance between processing time

and accuracy. Here, the simplified model that is often adopted by researchers is run together

with a PD control system. Minimal jerk smooth splines are used to transform the paths

nodes into time-based trajectories. The purpose of this work evolved towards using a fast,

closed-loop control system that can be run in parallel and has minimal deviation error.

237

Next, it was important to simulate the rotational and translational direction that the

quadrotors were flying towards across a test environment. It is important to show through

imagery or data that all obstacles are avoided. The visual imagery will be easily understood

by users with different levels if knowledge about multi-agent UAVs. The data should show

if the agents are capable of reaching their desired end point. In the beginning, a simple 3D

plot with cones as obstacles was created to visualize the path that each agent was flying

across. It is fast, noncomplex and popular amongst many researchers. Next, this basic

environment was expanded towards creating a real-time moving simulation of the multi-

agent quadrotors. A high resolution indoor and forest environment was designed. Similarly,

accurate 3D model of the quadrotors was designed to run in real-time. This version proved

to require a high amount of processing speed. The findings from these two variations are

that a balance between high levels of visual animation and complexity must be struck. It is

still important that the test environments contain all of the complexities of real life test

spaces. The target of this research was changed to generating high resolution imagery that

can be studied post-processing. The structures and obstacles within the cityscape, indoor

and mountain environment mimic their real-life versions. The images contain all of the

important information that is required by the end user. A database also accompanies these

images. This database contains knowledge regarding the states of each agent, their exact

coordinates and objective values. It also shows if all obstacles are safety avoided.

Now, the main goal of this research was to design a multi-agent free space mapping

and path planning system. This planner must be capable of producing feasible paths for all

of the quadrotors. Initially, a variety of path planners were implemented. The basic shortest

path algorithm, virtual potential function (VPF), leader-follower formation flight and

consensus algorithm were all tested. Grid based mapping was utilized for mapping the free

space within the simulated test environments. The findings show that there was a tendency

for each path planner to perform better in certain tasks. Some planners were suited to spread

whereas others were ideal for formation flight. Similarly, some were more suitable for

generating one best path whereas the others were capable of extracting many paths.

Another issue was that some were too complex for a multi-agent system. Thus, the goal of

this research moved towards designing a highly flexible path planner that is a combination

of different planners. This planner can be standardized for both spread and formation flight.

It must also be able to generate a large collection of possible paths. The initial free space

mapping and path planning is quickly performed by the sampling-based MA-RRF planner.

Next, a more refined GA path planner is implemented for further generations. A virtual

structure formation planner is embedded after the path planning process for formation

planning.

238

Lastly, this research originally aimed to optimize certain objective functions. Many

researchers often implement popular objectives such as minimizing path length, error, fuel

consumption, agent-to-agent distances and collision avoidance. They consider the

environmental and mechanical limitations of their mission. The initial work within this

project implemented these objectives with an aggregated cost function. The findings

showed that there is a tendency for the minimization of certain objectives to be affected by

the others. The team was also required to produce predetermined preferences for the

objectives. This can be difficult for inexperienced researchers or drone pilots. The research

then expanded towards a more standardized platform that mathematically defines and

optimizes many objectives simultaneously. Thus, there was a strong motivation to design

a multi-agent system can be applied towards many missions, agents and test environments.

Many-objectives optimization is implemented in order to achieve this goal. The

optimization of many objectives produces an optimal and diverse collection of paths for

the end user.

6.2. RELATIONSHIP WITH PREVIOUS STUDIES

This study is able to provide some insight into trajectory planning for multi-agent

quadrotors. Some of the finding within this thesis can be in agreement with previous

research publications. On the other hand, there are some findings that can differ from the

conclusions of other published studies. The relationship between this thesis and previous

studies is presented within this section.

The first stage of any trajectory planning algorithm is the free space mapping

process. The MA-RRF sampling-based planner is applied within this research project. This

multi-tree algorithm was inspired by the different variations of the RRT planner that is

presented in [31]. Study [31] theorises that a multi-tree system can become highly complex.

The pseudocode within Chapter 3 confirms that the MA-RRF planner is tougher to

implement in comparison to the basic RRT. Still, the multiple trees are capable of fully

exploring the three different test environments with speed. The free space mapping and

path extraction process is also much faster than running the basic RRT planner sequentially

for each quadrotor. One study that applies multi-tree RRT is [49]. In this case, six trees

are grown from different locations within the test space. The findings in this research

project differ from the results of [49]. Their work requires the multi-tree algorithm to be

run multiple times in order to properly interpret the data. The results are aggregated in order

to produce short term paths. Chapter 3 of this thesis shows that it is possible to design long

term paths with a single run of the multi-tree system.

The authors of [48] also implement a multi-tree RRT system. Their planner includes

data sharing between multiple CPUs. In their system, all trees are rooted in the same

239

location. Each tree is generated by a different CPU. Their findings show that the shared

information between the different trees can be highly beneficial. It allows the trees to

corporate as they explore unknown test spaces. This method increased speed and

efficiency. The images and data within Chapter 3 show that the MA-RRF results are in

sync with [48]. In this thesis, the shared database between all trees was used during the

forest linking process. These MA-RRF multi-tree links encourage cooperation between the

different trees. Here, the nodes from multiple trees cooperate to create a single path. These

findings show that the shared information creates a cooperative MA-RRF planner that is

faster than an independent multi-tree RRT system.

Many researchers have chosen to use GA as a UAV trajectory planner. Some works

apply GA as a stand-alone path planner whereas others use it alongside other algorithms.

Path planning for quadrotor UAV using GA is presented by [109]. Their test space had

minimal obstacles and the final path was a straight line. Their findings show that GA was

run for more than 500 generations in order to find short term path nodes. Similarly, a

multiple coordinated agents’ coevolution EA (MCACEA) is applied within [112] to

generate paths for multiple UAVs. Their results also show that the path planner can require

almost 500-1000 generations in order to fully optimize the multi-agent trajectories. Initial

experimentation for this research project matches the conclusions of [109] and [112]. It

showed that using GA as a stand-alone free space mapping and planning algorithm will

require a longer processing time. The published work [111] implements a modified breeder

GA (BGA). Here, BGA is combined with Bspline and VPF in order to generate UAV path

nodes across mountainous terrains. Their long-term offline planner only required a

population size of 100 and 50 generations to reach a good solution. This shows that a

hybridized algorithm can be faster than a stand-alone GA path planner. The work that is

presented in this thesis is in agreement with [111]. The combination of MA-RRF as the

initial search algorithm and GA as an optimizer creates a faster path planner. The results

within Chapter 3 also show that this combination facilitated the quick creation of thousands

of hybridized paths across many generations.

The initial inspiration for this hybridized trajectory planner was the findings within

[50]. The authors of this paper applied a two tree RRT sampling-based planner in order to

generate path nodes across protein conformations. Their work showed that the many paths

that were extracted from the RRT planner can be hybridized to create one superior path.

This study emphasized that the quality of some path subsections may be better than the

quality of an individual path. The quality of each subsection was measured through a cost

matrix that prioritizes shorter pathways. Lastly, the path subsections are fused together to

create a more optimal final trajectory. The results that were presented in Chapter 3-5 are in

agreement with the conclusions of [50]. Here, the path subsections that were generated by

the initial MA-RRF planner are hybridized to create more optimal child paths within GA.

240

This thesis also shows that MA-RRF can also be applied successfully within GA to repair

the hybridized paths. This research project has expanded the limitations within [50] by

generating tens of thousands of hybridized paths across all generations. It also applies a

more refined many-objectives optimization algorithm to rank the path subsections. The

final paths that are shown in Chapter 5 can be compared to the initial path population in

Chapter 3. It is similar to the outcome of study [50]. The final hybridized paths are of higher

quality and shorter than the initial MA-RRF paths.

One of the most important contribution of this work is the control system for the

multi-agent quadrotors. Firstly, real life quadrotor UAVs must be able to track the designed

hybridized trajectories. [143] shows that generating minimal snap trajectories allows the

quadrotors to track the path nodes with minimum deviation error. The paths within this

thesis are converted into minimal jerk trajectories using B-spline curves. The findings that

are presented in Chapter 5 show that there is still a small amount of deviation error that is

present across all generations. The error value is within close range to the worst case

positional error that is obtained within [143]. Their experimental results show that the

quadrotors are still capable of tracking complex manoeuvres with large accelerations as a

team. Next, the simplified mathematical model for each agent is inspired by the full model

within [140]. The author also presents a control system that defines the positional and

rotational control structures. The simulation results within Chapter 3 are synonymous to

those that are presented in [140]. The author places importance on using a controller that

is capable of stabilizing a system by maintaining a zero value for all three of the Euler

angles. The estimated values for each quadrotor within this research project show that the

PD controller was able to fulfil this requirement.

Most publications on optimization algorithms will define the costs, limitations and

objectives of the UAV’s mission. The costs that are applied within these works are often

specific to the type of UAV, number of agents, task and environment. [112] presented a

trajectory planner for multiple UAVs that aims to minimize 11 objectives. Their work

considers costs such as the path length, altitude, slope and curvature. It also takes into

account the map limits, possible collisions, no fly zones and fuel consumption. The

importance if each objective is defined through its predefined priority level. Similarly,

[113] applied 7 different objectives within its real-time UAV path planning algorithm.

These costs penalize longer paths that require more fuel. It also penalizes paths with nodes

at higher altitudes or within danger zones. Lastly, paths with extreme curvatures and

possible collision points are penalized as well. The objective functions that were presented

in Chapter 4 are similar to those that were presented within [112-113]. These costs form

the standard objectives that were applied within both the MA-Spread and MA-Formation

missions. The findings in Chapter 5 are in agreement with [112-113]. The results show that

these objectives are crucial to generating feasible trajectories. These costs encourage the

241

maintenance of paths that can be easily implemented within real-life multi-agent UAV

missions.

Some multi-agent missions require the agents to fly independently whereas others

demand that the agents fly in formation. The researchers of each mission will have different

objectives to accomplish. The most important objective within most spatially spread

missions is the gathering of information. This is achieved in [28] by implementing an

Information-rich RRT (IRRT) motion planner for quadrotor UAVs. Their work aims to

reduce environmental uncertainty. [28] finds a balance between minimizing the total cost

of a mission whilst maximizing the information that is collected by the agents. This is

accomplished by implementing a corporative multi-agent quadrotor system. Each agent

takes into account the path and information content of other quadrotors as it designs its

own information-rich trajectory. Their findings show that a noncooperative system

collected more information at the expense of higher cost values. The results of the

corporative multi-agent quadrotor UAV path planning system in thesis differ from [28].

The results of the MA-Spread mission in Chapter 5 show that a path planner can minimize

the mission costs and reduce environmental uncertainty simultaneously. It also shows that

the collection of redundant sensory data can be minimized as well. This way the end user

will not have to degrade one objective for another within a corporative multi-agent system.

The second type of multiple-UAV system requires the agents to fly in formation.

Study [142] tests three types of formation flights. The authors make a comparison between

decentralized, leader-follower and virtual structure trajectory generation. Their findings

show that the agents are capable of maintaining their formation shape well when a virtual

structure is used as a guide. In this case, the agents are defined as a rigid body. The results

of [142] state that applying a virtual structure is also the most computationally intensive

method of formation planning. The dynamic formation planner within this thesis was

defined in Chapter 4. The findings of this research project are in agreement with [142].

This dynamic formation planner applies a virtual structure and a decentralized control

system. The system is more fault tolerant because each agent is independent. It is also more

complex and requires a longer processing time. This research project is still successful

because isn’t highly affected by a longer processing time because it is designed to be an

offline planner. It is important that a formation planner is capable of designing obstacle

free virtual structures. The design of the high resolution adaptive formation planner within

this thesis is inspired by [141]. The authors use VPF to spread a swarm of agents across

predefined polygonal shapes. The agents are attracted to the centre of the virtual shape.

They are also repulsed by their fellow neighbouring agents. This system results in the

agents being well spread across the virtual formation structure. The images within Chapter

5 are in agreement with [141]. The results show that the quadrotor UAV are well spread

242

across the free spaces within each test environment. The agents are able to contract and

expand along with their virtual structures.

The many objectives that were previously defined for the MA-Spread and MA-

Formation mission will be used to rank the trajectories. The ranking process within a many

objectives optimization problem can be highly challenging due to the large number of

dominant solutions. The multi-agent trajectory sorting process was performed by the

DRMOO algorithm as defined in Chapter 4. The DRMOO algorithm is built upon the

concept of dimensionality reduction that was described in detail within [138] and [133].

Their findings showed that some objectives within the many-objective optimization

problem can be labelled as redundant. These objectives are considered to be redundant to

the ranking process if their removal doesn’t affect the set of dominant solutions. Both

studies have shown that the removal of these redundant objectives will increase the

selection pressure towards a Pareto optimal solution set. The DRMOO algorithm also

expands the usage of objective subsets as seen in [136]. The authors break down the many

objectives into randomly selected objective subsets. Their work applies both the full and

partial objective sets in rotation across generations. The authors show that combining both

the full and partial objective sets can create a well-spread and well-converged final solution

set.

The results that were presented in Chapter 5 show are similar to the findings of

[138,133,136]. Firstly, dimensionality reduction was applied to create objective subsets

within this thesis. The data that was shown in Chapter 5 shows that this process

successfully increased the selection pressure within each generation. Secondly, the full and

strategically created objective subsets were applied in rotation across generations. This

study differs from [136] because the objective subsets were not created randomly. The

findings within Chapter 5 show that implementing partial Pareto dominance ranking along

with dimensionality reduction can minimize or maintain the values of all objectives. This

is achieved without degrading any objective for the sake of another. The end user was

presented with a diverse and well minimized collection of multi-agent trajectories at the

end of the optimization process.

6.3. LIMITATIONS OF THIS THESIS

This project was designed with a few limitations in terms of research scope. The

experiments and findings within this study are restricted to simulation only. The path

planning system is designed to mimic real-life multi-agent quadrotor UAV flights. The test

environments are also assumed to be well known and created to mimic the common

quadrotor test spaces. The only environment that isn’t included is over and underwater.

These partly known environments can be generated by the end user through initial UAV

243

sensory data or with an online map database. This system will allow the user to simulate

the flight process with a certain level of accuracy before performing hardware testing.

The design and analysis within this study is focused on long term path planning

with static obstacle avoidance. Many works are based on short term online path planning

with dynamic obstacle avoidance. This research aims to fill the need for long term offline

path planning across areas that have minimal dynamic obstacles. It is designed for areas

such as evacuated disaster sites. It can be used for environmental crisis, medical supplies

transportation or weaponry identification. The end user has the option of implementing an

ultrasonic sensor if basic dynamic obstacle avoidance is necessary.

This study is also primarily concerned with implementing algorithms that are fast

and minimal error. This can differ from projects that require highly accurate models of

their UAV and its control system. This work only addresses the estimation of the agent’s

flight path and states. It applies a simplified version of the mathematical model that has

been proven by other researchers to be sufficient for estimating the quadrotor’s movements.

Similarly, a noncomplex PD controller is applied despite having a small amount of

deviation error. This is because speed is extremely important when tens of thousands of

paths are being evaluated for many agents. The states estimation for all agents must be

done simultaneously through a parallel run multi-agent control system.

Similarly, highly complex mathematical models for the objective functions aren’t

implemented within this research. These cost functions are used to provide an estimation

of the pros and cons for each trajectory. It will not produce an accurate real-life

representation of the cost values. It is enough to offer the end user insight into which

trajectory within the entire collection is best for their mission. The estimated objectives

values are used within the dimensionality reduced many-optimization process to rank the

trajectories. The DRMOO algorithm is not concerned with making sure each objective is

conflicting with all the others within an objective subset. It only aims to continue to check

and improve the chances of an objective residing within an objective set that contains

conflicting costs. The findings show that this is sufficient to improve the selection pressure

within the optimization process.

This research has deliberately avoided fully defining the Pareto front during the

many-objectives optimization process. As previously defined, the primary focus is set on

maintaining or minimizing the values of an objective without the degradation of the others.

It brings the collection closer to the Pareto optimal front as opposed to defining the exact

Pareto optimal solutions. This work also concentrates on maintaining a well minimized and

diverse population of trajectories. It aims to maintain or improve the level of diversity

between the initial MA-RRF to the final GA population. Thus, it is not concerned with

244

accurately representing a well spread Pareto front. This research is restricted to providing

the end user with a large collection of well minimized and diverse multi-agent trajectories.

The final constraint in terms of study scope is the termination point of the DRMOO

algorithm. It is important to note that the final population is determined through human

analysis of visual imagery and the level of objective minimization. The visual study easily

shows the diversity of the path population. It simplistically defines is the paths are spread

across different areas. The data shows if the population is well minimized in comparison

to the initial MA-RRF population. This research intentionally tries to find a balance in

trajectory optimization and diversity. In this case, the final population may not hold the

minimal value for all objectives. Here, it must be stressed that the end user has tens of

thousands of path choices across 100 generations to choose from. It is possible for the user

to pick a different termination point.

6.4. ISSUES WITHIN THE RESEARCH PROCESS

The experimental process of any research project can be challenging. In most cases, there

are often issues that occur during the simulation and testing process. The first challenge

within this project is to design test environments that are suited to the multi-agent quadrotor

missions. Each environment is complex and it can be difficult for the viewer to see clearly

that the path planner is capable of generating nodes that do not collide with the obstacles.

Still, it was important that these simulated test spaces contain sufficient detail in order to

mimic real life environments.

A balance between creating easy to interpret imagery, real-life accuracy and

processing time was necessary. This was done by limiting the number of clutter within

each room in the indoor space. Similarly, the size of the mountainous terrain was reduced

in order to preserve the gradual height changes within the peaks and lows. Then, it was a

challenge to define the size of the safety boundaries around each obstacle. The safety zones

of the mountainous terrain had to accurately represent the changes in height across the

terrain. Here, the heights of the safety zones are based on the maximum height of the

mountain peaks that are within it. It was especially challenging to determine the boundary

size within the cityscape and indoor environment. A larger sized safety zone will minimize

possible obstacle collisions but reduce size of the already narrow passages. Similarly,

smaller safety zones will allow more agents to fly across these narrow passages but increase

the chances of collisions. The boundary size within these two environments was

determined through experimentation and by considering the average real-life sizes of

quadrotors.

245

There are some issues that must be tackled when creating a standardized platform

for two different applications. The only difference between the two missions is the addition

of a dynamic formation planner. In this research, the same path planning and optimizing

algorithms is applied within the multi-agent quadrotor spatially spread and formation flight

mission. Firstly, the MA-RRF planner was designed to take advantage of a multi-agent

system by generating multiple trees. This process generates feasible paths for many agents

simultaneously within the MA-SPREAD application. On the other hand, the MA-

FORMATION mission only requires one collection of formation reference paths. Thus,

there is only one MA-RRF tree. The same algorithm is usable by implementing virtual

agents across the test space. This method quickly generates a diverse collection of

formation reference paths. Similarly, the same GA and DRMOO algorithm is modified to

be applicable within both missions. There is also a standardized set of objectives for both

tasks. Here, the end user has the option of introducing four more costs that are specific to

either the spread or formation mission.

Another challenging aspect of any study is the identification of unknown variables.

All of the subsections within this research contain variables or operators that will influence

the final results. The MA-RRF path planner requires a sampling node, forest link and near

goal node range. The values of these variables are set based on the level of diversity of the

resulting path population. Similarly, GA has multiple operators within its structure. The

type of operators within the GA can improve or destroy optimal paths. These operators are

set based on the maintenance of optimal solutions within the resulting population. Next,

determining the percentage for the path similarity threshold within the MA-RRF and GA

can be tough. The algorithm will require a much longer run time if a high level of diversity

is required. Many optimal paths will be removed from the population. A balance was found

by implementing a percentage that isn’t too strict but encourages path diversity. Lastly, the

final variable that needs to be determined is the termination point for the MA-RRF and GA

algorithm. In both cases, the termination point is a constant value that has been determined

through experimentation. The number of iterations allows the MA-RRF planner to generate

a large collection of initial paths and repair child paths within GA.

All of the subsections within the hybridized path planner will require a well-

organized shared database. This open database provides the end user with additional

information regarding the trade-offs of each trajectory. It contains data from the MA-RRF

planner, GA and DRMOO. These values will require a huge amount of storage and must

be easily extractable. The testing process showed that the manner in which the data is stored

can affect the speed of an algorithm. Initially, the path extraction and filtration process

required a longer completion time. The MA-RRF planner contains multiple trees and forest

linkages between them. It was important to store the connections between the branches

systematically so that the path subsections can be easily obtained. The estimated states for

246

each agent have to be easily extractable by the DRMOO subsection. Similarly, the

objective values and ranking for each trajectory must be arranged in a manner that isn’t

difficult for the end user to understand. The results show that optimal trajectory planner is

capable of running smoothly with an organized database.

6.5. IMPLICATIONS OF RESULTS

The results and findings within this research project provide support for the argument that

many-objectives optimization can be applied towards multi-agent UAV problems. Current

commercially available processing systems are not capable of performing many objectives

path optimization for long term planning on board an UAV. A ground base station will also

be incapable of completing the optimization process quickly. The generation, estimation

and ranking of many trajectories cannot be done in real time. Still, this study shows that it

is possible to perform long term path planning for many agents offline. This can be done

within a one-day time frame and only requires a basic multi-thread processing system. It

can be useful for multi-agent UAV missions that require some level of accuracy and

information before execution. This planner is suitable for war and disaster zones that

contain minimal living beings. It is also suited towards unexplored terrains.

The optimal trajectory planner also offers evidence that a standardized system can

be applied towards both spatially spread and formation flight missions. Many works are

focused on either cooperative or noncooperative flight tasks. This study proves that it is

possible to create a standardized platform for both options. This multi-agent UAV path

planner only requires the addition of a dynamic formation planner when switching between

missions. Next, the results provide evidence that it isn’t always necessary to implement a

weighted priority or token system that can cause bias within the optimization process.

Many studies choose to focus on a selected number of objective functions when creating a

path planner for UAVs. This research project shows that it is possible to implement any

number of objectives within the trajectory optimization process. It shows that the many

objectives can be minimized simultaneously without the degradation of the others.

The work that is presented within this thesis proves that a fast-parallel run system

can be implemented with a multi-agent quadrotor team. All of the subsections are created

to perform faster within a multi-thread processing system. The trees within the MA-RRF

planner can be generated in parallel. Similarly, the multi-agent child paths that are

generated by the GA can be designed in parallel. Lastly, the closed-loop control system is

designed to output the predicted states of all agents simultaneously. This is also achieved

by running the control system of each agent in parallel.

247

This research also offers evidence that a path planning algorithm is capable of

offering a large collection of diverse and optimized trajectories for many agents

simultaneously. This is different from popular studies that aim to offer a singular best path.

Lastly, the results suggest that it is possible to present the end user with a well-organized

database that is filled with easy to understand information. Many drone users will welcome

the addition of easy to understand imagery and knowledge regarding the designed multi-

agent trajectories.

6.6. FUTURE RECOMMENDATIONS

Today, path planning for unmanned vehicles continue to be a popular research topic. This

is because commercially available drones such as the quadrotor are often used by both

professionals and hobbyists. Future researchers can either choose to expand or reduce the

scope of this project. This research project is a fully simulation based study. Thus, the

future recommendations of the project will be focused on possible simulation based topics.

One way of expanding this study’s scope is by implementing a much larger number

of objectives, costs or limitations within the optimization process. As previously defined,

most decisions that humans face in real life are based on many costs. The introduction of a

larger collection of objectives will allow the end user more flexibility when applying the

system towards their desired mission. It will allow the end user to attach the cost functions

that are suited to their current multi-agent UAV task. Introducing more objectives will

further standardize the optimal path planner. Thus, it will be applicable within a large

variety of real life tasks.

Another method of pushing the limitations of this project is by applying the

algorithm with a swarm of quadrotor UAVs. This project applied the path planner with 8

quadrotors. The optimal trajectory planner can be expanded to include a larger number of

agents. This will require a fast swarm based control system that is capable of estimating

the states of each agent. These experiments will test if the completion time of the path

planner increases or decreases in speed with a large number of agents. The most

challenging subsection will be the dynamic formation planner. A swarm of agents will

require a lot of coordination in terms of formation structure and maintenance.

New researchers can further spread the scope of this project by performing long

term path planning across much larger distances. A much larger search area will contain a

variety of environments as opposed to just one. An urban space can contain both office

and residential areas. Thus, the algorithm will have to generate paths across a cityscape

and multiple highly cluttered indoor environments. Current researchers can also choose to

minimize the scope of this project when proposing a new research topic. They can choose

248

to apply the optimal path planner for specific tasks. The planner can be implemented within

missions such as payload transportation, target tracking, weaponry identification or

agricultural and wildlife imaging.

Another manner that this project can be implemented at a smaller scale is by

applying it within a smaller test space. This converts this long-term planner into a short

term one. In this case, real-time node generation and path replanning can be performed in

real time. Dynamic obstacle avoidance can also be introduced. The optimization process

within the algorithm will have to be simplified. The path planner will also require a fast-

multi-thread processing system in order to perform in real-time.

All of these possible future topics can provide new findings and contributions to

the field of robotics. It will continue to provide the end user with a large collection of

feasible solutions. These topics will also offer the end user more information and assistance

in regard to which solution is the best for their mission.

6.7 CONTRIBUTIONS TO RESEARCH

The first target of this research was to construct and map three-dimensional test

environments that illustrate real-life flight challenges. The objective of designing real

world locations for the purpose of standardizing the trajectory planner is well achieved.

Three defining environments were designed based on prior popular research projects across

the world. These various environments were designed to test the robustness and

adaptability of the hybridized algorithm in the face of a variety of different challenges and

constraints. The three environments applied here are the high-rise cityscape, highly

cluttered indoor environment and mountainous terrain. All three are locations that are

available across the world and are locations where quadrotors are most commonly applied.

The safety boundaries within each test space were also successfully integrated into these

environments.

Next, the path planner aimed to generate highly diverse collision free paths for the

initial population of the optimization process. The diversity of these initial paths is

paramount to the effective application of the many-objective optimization algorithm. This

study has successfully achieved this target of based on the multi-agent paths that were

extracted by the MA-RRF algorithm. The MA-RRF algorithm achieved high levels of free

space exploration with zero obstacle collisions. Results show that the multi-agent RRF

system is speedy and has an advantage over the basic RRT algorithm. It used the multi-

agent system to its advantage by generating a multi-tree forest. Here, the cost function for

possible forest links is easily modifiable to suit the end user. There were challenges within

the more constricted environments. In these cases, extracting diverse paths was difficult

249

due to the presence of narrow passages and large amounts of obstacles. The MA-RRF was

still capable of free space mapping and path planning despite these limitations. Thus, the

MA-RRF design can be reapplied as a standalone platform when speed is required. It can

be applied for critical situations such as real-time collision avoidance or path replanning.

Another target that must be achieved by the optimal trajectory planner is the

creation of a unique population of multi-agent paths for each generation. The initial

suboptimal trajectories that were developed by the MA-RRF algorithm were applied as the

input for the optimization process. This process reduced the amount of free space that needs

to be searched by GA. It also allowed GA to execute more refined multi-agent path

planning. The initial MA-RRF trajectories were meshed to create new paths through the

GA’s crossover and mutation process. MA-RRF was also applied for the path repair of

child trajectories after the crossover and mutation process within GA. Four additional post

processing GA operators were well implemented in order improve the survivability of these

child paths.

It is important that the paths that are created must be converted into time-based

smooth trajectories that are suitable for multi-agent quadrotors. The paths from the GA are

successfully converted from a collection of nodes to time-based trajectories through

adaptive minimal jerk splines. One important design factor in the spline implementation

was its adaptability across extreme angles between two nodes. Here, the addition of extra

nodes enhances the smoothness of the turn. It also stopped the spline from crossing across

an obstacle when two nodes are too far apart. The minimization of sudden jerks proves to

create smoother transitions between waypoints. This ensures continuity for the second

order derivatives of the quadrotor’s roll and pitch angle. Despite the achievement of smooth

design, the quadrotor was chosen based on its capability for aggressive manoeuvring. Thus,

the end user always has the option of choosing between smoother and more aggressive

trajectories.

Then, the study intends to model a noncomplex parallel run closed-loop multi-agent

quadrotor control system. The objective of successfully designing a quadrotor control

system for speedy tests of feasible paths is complete. The design of the control system

mimics the flight trajectories of the multi-agent quadrotors. It contained two subsections

for each agent. The first stage holds the PD control system whereas the latter holds the

mathematical model of the quadrotor. The desired trajectory nodes for all agents are

applied simultaneously within the control system. This generates the estimated positional

and rotational states of each agent. These states were then successfully used to predict the

values of the many objective functions.

250

This research also aimed to identify and standardize the various applications of

multi-agent quadrotors. Thus, the optimization algorithm is applicable towards any

variation of real world multi-agent cooperative tasks. The algorithm successfully defined

and optimized paths for both the multi-agent spread and formation flight mission. The MA-

SPREAD was well implemented to create a common trajectory planner for missions such

as search and rescue, surveillance, reconnaissance, terrain mapping, multi-target tracking,

environmental monitoring, forming ad hoc wireless networks, wildlife and atmospheric

research and disaster relief. Whereas, MA-FORMATION was successfully designed for

payload transportation, military missions such as security patrols, search and rescue at

hazardous disaster sites, cooperative sensory angular coverage and aerial flights whilst

maintaining precise patterns.

Another goal of this work is to mathematically define a set of multi-agent quadrotor

mission-based objectives. A standardized definition of the quadrotors’ physical constraints

and mission limitations were represented by a collection of objectives functions. These

objective functions are applicable to any environment, any number or variation of

quadrotor shape, size or mass as well as other options of network range, sensors, control

method and measurement unit. The optimization of multi-agent quadrotors is performed as

a team for both missions. The MA-SPREAD mission optimized the combination of multi-

agent trajectories. The objectives from the MA-SPREAD mission are dependent on the

team’s terrain exploration. On the other hand, the MA-FORMATION mission optimized

the formation reference trajectory at every generation. The objective functions for

formation flight are dependent on the formation shapes that are planned by the dynamic

formation planner. As previously discussed, any additions of new functions within the

many-objective optimization algorithms is as simple as adding it into the objective set with

no modifications to the algorithm.

This study also placed a lot of importance on developing a well optimized yet

diverse final set of trajectories for end users. The values from the many objectives were

used to sort the multi-agent trajectories based on their level of optimality and diversity.

Here, DRMOO ranking algorithm was defined in detail. This algorithm combines both

partial dimensionality sorting with full high dimensionality optimization. In this research,

we applied dimensionality reduction in order to increase selection pressure without the

absolute removal of any objectives. The objective subsets were not created randomly. It

was performed by evaluating the level of conflict between objective pairs within each

subset. This process minimized the chances of full elimination of an objective function and

leaves room for possible error. Here, the application of adaptive niching contributed

another level of diversity maintenance. The algorithm is designed to focus on the

minimization of all objectives as opposed to mapping the Pareto front with full accuracy.

251

Thus, the final set of trajectories as well as its data is an approximate of the Pareto optimal

solutions.

Lastly, this work intends on providing well organized and easily understandable

information regarding the trade-offs of each solution. The results showed that the algorithm

performs successfully in finding a diverse set of optimal solutions within each

environment. The end user is supplied with high resolution visual imagery and well-

organized data. The additional knowledge will assist the end user in making a final choice.

In the MA-SPREAD mission, the end user is able to compare the sensory data overlap,

uncertain terrain coverage and network connectivity when choosing the best option. In the

MA-FORMATION application, the end user is provided with a variation of solutions

where formation speed, rigidness or simplicity can be used as the final decision factor.

REFERENCES

[1] G. Apostolo, "The Illustrated Encyclopedia of Helicopters", 1984.

[2] J. W. R. Taylor, "Jane’s Book of Remotely Piloted Vehicles", Collier Books, 1977.

[3] Parrot Designs, “A. R. Drone 2.0”, Internet:

http://www.parrot.com/usa/products/ardrone-2/, 2016.

[4] Gizmag, “Review: Parrot's Rolling Spider Minidrone”,

http://www.gizmag.com/parrot-rolling-spider-minidrone-review/33840/, 2016.

[5] Parrot SA, "Parrot Minidrone Rolling Spider", Internet:

http://www.parrot.com/usa/products/rolling-spider, 2015.

[6] Draganfly Innovations Inc," Lil' Draganflyer Plus Mini Quadrotor", Internet:

http://www.draganfly.com/industrial/products.php , 2015.

[7] W.Mielniczek, " 'B' the flying car", Internet:

https://www.kickstarter.com/projects/2017062404/b-go-beyond, 2015.

[8] Latscha,S., Kofron,M., Stroffolino,A., Davis,L., Merritt,G., Piccoli,M., Yim,M.,

"Design of a Hybrid Exploration Robot for Air and Land Deployment (H.E.R.A.L.D)

for urban search and rescue applications", International Conference on Intelligent

Robots and Systems (IROS 2014), pp. 1868 - 1873, Chicago, IL, September 2014.

[9] C. E. Doyle, J. J. Bird, T. A. Isom, J. C. Kallman, D. F. Bareiss, D. J. Dunlop, R. J.

King, J. J. Abbott, and M. A. Minor, "An Avian-Inspired Passive Mechanism for

Quadrotor Perching," IEEE/ASME Transactions on Mechatronics, vol 18(2), pp. 506-

517, 2013.

[10] D. Schneider, " Helicopters Go Electric", IEEE Spectrum, Internet:

http://spectrum.ieee.org/aerospace/aviation/ helicopters- go-electric, December

2011.

[11] Malloy Aeronautics (MA), " The Hoverbike helicopter ", Internet:

http://www.hoverbike.com/MA/product/

 hoverbike-helicopter, 2014.

[12] M. M. Maia, P. Soni, F. J. Diez-Garias, “Demonstration of an Aerial and

Submersible Vehicle Capable of Flight and Underwater Navigation with Seamless

Air-Water Transition”, Rutgers University, 2015.

[13] Gizmag, “Pars life-saving flying robot is now a reality”, Internet:

http://www.gizmag.com/pars-life-saving-flying-robot/29831/, 2013.

[14] Unmanned Systems Technology, “microdrones Alps Crossing”, Internet:

http://www.unmannedsystems technology.com /2013/06/video-microdrone-uas-

completes-first-flight-across-the-alps/microdrones-md4-1000-alps-crossing/, June

2013.

[15] J. Q. Cui , S. Lai, X. Dong, P. Liu, B.M.Chen, T.H.Lee, “Autonomous navigation of

UAV in forest”, International Conference on Unmanned Aircraft Systems (ICUAS),

pp. 726 – 733, Orlando, May 2014.

[16] R. Deits, R. Tedrake, “Efficient Mixed-Integer Planning for UAVs in Cluttered

Environments”, IEEE International Conference on Robotics and Automation

(ICRA), May 2015.

[17] N. Tran, C. Nguyen, D. Vu , T. Hoai, “Embedded-oriented techniques for 2D

shortest trajectory planning to avoid restricted airspaces”, International Symposium

on Communications and Information Technologies (ISCIT), pp. 238 - 242, Incheon,

September 2014.

[18] A. Giusti, J. Guzzi, D.C. Cireşan, F. He, J. P. Rodríguez, F. Fontana, M. Faessler, C.

Forster, J. Schmidhuber, G. Di Caro, D. Scaramuzza, L. M. Gambardella, “A

Machine Learning Approach to Visual Perception of Forest Trails for Mobile

Robots”, IEEE Robotics and Automation Letters, vol.1, pp. 661 – 667, July 2016.

[19] B. Lam, “Incredible Close-Up Drone Video of an Erupting Volcano in Iceland”,

Internet: http://www.wired.com/2014/10/drone-video-iceland-eruption-bardarbunga-

volcano, October 2014.

[20] K. Nagatani, “Robotic Observations in a volcanos using UAV and UGV in Mt.

Asama”, Internet:http://www.astro.mech.tohoku.ac.jp/~keiji/Research/research.html,

October 2014.

[21] E. Ackerman “Robocopters Haul Tons of Stuff in Afghanistan, Return Home

Victorious”, Internet: http://spectrum.ieee.org/automaton/robotics/military-

robots/kmax-robocopters-haul-tons-of-stuff-afghanistan, July 2014.

[22] I. Lamcja, “Canada’s police forces take to the sky with drones”, Internet:

http://metronews.ca/news/canada/1314670/canadas-police-forces-taking-to-the-sky-

with-drones, March 2015.

[23] N. Mathew, S.L. Smith, S.L. Waslander, “Planning Paths for Package Delivery in

Heterogeneous Multirobot Teams”, IEEE Transactions on Automation Science and

Engineering, vol.12, pp. 1298 - 1308, October 2015.

[24] Parrot Store, "Indoor Hull for AR. Drone 2.0 Elite Edition - Snow", Internet:

https://store. parrot.com/uk/accessoires-ar-drone-20/36-indoor-hull-for-ardrone-20-

elite-edition-snow-3520410019081.html, 2015.

[25] M. Pivtoraiko, D. Mellinger and V. Kumar, “Incremental Micro-UAV Motion

Replanning for Exploring Unknown Environments”, IEEE International Conference

on Robotics and Automation (ICRA), Karlsruhe, Germany, May 2013.

[26] S. Tang, V. Kumar, “Mixed Integer Quadratic Program trajectory generation for a

quadrotor with a cable-suspended payload”, IEEE International Conference on

Robotics and Automation (ICRA), June 2015.

[27] D. J. Webb, J.V.D Berg, “Kinodynamic RRT*: Optimal Motion Planning for

Systems with Linear Differential Constraints”, May 2012.

[28] D.Levine, B.Luders, J.P.How, "Information - Theoretic Motion Planning for

Constrained Sensor Networks," Massachusetts Institute of Technology, July 2012.

[29] European Space Agency, “Smartphone App Turns Home Drone into Spacecraft”,

Internet:http://www.esa.int/Our_Activities/Space_Engineering_Technology/Smartph

one_app_turns_home_drone_into_spacecraft, March 2013.

[30] CNN, “When is my personal drone landing?”, Internet:

http://edition.cnn.com/2013/12/17/opinion/calo-drones-apps/, December 2013.

[31] LaValle, S. M., Planning Algorithms, Cambridge University Press, Cambridge,

U.K., 2006.

[32] M. Nieuwenhuisen, S. Behnke, “3D Planning and Trajectory Optimization for Real-

time Generation of Smooth MAV Trajectories”, European Conference on Mobile

Robots (ECMR), Lincoln, UK, September 2015.

[33] V.R. Desaraju and N. Michael, “Hierarchical Adaptive Planning in Environments

with Uncertain,Spatially-Varying Disturbance Forces”, 2014 IEEE International

Conference on Robotics and Automation (ICRA), pp. 5171 – 5176, Hong Kong,

June 2014.

[34] O. Saif, I. Fantoni, A. Zavala-Rio, “Real-time Flocking of multiple-quadrotor system

of systems”, 10th IEEE System of Systems Engineering Conference (SoSE), San

Antonio, TX, United States, May 2015.

[35] H. A. F. Almurib, P. T. Nathan, and T. N. Kumar, “Control and Path Planning of

Quadrotor Aerial Vehicles for Search and Rescue”, SICE Annual Conference 2011,

Waseda University, Tokyo, Japan, September 2011.

[36] G. M. Hoffmann, S. L. Waslander, “Quadrotor Helicopter Trajectory Tracking

Control”, AIAA Guidance, Navigation and Control Conference and Exhibit,

Honolulu, Hawaii, August 2008.

[37] Mac Schwager, Jean-Jacques Slotine, Daniela Rus, “Unifying Geometric,

Probabilistic, and Potential Field Approaches to Multi-robot Coverage Control”,

Robotics Research, vol.70, pp 21-38, 2011.

[38] A. Pierson, A. Ataei, I. Ch. Paschalidis, and M. Schwager ,“Cooperative Multi-

Quadrotor Pursuit of an Evader in an Environment with No-Fly Zones”, Stanford

University, April 2015.

[39] L. Tapia, A. Faust, N. Malone, H. Chiang, K. Manavi, “Motions for Complex and

High‐Dimensional Robots - Planning with Model Uncertainty”, Center for Advanced

Research Computing, University of Mexico, 2014.

[40] P. M. Bouffard, S. L. Waslander, “A Hybrid Randomized/nonlinear Programming

Technique for Small Aerial Vehicle Trajectory Planning in 3D”, IROS 3rd

Workshop: Planning, Perception and Navigation for Intelligent Vehicles, 2009.

[41] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, J. P. How, "Motion Planning

in Complex Environments using Closed-loop Prediction," AIAA Guidance,

Navigation, and Control Conference, Honolulu, August 2008.

[42] C.Richter, A.Bry, and N.Roy, "Polynomial Trajectory Planning for Quadrotor Flight,

"International Symposium of Robotics Research, 2013.

[43] D.Levine, B.Luders, J.P.How, "Information - Theoretic Motion Planning for

Constrained Sensor Networks," Massachusetts Institute of Technology, July 2012.

[44] Desaraju, V.R., How, J.P., "Decentralized path planning for multi-agent teams in

complex environments using rapidly-exploring random trees", IEEE International

Conference on Robotics and Automation, pp. 4956–4961, 2011.

[45] Kothari, M., Postlethwaite, I., Gu, D.-W., "Multi-UAV path planning in obstacle

rich environments using Rapidly-exploring Random Trees", IEEE Conference on

Decision and Control, pp. 3069 - 3074, December 2009.

[46] A. A. Neto, D. Macharet, L. Chaimowicz, M. Campos, “Path planning with Multiple

Rapidly-exploring Random Trees for teams of robots”, 16th International

Conference on Advanced Robotics (ICAR), pp. 1 - 6, November 2013.

[47] S.K.Nath, S.Thomas, C.Ekenna, N.M.Amato, "A Multi-Directional Rapidly-

Exploring Random Graph (mRRG) for Protein Folding, "ACM Conference on

Bioinformatics, Computational Biology and Biomedicine,pp.44-51,October 2012.

[48] M.Otte, N.Correll, "C-FOREST: Parallel Shortest-Path Planning with Super Linear

Speedup,"MIT, 2013.

[49] D.Devaurs, M. Vaisset, T. Siméon, J. Cortés, "A multi-tree approach to compute

transition paths on energy landscapes,"Workshop on Artificial Intelligence and

Robotics Methods in Computational Biology, AAAI ‘13, July, 2013.

[50] A. Enosh, B. Raveh, O.Furman-Schueler, D. Halperin, N. Ben-Tal, " Generation,

comparison, and merging of pathways between protein conformations: gating in K-

channels,"Biophysical Journal, vol. 95, pp. 3850-3860, October 2008.

[51] R. O. Saber, “A Unified Analytical Look at Reynolds Flocking Rules”, American

Control Conference 2004, Boston, MA, Spetember 2003.

[52] R. Abbas, Q. Wu, “Tracking Formation Control for Multiple Quadrotors Based on

Fuzzy Logic Controller and Least Square Oriented by Genetic Algorithm”, The

Open Automation and Control Systems Journal, vol.7, pp.842-850, 2015.

[53] Z. Hou, I. Fantoni, A. Zavala-Rio, “Modeling and Decentralized Control for the

Multiple UAVs Formation based on Lyapunov design and redesign”, 2nd IFAC

Workshop on Research, Education and Development of Unmanned Aerial Systems,

Vol.46, Issue.30, pp. 337-344, 2013.

[54] Z. Hou, I. Fantoni, “Leader-Follower Formation Saturated Control for Multiple

Quadrotors with Switching Topology”, 2015 Workshop on Research, Education and

Development of Unmanned Aerial Systems (RED-UAS), pp. 8-14, Cancun,

November 2015.

[55] Z. Hou, I. Fantoni, “Distributed leader-follower formation control for multiple

quadrotors with weighted topology”, 10th System of Systems Engineering

Conference (SoSE), pp. 256 – 261, San Antonio, TX, May 2015.

[56] B. Shirani, M. Najafi, I. Izadi, “Cooperative Load Transport Using Multiple

Quadrotors”, 2nd Iranian Conference on Avionics System, February 2015.

[57] V. Roldão, R. Cunha, D. Cabecinhas, C. Silvestre, P. Oliveira, “A novel leader-

following strategy applied to formations of quadrotors”, 2013 European Control

Conference (ECC), Zürich, Switzerland, July 2013.

[58] G.P. Pereira, R. Cunha, D. Cabecinhas, C. Silvestre and P. Oliveira," Three

dimensional trajectory planner for real time leader following," IEEE Conference on

Robotics & Automation, pp. 6561 - 6566, June 2014.

[59] N. H. M. Li, H. H. T. Liu, “Formation UAV Flight Control using Virtual Structure

and Motion Synchronization”, 2008 American Control Conference, pp. 1782 – 1787,

Seattle, Washington, USA, June 2008.

[60] Abbas Chamseddine, Youmin Zhang ; Camille Alain Rabbath, “Trajectory Planning

and Re-planning for Fault Tolerant Formation Flight Control of Quadrotor

Unmanned Aerial Vehicles”, 2012 American Control Conference (ACC), pp. 3291 –

3296, Montreal, QC, June 2012.

[61] D. Zhou and M. Schwager, “Virtual Rigid Bodies for Agile Coordination of

Quadrotor Swarms and Human-Swarm Teleoperation”, Department of Aeronautics

and Astronautics, Stanford University, Stanford, CA, August 2015.

[62] A. A. A. Rizqi, A. I. Cahyadi, T. B. Adji, “Path planning and formation control via

potential function for UAV Quadrotor”, 2014 International Conference on Advanced

Robotics and Intelligent Systems (ARIS), pp. 165 – 170, Taipei, June 2014.

[63] Rabah Abbas, Qinghe Wu, “Formation Tracking for Multiple Quadrotor based on

Sliding Mode and Fixed Communication Topology”, 2013 Fifth International

Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 233 - 238,

Hangzhou, August 2013.

[64] B. Yu, X. Dong, Z. Shi, Y. Zhong, “Formation control for quadrotor swarm systems:

Algorithms and experiments”, 2013 32nd Chinese Control Conference (CCC), pp.

7099 – 7104, Xi'an, July 2013.

[65] Y. Kuriki, T. Namerikawa, “Formation Control of UAVs with a Fourth-Order Flight

Dynamics”, SICE Journal of Control, Measurement, and System Integration, Vol. 7,

No. 2, pp. 074–081, March 2014.

[66] Y. Kuriki, T. Namerikawa, “Consensus-based Cooperative Formation Control with

Collision Avoidance for a Multi-UAV System”, 2014 American Control Conference,

pp. 2077 – 2082, Portland, OR, June 2014.

[67] A. Chamseddine, Y. Zhang, C. A. Rabbath, “Trajectory Planning and Re-planning

for Fault Tolerant Formation Flight Control of Quadrotor Unmanned Aerial

Vehicles”, 2012 American Control Conference, Montréal, Canada, June 2012.

[68] D. Zhou, M. Schwager, “Virtual Rigid Bodies for Agile Coordination of Quadrotor

Swarms and Human-Swarm Teleoperation”, Stanford University, October 2014.

[69] R. He, A. Bachrach, N. Roy, “Efficient Planning under Uncertainty for a Target-

Tracking Micro-Aerial Vehicle”, 2010 IEEE International Conference on Robotics

and Automation Anchorage Convention District, Anchorage, Alaska, USA, May

2010.

[70] A. Kushleyev, D. Mellinger, V. Kumar, “Towards A Swarm of Agile Micro

Quadrotors”, MIT Press, Edition 1, pp. 504, 2013.

[71] T. Lee, K. Sreenath, V. Kumar, “Geometric Control of Cooperating Multiple

Quadrotor UAVs with a Suspended Payload”, IEEE Conference on Decision and

Control, Italy, December 2013.

[72] A.Faust, I.Palunko, P.Cruz, R.Fierro, L.Tapia, "Learning swing-free trajectories for

UAVs with a suspended load", IEEE International Conference on Robotics and

Automation (ICRA), 2013.

[73] F. Wang, K. Wang , S. Lai , S. K. Phang , Chen, B.M. , Lee, T.H, " An efficient

UAV navigation solution for confined but partially known indoor environments",

11th IEEE International Conference on Control & Automation (ICCA), pp. 1351 -

1356, June 2014.

[74] Barros dos Santos, S.R., Nascimento Junior, C.L., Givigi, S.N., “Planning and

learning for cooperative construction task with quadrotors ", 8th Annual IEEE

Systems Conference, pp. 57 - 64, April 2014.

[75] H. Huang, G. M. Hoffmann, S. L. Waslander, C. J. Tomlin, “Aerodynamics and

Control of Autonomous Quadrotor Helicopters in Aggressive Maneuvering”, IEEE

International Conference on Robotics and Automation, ICRA '09, pp. 3277 – 3282,

Kobe, May 2009.

[76] C. Richter, A. Bry, N. Roy, “Polynomial Trajectory Planning for Aggressive

Quadrotor Flight in Dense Indoor Environments”, Robotics Research, pp.649-666,

January 2016.

[77] A. Symington, R. D. Nardi, S. Julier, S. Hailes, “Simulating Quadrotor UAVs in

Outdoor Scenarios”, International Conference on Intelligent Robots and Systems

(IROS 2014), Chicago, September 2014.

[78] Tomic,T., Schmid,K., Lutz,P., Domel,A., Kassecker, M., Mair, E., Grixa, I.L.,

Ruess, F., Suppa, M., Burschka, D.," Toward a Fully Autonomous UAV: Research

Platform for Indoor and Outdoor Urban Search and Rescue ", IEEE Robotics &

Automation Magazine, vol.19, pp. 46 - 56, August 2012.

[79] Guerrero, J.A., Escareno, J.A., Bestaoui, Y., " Quad-rotor MAV trajectory planning

in wind fields ", IEEE International Conference on Robotics and Automation

(ICRA), pp. 778 - 783, May 2013.

[80] G. Hoffmann, S. Waslander, C. Tomlin. "Quadrotor Helicopter Trajectory Tracking

Control", AIAA Guidance, Navigation and Control Conference and Exhibit,

Honolulu, Hawaii, August 2008.

[81] A. Chamseddine, Zhang Youmin, C. A. Rabbath, C. Join, D. Theilliol , "Flatness-

Based Trajectory Planning/ Replanning for a Quadrotor Unmanned Aerial Vehicle,"

IEEE Transactions on Aerospace and Electronic Systems, vol.48, pp. 2832 - 2848,

October 2012.

[82] S.Waharte‚ N.Trigoni, S.J. Julier, “Supporting Search and Rescue Operations with

UAVs ", International Conference on Emerging Security Technologies (EST), pp.

142 - 147, September 2010.

[83] J. Leonard, A. Savvaris, A. Tsourdos, “Energy Management in Swarm of Unmanned

Aerial Vehicles”, 2013 International Conference on Unmanned Aircraft Systems

(ICUAS), pp. 124 – 133, Atlanta, GA, May 2013.

[84] M. Schwager, N. Michael, V. Kumar, and D. Rus, “Time Scales and Stability in

Networked Multi-Robot Systems”, IEEE International Conference on Robotics and

Automation, Shanghai, China, May 2011.

[85] J. L. Sanchez-Lopez, J. Pestana, P. D. L. Puente, R. Suarez-Fernandez, P. Campoy,

“A System for the Design and Development of Vision-based Multi-robot Quadrotor

Swarms”, International Conference on Unmanned Aircraft Systems (ICUAS),

Orlando, May 2014.

[86] J. Alonso-Mora, M. Schoch, A. Breitenmoser, R. Siegwart and P. Beardsley,

“Object and Animation Display with Multiple Aerial Vehicles”, International

Conference on Intelligent Robots and Systems, Portugal, October 2012.

[87] J. Leonard, A. Savvaris, A. Tsourdos, “Towards a Fully Autonomous Swarm of

Unmanned Aerial Vehicles”, UKACC International Conference on Control 2012,

Cardiff, UK, September 2012.

[88] L. Cantelli, M. Mangiameli, C.D. Melita, G. Muscato, “UAV/UGV cooperation for

surveying operations in humanitarian demining”,

[89] Soltero, D.E., Schwager, M., Rus, D., "Generating informative paths for persistent

sensing in unknown environments", IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 2172 - 2179, October 2012.

[90] R. He, Prentice, S. ; Roy, N., "Planning in information space for a quadrotor

helicopter in a GPS-denied environment", IEEE International Conference on

Robotics and Automation, pp. 1814 - 1820, May 2008.

[91] U. Pilz, A.P. Popov, H. Werner," Robust controller design for formation flight of

quad-rotor helicopters", IEEE Conference on Decision and Control, pp. 8322 - 8327,

Shanghai, December 2009.

[92] A.Kushleyev, D. Mellinger, C. Powers, V. Kumar," Towards a swarm of agile micro

quadrotors," Robotics:Science and Systems VIII, MIT Press, 2013.

[93] M.Turpin, N.Michael, V.Kumar, "Trajectory design and control for aggressive

formation flight with quadrotors," Autonomous Robots, volume 33, pp. 143-156,

August 2012.

[94] R.W. Beard, T.W. McLain, D.B. Nelson, D. Kingston, D. Johanson, "Decentralized

Cooperative Aerial Surveillance Using Fixed-Wing Miniature UAVs", Proceedings

of the IEEE, vol. 94, pp. 1306 - 1324, July 2006.

[95] D.Mellinger, M.Shomin, N.Michael, V.Kumar, "Cooperative Grasping and

Transport using Multiple Quadrotors", GRASP Laboratory, University of

Pennsylvania.

[96] A.Franchi, C.Secchi, M.Ryll, H.H.Bulthoff, Giordano, P.R., "Shared Control :

Balancing Autonomy and Human Assistance with a Group of Quadrotor UAVs,"

IEEE Robotics & Automation Magazine, vol.19, pp.57-68, September 2012.

[97] M. Iskandarani, S. N. Givigi, G. Fusina, A. Beaulieu, “Unmanned Aerial Vehicle

formation flying using Linear Model Predictive Control”, 2014 8th Annual IEEE

Systems Conference (SysCon), pp. 18 – 23, Ottawa, ON, April 2014.

[98] D. Zhou and M. Schwager, “Virtual Rigid Bodies for Coordinated Agile

Maneuvering of Teams of Micro Aerial Vehicles”, 2015 IEEE International

Conference on Robotics and Automation (ICRA), pp. 1737 – 1742, Seattle, WA,

May 2015.

[99] F. Liao , X. Dong, F. Lin, “Robust Formation and Reconfiguration Control of

Multiple VTOL UAVs: Design and Flight Test”, 2014 22nd Mediterranean

Conference of Control and Automation (MED), pp. 1440 – 1445, Palermo, June

2014.

[100] A. Chamseddine, Y. Zhang, C. A. Rabbath, D. Theilliol, “Trajectory planning and

replanning strategies applied to a quadrotor unmanned aerial vehicle”, Journal of

Guidance, Control, and Dynamics, Vol. 35, No. 5, pp. 1667-1671, 2012.

[101] X. Dong, B. Yu, Z. Shi, Y. Zhong, “Time-Varying Formation Control for

Unmanned Aerial Vehicles: Theories and Applications”, IEEE Transactions on

Control Systems Technology, Vol. 23, pp. 340 – 348, January 2015.

[102] U. Pilz, H. Werner, “Convergence Speed in Formation Control of Multi-Agent

Systems -A Robust Control Approach”, 52nd IEEE Conference on Decision and

Control, pp. 6067 – 6072, Firenze, December 2013.

[103] J. D. Schaffer, "Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms ", Conference: Proceedings of the 1st International Conference on

Genetic Algorithms, July 1985.

[104] C. M. Fonseca and P. J. Fleming, " Genetic Algorithms for Multiobjective

Optimization: Formulation, Discussion and Generalization", Proceedings of the

Fifth International Conference in Genetic Algorithms, July 1993.

[105] N. Srinivas and K. Deb, “Multiobjective function optimization using nondominated

sorting genetic algorithms,” Evolutionary Computing, vol. 2, no. 3, pp. 221–248,

Fall 1995.

[106] Horn J, Nafpliotis N, Goldberg D.E, "A niched Pareto genetic algorithm for

multiobjective optimization", Proceedings of the First IEEE Conference on

Evolutionary Computation, IEEE World Congress on Computational Intelligence,

vol. 1, pp. 67–72, 1994.

[107] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast Elitist

Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2):182 – 197, April 2002

[108] Zitzler, E. and L. Thiele. "An evolutionary algorithm for multiobjective

optimization: The strength pareto approach. Technical Report 43", Computer

Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology

(ETH) Zurich, May 1998.

[109] R. L. Galvez , E. P. Dadios , A. A. Bandala ,“Path Planning for Quadrotor UAV

Using Genetic Algorithm”, IEEE International Conference Humanoid,

Nanotechnology, Information Technology Communication and Control,

Environment and Management (HNICEM), pp. 1-6, Philippines, November 2014.

[110] H. Li, L. Wang, S. Pang, M. Towhidnejad, “Path-finding Algorithm for Ground

Multiple Sensor Nodes Detection of Quad-rotor-typed UAV”, 10th International

Conference on Information Technology, pp. 477 – 482, Las Vegas, April 2013.

[111] I.K.Nikolos, K.P.Valavanis, N.C.Tsourveloudis, A.N. Kostaras, "Evolutionary

Algorithm Based Offline/Online Path Planning for UAV Navigation," IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 33, pp.

898-912, December 2003.

[112] E.Besada Portas, L. de la Torre, J. M. de la Cruz and B. de Andrés-Toro,

"Evolutionary trajectory planner for multiple UAVs in realistic scenarios," IEEE

Transactions on Robotics, vol. 26, pp. 619-634, August 2010.

[113] V. Roberge, M. Tarbouchi, G. Labonte, " Comparison of Parallel Genetic

Algorithm and Particle Swarm Optimization for Real-Time UAV Path Planning,"

IEEE Transactions on Industrial Informatics, vol. 9 , pp. 132 - 141, February 2013.

[114] S. Mittal, K. Deb, “Three-dimensional offline path planning for UAVs using

multiobjective evolutionary algorithms”, IEEE Congress on Evolutionary

Computation, pp. 3195 – 3202, Singapore, September 2007.

[115] S. Kukkonen, J. Lampinen, "Ranking-Dominance and Many-Objective

Optimization", IEEE Congress on Evolutionary Computation, Singapore, pp. 3983 -

3990, September 2007.

[116] Z.He, G.G. Yen, J. Zhang, " Fuzzy-Based Pareto Optimality for Many-Objective

Evolutionary Algorithms," IEEE Transactions on Evolutionary Computation, vol.

18, pp. 269 - 285, April 2014.

[117] M. Koppen, R. Vicente-Garcia, and B. Nickolay, “Fuzzy-Pareto dominance and its

application in evolutionary multi-objective optimization,” International Conference

on Evolutionary Multi-Criterion Optimization, Mexico,pp. 399–412, March 2005.

[118] M. Nasir, A. K. Mondal, S. Sengupta, S. Das, and A. Abraham, “An Improved

Multiobjective Evolutionary Algorithm based on Decomposition with Fuzzy

Dominance”, IEEE Congress on Evolutionary Computation, New Orleans, LA,

USA, pp. 765–772, June 2011.

[119] L. Batista, F. Campelo, F. Guimaraes, and J. Ramirez, “A comparison of

dominance criteria in many-objective optimization problems,” in IEEE Congress on

Evolutionary Computation, pp. 2359–2366, Barcelona, Spain, 2011.

[120] M. Garza-Fabre, G.T. Pulido, and C. A. Coello, “Alternative fitness assignment

methods for many-objective optimization problems,” 9th International Conference,

Evolution Artificielle, Strasbourg, France, pp. 146–157, October 2009.

[121] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic algorithm for

multiobjective optimization,” in IEEE Congress on Evolutionary Computation,

Orlando, Florida, pp. 82–87, Jun 1994.

[122] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan, “A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,vol. 6,

pp. 182–197, Apr. 2002.

[123] E.Zitzler and L.Thiele, “Multiobjective evolutionary algorithms: A comparative

case study and the strength Pareto approach,” IEEE Transactions on Evolutionary

Computation, vol. 3, pp. 257–271, Aug. 1999.

[124] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto

Evolutionary Algorithm for Multiobjective Optimization,” in Proc. Evolutionary

Methods Des. Optimisation Control, 2002, pp. 95–100.

[125] S. F. Adra, P.J. Fleming, "A Diversity Management Operator for Evolutionary

Many-Objective Optimisation," Evolutionary Multi-Criterion Optimization, 5th

International Conference, Nantes, France, April 7-10, 2009.

[126] M.Li, S.Yang, X.Liu, "Shift-Based Density Estimation for Pareto-Based

Algorithms in Many-Objective Optimization,"IEEE Transactions on Evolutionary

Computation, vol. 18, pp. 348 - 365, June 2014.

[127] S. F. Adra and P. J. Fleming, “Diversity management in evolutionary many-

objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 15,

pp. 183–195, April 2011.

[128] H. Aguirre and K. Tanaka, “Space partitioning with adaptive-ranking and substitute

distance assignments: A comparative study on many-objective MNK-landscapes,” in

Proc.11th Annual Conference Genetic Evolutionary Computation, pp. 547–

554,2009.

[129] X.Zou, Y.Chen, M.Liu, L.Kang, " A New Evolutionary Algorithm for Solving

Many-Objective Optimization Problems," IEEE Transactions on Systems, Man, and

Cybernetics, Part B, Cybernetics, vol. 38, pp. 1402-12, Oct. 2008.

[130] S.Yang, M.Li, X.Liu, J.Zheng, "A Grid-Based Evolutionary Algorithm for Many-

Objective Optimization," IEEE Transactions on Evolutionary Computation, vol. 17,

pp. 721 - 736, October 2013.

[131] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining Convergence and

Diversity in Evolutionary Multiobjective Optimization,”Evolutionary Computation,

vol.10, pp. 263–282, September 2002.

[132] Y. Zhou and J. He, “Convergence Analysis of a Self-Adaptive Multiobjective

Evolutionary Algorithm Based on Grids,”Information Processing Letters,vol. 104,

pp. 117–122, November 2007.

[133] H.K. Singh, A. Isaacs, T. Ray," A Pareto Corner Search Evolutionary Algorithm

and Dimensionality Reduction in Many-Objective Optimization Problems," IEEE

Transactions on Evolutionary Computation, vol. 15, pp. 539 - 556, August 2011.

[134] H.Wang, X.Yao,"Corner Sort for Pareto-Based Many-Objective Optimization,"

IEEE Transactions on Cybernetics, vol. 44, pp. 92 - 102, January 2014.

[135] R.Wang, R.C. Purshouse, P.J. Fleming," Preference-Inspired Coevolutionary

Algorithms for Many-Objective Optimization," IEEE Transactions on Evolutionary

Computation, vol. 19, pp. 474 - 494, August 2013.

[136] Sato, H., Aguirre, H. E., Tanaka, K, "Pareto partial dominance MOEA and hybrid

archiving strategy included CDAS in many-objective optimization", IEEE Congress

on Evolutionary Computation, Barcelona, pp. 1 - 8, February 2010.

[137] X.Guo, Y.Wang, X.Wang, "Using Objective Clustering for Solving Many-

Objective Optimization Problems," Mathematical Problems in Engineering, vol.

2013, May 2013.

[138] K.Deb, D.K.Saxena, "On Finding Pareto-Optimal Solutions through

Dimensionality Reduction for Certain Large-Dimensional Multi-Objective

Optimization Problems," Indian Institute of Technology Kanpur, 2005.

[139] Y.Li, J.Zhou, H.Qin, Y.Lu, J.Yang, "Adaptive Niche Multi-objective Particle

Swarm Optimization Algorithm", Fourth International Conference on Natural

Computation, pp. 418 - 422, October 2008.

[140] Bouabdallah, S., Noth, A.; Siegwart, R.; “Full control of a quadrotor” ;

International Conference on Intelligent Robots and Systems, pp. 153 – 158, 2007.

[141]S.W.Ekanayake, P.N.Pathirana, “Formations of robotic swarm: An artificial force

based approach”, International journal of advanced robotic systems, vol.7, pp. 7-24,

2010.

[142] R. Fierro, P. Song, A. Das, V. Kumar, “Cooperative Control of Robot Formations”,

Cooperative Control and Optimization, vol. 66, Series of Applied Optimization, pp.

73-93, 2002.

[143] D.Mellinger, V. Kumar, “Minimum Snap Trajectory Generation and Control for

Quadrotors”, IEEE International Conference on Robotics and Automation, Shanghai,

May 2011.

[144] Gaui 330X-S Instruction Manual, Internet:

http://www.gauimrt.com/support/downloads/, September 2010.

[145] T580 Basic Quadcopter, Internet: http://www.uavshop.co.uk/downloads/X4-

Manual-UAVshop.pdf, March 2011.

http://www.gauimrt.com/support/downloads/
http://www.uavshop.co.uk/downloads/X4-Manual-UAVshop.pdf
http://www.uavshop.co.uk/downloads/X4-Manual-UAVshop.pdf

