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Abstract

This thesis addresses the problem of controlling the unsteady flow separation

over an aerofoil using plasma actuators, with the aim of improving the perfor-

mance of fluid systems through the use of robust feedback controllers. Despite the

complexity of the dynamics of interest, it is shown how the problem of controlling

flow separation can be successfully formulated and solved as a simple output reg-

ulation problem.

First, a novel control-oriented reduced-order model for nonlinear systems evolv-

ing on attractors is obtained. Its application to the incompressible Navier-Stokes

equations is proposed, in order to obtain a linear reduced-order model (whose state

variables have a clear and consistent physical meaning) of the complex flow/actu-

ator dynamics.

On the basis of the proposed model, a new robust multivariable feedback con-

trol algorithm for flow separation suppression is designed, using real-time velocity

measurements, which are available in realistic applications. The presented con-

trol scheme is tested in both Single-Input-Single-Output (SISO) and Multi-Input-

Multi-Output (MIMO) configurations, thus allowing for optimising the closed-loop

system, with the aim of selecting suitable numbers and positions of the actua-

tor/sensor pairs along the aerofoil, as well as desired references for the real-time

measurements, according to the specific application (e.g., flow separation suppres-

sion, mixing enhancement etc.).

Accurate numerical simulations of incompressible flows around both 2D aerofoils

and 3D wings are performed in order to optimise the closed-loop system and il-

lustrate the effectiveness of the proposed approach in the presence of complex

dynamics that are neglected at the design stage. Robust performances, with re-

spect to both parameter variations (e.g. geometry of the domain and Reynolds
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number) and model uncertainties, are demonstrated. The designed controller is

able to effectively suppress the flow separation along the aerofoil, as well as the

shedding vortices, thus yielding both a reduction of the drag and an increase of

the lift. This allows for stall avoidance and increased efficiency.
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Chapter 1
Introduction

Flow control is a fast growing multidisciplinary science aimed at modifying the

boundary layer in order to alter natural flow states into desired target states, which

are chosen depending on control objectives. Crucial examples are: manipulation

of flow separation and flow reattachment (aimed, for example, at drag reduction

or stall prevention), noise suppression, mixing enhancement and increase of com-

bustion efficiency. Within this context, feedback controllers are pivotal, as they

can achieve a full and efficient regulation of the flow field in real-time (see Kim

and Bewley, 2007). In particular, the incorporation of control theory into many

open problems in fluid mechanics presents a host of new opportunities, with a wide

range of applications in disparate fields, e.g. wind (Whittlesey et al., 2010) and gas

turbines (Huang et al., 2006), aircraft (Cho and Shyy, 2011), trains (Baker et al.,

2004; Baker, 2010), as well as road (Grandemange et al., 2014) and marine vehicles

(Dean and Bhushan, 2010). Among the several benefits yielded by boundary layer

control, increased lift and reduced drag due to separation suppression would result

in improved efficiency and reduced pollution in most energy and transportation

applications: e.g. wind turbines, Unmanned Aerial Vehicles (UAVs), ground and

marine vehicles etc. The transport sector is responsible itself for approximately

20% of global energy consumption (see, for example, Brunton and Noack, 2015).

Thus, even a small improvement in the performance of transport systems would

have a dramatic effect (see Gad-el Hak, 1989; Gad-el Hak and Tsai, 2006; Kim,

2011). The CO2 emissions due to the automotive transport only are expected

to increase by 57% by 2030 (Brunton and Noack, 2015). A large portion of this

emission is due to aerodynamic drag (Gilliéron and Kourta, 2010; Grandemange

et al., 2014).

1



1.1. Flow control methods 2

The area of feedback flow control incorporates essential and non-trivial elements

of fluid dynamics, numerical methods and control theory. This is why there has

been an increased participation of researchers in apparently disparate fields. Con-

siderable efforts have been directed towards developing and evaluating control

strategies for wall-bounded turbulent flows over the past three decades (el Hak,

2000). However, communication barriers due to the disparate skill sets have his-

torically led to slow progress (Cattafesta and Sheplak, 2011); consequently, there

are several unsolved key issues which need to be addressed (Bewley, 2001; Collis

and Joslin, 2004). In the remainder of the chapter, the main challenges in the

flow control framework are discussed, namely: both the potential and drawbacks

of feedback over the other flow control methods; the choice of the actuator and its

modelling; the issues in efficiently modelling the complex flow/actuator dynamics,

in view of the control design; the choice of the output measurements, in view of

realistic applications.

1.1 Flow control methods

Flow control strategies can be either passive or active; active methods are

categorised based on the actuation system response to changes in the flow, i.e.,

open-loop (feedforward) or closed-loop (feedback) control. Optimised aerodynamic

shapes, compliant surfaces, riblets, steady blowing/suction, as well as the evolu-

tionary design of the skin of fish are all examples of passive flow control. Animal

motion has inspired the development of passive turbulence control methods, which

lead to significant advances in engineering flows (see, for example, Brunton and

Noack, 2015). For instance, the tubercles of the humpback whale flipper may func-

tion to generate vortices by excitation of flow to maintain lift and prevent stall at

high angles of attack. The shape of sharks, dolphins, and whales yields a low drag

per volume (see, for example, Ahlborn, 2006). The boundary layer transition is

delayed by the compliant skin of dolphins and the same form of transition delay

is under investigation for submarine applications. Though early studies showed

dramatic drag reduction benefits, later studies have only been able to confirm

7 per cent drag reduction (see Choi et al., 1989). Sharks reduce drag either by

means of denticles (by which riblets are inspired) on their skin or by ejecting lu-

bricants during high-speed chases of their prey (Dean and Bhushan, 2010; Hoyt,

1975). Bechert et al. (1997a) showed it is possible to obtain an 11% drag re-
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duction in laboratory experiments by using riblets. The latter were tested on an

Airbus passenger aeroplane, yielding a 2− 3% reduction in fuel consumption (see

Bechert et al., 1997a). Lubricants were shown to yield up to 80% drag reduction

in pipelines by adding polymer molecules to pipe flows (see, for example Frings,

1988). While this works well for the latter scenario, in which the polymer remains

mixed and active throughout the length of the pipe, its application to external

flows is not straightforward. For long-range applications, the polymer solution

must be continuously injected in order to yield drag reduction on external flows.

This would require large quantities of the solution to be used and, thus, make the

strategy inefficient in terms of overall energy use (Dean and Bhushan, 2010).

The optimised shape of an aerofoil (see, for example Maki et al., 2012) is another

example of passive control, which is inherently open-loop, as it cannot respond to

changes in the flow state. The idea, which was proposed in Stratford (1959), is

to enforce the skin friction to be just above zero along the surface. Based on this

concept, an inverse design of the aerofoil shape was proposed by Liebeck (1978) in

order to enhance the lift-to-drag ratio. The main drawback of these passive meth-

ods is that separation might occur whenever the angle of incidence is increased by

few degrees.

The main advantage of passive actuation (e.g., Bechert et al. (1997b); Choi et al.

(2011); Fukagata et al. (2000); Xu et al. (2003)), is simplicity. Passive control

techniques are indeed lighter, less expensive and easier to maintain compared to

active ones thereby making them the only ones that have been used in real-world

applications so far, e.g. transport systems, wind turbines etc. On the other hand,

there is only a very limited range of operating conditions over which passive con-

trol strategies may be effective. Furthermore, there may even be conditions for

which passive control degrades system performance, since the control itself could

initiate new instabilities: a significant example is the case of riblets in Bechert

and Bartenwerfer (1989) used for drag reduction in turbulent boundary layers. In

the best case, riblets yield approximately 5 − 11% drag reduction (Bechert and

Bartenwerfer, 1989; Bechert et al., 1997a) depending on their detailed geometric

configuration, whilst active flow control strategies could achieve a much greater

reduction in similar situations (see, for example, Collis and Joslin, 2004). For

instance, Pfeiffer and King (2012) obtained a drag reduction of around 25% using

active flow control strategies. The reason for this difference is due to the fact that

passive control techniques produce a steady, feedforward action, which does not
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take into account eventual changes in time of the physical system being controlled.

Therefore, passive methods can successfully target only known, constant distur-

bances. Active control techniques are thus needed in order to face more realistic

operating conditions.

Recent works on active flow separation control proposed open-loop approaches

(see, for example, Karabelas et al., 2012; Riherd and Roy, 2013; Sato et al., 2015b;

Skarolek and Karabelas, 2016). Active open-loop strategies assume exact knowl-

edge of the system and do not respond to changes in the flow state or unknown

disturbances, as the actuator parameters are set off-line at the design stage. Al-

though a good understanding of open-loop dynamics is required in order to design

closed-loop controllers, the lack of feedback implies that the high potential of ac-

tive control systems is not exploited. Early studies (see, for example, Gaitonde

et al., 2005; Greenblatt and Wygnanski, 2000; Moreau, 2007; Seifert et al., 1996)

focused on open-loop strategies for separation control on aerofoils in order to im-

prove the understanding of flow physics as well as the development and testing

of actuators. In the recent work of Skarolek and Karabelas (2016), open-loop

strategies for total drag reduction and lift increase are proposed to control the

flow past an aircraft wing using blowing surfaces, placed close to the trailing edge.

However, the main drawback of open-loop control is its great sensitivity to distur-

bances which heavily affects system performance, in particular, in conditions that

exceed the design envelope. Therefore, if disturbances that are not accounted for

in the model are present, the controller will in general fail.

The application of linear feedback controllers to fluid systems has been proposed

by several authors in different fields. The control algorithm is usually designed

based upon simple linear approximations of the actual complex nonlinear dynam-

ics. For instance, both a pole placement and a Smith predictor approach are

proposed in Litrico and Georges (1999) for the automatic control of a dam-river

system. A comparison, in terms of robustness, with the classical Proportional

Integral Derivative (PID) method was performed on the one-dimensional open-

channel flow dynamics. Simple Proportional (P) and Proportional Integral (PI)

closed-loop controllers have been used in Seatzu (2000) to regulate the stored vol-

umes in open-channel flow systems. In Gupta et al. (2011), a discrete internal

model-based controller is used to compensate the pressure pulsations in a com-

mon rail fuel injection system of internal combustion engines, using piezoelectric

actuators. The control design is based on a one-dimensional distributed model of
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the fuel dynamics.

Compared to open-loop control approaches, closed-loop flow control can enhance

aerodynamic performance with less control effort (Taira and Colonius, 2009) and

reduce the influence of disturbances (Kutay et al., 2007; Santillo et al., 2007),

since it uses information from the system in order to detect unknown disturbances

which are not taken into account a priori, thereby making it more robust to devi-

ations from the assumed model. However, one of the drawbacks of feedback flow

control is the need of real-time measurements from the system. Thus, suitable

sensors, as well as an ad hoc hardware interface for the acquisition of the real-

time signals, are required. Furthermore, the coupled actuator and flow dynamics

are not trivial to control: neither the analytical model, which results in a system

of nonlinear Partial Differential Equations (PDEs), nor the high-dimensional dis-

cretised dynamics, are suitable for control design purposes. The dependence of

the dynamical properties on the unknown flow and geometry parameters is highly

nonlinear; since both sensors and actuators are located on the wall (e.g. along the

aerofoil), most of the flow states are unobservable and uncontrollable (see Kim

and Bewley, 2007).

Recent works on feedback flow separation control using plasma actuators include

Benard et al. (2009), where a slope-seeking algorithm is proposed to obtain max-

imum time-averaged lift, which is measured by a three-component balance. Cho

and Shyy (2011) proposed a retrospective cost adaptive algorithm to minimise the

variation of the aerodynamic lift. However, the latter, which is the chosen output

in both Benard et al. (2009) and Cho and Shyy (2011), cannot be measured in

practical flow control applications.

The key objective of this thesis is to design a feedback algorithm for flow separa-

tion control using real-time velocity measurements, which are available in realistic

applications.

1.2 Plasma actuators

The feedback control input is usually an electric signal, which has to be con-

verted to a physical quantity by means of an actuator, i.e., transducers that con-

vert an electrical signal to a desired physical quantity. Active flow control requires

the input of energy into the system, in order to interact with the flow by providing

an electronically controllable disturbance. The main advantage of such systems is
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their ability for real-time feedback control at high frequency.

Among all the active methods, a new and original technology using non-thermal

surface plasmas has witnessed a significant growth in interest in recent years (see,

for example, Cho and Shyy, 2011; Choi et al., 2011; Corke et al., 2007; Feng et al.,

2015; Hanson et al., 2010; Moreau, 2007; Wang et al., 2013), as they: have no

moving parts; exhibit an extremely fast time-response; are characterised, depend-

ing on the power converter design, by low mass and low input power (Cattafesta

and Sheplak, 2011). Moreover, they can be easily incorporated into flow solvers

so that their placement and operation can be optimised. Although initially con-

sidered useful only at low speeds, plasma actuators are effective in a number of

applications Corke et al. (2007); Thomas et al. (2008) at high subsonic, transonic,

and supersonic Mach numbers (see Samimy et al., 2007, for jet noise reduction

applications), owing largely to more optimised actuator designs that were devel-

oped through better understanding and modelling of actuator physics (Unfer and

Boeuf, 2009). These surface dielectric barrier discharge (DBD) actuators are used

to accelerate the near-wall flow, thus modifying the velocity profile within the

boundary layer. The ionised fluid results in a localised body force vector field,

which acts on the overlying neutrally charged fluid. The plasma actuator AC

voltage can be used as a control input so that the generated force directly affects

the flow over the aerofoil(see Figure 1.1).

This specific DBD configuration used for plasma actuators consists of two elec-

Figure 1.1: Schematic of the closed-loop system (plasma actuator from Corke

et al., 2007).

trodes, one uncoated and exposed to air and the other encapsulated by a dielectric

material; hence, this configuration is referred to as a single dielectric barrier dis-

charge (SDBD). Electrodes are supplied with an AC voltage that, over a certain

threshold, causes air over the covered electrode to weakly ionise. In the classic

description, ionised air is a plasma, which is why these devices are referred to
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as plasma actuators. In particular, air is ionised by increasing the amplitude of

the electric field above the breakdown electric field Eb, which is the value needed

to sustain electron-ion pairs in the gas in the absence of space-charge fields (see

Kunhardt, 1980). The minimum breakdown electric field is a function of the driv-

ing frequency. Once created, the electric field needed to sustain the plasma is

lower than Eb. The minimum difference between breakdown and sustaining elec-

tric fields is a function of the operating conditions (see Corke et al., 2010). In

the presence of the electric field produced by the asymmetric electrode geometry,

ionised air results in a localised body force vector field, which is directed down-

stream in most aerodynamic control applications. The mechanism of flow control

exploited by these devices results in a body force vector field that couples with

the momentum equations, describing the external flow dynamics. The time scale

disparity between the flow and the discharge frequencies allows for assuming that

the force acts on the neutral fluid in a quasi-steady manner. The body force felt

by the neutral flow is equivalent to the electro-magnetic force acting on the net

charge density.

Since the control input is the AC voltage, it is necessary to define the relation

between the latter and the resulting body force, in order to design a model-based

controller. Several models for the DBD actuator force have been proposed (see,

for example, Corke et al., 2007, for a detailed review). Kotsonis et al. (2011)

interpolated the body force expression from experimental measurements. Unfer

and Boeuf (2009) analytically modelled and numerically simulated SDBD plasma

dynamics coupled with compressible flow dynamics, but such an accurate model is

not tractable for real-time control applications due to both the presence of several

unknown and unobservable parameters (such as ion temperature) and the high

computational cost. In contrast, Jayaraman and Shyy (2008); Shyy et al. (2002)

proposed a simplified bilinear model, which is widely used in the flow control lit-

erature (see, for example, Cho and Shyy, 2011), because of its simplicity. The

model assumes that the electric field lines are parallel in most of the region, ex-

cept the small space near the cathode. The variation in space of the electric field,

which is directly proportional to the electro-magnetic force, is linearised, without

computing the detailed electric field. The resulting body force is approximated as

an electro-magnetic force; other terms, such as the ones due to thermal energy,

are neglected. Since the former is proportional to the bilinear electric field, the

body force is characterised by a linear space dependence. The prescribed body
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forces are localised in a triangular plasma region (see figure 1.2) bounded by two

Figure 1.2: The line AB constitutes the plasma fluid boundary using linear approxi-

mation. The electric field strength outside this line is not strong enough to ionise air.

Jayaraman and Shyy (2008).

electrodes and the dielectric surface. This approximation is not consistent with

experiments (see, for example, Enloe et al., 2004; Orlov et al., 2006), which show

an exponential spatial decay. As a result, the model over-predicts the actuator

effect and it introduces further inaccuracies, which might affect model-based con-

trollers.

In this thesis, a modified version of the recent model proposed by Yang and Chung

(2015) is presented: it is characterised by an exponential dependence on the spa-

tial coordinates and is demonstrated to yield good agreement with experimental

data.

1.3 Model reduction methods

It is very difficult to obtain an accurate control-oriented model of the coupled

neutrally-charged fluid and plasma dynamics and, at the same time, to design an

effective control scheme that relies on such a sufficiently accurate model. In this

regard, a key consideration often under-appreciated in the field of fluid mechanics

is the following: “a system model that is good enough to use for control design is

not necessarily good enough for accurate numerical simulation” (Kim and Bew-

ley, 2007). Indeed, one has to consider that feedback controllers compute control

signals on-line, based on sensor measurements and control law, which is designed

upon the assumed model. This is a very challenging task from a computational

point of view, as the spatial discretisation of the Navier-Stokes equations yields a

very high-dimensional system (∼ 104 − 106 state variables, depending on the grid
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resolution). Furthermore, turbulence is a multi-scale phenomenon with significant

dynamics evolving relatively far from the wall, where sensors and actuators are

located (e.g. along the aerofoil). Thus, a control-oriented model mainly needs

to capture the system dynamic response, that is the relation between inputs and

outputs and their influence on the “quantity of interest” (which depends on the

desired target state), while taking into account both computational cost and model

accuracy.

In view of the above, the introduction of reduced-order models (ROMs) is of

particular interest in flow control problems (Ravindran, 2002). A ROM can be

computed, using either simulation or experimental data, through either system

identification methods (see, for example, Astolfi, 2010b,a; Cho and Shyy, 2011;

Hanson et al., 2014; Huang and Kim, 2008; Ionescu and Astolfi, 2011) or projec-

tions of the system equations onto lower-dimensional subspaces (see, for example,

Bai, 2002; Benner, 2009; Bergmann et al., 2009; Bergmann and Cordier, 2008;

Bistrian and Navon, 2014; Bui-Thahn, 2008; Willcox et al., 2007; Caiazzo et al.,

2014; Cammilleri et al., 2013; Fujimoto and Hikaru, 2006; Ilak et al., 2010; Ilak

and Rowley, 2008, 2006; Joshi et al., 2007), with the aim of capturing the system

dynamic response by retaining only few fundamental dynamic modes. Since a

dedicated flow model is based on the explicit description of the relevant dynam-

ics, the former can convey a clear understanding of the underlying physics of the

problem, which is very important for control system design, including the choice

of measurements, actuation and objectives (see, for example, Cho and Shyy, 2011;

Collis and Joslin, 2004). On the other hand, a high fidelity model - such as Direct

Numerical Simulation (DNS) - that provides the entire state of the flow field on

the whole spatial domain is very expensive and unrealistic for practical real-time

control applications (Moin and Temam, 2001).

In general, there is a wide range of approaches, based on either physics, math-

ematics or data fitting, that could be used to construct a reduced-order model.

In practice, a reduced-order model may be a hybrid of one or more of these ap-

proaches. Model reduction in physics-based, ROMs is accomplished by neglecting

some physical processes whilst accounting for the ones that are relevant for the

system under consideration. Reynolds-Averaged Navier-Stokes (RANS) equations

and Large Eddy Simulations (LES) are examples of physics-based reduced-order

models. However, this reduction is not sufficient to make the resulting model

available for real-time applications (Collis et al., 2000).
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Data fitting methods, such as system identification (see, for example, Huang and

Kim, 2008) or neural networks (see, for example, Lee et al., 1997), provide an

input-output model, constructed by employing data from either high-fidelity nu-

merical simulations or laboratory measurements. They are particularly suitable

for applications with few control variables and problems where physical models

are unknown or unavailable. Since the reconstruction of the flow field dynam-

ics is not performed, the general input-output model involves a reduced set of

information than model-based approaches to achieve the control objectives. Al-

though input-output models lack a detailed description of the evolution of flow

structures, the relation between actuation and measurable responses is directly ac-

cessible. Moreover, if the key dynamics of a flow system are properly captured, this

“less-modelling” approach can reduce sensitivity of the control system to model

uncertainties. Input-output models adopted in most flow control studies are based

on linear time-invariant models and are represented by rational transfer functions

or time-series models, whose coefficients can be estimated by various system iden-

tification techniques. Consequently, the state variables in an identified system do

not usually have obvious physical meaning. Therefore, the control objectives may

be more challenging to define. Some examples based on this approach include

rejection of pressure fluctuations over an aerofoil (Tian et al., 2006), mitigation

of unsteady flow speed in a channel (Santillo et al., 2007), and reduction of flow

separation (Huang and Kim, 2008).

Mathematical model reduction techniques perform a projection of model equations

onto a reduced basis of a low-dimensional subspace. In particular, reduced-order

nonlinear models are obtained by representing the flow field as a linear combina-

tion of an appropriate set of basis functions, i.e., by performing a projection of the

governing equations onto a truncated set of those basis functions. The latter usu-

ally represents the spatial structure of flows, so that projection results in a system

of coupled non-linear ordinary differential equations (ODEs) that has to be solved

for the temporal amplitude functions corresponding to each basis function. The

main difference between the usual Galerkin discretisation and the one for model

reduction is the choice of the basis functions. In traditional discretisation methods

(such as finite element methods), the latter are typically chosen a priori such that

the resulting numerical method will be a compromise between accuracy, numerical

efficiency and geometric flexibility. Conversely, basis functions for reduced-order

models are chosen in order to capture the relevant physics of the considered system
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using the fewest number of basis functions possible, thus leading to the greatest

reduction in the size of the discrete problem.

Nevertheless, there are still many open questions that need to be considered: how

to select a basis that captures only the relevant physics? How to retain the fun-

damental dynamical properties of the original system? How could the bases be

adapted for closed-loop applications, for which the dynamics is substantially al-

tered from that of uncontrolled flows?

1.3.1 Energy-based models

A classic and widely used mathematical technique for model reduction is

the Karhunen-Loeve expansion also known as Proper Orthogonal Decomposition

(POD), pioneered by Lumley (1967). The idea is, given a set of data (for in-

stance, numerically or empirically obtained velocity and pressure) that lies in a

vector space V, find a subspace Vr of fixed dimension r such that the error in the

projection onto the subspace is minimised. The space V ⊂ Rn has finite dimension

n � r, if the equations have already been discretised in space. The main result

of POD is that the optimal subspace Vr is spanned by a set of orthonormal basis

functions, the so-called POD modes, that contain a decreasing amount of total

flow kinetic energy. The methodology proceeds by projecting the full non-linear

system onto that set of basis functions. POD modes are, by design, optimal in

an energy norm (L2); that is, POD modes are the best choice in representing the

energetics of a given data set. The first few POD basis functions, which are the

most energetic eigenmodes, often capture a significant percentage of the relevant

flow dynamics, thus suggesting that a truncated POD basis may be a promising

approach to constructing reduced-order models.

However, despite substantial efforts in developing efficient reduced-order models,

there are still many unsettled issues, such as how to incorporate control with

POD modes (Collis and Joslin, 2004). Indeed, one potential limitation of POD

(and other related methods for reduced-order models) is that the basis functions

are intrinsic to a particular flow so that, as a flow is modified by the action of con-

trol, the POD basis (and the reduced-order model based on that POD) must also

change. Consequently, a reduced-order model constructed from a subset of POD

basis functions for one particular flow, often taken to be the uncontrolled flow,

would certainly not be optimal and may not even successfully represent the dy-

namics of the controlled flow under some circumstances (see, for example, Prahbu
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et al., 2000).

Ravindran (2002) proposed a reduced-order non-linear adaptive control of flow

separation in a forward-facing step channel flow in which the reduced-order model

and the optimal control input are updated, every fixed time interval, using the

method of snapshots (see, for example, Ravindran, 2000) to compute POD modes.

The idea behind the adaptive procedure is to compute snapshots of the flow field

for some discrete times and, then, use those snapshots to construct the POD sub-

space in order to improve the reduced-order model and reflect the changes in the

dynamics, which is altered by the controller. Although this adaptive procedure

requires some additional cost compared to classic POD, it was found to be effec-

tive and feasible for real-time applications.

The key question is whether the essential flow physics is modelled by the retained

modes (Kim and Bewley, 2007). In particular, the POD-based reduced-order mod-

els, in which low-energy modes are truncated, do not account for observability and

controllability of the modes being truncated. Consequently, some retained modes

may nearly be uncontrollable or unobservable, whereas some truncated modes ac-

tually play a more pivotal role in the input-output transfer function of the open-

loop system. This is demonstrated by Rowley (2005): POD-based reduced-order

model showed dynamics that were significantly different than those of the original

system.

1.3.2 Control-oriented models

System identification methods yields input-output control-oriented models.

For instance, in Cho and Shyy (2011), the Eigensystem Realisation Algorithm

(ERA) - a system identification method introduced by Juang and Pappa (1985) -

was applied to the impulse responses of the aerodynamic lift, in order to obtain

a linear model, upon which the controller was designed. Ma et al. (2011) showed

that ERA yields the same ROMs as the balanced truncation (Moore, 1981), in the

case of stable, linear systems but the physical meaning of the state-variables is lost.

On the other hand, the projection of large-scale problems onto lower-dimensional

subspaces, which are based on the explicit description of the flow dynamics, can

convey a clearer understanding of the underlying physics of the problem, com-

pared to system identification approaches. In particular, the former approach can

provide insight into the key spatial modes of fluid/structure systems, contrarily

to black-box identification techniques (see Annoni and Seiler, 2015). This is very
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important for control system design, since it leads to physically reasonable choices

of measurements, actuation and objectives (see Collis and Joslin, 2004).

The most popular model reduction technique in the control community is the

above-mentioned balanced truncation, a classic method developed by Moore (1981)

for stable, linear systems, which was extended by Zhou et al. (1999) to unstable,

linear systems. An approximated balanced truncation method, called balanced

Proper Orthogonal Decomposition (POD), was extended by Rowley et al. (2010)

to linear fluid systems and is based on a variant of the method proposed by Lall

et al. (2002), which forms approximate empirical Gramians. Moreover, the bal-

anced POD was extended by Ahuja and Rowley (2010) to unstable linear systems,

when the dimension of the unstable subsystem is relatively small. The balanced

POD projects the system onto the subspace spanned by the most observable and

controllable modes and was shown to outperform the standard POD for closed-

loop flow control applications (see Barbagallo et al., 2009; Ilak and Rowley, 2008).

Scherpen (1993) described how to obtain a balanced realisation for certain classes

of asymptotically stable nonlinear systems, using the observability and controlla-

bility functions. Later, Lall et al. (1999, 2002) extended the approximate balanced

truncation to exponentially stable nonlinear systems by defining approximate ob-

servability and controllability Gramians, which result in the usual Gramians when

the method is applied to stable, linear systems. This snapshot-based balancing

approach requires only standard matrix computations and does not need data

from adjoint simulations. The resulting reduced-order model is nonlinear and has

inputs and outputs, which are suitable for control design purposes. The method

has been successfully tested on a simple, low-order, nonlinear mechanical system.

On the other hand, this approach involves considerably more computation than

the balanced POD, and is not feasible for large systems (see Ilak and Rowley,

2008). Furthermore, this approximate balanced truncation cannot be applied to

unstable, nonlinear systems, since the Gramians are not bounded and cannot be

defined. Furthermore, the stable and unstable dynamics cannot be easily decou-

pled as in the linear case, for which a projection onto the stable subspace can be

computed. Thus, in the case of unstable, nonlinear systems, the equivalence of this

method (when applied to the stable dynamics of unstable, linear systems) to the

usual balanced truncation is lost and the meaning of the approximate Gramians

is not clear.

A nonlinear balanced realisation for possibly unstable nonlinear systems is investi-
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gated in Scherpen and van der Schaft (1994), Fujimoto and Hikaru (2006), where

normalised right and left coprime factorisations are introduced. Since the balanced

truncation method is applicable only to asymptotically stable systems, the former

was applied to a normalised coprime factorisation of the original model. Then,

the reduced order model was derived from the one of the coprime factorisations.

However, this method is not feasible for high-dimensional fluid systems, since it

requires the solution of the Hamilton-Jacobi equations. A simpler, but presumably

less effective approach is to project the full nonlinear equations onto the balanced

POD modes computed for the linearised system; such a procedure involves no

additional computational expense over the methods presented above and can be

applied to unstable systems. This method was successfully applied by Ilak et al.

(2010) for the model reduction of the nonlinear, complex Ginzburg-Landau equa-

tion, which can be used as a model for instabilities of spatially developing flows.

Its linearised version has been used by Bagheri (2013) to model both globally un-

stable flows (so-called oscillators) and convectively unstable flows (so-called noise

amplifiers) for feedback control purposes.

Several authors have focused on the feedback control of balanced POD models,

based on the Navier-Stokes equations, linearised about a single steady trajectory,

(see, for example, Ahuja and Rowley, 2010; Ahuja et al., 2007; Ahuja and Row-

ley, 2008; Barbagallo et al., 2009; Joshi et al., 2007; Lee et al., 2001). These

linearisation-based approaches allows for the application of well-established linear

model reduction methods. However, an accurate approximation of the nonlin-

ear behaviour can only be obtained in a small neighbourhood of the considered

trajectory, whose choice heavily affects the control performance. Moreover, the

resulting model is unstable, in contrast with the typical stability properties of fluid

systems. The key idea is, then, to take advantage of the effectiveness of this linear

model reduction method, while avoiding the restrictions related to linearisation

approaches.

A variant of the Arnoldi algorithm called Dynamic Mode Decomposition (DMD)

was proposed by Schmid (2010) to approximate part of the spectrum of the Koop-

man operator (see Bagheri, 2013; Koopman, 1931). The latter is an infinite-

dimensional linear operator describing the evolution of observables in the phase

space, which has been used to analyse uncontrolled, nonlinear dynamical systems

(see Mezić, 2013, 2005; Mezić and Banaszuk, 2004) evolving on an attractor. Row-

ley et al. (2009) showed that the DMD modes approximate some of the Koopman
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modes, which can be interpreted as the eigenmodes of a finite-dimensional linear

map that approximates the true, nonlinear one. This method does not rely on

linearisation of the dynamics: indeed, it captures the full information of the non-

linear system. On the other hand, the order of the DMD linear model is high and

depends on the number of linearly independent snapshots needed to describe the

dynamics of interest. Furthermore, there are no well-defined selection criteria for

selecting the DMD modes to be retained in the ROM (see Barbagallo et al., 2009),

thereby making the use of DMD as a model reduction method less straightforward.

1.4 Aims and Objectives

The focus of this thesis is the robust control of unsteady flow separation using

plasma actuators. As in many flow control applications, the objective is to sup-

press the separation bubble, which is responsible for both a loss of the lift and an

increase of the drag and might lead to stall conditions.

In particular, the aim of this work is to show how, despite the high complexity

of the system, a very simple robust output regulator is sufficient to effectively

suppress the flow separation along an aerofoil, using the actuators’ voltage as the

control inputs and real-time velocity measurements, which are available in realis-

tic applications (see, for example, Buder et al., 2008; Hanson et al., 2010; Ozaki

et al., 2000; Segawa et al., 2010; Spazzini et al., 2001, 1999), as the control outputs.

First, a novel control-oriented reduced-order model for nonlinear systems evolv-

ing on attractors is obtained. Its application to the incompressible Navier-Stokes

equations is proposed, in order to obtain a linear reduced-order model (whose state

variables have a clear and consistent physical meaning) of the complex flow/ac-

tuator dynamics. The method combines DMD, as an alternative to linearisation,

and balanced POD, as a way to select the most observable and controllable DMD

modes. The high-order DMD model is projected using the balanced POD modes,

thus yielding a balanced, stable, linear ROM.

Furthermore, on the basis of the so-obtained model, the recent theoretical results

in Marino and Tomei (2015) are extended to a wider class of control systems and

propose their application to the specific flow separation control problem, which

is of practical interest. A major advantage of the proposed approach is that the

chosen outputs can be easily measured in realistic applications; moreover, the re-
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sulting control scheme is simple and computationally cheap.

In particular, the problem of controlling flow separation along the aerofoil is formu-

lated and solved as a simple output regulation problem, so that a simple control

strategy may be used. A robust multivariable feedback control is designed for

both Single-Input-Single-Output (SISO) and Multi-Input-Multi-Output (MIMO)

configurations. This allows for optimising the closed-loop system, with the aim

of selecting suitable numbers and positions of the actuator/sensor pairs along the

aerofoil, as well as desired references for the real-time measurements, according to

the specific application (e.g., lift increase, drag reduction, stall avoidance etc., for

UAVs and wind turbines applications).

Accurate numerical simulations of incompressible flows past a NACA 0012 at dif-

ferent Reynolds numbers Re ∈ [103, 2 × 104] and time-varying angles of attack

β ∈ [5◦, 25◦] are performed in order to illustrate the effectiveness of proposed

approach and validate the modelling assumptions, in the presence of uncertain

parameters and complex nonlinear dynamics, which are neglected in the control

design. The upper bound Re = 2 × 104 of the considered range corresponds to

the Reynolds number considered in the experimental works of Choi et al. (2011)

and Feng et al. (2015). Robust performances, with respect to both parameter

variations (e.g. geometry of the domain and Reynolds number) and model uncer-

tainties, are demonstrated.

1.5 Structure of the thesis

Chapter 2 outlines a novel control-oriented model reduction method for non-

linear systems evolving on attractors. The proposed approach combines DMD, as

an alternative to linearisation, and balanced POD, as a way to select the most

observable and controllable DMD modes. The high-order DMD model is projected

using the balanced POD modes, thus yielding a balanced, stable, linear ROM.

The application of the model reduction method to fluid systems is proposed to

obtain a low-order, stable, linear model of the nonlinear flow/actuator dynamics,

which are modelled in Chapter 3. An analytical model, based on the incompress-

ible Navier-Stokes equations, which are coupled with the plasma dynamics through

the body force that is generated by the actuator, is proposed. Its numerical dis-

cretisation is performed using two different numerical schemes: a finite element
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method, which is used to both simulate low Reynolds number flows and obtain a

simple low-order model of the flow dynamics, and an overlapping grid approach

implemented in a second order, finite volume, multi-block, unsteady Reynolds-

Averaged Navier-Stokes (RANS) equations based solver, which is used for more

realistic simulations at higher Reynolds numbers.

Chapter 4 shows how the problem of controlling flow separation can be formulated

as a simple output regulation problem, so that a simple control strategy may be

used. A robust output regulator is designed, on the basis of the low-order, lin-

ear, dynamical model approximating the incompressible Navier-Stokes equations,

presented in Chapter 2. The proposed control algorithm guarantees exponential

output regulation when the steady-state gain of the approximated linear model

is non-zero and of known sign. Fast flow reattachment is achieved, along with

both stabilization and increase/reduction of the lift/drag, respectively. Accurate

2D finite element simulations of the full-order nonlinear equations illustrate the

effectiveness of the proposed approach: good dynamic performances are obtained,

as both the Reynolds number and the angle of attack are varied.

Chapter 5, extends the results obtained in Chapter 4 to MIMO configurations,

with the aim of optimising the closed-loop system. The resulting robust multi-

variable feedback control algorithm is designed and tested in different scenarios, in

order to identify an optimal configuration. The proposed novel control algorithm

only requires a non-zero steady-state gain of known sign for each actuator/sensor

pair. Several 2D numerical simulations of incompressible flows around a pitching

NACA 0012 at Reynolds Re = 20, 000 are performed using the in-house devel-

oped finite volume solver, described in Chapter 3. Boundary layer separation

suppression is achieved in both stationary and transitional regimes. Furthermore,

accurate 3D simulations are performed to show the ability of the designed control

algorithm to both regulate the transition to turbulence and suppress the flow sep-

aration, in the presence of realistic three-dimensional turbulent dynamics.

Appendix A shows the final assembly of the electronic interface for both data

acquisition (real-time measurements from hot wire and piezoelectric cantilever

sensors) and control of the high voltage power converter, which generates the

plasma over the aerofoil. A functionality test is performed to evaluate the perfor-
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mance of the circuit: an accurate data acquisition is achieved, along with a fast

regulation of the converter’s output voltage magnitude.

In Chapter 6 conclusions, potential applications and possible further developments

are discussed.



Chapter 2
Control-oriented Model Reduction

The objective of this chapter is to obtain a rigorous, physics-based, control-

oriented model of the flow/actuator dynamics, in view of the practical application

to the flow separation control design. A novel model reduction method, whose

state variables have a clear and consistent physical meaning, is proposed. The

method combines DMD, as an alternative to linearisation, and balanced POD, as

a way to select the most observable and controllable DMD modes. The high-order

DMD model is projected using the balanced POD modes, thus yielding a balanced,

stable, linear ROM.

2.1 Problem Statement and Objectives

Given any nonlinear high-order system of the form (x = x(t) : R → Rn,

ẋ = dx/dt, E ∈ Rn×n, F(·) : Rn → Rn, G ∈ Rn×p, v = v(t) : R → Rp,

y = y(t) : R→ Rq) {
Eẋ = F(x) +Gv, x(0) = x0,

y = Hx,
(2.1)

we obtain in this chapter a linear, stable reduced-order representation of 2.1, given

by {
ξ̇ = Aξ +Bv, ξ(0) = ξ0,

y = Cξ,
(2.2)

under the assumption that the open-loop asymptotic trajectories of the full-order

nonlinear dynamics (2.1) in the phase space evolve towards finite dimensional at-

tractors. The objective is to transform system (2.1), which represents the spatially

19
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discretised flow dynamics, into a simple, low-order linear system (2.2), which is

suitable for control design purposes.

2.2 Reduced-order Modelling

The objective of a reduced-order model is to capture the essential physics of

the flow to be controlled, while reducing the computational cost associated with

computing the solution of the dynamic system. Of course, the key challenge is to

determine a proper balance between complexity and accuracy, as well as between

observability and controllability.

Most large-scale model reduction techniques perform a projection of model equa-

tions onto a reduced basis of a low-dimensional subspace. This projection approach

can be described in general terms as follows. Consider the dynamical system{
F (ẋ(t), x(t), ϑ, v(t)) = 0, x(0) = x0

y = h(x(t), ϑ, v(t)),
(2.3)

where ϑ ∈ RNϑ is the parameter vector containing Nϑ parameters of interest (e.g.

the angle of incidence of the aerofoil or the Reynolds number) and F is the residual

operator resulting from the spatial discretisation of the PDEs. The objective is to

seek an approximate solution

x = Φxr, (2.4)

where Φ = [ϕ1, ..., ϕr] ∈ Rn×r is the trial basis. We also introduce the test basis

Ψ ∈ Rn×r, such that ΨHΦ = Ir, where (·)H denotes the conjugate transpose of (·)
and Ir is the r × r identity matrix. The reduced-order model reads{

ΨHF (Φẋr(t),Φxr(t), ϑ, v(t)) = 0, xr(0) = ΨHxr0

y = h(Φxr(t), ϑ, v(t)).
(2.5)

If the test space is the same as the trial space, i.e., Ψ = Φ, the reduced-order model

(2.5) is obtained by representing the flow field as a linear combination of the basis

functions and by performing a Galerkin projection of the governing equations. If

the test space is different from the trial space, the reduced system (2.5) is obtained

via a Petrov-Galerkin projection. Note that the scalar product can be weighted

by the matrix E in order to obtain reduced-order models in the usual state-space

form {
ξ̇ = ΨHF(Φξ) + ΨHGv

y = HΦξ,
(2.6)
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by projection of the dynamic system (2.1). The bi-orthogonality condition then

reads

ΨHEΦ = Ir. (2.7)

The basis functions represent the spatial structure of flows, thus that projection

results in a system of coupled nonlinear Ordinary Differential Equations (ODEs)

that has to be solved for the temporal amplitude functions corresponding to each

basis function. The main difference between the usual Galerkin discretisation

and the one for model reduction is the choice of the basis functions. In traditional

discretisation methods, the latter are typically chosen a priori such that the result-

ing numerical method will be a compromise between accuracy, numerical efficiency

and geometric flexibility. Conversely, basis functions for reduced-order models are

chosen in order to capture the relevant physics of the considered system using the

fewest number of basis functions, thus leading to the greatest reduction in the

size of the discrete problem. Nevertheless, there are still many open questions

that need to be considered: how to select a basis that captures only the essential

dynamics? How to obtain a linear model without loosing the stability properties

of the original system? How to account for the closed-loop dynamics, which are

substantially different from that of uncontrolled turbulent flows?

2.2.1 Proper Orthogonal Decomposition

A classic and widely used mathematical technique for model reduction of

nonlinear systems is the POD, also known as principal component analysis or

Karhunen-Loeve expansion, pioneered by Lumley (1967). The idea is as follows:

given a set of data (for instance, numerically or empirically obtained velocity and

pressure) that lies in a vector space V, find a subspace Vr of fixed dimension r

such that the error in the projection onto the subspace is minimised. The space

V ⊂ Rn has finite dimension n � r after the equations have been discretised in

space. The optimal POD subspace Vr is spanned by a set of orthonormal basis

functions, containing a decreasing amount of energy. That is, POD modes de-

scribe a flow field in terms of coherent structures ranked by their inherent energy

content.

The POD model reduction method projects the full nonlinear system onto that set

of basis functions. Thus, POD modes are, by design, optimal in an energy norm

(L2). The first few POD basis functions, which are the most energetic eigenmodes,
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often capture a significant percentage of the relevant flow dynamics, and their cor-

responding temporal coefficients are characterised by several frequencies.

Suppose a set of data x(t) ∈ Rn, with 0 ≤ t ≤ T , is given. The aim is to seek a

projection Pr : Rn → Rr of fixed rank r � n that minimises the energy norm of

the projection error (see Lumley, 1967)∫ T

0

‖x(t)− Prx(t)‖2dt. (2.8)

By introducing the n× n correlation matrix

RPOD =

∫ T

0

x(t)x(t)Tdt, (2.9)

where (·)T denotes the transpose of (·), this is equivalent to finding the eigenvalues

and eigenvectors of RPOD, given by

RPODϑk = λPOD
k ϑk, λPOD

1 ≥ ... ≥ λPOD
n ≥ 0. (2.10)

Since RPOD is symmetric, positive-semidefinite, all the eigenvalues λPOD
k are real

and non-negative and the eigenvectors ϑk may be chosen to be orthonormal, so

that ΘT
r Θr = Ir, where Θr = [ϑ1, ..., ϑr] ∈ Rn×r. The main result of the POD is

that the optimal subspace of dimension r is spanned by ϑ1, ..., ϑr (POD modes),

and the optimal projection Pr is then given by

Pr =
r∑

k=1

ϑkϑ
T
k = ΘrΘ

T
r .

The vectors ϑk are called POD modes.

One can then form reduced order models using a Galerkin projection onto this

r-dimensional subspace. Suppose the dynamics of a system are described by (2.1).

Substituting

x(t) = Θrxr(t) =
r∑
j=1

aj(t)ϑj (2.11)

into the equations, and multiplying by ϑT
k , one obtains the projected dynamics of

the reduced-order state vector xr(t) ∈ Vr = span{ϑ1, ..., ϑr}{
Erẋr = ΘT

r F(Θrxr) +Grv,

y = Hrxr,
(2.12)

where

Er = ΘT
r EΘr, (2.13)

Gr = ΘT
r G, (2.14)

Hr = CΘr. (2.15)
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The POD modes maximise the average energy in the projection of the data onto

the lower-dimensional subspace Vr spanned by the modes. Since Pr is an orthog-

onal projection, minimising the error (2.8) is indeed equivalent to solving

max{ϑk}
〈
‖Prx‖2

〉
, (2.16)

where 〈·〉 is the average over the data ensemble. The energy in the projection is

given by ∫ T

0

‖Prx(t)‖2dt =
r∑

k=1

λPOD
k . (2.17)

Note that in the case of homogeneous boundary conditions, the snapshots, as

well as their linear combinations, will naturally satisfy the same boundary con-

ditions. If there are non-homogeneous Dirichlet boundary conditions, the linear

combinations of snapshots will not in general satisfy them, and neither will the

reduced-order model solution. To remedy this problem we can either subtract the

non-homogeneous boundary values, a mean flow, or a steady-state solution, from

the snapshots before constructing the POD basis. Alternatively, an additional

constraint equation could be added to the reduced-order model that enforces the

boundary condition.

2.2.2 Method of snapshots

To compute the POD modes, one must solve an n × n eigenvalue problem

(2.10), where n is the dimension of the semi-discrete flow dynamics, which often

exceeds 106. Thus, a direct solution is often non feasible, but the dimension of

the eigenvalue problem can be reduced to m� n by using snapshots x(tj) of the

state vector at discrete time t1, ..., tm (see Rowley, 2005; Ravindran, 2000). The

integral in (2.9) becomes

RPOD =
m∑
j=1

x(tj)x(tj)
Tδj, (2.18)

where δj are quadrature coefficients that can be chosen to be equal to 1/m. Defin-

ing

X = [x(t1)
√
δ1, ..., x(tm)

√
δm], (2.19)

the sum (2.18) can be written

RPOD = XXT. (2.20)
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One can now solve the m×m eigenvalue problem

XTXwk = λPOD
k wk, λPOD

1 ≥ ... ≥ λPOD
m ≥ 0, (2.21)

where the eigenvalues λPOD
k are the same as in (2.10) and the eigenvectors wk ∈ Rm

may be chosen to be orthonormal. The POD modes are then given by

ϑk = Xwk/
√
λPOD
k , k = 1, ..., r, (2.22)

where r ≤ m has to be chosen such that the projection error (2.8) is small enough.

In matrix form this becomes

Θr = XWrΛ
−1/2
POD , (2.23)

where Wr = [w1, ..., wr]. Note that, if the snapshots represent only the velocity

field, the information content reduces to the kinetic energy and the POD modes are

(discretely) divergence-free. Thus, if the snapshots satisfy zero Dirichlet boundary

condition (this can be done by subtracting to the snapshots a mean or steady-state

flow, which satisfies the boundary conditions, as in Burkardt et al., 2006; Chen

et al., 2012; Ravindran, 2006), the projected low-order system is of the form (2.6).

However, Noack et al. (2005) showed that, for convectively unstable shear flows,

neglecting the pressure terms may lead to large amplitude errors in the Galerkin

model. For this reason, velocity-pressure POD models have been recently con-

sidered. In particular, two different methods have been proposed: the decoupled

approach (see, for example Caiazzo et al., 2014), in which velocity and pressure

snapshots are considered separately and the pressure field is reconstructed a pos-

teriori using the reduced-order velocity solution; and the coupled approach (see,

for example Bergmann and Cordier, 2008), which uses both velocity and pressure

snapshots to compute the POD modes and leads to one global basis (whose veloc-

ity part is not divergence-free) with the same number of modes for velocity and

pressure.

Though POD modes are very effective (indeed optimal) at approximating a given

dataset, that does not imply that they are effective at describing the dynamics

that generate a particular dataset, since low-energy features may be critically im-

portant to the system dynamic response. Despite substantial efforts in developing

efficient reduced-order models, there are still many unsettled issues, such as how

to incorporate control with POD modes (see Collis and Joslin, 2004). Indeed, one

potential limitation of POD (and other related methods for reduced-order models)
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is that basis functions are intrinsic to a particular flow so that as a flow is modified

by the action of control, the POD basis (and the reduced-order model based on

that POD) must also change. Consequently, a reduced-order model constructed

from a subset of POD basis functions for one particular flow, often taken to be the

uncontrolled flow, would certainly not be optimal and may not even successfully

represent the dynamics of the controlled flow under some circumstances (see, for

example Prahbu et al., 2000). An adaptive POD basis could prevent reductions

in model effectiveness.

Ravindran (2002) proposed a reduced-order nonlinear adaptive control of flow sep-

aration in a forward-facing step channel flow. The idea is to construct the POD

subspace using the snapshots of the flow field for a given control input and, then,

update the control input based upon the the previous reduced-order model. The

new control input is then used to update the POD subspace in order to improve

the reduced-order model and reflect the changes in the dynamics, which is altered

by the feedback. Although this adaptive procedure was found to be effective for

full-state information control problems, it is not feasibile in practical applications,

since it requires the online solution of the full-order system. A similar, but cheaper,

approach is used in Ravindran (2006), where the snapshots are computed offline

for a linear time-varying control input. Alternatively, the trust-region method

introduced by Fahl (2000) can be used to automatically decided whether or not

a POD model has to be adapted to a new flow configuration (see, for example

Bergmann and Cordier, 2008). However, all these methods are computationally

expensive.

Furthermore, POD-based reduced-order models, in which low-energy modes are

truncated, do not account for observability and controllability of the modes being

truncated. Consequently, some retained modes may be uncontrollable or unob-

servable, whereas some truncated modes may actually play a pivotal role in the

input-output transfer function of the open-loop system. This is demonstrated by

Rowley (2005): POD-based reduced-order model showed dynamics that were sig-

nificantly different than those of the original system. Therefore, POD models are

not suitable for feedback control design.

If POD modes are constructed using snapshots of the impulse responses of the

dynamic system, an expansion in POD modes produces optimal controllability of

the reduced-order system. On the other hand, the application of POD modes to

partial-state information control problems (where observability is equally impor-
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tant) may often lead to unsatisfactory results (Barbagallo et al., 2009). Contrarily,

adjoint POD modes produce optimal observability of the reduced-order model, but

usually at the expense of controllability, which makes them less suitable for control

problems. It has long been recognised that in order to reduce control problems to

a desired size, both controllability, i.e., the ability of the applied forcing to reach

flow states, and observability, i.e., the ability of flow states to register at the sen-

sor locations, are equally important. An expansion basis that balances these two

concepts are equally important in order to express the flow of information from

the actuator, via the dynamic system, to the sensor. Thus, a “balanced” basis

would yield a reduced-order model which is suitable for optimal control design.

2.2.3 Balanced Truncation

A related method, known as balanced truncation, was proposed by Moore

(1981), as a model reduction technique for stable, linear systems which does not

suffer the same limitations as the POD method. Most notably, balanced trunca-

tion has a priori error bounds that are close to the lowest error possible of any

reduced-order model (see Rowley, 2005). Furthermore, compared to most other

methods, including POD, balanced truncation has the key advantage of guaran-

teeing stability of the reduced-order model (if the original high-order system is

stable). The main idea of balanced truncation is to achieve system reduction by

retaining only certain states in the representation, that is equivalent to defining a

certain subspace within the state-space. In particular, controllable and observable

subspaces, which are spanned, respectively, by eigenvectors of controllability and

observability Gramians, are considered in order to obtain a balanced representa-

tion of the system. This is done by choosing a state transformation such that

controllability and observability Gramians are diagonal and equal. This method

has been extended to exponentially stable, nonlinear systems by Scherpen (1993),

Scherpen (1996), Scherpen and van der Schaft (1994), based on energy functions,

and more recently by Lall et al. (2002), Lall et al. (1999), based on empirical

Gramians used to compute an approximate balanced truncation. In both cases,

when the method is applied to stable, linear systems, it results in the usual bal-

anced truncation method. The approach requires only matrix computations, both

in the linear and nonlinear cases, and has been very successfully used in control

design. However, the technique does not extend easily to high-order systems (e.g.,
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104 unknowns or more), such as the ones describing spatially discretised flow dy-

namics.

Balanced truncation typically produces better control-oriented reduced-order mod-

els than POD, but is not computationally tractable for systems of a very large

dimension and thus not practical for most fluid systems. As a result, several

methods have combined ideas from POD and balanced truncation, including the

original work of Moore (1981).

Lall et al. (2002) noted the connection between system Gramians and POD and

used a Kahunen-Loeve decomposition to compute empirical Gramians that were

used to obtain an approximate balanced truncation of stable, nonlinear systems.

Similarly, Willcox and Peraire (2002) used a POD method of snapshots to obtain

low-rank approximations of Gramians in order to perform a balanced reduction

of a high-order linear system. There are though several drawbacks; in particular,

this balanced POD method, that is an approximate balanced truncation, becomes

intractable when the number of outputs is large, as a separate adjoint simulation is

required for each output. Furthermore, the rank of controllability and observabil-

ity Gramians is reduced before balancing is performed, thus one risks prematurely

truncating states that may be important from a control view point, which may

lead to less accurate models.

The balanced POD method presented by Rowley (2005) for stable, linear systems,

which relies on the work of Lall et al. (2002) as well, attempted to overcome the

above issues by computing the balancing transformation directly from snapshots,

without individual reduction of empirical Gramians. This method appears to be

promising, especially for high-order linear systems, as it avoids directly computing

Gramians, which is computationally expensive. On the other hand, the presented

method is limited to stable, linear systems.

In contrast, Zhou et al. (1999), and then Ahuja and Rowley (2008), Ahuja and

Rowley (2010), presented a modified balanced truncation procedure to obtain re-

duced order models valid for a unstable, linear systems.

Consider a stable, linear system (F,G,H) with p inputs and q outputs, namely:{
ẋ = Fx +Gv

y = Hx.
(2.24)

The controllability and observability Gramians are the solutions of the Lyapunov

equations

FWc +WcF
T +GGT = 0, FTWo +WoF +HTH = 0, (2.25)
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which exists if and only if the linear system is stable. In particular, they are

symmetric, positive-semidefinite matrices defined by

Wc =

∫ +∞

0

eFtGGTeF
Ttdt, Wo =

∫ +∞

0

eF
TtHTHeFtdt. (2.26)

The controllability Gramian Wc measures to what degree each state is excited by

an input. For two states x̄, x̃, with ‖x̄‖ = ‖x̃‖, if x̄TWcx̄ > x̃TWox̃, then the state x̄

is more controllable than x̃, that is, a smaller input is required to drive the system

from the initial state x0 to x̄. The Gramian Wc has full rank if and only if all

states are reachable with some input v(t).

Conversely, the observability Gramian Wo measures to what degree each state

excites future outputs. For an initial state x0 and zero input, one has ‖y‖2
L2[0,+∞) =

xT
0Wox0, which is a measure of how much the state excites the output. The

Gramian Wo is nonsingular if and only if the system is observable.

The balanced truncation method aims to find a transformation Tn ∈ Rn×n such

that the controllability and observability properties are balanced, that is, the

transformed Gramians are equal and diagonal:

T−1
n WcTn = TnWoT

−1
n = Σ = diag(σ1, ...σn), σ1 ≥ ... ≥ σn ≥ 0, (2.27)

where σ1, ...σn are the Hankel singular values of the system and are invariant

respect to a coordinate transformation. The matrix Tn is found by finding the

eigenvectors of the product WcWo:

WcWoTn = TnΣ2. (2.28)

In the balanced coordinates, the states that are least influenced by the input also

have the least influence on the output. Balanced truncation involves first changing

to these coordinates, and then truncating the least controllable/observable states,

which correspond to small Hankel singular values and have little effect on the

input-output behavior.

Instead of computing the Gramians by solving Lyapunov equations (2.25), which

is computationally expensive, one may compute them from data from numerical

simulations. This was the original approach used by Moore (1981), and was used

in Lall et al. (2002), Lall et al. (1999) to extend balanced truncation to nonlinear

systems.

To compute the controllability Gramian for the system (2.24) one forms the state

responses x1(t), ..., xp(t) to unit impulses v1(t) = δ(t), ..., vp(t) = δ(t). Then, the
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Gramian is given by

Wc =

∫ +∞

0

(x1(t)x1(t)T + ...+ xp(t)xp(t)
T)dt. (2.29)

Note the similarity between the expression above and the operator in (2.9) that

arises in POD of the dataset {x1(t), ..., xp(t)}. In fact, the POD modes for this

dataset of impulse responses are just the largest eigenvectors of Wc, or, in other

words, the most controllable modes of the realisation. Note that since the Gramian

matrices depend on the coordinate system, so do the POD modes of this dataset.

Let xi(tj), for i = 1, ..., p, j = 1, ...,m, be the snapshots of the impulse responses

at discrete times. As discussed above, the integral in (2.29) becomes a quadrature

sum. Writing

X = [x1(t1), ..., x1(tm), ..., xp(t1), ..., xp(tm)], (2.30)

then the quadrature approximation to (2.29) is

Wc = XXT. (2.31)

To compute the observability Gramian for a system with q outputs, one computes

the impulse responses z1(t), ..., zq(t) of the adjoint system{
ETż = FTz +GTv

w = HTz,
(2.32)

which is equivalent to integrating the uncontrolled system Eż = F z with initial

condition zk(0) = HTϑk. Then, the Gramian is given by

Wo =

∫ +∞

0

(z1(t)z1(t)T + ...+ zq(t)zq(t)
T)dt. (2.33)

The adjoint data matrix Z is formed as in (2.30), and the quadrature approxima-

tion to (2.33) is given by

Wo = ZZT. (2.34)

Note that this method requires q integrations of the adjoint system, where q is the

number of outputs. Thus, this method is not feasible when the number of outputs

is large, for instance if the output is the full state.

2.2.4 Balanced Proper Orthogonal Decomposition

The balanced POD is an extension of the balanced truncation for large (e.g.,

fluid) systems. The method was proposed by Rowley (2005) for stable, linear
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systems to compute the balancing transformation directly from snapshots, without

having to compute and individually reduce the Gramians. The balancing modes

are computed by performing the singular value decomposition (SVD) of the matrix

ZTX:

ZTX = UΣV T =
(
U1 U2

)(Σ1 0

0 0

)(
V T

1

V T
2

)
, (2.35)

where Σ1 ∈ Rr1×r1 is invertible, r1 is the rank of ZTX, and UT
1 U1 = V T

1 V1 = Ir1 .

Define the matrices Φr ∈ Rn×r, Ψr ∈ Rn×r as

Φr = XV1Σ
−1/2
1 , ΨT

r = Σ
−1/2
1 UT

1 Z
T, (2.36)

where r ≤ r1 can be chosen in order to neglect the smallest Hankel singular

values. The columns of Φr = [ϕ1, ..., ϕr] forms the first r columns of the balancing

transformation, e.g., the balancing modes. The rows of ΨT
r = [ψ1, ..., ψr]

T forms

the first r rows of the balancing transformation, e.g., the adjoint modes. The major

advantage of the above method for computing the balancing transformation is that

the Gramians themselves never need to be computed.

The main drawback of this powerful technique is that it cannot be directly applied

to the semi-discrete Navier-Stokes equations (2.1), as they are nonlinear.

2.2.5 Spectral decomposition of nonlinear systems

Rowley et al. (2010), Rowley et al. (2009), presented a technique for describing

the global behaviour of complex nonlinear flows by performing a modal decomposi-

tion based on spectral analysis of the Koopman operator, an infinite-dimensional,

linear operator associated with the full (finite-dimensional) nonlinear system. This

operator describes the evolution of observables on the phase space. The Koop-

man modes, are associated with a particular observable, and may be determined

directly from data (either numerical or experimental) using a variant of a stan-

dard Arnoldi method. They have an associated temporal frequency and growth

rate and may be viewed as a nonlinear generalisation of global eigenmodes of a

linearised system. This method does not rely on linearisation of the dynamics:

indeed, it captures the full information of the nonlinear system and can be used as

an alternative to linearisation-based approaches. Rowley et al. (2009) showed that

the global eigenmodes of the Navier-Stokes equations linearised about an unstable

steady-state solution capture the dynamics only in a neighbourhood of the unsta-

ble equilibrium point, while the Koopman modes correctly capture the behaviour
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on the attractor. They also compared the Koopman modes with the POD modes

of the same dataset: while a single Koopman mode contains, by construction,

only a single frequency component, the POD modes capture the most energetic

structures, resulting in modes that contain several frequencies. The Koopman

operator has been used to analyse nonlinear dynamical systems (see, for example

Mezić, 2013, 2005; Mezić and Banaszuk, 2004) and Mezić (2005)) and in these

works it was shown that for nonlinear systems evolving on an attractor, modes

corresponding to eigenvalues of the Koopman operator may be computed using

harmonic averages or discrete Fourier transforms.

The Krylov method used for computations is identical to the DMD algorithm pre-

sented in Schmid (2010), Schmid (2010). Thus, DMD can be thought of as an

algorithm for finding Koopman modes, as well as global stability modes of linear

dynamical systems, with the aim of projecting large-scale problems onto lower-

dimensional subspaces.

Koopman modes

Let x(k) = x(tk) = x(k∆t) be the iterates of the state, sampled at regular

time intervals k∆t, where ∆t is a fixed time step. Consider a dynamical system

evolving on a manifold M such that, for x(k) ∈M ,

x(k+1) = F(x(k)), (2.37)

where F is a map from M to itself and k is an integer index. Note that one could

equivalently study continuous-time systems of the form ẋ(t) = F(x(t)), but here

a discrete-time setting is adopted, as we are ultimately interested in analysing

discrete time data (snapshots). The Koopman operator is a linear operator U

that acts on scalar-valued functions on M in the following manner. For any

scalar-valued function ζ : M → R, U : L2 → L2 maps ζ into a new function Uζ

given by

Uζ(x) = ζ ◦ F(x). (2.38)

Although the dynamical system is nonlinear and evolves on a finite-dimensional

manifold M , the Koopman operator U is linear, but infinite dimensional. The idea

is to analyse the flow dynamics governed by (2.37) only from available data (col-

lected either numerically or experimentally) using the eigenfunctions and eigen-

values of U.
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Let φj : M → R denote the eigenfunctions and λ̃j ∈ C denote the eigenvalues of

the Koopman operator:

Uφj(x) = λ̃jφj(x), j = 1, 2, ..., (2.39)

and consider a vector-valued observable ζ : M → Rq, representing any quantity of

interest. If each of the q components of ζ lies within the span of the eigenfunctions

φj of U, then, as in Rowley (2005), one may expand the ζ as a linear combination

of the Koopman eigenfunctions φj:

ζ(x) =
∞∑
j=1

φj(x)ν̃j, (2.40)

where ν̃j are the (vector) coefficients in the expansion, called Koopman modes.

If the components of ζ do not lie within the span of the the eigenfunctions of

U , then one may split U into regular and singular components, with discrete and

continuous spectrum respectively, and project the components of ζ onto the span

of the eigenfunctions, as done in Mezić (2005).

Note that the iterates of x0 are then given by

ζ(x) =
∞∑
j=1

Ukφj(x0)ν̃j =
∞∑
j=1

λ̃kjφj(x0)ν̃j, (2.41)

where φj(x(0)) is the Koopman eigenfunction and ν̃j is the Koopman mode, rep-

resenting a complex-valued flow structure. The Koopman eigenvalues λ̃j therefore

characterise the temporal behaviour of the corresponding Koopman mode ν̃j : the

phase of λ̃j determines its frequency and the magnitude determines the growth

rate. Note that, for a system evolving on an attractor, the Koopman eigenvalues

always lie on the unit circle (see Mezić, 2005).

Rowley et al. (2009) showed that the commonly used Arnoldi algorithm, when

applied to a nonlinear system, actually produces approximations to eigenvalues

of the Koopman operator, and their corresponding modes as defined above. For

linear systems, the presented version of the Arnoldi algorithm does not require

explicit knowledge of the underlying operator describing the dynamics of the sys-

tem. This variant of the algorithm was introduced by Saad and Schultz (1980),

and it is the same as that referred to as DMD by Schmid (2010).
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Dynamic mode decomposition

In the first step, it is assumed that a linear mapping F connects the flow field

x(k) = x(tk) to the subsequent flow field x(k+1) = x(tk+1), that is

x(k+1) = Fx(k), (2.42)

and that this mapping is approximately the same over the full sampling interval. If

the flow fields stem from a nonlinear process, this assumption amounts to a linear

tangent approximation. For slowly varying systems, a multiple-scale argument

can provide a foundation for the above assumption. In the special case of a purely

linear process, no approximation is invoked by assuming a constant mapping.

Krylov methods are standard methods for computing estimates of the eigenvalues

of F , in which one starts with an initial vector x(0) (often chosen to be a random

vector), and computes iterates of x(0). After m− 1 iterations, one has a collection

of m vectors that span a Krylov subspace, given by

Km(F, x(0)) = span
{

x(0), Fx(0), ..., Fm−1x(0)
}
. (2.43)

We wish to find approximate eigenvectors of F as linear combinations of the

columns of

V m
0 =

[
x(0), Fx(0), ..., Fm−1x(0)

]
=
[
x(0), x(1), ..., x(m−1)

]
. (2.44)

As the number of snapshots increases and the data sequence given by V m
0 captures

the dominant features of the underlying physical process, it is reasonable to assume

that, beyond a critical number of snapshots, the vectors given by (2.42) become

linearly dependent. In other words, adding further flow fields x(k) to the data

sequence will not improve the vector space V m
0 . When this limit is reached, the

vector x(m) can be expressed as a linear combination of the previous, linearly

independent, vectors

x(m) = c0x(0) + c1x(1) + ...+ cm−1x(m−1) + r, (2.45)

or in matrix form

x(m) = V m
0 c + r, (2.46)

where cT = {c0, ..., cm−1} and r as the residual vector. Then,

FV m
0 = V m

1 = V m−1
0 S + reT

m, (2.47)
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where eT
m = [0, ..., 0, 1] ∈ Rm is a unit vector,

V m
1 =

[
x(1), x(2), ..., x(m)

]
, (2.48)

and

S =



0 c1

1 0 c2

. . . . . .
...

1 0 cm−2

1 cm−1


(2.49)

is of companion type. The residual

r = x(m) − V m−1
0 c (2.50)

is minimised when c is chosen such that r is orthogonal to span{x(0), x(1), ..., x(m−1)}.
The eigenvalues of S, such that

Sw = λw, (2.51)

are then approximations of some of the eigenvalues of F , called Ritz values, and

the corresponding approximate eigenvectors are given by

ν = V m−1
0 w, (2.52)

and are called Ritz vectors. The Ritz values of the decomposition yield growth

rates and frequencies, and the Ritz vectors yield the corresponding directions.

The well-known Arnoldi method is closely related to the decomposition above

but successively orthogonalises the vectors of V m
0 resulting in a decomposition

of the form FQ ≈ QHm with V m−1
0 = QR and Hm = RSR−1 is a Hessenberg

matrix. Again, the eigenvalues of Hm approximate some of the eigenvalues of

F . In practice, the reduction of F to Hessenberg form by the Arnoldi method is

accomplished by a sequence of projections onto successive Krylov subspaces. This

yields a more stable algorithm, but for these projections the matrix F has to be

available. The algorithm proposed by Schmid (2010), instead, does not require

explicit knowledge of the matrix F : it is exclusively based on the sequence of

the flow field snapshots and is thus equally applicable to experimental data and

large-scale numerical simulations. This approach can be summarised as follows.

Consider a sequence {x(0), ..., x(m)}, where x(j) ∈ Rn.
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1. Define V m−1
0 and find constants cj such that

r = x(m) − V m−1
0 c, c ⊥ span{x(0), ..., x(m−1)}. (2.53)

2. Define the companion matrix S by (2.49) and find its eigenvalues and eigen-

vectors

S = T−1
m ΛTm, Λ = diag(λ1, ..., λm), (2.54)

where eigenvectors are columns of T−1
m .

3. Define νj to be the columns of V = V m−1
0 T−1

m .

Rowley et al. (2009) showed that for a nonlinear system, the above algorithm

produces approximations of the Koopman modes and associated eigenvalues. This

is summarised by the following proposition.

Proposition 1. Consider a set of data {x(0), ..., x(m)} and let λj, νj be the empir-

ical Ritz values and vectors of this sequence. Assume the λj are distinct. Then

x(k) =
m∑
j=1

λkjνj, k = 0, ...,m− 1, (2.55)

x(m) =
m∑
j=1

λmj νj + r, r ⊥ span{x(0), ..., x(m−1)}. (2.56)

To illustrate how this proposition provides a connection with Koopman modes,

consider a vector-valued observable ζ : M → Rq for the dynamical system (2.37)

and its expansion (2.40) in the Koopman modes. Suppose a sequence of obser-

vations (e.g., the snapshots u(k) of the velocity field) ζ(x(k)), for k = 0, ...,m is

available, and let λj and νj be the empirical Ritz values and vectors for this

sequence. Then, by Proposition 1, we have

ζ(x(k)) =
m∑
j=1

λkjνj, k = 0, ...,m− 1, (2.57)

ζ(x(m)) =
m∑
j=1

λmj νj + r, r ⊥ span{ζ(x(0)), ..., ζ(x(m−1))}. (2.58)

Comparing with the expansion (2.40), the empirical Ritz values λj and vectors νj

behave in precisely the same manner as the eigenvalues λ̃j and modes ν̃j of U, but

for the finite sum in (2.57) instead of the infinite sum (2.41).

When the observable is the full state, the DMD algorithm approximates the flow
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field x(k) as the sum of the first m approximated Koopman modes, called DMD

modes νj, weighted by the powers λkj of their corresponding eigenvalues:

x(t) =
+∞∑
j=0

φj(x(0))ν̃je
(ρj+iωj)t ≈ x(k) =

m∑
j=0

νjλ
k
j , (2.59)

where ρj represents the growth rate and ωj the frequency of the associated Koop-

man mode ν̃j. If r = 0, then, as far as the data is concerned, the approximate

modes are indistinguishable from eigenvalues and Koopman modes of U , with the

expansion consisting only of a finite number of terms. If r 6= 0, then there is some

error, but this is in a sense the best one can do, since the m + 1 observations

cannot in general be spanned by m modes. Note that to use DMD modes in a

reduced-order Galerkin model of a PDE, one must typically subtract a “base flow”

from the data-set, which satisfies the appropriate boundary conditions. The mean

of the data is a common choice for a base flow, especially in POD-based analyses.

The application of the DMD to a mean-subtracted set of data, however, is exactly

equivalent to a temporal discrete Fourier transform (DFT) and harmonic averag-

ing. This is restrictive and generally undesirable. On the other hand, subtracting

an equilibrium point generally preserves the DMD spectrum and modes (Chen

et al., 2012).

The main drawback of this method is that it does not take into account the

closed-loop dynamics and there are no appropriate selection criteria for selecting

the modes to be retained. One could think of modifying the algorithm by changing

the Krylov subspace (2.43). For instance, consider the Single-Input-Single-Output

(SISO) system ẋ = Fx + Gv, with output y = Hx. One could choose the Krylov

subspace spanned by the state responses to unit impulses

Km(F,G) = span
{
G,FG, ..., Fm−1G

}
, (2.60)

which corresponds to considering the uncontrolled system ẋ = Fx, with initial

conditions x
(0)
i = hi, for i = 1, ..., p, where hi denotes the i-th column of the n× p

matrix H. However, this method does not take into account the observability

properties of the system, thus it is not feasible for partial-state information control

problems.

Other Krylov subspace techniques attempt to approximate the transfer function

of stable, linear systems (see, for example, Astolfi, 2010b; Bai, 2002; Jaimoukha

and Kasenally, 1997), in order to properly capture the input-output behaviour.
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This is done by considering the right (input) and left (output) Krylov subspaces

Km(F,G) = span
{
g, FG, ..., Fm−1G

}
(2.61)

Lm(FT, HT) = span
{
HT, FTHT, ..., (Fm−1)THT

}
, (2.62)

which are parts of the controllability and observability subspaces, respectively.

The direct Φ and adjoint Ψ matrices, whose columns span the desired right and

left Krylov subspaces, respectively, are computed using a Gram-Schmidt (e.g.,

Arnoldi method) or a Lanczos process and are such that ΨTΦ = I. However, care

should be taken as oblique projections onto a Krylov subspace may lead to unsta-

ble reduced-order models (see Benner, 2009), thus, appropriate modifications are

needed in order to preserve stability (see, for example, Jaimoukha and Kasenally,

1997). Moreover, since the definition of the left Krylov subspace requires adjoint

information, this method relies on the knowledge of a suitable linear operator F

describing the system dynamics. Thus, it cannot be directly applied to nonlinear

systems.

Other difficulties arise from the fact that Krylov subspace methods often generate

partial realisations that contain non-essential modes. An appropriate selection

criterion, which weights the importance of the modes (e.g., according to their con-

trollability, observability and damping frequency), can be considered in order to

overcome the problem (see Bagheri, 2013; Barbagallo et al., 2009). This method

can be adopted, for example, along with the DMD in order to choose the glob-

al/Koopman modes to be retained. Other Krylov-based model reduction methods

can be used and extended to stable nonlinear systems; for instance, using a non-

linear enhancement of the notion of moment, the approximated reduced-order

system can be obtained by moment matching as in Astolfi (2010a). Furthermore,

this method can be extended to unstable nonlinear systems, if the moments are

computed by mean of the Sylvester equation. However, this is computationally

expensive and perhaps not feasible for very large systems.

In this thesis, a novel method to approximate the nonlinear dynamics of controlled

flow systems is proposed. In particular, the DMD algorithm can be seen as a way

approximate the Koopman operator, in order to obtain a high dimensional linear

operator (2.42), which accurately describes the discretised, fully nonlinear, open-

loop dynamics. Then, the balanced POD is applied to the resulting linear system,

while taking into account the closed-loop dynamics.
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2.2.6 A new approach: Balanced DMD

Since a time-stepping is required, in order to compute the n states of system

(2.1), a discrete-time setting is used in this section, to derive the ROM. Following

Schmid (2010), m+ 1 snapshots of the state responses of the full-order nonlinear

system (2.1) are collected, which corresponds in this work to the finite element

approximation of the incompressible Navier-Stokes equations, to a finite-amplitude

impulsive input δ(t − t0), t0 ≥ 0, and arrange them in two matrices: XNL =

[x(0), ..., x(m−1)] and ZNL = [x(1), ..., x(m)]. We then perform the reduced SVD of

the matrix XNL:

XNL = UΣV T, (2.63)

where Σ ∈ Rm×m is diagonal, U ∈ Rn×m, V ∈ Rm×m and UTU = V TV = Im.

Define the m×m matrix

F̄ = UTZNLV Σ−1, (2.64)

whose eigendecomposition is given by

F̄R = RΛ, (2.65)

with R = [r1, ..., rm] and Λ = diag(λ1, ..., λm). The dynamic modes νj are then

given by

Φm = [ν1, ...,νm] = URD, (2.66)

where D is a diagonal matrix, used to scale the modes, computed as in Belson

et al. (2014), so that the sum of the modes equals the first data vector x(t0). If

the snapshots are computed from a system with no inputs, it is assumed, as in

Schmid (2010), that the evolution of the flow field can be expressed by a linear

map F ∈ Rn×n:

x(k+1) = Fx(k). (2.67)

A least square approximation of the matrix F is given by

F = ZNLX
†
NL ≈ ZNLV Σ−1UT, (2.68)

where (·)† denotes the Moore-Penrose pseudoinverse of (·), i.e., X†NL = [XNLX
T
NL]−1XNL.

In the case of a system with inputs, a linear system, approximating the nonlinear

one, can be obtained as follows:{
x(k+1) ≈ UF̄UTx(k) + UḠv(k),

y(k) ≈ H̄UTx(k),
(2.69)
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where Ḡ = UTx(0) ∈ Rm and H̄ = CU ∈ R1×m. Note that the input vector

UḠ is chosen as the projection of the excited initial condition x(0) onto the POD

basis, spanned by the columns of U . This choice is motivated by the fact that the

impulse responses of system (2.69), needed to compute the balanced modes, can

be expressed as x(k) ≈ F kx(0) = UF̄ kUTx(0).

In fluid systems, the dimension of the attractor is bounded, so that the essential

dynamics is finite-dimensional (see Mezić, 2005). Therefore, there cannot be any

asymptotically growing structures and thus ρj ≤ 0 for all j = 0, ...,+∞ (Bagheri,

2013) - i.e., all the Ritz values λj lie within the unit cycle. The so-obtained DMD

linear model (2.69), is thus stable (i.e., |λj| ≤ 1, j = 1, ...,m) but the dynamic

properties of the attracting set are lost. Since limit cycles cannot be described

using linear dynamics, a projection onto the asymptotically stable eigenspace is

performed.

Let L ∈ Rm be the left eigenvector matrix of F̄ : F̄TL = LΛH, where (·)H denotes

the Hermitian transpose of (·). The right and left eigenvectors are partitioned as

R = [Rs, Ru] and L = [Ls, Lu], respectively, where the subscripts s and u refer to

the parts of the spectrum Λs, which is asymptotically stable, and Λu, which lies

on the unit circle, respectively. The projection operator

Ps = Im −Ru(L
H
uRu)

−1LH
u , (2.70)

where Im is the m×m identity matrix, is used to restrict the dynamics of (2.69)

to the asymptotically stable subspace of F̄ . The balanced POD is computed using

the full state (direct and adjoint) snapshots of the reduced m-th order projected

system {
x̄

(k+1)
s = F̄ x̄

(k)
s + PsḠv(k),

ȳ(k) = H̄Psx̄(k)
s ,

(2.71)

where x̄
(k)
s = Psx̄(k) = PsUTx(k) ∈ Rm, in order to select the r � m relevant modes

to be retained in the reduced-order model. The full-order balanced-POD modes

Φ = UΦr,

Ψ = UΨr,
(2.72)

with Φr, Ψr defined in (2.36), yield the asymptotically stable, linear model of order

r: {
ξ(k+1) = Āξ(k) + B̄v(k),

ȳ(k) ≈ C̄ξ(k),
(2.73)
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where Ā = ΨT
r F̄Φr, B̄ = ΨT

r Ḡ and C̄ = H̄Φr. For the specific application to flow

separation control, the sampling time k∆t, used to construct the ROM is much

smaller compared to the fluid time-scales. Therefore, the action of the discrete-

time input v(k) on the flow field can be considered continuous. The discrete-time

ROM (2.73) can be thus converted into a continuous-time system (w ∈ R){
ξ̇ = Aξ +Bv, ξ(0) = ξ0,

y = Cξ.
(2.74)

This solves the model reduction problem stated in the first section of this chapter.
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2.3 Summary

A novel control-oriented model reduction method for nonlinear systems evolv-

ing on attractors has been proposed. The method can be used to obtain a low-

order, stable, linear model of the nonlinear flow/actuator dynamics, whose state

variables have a clear and consistent physical meaning. The method combines

DMD, as an alternative to linearisation, and balanced POD, as a way to select

the most observable and controllable DMD modes. The high-order DMD model is

projected using the balanced POD modes, thus yielding a balanced, stable, linear

ROM.



Chapter 3
A Practical Application: Controlled Fluid

Systems

The objective of this chapter is to obtain an accurate model of the flow/actu-

ator dynamics, in view of the practical application to the flow separation control

problem. The analytical model, which is based on the incompressible Navier-

Stokes equations, consists of a nonlinear system of PDEs, which are coupled with

the plasma dynamics through the body force that is generated by the actuator.

The PDEs are spatially discretised using two different numerical methods: a fi-

nite element method and a finite volume method. The semi-discretisation of the

equations yields a nonlinear, high-dimensional, system of ODEs of the form (2.1),

which represents the full order state-space model. The snapshots of the flow

field are obtained by applying suitable time-stepping techniques. The proposed

model reduction method can then be applied to the former, in order to obtain a

control-oriented ROM of the unsteady incompressible Navier-Stokes equations, in

the presence of a body force distribution generated by the plasma actuator.

3.1 Analytical Model

Let Ω be an open bounded domain in Rd, where d denotes the dimension

of the geometry, and let T > 0 denote the (non-dimensional) final time. The

flow of an incompressible viscous Newtonian fluid can be described by the non-

dimensionalised Navier-Stokes equations, which are derived from the conservation

42
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of mass and momentum, namely,

∂tu = −(u · ∇)u−∇p+
1

Re
∆u+ f in (0, T ]× Ω,

0 = ∇ · u in (0, T ]× Ω,
(3.1)

with initial condition

u(0,x) = u0(x) in Ω, (3.2)

and boundary conditions

u(t,x) = g(t,x) on Γin,

u(t,x) = 0 on Γ0,

( 1
Re
∇u− pId)n = 0 on Γout.

(3.3)

Here: t ∈ [0, T ] is the non-dimensional time; x ∈ Ω; n denotes the unit outward

normal vector on ∂Ω = Γin ∪Γ0 ∪Γout; Γin, Γout and Γ0 denote the inflow, outflow

and wall boundaries, respectively; g : [0, T ] × Ω → Rd is a sufficiently smooth

function denoting the inflow boundary condition; u : [0, T ] × Ω → Rd is the

velocity vector; p : [0, T ] × Ω → R is the non-dimensional pressure; Id ∈ Rd×d is

the identity matrix; Re = ρU∞c/µ is the Reynolds number; U∞ is the free-stream

velocity (in m/s); µ is the viscosity; ρ is the fluid density (in kg/m3); c = 0.1m is

the chord length (as in Choi et al. (2011); Feng et al. (2015), for the wind tunnel

tests); f : [0, T ]×Ω→ Rd is the total body force vector field, which is assumed to

be linearly dependent on the control inputs, i.e., the voltage signals of the plasma

actuators, as in Jayaraman and Shyy (2008); Shyy et al. (2002). An accurate

body force model that couples the fluid discharge equations with the NavierStokes

equations, including momentum and thermal transfer from plasma to neutral gas,

could be obtained as in Unfer and Boeuf (2009) but most of its parameters are

unknown and would still need to be approximated. Such a detailed model is not

necessary here, as the feedback control compensates for these uncertainties and the

linear approximation shows good agreement with the experiments Moreau (2007).

In particular, the plasma can be expressed as

f(t,x) = c/ρU2
∞(fx(t,x), fy(t,x), 0) = c/ρU2

∞

∑
j=1,...,na

f (j)(t,x), (3.4)

where na denotes the number of actuators, fx, fy are the streamwise and normal

component (in N/m3) and f (j) is the single force distribution of the j-th actuator

(in N/m3). All the above listed functions are assumed to be sufficiently smooth.

The wall-tangential velocities,

yi(t) = uτ (t,xsi) = τ (xsi) · u(t,xsi), (3.5)
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evaluated at the selected sensor locations xsi , for i = 1, ..., ns, with ns being the

number of sensors and τ being the wall-tangential unit vector, are chosen as the

measured outputs.

3.2 Semi-discrete state-space model

A full-order, nonlinear state-space system of the form (2.1) can be obtained by

spatially discretising the system of nonlinear PDEs (3.1), (3.3), (3.2), (3.5), using

numerical methods, thus yielding a nonlinear system of n ODEs,{
Eẋ = F(x) +Gv in (0, T ],

y = Hx in (0, T ],
(3.6)

with initial conditions

x(0) = x0, (3.7)

where: n = (d + 1)N is the number of states; x = x(t) : R → Rn is the state

vector representing the evolution in time of the nodal values of the flow fields

(both pressure and velocity); ẋ = dx/dt; E ∈ Rn×n is related to the mass matrix;

F(·) : Rn → Rn is a sufficiently smooth nonlinear function; G ∈ Rn×na is the

input matrix representing the nodal values of the time-independent part of the

body force; v = v(t) : R → Rna is the control input vector; y = y(t) : R → Rns

is the chosen control output; H ∈ Rns×n is the output matrix representing the

space-discretisation of (3.5).

Two different numerical methods have been considered, in order to show the ro-

bustness of the proposed approach: the control algorithm will be first designed

upon a reduced-order model, which is built using the snapshots of the 2D finite

element simulations at low Reynolds numbers Re = 1000, and then applied to

more accurate 3D finite volume approximation of the Navier-Stokes equations at

Re = 20, 000.

In particular, a finite element method has been implemented in Python using

the FEniCS library (see Logg et al., 2012) to solve the Navier-Stokes equations

for two-dimensional configurations at low Reynolds numbers; for more accurate

simulations at higher Reynolds numbers, equations (3.1), (3.3), (3.2), (3.5) are ap-

proximated by a finite volume technique, with pressure and velocity co–located at

the cell center, which is implemented in χnavis, a general-purpose, second order,

multi-block, unsteady RANS equations based solver, developed at CNR-INSEAN.
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3.3 Finite Element Approximation

One way of obtaining a spatial discretisation of the system of nonlinear PDEs

(3.1), (3.3), (3.2), (3.5) is to use the continuous Galerkin finite element method.

Then, a time-stepping is required to solve the resulting semi-discrete system (3.6).

In particular, quadratic and linear Lagrange polynomials are used for the velocity

and pressure fields, respectively. An implicit, first-order backward Euler scheme

is used for the time-discretisation. The FEniCS Python library (see Logg et al.,

2012) is used to implement the finite element method for the automatic generation

of a fast, parallelised C + + code with the aim of performing accurate numerical

simulations. The computational grid is generated using Triangle (see Shewchuk,

2002). Note that the number n of states of system (3.6) is large (≈ 104/106) and

depends on the grid resolution.

3.3.1 Continuous Galerkin Finite Element Method

Define the Hilbert spaces

L2(Ω) =

{
q : Ω→ R such that ‖q‖L2(Ω) =

(∫
Ω

|q(x)|2dx

) 1
2

< +∞

}
, (3.8)

Hk(Ω) =
{
q ∈ L2(Ω) : Dαq ∈ L2(Ω),∀|α| ≤ k

}
, (3.9)

where α = (α1, ..., αd) is a d-dimensional multi-index, α1, ..., αd, k are non-negative

integers and

Dαq(x) =
∂|α|q(x)

∂xα1
1 ...∂x

αd
d

(3.10)

is a partial differential operator of order |α| = α1 + ...+αd. Let W be any Hilbert

space with norm ‖ · ‖W and let

L2(R+;W ) =

{
q : R+ → W | t→ q(t) is measurable and

∫ +∞

0

‖q(t)‖2
Wdt < +∞

}
.

(3.11)

Assume u ∈ L2(R+;H1(Ω))d, p ∈ L2(R+;L2(Ω)), f ∈ L2(R+;L2(Ω))d, u0 ∈
L2(Ω), g(t, ·) ∈ L2(R+;H1/2(Γin)), where H1/2(Γin) denotes the L2(Γin) functions

that are traces of H1(Ω) functions. The weak formulation of equations (3.1), (3.2),

(3.5) with boundary conditions (3.3), for a d-dimensional flow, can be written as
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follows: find (u(t, ·), p(t, ·)) ∈ V Γin∪Γ0 ×Q ⊂ H1(Ω)
d × L2(Ω) such that∫

Ω

∂tu · vdx = − 1

Re

∫
Ω

∇u · ∇vdx−
∫

Ω

(u · ∇u) · vdx+

∫
Ω

p∇ · vdx (3.12)

+

∫
Ω

f · vdx, (3.13)

0 =

∫
Ω

q∇ · udx, (3.14)

for all test functions (v, q) ∈ V 0 ×Q ⊂ H1(Ω)
d × L2(Ω), where f(t, ·) ∈ L2(Ω)d,

V Γin∪Γ0 =
{
v ∈ H1(Ω)d : v|Γin∪Γ0 = uD ∈ L2(R+;H1/2(∂Ω))

}
(3.15)

V 0 =
{
v ∈ H1(Ω)d : v|Γin∪Γ0 = 0

}
, (3.16)

and

uD(t,x) =

{
g(t,x) on Γin,

0 on Γ0,
(3.17)

on the Dirichlet boundary. Let Th be a non-degenerate mesh consisting of elements

of granularity h such that

Ω̄ =
⋃
κ∈Th

κ (3.18)

and let

V h =
{
vh ∈ C0(Ω)d : vh|κ ∈ P2(κ)d, ∀κ ∈ Th

}
, (3.19)

Qh =
{
qh ∈ C0(Ω)d : qh|κ ∈ P1(κ)d, ∀κ ∈ Th

}
, (3.20)

be finite element spaces, where C0(Ω) is the space of continuous functions on Ω

and Pk is the polynomial space of degree at most k. Then, the weak form can be

approximated as follows: find (uh(t, ·), ph(t, ·)) ∈ V h
Γin∪Γ0

×Qh such that∫
Ω

u̇h · vhdx =− 1

Re

∫
Ω

∇uh · ∇vhdx−
∫

Ω

(uh · ∇uh) · vhdx+

∫
Ω

ph∇ · vhdx,

+

∫
Ω

f · vhdx, ∀vh ∈ V h
0

0 =

∫
Ω

qh∇ · uhdx, ∀qh ∈ Qh,

(3.21)

yielding the semi-discrete system (3.6), where

V h
Γin∪Γ0

=
{
vh ∈ V h : vh|Γin∪Γ0 = uD

}
(3.22)

V h
0 =

{
vh ∈ V h : vh|Γin∪Γ0 = 0

}
. (3.23)
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are finite element approximations of V Γin∪Γ0 and V 0, respectively. Note that

by using a divergence-free basis for the test space V h
0 , the singularity of E can

be overcome and the state vector x will only represent the nodal values of the

velocity field. For instance, this can be done by projecting the system onto the

POD subspace, when its basis functions are computed using the snapshots of the

velocity field only, which is (discretely) divergence-free. Thus, the weak form

(3.21) becomes: find uh(t, ·) ∈ V h
Γin∪Γ0

such that∫
Ω

∂tuh · vhdx =− 1

Re

∫
Ω

∇uh · ∇vhdx−
∫

Ω

(uh · ∇uh) · vhdx,

+

∫
Ω

f · vhdx, ∀vh ∈ V h
0 ,

(3.24)

yielding a semi-discrete nonlinear system in the usual state-space form{
ẋ = E−1F(x) + E−1Gv

y = Hx,
(3.25)

where the state vector x represents the nodal values of the velocity field only and

the function F̃(x) and the non-singular mass matrix has been inverted.

3.3.2 Implicit pressure-correction scheme

An implicit pressure-correction scheme has been implemented, in order to solve

the system of ODEs (3.6), resulting from the spatial discretisation. Pressure-

correction schemes are time-stepping methods composed of two sub-steps for each

time step: in the first sub-step, the pressure is treated explicitly or ignored; in the

second sub-step, the pressure is corrected by projecting the provisional velocity,

computed at the previous sub-step, onto a divergence-free subspace. The simplest

pressure-correction scheme was originally proposed by Chorin (1968). When an

implicit Euler method is used, the algorithm reads as follows. Set ũ(0) = u0.

The first sub-step solves the momentum equation with a zero pressure gradient,

namely: find u
(k+1)
h ∈ V h

Γin∪Γ0
such that

1

∆t

∫
Ω

(
ũ

(k+1)
h − u(k)

h

)
· vhdx = − 1

Re

∫
Ω

∇ũ(k+1)
h · ∇vhdx

−
∫

Ω

(
ũ

(k+1)
h · ∇ũ(k+1)

h

)
· vhdx+

∫
Ω

f (k+1) · vhdx, ∀vh ∈ V h
0 ,

(3.26)

where ũ
(k+1)
h represents the provisional velocity. In the second sub-step, both the

velocity and pressure are updated by solving: find (u
(k+1)
h , p

(k+1)
h ) ∈ V h

Γin∪Γ0
×Qh
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such that

1

∆t

∫
Ω

(
u

(k+1)
h − ũ(k+1)

h

)
· vhdx+

∫
Ω

∇p(k+1)
h · vhdx =0, ∀vh ∈ V h

0 ,∫
Ω

∇ · uh · qhdx =0, ∀qh ∈ Qh.

(3.27)

In particular, first, the pressure is updated solving the Poisson equation∫
Ω

∇p(k+1)
h · ∇qhdx =

1

∆t

∫
Ω

∇ · ũ(k+1)
h · qhdx. (3.28)

Then, the corrected weakly divergence-free velocity is computed as∫
Ω

u
(k+1)
h · vhdx =

∫
Ω

ũ
(k+1)
h · vhdx−∆t

∫
Ω

∇p(k+1)
h · vhdx. (3.29)

More accurate and complex time-stepping methods may be used but this is out-

side the scope of this work.

3.4 Finite Volume Approximation

In view of the spatial discretisation of equations (3.1), (3.3), (3.2), (3.5), let

(3.1) be rewritten using the integral vectorial form of the unsteady Reynolds aver-

aged Navier-Stokes equations for the generic three-dimensional case d = 3, namely:

Λ
∂

∂t

∫
V

q dV +

∫
S(V)

(F c(q)− F d(q)) dS −
∫
V

f dV = 0, (3.30)

where q = (p, u, v, w)T represents the state variable for incompressible flows, (·)T

denotes the transpose of (·), Λ = diag (0, 1, 1, 1) and

F c =

(
d∑
i=1

uini; u1

d∑
i=1

uini + pn1; u2

d∑
i=1

uini + pn2; u3

d∑
i=1

uini + pn3

)T

,

F d =

(
0;

d∑
j=1

τ1jnj;
d∑
j=1

τ2jnj;
d∑
j=1

τ3jnj

)T

,

(3.31)

are the convective (inviscid and pressure) and diffusive normal fluxes through the

surface S(V) of the finite volume V, respectively; n = (n1, n2, n3) is the outward

unit normal vector; ui is the i–th Cartesian component of the velocity vector (in

the following, the Cartesian components of the velocity are also denoted as u, v,
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and w); τij = ν(ui,j + uj,i) is the stress tensor; ν is the kinematic viscosity. The

problem is closed by enforcing appropriate conditions at physical and computa-

tional boundaries. As in (3.3), on solid walls, the velocity is set to zero (whereas

no condition on the pressure is required); at the inflow boundary, velocity is set

to the undisturbed flow value, and the pressure is extrapolated from inside; on

the contrary, the pressure is set to zero at the outflow, whereas velocity is extrap-

olated from the inner points. The initial conditions are specified for the velocity

field as in (3.2). In this section, a finite volume discretisation of equations (3.30)

is presented; the numerical solution of the discretised equations is obtained using

χnavis, a general-purpose, second order, multi-block with overlapping grids, finite

volume unsteady RANS equations based solver, developed in Fortran 90 at CNR-

INSEAN. The residual on each control volume is computed as an interface flux

balance; the fluid domain Ω is partitioned into Nl structured adjacent or over-

lapped blocks Ωl, each one subdivided into Ni × Nj × Nk disjoint hexahedrons

Ωl
ijk. Conservation laws are applied to the (i, j, k)-th control volume:

Λ
∂

∂t

∫
Vijk

q dV +
6∑
s=1

∫
Ss

(F c
s(q)− F d

s(q)) dS −
∫
Vijk

f dV = 0, (3.32)

where Ss is the s-th face of the finite volume Ωijk, whose measure is Vijk. Defining

q = 1
Vijk

∫
Vijk

q dV the volume average of the unknowns q, the semi-discrete system

of equations can be rewritten as:

Λ
∂q

∂t

∣∣∣∣
ijk

+
1

Vijk
Rijk = 0, (3.33)

being Rijk the sum of the body forces and the flux balance on the current con-

trol volume Vijk. The surface integrals are evaluated by means of the (second

order) trapezoidal rule. In the viscous fluxes, the computation of the velocity

gradients, required for the computation of the stress tensor at the cell interface,

are computed using a standard second order centered finite volume approxima-

tion (Hirsch, 2007). For the inviscid part, the fluxes are computed as the solution

of a Riemann problem F c
s = F c(qs) = F c(ql, qr); the right and left states can be

estimated by several schemes implemented in the solver χnavis, ranging from the

first order Total Variation Diminishing scheme, the second order Essentially Non

Oscillatory (ENO) scheme (Harten et al., 1987), the third-order upwind-based

scheme (Van Leer, 1979) and the classical fourth-order centered scheme (for more

details see Di Mascio et al., 2007b). Moreover, a second order accurate solution

of the Riemann problem (Di Mascio et al., 2001) is used in place of the exact



3.4. Finite Volume Approximation 50

one, which should be computed iteratively, given the non-linearity of the problem.

It can be proved that the resulting scheme is second order accurate, and yields

oscillation–free discrete solutions, also when the exact solutions are discontinuous

(see Di Mascio et al., 2001, 2007b, and the references therein).

3.4.1 Temporal integration

Given the solution at a time instant t = tnt , the solution at the new time step

nt + 1 is computed by the following procedure. The time derivatives in the previ-

ous equations are approximated by means of a second order accurate three–point

backward finite difference approximation formula; for example, for the governing

equations (3.32), the time integration reads:

Λ
3qnt+1

ijk − 4qntijk + qnt−1
ijk

2∆t
+

1

Vijk
Rnt+1
ijk = 0, (3.34)

where the superscript nt denotes the time levels and ∆t is the physical time step.

The previous equation represents a system of coupled non-linear algebraic equa-

tions, which are solved iteratively by a dual (or pseudo) time integration (see

Merkle and Athavale (1987) for more details). To this end, a pseudo-time deriva-

tive is introduced in the discrete system of equations

Λ̃
∂ q

∂τ

∣∣∣∣
ijk

+ Λ
3qnt+1

ijk − 4qntijk + qnt−1
ijk

2∆t
+

1

Vijk
Rnt+1
ijk = 0, (3.35)

with ∆τ being the pseudo–time step, Λ̃ = diag (1/βpc, 1, 1, 1), and βpc being the

pseudo-compressibility factor (Chorin, 1968). Then, the solution is iterated to

steady state with respect to the pseudo–time τ , for each physical time step. The

integration with respect to the pseudo–time is carried out by means of an implicit

Euler scheme, i.e.,

Λ̃
qmt+1
ijk − qmtijk

∆τ
+ Λ

3qmt+1
ijk − 4qntijk + qnt−1

ijk

2∆t
+

1

Vijk
Rmt+1
ijk = 0, (3.36)

where the superscripts nt and mt denote the physical and dual time levels, respec-

tively. The previous system of equations is then solved with respect to qmt+1
ijk as in

the Beam and Warming’s scheme (Beam and Warming, 1978) , i.e., the equation

is rewritten in “delta” form(
Λ̃ +

3∆τ

2∆t
Λ

)
δqmtijk+

∆τ

Vijk

∂R

∂q

∣∣∣∣mt
ijk

δqmtijk

+ ∆τ

[
Λ

3qmtijk − 4qntijk + qnt−1
ijk

2∆t
+

1

Vijk
Rmt
ijk

]
= 0,

(3.37)
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where δqmtijk = qmt+1
ijk − qmtijk. The operator on the left hand side of the previ-

ous equation is solved by an approximate factorisation technique. The resulting

scheme is unconditionally stable. A local dual time step and a multi-grid technique

(Brandt, 1984; Favini et al., 1996) are used in order to improve the convergence

rate of the sub–iteration algorithm.

3.4.2 Overlapping grid approach

For the numerical computations at higher Reynolds numbers, overlapping grid

capabilities have been employed for both grid refinement/coarsening purposes and

the inclusion of the plasma actuator. The basic elements of the overlapping grid

approach (or “Chimera” method) implemented in the solver χnavis are reported

here. For more details the reader is referred to Muscari and Di Mascio (2005);

Di Mascio et al. (2006); Broglia et al. (2007b); Zaghi et al. (2015). The introduction

of overlapping grid capabilities in the RANS code is made through a modification

of both the boundary conditions and the internal point treatment for those zones

where overlapping occurs. The approach is based on the search of the “donors” for

those cells (“chimera cells”) for which an overlap is found or for the cells on the non

physical or computational boundaries (i.e., on the boundaries of the blocks that

are immersed in the computational domain). Once the donor is identified, then a

convex set of eight donor cell centers is searched, and a tri-linear interpolation is

used to transfer the solution from the “donor” set to the “chimera” cell. Differently

from standard chimera approaches, however, the cell marked as “chimera” cells

are not removed from the computation but the interpolated solution is enforced

by adding a forcing term to the Navier-Stokes equations (3.36), in a “body-force”

fashion:

Λ̃
qmt+1
ijk − qmtijk

∆τ
+Λ

3qmt+1
ijk − 4qntijk + qnt−1

ijk

2∆t

+

[
1

Vijk
Rmt+1
ijk +

k

δ

(
qijk|mt − qinterp|mt

)]
= 0,

(3.38)

In the previous equation qijk is the vector of the dependent variables at the cell

ijk marked as “chimera” cell, and qinterp is the tri-linear interpolation of the so-

lution from the donor cells. Moreover, k = O(10) is a parameter chosen through

numerical tests, and δ is the minimum between the cell non-dimensional diameter

and the non-dimensional time step. This approach is particularly useful when us-

ing multigrid and approximate factorisation, as it allows to maintain a structured

data set.



3.4. Finite Volume Approximation 52

3.4.3 Code parallelisation

The coarse/fine grain parallelisation of the unsteady RANS code has been

achieved by distributing the structured blocks among the available distributed

(nodes) or shared memory (threads) processors, and by spreading the compu-

tational work to be done (mostly in terms of do loop inside each block among

available shared memory processors). Useful pre-processing tools, which allows

the splitting of the structured blocks and the distribution of them among the

processors, were developed for load balancing (Broglia et al., 2014), whereas fine

tuning is left to the user. Communication between processors for the coarse grain

parallelisation is obtained by using standard Message Passing Interface (MPI) li-

brary, whereas fine grain (shared memory) parallelisation is achieved by means

of the Open Message Passing (OpenMP) library. The efficiency of the parallel

code has been investigated in Broglia et al. (2007a, 2014) (to which the reader is

referred for details), where satisfactory speed up performances have been shown

in different test cases.
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3.5 Summary

An analytical control-oriented model of the flow/actuator dynamics has been

presented. It is based on the incompressible Navier-Stokes equations, which are

coupled with the plasma dynamics through the body force that is generated by

the actuator. Two different numerical schemes have also been discussed: a finite

element method, which will be used in the next chapter to both simulate low

Reynolds number flows and obtain a simple low-order model of the flow dynamics;

a finite volume method, which will be used for more realistic simulations at higher

Reynolds numbers.



Chapter 4
SISO Flow Separation Control

This chapter addresses the practical problem of robustly controlling the flow

separation over an aerofoil, using the plasma actuator voltage as the control input

and realistically available real-time velocity measurements as the control output

(see, for example, Buder et al., 2008; Segawa et al., 2010; Spazzini et al., 2001,

1999). Despite the complexity of the dynamics of interest, it is shown how the

problem of controlling flow separation can be formulated as a simple output reg-

ulation problem, so that a simple control strategy may be used. A robust out-

put feedback control is designed, on the basis of the low-order, linear, dynamical

model approximating the incompressible Navier-Stokes equations, which has been

presented in Chapter 2. Fast flow reattachment is achieved, along with both sta-

bilisation and increase/reduction of the lift/drag, respectively. Two-dimensional

finite element simulations of the full-order nonlinear equations illustrate the effec-

tiveness of the proposed approach: good dynamic performances are obtained, as

both the Reynolds number and the angle of attack are varied. The chosen output

can be experimentally measured by appropriate sensors and the extension of the

proposed approach to 3D configurations is straightforward.

4.1 Problem Statement and Objectives

The aim is to formulate and solve the flow separation problem, i.e., to make

∂nuτ (t,x)|ΓN =
(
τ (x) · ∇u(t,x) · n(x)

)
|ΓN > 0, (4.1)

as a simple output regulation problem, i.e., to make the measured output

y(t) = uτ (t,xs) > ε > 0. (4.2)

54
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Here: u is the time-dependent flow velocity vector; x and xs denote the spa-

tial coordinates and the sensor location, respectively; ΓN represents the aerofoil

boundary; n and τ are the normal and tangent unit vectors to ΓN , respectively.

The objective is to design a simple robust output feedback control, along with a

suitable reference signal y∗ for y, in order to suppress the flow separation along

the aerofoil, i.e., to drive the regulation error ỹ = y− y∗ to zero. To this end, the

recent results in Marino and Tomei (2015) are extended to a wider class of control-

systems, which are suitable for the considered specific scenario, and propose their

application to the flow separation control problem. The resulting set-point track-

ing control is designed upon a single ROM approximation of the nonlinear flow

dynamics, for given parameters. The proposed control-oriented ROM is obtained

from the snapshots of a finite element approximation of the incompressible Navier-

Stokes equations, which govern the evolution of u, in the presence of a body force

distribution, which represents the action of the plasma actuators on the neutrally-

charged flow dynamics.

4.2 Actuator Model

The time scale disparity between the flow and the discharge frequencies allows

for assuming that the force acts on the neutral fluid in a quasi-steady manner.

The body force felt by the neutral flow is equivalent to the electro-magnetic force

acting on the net charge density. Several models for the DBD actuator force

have been proposed (see, for example, (Corke et al., 2007) for a detailed review).

The bilinear model proposed by Shyy et al. (2002) is widely used in the flow

control literature (see, for example, Cho and Shyy, 2011), because of its simplicity.

However, this model is based on the linear approximation of the variation in space

of the electric field generated by the electrodes. This simplifying assumption is

not consistent with experiments (see, for example, Enloe et al., 2004; Orlov et al.,

2006), which show an exponential spatial decay. As a result, the model over-

predicts the actuator effect.

Here, a control-oriented modified version of the recent model studied in Yang and

Chung (2015) is proposed, which demonstrated good agreement with experimental

data. The model is characterised by an exponential dependence on the spatial

coordinates and, in particular, the force is modelled by a Rayleigh distribution (see

Yang and Chung, 2015). The total body force vector field f : [0, T ] × Ω → Rd,
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which appears in the Navier-Stokes equations (3.1), reads

f(t,x) =fτ (t, xτ , yn)τ (x) + fn(t, xτ , yn)n(x)

=I(t)
λfxτ
σ2
f

e−x
2
τ/2σ

2
f−λfynτ (x),

(4.3)

where: fn(t, xτ , yn) ≡ 0, I(t) = kvV(t)/Vm (kv ∈ R, Vm [kV]) is the total plasma

force; V(t) : R → R is the amplitude variation of the operation voltage (in kV);

v(t) = V(t)/Vm is the corresponding non-dimensionalised voltage input, scaled by

Vm; fτ , fn (in N/m3) are the tangential and normal components, with respect to

the aerofoil, of the force density, respectively; xτ , yn ≥ 0 are related to x = (x, y)

by a coordinate transformation and respectively refer to the tangent and normal

components, relative to the geometry, in the reference frame centred in xa (see

figure 4.1). The parameters λf = 1.6, σf = 1.9, kv = 5200e1/2σf/λf are chosen

Figure 4.1: Tangential force density f
(j)
τ and reference frames.

as in Yang and Chung (2015), where this model has been compared with particle

image velocimetry (PIV) data, whilst, for sake of simplicity, a simple linear de-

pendence of the body force on the applied peak-to-peak voltage is assumed here

(see Jayaraman and Shyy, 2008; Shyy et al., 2002). The presence of the feedback

control makes a detailed characterisation of the plasma force/voltage dependence

not necessary, due to its capability of automatically modifying the control action

in order to compensate for model inaccuracies.

4.2.1 Preliminaries

Similarly to Marino et al. (2015), the control problem is to design a suitable

feedback law v(t) for system (2.74), based on the real-time measurement y(t), in
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order to robustly regulate the latter to a given reference region (e.g., y(t) ≥ ε > 0).

The key objective is to design v such that the closed-loop trajectories of system

(2.1) are guaranteed to evolve within some “safe” invariant set in different scenar-

ios, depending on uncertain parameters (e.g., the Reynolds number Re and angle

of attack β). However, as the linear ROM (2.74) is computed at given parame-

ters (i.e., Re and β), it cannot give an accurate approximation of the full-order

nonlinear dynamics (2.1) when the unknown parameters are varied. Furthermore,

the dependence of dynamical properties of fluid systems on such parameters is

highly nonlinear. Therefore, on the basis of the recent results in Marino and

Tomei (2015), a robust output regulator guaranteeing exponential convergence of

the regulation error is designed: it only requires the system to have a non-zero

steady-state gain of known sign. Let

y∗ = −dw (4.4)

be a constant reference signal for the output, where d ∈ R and w is generated by

the exosystem

ẇ = 0, w(0) = w0. (4.5)

Let

P (s) = C(sI − A)−1B, (4.6)

whose poles have all negative real part, be the open-loop transfer function of sys-

tem (2.74), which is both controllable and observable by construction. Therefore,

the necessary and sufficient conditions for the solution of the regulator problem are

satisfied (see Francis and Wonham, 1976). In particular, in the case of constant

reference signals, P (0) 6= 0 is a necessary and sufficient condition for the existence

of a unique pair of matrices (Γ, γ), which solves the regulator problem

0 = AΓ +Bγ,

CΓ + d = 0.
(4.7)

The pair (Γ, γ) defines both the references ξ∗ = Γw and v∗ = γw for the state and

control input, respectively. Denoting ξ̃ = ξ − ξ∗ and η = −v∗, the error dynamics

are given by 
˙̃ξ = Aξ̃ +B(v + η),

η̇ = 0, η(0) = η0,

ỹ = Cξ̃,

(4.8)
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so that the control problem can be formulated as a disturbance rejection problem,

where the reference input v∗ = −η can be viewed as a scalar disturbance, which

matches the control input v (see Marino and Tomei, 2015). The uncertain matrices

A, B, C, as well as the order of the model, highly depend on the uncertain

set of parameters which defines the physical problem, such as, in our specific

application, the Reynolds number Re and angle of attack β. Given a certain

range for the uncertain parameters (e.g., Re and β), it is only assumed that there

exist some positive constants r, εajk , εbj and εcj , such that the coefficients of A, B,

C, belong to their corresponding compact sets [ajk−εajk , ajk+εajk ], [bj−εbj , bj+εbj ],
[cj − εcj , cj + εcj ], for any j, k = 1, ..., r, and are such that P (0) does not change

sign, within the whole range.

4.3 Control Algorithm: Constant Output Refer-

ence

Let η̂ = −v̂∗ be the estimate of the unknown disturbance. A variant of the

control algorithm presented in Marino and Tomei (2015) is proposed, in the case

of constant disturbances:{
˙̂η = k sign(P (0))ỹ− µη̂ỹ2, η̂(0) = η̂0,

v = −η̂,
(4.9)

where k > 0 and µ ≥ 0 are chosen control gains. Let

y∗ ≡ ε > 0 (4.10)

be a constant reference signal. The control algorithm (4.9) depends on: the mea-

sured output y; the constant reference y∗; the known sign of P (0); the positive

design parameters k, µ ε.

Remark 1. The anti-windup term µη̂ỹ2 plays a stabilising role similar to the one

played by the well-known term µη̂, where the quadratic function of the tracking

error ỹ2 has been introduced in order not to affect the stability analysis, when µ is

sufficiently small.

The main result of this section, which extends the results obtained in Marino

and Tomei (2015) to the proposed control algorithm (4.9), on the basis of the

proposed balanced DMD model (2.74), is summarised in the following theorem: it
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establishes the sufficient conditions under which the the designed SISO set-point

tracking controller guarantees the solution of the flow separation problem (4.1) for

the reduced-order dynamics.

Theorem 1. Consider the closed-loop system (2.74), (4.9). Assume that P (0) 6= 0

with known sign. Then, for any initial condition (ξ0, η0, η̂0), there exist a k∗ > 0

and a sufficiently small µ∗ ≥ 0, depending on k∗, such that the regulation error

ỹ(t) and the control input error v(t)− v∗ exponentially tend to zero, as t tends to

infinity, for any 0 < k ≤ k∗, 0 ≤ µ ≤ µ∗.

4.3.1 Stability Analysis

The stability analysis of the closed-loop system is given in the following proof.

Proof. Case µ = 0. System (4.8) can be rewritten as

Ỹ(s) = P (s) (v(s) + η) , P (s) =
nP (s)

dP (s)
. (4.11)

The stability of the closed-loop system is determined by the zeros of the transfer

function

Q(s) = 1 + kP (s)

(
sign(P (0))

s

)
=

nQ(s)

dQ(s)
. (4.12)

By the root locus, for sufficiently small k > 0, r zeros of Q(s) are sufficiently close

to the r poles of P (s) and, therefore, they have negative real part. The remaining

branch of the root locus starts from 0 in the s-plane with angle π, so that also the

remaining zeros of Q(s) have negative real part.

Case µ > 0. Let η̃ = v− v∗ = η − η̂ and

χ̃ =

[
ξ̃

η̃

]
. (4.13)

The closed-loop error dynamics can be written as

˙̃χ =

[
A B

−k sign(P (0))C 0

]
χ̃+

[
0

µξ̃TCTCξ̃(η − η̃)

]
= Acχ̃+ l(χ̃),

ỹ = [C, 0] χ̃.

The characteristic polynomial of the closed-loop matrix Ac can be computed as

pAc(s) = det(sIr+1 − Ac) = det

[
sIr − A B

−k sign(P (0))C s

]
= det(sIr − A)

(
s+ kC(sIr − A)−1Bsign(P (0))

)
= sdP (s) + knP (s)sign(P (0)) = nQ(s).
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Therefore, Ac is Hurwitz, as its eigenvalues coincide with roots of nQ(s) and have

negative real part for any sufficiently small k. Thus, there exist two symmetric,

positive definite matrices P and Q satisfying the Lyapunov equation: PAc+A
T
c P =

−Q. Consider the candidate Lyapunov function

V(t) = χ̃T(t)Pχ̃(t), (4.14)

satisfying

α1‖χ̃(t)‖2 ≤ V(t) ≤ α2‖χ̃(t)‖2, (4.15)

where α1, α2 > 0 are positive constants. The time derivative of V(t), along the

trajectories of the closed-loop system satisfies the following inequality:

V̇ ≤ −χ̃TQχ̃+ 2χ̃TPl(χ̃) ≤ −M1‖χ̃‖2 + 2M2µ‖χ̃‖2
∣∣ηη̃ − η̃2

∣∣
≤ −

(
M1 −

M2µη
2

2

)
‖χ̃‖2,

where M1 = ‖Q‖, M2 = ‖P‖‖C‖2. Therefore, for sufficiently small µ, there exists

an α3 > 0 such that

V̇ ≤ −α3‖χ̃‖2 ≤ −α3

α2

V, (4.16)

thus implying the closed-loop boundedness and the exponential convergence to

zero of both the regulation error ỹ(t) and the control input error v(t) − v∗, as t

tends to infinity.

4.4 Control Algorithm: Reference Region

The control algorithm (4.9) can be slightly modified in order to allow the

output y to belong to a set, rather than imposing a single, constant reference.

This is translated into the following, simpler, control objective:

y ∈ Ωε = [εm, εM ], (4.17)

where εm and εM are chosen positive constants. This control objective is less

restrictive and gives greater flexibility in the choice of the output reference. In

particular, the lower bound for the output reference can be chosen in order to

guarantee any a priori fixed requirement, such as, in the present application, the

suppression of the separation bubble over the aerofoil; the upper bound can be

chosen in order to limit the power consumption. Therefore, the control problem
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(similarly to Marino et al., 2015) becomes to design v such that the chosen con-

trolled output y belongs to a “safe” compact set Ωε.

In particular, the reference output y∗ is chosen as

y∗(t) =


εm, if y(t) < εm,

y(t), if y(t) ∈ Ωε,

εM , if y(t) > εM .

(4.18)

The references for the state and the input are defined as

ξ∗(t) =


ξm, if y(t) < εm,

ξ(t), if y(t) ∈ Ωε,

ξM , if y(t) > εM ,

(4.19)

v∗(t) =


vm, if y(t) < εm,

argminv̄∈Ωη

∣∣v̄ + η̂
∣∣, if y(t) ∈ Ωε,

vM , if y(t) > εM ,

(4.20)

where the constant pairs ξm, vm and ξM , vM can be computed by solving the

regulator problem (4.7) for y∗ = εm and y∗ = εM , respectively.

The overall control algorithm (4.9), (4.18) depends on: the measured output y;

the bounded reference y∗; the known sign of P (0); the positive design parameters

k, µ εm, εM . Note that, when ε = εm = εM , the control algorithm (4.9), (4.18)

reduces to (4.9), with a constant output reference.

4.4.1 Stability Analysis

By Theorem 1, given any constant output reference ε ∈ Ωε, ξ(t) and v(t)

exponentially converge to their corresponding constant references ξ̄ ∈ Ωξ and

v̄ ∈ Ωη, respectively, where Ωξ, Ωη are suitable compact sets containing all the

state and input references which guarantee perfect output regulation y(t) ≡ ε,

for compatible initial conditions. Thus, the reference χ̄ = [ξ̄T, v̄] for χ = [ξT, v]

belongs to the compact set Ωχ = Ωξ ×Ωη. We can then extend Theorem 1 to the

control algorithm (4.9), with the output reference (4.18).

Corollary 1. Consider the closed-loop system (2.74), (4.9), (4.18). Assume that

P (0) 6= 0 with known sign. Then, for any initial condition (ξ0, η0, η̂0), there exist

sufficiently small k∗ > 0 and µ∗ ≥ 0, such that the regulation error y(t) − y∗(t)

and the control input error v(t) − v∗(t) exponentially tend to zero, as t tends to

infinity, for any 0 < k ≤ k∗, 0 ≤ µ ≤ µ∗.
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Proof. Consider the candidate Lyapunov function defined in (4.14). Let χ̃ be

defined as in (4.13), ξ̃ = ξ − ξ∗ and η̃ = v − v∗, where ξ∗ and v∗ are defined in

(4.19) and (4.20), respectively. When the output belongs to the compact set Ωε,

we have: ξ̃ ≡ 0, ˙̃ξ ≡ 0, ˙̃η ≡ 0. Thus, for any t ≥ 0 such that y(t) ∈ Ωε, V̇(t) ≡ 0.

When the output does not belong to the reference region, as in the previous proof,

there exist three positive constants α1, α2, α3 > 0 such that V(t) and its time

derivative satisfy (4.15) and (4.16), respectively. Therefore, for any t ≥ 0 such

that y(t) /∈ Ωε, V̇(t) < 0 and the distance

dP (χ(t),Ωχ) = infχ̄∈Ωχ ‖χ− χ̄‖P =
√
χ̃TPχ̃,

between χ and its reference set Ωχ satisfies

d2
P (χ(t),Ωχ) ≤ α2‖χ̃‖2 ≤ e−αtδ,

where α = α3/α2 and δ = V(0)α2/α1. Since 0 ≤ V(t) ∈ C1 is lower bounded and its

derivative is semi-negative definite, it admits a finite limit (see Courant, 1937, p.

61). Closed-loop boundedness and exponential convergence of V̇(t) (and, therefore,

of ξ̃ and ˙̃η) to zero are thus guaranteed, according to Barbalats lemma (see section

4.5.2 in Slotine and Li, 1991), as V(t) is uniformly continuous. Consequently, ξ(t)

converges to a constant reference ξ̄ ∈ Ωξ and v(t) converges to a constant value v̄,

as t tends to infinity. If v̄ /∈ Ωη, then ȳ = Cξ̄ = −P (0)v̄ /∈ Ωε, which contradicts

ξ̄ ∈ Ωξ. Therefore, v̄ ∈ Ωη and the distance dP (χ(t),Ωχ) exponentially tends to

zero, as t tends to infinity.

The following theorem establishes that, if the conditions of Corollary 1 are re-

stricted, a robust universal controller (4.9), (4.18) can be designed without any

restrictions on the control gain k.

Theorem 2. Consider the closed-loop system (2.74), (4.9), (4.18). Assume that

Re{P (iω)} > 0 for all ω ∈ R. Then, for any initial condition (ξ0, η0, η̂0), there

exists a sufficiently small µ∗ ≥ 0 such that the regulation error y(t)−y∗(t) and the

control input error v(t)− v∗(t) exponentially tend to zero as t tends to infinity, for

any k > 0, 0 ≤ µ ≤ µ∗.

Proof. Corollary 1 implies the exponential convergence of y(t) and v(t) to their

corresponding reference sets Ωε and Ωη, respectively, for sufficiently small k and µ.

To complete the proof it is, therefore, sufficient to show (as in Marino and Tomei,

2015) that there are no solutions on the imaginary axis of the equation

1 + kP (s)
1

s
= 0,
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so that the positive root locus cannot cross the imaginary axis. The point s = 0 is

not a zero of Q(s), as P (0) > 0. The phase condition for a point s = jω to belong

to the positive root locus for ω 6= 0 becomes

arg [P (jω)]− π

2
= π.

Since, by hypothesis, −π/2 < arg [P (jω)] < π/2, the previous condition is never

satisfied. Therefore, all branches must lie in the open left-hand complex half-

plane.

4.4.2 Variant: Time-varying Gain

Let {
˙̂η = k sign(P (0))ỹ− µη̂ỹ2, η̂(0) = η̂0,

v = −σ(y)η̂,
(4.21)

in which: 0 < σ(y) ≤ 1 is any real-valued, bounded, continuous function. In

particular, similarly to the projection algorithm defined in Marino et al. (2008),

σ(y) is chosen as

σ(y) =


1 if y < εm or v̂∗ < 0,

1− σε(y) if y ∈ Ωε and v̂∗ > 0,

1− σε(εM) if y > εM and v̂∗ > 0,

(4.22)

σε(y) =
y2 − ε2

m

y2
M − ε2

m

, (4.23)

where yM > εM ≥ εm > 0 are positive design parameters. Note that, when

ε = εm = εM , the control algorithm (4.18), (4.21), (4.22), (4.23) reduces to (4.9),

with a constant output reference.

Remark 2. The introduction of the function σ(y) is used, for this specific appli-

cation, to reduce the control action, once the controlled output reaches the desired

region. This time-varying gain, along with the less restrictive reference signal,

allows for the use of higher gains k, thus leading to faster dynamic performances,

whilst limiting the overshoot.

Theorem 3. Corollary 1 and Theorem 2 hold for the closed-loop system (2.74),

(4.18), (4.21), (4.22), (4.23).
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Proof. When the output does not belong to the reference region, the closed-loop

error dynamics becomes

˙̃χ =

[
A B

−kσ(y)sign(P (0))C 0

]
χ̃+

[
0

µξ̃TCTCξ̃(η − η̃)

]
= Aσχ̃+ l(χ̃),

ỹ = [C, 0] χ̃,

so that, since kσ(εM) ≤ kσ(y) ≤ k, Aσ is Hurwitz for sufficiently small k and

Corollary 1 holds. Furthermore, there are no solutions on the imaginary axis of

the equation

1 +Kσ(s)P (s)
1

s
= 0,

where Kσ(s) > 0 is the Laplace transform of kσ(εM) < kσ(y(t)) ≤ k, for any

finite Kσ(s), so that the positive root locus cannot cross the imaginary axis and

Theorem 2 holds.

4.5 Simulation Results: FEniCS, 2D case

The considered two-dimensional configuration is a NACA 0012 aerofoil geom-

etry, denoted by ΓN , in a rectangular channel ΓR = Γin ∪ Γ+
R ∪ Γ−R ∪ Γout = ∂R,

where R = [0, 10]× [−2, 2]. Here, the wall boundary is Γ0 = ΓN ∪ Γ+
R ∪ Γ−R, where

Γ+
R and Γ−R are the upper and lower walls of the channel, respectively. The inflow

boundary condition on Γin is a parabolic velocity profile

g(t,x) =

(
−4Um

h2
c

(
y2 − h2

c

4

)
, 0

)
, (4.24)

where hc = 4 is the channel height and Um = 1 is the maximum, non-dimensionalised

inflow velocity.

The presented continuous Galerkin finite element method has been implemented

in Python, as described in Section 3.3, in order to spatially discretise both the

velocity and pressure fields, using second-order and first-order Lagrange poly-

nomials, respectively. The FEniCS Python library has been used to implement

the finite element formulation and perform Direct Numerical simulations (DNS)

of unsteady flows. FEniCS is a collection of different components, including: a

problem-solving environment DOLFIN, the form compiler FFC, the finite element

tabulator FIAT, the just-in-time compiler Instant, the code generation interface

UFC, the form language UFL. In particular, although the code has been written
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in Python, FEniCS allows for the auto-generation of a fast, parallelised C++ code,

which can be run efficiently on high-performance computers.

The reduced-order DMD model (2.71) has been obtained from m = 745 snap-

shots of the state responses of system (3.6) to an impulsive input δ(t − t0). For

m > 745 the snapshots became approximately linearly dependent, as the residual

defined in (2.50) was ‖r‖ < 10−10 for m = 745, due to the periodic nature of the

attractor. The input is centred at t0 = 0.2, with amplitude ∆v = 2/∆t, which

was chosen so that δ(t − t0) has unitary integral. The snapshots are taken every

20∆t, where ∆t = 0.002 is the simulation time-step, until the trajectories of the

system approach a periodic orbit. The considered two-dimensional configuration,

which is used to build the ROM, is the flow around a NACA 0012 aerofoil, with

angle of attack β = 20◦ and Re = 1000. The sensor was placed at 2c/5 and the

actuator at c/5, corresponding to xτ , yn = 0, where c is the chord length (see

Figure 4.2). In this section, very low Reynolds numbers (representative, for exam-

ple, of micro UAVs) and fixed actuator/sensor positions are considered in order

to test the effectiveness of the proposed reduced-order modelling technique. The

objective is to show that, although the control algorithm is designed upon a sim-

ple linear ROM computed using the snapshots of the full-order nonlinear system,

good performances are achieved when such control algorithm is applied to the lat-

ter. In the next section, the same feedback control scheme will be applied to the

full-order nonlinear system, discretised using an accurate finite volume method,

at Re = 20, 000 (20 times greater than the Reynolds number at which the ROM

is computed) and the position of the actuator/sensor pair will be varied in order

to optimise the closed-loop system. Finite element simulations have been per-

Figure 4.2: Actuator force density and sensor position (white dot).

formed, as described in Section 3.3, to compute the snapshots of the flow past the

aerofoil. The dimension of the full-order system (3.6), describing the evolution in



4.5. Simulation Results: FEniCS, 2D case 66

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Re(λj )

−1.0

−0.5

0.0

0.5

1.0

Im
(λ

j
)

DMD Ritz values 

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Re(λj )

−1.0

−0.5

0.0

0.5

1.0

Balanced DMD Ritz values

Figure 4.3: DMD (left) and balanced DMD (right) Ritz values Re = 1000, β = 20◦.
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Figure 4.4: Stable (left) and unstable (right) Ritz values Re = 1000, β = 20◦.

time of the two components of the fluid velocity, is n ≈ 2 × 48000, where 48000

are the elements of the unstructured grid. The balanced POD has been then com-

puted using the direct and adjoint impulse responses of system (2.71), yielding a

linear system with a positive steady-state gain: signP (0) = 1. The order r of the

ROM is chosen so that
∑r

i=1 σi/
∑r1

i=1 σi = 99%, where σi are the Hankel singular

values defined in Section 2.2.6, thus yielding the reduced-order, stable, balanced

DMD model (2.73) of order r = 11, which is both controllable and observable.

All the reported quantities are non-dimensional. Figure 4.3 shows the Ritz

values computed by the DMD (left) and the proposed balanced DMD (right).

Figure 4.4 shows the unstable (left) and stable (right) DMD Ritz values. The tails

of the impulse responses of the full-order system (in blue) are compared in Figure

4.5 with both the reconstructed outputs yDMD(t) of the DMD model (in magenta),

and the reconstructed outputs yBDMD(t) of the proposed balanced DMD model (in

green). An effective reconstruction of the full-order output dynamics is obtained,
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Figure 4.5: Balanced DMD (green), DMD (magenta) and full-order (blue) output

responses to impulsive input (left) and balanced DMD output reconstruction error

(right), for t ≥ 0.2, Re = 1000, β = 20◦.

by retaining only r = 11 modes in the ROM and with the additional advantage,

with respect to system-identification methods, of retaining physical meaning in the

ROM. Although the model well approximates the flow dynamics for Re = 1000,

β = 20◦ (see figure 4.5), it is not guaranteed to be a good approximation of

the full-order, nonlinear dynamics when the parameters vary. The robustness of

the proposed control scheme (4.18), (4.21), (4.22), (4.23), which is based on the

constructed ROM, is thus tested in four different scenarios and both Reynolds

number and angle of attack are varied: Re = 1000, β = 15◦; Re = 1000, β = 20◦;

Re = 2000, β = 20◦; Re = 5000, β = 15◦. The control parameters are the same

for the four cases and are chosen as: k = 3, µ = 10k, εm = 0.1, εM = 0.15,

yM = εm + εM . The controller is turned on at t = 4.5. All the controller initial

conditions are set to zero, whilst the initial velocity u and pressure fields p are in

the limit cycle regime. Figures 4.6, 4.7 show the simulation results for Re = 1000,

β = 15◦.

Drag and lift coefficients

CD = 2Fx/(ρU
2
mc,

CL = 2Fy/(ρU
2
mc),

(4.25)

are computed along the streamwise (x) and normal (y) axis, respectively, where Fx,

Fy denote the corresponding components (parallel and perpendicular to the inflow

velocity, respectively) of the total forces on the aerofoil profile. The snapshots of
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Figure 4.6: Simulation results for Re = 1000, β = 15◦. The controller is activated

between t0 = 4, 5 and tf = T = 15.

Figure 4.7: Snapshots of the velocity magnitude contours and streamlines, for

Re = 1000, β = 15◦, before the controller is turned on (left) and at t = 15 (right).

the velocity magnitude contours and streamlines in figure 4.7 show an evident flow

reattachment: the proposed adaptive control effectively reduced the separation
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Figure 4.8: Simulation results for Re = 1000, β = 20◦. The controller is activated

between t0 = 4, 5 and tf = T = 15.

Figure 4.9: Snapshots of the velocity magnitude contours and streamlines, for

Re = 1000, β = 20◦, before the controller is turned on (left) and at t = 15 (right).

bubble, as well as the shedding vortices. Both a significant increase of the lift

coefficient, as well as a significant reduction of the drag coefficient (figure 4.6),
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Figure 4.10: Simulation results for Re = 2000, β = 20◦. The controller is activated

between t0 = 4, 5 and tf = T = 15.

are achieved. A fast and smooth output regulation to y∗ ∈ Ωε is shown in figure

4.6. The scaled, non-dimensionalised voltage input v(t) = σ(y)v̂∗(t) is shown in

figure 4.6, along with its corresponding estimated reference input v̂∗(t). The same

considerations hold for the simulation results at bothRe = 1000, β = 20◦ (depicted

in figures 4.8, 4.9), Re = 2000, β = 20◦ (depicted in figures 4.10, 4.11) and

Re = 5000, β = 15◦ (depicted in figures 4.12, 4.13). Note that, although a simple

linear model, build upon a single scenario, is used for the control design, good

dynamic performances are achieved as both the flow and geometry parameters are

varied.
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Figure 4.11: Snapshots of the velocity magnitude contours and streamlines, for

Re = 2000, β = 20◦, before the controller is turned on (left) and at t = 15 (right).
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Figure 4.12: Simulation results for Re = 5000, β = 15◦. The controller is activated

between t0 = 4, 5 and tf = T = 15.
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Figure 4.13: Snapshots of the velocity magnitude contours and streamlines, for

Re = 5000, β = 15◦, before the controller is turned on (left) and at t = 15 (right).

4.6 Optimal Sensor Placement

A multi-objective deterministic particle swarm optimisation (MODPSO) algo-

rithm is proposed, in this section, to study the trade-off between the time-averaged

input signal and the drag-to-lift ratio, varying the positions of the actuator/sensor

pairs along the aerofoil, as well as the corresponding reference for the available real-

time velocity measurements. Among deterministic methods, deterministic particle

swarm optimization (DPSO) has several attractive characteristics such as the sim-

plicity of the heuristics, the ease of implementation, and its often fairly remarkable

effectiveness (see Serani et al., 2016). The aim is to identify an optimal set of non

dominated configurations. In particular, the MODPSO algorithm is used here for

the minimisation of both the time-averaged input signal and the drag-to-lift ratio,

φ =̇ {〈v〉, 〈CD/CL〉}T , versus the optimisation variables, θ =̇ {∆s, εm}T ∈ D. Here,

〈·〉 denotes the time-average; ∆s = |x̄a− x̄s| is the distance between the sensor and

the actuator, with respect to the chord length; x̄a and x̄s denote the position of the

actuator - i.e. the origin of the local reference frame used for the body force com-

putations as in (4.3), which corresponds to the position of the first electrode - and

sensor, with respect to the chord length, respectively (see figure 4.1). The inverse

of the aerodynamic efficiency is considered here in order to perform a minimisa-

tion of the former along with the control variable, while avoiding eventual infinite

terms due to zero denominators. The original PSO algorithm was introduced in

Kennedy and Eberhart (1995), based on the social-behavior metaphor of a swarm

of bees searching for food and belongs to the class of metaheuristic algorithms for

single-objective derivative-free global optimisation. Pinto et al. (2007) proposed a
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multi-objective deterministic extension of the method asυ
k+1
i = γ

[
υki + c1

(
pi − θki

)
+ c2

(
gi − θki

)]
θk+1
i = θki + υk+1

i

(4.26)

where υki and θki are the velocity and the position of the i-th particle at the k-th

iteration, γ is a constriction factor, c1 and c2 are the cognitive and social learning

rate, and pi and gi are the cognitive and social attractor.

The algorithm formulation and setup is defined as suggested in (Pellegrini et al.,

2014): the cognitive attractor pi is the personal minimiser of the aggregate func-

tion Φ(θi) =
∑M

m=1wmφm(θi), where wm = 1/M (∀m) is the weight associated to

the m-th objective function with M the number of objective functions; the social

attractor gi is the closest point to the i-th particle of the Pareto front; the number

of particles is set equal to 32, initialised over the domain D its boundary with a

Hammersley distribution and non-null velocity (Chen et al., 2015); the coefficients

correspond to γ = 0.721, c1 = c2 = 1.655 (Clerc, 2006); a semi-elastic wall-type

approach (Serani et al., 2016) is used to keep the particles within D. The number

of iterations is set to 1000.

4.7 Simulation Results: χnavis, 2D case

Although the resulting robust control algorithm is designed on the basis of an

unknown theoretical linear model at Re = 1, 000, its robustness is tested in this

section at Re = 20, 000 using a different numerical technique. Only a positive

steady-state gain for any actuator/sensor pair is assumed. The simulations are

performed using the unsteady RANS equations based solver χnavis, with no tur-

bulence model, described in Chapter 3. The code has been widely applied and

validated for several problems, mainly in the framework of naval hydrodynamics;

for an overview of the applications and validations of the mathematical model the

reader is referred to Dubbioso et al. (2016); Di Mascio et al. (2007a,b); Dubbioso

et al. (2017); Muscari et al. (2013); Zaghi et al. (2011), where numerical studies

of maneuverability of surface vessels and submarines, naval propellers and hydro-

dynamics of multihull vessels have been conducted.

The considered geometry is a NACA 0012 aerofoil, denoted by ΓN , and the do-

main boundaries are ∂Ω = Γin ∪ Γ0 ∪ Γout. Here, the wall boundary is Γ0 = ΓN .
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The inflow boundary condition on Γin is a constant velocity profile

g(t,x) ≡ U∞, (4.27)

where U∞ = (1, 0, 0) is the non-dimensionalised inflow velocity. The 2D computa-

tional grid has N = 127, 872 total volumes and is divided into extremely fine actu-

ator grids, a fine C-type inner grid and coarser outer grids. The two-dimensional

grid, whose size is similar to those found in the literature (e.g., N = 115, 213 in

Riherd and Roy, 2013) is extruded in the spanwise direction using 8 uniformly

distributed grid volumes and the spanwise length is 0.125 (so that the dynamics

are two-dimensional). It is worth to stress that the use of the overlapping grid

approach allows to achieve a highly refined grid in the region of interest, while

limiting the total number of control volumes. In order to avoid reflections, the

outer boundaries are placed at a distance of 50 chords. The inner region around

the profile (see figure 4.14) has 320 × 96 volumes, in the tangent and normal di-

rection, respectively; the points are clustered towards the wall, where the mesh

spacing is equal to 2.1× 10−4. The grid resolution at the wall is the same as the

one in Jones et al. (2008); Riherd and Roy (2013). The near-wake region is discre-

tised with 128×192 volumes distribuited in the streamwise and vertical direction,

respectively. Drag and lift coefficients are defined as

Figure 4.14: Computational grid around the NACA 0012 profile (left) and actua-

tor’s block (right).

CD = 2Fx/(ρU
2
∞c,

CL = 2Fy/(ρU
2
∞c),

(4.28)

and are computed along the streamwise (x) and normal (y) axis, respectively,

where Fx, Fy denote the corresponding components (parallel and perpendicular to

the inflow velocity, respectively) of the total forces on the aerofoil profile per span

length. The performance of the proposed control scheme (4.9), (4.18) is tested

for the flow past a NACA 0012 profile at Re = 20, 000, in 21 different configu-

rations: the actuator is placed at x̄a = 0.02, as preliminary tests (which are not
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Figure 4.15: Simulation results in the scenario εm = 0.05 for β = 15◦: drag and

lift coefficient (top) for both uncontrolled (dashed lines) and closed-loop scenarios

(solid lines); regulation error and control input for closed-loop scenarios (bottom).
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Figure 4.16: Simulation results in the scenario εm = 0.1 for β = 15◦: drag and

lift coefficient (top) for both uncontrolled (dashed lines) and closed-loop scenarios

(solid lines); regulation error and control input for closed-loop scenarios (bottom).

reported here for the sake of brevity) showed a deterioration in the performance

when it is moved further downstream, because the separation occurs very close

to the leading edge; the distance ∆s between the sensor and the actuator, with

respect to the chord length, is varied between 0.2 and 0.8; three different lower

bounds εm = 0.05, εm = 0.1, εm = 0.2 of the reference set Ωε are considered,

while the upper bound is εM = εm + 0.05. The corresponding results are shown

in figures 4.15-4.18. The controller is activated between t0 = 15 and tf = T = 50.

The angle of attack is β0 = 15◦. The output measurements y(t) = uτ (t, xs, ys) are

taken at yn = 0.0005 above the aerofoil. For the sake of simplicity, µ = 0 is set in
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Figure 4.17: Simulation results in the scenario εm = 0.2 for β = 15◦.
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Figure 4.18: Time-averaged tangential velocity for β = 15◦: εm = 0.05 (top left),

εm = 0.1 (top right) and εm = 0.2 (bottom).

all the simulations, while the control chosen gain is k = 20.

The time histories of the closed-loop drag and lift coefficients are compared (top

figures) with the corresponding time histories (dashed green) and time average

(dashed black) coefficients yielded by the uncontrolled simulations. All the con-

sidered solutions yield both drag reduction and lift increase compared to the

uncontrolled scenario. coefficients for the simulations with no actuation (figure

4.16, 4.15, 4.17). The Pareto front of the non dominated solutions obtained by

MODPSO is shown in Fig. 4.19 (a). The associated configurations in the ∆s-

εm plane are shown in Figs. 4.19 (b) and (c) versus 〈v〉 and 〈CD/CL〉 (CD =

2Fx/(ρU
2
∞c) and CL = 2Fy/(ρU

2
∞c), respectively, where Fx, Fy denote the total

forces per span length), respectively. Three sub-sets are identified based on the

clustering in the ∆s-εm plane. The clustering reflects clearly on the 〈v〉-〈CD/CL〉
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trade-off. For each set, one solution is selected for further analysis. Specifically,

solution 1 corresponds to ∆s = 0.4 and εm = 0.1, providing a quite balanced

compromise between 〈v〉 and 〈CD/CL〉. Solution 2 has ∆s = 0.3 and εm = 0.2 and

one of the lowest values for 〈CD/CL〉, whereas solution 3 corresponds to ∆s = 0.2

and εm = 0.1 with quite a low value of 〈v〉.
The instantaneous vorticity contours for the selected solutions, are shown in figure

4.20; 101 non-dimensional vorticity levels over the range [−15, 15], results for both

with and without the actuation are reported for comparison purposes. Without

the actuation, strong vortex structures are generated as a consequence of both the

strong adverse pressure gradients and the boundary layer separation, which oc-

curs on the upper side of the profile. The proposed control algorithm significantly

reduces the boundary layer separation and avoids the generation of large vortical

structures.
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Figure 4.19: Pareto front obtained by MODPSO (top), 〈v〉 (bottom left), and

〈CD/CL〉 (bottom right) versus ∆s and εm showing Pareto sub-sets and selected

solutions
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Figure 4.20: Instantaneous vorticity contours for β = 15◦ and Re = 20, 000 using

101 levels over the range [−15, 15]: without control (top left), solutions 3 (top

right), 1 (bottom left) and 2 (bottom right).

4.8 Summary

The novel low-order, control-oriented, linear model proposed in Chapter 2

has been obtained for unsteady flows past a NACA 0012 aerofoil, at Reynolds

Re = 1, 000 and angle of attack β = 20◦, in the presence of a DBD body force.

On the basis of the proposed model, a robust output feedback control of flow

separation using plasma actuators has been designed: it guarantees exponential

output regulation when the steady-state gain of the approximated linear model is

non-zero and of known sign. A simple configuration, with one sensor and one ac-

tuator is considered. Accurate 2D finite element simulations show that a fast flow

reattachment is achieved, along with both stabilisation and increase/reduction of

the lift/drag, respectively. Although the proposed controller is simple, as it is

based on an integral action, it is able to effectively reduce the separation bubble,

as well as the shedding vortices, while achieving good dynamic performances, as

both the Reynolds number and the angle of attack are varied.

Furthermore, accurate finite volume simulations of flows past a NACA 0012 at

Reynolds Re = 20, 000 and angle of attack β = 15◦ are performed in order to both

test the control effectiveness in conditions that significantly exceed the design en-

velope (the Reynolds number is 20 times larger than the one used to compute

the ROM) and optimise the performance of the closed-loop system. Different

configurations were tested, with the aim of identifying optimal positions of the

actuator/sensor pairs along the aerofoil and the corresponding references for the
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available real-time velocity measurements. Finally, a multi-objective deterministic

particle swarm optimisation algorithm was applied to identify the Pareto set of

non dominated configurations, considering as objectives the time-averaged input

signal and drag-to-lift ratio. Three sub-sets of non dominated configurations were

identified based on the solution clustering and, for each set, one solution was se-

lected for the demonstration of the methodology.

Note that the chosen output can be experimentally measured by appropriate sen-

sors and the extension of the proposed approach to 3D configurations is straight-

forward (as it is demonstrated in the next chapter).



Chapter 5
MIMO Flow Separation Control

This chapter extends the results obtained so far to MIMO control systems.

In particular, a robust output feedback control is designed and tested in different

configurations with multiple actuators and sensors, thus allowing for optimising

the closed-loop system, with the aim of selecting suitable numbers and positions

of the actuator/sensor pairs along the aerofoil, as well as desired references for the

real-time measurements, according to the specific application (e.g., flow reattach-

ment, noise suppression, mixing enhancement etc.). As in the previous chapter,

the unsteady flow separation problem for MIMO systems is solved using real-time

velocity measurements, which are available in realistic applications (see, for exam-

ple, Hanson et al., 2010; Ozaki et al., 2000; Segawa et al., 2010; Spazzini et al.,

1999).

The objective is to show how, despite the high complexity of the system, a very

simple and computationally cheap robust multivariable output regulator is suf-

ficient to effectively suppress the flow separation along an aerofoil, using DBD

plasma actuators. Although the resulting robust control algorithm is designed on

the basis of a simple theoretical linear model, its application to the flow separation

control problem is proposed. Only a non-zero steady-state gain of known sign for

each actuator/sensor pair is assumed. Different configurations are tested in order

to optimise the closed-loop system, so that suitable numbers and positions of the

actuator/sensor pairs along the aerofoil, as well as the desired references for the

real-time measurements, can be chosen according to the requirements of the spe-

cific application.

Accurate numerical simulations of incompressible flows around a NACA 0012 at

Reynolds Re = 20, 000 are performed in order to illustrate the effectiveness of

80
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proposed approach, in the presence of uncertain parameters and complex non-

linear dynamics, which are neglected in the control design. Robust, fast flow

reattachment is achieved, along with both stabilisation and increase/reduction of

the lift/drag, respectively. The control system shows good dynamic performances,

as the angle of attack is varied.

5.1 Problem Statement and Objectives

As in the previous chapter, the aim is to formulate and solve the flow separation

problem, i.e., to make

∂nuτ (t,x)|ΓN =
(
n(x) · ∇

(
τ (x) · u(t,x)

))∣∣∣
ΓN

> 0, (5.1)

as a simple output regulation problem (this time allowing for multiple actua-

tor/sensor pairs), i.e., to make the measured outputs

yi(t) = uτ (t,xsi) ≥ εi > 0, (5.2)

for i = 1, ..., ns. Here, u is the time-dependent flow velocity vector; x and xsi

denote the spatial coordinates and the i-th sensor location, respectively; ΓN rep-

resents the aerofoil boundary; n and τ are the normal and tangent unit vectors to

ΓN , respectively; ns is the number of sensors. Our objective is to design a simple

robust output feedback control, along with suitable reference signals y∗i for yi, in

order to suppress the flow separation along the aerofoil in different scenarios, de-

pending on uncertain parameters, i.e., Reynolds number Re and angle of attack

β. To this end, it is assumed there exist suitable configurations of actuators and

sensors, along with suitable references εi for the outputs yi(t), which guarantee

that, given a certain range for both Re and β, the solution of the output regulation

problem (5.2) implies the solution of the flow separation problem (5.1). This is

formalised by the following assumption.

Assumption 1. For any δ ≥ 0 there exist some references εi > 0, a Tεi > 0 and

a Tδ ≥ maxi=1,...,nsTεi such that, if yi(t) > εi for all t > Tεi, i = 1, ..., ns, then

∂nuτ (t,x)|ΓN > −δ for all t > Tδ, Re ∈ RRe = [Rem, ReM ], β ∈ Rβ = [βm, βM ].

In this chapter, the recent theoretical results in Marino and Tomei (2015) are

extended to MIMO systems, using the actuators’ voltage as the control input

and real-time velocity measurements as the control output. This allows for the
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application of the resulting control algorithm to configurations with multiple actu-

ator/sensor pairs and, thus, for the optimisation of the performance of the system.

In particular, the aim is to identify an optimal configuration{
na, x̄

(1)
a , ..., x̄(na)

a , ns, x̄
(1)
s , ..., x̄(ns)

s , y∗1, ..., y
∗
ns

}
, (5.3)

for which assumption 1 holds. Here, na denotes the number of actuators; x̄
(j)
a and

x̄
(i)
s denote the position of the j-th actuator and the i-th sensor with respect to

the chord length, respectively (see figure 4.1).

5.2 Actuator Model

The total body force vector field f : [0, T ] × Ω → Rd, which appears in the

Navier-Stokes equations (3.1), depends on the multiple control inputs and can be

expressed as

f(t,x) = c/ρU2
∞(fx(t,x), fy(t,x), 0) = c/ρU2

∞

∑
j=1,...,na

f (j)(t,x), (5.4)

where fx, fy are the streamwise and normal component (in N/m3) and f (j) is

the single force distribution of the j-th actuator (in N/m3). All the above listed

functions are assumed to be sufficiently smooth. The wall-tangential velocities,

evaluated at the selected sensor locations xsi ,

yi(t) = uτ (t,xsi) = τ (xsi) · u(t,xsi), (5.5)

are chosen as the measured outputs. As in the previous chapter, the model is

characterised by an exponential dependence on the spatial coordinates and, in

particular, the force is modelled by a Rayleigh distribution (see Yang and Chung,

2015); thereby,

f (j)(t,x) = f (j)
τ (t, x(j)

τ , y(j)
n )τ (x) + f (j)

n (t, x(j)
τ , y(j)

n )n(x)

= I(j)(t)
λ

(j)
f x

(j)
τ(

σ
(j)
f

)2 e
−x(j)τ

2
/

(
2σ

(j)
f

2
−λ(j)f y

(j)
n

)
τ (x),

(5.6)

for j = 1, ..., na, where, f
(j)
n = 0; I(j)(t) = k

(j)
v V(j)(t)/Vm (kv ∈ R, Vm [kV]) is

the total plasma force; V(j)(t) : R → R is the amplitude variation of the opera-

tion voltage (in kV); vj(t) = V(j)(t)/Vm is the corresponding non-dimensionalised

voltage input, scaled by Vm; f
(j)
τ , f

(j)
n (in N/m3) are the tangential and nor-

mal components, with respect to the aerofoil, of the force density , respectively;
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x
(j)
τ , y

(j)
n ≥ 0 are related to (x, y) by a coordinate transformation and respectively

refer to the tangent and normal components, relative to the geometry, in the ref-

erence frame centred in xa (see figure 5.1). The parameters λ
(j)
f = 1.6, σ

(j)
f = 1.9,

Figure 5.1: Tangential force density f
(j)
τ and reference frames.

k
(j)
v = 5200e1/2σ

(j)
f /λ

(j)
f , for j = 1, ..., na, are again chosen as in Yang and Chung

(2015).

The problem is closed by enforcing appropriate conditions at physical and compu-

tational boundaries. As in (3.3), on solid walls, the velocity is set to zero (whereas

no condition on the pressure is required); at the inflow boundary, velocity is set to

the undisturbed flow value, and the pressure is extrapolated from inside; on the

contrary, the pressure is set to zero at the outflow, whereas velocity is extrapolated

from the inner points. The initial conditions are specified for the velocity field as

in (3.2).

5.3 Extension to MIMO systems

A Balanced Dynamic Mode Decomposition (BDMD) linear model approximat-

ing system (3.6), for given Reynolds number Re and angle of attack β, has been

obtained in the following form:{
ξ̇ = Aξ +Bv, ξ(0) = ξ0,

y = Cξ,
(5.7)

where, ξ : R→ Rr is the reduced-order state vector; A ∈ Rr×r is a low-order linear

operator approximating the nonlinear dynamics, whose eigenvalues belong to the

open left half of the complex plane; B ∈ Rr×na is the input matrix; C ∈ Rns×r is
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the output matrix. Let: Ir be the r × r identity matrix and

P (s) =



P11(s) P12(s) . . . . . . P1,na(s)

P21(s) P22(s)
...

...
. . . . . .

...
... Pns−1,na(s)

Pns,1(s) . . . . . . Pns,na−1(s) Pns,na(s)


=C(sI − A)−1B,

(5.8)

whose poles have all negative real part, be the open-loop ns × na transfer function

matrix of system (5.7). Define

Pii(s) =
nPii(s)

dPii(s)
(5.9)

and let v∗, y∗ and ξ∗ be the references for the input, output and state, respectively.

Denoting ξ̃ = ξ − ξ∗ and η = −v∗ : R→ Rna , the error dynamics are given by
˙̃ξ = Aξ̃ +B(v + η),

η̇ = 0, η(0) = η0,

ỹ = Cξ̃,

(5.10)

so that the control problem can be formulated as a disturbance rejection problem,

where the reference input v∗ = −η can be viewed as a disturbance vector, which

matches the control input v (see Marino and Tomei, 2015). The uncertain matrices

A, B, C, as well as the order of the model, highly depend on the uncertain set of

parameters which defines the physical problem, such as, in our specific application,

the Reynolds number Re and angle of attack β. We aim to modify the results in

Marino and Tomei (2015) for our MIMO system (5.7), in the case equal number

of sensors and actuators, i.e., np = na = ns ≥ 1, where np denotes the number of

actuator/sensor pairs. To this end, the following is assumed.

Assumption 2. Given any i ∈ [1, ..., np], there exist some positive constants r,

εakl, εbk and εck , such that the coefficients of A, B, C, belong to their corresponding

compact sets [akl − εakl , akl + εakl ], [bk − εbk , bk + εbk ], [ck − εck , ck + εck ], for any

k, l = 1, ..., r, and are such that Pii(0) does not change sign, for any Re ∈ RRe =

[Rem, ReM ], β ∈ Rβ = [βm, βM ], where Rem and ReM denote the minimum and

maximum Reynolds numbers, respectively, and βm and βM denote the minimum

and maximum angles of attack, respectively.
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Assumption 3. The np pairs are numbered so that x̄
(i)
a < x̄

(i)
s < x̄

(i+1)
a < x̄

(i+1)
s ,

for i = 1, ..., np − 1.

Assumption 4. The distance |x̄(i+1)
a − x̄

(i)
s | is sufficiently large and, thus, the

transfer function between the output yi and the input vj is such that Pij(s) = 0,

for any i < j.

In particular, Assumption 2 implies that the steady-state gains of the system do

not change sign within a given range for the uncertain parameters; Assumption 3

implies that the actuator/sensor pair (x̄
(i)
a , x̄

(i)
s ) is located further upstream than

the pair (x̄
(i+1)
a , x̄

(i+1)
s ); Assumption 4 implies that the dynamics of the outputs

do not depend on the actuators that are located further downstream, so that, by

virtue of Assumption 3, P (s) is a lower triangular matrix.

Similarly to Marino et al. (2015), the control problem becomes to design suitable

feedback laws vj(t) for system (5.7), based on the real-time measurements yi(t),

in order to robustly regulate the latter to given reference regions, as in (5.2). The

key objective is to design v such that the closed-loop trajectories of system (5.7)

are guaranteed to evolve within some “safe” invariant set in different scenarios,

depending on uncertain parameters (e.g., the Reynolds number Re and angle of

attack β). However, as the linear ROM (5.7) is computed at given parameters

(i.e., Re and β), it cannot give an accurate approximation of the full-order non-

linear dynamics (3.6) when the unknown parameters are varied. Furthermore, the

dependence of dynamical properties of fluid systems on such parameters is highly

nonlinear. Therefore, on the basis of the recent results in Marino and Tomei (2015)

a robust output regulator guaranteeing exponential convergence of the regulation

error is designed: it only requires the system to have a non-zero steady-state gain

of known sign.

5.3.1 Control Algorithm

We translate the initial control objective (5.2) into the following:

yi(t) ∈ Ωεi = [εmi , εMi
], (5.11)

where εmi and εMi
are chosen positive constants. In particular, the lower bound

for the output reference can be chosen in order to guarantee any a priori fixed

requirement, such as, in the present application, the suppression of the separation

bubble over the aerofoil; the upper bound can be chosen in order to limit the
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power consumption. Therefore, the control problem (similarly to Marino et al.,

2015) becomes to design v such that the chosen controlled output y belongs to a

“safe” compact set

Ωε = Ωε1 × Ωε2 × ...× Ωεnp . (5.12)

To this aim, the reference outputs y∗i are chosen as

y∗i (t) =


εmi , if yi(t) < εmi ,

yi(t), if yi(t) ∈ Ωεi ,

εMi
, if yi(t) > εMi

.

(5.13)

The resulting control algorithm reads{
˙̂ηi = ki sign(Pii(0))ỹi − µiη̂iỹ2

i , η̂i(0) = η̂0i ,

vi = −η̂i,
(5.14)

for i = 1, ..., np. The overall control algorithm (5.14), (5.13) depends on: the

measured outputs yi; the bounded references y∗i ; the known sign of the diagonal

elements Pii(0); the positive design parameters ki, µi, εmi , εMi
. Note that, when

εi = εmi = εMi
, for i = 1, ..., np, the control algorithm (5.14), (5.13) reduces to an

output regulator with a constant output reference.

Assumption 5. The positive control gains ki > 0 and µi ≥ 0 are chosen so

that the dynamics of the i-th input vi, which is related to the pair (x̄
(i)
a , x̄

(i)
s ), are

much faster than the ones of the i + 1-th input vi+1, which is related to the pair

(x̄
(i+1)
a , x̄

(i+1)
s ), for any i = 1, ..., np.

Assumption 5 implies a time-scale separation between the actuator/sensor pairs,

so that the dynamics of vj act as constant inputs for the dynamics of yi, for any

i > j. Furthermore, by virtue of Assumptions 3, 4, the dynamics of yi do not

depend on vj, for any i < j.

Remark 3. The anti-windup term µiη̂iỹ
2
i plays a stabilising role only, where the

quadratic function of the tracking error ỹ2
i has been introduced in order not to

affect the stability analysis, when µi is sufficiently small. This might be useful

to guarantee the boundedness of the control input when the operating conditions

exceed the design envelope.

5.3.2 Stability Analysis

The main result of this section, which extends the results obtained in the pre-

vious chapter to MIMO systems of the form (5.7), is summarised in the following
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theorem: it establishes the sufficient conditions under which the the designed

MIMO set-point tracking controller guarantees the solution of the flow separation

problem (5.1) for the reduced-order dynamics.

Theorem 4. Consider the closed-loop system (5.7), (5.14), (5.13). Assume that

Pii(0) 6= 0 with known sign. Then, for any initial condition (ξ0, η0, η̂0), there exist

sufficiently small k∗i > 0 and µ∗i ≥ 0, such that the regulation error ỹ = y(t)−y∗(t)

and the control input error v(t) − v∗(t) exponentially tend to zero, as t tends to

infinity, for any 0 < ki ≤ k∗i , 0 ≤ µi ≤ µ∗i , i = 1, ..., np.

Proof. a). Case µ = 0, εi = εmi = εMi
. By virtue of assumption 4, system (5.10)

can be rewritten as

Ỹ(s) =P (s) (V(s) + η)

=



P11(s) 0 . . . 0

P21(s) P22(s)
. . . 0

...
. . . 0

...

Pnp,1(s) Pnp−1,np−1(s) 0

Pnp,1(s) . . . . . . Pnp,np−1(s) Pnp,np(s)




V1(s) + η1

...

Vnp(s) + ηnp

 .

(5.15)

The dynamics of the generic i-th output read

Ỹi(s) =
i−1∑
j=1

Pij(s)(Vj(s) + ηj) + Pii(s)(Vi(s) + ηi). (5.16)

Define

Qii(s) = 1 + kiPii(s)

(
sign(Pii(0))

s

)
=

nQii(s)

dQii(s)
, (5.17)

which represents the closed-loop transfer function of the first pair i = 1, i.e., by

assumption 3, the most upstream pair. By the root locus, for sufficiently small

ki > 0, r zeros of Qii(s) are sufficiently close to the r poles of Pii(s) and, therefore,

they have negative real part. The remaining branch of the root locus starts from 0

in the s-plane with angle π, so that also the remaining zeros of Qii(s) have negative

real part. The exponential convergence to zero of both the regulation error ỹ1(t)

and the control input error v1(t) + η1, as t tends to infinity, is thus guaranteed.

Since the dynamics of the first pair are much faster than the ones of the pairs

located further downstream, the exponentially decaying signal v1(t) + η1 does not

affect the error dynamics ỹi(t), for any i = 2, ..., np. Therefore, the stability of



5.3. Extension to MIMO systems 88

the closed-loop system relative to the second pair is determined by the zeros of

(5.17), for i = 2. This implies the exponential convergence to zeros of the both the

regulation ỹ2(t) and input error v2(t) + η2. Thus, we can iteratively approximate

(5.16) as

Ỹi(s) ≈ Pii(s)(Vi(s) + ηi), (5.18)

so that the stability of the closed-loop system is determined only by the zeros of

the transfer function (5.17), which have negative real part for sufficiently small ki,

i = 1, ..., np.

b). Case µ > 0, εi = εmi = εMi
. Let η̃ = v− v∗ = η − η̂ and

χ̃ =

[
ξ̃

η̃

]
. (5.19)

Define

K = diag
(
k1 sign(P11(0)), ..., knp sign(Pnp,np(0))

)
, (5.20)

M = diag
(
µ1, ..., µnp

)
. (5.21)

The closed-loop error dynamics can be written as

˙̃χ =

[
A B

−KC 0

]
χ̃+

[
0

Mξ̃TCTCξ̃(η − η̃)

]
= Acχ̃+ l(χ̃),

ỹ = [C, 0] χ̃.

The characteristic polynomial of the closed-loop matrix Ac can be computed as

pAc(s) =det(sIr+np − Ac) = det

[
sIr − A B

−KC sInp

]
=det(sIr − A)det

(
sInp +KC(sIr − A)−1B)

)
=det(sIr − A)det

(
sInp +KP (s)

)
=
(
sdP11(s) + k1nP11(s)sign (P11(0))

)
. . .(

sdPnp,np (s) + knpnPnp,np (s)sign
(
Pnp,np(0)

) )
=nQ11(s)nQ22(s) . . . nQnp,np (s) = nQ(s),

where Inp is the np×np identity matrix. Therefore, Ac is Hurwitz, as its eigenvalues

coincide with roots of nQ(s) and have negative real part for any sufficiently small

ki, i = 1, ..., np. Thus, there exist two symmetric, positive definite matrices P and

Q satisfying the Lyapunov equation

PAc + AT
c P = −Q. (5.22)



5.3. Extension to MIMO systems 89

Consider the candidate Lyapunov function

V(t) = χ̃T(t)Pχ̃(t), (5.23)

satisfying

α1‖χ̃(t)‖2 ≤ V(t) ≤ α2‖χ̃(t)‖2, (5.24)

where α1, α2 > 0 are positive constants. The time derivative of V(t), along the

trajectories of the closed-loop system satisfies the following inequality:

V̇ ≤ −χ̃TQχ̃+ 2χ̃TPl(χ̃) ≤ −M1‖χ̃‖2 + 2M2‖M‖‖χ̃‖2
∣∣ηη̃ − η̃2

∣∣
≤ −

(
M1 −

M2‖M‖η2

2

)
‖χ̃‖2,

where M1 = ‖Q‖, M2 = ‖P‖‖C‖2. Therefore, for sufficiently small µi, there exists

an α3 > 0 such that

V̇ ≤ −α3‖χ̃‖2 ≤ −α3

α2

V, (5.25)

thus implying the closed-loop boundedness and the exponential convergence to

zero of both the regulation error ỹ(t) and the control input error v(t) − v∗, as t

tends to infinity.

c). Case µ > 0, εmi < εMi
. Consider the candidate Lyapunov function defined in

(5.23). Let χ̃ be defined as in (5.19), ξ̃ = ξ− ξ∗ and η̃ = v− v∗. When the output

vector belongs to the compact set Ωε, we have: ξ̃ ≡ 0, ˙̃ξ ≡ 0, ˙̃η ≡ 0. Thus, for

any t ≥ 0 such that y(t) ∈ Ωε, V̇(t) ≡ 0. When the output does not belong to

the reference region, as in the previous proof, there exist three positive constants

α1, α2, α3 > 0 such that V(t) and its time derivative satisfy (5.24) and (5.25),

respectively. Therefore, for any t ≥ 0 such that y(t) /∈ Ωε, V̇(t) < 0 and the

distance

dP (χ(t),Ωχ) = infχ̄∈Ωχ ‖χ− χ̄‖P =
√
χ̃TPχ̃,

between χ and its reference set Ωχ satisfies

d2
P (χ(t),Ωχ) ≤ α2‖χ̃‖2 ≤ e−αtδ,

where α = α3/α2 and δ = V(0)α2/α1. Since 0 ≤ V(t) ∈ C1 is lower bounded and its

derivative is semi-negative definite, it admits a finite limit (see Courant, 1937, p.

61). Closed-loop boundedness and exponential convergence of V̇(t) (and, therefore,

of ξ̃ and ˙̃η) to zero are thus guaranteed, according to Barbalat’s lemma, as V(t) is

uniformly continuous. Consequently, ξ(t) converges to a constant reference ξ̄ ∈ Ωξ

and v(t) converges to a constant value v̄, as t tends to infinity. If v̄ /∈ Ωη, then
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ȳ = Cξ̄ = −P (0)v̄ /∈ Ωε, which contradicts ξ̄ ∈ Ωξ. Therefore, v̄ ∈ Ωη and the

distance dP (χ(t),Ωχ) exponentially tends to zero, as t tends to infinity.

The following theorem establishes that, if the conditions of Theorem 4 are re-

stricted, a robust universal controller (5.14), (5.13) can be designed without any

restrictions on the control gain k.

Theorem 5. Consider the closed-loop system (5.7), (5.14), (5.13). Assume that

Re{Pii(jω)} > 0 for all ω ∈ R, i = 1, ..., np. Then, for any initial condition

(ξ0, η0, η̂0), there exist sufficiently small µ∗i ≥ 0 such that the regulation error

y(t)− y∗(t) and the control input error v(t)− v∗(t) exponentially tend to zero as t

tends to infinity, for any ki > 0, 0 ≤ µi ≤ µ∗i , i = 1, ..., np.

Proof. Theorem 4 implies the exponential convergence of y(t) and v(t) to their

corresponding reference sets Ωε and Ωη, respectively, for sufficiently small ki and

µi. To complete the proof it is, therefore, sufficient to show (as in Marino and

Tomei (2015)) that there are no solutions on the imaginary axis of the equation

1 + kiPii(s)
1

s
= 0,

so that the positive root locus cannot cross the imaginary axis. The point s = 0

is not a zero of Qii(s), as Pii(0) > 0. The phase condition for a point s = jω to

belong to the positive root locus for ω 6= 0 becomes

arg [Pii(jω)]− π

2
= π.

Since, by hypothesis, −π/2 < arg [Pii(jω)] < π/2, the previous condition is never

satisfied. Therefore, all branches must lie in the open left-hand complex half-

plane.

5.4 Choice of the Actuators/Sensors Configura-

tion

Consider a generic configuration

C =
{
np, x̄

(1)
a , ..., x̄(np)

a ,∆(1)
s , ...,∆(np)

s ,Ωε1 , ...,Ωεnp

}
, (5.26)

which satisfies Assumptions 2, 3, 4, and let ki, µi be some positive control gains

satisfying the time-scale separation Assumption 5 for any i = 1, ..., np. Here,

∆(i)
s = |x̄(i)

a − x̄(i)
s |, i = 1, ..., np, (5.27)
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denotes the distance between the actuator and the sensor of the i-th pair. Then,

the proposed controller (5.14), (5.13) guarantees the exponential regulation of the

output measurements yi to the chosen reference sets Ωεi .

The objective of this section is to provide a criterion for selecting optimal config-

urations, whose reference sets are such that Assumption 1 holds, for any εi ∈ Ωεi ,

i = 1, ..., np, in order to maximise the performance of the closed-loop system.

Equivalently, suitable numbers np and positions (x̄
(i)
a , x̄

(i)
s ) of the actuator/sensor

pairs along the aerofoil have to be chosen, along with their corresponding reference

sets Ωεi , according to some performance measure. To this end, define a suitable

cost functional

Jβ(C) =γ1||
〈
∂nu

−
τ (t,x)

〉
||L2(ΓN ) + γ2

np∑
i=1

||vi(t)||L2(t0,tf )

tf − t0

+ γ3

np∑
i=1

||ỹi(t)||L2(t0,tf )

tf − t0
+ γ4

〈
CD
CL

〉
+ γ5ls,

(5.28)

depending on the angle of attack β ∈ Rβ, where: t0 and tf denote the initial and

final time, respectively;

∂nu
−
τ (t,x) =

{
0, if ∂nuτ (t,x) ≥ 0,

|∂nuτ (t,x)| , if ∂nuτ (t,x) < 0
(5.29)

is proportional to the magnitude of the negative wall shear stress along the aerofoil;

||
〈
∂nu

−
τ (t,x)

〉
||L2(ΓN ) =

1

tf − t0

(∫
ΓN

∣∣∣∣∫ tf

t0

∂nu
−
τ (t,x)dt

∣∣∣∣2 dx

)1/2

(5.30)

represents a measure of the flow separation;

||vi(t)||L2(t0,tf ) =

(∫ tf

t0

|vi(t)|2dt

)1/2

(5.31)

represents a measure of power spent by the control action; the time averaged

output regulation error

||ỹi(t)||L2(t0,tf ) =

(∫ tf

t0

|ỹi(t)|2dt

)1/2

(5.32)

is introduced to evaluate the performance of the controller; CD/CL is the ratio

between the drag and the lift coefficients, respectively, and〈
CD
CL

〉
=

1

tf − t0

(∫ tf

t0

CD(t)

CL(t)
dt

)
; (5.33)
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the non-dimensional length

ls =

∫ 1

0

l−(x̄)dx̄, (5.34)

with

l−(x̄) =

{
0, if ∂nuτ (t,x) ≥ 0,

x̄, if ∂nuτ (t,x) < 0,
(5.35)

represents the part of the chord where the flow is separated; the angle of attack β

can be either a constant or a time-varying angle of attack, in order to test both

the steady-state and the transient performances.

The coefficients γ1, ..., γ5 are positive design parameters, which can be chosen ac-

cording to the specific application. In particular, γ1 weights the surface of the

laminar separation bubble; γ2 and γ3 penalise the requested input power and the

closed-loop output error, respectively, in order to evaluate the dynamic perfor-

mance of the control system; γ4 weights the inverse of the aerodynamic efficiency;

γ5 is used to evaluate the length of the laminar separation bubble with respect to

the chord length. Furthermore, define a total cost functional

J(C) =
∑
β∈Rβ

Jβ(C), (5.36)

in order to evaluate the robustness of the system with respect to the variation of

the uncertain angle β. In particular, the aim is to find an optimal configuration

C∗ = argmin (J(C)) , (5.37)

so that the regulation of the output y(t) to its reference set Ωε guarantees a

consistent reduction of the flow separation along the aerofoil, for a chosen range

Rβ of angles of incidence β.

5.5 Simulation Results: χnavis, 2D case

In the previous chapter, a balanced DMD model, yielding a positive steady-

state gain of the reduced-order transfer function, has been obtained for 2D flows

around a NACA 0012 aerofoil, with angle of attack β = 20◦ and Re = 1000.

The sensor was placed at 2c/5 and the actuator at c/5. Based on this single

reduced-order approximation of the incompressible Navier-Stokes equations (3.1),

(3.3), (3.2), (3.5), it is assumed, coherently with Assumption 2, a positive sign of

the steady-state gains of the transfer function between any pair, i.e., Pii(0) > 0,
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i = 1, ..., np, if the sensor is close enough to the actuator, i.e., the distance ∆
(i)
s is

sufficiently small. The robustness of the proposed control scheme (5.13), (5.14), is

tested at Re = 20, 000 in different 2D configurations, where the angle of attack is

varied within the range Rβ = [5, 25], in order to maximise the system performance

and validate the modelling assumptions. The simulations are performed using

the unsteady RANS equations based solver χnavis, described in Chapter 3. In

particular, two different scenarios are considered:

β1(t) =



2β0−∆β
2

+ ∆β
2

cos
(
π(t−tm)

∆t

)
if t ≥ tm and t ≤ tm + ∆t,

β0 −∆β if t > tm + ∆t or t < tM −∆t,
2β0−∆β

2
+ ∆β

2
cos
(
π(t−tM+2∆t)

∆t

)
if t ≥ tM −∆t and t ≤ tM ,

β1 if t < tm or t > tM ,

(5.38)

β2(t) =



2β0+∆β
2
− ∆β

2
cos
(
π(t−tm)

∆t

)
if t ≥ tm and t ≤ tm + ∆t,

β0 + ∆β if t > tm + ∆t or t < tM −∆t,
2β0+∆β

2
− ∆β

2
cos
(
π(t−tM+2∆t)

∆t

)
if t ≥ tM −∆t and t ≤ tM ,

β1 if t < tm or t > tM ,

(5.39)

where β0 = 15◦, ∆β = 10◦, tm = 30, tM = 50, T = 60, ∆t = 5 (see figure 5.2). The

measure ‖ 〈∂nu−τ (t,x)〉 ‖L2(ΓN ) of the flow separation in (5.28) is approximated as

‖
〈
∂nu

−
τ (t,x)

〉
‖L2(ΓN ) ≈

∥∥∥∥〈u−τ (t, x̄)〉
∆yn

∥∥∥∥
L2(0,c)

=
∆y−1

n

tf − t0

(∫ 1

0

∣∣∣∣∫ tf

t0

u−τ (t, x̄)dt

∣∣∣∣2 dx̄

)1/2

,

(5.40)

where

u−τ (t, x̄) =

{
0, if uτ (t,xN) ≥ 0,

|uτ (t,xN)| , if uτ (t,xN) < 0,
(5.41)

and xN denotes the first cell centre above the aerofoil, at ∆yn ≈ 10−4, in the di-

rection perpendicular to the aerofoil surface. The controller is activated between

t0 = 15 and tf = T = 60 and the coefficients in (5.28) are chosen as follows:

γ1 = 1/200, γ2 = 2/100, γ3 = 5/100, γ4 = 2, γ5 = 1/2000. The output mea-

surements yi(t) = uτ (t,xsi) are taken at yn = 0.0005 above the aerofoil, which is

approximately half the thickness of the boundary layer. Three cases are tested,

with different numbers of actuator/sensor pairs: np = 1, np = 2 and np = 3. For
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Figure 5.2: Time-varying angles β1(t) (top) and β2(t) (bottom).

the sake of simplicity, it is set µi = 0 in all the simulations, while the control gains

ki are chosen so that Assumption 5 is satisfied. All the reported quantities are

non-dimensional.

The considered geometry is a NACA 0012 aerofoil, denoted by ΓN , and the do-

main boundaries are ∂Ω = Γin ∪ Γ0 ∪ Γout. Here, the wall boundary is Γ0 = ΓN .

The inflow boundary condition on Γin is a time-varying velocity profile

g(t,x) = U∞(t), (5.42)

where U∞(t) = (cos(β0−β(t)), sin(β0−β(t)), 0) is the non-dimensionalised inflow

velocity. The computational grid has N = 127, 872 total volumes and is divided

into extremely fine actuator grids, a fine C-type inner grid and coarser outer grids.

The two-dimensional grid, whose size is similar to those found in the literature

(e.g., N = 115, 213 in Riherd and Roy, 2013) is extruded in the spanwise direction

using 8 uniformly distributed grid volumes and the spanwise length is 0.125 (so

that the dynamics are two-dimensional). It is worth to stress that the use of the

overlapping grid approach allows to achieve a highly refined grid in the region of

interest, while limiting the total number of control volumes. In order to avoid

reflections, the outer boundaries are placed at a distance of 50 chords. The inner

region around the profile (see figure 5.3) has 320× 96 volumes, in the tangent and
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normal direction, respectively; the points are clustered towards the wall, where

the mesh spacing is equal to 2.1× 10−4. The grid resolution at the wall is similar

to that found in the literature (5× 10−4 and 1.2× 10−4 in Riherd and Roy, 2013;

Sato et al., 2015b, , respectively, where LES simulations of flow past aerofoils

in the presence of plasma actuation are performed). The near wake region is

discretised with 128 × 192 volumes distribuited in the streamwise and vertical

direction, respectively. The presence of the plasma actuator is taken into account

Figure 5.3: Computational grid and actuator: left, detailed view around the

NACA 0012 profile; middle, detail of the actuator region; right, normalised plasma

actuator force.

by a system of body forces distributed in the flow field within a block of fixed

dimension and position. Both an example of the plasma actuator block and the

distribution of the magnitude of its corresponding body force, normalised with

respect to its maximum value, are shown in figure 5.3. The grid for the actuator

region (see figure 5.3) is built as in Sato et al. (2015b). In particular, the actuator

system is composed of two adjacent blocks: the one upstream (in red) is used to

smoothly link the mesh to the profile mesh (in gray), whereas the downstream

block (in green) is the one where the body forces are distributed accordingly to

(5.6). The origin of the local reference frame (x
(i)
τ , y

(i)
n ) is placed at the bottom

left edge of the latter block (see figure 5.3). The points are clustered towards

both the origin of the local reference frame and the aerofoil surface, i.e. where the

largest gradients of the actuator forces are expected. The plasma actuator blocks

are considered as a dominant mesh, i.e., its cells, regardless of their dimension,

cannot be tagged as “chimera” cells.

The time-averaged drag and lift coefficients

CD = 2Fx/(ρU
2
∞c,

CL = 2Fy/(ρU
2
∞c),

(5.43)

for the simulations with no actuation, computed along the streamwise (x) and

normal (y) axis, respectively, where Fx, Fy denote the corresponding components
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(parallel and perpendicular to the inflow velocity, respectively) of the total forces

on the aerofoil profile per span length, are very close to those found experimentally

in Feng et al. (2015) for a NACA 0012 at Re = 20, 000. The greater time-

averaged values of the force coefficients are related to the total kinetic energy,

which is not distributed along the spanwise direction and remains confined in a 2D

framework. The increase of the 2D forces, compared to the 3D case, is commonly

observed in many circumstances: e.g., for the flow past a circular cylinder, which

exhibits larger mean values of CD and CL (see, for example, Singh and Mittal,

2005). Compared to the configuration without actuation, in all the considered

feedback configurations a significant reduction of the drag coefficient, along with

a significant increase of the lift coefficient, is robustly achieved in the presence

of the time-varying angle of attack, during both the transient and the steady-

state regimes. In particular, high values of the lift coefficient are obtained by

the proposed control algorithm because it has been designed with the aim of

reducing the separation bubble. This is particularly desirable either for wind

turbines, in order to increase lift at low wind speeds, or in aeronautic applications,

during both take-off and sudden manoeuvres, in order to avoid stall conditions

(e.g., UAVs). However, lower references εm, εM can be selected, depending on the

specific application, in order to reduce the control effort.

Note that, for the sake of brevity, the time-averaged wall shear-stress, the vorticity

contours and the instantaneous streamlines are shown and discussed at the end of

section 5.5 for the optimal configuration only.

5.5.1 SISO Case: np = 1

Figures 5.4-5.8 show the simulation results for six different SISO configurations

C1 − C6, whose details are reported in table 5.1. The chosen control gains are

k1 = 20. Since the uncertain angle of attack may vary significantly and, therefore,

the flow detachment might occur very close to the leading edge, the actuator’s

position is fixed at x̄a = 0.02, whereas both the distance ∆s and the reference

set Ωε are varied. In particular, higher references εm1 are chosen for sensors that

are located upstream and vice versa (see table 5.1), aiming to obtain a full flow

reattachment along the aerofoil, in order to satisfy Assumption 1. In general, the

closer the sensor is to the actuator, the better dynamic performance is obtained.

However, the further upstream the sensor is located, the more the corresponding

configuration loses robustness, as a very high reference εm1 would be needed in
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Configuration np x̄a ∆s Ωε

C1 1 0.02 0.3 [0.2,0.25]

C2 1 0.02 0.4 [0.2,0.25]

C3 1 0.02 0.5 [0.1,0.15]

C4 1 0.02 0.6 [0.1,0.15]

C5 1 0.02 0.7 [0.05,0.1]

C6 1 0.02 0.8 [0.05,0.1]

Table 5.1: SISO configurations.
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Figure 5.4: Drag and lift coefficients of the configurations Cj, j = 1, ..., 6 in the

scenario β(t) = β1(t) with (solid lines) and without actuation (dashed lines, green

for time histories and black for time-averaged). The variation of β occurs between

t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from 5◦ to 15◦.

order to guarantee full flow reattachment for high angles of attack; on the contrary,

a much lower εm1 would be sufficient for lower angles.

The time histories (solid lines) of the drag and lift coefficients are compared with

the corresponding time histories (dashed green) and time averaged coefficients
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Figure 5.5: Drag and lift coefficients of the configurations Cj, j = 1, ..., 6 in the

scenario β(t) = β2(t) with (solid lines) and without actuation (dashed lines, green

for time histories and black for time-averaged). The variation of β occurs between

t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from 25◦ to

15◦.

(dashed black) for the simulations without actuators (see figures 5.4 and 5.5), in

both scenarios β1(t) and β2(t). In the first scenario, the controller is first tested

at 15◦ in a pre-stall condition, then the angle of attack is further decreased to 5◦

between t = 30 and t = 35, kept constant at 5◦ between t = 35 and t = 45 and,

finally increased back to 15◦ between t = 45 and t = 50. In the second scenario,

the controller is first tested at 15◦ in a pre-stall condition, then the angle of attack

is increased to a post-stall angle of attack β = 25◦ between t = 30 and t = 35,

kept constant at β = 25◦ between t = 35 and t = 45 and, finally increased back

to 15◦ between t = 45 and t = 50. The snapshots of the flow field at the different

angles of attack β = 5◦, 15◦, 25◦, in both steady-state and transient conditions,

with and without control are shown for comparison purposes in figures 5.37, 5.38,

5.36 and discussed at the end of section 5.5.
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Figure 5.6: SISO simulation results for Cj, j = 1, ..., 6 in the scenario β(t) = β1(t):

controlled input (top) and output error (bottom). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from

5◦ to 15◦.

Note that the drag and lift coefficients

CD = 2Fx/(ρU
2
∞c,

CL = 2Fy/(ρU
2
∞c),

(5.44)

are computed from the total force, which includes the input of energy from the

actuator. When the angle of attack is decreased, the streamwise coefficient CD

becomes negative during the closed-loop transients because of the active contribu-

tion of the actuators, which produces a force in the opposite direction of the drag

force. This is due to the fluid time scales, which are much slower compared to the

variation of the angle of attack: the energy spent by the system at 25◦ is much

higher than the one required at 5◦ but the effect of the adapted feedback control

input on the overall dynamics is not immediately visible. Thus, at the beginning

of the transient, the force produced by the actuator is greater than the drag force,

thereby making the corresponding coefficient negative. Also in the uncontrolled

case, a huge reduction of the drag coefficient can be seen when the angle of attack

decreases to 5◦, due to the shortened length of the separation bubble (see figures
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Figure 5.7: SISO simulation results for Cj, j = 1, ..., 6 in the scenario β(t) = β2(t):

controlled input (top) and output error (bottom). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from

25◦ to 15◦.

5.37, 5.38, 5.36).

Figures 5.6, 5.7 show a comparison between the six different SISO configurations,

in the scenarios β1(t) and β2(t), respectively: as discussed above, the regulation

of the error to zero, along with the regulation of the corresponding control input,

becomes slower as the sensor is moved away from the actuator. In particular,

in the scenario β1(t), with a negative angle variation of −10◦, the output does

not leave the reference region although the angle of attack varies. Thus, the con-

trol input remains constant after it reaches its reference, in all the configurations

apart from C1, where the sensor is located in the furthest upstream position. In

the scenario β2(t), with a positive angle variation of 10◦, the output decreases

below the lower-bound εm of the reference region (resulting in a negative regula-

tion error ỹi), as the angle increases to 25◦, and it increases over the upper-bound

εM (resulting in a positive regulation error ỹi), as the angle decreases back to

15◦. The resulting control input is automatically adjusted online by the designed

control algorithm, without requiring the knowledge of the uncertain angle of in-
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Figure 5.8: Comparison of the SISO simulation results for Cj, j = 1, ..., 6 in the

two scenarios β(t) = βk(t), k = 1, 2.

cidence: this highlights the great potential of robust feedback laws. Figure 5.8

shows a comparison between the different SISO configurations, in the two differ-

ent scenarios β(t) = β1(t), β(t) = β2(t): although the time-averaged drag-to-lift

ratio increases, both the separation bubble and the time-averaged regulation er-

ror decrease, as the sensor is moved downstream, while, given a reference set Ωε,

the time-averaged control input increases with the distance ∆s. The performance

of each configuration is globally evaluated by the chosen cost functional (5.28),

which seeks a trade-off between power input, output tracking error and drag-to-lift

ratio reduction, thus identifying C5 as the best configuration for the SISO case.

As in the previous chapter, the inverse of the aerodynamic efficiency is consid-

ered here in order to perform a minimisation of the former along with the control

variable, while avoiding eventual infinite terms due to zero denominators. Here,

a theoretical model of the actuator is considered, whose parameters have to be

characterised according to the considered power converter. Therefore, an accurate

realistic estimation of the power input cannot be given because it depends on the

efficiency of the specific power converter in use. An example of a PSI-MCPG2503C

power amplifier device is given in Appendix A: the peak-to-peak voltage range is

V(j)(t) =1-2.5kV, where V(j)(t) is the amplitude variation of the operational volt-
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age, while vj(t) = V(j)(t)/Vm is the corresponding non-dimensionalised voltage

input, scaled by Vm [kV]. The power consumption is around 1W.
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5.5.2 MIMO Case: np = 2

As discussed in the previous section, having only one actuator/sensor pair

requires choosing a balance between robustness and dynamic performance, by

varying the distance between the actuator and the sensor, along with the corre-

sponding output reference. Thus, increasing the number of pairs might lead to a

greater flexibility in the choice of the configuration. Furthermore, in practical ap-

plications, the maximum available voltage of the power converters used to generate

the plasma is limited and might not be sufficient to suppress the flow separation

in the most critical situations, e.g., high Reynolds number and/or large angles

of attack. Therefore, increasing the number of converters might be desirable, in

order to avoid the saturation of the input.

In this section, sixteen different MIMO configurations are considered (see table

5.2) with np = 2 actuator/sensor pairs, whose simulation results are shown in

figures 5.13 - 5.26.
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Figure 5.9: Drag and lift coefficients of the configurations Cj, j = 7, ..., 10 in the

scenario β(t) = β1(t) with (solid lines) and without actuation (dashed lines, green

for time histories and black for time-averaged). The variation of β occurs between

t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from 5◦ to 15◦.
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Configuration np x̄
(1)
a x̄

(2)
a ∆

(1)
s ∆

(2)
s Ωε1 Ωε2

C7 2 0.02 0.3 0.2 0.5 [0.05,0.1] [0.05,0.1]

C8 2 0.02 0.4 0.2 0.4 [0.05,0.1] [0.05,0.1]

C9 2 0.02 0.5 0.2 0.3 [0.05,0.1] [0.05,0.1]

C10 2 0.02 0.6 0.2 0.2 [0.05,0.1] [0.05,0.1]

C11 2 0.02 0.3 0.2 0.2 [0.05,0.1] [0.05,0.1]

C12 2 0.02 0.4 0.2 0.2 [0.05,0.1] [0.05,0.1]

C13 2 0.02 0.5 0.2 0.2 [0.05,0.1] [0.05,0.1]

C14 2 0.02 0.6 0.2 0.2 [0.05,0.1] [0.05,0.1]

C15 2 0.02 0.3 0.2 0.2 [0.1,0.15] [0.05,0.1]

C16 2 0.02 0.4 0.2 0.2 [0.1,0.15] [0.05,0.1]

C17 2 0.02 0.5 0.2 0.2 [0.1,0.15] [0.05,0.1]

C18 2 0.02 0.6 0.2 0.2 [0.1,0.15] [0.05,0.1]

C19 2 0.02 0.3 0.2 0.2 [0.05,0.1] [0.1,0.15]

C20 2 0.02 0.4 0.2 0.2 [0.05,0.1] [0.1,0.15]

C21 2 0.02 0.5 0.2 0.2 [0.05,0.1] [0.1,0.15]

C22 2 0.02 0.6 0.2 0.2 [0.05,0.1] [0.1,0.15]

Table 5.2: MIMO configurations for np = 2.
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Figure 5.10: Drag and lift coefficients of the configurations Cj, j = 11, ..., 14 in

the scenario β(t) = β1(t) with (solid lines) and without actuation (dashed lines,

green for time histories and black for time-averaged). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from

5◦ to 15◦.
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Figure 5.11: Drag and lift coefficients of the configurations Cj, j = 15, ..., 18 in

the scenario β(t) = β1(t) with (solid lines) and without actuation (dashed lines,

green for time histories and black for time-averaged). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from

5◦ to 15◦.
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Figure 5.12: Drag and lift coefficients of the configurations Cj, j = 19, ..., 22 in

the scenario β(t) = β1(t) with (solid lines) and without actuation (dashed lines,

green for time histories and black for time-averaged). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from

5◦ to 15◦.

The chosen control gains are k1 = 20, k2 = 5. The first pair is fixed at

(x̄
(1)
a = 0.02, x̄

(1)
s = 0.22), while the influence of both the variation of the position

of the second actuator x̄
(2)
a , given a fixed sensor position x̄

(2)
s , and the variation

of the position of the second pair (x̄
(2)
a , x̄

(2)
s ), given a fixed distance ∆

(2)
s between

the second sensor and actuator, is analysed, for difference reference sets. In the

four configurations C7, C8, C9, C10, both the second sensor position x̄
(2)
s = 0.8

and the reference sets Ωε1 = Ωε2 = [0.05, 0.1] are fixed, while the position of the

second actuator is varied between x̄
(2)
a = 0.3 and x̄

(2)
a = 0.6. In the remaining

twelve configurations the distance ∆
(2)
s = 0.2, between the second actuator and

the second sensor, is fixed and the reference sets Ωε1 and Ωε2 are varied: four

configurations C11, C12, C13, C14 have the same reference sets Ωε1 and Ωε2 of the

previous case; C15, C16, C17, C18 have an increased upstream reference set, i.e.,

Ωε1 = [0.1, 0.15]; C19, C20, C21, C22 have an increased downstream reference set,

i.e., Ωε2 = [0.1, 0.15].
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Figure 5.13: MIMO simulation results for Cj, j = 7, ..., 10 in the scenario β(t) =

β1(t): controlled inputs (left) and output errors (right). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from

5◦ to 15◦.
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Figure 5.14: MIMO simulation results for Cj, j = 11, ..., 14 in the scenario β(t) =

β1(t): controlled inputs (left) and output errors (right). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from

5◦ to 15◦.

The corresponding simulation results are depicted in figures 5.9 - 5.16, for β = β1,

and 5.18 - 5.25, for β = β2. The time histories (solid lines) of the drag and lift

coefficients (CD = 2Fx/(ρU
2
∞c) and CL = 2Fy/(ρU

2
∞c), respectively, where Fx,

Fy denote the total forces per span length) are compared with the corresponding

time histories (dashed green) and time averaged coefficients (dashed black) for

the simulations without actuators (see figures 5.9-5.12, 5.18-5.21). Note that the
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Figure 5.15: MIMO simulation results for Cj, j = 15, ..., 18 in the scenario β(t) =

β1(t): controlled inputs (left) and output errors (right). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from

5◦ to 15◦.
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ỹ 1
(t
)

Error

x (2)
a =0.3

x (2)
a =0.4

x (2)
a =0.5

x (2)
a =0.6

0 10 20 30 40 50 60
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v 2
(t
)

Input
x (2)
a =0.3

x (2)
a =0.4

x (2)
a =0.5

x (2)
a =0.6

15 20 25 30 35 40 45 50 55 60
t

−0.5
−0.4
−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
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Figure 5.16: MIMO simulation results for Cj, j = 19, ..., 22 in the scenario β(t) =

β1(t): controlled inputs (left) and output errors (right). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from

5◦ to 15◦.

drag and lift coefficients are computed from the total force, which includes the

input of energy from the actuator. Thus, as explained before, when the angle of

attack is decreased, the streamwise coefficient CD becomes negative during the

closed-loop transients because it includes the active contribution of the actuators,

which produces a force in the opposite direction of the drag force.

Figures 5.17 and 5.26, show a comparison between the different MIMO configura-
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Figure 5.17: Comparison of the MIMO simulation results for Cj, j = 7, ..., 22 in

the scenario β(t) = β1(t).

tions, for β(t) = β1(t) and β(t) = β2(t), respectively. Note that configuration C14

is equivalent to C10.

The best overall performance is achieved by the four configurations C15, C16, C17,

C18 with a higher output reference for the upstream sensor in both scenarios, while

the maximum values of the chosen cost functional (5.28) occur at C19, C20, C21,

C22, with a higher output reference for the downstream sensor. In particular, C18

is identified as the optimal configuration minimising (5.28), among the sixteen

considered MIMO configurations with two actuator/sensor pairs: it shows both

the lowest drag-to-lift ratio and the lowest time-averaged regulation error, along

with a significant reduction of the separation bubble.
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Figure 5.18: Drag and lift coefficients of the configurations Cj, j = 7, ..., 10 in the

scenario β(t) = β2(t) with (solid lines) and without actuation (dashed lines, green

for time histories and black for time-averaged). The variation of β occurs between

t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from 25◦ to

15◦.
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Figure 5.19: Drag and lift coefficients of the configurations Cj, j = 11, ..., 14 in

the scenario β(t) = β2(t) with (solid lines) and without actuation (dashed lines,

green for time histories and black for time-averaged). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from

25◦ to 15◦.
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Figure 5.20: Drag and lift coefficients of the configurations Cj, j = 15, ..., 18 in

the scenario β(t) = β2(t) with (solid lines) and without actuation (dashed lines,

green for time histories and black for time-averaged). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from

25◦ to 15◦.
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Figure 5.21: Drag and lift coefficients of the configurations Cj, j = 19, ..., 22 in

the scenario β(t) = β2(t) with (solid lines) and without actuation (dashed lines,

green for time histories and black for time-averaged). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from

25◦ to 15◦.
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Figure 5.22: MIMO simulation results for Cj, j = 7, ..., 10 in the scenario β(t) =

β2(t): controlled inputs (left) and output errors (right). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from

25◦ to 15◦.
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Figure 5.23: MIMO simulation results for Cj, j = 11, ..., 14 in the scenario β(t) =

β2(t): controlled inputs (left) and output errors (right). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from

25◦ to 15◦.
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ỹ 1
(t
)

Error

x (2)
a =0.3

x (2)
a =0.4

x (2)
a =0.5

x (2)
a =0.6

0 10 20 30 40 50 60
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v 2
(t
)

Input
x (2)
a =0.3

x (2)
a =0.4

x (2)
a =0.5

x (2)
a =0.6

15 20 25 30 35 40 45 50 55 60
t

−0.5
−0.4
−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
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Figure 5.24: MIMO simulation results for Cj, j = 15, ..., 18 in the scenario β(t) =

β2(t): controlled inputs (left) and output errors (right). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from

25◦ to 15◦.
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Figure 5.25: MIMO simulation results for Cj, j = 19, ..., 22 in the scenario β(t) =

β2(t): controlled inputs (left) and output errors (right). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from

25◦ to 15◦.
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Figure 5.26: Comparison of the MIMO simulation results for Cj, j = 7, ..., 22 in

the scenario β(t) = β2(t).
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5.5.3 MIMO Case: np = 3

Figures 5.27- 5.30, show the simulation results for three different MIMO con-

figurations with np = 3 actuator/sensor pairs (see table 5.3). The aim of this

section is to analyse the influence of the reference sets, given a fixed position of

actuator/sensor pairs. The chosen control gains are k1 = 20, k2 = 5, k3 = 5. In the

considered configurations C23, C24, C25 the positions of the three pairs are fixed

at (x̄
(1)
a = 0.02, x̄

(1)
s = 0.22), (x̄

(1)
a = 0.3, x̄

(1)
s = 0.5), (x̄

(1)
a = 0.6, x̄

(1)
s = 0.8),

with the same distance ∆
(i)
s = 0.2 between sensors and actuators, while the

Configuration np x̄
(1)
a x̄

(2)
a x̄

(3)
a ∆

(1)
s ∆

(2)
s ∆

(3)
s Ωε1 Ωε2 Ωε3

C23 3 0.02 0.3 0.6 0.2 0.2 0.2 [0.025,0.075] [0.025,0.075] [0.05,0.1]

C24 3 0.02 0.3 0.6 0.2 0.2 0.2 [0.05,0.1] [0.025,0.075] [0.025,0.075]

C25 3 0.02 0.3 0.6 0.2 0.2 0.2 [0.05,0.1] [0.05,0.1] [0.05,0.1]

Table 5.3: MIMO configurations for np = 3.

reference sets Ωεi are varied. In particular: C23 has lower reference sets

Ωε1 = Ωε2 = [0.025, 0.075] for the first two outputs, corresponding to the sen-

sors that are located further upstream, and a higher reference set Ωε3 = [0.05, 0.1]

for the last output, which corresponds to the sensor that is located further down-

stream; C24 has a higher reference set Ωε1 = [0.05, 0.1] for the first output, and

lower reference sets Ωε2 = Ωε3 = [0.025, 0.075] for the last two outputs; C25 has

the same reference sets for the three outputs Ωε1 = Ωε2 = Ωε3 = [0.05, 0.1].

The time histories (solid lines) of the drag and lift coefficients are compared with

the corresponding time histories (dashed green) and time averaged coefficients

(dashed black) for the simulations without actuators (see figures 5.27,5.28). As

explained above, when the angle of attack is decreased, CD becomes negative dur-

ing the transients because it includes the actuators’ contribution.

It is worth to notice that the time history of the control input v1(t) exhibits a very

similar behaviour in all the configurations having the same parameters relative to

the first pair, i. e., x̄
(1)
a , ∆

(1)
s and Ωε1 , despite the different parameters relative

to the other pairs. This can be noted, for instance, in figure 5.30, thus justifying

Assumption 4. Configuration C23 shows poor dynamic performance with a high

overshoot for the second input (see figures 5.29, 5.30). This behaviour could be

improved using a non-zero anti-windup term, i. e., µ2 6= 0, but the corresponding

simulations are not reported here, since it is out of the scope of this work.
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Figure 5.27: Drag and lift coefficients of the configurations Cj, j = 23, 24, 25 in

the scenario β(t) = β1(t) with (solid lines) and without actuation (dashed lines,

green for time histories and black for time-averaged). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from

5◦ to 15◦.

Figure 5.31 shows a comparison between the different configurations with np = 3

actuator/sensor pairs. As in the case with two actuator/sensor pairs, the config-

uration C24 with an increased output reference for the upstream sensor achieves

the best overall performance.
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Figure 5.28: Drag and lift coefficients of the configurations Cj, j = 23, 24, 25 in

the scenario β(t) = β2(t) with (solid lines) and without actuation (dashed lines,

green for time histories and black for time-averaged). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from

25◦ to 15◦.
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Figure 5.29: MIMO simulation results for Cj, j = 23, 24, 25 in the scenario β(t) =

β1(t): controlled inputs (left) and output errors (right). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 5◦, and between t = 45 and t = 50, from

5◦ to 15◦.
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Figure 5.30: MIMO simulation results for Cj, j = 23, 24, 25 in the scenario β(t) =

β2(t): controlled inputs (left) and output errors (right). The variation of β occurs

between t = 30 and t = 35,from 15◦ to 25◦, and between t = 45 and t = 50, from

25◦ to 15◦.
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Figure 5.31: Comparison of the MIMO simulation results for Cj, j = 23, 24, 25.
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5.5.4 Optimal Configuration

The results in sections 5.5.1, 5.5.2 and 5.5.3 show the variation of the per-

formance of the closed-loop system with respect to the chosen configuration. In

particular: i) the steady-state gains Pii(0) > 0 decrease with both the distance

∆
(i)
s between the sensors and the actuators and the location (x̄

(i)
a , x̄

(i)
s ) of the pairs,

with respect to the chord length; ii) the further upstream a pair is placed, the bet-

ter dynamic performance is obtained, i.e., the faster the regulation error converges

to zero; iii) the robustness of the control system with respect to the variation of

the angle of attack increases with the references εmi , for fixed sensors’ positions

x̄
(i)
s , and vice versa; iv) the ratio CD/CL between the drag and the lift coefficient

increases with the number of pairs np. In particular, C5, C18, C24, minimise J(Cj)

for np = 1, np = 2, np = 3, respectively. An optimal configuration C∗ = C18 can

be thus identified, whose performance are shown in figures 5.33, 5.34, 5.35.

The total cost functional (5.36) is shown in figure 5.32 and allows for a

formal comparison of the performance for the 25 tested configurations. The time

histories (blue) and time average (dashed cyan) of the drag and lift coefficients

are compared (top figures) with the corresponding time histories (green) and time

average (dashed red) coefficients for the simulations with no actuation in figures

5.33, 5.34 for the scenarios β1(t) and β2(t), respectively: a significant reduction

of the drag coefficient, along with a significant increase of the lift coefficient, is

robustly achieved in the presence of the time-varying angle of attack, during both

the transient and the steady-state regimes. In particular, a 75% average drag

reduction, for both β1(t) and β2(t), along with a 20%, for β1(t) and 50%, for

β2(t), average lift increase is obtained. The inputs show smooth, fast transient

performances (solid cyan lines in figures 5.15, 5.24) and the output measurements

are robustly regulated to their corresponding reference region, which is shown with

a dashed cyan line in figures 5.33, 5.34. The regulation of the outputs yi(t) to Ωεi

implies the solution of the flow separation problem along the whole aerofoil, as it

is shown in figure 5.35, which depicts the time-averaged tangential velocity at the

first cell centre above the aerofoil.

The vorticity contours in the stationary regimes, with angle of attack 5◦, 15◦ and

25◦, are shown in figure 5.36; 101 non-dimensional vorticity levels over the range

[−15, 15], results both with and without the actuation are reported for compari-

son purposes. Some discontinuities might be visible in the vorticity field, which

are due to graphical issues in visualising the gradients at the intersection between
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Figure 5.32: Comparison of the all simulation results: from top to bottom, total

cost functional J(Cj) for j = 1, ..., 6, j = 7, ..., 22, j = 23, ..., 25 and j = 6, 22, 24

in the two scenario β(t) = βk(t), k = 1, 2.

two grid sets. Without the actuation, strong vortex structures are generated as

a consequence of both the strong adverse pressure gradients and the boundary
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Figure 5.33: Simulation results for C∗ = C18 in the scenario β(t) = β1(t): time

histories (solid lines, blue for closed-loop and green for not controlled scenarios)

and time-average (dashed lines, cyan for closed-loop and red for not controlled

scenarios) of drag and lift coefficients (top); controlled outputs (bottom).
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Figure 5.34: Simulation results for C∗ = C18 in the scenario β(t) = β2(t): time

histories (solid lines, blue for closed-loop and green for not controlled scenarios)

and time-average (dashed lines, cyan for closed-loop and red for not controlled

scenarios) of drag and lift coefficients (top); controlled outputs (bottom).
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Figure 5.35: Time-averaged tangential velocity for C∗ = C18 in the scenario β(t) =

β1(t) (top) and β(t) = β2(t) (bottom).

layer separation, which occurs on the upper side of the profile; as expected, larger

vortices are shed at larger angle of attack. The activation of the control on the

NACA profile suppresses the boundary layer separation and avoids the generation

of any vortical structure. An inception of wake instability can be observed in the

far wake. A detailed view of the instantaneous streamlines in the region close to

the NACA profile is shown in figure 5.37, both cases with and without actuation

are reported for comparison. Clearly, the control effectively suppressed the sepa-

ration bubble, as well as the shedding vortices.

The most critical transients, from 5◦ to 15◦ and from 15◦ to 25◦, are shown in

figure 5.38 for the scenarios β1(t) and β2(t), respectively. The time instants, at

which these snapshots are taken, are highlighted by the blue dots in figure 5.2. The

pictures clearly show how the proposed control is able to efficiently suppress any

occurrence of boundary layer separation even during transient regimes, denoting

both robustness and good dynamic performance.
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Figure 5.36: Instantaneous vorticity contours for C∗ = C18 using 101 levels over

the range [−15, 15] without (left) and with (right) closed-loop control for: β = 5◦

(top); β = 15◦ (middle); β = 25◦ (bottom).

5.6 Simulation Results: χnavis, 3D case

In this section, the proposed multivariable control algorithm (5.13), (5.14) is

tested in 3D configurations, in order to show its ability to control 3D separated

turbulent flows. The simulations are performed using the in-house solver χnavis,

described in Chapter 3. For the three dimensional test case, a fixed angle of attack

β = 5◦ is considered. The wing is modelled with infinite span by using periodic

boundary conditions. The two-dimensional actuator grids and the fine C-type

inner grid around the profile have been extended in the spanwise direction using

64 uniformly distributed grid volumes, for the coarse grid, and 128 uniformly dis-

tributed grid volumes, for the fine grid; the 2D outer grids have been extended in

the spanwise direction using half the grid volumes of the inner grid, i.e. 32 uni-

formly distributed grid volumes, for the coarse grid, and 64 uniformly distributed

grid volumes, for the fine grid; the spanwise length is 0.2. Both the spanwise

dimension and discretisation are similar to those found in the literature (see, for

example, Jones et al., 2008; Riherd and Roy, 2013; Sato et al., 2015b).
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Figure 5.37: Instantaneous streamlines for C∗ = C18 without (left) and with (right)

closed-loop control for: β = 5◦ (top); β = 15◦ (middle); β = 25◦ (bottom).

Accurate Large Eddy Simulations (LES) at Re = 20, 000 are performed using

the well-established Sub-Grid Scale (SGS) Smagorinsky turbulence model (Akin

et al., 2003; Smagorinsky, 1963; Toda et al., 2015), which has been chosen because

of its simplicity. This model is based on the decomposition of the stress tensor

in three terms, accounting for the large scale contribution of the filtered field,

the mixed stress (pairing between filtered and unfiltered scales) and the Reynolds

stress. This latter tensor is modelled as directly proportional to the strain rate

tensor of the filtered field. In particular, the Navier-Stokes equations are filtered

through a convolution with a filter function f : R × R3 → R with the following

properties:

1. is of C∞ class;

2. decays exponentially at infinity;

3. has unitary integral on R× R3.
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Figure 5.38: Instantaneous vorticity contours for C∗ = C18 using 101 levels over

the range [−15, 15]. β(t) = β1(t) (left column): t = 45 (top), t = 47.5 (middle)

and t = 50 (bottom). β(t) = β2(t) (right column): t = 30 (top), t = 32.5 (middle)

and t = 35 (bottom).

Let δs and δt be the spatial and temporal amplitudes, respectively. The filter is

defined as:

Hf [g](x, t) =
1

δ3
sδt

∫
R3

dy

∫ +∞

−∞
dτ f(

t− τ
δt

,
x− y
δs

) g(τ,y) (5.45)

By indicating with an overline the filtered fields, the unfiltered small scale quan-

tities u′ = u − u can be defined, where u is the unfiltered velocity field vector.

For an incompressible fluid, the filtered velocity remains solenoidal, i. e.:

∇ · u = 0 (5.46)

implying that the non filtered velocity field u′ is solenoidal too. The problem in

the filtering operation is the treatment of the diadic product uu, coming from the

convective term. The filtering returns:

uiuj = uiuj + τ ′′ (5.47)
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for i, j = 1, 2, 3. The filtered components ui are directly known by the motion

equation integration, while the tensor τ ′′ reads:

τ ′′ij = (uiuj − uiuj) + (u′iuj + uiu′j) + u′iu
′
j (5.48)

At the right-hand side, the first term represents the large (filtered) scales contribu-

tion, the second is the mixed stress, which represents the pairing between the large

and small (unfiltered) scales, and the last one is the SGS term, called Reynolds

stress. The Smagorinsky model assumes that the entire tensor τ ′′ without its trace

is proportional to the strain rate tensor S as:

τ ′′ − tr(τ ′′)I/3 = ν ′′ S (5.49)

where Sij = (∂jui + ∂iuj)/2 depends only on the filtered velocity field and

ν ′′ = (Cs∆)2|S|

where ∆ is a characteristic length depending on the grid resolution, while Cs is

the Smagorinsky constant which needs an ad-hoc calibration (in the present study

Cs = 0.1). The global effect of the Smagorinsky model is to increase the real

viscosity ν of the fluid with an apparent eddy viscosity ν ′′ depending on the flow

field. The interested Reader is referred to Smagorinsky (1963) for more details on

the method.

As in the 2D case, the considered geometry is a NACA 0012 aerofoil (extruded

in the spanwise direction), denoted by ΓN , and the domain boundaries are ∂Ω =

Γin ∪ Γ0 ∪ Γout ∪ Γspan. Here, the wall boundary is Γ0 = ΓN and Γspan denotes

the boundaries where the periodic conditions are applied. The inflow boundary

condition on Γin is a constant velocity profile

g(t,x) ≡ U∞, (5.50)

where U∞ = (1, 0, 0) is the non-dimensionalised inflow velocity. The three-

dimensional computational grid is obtained by extending the two-dimensional one,

which has been described in the previous section, in the spanwise direction. First,

some preliminary tests are performed on a coarser grid, with N = 1, 212, 508 total

volumes. Then, the optimal configuration C∗ = C18 is tested on the fine grid, with

N = 8, 992, 992 total volumes.

As in the previous section, it is assumed, based on both the obtained simple linear

ROM and Assumption 2, a positive sign of the steady-state gains of the transfer
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function between any pair, i.e., Pii(0) > 0, i = 1, ..., np, if the sensor is close

enough to the actuator, i.e., the distance ∆
(i)
s is sufficiently small. The output

measurements yi(t) = uτ (t,xsi) are taken at yn = 0.0005 above the aerofoil, which

is approximately half the thickness of the boundary layer (≈ 10−4). For the sake

of simplicity, it is set µi = 0 in all the simulations, while the control gains ki are

chosen so that Assumption 5 is satisfied.

These three-dimensional tests are performed in order to show that the extension

of the proposed approach to 3D configurations is straightforward. The aim of this

section is to prove the effectiveness of the designed control algorithm at control-

ling turbulent flows, i.e., in conditions that are significantly different from those

of the design stage, where a stable, linear dynamical model was assumed. The

control objective is to suppress the laminar separation bubble, while avoiding the

transition to turbulence.

The promotion of turbulent transition is often considered to be responsible for

airflow reattachment by using non-thermal plasma discharges (see, for example,

Asada and Fujii, 2010; Jukes and Choi, 2009). Jukes and Choi (2009) suggested

that the promotion of laminar-to-turbulent transition in the boundary layer causes

the flow separation delay. However, recent experimental studies showed how

the turbulent transition is not responsible for airflow reattachment (Benard and

Moreau, 2011, 2013) and a loss in the lift occurs, due to shortening of the laminar

separation bubble through the promotion of turbulent transition (Mabe et al.,

2009). Wind tunnel tests of flows past a NACA 0012 profile at Re = 20, 700

showed a large decrease in lift when the turbulence level was increased (Laitone,

1997). In Bénard et al. (2009) the flow remained fully detached when a laminar-

to-turbulent transition was obtained by a tripper placed at the leading edge and

the control effectiveness was not affected by the presence of the turbulent bound-

ary layer. The authors concluded that the mechanism behind the flow separation

control is not related to a laminar-to-turbulent transition. On the other hand,

a total separation suppression was achieved in Sato et al. (2015a) through direct

momentum addition: the lift coefficient was improved not by the reattachment

through turbulent transition but by the large-scale vortex shedding induced by

the actuation. Benard and Moreau (2011) investigated and identified the mecha-

nism responsible for the flow reattachment: the momentum transfer that lead to

the separation suppression was shown to come from the outer flow and not from

the actuator itself. The authors showed how the DBD actuator acts as a catalyser
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and the control process is based on a reinforcement of the vortex shedding rather

than on early turbulent transition. The above findings appear contradictory and

indicate that the control mechanism remains unclear (Sato et al., 2015b).

However, a clear definition of the flow separation problem (5.1) is given in this

thesis, where the control objective is to totally suppress (and not just delay)

the real-time (and not the time-averaged) flow separation. This can be achieved

through direct momentum addition by the plasma actuators, which directly pro-

vide positive momentum, uniformly distributed in the spanwise direction, into

the boundary layer. The proposed control algorithm is, therefore, able to achieve

real-time flow separation suppression. Furthermore, the ability of the controller

to achieve relaminarisation of the turbulent boundary layer will be discussed in

section 5.6.2. Both noise reduction and increased performance are obtained by the

designed feedback approach and can be desirable, for example, for wind turbines

applications. Furthermore, the proposed method can be applied to plasma actu-

ation in burst mode in order to improve the efficiency of the separation control

mechanism (Sato et al., 2015a,b).

5.6.1 Coarse Grid

Three configurations are tested: In the SISO configurations C3D
1 and C3D

2 the

Configuration np x̄
(1)
a x̄

(2)
a ∆

(1)
s ∆

(2)
s Ωε1 Ωε2

C3D
1 1 0.02 - 0.2 - [0.02,0.025] -

C3D
2 1 0.02 - 0.2 - [0.1 ,0.15 ] -

C3D
3 2 0.02 0.6 0.2 0.2 [0.1 ,0.15 ] [0.05,0.1]

Table 5.4: Three-dimensional configurations.

actuator is placed at x̄
(1)
a = 0.02 and the distance between the sensor and the

actuator is fixed at ∆
(1)
s = 0.2, while the reference set is varied: C3D

2 is the 3D

version of the optimal solution 3 (obtained in section 4.7) depicted in figures 4.19,

4.20, which had quite a low value of 〈v〉 in the 2D case; C3D
1 has a decreased lower

reference ε
(1)
m = 0.02. Configuration C3D

3 is the 3D version of the optimal MIMO

configuration C∗ = C18, obtained in the previous section: the first actuator/sensor

pair is placed as in C3D
1 and C3D

2 , while a second pair is added at x̄
(2)
a = 0.6 and

∆
(2)
s = 0.2.
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The controller is activated at t0 = 10. The simulation results for the three

0 5 10 15 20 25
t

0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070

C
D

Drag

0 5 10 15 20 25
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
L

Lift

0 5 10 15 20 25
t

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

v 1
(t
)

Input

0 5 10 15 20 25
t

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

y 1
=
u
τ(
t,
x
s 1
,y

s 1
)

Output

Figure 5.39: Simulation results for C3D
1 and β = 5◦, Re = 20, 000: time history

(blue solid line for closed-loop scenario) and time-average (dashed lines, green for

closed-loop and red for not controlled scenarios) of drag and lift coefficients (top);

control input and measured output (bottom).
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Figure 5.40: Simulation results for C3D
2 and β = 5◦, Re = 20, 000: time history

(blue solid line for closed-loop scenario) and time-average (dashed lines, green for

closed-loop and red for not controlled scenarios) of drag and lift coefficients (top);

control input and measured output (bottom).

different configurations C3D
1 , C3D

2 , C3D
3 are shown in figures 5.39-5.41. The time-

averaged tangential velocities, computed at half the span length, with and without

control are compared in figure 5.42. In figure 5.43, the instantaneous velocity mag-

nitude, along with the coherent structures using the λ2 criterion (coloured by the

velocity magnitude), are shown (see Jeong and Hussain, 1995, for more details
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Figure 5.41: Simulation results for C3D
3 and β = 5◦, Re = 20, 000: time history

(blue solid line for closed-loop scenario) and time-average (dashed lines, green for

closed-loop and red for not controlled scenarios) of drag and lift coefficients (top);

control input and measured output (bottom).
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Figure 5.42: Time-averaged tangential velocity for β = 5◦, Re = 20, 000 at half

the span length: without control (top left) and for C3D
1 (top right), C3D

2 (bottom

left), C3D
3 (bottom right).

on the method). Figure 5.44 depicts the instantaneous spanwise vorticity field,

with and without control, using 101 levels over the range [−25, 25]. Figure 5.45

shows the instantaneous velocity magnitude contours, with and without control,



5.6. Simulation Results: χnavis, 3D case 135

Figure 5.43: Simulation results without control (top left) and for C3D
1 (top right),

C3D
2 (bottom left), C3D

3 (bottom right): instantaneous velocity magnitude and

iso-contours for λ2 = −10, β = 5◦, Re = 20, 000.

Figure 5.44: Simulation results without control (top left) and for C3D
1 (top right),

C3D
2 (bottom left), C3D

3 (bottom right): instantaneous spanwise vorticity contours

for β = 5◦, Re = 20, 000 using 101 levels over the range [−25, 25].

using 101 levels over the range [0, 1.3]. The snapshots of the tangential velocity

distribution along the aerofoil are depicted in figures 5.46-5.49.

The simulations correctly predict the presence of a laminar boundary layer both
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Figure 5.45: Simulation results without control (top left) and for C3D
1 (top right),

C3D
2 (bottom left), C3D

3 (bottom right): instantaneous velocity magnitude contours

for β = 5◦, Re = 20, 000 using 101 levels over the range [0, 1.3].

Figure 5.46: Instantaneous contours of the tangential velocity on the aerofoil for

β = 5◦, Re = 20, 000 without control.

on the pressure side of the NACA profile and on the first part of the suction side.

Due to the adverse pressure gradients, a laminar separation occurs on the suction

side. The transition to turbulence follows, with a turbulent reattachment close to

the profile trailing edge (see figure 5.46). Due to the momentum injection by the
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Figure 5.47: Instantaneous contours of the tangential velocity on the aerofoil for

C3D
1 and β = 5◦, Re = 20, 000 during the transients (just after the controller is

activated).

Figure 5.48: Instantaneous contours of the tangential velocity on the aerofoil for

C3D
2 and β = 5◦, Re = 20, 000 during the transients (just after the controller is

activated).

plasma actuators, the boundary layer transition is delayed or even suppressed by

the designed controller in all the considered scenarios C3D
1 , C3D

2 , C3D
3 .

Configuration C3D
1 , which is characterised by a low reference set, is tested in or-
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Figure 5.49: Instantaneous contours of the tangential velocity on the aerofoil for

C3D
3 and β = 5◦, Re = 20, 000 during the transients (just after the controller is

activated).

der to show the effectiveness of the proposed control algorithm in the presence of

three-dimensional turbulent dynamics: although the required steady-state control

input is very low, the drag-to-lift ratio decreases, the drag and lift coefficients are

stabilised and the controlled output quickly converges to its reference region (see

figure 5.39). The flow separation along the aerofoil is suppressed in the upstream

region only, while the separation bubble is moved downstream (see figures 5.42,

5.47).

The time-averaged drag and lift coefficients of the uncontrolled 3D simulations at

β = 5◦ are very close to the 2D values (see figures 5.39, 5.40, 5.41, 5.4). As in

the 2D case, configuration C3D
2 significantly reduces the boundary layer separa-

tion and avoids the generation of large vortical structures (see figures 5.43, 5.44,

5.45). A very small separation bubble is seen close to the trailing edge (see figure

5.42) and the steady-state tangential velocity distribution on the suction side of

the wing is negative on less than 10% of the total surface (bottom right in figure

5.48), causing a weak wake instability (see figure 5.45). On the other hand, the

required steady-state input is much lower compared to the 2D results (see figures

4.16, 5.40). This is due both to the lower angle of attack (5◦ in the 3D case and 15◦

in the 2D case) and to the greater control effort needed to suppress the laminar

separation bubble, which has an increased dimension in the 2D case as shown in
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Jones et al. (2008), where DNS of flows past a NACA 0012 profile at Re = 50, 000

and β = 5◦ were performed: the mean CL in the 2D case was ≈ 0.499 while the

mean lift coefficient increased to ≈ 0.62 in the 3D simulations. The controlled

output quickly converges to a constant value in its reference region (see figure

5.40). Furthermore, the transition to turbulence is avoided and the flow is kept

laminar by the feedback controller (see figure 5.43).

The optimal MIMO configuration C3D
3 achieves the best performance in terms of

flow separation suppression: the flow is completely laminar and reattached along

the wing (see figures 5.42, 5.43, 5.44, 5.45). The steady-state tangential velocity

distribution on the suction side of the wing (bottom right in figure 5.49) is positive

on the whole surface, except for a small region where a discontinuity is present,

due to graphical issues in visualising the field at the actuator’s grid boundaries. A

81% drag reduction, along with almost an 80% lift increase is obtained (see figure

5.41) in the steady-state regime, compared with the time averaged values without

actuation.

These percentages are higher than the ones of the 2D case because of the lower

resolution of the coarse grid, which is used in this section for the preliminary tests

only. Both the controlled outputs quickly converge (in about two non-dimensional

temporal units) to constant values in their corresponding reference regions (see

figure 5.41). The first actuator/sensor pair shows the same dynamic behaviour of

configuration C3D
2 (bottom frames in figure 5.40), thus highlighting the indepen-

dence of the dynamics of the upstream pairs on those of the downstream ones,

coherently with assumption 4. As for the SISO configuration C3D
2 , the required

steady-state input for C3D
3 is much lower compared to the results for the corre-

sponding 2D configuration C18 (see figures 5.15, 5.41).

5.6.2 Fine Grid

The two-dimensional numerical grid has been extended in the spanwise direc-

tion using 128 uniformly distributed grid volumes; the spanwise length is 0.2. As

discussed above, the 2D grid, along with both the spanwise dimension and dis-

cretisation (see Jones et al., 2008), are similar to those found in the literature

(see, for example, Riherd and Roy, 2013; Sato et al., 2015b). The 3D simulations

on the fine grid have been performed on the CINECA servers, thanks to an ISCRA

Grant (code HP10CXD3Z9) of 200,000 computational hours.

The chosen optimal configuration C3D
3 is tested in this section. Flow control mech-
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anisms resulting from a steady open-loop actuation by a single plasma actuator

are presented in Benard and Moreau (2011), where the authors suggested that

the addition of a second actuator located at about mid-chord should be further

investigated. The results showed that the flow remains attached at the leading

edge without intermittent separated regimes. Flow reattachment for up to 70% of

the chord length was obtained. Downstream of this position, a moving separation

point appeared, initiating a partial flow detachment at the end of the airfoil pro-

file. It is shown in this section how the latter is avoided by the optimal closed-loop

configuration C3D
3 with two actuator/sensor pairs, thus highlighting the advantage

of the proposed MIMO feedback approach: the separation point is moved farther

downstream by the first actuator while the second actuator, which is placed before

the former, reattaches the flow up to the trailing edge. The controller is
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Figure 5.50: Simulation results for C3D
3 , β = 5◦, Re = 20, 000: time history

(blue solid line for closed-loop scenario) and time-average (dashed lines, green for

closed-loop and red for not controlled scenarios) of drag and lift coefficients.

activated at t0 = 5.9. The simulation results are shown in figures 5.50-5.62. The

time histories (blue) of the drag and lift coefficients are shown in figure 5.50, along

with the corresponding time averaged coefficients without (dashed red) and with

(dashed green) control: both a significant drag reduction and lift enhancement

are achieved. In particular, a 60% drag reduction, along with almost a 40% lift
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Figure 5.51: Simulation results for C3D
3 and β = 5◦, Re = 20, 000: control input

(left) and measured output (right).
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Figure 5.52: Time-averaged tangential velocity at half the span length for β = 5◦,

Re = 20, 000: without control (top) and for C3D
3 (bottom).

increase is obtained (see figure 5.50) in the steady-state regime, compared with

the time averaged values without actuation.

The time-averaged drag and lift coefficients without actuation are close to those

obtained experimentally in Feng et al. (2015) for a NACA 0012 at Re = 20, 000

and β = 5◦. In particular, the same mean CD around 0.05 is obtained while the

mean CL (≈ 0.5) is higher compared to the experimental results (≈ 0.4) in Feng
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Figure 5.53: Simulation results without control (left) and for C3D
3 (right): instan-

taneous velocity magnitude and iso-contours for λ2 = −10, β = 5◦, Re = 20, 000.

Figure 5.54: Simulation results without control (left) and for C3D
3 (right): instan-

taneous spanwise vorticity contours for β = 5◦, Re = 20, 000 using 101 levels over

the range [−25, 25].

Figure 5.55: Simulation results without control (left) and for C3D
3 (right): instan-

taneous velocity magnitude contours for β = 5◦, Re = 20, 000 using 101 levels

over the range [0, 1.3].

et al. (2015) for a NACA 0012 at Re = 20, 000 and β = 5◦. One of the reasons for

this difference is the presence of a 0.5% turbulence level in the wind tunnel test

section in Feng et al. (2015) which is absent in the present study. Laitone (1997)

showed that an increase in the turbulence level yields a consistent loss of the lift for

the NACA 0012 at Reynolds number below 50, 000. In particular, at Re = 20, 700

the NACA 0012 profile showed a large decrease in the lift coefficient (from around
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Figure 5.56: Time-averaged streamwise velocity contours using 101 levels over the

range [−0.1, 1.3] and time-averaged streamlines for β = 5◦, Re = 20, 000 without

control (top and middle) and for C3D
3 (bottom).

0.45 to 0.2) when the turbulence level was greatly increased to correspond to that

of the wind tunnel tests in Schmitz (1967), while the lift-drag ratio decreased 49%

from 7.4 to 3.8. Therefore, the higher lift values of the present simulations might

be caused by the lack of turbulence level due to the wind tunnel.

Furthermore, the boundary effects of the finite-span wing used in Feng et al. (2015)

are neglectable in this numerical study, as suitable periodic conditions have been

applied at the boundaries in order to model a wing of infinite span as in other

numerical studies of boundary layer control by plasma devices (e.g., Riherd and

Roy, 2013; Sato et al., 2015b). The spanwise length of the wing is 0.2c in the

present numerical study and 2.5c in Feng et al. (2015). The reason behind the

choice of the length is the need of having a high resolution in the spanwise di-

rection while avoiding prohibitive computational costs (as in Jones et al., 2008;
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Figure 5.57: Instantaneous contours of the tangential velocity on the aerofoil at

different times for β = 5◦, Re = 20, 000 and t ∈ [0, 5.9] without control. From top

to bottom and left to right: t = 0.0, t = 1.0, t = 2.0, t = 3.0, t = 4.0, t = 5.5 and

t = 5.9.

Riherd and Roy, 2013).

The proposed control algorithm yields a significant increase of the lift coefficient

because it has been designed with the aim of completely suppressing the sepa-

ration bubble. This is particularly desirable either during take-off or in order to

avoid stall conditions during sudden manoeuvres (e.g., for UAVs applications).

However, lower references εm, εM can be selected, depending on the specific appli-

cation, in order to reduce the control effort.

Both the controlled outputs quickly converge to constant values in their corre-

sponding reference regions (see figure 5.51). The two actuator/sensor pairs show

a similar dynamic behaviour compared to the results of the same configuration

on the coarser grid (bottom frames in figure 5.41). However, the steady-state

input values are slightly lower in this case, due to the different grid resolution
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Figure 5.58: Instantaneous contours of the tangential velocity on the aerofoil at

different times for C3D
3 , β = 5◦, Re = 20, 000 and t ∈ [6, 9]. From top to bottom

and left to right: t = 6.0, t = 6.5, t = 7.0, t = 7.5, t = 8.0, t = 8.5 and t = 9.0.

Figure 5.59: Wall coordinate y+ without (left) and with (right) actuation.

in the boundary layer, which affects the number of cells between the sensor and

the wing boundary. This difference in the control inputs, along with the different

turbulent dynamics that show smaller scale structures in the case of the finer grid

(see figures 5.43, 5.53), produces different values of the drag and lift coefficients,

thereby making the improvement less evident compared to the results of the same
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Figure 5.60: Simulation results without actuation: non-dimensional velocity u+

as a function of the natural logarithm of the wall coordinate y+ (left) and uτ as a

function of the distance yn from the aerofoil (right).

Figure 5.61: Simulation results with feedback control: non-dimensional velocity

u+ as a function of the natural logarithm of the wall coordinate y+ (left) and uτ

as a function of the distance yn from the aerofoil (right).

configuration on the coarse grid. Compared to the results of the corresponding 2D

configuration C∗ = C18 (cyan line in the left frames of figure 5.15) in the scenario

β(t) = β1(t) (the angle of attack is 5◦ between t = 35 and t = 45 in figure 5.15),

the computed steady-state inputs are much lower in the 3D case. The 2D simu-

lations yield a larger separation bubble with a large-scale vortex shedding due to

strong adverse pressure gradients while in the 3D case, turbulence occurs and the

energy is dissipated at the smaller scales, thus yielding smaller vortex structures.
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Figure 5.62: Instantaneous iso-contours of the swirl for u · (∇ × u)/‖u‖2 = 10

coloured by the spanwise velocity using 21 levels in the range [-0.2,0.2] in the

scenario C3D
3 and β = 5◦, Re = 20, 000 during the transients (from just after the

controller is activated until it reaches the steady-state). From top to bottom and

left to right: t = 6.0, t = 6.5, t = 7.0, t = 7.5, t = 8.0, t = 8.5 and t = 9.0.

This, in turn, requires a greater control effort in the 2D case in order to reattach

the flow.

The time-averaged tangential velocities, computed at half the span length, with

and without control are compared in figure 5.52. In figure 5.53, the instanta-

neous velocity magnitude, along with the coherent structures using the λ2-criterion

(coloured by the velocity magnitude), are shown (see Jeong and Hussain, 1995,

for more details on the method). Figure 5.54 depicts the instantaneous span-
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wise vorticity field, with and without control, using 101 levels over the range

[−25, 25]. Figure 5.55 shows the instantaneous velocity magnitude contours, with

and without control, using 101 levels over the range [0, 1.3]. In figure 5.56 the time-

averaged streamwise velocity contours using 101 levels over the range [−0.1, 1.3]

and the time-averaged streamlines for β = 5◦ without control (top and middle)

are compared to those of the optimal feedback configuration C3D
3 (bottom): the

designed control algorithm successfully suppressed the laminar separation bub-

ble. The latter, in the scenario with no actuation, is located closer to the leading

edge compared to the one obtained experimentally in Feng et al. (2015). This

might depend on the higher resolution of the numerical grid in the boundary layer

(the first cell centre is ≈ 10−4 above the aerofoil and the separation bubble is

extremely “thin” close to the leading edge) compared to the time-resolved Parti-

cle Image Velocimetry (PIV) used in Feng et al. (2015), as well as on both the

inflow turbulence levels (see Laitone, 1997, for detailed explanation of turbulence

levels on a NACA 0012 at low Reynolds numbers) and the boundary effects of the

finite-span wing, which are present in Feng et al. (2015) and neglectable in this

numerical study. The snapshots of the tangential velocity distribution along the

aerofoil are depicted in figures 5.57-5.58.

Figure 5.59 shows the height of the first cell above the wall

y+ =
ynu

∗

Re
, (5.51)

where

u∗ =

√
τw
ρ

(5.52)

is the non-dimensional friction velocity (or shear velocity), as a function of the

distance x̄ from the leading edge, with respect to the chord length, in both the

uncontrolled (left) and closed-loop (right) scenarios. All the variables are both

span-averaged and time-averaged.

The absolute value of y+ is everywhere smaller than 1, except from the first cell

centre when the actuator is on, thus indicating that an appropriate grid resolution

has been obtained. The flow separates at around x̄ = 0.2 (where y+ = 0) in the

uncontrolled scenario, with a laminar separation up to x̄ = 0.6, after which a sig-

nificant increase of y+ (i.e. τw) occurs due to the laminar-to-turbulent transition.

A turbulent reattachment is observed at around x̄ = 0.95. In the closed-loop sce-

nario, the designed feedback control achieves full reattachment and no separation
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occurs. Both

u+ =
uτ
u∗
, (5.53)

as a function of the natural logarithm of the wall coordinate y+ (left), and the

tangential velocity uτ , as a function of the distance yn from the aerofoil (right),

are averaged in both time and spanwise direction and plotted in figures 5.60, 5.61,

in order to compare the simulation results without and with feedback control, re-

spectively, at different positions with respect to the chord length.

In the uncontrolled scenario (figure 5.60), a laminar velocity profile, with a wall

shear stress close to zero, is observed between the leading edge at x̄ = 0 and

x̄ = 0.2. The velocity profiles at x̄ = 0.4 and x̄ = 0.6 indicate that the flow is

separated but still laminar, at x̄ = 0.8 the flow is still separated but the shape of

the profile (with a small linear region in the semi-log plot) indicates a turbulent

profile, while at x̄ = 0.99 a turbulent attached velocity profile is seen.

The closed-loop simulation results (figure 5.61) prove the effectiveness of the de-

signed feedback control algorithm at both relaminarising and fully reattaching the

flow over the wing: all the velocity profiles are laminar and no separation occurs.

The peaks observed in the tangential velocitiy profiles are due to the flow accel-

eration induced by the actuator.

Figure 5.62 shows the instantaneous iso-contours of the swirl for u·(∇×u)/‖u‖2 =

10 coloured by the spanwise velocity using 21 levels in the range [-0.2,0.2] in the

scenario C3D
3 and β = 5◦ during the transients (from just after the controller is

activated until it reaches the steady-state). In particular, from left to right and

top to bottom, the snapshots are shown for t = 6.0, t = 6.5, t = 7.0, t = 7.5,

t = 8.0, t = 8.5 and t = 9.0.

The simulations correctly predict the presence of a laminar boundary layer both

on the pressure side of the NACA profile and on the first part of the suction side.

Without feedback control, due to the adverse pressure gradients, a laminar sep-

aration occurs on the suction side. The transition to turbulence follows, with a

turbulent reattachment close to the profile trailing edge (see figures 5.52, 5.56 and

5.57, 5.59, 5.60, 5.61).

The feedback controller efficiently laminarises the turbulent flow field (see figures

5.53, 5.59, 5.61 and 5.62), thereby yielding a completely two-dimensional attached

flow (see figures 5.56, 5.58, 5.59, 5.61), in less than three non-dimensional temporal

units (see figures 5.58 and 5.62). The boundary layer transition is thus effectively

avoided by the designed control algorithm (see figures 5.53, 5.54, 5.55, 5.56, 5.59,
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5.61, and 5.62). The steady-state tangential velocity distribution on the suction

side of the wing (bottom right in figure 5.58) is positive on the whole surface,

except for a small region where a discontinuity is present, due to graphical issues

in visualising the field at the actuator’s grid boundaries.

The chosen MIMO configuration C3D
3 achieves very good performance in terms of

flow separation suppression: the flow is completely laminar and reattached along

the wing (see figures 5.52, 5.53, 5.54, 5.55, 5.56, 5.58, 5.62).
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5.7 Summary

This chapter addressed the practical problem of robustly controlling the un-

steady flow separation over an aerofoil, using the plasma actuators’ voltage as the

control inputs and realistically available real-time velocity measurements as the

control outputs.

In particular, the flow separation problem has been formulated as a simple output

regulation problem, which was solved by designing a simple multivariable robust

output feedback control, thus allowing for testing different configurations, with

multiple actuator/sensor pairs. The proposed controller guarantees the exponen-

tial regulation of the output measurements to some suitable reference sets, when

the steady-state gains of each actuator/sensor pair are non-zero and of known

sign.

The underlying assumption is that there exist suitable configurations of actua-

tor/sensor pairs, along with suitable references for the outputs, which guarantee

that, given a certain range for both Re and β, the solution of the output regula-

tion problem implies the solution of the flow separation problem. A suitable cost

functional has been defined in order to provide a criterion for selecting optimal

configurations, whose reference sets are such that the former assumption holds.

Accurate two-dimensional numerical simulations of flows past a pitching NACA

0012 at Reynolds Re = 20, 000 are performed in order to test the control effec-

tiveness and validate the modelling assumptions. The objective of the 2D analysis

was, also, to perform a parametric study aimed at finding an optimal configuration

C∗, to be implemented in realistic flow control applications. Both the transient and

steady-state performance have been investigated in different scenarios, for time-

varying angles of attack between 5◦ and 25◦. Although the proposed controller is

simple, as it is based on an integral action, it is able to effectively suppress the sep-

aration bubble, as well as the shedding vortices, while achieving robust dynamic

performances, with respect to the variation of the uncertain angle of incidence. An

optimal configuration with two actuator/sensor pairs, which minimises the chosen

cost functional, has been identified: a fast flow reattachment is achieved, in the

presence of time-varying angles of attack.

Furthermore, 3D LES simulations have been performed to show the ability of the

designed control algorithm to both delay the transition to turbulence and suppress

the flow separation on a more realistic three-dimensional wing. It has been shown

that a MIMO feedback control based on an integral action only (no proportional
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or derivative terms are present in the designed algorithm) is sufficient to reattach

turbulent flows over 3D wings. A major advantage of the proposed approach is

that the chosen outputs can be easily measured in realistic applications; moreover,

the resulting control scheme is simple and computationally cheap.



Chapter 6
Conclusions and Further Work

The problem of modelling and controlling the unsteady flow separation over an

aerofoil in the presence of DBD plasma actuators has been addressed. The main

contributions of the thesis can be summarised as follows:

• Analytical and numerical modelling of the closed-loop incompressible Navier-

Stokes equations, in the presence of body force fields generated by plasma

actuators.

• Implementation of a novel control-oriented model reduction method (bal-

anced DMD) for controlled nonlinear systems evolving on attractors.

• Design, development and testing of a novel multivariable robust feedback

control algorithm for flow separation suppression around a NACA 0012 aero-

foil, using the plasma actuators’ voltage as the control inputs and real-time

velocity measurements as the control outputs.

• Optimisation of the closed-loop system in order to identify suitable numbers

and positions of the actuator/sensor pairs along the aerofoil.

• Development of the hardware interface for both data acquisition (real-time

velocity measurements from hot wire and piezoelectric cantilever sensors)

and control of the high voltage power converter, which generates the plasma

over the aerofoil (see Appendix A).

Despite the complexity of the dynamics of interest, it is shown how the flow separa-

tion problem can be formulated and solved as a simple output regulation problem,

so that a simple control strategy may be used. A robust multivariable feedback

153



154

control algorithm is designed, on the basis of a novel low-order, linear, dynam-

ical model approximating the incompressible Navier-Stokes equations, using the

plasma actuators’ voltage as the control inputs and realistically available real-time

velocity measurements as the control outputs.

Under some simplifying assumptions, the flow separation problem is solved by

designing a simple MIMO robust feedback control, consisting of np SISO regula-

tors. The proposed controller is computationally cheap and only requires non-zero

steady-state gains of known sign, for each actuator/sensor pair. Furthermore, the

chosen output can be experimentally measured in realistic applications.

Accurate numerical simulations have been performed at different Reynolds num-

bers (Re ∈ [103, 2 · 104]) and angles of attack (β ∈ [5◦, 25◦]) in order to test the

control effectiveness in the presence of complex dynamics, which are neglected in

the control design. Several configurations have been investigated, with the aim

of identifying optimal numbers and positions of the actuator/sensor pairs along

the aerofoil, together with the corresponding references for the available real-time

velocity measurements.

In particular, a 2D RANS parametric study has been performed, for both SISO

and MIMO systems, aimed at identifying optimal configurations, which guarantee

that, given a certain range for both the Reynolds number Re and the angle of

attack β, the solution of the output regulation problem implies the solution of the

flow separation problem. The chosen optimal configuration with np = 2 actua-

tor/sensor pairs has been tested in realistic 3D LES simulations in order to show

the effectiveness of the designed robust regulator at controlling turbulent flows.

The 3D LES simulations have been performed on the CINECA servers, thanks to

an ISCRA Grant (code HP10CXD3Z9) of 200,000 computational hours.

Although the proposed controller is simple, as it is based on an integral action,

it effectively delays the transition to turbulence and it robustly suppresses the

separation bubble along the wing, in both transient and steady-state regimes, in

all the considered scenarios. Fast flow reattachment is achieved, along with both

stabilisation and increase/reduction of the lift/drag, respectively.

The results highlighted the following conclusions: i) the steady-state gains be-

tween any actuator/sensor pair decrease with the distance between sensors and

actuators, as well as with the location of the pairs; ii) the further upstream a

pair is placed, the better dynamic performance is obtained, i.e., the faster the

regulation error converges to zero; iii) the robustness of the control system with
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respect to the variation of the angle of attack increases with the output references,

for fixed sensors’ positions, and vice versa; iv) both the drag-to-lift ratio and the

total input power increase with the number of pairs np; v) on the other hand, an

increase in the number of pairs np yields increased robustness of the closed-loop

system, as well as a reduced maximum steady-state input voltage for the single

actuators.

A hardware interface (see Appendix A) has been built in order to show the prac-

tical feasibility of the proposed approach. The real-time velocity measurements

are acquired from both hot wire and piezoelectric cantilever sensors. The de-

signed feedback control scheme has been implemented in a XMC4500 Relax Kit

microcontroller in order to automatically regulate the high voltage of the PSI-

MCPG2503C power converter, which generates the surface plasma on the wing.

The hardware-in-the-loop functionality test showed the effectiveness of the devel-

oped layout: an accurate data acquisition is achieved, along with a fast regulation

of the converter’s output voltage magnitude.

The results of this thesis move in the direction of filling the gap between the-

ory and practice through the use of rigorous analytical arguments to prove the

effectiveness of relatively simple and widely-applicable control schemes. A ma-

jor advantage of the proposed approach is that the chosen outputs can be easily

measured in realistic applications. Furthermore, its range of applicability is ex-

tremely wide: the proposed control algorithm was shown to be effective in very

different scenarios, ranging from two-dimensional low Reynolds number flows to

three-dimensional turbulent aerodynamics, in the presence of time-varying angles

of attack, thus emphasising the great potential of the designed robust feedback

controller.

The natural next step would be to test the developed hardware interface in a wind

tunnel experiment. Furthermore, different reference signals could be further in-

vestigated. A set-point tracking scheme has been considered in this thesis in order

to avoid the transition to turbulence and to suppress the separation bubble. This

leads to both reduced skin-friction drag and enhanced lift, thus yielding reduced

fuel consumption, noise and vibration in aerodynamic applications (e.g., UAVs or

wind turbines).

On the other hand, there are applications in which accelerating the laminar to

turbulent transition might be desirable in order to enhance flow mixing (e.g.,

gas turbine engines). For example, the proposed feedback control algorithm can
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be directly applied to plasma actuation in burst mode in order to improve the

efficiency of the separation control mechanism: this approach yields increased tur-

bulence and a partial reattachment but a much lower power consumption (Sato

et al., 2015a,b). Furthermore, following Marino and Tomei (2015), the designed

robust control algorithm can be easily extended to biased multi-sinusoidal refer-

ences with known frequencies, which can be computed, for instance, in order to

initiate Tollmien-Schlichting waves. Therefore, it might be worth to further in-

vestigate different applications of the proposed approach, in which the objective

would be to trigger known instabilities in laminar boundary layers, thus forcing

the transition to turbulence.
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Appendix A
Experimental Setup

This last chapter shows the final assembly of the electronic interface for both

data acquisition (real-time measurements from hot wire and piezoelectric can-

tilever sensors) and control of the high voltage power converter, which generates

the plasma over the aerofoil. The resulting layout is shown in figure A.1. The con-

Figure A.1: Circuit layout.

verter is a PSI-MCPG2503C power amplifier device (top left in figure A.2) that

operates from DC36V electrical supplies to convert the power into high-voltage

and high-frequency for generating surface plasma. Both the output voltage and

the output frequency can be changed by turning the control dial in the range of

1-2.5kV and 15-25kHz, respectively. The voltage output can be monitored down

to 1/1000 using a voltage dividing monitor. The converter has been modified in

order to be able to automatically adjust the output voltage, based on the designed

feedback control algorithm (5.13), (5.14).

In particular, the action of the knob (see figure A.3), which regulates the magni-
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tude of the applied voltage, has been replaced by an AD5293 digital potentiometer

with a 1024-position resolution. The control algorithm (5.13), (5.14) has been im-

plemented in a XMC4500 Relax Kit microcontroller (bottom left in figure A.2)

that reads the voltage signals coming from the MEMS-based cantilever sensors

(see Segawa et al., 2010), which provide the measurements of both sign and mag-

nitude of the tangential velocity on the aerofoil (top right in figure A.2), i.e., the

chosen controlled outputs (5.5). The schematics of the closed-loop are summarised

Figure A.2: Power converter (top left), MEMS-based cantilever sensor (top right),

XMC4500 Relax Kit (bottom left) and AFG3000 (bottom right).

in figure A.3. An open-loop functionality test has been performed to evaluate the

Figure A.3: Schematic of the closed-loop.

performance of the circuit. An AFG3000 arbitrary function generator (bottom

right in figure A.2) translated the simulation data of the optimal configuration

C∗ = C18 for β(t) = β2(t) (see figure 5.34) into voltage signals, thus simulating the

output measurements coming from the sensors (see figure A.4). An oscilloscope
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Figure A.4: Layout of the circuit, connected to the AFG3000.

was used to visualise the simulated signals read by the ADC (see figure A.5). The

Figure A.5: Output signals read by the oscilloscope.

control inputs are computed by the XMC4500 Relax Kit as in (5.13), (5.14), with

the same references and control gains of configurations C∗ = C18. The correspond-

ing results are shown in figure A.6. The control algorithm correctly computed

the input voltages, yielding the same results of the simulations. Measurements of

the converter’s output voltage, whose magnitude changes accordingly to (5.13),

(5.14), have been performed in order to prove the effectiveness of the developed

layout: an accurate data acquisition is achieved, along with a fast regulation of

the converter’s output voltage magnitude.
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