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ABSTRACT 

 

 

This research generates a large collection of optimized trajectories for 

multi-agent quadrotors. The hybridized algorithm extracts trajectories with 

various trade-off for all agents without discrimination. This allows the 

resources of all agents to contribute towards the completion of a task.  

Two variations of multi-agent quadrotor missions are applied within this 

work. The first is spatially spread flight mission, MA-SPREAD whereas 

the second is formation flight, MA-FORMATION. The trajectories are 

designed within three environments: i) Highly Cluttered Indoor, ii) 

Cityscape and iii) Mountainous terrain. The initial path nodes are 

generated through a sampling based planner. Here, Rapidly Exploring 

Random Trees is expanded into Multi-Agent Rapidly Exploring Random 

Forest.  These paths are used to form the initial population for Genetic 

Algorithm. Next, we apply Many-Objectives Optimization towards the 

optimization of all agents and its objectives.  

This study strikes a balance between diverse and well minimized solutions 

through dimensionality reduction. Result shows that the algorithm can 

successfully find a diverse set of well minimized solutions within each 

environment. The end user will be supplied with high resolution visual 

imagery of each test environment and well-organized data that defines the 

trade-offs of each trajectory. These easy to understand information will 

assist the end user in making a final choice regarding the best multi-agent 

quadrotor trajectories for their mission. 
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CHAPTER 1: INTRODUCTION 

 

This research designs a standardized platform that generates a large population of well 

minimized trajectories for multi-agent quadrotors. It is focused towards long distance 

trajectory planning across partially known environments. The quadrotors will fly across 

high-rise cityscapes, highly cluttered indoor environments and mountainous terrains. 

Initially, mapping the free space across the three-dimensional environments with a variety 

of challenges is prioritized. Next, a path planning algorithm that can generate paths for 

many agents simultaneously is designed. This work also aims to define objective functions 

that effectively distinguish the pros and cons of each trajectory. The values of these 

objective functions must be obtained through a stable multi-agent quadrotor control 

system. Lastly, this research aspires to design an algorithm that is capable of ranking and 

maintaining a diverse collection of trajectories across generations.  

 

Here, we apply modified versions of Rapidly Exploring Random Trees, Genetic 

Algorithm and Dimensionality Reduced Many Objectives Dominance Optimization. 

Firstly, initial path waypoint generation and repair is performed through a multi-tree 

rapidly exploring random trees algorithm. Then, a modified genetic algorithm is designed 

to produce a diverse population of trajectories across all iterations. Thirdly, a standardized 

definition of the quadrotors’ physical constraints and mission limitations are represented 

by a collection of objectives functions. The values of these objective functions are 

estimated through a multi-agent control system. Next, the collective optimization of a 

group of quadrotors for two different missions is performed through dimensionality 

reduced many-objectives optimization. The trajectories are ranked based on their objective 

values and diversity. In this research, both spread and adaptive formation flights are 

explored. With spatially spread flights, each agent’s trajectory is designed independently. 

In this case, it is the combination of all the agents’ independent trajectories that is 

optimized. For the second application, the trajectories of each agent and their designed 

formation shapes are optimized. This algorithm optimizes the multi-agent trajectories as a 

collective where the resources of all agents are equally important.   

 

1.1 PROBLEM STATEMENT  

 

Any path planner must consider the different challenges that can arise when planning and 

optimizing the trajectories of multiple agents simultaneously. Firstly, there must be access 

to a speedy control system that is used to predict the motion and state derivatives of each 

agent. Secondly, many works chose to generate the trajectories for each agent individually. 

A system that generates the best paths for all agents without sacrificing the performance of 

any agent is preferable. Thirdly, researchers have often chosen to focus on a few 

environments and objectives only. There is a necessity for a system that is adaptable to 

different types of terrains, tasks and objectives. A trajectory optimization algorithm that 
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can produce paths for a variety of terrains whilst considering many objectives 

simultaneously can be highly advantageous.  

 

Next, end users are typically provided with a small collection of possible paths. 

There is a shortage of algorithms that can provide the end user with a large collection of 

diverse and well minimized trajectories. A large and diverse selection pool that contains 

30 different options means that the end user has many possible choices. Lastly, any 

information regarding the trade-offs of each path can aid the end user in determining the 

best choice for their mission. Recent studies show that there is a lack of planners that do 

not require predetermined objective preferences. Also, many works do not provide full 

visual imagery or include in-depth knowledge regarding the benefits of each solution 

within the population. This research aims to fill these needs through the application of a 

multi-agent quadrotor trajectory generation and optimization algorithm. 

 

1.2 OBJECTIVES 

 

The objectives for this study is as stated below: 

 

a) CONSTRUCT AND MAP FREE SPACE  

 

The first objective of this study is to construct and quickly identify the free space within 

three-dimensional test environments that mimic real-life flight challenges. The 

environments are not derived from real-life environments. The test spaces are designed to 

imitate the main structure of real-life environments. Thus, the simulated spaces can be 

randomly generated and look different for each experiment. Achieving this objective can 

be difficult because there needs to be a balance between accuracy and processing time. The 

path planner will be ready to design multi-agent quadrotor UAV trajectories for flight if 

the simulated test environments are similar to its real-life counterparts. On the other hand, 

a highly accurate environment requires a lot of detail within its space and this will increase 

the path planner’s processing time. Finding a balance between these two conflicting goals 

is the key to achieving this objective.  

 

The initial simulation environments that were used within this research project were 

focused on simple cylindrical obstacle shapes as shown in Figure 1.1(a). Here, a real-time 

simulated model of the quadrotor UAV was applied as well. This real-time model was 

viewable by the user while the algorithm is running. Thus, the image changes as the 

algorithm progresses. It contained the full mathematical model of the quadrotor within its 

PD control system. The rotational and translational movements of the quadrotor were 

visible on screen during the path planning process. Next, an indoor space that mirrors office 

lots and homes was introduced as can be seen in Figure 1.1(b). A forest test space as defined 

in Figure 1.1(c) was also created to mimic outdoor multi-agent flights. The issue with these 
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initial simulations of a high-resolution environments and multi-agent quadrotors is that it 

was computationally heavy. The path planning algorithm wasn’t given full access to the 

processing system. This is because the real-time on-screen visuals of the many agents 

required a large portion of the processing power. It became obvious that these methods 

wouldn’t work as the trajectory planning and optimization algorithm became more 

complex. Finally, an attempt to reach this objective is shown in Figure 1.1(d-f). Three 

highly challenging environments were designed. They are the cityscape, highly cluttered 

indoor space and mountainous terrain. The on-screen simulation was removed in favour of 

simple X shaped markers to define the movements of the quadrotors. The test environments 

were designed to be more accurate in definition as well. The end user can view these high-

resolution images at the end of the simulation process as opposed to during path planning 

process.            

 

 
 

 

 

 

b) STANDARDIZE THE MISSIONS OF MULTI-AGENT QUADROTORS.  

 

The secondary objective of this research project is to identify and generalize the various 

applications of multi-agent quadrotor UAVs. Achieving this target will allow the end user 

to apply the standardized platform towards a variety of multi-agent missions as opposed to 

just one. The challenging aspect of this objective is creating one path planning and 

optimization algorithm that caters to the needs of both multi-agent spatially spread and 

formation flight missions. These various multi-agent missions have been generalized into 

the MA-Spread and MA-Formation mission as shown in Figure 1.2(a-b).  

The initial simulations within this study were performed with two very different 

algorithms. There was one for formation flights and another for basic spread flights. This 

approach proved to be extremely tedious because it required separate programs within 

Fig. 1.1 Various MATLAB/SIMULINK simulated environments. 

 

Real-time simulation of (a) Quadrotor UAV. (b) Indoor flight of multi-agent quadrotors. (c) Formation flight across forestation. 

 

High resolution imagery of  (d) Cityscape.               (e) Highly cluttered indoor space.                  (f) Mountainous terrain.  
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many subsections for both missions. It became clear that a singular algorithm for both 

missions was more cost and time effective. There are certain subsections within the 

standardized algorithm that can be kept simple for one mission but may be more complex 

to accommodate both missions. The MA-Spread mission requires independent flight 

trajectories for all agents whereas the MA-Formation only needs one formation reference 

trajectory. Similarly, the MA-Spread mission doesn’t require close spaced flight structures 

whereas the MA-Formation does. This study attempts to achieve this objective by giving 

the end user the option of simplifying the algorithm. This can be accomplished by a simple 

change in the constant values of variables such as number of agents and type of mission. 

The MA-Spread algorithm designs paths for 4 agents that fly in different directions. The 

MA-Formation designs formation paths and shapes for 8 agents that fly near each other. 

Both mission use the same algorithm with one additional section for MA-Formation.  Here, 

the algorithm is designed to automatically include the dynamic formation shape planner 

and its objectives if the MA-Formation mission is chosen.    

 

 

 

 

 

 

 

 

c)  PLACING SAFETY ZONES 

Third objective for this study is to quickly and adequately define all the obstacles and their 

safety boundaries within each test environment. Achieving this objective requires the 

consideration of the same issues that were present in the first objective. The first challenge 

is to accurately define the height and shape changes within each obstacle. The second 

challenge is to identify the size of the safety boundary around each obstacle. This objective 

must be achieved with minimal processing time and complexity. Most importantly, the 

proper identification of the obstacles and its safety zones must produce multi-agent 

quadrotor UAV paths that have no collision points. 

In the beginning, the algorithm was designed without placing safety zones around 

the obstacles as shown by the red path in Figure 1.3. This process can be used if the path’s 

discrete nodes are not converted into smooth continuous trajectories for UAVs. On the 

other hand, the trajectories will collide with the sharp corners of the obstacles if minimal 

jerk splines are used. Next, standard sized safety zones were used for each test 

environments. This method achieves its objective but it causes the path planning algorithm 

Fig. 1.2 The two types of multi-agent quadrotor UAV missions. 

 

(a) MA-Spread spatially spread multi-agent flight mission. (b) MA-Formation multi-agent formation flight mission.  
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to design nondiverse paths. This is because each test space has different types of obstacles. 

Boundary sizes that are too large will limit the placement of path nodes across each test 

space. This will generate a collection of similar paths. The agents will collide with the 

many sharp corners of the buildings within the cityscape if the boundaries are too small. 

The narrow corridors of the indoor environment can close if the boundaries are too large 

as shown by the green path in Figure 1.3. Similarly, the small and gradual changes in height 

within the mountainous terrain aren’t represented if the boundaries are too large. This 

research projects aims to achieve the third objective by applying different sized safety 

planes and boundaries across the three environments. The sizes of planes are defined based 

on the characteristics of each test space. This method will produce paths that are diverse 

and do not contain any collision points as shown by the blue path in Figure 1.3.        

 

 

 

 

 

 

 

 

d) GENERATE DIVERSE PATHS FOR THE INITIAL POPULATION. 

 

The most important objective of any path planning algorithm is to generate highly diverse, 

collision free paths for the initial population of the optimization process. This study 

requires an offline, long range, multi-agent UAV path planner. This objective can be 

achieved in two steps. The first goal of the path planner is to fully explore the free space 

across three different test spaces. The second goal is to quickly extract a diverse and large 

collection of multi-agent paths. A few different path planners were applied throughout the 

course of this research project. The first was a basic shortest path algorithm such as 

Dijkstra's algorithm. Then, Virtual Potential Function (VPF) was used to plan paths for 

multiple agents. Next, consensus algorithm was implemented for multi-agent formation 

flight. These planners weren’t fast enough or required a high amount of processing time. 

Some of the planners couldn’t handle both the MA-Spread and MA-Formation missions.  

 

Finally, a sampling-based planner was applied. This last choice showed a lot of 

potential in terms of achieving the objective of this study. A step-by-step diagram that 

describes the multi-agent sampling-based planner is presented in Figure 1.4 (a-e). The 

Rapidly Exploring Randomized Trees (RRT) free space mapping and path planning 

Fig. 1.3 The different sizes of safety zones around an obstacle. 
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algorithm begins by placing a root node (black) at the initial points of the multi-agents. 

Sample points (green) are then connected to the root node to form a tree branch (black). 

This study combines the trees through tree-to-tree linkages (green) to create a forest. The 

process is repeated until the environment is fully explored. To fully achieve this objective, 

a diverse collection of multi-agent paths must be quickly extracted. It is important that a 

well organised database is created. It is also crucial to implement a path filtration process 

to remove nondiverse paths from the tens of thousands of unique paths.      

 

 

 

 

 

 

 

 

e) UNIQUE POPULATION OF PATHS FOR EACH GENERATION.  

 

The fifth objective is to create and maintain a diverse population of multi-agent paths for 

each generation. This objective can be split into a few goals. The first is to hybridize the 

MA-RRF paths to create new path populations for the optimization algorithm. The 

algorithm must be able to select suitable paths to merge together. It must also be able to 

create new collision free paths. The second goal is maintaining the level of path diversity 

across the many generations. This can be done by constantly creating new connections 

between path nodes.  

 

The algorithm that will be able to reach these goals is Genetic Algorithm (GA). 

This planner can be applied as a refined path planner that uses the initial RRT path nodes 

as reference points. It is used to hybridize two paths to create two more new paths. It is 

also capable of exploring areas that are close in proximity to make minor improvements to 

these newly hybridized paths. Figure 1.5(a-c) shows the different stages that will be 

implemented within the GA. Figure 1.5(a) shows two parent paths that have the same initial 

and destination point. A crossover point is selected and the nodes within the two paths are 

switched as defined in Figure 1.5(b). Lastly, a singular node is chosen within these new 

paths as the mutation point. The coordinates of the nodes as shown in Figure 1.5(c) will be 

changed based on the type of mutation that is applied. These stages will allow the full path 

planning algorithm to achieve this objective.  

 

 

 

Fig. 1.4 The initial steps of the MA-RRF free space mapping and path planning algorithm. 

 

(a) Set the roots of each tree. (b) Connect sample points to the nearest tree. (c) Create forest links. (d) Further expand each tree.  

(e) Connect more forest links. 
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f)  TRAJECTORIES THAT ARE SUITABLE FOR QUADROTORS. 

 

Another objective of this research project is to design time-based, collision free, smooth 

trajectories that are suitable for multi-agent quadrotor UAVs. Smooth and minimal jerk 

trajectories are especially important for formation flights because it allows the agents to 

maintain their formation structure with ease. There are a few hurdles that need to be 

overcome to achieve this goal. The first is to design path nodes that have an appropriate 

distance from all obstacles. A smooth trajectory will follow the same direction of the path 

nodes but there will be some changes along certain subsections such as sharp corners. An 

example of this can be seen in Figure 1.6 where the red path defines the smooth spline that 

follows the initially planned grey path nodes.  

 

The secondary challenge that occurs when trying to achieve this objective is finding 

a balance between maintaining and removing nodes across a path. Some nodes can be 

considered redundant because they do not add new information in terms of path direction. 

This can be tested by checking the difference in direction and curvature between three 

neighbouring nodes. Still, the maintenance of these nodes along the sharp corners of a path 

will create a smooth trajectory that is collision free. This objective can be achieved by using 

an adaptive method that only removes nodes across path sections that don’t contain sharp 

bends. As shown in Figure 1.6, it also adds nodes to sections that contain aggressive turns 

with angles that are less than 90o.     

 

 

 

 

 

 

 

g)  PARALLEL RUN CLOSED-LOOP MULTI-AGENT CONTROL SYSTEM. 

 

The seventh objective of this study is to model a noncomplex, parallel run, closed-loop 

multi-agent quadrotor UAV control system. The control system must overcome three 

Fig. 1.5. The three types of operators that are applied within GA. 

 

(a) The two selected parent paths for the same agent.   (b) Single point crossover.                     (c) External node mutation operator. 

 

Fig. 1.6. The designed path nodes and its minimal jerk smooth spline. 
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challenging stages to achieve this goal. The first stage is to implement a suitable 

mathematical model. This model will be designed to simulate the translational and 

rotational movements of the quadrotor UAV. Next, a fast and minimal error control system 

will be designed. This subsection will allow the control system to predict the path tracking 

error of the quadrotors as shown in Figure 1.7. The value of the error is important because 

it defines if a designed path can be followed by a real-life quadrotor. Lastly, the control 

system for the individual agent must be expanded into a parallel run multi-agent quadrotor 

control system.    

The first control system that was designed for this research project was a Linear-

quadratic regulator (LQR) controller with a full model of the quadrotor UAV. This control 

system can produce minimal control signal overshoot and error. The disadvantage of this 

controller was that it was complex in design. The secondary controller that was 

implemented was a PID control system alongside the nonsimplified mathematical model 

of the UAV. The control system that can achieve this objective is a more simplified version 

of the quadrotor UAV’s mathematical model. This study will apply a PD controller with a 

simplified mathematical model for the control system. The system runs in series because 

the input of each subsection is dependent on the output of the previous subsection. It is fast 

and easily expandable into a multi-agent system. 
  

 

 

 

 

 

h) DEFINE A SET OF MULTI-AGENT QUADROTOR OBJECTIVES.  

 

The next objective of this study is to mathematically and simplistically define a set of multi-

agent quadrotor UAV mission-based objectives. The many objectives will be a collection 

of objective functions that have been applied with quadrotor UAVs. It considers objectives 

that consider a variety of missions, environments and sensors. Figure 1.8 shows an example 

of the objectives that are often considered within path planning algorithms. It can be 

challenging to convert real-life concerns into noncomplex mathematical equations. It is 

important that the equations are simplistic and easy to compute because they are used so 

often throughout the optimization algorithm. The objective functions do not have to be 

highly accurate since they exist to provide an indicator as to the trade-offs of each 

trajectory. A more accurate model can be applied in a smaller scale with a more modest 

sized population. This is out of the scope of this study since it only considers a large sized 

multi-agent path population.     

 

FEEDBACK (x, y, z,𝜙, 𝜃,𝜓) 

TRANSLATIONAL 

CONTROLLER 

ROTATIONAL 

CONTROLLER 

SYSTEM 

DYNAMICS 

Path tracking error Quadrotor’s predicted path  

Quadrotor’s planned 

path 

Fig. 1.7 The prediction system for the quadrotor UAV. 
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i)    WELL MINIMIZED YET DIVERSE FINAL SET OF TRAJECTORIES. 

 

As previously defined, this research aims to minimize the values of the many objectives as 

opposed to finding the Pareto optimal solution set. Thus, the ninth objective of this study 

is to develop a well minimized and diverse final set of multi-agent trajectories for end users. 

There are two challenges that need to be overcome to achieve this objective. Firstly, it is 

important that the optimization algorithm can minimize the values of the many objective 

functions that are applied within this study. Secondly, the algorithm must be able to 

maintain a diverse set of trajectories so that the end user has a variety of multi-agent 

quadrotor trajectory options with various trade-offs in terms of objective values.       

 

Initially, only a few objectives were considered. An aggregated function was used 

to minimize the values of these objectives simultaneously. Here, a basic multi-objective 

optimization algorithm was found to be sufficient. Later, the project was expanded to 

include both MA-Spread and MA-Formation missions. Both missions have their own costs 

and limitations. The algorithm needs to be able to minimize the values of many objectives 

at the same time. Thus, a many objectives optimization algorithm is implemented within 

this study. Dimensionality reduction and adaptive niching will be used to preserve well 

minimized solutions across generations. The progression of the Dimensionality Reduced 

Many-Objective Optimization (DRMOO) algorithm is shown in Figure 1.9.  

 

This algorithm breaks the full objective set into smaller objective subsets. This is 

performed gradually by identifying objectives that do not conflict with the other objectives 

within its set. This is achieved by identifying objectives that do not contribute to the path 

ranking process within the optimization algorithm. Thus, the removal of a nonconflicting 

objective doesn’t affect the rank of each path. These sets are then used in rotation for a 

constant number of generations. The rotation of both the full and smaller objective sets will 

allow the DRMOO algorithm to perform both local and global optimization 

simultaneously. The usage of the objective subsets will promote local optimization for the 

objectives within the current set. On the other hand, applying the full objective set promotes 

Path tracking error 

Path curvature  

Distances from 

obstacles 

Quadrotor’s translational and 

rotational movements 
Path length  

Flight time 

 

Agent-to-agent 

distances 

Fig. 1.8 The many different objectives that can be applied during a multi-agent quadrotor UAV mission. 
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global optimization for all objectives. This algorithm can achieve its objective of producing 

a diverse and well minimized set of multi-agent trajectories.   
 

 

 

 

 

 

 

 

 

 

j)  PROVIDE ORGANIZED AND UNDERSTANDABLE INFORMATION.  

 

The final objective is to provide well organized and easily understandable information 

regarding the trade-offs of each multi-agent trajectory. This objective can be achieved in 

many ways. The end user may prefer a variety of multi-agent path options during the 

decision-making process. The most common way that researchers present their designed 

paths is through visual imagery. A high-resolution 3D image can be very useful because it 

allows the end user to rotate and zoom into the planned paths. Another popular method of 

analysing big amounts of data is through graphs. The changing values of the variables 

within the algorithm can be easily evaluated with graphs. Next, tables can be used to 

display and compare important data. Database management and visualization will allow 

the end user to view the results in an organized manner. These options will only present a 

small amount of information to the end user. Big data analysis software such as 

MATLAB/SIMULINK can be used to display all the data across many generations. This 

way, the end user has easy access to a large amount of information. The data must be stored 

within a database that is well organized. The achievement of this objective is possible with 

the implementation of these options. 

1.3 CONTRIBUTIONS 

The first contribution of this study is the development of a multi-agent RRT. A method for 

merging trees and extracting thousands of unique paths per agent is presented. Secondly, a 

modified GA is developed to produce a diverse population of trajectories for all agents at 

each generation. Another contribution of this study is its parallel run multi-agent quadrotor 

control system. The simulated movements of the quadrotor show if the planned paths are 

dynamically feasible, trackable and do not collide with obstacles. This work also presents 

a high-resolution formation planner. This leads to formation shapes that quickly adapt to 
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Fig. 1.9 The timeline of the DRMOO algorithm. 
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the changes within its environment. Next, each objective function is well defined to 

simulate real-life spread or formation flights. These objectives are applicable to many 

environments, quadrotor variations or sensory systems. Lastly, the DRMOO successfully 

finds a diverse set of well minimized trajectories for both scenarios. The results of this 

study show that all objectives are minimized or well-maintained without the extreme 

degradation of one objective over the other. The end user is presented with additional post 

processing knowledge and high-resolution imagery of each trajectory. This data can be 

easily understood and accessed when the end user attempts to choose the best path. 

 

 

1.4 METHODOLOGY 

 

This research performs trajectory planning and optimization for multi-agent quadrotors that 

is tested across two different applications. The algorithm is run on Windows 7, Intel ® 

Xeon (R) CPU E3-1230 V2, 3.30GHz, 8GB RAM, 64-bit operating system. Here, we apply 

modified versions of Rapidly Exploring Random Trees (RRT), Genetic Algorithm (GA) 

and Dimensionality Reduced Many Objectives Dominance Optimization (DRMOO). Each 

subsection that is shown in Figure 1.10 has been modified to suit and benefit from a multi-

agent system. This combination produces an algorithm that creates a final population of 

diverse and well minimized trajectories for all quadrotors. This standardized platform is 

applied for both independent and formation flight missions. These trajectories are designed 

within three challenging environments which are highly cluttered indoor spaces, cityscapes 

and mountainous terrains. This study focuses on long distance trajectory planning across 

known environments. It can adapt to various terrains, tasks and objectives. 

 

Firstly, a sampling based planner is applied to map the free space across each 

terrain. With a multi-agent system, multiple trees can be generated to further speed up the 

exploration process. The Multi-agent Rapidly Exploring Random Forest (MA-RRF) 

trajectory planner is designed to fully harness the advantages of having a multi-agent 

system. Initially, the start node of each agent is set as the root node of their RRT tree. The 

algorithm begins with separate trees and constantly checks for possible collision free 

linkages between them. The creation of the forest is done through the linking of open 

branches on different trees within the environment. Through this process, the individually 

rooted trees are quickly merged into a full forest. The tree branches and forest links must 

be efficiently stored in order to quickly extract the path nodes. A mutual database is 

constructed to store all the free space mapping information and tree branches from each 

agent. Tree branches that are within close ranges of any agent’s goal node are also stored. 

This allows all agents to access the constantly updated shared database. This also increases 

efficiency and reduces the complexity of planning paths for many agents. The extraction 

of paths begins once the forest has fully explored the free space. Here, the algorithm 

extracts the many forest linkages that are formed between the different trees. The nodes for 
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each path are obtained across multiple tree subsections. This process produces a large 

collection of unique paths per agent. Finally, a filtration system is applied to remove paths 

that are similar in direction since the optimization process requires a diverse set of paths.  

 

 The many-objective optimization algorithm requires a population of thirty 

solutions at each generation. In this study, we apply GA for the generation of new 

trajectories at each generation. GA isn’t used to generate the initial population because it 

requires more time to fully explore and extract feasible paths on its own. Thus, the path 

nodes that are designed by the MA-RRF algorithm will form the initial population for the 

optimization process. The basic GA requires additional modifications to create and 

maintain a collection of diverse paths across generations. This is extremely important 

because paths will converge towards similar directions especially within extremely 

constricted spaces. In this study, both the parent and child paths must produce nodes that 

don’t exceed the similarity threshold to survive the selection process. Thus, GA will 

compare the paths within both generations. Next, single point crossover and three types of 

mutation are applied. In most cases, the newly generated child path is filled with collision 

points after undergoing the crossover and mutation process. Due to this, MA-RRF is 

applied to perform speedy path repair. Lastly, four additional post processing operators are 

applied. Any repetitive loops that are within the child paths are removed. Child paths that 

hold too few nodes for spline creation are padded with additional nodes. More nodes are 

also generated across the path sections with turns that are smaller than 90 degrees. Lastly, 

a similarity test is performed to compare the new child path to the current population. If 

the offspring is collision free and passes through these post processing steps successfully, 

it is stored as a member of the next generation. 

 

The new generation of multi-agent paths will be converted into trajectories through 

the application of fifth order splines. These smooth trajectories are used as input for the 

parallel run multi-agent control system. This system is a combination of the control system 

and mathematical model of each agent. The control system executes parallel simulation for 

all agents on a multi-thread processing system. The estimated translational and rotational 

movement of the quadrotors will then be used to estimate the values of the many objective 

functions. In this study, twelve objective functions are defined for multi-agent spread (MA-

Spread) mission. Eight are standard objectives whereas four objectives are specific to the 

MA-Spread mission. The standard objectives are shown in Section 4.1. The objectives that 

are specifically designed for spatially spread flight is shown in Section 4.2.3. With MA-

Spread, thirty randomized combinations of four agents’ flight paths are optimized for each 

generation. Each generation produces a new set of path combinations. These paths are a 

mesh of parent paths that are maintained across generations and newly planned paths. This 

method ensures that the resources of all agents are taken into consideration at each stage 

of the algorithm.  
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The formation flight (MA-Formation) missions also apply twelve objective 

functions. Here as well, eight are standard objectives and four are specific to formation 

flight missions. The standard objectives are shown in Section 4.1. The objectives that are 

specifically designed for formation flight is shown in Section 4.3.4. With the MA-

Formation application, thirty formation reference paths are designed at each generation. 

These formation reference trajectory nodes are applied as the reference coordinates for the 

dynamic formation planner. Here, the formation planner works in high resolution. This 

level of resolution is advantageous for full obstacle clearance and the design of adaptive 

formation shapes. Both the multi-agent trajectories and its formation designs are applied 

towards determining the values of the many objective functions. 

 

Lastly, this study applies DRMOO to generate smaller objective subsets. DRMOO 

promotes the creation of subsets that contain three or more conflicting objective functions. 

The objective subsets are created by comparing the number of nondominated solutions that 

remain within a population before and after the removal of an objective function. The 

objective function is found to be nonconflicting if the number of nondominated solutions 

remains similar despite its removal. This is because nonconflicting objectives make 

minimal contributions to the ranking process. The objective function is removed from its 

subset, placed within another subset and retested for redundancy as the iterations progress. 

As the algorithm progresses, these objective subsets are used in rotation. The full objective 

set with twelve objectives is reintroduced at the end of each interval. The application of 

both the full objective set and subsets allow the algorithm to perform both local and global 

optimization simultaneously. Also, no objectives are fully eliminated. This is advantageous 

in cases where an error has been made in determining nonconflicting objectives. At each 

generation, the solutions are ranked based on the current objective set. Next, adaptive 

niching is performed on the remaining population to determine which are most diverse. 

The average distances between all solutions are used to determine the current niche radius. 

This process encourages the degradation of crowded solutions and the enhancement of 

cluster representative solutions. Both the trajectory population’s ranking and niching 

process collectively maintain solutions that are well minimized and diverse.    

 

This hybridized trajectory planning algorithm is a mesh of MA-RRF, GA and 

DRMOO. It successfully generates a large collection of trajectories for multiple quadrotors 

simultaneously. Here, all objectives are minimized or maintained without the extreme 

degradation of one objective over the other. The end user is delivered easily interpretable 

knowledge to make a final decision. It has optimized a team of quadrotors collectively as 

opposed to individually. The path planner utilizes algorithms have the advantage of parallel 

processing. The control system, sampling based planner, genetic algorithm and many 

objectives optimization are designed to run on any multi thread system. 
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Fig. 1.10 Flow chart of MA-SPREAD trajectory planning algorithm. 
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1.5  THESIS OUTLINE 
 

This thesis comprises of two main sections. The first half of the thesis lays the groundwork 

for the full multi-agent quadrotor UAV path planning and optimization algorithm. It shows 

the reader the different algorithms such as MA-RRF, GA and DRMOO that are merged to 

create the entire trajectory planning algorithm. These chapters will define the various 

theories within each algorithm and the reason they were chosen. It also defined the structure 

of each algorithm through mathematical equations. The reader will also be able to view the 

different missions, objectives and environments that are applied in this thesis. The second 

part of this thesis shows the results of the multi-agent path planning and optimization 

algorithm. Here, the best trajectories for each mission are presented in a variety of forms. 

The data that is derived from the final population of trajectories is displayed in graphs, 

tables and high-resolution imageries. These two subsections of the thesis will collectively 

show the theory, results and analysis of the unified algorithm.   

 

Chapter 2 describes the different literatures that inspired the direction that was 

taken in this research project. It discusses and analyses the relevant research that have been 

produced by previous researchers, start-ups and large corporations. This chapter begins by 

describing the history of the quadrotor and the physical modifications that have been 

performed across the years. It also shows that the quadrotor has been applied within many 

challenging environments. Next, the chapter proceeds to define the different path planning 

algorithms that have been used for both the spatially spread and formation flight missions. 

This section leads to the analysis of the many objectives and limitations that are often 

applied within these two missions. Lastly, this chapter shows the various optimization 

methods that have been applied with multi-agent systems. It also defines the different types 

of many-objectives optimization algorithms that have been published. The chapter closes 

by analysing a specific subsection of many-objectives optimization which involves 

dimensionality reduction.      

 

Then, Chapter 3 describes the theory and structure of the two hybridized path 

planners that are applied within this study. It describes the creation of the multi-agent 

quadrotor UAVs’ hybridized paths by both the MA-RRF and GA planners. This chapter 

starts by illustrating the three test spaces that are applied within this study. Next, the 

framework of the MA-RRF planner is presented. Here, the MA-RRF planner acts as the 

initial path planner. This section shows the reader the free space sampling and mapping 

process. The results display the initial path population that has been designed for the MA-

Spread and MA-Formation missions. Next, GA acts as a more refined path planner that 

hybridizes the nodes of the MA-RRF paths to create new generations of trajectories. This 

chapter continues by defining the different operators and post processing procedures that 

are used within GA. Finally, the basic structure of the quadrotor UAV’s mathematical 

model and control system is defined. The reader is shown how these sections collectively 
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form a multi-agent quadrotor control system. This control system defines the translational 

and rotational movements of an agent. Thus, the data gives the reader an insight as to the 

trajectories that can be tracked by a real-life agent. 

 

Chapter 4 describes the many objectives that are applied within the MA-Spread and 

MA-Formation missions. It also shows how these objectives are used within the DRMOO 

optimization algorithm. This chapter begins by defining the standardized objectives that 

are used for both missions. The next section defines the MA-Spread mission and its specific 

objectives. Here, the reader can see that the independent trajectories of four agents are 

optimized as a collective team. This part of the thesis also defines the estimated data that 

flows across the many parts of the algorithm when it is applied within the MA-Spread 

mission. Then, this chapter describes the MA-Formation mission. Similar to the prior 

subsection, the objectives that are used only for the MA-Formation missions are also 

mathematically defined. In this case, the formation reference trajectory, its shapes and the 

independent trajectories of eight agents are optimized simultaneously. The variables that 

are applied within the optimization process are defined by a high-resolution formation 

planner. Lastly, the structure of the DRMOO many-objectives optimization algorithm is 

presented within this chapter. This section shows the reader the different concepts that are 

used within the DRMOO algorithm such as dimensionality reduction and adaptive niching. 

Thus, the reader can understand the reasons why the DRMOO is suitable for optimizing a 

large collection of objectives and multi-agent trajectories.  

 

This thesis presents the results of the multi-agent quadrotor UAV trajectory 

planning and optimization algorithm. The results for the two missions across three test 

environments are shown in Chapter 5. Each section begins by showing the changing values 

of the number of dominant solutions and the level of diversity across generations. The next 

part of each section shows the results of the final trajectory population. It allows the reader 

to analyse the level of optimization that has occurred from the first to final generation. The 

results and its data are displayed in table form and high-resolution imagery. Each section 

closes with detailed data regarding the objective values for each solution within the 

trajectory population. This part defines the pros and cons of each option to the reader. 

Finally, the conclusion of this study is presented in Chapter 6. This chapter analyses the 

implications, limitations and contributions of this research project. 
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CHAPTER 2: LITERATURE REVIEW 
 

The design for a trajectory planner of multi-agent UAVs is heavily dependent on its 

real-life application. Today, most users still prefer remote controlled multi-rotor aerial 

vehicles. Still, unmanned versions are gaining popularity amongst elite users. This elite 

group comprises of users with access to funds and current research. Thus, most UAV 

systems are designed for governmental bodies, large corporations, research facilities 

and entrepreneurs. These end users will be applying the UAVs towards many different 

applications. The UAV that is most commonly used is the quadrotor. The four-rotor 

aerial vehicle is easily expandable to form a multi-agent system. Implementing a 

cooperative multi-agent system means that there is potential that missions can be 

completed at a much faster rate. Multi-agent quadrotors are frequently used for 

collective missions such as search and rescue or reconnaissance. The quadrotors can 

also be applied for target tracking as well as forming ad hoc wireless networks. Delivery 

companies are also attempting to transport light weight packages across urban 

environments. The most popular application of the quadrotor is for the creation of 

media content. Quadrotors are being used by journalists and scientists to capture high 

definition videos. Here, the various sensory systems that operate simultaneously can 

efficiently collect data for terrain mapping and wildlife research. Similarly, many 

hobbyists apply the quadrotor for capturing photographs of important family events.  

 

Some of these applications are simplistic and only require a path planning 

algorithm that is easy to implement. On the other hand, more complex missions will 

benefit from a well-designed trajectory planning algorithm. A multi-agent system can 

be challenging because each agent within a team can be an asset or a liability. A path 

planning algorithm must be capable of harnessing the resources of each agent within its 

team. This research generates a large collection of optimized trajectories for multi-agent 

quadrotors. It can adapt to all types of terrains, tasks and objectives. This chapter 

presents background information on the various algorithms that form the final trajectory 

planning algorithm. Firstly, the history of the quadrotor aerial vehicle is presented. 

Here, we define the quadrotor’s physical changes through time. This section also 

describes the various environments that the multi-agent quadrotors fly across. Next, the 

many objectives that are typically applied within different quadrotor missions are 

discussed. The two applications that are highlighted within this research are multi-agent 

spread and formation flights.  

 

The next section defines the different trajectory planning algorithms that have 

been used for aerial vehicles. In this study, focus is placed upon sampling based 

planners such as rapidly random exploring trees. Lastly, the various algorithms that are 

used for trajectory optimization is presented. Researches that apply multi-objective 

optimization towards path planning are explored. In this work, emphasis is placed upon 

optimization through genetic algorithm. The concepts that are introduced in multi-

objective optimization algorithms are used to optimize many objectives as well. This 
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section also shows the different methods that are used to improve the many-objectives 

optimization process. The studies that are presented within this literature review are 

used as the building blocks for this research. All three subsections are improved upon 

and hybridized to form the final multi-agent quadrotor trajectory planning algorithm.            

 

2.1 QUADROTOR AERIAL VEHICLES 

 

These days, there are many variations of the multi-rotor aerial vehicle. Each variation 

is typically named based on the number of rotors that are attached to the vehicle. The 

most commonly available multi-rotor system is the quadrotor or quadcopter. It is an 

aerial vehicle that has four rotors that is easily designed and assembled. It is typically 

made with durable materials such as carbon fibre and high-resistance plastic.   

 

The quadrotor can be used for both small and large scale cooperative flight 

missions. This vehicle is often used in both research facilities and businesses. Thus, its 

commercial popularity has caused a drop in its manufacturing costs. Similarly, it is 

manufactured across many countries and can be easily purchased online or off-the-

shelf. Quadrotors are often equipped with many types of sensory systems that can 

transmit real-time data. Progresses in measurement units and electronics have also 

produced an increase in the data processing capabilities of UAVs. The quadrotor is also 

capable of vertical take-off and landing as well as highly aggressive manoeuvres. Many 

users have chosen to use multi-rotor systems as opposed to fixed wing vehicles due to 

its high level of stability. The surging popularity of the quadrotor within the consumer 

market is due to its ability to remain stable whilst delivering clear imagery in real-time. 

It can undertake aggressive turns and capture videos at high definition. The fast 

evolution of the quadrotor and its software shows that it can be easily expandable to a 

large sized multi-agent system. This study aims to fully utilize the advantages of using 

the quadrotor for multi-agent missions.  

 

This research has chosen to plan optimal trajectories for the quadrotor UAV 

within complex three-dimensional environments. In comparison to fixed wing and 

other rotary winged UAVs, the choice of applying the multi-agent platform to 

quadrotors is due to its benefits outweighing its disadvantages as follows, 

• Good agility in missions that require high manoeuvrability. The quadrotor is 

highly manoeuvrable. Highly aggressive turns are performed smoothly with 

minimal obstacle buffer region. 

 

• Increase in payload capacity. The quadrotor creates more lift thrust than 

conventional helicopters. Therefore, it can lift higher payloads. Multi-agent 

quadrotors offer more lift as a collective and can manage heavier weights. 

 

• Performs Vertical Take Off and Landing (VTOL). Spinning directions of the 

rotors are set to balance the moments. The balance that is achieved by the four 
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rotors eliminates the need for a tail rotor. Thus, the quadrotor can hover above 

targets unlike fixed wing UAVs. This reduces fuel consumption.  

  

• Hard to reach areas made easily accessible. The quadrotor is capable of 

manoeuvring across narrow passages as well as highly cluttered spaces.   

 

• Cost effective and simple to build. It offers a great platform for autonomous 

unmanned aerial vehicle research projects. It can be easily obtained through 

online shopping or off the shelf at malls. It is cheap enough for hobbyists as 

well.  

 

• Risks to humans are reduced. The quadrotor is suitable for applications such as 

investigations, rescue missions and film making.  

 

This section explores three types of quadrotor variations which are physical structure 

miniaturization, environment based hybridization and passenger transportation. These 

variations show that the quadrotor can be modified to complete any application or move 

across any environment.     

 

2.1.1  QUADROTOR DEVELOPMENTS  

 

The initial structure of the quadrotor or quadcopter began with the design of rotary 

winged Gyroplane No.1. The aerial vehicle was designed in year 1907 by Louis 

Breguet, Jacques Breguet and assisted by Professor Charles Richet [1]. Figure 2.1(a) 

shows a minimalistic structure that is made from steel. The corners of the Gyroplane 

No.1. are attached with rotors that are stacked upon each other. This basic design was 

further improved in 1922 by Georges de Bothezat as shown in Figure 2.1(b). His 

helicopter closely resembles the cross-frame physicality of the modern quadrotor. This 

design has six wide blades at the end of its four arms [2]. Both manually controlled 

designs were heavy and capable of short flights at low altitudes. Tests show that these 

vehicles were unstable due to the lack of a proper control or landing system. These 

quadcopters would have required high costs of production. Also, the energy that was 

being supplied to the vehicles was insufficient. Though imperfect, these models have 

inspired the development of today's helicopter.  Thus, the idea of placing multiple rotors 

to produce lift and aggressively manoeuvre across test spaces has inspired countless 

variations of multi-rotor vehicles designs.  

 

 
                  Fig. 2.1.  (a) Gyroplane No.1 [1]                                 (b) Georges de Bothezat's helicopter [2] 

 



20 
 

The design of the Gyroplane No.1 is large and cannot be flown across smaller spaces. 

A reduction in size is necessary to use these unmanned vehicles across constrained 

spaces. One of the most popular quadrotor that is low cost is the Parrot AR. Drone [3-

4]. It comes in a variety of colours, multiple real-time games and live video feed. It is 

28 x 28 inches in size and 13.4 ounces in weight when its hull is attached. The second 

version of the drone is controlled by a smart phone and comes fully equipped with WiFi 

network. The quadrotors are also produced with a high definition camera. Spare parts 

are repairable or purchasable online. Thus, the average user can easily assemble and fly 

the Parrot AR. Drone.  

 

As shown in Figure 2.2, some designers have chosen to further reduce the size 

of the quadrotor. The Parrot Minidrone Rolling Spider that weighs 55 grams was 

released in August 2014 [5]. It is also capable of connecting to both the Android and 

Apple tablet’s operating software. The Lil' Draganflyer Nano Quadrotor is extremely 

small. It is and built for indoor or outdoor flights that have minimal amount of wind 

resistance [6]. These miniature drones are capable of environment mapping across 

workspaces and homes. It is the ideal tool for surveillance that requires the drone to fly 

over and under clutter. The probability of damage towards civilians, pets and home 

goods is minimal. More importantly, it also fills the need for UAVs required by 

academic or research facilities. There are less dangerous and easier to control within 

tight spaces as compared to a full sized, high speed quadrotor. Here, smaller scaled 

versions of test environments can be constructed indoors for experiments. Both the 

control and navigation of multi-agent UAVs can be performed safely. The information 

that is obtained from these miniature versions can be highly valuable before attempting 

to fly larger drones across more dangerous locations.  

 

                    
 

 

Another form of structure manipulation is the hybridization of ground and aerial 

motion. Samples of these designs are shown in Figure 2.3. The B is designed with the 

traditional wheeled vehicle in mind except each wheel contains a rotor [7]. It is a 

hybridization of the remote-controlled car and the quadrotor. The benefit of this design 

is its ability to easily switch between flight and on the ground driving. Similarly, the 

Hybrid Exploration Robot for Air and Land Deployment (HERALD) integrates legs 

with wheels. This hybridization allows the HERALD’s to have seven degrees of 

freedom [8]. Besides wheeled designs, avian inspired graspers have also been attached 

to the quadrotor. This allows the UAV to perch and conserve fuel when necessary [9]. 

These quadrotors are capable of navigating across many types of terrains such as 

                 Fig. 2.2. (a) Parrot Minidrone Rolling Spider [4]               (b) Lil' Draganflyer Nano Quadrotor [6]        
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disaster sites or mountainous terrains. In these cases, it can be dangerous for humans to 

transport the quadrotors towards its take-off location. It is advantageous for the 

quadrotor to be able to move on ground without human interference.   

 

                  
 

  

Recent developments show that there is an interest in using the quadrotor for 

transporting passengers or payloads. In this case, a trajectory planner must be capable 

of generating paths that consider the common direction of all agents. Most studies focus 

on payload transportation by flying in formation. As shown in Figure 2.4, there are 

some works that have modified the physical structure of the quadrotor. The first manned 

multicopter system was successfully flown by E-Volo in 2011 [10]. Here, the maximum 

payload of the quadrotor is enhanced by connecting a few agents across a singular 

structure. Figure 2.4(a) shows a structure that connects four quadrotors to carry more 

payloads. In this experiment, a human passenger is successfully lifted off the ground. 

Another variation of a manned quadrotor is the Hoverbike helicopter [11]. This model 

has combined the structure of a motorbike with the rotors of an aerial vehicle. The 

difference between the Hoverbike and the typical quadrotor design is the overlapping 

of two rotors to reduce size. The design comes with the option for manned or unmanned 

flight with a maximum of 270kg take-off weight. Whilst a commercial model isn't 

currently for sale, the rapid progression of the quadrotor shows that it can be used as a 

privately owned aerial vehicle in the future.  

 

The physical variations that have been described show that the quadrotor can easily 

be modified. Thus, these agents can be used for a variety of applications. The aerial 

vehicle is typically flown across locations that can be hazardous for humans. This is 

because there can be extreme and sudden changes in terrain height. Besides 

understanding the physical structure of the quadrotor, it is also important that the 

designer of a trajectory planning algorithm considers all possible environments.       

 

                

      Fig. 2.3.  (a) The B [7]                    (b) HERALD [8]                 (c) Avian inspired graspers on a quadrotor [9] 

 

                 Fig. 2.4. (a) E-Volo's first manned multicopter [10]                      (b) Hoverbike [11] 
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2.1.2  QUADROTOR FLIGHTS ACROSS VARIOUS ENVIRONMENTS 

  

The quadrotor can fly across many terrains that have different weather conditions. A 

path planner that can adapt to a variety of environments is highly advantageous for the 

end user. Preliminary knowledge on the type of environments and its challenges can be 

beneficial for the designer of the algorithm. Prior studies that experiment across both 

natural and manmade spaces can provide insight in terms of mapping, obstacle 

detection, safety and fuel consumption. This section explores outdoor environments 

with different weather conditions such as mountainous terrains, seas, forests, ice-

covered landmasses and volcanoes. It also analyses manmade buildings with high 

amounts of clutter such as cityscapes, offices and residential areas. The information that 

is obtained from these studies will provide guidance for the development of a 

standardized trajectory planner that can accommodate the variations within these 

terrains.     

 

Aerial vehicles are most commonly used for surveillance and photography. This 

is performed through high definition image and video capturing. The application of the 

quadrotor towards real-time image capturing allows humans to define unknown areas 

across the world. Future research will be aided by the data that is collected from these 

rotary vehicles. Deep sea exploration has proven to be an extremely challenging task 

for human divers. In the past year, there have been researchers that attempt to fly the 

quadrotor over and into seas. Researchers at Rutgers University have developed a 

quadrotor that can travel across air and manoeuvre underwater [12]. Figure 2.5(a) 

shows that the quadrotor can successfully transition between flying above and under a 

pool of water. The drone can perform low speed vertical and horizontal motions 

underwater. The quadrotor, Pars is being developed by The RTS Lab for search and 

rescue of potential drowning victims [13]. The drone is shown in Figure 2.5(b). Initially, 

the drone uses a ship as a base station. The drone takes off from its base station and 

flies over the sea to locate missing victims. The quadrotor is powered by solar energy 

and performs localization through satellite data. These drones will be able to transmit 

data such as wind speed, water turbulence and sea levels. The agents will provide 

imagery of different sea creatures and their habitats. It also allows the user to detect 

traces of hazardous pollution as well as ship wreckages. One advantage of sea 

exploration is the lack of obstacles that exist within the agent’s path. The pathway is 

clear and path planning can be easily executed.    

 

            
         Fig. 2.5. (a) Rutgers University underwater drone [12]                     (b) Rescue drone, Pars by RTS Lab [13]  
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Another popular test space is outdoor locations such as forestation and mountainous 

terrains. For geographical explorers, the UAV is used to map mountainous terrains at 

high altitudes. Mountainous terrains can be unsafe for humans to explore without prior 

information. Here, the unmanned vehicle proves to be an asset in determining the 

oxygen density at high altitudes or identifying sudden drops across the terrain. 

Microdrones GmbH has created a quadrotor that can fly at high altitudes [14]. As shown 

in Figure 2.6(a), the microdrone can fly across the Alps whilst sending real-time 

imagery. The path planner had to quickly replan certain sections of the trajectory due 

to an error in determining amount of the snow across the mountain peaks. The multi-

agent unmanned system as shown in Figure 2.6(b) is often used across forests to collect 

a variety of data. Information such as animal population, the variance of fruits, plant 

health, environmental pollution and the water levels across the soil can be easily 

obtained. Forests are built with obstacles of varied heights in the form of trees that 

produce either compact or spread growth of leaves. The quadrotor can handle these 

challenges given its small size and aggressive manoeuvring.  

 

Path planning outdoors can be complex and challenging. In [15], real-time 

generation of waypoints for a quadrotor is performed within a forest environment. Here, 

onboard motion estimation and path planning are implemented within a small forest 

with sparse trees. Mixed-integer optimization is performed in [16] where an obstacle 

free outdoor space is divided into convex regions. Adapting this algorithm towards 

more cluttered environments will be challenging since the planner neatly divides the 

spaces into large convex regions. Study [17] implements a low-resolution visibility-

graph across an outdoor test space that contains restricted airspaces. The quadrotor’s 

path planner is only capable of avoiding obstacles of similar height. Expanding these 

algorithms towards a more cluttered environment would require a higher sampling rate. 

Most algorithms are designed to perform in a singular type of environment. An adaptive 

trajectory planning algorithm is necessary for the quadrotors to successfully complete 

tasks in different environments that hold different sets of complexities.                   

 

              
 

 

Another location that limits human exploration is environments with extreme 

temperatures or atmosphere toxicity. Here, the quadrotor performs better than humans. 

As visible in Figure 2.7, the agents can collect data across unexplored places such as 

the Antarctica. A DJI Phantom 2 quadrotor that was fitted with a GoPro Hero3 action 

Fig. 2.6.  (a) Quadrotor flight across high altitude environments [14]       (b) Navigating around forestation [18] 
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camera perished whilst flying into Iceland's Bardarbunga volcano [19]. Despite self-

destruction, the quadrotor could capture unseen views of the core of the volcano in real-

time. Similarly, Tohoku University in Japan is developing an unmanned aerial that 

collaborates with ground robots for cases of sudden volcanic eruptions that are 

happening frequently in the country [20]. Forest fires are a common occurrence in 

Australia. Drones can provide a view of the damage caused by the fire. This allows the 

authorities to quickly evacuate any residential areas that are nearby. It is also highly 

risky for humans to be around war zones. Today, the military system is slowly replacing 

manned vehicles with unmanned options. K-MAX dual rotor robocopters were 

successfully deployed across Afghanistan for autonomous cargo delivery that weighs 

over 750 pounds [21]. These unmanned aerial robots are advantageous because they are 

less prone to human error or causalities if it crashes.         

 

            
 

 

The most common test space for the commercial quadrotors is manmade structures such 

as indoor environments or cityscapes. Cityscapes pose a threat in terms of narrow 

passages with extreme bends. Navigation accuracy is necessary for successful flights 

across the buildings and tall beams. In a city setting, drones are especially useful for 

human and vehicle traffic mapping. The data provided by drones can be used in 

collaboration with smart phone applications on traffic analysis. The Halton Regional 

Police of Canada has successfully integrated the use of drones for surveillance [22]. 

Real-time view of crimes, accidents and individuals that need assistance are beneficial 

for city authorities. Quadrotors are often used for load transportation. Study [23] applies 

both a delivery truck and its quadrotor across a residential neighbourhood. The delivery 

truck is set to stop at multiple points across the environment. The quadrotor then 

completes the last leg of the delivery process. Both vehicles collectively reduce the 

operation time by one third. Still, the algorithm isn’t readily applicable towards more 

complex terrains.  

 

The indoor environment poses an extreme hazard to these aerial vehicles as the 

percentage of clutter as compared to free space is high. The addition of narrow entry or 

exit ways such as windows and doors are similarly challenging. As shown in Figure 

2.8, the Parrot AR Drone 2.0 allows the integration of personal systems such as tablets 

or smart phones for the navigation for the quadrotor. It is built on the idea that anyone 

can fly a drone given its simplicity. The drone can be used for indoor flight by attaching 

its indoor hull [24]. The probability of GPS connectivity indoors may not be guaranteed 

but the wireless connection that exists in most homes allow for instant navigation. It 

Fig. 2.7.  Quadrotor flight across sea ice and volcanoes [19-20] 
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also enables high definition video streaming between a tablet and its drone. The 

wireless connection does have the disadvantage of limiting the flight range to a short 

distance. AD* search algorithm is applied in [25] to design short term waypoints for a 

quadrotor that resides within an indoor space. The issue with defining waypoints for a 

short distance of 20cm is there is a risk of motion towards an obstacle filled region. 

This can cause the agent to turn around constantly. Similarly, [26] designs a MILP for 

the trajectory planning across an indoor environment for both the agent and their load. 

Two subsystems are defined where the first defines the agent with a load whereas the 

second holds the agent alone. Kinodynamic Rapidly Exploring Random Trees* (RRT) 

is applied by [27] towards path planning for a quadrotor flying across two windows. In 

this paper, authors combine both the UAV's control and dynamics along with trajectory 

planning. Information Rich RRT is applied by [28] to maximize information gathering 

capabilities of the quadrotor as it flies within a cluttered environment. The planner is 

also tested within a small sized indoor space. These indoor based path planners would 

find it tough to plan trajectories across mountainous terrains that have gradual peaks 

everywhere. Possible future collisions, increased complexity and run time can occur 

due to the short-term planning that is implemented in these studies.   

 

            
 

 

Our research applies a path planning algorithm that adapts to many types of 

environments. The planner can adapt to test spaces that may require low or high-

resolution mapping. It is also able to overcome any physical challenges such as sharp 

bends, narrow passages, high amounts of clutter and gradual terrain peaks. Thus, the 

end user is given the flexibility of applying the designed algorithm within any 

environment as opposed to just one.  

 

2.2 TRAJECTORY PLANNING FOR QUADROTOR UAVS 

 

Path planning is typically used to solve the problem of navigating an unmanned robot 

or UAV from an initial point to a desired destination. In most cases, there are several 

limitations and constraints that must be adhered to when designing a feasible path. A 

trajectory planner is applied to provide the end user with an optimal path that satisfies 

the defined environmental, dynamic and mission constraints.   

 

Fig. 2.8.  Quadrotor flight through tablet control across indoor and cityscapes [29-30]  
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Firstly, different environments can restrict the motion of a robot in a variety of 

ways. As described in the previous section, there has been a lot of progress in the variety 

of environments that the quadrotor UAV can move across. Urban environments have 

narrow passages and high amounts of clutter across its space. Mountainous terrains or 

forestations have spaces that are made up of dense flora and fauna. It also has extreme 

low and high peaks. Trajectory planners must be capable of mapping these 

environments into either an obstacle region or free space with an acceptable level of 

accuracy. Secondly, it is also important to consider the dynamic constraints that define 

each robot. Quadrotors can vary in size, shape, speed and motion. The dynamic model 

of the aerial vehicle must be based on the physical structure of the quadrotor that is 

chosen for the path planning experiment. Lastly, the type of mission that requires the 

agent to fly from its start to goal node can introduce additional limitations. These 

constraints come in the form of cost functions or objectives that must be considered 

during a mission.  

 

As previously described, multi-agent quadrotors are often used for a variety of 

missions. In this study, the missions that are implemented involve multiple agents. The 

usage of a team of agents can be advantageous but the expansion of an individual 

platform towards a multi-agent system is a complex process. The trajectory planner 

must be capable of executing the task that is assigned to each agent simultaneously. 

These missions can be generalised into two categories which are independent or 

coupled multi-agent flights. In the case of independent flight, the agents have 

individually designed trajectories that are free from coupling with the other agents. 

Here, each agent is provided with its own initial and desired goal node. Independent 

missions as shown in Figure 2.16 are defined within this study as MA-Spread. Common 

applications that require the agents to spread across its test environment are such as 

target tracking, real-time surveillance, rescue missions, wilderness inspection and urban 

space mapping.    

 

On the other hand, some missions require the trajectories of all agents to be 

coupled to one another. Cooperative flight is performed through the collective design 

of trajectories for all agents simultaneously.  Here, the path that is designed for one 

agent is dependent on its neighbouring agent. In this case, the relative distance between 

all agents is constantly monitored. The distance between any two neighbouring agents 

is defined based on the current desired formation shape. Thus, the level of coupling of 

one agent within a formation to another agent is high.  Coupled missions as shown in 

Figure 2.17 are defined as MA-Formation within this research. Flights in formation are 

used to perform missions such as payload transportation, providing different camera 

angles, collection of different sensory data and wildlife management.  

            

This section aims to define the different trajectory planners that are often 

applied towards the multi-agent spread and formation flights. Popular path planners 

such as sampling, grid and roadmap based planners are discussed in section 2.2.1. These 

planners can generate individual paths for agents that are flying independently. These 
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paths can be directly applied within the MA-SPREAD application. On the other hand, 

these independent paths are used as reference trajectories for the MA-FORMATION 

application. Thus, section 2.2.2 presents formation planning algorithms that design 

paths for agents within a formation structure. Trajectory planners for flight in formation 

often apply a leader-follower system, virtual structure or artificial potential function.     

 

2.2.1 MA-SPREAD PATH PLANNING ALGORITHMS 

 

The process of designing optimal paths for a UAV can be complex. As previously 

defined, the designer must consider the many constraints that exist within a robotic 

system and its environment. Expanding this system into a multi-agent system 

introduces many new challenges for the designer. Therefore, the designer is required to 

consider issues such as the number of agents, collision avoidance, communication 

topologies, sensory data fusion and completion of tasks.        

 

Trajectory planning for a multi-agent quadrotor system can be broken down into 

two stages. The first stage involves the mapping of the test environment. The mapping 

process can be done through three different well-established approaches. The designer 

of a path planner can choose to apply any one of them: grid based mapping, sampling 

based mapping or polyhedral roadmaps. The mapping process creates a geometric 

model of the world where both the obstacles and free space are well defined. It also 

produces a weighted graph that mathematically defines the free space. This graph 

defines the connections between the edges and vertices that are spread across the test 

environment. The second stage of path planning extracts the best path from the 

collection of collision free edges. A popular form of grid path extraction for multi-agent 

robots is through the shortest path Dijkstra's algorithm [31]. Here, collision free nodes 

are placed within a queue and are defined by a weight. The weight of each node is 

dependent on the collective cost of the nodes that begin from the start node. The value 

of each node is constantly revaluated as the planner attempts to define the best path. 

The best path has vertices with the lowest collective cost. An expansion of the Dijkstra's 

algorithm is A* and its own extension, D*. In these variations, the objectives of the 

mission can be used to further determine the most optimal path.    

 

In grid based planning algorithms, the test environment is broken down into 

grids. The possible horizontal movements of the UAV are shown in Figure 2.9. In [32] 

a low-resolution grid map is generated for path planning across a three-dimensional test 

space. Then, initial path planning is performed using A* algorithm. The authors 

conclude that the paths that are generated through the course grid map are discontinuous 

at each segment. This is because at the end of each grid segment, the agents are required 

to perform aggressive manoeuvres to progress from node to node. Grid mapping can be 

difficult to implement because the size of each grid is defined by the resolution 

completeness that is required by the end user. Smaller sized grid cubes will increase the 

processing time of the algorithm. It also has the advantage of producing a more optimal 

path. Some studies have opted to implement adaptive sized grids to minimize 
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processing time whilst maintaining a high resolution. The size of the grids also affects 

the number of nodes within the environment. In this case, the authors have chosen to 

maintain larger sized grids whilst implementing a higher-level path smoothening 

algorithm to minimize jerk cost.    

 

 

 

 

 

 

 

 

 

        

The application of A* algorithm after grid based mapping is advantageous. The 

combination of the mapping and path search algorithm has simplistic steps that don't 

require a large amount of data processing or storage. The disadvantage of this simplicity 

is it can cause evaluations of redundant nodes. Study [33] performs adaptive path 

planning for three quadrotors that are flying across an indoor environment. Here, a 

combination of grid mapping and closed loop RRT (CL-RRT) is applied. The algorithm 

calculates a cost values for each grid block. This cost map is used to create bias in the 

CL-RRT’s sampling process. This process can be challenging to replicate because grid 

based path planners are effective when the environment is well mapped. The shortest 

paths can only be discovered if the obstacles are clearly defined during the mapping 

process.         

 

Another algorithm that is frequently applied towards path planning for 

quadrotors is Virtual Potential Function (VPF). This algorithm is also known as 

Artificial Potential Function (APF). VPF performs node to node transitions based on 

the summation of the attractive and repulsive forces of each grid cube. The attractive 

field is proportional to the distance between the goal and current flight coordinates of 

the agent. The repulsive field is inversely proportional to the distance between 

neighbouring agents and obstacles within the environment. The repulsive field can be 

designed like a penalty cost within an objective function. A high value can be assigned 

to the repulsive field when there are obstacles within close range. Real-time flocking of 

multi-agent quadrotors is presented in [34]. Here, the distances between four quadrotors 

is maintained through a smooth collective potential function. The agents take more than 

a minute to arrive at their desired agent-to-agent distances even though the test 

environment has no obstacles. The most challenging part of VPF is determining the 

potential value for all agents. This process will require a large amount of processing 

time. The path planning algorithm will be especially slow within high dimensional test 

environments or when there are many obstacles.  

 

Fig. 2.9.  Possible horizontal movements of a UAV across neighbouring grid blocks. 
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Study [35] shows the progression of three quadrotors across a forestation. 

Figure 2.10 shows the potential field for the three quadrotors as they manoeuvre across 

the forest. The potential field for the goal coordinates of each agent is shown in blue 

tones. On the other hand, the undesired locations such as the start nodes are highlighted 

in red. Possible agent-to-agent collisions are also avoided by creating a repulsive field 

around neighbouring agents. Thus, the advantage of the algorithm is that it can be easily 

applied towards dynamic obstacles. The algorithm also finds it tough to avoid local 

minima due to its dependence on local information. It is possible for an agent to be 

trapped within a local minimum. This can be disadvantageous for path planners that are 

looking for globally optimum solutions. Thus, designers that wish to apply VPF must 

also implement an additional local minimum recovery system.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combinatorial trajectory planners are also used to navigate UAVs across various test 

spaces. This path planner creates roadmaps by making collision free connections 

between the boundaries of each obstacle. Roadmaps can be generated through several 

methods. Combinatorial path planners can choose to apply vertical cell decomposition, 

visibility graph, shortest-path roadmap or Voronoi diagram. The advantage of applying 

combinatorial methods is its level of completeness. It can find a feasible path or report 

that a path doesn’t exist. The Stanford Testbed of Autonomous Rotorcraft for Multi-

Agent Control (STARMAC) compares the usage of VPF and visibility graph towards 

designing paths for a fleet of quadrotors [36]. Their work concludes that both methods 

are simplistic and can generate paths quickly. The path that is generated by the visibility 

graph is shorter but travels closely along all obstacles. On the other hand, VPF generates 

a path that is longer but has better obstacle clearance. Both algorithms have the 

disadvantage of designing paths that are dynamically infeasible when used 

independently. The GRASP lab tests three variations of controllers for multi-robot 

deployment [37]. The study makes a comparison between a Voronoi-based coverage 

Fig. 2.10.  Path planning through Artificial Potential Function for spread flight [35].   
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control task, probabilistic minimum variance task, and a task using VPF. Their research 

concludes that discrete mapping functions such as the Voronoi diagram provides less 

robustness to errors. Continuous mapping functions can produce paths that are easier to 

track and produce less error. 

 

Study [38] applies a Voronoi-based coverage control for cooperative multi-

quadrotor pursuit of an evader. Here, the path nodes of each quadrotor are designed 

based on a Voronoi diagram that defines the no-fly region. The designed paths move 

the quadrotors around the no-fly region whilst successfully trapping the evader within 

it. In this case, the test space is highly simplistic with two obstacles. The disadvantage 

of applying combinatorial methods is that they are exact algorithms where the 

boundaries of the obstacles must be well defined. This algorithm is only able to produce 

an optimal path if there are minimal approximations in determining the corners of each 

obstacle. If the obstacles aren’t well defined, the path nodes may avoid narrow passages 

and tight spaces. It is also highly challenging to create roadmaps within three 

dimensional environments. These studies have only tested their algorithms within two-

dimensional test environments. 

 

Sampling based algorithms such as probabilistic roadmap (PRM), Rapidly-

exploring Random Trees (RRT) and its variations have been used for planning the paths 

of UAVs across different terrains. Random sampling based algorithms are preferred 

due to its simplicity and the ability to promote coverage completeness with speed. The 

key to the sampling based algorithm is its randomized distribution of sample points 

across the environment. This pushes the focus of the path planner towards mapping the 

environment as fast as possible. No limitations that are placed on the number of 

iterations that is required to produce a feasible path. This allows for high levels of 

flexibility in terms of complexity and running time. It is the end user that decides the 

level of optimality that is required. The larger the amount of sample points, the more 

refined the resolution of obstacles and its edges within the space.  

 

PRM generates a roadmap by creating collision free connections between the 

random sampling points. Study [39] generates trajectories for multi-agent quadrotors 

through SAFETY-PRM. This algorithm maps environments that have inaccuracies and 

uncertainties due to sensory error. Their work shows that the SAFETY-PRM algorithm 

is capable of mapping collision free paths despite mapping errors. Results show that the 

algorithm requires many samples to fully map the distorted environment. Like other 

roadmap based algorithms, PRM generates many redundant connections between the 

sample points. [40] also applies PRM towards trajectory generation for a quadrotor 

within a three-dimensional environment. The test environments such as indoor spaces 

and caves are used within their work. This study combines PRMs with Nonlinear 

Programming (NLP) to generate dynamically feasible paths. Results show that the 

PRM-NLP hybrid algorithm can generate optimal paths across these complex 

environments in a short amount of time. The authors conclude that sampling based 

algorithms such as PRM can be further sped up through parallel processing.   
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After analysing the trade-offs between the different path planners, this research 

performs initial path planning through another sampling based planner which is RRT. 

This algorithm has many advantages such as:  

 

• The algorithm is probabilistically and resolution complete. The basic RRT 

algorithm is often applied due to its ability to fully explore a space within a short 

amount of time. With a multi-agent system, multiple trees can be generated to 

promote better coverage and speed up the exploration process.  

 

• The concept of RRT is direct and noncomplex in nature. Unlike prior path 

planning algorithms, RRT doesn’t require explicit construction of the obstacles 

within its test space. It performs free space mapping through random sampling 

of the environment. These samples connect to form collision free path 

subsections and are easily stored and extracted from a mutual database. 

 

• Creates minimal buffer range between path nodes and obstacles. This process 

easily maps narrow passages and sharp corners without a large buffer space 

between the obstacles and the agents. Thus, shortest paths are easily obtained.   

 

• Minimal redundant nodes. The sample points are well spread across the test 

environment. There are no limitations that are placed on the distance between 

two samples unlike path planners that use grid blocks. This reduces the number 

of redundant nodes across a path. 

 

• Easy implementation of heuristic function. The end user can optimize the 

sampling process by introducing a heuristic function. The sample nodes can be 

biased towards the goal node, obstacle free zones or shortest distance.  

 

The RRT planer is inspired by the way tree branches in nature grow within their 

environments. A tree trunk is rooted at a location and has many branches attached to it. 

These branches continuously build upon each other. This creates a parent and child 

relationship between the main branch and its smaller branches. In time, the branches 

are well spread across the forest. Trees that are older in age typically have more dense 

branches and leaves. As shown in Figure 2.11, RRT applies the same concept of parent 

and child branches that are used to build full trees. The creation of the parent-child 

connection is less complex than building a roadmap. Firstly, each tree is rooted at the 

UAVs predefined start and the goal nodes. Sample points are then placed across the test 

space and are connected to the nearest collision free tree branch. The planner works by 

incrementally building these branches as the iterations progress. These branches 

quickly spread across the test environment and become denser with time. Some works 

implement multiple trees that are rooted at different locations. The branches of these 

trees explore different areas of the test space and advance towards each other using a 
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greedy heuristic. This allows the end user to implement high resolution mapping when 

necessary.  

 

 

 

        

 

 

 

 

 

 

Like other sampling-based planners, many variations of the RRT algorithm apply 

adaptive sampling methods. This encourages its usage within complex environments. 

The end user has the option of placing a larger number of samples across narrow 

passages or highly cluttered areas. The user is also able to implement path optimization 

during the sampling process. In this case, the sample points are connected to the branch 

with the lowest cost value. Other strengths of the RRT algorithm is its speed, intuitive 

progression of nodes, near optimality and free space probabilistic completeness. Thus, 

the application of randomly-exploring random trees as a tool for path planning is 

advantageous. The final path can be filled with aggressive bends due to the structure of 

the tree branches. The addition of trajectory smoothening mechanism can reduce the 

impact of extreme bends within a path. Smooth splines that create minimal jerk 

trajectories can be applied after the path planning process. Splines are easy to 

implement in comparison to other polynomial equations because can generate a 

trajectory for an entire path simultaneously through a simple recursive function.  

 

Numerous studies apply sampling-based algorithms such as RRT because it can 

promote complete coverage with speed. Research by [41] focuses on applying closed-

loop RRT (CL-RRT) with an autonomous ground vehicle. This real-time application of 

RRT with a dynamically unstable vehicle shows that it can generate path nodes with 

speed. Many authors have chosen to explore modified versions of RRT. In study [42], 

RRT* is used for initial path generation. These initial paths are then transformed into 

trajectories through polynomial splines. The algorithm can perform well with one 

quadrotor. Expanding the RRT* algorithm towards a multi-agent system will require a 

higher sampling rate and processing time. In a bid to reduce complexity, the algorithm 

doesn’t fully consider the dynamic capabilities of the quadrotor. The authors of [43] 

apply Information-Rich RRT (IRRT) to maximize information gain whilst minimizing 

travel distance. The IRRT can plan paths for both cooperative and non-cooperative 

Fig. 2.11.  Single RRT tree across cityscape environment 
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multi-agent quadrotors. In both cases, the agents are planning paths independently 

whilst broadcasting path information. Thus, the agents may perform sampling across 

similar areas. This can be disadvantageous because the agents are collecting redundant 

information. The algorithm can benefit from additional optimization.  

 

Next, Desaraju and How [44] design a decentralized path planner for multi-

agent teams in complex environments using RRT (DMA-RRT). Their algorithm allows 

an agent to modify the paths planned by other agents. This option allows each agent to 

make improvements that reduce collective costs of a group. Thus, the global 

performance of a team is preferred over individual excellence. A token system based 

on potential improvement is used to decide which agent plans their path next. To 

implement the DMA-RRT algorithm, two subsections should work together. Here, the 

first section is the individual component that implements agent path planning. The 

second section oversees the interaction component processes between agents. This 

section ensures that all the information is shared between all agents. Results show that 

a significant reduction in run time isn't seen with a small number of agents. Study by 

[45] also applies a modified RRT towards multi-UAV planning in obstacle rich 

environments. The anytime RRT algorithm must be able to avoid static, pop-up and 

dynamic obstacles within the free space. The RRT algorithm is used to carry out a new 

search from the current location of the UAV if the agent encounters anything 

dangerous. Path replanning is also performed if an agent deviates from the designed 

path. Results show that the algorithm can avoid high amounts of clutter and finding a 

path within a short time.  

 

Biderectional or multi directional RRTs (mRRT) are more current variations of 

the basic RRT algorithm. Recent times show progress in the multi-tree RRT [46] field. 

Here, more than one tree is constructed in series or parallel. This allows the trees to be 

rooted at different locations across the environment. The idea of multiple trees is 

advantageous because there is more coverage within a shorter amount of time. The 

mRRT can also expand across places of interest such as local minima or dead ends. The 

application of mRRT towards multi-agent UAV system is best with the merging or 

creating connections between trees. This allows the sharing of information and 

cooperative path planning. Study [47] applies a multi-directional Rapidly Exploring 

Random Graph (mRRG) where the tree is expanded towards multiple directions. This 

method produces faster space coverage and pathway generation since there are more 

branches. The process of mapping can be further improved by the using multiple trees 

[48]. Research by [49] uses transition-based RRT where a few trees are built from 

different root locations. The algorithm is only implemented for the extraction of a 

singular path.  

 

The next variation of the RRT algorithm is the hybridization of multiple 

extracted trajectories. Work by [50] applies RRT for the generation and merging of 

pathways between protein conformations. Here, 100 paths are extracted through the 

basic RRT algorithm. The nodes within these paths undergo clustering, hybridization 
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and ranking. The aim of the hybridization process is to create one superior path. The 

clustering and merging of these paths are based on the values of the objective function 

that is used. Whilst this process is effective for one path, implementing it for a large 

collection of paths will be more complex. This is due to the high number of comparisons 

that are necessary between each path’s nodes.  

 

Our study applies both the multi-tree and hybridization process. Here, the CL-

RRT includes the limitations and constraints that are present within the quadrotors. 

Processing time is reduced by sharing sampling points and mapping information 

between all agents. These initial paths are then applied towards the creation and 

optimization of new paths.  

 

2.2.2 MA-FORMATION TRAJECTORY PLANNER 

 

The prior subsection defined the path planning algorithms that are used to generate 

paths for each agent independently. In most cases, similar algorithms are applied to 

generate the reference path for agents in formation flight. These reference paths are 

transformed into trajectories for each agent within a formation. The variety of methods 

that are used by researchers to design and maintain formation flight is discussed within 

this subsection. Many works have taken inspiration from Reynolds’ three rules of 

flocking behaviour [51] when designing a path planner for formation flight: 

 

1. Maintaining cohesion: The agents constantly steer towards the average position of 

its neighbouring agents.  

 

2. Creating separation: Agents are to fly away or maintain a safe distance from its 

neighbouring agents.  

 

3. Preserve alignment:  The multi-agent system heads in the same direction. 

 

Planning for multi-agent flight in formation requires a three-stage system. Firstly, the 

design of the reference trajectory across the test environment is performed. Next, a 

formation planner is utilized to design the formation shapes across the trajectory. 

Lastly, the trajectory for each agent is generated based on both the reference path and 

formation shape. As shown in Figure 2.12, flight in formation means that the trajectory 

of each agent has a high level of coupling with its neighbouring agents. The most 

popular method for formation planning is the leader-follower system. In this case, the 

following agents track the movements of the leading agent. Here, the agents are 

required to maintain a set distance from a reference trajectory. Formation flights are 

often successful through the usage of consensus algorithm. In this case, the agents 

communicate with each other and cooperatively maintain their desired formation shape. 

VPF is also often applied for formation flight. The structure of the algorithm remains 

the same as typical MA-SPREAD path planners. The only difference here is that the 

attraction force is proportional to the distance between the following agent and the 
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leading agent. The attraction force can also be proportional to a formation reference 

path. Another common way of generating the trajectories for the agents in formation is 

through a virtual structure. Here, the independent trajectory for each agent is based on 

the desired formation shape as shown in Figure 2.12. Lastly, behaviour based systems 

that mimic the motions of animals in nature such as birds and herds are also used for 

formation planning.   

 

 

 
 

 

As previously described, the leader-follower formation system is extremely popular in 

current times. The downside to this system is its full dependence on the leading agent. 

In centralized systems, the collapse of the formation is possible in the event of a faulty 

leading agent. Many researchers have attempted to reduce the risks that come with a 

leader-follower system whilst maintaining its simplicity. Work by [52] produces paths 

for a leader-follower multi-agent quadrotor system. The following agent is required to 

maintain a fixed distance and angular deviation from the leading agent. Their research 

uses fuzzy logic and GA to preserve the trajectories of the following agents in case 

connection is lost with the leading agent.  Here, an estimation of the leader’s path must 

be obtained. Even though their work tries to minimize the damage that can occur from 

a centralized system, there can be a large error when estimating the trajectory of the 

leader. It would be tough to minimize the estimation error especially when sudden and 

aggressive manoeuvrings are performed by the leading quadrotor. Another group of 

researchers have published multiple papers on the leader-follower system for 

quadrotors [53-55]. Their work tests the stability of the system by arbitrarily switching 

or adding weights to the formation topology. This process allows the formation team to 

have more than one leader or have its leader be interchangeable. Results show that the 

agents still achieve consensus with a switched topology. More stability can be 

introduced by reducing the impact of a faulty leader. In this case, any healthy agent can 

be switched to the leading agent. Still, there is dependence on the leader’s reference 

signal to plan the paths for the following agents.  

 

A modified leader-follower (MLF) system is applied towards transporting a 

suspended payload [56]. The authors utilize four quadrotors with a suspended load in a 

ring topology. Unlike previously discussed works, the MLF system creates dependence 

AGENT 1 

AGENT 3 

AGENT 2 
AGENT n 

Fig. 2.12.  Rigid formation structure based on the desired formation shape. 
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between both the leader and its follower. The movements of the leading agent are 

affected by the feedback that is received by its following agents. Results show that both 

the following and leading agents can cooperatively change velocities during a fault and 

maintain formation. Another study that creates dependence between the leader with its 

followers is [57]. This work stabilizes the movement of the leader through a reference 

frame that is formed by virtual followers. These virtual vehicles are placed at a 

predefined distance vector. Here, the control law pushes the leading agent to maintain 

the desired distance from its follower as opposed to the other way around. The same 

team designs the trajectory of a following agent through the positional derivatives of 

the leading agent [58]. This study shows the ability of the real follower in tracking the 

motion of the virtual follower. The virtual follower moves like a trailer. Thus, the 

trajectory for the virtual trailer contains the positional derivatives of the leading agent. 

This system works like a fully decoupled path planner once the agents are flying/online. 

The following agents independently track the path of their virtual trailers. These works 

are innovative and are challenging the high level of coupling that exists within the 

leader-follower system. Still, the agents are dependent on each other to change and 

maintain a formation shape. This can be challenging in environments that have a large 

amount of clutter. The error of one agent is always propagated to the others within its 

team.       

 

Artificial potential function (APF) is often applied for the generation of 

formation trajectories. Figure 2.13 shows the APF forces that are applied whilst 

defining the next node within the formation path. The blue coloured areas define the 

attractive force whereas the red areas define the repulsive force. The cumulative force 

for the leading agents is similar to the independent MA-SPREAD scenario as shown in 

Figure 2.10. With the following agents, the attractive forces are used to keep agents 

close to the leading agents and in formation. The repulsive forces are used to avoid 

collisions with neighbouring agents. This can be seen in Figure 2.13 where the blue 

area is close to the current location of the leading agent. Whereas, the red areas are 

defined as the parts of the terrain that are far away from the leading agent. Applying 

APF for multi-agent flight can be highly advantageous in test spaces that have many 

dynamic obstacles. The simplicity of the APF equations allows the agent to quickly 

detect a moving obstacle and plan a new direction. Defining both forces constantly is 

important for successful formation maintenance. Due to this, APF requires constant 

sampling of the environment which leads to a high processing time. Thus, APF can be 

beneficial for short distance formation planning but will increase in complexity across 

large or high dimensional spaces. Another disadvantage of APF is the possibility of an 

agent being trapped in local minima. This situation happens when the summation of the 

attractive and repulsive force is zero. In this case, the agent is trapped in this location. 

Thus, the path planner is incapable of exiting the local minima and moving towards the 

goal node without additional help.      

  

Research by [59] shows the basic application of APF for formation planning 

with a team of three quadrotors. Their potential function is a sum of three forces. The 
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first force defines the position error of the agents based on the desired formation shape. 

Next, collision avoidance is taken into consideration by determining the distances 

 

  
 

 

between neighbouring agents. Lastly, the final force pushes the agents to track the 

trajectory of a virtual leader. Many modifications have been introduced to simplify the 

full potential function. Work by [60] uses APF to design the trajectories of six 

quadrotors that transition between three different formation shapes. Initially, the agents 

form a two-dimensional star shape. They then move to create a rectangular and 

triangular shape. Here, only close-range obstacles are considered within the path 

planning algorithm. This process reduces the processing time that is required to 

determine the repulsive forces.  

 

The same team further simplifies the repulsive force equation by eliminating the 

need for agent-to-agent collision avoidance in [61]. The authors perform strategic goal 

node assignment for a group of 10 quadrotors. Each agent is assigned a goal node whilst 

transitioning from one formation shape to another. The path planner designs a trajectory 

that allows each quadrotor to fly from to their goal node without colliding with any of 

their neighbouring agents. There is no need to constantly define the agent-to-agent 

repulsive force if the goal node of each agent is well assigned. Though both these 

studies have attempted to simplify the APF equations, it is performed in a 2D 

environment with no more than two small circular obstacles. These improvements may 

be negligible in highly cluttered 3D environments. Researchers have also attempted to 

reduce the effects of being trapped within local minima. Study [62] implements a wall-

following system to guide an agent out of the local minima region. It is a simple system 

that tells the agents to fly close to the obstacle’s boundary and escape local minima. 

There are two disadvantages to this system.  The boundaries of each obstacle must be 

accurately defined so that there are no collisions whilst wall-following. The agents will 

also have to travel longer distances. A path planner that isn’t affected by local minima 

will produce shorter paths.               

 

Fig. 2.13.  Path planning through Artificial Potential Function for formation flight [35].    
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Consensus algorithm (CA) is constantly applied for multi-agent formation 

planning. This provides more robustness as compared to previously defined centralized 

leader-follower configuration generated with APF. Consensus produces a decentralized 

structure where the death of an agent or the loss of communication link is not 

detrimental to global coordination. Here, graph theory is applied. A graph is modelled 

as a collection of vertices and edges. An edge (communication link) is a connection 

between two vertices (agents). Next, an adjacency matrix is applied to imply the options 

for networking from agent to agent. A team of multi agents that exchange data are 

typically modelled by directed or undirected graphs. Directed graphs are graphs which 

have a direction associated with each edge. Undirected graphs promote two-way 

communications between the vertices and its edges. Multi-agent systems that are well 

connected can reach consensus quicker than partially connected systems as shown in 

Figure 2.14. The communication topology is often assumed to be time varying due to 

vehicular motion or communication dropouts. These can be caused by propagation loss, 

diffraction and noise disturbances.  

 

CA minimizes processing speed by focusing on agents that are within each 

other’s communication range. The downfall of communication links between agents 

can be overcome as well. This is due to the inclusion of multi-agent network topology 

within the formation control structure. Thus, consensus algorithm creates fully 

distributed and fault-tolerant formation architectures. As with centralized structures, 

fully distributed systems can have some disadvantages. An agent can be left out of the 

communication chain if connection is lost with its neighbouring agent. A distributed 

system also requires the full collaboration of all agents to form different formation 

shapes. This process can require a lot more time than a centralized system since the 

cooperation of all agents are important.  

 

There are a few current works that have applied CA towards maintaining the 

formation shapes of multi-agent quadrotors. Study [63] uses a sliding mode control with 

CA for path planning and tracking. Three quadrotors are required to fly from their initial 

position and form a triangular formation structure. Their work shows that many types 

of communication topology can be used to achieve consensus. These agents perform 

formation flight with a fixed, directed spanning tree or undirected network graph. In all 

cases, the quadrotors could create and maintain its formation shape in less than 5 

seconds. Still, the study assumes that all agents know their desired trajectories and have 

the same trajectory within an obstacle free space. Similarly, study [64] applies the 

algorithm with three quadrotors that aim to maintain a rotating triangular formation 

structure. The multi-agents have a directed communication topology. As previously 

defined, this can be dangerous if an agent loses communication with its neighbour. 

 

Work by [65] combines a leader-follower system with CA towards formation 

planning for a group of quadrotors. The agents have indirect contact with the leading 

agent as well as its team mates. It removes the need for all agents to be directly 

connected to their leader. Thus, the positional information can be passed on despite 



39 
 

losing contact with the leading agent. The same team aims to include obstacle 

avoidance into their algorithm by implementing APF as well [66]. Here, only agent-to-

agent collision avoidance is tested. Each agent has a cylindrical shaped safety zone 

around it. These safety zones define the value for the APF’s repulsive force. In these 

studies, very simplistic conditions are applied. They don’t really challenge the 

capabilities of the CA. The running time of the planner will be much longer when the 

agents should transition between multiple shapes. Predicting the flight time that is 

required by each agent between formation shapes can be challenging with CA. Another 

challenge with CA is its ability to plan paths that avoid obstacles. It must be used in 

collaboration with another algorithm to effectively avoid all obstacles within the test 

environments.           

 

                           

            

 

 

 

 

 

  
      

 

Upon weighing the pros and cons of each method applied for formation planning, this 

research applies a virtual structure (VS) or virtual rigid body for fast and stable 

formation flight. There are many benefits to using a virtual rigid body: 

 

• This system isn’t fully centralized or decentralized. There is less coupling 

between agents. Each agent is less affected by the death and faults of their 

neighbours. Here, both the VS and the reference trajectory are used to create 

independent paths for each agent. Figure 2.15 shows a circular VS that is used 

to generate the trajectories for 10 agents. Initially, it is centralized in the sense 

that a reference trajectory is necessary. Once in flight, the agents are flying 

independently and are fully decentralized.   

 

• The application of a closed loop multi-agent UAV prediction system. The 

independent trajectories can be easily applied for an estimation system that 
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predicts the movement of each agent. Thus, a group of heterogeneous 

quadrotors with different physical capabilities can be flown simultaneously. The 

trajectories will be dynamically feasible for each individual agent based on their 

physical capabilities.  

 

• It also removes the dangers of lost communication links between agents. The 

agents can maintain their formation structure since they are tracking 

independent trajectories. These trajectories are not dependent on their 

neighbouring agents. Thus, only basic collision avoidance is required between 

two agents whilst they are flying in formation.    

  

• Minimal positional and rotational error propagation. Here, each agent is 

supplied with an independent control system. The lack of coupling between 

each agent during flight reduces the propagation of any agent’s error across the 

team.  

 

• Easy execution of many complex formation shapes. The compression or 

spreading of the multiple agents in formation can be performed by changing the 

shape of the virtual body. This can be advantageous for environments that have 

large amounts of clutter or narrow spaces.   

 

• No need to define the environment or its obstacles. The virtual body changes 

shape and size based on the free space contour around each path node. If this is 

well executed, each agent doesn’t require much information regarding its 

environment. Thus, only dynamic obstacles need to be identified.  

 

There are a few researchers that have applied virtual structures as shown in Figure 2.15 

within their formation planner. [67] addresses one of the challenges that can occur when 

designing VS across a multi-agent quadrotor formation trajectory. In most cases, the 

shape of the VS determines the positional and rotational derivatives of all the agents in 

formation. They acknowledge that the agents within a team may not all be capable of 

achieving and maintaining a designed VS. This happens when the VS progresses faster 

across the reference trajectory in comparison to the agents. Thus, the agents are 

incapable of tracking their trajectories. Their work introduces trajectory replanning if 

an agent is lagging. The replanning process slows down the entire formation so that the 

lagging agent can keep up. If this isn’t possible, the other agents progress without the 

faulty quadrotor. Another study implements a virtual rigid body with a group of 

quadrotors [68]. This system decouples the virtual body’s movements from the 

trajectories of each agent. Here, the quadrotors are required to transform into six 

different formation shapes. Results show that the agents can transit between these 

shapes quickly. This shows that a formation path planner that is decoupled from its 

shape planner can minimize processing time. The disadvantage of this system is that 

the formation paths are not proven to be dynamically feasible. Also, the formation 

shapes are randomly determined because the test spaces have no obstacles within them. 
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Formation planning with virtual rigid bodies is ideal for this thesis. The concerns that 

are raised within prior works are tackled within this research.            

 

             
 

  

In this thesis, the formation shapes for eight quadrotor agents are designed based on the 

obstacle free space contour around the agents. The contour is mapped through the radius 

of free space at all angles from the formation waypoint. The virtual structures across 

the formation path are designed based on the size of the free space contour. Next, our 

formation planner designs both rigid and nonrigid shapes for long distance flights. It is 

capable of a high number of shape changes that adapt to its environment. No limitations 

are applied upon the network topology since the agents will be tracking independent 

trajectories. The quadrotors will maintain a safe range from each other using sensory 

data. Thus, this system collectively produces a formation planner that is high resolution 

and adaptive to complex environments.  

 

2.3 MULTI-AGENT QUADROTOR MISSIONS 

 

With any real-life decisions, the pros and cons of all options are weighed before making 

a choice. Objective functions are defined as mathematical representations of the pros 

and cons of various options. Thus, different choices produce different objective 

function values. Ideally, the best choice is one that considers all objectives fairly 

without extreme sacrifices of one cost function over the optimization of another. In 

reality, achieving fairness is extremely hard. Similarly, when designing the trajectory 

for a multi-agent system, various objectives are applied to form a collection of 

trajectory choices. These choices can be narrowed down based on the user’s 

preferences. The accurate detection of necessary objectives is important as complexity 

increases with the number of cost functions. In cases where too few objectives are 

present, the final trajectory will be biased only to those objectives present. This can 

cause degradation in costs that were not defined. Here, the various types of objective 

functions that are applied within multi-agent trajectory generation algorithms are 

discussed.   

 

Fig. 2.15.  Path planning for 10 agents in formation through a spherical virtual structure.   
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2.3.1 OBJECTIVES OF SPREAD FLIGHT  

 

In this study, multi-agent spread missions are defined as tasks that require the agents to 

fly across the terrain independently. An example of spatially spread flight is shown in 

Figure 2.16. Thus, the path for each agent is designed based on their predefined start 

and goal nodes. Common spread missions are target tracking, search and rescue, 

environmental mapping, human-assisted navigation, load lifting and agricultural 

surveillance. In most cases, the agents are used to collectively explore uncertain areas. 

Trajectory planners that are designed for quadrotors are often focused on path length 

and altitude, aggressive manoeuvring, path tracking error, time optimality as well as 

fuel consumption. It is also important that these planners also consider minimizing 

possible collisions and network decay. Lastly, efficient environment mapping is 

encouraged through the exploration of uncertain areas and the reduction of redundant 

sensory data.  

 

          
 

 

The most common requirement for a trajectory planning algorithm is to generate the 

shortest path. This objective is highly important because it minimizes the fuel 

consumption thus leading to a longer flight time. The shortest path is influenced by the 

path’s node-to-node distance which also takes into consideration the altitude of the 

UAV. Target tracking is a popular application for multi-agent quadrotors. In many 

cases, the agents should maintain visual contact with a few targets simultaneously. This 

process is made up of two sections which is target searching and tracking. In [69], the 

path planning algorithm minimizes two objectives which are the travel distance and 

target pose uncertainty. The aggregated cost function allows the end user to define the 

importance of finding the shortest path. The level of importance of an objective within 

a cost function is set through predetermined weights. Another objective that facilitates 

the extraction of the shortest path is the minimization of goal deviations. This cost 

penalizes node to node progressions that move further away from the goal node. A 

swarm of 20 micro quadrotors are flown across a known indoor environment in [70]. 

This study aims to minimize the goal node cost through optimal goal assignment. Here, 

Fig. 2.16.  Independent multi-agent quadrotor flight across an indoor space. 
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the goal nodes aren’t attached to an individual agent. Each agent is free to progress 

towards any goal node to minimize the total cost function.            

 

The advantage of using UAVs as opposed to ground robots is its ability to fly 

across three dimensional spaces. Path planners must consider the altitude of each agent. 

Quadrotors often fly at higher altitudes because it avoids colliding with obstacles across 

each terrain. Still, flights at higher heights require a large amount of fuel, thrust and 

climb. Thus, a multi-agent path planner must be able to determine the best flight altitude 

for each mission. As previously mentioned, the transportation of loads has become a 

common application for multi-agent quadrotors [71]. It is important for the agents to 

maintain flight at certain heights due to the load that is placed beneath them. The load 

lifted by the agents can crash against the ground if it is flown at a low height. On the 

other hand, it can cause an increase in fuel consumption if flown at high heights. Faust 

et.al. generate trajectories for a quadrotor with a suspended payload [72]. Path nodes 

are placed at an appropriate height with low amounts of oscillations. These costs are 

prioritized to minimize load swinging. Wang et.al. aims to design trajectories for 

quadrotors that are flying across a partially known indoor environment [73]. The 

agent’s mission is to follow the smooth trajectory through a window and drop payload 

at a designated target location. In this case, the flight height is extremely important 

since each window creates a border around the agent and its payload. Similarly, the 

possibility of applying the multi-agent quadrotors for cooperative constructions is 

explored in [74]. These agents are required to construct structures such as cubic, 

pyramid, tower and wall using nodes and beams. Here, the altitude of each agent is 

determined by the location of the building blocks and the height of the structures within 

the construction site.   

 

Another objective function that offers the end user flexibility is the smoothness 

of a path. The application of multi-agent quadrotors is advantageous because it is 

capable of aggressive manoeuvring at high speeds across various terrains. The agents 

must be capable of flying across sharp bends with minimal vibrations whilst 

transmitting real-time imagery. Many studies prefer to choose smoother paths that 

allow the quadrotors to transition from node-to-node smoothly. Study [75] attempts to 

improve the quadrotor’s ability to undertake aerobatic manoeuvres with minimal error. 

The authors apply a control system that can compensate for any altitude error during 

turns. The control system produces a much flatter trajectory by predicting that a sudden 

increase in thrust will occur during sharp bends. Polynomial trajectory planning for 

aggressive quadrotor flight is presented in [76]. Their work implements a cost function 

that penalizes the squares of the positional derivatives. Here, the end user can define if 

the minimization of jerk, snap, crackle or pop value is preferred.  

 

Many studies are focused on obtaining trajectories that encourage minimal path 

tracking error. Tracking error is dependent on the feasibility of the designed path. The 

path planner should consider the size, thrust and speed limitations of each agent. A 

quadrotor simulator for outdoor flight is designed by [77]. Their model implements 
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both environmental and mechanical factors to estimate and minimize position error. 

Research by Tomic et. al. design a platform for search and rescue missions within 

indoor or outdoor environments [78]. The system architecture merges data fusion, 

mission control and path planning subsystems to effectively track paths. Experiments 

show that the quadrotor can estimate and follow the desired position with minimal error. 

The quadrotor is often applied across different environments and weathers. In harsh 

environments, it can be difficult for the quadrotor maintain minimal path tracking error. 

Guerrero et. al. tests a trajectory planning in known wind fields for unmanned 

quadrotors [79]. In this case, the planner must be capable of designing and tracking 

trajectories despite windy situations. Here, the path cost function is a combination of 

constant and varying wind variables. These studies show that it is advantageous for 

trajectory planners to include path smoothness within its chosen cost functions. The 

agents may not be capable of tracking these paths in real-life if these constraints aren’t 

considered at the initial stage of path planning. 

     

 Another field that is constantly explored by researchers is the creation of time 

optimal trajectories. The paths are constructed to mimic real-life flights. Here, the 

physical limitations of each agent are taken into consideration. Study [80] generates 

time optimal paths for quadrotors that guarantee dynamic feasibility. These trajectories 

are designed to allow the quadrotor to complete the mission within minimal flight time 

without exceeding its speed and acceleration limitations. Many studies also aim to 

prioritise trajectories with minimal fuel consumption. Chamseddine et. al. [81] produce 

works on the planning and replanning of minimal energy trajectories for a quadrotor. 

Focus is placed on obtaining paths with minimal flight time despite actuator constraints 

and faults. The path planner is assisted by faults-tolerant control (FTC). Study [82] uses 

different sized quadrotors for the Sensing Unmanned Autonomous Aerial VEhicles 

(SUAAVE) project. These agents are used for search and rescue operations. Extracting 

paths with minimal flight time can be challenging when multiple objectives are 

considered at the same time. This study prioritizes objectives such as the amount of 

energy consumption, possible collisions and obstacle avoidance. The amount of data 

sharing between agents is also considered for trajectory planning. Another study that 

combines energy management with other objectives is [83]. Here, the path planner aims 

to conserve and recharge the energy required by a swarm of quadrotors. The batteries 

are recharged through Ground Recharge Stations (GRS) that are placed across the test 

environments. Other objectives that are considered are such as the mission status, 

number of agents and possible faults. Thus, the path planner must be capable of finding 

paths with minimal fuel consumption without sacrificing the minimization of other 

objectives.   

 

Multi-agent quadrotors that fly independently can collide with each other if the 

position of each agent isn’t considered. A robust communication network between all 

agents is important for agent-to-agent collision avoidance. A minimal decay connection 

allows each agent to estimate the states of other agents with high accuracy. Defining 

the network topology and possible delays between the agents within a team is 
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prioritized in study [84]. Proper estimates of each agent’s state are only possible with a 

stable communication link that has minimal data packet loss. This objective is highly 

dependent on the transmission range of the antennas that are used on the quadrotor 

agents. The communication between agents is also extremely important for avoiding 

agent-to-agent collisions. In [85], five quadrotors flew autonomously whilst avoiding 

agent-to-agent and obstacle collisions. Here, some agents are able to fly across short 

and direct paths. The remaining agents had to fly across longer paths to avoid colliding 

with another agent. Thus, finding a balance between obtaining the shortest path whilst 

avoiding collision becomes challenging. Similarly, [86] applies 50 simulated 

quadrotors towards creating and displaying a 3D animation of a human in motion. The 

position error of the agents must be well minimized to avoid collisions whilst properly 

shaping and visualizing each animation. These studies show that it is very important for 

designers of a multi-agent system to maintain a good communication link between the 

agents. 

 

Quadrotors are also capable of efficient information collection through sensory 

fusion. Multiple agents are typically spread across unknown environments to perform 

real-time mapping. Here, trajectory planners must encourage their agents to fly across 

uncertain areas within the terrain. This process reduces the amount of redundant sensory 

data by prioritising paths that are diverse in direction. In [87], quadrotors are deployed 

simultaneously to increase situational awareness and track targets within its test 

environment. Similarly, study [88] applies a multi-agent quadrotor system towards 

aiding operators in humanitarian demining. The agents are used to provide aerial 

imagery of harsh environments. There are two objectives that are important in both 

these studies. The first is to maximize the amount of space exploration and the second 

is to minimize similar data collection. Work by Soltero et.al. prioritizes the 

maximization of information collected within unknown environments [89]. Their 

algorithm designs paths for a quadrotor that flies across dynamic environments. These 

environments rapidly change as the quadrotor flies across them. Results show that the 

adaptive path planner can map the environment and producing a path within a small 

number of iterations. Similarly, study by He et. al produces trajectories through a Belief 

Roadmap algorithm within GPS denied environments [90]. The algorithm can properly 

identify obstacles within the free space through non-uniform sampling despite sensory 

limitations. The works that are described placed a lot of importance in collecting 

adequate information for environment mapping, target tracking and path planning.    

 

In real life, many objectives are important to the successful completion of a spread 

mission. The objectives are typically tailored to an application. Many works choose to 

exclude some objectives or create a priority system that reduces the importance of 

certain objectives. More flexibility and knowledge can be obtained when the focus is 

on the optimization of all objectives. This research chooses to optimize all objectives 

equally through many-objectives optimization.               

 

2.3.2 OBJECTIVES OF FLIGHTS IN FORMATION  
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The second application that is explored within this study is flight in formation. An 

example of formation flight is shown in Figure 2.17. Quadrotor UAVs are capable of 

aerial flights whilst maintaining precise patterns. Formation flights are crucial for tasks 

such as payload transportation, security patrols, search and rescue or environment 

mapping at hazardous sites. Studies on multi-agent formation flight have implemented 

a variety of objective functions. Like spread missions, paths that have minimal length, 

altitude, goal deviations and aggressive manoeuvring are prioritized. Time optimal 

trajectories that have minimal flight time are also preferred by most researchers. A 

highly important objective for formation flight is the reduction of positional error. The 

minimization of each agent’s positional error will also create a reduction in possible 

agent-to-agent collisions. The cost functions that are unique to formation flights are 

based on the designed formation shapes. Here, many works apply objective functions 

that minimize the number of formation shape changes, scale complexity, maintenance 

and rise time.    

 

  
 

 

Firstly, multi-agent formation flights require a fast and robust control system. This 

process allows the agents to maintain their positions whist transitioning between 

changing formation shapes. The control system is used to minimize the positional error 

for the quadrotors that are flying in formation. Most studies implement a double layer 

control system. The lower layer of the multi-agent control system holds the individual 

trajectory and mathematical model for each agent. On the other hand, the higher layer 

holds a controller that minimizes the position error of all the agents collectively. A 

robust control system is applied towards a group of homogeneous quadrotors in [91]. 

A two-level controller is applied. In this case, both the quadrotor and its formation 

control system are cascaded. They aim to minimize both the individual agent motion 

error as well as collective formation error. Research with a swarm of multi-agent 

quadrotors is performed by [92-93]. Their study aims to generate feasible flight paths 

for 20 quadrotors with extreme roll and pitch angles. The 20 quadrotors are further 

divided into smaller groups. The control system for each agent within a formation is 

Fig. 2.17.  Multi-agent quadrotor flight in formation across a forest. 
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defined by their position error. The error function is a combination of an agent’s local 

and global positional error. The local error defines the positional error of an agent 

within its group. The global error is defined by the agent’s position within the entire 

group of 20 agents. Unlike spread missions, the minimization of each agent’s positional 

error is the most important objective for any formation trajectory planner. It allows the 

agent to maintain their formation shape and avoid possible collisions.    

 

 There are two types of formation structures which are rigid and nonrigid shapes. 

In some studies, the agents are required to maintain a singular rigid structure across an 

entire trajectory. An example of a rigid formation structure is shown in Figure 2.18. In 

[94] a collective flight front must be maintained despite the introduction of 

communication noise. Consensus algorithm is used to define the network topology and 

implement cooperative control. The study shows that algorithm can keep a uniform 

front when maintaining noncomplex formation designs. It will require more time and 

constant communication to reach consensus with dynamic shapes. Missions such as 

payload lifting need rigid formation shapes. Here, the distances between each agent do 

not change with time. A system that allows agents to grasp and transport a payload is 

presented by [95]. Here, the transportation of four various shapes of wood planks is 

executed with quadrotors. The agents and its payload are mathematically modelled as 

a singular entity. This study applies a centralized control system to estimate the 

position, velocity and rotation of each quadrotor. It also uses a decentralized control 

system to predict the angular velocity of the agents. The combination of both 

centralized and decentralized control systems produces trajectories that are dynamically 

feasible. The estimated positional derivatives of each agent determine if the agent can 

maintain the rigid formation shape across its trajectory. It is highly important that the 

agents maintain their formation structure to successfully transport a payload.      

                                                                                                 

 
 

 

Next, the design of adaptive formation structures allows the agents to change shapes 

when encountering narrow passages or obstacles. Tasks such as target tracking can be 

accomplished with nonrigid formation shapes. Nonrigid formation structures are more 

flexible and allow the agents to change shapes whilst flying. In [96] the formation 

topology for four quadrotors is defined through three different behaviours. The first 

Fig. 2.18.  Multi-agent quadrotor flight in formation across a forest with a payload. 
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topology requires a constant network graph. The second topology is unconstrained and 

allows disconnection within the network. Lastly, the final topology allows shape 

changes whilst remaining connected. Whilst the study only performs two shape 

changes, it shows that a formation planner must be as flexible as possible. There are 

many formation shapes that are often used with quadrotors. Study [97] performs 

formation flying with three Qball-X4 quadrotors. Here, a variety of formation shapes 

such as line abreast, triangular as well as cross formation are tested. Results show that 

the quadrotors can achieve these shaped whilst satisfying Reynold’s rules of flocking. 

Flocking behaviour is described as a swarm of agents that can maintain separation, 

alignment and cohesion whilst flying. The agents within a formation must avoid any 

possible collisions with neighbouring agents. All agents must also fly at the same 

velocity and direction of their fellow teammates. These rules can be used as guidelines 

for successful nonrigid formation planning. 

 

Current works often test the ability of a multi-agent quadrotor system to adapt 

to different formation shapes across their planned trajectory. In this case, most objective 

functions minimize the number of shape changes and its complexity in terms of scale.  

The complexity of formation design is dependent on the difference between two 

consecutive formation shapes. The structure of the formation can either scale up or 

down in size. Research by [98] uses a team of three KMel K500 quadrotors to perform 

agile manoeuvring whilst maintaining their formation structure. The agents are set to 

transition from a line to a triangular formation shape and then returning to their initial 

shape once again. Their work highlights the importance of designing a planner that 

generates short and dynamically feasible trajectories that remain collision free whilst 

the agents transition between formation shapes. Analysis in [99] shows that the multi-

agent quadrotors are capable of transitioning between many shapes. Here, the 

quadrotors progress from a tandem formation to an alongside, triangular and extended 

triangular structure. The study prioritizes objectives such as collision avoidance, good 

communication network, time optimality as well as minimal positional error. Due to 

this, the agents can maintain a less than 3m positional error despite strong winds. Both 

these studies show that there are many similarities between the spread and adaptive 

formation mission. Researchers still want paths that are short, collision free, 

dynamically feasible and energy efficient.      

 

Another important factor that must be considered when designing paths for 

formation flights is the amount of time that is dedicated towards changing formation 

shapes. The rise time is defined by the time difference between two formation shapes. 

The initial time begins when the agents begin to change shape. The rise time ends when 

the agents successfully achieve the desired formation shape. Study [100] presents a 

trajectory planning and replanning algorithm for quadrotors. The authors highlight the 

importance of measuring the rise time of a trajectory. It is shown that if the rise time of 

a formation is small then the agents move too quickly and fail to track their desired 

trajectory accurately. The opposite is true for longer rise times where the flight time 

and fuel consumption are increased. Thus, it is important that the formation planner 
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strikes a balance when designing the formation trajectory and its control system. 

Research [101] presents a time-varying formation control system for five quadrotors 

that takes into consideration the different velocities of each agent. The quadrotor swarm 

can achieve the predefined time-varying formation structures through consensus-based 

formation control protocols. Here, the formation rise time can be estimated through the 

varying velocities of each agent. The five quadrotors can achieve the predefined time-

varying formation within 200 seconds. This time-varying formation planner makes it 

possible for the agent to track the designed paths within a feasible rise time and minimal 

error. Similarly, study [102] aims to improve the formation rise time that is required by 

a group of multi-agent quadrotors. This is achieved by improving the convergence 

speed within a formation control system. In this case, the agents required less than 100 

seconds to create a uniform front. This objective function measures the complexity of 

a formation trajectory. The longer the rise time, the more complex the formation shapes 

across the planned trajectory. Most researchers prefer trajectories that avoid all 

obstacles without the need for highly complex formation shapes.     

 

These studies perform optimization of multiple objectives with an aggregated 

function. More flexibility and knowledge for the end user can be obtained when the 

focus is on the optimization of all objectives. Firstly, our study applies a fully 

decentralized control system. This control system runs in parallel through a multi-

threaded processing unit. Thus, the multi-agent control system can run simultaneously. 

It minimizes the risks that come with a centralized system and reduces simulation time. 

Lastly, the equal optimization of all objectives is performed within this study through 

many-objectives optimization. 

 

2.4 TRAJECTORY OPTIMIZATION FOR MULTIPLE AGENTS 

 

In real-life scenarios, important decisions require the comparison of each choice's pros 

and cons. As humans, we analyse these options for their advantages and disadvantages. 

Then, we pick the option with minimal disadvantages. The minimization of negative 

criterions is the key to optimization. In certain cases, one may want a set of good options 

as opposed to a singular one. The ability to produce various options is advantageous 

because it gives the user additional flexibility. The end user can pick the best choice 

out of a few good options. This is where multi-objective optimization (MOO) performs 

best. As shown in Figure 2.19, there are various MOO algorithms that can be used for 

path planning. MOO algorithms can analyse high amounts of data in the form of many 

solutions. MOO evaluates the cost values of each solution at each generation. It then 

eliminates the weaker solutions through comparisons. As iterations progress, the 

number of optimal solutions increase through the weeding out of suboptimal solutions. 

 

The most common variation of MOO is optimization through scalarization. 

Here, solutions are often ranked through a weighted sum equation. This equation is 

formed by merging multiple objective functions. The advantage of this method is its 

simplicity. The weighted sum equation is easily modifiable by the end user. The weight 
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values of each cost can be used to create bias within the ranking process. The negative 

aspect of this process is assigning these weight constants can be tough. Most users don't 

have preferences or a full understanding as to which objectives are to be given priority. 

These weight values can cause an unwanted bias within the search space. Thus, it leaves 

the end user with suboptimal solutions. The lexicographic method sorts the cost 

functions in order of importance. This process is known as the lexicographic order. 

Here, lower priority objectives are optimized if they do no negatively impact the higher 

priority objectives. The disadvantage here is similar to the weighted sum method. Prior 

knowledge of the importance of each cost function must be available. The first multi-

objective genetic algorithm is the vector evaluated GA (VEGA). VEGA was 

implemented by Schaffer in 1984 [103]. In this case, optimization is achieved through 

the application of objective vectors. The entire search space is randomly divided into a 

few groups. The number of groups is the same as the number of objectives that are 

being optimized. The fitness of each solution subpopulation is optimized with differing 

objectives. Thus, VEGA produces the best solution for each objective since each 

solution group is optimized in one direction. VEGA fails to deliver when the user 

requires a solution that optimizes all objectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

There are also optimization algorithms that apply Pareto dominance. Two terms that 

are often used within these algorithms are the Pareto Frontier and Pareto Optimal 

Solutions. Both terms are based on the following definitions: 
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Fig. 2.19.  Multi-objectives optimization algorithms 
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• Pareto optimal solution. It is a solution where the values for all objectives are 

better than the solution that it dominates. These solutions are ranked as 

dominant/nondominated. A good collection of Pareto optimal solutions must be 

diverse and optimal.  

 

• Pareto frontier. The curved Pareto front is formed by all the Pareto optimal 

solutions. These solutions form a graph that clearly defines a boundary between 

optimal and suboptimal solutions. The dimensionality of the Pareto front is 

dependent on the number of objective functions. 

 

The approximation of the Pareto front can be highly beneficial to the end user. It allows 

the user to view solutions that are both diverse and optimal. The pros and cons of each 

option are also easily viewable. The multidimensional Pareto frontier is determined 

through the classifications of solutions. Here, solutions are ranked across the search 

space based on their Pareto optimality. These algorithms aim to maintain a balance 

between Pareto front convergence and solution diversity. Initially, Fleming and 

Fonseca implement multi-objective genetic algorithm (MOGA) in year 1993 [104]. The 

concept of fitness assignment through ranking introduced within their study. The rank 

of a solution is determined through the number of solutions that dominate it. Here, the 

minimal value of one is set for solutions that are never dominated. After dominance 

ranking, the level of diversity of a solution is tested through niching. The terms that are 

often used within the niching process are: 

 

• Niche radius. Niche is used to define the spatial distribution of the solutions 

within the high dimensional space. The niche size defines the radius of 

similarity between solutions within objective space. The niche size dictates the 

probability of detecting a higher or lower number of optima. 

 

• Sharing function. This function tests if a solution is within the niche radius of 

another. If the solution is further than the niche radius, it is given a value of 

zero. On the other hand, solutions that have many close-range neighbours have 

a higher sharing value.  

 

• Niche count. The cumulative value of the sharing function for each solution is 

used to define the final niche count. The application of niche count defines if a 

solution's niche is crowded. It determines how many solutions are within a 

solution's niche radius. 

 

• Shared fitness. The shared fitness of each solution is determined through the 

division of the raw fitness with the niche count. The shared fitness value ensures 

that solutions that are optimal but have many close-range neighbours within the 
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search are penalized. Thus, diverse solutions are maintained within the 

population until the next iteration. 

 

These concepts are the building blocks for many GA based optimization programs such 

as Nondominated Sorting Genetic Algorithm (NSGA), Niche Pareto Genetic Algorithm 

(NPGA) and Strength Pareto Evolutionary Algorithm (SPEA). These algorithms differ 

in the way that the convergence and diversity mechanism are implemented. Srinivas 

and Deb [105] present a new fitness assignment scheme through NSGA. Here, 

nondominated solutions are ranked into different fronts across the search space. This 

algorithm evaluates the search space front by front as opposed. This has the benefit of 

avoiding early elimination of solutions which can occur when the entire population is 

evaluated as a whole. Each new front contains solutions that are less optimal than the 

prior front. The final fitness value of each solution is dependent on the front that it 

resides within. Solutions closest to the Pareto front have better fitness values. This 

procedure preserves solutions within each rank to create diversity. Next, solutions that 

are within the same front are tested for diversity. Similar to MOGA, a shared fitness 

value determines if a solution is maintained or discarded. Later, NPGA is proposed by 

Horn et. al. in 1994 as a non-elitist MOO [106]. This algorithm differs from the 

previous algorithm through its application of binary tournament selection method with 

raw fitness values. It reduces the processing time since it doesn’t require the 

determination of shared fitness values.        

 

 Elitist algorithms such as NSGA-II and SPEA maintain a percentage of the best 

solution from the previous iterations for the selection process. In this case, the offspring 

are directly compared to their parents for survival of the fittest. NSGA-II also sorts the 

population into ranked fronts. It differs from the original NSGA because the total 

population is made up of both the parent and child population [107]. Despite its 

benefits, processing of the population is increased twofold with elitism. For diversity 

management, crowding distance is introduced. Here, the crowding tournament selection 

operator is applied for the creation of offspring. The crowding distance calculates the 

proximity of the solution's closest neighbours within the search space. The value of the 

crowding distance is obtained by drawing a virtual cuboid around the solution with its 

edges touching the nearest neighbours. The advantage of this algorithm is the removal 

of the niching variable which can be tough to determine.  

 

SPEA was introduced in 1998 where an external population set is created out of 

the previously maintained elites. This external population is compared with the new 

generation elites [108]. This promotes the constant updating of the elite population as 

the generations go by. The algorithm differs from the others based on its strength fitness 

function and clustering method. The strength value is based on the number of solutions 

that a member of the elite population dominates. The cluster distance is determined 

through the Euclidean distance between all pairs of clusters. As SPEA progresses, 

clusters that are similar can be merged into one large cluster. Diversity is maintained 

by removing a representative solution from a cluster. The representative solution is 
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defined as the centroid of its cluster. As with the previous algorithm, SPEA eliminates 

the need for niche radius determination. The disadvantage of SPEA is the added 

complexity of managing both the external and current populations.     

 

 Each MOO differs from the other and can be applied towards various 

applications. The level of complexity and amount of processing time are key factors in 

deciding which multi-objective algorithm suits the optimization problem. Likewise, the 

Pareto frontier convergence and diversity are also important when choosing a suitable 

MOO algorithm.   

 

2.4.1 MULTI-OBJECTIVES OPTIMIZATION   

 

The MOO algorithms that are were discussed in the prior section has often been applied 

within studies that utilize quadrotor UAVs. This section analyses evolutionary 

algorithms that have been specifically used for path planning. Firstly, we look at the 

application of GA specifically towards trajectory generation. The process of path 

optimization requires a large population of trajectories. At each iteration, the algorithm 

performs a selection process that maintains optimal trajectories across future 

generations. In most cases, optimization is performed through an aggregated cost 

function. However, some studies have applied multi-objective optimization as well.  

 

Genetic algorithm (GA) is used in [109] to obtain the best path for a quadrotor. 

Here, the cost function is a summation of node to node distance and a penalty value for 

close range obstacles. The application of GA without modifications required a large 

population of 500 members and 500 iterations to determine the fittest path. Thus, the 

basic algorithm would require a long run time as well as a large amount of data 

processing.  Both GA and adaptive GA (AGA) are compared in [110]. This study 

generates paths for a quadrotor that is used for ground sensor detection. In this case, the 

adaptive crossover and mutation operators are dependent on the costs of each path. The 

authors show that these adaptive operators produce shorter trajectories in comparison 

to the basic GA. The disadvantage of this adaptive process comes in the form of added 

complexity. The user must be able to determine the operators accurately.  

 

Work by [111] utilizes modified breeder genetic algorithm (BGA) with B-spline 

curves. This algorithm aims to generate paths across mountainous terrains. The authors 

consider different objectives with an aggregated weighted function. The number of 

costs applied is based on if the planner is operating online or offline. A balance between 

maintaining path diversity and optimality is done with an adaptive selection percentage. 

The feasibility of the generated paths cannot be guaranteed without the addition of the 

UAVs dynamics. Evolutionary algorithm (EA) for realistic scenarios is tested in [112] 

through the evaluation of 11 different objectives. This algorithm considers properties 

of real life UAVs, terrains, radars and missiles. In this case, different levels of priority 

are applied to the objective functions and constraints. As with the application of 
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weighted cost functions, the priority levels for each objective creates a bias within the 

population. This reduces chances of all costs being best optimized.  

 

A comparison between the performance of parallel run particle swarm 

optimization (PSO) and GA for real-time path planning is researched in [113]. The 

application of parallel processing leads to a faster run time. Here, the algorithm 

performs migrations between subpopulations at every 10 generations. The authors 

conclude that GA outperforms PSO in terms of speedier convergence towards the first 

feasible trajectory. On the other hand, PSO produces more refined paths. NSGA-II and 

B-spline curves are applied within [114] towards offline path planning for multiple 

agents. Here, two planners for free flight and pre-specified flight points are designed. 

The multi-objective optimization algorithm is applied with dual conflicting objectives. 

The costs considered are the paths’ length and height. The study shows that the 

extraction of global Pareto optimal solutions can be highly challenging even with a 

small number of objectives.  

 

Building upon these prior studies, this thesis presents a modified version of 

genetic algorithm (GA). Here, GA is used with multi-agent RRT towards creating a 

large population of trajectories. In comparison to previously discussed works, this 

hybrid path planner is used in collaboration with a many-objective optimizer.  

 

2.4.2 MANY-OBJECTIVES DOMINANCE AND DIVERSITY BALANCE 

 

Real life flights require the consideration of many objectives simultaneously. Many 

studies choose to minimize the complexity of optimizing many objectives by 

prioritizing certain cost functions. In this case, it is important that all objectives are 

minimized or maintained without the extreme degradation of one cost over the other. 

In this thesis, many-objective optimization is applied to provide a diverse and optimal 

solution set for end users. The term many-objectives optimization is typically dedicated 

to the optimization of more than three objectives simultaneously that are often 

conflicting in nature. This algorithm is designed with an understanding that there is 

never just one optimal solution that is best in regard to all cost functions.  

 

Many-objectives optimization is an expansion of the multi-objective 

optimization algorithms. They both vary in terms of additional mechanisms for 

balancing the Pareto front solutions diversity and convergence. The basic multi-

objective algorithm is incapable of processing many objectives effectively. There are 

many challenges that can occur when the optimization of many objectives is treated as 

an extension of MOO. When implementing many-objectives, the main disadvantage is 

the loss of Pareto front convergence due to the large amount of nondominated solutions. 

This causes the algorithm to lose its ability to make adequate comparisons between the 

solutions during ranking. The second issue with optimizing many objectives is the 

number of solutions that are required to fully map the Pareto frontier. Higher number 

of objectives leads to a higher dimensionality Pareto front. Lastly, visualizing high 
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dimensional Pareto fronts can be highly challenging. This is especially true for frontiers 

that are higher than three dimensions. The Pareto front provides the end user with visual 

information regarding the trade-off values between each solution. Thus, providing the 

end user with equivalent data is important for the decision-making process.     

 

Ideally, the population convergences towards the Pareto front with diverse 

solutions maintained. To achieve this, the basic MOO algorithm must be modified. 

Thus, the field of many-objectives optimization fulfils that need. Whilst being a new 

research area, a few studies have explored the potential application of many-objective 

optimization. There are researchers that have implemented many objectives within their 

optimization process. There are three methods that allow researcher to improve the 

selection pressure within their optimization algorithm. The options to choose from are 

as stated below,    

 

1. Redefining the domination relation between solutions. 

2. Modification of the diversity management system. 

3. Dimensionality reduction.  

 

 There are many works that redefine the domination relation between solutions 

to increase selection pressure. The ranking is often improved with an aggregated 

weighted cost function [115]. This process merges the many objectives into a single 

function. As previously defined, the disadvantage of using weights is it creates bias 

during the optimizations process.  Similarly, it also requires the end user to provide 

predetermined weight values. This can be challenging because the end user doesn’t 

have prior knowledge of how much each cost function can be minimized. In many 

cases, its application comes at the cost of the deterioration of individual objectives. 

Another method for improving the ranking process is through the usage of fuzzy logic. 

Fuzzy-based dominance for many-objectives is undertaken by He et. al [116]. Progress 

in the fuzzification of Pareto optimality is shown in [117-118]. Here, the fuzzy set 

defines a broader spectrum of dominance between solutions. Typically, a solution is 

defined as dominant if it has better values for all objectives. In some studies, the sorting 

of solutions is performed by reducing the strictness of the ranking process. Here, 

solutions can be declared as dominant if most objectives are dominated. Selection 

pressure is also improved through alternative dominance criterions such as Pareto -

dominance, -dominance, k-dominance or preference weighting [119- 120]. Many of 

these studies improve on the ranking process by reducing the diversity of the solution 

set. This can be a disadvantage for end users that prefer a variety of solutions.  

 

Some researchers modify the typical diversity management design to increase 

the selection pressure during the ranking process. Popular diversity operators are such 

as niching [121], crowding distance [122], clustering [123] or k-th nearest neighbour 

[124]. Adra and Fleming [125] apply a diversity management operator (DMO) as well 

as an adaptive mutation operator. They reduce the impact of both the operators with 

dynamic activation and deactivation of the diversity mechanism. This process can be 
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complex because the system must be capable of accurately determining when the 

diversity mechanism needs to be shut off.  Recently, shift-based density estimation 

(SDE) strategy [126] is employed where the shifting of solutions based on its 

convergence value. In a pursuit to redefine both the dominance relation and diversity 

maintenance in many-objectives optimizations, [127-128], Zou et. al.[ 129] 

demonstrate the application of  L-optimality towards a new definition of the fitness 

function that applies the principle of the minimal free energy in thermodynamics. 

Whilst the modification proves promising, the assessment of the algorithm is limited to 

less than ten objectives due to the computing power necessary for the resulting 

hypervolume. Similarly, [130] applied a grid based criterions [131] [132] to efficiently 

create a difference between each solution thus defining grid ranking and grid crowding 

distance for qualitative comparisons. The issue with redefining or minimizing the 

effects of the diversity mechanisms is that the Pareto frontier is often partially mapped. 

Thus, the end user is left with a set of representative solutions instead of a well spread 

Pareto optimal solution set.    

 

This thesis applies Many-Objectives Optimization for the optimization of multi-

agents and its objectives. The three challenges of applying many objectives are dealt 

within this research. This study aims to strike a balance between diverse and optimal 

solutions through dimensionality reduction. Here, the end user is supplied with high 

resolution visual imagery as well as organized data. The additional knowledge will 

assist the end user in making a final choice. 

 

2.4.3 MANY-OBJECTIVES DIMENSIONALITY REDUCTION   

 

Many studies have chosen to perform dimensionality reduction or sorting of the many 

objective functions. This is performed through objective clustering, preference-inspired 

approaches and the application of corner sort. Corner sort is implemented by [133] and 

[134] to minimize the complexity of many objectives optimization. Minimal objective 

comparisons are necessary to determine dominance when only the corner solutions of 

the Pareto front are compared. The disadvantage of this process is it requires the 

accurate identification of corner solutions. This can be challenging with high 

dimensional Pareto fronts that have a large number of objectives.   

 

The next option for implementing dimensionality reduction is through the 

creation of objective subsets. Preference-inspired Co-EA (PICEA) is used in [135] to 

optimize preference based objective subsets. Here, the fitness of each solution is 

determined through the evaluation of both the full set and current objective subset. The 

combination of these sets promotes convergence towards an optimal final population. 

The usage of objective subsets is presented in [136]. These subsets contain random 

combinations of the full objective set. These subsets are applied in rotation across a 

constant number of generations. Both these papers aim to increase the selection pressure 

through merging of both local and global dominance. The disadvantage of randomly 

created subsets is it can lead to less efficient use of processing time. This is because the 
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comparison of nonconflicting objectives can be redundant when determining dominant 

solutions.  

 

Another popular option for increasing selection pressure is through objective 

reduction. Objectives that are not crucial towards the mapping of the Pareto front are 

deemed unnecessary. Objective clustering is applied in [137]. The deletion of redundant 

objectives is performed within clusters that hold nonconflicting objectives. Study [138] 

identifies redundant objectives through eigenvalue and correlation matrix analysis. 

Objectives that are found to be nonconflicting are removed from the full objective set. 

Both studies are performed under the assumption that the determination of redundant 

objectives is highly accurate. Unfortunately, this leaves no room for error in cases 

where a nonredundant objective is eliminated.  

 

In this research, we apply dimensionality reduction to increase selection 

pressure without the absolute removal of any objectives. Here, the objective subsets are 

not created randomly. It is performed by evaluating the level of conflict between 

objective pairs within each subset. This process minimizes the chances of full 

elimination of an objective function and leaves room for possible error.  

 

2.5    SUMMARY 

 

This chapter presents studies, researches and inventions that have inspired the design 

of the multi-agent quadrotor’s optimal path planning algorithm. Firstly, the 

development of the quadrotor is discussed. It shows the various sizes and types that are 

available within the current market. It also defines the large number of missions and 

applications that use the quadrotors. The missions have different objectives and test 

environments. All of this information shows that the quadrotor can be extremely robust 

and flexible. It is the ideal vehicle for a multi-agent UAV system. 

Next, the two main applications that require a multi-agent UAV system are 

defined. The first is the spatially spread flight scenario where the quadrotors are 

required to fly independently within a team. They must collaborate to successfully 

complete missions such as reconnaissance or search and rescue. The second application 

that is presented is multi-agent formation flight with quadrotors. In this case, the 

trajectories of each agent are highly dependent on each other. Both applications utilize 

similar path planning algorithms to generate feasible paths. Here, sampling-based path 

planning algorithms such as Rapidly Exploring Randomized Trees are defined in detail. 

The last section presents the various multi-objective and many-objective optimization 

algorithms. Focus is placed upon both Genetic Algorithm and Dimensionality 

Reduction Many Objective Optimization.  

The literature review that is presented will be used as an inspiration for the 

multi-agent quadrotor optimal trajectory planner within this study. The next chapter 

presents the Multi-Agent Rapidly Exploring Randomized Forest (MA-RRF) and GA 
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hybridized path planners. Firstly, the three test environments are presented. The various 

challenges that exist in each test space are discussed. The MA-RRF algorithm is then 

used to map the test environments with speed. Finally, initial feasible paths for GA of 

the four quadrotors are shown. These paths will form the initial population for the 

optimization process. Lastly, the mathematical model and the control system for all 

agents are described in detail.    
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CHAPTER 3: MULTI-AGENT QUADROTOR TRAJECTORY 

PLANNING 

 

A path planning algorithm typically performs two things which are mapping the free 

space within an environment and path extraction. Three test environments that pose 

different challenges are presented in this chapter. Each test space will test the ability of 

the trajectory planning algorithm to design paths across a variety of environments.  

 

This study aims to fill the gap of planning paths across long range environments 

with minimal moving obstacles. All of these environments are randomly generated and 

different for each experiment. They are designed to imitate the major structures within 

their real-life versions. These environments only simulate static obstacles. Despite the 

exclusion of dynamic obstacles, this algorithm is applicable in disaster zones that contain 

many static obstacles. One example is war zones with abandoned buildings or toxic 

chemicals. Another example is the to perform surveillance above rainforests at high 

altitudes above the trees. These environments may contain some dynamic obstacles that 

can be avoided with the usage of an ultrasonic sensor. The agents can perform a swift 

obstacle avoidance turns and return to their planned path.    

 

Firstly, a high-rise cityscape that possesses maze like narrow passages is shown. 

Next, a highly cluttered indoor environment is developed. This space simulates real life 

rooms with windows and doors. Each room contains hardware and furniture at variant 

heights. The clutter in each room is modelled through randomly placed cubes. Lastly, a 

mountainous terrain that has sudden and gradual terrain height changes is displayed. This 

space will test the capabilities of the path planner in terms of obstacle avoidance.   

 

This chapter also presents two path planners that will collectively generate nodes 

for the multi-agent trajectories. Both path planners are designed to plan hybridized paths. 

Initially, the path nodes for each quadrotor are generated through the Multi-Agent 

Rapidly Exploring Randomized Forest (MA-RRF) planner. Here, both free space 

mapping and path extraction are performed. Each MA-RRF path hybridizes branches 

from different trees and forest links. Thus, a path is a hybrid of many tree branches. 

Later, the suboptimal trajectories that were designed by MA-RRF will form the initial 

path population for the many-objectives optimization algorithm. New paths for the next 

generations are constructed through the crossover and mutation process within Genetic 

Algorithm (GA). These paths will be hybridizing different sections of the initial MA-

RRF paths in order to create new path populations. This means a path by GA is a mesh of 

the parent paths by MA-RRF.   

 

The final step for successful path planning is the path repair process. This is  
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necessary because the GA operators often create path subsections that collide with 

obstacles. In this study, the MA-RRF algorithm is reapplied within GA to repair the new 

generation paths. The planner quickly maps the obstacle and generates a feasible route 

between the collision points. These new paths will undergo multiple post processing steps 

in order to maintain the level of diversity within the population. The child paths that 

survive the filtration process will be combined with their parents. These paths will form 

the current generation of multi-agent quadrotor paths.  

 

Lastly, this chapter defines the mathematical model and control system of a 

quadrotor UAV. These two subsections will form the closed-loop control system for the 

agents. The previously designed trajectories will be used as the input for the quadrotor 

UAV control system. The information that is generated by the control system will be 

used to predict the values of the many objectives that are presented within Chapter 4 of 

this thesis. These cost estimations will then be used in Chapter 5 to slowly filter out 

suboptimal or non-diverse trajectories. 

 

3.1. THREE-DIMENSIONAL ENVIRONMENT FREE SPACE MAPPING 

 

In this study, two methods of free space mapping are utilized.  Both a sampling-based 

planner and grid blocks are used to map the simulated environments. In this study, only 

the mountainous terrain is defined through grid blocks. This is because the small and 

gradual changes within the environment can be computationally exhaustive to accurately 

define. All of the other test environments do not require grid free space mapping during 

the path planning process. A quick sampling-based planner is used to map and spread 

nodes across the test spaces. In this case, the obstacles and free space do not need to be 

well defined prior to the sampling process. The parameters for both the free space 

mapping processes are shown in Table 3.1. The obstacles within all test spaces have 

buffer regions that are placed around them. These boundaries will reduce the possibilities 

of obstacle collisions.    

 

3.1.1.  HIGH RISE CITYSCAPE ENVIRONMENT 

 

Cityscapes around the world are urban spaces that are made up of many buildings. 

Drones are commonly used for surveillance or filming important social events. They are 

typically used by photographers and journalist to document newsworthy events. This 

creates a large pool of real-time data that can be instantly shared between the local 

people. The UAVs can be applied for crowd and human traffic management during 

natural disasters. In recent times, multi-agent quadrotors have also been used for payload 

delivery. Companies such as Amazon have attempted to perform air delivery service for 

their customers. Many entrepreneurs have opened small businesses within the city to 

manufacture and test quadrotors. These drone hardware companies will continue to create  
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TABLE 3.1.  SIMULATION ENVIRONMENT PARAMETERS 

 
 

 

 
 

new jobs within their cities. Thus, quadrotors are no longer an unfamiliar sight for city 

folk. Many cities have introduced their own drone-related regulations in order to protect 

the privacy of their citizens. The quadrotors can continue to operate within a city as long 

as the users comply with these rules. Both leaders and regular citizens are often in 

conversation about the impact of deploying drones across a city. The popularity of the 

quadrotor within cities shows that a path planner must be capable of designing 

trajectories across high rise cityscapes.      

Most cities around the world have a few common characteristics. It is important to 

define the structures that collectively create a cityscape. The most visible section of any 

Environment Description Value 

Cityscape 

Test Space Size 230 x 230 x 200 m3 

Grid Size 15 x 15 x 15 m3 

Number of Skyscrapers 18 

MA-RRF Buffer Region 5 m 

Safety Zone Boundary 6 m 

Obstacle Sampling Distance 5 m 

Highly Cluttered 

Indoor 

Test Space Size 120 x 120 x 120 m3 

Grid Size 15 x 15 x 15 m3 

Number of Rooms 5 

Number of Random Sized Cubes/Room 6 

Number of Windows  5 

Number of Doors  5 

MA-RRF Buffer Region 1.5 m 

Safety Zone Boundary 6 m 

Obstacle Sampling Distance 2.5 m 

Mountainous 

Terrain 

Test Space Size 65 x 65 x 70 m3 

Grid Size 15 x 15 x 15 m3 

Size of Peak Obstacles 8 x 8 x corner peak height m3 

MA-RRF Buffer Region 1.5 m 

Safety Zone Boundary 6 m 

Obstacle Sampling Distance 4 m 

Fig. 3.1.  Top and side perspective of a cityscape environment. 
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urban space is its buildings. As previously defined, many people live or travel daily into 

the city for job opportunities. Similarly, youth and children often come to the city to 

study. Families come together to enjoy the many restaurants or any forms of 

entertainment. Thus, the buildings within a city are made up of large corporations, small 

sized offices, shops, hospitals and schools. These structures can be built with different 

shapes, sizes and height. Still, most buildings are square and simple in design. Next, there 

are all types of clutter within an urban space. There are street lamps, plants and vehicles 

that are placed on the ground. Buildings regularly have billboards, lights or a balcony 

attached to them as well. Another defining characteristic of a developed city is its roads. 

Urban spaces are often filled with large crowds and heavy road traffic. The streets are 

travelled by people on foot or different modes of transportation. The roads within cities 

are unlike those in underdeveloped areas. City roads are narrow and have many sudden 

turns. It moves across tight spaces between buildings. All of these characteristics show 

that there is a lot of activity that occurs at the ground level of a city. It is important that 

the multi-agent quadrotors fly above crowds and around buildings.  

This study recreates this test space with a simulated three-dimensional cityscape 

environment as shown in Figure 3.1. The clutter that is typically placed within an urban 

environment isn’t included within this simulation. The purpose of the cityscape 

environment is to test the path planner’s ability to plan paths within long range narrow 

passages. The planner aims to create well minimized trajectories where sharp cornered 

turns exist between city buildings. Large rectangular cubes form the buildings within the 

simulated high-rise cityscape test space. These cubes are spaced closely to one another 

across the environment. This environment is not made of buildings with various heights. 

Based on prior experimentation, the path planner will seek nodes that exist above the 

buildings. This is because the spaces above buildings are less constrained than the narrow 

passages between them. Thus, this simplifies the challenges of navigating across real life 

high rise cityscape environments. Here, all the buildings are maintained at a similar 

height in order to force the path planner to fly between buildings as opposed to just above 

buildings. This creates an extremely constrained environment that challenges the 

trajectory planner in a way that the other environments do not. The agents must fly at 

higher heights and be capable of avoiding the corners of each building. The agents must 

also be capable of undertaking extreme manoeuvres as they fly from one road to another.  

 

Next, mapping the free space within the cityscape is paramount to creating paths 

that are collision free and diverse. The boundaries for this environment are the most 

simplistic out of all the simulated environments. This is due to the unvarying heights and 

width of the buildings. It can be tough to determine the size of the boundaries around 

each building. If the boundary is placed at a large distance from the building, it promotes 

safer turns for the quadrotors. The downside to this is larger boundaries can cause the 

narrow passages to become too tight for many agents to travel at once. It also reduces the 
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number of diverse paths because it limits the spread of the sample points. On the other 

hand, boundaries that are placed too close to their building can be dangerous for the 

multi-agents. This increases the chances of possible collisions especially at sharp corners. 

Thus, the size of the boundary should strike a balance between the two extremes. After 

the free space mapping is complete, the sampling of the obstacles is performed. The 

sample points aid in defining the formation shapes across each trajectory. Three-

dimensional high-resolution sampling is not necessary for multi-agent formation flights. 

As shown in Figure 3.2, obstacle sampling is only performed across the roof of each 

building. Here, the distance between the sample points and path nodes can provide 

sufficient information for the formation flight planner.  
 

              

 

3.1.2.  HIGHLY CLUTTERED INDOOR ENVIRONMENT 

 

The second test space as shown in Figure 3.3 is a highly cluttered indoor environment. 

This simulated environment mimics spaces such as domestic residences or employment 

venues. This environment is extremely different from the other two test spaces because it 

is placed within the interior of a building. Firstly, the largest consumer market is made up 

of hobbyists. One variety of a quadrotor that is used indoor is the Parrot AR. Drone that 

is controlled by Apple products. The drone comes equipped with a high-resolution 

camera that allows for real-time recording and sharing. Family parties and ceremonies 

can be instantly recorded. It connects to an indoor wireless connection and uploads flight 

information online. This process creates a community of users that share a common 

hobby. The second group of people are business owners that are manufacturing their own 

quadrotors. Initial testing of the quadrotor is often performed indoors. Lastly, multi-agent 

quadrotors are often flown by researchers within their laboratories. These experiments are 

safely conducted with nets enclosing the agents inside it. Thus, there are a large number 

of users that fly quadrotors within indoor spaces. This shows that a path planner must 

consider the challenges that occur within the interior environments.      

 

Fig. 3.2.  Cityscape environment’s safety boundaries and boundary plane sampling. 
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Similar to cities, indoor environments have a few common characteristics. Identifying 

these characteristics is important for designing a realistic indoor test space. There are 

different obstacles within this space. Interior spaces are made up of walls, windows, 

doors, furniture and electronics. Most rooms have a large amount of clutter that are 

scattered at various heights. The clutter is a representation of the typical ground furniture, 

high level shelves, hanging light fixtures, gadgets and electronic equipment. It also 

includes other decor objects. All of these objects are constrained within extremely small 

spaces that are used by humans daily. Thus, the trajectory planner must be capable of 

obstacle avoidance. This is achieved by planning paths that move above and below all 

clutter. It forces the agents to perform aggressive manoeuvres around its obstacles. 

Another challenge that this environment poses is its constricted entry points. These entry 

points are either doors or windows that allow the quadrotors to transition from one area to 

another. It is highly challenging to detect entry points across large walls. If the planner 

fails to accurately detect these doors and windows, the rooms in between them will be 

neglected in the path planning and optimization process.   

 

This research recreates this test space with a simulated three-dimensional highly 

cluttered indoor environment as shown in Figure 3.3. The walls are pieced together with 

gaps that represent the doors and windows. Each window has a different size. Many 

homes have pets that live with their owners indoors. Here, entry ways for pets are also 

included. The clutter within rooms is simulated through various sized cubes. These cubes 

are randomly generated across each room. The end user has the option of introducing 

more clutter in order to test the capabilities of the path planner. Next, the obstacles within 

the simulated indoor environment have boundaries placed around them. Table 3.1 shows 

that the boundaries are placed much closer to the obstacles in comparison to the cityscape 

environment. This is because the entry points for each room are already small in size. 

Boundaries that stick out too much can close up the entry point. It also stops the agents 

from transitioning between rooms. Thus, a balance must be struck between safety and 

space exploration.      

 

Fig. 3.3.  Top and side perspective of a highly cluttered indoor environment. 
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Lastly, the obstacles are sampled to provide markers for the formation planner. As 

shown in Figure 3.4, the sampling process is more complex than the cityscape 

environment. This test space will require varied height sampling to properly define the 

formation shapes across a trajectory. It also requires a higher sampling rate. Sampling is 

performed on the top portion of each wall and clutter block. The sampled planes also 

define the height of the obstacles. They are only a threat to the flight trajectory node if the 

waypoint is within the lower and upper height limit of the obstacle blocks. The free space 

contours around these obstacles can be extracted by determining if the path waypoint is 

above or below any obstacle. 

 

       
 

 

3.1.3.  MOUNTAINOUS TERRAIN 

 

The last terrain that is generated by fractals is the mountainous terrain as shown in Figure 

3.5. Quadrotors are often used across mountainous terrain for a variety of reasons. As 

with the prior test environments, many wildlife photographers and journalists use the 

quadrotor to capture valuable data. National Geographic photographers have used 

quadrotors for many years. These aerial vehicles are flown across Borneo rainforests, 

Serengeti ecosystem and volcanoes. In some cases, the quadrotor is used to capture 

imagery of the wildlife within the mountainous terrain. Next, the vehicle is also used for 

search and rescue. There have been emergency situations that have occurred within 

forestations such as fires or landslides. The quadrotor is capable of providing real time 

imagery to the rescue team. Lastly, the multirotor system is also deployed across 

mountains to evaluate environmental issues such as deforestation or destruction of animal 

habitats. It allows the law makers to create rules that minimize extreme climate changes 

and labour abuses. All of these applications prove that it would be advantageous to have a 

path planning system that is capable of navigating across mountainous terrains.         

Fig. 3.4.  Highly cluttered indoor environment’s safety boundaries and plane sampling. 
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There are many key characteristics that define a mountainous terrain. The simulated test 

space is designed based on these characteristics. It is an environment that is filled with 

trees of different heights. The trees can grow tall and create a dense forest. There are 

smaller sized plants such as ferns and flowering shrubs. It also has rivers and pathways 

that progress across the terrain. With most mountains, the changes in height occur 

gradually from the ground level. Similarly, in this study, the terrain isn’t filled with many 

sudden high peaks. Here, there aren’t any extreme height differences between each peak. 

Figure 3.5 shows gradual height differences across the environment. Focus is placed on 

generating trajectories between the peaks instead. This is because there aren’t many 

researchers that have flown the quadrotor at extremely high altitudes. Quadrotor UAVs 

do not have adequate fuel to make trips that are long range and require a high vertical 

climb. This may change in the future when batteries have a longer discharge rate.  

 

The free space mapping process of the mountainous terrain is more complex than 

the prior two test spaces. Here, high resolution free space mapping is necessary for 

efficient obstacle avoidance and formation planning. The obstacles within this terrain are 

mapped with high accuracy. The mountainous terrain is unlike the cityscape and indoor 

environment where boundary planes are easily placed around each obstacle. The gradual 

height differences across the mountainous terrain are difficult to capture if there isn’t any 

separation between them. Due to this, the path planner can’t design path that allow the 

agents to fly close to the peaks. This reduces the chances of finding the shortest path. 

Firstly, the peaks within the terrain are divided into equal sized obstacles. This process 

creates a large number of smaller sized obstacles within the terrain. The planner must 

strike a balance between accurate terrain free space mapping and processing time. The 

height of each obstacle is defined based on the mountain peaks that are within it. Next, 

safety boundaries are places across all obstacles. Lastly, sample points are spread across 

the top plane of the safety boundaries as shown in Figure 3.6. These sample points will 

assist the formation planner in extracting the free space around the path nodes.      

 

Fig. 3.5.  Top and side perspective of a mountainous terrain.  
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 This environment requires the multi-agent quadrotors to fly collectively whilst 

avoiding peaks. The mountainous terrain's exploration is limited to 90% of the highest 

peak. This is to avoid flight over all peaks and force the algorithm to plot paths between 

peaks. The quadrotors are required to fly through sudden height changes in terrain in the 

form of peaks and lows. It is important that the agents successfully avoid local minima 

and reach their destination. The multi-agent trajectories within this final environment are 

simplistic in nature. There aren’t many sharp corners or narrow passages. There is a lot 

freer space than the prior two test spaces. The challenging aspect of this terrain is the 

high resolution free space mapping that is required. Thus, the path planner is required to 

generate a diverse set of paths that do not cause any possible collisions with the mountain 

peaks. 

  

    

 

3.2 MULTI-AGENT RAPIDLY EXPLORING RANDOMISED FOREST 

 

Numerous studies apply sampling based algorithms such as rapidly exploring random 

trees (RRT) because it is able to promote complete coverage with speed. In this research, 

we apply modified versions of RRT path planner, GA and many-objectives optimization. 

The optimization process requires a large population of trajectories at every generation. 

Here, both MA-RRF and GA are used to supply the many-objectives optimization 

algorithm with a diverse set of multi-agent trajectories. Each subsection has been 

modified to suit and benefit from a multi-agent system. As previously defined, this 

combination produces an algorithm that creates a final population of diverse and well 

minimized trajectories for all quadrotors. 

 

Firstly, initial path waypoint generation is performed through a hybridized version 

of the RRT algorithm.  RRT is used because GA requires a larger amount of time to fully 

Fig. 3.6.  Mountainous terrain’s safety boundaries and plane sampling. 
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explore an environment. RRT is capable of free space mapping and extracting paths at a 

much faster rate. On the other hand, GA is capable of merging a few good paths to create 

a larger collection of good paths. The combination of both algorithms reduces free space 

mapping time and maintains good paths across generations. The MA-RRF planner 

generates the initial population of paths for the two-stage path planning algorithm. The 

second stage applies a modified GA to produce a diverse population of trajectories across 

all iterations. Here, GA hybridizes different subsections of the initial MA-RRF paths to 

create new generation paths. MA-RRF is also reapplied for the path repair of child 

trajectories after the crossover and mutation process within GA.  

 

This version of the basic RRT planner aims to generate a large collection of paths 

for each agent simultaneously. With a multi-agent system, multiple trees can be generated 

to further speed up the exploration process. Thus, the MA-RRF trajectory planner is 

designed to fully harness the advantages of having a multi-agent system. It is also able to 

function within all types of environments. The MA-RRF algorithm is tested across three 

environments that have a variety of challenges.  

 

3.2.1 RAPIDLY EXPLORING RANDOMISED FOREST 

 

The application of RRT is based on its ability for quick exploration of large unexplored 

areas of space despite high amounts of obstacles. This lends to the fast extraction of 

feasible paths within high-dimensional free space for vehicles with high degrees of 

freedom such as the quadrotor. Most studies that apply the RRT planner typically use a 

single tree [31].  

The standard RRT algorithm is defined below. The algorithm begins by defining 

the root of its tree at the initial position of the UAV, 
freeinit Xx  . Next, a sample point,

randx  is placed randomly across the test space, 
freeX  . This sample point is connected to 

the root of the tree if there is no obstacle between them. An input, u  is applied to connect 

and minimize the distance between the two nodes. This connection creates the first tree 

branch, newx . As the tree grows, the random sample points are then connected to the 

nearest collision free branch, nearx on the tree, T . The two nodes that create each tree 

branch are stored within the database as a parent and child node. The input, u  is also 

stored within the database as well. The end point of the branch is defined as the child 

node. This relationship simplifies the extraction process of the final path. The free space 

mapping process continues until a termination point is met. The termination point is often 

defined by the tree’s closeness to the goal node. Thus, the RRT algorithm is stopped 

when a tree branch is within close range of the UAV’s destination. Lastly, a feasible path 

is obtained by extracting the parent nodes of all connecting branches in reverse until 

reaching the initial node.  
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There are a few variations of the standard RRT planner. The most popular is the 

single-tree search. This program can be improved by introducing a cost function that 

creates bias towards the goal node. Thus, the sample nodes connect to tree branches that 

are near in distance and also close to the goal node. The next option is a balanced 

bidirectional search. Here, two trees are utilized in an attempt to reduce run time. One is 

rooted at the UAVs start node whereas the other is placed at the goal node. The algorithm 

constantly attempts to connect these two trees. After a connection is made, the path can 

be extracted from the branches of both trees.      

STANDARD ALGORITHM    Rapidly-Exploring Random Trees  

Input: Initial state  
initx  

Output: RRT graph   with  K   number of vertices 

GENERATE_RRT ( tKxinit ,,  ) 

1: )(. initxinitT                      ; 

2: for  1k   to  K  do 

3:       randx RANDOM_STATE ( ) ; 

4:        nearx   NEAREST_NEIGHBOR ( ,randx ) 

5:             u   SELECT_INPUT (
nearrand xx , )  

6:         newx  NEW_STATE ( tuxnear ,, )    

7:         )(_. newxvertexadd  

8:         ),,(_. uxxedgeadd newnear  

9: Return   

Lastly, more than two trees can be generated with a multi-tree RRT system. There is an 

added complexity with multi-tree systems. The additional trees can be introduced at the 

beginning or in between the simulation process. The designer can choose to create more 

trees in locations that are tough to reach. Expanding the standard RRT into multiple 

individual RRT trees still causes an increase in processing time. The algorithm must 

continue to expand these trees whilst searching for possible connections between them. 

Thus, these connections must be made strategically in order to minimize complexity. 

Similarly, each tree connector must be stored properly within the database. The path 

extraction process will be highly challenging since the path subsections are made up of 

many different trees. In order to improve the basic algorithm, MA-RRF is presented as an 

alternative. This study implements a multi-tree program that generates a large collection 

of diverse paths.       

  

3.2.2 MA-RRF PATH PLANNING 
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This section presents a sampling based planner for solving multi-agent path planning 

problems in high-dimensional configuration spaces. Here, MA-RRF is applied in an 

attempt to generate a large collection of feasible paths for each agent simultaneously. 

This multi-tree system tries to maintain a balance between space exploration and 

processing speed. There aren’t many works that have implemented a multi-tree sampling 

based planner for multi-agent UAV systems. This study aims to improve on the basic 

multi-tree RRT free space mapping algorithm by strategically placing links across the 

individual agent’s trees. These tree-to-tree links are used to merge the tress into a full 

forest, MA-RRF.  In this case, not all collision free links are explored. The algorithm 

attempts to create forest links that are diverse in location. There also shouldn’t be too 

many or too little links between different agent’s trees. This increases the possibility of 

obtaining a diverse collection of paths.  

 

The second challenge of coordinating a multi-tree system is creating a storage 

system that allows the end user to comprehend the progression of each forest branch. 

This storage system must also minimize the time required to extract the final paths for the 

multi-agent system. In this research, a mutual database is constructed where data from the 

free space mapping and multi-agent paths are stored. This shared database is used by all 

agents. Thus, it allows the agents to have access to a shared database that is constantly 

updated by their neighbouring agents. Many variables are systematically stored within the 

database. These variables include the relationship between each parent and child branch 

of each tree. It also contains the relationship of the open tree branches that create the 

forest links. Due to this, duplicate branches and unnecessary links are easily avoidable. 

The nodes for each path can be located across many trees. This shared database will 

allow the algorithm to recursively extract each path subsection. This increases efficiency 

and reduces the complexity of running a multi-agent quadrotor path planner. 

 

The full Multi-Agent Rapidly Exploring Random Forest is shown in Algorithm I-

IV. This research tests the algorithm with four agents, AN  that are spread across each test 

space. The building of the MA-RRF begins by defining the initial location of each 

quadrotor. As previously defined, this work presents two multi-agent applications which 

is MA-Spread and MA-Formation. The first application requires a collection of paths for 

multiple agents that are flying independently. Thus, the MA-RRF algorithm is applied as 

defined in Algorithm I. On the other hand, the second application only requires a 

collection of reference paths. This is similar to path planning for one agent. The end user 

has the option of using the multi-tree system for one agent. Virtual agents can be placed 

around the test spaces to define the root of each tree. In this study, the database of paths 

that have been generated for the MA-Spread scenario is reapplied for the MA-Formation 

application. Here, the paths that were generated for the first agent are used as the 

reference path for the formation flight.  
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This work assumes the the environment is a known, randomly simulated, test 

environment with static obstacles. It also assumes that the end user requires multi-agent 

paths for long range flights. The chosen paths will be broadcasted to the agents after the 

optimization process. The initial free space mapping that is performed across each test 

space is applied as the input for the free space mapping algorithm. Here, the safety 

regions around each obstacles is defined as a no fly zone. The MA-RRF planner allows 

the end user to define the level of diversity that is required for the initial population of the 

GA. This is set through the similarity threshold, thresholdS . Next, each tree is rooted at the 

start, )( 0ti  and the goal configurations, )( fi t  of each agent. These roots are used to 

expand the individual trees for the first iteration.  

 

ALGORITHM I MA-RRF Path Planning Algorithm 

Input:   Number of agents,  }.....,,1{ ANi    

              Updated multi-agent obstacles database, 
obs   

    Number of iterations/sample points, 
ft  

    Agent's current state ,   )()()()( 0000 txtxtxti
  

    Agent's desired state ,   )()()()( ffffi txtxtxt   

               Goal node range, 
goald  

Link connection range, 
linkd  

Path node similarity range, 
similard  

 Similarity ratio threshold, 
thresholdS  

Output: MA-RRF Forest,   

               Number of tree branches, 
i  

 Number of forest links, RRFl  

        Multi-agent feasible paths, i  

1: ][,0 0 ftttt   

2: Place safety boundaries around all obstacles 

3: Initial number of branches, 0branchesk  

4: Initialize forest,   with roots at  )( 0ti  

5: while 
ftt   

6:          for each agent i  

7:          Generate random sample node across free space, 
sample  

8:          Run Tree Expansion   (ALGORITHM II)  

9: if added branch, 
sample   is within the distance of  goald  from the agent's goal node 

)( fi t  
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10: Store as 
goali  

11: end   

12:          Update forest,   multi-tree links (ALGORITHM III)     

13: end                                          

14: ttt   

15: end 

16:      Run Path Extraction   (ALGORITHM IV) 

17: Run Redundant Path Pruning   (ALGORITHM V) 

 

Algorithm II shows the connection process between MATLAB’s uniformly distributed 

randomly generated sample node and an agent’s tree branch. As priorly discussed, the 

expansion of nodes for individual tree, i  replicates the expansion process for the 

standard RRT algorithm. A sample node is placed across the environment and is 

connected to the nearest collision free branch on the agent’s tree. This algorithm tests if 

the link between two nodes is collision free by checking if the node-to-node line 

intersects with the boundary plane of any obstacle. The parent-child relationship between 

each tree branch is stored within the shared database under the agent’s name. In the MA-

RRF planner, this process is repeated for each agent. Thus, four sample points are 

generated across the test space for each agent. Each agent’s tree continues to build 

branches and expand within the same environment. These parallelly generated trees 

quickly explore space around them and also advance towards each other through the use 

of a simple greedy heuristic. These open branches within these individual trees will be 

used to build the full MA-RRF forest,  .    

 

ALGORITHM II Tree Expansion 

1: Determine distances between agent’s tree branch end node, i  and random sample node, 
sample  

2: Identify tree branch end node, 
neighbouri, that is closest to the to sample node  

3:  if  
obssampleneighbouri  ,

 

4:   Add new collision free branch to tree, newi  

5:                          1 branchesbranches kk  

6:  else  no feasible branch connection exists  

7:               terminate and rerun main program (ALGORITHM I) 

8:  end 

 

The most crucial portion of the MA-RRF algorithm is the creation of the forest. 

Algorithm III shows the steps that are undertaken to merge the individual trees within the 

test space. Initially, there is close to zero links within a test space. This is because the 

trees are not within close range of each other. Connecting trees within extremely 

constricted environments can be challenging as well. In this case, the algorithm can not 

find collision free links between the trees. As the algorithm progresses, more sample 
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nodes have been spread across the environment. This allows the trees to expand and the 

open branches of these trees are soon within each others range. The open branches are 

connected to create a connection between the different trees. These links create the 

backbone of the final forest.   

 

At the initial stages of building the MA-RRF planner, all possible linkages were 

considered. If two open branches within two different trees are within close range of each 

other, 
linkd  it is flagged as a possible connection. Then, testing is performed to determine 

if it is a collision free link. If an obstacle free linkage is possible, a new connection 

between trees is created and stored into the database. There are two issues that arise with 

this method of linking individual RRT trees.  

 

Figure 3.7(a) shows that the number of links increases exponentially to the 

number of tree branches that are created across a test space. From experimentation, it is 

found that the creation of too many links leads to the extraction of paths with high 

similarity. This is due to the large number of links that connect similar subsections 

between different trees. Thus, this leads to a final collection of highly identical paths. 

This shows that many of the links that were created are redundant. The second challenge 

that arises with this manner of linking trees is that it leads to longer processing time 

during path extraction. The large number of links creates a huge number of unique but 

similar paths. The algorithm will have to extract each path individually which increases 

the total run time of the MA-RRF planner. These paths will contain many similar 

subsections and be removed from the database during the final filtering process.        

 

Here, linkage is applied where dissimilar links between trees are encouraged. 

These dissimilar links connect different parts of the MA-RRF forest. This increases the 

possibility of obtaining a diverse collection of multi-agent paths. It also aims to reduce 

the processing time that is required during the extraction of unique path subsections. A 

cost function could be introduced in order to create strategically placed links but this 

would increase the complexity and processing time of the MA-RRF planner considerably.  

 

On the other hand, a simpler method is implemented as shown in Algorithm III. 

When a new branch is added to an agent’s tree, it is an open branch. The algorithm 

chooses one neighbouring agent’s tree at random. Then, the open branch attempts to 

create a link with the nearest collision free branch within the other agent’s tree. The 

simulation process in Figure 3.7(b), shows that this method simplistically reduces the 

number of links within the entire forest. It also requires each tree to attempt a connection 

with a different tree at every iteration. The links are stored within the shared database 

with variables such as the two endpoint nodes and the trees that they originate from.        
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ALGORITHM III Forest creation 

1: Merge trees generated by each agent into forest,   








 


1

ANn

n  

2: Randomly choose a neighbouring agent, ij   

3: for chosen tree, 
j  

4: Determine if the endpoint of current agent’s new open branch, 
sample is within the range, 

linkd of 

other agent’s tree branches. 

5: if open tree branches are within close range of each other  

6:          if connection is collision free, 
obssamplej    

7:                     Add link between trees, 
obsRRFl    into multi-agent shared database  

8:                    end 

9:            end 

10:  end 

11: Update forest,   

After testing for possible links between trees, the algorithm tests if the newly added 

sample node, 
sample is within close range, 

goald  of the goal nodes. As previously defined, 

each agent has its own destination node, )( fi t . The endpoint of a forest branch, 
goal   

that is close to an agent’s goal node can be a part of its own or any neighbouring agent’s 

tree. This process of finding more 
goal   is repeated at every iteration until the free space 

mapping process is completed. After the MA-RRF forest is full generated, the algorithm 

outputs a set of nodes that close in distance to the goal nodes of each agent.  

 

In the first case, both the tree branch, igoal     and the close-range goal node, 

)( fi t  are from the same agent, i . The extraction of the path from initial node to the 

goal node is performed through Algorithm IV with the identification of intermediate 

nodes. This process is similar to the basic RRT path extraction process. In the second 

case, the tree branch, ijgoal    originates from one agent whereas the goal node is for 

another agent, i . The complexity of extracting a unique path across multiple trees is 
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Fig. 3.7.  (a) MA-RRF’s tree branch and forest links (b) Links of all agents vs. one random agent’s tree branch.  
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higher. The previously stored linkages are paramount to successful extraction of a high 

number of unique paths. The various connections between the two trees can be obtained 

by extracting the forest linkages between those two trees. Each link connects a different 

set of nodes between the two trees. Thus, each unique link creates another unique 

collision free path. Each unique path is a mesh of three subsections. The first section 

holds the nodes from the agent’s initial point to the start of the tree-to-tree link. The 

second subsection contains the nodes within the tree-to-tree link. Lastly, the endpoint of 

the tree-to-tree link to the goal node is extracted to complete the path.  

 
ALGORITHM IV Path Extraction 

1:   for each agent, i  

2:  for each branch within 50m of the agent's goal node, goali  

3:       if branch near goal node is within agent's tree, igoali    

4:            Identify feasible paths intermediate nodes   obsii ttt   )()(  

5:      else branch near goal node is within another agent's tree, ijgoali   

6:      Extract possible linkages, RRFl  between trees  i   and 
j   within forest.  

7:             Identify feasible path’s intermediate nodes    
obsji ttt   )()(  

8:             end 

9:      end 

10: end 

 
 

The end user has the option of generating paths that are a mesh of all four trees by 

extracting all the possible links between all trees. This process will produce a larger 

number of unique paths but it will require a longer processing time. In this study, each 

path is a combination of two trees only. At this stage, each agent has tens of thousands of 

unique feasible paths. These paths will be applied as the GA’s initial population within 

the optimization process. This initial population must be filled with diverse paths. This 

work defines path diversity through the direction that the path takes across each 

environment. An initial path population that is diverse will produce a variety of new 

paths across each generation. Thus, the final stage of the MA-RRF process is the 

derivation of non-similar paths. 

 

 Algorithm V defines the MA-RRF’s path pruning process. The unique paths that 

have been extracted for an agent are compared to one another. This process aims to filter 

out paths that are too similar in direction. Firstly, the node-to-node distance, lkd ,  

between two paths is calculated. Then, if two nodes are within close range of each other, 

similard it is considered as a similar node. In this study, mdsimilar 10 . Each path is then 

assigned many similar nodes, sN . Next, the similarity ratio, S  for each path is 
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determined by comparing the number of similar nodes with its total nodes. If the number 

of similar nodes exceeds the similarity threshold, thresholdS it is labelled as non-unique 

and removed from the agent’s path database. Each path is compared to all the other paths 

to assure that there aren’t two highly similar paths within the agent’s initial path 

population. This filtration process lays the foundation for trajectory diversity within the 

next stages of the algorithm.  

 

ALGORITHM V Redundant Path Pruning 

1: for each agent, i   

2:  for each feasible path,  i   

3:        Initial number of similar nodes, 0sN  

4:               for each path node, 
ii   

5:        Determine distance, 
jid ,
 between current node i   and other path nodes,  ijj ,  .      

6:                     if    
similarji dd ,

 

7:                     Number of similar nodes in current path, 1 ss NN  

8:                     end 

9:               end 

10:               Calculate similarity ratio,  
totals NNS       

11:         if similarity ratio, 
thresholdSS   

12:               Remove path from database 

13:        end 

14:        end 

15: end 

 

3.2.3 MA-RRF INITIAL PATH POPULATION 

 

The MA-RRF path planner provides the end user with a large database of information. 

The output data from the planning and free space mapping process is easily viewable 

through high resolution imagery. The MA-RRF forest progression is shown across all 

three test environment. Figure 3.8, 3.10 and 3.12 show the trees that are created by four 

agents across each test environment. Here, each agent’s tree branch is defined by its 

different colours. The MA-RRF forest links are shown in black. These figures highlight 

the challenges that are present within these different test spaces. Similarly, the final path 

collection in Figure 3.9, 3.11 and 3.13 also show the end user the possible trajectories 

that each quadrotor will track during real life flights. It can be seen that the paths are well 

spread across the environments and are diverse in direction. 

 

The end user is also presented with knowledge regarding the number of unique 

collision free paths that were initially extracted. Table 3.2 shows the number of iterations 

and linkages that are present within each test environment. The number of iterations that 
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is required for each environment is dependent on the minimal number of paths that can be 

extracted after the path pruning process. The initial population for the next stage GA will 

require a collection of diverse paths in order to create the new generation paths. Here, the 

impact of using different similarity thresholds when filtering similar paths is shown as 

well. More than triple digit paths are expected for 80% similarity threshold whereas there 

are double digit paths with less than 65% similar nodes. Lastly, a minimum of single digit 

number of paths is expected when 50% similarity threshold is applied. The minimum 

number of paths allows the user to make an easy comparison between similarity 

percentages versus number of paths for all the test spaces. It helps the end user to 

determine the level of diversity that is required within the final path population. 

 

The first test space is the high-rise cityscape environment. There are three 

challenges that presented itself during the planning process. Firstly, the size of the 

boundaries around the buildings must create a balance between forest progression and the 

avoidance of building edges. The sharp edges must be safely avoided by all agents. 

Another issue with the cityscape environment is progression of the MA-RRF forest isn't 

as quick as the other environments. The surrounding safety zones will further restrict the 

progression of the individual trees since the roads between the buildings are already 

narrow.  Lastly, it can be difficult for the MA-RRF algorithm to attempt to merge two 

trees together within this test space. Each high-rise building is created to be equal in 

height. This means that the tree branches from different trees are constantly separated by 

a building. It can be tough to create tree-to-tree links unless the open branches are within 

the same narrow road.  

 

Figure 3.8 shows that MA-RRF forest progression across the tall buildings. As 

visible, the free space is fully explored by the tree branches from the ground to the roof of 

the buildings despite space constrictions. The MA-RRF forest and its individual trees are 

bounded to the spaces that are in between the buildings. There are no safety zone 

breaches. Thus, the branches are able to maintain a good distance from all building edges. 

The imagery also proves that the individual trees aren’t as well spread as the other test 

environments. Each agent’s tree is denser in areas that are close to its root node. There 

are many tree-to-tree linkages across the middle area of the cityscape environment. Table 

3.2 shows that the MA-RRF planner is run for 700 iterations within the cityscape test 

space. It requires more sample points per agent in comparison to the indoor environment 

and mountainous terrain. The high-rise cityscape environment requires 700 sample nodes 

per agent in order to generate the similar number of diverse paths. The algorithm is run 

for a longer period because it allows the individual tress to cross over to the other parts of 

the environment. This will encourage linking between all trees. The narrow passages that 

exist between buildings constrict the number of long range links within the MA-RRF 
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forest. Thus, the cityscape space has the lowest ratio of amount of links over iterations 

between all three environments.    

 

     Next, the path extraction and pruning process produces the final paths that create the 

initial GA path population. Table 3.2 shows that the cityscape environment has the lowest 

ratio of unique paths per iteration. This is due to the low number of links between the 

individual trees. It is also caused by the low number of forest branches that are close to 

the goal nodes of all agents. Another pattern that emerges from the data is the relationship 

between the maximum number of unique and diverse paths. Agent 3 has the highest 

number of near-to-goal nodes and unique paths. It also has the most number of non-

similar paths after the path pruning process. Figure 3.9 shows the paths designed by the 

MA-RRF algorithm for four agents within the high-rise cityscape environment. The paths 

with less than 65% similarity are applied within the multi-agent quadrotor trajectory 

optimization algorithm. Here, each colour defines one path. With all four agents, it can be 

seen that a diverse set of paths have been designed by the path planner. These paths are 

well spread by width and height of the free space narrow passages between the buildings. 

Some paths have nodes across lower ground level whereas others are placed are higher 

heights. The MA-RRF path planning algorithm has successfully designed paths that do 

not have any collision points with the surrounding buildings.    

 

The second test environment is the highly cluttered indoor space. Similar to the 

cityscape environment, this test space has its own set of challenges. Firstly, the MA-RRF 

forest must be capable of detecting the small number of entry points across the indoor 

space. These entrances are small in comparison to the size of the walls that hold them. 

The safety zones that are added around each entry way adds further complexity. A 

constant issue during early experimentation is the definition of safety zones around the 

smaller windows. A balance in boundary size must be struck between being too large or 

small in range. The small entry points become even smaller with the addition of large 

sized buffer regions. Thus, it can be highly challenging for the free space mapping 

algorithm to detect it. The forest branches cannot penetrate the large boundary and cross 

over to the next room. The application of smaller radius boundaries instead can cause the 

branches to collide with the sharp corners of the windows. Secondly, the varying sized 

clutter within each room must be adequately mapped by the MA-RRF forest. These 

obstacles vary in size and are floating in three dimensional spaces unlike the cityscape 

environment. The branches must progress over and under the many clutter cubes. Lastly, 

creating forest links that bridge trees in different rooms can be difficult. Only a few tree 

branches are able to make a connection between two nodes that are within different 

rooms. Similarly, it can be hard to create tree-to-tree links that bridge two rooms. The 

forest links must also be capable of making multi-tree connections within each room.
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TABLE 3.2. MA-RRF EXPERIMENTAL RESULTS. 

Environment 
Iterations 

(run time) 

No 

Forest 

Links 

(colour) 

No Agent 

(colour) 

Initial Position  

(m) 

Target Position  

(m) 

No 

Near 

Goal 

Nodes 

Unique 

Paths 

 Filtered 

Paths 

 Filtered 

Paths 

 

 

(run time) 

Filtered 

Paths 

CITYSCAPE 
700 

(0.084s) 

2443 

(black) 

1 

(green) 
[60,220,10] [230,100,190] 18 7578 

80% 

105 

65% 

22 

50% 

(1014.74s) 

4 

2 

(magenta) 
[220,200,5] [20,40,195] 11 2047 65 18 4 

3 

(blue) 
[200,10,10] [25,180,185] 29 7799 110 26 8 

4 

(red) 
[40,75,5] [200,230,195] 13 2489 44 10 5 

HIGHLY 

CLUTTERED 

INDOOR 

750 

(0.159s) 

5778 

(black) 

1 

(green) 
[80,105,80] [20,-5,20] 50 37399 

80% 

121 

65% 

18 

50% 

(325.79s) 

6 

2 

(magenta) 
[98,-5,50] [10,105,30] 85 65761 193 18 5 

3 

(blue) 
[10, -5, 90] [90,105,10] 51 43076 116 15 8 

4 

(red) 
[20,105,70] [90, -5, 10] 47 39281 174 34 6 

MOUNTAIN 

TERRAIN 

500 

(0.047s) 

5758 

(black) 

1 

(green) 
[9.74,9.85,36.74] [60.89,55.04,46.49] 79 58007 

80% 

735 

65% 

75 

50% 

(1692.14s) 

17 

2 

(magenta) 
[62.27,9.82,27.22] [6.15,55.19,47.50] 208 151052 1290 60 8 

3 

(blue) 
[4.75,55.05,44.63] [61.30,9.67,47.87] 678 494242 3693 135 15 

4 

(red) 
[59.78,62.46,47.84] [7.63,9.73,35.11] 762 528869 3328 88 12 

1S 2S 3S
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Fig. 3.8.  MA-RRF full space exploration across the cityscape environment.  

(g) Top view of agent 4’s paths.                                                (h) Side view of agent 4’s paths. 

Fig. 3.9.  MA-RRF diverse paths extracted across the cityscape environment. 

(a) Top view of agent 1’s paths.                                                (b)   Side view of agent 1’s paths. 

(c) Top view of agent 2’s paths.                                                (d)   Side view of agent 2’s paths. 

(e)  Top view of agent 3’s paths.                                                (f) Side view of agent 3’s paths. 
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Figure 3.10 shows the forest progression across the highly cluttered indoor space. Similar 

to the cityscape environment, each agent’s tree is shown in a different colour. The MA-

RRF forest links are shown in black. Initially, the size of the obstacles safety zone is 

estimated through multiple test simulations. This boundary size creates a balance between 

MA-RRF forest progression across each room and collision avoidance. It can be seen that 

the MA-RRF branches are capable of exploring different rooms through various entry 

points. The algorithm is capable of identifying all entry points despite the lack of 

windows and doors. This allows a few branches to transition between rooms and creates 

nodes across the entire environment. Thus, full free space exploration is successfully 

performed from ground to ceiling of the environment. Table 3.2 shows that the highly 

cluttered indoor space proves to be the most challenging environment. Here, 750 sample 

points per agent is necessary to extract a high number of diverse paths from the 

environment. This is because of the minimal number of entry points that are placed 

across each wall. On the other hand, a large amount of forest links is created due to the 

long run time as well as the availability of free space inside each room.  

 

The branches of the MA-RRF forest create the GA’s initial path population. Table 

3.2 shows that the number of filtered paths based on similarity is a very small percentage 

of the unique paths. This occurs despite the high number of unique paths that were 

extracted. The indoor space extracts almost ten times the number of unique paths in 

comparison to the cityscape test space. It also has a higher number of near-to-goal nodes. 

The reason for the lack of diverse paths is due to the constraints of the small number of 

entry points. This direction that paths can take is limited to just these windows and doors. 

Also, the large sized obstacles within a room force these paths to avoid it through similar 

translational and angular motions. Agent 2 has the most number of unique paths but it 

doesn’t have the highest number of diverse paths. This means that the paths that were 

designed for agent 2 are many but are similar in direction. The diverse collection of paths 

for all four quadrotor agents is shown in Figure 3.11. Based on prior experimentation, 

paths with less than 65% node similarity will progress to the optimization stage. This 

decision is made to encourage the recombination, mutation and maintenance of diverse 

paths during the initial generations. The four agents are able to progress across different 

entry points and reach every room. The path nodes for all agents are well spread. The 

most important criterion is the planner's ability to avoid any collisions. The paths of each 

agent flow over and under the clutter in order to avoid any possible collisions.      

 

The last test environment is the mountainous terrain. It has a larger amount of free 

space in comparison to both the other environments. Still it has many small sized peaks 

and some large peaks across the terrain. It can be difficult to set a constant start and goal 

node for the agents because the peaks are always in a different location within different 

simulations of the terrain. Therefore, the start and goal nodes for each agent is randomly 

generated across the four corners of the terrain. It is accepted as the initial and goal nodes  
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Fig. 3.10.  MA-RRF full space exploration across the indoor environment. 

   (g)    Top view of agent 4’s paths.                                                (h) Side view of agent 4’s paths. 

Fig. 3.11.  MA-RRF diverse paths extracted across the indoor environment. 

(a) Top view of agent 1’s paths.                                                (b)   Side view of agent 1’s paths. 

(c)    Top view of agent 2’s paths.                                                (d)   Side view of agent 2’s paths. 

(e)  Top view of agent 3’s paths.                                                (f) Side view of agent 3’s paths. 
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if it doesn’t collide with any mountain peaks. An example of these random nodes with 

decimal values are shown in Table 3.2. In this test space, the MA-RRF forest must be 

able to avoid all the various sized peaks. During many early simulations, the branches 

could avoid areas with larger ripples across peaks. However, the branches tend to collide 

with locations that contain smaller changes in height. These are areas where the path 

nodes would slightly graze the corners of these smaller peaks. This is because the safety 

boundaries are positioned through an approximation of terrain heights. It is based on the 

peak height at all four corners of each grid. This produces an angled diagonal top plane. 

In this case, the other ripples within the grid are not represented. An improvement was 

made by positioning the safety zone based on the maximum height of all minor peaks 

within a grid. Now, all minor peaks within each grid are accurately represented. This 

method reduces processing time and produces collision free paths. Thus, a full collision 

free forest is created by MA-RRF algorithm for the mountainous terrain. 

 

Figure 3.12 shows the progression of the forest across the mountainous terrain. The 

branch of each tree is defined with a different colour as with the other environments. The 

linkages between different trees are shown in black. As predicted, the MA-RRF forest 

easily progresses across the terrain. The imagery shows that the forest can explore 

between high peaks and lower depths within the mountainous terrain. Many paths tend to 

exist at higher heights which have larger amounts of free space if the local minima aren’t 

well explored. The MA-RRF forest is denser across the high peaks of the mountain. This 

is due to the large amount of free space that is present between the mountain peaks. On 

the other hand, it is sparse at areas that are closer to the ground level. The bases of the 

mountains have narrow passages between them. This constricts the progression of the 

tree branches across the lower parts of the terrain. Still, the planner has been able to 

successfully map the free space across the entire terrain. Table 3.2 shows that the 

mountainous terrain easily extracts the minimum number of paths. These paths are 

designed within 500 sample points per agent. This test space requires the lowest sampling 

rate between all environments. It also manages to create the highest number of forest 

links. This is because it is the least constrained environment amongst all the test spaces.    

 

Next, the unique paths for the team of four quadrotors are extracted from the MA-

RRF forest. The average numbers paths per agent post the exploration and filtration 

process is the highest. This is because the mountainous terrain has the most number of 

near-to-goal nodes as well. Many forest branches have been able to reach the large 

amount of free space around each goal node. Still, the number of unique paths for each 

agent differs greatly unlike the other environments. Some goal nodes are more easily 

reachable than the others due to the variation in height. It also depends on the number of 

peaks that surround the goal node. Here, the paths with less than 50% similarity are  
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Fig. 3.12.  MA-RRF full space exploration across the mountainous terrain. 

(g)      Top view of agent 4’s paths.                                                  (h)    Side view of agent 4’s paths. 

Fig. 3.13.  MA-RRF diverse paths extracted across the mountainous terrain. 

(a) Top view of agent 1’s paths.                                                (b)   Side view of agent 1’s paths. 

(c) Top view of agent 2’s paths.                                                (d)   Side view of agent 2’s paths. 

(e) Top view of agent 3’s paths.                                                (f)    Side view of agent 3’s paths. 
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maintained within the initial population. The various paths for each quadrotor are shown 

in Figure 3.13. The planner has designed collision free paths with waypoints within an 

environment with different levels of elevations. It is shown that the paths for all four 

agents have nodes at various heights. It can be seen that neither the mountain peaks nor 

local minima are neglected. The diversity in terms of grid exploration is less than the 

prior two environments. There is a decrease in paths that progress across the valleys 

between high peaks that are close in distance. Thus, a higher percentage is applied for the 

path filtration process.  

 

These diverse and collision free paths will be applied as the building blocks for 

the next stages. It will be possible to maintain a good spread of solutions with various 

trade-offs across many generations if the initial MA-RRF paths are truly diverse. As 

previously defined, these paths will be hybridized by GA to form the initial population 

for the many-objectives optimization process.  

 

3.3. GENETIC ALGORITHM  

 

Evolutionary algorithms (EA) are inspired by the concept of 'survival of the fittest' within 

a population. This concept is derived from the parent-child genetic relationship that exists 

within the human population, wildlife and nature. Two parents that contain certain 

genetic characteristics will often produce an offspring. This new offspring will have a 

mix of both the parent’s genetic material. These genes are made from a combination of 

dominant and recessive characteristics. Thus, the offspring will appear to have the traits 

of the dominant gene. In many cases, the offspring of two parents aren’t exactly similar 

to their ancestors. This is because external factors such as nutrition or environmental 

changes can cause a mutation in the genetic makeup of an individual. The genetic 

materials and their variations describe process of evolution. The variation that exists 

within a new generation allows it to survive for a longer time than its ancestors. The same 

variations can also cause it to live a shorter lifespan. The process of evolution slowly 

removes genetic material that can be harmful and maintains characteristics that promote a 

longer lifespan. Humans often pick partners that appear to be healthy. Thus, each new 

generation contains children with good health as well. 

The population of any species continues to promote the creation of healthy 

individuals. In this case, the objective of evolution is to preserve a species and avoid 

extinction. The cost functions that describe the lifespan of an individual can be defined 

through their ancestors, diet, lifestyle and environment. Individuals with the best cost 

function values are maintained within its species. These concepts can be applied within 

an optimization problem. Most optimization problems require an algorithm that can 

quickly find the best solutions within a search space. It needs an algorithm that can 

effectively detect the minimum point within complex cost surfaces. It must also be 
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capable of converging towards search areas that contain solutions with good 

characteristics. This creates a final population that is filled with good solutions. Then, the 

end user will have the option of picking the best solution for their optimization problem.  

 

The most commonly utilized EA is genetic algorithm (GA). The basic process of 

GA is shown in Figure 3.14. GA is ideal for the generation of well minimized and diverse 

trajectories for multi-agent quadrotors. This is due to its large population size per 

iteration. It allows the end user to generate a large collection of paths for multiple agents 

simultaneously. It is also suitable for solving many-objectives problems. The selection 

process within GA can be assisted by the many-objectives optimization methods. Here, 

the ranking of solutions at each generation can be performed by a many-objectives 

optimization (MOO) algorithm. These trajectories will be ranked by MOO based on the 

objective values of the many objectives functions that are considered within GA. The 

MOO algorithm promotes the maintenance of trajectories that are well minimized and 

diverse across generations. The application of elitism within the selection process will 

also allow the end user to keep well minimized trajectories across generations. These 

trajectories will remain untouched throughout the optimization process. GA is suitable for 

a multi-agent system because it is able to run on parallel computers. In this case, it can be 

further sped up because GAs can be broken down to as many parallel computations of the 

solutions per generation simultaneously. The level of parallelism is only dependent on 

computing power thus easily expandable to fit swarms of agents.  

 

  
                                                      

 

The understanding of biological reproduction mechanisms is necessary for the application 

of GA. The various steps within the GA are natural selection, mutation and genetic 

recombination. The parent selection process can be implemented through top to bottom 

pairing, tournament selection and random pairing. The most simplistic method would be 

the top to bottom pairing of solutions. Here, selection starts at the top of the population 
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Fig. 3.14.  Genetic algorithm evolutionary cycle. 
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pairing odd and even rows together. Another highly utilized selection method is 

randomized pairing. This process requires no sorting and requires minimal processing 

time. There are two types of this pairing which are the unweighted and weighted version. 

A popular weighted random parent pairing is the roulette wheel weighting. Tournament 

selection is equally as popular where random members of the population are chosen to 

compete through comparisons with one another. This study applies a 50% selection rate 

as shown in Table 3.3. Thus, half of the previous population is maintained within the next 

generation’s parent population. Figure 3.15 shows how GA is applied within this 

research. It can be seen that the simplistic unweighted random pairing is used for the 

parent selection process.   

 

After the selection of two parents, two new child solutions are created from them. 

The next generation is built through the GA’s crossover and mutation process. The 

crossover process picks apart the parents into subsections and merges these subsections to 

create new offspring. Many variations of the crossover operator exist such as the single-

point crossover, partially matched crossover (PMX), order crossover (OX) and cycle 

crossover (CX). Flowchart 3.15 shows that the single-point crossover is utilized in this 

study. Next, the mutation operator introduces an element of randomness within the 

offspring. This process diversifies the new solutions from their parents. It also allows the 

algorithm to explore new search areas. There can be negative consequences if the 

mutation probability is too high. Large changes within an offspring can destroy a good 

solution. Thus, it is important that the algorithm creates minor changes within an 

offspring. There are many variations of the mutation operator. Popular versions are the 

external, internal, and omission mutation operator. It can be seen in Flowchart 3.15 that 

this work applies all three versions.  

 

The new offspring are often filtered based on their feasibility and level of 

similarities. Many works remove redundant information from their solution population. 

Redundant data can be introduced within an offspring during the crossover and mutation 

process. The removal of unnecessary information allows the algorithm to run more 

efficiently. Similarly, feasibility check is often performed to determine if the child 

solution will be a viable candidate for the next generation. This process is highly 

dependent on the application of the GA. Another important post processing option is to 

maintain a child population that is dissimilar from the parent population. Here, the 

percentage of uniqueness of the new offspring can be tested. As shown in Figure 3.15, 

both of these post processing options are utilized within this multi-agent trajectory 

generation and optimization algorithm. Lastly, the final population of parent and child 

solutions is created. This population will be carried forward to the next generation’s 

selection process. The algorithm is run continuously until a termination point is met.     
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3.3.1.  PATH PLANNING WITH GENETIC ALGORITHM 

  
The initial population for GA is comprised of the paths that were created by the MA-RRF 

sampling based planner. There are many studies that choose to apply GA as a standalone 

algorithm for path planning. The algorithm is suitable for applications that have a small 

number of agents or a narrow search area. This research performs path planning for many 

agents within highly complex three-dimensional environments. GA will require a long 

running time to fully search the entire test space. In this research, the search space is 

initially mapped by MA-RRF. It quickly identifies the obstacle free regions and generates 

feasible path nodes for all agents. This process reduces the amount of free space that 

needs to be searched by GA. It also allows GA to execute more refined multi-agent path 

planning. Here, GA is not beginning with an arbitrary set of path nodes. The initial MA-

RRF path nodes will serve as an indicator as to the distance and possible directions to 

move towards. This research aims to use GA to create and move the initial path nodes 

towards more optimal areas within the search space. The application of GA towards 

trajectory generation as is shown in Figure 3.14 requires additional modifications such as 

the addition of a path repair mechanism. These changes are defined within the flowchart 

in Figure 3.15. The variables that are applied along with the GA path planner are 

presented in Table 3.3.     

 

Any application GA requires a set of input variables. These input variables will be 

manipulated in order to create a desired output. In this work, the input variables are the 

initial MA-RRF paths that are obstacle free and diverse in direction. Then, the offspring 

paths that are designed by the GA will be applied as the input for future generations. The 

optimization algorithm will test to see if the current input creates the desired output. 

Here, the output is defined as the values of the many objectives that are used within the 

MA-Spread and MA-Formation application. The value of each objective function will be 

estimated by a multi-agent quadrotor control system. Lastly, the multi-agent trajectories 

will be ranked based on their predicted objective values. GA requires the assistance of a 

many-objectives optimization algorithm in order to complete the path selection process. 

MOO will be used to define the level of diversity and optimality of each path. Thus, GA 

will be able to identify paths that are worth maintaining within the next generation’s 

population. Trajectories that are highly ranked by the MOO algorithm will be used as the 

parent paths for the new offspring. 

 

3.3.2. PATH POPULATION & NATURAL SELECTION 

 

The selection process for parent population is based on this study’s dual application. This 

work aims to optimize the trajectories of    quadrotors for spread and formation 

flights. For MA-Spread, the best path combination, )(tC  for all agents defines the paths  
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START: Genetic Algorithm 

Input: Feasible path nodes, 
pruned ; Environment obstacle database, 

obs ; 

Population size,
popN ; Probability of crossover,

c ; Probability of 

mutation, m  ; Selection rate, 
s ;  

Reproduction of 'Parent' Chromosomes:       

Surviving chromosomes, 
popskeep NN    ; 

Population: Perform selection by discarding suboptimal paths, 
keeppopdiscarded NNN   ;                       

Store New Population:   ):1( keeppopnewgen NNN                                          

                                                                             

 

 

 

 

Genetic Algorithm Operators:       

while  
popnewgen NN                            

Selection: Apply random permutation to select two ‘parents’, 
21, pp  ; 

Crossover: Random single point crossover between two parents is performed; 

Mutation: Random internal, external or omission mutation is performed on new child paths.  

 

 

 

 

 

 

 

Detection and Removal of Path Loops:       

Offspring, 
21, cc   is tested for looping,  

Detect original, 
loopbegin    and repeated nodes, 

loopend  ; 

Unnecessary nodes within loops are removed,

):(),:( 21 loopendloopbegincloopendloopbeginc                                                  ; 

 

 

 

Path Feasibility Check : 

Run repair process for nodes within obstacles,

):(),:( 21 collisionendcollisionbeginccollisionendcollisionbeginc   ; 

Retest feasibility, if unfeasible, delete offspring; 

 

 

 

 

Store next iteration population: 
newgenN  
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Run Dimensionality 

Reduced 

Many Objectives 
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Fig. 3.15.  Genetic Algorithm Flow Chart. 
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that are maintained for each agent. The team of quadrotor’s collective objective values 

will be used as the selection criterion for the parent population. During each selection 

process, the best path combinations are maintained within the next generation’s 

population. The trajectories, 
Ai it  ,.....1),(  for all agents are stored within the 

database based on its path combination. There will be repetitions of individual agent 

trajectories within different combinations. Thus, the number of unique trajectories per 

agent varies depending on the survival of the combination that holds it.  

 

The second application is MA-Formation where the population contains the best 

formation reference trajectories, )(tformation . This reference path is needed to define the 

formation structure of the entire team of quadrotors. These formation shapes will define 

the trajectories of each individual agent. The objective functions in the MA-Formation 

mission are dependent on the formation shapes and flight paths of each agent. Here, the 

formation reference trajectories that produce minimal objective values are maintained 

within the next generation. In comparison to MA-Spread, all of the formation reference 

trajectories within a population are unique. The GA that is applied within this research is 

standardized to both applications. The only variable that requires changing is the number 

of agents. This study applies a 50% selection rate as shown in Table 3.3.       

 

 
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
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
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)()()()( 21 

                            (3.1) 

where t = path nodes. 

 

     TABLE 3.3. GENETIC ALGORITHM CONSTANT PARAMETERS 

Parameter Description Value Parameter Description Value 

Npop Population Size 30 µinternal Internal Mutation Percentage 0.33 

µs Selection Rate 0.50 µomission Omission Mutation Percentage 0.33 

µexternal External Mutation Percentage 0.33 Nc Number of crossover points per path 1 

rexternal External Mutation Radius 50 m Nm Number of mutation nodes per path 1 

 

3.3.3. PARENT SELECTION 

 

The two parent paths are picked from the pool of trajectories of each agent. The first 

constraint for next generation trajectory is that both chosen parent trajectories, )(1 tp , 

)(2 tp  must be from the same agent’s database. These paths must hold identical initial 

and goal nodes as visible in Figure 3.16. This facilitates in the construction of new paths 

that are tailored to the start and final nodes that were initially defined for each agent.   

 

)()( 0201 tt pp                                                                          (3.2)     

 )()( 21 fpfp tt                                                                         (3.3) 
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The path diversity amongst the parent population is maintained through a filtration 

process. This is based on user defined thresholds. Prior experimentation shows that the 

parent population will continue to converge towards similar directions without additional 

diversity management. This is especially true for multi-agent flights within extremely 

constricted spaces. In this study, the initial population prioritises higher levels of diversity 

whereas later populations have a less strict diversity threshold. As previously discussed, a 

similarity filter is applied with the trajectories created by the MA-RRF stage where the 

threshold is set to less than 65% between nodes of two trajectories. Thus, this facilitates a 

diverse initial parent population. As the algorithm proceeds, the filtration process is less 

strict where the threshold is set to no more than 75% similarity. This method maintains 

well minimized solutions within the parent population despite having lower levels of 

uniqueness. The random selection of parents will always pair two diverse parents since 

the population maintains a minimum diversity measurement through generations.  
 

3.3.4. PATH CROSSOVER OPERATOR 

 

The creation of the next generation offspring is dependent upon the mating process of 

both parents. The child paths are generated by the crossover and mutation operators. 

Based on previous experimentation, single point crossovers have a higher chance of 

producing feasible paths. It is also noncomplex. Alternative methods of crossover can 

increase repetitive path looping within trajectories and require longer periods for path 

repair. Table 3.3 shows that the number of crossover points for a two parent paths is one 

node per path. This leads to a single point crossover for both the parent paths.    

 

Single point crossover for path planning can be executed in two ways. Both 

options are performed considering all nodes within the parent paths except for the initial 

and goal node. The first method requires the algorithm to identify a common node 

between both parent paths. Chances of finding a common node are high because the paths 

are progressing towards the same destination node. The common node is used as the 

crossover point for both parent paths. The advantage of using a common node is it creates 

Fig. 3.16.  Genetic Algorithm Selected Parents. 
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feasible child paths. Through simulation, it has been identified that this method also has 

the disadvantage of creating less diverse child paths. The second method randomly 

selects a node within each parent path. These nodes will be set as the crossover points for 

each parent. This method produces the opposite effect. It produces highly diverse paths 

that contain a small number of obstacle collision points. This research chooses to apply 

the second option because path diversity is extremely important for the optimization 

process. Randomised selection of crossover points within the selected parent paths, 
1ct , 

2ct  is performed as shown in Figure 3.17. This process produces offspring paths, )(1 tc  , 

)(2 tc  ,   

 

 

 

 

 

 

                                                

)],...,(,),...,([)( 1221011 fcpcpc ttttt                                                (3.4)  

)],...,(,),...,([)( 1112022 fcpcpc ttttt                                                 (3.5) 

        

As shown in Figure 3.18, single point crossover is performed upon the two selected 

parent paths. This process results in two offspring that are a mesh of both paths. This 

method creates offspring that are diverse and have minimal number of collide points. 

 

 

 

 

 

 
 

                 
 

3.3.5. PATH MUTATION OPERATORS 

 

The mutation operator is applied towards both offspring after the completion of the 

crossover process. Applying the mutation operators can be a constructive or destructive 

force for the newly generated offspring. High levels of mutation may create diverse but 

Fig. 3.18.  Genetic Algorithm Parent Paths Crossover within Cityscape Environment. 

 

Fig. 3.17.  Single point crossover with selected parents. 
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unfeasible paths. Table 3.3 shows that the number of mutation nodes for two new child 

paths is one node per path. Thus, mutation is performed on a single node per path only. 

This causes higher probability of mutation for shorter paths. This means that the mutation 

process has a larger impact on the new offspring. On the other hand, longer paths have a 

lower probability of mutation.  
 

The three chosen methods of performing single point path mutation are internal 

node, external coordinate and node omission mutation. Table 3.3 shows the probability 

that each mutation is applied. In this study, each mutation method is given an equal 

opportunity to run because they each have their own benefits. Thus, all three mutation 

methods are run in series and repeated again in a loop. Each mutation operator is applied 

at a rate of 1/3 for each generation. The first method that is applied is the internal node 

mutation as shown in Figure 3.19. Here, two random nodes, 
1mt , 

2mt   are extracted from 

both offspring and exchanged in placements. In this case, the replacement nodes are 

obtained internally from both offspring paths.  

 

 

 

 

 

)],...,(,)(,),...,([)( 1112211011 fmcmcmcc tttttt                                       (3.6)  

)],...,(,)(,),...,([)( 1221112022 fmcmcmcc tttttt                                       (3.7)  

s.t. 
0ttm  , 

fm tt   

 

With the second method, a random node from offspring is selected and removed from the 

offspring as shown in Figure 3.20. An externally sourced node from the three-

dimensional environment is set in its place. These external nodes, 
1et , 

2et  must be within 

the user defined search radius range, externalr  and obstacle free space to be considered as an 

option. Table 3.3 shows that in this study, a search radius of only 50 meters is used for 

finding the external mutation node. This means that GA doesn’t explore the full 

environment unlike MA-RRF. This Is because GA is meant to be a more refined planning 

algorithm that improves the initial MA-RRF paths. The initial MA-RRF path planning 

process has already fully explored the search area.  

 

Both methods of internal and external mutation are complementary to the 

algorithm. Internal mutation maintains optimal nodes from both parents. External 

mutation is implemented here due to its ability to produce offspring that can differ from 

their parent paths. This is because the new mutation node will continue to promote free 

space exploration and diversity as the generations’ progress.   

Fig. 3.19.  Genetic Algorithm internal node mutation with selected parents. 
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s.t.    
externalmeexternalm rtxtxrtx  )()()( 111

,  
externalmeexternalm rtxtxrtx  )()()( 222

                                                                

         
externalmeexternalm rtytyrty  )()()( 111

, 
externalmeexternalm rtytyrty  )()()( 222

  

         
externalmeexternalm rtztzrtz  )()()( 111

,  
externalmeexternalm rtztzrtz  )()()( 222

      

 

Lastly, the omission mutation is based on the deletion of a random node within both paths 

is shown in Figure 3.21.  

 

 

 

 

     

                            

)],...,(,),...,([)( 11111011 fmcmcc ttttt                                              (3.10) 

)],...,(,),...,([)( 12212022 fmcmcc ttttt                                              (3.11)  

s.t.   
0ttm   , 

fm tt   

The removal of a node from the offspring path encourages connections between nodes 

that were not initially immediately connected. Offspring paths that have lesser nodes will 

have larger distances between nodes thus the removal of a node creates significant 

impact. On the other hand, paths that have a larger number of nodes with smaller 

distances between them will experience fewer changes in direction. The omission 

mutation can also create unfeasible subsections within offspring. These subsections will 

require repair and encourage diversity between parents and offspring.                 

 

As shown in Figure 3.22, the offspring that are created after undergoing crossover 

and mutation are not collision free. These newly generated paths can contain path loops 

as well. Some node-to-node subsections within the child path may contain extreme bends 

that require the quadrotors to perform aggressive manoeuvrings. Thus, it is crucial that 

the resultant offspring paths undergo post processing. The algorithm attempts to repair 

the path subsections that contain collision points. This research reapplies the previously 

defined sampling based MA-RRF planner for path repair. It performs path repair by 

Fig. 3.21.  Genetic Algorithm omission node mutation with selected parents. 

 

Fig. 3.20.  Genetic Algorithm external node mutation with selected parents. 
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bridging nodes that have any obstacles between them. This repair process allows the path 

population to maintain diverse offspring within its population.  

 

 

 

 

 

 

                    

             
 

3.3.6. PATH REPAIR & PRUNING 

 

The child paths that were created by the GA’s crossover and mutation operators can be 

filled with sections that collide with obstacles. There are a few methods that can be used 

to make these paths collision free. Through initial experimentation, the deletions of these 

unfeasible child paths prove to be extremely time consuming. This is due to the fact that 

collision free children are tough to produce organically. This is especially true within an 

environment with a high number of obstacles. This causes the GA to run for long periods 

in a bid to find feasible offspring paths. The second tried method is the removal of just 

the collision points within a child path. This is performed post the crossover and mutation 

stage. In most cases, it is the newly created collision filled waypoints that define the 

uniqueness of a child path. It is these waypoints that allow the offspring to be different 

from their parents’ population. Thus, deleting these waypoints from the child path 

reduces its diversity. The diversity filter will test the waypoint differences between parent 

and child paths. The chances of the child path progressing to the next generation are 

greatly reduced when a diversity check is performed.      

 

The last method requires a path repair algorithm. Many studies have performed 

path repair on unfeasible subsections within their designed paths. The MA-RRF planner 

is able to generate a feasible solution within seconds. This makes it the optimum 

algorithm for redesigning any path subsections that contain collision points. The MA-

RRF algorithm is applied to reroute the path and successfully transform the child path to 

a collision free trajectory. Further experimentation shows that MA-RRF planner is the 

quickest and best method for producing and maintaining diverse paths within the 

Fig. 3.22.  Genetic Algorithm Child Paths External Mutation within Cityscape Environment. 
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population. The MA-RRF path repair algorithm is run after the crossover and mutation 

process. Firstly, the root of the first tree is placed at the initial collision point. Next, the 

goal node is situated at the end of the collision point within the child path. Lastly, 

additional tree root points are spread across the corners of the environment. The MA-

RRF algorithm is run for a set number of iterations. In this study, the repair algorithm is 

run for no more than 100 iterations. This allows the MA-RRF forest to quickly spread 

across the environment and search for alternate routes.  

 

After the mapping process is complete, the algorithm tests if there are any forest 

branches that are close to the goal node. The path repair process is terminated once this 

branch is identified. In most cases, an alternative route is easily available. A new feasible 

path that bridges the collision points is extracted within seconds. The algorithm removes 

any nodes that are redundant. The offspring is then tested for its level of diversity and 

added into the population. In some cases, the path repair process terminates at 100 

iterations. This happens before the planner is able to extract an alternative route. This 

means that bridging the collision points is too complex and requires a longer run time. In 

this case, the offspring is marked as unfeasible and removed from the population.  

 

Figure 3.23 shows that only one offspring survives the path repair and pruning 

process. This method can be challenging to implement within highly complex 

environments with many obstacles. It can mean that no child paths are extracted if the 

repair process takes more than 100 iterations. In these cases, the termination point can be 

increased to a higher value to allow the MA-RRF trees to explore the environment 

further. In this study, the MA-RRF repair process has proven to be effective because it 

can repair enough paths to fill its population at each generation. This allows the algorithm 

for all variations of test spaces to continue to run for many generations. It also provides 

the same advantages over other algorithms as it did for the initial path planning process. 

This sampling based planner searches the entire test space randomly which speeds up the 

exploration process. Thus, quickly extracting feasible path nodes.        

 

Next, this study applies a fully decentralized control system for multi-agent 

quadrotors. The trajectories that are designed by GA will be used as the input for the 

parallel run multi-agent control system. This system is a combination of the control 

system and mathematical model of each agent. This system will allow the end user to 

predict the motion and the derivatives of each quadrotor. 
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3.4.   MULTI-AGENT QUADROTOR CLOSED-LOOP CONTROL SYSTEM 

 

In this research, a noncomplex nested control system is applied. This control system 

executes the simulated model for all agents in parallel on a multi-thread processing 

system. Thus, it reduces the collective simulation time for all agents simultaneously. 

Firstly, the paths that were generated for each agent by the GA path planner are converted 

into time based trajectories. This is achieved by implementing minimal jerk smooth 

splines. Then, the nodes within these smooth trajectories will be applied as the desired 

coordinates within each agent’s control system. In this section, the structure of the 

individual quadrotor’s control system is illustrated and simulated. The movement of each 

quadrotor will be estimated by its mathematical model and control system. This multi-

layered control system is shown to adequately define the kinematics and dynamics of the 

quadrotor UAV.   

 

3.4.1    MULTI-AGENT SMOOTH TRAJECTORY GENERATION 

 

The paths that are generated by the GA process are not continuous and can contain 

extreme bends. These paths are transformed into minimal jerk trajectories by converting 

the paths into smooth splines as shown in Figure 3.24. Smooth splines are ideal for 

trajectory planning because it minimizes the effects of sudden changes across the 

trajectory. Path subsections can also be redesigned without having to replan the entire 

path. The end user has flexibility when creating splines of different orders. In many 

works, smooth splines are used to minimize the third derivative of the quadrotor’s 

displacement. This produces minimal jerk trajectories. Similarly, the designer can 

generate UAV trajectories with minimal snap, crackle or pop by changing the highest 

degree of the spline equation.   

 

Fig. 3.23.  Genetic Algorithm Repaired Child Path within Cityscape Environment. 
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This research focuses on long distance planning across large test environments. Each 

path contains multiple waypoints. Designing continuous trajectories that have many 

waypoints can be challenging. As shown in Figure 3.25, a breakpoint is where two curve 

segments meet. The continuity of a curve at a breakpoint describes if the quadrotors 

transition between a breakpoint with the same velocity or acceleration. Curves that lack 

in continuity can cause agent-to-agent collisions as well as an increase in path deviation 

due to aggressive movements. The transition between two waypoints can cause the agent 

to perform sudden movements. Thus, it is important that the agents move between the 

waypoints with minimal jerk and continuity.  

 

 

                                                                     Singular Spline 

 

 

                                                                        Piecewise Spline 

 

 

 

 

Here, fifth order splines are designed to minimize sudden jerks within each trajectory. 

Nonuniform splines are implemented so that the start and goal nodes of each path are 

preserved. These splines are constricted to adhere to continuity laws in order to generate 

smooth and accurate trajectories. The waypoints of each path are applied as the control 

points for the smooth splines. The number of control points is based on the number of 

nodes within the path. These control points are used as a guide when generating a smooth 

spline. Similarly, splines of fifth order will reduce overshoots within the quadrotor’s 

control system. This will ensure continuity for the roll and pitch angles’ second order 

derivatives. The smooth spine trajectory, )(t   is obtained through, 

Fig. 3.25.  Singular Spline, Piecewise Spline. 

Fig. 3.24.  Smooth splines for four agents across high rise cityscape environment. 

breakpoint 
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where  1m  corresponds to the number of control points 

  
qx  are coordinates of the control points   

               1d  the degree of the curve 

                 t     is the knot vector 

 
dqB ,

 is the basis functions of the curve  

 

The basis functions are determined recursively. The value of the basis functions are based 

on the previously determined knot values. Initially, the basis function for the first degree 

is calculated by, 
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Next, the basis function for degrees that are larger than one is produced by the equation 

below, 
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These splines are highly adaptable based on the requirements of the end user. In this 

study, control points that are redundant to the spline formation are removed. Redundant 

point are nodes that do not contribute to a change in the direction of a quadrotor. This 

reduces the processing time of the multi-agent control system. One disadvantage of this 

process is it can create large distances between each waypoint. The closeness of a spline 

to its control points is often determined by the space between two waypoints. The further 

away the control points are, the further away the spline curve is from its boundaries. It is 

important to strike a balance between the waypoint-to-waypoint distances. Redundant 

nodes shouldn’t be maintained but the waypoints must not be too far from each other 

especially around sharp corners.  
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Thus, some sections of the path are padded with more control points. In most 

paths, there are portions that require the quadrotors to perform aggressive turns. The 

aggressiveness of a node-to-node curvature is reduced by the addition of control points. 

This is performed by increasing the number of control points across sections that contain 

bends that are smaller than 90 degrees. The purpose of this adaptability is to reduce the 

possibility of safety zone breaches. This often occurs around the corners of obstacles as 

displayed in Fig.3.26(a). All the three of test environments in this study have many 

obstacles. The smooth splines must be able to avoid all obstacles. Firstly, the algorithm 

detects extreme curvatures within the paths that are designed by GA. Then, additional 

nodes are placed strategically around these bends as shown in Fig.3.26(b). This creates 

splines that follow the contour of the control points at turns.  

 

  

 

The waypoints of the smooth trajectories are applied as the desired coordinates for the 

multi-agent control system. The closed-loop control system generates the estimated 

positional and rotational derivatives for each agent. This process shows the feasibility of 

the designed paths. The path planner must be able to produce paths that each quadrotor 

UAV is capable of tracking during flight. Paths that produce a large deviation error will 

face a higher chance of being removed from its population. This error will be determined 

in the next section through the difference in node-to-node distance between the predicted 

and planned path. 

 

3.4.2 QUADROTOR MATHEMATICAL MODEL 

 

The mathematical model that is shown below will be used to define the motion of a 

quadrotor UAV. This model will be used with a simple PD control system. This 

combination simulates a fast yet minimal error UAV controller. The nonlinear dynamic 

model in Figure 3.27 is derived under the following assumptions:  

 

 

 

  

Fig. 3.26.(a)  Non-adaptive smooth trajectory (b)  Adaptive smooth trajectory. 
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a) The structure is rigid. 

b) The structure is symmetrical about the centre of mass. 

c) The centre of mass and the body fixed frame origin are assumed to coincide at the 

centre of the quadrotor’s frame. 

d) The propellers are rigid.  

e) The thrust and drag are proportional to the square of the propeller speed. 

 

The velocity vector, V  consists of the quadrotor’s linear velocity, Bv  and its angular 

velocity, 
B . The velocity values are obtained from the quadrotor’s body frame, 

 

][][ rqpwvuvV BB                                         (3.15) 

 

Here, we employ Newton’s second law of motion. It provides the equations for the net 

force, netF  and moment, netM  of the quadrotor’s body frame: 

 

  ][][ BBBnet mvmv
dt

d
F                                     (3.16) 

][][ BBBnet II
dt

d
M                                      (3.17) 

 

where      I   represents the 3x3 identity matrix  

               m    equals the mass of the UAV.  

 

The inertial moments for the three-dimensional axes are defined as, 
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where  ZZYYXX III ,, = inertial moments. 

Fig. 3.27.  Main structure of the Quadrotor. 
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The quadrotor creates angular motion about three axes, ][ zyx  which are called the 

Euler angles, ][   . These angles are called the roll, pitch and yaw angles. The 

angular velocity of the quadrotor is determined by,  
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Whereas, it’s translational motion is produced across the three positional axes,   zyx  . 

The translational velocity of the UAV is represented by,     
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The vector for linear accelerations that act on the vehicle’s body frame, }{B   are 

transformed to inertial frame,  }{E   through consecutive rotation matrices,  
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The system's equation (3.16) and (3.17) are then expanded to, 
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The expansion of these equations can be viewed in detail within [140]. 

By expanding equation (3.20), the kinematic equations that define the translational flight 

of the structure are,  
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The dynamic equations that portray the rotational movements of the quadrotor’s structure 

are obtained from equation (3.19). As shown below, 

 

r
c

c
q

c

s

rsqc

rtcqtsp







)()(

,)()(

,)()(




















                                          (3.26)      

 

The translational and rotational motion of the quadrotor is controlled by its four motors. 

The force and moments that act on the quadrotor are defined by equations (3.27) - (3.30). 

The quadrotor hovers when the speeds of all the rotors equal. Similarly, translational 

motion is created by increasing or decreasing the speed of the propellers. The total thrust 

that is generated by all four propellers is, 

)( 4321 TTTTkF bZ 
                      

(3.27)      

Rotational motion is performed by changing the speed of just a pair of propellers. The 

rolling moment that is created around the x-axis is defined as,  

)( 24 TTlkM bx 
                     

(3.28)      

The pitching moment is defined as the angular movement around the y-axis, 

)( 13 TTlkM by 
                                 

(3.29)      

Lastly, the yawing moment is executed around the z-axis, 

)( 3142 TTTTkM dz                                                                                               (3.30) 

where     l     is the distance from the centre of gravity to the centre of the propeller  

               
bk    is derived from aerodynamic contributions and         

               
dk    considers air drag. 

               iT    Individual motor’s thrust  
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Next, this open loop model is expanded to form the closed-loop control system. A robust 

PD controller is designed for the individual quadrotor. Here, the performance of the 

control system with both the full and simplified mathematical model is evaluated. The 

movements of the multi-agent quadrotors are analysed by obtaining these variables.   

 

3.4.3    CLOSED-LOOP CONTROL SYSTEM DESIGN 

 

Research on the quadrotor’s control system have increased significantly in the last 

decade. The significance of this particular research as opposed to the others is its focus on 

multi-agent quadrotors. The basic singular quadrotor has a relatively simple structure and 

control system.  Optimizing a multi-agent system can be much more complex. Whilst 

most multi-agent controllers perform satisfactorily, many are unable to cope with real life 

flights. This work also tests the planning and control of the quadrotor UAV within 

different environments and constraints. The designed control system must strike a 

balance between error minimization and speed of processing.  

 

Here, a noncomplex nested control system is applied. This control system 

executes parallel simulation for all agents simultaneously on a multi-thread processing 

system. As displayed in Figure 3.28, the control system consists of three layers,  

 

1) Outer controller: x translational controller and y translational controller 

2) Inner controller:  z translational controller, yaw rotational controller, roll rotational 

controller and pitch rotational controller 

3) Agent’s system: quadrotor’s mathematical model 

 

The smooth splines of fifth order, )(s  are used as the input for the multi-agent control 

system. The output of the closed-loop estimator is the predicted flight paths for AN  

agents. The predicted motion defines the dynamics of each agent’s flight trajectory as 

segments between the initial, )( initt  and goal, )( goalt  nodes. The predicted flight path is 

defined as, 
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where   0)(  initt , 0)(  goalt  

 

The desired matrix is represented by the coordinates of the smooth spline waypoints, 
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 )(),(),(),(),(),()( ttttztytxtr ddddddd                   (3.32) 

 

Whereas, the current translational and rotational matrix is generated by the control 

system, 

 

 )(),(),(),(),(),()( ttttztytxtr                  (3.33) 

 

The control system is applied to minimize the positional error. The positional error is 

produced by the difference between the desired and current flight path. Thus, the error 

between desired and output states is defined by, 

 

dp rre         (3.34)      

                                                            dv rre 
    

                                                   (3.35) 

where          
pe   is the positional error        

                    ve    is the error on velocity 

 

The control system generates nondimensional speed control input, U for the quadrotor’s 

mathematical model. The input signal for the motors will be used to estimate the 

movements of each quadrotor. The control signal is related to the brushless motor speeds 

through, 

 

  ][ 4321 UUUUMMMF zyxZ 
                                

(3.36) 

 

The first input computes the desired lift force for the quadrotor, 

 

zvzdzpzp ekekr 1
                                (3.37) 
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                      (3.38) 

 

The positional control along the x-axis and y-axis is controlled by the roll and pitch 

angular changes. The values are determined by,  

 

xvxdxpxpx ekekU                                  (3.39) 

yvydypypy ekekU                       (3.40) 

 

The nested control signal from the x and y control system, xU , 
yU  from (3.39), (3.40) 

produces the desired values for the roll and pitch controller, 
d , 

d . 
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yxd UcUs                        (3.41) 

yxd UsUc                        (3.42) 

 

These are then applied as input for the roll and pitch control system,  

 

vdpp ekekU  2              (3.43) 

vdpp ekekU  3
             (3.44) 

 

Finally, the yaw control system is independently run, 

 

vdpp ekekU  4              (3.45)            

 

As previously stated, this mathematical model is applied to the control system. The 

closed-loop control system shows the translational and rotational changes of the 

quadrotor whilst it transitions along a planned trajectory. In this study, the control system 

is tested with a simplified version of the mathematical model in order to promote speed 

and efficiency. This model is defined in the next section. These characteristics are 

obtained without a large compromise on the accuracy of the quadrotor’s mathematical 

model. The next section shows that the simplification of the model is necessary within a 

complex multi-agent UAV system.   

 

3.4.4 INDIVIDUAL AGENT CONTROL SYSTEM 

 

This section presents the nested control system. The chosen control system needs to 

create a balance between accuracy and simplicity. A highly complex multi-agent control 

system can affect the computing time immensely due to the increase in the number of 

agents. Both the MA-Spread and MA-Formation missions require parallel processing of 

four to eight agents. The control system for all agents must run simultaneously. In these 

cases, a noncomplex and minimal error system is best implemented. This study applies 

the constants in Table 3.4 during the MATLAB/SIMULINK simulation of the closed 

loop multi-agent quadrotors control system.  

 

Based on Equations 3.23-3.24, the estimated translational and rotational 

movements of the quadrotor are related to the control signals in Equations 3.38 -3.45 by,  
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Fig. 3.28.  Closed Loop Nested Control System. 
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TABLE 3.4. CONSTANT PARAMETERS 

Parameter Description Value Units 

g Gravity 9.81 ms-2 

b Proportionality Constant 3.13x10-5  

d Drag 9x10-7  

m Mass 0.4794 kg 

IXX x axis Inertial 0.0086 kgm2 

IYY y axis Inertial 0.0086 kgm2 

IZZ z axis Inertial 0.0172 kgm2 

[ kp , kd ] [proportional, derivative constant] [0.14,0.08]  
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The mathematical model of a vehicle is simplified without sacrificing the accuracy of the 

quadrotor’s movements. The simplification of the quadrotor model is often performed 

through the assumption of small rotational values where the Coriolis terms within 

equation (3.46) and (3.47) such as pr , pq  and qr   are assumed to be negligible.  This 

assumption is implemented within this work because the paths are planned at a high 

resolution. The distance and angular difference between two waypoints are not large. 

Equations (3.25-3.26) that define the translational flight of the agents are simplified to,  
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Whereas, the dynamic equations that describe the rotational movements are similarly 

reduced to, 
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The many-objective optimization algorithm often runs for a few generations before 

obtaining a well minimized set of solutions. At each iteration, its population represents 

multiple trajectories for many agents. Thus, the optimization algorithm makes many calls 

to the parallel control system. Figure 3.29 shows that the quadrotor UAV is able to reach 

its destination within 10 seconds.  

 

 

 

 

 
The speed of processing and minimal error of the simplified control system is ideal for 

this multi-agent quadrotor UAV system. This fast controller will also have an impact on 

the entire optimization algorithm because it will be utilized during many generations.  

 

In this research, the simplified model of the quadrotor is used for the closed-loop 

control system. The quadrotor’s rotational and translational output signal from its control 

system is shown in Figure 3.30-3.31. The path nodes across this path are spread no 

further than 2 meters apart. Here, Figure 3.30 shows the ability of the control system to 

track the planned path across a terrain. It shows that the output signals for all three 

positional axes can follow their desired coordinates with minimal error. Similarly, Figure 

3.31 shows the roll, pitch and yaw signal output from the controller. The results show that 

the controller can keep up with the rotational turns across the path.       
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         (d) roll-angle output signal.                        (e) pitch-angle output signal.                  (f) yaw-angle output signal. 

Fig. 3.29.  Simplified model closed loop nested control system translational and rotational signal.  

 

         (a) x-axis output signal.                              (b) y-axis output signal.                           (c) z-axis output signal. 
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(a) x-position output signal. 

 
(b) y-position output signal. 
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(c) z-position output signal. 

Fig. 3.30.  Quadrotor’s closed loop control system translational output signal.  
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(a) roll angle output signal. 

 
(b) pitch angle output signal. 
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(c) yaw angle output signal. 

Fig. 3.31.  Quadrotor’s closed loop control system rotational output signal.  
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3.5   SUMMARY 

 

This research performs path planning for multi-agent quadrotor UAVs within three 

different test environments. Each environment holds a different set of challenges for the 

path planning algorithm. The first test space was the high-rise cityscape. The next space 

was the highly cluttered indoor environment. Lastly, a mountainous terrain was also used 

within this study. The results show that the obstacles within all of these test spaces were 

well mapped. Each obstacle had a safety boundary placed around them. The resulting 

images show that each environment required a different sized safety zones. This is 

because narrow roads can be closed off if the boundaries are too big. On the other hand, 

the agents can collide with the corners of the obstacles if the boundaries were too small. 

This shows that it is important to consider the characteristics of each environment before 

setting the value of any variable.   

This chapter also showed the planning of the initial path population for four 

quadrotor UAVs. The MA-RRF algorithm was shown to be an expansion of the basic 

RRT path planner. The simulation results of each test space showed that the MA-RRF 

forest was able to quickly map the environments. It was capable of creating strategically 

placed forest links between the individual trees. The results also showed that the multi-

agent sampling-based planner capable of quickly extracting tens of thousands of feasible 

paths. The MA-RRF multi-agent paths then underwent a diversity based filtration 

process. The findings within this chapter show that the MA-RRF planner has successfully 

created a diverse initial path population for the optimization process.  

 

Next, GA was used to hybridize the MA-RRF paths and produce a diverse 

population of trajectories across all iterations. The results show that using the MA-RRF 

for repairing child trajectories can be highly beneficial. Four post processing GA 

operators were also implemented to further improve the survivability of these new child 

paths. Then, the path population was converted into smooth trajectories. These minimal 

jerk trajectories were used as the desired coordinates for the quadrotor UAV control 

system.   

 

Lastly, this chapter focused on the modelling and testing of the quadrotor UAV’s 

control system. The current chapter describes the important factors that must be 

considered when modelling the multi-agent quadrotors. Here, the mathematical model of 

the individual quadrotor was presented in its simplified form. The results showed that a 

fast and minimal error control system was chosen in comparison to a highly accurate one. 

The images also show that the output of the controller successfully predicts the control 

signals that define the collective speed and thrust of these quadrotors. It was able to 

estimate the translational and rotational movements of the quadrotor UAV. Collectively, 

MA-RRF, GA and closed-loop quadrotor UAV control system form a hybridized path 
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planner that continuously generates a tested collection of feasible trajectories for the 

optimization process within Chapter 4.  

 

The next chapter shows the many objectives functions that are applied for both 

the MA-Spread and MA-Formation missions. The optimization of the multi-agent 

quadrotor UAV trajectories is performed as a team for both missions. The MA-Spread 

mission optimizes the combination of multi-agent trajectories. The objectives in the MA-

Spread mission are dependent on the team’s terrain exploration. On the other hand, the 

MA-Formation mission optimizes the formation reference trajectory at every generation. 

The estimated objective values are used by the Dimensionality Reduced Many-Objectives 

Optimization (DRMOO) algorithm to sort the trajectories based on their level of 

optimality and diversity. The trajectories that are ranked highest are maintained within 

the selection process and progress into the new generation of trajectories. The algorithm 

is designed to focus on the minimization of all objectives as opposed to mapping the 

Pareto front with full accuracy. This is the final step within the multi-agent quadrotor 

UAV trajectory planning and optimizing algorithm.  
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CHAPTER 4: TRAJECTORY OPTIMIZATION FOR MULTI-

AGENT QUADROTOR UAVS 
 

This research presents an offline long-range path planner that generates a large 

population of optimized trajectories for multiple autonomous quadrotors. It is capable of 

adapting to a variety of terrains, tasks and objectives. The missions that are typically 

undertaken by UAVs are generalized into two types. They are either defined as spatially 

distributed flight (MA-Spread) or dynamic formation flight (MA-Formation). This allows 

the end user to implement a standardized platform that is applicable towards many 

variations of real world multi-agent cooperative tasks. The first application is designed 

for missions that require independent multi-agent flight paths. This means that there is 

only a small amount of coupling between the neighbouring quadrotor UAVs. These 

agents have their own trajectories without being highly dependent on their neighbouring 

agent’s flight direction. Formation flights are also a popular application for multi-agent 

quadrotors. In this case, the agents are highly dependent on their team mates. The 

trajectory for each agent is designed based on the formation’s reference path and the 

desired formation shape.  

 

The hybridized multi-agent quadrotor UAV trajectory planner and control system 

was presented in the previous chapter. They are both modified to suit the two variations 

of multi-agent systems. The hybridized MA-RRF and GA path planner is capable of 

generating a group of paths for the MA-Spread mission. It is also able to create a 

collection of formation reference paths for the MA-Formation task. This work shows that 

the same platform can be utilized even though both of these missions are the opposite in 

terms of agent-to-agent coupling. Thus, it can be used for missions where the agents are 

highly dependent on each other to complete a mission. It can also be applied for missions 

where the agents fly independently to accomplish a task. A common theme between these 

two differing missions is that they require solutions that consider the multi-agent system 

as a singular entity. The algorithm must be able to generate trajectories with various 

objective trade-offs for all agents without discrimination. Some multi-agent trajectories 

may have better values for certain objectives in comparison to the other. The collective 

objective values of each team of agents will be used to rank the trajectories within the 

optimization process. This allows the resources of all agents to contribute towards the 

completion of a task. It is a more efficient path planning algorithm in terms of managing 

the resources of a team of agents.      

 

The smooth paths that were designed by the MA-RRF and GA planner will be 

used as the input for the two missions that are tested within this research project. Firstly, 

the flights trajectories for the agents within the MA-Spread mission are generated 

independently. Here, it is the combination of all the agents’ independent trajectories that 
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is optimized. The trajectories of the four quadrotors within each path combination is 

applied to the objective functions as a collective. Thus, it is the combination of the 

independent flight paths that is used within the optimization process. The best 

combinations of agent paths are chosen as parents for the next iteration. Secondly, the 

MA-Formation application optimizes the formation’s reference trajectory at each 

generation. The MA-RRF and GA path planners are used to generate a collection of 

formation reference paths. Then, formation shapes are designed based on the amount of 

free space that is around each reference nodes. Finally, the trajectories for each agent is 

generated based on the reference nodes and its formation shapes. Paths with higher 

complexities in formation shapes will be removed from the population. On the other 

hand, paths with more simplistic formation changes are maintained as parents for the next 

generation.    

 

In this chapter, the individual agent’s closed-loop control system will be expanded 

into a multi-agent control system for both missions. The data that is generated by the 

control system will be used to predict the values of the sixteen objectives. In these 

missions, different constraints need to be considered to simulate complex real-life multi-

agent flights. In many cases, a selected number of objectives are considered 

simultaneously. These objective functions are often based on the dynamics and 

limitations of the quadrotor UAVs. It can also take into consideration the constraints of 

its environment and chosen mission. This chapter defines the mathematical equations for 

the many objective functions that are implemented in this research project. This study 

assumes that some of the sixteen objectives are conflicting in nature. Initially, we present 

the standard objective functions that are applied for both MA-Spread and MA-Formation 

scenarios. Next, the objective functions that are designed for multi-agent quadrotor 

independent flight, MA-Spread are defined. Lastly, the objectives that are utilized within 

the multi-agent quadrotor formation flight application, MA-Formation is shown.  

 

Lastly, this chapter defines the parameters within the Dimensionality Reduced 

Many Objectives Optimization (DRMOO) algorithm. The DRMOO is used to rank the 

hybridized trajectories that are produced by GA and MA-RRF according to their level of 

optimality and diversity. The values of the many objective functions will be estimated 

with a closed-loop control system. Then, DRMOO will be used to rank the trajectories 

based on their estimated objective values. The aim of the DRMOO algorithm is to 

produce a final population of multi-agent trajectories that contain various strengths and 

weaknesses for these differing terrains. It is important that all of the many objectives are 

considered to be equally essential. In the next chapter, the results show that the DRMOO 

algorithm can be implemented as a standard platform for any multi-agent scenario or 

application. 
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4.1    MULTI-AGENT QUADROTOR OBJECTIVE FUNCTIONS 

This section presents a standardized definition of the multi-agent quadrotors’ physical 

constraints. It also takes into consideration the mission limitations such as environmental 

factors. These eight objectives are applicable to both the MA-Spread and MA-Formation 

missions. The constraints and limitations are represented by a collection of objective 

functions. These objective functions are not wholly based on the mean values between 

agents as with swarm or consensus theory. In this study, the definition of each objective 

function is dependent on the data that it represents. It is also not combined into a sum of 

aggregated data between all agents. Here, each objective is considered to be equally 

important. These objective functions are easily applicable to a variety of environments. It 

is changeable to accommodate many physical variations of the quadrotor. The end user 

can also consider other modes of communication, sensors, control methods and 

measurement units.  

 

Firstly, the paths that are generated by the GA path planner will be converted into 

time based trajectories. Then, the nodes of these trajectories will be used as the input for 

the multi-agent control system. The control system outputs the estimated flight 

trajectories for all  
AN   agents simultaneously. The dynamics of the output trajectory by 

the control system is defined by, 

                                   )(),(),(),(),(),()( ttttztytxt                   (4.1) 

t = node number across smooth spline trajectory 

The predicted flight path is split into node-to-node segments between the initial, )( initt

and goal nodes, )( goalt , 
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where,  0)(  initt  ,  0)(  goalt   

 

Each agent’s positional states and derivatives will be used to predict the values of the 

many objective functions. As previously defined in Section 1.4, there are eight standard 

objective functions that are applied for both the MA-Spread and MA-Formation 

applications. These eight standard objectives for both missions are defined below: 
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When designing trajectories for a multi-agent UAV system, the most important 

criterion for end users is the flight distance from the defined initial to goal node. The first 

objective, 1  is designed to maintain the shortest paths. 

 A
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s.t          
maxmin )(   t                           

where    
A

d  = segment length 

The second objective, 2  aims to maximize trajectories that hold many nodes at lower 

heights of the terrain. In this case, the reduction of flight time by all agents is prioritized. 

This cost function is adjustable based on the preference of the end user. The equation is 

easily modifiable to preserve higher nodes if flights at elevated altitudes are preferred. 

This option can be used by end users that require a larger view of the terrain.   
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where      Th    = terrain height 

                PN     = number of nodes within flight trajectory 

 

Most studies implement cost functions that evaluate the trajectories of all agents as a 

whole. These objective functions are often used to assess the entire path from the initial 

to destination node. On the other hand, objective 3 optimizes the node-to-node 

progression. This allows the user to view the advantages and disadvantages of a path 

based on smaller subsections. This is performed by testing if two continuous nodes 

deviate further from the goal node. Paths that advance directly towards its goal as 

opposed to taking longer routes are maintained across generations.    
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Quadrotor UAVs have the advantage of manoeuvring across path curvatures with agility 

and speed. An adaptive cost function, 4  allows the end user to rank less aggressive 
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trajectories over paths that require extreme manoeuvring. The user can easily modify this 

objective function to ensure minimum jerk, snap or pop by changing the degree of the 

derivative. This study chooses to minimize the state derivatives of a trajectory as opposed 

to the path curvature to obtain smoother paths. It can be changed to maximize fast turns if 

flights at maximum velocity are preferred.    
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where       n   =degree of smoothness 

 

One way of measuring the feasibility and real-life applicability of the designed path is 

through its estimated trajectory error. The cost function, 
5  compares both the GA 

planned trajectories, )(tA  with the predicted flight path, )(tA  of the quadrotor, A. 

Estimating the motion of the heterogeneous multi-agent quadrotors is accomplished 

through the application of a closed-loop control system. One input node from the GA 

planned trajectory equals to one output node from the control system. Thus, both 

variables are of the same type and same parameterization. The system consists of a nested 

PD control system and the mathematical model the different sized quadrotors. This 

function tells the user that if the designed paths have a high spline deviation, it requires 

the addition of more midpoint nodes across the path. This shortens the node-to-node 

distances and minimizes the deviation error. 
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Obtaining time optimal trajectories can be a priority for end users with time constraints. 

The objective, 6  defines the optimality of a designed path by comparing two values. 

The first value is the estimated node-to-node controlled flight velocity, estAv ,
 of the 

designed smooth spline. The second value is the direct waypoint-to-waypoint flight,  
Ald

time at estimated optimal velocity, optimalAv , . The optimal velocity is different from the 

maximum velocity of a quadrotor. The estimated optimal velocity for an agent across a 

path is obtained from the output of the agent’s control system. This value changes every 

time the control system applied for each trajectory at each generation. This is because 

some paths may have complex turns and movements which causes the agents to move at 

different velocities. The ideal velocity changes based on the complexity of a path. In this 

study, the optimal velocity is estimated by obtaining the highest velocity value across the 
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entire path. The quadrotor’s flight time from a direct node-to-node flight at ideal speed is 

compared to its estimated flight time across a smooth spline to test if the agent is able to 

fly to the best of its ability. Here, paths that promote flights close to the ideal flight 

velocity are preserved within the population. 
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where 
A

d   = smooth spline node to node trajectory distance 

              
(max),, axisxAoptimalA vv   

 

The next objective,  7   functions to determine the flight time of a multi-agent trajectory 

combination. Quadrotors can fly fast and lift loads. These loads come in the form of 

measurement units, imaging, networking and sensory electronics. Efficient use of fuel is 

necessary to promote longer flight time.    
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f(t)= estimated node-to-node flight time from agent’s control system 

 

The avoidance of collisions with obstacles is another important criterion for autonomous 

flights across challenging terrains. Cost function 8   detects the number of no-fly zones,  

boundaryk ,  that are breached. This function is used to minimize the risks of agent loss due 

to avoidable obstacle collisions.                                                            

                                                                                    

obskboundarykk Nkdd ,....1,)()( ,,,                       (4.11) 

 

where       d  = obstacle boundaries buffer range  

                     k  = obstacle planes 

 

The objective function defines the number of safety zones that have been breached by the 

entire team of quadrotors. Trajectories that require the agents to fly too close to the 

obstacles are slowly filtered out of the population. 
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As previously defined, these eight objective functions and constraints are applicable for 

both independent, MA-Spread and dependent, MA-Formation UAV flight missions. The 

end user is also given the option of including costs that are specific to either the MA-

Spread or MA-Formation mission. The objective function within each mission is 

dependent on the costs that are considered by researchers that study multi-agent UAV 

flights. Spatially Spread flights are often used for missions that require the agents to 

Spread across the environment and collect as much data as possible. On the other hand, 

formation flights are used for payload transportation or target tracking. This gives the end 

user the flexibility of using the objective functions that are suitable for their mission.     

 

4.2    MA- SPREAD APPLICATION 

Multi-agent unmanned aerial vehicles (UAV) systems are frequently used for complex 

missions such as search and rescue, reconnaissance, terrain mapping, wildlife research, 

target tracking as well as forming ad hoc wireless networks. Today, quadrotors can be 

purchased for a low cost and modified to transmit data from many types of sensory 

systems. It is easily expandable to a large sized multi-agent system. The popularity of the 

quadrotor within the consumer market is due to its ability to hover and deliver clear 

imagery in real time. It has the ability to undertake aggressive turns and capture videos at 

high definition. These agents are currently being used by media content creators, 

journalists, scientists, delivery companies, governmental bodies as well as hobbyists. 

Implementing a multi-agent system means that there is potential that the same mission 

can be completed at a much faster rate.   

 

This research aims to analyze and implement a standardized platform for 

simultaneous multi-agent trajectory generation and optimization algorithm that is 

applicable towards many variations of real world multi-agent cooperative tasks. Missions 

typically undertaken by independent UAVs are generalized as spatially distributed flight 

scenarios. This hybridized algorithm is designed to produce feasible smooth trajectory 

solutions for a multi-agent system. It takes into consideration the many objectives that are 

based on the purpose and constraints of the MA-Spread mission. Here, we present the 

objectives that are specifically designed for Spread flight. Performance analysis of the 

hybridized algorithm is presented through the flight simulation of the multi-agent 

quadrotors. These independent agents are Spread across multiple wide-area test 

environments.    
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4.2.1    MA- SPREAD TRAJECTORY COMBINATIONS 

 

In this research, the optimization of a group of agents is performed by applying the team 

as one entity. The agents in the spatially distributed cooperative flight missions are often 

supplied with their own trajectories. Here, the best path that is assigned to an individual 

agent may introduce shortcomings to its neighbouring agents. The best path for an agent 

can cause possible inter-agents collisions with other agents. This causes the other agents 

to take longer routes to avoid any collisions. There is also a chance that the entire team 

could return with minimal collective terrain exploration. This is because the agents may 

fly over similar areas. One can assume that the best path for an individual agent may not 

necessarily lead to minimum cost values for the entire team. It is important to generate 

the well minimized paths for all agents collectively. This ensures that the cost values for 

the team as a whole is optimized.  

 

Therefore, optimization within the MA-Spread application is performed for a 

collective set of paths. The paths that are generated by GA are used for various 

combinations of the multi-agent’s flight paths. A set number of path combinations are 

created at each generation. The number of combinations is based on the population size 

of the optimization algorithm. The level of diversity between the combinations is based 

on the number of unique trajectories that are maintained within an agent’s path 

population. The possible number of path combinations is equal to the binomial 

coefficient,    
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c

c NN

NNNN

N

N
                         (4.13) 

where         N    = number of paths per agent of current generation 

                   cN    = number of combinations  

 

This research tests the MA-Spread application with a team of four quadrotors. Figure 4.1 

shows the way each path combination is stored within the database. It is these 

randomized combinations, )(tCi
 of flight paths that are optimized for each generation. 

This process is designed to promote the maintenance of the well minimized collective 

trajectory within the final generation.  

  

   AAi NAttttC ,,1;)()()()( 21               (4.14) 

where i = number of multi-agent path combinations 

          A = quadrotor agent  
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Each path combination is applied one by one into the multi-agent control system. This 

study uses a population of 30 path combinations, i. The path combinations hold paths for 

four different quadrotors, A. The path nodes of each agent are defined as the desired 

coordinates for the closed-loop control system. As previously defined, the state 

derivatives for all four agents are obtained simultaneously through parallel processing on 

a multi-thread system. The estimated state values from the control system are then used 

as the input for the objective functions. The cost values for the current path combination 

are used by the many-objectives optimization algorithm for the ranking process. The 

combination of multi-agent’s paths that are both diverse and well minimized is ranked 

higher than combinations that are suboptimal.  

 

Lastly, the best combinations from previous generation are stored as the next 

generation’s parent population. The database stores the paths from each combination 

according to its agent. Thus, the number of unique paths per agent is dependent on the 

combinations that survive the selection process. This means that the path database for an 

individual agent can contain duplicate paths. This study implements elitism within the 

GA’s selection process. New path combinations are generated from the current parent 

population and the new child trajectories.  

 

4.2.2 MA-SPREAD CONTROL SYSTEM 

 

An expansion of the single agent’s hierarchy is performed to include the parallel 

simulation of four quadrotor UAVs simultaneously. The multi-agent architectures show 

the impact of having a control system within an optimization algorithm. Both the input 

and output data for the control systems are extremely important because it determines the 

type of cost functions that can be implemented. The control systems are simulated with 

MATLAB/SIMULINK on a multi-thread processing system. The data from the control 

system flows from the lower level control loops to the higher-level trajectory planning 

algorithm. These different layers can be implemented for a group of heterogeneous 

quadrotor UAVs despite their differences in hardware or software. Thus, simplifying the 

framework of the multi-agent control system is beneficial for many real-world 

applications.  

       

             

     

      )()()()( 21 ttttC Ai  



 )()()()( 211 ttttC A 
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                  Fig. 4.1. MA-Spread randomized combinations of multi-agent flight trajectories. 
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Figure 4.2 shows the information flow across the trajectory planning algorithm for 

the MA-Spread mission. In this study, four quadrotors, 4:1i  will fly independently 

across a variety of test spaces. Initially, the control system requires the constraints and 

limitations of each agent. This can be obtained from the physical structure of the 

quadrotor’s hardware and its electronics. As previously defined, free space mapping and 

path planning is performed by MA-RRF and GA. The free space mapping process 

produces data such as the obstacles and their boundaries, 
obs . It also divides the obstacle 

free three-dimensional space, 3 into grid blocks, G . The size of each grid block, 
gV  

is predefined based on the size of the test space. An initial collection of paths, 

)( 0tN ipopparent  is provided by MA-RRF as input for the GA. Independent paths are 

designed for all four agents without interference from the motion of their neighbouring 

agents. Each agent has a new collection of paths at each generation, )( iterinewgen tN . These 

paths are converted into trajectories by creating minimal jerk splines, )(ti .       

 

This information flow across the different subsections of the MA-Spread system 

will form the input for the multi-agent control system. Various path combinations, )(tC j
 

are formed from the trajectories that were developed for each agent. These trajectory 

combinations are applied within the control system one by one. At each iteration, the run 

time of the control system is defined through the number of nodes within the current 

combination’s longest trajectory. Next, the control system and mathematical model for 

each quadrotor is run in parallel. The data that is required by each agent’s estimator are 

the desired coordinates and angular rotations. This information is required by the agent’s 

control system. Each subsection of the control system is able to calculate and reduce the 

positional error of a quadrotor. The initial values of an agent’s position and its derivatives 

are also required by the integrator within the estimator.  

 

The secondary part of a control system is its output data. The information must be 

easily accessible and understandable to the end user. The estimator’s output data is stored 

within a shared database after each trajectory combination has passed through the system. 

The values for each iteration are stored based on the path combination that was applied. 

This makes it easy for the end user to identify which path combination is the best choice 

at the end of the optimization process. The values that are directly obtained from the 

control system are the predicted flight path of each agent, )(ti  as well as its derivatives. 

Similarly, the predicted rotational values and its derivatives are also obtained straight 

from the estimator. The output of each subsection within the control system provides the 

estimated path deviation, pe  for each agent. Lastly, the predicted flight time, 
flightt for the 

entire team is also attained at the end of the simulation process.    
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All of the output data is crucial for determining the values of the objective 

functions within the MA-SPREAD application. The estimated values will be used to 

predict the flight time of all the agents. It will also provide insight as to the number of 

possible agent-to-agent or obstacle collisions. The estimated flight paths show the 

aggressive turns that the agents are required to perform. The end user is most interested in 

the cost functions that are designed specifically for the MA-SPREAD mission. Thus, the 

control system tells the user about the multi-agent team’s collective sensory coverage and 

overlap across each test space. It also provides the changes in the network topology 

between each agent during flight. These objective functions will allow the many 

objective optimization algorithm to rank the path combinations. The combinations are 

ranked based on their level of dominance, )(min iterantdo tN  
and diversity, )( itertnc . The ranking 

system, DRMOO will be elaborated in the end of this chapter.                 

 

4.2.3    MA-SPREAD OBJECTIVE FUNCTIONS 

 

The data from the previously defined control system will be used to estimate the values 

of the 12 objectives that are within the MA-Spread mission. Four new objective functions 

are used in addition to the standard 8 objective functions. These four objective functions 

cater specifically to the application of Spread flight missions. Here, the optimization 

algorithm aims to maintain multi-agent paths that maintain connectivity whilst mapping 

the free space of the terrain. It also aspires to minimize agent-on-agent collisions and 

redundant sensory data. The parameters that are applied within the MA-Spread 

application are shown in Table 4.1 [141-142]. A team of four quadrotors is used within 

this mission. Two different quadrotor models are applied in this study to create a more 

flexible system. Both of these models are different in size and weight.  

 

TABLE 4.1: MA-Spread PARAMETERS 

 

Description Value Description Value 

Number of Flight Paths Combinations 30 Maximum Agent Velocity 10ms-1 

Number of agents 4 Number of Gaui 330X-S Agents 2 

Redundancy Similarity Threshold 0.75
PN  Gaui 330X-S Agent’s Size 0.533m 

Sensory Overlap Terrain Block Size 30m3 Gaui 330X-S Agent’s Maximum Fuel 15mins 

RF Network Range Threshold 0.75 
A  Number of Fyetech Agents 2 

Safety Zone Obstacles Boundary  obs  6m Fyetech Agent’s Size 0.705m 

Minimum Agent-to-Agent Distance 10m Fyetech Agent’s Maximum Fuel 10mins 
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Fig. 4.2.  MA-Spread closed-loop nested control system. 
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The first objective within the MA-Spread application is based on maintaining 

communication between the agents. Communication disruption occurs when the distance 

between two agents are further than the network signal range. The amount of signal 

decay grows larger as the agent-to-agent distance becomes longer. The effects of signal 

decay are such as data packet corruption or loss. Retransmission of these lost data can 

cause a delay in the prediction of possible collisions as well as shared free space 

mapping. Figure 4.3 shows the progression of four agents within the mountainous 

environment. In the first image, the distance between agents at each sample time is small. 

On the other hand, with the second image, there exists longer waypoint distances between 

the quadrotors that can cause network decay. This objective function attempts to 

minimize the network decay by reducing the distances between the agents. 

 

 

 

The network between quadrotor agents is defined through an adjacency matrix. The 

matrix entry  ija   is defined as,  

 

 

otherwise

NjiAAif
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Aji

ij

,...,1,,

,

,

0
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


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

                   (4.15)
 

where
    ji AA 

 
= connection exists between agent i and agent j 

s.t.          


 


otherwise

dtddif GijG

,0

)(,1 max,min,
  

 

Ideally, a fully connected graph,   )(, tAVG f   is maintained when all agents are within 

the maximum network range, Gd .  A well-connected system as shown in Figure 4.4(a) 

allows for minimal delay data exchange between shared database and the agents. 

Function, 9  serves as a measure of agent-to-agent connectivity. It is used to penalize 

trajectories that cause connection losses between the agents.    

 

 
 

Fig. 4.3.  Collective multi-agent paths with less and more network decay across mountainous terrain. 
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s.t.    


 


otherwise

Gtaif
b

fij

,0

)(,1
9

 

 

There can be possible collisions between agents during the simultaneous operation of a 

team. This can happen especially when the agents are all flying in different directions. 

Possible collision detection is estimated based on two criterions, the distance between 

agents, 
ijd  and the time of collision. The estimated position of each agent at a time 

period can be used to test if the agents are too close to each other.   
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s.t.    
max,,min, )( xijxijxij dtdd   , 

max,,min, )( yijyijyij dtdd  , 
max,,min, )( zijzijzij dtdd                                        

  

This objective penalizes collective trajectories that hold possible collision points. It 

allows the end user to either replan the spline subsection or choose a collision free 

trajectory instead. 
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Missions such as reconnaissance and surveillance require the agents to Spread across an 

environment. The agents within these missions collect a large amount of sensory data. 

Here, the maximization of uncertain terrain coverage is paramount. In this study, we 

assume free space mapping from a height with three-dimensional grid mapping. The 

number of grids,  totalgN ,   per environment is defined by,    

                            Fig. 4.4. Multi-agent (a) fully connected (b) partially network topology.  
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3



                                                   (4.19) 

 

The amount of free space coverage by each agent defines the amount of sensory data that 

is collected

 

by the entire team. Figure 4.5 shows the progression of four agents across the 

cityscape environment. In the first image, it is visually visible that the flight trajectories 

of all agents successfully explore a high percentage of the terrain. On the other hand, in 

the secondary figure, the agents fly across duplicate areas. This minimizes the amount of 

terrain coverage and reduces the amount of surveillance data that can be collected by the 

entire team. It can also cause an increase in the collection of redundant sensory data. 

 

Cost function, 
11  prioritizes trajectories where the quadrotors fly across 

uncertain areas. This reduces flights across areas that have been well mapped across 

generations. Each grid block is given the value of zero initially. As the algorithm 

progresses, the value of each grid block, 
gridN  increases based on the number of times an 

agent flies across it. Thus, the minimization of this cost function maintains trajectories 

that have flown over environments that are more uncertain or hard to reach 
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s.t.
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otherwise

if
b  

where                                   
gV     = three-dimensional grid cube volume  

                      ),,( gugugu zyx    = grid cube upper limit 

                      ),,( glglgl zyx    = grid cube lower limit 

 

                  Fig. 4.5. Multi-agent high and low terrain coverage across cityscape environment.  
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The integration of measurement sensors on each agent within a team can cause the 

repetition of observational data. There is a need for faster assessment of sensory data. 

Thus, repetitive real-time sensory data are redundant and a liability. Figure 4.6 shows the 

progression of multi-agents across an indoor environment. It is clearly visible that in 

comparison to the agents’ paths in the first image, the secondary image shows trajectories 

that map the same areas of free space. The agents accumulate redundant sensory data and 

neglect to map areas within the other rooms.   

 

Cost function, 12  encourages the removal of trajectories that fly across the same 

grid blocks. This is performed through the detection of overlapping flight areas. Each 

grid block is given the value of zero when ranking each path combination. It then has a 

value of one if there is an overlap.    
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The 12 objectives that have been defined will be applied within the many-objective 

optimization process. These standardized MA-Spread objective functions are applicable 

to any number of agents as well as within any type of environment.  

 

4.3. MULTI-AGENT QUADROTOR UAVS IN FORMATION FLIGHT 

 

Along with Spread flight scenarios, there is a lot of recent interest in multi-robot motion 

in formation. There are many examples of flight in formation within nature. History 

shows us that many animals move and hunt in packs. Birds often fly as a collective flock. 

Insects also work as a team to transport food across far distances. The reason for this is 

Fig. 4.6. Multi-agent low and high sensory data replication across indoor environment. 
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that a collective group is stronger and more effective than a singular individual. 

Formation flights are crucial to applications such as payload transportation or military 

missions such as security patrols. It is also often used for search and rescue missions at 

hazardous disaster sites. The agents in formation are required to perform cooperative 

sensory angular coverage and aerial flights whilst maintaining precise patterns. A group 

of agents that fly close together can perform many tasks that spatially spread agents can’t.   

 

This study has chosen to expand the standardize platform to include formation 

flight. This is due to the simplicity of path planning for a swarm of agents that fly in a 

formation structure. The trajectory planning for all agents is often done through the 

expansion of a singular leading agent’s trajectory. This means that the basic trajectory 

planning process is much simpler than the MA-Spread application. The complexity of 

formation planning exists in the planning of the formation structure. The level of 

difficulty further increases when studies aim to create formation structures that adapt to 

their environment. Thus, the MA-Formation mission requires a multi-level program in 

addition to the basic path planning algorithm. It is these additional stages that make the 

MA-Formation application tougher to design in comparison to the MA-Spread mission. 

Multi-agent flights in formation introduce the additional complexity of preserving 

designated formation shapes whilst navigating through waypoints within a trajectory. 

These agents must fly closely whilst avoiding probable inter-agent collisions and 

environmental hazards.   

 

There are four stages that exists within a formation planning algorithm. Some 

works implement all subsections whereas some only experiment with certain areas of 

formation planning. The first level is the design of the formation’s reference trajectory. 

This process can be executed with most path planning algorithms. The second level 

involves the accurate free space mapping of the test environment. The formation planning 

algorithm must be capable of defining the amount of free space that exists around each 

path node. This can be performed in low or high resolution. The higher the free space 

mapping resolution, the more adaptable the formation shaped will be. The third stage 

involves the planning of the formation structures across the trajectory. There are two 

varieties of structures that can be applied. The using either rigid or nonrigid formation 

shapes is dependent on the mission at hand. Lastly, the trajectories for all agents can be 

designed from the reference trajectory and its formation structures. In this study, all four 

stages are implemented in order to provide the end user with a high level of flexibility.      

 

Missions typically undertaken by UAVs in formation are generalized as dynamic 

contour maintenance formation flight (MA-Formation). This research implements a 

standardized platform for trajectory generation, coordination of agents in formation and 
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an optimization algorithm. It is applicable towards any variation of real world multi-agent 

cooperative tasks.  

 

4.3.1 FREE SPACE SURFACE EXTRACTION 

 

The first stage of formation planning has been described in the previous chapters. The 

paths containing waypoints for the formation flight are generated by GA and used as 

input for the formation planner. These paths are transformed into minimal jerk smooth 

splines. The time-based trajectory nodes are than applied as the reference coordinates for 

the dynamic formation planner. The planning of the formation shapes from initial 

towards the defined goal position is essential for collision free flights. In this study, the 

formation shape for 
AN   agents are designed based on the obstacle free space between 

close range obstacles and the agents. This formation planning algorithm creates 

symmetrical formation shapes. This constraint forces the formation shapes to constantly 

expand and contract across the trajectory. Thus, the symmetrical shapes fully test the 

algorithm.  

 

This section describes the second stage of the formation planning process which is 

defined in Figure 4.9. Here, the free space of the environment is accurately mapped. 

Initially, six planes are constructed around each obstacle as shown in Figure 4.7. these 

planes form a cube that defines the space that the obstacle resides. The size of each cube 

is dependent on the free space mapping resolution of the test environment. Higher 

resolution free space mapping is essential for environments where the obstacles are not 

separately defined such as the mountainous terrain. Here, the mapping resolution of the 

free space is defined by the amount of height changes within the terrain. In these test 

spaces, there will be a high amount of obstacle planes. The number of formation 

reference trajectories is defined by the GA’s population size. In this study, the formation 

planning algorithm is designed to be highly adaptive to the environment. Thus, each 

waypoint within a formation reference trajectory will be used to define the formation 

shapes of the quadrotors. The end user has the option of maintaining this highly accurate 

formation planner. They can also reduce the complexity and level of accuracy by 

designing the formation shapes for every few waypoints.       

 

After placing the planes around all obstacles, the formation planner begins to 

extract the free space surface around each path waypoint. The algorithm needs to identify 

obstacle planes that are within close range of the current waypoint. Initial 

experimentation applied a more simplistic approach where the middle point of each plane 

is considered for the waypoint-to-plane distance measurement. It was found that for  
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planes that are longer in width or height, the centre point doesn't accurately define its 

distance from the waypoint. This is due to the fact that the corners of longer planes may 

be closer to the waypoint in comparison to the centre point. The plane may be neglected 

in the mapping of the free space contour because the distance of the centre point appears 

at a far distance. Thus, full sampling of all planes is applied instead. This produces more 

precise definition of the boundaries of the free space contour that will be relied on for the 

design of the formation shape at each waypoint. 

 

Sample points are placed across the surface of these planes. The sampling rate is 

defined by samplesR . These sample points are used to detect the shortest distance between 

current waypoint, ),,( ccc zyx and each plane. Firstly, the closest sample point for each 

Input: Total path nodes, 
nodesN ; Environment 

database,
obs  ; Path population size, 

popN ;  

Sampling Rate, 
samplesR ; 

Environment Mapping: 1,1  nodespath   

Identify obstacles and place planes around all borders. 
 

  

Place samples with sampling rate of 
samplesR  across all 

boundary planes within the test environment. 
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Fig. 4.9  Flowchart of dynamic multi-agent formation planner. 

 

 

START: MA-Formation Free space surface extraction 

Fig. 4.7 Sampling of obstacle planes  

around each waypoint. 

 

 

Fig. 4.8 (b) Determining the size of the free space contour. 

 

 

Fig. 4.8 (a) Identifying the nearest sampling point on each close-

range obstacle plane and its distance from the current waypoint. 
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plane identified. This leads to the identification of the nearest plane for each waypoint. 

This close-range plane is stored within the database if it within the waypoint’s danger 

zone. The planner then identifies if the close-range plane is parallel or perpendicular to 

the path. Then the radius of the free space surface around the waypoint is identified. This 

is done by defining the normal or tangential distances between the waypoint and the 

nearest plane as shown on Figure 4.8 (a). The vertical distance, 
vertd is extracted if the 

plane is perpendicular to the path. On the other hand, the horizontal distance, 
horid is 

obtained if the plane is parallel to the path. This process produces a more precise 

definition of the free space surface’s radius.  

 

The surface as shown in Figure 4.8 (b) is mapped through the radius of free space 

at all angles from the formation waypoint. The depth of the surface is easily defined by 

the free space above and below the waypoint. This value can be obtained by evaluating 

the obstacle that are above and below the current waypoint. Then, this space between the 

obstacles defines the height of the free space surface, 
sz .  

 

The free space surface between the nearest obstacles and current waypoint is 

defined as,         

 

],,[),,( sssformation rzryrxzyxS                                   (4.22)     

where    obsobsobs zyx ,,  = nearest obstacle boundary planes  

            ],,[],,[ ,,, RobsRobsRobszyx zzyyxxrxrxrx 
 
= free space contour radius 

 

The formation shape around each waypoint is designed based on the obstacle free space 

contour around the agents. The radius of the surface will determine if the quadrotors will 

be well spread or constricted to a small space whilst flying together. The accuracy of the 

formation planner is extremely important for tight spaces within the test environment. 

This is because there can be a risk for obstacle or agent-to-agent collisions across narrow 

passages.   

 

4.3.2 FORMATION SHAPE PLANNER 

 

The formation structure for the 8 quadrotors can be designed since the free space surface 

for each waypoint has been determined. The formation shape matrix for each agent, A   is 

designed based on the free space surface’s radius at each waypoint. The adaptive 

formation planner is capable of designing formation shapes for three possible cases. 

Firstly, the end user can define a default formation shape that can be used for formation 

flights across large spaces. This default shape allows the agents to maintain close-range 

flight despite the lack of near-range obstacles Next, a danger zone formation shape is 
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used for narrow passages and tight spaces. Lastly, the agents are spread across the free 

space surface in areas that aren’t too wide or narrow. All three of these formation 

structures are shown in Figure 4.10. The agents are designed to always maintain a safe 

distance from their neighbouring agents. In this study, the sizes of the quadrotors within 

the images are exaggerated in order to clearly show the changes in formation shape. The 

end user has the flexibility of changing the minimum agent-to-agent distances and default 

formation shape.    

 

 
 

 

The first case is applied when there are no obstacles are within close sight. Here, a default 

formation shape, 
shapeF is applied. The default shape has the most number of agents per 

row in comparison to the other formation shapes. This shape is necessary to keep the 

agents in formation despite there being a large amount of free space around the agents. 

This allows them to quickly change into a smaller sized formation shape in the future. It 

is only applied whenever there are no obstacles within close range. In this study, a dual 

row formation shape is set as the default design. This divides the agents into two rows as 

seen in Figure 4.11 whilst considering the collision free distance, 
ijd  between agents. 
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 Fig. 4.10. Variations in formation shapes across a trajectory. 
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 Fig. 4.11. Default formation shape. 
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The second case is applied for waypoints where the obstacles are within immediate range 

or extended narrow passages. This formation shape is defined through the free space 

contour between the waypoint and obstacles. The agents are spread across the obstacle 

free contour as seen in Figure 4.12. The number of agents per row is now defined as,  

 

),,(),,( zyxdzyxSN ijformationR                                (4.24) 
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where    R     = formation matrix row number 

           
RN  = number of formation rows  

 

 

 

 

 

 

 

 

 

 

 

 

 

The last case is used when obstacles are within the danger zone. Thus, obstacles are 

within close proximity to the formation waypoints. Here, the formation shape is reduced 

to a one column or row matrix as seen in Figure 4.13. The formation can be guaranteed 

successful flight across the danger zone until reaching a vaster free space. 
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The last level within the dynamic formation planner creates independent trajectories for 

each agent. This allows the closed loop controller to simulate the flight paths for each 

1row

2row

3row

1A 2A 3AA
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 Fig. 4.12. Adaptive formation shape. 
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agent individually. The predicted trajectories will let the optimization algorithm know if 

the formation trajectories and its formation shapes are feasible for real life flight.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3 MULTI-AGENT FORMATION TRAJECTORIES 

 

This section designs the flight trajectory for each quadrotor. The agents will be flying 

independently once they have received their desired coordinates. This process eliminates 

some of the coupling that exists in typical formation flight. This means that there is 

minimal coupling in the form of dependency between the movements between two 

agents. Each agent flies in their own direction whilst maintaining their formation shape. 

Thus, the agents will be able to fly collectively even if there is a faulty agent within their 

team. They will still be able to maintain their formation structure despite the removal of 

an agent or its communication link.  

 

Figure 4.14 shows an example of how the agents are spread across the free space 

surface. The constant distance vector for each agent,
 

))(),(),(( AzAyAxv heightrowcolumni   

is defined by the formation shape at each reference waypoint. Here, the formation 

reference trajectory’s waypoints are used as the centre point for the formation structures. 

Firstly, the radius of the free space surface is used to define the amount of space that exist 

at the left and right of the centre point,   

 

  ],[ ssleft ryrxx                                             (4.27)     
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 Fig. 4.13. Danger zone formation shape. 
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 ],[ ssright ryrxx                                              (4.28)     

Next, the agents that are within the same row are divided across this space. The x-axis 

coordinates for each agent is defined by,  

 

rightijleftcolumn xdxAx ::)(                                  (4.29)     

 

The y-axis coordinates for each agent is determined based on the row that it belongs to, 

 

)1()(  rowijrow NdAy                                           (4.30)     

 

Lastly, the z-axis coordinates for all agents, )(Azpath
 is the same as the formation 

reference path’s z-coordinate, )(tzR . This means that the agents fly at the same altitude. 

 

The flight trajectory of each agent, )(tA  is based on the reference trajectory’s 

rotational and translational movements,  R . It is also dependent on the previously 

defined distance vector between the centre of the formation structure.  

 

  iRA vRtt  )()(                                   (4.31)           

where,   

   

   


















100

0cossin

0sincos





R  

 

The path waypoints for each agent are, 

 

 

 

 

Fig. 4.14. Variations in formation shapes across a trajectory. 
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        (4.32)           

(4.33)     

(4.34)     

 

All three stages of the dynamic formation planner are completed with speed and 

accuracy. Both the multi-agent quadrotor trajectories and its formation designs are then 

applied towards determining the values of the many objective functions.   

 

4.3.4 MA- FORMATION CONTROL SYSTEM 

 

The control system for the MA-Formation application has the same controller and 

quadrotor’s mathematical model as the MA-Spread mission. Similarly, most of the 

information flow across the entire trajectory optimization algorithm remains the same. 

There are some modifications to the control system that are designed specifically for 

multi-agent quadrotor formation flight. The MA-Formation mission has two planners as 

shown in Figure 4.15. There is one for trajectory planning and another for formation 

planning. The control system must test the feasibility of the data that is generated by both 

these planners. It has to determine if the agent’s planned trajectory can be tracked. The 

estimator must also determine if all the agents can collectively track the designed 

formation shape as well.   

 

In this research, eight quadrotors, 8:1i  are flown in formation across different 

terrains. Firstly, the control system requires predetermined input parameters for the 

default formation shape, 
defaultF as well as the minimum agent-to-agent distances, 

minijd . 

The MA-RRF and GA path planners are only used to plan the reference trajectory for the 

formation flight. Thus, the path planning process is much faster than the MA-Spread 

mission. It is extremely important that the control system is able to predict the flight path 

of each agent. This means that each agent must be provided with its own trajectory. Here, 

a formation planner is used to design the trajectory of an individual agent, )(ti . The 

formation planner extracts the free space contour, ),,( zyxS formation  that exists around 

each waypoint in the reference trajectory, )(treference . Next, the planner defines the 

formation shapes, )(tFshape  that fit within the free space contours. Lastly, the trajectories 

for each agent is designed based on the formation shapes across the reference path. This 

process creates a decentralized system where each agent flies independently. Thus, the 

control system for each agent isn’t dependent on its neighbouring agents and can be run 

in parallel. Each controller requires the same input data. As with the previous application, 

the estimator requires the desired positional coordinates and rotational angles. It also 

needs the initial values for the quadrotor’s position and its derivatives. 
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As with the MA-Spread mission, the output of the control system will determine 

the values of the many objective functions. The MA-Formation task has some of the 

same costs as the prior independent flight application. The parallel run control system 

produces the predicted positional and rotational data for the team. These values are 

obtained from the quadrotor’s mathematical model that also provides information on an 

agent’s velocity and acceleration. This information is compared with the planned 

trajectories. It is an indicator that the agents are not able to maintain their formation 

structure when their path deviation error is high. The flight time is also predicted through 

the collective flight time of all eight agents. The objective functions that are directly 

related to formation flights require predicted data such as the number of formation shape 

changes, shapeF . It also relies on the estimated formation rise time, riset  of each agent. 

The rise time that is obtained by the controller is the time it takes for each agent to morph 

from its previous formation structure, 
beforet into a new shape, aftert . This data shows the 

complexity of the formation shape changes across each trajectory. Lastly, the estimated 

distance between neighbouring agents, 
ijd is highly important for formation flight. This 

allows the optimization algorithm to determine if the agents are capable of maintaining 

their relative positions whilst flying.  

 

The predicted flight paths of all eight agents will determine if the reference 

trajectories and formation shapes are feasible for real life flight. Formation reference 

trajectories that are not feasible will not be maintained within the next generation’s 

population. The many objectives optimization algorithm will rank less complex 

formation trajectories above those with complicated shape changes. The DRMOO 

ranking system will be described in further detail within the end of this chapter. 
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Fig. 4.15.  MA-Formation closed-loop nested control system. 
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4.3.5. MA- FORMATION OBJECTIVE FUNCTIONS 

 

In addition to the standardized objective functions, four objective functions specifically 

catered to the application of formation flight scenarios is shown below. The data from the 

flight predictions of all agents is used to determine the values of the 12 objectives. The 

parameters applied within these objectives are shown in Table 4.2 [141-142]. These 

objective functions are designed to mimic the costs and constrains faced by multi-agent 

quadrotor UAVs in real life formation flights.  

 

TABLE 4.2: MA-Formation PARAMETERS 

Description Value Description Value 

Population size 30 Obstacles Plane Detection Range 20 m 

Selection Rate 0.5 Default Number of Agents/Row 4 

Safety Zone Obstacles Boundary  obs 6m Default Number of Column/Formation 2 

Number of Gaui 330X-S Agents 4 
Agent-to-Agent Minimum and 

Maximum Distance 
[2, 3] m 

Gaui 330X-S Agents Maximum 

Fuel 
15mins 

Formation Minimum and Maximum 

Maintenance Distance 
[1.5, 3.5] m 

Number of Fyetech Agents 4 Redundancy Similarity Threshold 32.5% 

Fyetech Agents Maximum Fuel 10mins Obstacles Plane Detection Range 20 m 

samplesR [city, indoor, mount] [5,2.5,4] m   

 

The next cost function minimizes the number of formation shape changes within a 

trajectory. Firstly, this cost reduces the complexity of the formation flight mission by 

choosing paths with minimal shape changes. Secondly, it allows the end user to plan for 

load lifting. This cost function is extremely significant for the transportation of payloads 

through a team of quadrotors that requires the attachment of the load to the agents be 

maintained throughout flight. The first image of Figure 4.16 shows a formation trajectory 

that requires shape contractions and expansions. Whereas, the second maintains the same 

shape which is necessary for load lifting. If the objective value is  013  , this 

trajectory is rejected for payload transportation. Here, the rigidity of the formation is 

imperative for successful transportation.  

 

 

 
Fig. 4.16. Trajectories of nonrigid and rigid formation shapes across mountainous terrain. 
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where    )(tFshape
= formation shape matrix 

 

Formation design conservation requires the cooperation of all agents within its team to 

maintain designated relative distance between neighbouring agents. There may be a break 

is formation if the designed trajectory requires the agents to manoeuvre aggressively 

around sharp bends. Similarly, if the contraction and expansion of formation shapes are 

too extreme for the allocated time, the formation design becomes unattainable in real life 

flights. If trajectories that are infeasible for formation maintenance are detected, the 

optimization process will gradually reduce its occurrence within its population. 

 

Cost function, 14 tests if the agents are retaining their formation shape at each 

sample time. In this case, the estimated formation flight is compared to the formation 

shape designed by the planner. Trajectories with hard to follow shapes are slowly filtered 

out of the population.  
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where      )(tfA  = agent's position relative to neighbouring agents  

                f     = distance between neighbouring agents 

                ijf       = formation maintenance buffer range between neighbouring agents 

 

The complexity of formation changes within a trajectory is measured through the scale of 

shape expansion or contraction required. This cost function is applied to determine the 

ratio of between two formation shape changes.   
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Cost function, 16  measures the percentage of total flight time that is dedicated into 

changing formation shapes. It can tell the user if the changes in formation shapes across 

the current path are complex and require more time in comparison to the shapes across 

another formation path. Thus, the user can identify if the longer flight time is due to the 

formation shape planning or the formation path length itself. As shown in Figure 4.17, 

the rise time is derived from its previous formation shape, beforet  to the period where all 

agents have merged into the next formation shape, aftert . These values are obtained from 

the control system. Thus, this cost function measures the percentage of total flight time if 

the formation that is dedicated to morphing into changing formation contours.    
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The values of these 12 objective functions will be used to rank and sort the formation 

trajectories across each generation. The ranking process will be performed by a many-

objectives optimization algorithm. In this thesis, the DRMOO algorithm is utilized to 

perform the sorting of the multi-agent trajectories for both the MA-Spread and MA-

Formation missions.  

Fig. 4.17. Rise time between previous formation to the next formation shape across indoor environment. 

beforet

aftert

riset
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4.4. LARGE DIMENSIONAL MANY-OBJECTIVES OPTIMIZATION 

When attempting to plan trajectories for various real-world missions, the complexity of 

processing high-dimensional becomes apparent. In this study, the difficulties and 

challenges of the simultaneous optimization of many objectives for multi-agent 

quadrotors within different terrains is presented. The target for applying many-objective 

optimization towards trajectory generation for multi-agent quadrotors is to provide a 

diverse yet well minimized solution set to users. When trying to optimize many 

objectives, it promotes an understanding that there is never just one optimal solution that 

is best in regard to all cost functions. This study also aims to remove the need for prior 

determination of the possibility of optimizing many objectives as opposed to just a few. 

This platform allows the user to evaluate the pros and cons of various criterions through 

visual three-dimensional environment mapping as well as data driven analysis when 

deciding which trajectories to implement for real-time flight. Thus, the end user is 

provided numerical value for the trade-off variations in cost values for each solution 

within the set of optimized trajectories.   

 

The initial suboptimal trajectories developed by the MA-RRF algorithm for all 

three test environments are applied as input for the optimization process. Using Genetic 

Algorithm, these trajectories are meshed to create new paths through the crossover and 

mutation process. Next, the control system prior produced is applied to generate 

predictions of the cost values of all objectives. Based on these estimations, the process of 

optimization is run to rank and filter suboptimal and non-diverse trajectories. Here, we 

evaluate the capabilities of the hybridized Dimensionality Reduced Many Objectives 

Optimization Algorithm to produce a batch of well minimized trajectories where all 

objectives are considered to be equally essential.  These trajectories are with various 

strengths and weaknesses for these differing terrains. Through these experiments, it is 

shown that the algorithm can be implemented as a standard platform for any multi-agent 

scenario or application.  

 

4.4.1 MULTI-OBJECTIVES OPTIMIZATION 

 

Multi-objectives optimization is often applied towards real life problems that require a 

well minimized solution. Humans perform simple optimization processes in their daily 

lives. Most people are required to transport themselves to their workplaces daily. It is 

important that a person picks the optimal form of transportation. An error in judgement 

can lead to the individual being extremely late to work. In this case, the possible 

transportation options are a car, bicycle, motorcycle, bus or train. The multiple objectives 

that are involved in this optimization problem are the total cost, travel time, comfort and 

walking distance. All objectives are of equal importance. Some of these objectives will 
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also conflict with each other. The individual may also have constraints that need to be 

considered such as a monthly budget or office hours. 

 

The multi-objective optimization problem can be defined by: 

 

Minimize/Maximize M objective functions:
im Mmf ,...,2,1),(                  (4.39) 

Subject to: J   Inequality constraints             
ij Jjg ,...,2,1,0)(        (4.40) 

K  Equality constraints                                  
ik Kkh ,...,2,1,0)(      (4.41) 

Upper and lower bounds                          nixxx U

ii

L

i ,...,2,1,)()(   

where solution X is a vector of n decision variables:  
T

nxxx ),....,,( 21  

 

There are two popular methods for applying multi-objective optimization. The two 

options differ based on when the end user’s preferences are applied within the 

optimization process. The first option is the preference-based multi-objective 

optimization method. This option is often used by many researchers because of its 

simplicity in application. There are some optimization problems that can be solved with 

the end user’s preferences in mind. These are problems where the end user knows the 

level of importance of each objective. These preferences will be used to set the weight of 

each objective within the aggregate cost function. Here, a composite objective function, 

totalf   is formed from the multiple objectives.  

 

]1,0[),(
1




mm

M

m

mtotal ff
i

                            (4.42) 

 

The preferences of the end user are defined through the weights, 
m  that are attached to 

each objective. The value of each weight is proportional to the importance of its objective 

function. In this case, the end user is supplied with a singular optimal solution at the end 

of the optimization process. There are some studies that aim to find a collection of 

solutions by applying a variety of weight values. This process will require the intuition of 

an individual that is experienced with the objectives within the mission’s optimization 

problem.  

 

A less subjective method would be the optimization of all objectives equally 

without any prior preferences. This method more closely mimics real life optimization 

problems. It also removes the bias that can push the algorithm to minimize certain 

objectives only. Firstly, all the possible solutions are considered. The objective values for 

each solution is evaluated. Then, all solutions are compared to each other. This process 

determined which option provides better trade-off values for all objectives. The options 
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that contain well minimized cost functions are maintained within the solution set. This 

procedure continues until there are no better solutions. Finally, the end user received a 

detailed breakdown of the objective values for each solution. It offers the end user 

information about the amount of optimization that is possible for each objective.  

 

Each transportation option in the previously discussed problem produces different 

values for each of the objective function. Thus, each option has different trade-offs in 

terms of advantages and disadvantages. For example, driving a car may be comfortable 

but it comes at the expense of paying for more fuel. On the other hand, taking a train 

means lower levels of comfort but the tickets are cheaper. An individual needs to know 

the trade-off of each option in order to make a knowledgeable decision. Thus, 

optimization is defined as a tool for finding and comparing different solutions. It is 

important to understand that since there are multiple conflicting objectives that are being 

optimized, there can never be one solution that optimizes all objectives. There are many 

good solutions with different trade-offs. The final solution set will be made up of 

multiple optimal solutions that are defined based on their objective values. The individual 

gets to compare these good solutions and select the best transportation method based on 

their personal preferences. Thus, it is advantageous that the user doesn't need to define 

prior preferences. They have the flexibility to evaluate these optimal solutions post 

optimization.   

 

In this research, the secondary method of multi-objective optimization is applied. 

No prior preferences are applied within this study. Multi-objective optimization 

algorithms require a large population of feasible solutions. A large population allows the 

algorithm to retain a variety of solutions with different objective values across the 

generations. It also increases the solution search space and reduces the chances of 

premature termination before finding well minimized solutions. This work aims to 

produce a diverse population of well minimized trajectories for multi-agent quadrotors. 

This means that the end user is supplied with a large collection of options to compare and 

choose from.  

 

Many researchers have shown that evolutionary algorithms are ideal for multi-

objective optimization. Algorithms such as GA are capable of generating a large 

collection of multi-agent quadrotor paths as an input. Similarly, it also produces a large 

amount of multi-agent quadrotor paths as an output. GA also allows the end user to 

introduce elitism during the selection process at each generation. Thus, the optimization 

algorithm is able to maintain good solutions within the population whilst searching for 

new ones.  
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GA alone isn’t suitable for many-objectives optimization because its simplistic 

ranking process can’t identify which solutions are better than the other in regard to all 

twelve objectives. It requires a more refined algorithm to perform the sorting process at 

each generation. This is explained in more detail in Section 4.2.2-4.5.3. Here, a variation 

of MOO, many-objective optimization algorithm will assist the GA in sorting and 

ranking these solutions. This is performed by maintaining dominant and diverse 

solutions. The targets of a many-objectives optimization algorithm can be defined as: 

 

1. To find a collection of solutions that is optimal.  

2. To maintain a diverse set of optimal solutions. 

  

These two targets allow the optimization algorithm to preserve solutions with multiple 

trade-offs across generations. Both targets are often conflicting with each other. In many 

cases, an optimal solution can be similar to other solutions within the population. 

Likewise, a solution with different trade-offs in terms of cost values may not be an 

optimal solution. All optimization algorithms have a tough challenge of creating a 

balance between both goals.  

 

4.4.2 WELL MINIMIZED SET OF SOLUTIONS 

 

As previously defined, the first objective of a multi-objective optimization algorithm is to 

identify well minimized or dominant solutions. Pareto-optimal solutions are a popular 

term for a set of dominant solutions. This term originates form the Pareto-optimal front. 

The Pareto frontier is defined as the curvature obtained when all the Pareto optimal 

solutions are joint together and viewed as a whole as shown in Figure 4.18. The Pareto 

frontier plays an important role in the implementation of multi-objectives optimization. In 

a situation where a large number of solutions are being considered, some method for 

ranking them must be applied to reduce weaker solutions. The approximation of the 

multidimensional Pareto frontier is determined through the classifications of solutions. 

The designer of a MOO algorithm must be able to identify these optimal solutions and 

understand the importance of finding them.  

 

The end user applies a MOO algorithm to find solutions to a problem that has 

many costs. This means that the optimization algorithm must place equal importance to 

all objectives. The end goal of the algorithm is to produce a set of solutions that minimize 

all costs simultaneously. These solutions are called the dominant or nondominated 

Pareto-optimal solution set. Firstly, any member of the Pareto-optimal set dominates 

other solutions that are not within the set. Thus, this optimal solution has better costs 

values than the other non-optimal solutions in regard to all objectives. Secondly, no 

solution within the dominant set can be said to be better than the other with respect to all 
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objectives. In this case, solutions within the dominant set will produce different variations 

of minimal cost values. They will be better than each other regarding some objectives 

only.  

 

These rules allow the algorithm to identify if a solution is optimal. A solution 
Af1

 

is said to dominate solution  
Bf1

  if both conditions are met:  

 

1. Solution 
Af1

  is no worse than 
Bf1

  in terms of all objectives. 

2. Solution 
Af1

  is strictly better than 
Bf1

  in at least one objective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
                                                

 

 

Here, solution A, 
Af1

 is defined as dominating solution B, 
Bf1

  when both conditions are 

fulfilled. Firstly, solution B is dominated by A. Figure 4.18 shows that both of the 

objective values for solution A are better than B. Secondly, solution A is non-dominated 

by B. It can be seen that solution B doesn’t have any objective values that are more 

minimized than A. Lastly, solution A is non-inferior to B. Figure 4.18 shows two 

solutions A and B are located across different areas of the graph. Initially, solution A is 

classified as a nondominant solution and B as a dominated solution. As the iterations 

progress, there will be other solutions that dominate solution A as well. Slowly, the 

dominant solution set will slowly converge towards the Pareto optimal frontier. This will 

be accomplished through the constant comparison and maintenance of nondominated 

solutions.    

 

There are many studies that are capable of identifying the Pareto-optimal solution 

set. It can be tougher to obtain the Pareto frontier with more complex problems. Some 

works choose to focus on converging towards the Pareto frontier instead. This way, an 
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approximation of the Pareto optimal solutions is performed. The ranking process that is 

applied can be highly advantageous for real life problems even though the Pareto-optimal 

solution set isn’t identified. It is a tool to remove suboptimal solutions and maintain the 

best solutions within a population. It still offers the end user a collection of solutions that 

offer minimal costs and various trade-offs.   

 

4.4.3 DIVERSE SET OF SOLUTIONS 

The second goal of a multi-objective optimization algorithm is to maintain a diverse set 

of well minimized solutions. Typical diversity mechanisms such as the mutation operator 

may not be sufficient for maintaining a variety of solutions. In many cases, additional 

means of diversity management must be implemented when dealing with multiple 

objectives.  

 

There are different varieties of diversity management solutions. In this research, 

niching is used to identify solutions that are diverse. In biology, an environmental niche 

is a term that is used to define locations that contain organisms that cater specially to a 

particular species. Similarly, a niche market is a business term that identifies consumers 

that enjoy similar products. The common theme in all these definitions is that a niche 

describes a group of similar organisms or behaviours. The members of a niche 

collectively form a cluster. These concepts can also be used for diversity management 

within mathematical problems that have multiple objectives. The term niche is now 

applied within many MOO algorithms to group together solutions that have similar 

objective values.            

  

It is essential that an MOO algorithm produce a good Spread of various trade-off 

well minimized solutions amongst different objectives. The representatives of all solution 

optima are necessary to allow higher-level information to select the best solution. 

Working with multiple objectives produces many optimum solutions in the form of 

global and local optima as shown in Figure 4.19. Here, the algorithm gives priority 

towards the adequate representation and maintenance of the many local and global 

optima through generations. If the number of solutions within a cluster are too large, its 

optima is over represented within the population whereas, is the cluster size is too small, 

the optima becomes under represented. The algorithm must strike a balance between 

maintaining similar clusters of well minimized solutions at the risk of the removal of 

diverse clusters of suboptimal solutions.     

 

In this study, a niche function is used to define the spatial distribution of the 

solutions within the high dimensional space. There are three variables within the niche 

function. The first is the Euclidean distance between two solutions, 
ijd . Next, a sharing  
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function, )( ijdSh  is used to define the level of similarity between two solutions. The 

third variable is the niche size, share  which is shown in Figure 4.20. This variable 

defines the radius of similarity between solutions within objective space. Two solutions 

that are at a distance that is less than the niche size is considered to be a part of the same 

cluster. Thus, value of the niche size dictates the probability of detecting a higher or 

lower number of optima.  

 

 

  

 

 

 

 

 

 
                                      

 
 

 

For each solution, 
solNj ...,,1    the distance with all other solutions,  solNi ...,,1   is 

calculated through, 

 

   f

n

nn

j
n

i
nij Nnd ...,,1,()

1

min,max,   

                  (4.43)
 

where    fN    = number of objectives that need to be minimized 

 

The sharing function,  )( ijdSh  creates the comparison between two solutions as to 

sharing of each optimum.  

 

Fig. 4.20.  Adaptive niche radius within of clusters of solutions. 

 

Fig. 4.19.  Global and local optima of different objectives. 
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
                        (4.44) 

 

The summation of the sharing function defines the niche count, inc   for each solution is 

then used as a measure of the percentage of the total solutions that belong to a certain 

optimum. The application of niche count defines if a solution's niche is crowded. It 

determines how many solutions are within a solution's niche radius. It encourages the 

degradation of crowded solutions and the enhancement of cluster representative 

solutions.  

 

 

 )( iji dShnc                                                  (4.45)

 
 

As previously defined, this research combines a number of diversity management 

systems such as path mutation, similarity filtering and niching. This gives the algorithm 

the best chance at producing and keeping highly diverse Pareto-optimal solutions 

throughout the first to final generations.  

 

4.5 DIMENSIONALITY REDUCED MANY-OBJECTIVES OPTIMIZATION  

 

As initially described, this planning and optimization algorithm aims to generate a large 

collection of trajectories for multi-agent quadrotors. This section describes the DRMOO 

algorithm in detail. There are two main components within the DRMOO algorithm. The 

first subsection is the ranking of solutions through the creation of objective subsets. This 

study utilizes dimensionality reduction in order to generate smaller objective subsets 

[133,136]. The algorithm begins with the full objective set and creates objective subsets 

that hold no less than three cost functions. The full objective set and its subsets are used 

in rotation. Thus, the algorithm is able to perform both local and global optimization 

simultaneously. Whilst this process does mimic multi-objective optimization, the full set 

of objectives is still maintained within the algorithm.  

 

The secondary subsection of the algorithm involves the maintenance of diverse 

trajectories within the solution population. This study applies adaptive niching in order to 

identify clusters of similar solutions [139]. The adaptive niche radius changes across 

generations based on the average distance between neighbouring solutions. This adaptive 

diversity operator allows the algorithm to effectively identify local optima within the 

search space.  Each cluster of solutions only requires a small number of representative 

solutions. The niching process penalizes solutions that are within crowded clusters. 

Similar solutions within these crowded clusters are slowly removed from the population 
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as the generations’ progress. This way only the representative solutions of each local 

optima is maintained.  

 

The combination of dimensionality reduction and adaptive niching will transform 

the typical multi-objective optimization into an effective many-objectives optimization 

algorithm. The end user will be able to optimize many objectives within the multi-agent 

quadrotor trajectory planning algorithm.   

 

4.5.1 MANY-OBJECTIVES OPTIMIZATION 

 

Many-objectives optimization is an extension of multi-objective optimization. There is 

one key difference between the two varieties of optimization algorithms. The term many-

objectives optimization is typically dedicated to the optimization of more than three 

objectives, )(t  simultaneously that are often conflicting in nature. In this study, the 

values of all objectives are minimized across generations. Any objective that needs to be 

maximized can be converted to a minimization problem by multiplying the equation with 

-1. The many-objective optimization problem is defined as, 

 

 fn Nnttttt ...,,1,)](.....,),(),(),(min[)](min[ 321    (4.46)                                        

where Nf = number of objectives 

 

Most real-life issues can be solved in many ways. It is very rare that a problem only has 

one possible solution. Similarly, it is important to consider many costs before choosing a 

solution. Each solution will have its own advantages and disadvantages. This algorithm is 

designed with an understanding that there is never just one optimal solution that is best in 

regard to all cost functions. Whilst many studies choose to simplify and prioritize certain 

cost functions, real life flights require the consideration of many objectives 

simultaneously. As previously defined, there are works that do consider many objectives 

through an aggregated weighted cost function. The disadvantage of using weights is it 

creates bias during the optimizations process. Similarly, it also requires the end user to 

provide predetermined weight values. This can be challenging because the end user 

doesn’t have prior knowledge of how much each cost function can be minimized.  

 

Another way to solve a problem that has many costs is through multi-objectives 

optimization. The concepts that are applied within multi-objective optimization 

algorithms are also used within many-objective optimization problems. The solutions 

within a population can be ranked by comparing their level of dominance and diversity. 

One important factor to consider when applying these concepts to many-objective 

optimization is that it is a much more complex problem. The number of objective 

functions is higher in comparison to a basic multi-objective optimization problem. Thus, 
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some changes must be introduced when applying these concepts towards many 

objectives. 

 

The first challenge that occurs when applying many objectives within a typical 

multi-objectives optimization algorithm is that the selection pressure is greatly reduced. 

The optimization process involves two sections which are the ranking of well minimized 

solutions and the maintenance of diverse solutions at each generation. The ranking of 

solutions is highly challenging when dealing with many objectives. This occurs because 

the selection pressure towards optimal solutions are reduced due to the extensive number 

of dominant solutions within the population. Most solutions are labelled as dominant 

because it is difficult to dominate a solution in regard to all objectives. Thus, the 

algorithm is incapable of sorting the solutions based on their level of dominance. In this 

case, priority is skewed towards obtaining diverse solutions that may not be part of the 

optimal solution set. There is a crucial need for an additional mechanism to drive the 

optimization process towards maintaining both optimality and diversity.  

 

The next challenge that occurs within a many objectives optimization algorithm is 

the visualization of the Pareto frontier. In most multi-objective optimization studies, the 

authors are able to present proof of convergence. The images presented will show that the 

solutions within the final population have converged towards the Pareto front. This 

provides reassurance that the final solutions are indeed optimal. The image will also show 

the level of diversity within the final population. The Pareto frontier allows the end user 

to measure the effectiveness of the optimization algorithm. The visualization of the 

Pareto frontier within a many objectives optimization is extremely difficult. In some 

cases, it can be impossible. This is because the dimension of the frontier is dependent on 

the number of objectives that is implemented. A typical multi-objectives problem uses 

three or less objectives. This means that the Pareto frontier is a two or three-dimensional 

image. On the other hand, the Pareto front becomes a high dimensional image when 

many objectives are applied. Proof of convergence can be challenging when the Pareto 

front cannot be visualized.  

 

Here, we apply dimensionality reduction towards increasing selection pressure 

without the absolute removal of any objectives from the many-objectives optimization 

process. The algorithm optimizes the population the best it can until a termination point is 

obtained. It prioritizes the maintenance of well minimized solutions within the population 

as opposed to obtaining the Pareto optimal front. Thus, the solutions that are presented to 

the end user are well minimized and diverse.      
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4.5.2 DIMENSIONALITY REDUCTION  

 

In this study, a hybrid Pareto ranking algorithm that combines dimensionality reduction 

and partial Pareto dominance is applied. Initially, dimensionality reduction is applied to 

reduce the number of objectives that are optimized at one time. This process creates 

smaller groups of objective subsets from the full many objective set. Then, Partial Pareto 

dominance is utilized to rotate the smaller objective sets across generations [136]. This 

algorithm is used to increase selection pressure without the absolute removal of any 

objectives from the many-objectives optimization process. A flowchart that describes the 

optimization algorithm is presented in Figure 4.21.   

 

This algorithm is based on the level of conflict that exists between a collection of 

objective functions. It aims to approximate the amount of dependency between two 

objectives. The GA designed trajectories are used to estimate the values of each objective 

function. There are two types of relationships that can occur between two objectives. In 

the first case, the progression of two objective functions may show that the values of one 

objective increases with time whereas the other decreases. This shows that the two 

objectives are in conflict with one another. There is a low level of coupling or 

dependency between these two objectives. This is because the minimization of one 

objective will cause the maximization of the other objective. It is important to maintain 

both objectives within the optimization process since they must be independently 

minimized. In the second case, the values of two objectives increase or decrease together. 

This means that there is minimal conflict between the two objective functions. One can 

assume that if two objectives are minimized simultaneously, the algorithm only needs to 

consider one objective to optimize the other. This renders the nonconflicting objective 

redundant within the optimization process. The identification of redundant or 

nonconflicting objectives can be useful for a many-objectives optimization algorithm. 

The redundant objectives can be removed from the objective set without causing many 

changes to the ranking of the solutions. Thus, it allows the algorithm to increase selection 

pressure by comparing only a few objectives at a time.  

 

 There have been studies that apply dimensionality reduction within their works. 

In most cases, objectives that are considered to be redundant to the optimization process 

are removed from the objective set permanently. In this research, a nonconflicting 

objective function isn’t removed for good. The DRMOO algorithm also leaves room for 

error in case an objective is wrongly labelled as redundant. Here, the objective function is 

removed from its current objective subset and placed within another objective subset. The 

algorithm continues to test if the objective function is redundant within its new set. This 

way, there is a higher chance that the objectives within an objective subset are 

nonredundant and conflicting in nature. Each objective is also given equal importance 
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Fig. 4.21 Many-Objectives Optimization Algorithm Flow Chart. 
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through Partial Pareto optimization. Each of the many objectives is still equally important 

despite being broken into smaller subsets. This is executed by rotating the objective 

subset that is being used within the algorithm. Some studies that have applied this 

concept randomly create objective subsets. In this case, the algorithm is less efficient 

because there is a high chance of nonconflicting objectives being within the same subset. 

In this research, a more strategic manner of creating objective subsets is utilized through 

dimensionality reduction. 

 

The algorithm begins with the full set of objectives. At set interval points, an 

objective function that is considered to be nonconflicting is removed from its original set 

and placed into a new subset. This process continues until there are a few objective 

subsets. As the algorithm progresses, these objective subsets are used in rotation. At the 

end of each interval, the full objective set is reintroduced. The application of both the full 

objective set and subsets allow the algorithm to perform both local and global 

optimization simultaneously. Also, no objectives are fully eliminated. This is 

advantageous in cases where an error has been made in determining nonconflicting 

objectives. 

 

First, the full objective set, 
fullJ  is defined as the initial set prior to partitioning. 

Next, the partitioning of the objective functions is initialized. An objective function is 

selected at random from the current objective set, )(tn   and removed to create,
newJ  . The 

ratio,   is used to identify if the chosen objective function doesn’t conflict with the 

other objectives within its set [133]. This ratio is applied based on the concept that if an 

objective is nonconflicting, it doesn’t contribute to the ranking process. The ranking of 

the solutions is possible without the inclusion of a nonconflicting objective within its set. 

Thus, the number of dominant solutions remains within the same range despite the 

removal of a nonconflicting objective.  

 

]1,0[,   
current

JremovedJ NN                                (4.47)    

where   
currentJN  = total dominant solutions within current set            

             
removedJN  = total dominant solutions if the objective function is removed from 

its current set 

Parameter 
threshold determines the cut-off point where the removal of an objective 

function is acceptable. Upon exceeding the threshold value, the objective function 

perceived to be redundant is removed from its current set and merged into a new set.                   

                                                                            

thresholdnnew ifttJ   )]([)(                             (4.48) 
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As the algorithm progresses, more objective functions may be found redundant within the 

new. Thus, the initialization of more new sets, 
setsJ   begin to hold more combinations of 

objectives. This is only performed after every constant number of iterations as to partition 

the objectives at a steady rate. As the DRPPD progresses, each objective set is always 

inspected for nonconflicting objectives.  

 

)]();();(;)([)( ....21 tJtJtJtJtJ psubsetsubsetsubsetfullfsets               (4.49)  

 where     p = number of objective subsets 

 

The partitioning of the cost functions is halted when each set is reduced to a minimum of 

three objectives. Both the full and multiple subsets of the objectives are used in rotation 

as the algorithm progresses through iterations. The population set at each generation is 

the combination of the previous globally and current locally optimized solutions.  

 

The approximation of optimal solutions is performed through the classifications 

of solutions. The decision vector, t   is dominant for a many-objective optimization 

problem if there exists for no other, t  

 

}...,,1{),()( fnn Nntt                             (4.50) 

where     = full solution set  

 

The solutions are ranked and stored into the new generation’s parent population. In some 

cases, the dominant solutions do not fill the parent population. Thus, niching is performed 

on the remaining population in order to determine which are most diverse.  

 

4.5.3 ADAPTIVE NICHING 

 

In this study, the removal of solutions that are similar and maintenance of dissimilar 

solutions is executed through adaptive niching. Based on experimentation, the application 

of adaptive niching parameter by varying the radius of a niche, 
share  through each 

generation produces a better balance between trajectory diversity and dominance in 

comparison to a constant niche radius [139]. At each generation, the distance between 

each solution and its nearest neighbour is determined. The average of nearest neighbour 

distances, 
avgd  of all solutions is, 

 

),2,1,(,)(min popji
ij

avg Njid 


                        (4.51) 
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The average distance of the solution population is then used to determine the current 

niche radius.  

 

others

Nif
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c pop
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N
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f

2

1


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








                                        (4.52) 

                                                                                                               

The sharing function,  )( ijdSh  creates the comparison between two solutions as to 

sharing of each optimum. The summation of the sharing function defines the niche count, 

inc  for each solution is then used as a measure of the percentage of the total solutions 

that belong to a certain optimum. The adaptive adjustment of the niche radius is based on 

the changing sizes of clusters within the objective space. It encourages the degradation of 

crowded solutions and the enhancement of cluster representative solutions. Thus, the 

adaptive niche radius allows the maintenance of clusters of solutions that represent 

different optima.  

 

The next chapter will show the effectiveness of the hybridized trajectory planner 

in terms of producing a collection of optimized and diverse set of solutions. The MA-

RRF, GA and DRMOO will be applied collectively for both the MA-Spread and MA-

Formation missions.  

 

4.6 SUMMARY 

 

This chapter defines the 16 objective functions that are applied for both the MA-Spread 

and MA-Formation application. There are 8 costs that are applied for both missions. 

There are also 8 more costs that are designed specifically for each mission.  

 

The next section described the optimization process within the MA-Spread 

mission. The algorithm is designed to optimize the paths for individual agents on separate 

flight directions. Here, no agent is given priority over the other. Thus, the performance of 

any agent isn’t degraded for the sake of the other. This is achieved by optimizing the 

combination of multi-agent paths at each generation. The MA-Formation formation 

configuration design was also defined within this chapter. A dynamic formation planner 

is run before the optimization process. High resolution obstacle detection and free space 

contour definition is paramount to the efficient planning of formation shapes. Thus, the 

dynamic formation planner designs formation shapes that allow the agents to morph into 

the free space contour seamlessly. The algorithm aims to derive well minimized reference 

trajectories that encourage formation maintenance and minimize complexity. Here, 

emphasis is placed on collision avoidance, formation rise time and the number of 
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variations of formation design per path. Lastly, the DRMOO ranking algorithm is defined 

in detail. This algorithm combines both partial dimensionality sorting with full high 

dimensionality optimization. The algorithm is designed to focus on the minimization of 

all objectives as opposed to mapping the Pareto front with full accuracy.  

 

In the next chapter, we then utilize the many-objectives optimization algorithm to 

show its versatility and robustness within the MA-Spread and MA-Formation application. 

The minimizations of the objective functions within both missions are analysed. The 

results will show the algorithm’s ability to sort and rank the path combinations at each 

generation. The final generation’s well minimized and diverse multi-agent trajectories 

within the three test environments are also presented.  
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CHAPTER 5: MULTI-AGENT QUADROTOR UAVS IN SPREAD 

AND FORMATION FLIGHT MISSIONS  

 

The previous chapters have presented the different subsections that make up the offline 

long-range multi-agent quadrotor UAV path planning algorithm. Firstly, Chapter 3 showed 

how the combining MA-RRF and GA can lead to a path planner that uses a multi-agent 

UAV system to its advantage. These algorithms can generate a large collection of 

hybridized paths for multiple agents across many generations. Next, Chapter 4 presented 

16 different objective functions that will be used by the DRMOO algorithm to rank the 

multi-agent trajectories. The feasibility of each designed path and the values for each 

objective function can be estimated by the parallel run multi-agent quadrotor UAV control 

system. Lastly, this chapter will evaluate the effectiveness of the path planning and 

optimization algorithm within the MA-Spread and MA-Formation missions. Both 

applications are fully tested across three environments which are the high-rise cityscape, 

highly cluttered indoor and mountainous terrain.     

 

The first section presents the simulation results for the MA-Spread spatially spread 

flight scenario. In MA-Spread, the algorithm faces the challenge of navigating 4 agents 

whilst gathering sensory data through full exploration across different terrains. Here, the 

various combinations of paths produced by the algorithm at the final iteration for all three 

environments are shown. The second part of this chapter presents the simulation results of 

the trajectory planner within the MA-Formation mission. This application requires the 

algorithm to generate a collection of well minimized formation reference trajectories for 8 

quadrotors. In MA-Formation, the MA-RRF paths of one agent are applied as the initial 

formation reference trajectory population. These reference trajectories will be used as the 

input for the dynamic formation planner. The results within this chapter will show if the 

dynamic formation planner can create fast and adaptive formation shapes across all 

environments. It also determines if the formation planner can generate independent 

trajectories for each agent within its constantly changing formation structure.    

 

This chapter showcases a variety of results and findings within both the MA-Spread 

and MA-Formation missions. In the beginning, the results of the optimization algorithms’ 

operators are analysed for both applications. Here, the development of the dimensionality 

reduced ranking process and adaptive niching are shown. It is important to note that this 

work isn’t attempting to obtain a solution set that converges towards the Pareto frontier. It 

is more focused on applying the concepts of many optimization algorithms. This project 

implements the Pareto optimal ranking process to maintain good solutions within a 

population. Thus, the goal of the algorithm is to continue to minimize the objective values 

whilst maintaining a diverse solution population. The multi-agent quadrotor UAV 

trajectories within each mission must have different strengths and weaknesses so that the 
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end user is presented with a diverse collection of solutions.  Next, the values for all 16 

objectives across all generations are presented. The final generation is chosen based on the 

minimization of all objectives as well as the diversity of the trajectories. The final values 

for each objective function is shown and analysed. Finally, the path combinations that are 

maintained within this final generation are shown through three-dimensional imagery. 

Lastly, the objective values for each combination is presented in table form.  

 

This chapter aims to show the variety of information that will be presented to the 

end user at the end of the trajectory optimization process. It defines the importance of 

providing easy to understand knowledge for the end user so that they can make a 

knowledgeable choice for their mission. It also allows the end user to compare each path 

option visually. It also allows the end user to take into consideration their post-processing 

objective preferences. The data that is presented here is only the results of the final 

generation out of many iterations. It is important to note that there are thousands more 

options in the other generations if the end user requires even more variety.     

 

5.1 MA-SPREAD DIMENSIONALITY REDUCED MANY-OBJECTIVES 

PARAMETERS 

 

Firstly, the progression of the adaptive operators is shown in Figure 5.1-5.2 for Cityscape 

1, Indoor 1 and Mountain 1. The constant that were used in the MA-Spread application are 

shown in Table 5.1. Each objective subset is run for 5 iterations with a singular run of the 

full set of objectives. These figures show the changes that occur in terms of dominance and 

diversity.  

 

Figure 5.1 shows that there are reoccurring peaks where a large percentage of the 

population are nondominated solutions. Here, most solutions are ranked as dominant when 

the full objective set is considered. Thus, the only manner of comparing solutions is 

through its level of diversity. This causes the members of each generation to be filled with 

suboptimal solutions. Convergence towards optimality is possible with the introduction of 

objective subsets during intervals. This can be seen through the existence of lower peaks 

that occur during the rotation of objective subsets. The ranking of solutions based on 

dominance is possible given that a smaller number of solutions are nondominated. As long 

as these low peaks frequently dip below half of the population size, the future generation 

parent population remains partially filled with nondominated solutions.  

 

Adaptive niching is applied for secondary ranking of remaining solutions. Figure 

5.2 and shows the changes of niche radius size by adapting to the diversity of the current 

population. If a constant value for niche radius was used, the increase or decrease in 

distances between solutions as the generations’ progress won't be represented. With many-



161 

 

objectives optimization, the sizes of clusters will vary as the algorithm evolves. With 

adaptive niching, solutions that are similar in estimated objective values are gradually 

removed from the population leaving representative solutions of various clusters to survive 

to the next generation. Even though the distances between clusters do not increase 

immensely, maintenance of the niche radius within a small range shows the preservation 

of diverse solutions across generations. 
 

 
 

 

5.2. MA-SPREAD ACROSS A HIGH-RISE CITYSCAPE  

 

The cityscape environment holds many unique challenges for trajectory planning and 

optimization algorithm. This test space has a large amount of narrow passages that are 

similar to a maze. The buildings are tall and don’t allow the agents to fly above it. Thus, 

the designed paths must not collide with these buildings. It must also contain minimal 

aggressive turns across the building’s sharp corner bends.  

 

There are three varieties of information that are provided to the end user for 

Cityscape 1. These are tables, graphs and imagery. Figure 5.3-5.4 shows the progression 

of the objective values at each generation. Next, Table 5.2 shows the average cost values 

of the entire trajectory population for the final generation. The paths for all four quadrotors 

are presented in Figure 5.5. Lastly, Figure 5.6-5.8 shows the various numbers of 

combinations within the final population. Table 5.3 is attached to compare of these 

combinations in terms of their trade off values for all objective functions. Post 

determination of the best combination for the end user needs can be performed based on 

these values. Here, we evaluate the best and worst choices between the presented 

combinations. This section shows that the hybridized algorithm successfully produces a 

collection of path combinations. These combinations are well optimized and there are 

different advantages to each choice.   
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Fig. 5.1. Number of dominant solutions within the population. 

 

Fig. 5.2. Adaptive niche radius across generations. 
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5.2.1 MANY OBJECTIVES VALUES  

 

As previously defined, each environment is run for 100 generations. It is important that all 

the objectives are given the time to optimize their values. The final generation is chosen 

based on the minimization of the many objectives. The final generation can be chosen if 

the cost values do not decrease any further. The values for each objective are easily 

obtained from the shared database. The choice for the final generation is also dependent on 

the level of diversity within the path population. The end user can see if the paths within 

the population are varied in direction through the imagery that is provided. 

 

 Figure 5.3-5.4 shows the progression of all objectives across the generations for 

the Cityscape 1 environment. The graphs show that initially most objectives decrease at a 

fast rate. The values of the cost functions then decrease at a slower rate as the generations’ 

progress. The final generation is set at the 62nd iteration. This is because objective 2,6,8,9 

and 12 only meet their minimal point after the 50th generation. There is no increase in the 

mean values of all objective functions. The graphs also show that the values for objective 

2 and 5 are well maintained. The Cityscape 1 environment has extremely narrow passages. 

The agents often fly across similar areas. Thus, in most combinations the path nodes are 

well spread across the height of the environment. Due to this, it can be tough to minimize 

the height cost. The value of the spline deviation error isn’t an issue as it is still maintained 

at a very small value. This cost is also difficult to optimize because it is dependent on the 

control system as well as the node-to-node distance within a path. On the other hand, all 

the other costs are well minimized.  

 

Table 5.2 shows that the mean values of all the 12 objectives at the 62nd iteration.  

The data shows that the cost values are well minimized or maintained within the final 

generation. It shows that the spline deviation cost is maintained across generations. The 

altitude cost is slightly minimised by 5%. Similarly, the number of safety zone breaches 

has a minor reduction of 2%. The amount of highly explored space is reduced by 12% 

whereas the number of sensory data overlap is minimized by 22%. These values aren’t as 

high as the reduction within the other environments because of its constricted nature. There 

isn’t much space for the agents to move between the buildings. Despite this, Figure 5.5 

shows that the narrow passages are well explored. 

 

All the other objectives are well minimized with a more than 30% reduction in 

value. The path length for the trajectory combinations is reduced by 37%. This shows that 

the paths are much shorter than the initial MA-RRF paths. The number of goal node 

deviations is also minimized by 45%. This proves that the paths move more directly to the 

goal node as well. Next, the jerk cost for the path combinations is lessened by 40%. The 

lower value of the jerk cost shows that the paths hold less aggressive turns across the 
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building’s sharp corners. The cost for time optimality shows that the agents are able to fly 

at a speed that is 50% faster. Similarly, the flight time has reduced from about 50 to 30 

minutes per agent. The path combinations allow the agents to maintain connectivity at 51% 

more than the initial population. Lastly, there is 77% less possible collisions between the 

quadrotors in a team. Table 5.3 shows that nearly all combinations have zero possible 

collisions except for a few. The data shows that the trajectory optimization algorithm for 

the MA-Spread mission across the Cityscape 1 environment successfully minimizes the 

cost functions.     
 

 
(a) Path length objective values across generations.             (b)  Flight height objective values across generations.          

 

 
      (c)    Goal deviations objective values across generations.     (d)      Jerk cost objective values across generations.          

 

      
(e)    Spline deviation error objective values across generations. (f)  Time optimality objective values across generations.          
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Fig. 5.3. MA-Spread Cityscape: Progression of the objectives 1-6 across generations. 
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(a) Flight time objective values across generations.  (b) Connection breaches objective values across generations.          

 

  
(c)Possible collisions objective values across generations. (d) Safety zone breaches objective values across generations.          

 

 
(e) Uncertain grid coverage objective values across generations. (f) Sensory overlap objective values across generations.          
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Description Value Description Value Description Value Description Value 

Number of Paths 

Combinations 
30 Minimum Agent-to-Agent Distance 10m 

Population 

size 
30 

rexternal 50m 

Number of agents 4 Number of Gaui 330X-S Agents 2 
Selection 

Rate 
0.5 

[ dij,min , dij,max ] [ -5, 5] m 

Terrain Grid Block Size 30m3 Gaui 330X-S Agents Maximum Fuel 15mins dgoal 50m tcollision 1 

Network Decay Range 0.75  Number of Fyetech Agents 2 dlink 10m threshold  0.8 

Obstacles Boundary Size obs 6m Fyetech Agents Maximum Fuel 10mins dsimilar 10m c 1 

Fig. 5.4. MA-Spread Cityscape 1: Progression of the objectives 7-12 across generations. 

 

TABLE 5.1: MA-SPREAD PARAMETERS 
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ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

( no grid 

block) 

overlap 

1 

max 5006.70 136.90 6136.00 176.24 0.13 2.70 15420.00 776.00 290.00 2314.00 4050.90 159.00 

mean 3802.20 111.35 4761.50 137.77 0.11 1.21 11400.00 388.80 47.00 1698.30 2398.10 116.97 

min 2998.10 92.35 2895.00 105.45 0.08 0.16 8259.40 148.00 0.00 1087.00 1188.00 87.00 

62 

max 2937.30 127.93 3389.00 97.61 0.13 2.58 12036.00 346.00 112.00 2517.00 3281.70 119.00 

mean 2393.10 106.21 2626.30 82.81 0.11 0.61 7986.50 191.90 10.87 1668.60 2111.40 90.87 

min 2058.80 79.16 1896.00 63.92 0.08 0.06 5660.10 150.00 0.00 989.00 1344.90 64.00 

 % 
37.06 4.62 44.84 39.89 0.00 49.59 29.94 50.64 76.87 1.75 11.96 22.31 

TABLE 5.2: MA-Spread HIGH RISE CITYSCAPE 1 MANY-OBJECTIVES OPTIMIZATION RESULTS. 
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5.2.2 TRAJECTORY POPULATION 

 

The MA-Spread mission requires the optimization algorithm to minimize the cost of the 

entire team of agents as a singular entity. Each path combination is sorted and ranked 

according to their collective objective values. Thus, the number of unique paths per agent 

at each generation is dependent on the path combinations that survive the selection process. 

 

Figure 5.5 shows the unique paths that have been maintained within the 62nd 

population. The individual paths for each agent are presented in a different colour. There 

are no obstacle collisions despite the large number of buildings. Similarly, the paths are 

capable of smoothly bending around sharp corners. The usage of minimal jerk fifth order 

splines is proven to be useful in minimizing the number of aggressive manoeuvres. The 

images show that the paths for an agent are diverse and well spread across the terrain. This 

means that the level of diversity that was seen within the initial MA-RRF paths has been 

maintained across generations. It also shows that each path combination is diverse as well. 

Each agent’s paths could create thousands of possible combinations. The optimization 

algorithm must be capable of only maintaining combinations that produce minimal cost 

values. Figure 5.6-5.8 shows how these unique paths create different path combinations. 

The 30 path combinations make up the entire population for the final generation.        

 

The paths within the Cityscape 1 environment for the four agents are shown through 

various colours. Figure 5.6-5.8 shows the path nodes of the first to last agent which is 

shown in magenta, red, blue and green. In many cases, the best choice in terms of an 

objective isn’t apparent to the naked eye. Firstly, this is because the imagery needs to be in 

three dimensions to view the progression of the path in all directions. Secondly, this is due 

to the adaptive nature of the path nodes. The objective values will differ for each 

combination since the paths are padded based on their node to node distances as well as 

curvatures. It is the data that is provided to the end user that clearly shows the trade-off 

values for each choice.  

 

The first combination has many nodes across the lower part of the terrain. It has the 

minimum altitude cost. On the other hand, combination 29 has the most nodes across higher 

parts of the Cityscape 1 environment. Thus, it has the maximum altitude cost. Combination 

5 produces flight paths that allow the agents to fly faster than quadrotor’s average velocity. 

This option has the minimal value in terms of time optimality and as well as the best 

coverage of uncertain terrain. Combination 6 is comprised of paths that produce the 

shortest paths, least goal deviations, lowest jerk cost and minimum fuel consumption. 

Figure 5.6(f) shows that all the agents fly directly towards their destinations except for 

agent 2. Table 5.3 shows that most of the combinations produce trajectories that have zero 

possible collisions. Choosing combination 10 leads to paths that have the highest amount 
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of possible agent-to-agent collisions. Figure 5.6(j) shows that there are many path 

subsections where the agents are flying within proximity of each other.  

 

The option with the least number of communication network decay is combination 

12. Here, the agents do not fly further than the communication range at each point in time. 

Option 16 has the least number of sensory data overlap whereas option 20 has the most. It 

can be seen in Figure 5.7(f), the paths progress across different sections of the terrain 

without too many overlaps. Similarly, Figure 5.7(j) shows that many nodes cross the same 

areas within the terrain. Combination 24 has paths with many consecutive sharp turns 

which contribute to a high jerk cost. Lastly, option 30 produces paths with minimal possible 

collisions and safety zone breaches. Figure 5.8(j) shows that many nodes are places away 

from the boundaries of the buildings. Each path combination is well minimized and has its 

own advantages. Thus, the end user can make a final decision based on their priorities.  

 

As expected, all combinations have been well minimized as seen with the reduction 

or maintenance of mean values in Table 5.2.  This proves that the many-objectives 

algorithm successfully optimized the trajectory planning process for spread flight within 

the Cityscape 1 environment through the approximation of the Pareto front. The hybridized 

algorithm may not have fully extracted Pareto optimal solutions but has provided a diverse 

as well as minimized collection of trajectories. Based on post processing preferences, the 

strengths of each combination will aid in the final solution choice. 
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(a) Top view of agent 1’s paths within the final generation.  (b) Side view of agent 1’s paths within the final generation.  

(c) Top view of agent 2’s paths within the final generation.  (d) Side view of agent 2’s paths within the final generation. 

(e) Top view of agent 3’s paths within the final generation.   (f) Side view of agent 3’s paths within the final generation.  

(g) Top view of agent 4’s paths within the final generation. (h) Side view of agent 4’s paths within the final generation. 

 

 Fig. 5.5. MA-Spread Cityscape 1: Final generation’s multi-agent unique trajectories. 
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(a) Multi-agent trajectories within combination 1.               (b) Multi-agent trajectories within combination 2.           

 
        (c) Multi-agent trajectories within combination 3.                    (d) Multi-agent trajectories within combination 4. 

 
      (e) Multi-agent trajectories within combination 5.                    (f) Multi-agent trajectories within combination 6. 

 
       (g) Multi-agent trajectories within combination 7.                   (h) Multi-agent trajectories within combination 8. 

 
       (i) Multi-agent trajectories within combination 9.                   (j) Multi-agent trajectories within combination 10. 

Fig. 5.6. MA-Spread Cityscape 1: Multi-agent path combination 1-10 for the final generation. 
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         (a) Multi-agent trajectories within combination 11.            (b) Multi-agent trajectories within combination 12.           

 
         (c) Multi-agent trajectories within combination 13.            (d) Multi-agent trajectories within combination 14.   

 
       (e) Multi-agent trajectories within combination 15.              (f) Multi-agent trajectories within combination 16.   

 
      (g) Multi-agent trajectories within combination 17.               (h) Multi-agent trajectories within combination 18.   

 
      (i) Multi-agent trajectories within combination 19.                 (j) Multi-agent trajectories within combination 20.   

 
Fig. 5.7. MA-Spread Cityscape 1: Multi-agent path combination 11-20 for the final generation. 
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           (a) Multi-agent trajectories within combination 21.             (b) Multi-agent trajectories within combination 22.   

 
          (c) Multi-agent trajectories within combination 23.              (d) Multi-agent trajectories within combination 24.   

 
         (e) Multi-agent trajectories within combination 25.              (f)  Multi-agent trajectories within combination 26.   

 
          (g) Multi-agent trajectories within combination 27.            (h) Multi-agent trajectories within combination 28.   

 
          (i) Multi-agent trajectories within combination 29.             (j) Multi-agent trajectories within combination 30.   

Fig. 5.8. MA-Spread Cityscape 1: Multi-agent path combination 21-30 for the final generation. 
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CITYSCAPE 1 

Spread 

COMBINATION 

PATH 

LENGTH 

(meters) 

ALTITUDE 

COST 

(meters) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

ERROR 

(m) 

TIME 

OPTIMALITY 

(ratio) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no breach) 

TERRAIN 

COVERAGE 

(% free space) 

SENSORY 

DATA 

OVERLAP 

(grid block 

overlap) 

1 2386.49 79.16 2287.00 76.92 0.13 0.28 6759.67 153.00 0.00 1636.00 1578.29 72.00 

2 2937.28 94.22 2733.00 90.12 0.12 0.13 9747.77 201.00 0.00 1401.00 1446.83 99.00 

3 2227.84 104.82 2401.00 67.33 0.13 0.12 7034.58 160.00 0.00 1315.00 1777.68 98.00 

4 2438.70 94.48 2487.00 72.41 0.13 0.23 5988.06 155.00 0.00 1245.00 1500.64 98.00 

5 2653.05 112.69 2685.00 85.40 0.12 0.06 7422.19 269.00 8.00 1381.00 1344.90 107.00 

6 2058.81 91.50 1896.00 63.92 0.12 0.19 5660.12 158.00 0.00 1607.00 1699.26 86.00 

7 2524.89 105.50 2119.00 84.40 0.12 0.11 6503.21 153.00 0.00 1352.00 2022.23 88.00 

8 2554.88 88.43 2888.00 84.03 0.12 0.36 9734.61 160.00 0.00 2193.00 1905.15 96.00 

9 2406.43 96.00 2383.00 84.69 0.11 0.42 7669.07 238.00 0.00 1459.00 2194.56 95.00 

10 2157.09 113.96 1999.00 79.17 0.11 0.37 6348.65 172.00 112.00 1899.00 2015.74 78.00 

11 2318.55 104.72 2818.00 75.09 0.13 0.15 6005.96 226.00 0.00 2096.00 1603.62 102.00 

12 2656.35 81.70 2656.00 85.65 0.13 0.14 7215.72 150.00 0.00 2062.00 1697.65 104.00 

13 2121.26 104.57 2429.00 74.47 0.11 0.16 6734.19 171.00 0.00 2078.00 2072.60 99.00 

14 2629.37 104.10 2757.00 92.07 0.10 1.91 9524.38 213.00 0.00 1066.00 2337.02 76.00 

15 2415.26 119.05 2565.00 86.05 0.11 0.13 6323.50 302.00 0.00 1266.00 1747.79 85.00 

16 2095.86 93.32 2114.00 69.75 0.12 0.28 5795.51 346.00 0.00 1268.00 1437.06 64.00 

17 2510.99 98.32 2581.00 83.94 0.12 0.31 7854.32 158.00 0.00 1070.00 2171.54 93.00 

18 2170.38 122.61 2568.00 80.13 0.11 2.31 8489.86 212.00 0.00 1737.00 2328.13 89.00 

19 2747.60 106.84 2813.00 83.62 0.11 0.48 12035.59 195.00 0.00 2517.00 1524.13 118.00 

20 2604.30 99.61 3008.00 95.05 0.12 0.63 7332.55 307.00 0.00 1227.00 1880.87 119.00 

21 2147.71 122.60 3068.00 90.74 0.08 2.58 8964.75 180.00 60.00 1528.00 3143.11 110.00 

22 2162.45 111.69 2186.00 72.45 0.11 0.31 7369.78 160.00 38.00 1727.00 2325.91 87.00 

23 2425.23 106.44 2492.00 90.72 0.11 0.15 7881.72 155.00 48.00 1010.00 2120.43 81.00 

24 2624.97 111.30 2958.00 97.61 0.10 0.40 9299.75 189.00 0.00 1739.00 2668.80 86.00 

25 2388.72 115.41 3023.00 81.97 0.10 0.43 10744.93 160.00 0.00 2387.00 2788.20 90.00 

26 2320.35 115.26 3389.00 90.74 0.09 2.48 9821.61 160.00 0.00 2368.00 2826.54 79.00 

27 2484.46 117.01 2951.00 91.67 0.10 2.14 10347.60 186.00 10.00 2109.00 3005.95 81.00 

28 2131.98 121.21 2232.00 82.67 0.10 0.27 7678.80 153.00 50.00 2046.00 2203.98 80.00 

29 2323.86 127.93 3371.00 85.34 0.10 0.35 8454.96 160.00 0.00 2279.00 3281.74 84.00 

30 2167.38 121.84 2931.00 86.31 0.09 0.43 8851.32 155.00 0.00 989.00 2690.90 82.00 

TABLE 5.3: MA-Spread HIGH RISE CITYSCAPE 1 FINAL GENERATION’S RESULTS. 
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5.2.3 TYPES OF SIMULATION MODELS  
 

Three different simulation models are presented for the cityscape environment. The first 

environment was discussed within Section 5.2.1-5.2.2. This section compares the 

performance of the algorithm across two more cityscapes. These environments have 

different number of buildings that are placed at random locations. Table 5.4 shows the 

differences between these models. The simulations that were performed with Cityscape 2 

and 3 prioritized lower running time to test the abilities of the algorithm to plan paths across 

a variety of test spaces.   

 

Firstly, in Cityscape 2 and 3, the algorithm is sped up by increasing the maximum 

distances between two neighbouring path nodes. Only nodes that are more than 20 meters 

apart are padded with additional nodes between them. This means that the agents will have 

less stop points across their final trajectories. Secondly, a path in Cityscape 2 and 3 is only 

sampled once to generate a smooth spline. On the other hand, the paths within Cityscape 1 

in Section 5.2.2 was maintained across generations. These paths were resampled at every 

generation so that the path became smoother at every generation. The data in Figure 5.9-

5.10 and Table 5.5-5.6. shows the effects of using low resolution paths with less nodes as 

opposed to high resolution path with more nodes.  
  

 

The results in Table 5.5 and 5.6 show that all objectives but one is well minimized within 

both the Cityscape 2 and 3 environments. In fact, six out of the twelve objectives are 

minimized at a larger percentage than Cityscape 1. The paths in both these environments 

have less nodes in comparison to Cityscape 1 due to their lower sampling rate. This means 

that the quadrotors are flying longer distances and any deviation from their smooth paths 

can accumulate over distances. Thus, the spline deviation cost in Cityscape 2 and 3 isn’t 

easily minimized. On the other hand, Cityscape 1 has a higher sampling rate across 

generation which reduces the error propagation across two nodes. The control system can 

minimize the small amount or error across them.  

These results show that the algorithm is applicable within a variety of cityscape 

simulations. The user has the option of increasing the node-to-node sample rate to 

minimize the spline deviation error. They also have the option of reducing the processing 

time by reducing the sampling rate. The results within Table 5.5 and 5.6 show that the 

spline deviation is well within the safety distance of 2 meters between two agents.    

SIMULATION HIGH-RISE 

CITYSCAPE 1 

HIGH-RISE 

CITYSCAPE 2 

HIGH-RISE 

CITYSCAPE 3 

RANDOM BUILDINGS 18 25 25 

BUILDING SIZE 20m<length<150m 10m<length<50m 8m<length<48m 

ROADS narrow wide wide 

MAX DISTANCE BETWEEN NODES 2m 20m 20m 

SPLINE SAMPLE RATE 5 samples/iteration 5 samples/simulation 5 samples/simulation 

TABLE 5.4: MA-Spread HIGH RISE CITYSCAPE1-3 PARAMETERS. 
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(a) Top and side view of agent 1’s paths.                          (b) Top and side view of agent 2’s paths. 

 
                        (c) Top and side view of agent 3’s paths.                              (d) Top and side view of agent 4’s paths. 

 

 

 
                      (a) Top and side view of agent 1’s paths.                          (b) Top and side view of agent 2’s paths. 

 
                       (c) Top and side view of agent 3’s paths.                              (d) Top and side view of agent 4’s paths. 

 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

(ratio) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 4862.24 152.71 990.00 95.86 2.22 7.62 2401.31 79.00 38.00 71.00 175.30 220.00 

mean 3154.39 126.79 672.83 75.12 0.93 3.35 1617.19 35.90 6.20 34.10 48.59 157.26 

min 1995.19 97.90 335.00 47.19 0.47 0.87 837.92 10.00 0.00 4.00 3.92 110.00 

75 

max 1995.45 138.05 320.00 32.90 1.77 3.70 1006.89 29.00 4.00 45.00 55.75 112.00 

mean 1590.42 107.86 241.23 25.93 1.50 0.93 521.86 12.07 0.40 26.80 22.87 84.03 

min 1371.73 71.49 150.00 20.59 1.13 0.30 346.67 9.00 0.00 11.00 0.13 71.00 

 % 49.58 14.93 64.15 65.48 -61.02 72.29 67.73 66.38 93.55 21.41 52.93 46.57 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

(ratio) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 4447.09 144.49 1011.0 106.49 1.37 7.84 2221.89 101.00 32.00 53.00 284.82 218.00 

mean 2894.31 114.45 668.63 72.62 0.84 2.77 1461.17 24.30 2.93 23.47 112.80 141.03 

min 1712.58 85.87 195.00 28.06 0.51 0.00 513.09 10.00 0.00 4.00 7.41 73.00 

64 

max 1740.61 129.29 259.00 28.34 1.75 3.56 752.16 44.00 8.00 35.00 29.00 83.00 

mean 1576.41 107.30 200.33 25.07 1.53 1.05 466.14 17.20 0.60 15.70 9.43 72.67 

min 1347.41 80.64 100.00 20.54 1.37 0.00 329.23 9.00 0.00 2.00 0.00 55.00 

 % 45.53 6.25 70.04 65.48 -82.14 62.07 68.10 29.22 79.52 33.11 91.64 48.47 

TABLE 5.5: MA-Spread CITYSCAPE 2: MANY-OBJECTIVES OPTIMIZATION RESULTS. 

 

Fig. 5.9. MA-Spread Cityscape 2: Final generation’s multi-agent unique trajectories. 

 

Fig. 5.10. MA-Spread Cityscape 3: Final generation’s multi-agent unique trajectories. 

 TABLE 5.6: MA-Spread CITYSCAPE 3: MANY-OBJECTIVES OPTIMIZATION RESULTS. 
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This path planning and optimization algorithm contains many large and small subsections. 

Table shows the running time per generation for the for the MA-Spread mission within the 

cityscape test spaces. Here, the running time for the main subsections is compared to the 

time it takes to run the GA, MA-RRF Repair and DRMOO collectively. In this case, the 

smaller subsections of the algorithm are not identified individually.  

 

As previously defined, the paths that were generated across the Cityscape 1 are high 

resolution. Here, the node-to-node distance is no more than 2 meters. This produces paths 

that are easily trackable by the quadrotors and have minimal spline deviation error values. 

This advantage comes at the expense of a longer running time as shown in Table 5.7. 

Cityscape 2 and 3 that have lower resolution paths have a much shorter running time in 

comparison to Cityscape 1. These environments also have much lower running times for 

the multi-agent control system and the calculation of MA-Spread objective values.  

 

Table 5.7 also shows that the GA operators can create two child paths within 5 

seconds. It is the MA-RRF path repair process that requires more processing time. One 

main subsection of the MA-RRF path repair process is the collision check that is required 

when mapping the free space around obstacles. The collision check is also performed to 

identify which nodes are redundant within a planned path. In a small sized space, a collision 

check can run fast due to the minimal number of obstacles. In this study, large spaces with 

many obstacles will require the algorithm to perform many collision checks for each 

sample node.     These results show how different parameters can affect the error, running 

time and resolution of the paths across the high-rise cityscape environments. The 

adjustments of these parameters can be tuned according to the user’s preferences.  

 

 

5.3. MA-SPREAD ACROSS A HIGHLY CLUTTERED INDOOR 

ENVIRONMENT 

 

The next simulated environment for the MA-Spread application is the highly cluttered 

indoor space. This test environment challenges the path planner through its narrow entry 

points and varying sized clutter across each room. It can be difficult to maintain a diverse 

set of trajectories because the small number of entry ways between each room. This means 

that the quadrotors are forced to fly across the same doors and windows as they progress 

across the test space. There is a large amount of randomly placed clutter across each room. 

MA-SPREAD 

ALGORITHM CITYSCAPE 1  

(sec) 

CITYSCAPE 2 

(sec) 

CITYSCAPE 3 

(sec) 

GA + MA-RRF Repair + DRMOO 5758.21 913.96 627.77 

GA 4.973 0.09 %  1.11 0.12 % 0.67 0.11 % 

MA-RRF Repair 1963.49 34.10 % 332.67 36.40 % 155.11 24.71 % 

PD Control System 372.15 6.46 % 129.66 14.19 % 129.06 20.56 % 

Spread objectives 480.96 8.35 % 161.90 17.71 % 144.99 23.10 % 

Collision Check 2867.92 49.81 % 440.00 48.14 % 230.65 36.74 % 

TABLE 5.7: MA-Spread HIGH RISE CITYSCAPE 1-3 RUNNING TIME. 
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The path planning algorithm is capable of avoiding the clutter but the agents are once again 

restricted to flying in similar directions. The results show that the path planning algorithm 

is capable of minimizing the objectives whilst maintaining a diverse collection of paths.  

 

The results for Indoor 1 are presented in this section. Figures 5.11 and 5.12 shows 

the progression of the 12 objectives across all generations. Table 5.8 shows the average 

values of all path combinations for each objective within the final generation. The 

termination point for the Indoor 1 space is set at the 77th generation. This is the point where 

most objectives have been sufficiently minimized and path diversity is maintained. Next, 

the unique paths for each agent are shown in Figure 5.13. These paths will form the path 

combinations that are shown within Figure 5.14-5.16.    

 

5.3.1 MANY OBJECTIVES VALUES 

 

Figure 5.11 and 5.12 shows the max, mean and min value changes that occur with the 12 

objectives across 77 generations for Indoor 1. All objectives have been well minimized. 

The spline deviation error is maintained which is similar to the cityscape environment. As 

previously defined, the error is small in value and dependent on the control system. The 

algorithm is capable of maintaining the deviation error without an increase in value. It also 

shows that although most objectives are well minimized before the 50th generation, 

objective 2, 3 and 6 required more time to sufficiently reduce in value. 

 

Table 5.8 shows that all the 12 objectives in the final generation are well minimized 

or maintained. The value for the altitude cost has a small reduction of 3% in comparison to 

the initial MA-RRF path population. The Indoor 1 environment has a larger number of 

obstacles in comparison to the cityscape space. These obstacles make it difficult for the 

paths to only progress across the lower parts of the terrain. The path planning algorithm is 

also able to generate path nodes that avoid all clutter and walls. Despite this, the number 

of safety zone breaches is reduced by 38%. The space between rooms is large and can 

encourage communication network decay. At the 77th generation, the number of broken 

agent-to-agent connection is decreased by 39%.  

 

All of the other objectives are minimized more than 40% in comparison to the first 

generation. The path length for each combination is minimized by more than half. It is 53% 

less in length. Similarly, the number of goal deviations, flight time and jerk cost is 

minimized by 51%. The agents are able to fly at a speed that minimizes the time optimality 

cost by 46%. These reductions are difficult to accomplish because there are many path 

deviations that occur due to the clutter within the environment. The agents must 

aggressively manoeuvre around each obstacle and this may cause them to fly further away 

from the goal node. It also requires a large amount of time and fuel to move up and down 
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across the clutter. In comparison to the cityscape, there is a larger amount of possible agent-

to-agent collisions because the agents are all squeezing through the same entry points. The 

algorithm is able to reduce this value by 65%. Lastly, the amount of well mapped grid 

blocks that are visited is reduced by 49%. This means that the agents are visiting more 

uncertain areas. There is also a reduction of 42% in sensory overlap data. Overall, the 

algorithm is successful in producing a high percentage of objective value minimization.   

 

 
(a) Path length objective values across generations.                (b) Flight height objective values across generations.          

 
(c)    Goal deviations objective values across generations.        (d)      Jerk cost objective values across generations. 

 
(e) Spline deviation error objective values across generations.   (f) Time optimality objective values across generations. 
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Fig. 5.11. MA-Spread Indoor 1: Progression of the objectives 1-6 across generations. 
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(a)  Flight time objective values across generations. (b) Connection breaches objective values across generations. 

(c) Possible collisions objective values across generations. (d)Safety zone breaches objective values across generations. 

 
(e)Uncertain grid coverage objective values across generations.  (f)Sensory overlap objective values across generations. 
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Fig. 5.12. MA-Spread Indoor 1: Progression of the objectives 7-12 across generations. 
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ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

( no grid 

block) 

overlap 

1 

max 3142.70 49.93 8104.00 92.32 0.06 5.99 23307.00 1349.00 1050.00 43600.00 6819.70 138.00 

mean 2471.20 35.41 6752.90 72.57 0.05 3.61 16834.00 774.47 320.33 30744.00 5513.30 95.17 

min 1615.70 27.99 4878.00 48.70 0.04 2.29 11940.00 360.00 0.00 20213.00 3413.90 60.00 

77 

max 1381.00 50.57 3920.00 43.45 0.07 3.79 11445.00 2052.00 494.00 26197.00 4308.10 75.00 

mean 1167.70 33.28 3216.50 35.61 0.05 1.96 8067.80 475.87 111.33 19017.00 2794.40 54.77 

min 1000.20 21.95 2528.00 26.95 0.04 0.00 5599.70 296.00 0.00 12986.00 1953.30 35.00 

 % 
52.75 6.02 52.37 50.93 0.00 45.71 52.07 38.56 65.25 38.14 49.32 42.45 

TABLE 5.8: MA-Spread HIGHLY CLUTTERED INDOOR 1 MANY-OBJECTIVES OPTIMIZATION RESULTS. 
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5.3.2 TRAJECTORY POPULATION 

 

The unique paths for each agent within the 77th generation for Indoor 1 are shown in Figure 

5.13. Each unique trajectory is displayed in a different colour. The paths for all agents are 

diverse in nature with the exception of agent 2. The trajectories for agent 2 have many 

nodes across the lower part of the Indoor 1 space. Still, Figure 5.13(b) shows that there are 

paths that span across each room.   

 

The final population of path combinations is presented in Figure 5.14-5.16. These 

solutions are made up of the best combinations of each agent’s unique paths. The paths of 

the four quadrotor agents within the Indoor 1 environment are marked in brown, black, 

blue and green. The first combination holds paths with the least number of possible agent-

to-agent collisions. It also has the minimal value for time optimality as well as sensory data 

overlaps. Figure 5.14(a) shows that the paths for each agent are well spread and allow to 

agents to maintain a safe distance from each other. This also means that the agents collect 

sensory data from different parts of the environment. Figure 5.14(b) shows that 

combination 2 allows the agents to effectively fly across obstacles with the least number 

of safety zone breaches. The agents fly either above or below the clutter within each room.  

 

Option 10 is another great choice for the end user. It has minimal costs for the 

number of goal node deviations, jerk cost and flight time. Figure 5.14(j) shows that many 

of the agents fly directly towards their goal nodes. Combination 12 is the best choice if the 

end user requires minimal network decay between all agents during a mission. Figure 

5.15(b) shows that the agents are always within close proximity of each other. It can be 

seen in Figure 5.15(e) that option 15 produces paths at a lower altitude. This combination 

has the minimal cost in terms of flight height since many of the nodes are located at the 

lower parts of the environment. Combination 16 has the maximum cost for goal node 

deviation. Figure 5.53(f) shows that the path in blue for agent 3 travels a large distance 

away from the goal node before redirecting itself towards it. The most common goal for 

end users is to determine which combination produces the shortest paths.  

 

Figure 5.16(j) shows that combination 20 provides the paths with minimal travel 

distance. Three out of the four agent travel directly from the start to goal node. On the other 

hand, option 23 contains the paths with the most length. This would be an unfavourable 

choice for an end user that prioritises minimal flight time. Combination 29 offers the end 

user paths that travel across uncertain areas of the environment. This option allows the 

quadrotors to fly across areas that are least mapped within the cluttered rooms. Lastly, 

option 30 is the path with the most fuel consumption. It also produces paths that require 

the agents to fly at a less optimal speed. Figure 5.16(j) shows that the paths require the 

agents to perform many turns and travel further distances.  
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(a) Top view of agent 1’s paths within the final generation.  (b) Side view of agent 1’s paths within the final generation. 

 

 
(c) Top view of agent 2’s paths within the final generation.  (d) Side view of agent 2’s paths within the final generation. 
 

 
(e) Top view of agent 3’s paths within the final generation.   (f) Side view of agent 3’s paths within the final generation. 

 

 
(g) Top view of agent 4’s paths within the final generation.  (h) Side view of agent 4’s paths within the final generation. 

Fig. 5.13. MA-Spread Indoor 1: Final generation’s multi-agent unique trajectories. 
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            (a) Multi-agent trajectories within combination 1.              (b) Multi-agent trajectories within combination 2.      

 
            (c) Multi-agent trajectories within combination 3.              (d) Multi-agent trajectories within combination 4. 

 
             (e) Multi-agent trajectories within combination 5.             (f) Multi-agent trajectories within combination 6. 

 
           (g) Multi-agent trajectories within combination 7.              (h) Multi-agent trajectories within combination 8. 

 
            (i) Multi-agent trajectories within combination 9.              (j) Multi-agent trajectories within combination 10. 

 Fig. 5.14. MA-Spread Indoor 1: Multi-agent path combination 1-10 for the final generation. 
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      (a) Multi-agent trajectories within combination 11.                (b) Multi-agent trajectories within combination 12.      

 
      (c) Multi-agent trajectories within combination 13.                (d) Multi-agent trajectories within combination 14.   

 
    (e) Multi-agent trajectories within combination 15.                    (f) Multi-agent trajectories within combination 16.   

 
      (g) Multi-agent trajectories within combination 17.                  (h) Multi-agent trajectories within combination 18. 

 
       (i) Multi-agent trajectories within combination 19.                   (j) Multi-agent trajectories within combination 20.   

 
Fig. 5.15. MA-Spread Indoor 1: Multi-agent path combination 11-20 for the final generation. 
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          (a) Multi-agent trajectories within combination 21.            (b) Multi-agent trajectories within combination 22. 

 
            (c) Multi-agent trajectories within combination 23.            (d) Multi-agent trajectories within combination 24.   

 
          (e) Multi-agent trajectories within combination 25.              (f) Multi-agent trajectories within combination 26. 

 
          (g) Multi-agent trajectories within combination 27.             (h) Multi-agent trajectories within combination 28. 

 
         (i) Multi-agent trajectories within combination 29.               (j) Multi-agent trajectories within combination 30. 

Fig. 5.16. MA-Spread Indoor 1: Multi-agent path combination 21-30 for the final generation. 
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INDOOR 1 Spread 

COMBINATION 

PATH 

LENGTH 

(meters) 

ALTITUDE 

COST 

(meters) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

ERROR 

(m) 

TIME 

OPTIMALITY 

(ratio) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no breach) 

TERRAIN 

COVERAGE 

(% free space) 

SENSORY 

DATA 

OVERLAP 

(grid block 

overlap) 

1 1085.39 25.46 2812.00 32.69 0.06 0.00 6142.79 449.00 0.00 19387.00 2486.97 35.00 

2 1307.61 41.94 3219.00 35.30 0.06 1.76 7153.15 302.00 86.00 12986.00 2154.57 66.00 

3 1294.82 50.57 2823.00 39.62 0.07 1.55 6156.02 333.00 182.00 18346.00 2237.28 69.00 

4 1175.48 37.76 2986.00 30.05 0.06 1.56 6137.03 302.00 0.00 19138.00 2389.77 57.00 

5 1203.98 39.71 2852.00 39.40 0.06 2.04 7548.68 362.00 212.00 16623.00 2405.72 62.00 

6 1177.20 34.54 2745.00 32.41 0.06 1.68 6431.61 333.00 0.00 16357.00 2051.55 60.00 

7 1030.11 25.86 2955.00 33.23 0.05 1.98 7595.15 378.00 104.00 18041.00 2954.37 48.00 

8 1296.04 34.83 3611.00 36.81 0.06 2.05 8359.28 502.00 138.00 20248.00 2571.84 57.00 

9 1354.69 39.10 3448.00 43.45 0.06 2.13 7886.36 351.00 114.00 18861.00 2909.62 75.00 

10 1079.67 45.29 2528.00 26.95 0.06 1.09 5599.68 454.00 0.00 17030.00 3026.33 52.00 

11 1141.77 28.30 3469.00 39.31 0.05 2.31 9080.41 821.00 0.00 23208.00 2492.55 61.00 

12 1225.28 42.75 2927.00 35.01 0.06 1.40 6250.70 296.00 0.00 17162.00 1981.50 74.00 

13 1193.03 33.20 3042.00 35.71 0.06 0.14 6898.99 305.00 98.00 16176.00 3065.71 63.00 

14 1312.48 28.62 3602.00 36.33 0.05 1.89 8493.41 647.00 114.00 18781.00 3474.56 52.00 

15 1163.66 21.95 2997.00 40.44 0.05 1.62 9758.43 333.00 136.00 22119.00 2329.10 57.00 

16 1135.44 24.25 3920.00 31.99 0.06 2.54 8329.20 389.00 346.00 14520.00 4308.08 39.00 

17 1053.53 33.04 3007.00 32.61 0.06 0.56 7294.01 388.00 150.00 13163.00 3088.96 54.00 

18 1156.17 35.58 3072.00 34.02 0.06 1.70 6428.79 2052.00 220.00 19749.00 2450.70 46.00 

19 1061.08 28.36 3237.00 34.23 0.05 1.72 9336.19 304.00 52.00 18136.00 3475.99 44.00 

20 1000.19 34.39 3094.00 34.49 0.05 2.56 7466.83 388.00 494.00 22386.00 3100.97 46.00 

21 1289.80 30.68 3458.00 42.46 0.05 2.73 9933.63 671.00 246.00 23122.00 3863.67 46.00 

22 1216.31 31.72 3591.00 35.50 0.05 2.73 9515.10 567.00 0.00 19438.00 3449.72 58.00 

23 1381.01 31.53 3386.00 39.29 0.06 2.23 8998.37 296.00 126.00 17870.00 2245.42 66.00 

24 1151.37 38.26 3230.00 36.45 0.05 2.24 7760.31 296.00 96.00 20409.00 3109.21 52.00 

25 1087.80 31.88 3695.00 35.40 0.05 2.93 9371.13 304.00 0.00 20294.00 2784.12 48.00 

26 1084.84 28.77 3162.00 33.22 0.05 1.68 7486.46 399.00 108.00 15716.00 3046.03 51.00 

27 1095.03 26.74 3766.00 36.59 0.04 2.45 9455.15 320.00 204.00 18036.00 3044.83 57.00 

28 1082.19 32.22 3181.00 31.66 0.05 2.67 8954.63 514.00 114.00 21135.00 2730.27 45.00 

29 1107.19 33.69 3215.00 38.79 0.04 3.18 10768.54 656.00 0.00 26197.00 1953.30 59.00 

30 1088.22 27.41 3464.00 34.91 0.04 3.79 11445.30 564.00 0.00 25882.00 2648.52 44.00 

TABLE 5.9: MA-Spread HIGHLY CLUTTERED INDOOR FINAL GENERATION’S RESULTS. 
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This shows that even well minimized path combinations have their own disadvantages. As 

with the cityscape environment, all of the combinations within the Indoor 1 space are well 

minimized and have a variety of trade off values. The end user is able to use their post 

processing preferences in order to determine the best trajectory combination for their 

mission.         

 

5.3.3 TYPES OF SIMULATION MODELS  

 

Like the cityscape environment, three different simulation models are presented for the 

indoor environment. The first environment was discussed within Section 5.3.1-5.3.2. This 

section compares the performance of the algorithm across two more indoor test spaces. 

These environments vary in number of randomly placed clutter per room. Table 5.10 shows 

the differences between these models. The algorithm is sped up by increasing the maximum 

distances between two neighbouring path nodes within the Indoor 2 and 3. Only nodes that 

are more than 20 meters apart are padded with additional nodes between them. Also, a path 

in the Indoor 2 and 3 spaces is only sampled once to generate a smooth spline.  

 

 

The results of Indoor 2 in Table 5.11 -5.12 show that all the objectives except three are 

minimized at a larger percentage in comparison to Indoor 1. Similarly, all the objectives 

within Indoor 3 are minimized at a larger percentage in comparison to Indoor 1. The largest 

difference between the three environments is the increase in the spline deviation error 

across generations. This issue exists for the same reason that it occurs in Cityscape 2 and 

3. These paths are designed with larger node-to-node distances which can lead to larger 

error propagation. The agents still do not deviate more than the minimum neighbour-to-

neighbour distance of 2 meters.  

 

 The data for all three environments shows that the algorithm can perform well 

within the different variations of the indoor space. It can avoid different amounts of 

randomly placed clutter that vary in size. The user has the option of running a longer yet 

high resolution path planner as shown in Indoor 1. They also can run a much faster version 

of the algorithm with lower resolution paths as designed in Indoor 2 and 3 as shown in 

Table 5.13. The completion time for the algorithm across all three indoor variations  

SIMULATION HIGHLY 

CLUTTERED 

INDOOR 1 

HIGHLY 

CLUTTERED 

INDOOR 2 

HIGHLY 

CLUTTERED 

INDOOR 3 

RANDOM CLUTTER 8 6 4 

CLUTTER SIZE 1m<length<35m 2m<length<35m 2m<length<30m 

MAX DISTANCE BETWEEN NODES 2m 20m 20m 

SPLINE SAMPLE RATE 5 samples/iteration 5 samples/simulation 5 samples/simulation 

TABLE 5.10: MA-Spread HIGHLY CLUTTERED INDOOR 1-3 PARAMETERS. 
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(a) Top and side view of agent 1’s paths.                          (b) Top and side view of agent 2’s paths. 

 
(c) Top and side view of agent 3’s paths.                          (d) Top and side view of agent 4’s paths. 

 

TABLE 5.11: MA-Spread INDOOR 2: MANY-OBJECTIVES OPTIMIZATION RESULTS. 

 
(a) Top and side view of agent 1’s paths.                          (b) Top and side view of agent 2’s paths. 

 
(c) Top and side view of agent 3’s paths.                          (d) Top and side view of agent 4’s paths. 

 
TABLE 5.12: MA-Spread INDOOR 3: MANY-OBJECTIVES OPTIMIZATION RESULTS. 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 3017.45 59.40 838.00 73.51 1.68 8.18 2416.35 51.00 786.00 6104.00 383.89 121.00 

mean 1785.07 42.11 554.17 54.35 0.68 3.90 1425.83 27.17 84.07 2327.50 192.85 85.73 

min 938.45 24.90 156.00 21.03 0.33 1.14 308.02 12.00 0.00 354.00 51.16 37.00 

60 

max 1169.44 39.66 226.00 22.96 1.84 3.59 1017.14 38.00 64.00 1131.00 178.67 47.00 

mean 979.45 30.77 177.60 19.63 1.51 1.46 391.28 19.73 25.13 697.53 113.84 37.00 

min 858.65 20.91 139.00 15.93 1.19 0.00 240.18 10.00 0.00 413.00 53.22 26.00 

 % 45.13 26.93 67.95 63.88 -122.06 62.57 72.56 27.38 70.11 70.03 40.97 56.84 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 2940.20 54.43 1100.00 91.18 0.78 6.45 2700.72 570.00 404.00 3738.00 478.13 121.00 

mean 2116.15 40.58 750.50 68.74 0.55 3.66 1805.09 61.23 36.07 2107.37 235.62 90.20 

min 1404.37 20.65 422.00 47.71 0.37 2.14 832.33 17.00 0.00 747.00 66.13 59.00 

60 

max 1327.94 49.91 238.00 28.54 1.73 4.11 708.55 30.00 40.00 1023.00 118.83 57.00 

mean 972.29 36.27 187.10 20.74 1.36 1.73 404.08 17.27 13.73 639.83 57.58 39.43 

min 848.65 27.10 147.00 15.86 1.01 0.54 251.64 11.00 0.00 434.00 20.17 26.00 

 % 54.05 10.62 75.07 69.83 -147.27 52.73 77.61 71.79 61.94 69.64 75.56 56.29 

Fig. 5.17. MA-Spread Indoor 2: Final generation’s multi-agent unique trajectories. 

 

Fig. 5.17. MA-Spread Indoor 3: Final generation’s multi-agent unique trajectories. 
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are faster than the cityscape environments because it is smaller in size and contains more 

free space. It also shows similarities with the cityscape environments where the collision 

check process requires the most processing time. This is because for each MA-RRF repair 

node, the algorithm must test if the sample node collides with any obstacle. The indoor 

environment contains many clutter and entryways that need to be considered.    

 

The percentage of processing time for the indoor environments is different for all 

three variations. Indoor 1 uses a significant amount of time on calculating the MA-Spread 

objectives. On the other hand, the control system within the Indoor 2 simulation uses a 

larger percentage of the total time. Lastly, Indoor 3 requires the highest amount of time for 

the child path repair process.  

 

The results for the indoor environment show how different values for the variables 

can affect the error, running time and resolution of the paths. These variables can be tuned 

according to the user’s preferences.  

 

 

MA-SPREAD 

ALGORITHM 
INDOOR 1  

(sec) 

INDOOR 2 

(sec) 

INDOOR 3 

(sec) 

GA + MA-RRF Repair + DRMOO 2095.60 735.51 792.88 

GA 0.62 0.03 % 0.72 0.10 % 0.70 0.09 % 

MA-RRF Repair 153.41 7.32 % 207.84 28.56 % 374.28 47.21 %  

PD Control System 281.50 13.43 % 156.10 21.22 % 93.12 11.74 % 

Spread objectives 504.62 24.08 % 65.86 8.95 % 137.55 17.35 % 

Collision Check 591.78 28.24 % 426.55 57.99 % 584.79 73.76 % 

 

5.4. MA-SPREAD ACROSS A MOUNTAINOUS TERRAIN 

 

Lastly, the mountainous terrain brings different challenges to the MA-Spread application. 

The final environment has simplistic trajectories due to its large amount of free space 

between peaks. It is different from the cityscape and indoor environment that maintains 

uniform side planes. It can be challenging because it requires accurate high resolution free 

space mapping in order to avoid collisions between the agents and the mountain peaks. 

Here, the quadrotors are required to fly through sudden height changes in the terrain. The 

changes in height are in the form of mountain peaks and lows. This means that the 

environment is split into small sized grid blocks in order to accurately map the constant 

height changes. Thus, this environment holds a huge number of small sized obstacle blocks.  

 

Similar to the prior environments, the different trade-off values for the 12 objective 

functions are evaluated in this section. Firstly, the progression of the objectives across 

generations for Mountain 1 is shown in Figure 5.18-5.19. Then, the minimization of the 

cost functions for the entire population in the final generation is shown in Table 5.14. The 

unique paths for all four agents are presented in Figure 5.20. Lastly, the imagery of each 

TABLE 5.13: MA-Spread HIGHLY CLUTTERED INDOOR 1-3 RUNNING TIME. 
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path combination within the final population is shown in Figure 5.21-5.23. The objective 

trade-off values for each combination are shown in Table 5.15.  

 

5.4.1 MANY OBJECTIVES VALUES 

 

The variations of the values for each objective in Mountain 1 are shown in Figure 5.18 and 

5.19. The 12 objectives within this environment reach their minimal value at a faster rate 

in comparison to the other test spaces. This could be due to the noncomplex trajectories 

and large amount of free space within the terrain. Most objectives reach their minimum 

points within 40 generations. The only exception to this is objective 7 and 10. The 

termination point for the optimization algorithm is set at the 48th iteration. Here as well, 

the graphs show that all the objectives are not degraded across generations. They are either 

minimized or maintained in comparison to the first generation.  

 

Similar to the last two test spaces; Table 5.14 shows that all the objectives in the 

final generation are well minimized or maintained. It shows that two objectives have been 

maintained across the 48 generations. These are the altitude and spline deviation cost. 

Three cost functions are minimized by less than 40% reduction in value. The number of 

agent-to-agent connection loss is lowered by 29%. Flights across well mapped areas are 

decreased by 26% whereas the number of sensory overlap data is reduced by 19%.  

 

All of the other objectives are minimized by more than 40%. The path lengths for 

all four quadrotors are lowered by 52% in comparison to the initial MA-RRF paths. Next, 

the number of goal node deviations is also minimized by 55%. The mountainous terrain 

doesn’t require the agents to perform many sharp turns. Thus, the jerk cost for the team of 

agents is reduced by 63%. Similarly, the time optimality cost is lessened by 65%. The 

shorter and more direct paths lead to a 60% reduction of fuel consumption. The number of 

agent-to-agent possible collisions is minimized by 45%. Lastly, the number of safety zone 

breaches is reduced by 57% despite the large number of obstacles within the Mountain 1 

terrain.     
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(a) Path length objective function across generations.         (b) Flight height objective values across generations.          

 

 
(c)    Goal deviations objective values across generations.              (d)      Jerk cost objective values across generations. 

 

 
(e)   Spline deviation error objective values across generations. (f)  Time optimality objective values across generations.          
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Fig. 5.18. MA-Spread Mountain 1: Progression of the objectives 1-2 across generations. 
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(a) Flight time objective values across generations. (b) Connection breaches objective values across generations. 

 

 
(c) Possible collisions objective values across generations.(d) Safety zone breaches objective values across generations. 

 

 
(e)Uncertain grid coverage objective values across generations. (f)Sensory overlap objective values across generations.          
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Fig. 5.19. MA-Spread Mountain 1: Progression of the objectives 7-12 across generations. 
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ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

( no grid 

block) 

overlap 

1 

max 
2691.70 103.34 15665.00 20.47 0.02 3.90 33746.00 1611.00 1414.00 175256.00 9591.20 34.00 

mean 1664.50 96.63 9692.00 15.07 0.01 2.14 22413.00 703.13 369.00 68478.00 4729.10 21.93 

min 1204.90 88.68 6559.00 10.96 0.00 0.00 12674.00 464.00 0.00 23420.00 1287.10 14.00 

48 

max 860.49 101.44 4889.00 6.88 0.02 2.50 11465.00 678.00 622.00 43183.00 7356.30 21.00 

mean 803.32 96.87 4320.80 5.59 0.02 0.74 8980.60 497.23 202.33 29513.00 3479.50 17.77 

min 769.36 93.02 3911.00 4.66 0.01 0.00 7837.60 399.00 0.00 21756.00 1169.70 12.00 

 % 
51.74 -0.25 55.42 62.91 -100.00 65.42 59.93 29.28 45.17 56.90 26.42 18.97 

TABLE 5.14: MA-Spread MOUNTAIN TERRAIN 1 MANY-OBJECTIVES OPTIMIZATION RESULTS. 
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5.4.2 TRAJECTORY POPULATION 

 

The path combinations within the final population for Mountain 1 are made up of each 

agent’s unique paths. These paths are presented in Figure 5.20. Each path is defined by 

different colours. It is difficult to maintain a certain level of diversity within the 

mountainous terrain because the mountains are spread across large areas. The free spaces 

between the mountain bases are also large. The paths in each generation are reduced in size 

through redundant node pruning. Thus, the diverse paths are reduced to nodes that span 

across similar areas. The cityscape and indoor test space have many smaller sized obstacles 

within the environment. Thus, the solution population after the path pruning process is still 

diverse in nature.         

 

Next, the path combinations within the final generation are shown in Figure 5.21-

5.23. The paths for all four agents are shown within its imagery with nodes marked in 

black, blue, green and brown. Combination 1 produces paths that have the minimum value 

for flight time. Figure 5.21(a) shows that the paths are simplistic and easy to track. It also 

allows the agents to fly faster than the average velocity. This leads to the minimum value 

for time optimality. The choice with the least number of possible agent-to-agent collisions 

is combination 2.  Similarly, combination 5 produces paths with the lowest amount of 

safety zone breaches. These two options are preferable for the end user that requires paths 

with little replanning. Combination 10 has many advantages such as providing the 

minimum value for number of goal node deviations, uncertain space coverage and sensory 

data overlap.  

 

Figure 5.22(g) shows that in combination 17, all four agents fly at a close range to 

one another. This maintains full network connectivity between all agents. Option 19 has 

the lowest value for the jerk cost. On the other hand, choice 21 has the highest value for 

jerk cost within the final population. Figure 5.22(i) and Figure 5.22(a) show that both path 

combinations contain sharp turns. The difference between the two options is that the agents 

are able to fly across the sharp turn smoother in combination 19. Another option that 

provides the end user with many positive trade-off values is combination 25. Here, the 

multi-agents are given the shortest paths with many nodes at lower parts of the terrain. It 

also has the minimum value for spline deviation error. Thus, it shows that these paths are 

easy to track by the quadrotors.   

 

Table 5.15 shows that there are more combinations that contain possible agent-to-

agent collisions within the Mountain 1. This is because the paths of all agents fly across 

similar regions in comparison to the other test spaces. Still, this is based on a default safety 

range. The number of possible collisions can be reduced if a smaller safety radius is 

applied. As with all the previous environments, the end user is delivered a large number of 
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multi-agent path choices with adequate information to describe the benefits of each one. 

The end user is free to make a knowledgeable decision of the best trajectories for the 

mountainous terrain based on the trade-off values between all 30 combinations.    

 
(a) Top view of agent 1’s paths within the final generation.  (b) Side view of agent 1’s paths within the final generation. 

 

(c) Top view of agent 2’s paths within the final generation.  (d) Side view of agent 2’s paths within the final generation. 

 
(e) Top view of agent 3’s paths within the final generation.  (f) Side view of agent 3’s paths within the final generation. 

 
(g) Top view of agent 4’s paths within the final generation.  (h) Side view of agent 4’s paths within the final generation. 

Fig. 5.20. MA-Spread Mountain 1: Final generation’s multi-agent unique trajectories. 
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               (a) Multi-agent trajectories within combination 1.                         (b) Multi-agent trajectories within combination 2.  

     

 
               (c) Multi-agent trajectories within combination 3.                           (d) Multi-agent trajectories within combination 4. 

 

 
                  (e) Multi-agent trajectories within combination 5.                            (f) Multi-agent trajectories within combination 6. 

 

 
                   (g) Multi-agent trajectories within combination 7.                          (h) Multi-agent trajectories within combination 8. 

 

 
                    (i) Multi-agent trajectories within combination 9.                        (j) Multi-agent trajectories within combination 10. 

Fig. 5.21. MA-Spread Mountain 1: Multi-agent path combination 1-10 for the final generation. 
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              (a) Multi-agent trajectories within combination 11.                     (b) Multi-agent trajectories within combination 12. 

 

 
         (c) Multi-agent trajectories within combination 13.                         (d) Multi-agent trajectories within combination 14. 

 

 
           (e) Multi-agent trajectories within combination 15.                         (f) Multi-agent trajectories within combination 16. 

 

 
          (g) Multi-agent trajectories within combination 17.                            (h) Multi-agent trajectories within combination 18. 

 

 
         (i) Multi-agent trajectories within combination 19.                               (j) Multi-agent trajectories within combination 20. 

 Fig. 5.22. MA-Spread Mountain 1: Multi-agent path combination 11-20 for the final generation. 
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            (a) Multi-agent trajectories within combination 21.                          (b) Multi-agent trajectories within combination 22. 

 

 
             (c) Multi-agent trajectories within combination 23.                       (d) Multi-agent trajectories within combination 24. 

 

 
                 (e) Multi-agent trajectories within combination 25.                      (f) Multi-agent trajectories within combination 26. 

 

 
              (g) Multi-agent trajectories within combination 27.                       (h) Multi-agent trajectories within combination 28. 

 

 
                  (i) Multi-agent trajectories within combination 29.                        (j) Multi-agent trajectories within combination 30. 

Fig. 5.23. MA-Spread Mountain 1: Multi-agent path combination 21-30 for the final generation. 
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MOUNTAIN 

Spread 

COMBINATION 

PATH 

LENGTH 

(meters) 

ALTITUDE 

COST 

(meters) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

ERROR 

(m) 

TIME 

OPTIMALITY 

(ratio) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no breach) 

TERRAIN 

COVERAGE 

(% free space) 

SENSORY 

DATA 

OVERLAP 

(grid block 

overlap) 

1 775.94 97.63 4097.00 4.95 0.02 0.00 7837.64 502.00 46.00 22210.00 2533.49 18.00 

2 819.03 97.26 4736.00 5.02 0.02 0.00 8388.11 678.00 0.00 31671.00 1630.52 17.00 

3 827.79 101.44 4251.00 5.62 0.02 1.65 8090.87 473.00 34.00 26051.00 2874.54 17.00 

4 802.37 98.19 4591.00 4.84 0.02 0.00 8123.32 558.00 0.00 27796.00 2834.86 19.00 

5 860.49 98.84 4457.00 5.56 0.02 0.00 8834.80 487.00 264.00 21756.00 2655.35 20.00 

6 809.20 98.50 4227.00 5.15 0.02 0.00 8842.75 482.00 278.00 30449.00 4055.77 16.00 

7 791.09 97.71 4079.00 5.60 0.02 1.78 8138.84 455.00 222.00 26681.00 2685.42 20.00 

8 781.37 96.63 3969.00 5.42 0.02 0.00 8318.60 533.00 462.00 27512.00 3032.11 19.00 

9 797.93 95.26 4227.00 6.18 0.01 2.37 9846.23 487.00 622.00 28386.00 5008.92 19.00 

10 834.97 99.43 3911.00 6.01 0.02 0.00 8190.06 416.00 0.00 24761.00 1169.71 12.00 

11 854.99 97.95 4881.00 5.74 0.02 6.66 8628.93 654.00 0.00 29430.00 2698.25 21.00 

12 811.36 96.26 4561.00 5.73 0.01 1.94 10115.02 528.00 278.00 23470.00 7356.25 19.00 

13 783.72 96.93 4172.00 4.90 0.02 0.00 8028.42 480.00 0.00 31138.00 2089.35 19.00 

14 833.09 94.96 4724.00 5.54 0.01 1.62 10260.27 483.00 0.00 34395.00 4695.93 17.00 

15 785.81 97.87 3989.00 5.69 0.02 0.04 8212.90 429.00 0.00 25294.00 2181.49 17.00 

16 793.98 98.40 3992.00 5.93 0.02 0.00 8171.43 483.00 0.00 30473.00 1941.90 19.00 

17 769.53 95.58 3913.00 5.48 0.02 2.40 8438.44 399.00 320.00 29903.00 2166.27 20.00 

18 774.76 95.54 4029.00 5.39 0.02 0.00 8858.86 533.00 432.00 28775.00 3149.36 19.00 

19 849.40 98.60 4720.00 6.88 0.02 0.00 9186.07 522.00 234.00 25863.00 4267.29 19.00 

20 817.60 99.15 4187.00 6.50 0.02 0.16 8993.65 422.00 556.00 27923.00 4079.19 18.00 

21 775.68 97.58 4079.00 4.66 0.02 0.00 7910.34 424.00 110.00 27073.00 1943.75 16.00 

22 799.89 97.68 4506.00 4.68 0.02 0.00 8099.52 504.00 82.00 27802.00 2216.82 15.00 

23 790.54 96.44 4146.00 5.60 0.01 2.01 9626.14 448.00 352.00 23124.00 6853.11 18.00 

24 792.75 98.09 4233.00 5.04 0.02 0.00 8758.21 469.00 278.00 27758.00 3579.86 12.00 

25 769.36 93.02 4571.00 6.21 0.01 1.89 11176.87 519.00 0.00 38357.00 6644.91 15.00 

26 783.02 93.10 4167.00 5.98 0.01 2.13 10421.76 583.00 292.00 43183.00 4577.02 19.00 

27 810.97 93.48 4377.00 5.83 0.02 0.07 9334.68 587.00 198.00 33249.00 3010.23 20.00 

28 812.59 95.20 4563.00 6.69 0.01 2.50 11464.58 405.00 328.00 33934.00 4921.29 16.00 

29 777.66 93.90 4380.00 5.24 0.01 0.00 9639.19 479.00 430.00 36343.00 4853.62 20.00 

30 812.67 95.59 4889.00 5.77 0.02 1.62 9481.31 495.00 252.00 40634.00 2677.00 17.00 

TABLE 5.15: MA-Spread MOUNTAINOUS TERRAIN FINAL GENERATION’S RESULTS. 
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5.4.3 TYPES OF SIMULATION MODELS  

 

Here, three different simulation models are presented for the mountainous terrain. The first 

mountainous terrain was discussed in Section 5.4.1-5.4.2. This section compares the 

performance of the algorithm across two more terrains. These environments vary in number 

of randomly placed high peaks. Each terrain also varies in size. Table 5.16 shows the 

differences between these models. The algorithm is sped up by increasing the maximum 

distances between two neighbouring path nodes within Terrain 2 and 3. Only nodes that 

are more than 20 meters apart are padded with additional nodes between them. Similarly, 

a path in Terrain 2 and 3 spaces is only sampled once to generate a smooth spline.  

 

 

Like the previous two test spaces, the results for the Terrain 2 and 3 in Table 5.17-5.18 

shows that the algorithm struggles to minimize the spline deviation error when the 

distances between two nodes are increased. One difference in this test space is that the 

objective value for flight height of a team of quadrotors also shows a slight increase. 

Despite this, the results show that the other 10 objectives are minimized at a larger 

percentage for Terrain 2 and 3 when compared to Terrain 1. These results show that the 

algorithm can minimize the values for at least 10 objectives for different terrains with 

different path resolution and running time. It able to perform across smaller and larger sized 

terrains with high peaks. The agents can maintain the minimum neighbour-to-neighbour 

distance of 2 meters across all three terrains.  

 

The running time for all three terrains are shown in Table 5.19. The results here 

show similarities with both the cityscape and indoor environments. The part of the 

algorithm that requires the most running time in the mountainous terrain is also the 

collision check process. The mountainous terrain is a highly challenging environment 

because the entire grid is filled with obstacles in the form of large and small peaks. The 

results in Table confirm this because more than 80% of the processing time is dedicated to 

avoiding these peaks. One difference between the mountains in comparison to the other 

test spaces is that Mountain 3 with low resolution paths required more time than the high-

resolution Mountain 1 terrain. This occurs because Mountain 3 challenges the path planner 

in a unique way because it has a large and wide spread mountain peak in the centre of the 

test  

SIMULATION MOUNTAINOUS 

TERRAIN 1 

MOUNTAINOUS 

TERRAIN 2 

MOUNTAINOUS 

TERRAIN 3 

RANDOM LARGE PEAKS 15 6 6 

TERRAIN SIZE 129x129x 107 65x65x 255 65x65x99m 

MOUNTAIN SIZE 30m<length<80m 5m<length<48m 25m<length<40m 

MAX DISTANCE BETWEEN NODES 2m 20m 20m 

SPLINE SAMPLE RATE 5 samples/iteration 5 samples/simulation 5 samples/simulation 

TABLE 5.16: MA-Spread MOUNTAINOUS TERRAIN 1-3 PARAMETERS. 
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                      (a) Top and side view of agent 1’s paths.                          (b) Top and side view of agent 2’s paths. 

 
                      (c) Top and side view of agent 3’s paths.                          (d) Top and side view of agent 4’s paths. 
 

TABLE 5.17: MA-Spread MOUNT 2: MANY-OBJECTIVES OPTIMIZATION RESULTS. 

 
                      (a) Top and side view of agent 1’s paths.                          (b) Top and side view of agent 2’s paths.  

 
                      (c) Top and side view of agent 3’s paths.                          (d) Top and side view of agent 4’s paths. 
 

TABLE 5.18: MA-Spread MOUNT 3: MANY-OBJECTIVES OPTIMIZATION RESULTS 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

(ratio) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 1709.66 212.60 564.00 47.49 0.85 5.90 1711.45 250.00 622.00 2980.00 449.26 28.00 

mean 1026.34 180.29 322.93 33.30 0.53 2.19 995.48 42.47 81.87 1129.50 108.79 16.23 

min 572.85 150.07 110.00 16.25 0.24 0.00 379.20 4.00 0.00 435.00 5.10 6.00 

61 

max 690.26 198.78 122.00 10.26 1.36 1.67 450.92 126.00 22.00 547.00 56.33 12.00 

mean 538.58 189.13 67.93 7.89 0.86 0.21 213.55 79.07 8.53 392.23 12.67 6.70 

min 450.22 176.03 30.00 5.63 0.57 0.00 107.27 68.00 0.00 270.00 1.33 1.00 

 % 47.52 -4.90 78.96 76.31 -62.26 90.51 78.55 -86.18 89.58 65.27 88.35 58.72 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 948.30 78.55 556.00 34.21 0.61 6.31 1396.20 137.00 582.00 2024.00 225.49 13.00 

mean 609.09 70.16 321.07 23.70 0.33 2.62 937.32 21.50 83.40 1083.43 42.25 7.40 

min 325.64 57.81 26.00 6.48 0.17 0.00 138.79 3.00 0.00 275.00 0.46 3.00 

84 

max 402.00 76.86 93.00 8.47 0.74 3.38 428.68 19.00 42.00 558.00 42.50 10.00 

mean 324.95 71.07 51.23 6.70 0.57 0.74 214.70 6.50 21.27 379.50 7.97 3.00 

min 272.61 64.06 18.00 4.96 0.40 0.00 115.55 4.00 4.00 240.00 0.00 0.00 

 % 46.65 -1.30 84.04 71.73 -72.73 71.67 77.09 69.77 74.50 64.97 81.14 59.46 

Fig. 5.24. MA-Spread Mountain 2: Final generation’s multi-agent unique trajectories. 

 

Fig. 5.25. MA-Spread Mountain 3: Final generation’s multi-agent unique trajectories. 
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space. This reduces the amount of free space across the terrain which encourages paths that 

move in similar directions. The algorithm will continue to perform collision checks as it 

searches for diverse paths. This results in a much longer running time in comparison to 

Mountain 2. These results show that reducing the processing time may not be as simple as 

reducing the resolution of a planned path. The running time can also be influenced by the 

complexity of the test space as well. 
  

 

MA-SPREAD 

ALGORITHM MOUNT 1  

(sec) 

MOUNT 2 

(sec) 

MOUNT 3 

(sec) 

GA + MA-RRF Repair + DRMOO 1664.12 644.60 3569.16 

GA 3.80 0.23 % 1.24 0.19 % 9.26 0.26 % 

MA-RRF Repair 131.12 7.88 % 241.24 37.42 % 1427.64 40.00 % 

PD Control System 146.62 8.81 % 75.00 11.64 % 63.59 1.78 % 

Spread objectives 178.90 10.75 % 86.24 13.38 %  72.58 2.03 % 

Collision Check 1330.75 79.97 % 521.02 80.83 % 3387.32 94.91 % 

 

5.5. MA-FORMATION DIMENSIONALITY REDUCED MANY-OBJECTIVES 

PARAMETERS 

 

Firstly, the variables within the dimensionality reduced many-objectives optimization for 

Cityscape 1, Indoor 1 and Mountain 1 is shown in Figure 5.26 and 5.27. Table 5.20 shows 

the constants within the MA-Formation application. The approximation of well minimized 

and maintenance of diverse solutions is achieved through the combination of 

dimensionality reduced ranking as well as adaptive niching. Each objective subset is run 

during for 5 iterations with a singular run of the full set of objectives. These figures show 

the changes that occur within the current population in terms of dominance and diversity. 

These parameters show if the population remains at least as diverse as the initial MA-RRF 

population. It also describes if the dimensionality reduced many-objectives ranking process 

can increase the selection pressure within each generation.  

 

Figure 5.26 presents the number of nondominated solutions that are obtained at 

each generation. It shows that there are reoccurring peaks across generations. These peaks 

represent the large amount of dominant solutions within the population when the full 

objective set is applied. In this case, diverse solutions are favoured over well minimized 

solutions. The ranking of solutions based on dominance is possible post dimensionality 

reduction. The lower peaks show that a smaller number of solutions are nondominated 

when objective subsets are applied instead. This shows that the dimensionality reduced 

objective subsets will increase the selection pressure by reducing the number of dominant 

solutions. It allows the algorithm to slowly move closer towards both local and global 

optima. 

 

Figure 5.27 shows the changing values of the adaptive niche radius. The radius is 

capable of adapting to the level of diversity within the current population. This process  

TABLE 5.19: MA-Spread MOUNTAINOUS TERRAIN 1-3 RUNNING TIME. 
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maintains representative solutions of various clusters across the generations. The average 

distance between the solutions and their nearest neighbours are maintained or increased 

throughout the generations. The only environment that shows a decline in its average 

distance is the mountainous terrain. In such cases, it is possible for the end user to pick a 

different termination point if a well spread set of the solutions is highly important.  

 

5.6. MA-FORMATION ACROSS A HIGH-RISE CITYSCAPE 

 

First, the algorithm is applied within the high-rise cityscape environment. There are three 

varieties of information that are provided to the end user. These are tables, graphs and 

imagery. Figure 5.28-5.29 shows the progression of the objective values at each generation 

for Cityscape 1. Next, Table 5.21 shows the average cost values of the entire formation 

reference trajectory population for the final generation. The formation reference paths for 

the quadrotors are presented in Figure 5.30. Lastly, Figure 5.31-5.33 shows the various 

formation structures that are within the final population. Table 5.22 is attached to compare 

of these combinations in terms of their trade off values for all objective functions. Post 

determination of the best combination for the end user needs can be performed based on 

these values. Here, we evaluate the best and worst choices between the presented formation 

configurations. This section shows that the hybridized algorithm successfully produces a 

collection of formation reference trajectories. All of the formation configurations are well 

optimized and have different advantages.   

 

5.6.1 MANY OBJECTIVES VALUES  

 

Similar to the MA-Spread application, the termination point is dependent on two factors. 

The first is the amount of cost minimization. The second criterion is the level of diversity 

within the population. Here, most objectives required more than 50 generations to reach a 

minimal value. The mean, max and min values for each objective across 68 generations are 

shown in Figure 5.28-5.29. The figures show that all objectives have reduced in value when 

compared to the initial MA-RRF path population.  
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Fig. 5.26. Number of dominant solutions within the populations. 

 

Fig. 5.27. Adaptive niche radius across generations. 
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(a) Path length objective values across generations.         (b)      Flight height objective values across generations.          

 
(c)    Goal deviations objective values across generations.              (d)      Jerk cost objective values across generations. 

 
(e)    Spline deviation error objective values across generations.            (f)  Time optimality objective values across generations. 

 
        (g)  Flight time objective values across generations.           (h)  Formation scaling ratio objective values across generations. 
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Fig. 5.28. MA-Formation Cityscape 1: Progression of the objectives 1-8 across generations. 
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(e)  Safety zone breaches objective values across generations.       (f)  Formation changes objective values across generations. 

 
(g)  Formation maintenance objective values across generations.     (h)  Formation rise time objective values across generations. 

 
 

TABLE 5.20: MA-FORMATION PARAMETERS 

 

Table 5.21 shows that all the 12 objective functions have been well minimized. Two 

objectives were minimized with less than 30% reduction in value. The altitude cost is 

lessened by 14% whereas the spline deviation cost is lowered by 10%. All the other 

objectives are minimized by a much larger percentage. The collective path length is 

reduced by 33%. This means that the final generation’s multi-agent formation trajectories 

are shorter than the initial MA-RRF paths. The number of goal node deviations and flight 

time is also lessened by 38%. Similarly, the quadrotors can fly at a speed that produces 

optimal flight time. This leads to a reduction of 51% for the time optimality cost. All of the 

formation trajectories are able to avoid obstacles but there are still some safety zone 

breaches. The amount of safety zone breaches is lowered by 30%. The formation scaling 

cost and rise time is lessened by 66%. The number of formation shape changes is also 

reduced by 67%. Lastly, the number of formation shape violations is reduced by 54%.          
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Description Value Description Value Description Value Description Value 

Population size 30 Fyetech Agents Maximum Fuel 10mins g 9.81ms-2 IYY 0.0086 kgm2 

Selection Rate 0.5 Similarity Threshold 32.5% b 3.13x10-5 IZZ 0.0172kgm2 

Safety Zone Obstacles 

Boundary 
 obs 6m MA-RRF Max Repair Iterations 100 

d 9x10-7 
c 1 

Number of Gaui 330X-S 

Agents 
4 samplesR [city, indoor, mount] [5,2.5,4] m 

m 0.4794kg 
threshold  0.8 

Gaui 330X-S Agents 

Maximum Fuel 
15mins Default Number of Agents/Row 4 

l 0.225m 
dform 2m 

Number of Fyetech Agents 4 Default Number of Columns 2 IXX 0.0086 kgm2 [ kp , kd ] [0.14,0.08] 

Fig. 5.29. MA-Formation Cityscape 1: Progression of the objectives 9-12 across generations. 
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ITER  

PATH 

LENGTH 

(meters) 

ALTITUDE 

COST 

(meters) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

(ratio) 

FUEL 

COST 

(sec) 

SAFETY 

RANGE 

(no breach) 

Formation 

SCALING 

(ratio) 

Formation 

DESIGN 

(no variations) 

Formation 

MAINTAINANCE 

(no violations) 

Formation RISE 

TIME 

(sec) 

1 

max 13872.00 155.57 8383.00 259.16 0.25 13.13 44726.00 14974.00 22.42 43.00 20.00 167.56 

mean 7410.10 105.44 4789.20 132.45 0.20 7.20 27569.00 8658.50 10.36 20.13 10.17 71.14 

min 3987.20 75.93 2246.00 78.20 0.13 2.34 12404.00 5825.00 3.25 6.00 4.00 22.24 

68 

max 7504.40 141.67 5397.00 125.17 0.24 14.76 35182.00 9503.00 7.08 14.00 15.00 52.40 

mean 4942.30 90.78 1997.20 82.21 0.18 3.56 16956.00 6067.90 3.49 6.70 4.70 24.36 

min 3621.60 61.40 1249.00 65.01 0.13 1.64 11091.00 3097.00 0.75 1.00 0.00 3.51 

 % 
33.30 13.90 58.30 37.93 10.00 50.56 38.50 29.92 66.31 66.72 53.79 65.76 

TABLE 5.21: MA-Formation HIGH RISE CITYSCAPE 1 EXPERIMENTAL RESULTS. 
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5.6.2 TRAJECTORY POPULATION 

 

The diverse set of formation reference trajectories within the final generation of Cityscape 

1 is shown in Figure 5.30. It shows that the paths are well spread across the environment 

and offer then end user a variety of options. It also has path nodes at various heights across 

the cityscape space. These formation reference trajectories will be sued to generate the 

formation shapes. These formation structures will then generate independent paths for all 

agents. Figure 5.31-5.33 shows the various trajectories for 8 quadrotors that are flying in 

formation.  

 

 
 (a) Top view of formation reference paths within final generation.  (b) Side view of formation reference paths within final generation. 

 

 

First, the algorithm is applied within the Cityscape 1. The results show that formation path 

10 as defined in 5.31(j) produces the shortest paths for all 8 agents. This is proven in its 

image as well. The quadrotors will fly across the most direct route towards their goal node. 

Next, configuration 28 has the minimal value for the height cost. Its image in 5.31(h) shows 

that this path has a majority of nodes across the lower parts of the terrain.  

 

The 6th formation configuration has the lowest jerk cost and the least number of 

goal node deviations. 5.31(f) displays a path that isn’t the most direct route but it often 

leans towards the destination point as it moves from node to node. The image also shows 

that the agents do not perform extremely sharp turns whilst flying across sharp building 

corners. Then, the data confirms that configuration 1 is the path that offers the least spline 

deviation error. It also has the minimum value for the four formation-based objective 

functions.  

 

Fig. 5.31(a) shows that configuration 1 is a path that is easy to track. Its image also 

proves that it has the least number of formation shape changes with only one transformation 

from the default to danger zone formation structure. The single file formation shape proves 

to be a simple shape to maintain since this reference path has the minimal value for the 

formation maintenance, scale ratio and rise time objectives.   

 

Fig. 5.30. MA-Formation Cityscape 1: Final generation’s multi-agent unique formation reference trajectories. 

  

start 

goal 
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(a) Formation trajectories within configuration 1.                             (b) Formation trajectories within configuration 2. 

 
(c) Formation trajectories within configuration 3.                                (d) Formation trajectories within configuration 4. 

 
(e) Formation trajectories within configuration 5.                                (f) Formation trajectories within configuration 6. 

 
(g) Formation trajectories within configuration 7.                          (h) Formation trajectories within configuration 8. 

 
(i) Formation trajectories within configuration 9.                          (j) Formation trajectories within configuration 10. 

 Fig. 5.31. MA-Formation Cityscape 1: Multi-agent formation configuration 1-10 for the final generation. 
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(a) Formation trajectories within configuration 11.                             (b) Formation trajectories within configuration 12. 

 
(c) Formation trajectories within configuration 13.                                (d) Formation trajectories within configuration 14. 

 
(e) Formation trajectories within configuration 15.                           (f) Formation trajectories within configuration 16. 

 
(g) Formation trajectories within configuration 17.                              (h) Formation trajectories within configuration 18. 

 
(i) Formation trajectories within configuration 19.                                (j) Formation trajectories within configuration 20. 

 Fig. 5.32. MA-Formation Cityscape 1: Multi-agent formation configuration 11-20 for the final generation. 
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(a) Formation trajectories within configuration 21.                                  (b) Formation trajectories within configuration 22. 

 
(c) Formation trajectories within configuration 23.                                   (d) Formation trajectories within configuration 24. 

 
(e) Formation trajectories within configuration 25.                                     (f) Formation trajectories within configuration 26. 

 
(g) Formation trajectories within configuration 27.                                   (h) Formation trajectories within configuration 28. 

 
(i) Formation trajectories within configuration 29.                                    (j) Formation trajectories within configuration 30. 

 Fig. 5.33. MA-Formation Cityscape 1: Multi-agent formation configuration 21-30 for the final generation. 
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FORMATION 

PATH 

LENGTH 

(meters) 

ALTITUDE 

COST 

(meters) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

(ratio) 

FUEL 

COST 

(sec) 

 

Formation 

SCALING 

(ratio) 

SAFETY 

RANGE 

(no breach) 

Formation 

DESIGN 

(no variations) 

Formation 

MAINTAINANCE 

(no violations) 

Formation 

RISE TIME 

(sec) 

1 3881.78 69.11 1668.00 67.38 0.13 2.46 20619.32 0.75 4732.00 1.00 0.00 3.51 

2 4222.73 87.73 1311.00 75.41 0.14 1.75 14367.82 2.08 6943.00 3.00 1.00 10.92 

3 4842.24 77.44 1837.00 84.89 0.18 1.65 12362.06 2.42 5843.00 5.00 3.00 18.79 

4 4508.10 103.55 1736.00 74.58 0.19 3.73 20957.01 3.25 6052.00 7.00 6.00 24.24 

5 4811.37 100.96 1547.00 76.21 0.18 1.76 11842.05 2.42 5336.00 5.00 3.00 14.97 

6 4133.84 72.09 1249.00 65.01 0.14 1.81 13448.12 2.08 6653.00 3.00 1.00 11.05 

7 5336.90 88.91 2202.00 83.26 0.21 3.62 15060.34 7.08 5117.00 13.00 5.00 52.40 

8 4029.60 79.52 1407.00 71.39 0.15 2.29 16998.73 2.08 6719.00 3.00 1.00 10.92 

9 5500.35 131.01 1538.00 82.56 0.24 3.78 18775.72 4.92 5047.00 11.00 12.00 38.29 

10 3621.64 90.93 1318.00 69.14 0.15 4.10 24913.41 2.75 7671.00 4.00 4.00 14.03 

11 4167.28 68.17 1428.00 73.58 0.18 2.65 14320.98 2.92 6355.00 6.00 5.00 20.32 

12 4315.16 80.76 1446.00 75.61 0.19 3.05 15783.24 3.25 6682.00 7.00 7.00 24.64 

13 4543.93 93.67 1840.00 77.75 0.18 2.41 14519.76 2.92 5808.00 6.00 4.00 21.73 

14 4317.83 82.46 1449.00 75.33 0.14 1.65 14021.98 2.08 6925.00 3.00 1.00 11.05 

15 5147.14 106.61 2403.00 97.52 0.16 4.35 17313.23 5.08 7686.00 9.00 4.00 32.60 

16 4885.22 87.98 1598.00 75.22 0.19 2.09 12931.85 2.92 5791.00 6.00 5.00 22.50 

17 6575.93 113.59 2973.00 113.85 0.20 5.22 22374.67 4.75 6487.00 10.00 7.00 40.54 

18 7504.35 90.76 5397.00 125.17 0.16 14.76 35182.02 6.42 9503.00 11.00 15.00 39.37 

19 4972.19 71.16 1892.00 88.90 0.22 3.77 12806.65 4.42 4053.00 9.00 9.00 36.35 

20 5449.11 85.65 2303.00 85.46 0.16 2.66 16567.31 1.75 6452.00 3.00 1.00 10.65 

21 5667.64 109.09 1593.00 84.78 0.19 2.63 14932.32 2.58 6299.00 6.00 3.00 27.04 

22 5048.32 77.69 1919.00 85.08 0.19 2.04 12570.86 2.92 6221.00 6.00 5.00 23.03 

23 4836.96 105.47 1641.00 77.15 0.18 1.87 11978.54 2.42 5384.00 5.00 3.00 15.08 

24 4312.87 103.84 1672.00 74.31 0.18 3.02 15336.59 3.08 6050.00 6.00 6.00 18.92 

25 5354.37 141.67 2520.00 99.53 0.18 6.50 23124.92 4.92 7086.00 10.00 7.00 31.48 

26 5269.13 84.38 2176.00 93.10 0.23 3.54 11091.38 6.92 3097.00 14.00 5.00 52.35 

27 4435.37 73.80 1745.00 79.49 0.19 2.25 11581.52 3.75 4616.00 7.00 5.00 25.35 

28 6272.84 61.40 3408.00 81.04 0.16 4.98 22174.22 2.92 9462.00 6.00 2.00 21.27 

29 5868.15 114.18 3365.00 82.42 0.16 8.04 27069.24 4.75 3616.00 9.00 4.00 32.19 

30 4438.11 69.86 1336.00 71.05 0.19 2.48 13654.08 4.08 4352.00 7.00 7.00 25.32 

TABLE 5.22. MANY-OBJECTIVES VALUES OF FINAL GENERATION MA-Formation SOLUTIONS WITHIN HIGH RISE CITYSCAPE 1  
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The data shows that choice 14 has the best value in terms of time optimality. The agents in 

Fig. 5.32(d) are able to fly across their trajectories at a close to ideal flight speed. Lastly, 

formation configuration 26 has the minimal value for flight time and number so safety zone 

breaches. Fig. 5.33(f) displays multi-agent paths that do not come too close to the 

boundaries of each building within the cityscape. This process of evaluation allows the end 

user to pick the best choice based on their post processing preferences.   

 

5.6.3 TYPES OF SIMULATION MODELS 

 

This section compares three variations of the high-rise cityscape environments. The 

differences between each environment is similar to the MA-Spread application in Table. 

The results of the first cityscape environment was shown in Section 5.6.1-5.6.2. The data 

for Cityscape 2 and 3 is shown in Table. The simulations that were performed with 

Cityscape 2 and 3 prioritized lower running time in order to test the abilities of the 

algorithm to plan paths across a variety of test spaces.   

The images show that the formation paths were planned at high resolution where 

the distance between two formation shapes is no more than 2 meters. This means that the 

agents are constantly testing the environment for nearby obstacles and the best formation 

shape to maintain. The downside of having a high-resolution formation planner is that it 

requires more running time. This is because one path can contain a large number of nodes. 

Likewise, the advantage of this system is its minimal spline deviation error. This is because 

the tracking error isn’t propagated over large distances.  

Figure 5.34-5.35 and Table 5.23-5.24 present the results for formation flight across 

Cityscape 2 and 3. The hybridized multi-agent path planner is able to generate collision 

free formation reference paths at the final generation for both environments. It is also able 

to minimize the objective values for all but the spline deviation error. The reason for this 

is because the node-to-node distances are much larger in order to minimize running time. 

This can be remedied by reducing the node-to-node distances.  

The results in Table 5.25 show the difference in running time for one generation in 

the three different variations of the cityscape test spaces. The data shows that there is a 

large difference between the results in the MA-Spread and the MA-Formation missions.  

 

  

(a) Top view of formation reference paths within final generation.  (b) Side view of formation reference paths within final generation. 

Fig. 5.34. MA-Formation Cityscape 2: Final generation’s multi-agent unique formation reference trajectories. 
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Here, a much smaller percentage of the running time is spent on collision check. This is 

because the algorithm only generates one formation reference trajectory. Thus, it is enough 

to perform collision check for one agent as opposed to the entire team. Another difference 

between the two missions is the running time of the parallel run control system. The MA-

Formation mission requires more time to simulate the movements of eight agents.  

 

The data shows that the formation planner, uses a large percentage of the running 

time as well. This process includes sampling of the obstacle boundary planes and the 

identification of the nearest sample point for each path node. This process can be time 

consuming because each obstacle will contain many sampling points across it boundaries. 

Then, the algorithm generates the obstacle free space surface for the formation shape 

planning. This part is completed at a faster rate. Table shows that Cityscape 2 and 3 run 

the MA-Formation algorithm at a much faster rate than Cityscape 1. As with the MA-

Spread simulations, the running time can be manipulated by reducing the resolution of the 

path planning process.  

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 13665.35 158.82 4851.00 134.13 1.24 3.76 8325.56 1025.00 27.75 78.00 34.00 571.91 

mean 6699.28 105.24 2797.17 69.86 0.69 1.60 4180.25 316.47 13.53 36.00 14.63 258.56 

min 2794.21 52.17 1005.00 23.22 0.37 0.35 1078.29 32.00 4.58 12.00 4.00 87.02 

89 

max 5825.25 142.51 1857.00 38.65 1.06 3.24 2631.69 793.00 11.25 28.00 15.00 211.09 

mean 3298.11 87.49 1191.70 27.47 0.81 1.29 1317.84 195.00 6.17 15.80 5.77 119.28 

min 2687.42 60.37 1007.00 19.01 0.52 0.82 1068.25 0.00 1.50 5.00 1.00 37.58 

 % 50.77 16.87 57.40 60.68 -17.39 19.74 68.47 38.38 54.40 56.11 60.56 53.87 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 13902.94 157.59 5199.00 137.65 1.04 4.29 9500.91 954.00 19.00 52.00 27.00 376.06 

mean 6640.78 108.86 2812.23 70.79 0.57 2.24 4414.45 220.90 10.75 29.03 12.83 201.42 

min 2947.16 49.95 1067.00 18.39 0.40 0.40 1175.29 0.00 1.08 3.00 1.00 23.31 

62 

max 3834.34 142.56 1487.00 34.08 0.95 2.10 1533.00 486.00 8.50 23.00 13.00 178.55 

mean 3050.60 73.48 1272.67 24.07 0.71 1.57 1335.17 141.87 4.54 12.00 5.13 86.06 

min 2756.27 36.26 1020.00 16.40 0.40 1.15 1068.79 0.00 0.00 1.00 0.00 0.00 

 % 54.06 32.50 54.75 66.00 -24.56 29.87 69.75 35.78 57.77 58.66 60.02 57.27 

TABLE 5.24: MA-Formation HIGH RISE CITYSCAPE 3 EXPERIMENTAL RESULTS. 

 

TABLE 5.23: MA-Formation HIGH RISE CITYSCAPE 2 EXPERIMENTAL RESULTS. 

 

(a) Top view of formation reference paths within final generation.  (b) Side view of formation reference paths within final generation. 
Fig. 5.35. MA-Formation Cityscape 2: Final generation’s multi-agent unique formation reference trajectories. 
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MA-FORMATION 

ALGORITHM CITYSCAPE 1  

(sec) 

CITYSCAPE 2 

(sec) 

CITYSCAPE 3 

(sec) 

GA + MA-RRF Repair + DRMOO 3641.21 641.91 562.39 

GA 1.14 0.03 % 0.34 0.05 % 0.52 0.09 % 

MA-RRF Repair 144.82 3.98 % 62.27 9.70 % 35.67 6.34 % 

Identify nearest obstacle sample node 835.80 22.95 % 117.19 18.26 % 123.56 21.97 % 

Generate free space surface  527.60 14.49 % 109.92 17.12 % 63.21 11.24 % 

PD Control System 848.87 23.31 % 210.25 32.75 % 216.66 38.52 % 

Formation objectives 460.40 12.64 % 44.19 6.88 % 46.07 8.19 % 

Collision Check 265.84 7.30 % 103.20 16.08 % 62.93 11.19 % 

 

5.7. MA-FORMATION ACROSS A HIGHLY CLUTTERED INDOOR 

ENVIRONMENT 

 

The next simulated environment for the MA-Formation application is the highly cluttered 

indoor space. This environment challenges the formation planner to design shapes that 

continue to expand and contract across the entry points. It must be able to detect the 

boundaries of all clutter and design the most suitable formation structure for each path 

waypoint.   

 

The results for the Indoor 1 test space are presented in this section. Figures 5.36 

and 5.37 shows the progression of the 12 objectives across all generations for Indoor 1. 

Table 5.26 shows the average values of all path combinations for each objective within the 

final generation. The termination point for the indoor space is set at the 110th generation. 

This is the point where most objectives have been sufficiently minimized and path diversity 

is maintained. Next, the unique paths for each agent are shown in Figure 5.38. These paths 

will form the path combinations that are shown within Figure 5.39-5.41. The cost values 

for all 30 formation configurations are defined in Table 5.27.    

 

5.7.1. MANY OBJECTIVES VALUES  

 

Next, the objective values for the formation trajectories within the Indoor 1 environment 

are presented in Figure 5.36-5.37. Out of all the experiments, this MA-Formation 

application required more than 100 iterations for the objectives to settle into their minimum 

values. In this case, almost all of the 12 objectives reached their minimal values after the 

80th generation. This is because the environment is extremely challenging for formation 

flight. The agents must expand and contract often as they fly across rooms. The agents 

must do so much more often than the cityscape or mountainous terrain. This means that the 

formation-based objective functions will influence the values of all of the other cost 

functions as well.        
 

Similar to the cityscape environment, Table 5.26 shows that all 12 objective 

functions have been well minimized or maintained. The spline deviation error has been 

maintained across generations. The altitude cost has a 26% reduction in value when 

TABLE 5.25: MA-Formation HIGH RISE CITYSCAPE RUNNING TIME. 
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compared to the initial MA-RRF paths. Next, the agents fly at a closer to optimal speed 

with a minimization of 48% in the time optimality ratio. All of the other objectives have 

been minimized with a more than 50% reduction in value. The multi-agent quadrotor 

formation path lengths are 59% shorter than the first generations. The number of goal 

deviations is also reduced by a large amount of 76%. Each formation trajectory is less 

aggressive since the jerk cost is minimized by 61%. The amount of fuel that is required by 

the team of agents is lessened by 63%. An important objective within the indoor space is 

the number of safety zone breaches. The formation planner is capable of producing 

trajectories that avoid all obstacles. Still, some safety zones may be breached by the 

formation structure. Here, the number of safety breaches is lowered by 57%. Lastly, all of 

the formation-based objectives are reduced in value by more than 57% each.       
 

 
(a) Path length objective values across generations.                     (b)     Flight height objective values across generations.          

 
(c)    Goal deviations objective values across generations.                      (d)      Jerk cost objective values across generations. 

 
(e)    Spline deviation error objective values across generations.                (f)  Time optimality objective values across generations. 
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Fig. 5.36. MA-Formation Indoor 1: Progression of the objectives 1-6 across generations. 
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(a)  Flight time objective values across generations.      (b)  Formation scaling ratio objective values across generations. 

 
(c)  Safety zone breaches objective values across generations.       (d)  Formation changes objective values across generations. 

 
(e)  Formation maintenance objective values across generations.     (f)  Formation rise time objective values across generations.
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Fig. 5.37. MA-Formation Indoor 1: Progression of the objectives 6-12 across generations. 
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ITER  

PATH 

LENGTH 

(meters) 

ALTITUDE 

COST 

(meters) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio) 

FUEL 

COST 

(sec) 

SAFETY 

RANGE 

(no breach) 

Formation 

SCALING 

(ratio) 

Formation 

DESIGN 

(no variations) 

Formation 

MAINTAINANCE 

(no violations) 

Formation RISE 

TIME 

(sec) 

1 

max 
9492.40 55.02 7077.00 191.65 0.30 10.51 23327.00 41386.00 22.17 42.00 17.00 147.44 

mean 
6999.70 35.21 4695.10 140.10 0.26 7.06 16766.00 28167.00 15.00 28.00 10.77 106.36 

min 
3022.90 9.95 1485.00 69.10 0.22 2.40 6919.40 7988.00 5.33 11.00 4.00 45.42 

110 

max 4765.80 48.79 2332.00 83.53 0.33 8.80 14009.00 20190.00 11.17 18.00 8.00 75.14 

mean 2885.90 26.17 1137.90 54.95 0.26 3.64 6163.70 12150.00 6.39 11.43 4.40 44.16 

min 2109.10 9.91 623.00 35.93 0.22 2.09 4303.50 6152.00 3.50 7.00 2.00 24.67 

 % 
58.77 25.67 75.76 60.78 0.00 48.44 63.24 56.86 57.40 59.18 59.15 58.48 

TABLE 5.26: MA-Formation HIGHLY CLUTTERED INDOOR 1 EXPERIMENTAL RESULTS 
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5.7.2. TRAJECTORY POPULATION 

 

Next, the unique formation reference trajectories within the final population for Indoor 1 

are presented in Figure 5.38. The image shows that the path planner faced the same 

challenges within the MA-Spread application. Many path nodes are placed at lower parts 

of the terrain where there is less clutter. There are some nodes that are spread across the 

higher parts of each room. Still, there is diversity in terms of room exploration. It can be 

seen that the paths are well spread across the different rooms and entry points.   
 

 
 (a) Top view of formation reference paths within final generation.  (b) Side view of formation reference paths within final generation. 

 
 

The independent trajectories for each quadrotor are shown in Figures 5.39-5.41. The 

formation configuration that produces the shortest paths is option 28. This choice also has 

the minimal value for both the jerk cost and spline deviation error. In Fig.5.41(h), it can be 

seen that this path is the most direct route out of all the other options. The agents will be 

able to fly beneath the clutter easily and move straight towards the goal node without many 

sharp turns. Next, formation configuration 11 has the lowest value for the altitude cost. 

Fig.5.40(a) clearly shows that the path nodes are mostly spread across the lower ends of 

the rooms. Choosing option 19 means that the end user obtains multi-agent formation paths 

that have the minimum value for the node-to-node goal deviation objective. Fig.5.40(i) 

shows that this option doesn’t have the most direct paths but it keeps moving towards the 

goal node as it progresses from node-to-node.  

 

Fig.5.39(b) displays configuration 2 with formation paths that moves swiftly 

towards the destination point. Here, the quadrotors will be capable of flying at a close to 

ideal speed and reach within the minimum flight time. Option 4 has multiple advantages 

such as having paths that produce the minimal values for safety zone breaches, number of 

formation shape changes and scaling ratio. It can be seen in Fig.5.39(d) that this choice has 

the least number of formation structure changes when compared to the others. Lastly, 

option 1 has the lowest cost values for the formation maintenance and rise time objectives. 

This means that the agents will be capable of maintaining the adaptive formation shapes 

that were designed by the high-resolution formation shape planner. 

Fig. 5.38. MA-Formation Indoor 1: Final generation’s multi-agent unique formation reference trajectories. 

 

start 

goal 
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(a) Formation trajectories within configuration 1.                                 (b) Formation trajectories within configuration 2. 

 

 
(c) Formation trajectories within configuration 3.                                   (d) Formation trajectories within configuration 4. 

 

 
(e) Formation trajectories within configuration 5.                                      (f) Formation trajectories within configuration 6. 

 

 
(g) Formation trajectories within configuration 7.                                 (h) Formation trajectories within configuration 8. 

 

 
(i) Formation trajectories within configuration 9.                                       (j) Formation trajectories within configuration 10. 

 

 
Fig. 5.39. MA-Formation Indoor 1: Multi-agent formation configuration 1-10 for the final generation. 
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(a) Formation trajectories within configuration 11.                                   (b) Formation trajectories within configuration 12. 

 

 
(c) Formation trajectories within configuration 13.                                 (d) Formation trajectories within configuration 14. 

 

 
(e) Formation trajectories within configuration 15.                             (f) Formation trajectories within configuration 16. 

 

 
(g) Formation trajectories within configuration 17.                               (h) Formation trajectories within configuration 18. 

 

 
(i) Formation trajectories within configuration 19.                                    (j) Formation trajectories within configuration 20. 

 
Fig. 5.40. MA-Formation Indoor 1: Multi-agent formation configuration 11-20 for the final generation. 
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(a) Formation trajectories within configuration 21.                               (b) Formation trajectories within configuration 22. 

 

 
(c) Formation trajectories within configuration 23.                                       (d) Formation trajectories within configuration 24. 

 

 
(e) Formation trajectories within configuration 25.                                        (f) Formation trajectories within configuration 26. 

 

 
(g) Formation trajectories within configuration 27.                                 (h) Formation trajectories within configuration 28. 

 

 
(i) Formation trajectories within configuration 29.                                      (j) Formation trajectories within configuration 30. 

 Fig. 5.41. MA-Formation Indoor 1: Multi-agent formation configuration 21-30 for the final generation. 
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PATH 

LENGTH 

(meters) 

ALTITUDE 

COST 

(meters) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

(ratio) 

FUEL 

COST 

(sec) 

Formation 

SCALING 

(ratio) 

SAFETY 

RANGE 

(no breach) 

Formation 

DESIGN 

(no variations) 

Formation 

MAINTAINANCE 

(no violations) 

Formation 

RISE TIME 

(sec) 

1 2814.99 39.79 1034.00 52.12 0.24 2.11 4887.58 4.25 8029.00 7.00 2.00 24.67 

2 2328.44 9.96 823.00 42.01 0.28 2.09 4303.48 5.75 10808.00 10.00 3.00 34.56 

3 2593.69 15.65 951.00 43.67 0.28 3.01 5223.73 5.92 12010.00 10.00 5.00 39.80 

4 2551.88 34.65 675.00 52.75 0.24 2.83 4687.25 3.50 6152.00 7.00 3.00 27.38 

5 2940.19 15.76 1531.00 53.53 0.26 4.21 6980.92 6.92 12827.00 12.00 4.00 42.31 

6 2261.12 34.92 752.00 46.14 0.24 2.37 4351.05 4.17 6232.00 8.00 4.00 29.17 

7 3325.23 25.79 1099.00 58.70 0.31 2.85 5486.34 7.83 13799.00 15.00 4.00 61.47 

8 2398.95 15.97 910.00 50.93 0.26 2.52 5190.94 6.17 13217.00 11.00 3.00 43.96 

9 2887.90 37.42 1485.00 65.27 0.27 3.10 5743.11 7.25 13405.00 13.00 5.00 52.03 

10 2614.50 26.28 819.00 56.75 0.28 3.28 5409.61 6.25 7084.00 12.00 3.00 40.95 

11 2211.27 9.91 882.00 41.36 0.26 2.65 4465.18 5.42 11976.00 9.00 3.00 31.39 

12 3305.67 12.24 1731.00 57.51 0.24 4.68 7540.63 7.00 14131.00 14.00 5.00 48.84 

13 2452.57 41.36 998.00 49.22 0.24 2.56 4752.95 4.50 6547.00 8.00 4.00 30.42 

14 2977.96 34.10 1547.00 48.95 0.23 3.62 7550.83 5.50 17146.00 11.00 4.00 46.35 

15 2936.27 28.10 882.00 51.20 0.28 2.47 4874.77 4.75 14141.00 8.00 3.00 30.80 

16 3725.31 26.15 2332.00 82.97 0.25 5.75 8171.98 11.17 12406.00 18.00 8.00 68.10 

17 2912.50 43.74 1372.00 60.03 0.23 4.07 6380.42 6.25 9717.00 10.00 4.00 39.00 

18 2984.19 26.64 1164.00 52.28 0.26 4.05 6428.26 6.42 20190.00 12.00 5.00 44.42 

19 3153.72 25.63 623.00 52.72 0.28 2.98 5315.24 6.33 13129.00 11.00 5.00 48.35 

20 4765.83 26.89 1809.00 83.53 0.26 5.66 9053.17 10.25 15734.00 18.00 8.00 75.14 

21 2375.88 14.13 744.00 41.49 0.24 3.02 4737.46 4.75 13336.00 8.00 3.00 28.75 

22 3511.39 46.97 1429.00 67.26 0.27 8.81 14009.35 6.83 14119.00 13.00 6.00 52.32 

23 2664.33 17.89 848.00 56.97 0.28 3.23 5561.15 8.75 17886.00 14.00 5.00 51.33 

24 2826.59 14.78 968.00 53.74 0.33 3.41 5695.03 7.00 13719.00 12.00 4.00 44.37 

25 3425.18 48.79 1427.00 65.71 0.26 6.99 10159.35 7.58 12713.00 15.00 7.00 58.43 

26 2767.86 36.72 695.00 54.34 0.30 3.11 5453.25 9.42 11393.00 17.00 8.00 74.52 

27 2184.48 13.49 716.00 42.89 0.26 2.87 4464.23 5.92 13005.00 11.00 3.00 45.72 

28 2109.07 13.35 679.00 35.93 0.22 2.65 4496.40 4.25 10542.00 7.00 2.00 27.86 

29 3697.76 19.96 1945.00 68.31 0.23 4.97 7682.65 6.25 12838.00 11.00 5.00 40.82 

30 2873.60 28.16 1266.00 60.20 0.25 3.35 5853.55 5.50 6281.00 11.00 4.00 41.59 

TABLE 5.27. MANY-OBJECTIVES VALUES OF FINAL GENERATION MA-Formation SOLUTIONS WITHIN HIGHLY CLUTTERED INDOOR 1 
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5.7.3 TYPES OF SIMULATION MODELS 

 

This section compares three variations of the highly cluttered indoor environments. The 

differences between each environment is similar to the MA-Spread application in Table. 

The results of the first cityscape environment was shown in Section 5.7.1-5.7.2. The 

simulations that were performed with Indoor 2 and 3 prioritized lower running time to test 

the abilities of the algorithm to plan paths across a variety of test spaces.   

The results for Indoor 2 and 3 are shown in Table 5.28-5.29. Figure 5.42-5.43 shows 

that the algorithm is able to generate smooth formation reference trajectories across all 

indoor environments. The data shows that the algorithm is able to minimize 10 of the 

objectives at a larger percentage in comparison to Indoor 1. Similar to the other 

environments, these lower resolution formation reference paths will produce a larger spline 

deviation error which can be improved with a higher sampling rate like Indoor 1.  

 

 

 

 TABLE 5.28: MA-Formation HIGH RISE INDOOR 2: EXPERIMENTAL RESULTS 

 

 
 

 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

(ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 7714.15 62.04 2961.00 87.74 2.45 4.42 8338.69 12589.00 13.92 27.00 12.00 125.35 

mean 4667.89 42.74 1636.07 58.58 0.76 2.58 4774.93 5809.93 6.06 11.90 4.87 61.05 

min 1356.00 21.63 102.00 14.31 0.24 0.26 550.32 714.00 0.33 1.00 0.00 4.08 

78 

max 2403.25 59.48 279.00 21.83 2.62 2.19 1063.02 2061.00 1.50 3.00 2.00 23.85 

mean 1381.57 32.82 106.10 14.39 1.66 1.05 601.18 1012.63 0.50 1.17 0.10 5.47 

min 642.85 17.00 39.00 8.89 1.02 0.34 424.39 322.00 0.00 1.00 0.00 0.00 

 % 70.40 23.21 93.51 75.44 -118.42 59.14 87.41 82.57 91.75 90.17 97.95 91.04 

(a) Top view of formation reference paths within final generation.  (b) Side view of formation reference paths within final generation. 

Fig. 5.42. MA-Formation Indoor 2: Final generation’s multi-agent unique formation reference trajectories. 

 

(a) Top view of formation reference paths within final generation.  (b) Side view of formation reference paths within final generation. 

Fig. 5.43. MA-Formation Indoor 3: Final generation’s multi-agent unique formation reference trajectories. 
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TABLE 5.29: MA-Formation HIGH RISE INDOOR 3: EXPERIMENTAL RESULTS 

 

Table 5.30 shows the running time per generation for all three indoor environments that 

have different parameters. There is one major difference between the results of the indoor 

and cityscape test space. Here, the formation planning across the indoor environment 

requires the most processing time. The generation of the free space contour across all three 

indoor variations uses a large percentage of time. Indoor 1 uses the most amount of total 

time since it has the largest amount of clutter.  

 

Like most of the simulations, the lower resolution formation paths in Indoor 2 and 

3 have a much lower running time than Indoor 1. These results show that these parameters 

can be changed to influence the performance of the algorithm.   

 

 

MA-FORMATION 

ALGORITHM INDOOR 1  

(sec) 

INDOOR 2 

(sec) 

INDOOR 3 

(sec) 

GA + MA-RRF Repair + DRMOO 5231.72 951.05 1019.16 

GA 1.01 0.02 % 0.26 0.03 % 0.36 0.04 % 

MA-RRF Repair 90.07 1.72 %  36.81 3.87 % 158.88 15.59 % 

Identify nearest obstacle sample node 2621.95 50.12 % 338.72 35.62 % 301.19 29.55 % 

Generate free space surface  1045.53 19.98 % 175.35 18.44 % 171.39 16.82 % 

PD Control System 528.79 10.11 % 218.27 22.95 % 178.84 17.55 % 

Formation objectives 426.61 8.15 % 56.05 5.89 % 69.25 6.79 % 

Collision Check 256.44 4.90 % 122.05 12.83 % 282.07 27.67 % 

 

5.8. MA- FORMATION ACROSS A MOUNTAINOUS TERRAIN  

 

Lastly, this section presents the multi-agent quadrotor formation paths and their shapes 

across the mountainous terrain. Similar to the indoor environment, this terrain challenges 

the formation planner in terms of obstacle avoidance. Here, the number of obstacles is 

significantly higher than the other test spaces. The gradual mountain peaks that are placed 

all around the terrain can pose a threat to the quadrotors that are in the outer columns of 

the formation structure. It is important that the formation planner is capable of generating 

well minimized paths that do not collide with any peaks.   

 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 6799.37 71.35 2667.00 85.28 1.64 4.01 7179.17 14201.00 12.33 21.00 10.00 96.09 

mean 4110.06 54.28 1431.63 50.93 0.75 1.99 3852.27 7057.10 5.32 9.67 2.90 48.09 

min 1627.59 30.71 115.00 17.52 0.27 0.23 584.36 863.00 0.50 1.00 0.00 4.34 

95 

max 3395.39 63.00 395.00 33.01 2.38 3.73 1635.93 2109.00 2.00 4.00 1.00 29.29 

mean 1915.91 35.66 190.00 20.11 1.69 1.32 762.49 1248.30 0.79 1.63 0.20 10.09 

min 1253.74 17.56 98.00 13.56 1.02 0.76 568.65 647.00 0.00 1.00 0.00 0.00 

 % 53.38 34.30 86.73 60.51 -125.33 33.49 80.21 82.31 85.15 83.14 93.10 79.02 

TABLE 5.30: MA-Formation HIGHLY CLUTTERED INDOOR RUNNING TIME. 
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The different trade-off values for the 12 objective functions are evaluated in this 

section. Firstly, the progression of the objectives across generations for Mountain 1 is 

shown in Figure 5.44-5.45. Then, the minimization of the cost functions for the formation 

trajectories in the final generation is shown in Table 5.31. The unique formation reference 

paths for the agents are presented in Figure 5.46. Lastly, the images of each formation 

configuration within the final population are shown in Figure 5.47-5.49. The cost trade-off 

values for each configuration are shown in Table 5.32.  

 

5.8.1. MANY OBJECTIVES VALUES  

 

The mean, max and min values of all 12 objectives are shown below. Many of the 

objectives reach its minimum point after the 80th generation. One obvious pattern that exists 

in most objectives is the maintenance of the max value across 81 generations. Analysis of 

the formation trajectory population shows that one path has been maintained through many 

iterations. This path provides the maximum values for most of the objective functions. The 

reason it was kept despite its disadvantages is because it is highly diverse in comparison to 

the rest of the population.     

 

The average values for the formation configuration population is shown in Table 

5.31. The values of three objectives are reduced at less than 10%. The number of nodes at 

higher parts of the mountainous terrain is lowered by 7%. Both the spline deviation error 

and number of safety zone breaches are minimized by 5%. All of the formation-based costs 

are minimized by less than 40%. The values of the rest of the many cost functions are 

reduced by more than 40% in comparison to the initial MA-RRF path population. The 

formation trajectories are 51% shorter in length. Similarly, the paths are more direct since 

the number of goal node deviations is lessened by 42%. The agents in formation are 

required to perform less aggressive turns with a reduction in jerk value of 50%. Lastly, the 

quadrotors are able to fly at a more than 69% optimal speed as well as less than 61% fuel 

consumption.    
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(a) Path length objective values across generations.                     (b)   Flight height objective values across generations. 

 

 
(c)    Goal deviations objective values across generations.                 (d)      Jerk cost objective values across generations 

 

 
(e)    Spline deviation error objective values across generations.         (f)  Time optimality objective values across generations. 
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Fig. 5.44. MA-Formation Mountain 1: Progression of the objectives 1-6 across generations. 
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(a)  Flight time objective values across generations.      (b)  Formation scaling ratio objective values across generations. 

 

 
(c)  Safety zone breaches objective values across generations.       (d)  Formation changes objective values across generations. 

 

 
(e)  Formation maintenance objective values across generations.     (f)  Formation rise time objective values across generations.
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Fig. 5.45. MA-Formation Mountain 1: Progression of the objectives 5-12 across generations. 
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ITER  

PATH 

LENGTH 

(meters) 

ALTITUDE 

COST 

(meters) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

( ratio) 

FUEL 

COST 

(sec) 

SAFETY 

RANGE 

(no breach) 

Formation 

SCALING 

(ratio) 

Formation 

DESIGN 

(no variations) 

Formation 

MAINTAINANCE 

(no violations) 

Formation 

 RISE TIME 

(sec) 

1 

max 
3303.10 60.27 5844.00 68.98 0.24 11.25 16523.00 29666.00 5.67 11.00 6.00 38.44 

mean 
1698.50 53.74 3018.10 37.95 0.19 4.21 6821.60 11793.00 2.32 4.17 2.03 13.47 

min 
692.93 44.83 1488.00 14.27 0.14 1.29 1983.30 4187.00 0.75 1.00 1.00 2.69 

81 

max 
2924.90 60.27 5250.00 59.51 0.22 5.55 12318.00 29666.00 3.00 5.00 3.00 17.61 

mean 
831.16 50.21 1759.20 18.96 0.18 1.30 2681.20 11172.00 1.78 2.93 1.43 9.03 

min 
597.27 44.85 1411.00 13.53 0.13 0.88 1892.70 4128.00 0.75 1.00 1.00 2.70 

 % 
51.07 6.57 41.71 50.04 5.26 69.12 60.70 5.27 23.28 29.74 29.56 32.96 

TABLE 5.31: MA-Formation MOUNTAINOUS TERRAIN 1 EXPERIMENTAL RESULTS 
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5.8.2. TRAJECTORY POPULATION 

 

The unique formation reference paths for Mountain 1 are displayed in different colours 

within Figure 5.46. The image shows that each formation reference trajectory has nodes all 

across the terrain. The trajectories that are designed for the mountainous terrain are more 

simplistic and less diverse than the paths within the other test environments. This is due to 

the large amount of free space between the mountain peaks. The initial paths before path 

pruning are diverse in direction. The path pruning process removes redundant nodes and 

causes the paths to converge towards the centre of the large open space. Due to this, unlike 

other test environment, many paths share the minimal values for certain objectives. Still, 

the algorithm succeeds in free space mapping and avoiding all of the small peak changes.  

 

 
 (a) Top view of formation reference paths within final generation.  (b) Side view of formation reference paths within final generation. 
 

 

Lastly, the formation paths and their shapes for the mountainous terrain are shown in 

Fig.5.47-5.49. Firstly, formation path 30 has the minimal value for the path length. Fig 

5.49(j) shows that the paths are very direct and short in comparison to the other options. 

The option with the most nodes at lower parts of the terrain is configuration 12. The data 

can be seen and confirmed by Fig 5.48(b). Choice 4 has the lowest value for the goal 

deviation cost. On the other hand, option 29 has the minimal jerk cost. Next, configuration 

2 as shown in Fig 5.47(b) has the minimum value for both the spline deviation error and 

formation rise time. It can be seen that the agents will only have to transition between two 

shapes and fly across an easy to follow path.  

 

Option 6 produces paths that allow the quadrotors to fly at close to ideal velocity 

whereas choice 8 requires minimal fuel consumption. Configuration 1 is displayed in Fig 

5.47(a). This path is lengthy in comparison to the other paths. The reason that this path was 

maintained across generations is due to its diversity in direction. It also has the minimal 

value for the formation shape scaling ratio. Lastly, formation configuration 5 has the lowest 

values for the number of safety zone breaches, formation shape changes and maintenance. 

Fig 5.47(e) shows that the agents will only have to morph into two different shapes. The 

data that is presented within this section will aid the end user in their final choice of 

formation trajectory. 

Fig. 5.46. MA-Formation Mountain 1: Final generation’s multi-agent unique formation reference trajectories. 
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(a) Formation trajectories within configuration 1.                         (b) Formation trajectories within configuration 2. 

 
(c) Formation trajectories within configuration 3.                            (d) Formation trajectories within configuration 4. 

 
(e) Formation trajectories within configuration 5.                            (f) Formation trajectories within configuration 6. 

 
(g) Formation trajectories within configuration 7.                                    (h) Formation trajectories within configuration 8. 

 
(i) Formation trajectories within configuration 9.                                   (j) Formation trajectories within configuration 10. 

 

 
Fig. 5.47. MA-Formation Mountain 1: Multi-agent formation configuration 1-10 for the final generation. 
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(a) Formation trajectories within configuration 11.                                   (b) Formation trajectories within configuration 12. 

 
(c) Formation trajectories within configuration 13.                                  (d) Formation trajectories within configuration 14. 

 
(e) Formation trajectories within configuration 15.                                      (f) Formation trajectories within configuration 16. 

 
(g) Formation trajectories within configuration 17.                                     (h) Formation trajectories within configuration 18. 

 
(i) Formation trajectories within configuration 19.                                   (j) Formation trajectories within configuration 20. 

 

 Fig. 5.48. MA-Formation Mountain 1: Multi-agent formation configuration 11-20 for the final generation. 
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(a) Formation trajectories within configuration 21.                              (b) Formation trajectories within configuration 22. 

 
(c) Formation trajectories within configuration 23.                                    (d) Formation trajectories within configuration 24. 

 
(e) Formation trajectories within configuration 25.                                        (f) Formation trajectories within configuration 26. 

 
(g) Formation trajectories within configuration 27.                                      (h) Formation trajectories within configuration 28. 

 
(i) Formation trajectories within configuration 29.                                        (j) Formation trajectories within configuration 30. 

 

Fig. 5.49. MA-Formation Mountain 1: Multi-agent formation configuration 21-30 for the final generation. 
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PATH 

LENGTH 

(meters) 

ALTITUDE 

COST 

(meters) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

(ratio) 

FUEL 

COST 

(sec) 

Formation 

SCALING 

(ratio) 

SAFETY 

RANGE 

(no breach) 

Formation 

DESIGN 

(no variations) 

Formation 

MAINTAINANCE 

(no violations) 

Formation RISE 

TIME 

(sec) 

1 2924.93 60.27 5250.00 59.51 0.14 5.55 12318.18 0.75 29666.00 1.00 1.00 2.79 

2 1105.06 58.57 2280.00 23.41 0.13 1.99 4743.08 0.75 8207.00 1.00 1.00 2.70 

3 951.62 49.69 1653.00 23.70 0.18 1.39 2831.75 1.50 9109.00 2.00 1.00 6.74 

4 614.41 48.36 1411.00 16.64 0.18 0.99 2018.02 1.25 9521.00 3.00 2.00 9.95 

5 876.16 58.23 1859.00 17.45 0.15 1.15 2870.64 0.75 4128.00 1.00 1.00 3.07 

6 713.92 52.29 1509.00 16.75 0.17 0.88 1895.92 1.50 6869.00 2.00 1.00 5.57 

7 769.73 51.16 1687.00 17.78 0.15 1.03 2329.84 0.75 9180.00 1.00 1.00 2.73 

8 752.21 52.52 1421.00 18.55 0.19 0.89 1892.70 1.25 5644.00 3.00 2.00 10.19 

9 760.52 50.62 1723.00 17.98 0.14 1.12 2478.31 0.75 11033.00 1.00 1.00 2.72 

10 636.00 45.22 1645.00 13.85 0.16 1.11 2219.50 1.50 14434.00 2.00 1.00 5.39 

11 690.47 47.71 1549.00 16.31 0.18 1.07 2117.08 1.75 11661.00 3.00 1.00 9.05 

12 705.04 44.85 1567.00 14.39 0.21 1.04 1934.22 2.50 15188.00 4.00 1.00 11.53 

13 656.59 47.09 1425.00 17.06 0.22 1.02 2029.97 1.75 11629.00 5.00 3.00 17.61 

14 613.38 47.31 1437.00 14.46 0.18 1.03 2025.87 1.75 11550.00 3.00 1.00 8.88 

15 713.76 48.48 1612.00 15.35 0.20 1.09 2029.27 2.50 10644.00 4.00 1.00 11.63 

16 711.69 46.67 1540.00 15.03 0.21 1.06 1947.43 2.50 12823.00 4.00 1.00 11.78 

17 685.16 46.25 1579.00 16.38 0.21 1.08 2040.63 2.00 13261.00 4.00 2.00 12.58 

18 710.73 46.58 1564.00 16.31 0.22 0.99 1951.60 2.75 12211.00 4.00 2.00 12.04 

19 822.71 49.69 1791.00 17.77 0.21 1.35 2666.35 2.75 10261.00 5.00 2.00 14.20 

20 687.28 48.10 1582.00 16.79 0.18 1.07 2109.43 2.25 12823.00 3.00 2.00 9.30 

21 692.90 49.13 1602.00 17.41 0.18 1.36 2665.32 2.25 12100.00 3.00 2.00 9.39 

22 972.52 51.53 2074.00 21.39 0.20 1.39 2785.92 3.00 12096.00 4.00 2.00 13.53 

23 830.35 50.77 1677.00 21.05 0.20 1.27 2408.46 2.00 11055.00 4.00 2.00 13.36 

24 768.07 52.27 1456.00 19.43 0.22 1.20 2195.93 2.50 7056.00 4.00 1.00 12.48 

25 806.16 53.85 1516.00 17.95 0.22 1.03 2075.27 2.75 5984.00 4.00 2.00 12.80 

26 716.47 52.65 1557.00 17.84 0.19 0.97 1940.41 1.25 5806.00 3.00 2.00 10.18 

27 688.09 47.81 1551.00 16.38 0.18 1.09 2110.20 1.75 11428.00 3.00 1.00 9.01 

28 1146.71 57.58 2217.00 24.71 0.15 1.82 3597.32 1.50 10734.00 2.00 1.00 5.53 

29 614.79 45.12 1598.00 13.53 0.16 1.07 2186.60 1.25 14760.00 2.00 1.00 5.37 

30 597.27 45.78 1443.00 13.70 0.18 1.05 2021.15 1.75 14298.00 3.00 1.00 8.80 

TABLE 5.32. MANY-OBJECTIVES VALUES OF FINAL GENERATION MA-Formation SOLUTIONS WITHIN MOUNTAINOUS TERRAIN 1 
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5.8.3 TYPES OF SIMULATION MODELS 

 

This section compares three variations of the mountainous terrain test space. The 

differences between each environment is similar to the MA-Spread application. The results 

of the first terrain was shown in Section 5.8.1-5.8.2. The simulations that were performed 

with Terrain 2 and 3 prioritizes lower running time to quickly test the abilities of the 

algorithm to plan paths across a variety of test spaces.   

The data or Terrain 1 and 2 is shown in Table 5.33-5.34. The final formation 

reference trajectories are also displayed in Figure 5.50-5.51. The images show that the 

formation planes are able to design path nodes that avoid all mountain peaks successfully. 

This was done by identifying the small and large peaks with accuracy. The values of ten 

objectives are well minimized across generations. There is a slight increase in altitude cost 

and spline deviation error. These results show that the algorithm is capable of adapting to 

various terrains.   
 

  
 

 

TABLE 5.33: MA-Formation HIGH RISE MOUNT 2: EXPERIMENTAL RESULTS. 

 

 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

(ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 4924.62 218.80 2131.00 79.87 2.17 5.91 5513.61 10621.00 11.42 34.00 21.00 220.70 

mean 2152.87 182.17 1027.43 30.23 0.82 2.59 2443.22 3328.90 5.59 14.47 6.83 91.96 

min 578.19 120.12 31.00 4.28 0.21 0.14 157.96 477.00 1.67 5.00 1.00 32.33 

84 

max 1489.84 227.98 311.00 17.92 2.21 3.89 551.64 1841.00 6.67 15.00 8.00 117.99 

mean 1037.48 184.15 129.47 11.10 1.35 1.81 374.30 1021.33 4.24 9.67 3.57 71.06 

min 511.88 150.67 5.00 2.76 0.63 0.29 71.85 72.00 0.50 1.00 0.00 7.19 

 % 51.81 -1.09 87.40 63.28 -64.63 30.06 84.68 69.32 24.15 33.17 47.73 22.73 

(a) Top view of formation reference paths within final generation.  (b) Side view of formation reference paths within final generation. 

Fig. 5.50. MA-Formation Mountain 2: Final generation’s multi-agent unique formation reference trajectories. 

 

(a) Top view of formation reference paths within final generation.  (b) Side view of formation reference paths within final generation. 
Fig. 5.51. MA-Formation Mountain 3: Final generation’s multi-agent unique formation reference trajectories. 

 

start 

goal 

start 

goal 
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TABLE 5.34: MA-Formation HIGH RISE MOUNT 3: EXPERIMENTAL RESULTS. 

 

Table 5.35 shows the running time for all three variations of the mountainous terrain for 

the MA-Formation mission. The results here show similarities with the MA-Spread 

mission across the mountainous terrains. It shows that the collision check for formation 

flight also requires a large percentage of the running time. One exception is Mountain 2 

which uses most of its running time on the parallel run control system for eight agents. It 

also utilizes 10-20% of its running time on two of the formation planning algorithms.  

As with the other simulations, these results show that the algorithm can minimize 

the values of many objectives. It also shows that fast initial testing can be performed with 

lower resolution paths.    

 

MA-FORMATION 

ALGORITHM MOUNT 1  

(sec) 

MOUNT 2 

(sec) 

MOUNT 3 

(sec) 

GA + MA-RRF Repair + DRMOO 2601.70 610.03 700.55 

GA 4.28 0.16 % 0.42 0.07 % 0.83 0.12 % 

MA-RRF Repair 266.95 10.26 % 23.00 3.77 % 70.65 10.08 % 

Find nearest obstacle sample node 397.14 15.26 % 132.47 21.72 % 140.63 20.07 % 

Generate free space surface  274.01 10.53 % 102.86 16.86 % 83.99 12.00 % 

PD Control System 257.78 9.91 % 214.89 35.23 % 145.49 20.77 % 

Formation objectives 118.94 4.57 % 53.99 8.85 % 36.60 5.22 % 

Collision Check 1417.04 54.47 % 80.80 13.24 % 263.38 37.60 % 

 

5.9 SUMMARY 

 

This final chapter presented the simulation results for the MA-RRF, GA and DRMOO 

algorithm across two different multi-agent quadrotor UAV missions. This path planner has 

utilized algorithms that have the advantage of parallel processing. Here, a control system, 

sampling based planner, evolutionary algorithm and many objectives optimization 

algorithm are designed to run on any multi-thread system. Thus, the processing time for 

both missions can be greatly reduced with a more advanced processing system.     

 

The results show that the trajectory planning algorithm has successfully generated 

a large collection of trajectories for multiple quadrotors within the MA-Spread application. 

Firstly, the images prove that the path planner is capable of both high and low-resolution 

ITER  

PATH 

LENGTH 

(m) 

ALTITUDE 

COST 

(m) 

GOAL 

COST 

(nodes) 

JERK 

COST 

(m/s3) 

SPLINE 

DEVIATION 

(m) 

TIME 

OPTIMALITY 

(ratio ) 

FUEL 

COST 

(sec) 

NETWORK 

TOPOLOGY 

(no loss) 

COLLISION 

AVOIDANCE 

(no collisions) 

SAFETY 

RANGE 

(no 

breach) 

TERRAIN 

COVERAGE 

(no free) 

space grids 

SENSORY 

OVERLAP 

(no grid 

block) 

overlap 

1 

max 3436.49 83.81 2337.00 50.31 1.69 11.37 4985.10 12889.00 9.67 28.00 14.00 191.51 

mean 1765.44 69.15 1192.97 24.74 0.56 4.53 2530.76 3593.73 3.05 9.00 4.50 54.42 

min 480.30 40.67 64.00 2.69 0.19 0.11 71.19 148.00 0.00 1.00 0.00 0.00 

56 

max 1068.99 82.82 438.00 11.26 1.92 2.46 525.65 1318.00 4.00 10.00 5.00 77.59 

mean 746.27 73.76 164.13 7.21 1.24 1.17 278.21 576.93 2.09 5.53 1.87 38.33 

min 641.20 65.46 73.00 4.79 0.56 0.54 162.06 12.00 0.00 1.00 0.00 0.00 

 % 57.73 -6.67 86.24 70.86 -121.43 74.26 89.01 83.95 31.48 38.56 58.44 29.57 

TABLE 5.35: MA-Formation MOUNTAINOUS TERRAIN RUNNING TIME. 
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free space mapping. It is also able to extract collision free paths within all three test 

environments. A large collection of multi-agent paths was generated by MA-RRF and GA. 

These versions of the basic algorithm have been successfully modified for diverse path 

generation.  Secondly, the findings for MA-Spread show that the resources of all agents 

have contributed towards each mission. It has optimized a team of quadrotors collectively 

as opposed to individually. Thirdly, the motions of all four quadrotors were well estimated 

through the closed-loop control system. Lastly, the results show that the 12 objectives for 

MA-Spread task were either well minimized or maintained across generations.  

 

Next, the outcome of the MA-Formation application is a multi-layer system that 

successfully performs many-objectives optimization across 12 different objectives. 

Initially, environment free space mapping and the creation of free space contours between 

obstacles was accomplished. Next, the images show that both the MA-RRF and GA are 

capable of generating a population of reference paths across all test environments. Then, 

the results show that the dynamic formation planner is capable of designing formation 

shape for all 8 agents accordingly. Here, the images prove that formation planner can work 

in high resolution. This level of resolution is advantageous for the full obstacle avoidance 

and the design of adaptive formation shapes. Later, the independent trajectories for each 

agent were applied as input for the multi-agent control. Here, the estimated values of all 

objectives aided in the ranking of each formation trajectory. Lastly, the many-objectives 

optimization process was implemented through dimensionality reduction. The final results 

show that the algorithm is able to find a diverse set of solutions for each scenario. Similarly, 

all objectives are minimized or maintained without the extreme degradation of one cost 

over the other. Thus, the end user was provided with a variation of solutions where 

formation speed, rigidness or simplicity can be used as the final decision factor. 

 

One important consequence of this chapter is that the end user is delivered all of 

these findings in an easily interpretable manner in order to make a final decision. The data 

is well organized and the images are in high resolution. All of these results will allow the 

end user to successfully implement their own post-processing preferences.   
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CHAPTER 6: CONCLUSION 
 

This research generated a large collection of optimized trajectories for multi-agent 

quadrotors. The hybridized algorithm extracted trajectories with various trade-off values 

for all agents without discrimination. This allows the user to check the availability of the 

resources of all agents to contribute towards the completion of a task. This study created a 

balance between diverse and optimal solutions through dimensionality reduction. The 

results showed that the algorithm performs successfully in finding a diverse set of optimal 

solutions within each environment. The end user is supplied with high resolution visual 

imagery and well-organized data on the multi-agent quadrotor UAV trajectories. The 

additional knowledge will assist the end user in making a final choice.   

 

6.1. RESEARCH PURPOSE AND FINDINGS 

 

The main goal of this study was to create a multi-agent quadrotor system of at least three 

agents. The designed multi-agent quadrotor system must be capable of executing simple 

tasks cooperatively. As the study progressed, these targets became either more refined or 

expanded in terms of the study areas that it covered. 

 

Firstly, a variety of cooperative tasks were explored. Some of the multi-agent 

quadrotor missions that were explored were load lifting, target tracking as well as search 

and rescue. Designing a separate system for these tasks proved to be time consuming and 

complex. One of the themes that emerged from these various tasks is that they can be 

divided into two distinct cooperative missions. This study finds that most multi-agent tasks 

can be generalized into either spatially spread or formation flight. The purpose of this 

research was realigned to design a standardized platform for most multi-agent missions. 

Thus, the end user is awarded a high level of flexibility when implementing this platform 

towards their desired mission. 

 

Secondly, a mathematical model of the quadrotor must be used to simulate the 

movements of each agent. In the beginning, an accurate representation of the quadrotor’s 

body and rotor’s forces was implemented. An LQR control system was used to simulate 

the changes in the quadrotor’s movements. This study finds that simulating a highly 

accurate and minimal error system will require a much larger amount of time in comparison 

to a more simplistic version. This delay is expanded further when multiple agents are 

simulated simultaneously. It became necessary to find a balance between processing time 

and accuracy. Here, the simplified model that is often adopted by researchers is run together 

with a PD control system. Minimal jerk smooth splines are used to transform the paths 

nodes into time-based trajectories. The purpose of this work evolved towards using a fast, 

closed-loop control system that can be run in parallel and has minimal deviation error.      
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Next, it was important to simulate the rotational and translational direction that the 

quadrotors were flying towards across a test environment. It is important to show through 

imagery or data that all obstacles are avoided. The visual imagery will be easily understood 

by users with different levels if knowledge about multi-agent UAVs. The data should show 

if the agents are capable of reaching their desired end point. In the beginning, a simple 3D 

plot with cones as obstacles was created to visualize the path that each agent was flying 

across. It is fast, noncomplex and popular amongst many researchers. Next, this basic 

environment was expanded towards creating a real-time moving simulation of the multi-

agent quadrotors. A high resolution indoor and forest environment was designed. Similarly, 

accurate 3D model of the quadrotors was designed to run in real-time. This version proved 

to require a high amount of processing speed. The findings from these two variations are 

that a balance between high levels of visual animation and complexity must be struck. It is 

still important that the test environments contain all of the complexities of real life test 

spaces. The target of this research was changed to generating high resolution imagery that 

can be studied post-processing. The structures and obstacles within the cityscape, indoor 

and mountain environment mimic their real-life versions. The images contain all of the 

important information that is required by the end user. A database also accompanies these 

images. This database contains knowledge regarding the states of each agent, their exact 

coordinates and objective values. It also shows if all obstacles are safety avoided.      

            

Now, the main goal of this research was to design a multi-agent free space mapping 

and path planning system. This planner must be capable of producing feasible paths for all 

of the quadrotors. Initially, a variety of path planners were implemented. The basic shortest 

path algorithm, virtual potential function (VPF), leader-follower formation flight and 

consensus algorithm were all tested. Grid based mapping was utilized for mapping the free 

space within the simulated test environments. The findings show that there was a tendency 

for each path planner to perform better in certain tasks. Some planners were suited to spread 

whereas others were ideal for formation flight. Similarly, some were more suitable for 

generating one best path whereas the others were capable of extracting many paths. 

Another issue was that some were too complex for a multi-agent system. Thus, the goal of 

this research moved towards designing a highly flexible path planner that is a combination 

of different planners. This planner can be standardized for both spread and formation flight. 

It must also be able to generate a large collection of possible paths. The initial free space 

mapping and path planning is quickly performed by the sampling-based MA-RRF planner. 

Next, a more refined GA path planner is implemented for further generations. A virtual 

structure formation planner is embedded after the path planning process for formation 

planning. 
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Lastly, this research originally aimed to optimize certain objective functions. Many 

researchers often implement popular objectives such as minimizing path length, error, fuel 

consumption, agent-to-agent distances and collision avoidance. They consider the 

environmental and mechanical limitations of their mission. The initial work within this 

project implemented these objectives with an aggregated cost function. The findings 

showed that there is a tendency for the minimization of certain objectives to be affected by 

the others. The team was also required to produce predetermined preferences for the 

objectives. This can be difficult for inexperienced researchers or drone pilots. The research 

then expanded towards a more standardized platform that mathematically defines and 

optimizes many objectives simultaneously. Thus, there was a strong motivation to design 

a multi-agent system can be applied towards many missions, agents and test environments. 

Many-objectives optimization is implemented in order to achieve this goal. The 

optimization of many objectives produces an optimal and diverse collection of paths for 

the end user.            

 

6.2. RELATIONSHIP WITH PREVIOUS STUDIES 

 

This study is able to provide some insight into trajectory planning for multi-agent 

quadrotors. Some of the finding within this thesis can be in agreement with previous 

research publications. On the other hand, there are some findings that can differ from the 

conclusions of other published studies. The relationship between this thesis and previous 

studies is presented within this section.   

 

The first stage of any trajectory planning algorithm is the free space mapping 

process. The MA-RRF sampling-based planner is applied within this research project. This 

multi-tree algorithm was inspired by the different variations of the RRT planner that is 

presented in [31]. Study [31] theorises that a multi-tree system can become highly complex. 

The pseudocode within Chapter 3 confirms that the MA-RRF planner is tougher to 

implement in comparison to the basic RRT. Still, the multiple trees are capable of fully 

exploring the three different test environments with speed. The free space mapping and 

path extraction process is also much faster than running the basic RRT planner sequentially 

for each quadrotor.  One study that applies multi-tree RRT is [49]. In this case, six trees 

are grown from different locations within the test space. The findings in this research 

project differ from the results of [49]. Their work requires the multi-tree algorithm to be 

run multiple times in order to properly interpret the data. The results are aggregated in order 

to produce short term paths. Chapter 3 of this thesis shows that it is possible to design long 

term paths with a single run of the multi-tree system.    

 

The authors of [48] also implement a multi-tree RRT system. Their planner includes 

data sharing between multiple CPUs. In their system, all trees are rooted in the same 
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location. Each tree is generated by a different CPU. Their findings show that the shared 

information between the different trees can be highly beneficial. It allows the trees to 

corporate as they explore unknown test spaces. This method increased speed and 

efficiency. The images and data within Chapter 3 show that the MA-RRF results are in 

sync with [48]. In this thesis, the shared database between all trees was used during the 

forest linking process. These MA-RRF multi-tree links encourage cooperation between the 

different trees. Here, the nodes from multiple trees cooperate to create a single path. These 

findings show that the shared information creates a cooperative MA-RRF planner that is 

faster than an independent multi-tree RRT system.    

 

Many researchers have chosen to use GA as a UAV trajectory planner. Some works 

apply GA as a stand-alone path planner whereas others use it alongside other algorithms. 

Path planning for quadrotor UAV using GA is presented by [109]. Their test space had 

minimal obstacles and the final path was a straight line. Their findings show that GA was 

run for more than 500 generations in order to find short term path nodes. Similarly, a 

multiple coordinated agents’ coevolution EA (MCACEA) is applied within [112] to 

generate paths for multiple UAVs. Their results also show that the path planner can require 

almost 500-1000 generations in order to fully optimize the multi-agent trajectories. Initial 

experimentation for this research project matches the conclusions of [109] and [112]. It 

showed that using GA as a stand-alone free space mapping and planning algorithm will 

require a longer processing time. The published work [111] implements a modified breeder 

GA (BGA). Here, BGA is combined with Bspline and VPF in order to generate UAV path 

nodes across mountainous terrains. Their long-term offline planner only required a 

population size of 100 and 50 generations to reach a good solution. This shows that a 

hybridized algorithm can be faster than a stand-alone GA path planner. The work that is 

presented in this thesis is in agreement with [111]. The combination of MA-RRF as the 

initial search algorithm and GA as an optimizer creates a faster path planner. The results 

within Chapter 3 also show that this combination facilitated the quick creation of thousands 

of hybridized paths across many generations.  

 

The initial inspiration for this hybridized trajectory planner was the findings within 

[50]. The authors of this paper applied a two tree RRT sampling-based planner in order to 

generate path nodes across protein conformations. Their work showed that the many paths 

that were extracted from the RRT planner can be hybridized to create one superior path. 

This study emphasized that the quality of some path subsections may be better than the 

quality of an individual path. The quality of each subsection was measured through a cost 

matrix that prioritizes shorter pathways. Lastly, the path subsections are fused together to 

create a more optimal final trajectory. The results that were presented in Chapter 3-5 are in 

agreement with the conclusions of [50]. Here, the path subsections that were generated by 

the initial MA-RRF planner are hybridized to create more optimal child paths within GA. 
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This thesis also shows that MA-RRF can also be applied successfully within GA to repair 

the hybridized paths. This research project has expanded the limitations within [50] by 

generating tens of thousands of hybridized paths across all generations. It also applies a 

more refined many-objectives optimization algorithm to rank the path subsections. The 

final paths that are shown in Chapter 5 can be compared to the initial path population in 

Chapter 3. It is similar to the outcome of study [50]. The final hybridized paths are of higher 

quality and shorter than the initial MA-RRF paths.       

 

One of the most important contribution of this work is the control system for the 

multi-agent quadrotors. Firstly, real life quadrotor UAVs must be able to track the designed 

hybridized trajectories. [143] shows that generating minimal snap trajectories allows the 

quadrotors to track the path nodes with minimum deviation error. The paths within this 

thesis are converted into minimal jerk trajectories using B-spline curves. The findings that 

are presented in Chapter 5 show that there is still a small amount of deviation error that is 

present across all generations. The error value is within close range to the worst case 

positional error that is obtained within [143]. Their experimental results show that the 

quadrotors are still capable of tracking complex manoeuvres with large accelerations as a 

team. Next, the simplified mathematical model for each agent is inspired by the full model 

within [140]. The author also presents a control system that defines the positional and 

rotational control structures. The simulation results within Chapter 3 are synonymous to 

those that are presented in [140]. The author places importance on using a controller that 

is capable of stabilizing a system by maintaining a zero value for all three of the Euler 

angles. The estimated values for each quadrotor within this research project show that the 

PD controller was able to fulfil this requirement. 

 

Most publications on optimization algorithms will define the costs, limitations and 

objectives of the UAV’s mission. The costs that are applied within these works are often 

specific to the type of UAV, number of agents, task and environment. [112] presented a 

trajectory planner for multiple UAVs that aims to minimize 11 objectives. Their work 

considers costs such as the path length, altitude, slope and curvature. It also takes into 

account the map limits, possible collisions, no fly zones and fuel consumption. The 

importance if each objective is defined through its predefined priority level. Similarly, 

[113] applied 7 different objectives within its real-time UAV path planning algorithm. 

These costs penalize longer paths that require more fuel. It also penalizes paths with nodes 

at higher altitudes or within danger zones. Lastly, paths with extreme curvatures and 

possible collision points are penalized as well. The objective functions that were presented 

in Chapter 4 are similar to those that were presented within [112-113]. These costs form 

the standard objectives that were applied within both the MA-Spread and MA-Formation 

missions. The findings in Chapter 5 are in agreement with [112-113]. The results show that 

these objectives are crucial to generating feasible trajectories. These costs encourage the 
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maintenance of paths that can be easily implemented within real-life multi-agent UAV 

missions. 

 

Some multi-agent missions require the agents to fly independently whereas others 

demand that the agents fly in formation. The researchers of each mission will have different 

objectives to accomplish. The most important objective within most spatially spread 

missions is the gathering of information. This is achieved in [28] by implementing an 

Information-rich RRT (IRRT) motion planner for quadrotor UAVs. Their work aims to 

reduce environmental uncertainty. [28] finds a balance between minimizing the total cost 

of a mission whilst maximizing the information that is collected by the agents. This is 

accomplished by implementing a corporative multi-agent quadrotor system. Each agent 

takes into account the path and information content of other quadrotors as it designs its 

own information-rich trajectory. Their findings show that a noncooperative system 

collected more information at the expense of higher cost values. The results of the 

corporative multi-agent quadrotor UAV path planning system in thesis differ from [28]. 

The results of the MA-Spread mission in Chapter 5 show that a path planner can minimize 

the mission costs and reduce environmental uncertainty simultaneously. It also shows that 

the collection of redundant sensory data can be minimized as well. This way the end user 

will not have to degrade one objective for another within a corporative multi-agent system.     

 

The second type of multiple-UAV system requires the agents to fly in formation. 

Study [142] tests three types of formation flights. The authors make a comparison between 

decentralized, leader-follower and virtual structure trajectory generation. Their findings 

show that the agents are capable of maintaining their formation shape well when a virtual 

structure is used as a guide. In this case, the agents are defined as a rigid body. The results 

of [142] state that applying a virtual structure is also the most computationally intensive 

method of formation planning. The dynamic formation planner within this thesis was 

defined in Chapter 4. The findings of this research project are in agreement with [142]. 

This dynamic formation planner applies a virtual structure and a decentralized control 

system. The system is more fault tolerant because each agent is independent. It is also more 

complex and requires a longer processing time. This research project is still successful 

because isn’t highly affected by a longer processing time because it is designed to be an 

offline planner. It is important that a formation planner is capable of designing obstacle 

free virtual structures. The design of the high resolution adaptive formation planner within 

this thesis is inspired by [141]. The authors use VPF to spread a swarm of agents across 

predefined polygonal shapes. The agents are attracted to the centre of the virtual shape. 

They are also repulsed by their fellow neighbouring agents. This system results in the 

agents being well spread across the virtual formation structure. The images within Chapter 

5 are in agreement with [141]. The results show that the quadrotor UAV are well spread 
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across the free spaces within each test environment. The agents are able to contract and 

expand along with their virtual structures.      

 

The many objectives that were previously defined for the MA-Spread and MA-

Formation mission will be used to rank the trajectories. The ranking process within a many 

objectives optimization problem can be highly challenging due to the large number of 

dominant solutions. The multi-agent trajectory sorting process was performed by the 

DRMOO algorithm as defined in Chapter 4. The DRMOO algorithm is built upon the 

concept of dimensionality reduction that was described in detail within [138] and [133]. 

Their findings showed that some objectives within the many-objective optimization 

problem can be labelled as redundant. These objectives are considered to be redundant to 

the ranking process if their removal doesn’t affect the set of dominant solutions. Both 

studies have shown that the removal of these redundant objectives will increase the 

selection pressure towards a Pareto optimal solution set. The DRMOO algorithm also 

expands the usage of objective subsets as seen in [136]. The authors break down the many 

objectives into randomly selected objective subsets. Their work applies both the full and 

partial objective sets in rotation across generations. The authors show that combining both 

the full and partial objective sets can create a well-spread and well-converged final solution 

set.  

 

The results that were presented in Chapter 5 show are similar to the findings of 

[138,133,136]. Firstly, dimensionality reduction was applied to create objective subsets 

within this thesis. The data that was shown in Chapter 5 shows that this process 

successfully increased the selection pressure within each generation. Secondly, the full and 

strategically created objective subsets were applied in rotation across generations. This 

study differs from [136] because the objective subsets were not created randomly. The 

findings within Chapter 5 show that implementing partial Pareto dominance ranking along 

with dimensionality reduction can minimize or maintain the values of all objectives. This 

is achieved without degrading any objective for the sake of another. The end user was 

presented with a diverse and well minimized collection of multi-agent trajectories at the 

end of the optimization process.      

     

6.3. LIMITATIONS OF THIS THESIS 

 

This project was designed with a few limitations in terms of research scope. The 

experiments and findings within this study are restricted to simulation only. The path 

planning system is designed to mimic real-life multi-agent quadrotor UAV flights. The test 

environments are also assumed to be well known and created to mimic the common 

quadrotor test spaces. The only environment that isn’t included is over and underwater. 

These partly known environments can be generated by the end user through initial UAV 
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sensory data or with an online map database. This system will allow the user to simulate 

the flight process with a certain level of accuracy before performing hardware testing.  

 

The design and analysis within this study is focused on long term path planning 

with static obstacle avoidance. Many works are based on short term online path planning 

with dynamic obstacle avoidance. This research aims to fill the need for long term offline 

path planning across areas that have minimal dynamic obstacles. It is designed for areas 

such as evacuated disaster sites. It can be used for environmental crisis, medical supplies 

transportation or weaponry identification. The end user has the option of implementing an 

ultrasonic sensor if basic dynamic obstacle avoidance is necessary. 

 

This study is also primarily concerned with implementing algorithms that are fast 

and minimal error. This can differ from projects that require highly accurate models of 

their UAV and its control system. This work only addresses the estimation of the agent’s 

flight path and states. It applies a simplified version of the mathematical model that has 

been proven by other researchers to be sufficient for estimating the quadrotor’s movements. 

Similarly, a noncomplex PD controller is applied despite having a small amount of 

deviation error. This is because speed is extremely important when tens of thousands of 

paths are being evaluated for many agents. The states estimation for all agents must be 

done simultaneously through a parallel run multi-agent control system. 

 

Similarly, highly complex mathematical models for the objective functions aren’t 

implemented within this research. These cost functions are used to provide an estimation 

of the pros and cons for each trajectory. It will not produce an accurate real-life 

representation of the cost values. It is enough to offer the end user insight into which 

trajectory within the entire collection is best for their mission. The estimated objectives 

values are used within the dimensionality reduced many-optimization process to rank the 

trajectories. The DRMOO algorithm is not concerned with making sure each objective is 

conflicting with all the others within an objective subset. It only aims to continue to check 

and improve the chances of an objective residing within an objective set that contains 

conflicting costs. The findings show that this is sufficient to improve the selection pressure 

within the optimization process.    

 

This research has deliberately avoided fully defining the Pareto front during the 

many-objectives optimization process. As previously defined, the primary focus is set on 

maintaining or minimizing the values of an objective without the degradation of the others. 

It brings the collection closer to the Pareto optimal front as opposed to defining the exact 

Pareto optimal solutions. This work also concentrates on maintaining a well minimized and 

diverse population of trajectories. It aims to maintain or improve the level of diversity 

between the initial MA-RRF to the final GA population. Thus, it is not concerned with 
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accurately representing a well spread Pareto front. This research is restricted to providing 

the end user with a large collection of well minimized and diverse multi-agent trajectories.    

 

The final constraint in terms of study scope is the termination point of the DRMOO 

algorithm. It is important to note that the final population is determined through human 

analysis of visual imagery and the level of objective minimization. The visual study easily 

shows the diversity of the path population. It simplistically defines is the paths are spread 

across different areas. The data shows if the population is well minimized in comparison 

to the initial MA-RRF population. This research intentionally tries to find a balance in 

trajectory optimization and diversity. In this case, the final population may not hold the 

minimal value for all objectives. Here, it must be stressed that the end user has tens of 

thousands of path choices across 100 generations to choose from. It is possible for the user 

to pick a different termination point.          

 

6.4. ISSUES WITHIN THE RESEARCH PROCESS 

 

The experimental process of any research project can be challenging. In most cases, there 

are often issues that occur during the simulation and testing process. The first challenge 

within this project is to design test environments that are suited to the multi-agent quadrotor 

missions. Each environment is complex and it can be difficult for the viewer to see clearly 

that the path planner is capable of generating nodes that do not collide with the obstacles. 

Still, it was important that these simulated test spaces contain sufficient detail in order to 

mimic real life environments.  

 

A balance between creating easy to interpret imagery, real-life accuracy and 

processing time was necessary. This was done by limiting the number of clutter within 

each room in the indoor space. Similarly, the size of the mountainous terrain was reduced 

in order to preserve the gradual height changes within the peaks and lows. Then, it was a 

challenge to define the size of the safety boundaries around each obstacle. The safety zones 

of the mountainous terrain had to accurately represent the changes in height across the 

terrain. Here, the heights of the safety zones are based on the maximum height of the 

mountain peaks that are within it. It was especially challenging to determine the boundary 

size within the cityscape and indoor environment.  A larger sized safety zone will minimize 

possible obstacle collisions but reduce size of the already narrow passages. Similarly, 

smaller safety zones will allow more agents to fly across these narrow passages but increase 

the chances of collisions. The boundary size within these two environments was 

determined through experimentation and by considering the average real-life sizes of 

quadrotors.  
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There are some issues that must be tackled when creating a standardized platform 

for two different applications. The only difference between the two missions is the addition 

of a dynamic formation planner. In this research, the same path planning and optimizing 

algorithms is applied within the multi-agent quadrotor spatially spread and formation flight 

mission. Firstly, the MA-RRF planner was designed to take advantage of a multi-agent 

system by generating multiple trees. This process generates feasible paths for many agents 

simultaneously within the MA-SPREAD application. On the other hand, the MA-

FORMATION mission only requires one collection of formation reference paths. Thus, 

there is only one MA-RRF tree. The same algorithm is usable by implementing virtual 

agents across the test space. This method quickly generates a diverse collection of 

formation reference paths. Similarly, the same GA and DRMOO algorithm is modified to 

be applicable within both missions. There is also a standardized set of objectives for both 

tasks. Here, the end user has the option of introducing four more costs that are specific to 

either the spread or formation mission.  

 

Another challenging aspect of any study is the identification of unknown variables. 

All of the subsections within this research contain variables or operators that will influence 

the final results. The MA-RRF path planner requires a sampling node, forest link and near 

goal node range. The values of these variables are set based on the level of diversity of the 

resulting path population. Similarly, GA has multiple operators within its structure. The 

type of operators within the GA can improve or destroy optimal paths. These operators are 

set based on the maintenance of optimal solutions within the resulting population. Next, 

determining the percentage for the path similarity threshold within the MA-RRF and GA 

can be tough. The algorithm will require a much longer run time if a high level of diversity 

is required. Many optimal paths will be removed from the population. A balance was found 

by implementing a percentage that isn’t too strict but encourages path diversity. Lastly, the 

final variable that needs to be determined is the termination point for the MA-RRF and GA 

algorithm. In both cases, the termination point is a constant value that has been determined 

through experimentation. The number of iterations allows the MA-RRF planner to generate 

a large collection of initial paths and repair child paths within GA. 

 

All of the subsections within the hybridized path planner will require a well-

organized shared database. This open database provides the end user with additional 

information regarding the trade-offs of each trajectory. It contains data from the MA-RRF 

planner, GA and DRMOO. These values will require a huge amount of storage and must 

be easily extractable. The testing process showed that the manner in which the data is stored 

can affect the speed of an algorithm. Initially, the path extraction and filtration process 

required a longer completion time. The MA-RRF planner contains multiple trees and forest 

linkages between them. It was important to store the connections between the branches 

systematically so that the path subsections can be easily obtained. The estimated states for 



246 

 

each agent have to be easily extractable by the DRMOO subsection. Similarly, the 

objective values and ranking for each trajectory must be arranged in a manner that isn’t 

difficult for the end user to understand. The results show that optimal trajectory planner is 

capable of running smoothly with an organized database.  

 

6.5. IMPLICATIONS OF RESULTS  

 

The results and findings within this research project provide support for the argument that 

many-objectives optimization can be applied towards multi-agent UAV problems. Current 

commercially available processing systems are not capable of performing many objectives 

path optimization for long term planning on board an UAV. A ground base station will also 

be incapable of completing the optimization process quickly. The generation, estimation 

and ranking of many trajectories cannot be done in real time. Still, this study shows that it 

is possible to perform long term path planning for many agents offline. This can be done 

within a one-day time frame and only requires a basic multi-thread processing system. It 

can be useful for multi-agent UAV missions that require some level of accuracy and 

information before execution. This planner is suitable for war and disaster zones that 

contain minimal living beings. It is also suited towards unexplored terrains.  

 

The optimal trajectory planner also offers evidence that a standardized system can 

be applied towards both spatially spread and formation flight missions. Many works are 

focused on either cooperative or noncooperative flight tasks. This study proves that it is 

possible to create a standardized platform for both options. This multi-agent UAV path 

planner only requires the addition of a dynamic formation planner when switching between 

missions.   Next, the results provide evidence that it isn’t always necessary to implement a 

weighted priority or token system that can cause bias within the optimization process. 

Many studies choose to focus on a selected number of objective functions when creating a 

path planner for UAVs. This research project shows that it is possible to implement any 

number of objectives within the trajectory optimization process. It shows that the many 

objectives can be minimized simultaneously without the degradation of the others.    

 

The work that is presented within this thesis proves that a fast-parallel run system 

can be implemented with a multi-agent quadrotor team. All of the subsections are created 

to perform faster within a multi-thread processing system. The trees within the MA-RRF 

planner can be generated in parallel. Similarly, the multi-agent child paths that are 

generated by the GA can be designed in parallel. Lastly, the closed-loop control system is 

designed to output the predicted states of all agents simultaneously. This is also achieved 

by running the control system of each agent in parallel.  
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This research also offers evidence that a path planning algorithm is capable of 

offering a large collection of diverse and optimized trajectories for many agents 

simultaneously. This is different from popular studies that aim to offer a singular best path. 

Lastly, the results suggest that it is possible to present the end user with a well-organized 

database that is filled with easy to understand information. Many drone users will welcome 

the addition of easy to understand imagery and knowledge regarding the designed multi-

agent trajectories.  

 

6.6. FUTURE RECOMMENDATIONS 

 

Today, path planning for unmanned vehicles continue to be a popular research topic. This 

is because commercially available drones such as the quadrotor are often used by both 

professionals and hobbyists. Future researchers can either choose to expand or reduce the 

scope of this project. This research project is a fully simulation based study. Thus, the 

future recommendations of the project will be focused on possible simulation based topics.    

 

One way of expanding this study’s scope is by implementing a much larger number 

of objectives, costs or limitations within the optimization process. As previously defined, 

most decisions that humans face in real life are based on many costs. The introduction of a 

larger collection of objectives will allow the end user more flexibility when applying the 

system towards their desired mission. It will allow the end user to attach the cost functions 

that are suited to their current multi-agent UAV task. Introducing more objectives will 

further standardize the optimal path planner. Thus, it will be applicable within a large 

variety of real life tasks.  

   

Another method of pushing the limitations of this project is by applying the 

algorithm with a swarm of quadrotor UAVs. This project applied the path planner with 8 

quadrotors. The optimal trajectory planner can be expanded to include a larger number of 

agents. This will require a fast swarm based control system that is capable of estimating 

the states of each agent. These experiments will test if the completion time of the path 

planner increases or decreases in speed with a large number of agents. The most 

challenging subsection will be the dynamic formation planner. A swarm of agents will 

require a lot of coordination in terms of formation structure and maintenance.     

 

New researchers can further spread the scope of this project by performing long 

term path planning across much larger distances. A much larger search area will contain a 

variety of environments as opposed to just one.  An urban space can contain both office 

and residential areas. Thus, the algorithm will have to generate paths across a cityscape 

and multiple highly cluttered indoor environments. Current researchers can also choose to 

minimize the scope of this project when proposing a new research topic. They can choose 
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to apply the optimal path planner for specific tasks. The planner can be implemented within 

missions such as payload transportation, target tracking, weaponry identification or 

agricultural and wildlife imaging. 

 

Another manner that this project can be implemented at a smaller scale is by 

applying it within a smaller test space. This converts this long-term planner into a short 

term one. In this case, real-time node generation and path replanning can be performed in 

real time. Dynamic obstacle avoidance can also be introduced. The optimization process 

within the algorithm will have to be simplified. The path planner will also require a fast-

multi-thread processing system in order to perform in real-time.  

 

All of these possible future topics can provide new findings and contributions to 

the field of robotics. It will continue to provide the end user with a large collection of 

feasible solutions. These topics will also offer the end user more information and assistance 

in regard to which solution is the best for their mission.           

 

6.7 CONTRIBUTIONS TO RESEARCH 

 

The first target of this research was to construct and map three-dimensional test 

environments that illustrate real-life flight challenges. The objective of designing real 

world locations for the purpose of standardizing the trajectory planner is well achieved. 

Three defining environments were designed based on prior popular research projects across 

the world. These various environments were designed to test the robustness and 

adaptability of the hybridized algorithm in the face of a variety of different challenges and 

constraints. The three environments applied here are the high-rise cityscape, highly 

cluttered indoor environment and mountainous terrain. All three are locations that are 

available across the world and are locations where quadrotors are most commonly applied. 

The safety boundaries within each test space were also successfully integrated into these 

environments.   

 

Next, the path planner aimed to generate highly diverse collision free paths for the 

initial population of the optimization process. The diversity of these initial paths is 

paramount to the effective application of the many-objective optimization algorithm. This 

study has successfully achieved this target of based on the multi-agent paths that were 

extracted by the MA-RRF algorithm. The MA-RRF algorithm achieved high levels of free 

space exploration with zero obstacle collisions. Results show that the multi-agent RRF 

system is speedy and has an advantage over the basic RRT algorithm. It used the multi-

agent system to its advantage by generating a multi-tree forest. Here, the cost function for 

possible forest links is easily modifiable to suit the end user. There were challenges within 

the more constricted environments. In these cases, extracting diverse paths was difficult 
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due to the presence of narrow passages and large amounts of obstacles. The MA-RRF was 

still capable of free space mapping and path planning despite these limitations. Thus, the 

MA-RRF design can be reapplied as a standalone platform when speed is required. It can 

be applied for critical situations such as real-time collision avoidance or path replanning. 

 

Another target that must be achieved by the optimal trajectory planner is the 

creation of a unique population of multi-agent paths for each generation. The initial 

suboptimal trajectories that were developed by the MA-RRF algorithm were applied as the 

input for the optimization process. This process reduced the amount of free space that needs 

to be searched by GA. It also allowed GA to execute more refined multi-agent path 

planning. The initial MA-RRF trajectories were meshed to create new paths through the 

GA’s crossover and mutation process. MA-RRF was also applied for the path repair of 

child trajectories after the crossover and mutation process within GA. Four additional post 

processing GA operators were well implemented in order improve the survivability of these 

child paths.   

 

It is important that the paths that are created must be converted into time-based 

smooth trajectories that are suitable for multi-agent quadrotors. The paths from the GA are 

successfully converted from a collection of nodes to time-based trajectories through 

adaptive minimal jerk splines. One important design factor in the spline implementation 

was its adaptability across extreme angles between two nodes. Here, the addition of extra 

nodes enhances the smoothness of the turn. It also stopped the spline from crossing across 

an obstacle when two nodes are too far apart. The minimization of sudden jerks proves to 

create smoother transitions between waypoints. This ensures continuity for the second 

order derivatives of the quadrotor’s roll and pitch angle. Despite the achievement of smooth 

design, the quadrotor was chosen based on its capability for aggressive manoeuvring. Thus, 

the end user always has the option of choosing between smoother and more aggressive 

trajectories.  

 

Then, the study intends to model a noncomplex parallel run closed-loop multi-agent 

quadrotor control system. The objective of successfully designing a quadrotor control 

system for speedy tests of feasible paths is complete. The design of the control system 

mimics the flight trajectories of the multi-agent quadrotors. It contained two subsections 

for each agent. The first stage holds the PD control system whereas the latter holds the 

mathematical model of the quadrotor. The desired trajectory nodes for all agents are 

applied simultaneously within the control system. This generates the estimated positional 

and rotational states of each agent. These states were then successfully used to predict the 

values of the many objective functions.  
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This research also aimed to identify and standardize the various applications of 

multi-agent quadrotors. Thus, the optimization algorithm is applicable towards any 

variation of real world multi-agent cooperative tasks. The algorithm successfully defined 

and optimized paths for both the multi-agent spread and formation flight mission. The MA-

SPREAD was well implemented to create a common trajectory planner for missions such 

as search and rescue, surveillance, reconnaissance, terrain mapping, multi-target tracking, 

environmental monitoring, forming ad hoc wireless networks, wildlife and atmospheric 

research and disaster relief. Whereas, MA-FORMATION was successfully designed for 

payload transportation, military missions such as security patrols, search and rescue at 

hazardous disaster sites, cooperative sensory angular coverage and aerial flights whilst 

maintaining precise patterns.    

 

Another goal of this work is to mathematically define a set of multi-agent quadrotor 

mission-based objectives. A standardized definition of the quadrotors’ physical constraints 

and mission limitations were represented by a collection of objectives functions. These 

objective functions are applicable to any environment, any number or variation of 

quadrotor shape, size or mass as well as other options of network range, sensors, control 

method and measurement unit. The optimization of multi-agent quadrotors is performed as 

a team for both missions. The MA-SPREAD mission optimized the combination of multi-

agent trajectories. The objectives from the MA-SPREAD mission are dependent on the 

team’s terrain exploration. On the other hand, the MA-FORMATION mission optimized 

the formation reference trajectory at every generation. The objective functions for 

formation flight are dependent on the formation shapes that are planned by the dynamic 

formation planner. As previously discussed, any additions of new functions within the 

many-objective optimization algorithms is as simple as adding it into the objective set with 

no modifications to the algorithm.    

 

This study also placed a lot of importance on developing a well optimized yet 

diverse final set of trajectories for end users. The values from the many objectives were 

used to sort the multi-agent trajectories based on their level of optimality and diversity. 

Here, DRMOO ranking algorithm was defined in detail. This algorithm combines both 

partial dimensionality sorting with full high dimensionality optimization. In this research, 

we applied dimensionality reduction in order to increase selection pressure without the 

absolute removal of any objectives. The objective subsets were not created randomly. It 

was performed by evaluating the level of conflict between objective pairs within each 

subset. This process minimized the chances of full elimination of an objective function and 

leaves room for possible error. Here, the application of adaptive niching contributed 

another level of diversity maintenance. The algorithm is designed to focus on the 

minimization of all objectives as opposed to mapping the Pareto front with full accuracy. 
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Thus, the final set of trajectories as well as its data is an approximate of the Pareto optimal 

solutions. 

 

Lastly, this work intends on providing well organized and easily understandable 

information regarding the trade-offs of each solution. The results showed that the algorithm 

performs successfully in finding a diverse set of optimal solutions within each 

environment. The end user is supplied with high resolution visual imagery and well-

organized data. The additional knowledge will assist the end user in making a final choice. 

In the MA-SPREAD mission, the end user is able to compare the sensory data overlap, 

uncertain terrain coverage and network connectivity when choosing the best option. In the 

MA-FORMATION application, the end user is provided with a variation of solutions 

where formation speed, rigidness or simplicity can be used as the final decision factor.   
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