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�Quantum physics is a lot like jazz:
you don't know what you

might have until you observe it.�

� Mark Nightingale

(no, the other one)



Abstract

This thesis applies techniques of non-perturbative quantum �eld theory for solv-

ing both bosonic and fermionic systems dynamically on a lattice.

The methods are �rst implemented in a bosonic system to examine the quan-

tum decay of a scalar �eld oscillon in 2 + 1D. These con�gurations are a class

of very long-lived, quasi-periodic, non-topological soliton. Classically, they last

much longer than the natural timescales in the system, but gradually emit energy

to eventually decay. Taking the oscillon to be the inhomogeneous, (quantum)

mean �eld of a self-interacting scalar �eld enables an examination of the changes

to the classical evolution in the presence of quantum �uctuations. The evolution

is implemented through applying the Hartree approximation to the quantum dy-

namics. A statistical ensemble of �elds replaces the quantum mode functions to

calculate the quantum correlators in the dynamics. This o�ers the possibility

for a reduction in the computational resources required to numerically evolve the

system. The application of this method in determining the oscillon lifetimes,

though, provides only a negligible gain in computational e�ciency: likely due to

the lack of any space or time averaging in measuring the lifetimes, and the low

dimensionality.

Evolving a Gaussian parameter-space of initial conditions enables compar-

ing the classical and quantum evolution. The quantum �uctuations signi�cantly

reduce the lifetime compared to the classical case. Examining the evolution in

the oscillatory frequency demonstrates the decay in the quantum system occurs

gradually. This markedly contrasts the classical evolution where the oscillon fre-
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Abstract v

quency has been demonstrated to evolve to a critical frequency when the struc-

ture abruptly collapses. Despite the distinctly di�erent evolution and lifetime, a

similar range of the Gaussian initial conditions in both cases generates oscillons.

This indicates the classical e�ects dominate the early evolution, and the quantum

�uctuations most signi�cantly alter the later decay.

The methods are next implemented in a fermionic system to examine �tun-

nelling of the 3rd kind�. This phenomenon is examined in the case where a

uniform magnetic �eld propagates through a classical barrier by pair creation of

fermions: these cross unimpeded through the barrier and annihilate to (re-)create

the magnetic �eld in the classically shielded region.

A statistical ensemble of �elds, similarly to the oscillon simulations, is initially

constructed for evaluating the fermionic contribution in the gauge �eld dynam-

ics. This ensemble, importantly and in contrast to the bosonic case, involves

two sets of �elds to reproduce the anti-commuting nature of the fermion oper-

ator. The ensemble method, again, o�ers the possibility for a reduction in the

computational resources required to evolve the system numerically. A test case

indicates the method for the tunnelling system, though, requires impracticable

computational resources.

Using the symmetries in the system to construct an ansatz for the �elds

provides an alternative method to evolve the dynamics on a lattice. This pro-

cedure e�ectively reduces the system to a 1 + 1 dimensional problem with the

fermion mode functions summed over the three-dimensional momentum space.

The signi�cant decrease in the real-time for the evolution (and quite attainable

computational resources) on applying the ansatz provides a practical technique

to examine the tunnelling.

Measuring the magnetic �eld in the classically shielded region con�rms the

analytic estimates. These (qualitatively) reproduced the exponential decrease es-

timated in the classical transmission on varying the interaction strength between

the barrier and the magnetic �eld. The observed tunnelling signal, moreover,
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matches the perturbative, analytic estimate within the expected correction in

the lattice con�guration.

These bosonic and fermionic quantum, dynamical simulations demonstrate

limitations to the bene�ts in applying the ensemble method. The highly practical

and successful tunnelling computations, in contrast, indicate the potential power

of a suitable ansatz to signi�cantly reduce the computational times in simulations

on a lattice.
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Chapter 1

Introduction: Oscillons

The fundamental nature of matter poses a widely intriguing subject. This topic

provokes extensive scienti�c and philosophical concern, and engages popular in-

terest. The universal nature of the issue for existence can produce the intertwin-

ing of the moral and the physical aspects of the topic [1], while the constant

fascination about the topic evokes varied, artistic expressions (for instance, see

[2, 3]).

Quantum �eld theory has proven to be a reliable basis for our scienti�c under-

standing of the topic. The standard model of particle physics forms a comprehen-

sive framework to describe every known, elementary particle [4]. Measurements,

in particular of dark matter and dark energy in the universe, provide tantalizing

insight into exotic particle physics awaiting discovery [4].

A central component in the work of this thesis will involve the methodologies

for practicably solving the inherently complex equations occurring within quan-

tum �eld theories. The fundamental concern in deriving the physical properties

generically reduces to the problem of evaluating non-linear correlators specifying

the interactions in the theory. Perturbative expansions of the correlators provide

the canonical method for obtaining the solution. This has proved highly e�ec-

tive for deriving varied properties observed within experiments (for a detailed

overview, see for instance [5]). The perturbative approximations though limit

1
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understanding to situations deviating from a limited number of analytic solu-

tions. More importantly, these fail to examine the potentially rich non-linear

e�ects possible within the system.

Expanding the quantum �eld operators into an orthogonal mode-basis sat-

isfying the respective �eld dynamics provides the fundamental mechanism for

determining the perturbative expansion.

A self-interacting scalar theory provides a de�nite and straightforward context

to demonstrate the practicable methodologies. The non-linear terms occurring

within the dynamics on quantization produce the correlator to solve. Evaluat-

ing the two point correlator in the mode function provides a ready expression

for evaluating this correlator through the modes. Evaluating the higher-order

correlators may be accomplished through reducing these to combinations of the

two-point correlator. The resultant dynamics hence involve the e�ective con-

tribution to the two-point interaction from the higher order operators and thus

form a resummation of the non-linear interactions.

Asserting the full scalar-�eld to comprise a perturbation added to a back-

ground value provides a scenario where this simpli�cation may be accomplished.

The Hartree approximation imposes, additionally, that the mean value of these

perturbations vanish, and thus the background value forms the quantum expec-

tation [6�8]. This background may, accordingly, be treated classically, while the

perturbations are expanded into the quantum modes. These modes, though,

generate a back-reaction onto the mean �eld, through the quantum correlators

in the dynamics; thus, the mode functions e�ectively encapsulate the quantum

e�ects within the system. The Hartree approximation asserts the connected cor-

relators higher than second order in the perturbation vanish. This importantly,

hence, simpli�es the dynamics to involve only the mean �eld and the connected

two-point functions of the perturbations [6].

The large N approximation provides an alternative method for simplifying

the dynamics on expansion into the mean �eld and perturbation. This procedure
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involves N scalar-�elds in the limit of large N , with the terms of O(1/N) and

smaller neglected [7]. The simpli�ed correlators again involve only the mean �eld

and the two-point functions throughout the dynamics.

Both the Hartree and large N approximation have proven highly e�ective

for investigating a range of inherently non-perturbative scenarios. The Hartree

approximation may, for instance, describe phase transitions within an in�ationary

context [9�11]; the 1/N approximation enables examining the potential for chiral

condensates to form in heavy ion collisions [12]; and both methodologies have

provided insight to particle production through the background �eld oscillations

[7].

To implement the mode function method importantly involves an integration

over the mode space; the discretization onto the lattice transforms this integral

into a summation over the discrete mode space. On a d-dimensional lattice of NL

sites in each direction, the conjugate-momentum space comprises an identically

sized lattice and hence the system entails evolving Nd
L values for each scalar

�eld. This forms a readily tractable problem for d = 1; but can, for d > 1,involve

increasingly extensive computational resources.

This numerical di�culty may be ameliorated through applying reasonable

assumptions to constrain the modes computed. A standard regularization in-

volves imposing a simple cut-o� in the mode space; hence, where the physical

constraints require this cut-o� below the maximum momentum on the lattice,

the regularization may limit the modes involved [11, 12]. If the dynamics de-

termine that certain modes provide a divergent contribution to the correlators,

these terms may dominate in the summation; and hence the relevant physics

may be obtained through limiting the analysis to only these divergent modes [9,

10]. These methods both demonstrate cases where the physical properties of the

system may limit the computational requirements as to produce a practicable

simulation.

The Ensemble Method o�ers a related method to attempt alleviating the
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sizeable �eld number in the mode function procedure. This alternative essentially

replaces the quantum �eld operator and instead uses an ensemble of scalar �elds

[8, 13]. These �elds are generated through an expansion equivalent to the mode

expansion except a random number replaces the quantum ladder operators:

φ̂(t,x) =

∫
d2k

(2π)2

[
âkfk(t,x) + â†kf

∗
k(t,x)

]
−→ ϕn(t,x) =

∫
d2k

(2π)2

[
ck,nfk(t,x) + c∗k,nf

∗
k(t,x)

]
.

The equivalent substitution, on discretization, likewise de�nes the ensemble on

the lattice. A judicious choice of the random numbers hence enables the statis-

tical properties of the ensemble to reproduce exactly the quantum correlators.

De�ning the random numbers in particular to form a Gaussian distribution with

the statistical mean and variance equal to the quantum correlator value may re-

produce the Hartree approximation (both in the continuum and lattice) for the

scalar �eld1. This distribution in principle assumes the random number from

an in�nite continuum-distribution and correspondingly the ensemble includes

in�nitely many �elds. The ensemble method therefore initially seems only to

complicate the analysis and, adversely, increase, rather than improve, the re-

quirements for a computational analysis. In practice though, a �nite number of

�elds may reproduce the quantum correlator to arbitrary accuracy; and if accept-

able accuracy is obtained for the ensemble smaller than the mode space, the mode

ensemble method therefore bene�cially reduces the computational requirements

to analyse the �eld.

This method has proven e�ective for examining the quantum e�ects in the

highly non-perturbative scenarios of scalar-�eld solitons2. The decay of a domain

wall network, in particular, yielded a signi�cant increase in the computational ef-

1A detailed demonstration of this is provided in the quartic scalar theory examined subse-
quently (see Section 2.3)

2The application of the ensemble method also to fermionic systems is considered in the
subsequent Chapters 4 - 6.
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�ciency through the ensemble method [8]. These simulations, involving networks

generated through random initial conditions, additionally required multiple sim-

ulations for averaging the resultant con�gurations. The cumulative increase in

the overall e�ciency for the multiple repetition thus demonstrates the especially

signi�cant gains in applying the ensemble method for multiple repetitions, each

using di�erent parameters. A signi�cantly smaller ensemble size than the num-

ber of modes also provided su�cient accuracy for determining the lifetime of

Q-Balls and related energies and charge [13]. The variation in charge notably

included a prominent statistical noise resulting through the approximation in the

�nitely-sized ensemble. This demonstrates a limitation in the ensemble method

for the practicable ensemble sizes to reproduce physical properties. The method,

nonetheless, despite the noise, su�ciently determines the primary features in the

evolution.

These successes in examining solitons have motivated the main work within

the subsequent chapter to apply the Ensemble Method in examining the quantum

e�ects on the lifetime of oscillons.

1.1 Overview of Solitons and Pseudo-Solitons

An assortment of �eld theories produce a variety of long-lived, non-perturbative

�eld-con�gurations. The particular context and several important consequences

of these phenomena will be examined in this section.

Formation of these spatio-temporal, ordered �eld-con�gurations is a phe-

nomenon generic among non-linear systems. These structures occur within di-

verse contexts: ranging through hydrodynamics and networks of chemical re-

actions [14], within organisms [15], and in cosmological phase transitions [16�

27]. This broad relevance emphasises the widespread signi�cance of these �eld

con�gurations.

Examining the non-linear regime in classical theories has yielded considerable
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canonical results concerning in particular strictly time-invariant, localized con�g-

urations. An overview of these in several important cases and of their signi�cant

properties will presently provide the background for further examining the topic

throughout this chapter.

The time-invariant con�gurations form a class of solutions termed solitons.

Topological properties may in general support the localized con�gurations; and

this distinguishes the important sub-class of �topological solitons� within the

static �eld-con�gurations.

A symmetric, double-well potential in a scalar theory, for instance, includes

two non-degenerate vacua; and in the simplest case forms a symmetric double-

well. The symmetric case in 1 + 1D supports a static �eld con�guration interpo-

lating between the negative and positive vacuum state termed a �kink� [16]; the

equivalent con�guration simply interpolating between the vacua in reverse forms

the anti-kink.

The Sine-Gordon potential similarly involves multiple vacua; and in 1+1D, a

kink con�guration exists interpolating between the vacua, with a corresponding

anti-kink interpolating between the vacua in reverse [16, 28]. A simple Lorentz

transform on the coordinates may also form a solution describing a propagat-

ing kink in the Sine-Gordon model. This thus demonstrates a further property

typically ascribed to solitons: that of the �eld con�guration comprising a wave

packet travelling without any change in shape [28]. Solutions further describing

a propagating kink and anti-kink and two kinks or two anti-kinks also exists in

the Sine-Gordon model [28]. These enable examining the soliton interactions in

collisions: demonstrating the con�gurations may collide and on separation their

shape remains unaltered.

A class of structures analogous to the solitons though involving a time-

dependent form may also be found in non-linear �eld theories. These related

�pseudo-solitons� generically remain stable over periods much longer than the

natural time-scale in the theory, but may vary semi-periodically and typically
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unstable, they eventually decay.

The kink solutions in the 1+1D Sine-Gordon model notably may combine to

form an oscillatory bound state termed a �breather� [16, 28]. This time-dependent

but periodic structure thus results through the vacuum topology supporting the

underlying soliton con�gurations.

Potentials with a discrete symmetry (for instance, a Z2 for a quartic scalar

potential) similarly support domain walls [17]: a network of boundaries joining

adjacent regions of the di�ering (discrete) vacua. These also provide a simpli�ed

analogue to the case where a continuous symmetry forms a continuum of vacuum

states. This degeneracy in the vacuum, further, may generate vortices in 2 +

1D, and in 3 + 1D, equivalently, may yield networks of cosmic strings. The

vortex con�guration, essentially, involves a winding in the phase of a complex

scalar at a single point, where the continuous variation of phase corresponds to

the continuum of vacua; repeating this structure to de�ne an extended, one-

dimensional object in 3 + 1D forms the equivalent, cosmic string con�guration

[29]. Both the domain wall and string networks persist on cosmological timescales

but the length per unit volume decreases according to scaling laws (for studies

on domain wall decay-rates, see for example [8, 18] and for cosmic strings, see

for example [30�32]).

Q-balls represent a further type of the pseudo-soliton con�guration [33]. A

conserved charge energetically favours the formation of these long-lived structures

and likewise ensures their persistence. The Q-balls though may decay through

disassociation into lower-energy Q-balls [34, 35] or into particle-like excitations

[34].

Further to these familiar con�gurations, numerical studies have revealed a

much lesser understood class of pseudo-solitons termed �oscillons� (see for in-

stance [19�22, 36�57]). These structures form a localized, extended region sub-

stantially outside any vacuum. They characteristically oscillate quasi-periodically

and persist for long periods compared to the natural time-scales of the system:
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though may eventually decay into the surrounding vacuum-state. Unlike the

conventional pseudo-solitons, their longevity results without any fundamental

constraint � in particular neither through topology nor charge. This feature

importantly distinguishes the oscillons.

They occur within numerous and varied systems in Minkowski spacetime.

The most extensively examined case to generate oscillons involves a scalar �eld

in a double-well, scalar potential. This system may form scalar-�eld oscillons

signi�cantly in 3 + 1D [36�42]; but also in two [40, 41], four and �ve [19, 20,

40�46] or also six spatial dimensions [42]. The Sine-Gordon potential likewise

supports a scalar-�eld oscillon in 2 + 1D [43, 44]; the more physical Abelian-

Higgs in 2 + 1D [47] and 3 + 1D [54], and SU(2)-Higgs systems in 3 + 1D [54�58]

also generate scalar �eld oscillons.

Oscillons may also form in an expanding spacetime. A quartic, scalar po-

tential provides a generic approximation to the post-in�ationary potential; and

the evolution on the expanding background after in�ation, in 3 + 1D enables the

formation of oscillons [48]. These oscillons persist also where the in�aton couples

to a massless scalar �eld. The φ6 potential provides a further generic approxi-

mation to the post-in�ationary potential and is also conducive to the formation

of oscillons in 3 + 1D [49, 50]. A generic power law potential motivated through

string and supergravity scenarios forms a realistic in�ationary-potential; and the

evolution in 2 + 1D indicates a further prospective context in the early universe

for the formation of oscillons [51].

These varied �eld-structures and diverse contexts producing them demon-

strate the broad relevance of the soliton and pseudo-soliton con�gurations. The

subsequent discussion will presently examine the e�ect of the con�gurations in

several signi�cant cases.

Symmetry-breaking scenarios occur repeatedly throughout the early universe

[16] and the potential for pseudo-solitons to form in the resultant contexts implies

these con�gurations may a�ect the cosmological dynamics. The possibility, in
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particular, for cosmic string formation has inspired extensive investigation into

their cosmological impact and assessing their compatibility with astrophysical

observations (see for instance [59�64]); the related domain-walls also provided

insights into the nature of pseudo-solitons in the early universe (see for instance

[16�18, 23]).

Q-Balls further may result through the various supersymmetry-breaking sce-

narios to potentially a�ect cosmological evolution. These structures may in par-

ticular contribute to dark matter [24, 25]; and may a�ect baryogenesis [26].

The instantaneous quench from a single-well potential to a double-well for a

system initially in a thermal state similarly demonstrates the potential for the

natural formation of oscillons. These result due to the parametric resonance

over the range of modes corresponding to the oscillons. The linearized equations

of motion immediately ensuing the phase transition [19, 20] form a Mathieu

equation in wave-vector space [19�21]. This system (under the approximation

also of a homogeneous potential) implies parametric resonance results for certain

modes [19�22]. The range in wave-vector space where these resonances occur

matches the modes comprising a typical oscillon [19�21]. This therefore implies

the approximately homogeneous potential remaining after the quench produces

parametric resonance in certain modes and accordingly forms the mechanism to

generating copious oscillons in the phase-transition.

Examining the mode space also indicates the oscillon production crucially

delays equilibrium after the quench to a symmetric double-well. The fraction

of kinetic energy in each mode is concentrated in the low-momentum modes

immediately subsequent to the quench and only transferred slowly to the higher-

momenta [20]. This restriction of the energy to the low-momentum modes coin-

cided with the formation of oscillons [19, 20]; while the majority of the energy

corresponded almost exactly to the momenta typically comprising an oscillon

[20]. The copious production of the oscillons after the quench therefore evidently

restricts the energy to the low-momentum modes and thus hinders the eventual
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thermalization [19, 20].

An instantaneous quench further to an asymmetric double-well where the

�eld value is around the false vacuum will produce a subsequent decay to the

global minimum. Oscillon formation further may a�ect this transition. The

standard assumption where regions of the true vacuum are nucleated on a homo-

geneous background predicts the transition rate to the global minimum occurs

exponentially suppressed [65, 66]. Those quenched states abundantly producing

the oscillons may accelerate the transition to a power law rate [20�22]; while a re-

duction in the number of oscillons changes the exponent in the faster, power law

to an increasingly negative value, tending towards the standard, exponentially-

suppressed transition-rate [20, 21]. This therefore indicates the presence of oscil-

lons alters the transition-rate from the homogeneous-nucleation case. The pres-

ence of oscillons evidently invalidates the homogeneous calculation [21]. These

structures may, e�ectively, nucleate a region of the �eld in the global minimum,

forming an additional contribution in the transition of the whole space to the true

vacuum. Producing fewer oscillons, hence, decreases this enhanced contribution

to the transition rate and, correspondingly may generate a smooth variation to

the homogeneous transition-rate [20, 21].

Oscillons may also result in post in�ationary scenarios where the perturba-

tions within the in�ationary �eld may source the formation [48�51]. The φ6

potential, although an unrealistic in�ationary potential, may provide a general

approximation for the true in�ationary �eld around the potential minimum after

in�ation [49�51]. This enables the abundant production of oscillons. With these

lasting for periods much longer than the Hubble timescale, an oscillon-dominated

period may consequently form [49, 50]. These abundant oscillons potentially may

contain over seventy per cent of the total energy density in the post in�ationary

universe [49].

The power law potential, generically obtained through string and supergrav-

ity theories, thus, represents a general class of physically motivated in�ationary
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scenarios [51]. These more realistic potentials, likewise, may also support copi-

ous oscillon production, to form a post in�ationary period where these structures

dominate. The quartic potential provides a further approximation to the post

in�ationary potential generating the formation of oscillons [48]. This system sig-

ni�cantly also on the coupling to a further massless scalar �eld still retains the

copious oscillon production in the post-in�ationary expansion. Both the cou-

pled and uncoupled system may form an oscillon dominated period where these

pseudo-solitons comprise initially between three and thirty per cent of the to-

tal energy density. This fraction decays while the expansion continues; but a

signi�cant fraction remain stable over cosmological timescales.

These extensive oscillon regions may source particle production in the early

universe. The eventual decay generally results through energy transferred into

particle production, and, hence, the copiously produced oscillons may contribute

to baryogenesis. This oscillon formation in the post in�ationary epoch may also

generate primordial gravitational waves [67]. These form a distinctive power

spectrum related to the dominant frequencies in the typical, quasi-periodic oscil-

lons.

The varied contexts where soliton and pseudo-soliton structures exist demon-

strates the broad applicability of examining these phenomena, while the very

general formation-contexts imply a strong potential to generate the structures

in reality. Those scenarios further where the con�gurations strongly a�ect the

cosmological evolution indicate further the need for a quantum treatment to

accurately examine their signi�cance. The (generically created) oscillon con�g-

urations in particular provide a tantalizing form to potentially examine in the

quantum regime. A scalar �eld oscillon further forms a convenient con�gura-

tion to examine the e�ects such structures may generate � and may also apply

directly to the in�aton evolution in the post-in�ationary universe. Analytical ap-

proximation may provide insight into various aspects of the pseudo-soliton (see

for instance [68�71]). Without an analytic expression for an oscillon though,
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only a numerical examination can provide an accurate insight into the processes

governing the phenomenon. The di�culties involved in solving a highly non-

perturbative quantum system further determines that computation o�ers the

most e�cient method to examine quantum a�ects on the oscillon. To examine

the evolution, and in particular to capture the decay inherently entails a real-

time simulation. Implementing the real-time, quantum simulation techniques to

determine the oscillon lifetimes will hence form the primary concern in examining

the scalar �eld subsequently.

1.2 Oscillon Features

1.2.1 A Semi-Analytical Form

Neither solving the scalar �eld dynamics nor �tting to the observed pro�les in

simulations has yet determined a precise analytical form for oscillons. Semi-

analytical approximations though enable categorizing the oscillons into several

qualitative categories. The Gaussian approximation for the oscillon pro�le forms

the most extensively applied ansatz to examine oscillons (for uses in analytical

analyses see for instance [20, 36, 40, 45, 52, 67, 68], and in numerical simula-

tions [36�46, 52, 55]). A true Gaussian-pro�le will initially radiate energy to

transform into the semi-stable oscillon con�guration [42, 43]. This loss indicates

the Gaussian inaccurately matches the oscillon pro�le; but the generally small

amount lost con�rms the Gaussian may accurately approximate the oscillon. A

further approximation to oscillons in 1 + 1D are in the ��at-topped� class of

con�gurations [72]. These structures, unlike the peaked Gaussian pro�les, form

a plateaued maximum. Numerical simulations con�rm the �at-topped con�gu-

rations closely approximate oscillons formed in 1 + 1D, while also comparable

though more extensively extended structures occur [50]; and simulations con�rm

similarly �at-topped structures also form in 3 + 1D [49].

The Gaussian approximation ultimately will form the initial con�guration
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for generating oscillons in the subsequent numerical simulations. This pro�le

explicitly satis�es

Φ(t, r) = v±
(
1−A0(t) exp

(
−r2/r2

0

))
, (1.1)

where the Gaussian form is superimposed on the (positive or negative) broken-

phase vacuum v±. The amplitude A0 and radius r0 parametrize the varied con-

�gurations.

Numerical simulations indicate that oscillons evolve on a unique trajectory

[41, 42] and is an attractor in �eld space [42, 46, 53, 54, 69]. Initializing the �eld

in the Gaussian approximation to the oscillons may therefore reliably evolve into

the oscillon trajectory. The initial energy emission hence a�ects the transforma-

tion to a point in the oscillon evolution � the resultant structure then oscillating

throughout the remaining stable-period in the trajectory before decaying. De-

termining in particular the initial radii and amplitudes generating oscillons may

e�ectively delineate the basin of attraction within this Gaussian parameter-space.

1.2.2 Lifetime and Decay

The stability of scalar-�eld oscillons results through the particular frequencies

forming the pseudo-oscillatory con�guration (see for instance [41, 42, 44, 45,

69]). These con�gurations comprise oscillations, in natural units, primarily con-

centrated in a narrow range of frequencies centred around a value below the mass.

The mass de�nes the intrinsic frequency of the system; while simulations demon-

strate con�gurations above this frequency e�ciently transfer energy to free-�eld

excitations [41, 44, 45]. This concentration of the oscillon frequencies primarily

below the radiative frequency, hence, classically, prevents the oscillon transferring

energy into free waves.

Higher harmonics and equally the bandwidth around the dominant com-

ponent, although of signi�cantly lower amplitude than the primary frequency,
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nonetheless exceed the radiative frequency. These therefore enable the oscillon

to classically transfer energy, if only ine�ciently, into free waves, and thus slowly

decay [42, 44, 45, 69]. The dominant frequency, though, increases throughout the

evolution [41, 42, 44]; the persistence of the oscillon structure further indicates

the components around the main value also will change to maintain a similar

distribution of frequencies around the dominant component. This gradually may

increase both the range of frequencies above the radiation frequency and results

in the progressively higher amplitude components, closer to the dominant value

increasing to above of the radiation frequencies. The oscillon will transfer energy

into free waves with increasing e�ciency; and once the energy transfer grows

su�ciently large, the oscillon abruptly collapses. Simulations demonstrate the

collapse, in particular, results when the dominant frequency of the oscillon is still

slightly below the radiative frequency [41, 42, 44]. This endpoint, in real space,

occurs where the oscillon amplitude is slightly greater than the in�ection-point

of the potential [37, 44]. The dominant component in frequency of the �eld con-

�guration at this stage changes abruptly to above the radiative frequency [41,

42]; and the oscillon amplitude rapidly decreases into the vacuum [44].

A quantum treatment enables accurately examining the energy transfer into

particle production. The additional, distinctively quantum mechanisms may in-

crease the energy loss compared to the classical limit of the system. This may

accordingly quicken the decay and decrease the time until the oscillon entirely

collapses; if the decay rate increases su�ciently, the particle production might

also prevent the oscillons from forming. A perturbative (analytical) calculation

indicates the quantum e�ects strongly alter the oscillon lifetime and even may

dominate the decay rate [70].

Quantizing the system also modi�es the e�ective scalar potential. This change

for Q-Balls signi�cantly changed the purely classical conditions on the con�gu-

ration [13]. The modi�ed potential created a lower limiting-frequency on the

possible Q-balls: the e�ective quantum-potential at frequencies below this value
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invalidating the (classical) conditions for the system to form a Q-ball. A change

in the attractor basin may likewise result for oscillons on the modi�cation to

the potential. The change in potential may also alter the stage where the ini-

tial con�guration commences on the unique oscillon trajectory or entirely alter

this trajectory: consequently, in either case, signi�cantly altering the consequent

oscillon lifetimes. This in combination with the decay may substantially reduce

the oscillon lifetimes, or even entirely prevent their formation.

The potentially signi�cant quantum-e�ects thus pose an intriguing matter

to investigate. Calculating the changes, in particular, to the oscillon basin of

attraction in the Gaussian parameter-space of the equation (1.1) will form a

de�nite context for examining this question presently.



Chapter 2

Quantum Oscillons: Dynamical Model

2.1 Classical System

2.1.1 Equation of Motion

We consider a single, classical scalar �eld now speci�cally in 2 + 1D, on a �at

spacetime of positive signature (-,+,+), evolving in a quartic potential (see �gure

2.1):

S = −1

c

∫
cdt̄d2x̄

[
1

2
∂̄µφ̄(t̄, x̄)∂̄µφ̄(t̄, x̄)− c2m2

2~2
φ̄2(t̄, x̄) +

λ

4~2
φ̄4(t̄, x̄) +

c4m4

4~2

]
.

(2.1)

Setting m ∈ < and λ > 0 creates a 'broken phase' potential comprised of two

minima (see �gure 2.1), de�ning the vacuum �eld values: v± = ±
√
c2m2/λ. This

structure provides a potential known to support oscillons [8, 37, 38, 42, 43, 45,

46, 70].

Applying the variational principle to this action hence yields the equation of

motion for the classical scalar �eld:[
∂̄0∂̄0 −

∑
i

∂̄i∂̄i −
c2m2

~2
+

λ

~2
φ̄2(t̄, x̄)

]
φ̄(t̄, x̄) = 0. (2.2)

The Lagrangian density of the classical action notably also de�nes the stan-

16
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Figure 2.1: The typical, classical potential V (φ̄) of the system, shown for natural

units with m = λ = 1. (These are essentially the parameters chosen in the

subsequent classical dynamics: see equation (2.5) where the scaling essentially

sets m and λ to unity in the dynamics; and see also Section 3.1 on the choice

of natural units.) This potential illustrates the distinctive double-well structure

known to generate oscillons.

dard, conjugate momentum:

π̄(t̄, x̄) = ∂̄0φ̄(t̄, x̄). (2.3)

This will ultimately provide a useful variable for formulating the classical dy-

namics to evolve numerically; and will also form the basis for constructing the

quantum equations of motion.
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2.1.2 The Scaled System

Scaling the action under the transformation

x̄µ ≡ |m|−1 xµ, (2.4a)

φ̄ ≡
√
m2

λ
φ (2.4b)

speci�es the system in entirely dimensionless quantities; and on applying the

variational principle, yields dynamics for the scaled system without explicit mass

or coupling parameter:[
∂0∂0 −

∑
i

∂i∂i −
c2

~2
+

1

~2
φ2(t,x)

]
φ(t,x) = 0. (2.5)

This in e�ect has removed the parameter choice; and further ensures any re-

sults obtained for these dynamics are entirely general to any form of the quartic

potential, the exact values only di�ering by the relevant scaling factors.

2.1.3 Initial Conditions

The (semi-analytical) Gaussian ansatz (1.1) on the positive vacuum v+ will pro-

vide the initial con�guration for evolving the scalar �eld. This structure im-

portantly provides a con�guration potentially within the attractor basin of the

unique oscillon trajectory. Varying the amplitude A0 and width r0 of this initial

con�guration may, hence, determine the region of this Gaussian parameter space

in the attractor basin.

Initialization further requires choosing the initial time-derivative of the scalar

�eld. This variable notably is the conjugate momentum of the �eld. Setting the

value to zero, hence, corresponds physically to creating an initially static �eld.

The initial, Gaussian amplitude in this case consequently forms the maximum

excursion from the vacuum; and hence, the initial amplitude (rather than a
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subsequently, larger peak) speci�es the e�ective Gaussian con�guration evolving

in the simulation.

Constructing the Gaussian �eld (1.1) for varying amplitude A0 and width r0,

with the momentum set to zero, therefore, provides the complete set of initial

conditions chosen for the classical case.

2.2 Quantum Dynamics

2.2.1 Applying the Hartree Approximation

On quantization, the classical scalar �eld and the conjugate momentum are pro-

moted to operators in the Heisenberg representation satisfying the equal time

commutator relations

[
ˆ̄φ(t̄, x̄), ˆ̄π(t̄, ȳ)

]
= i~c (2π)2 δ2(x̄− ȳ). (2.6)

Any operator Ô in the Heisenberg representation satis�es the equation of

motion

∂̄0Ô(t̄, x̄) = − i

~c

[
Ô(t̄, x̄), Ĥ(t̄)

]
, (2.7)

where Ĥ is the Hamiltonian operator formed on converting the �elds in the

classical Hamiltonian (expressed in terms of the conjugate momentum) to the

corresponding quantum operators:

Ĥ(t̄) =

∫
d2x̄

[
1

2
ˆ̄π2(t̄, x̄) +

1

2

∑
i

(
∂̄i

ˆ̄φ(t̄, x̄)
)2

− c2m2

2~2
ˆ̄φ2(t̄, x̄) +

λ

4~2
ˆ̄φ4(t̄, x̄) +

c4m4

4~2

]
.

Substituting this operator into the equation of motion on setting Ô = ˆ̄φ, and
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applying the commutator relation (2.6) determines

ˆ̄π(t̄, x̄) = ∂̄0
ˆ̄φ(t̄, x̄).

This result thus matches the classical conjugate momentum (2.3) except in op-

erator form. Applying this procedure again on setting Ô = ˆ̄π in the operator

equation, and substituting the expression of the momentum operator into the

result yields [
∂̄0∂̄0 −

∑
i

∂̄i∂̄i −
c2m2

~2
+

λ

~2
ˆ̄φ2(t̄, x̄)

]
ˆ̄φ(t̄, x̄) = 0. (2.8)

This e�ectively recovers the classical equations of motion except converting the

�elds to the corresponding quantum operators.

The full quantum-operator may be divided into two components:

ˆ̄φ(t̄, x̄) = Φ̄(t̄, x̄)Î + δ ˆ̄φ(t̄, x̄). (2.9)

Setting the quantum expectation of δ ˆ̄φ to zero further determines 〈 ˆ̄φ〉 = Φ̄. The

�eld Φ̄ thus forms the background mean-�eld with the δ ˆ̄φ representing �uctu-

ations on this background. Enforcing the Gaussian Hartree approximation on

the δ ˆ̄φ asserts that the quantum expectation of the connected correlators higher

than second order in these �uctuations vanish. The δ ˆ̄φ in this sense form a per-

turbation to the background mean-�eld. Applying the approximation, moreover,

re-expresses the expectation of the third and higher order correlators in terms of

the two-point, connected pieces (for a detailed explanation, see for instance [6]).

This, importantly, de�nes the quantum e�ects through the e�ective two-point

interactions.

The Hartree approximation in particular implies the three-point correlator in
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the dynamics may simplify to

〈 ˆ̄φ3(t̄, x̄)〉 = Φ̄3(t̄, x̄) + 3〈δ ˆ̄φ(t̄, x̄)δ ˆ̄φ(t̄, x̄)〉Φ̄(t̄, x̄).

Forming the expectation of the operator dynamics (2.8) and substituting this

approximation into the dynamics hence yields[
∂̄0∂̄0 −

∑
i

∂̄i∂̄i −
c2m2

~2
+

λ

~2

[
Φ̄2(t̄, x̄) + 3〈δ ˆ̄φ(t̄, x̄)δ ˆ̄φ(t̄, x̄)〉

]]
Φ̄(t̄, x̄) = 0.

(2.10)

This forms the dynamical equation specifying the evolution of the background

mean-�eld. The dynamics are notably identical to the classical scalar-dynamics

(2.2) except for the addition of the quantum, two-point correlator in the per-

turbations. This modi�cation in e�ect forms a perturbative quantum-correction

to the classical background1. The correlator, in particular, a�ects the dynamics

in a manner equivalent to the mass term and, thus, corresponds to a quantum

correction of the scalar mass.

First multiplying the operator dynamics (2.8) by ˆ̄φ(t̄, ȳ) and then forming

the expectation further yields,[
∂̄x,0∂̄x,0 −

∑
i

∂̄x,i∂̄x,i −
c2m2

~2

]
〈 ˆ̄φ(t̄, x̄) ˆ̄φ(t̄, ȳ〉) +

λ

~2
〈 ˆ̄φ3(t̄, x̄) ˆ̄φ(t̄, ȳ〉) = 0,

where the x subscript expressly denotes the action of the partial derivative on

only the site x, without a�ecting the y-coordinate. The Hartree approximation

to the expectation of the resultant four-point correlator implies

〈 ˆ̄φ3(t̄, x̄) ˆ̄φ(t̄, ȳ〉) =

Φ̄3(t̄, x̄)Φ̄(t̄, ȳ) + 3
(

Φ̄2(t̄, x̄) + 〈δ ˆ̄φ(t̄, x̄)δ ˆ̄φ(t̄, x̄)〉
)
〈δ ˆ̄φ(t̄, x̄)δ ˆ̄φ(t̄, ȳ)〉.

1This identi�cation will later inform the choice for the initial conditions: the mean-�eld set
identically to the classical scalar, and the perturbations to be vacuum quantum �uctuations.
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Combining these results and applying the mean-�eld dynamics (2.10) yields the

dynamical equation for the perturbation, two-point correlator:

[
∂̄x,0∂̄x,0 −

∑
i

∂̄x,i∂̄x,i −
c2m2

~2

+
3λ

~2

[
Φ̄2(t̄, x̄) + 〈δ ˆ̄φ(t̄, x̄)δ ˆ̄φ(t̄, x̄)〉

] ]
〈δ ˆ̄φ(t̄, x̄)δ ˆ̄φ(t̄, ȳ)〉 = 0. (2.11)

This result forms the basis to calculate the quantum back-reaction on the mean-

�eld evolution 2.10. The procedure for obtaining the correlator back-reaction

will be examined presently.

2.2.2 Mode Expansion

Expanding the perturbation �eld into a set of orthogonal mode functions f̄k̄

forms the standard method to evaluate the quantum correlators. The expansion

is constructed to satisfy

δ ˆ̄φ(t̄, x̄) =
√
~c
∫

d2k̄

(2π)2

[
ˆ̄ak̄f̄k̄(t̄, x̄) + ˆ̄a†

k̄
f̄∗
k̄
(t̄, x̄)

]
, (2.12)

where the
{
f̄k̄

}
comprise an orthonormal set, and the {ˆ̄a†

k̄
} and {ˆ̄ak̄} are re-

spectively the creation and annihilation operators. These operators, further, are

time-independent and asserted to satisfy

[ˆ̄ak̄, ˆ̄a
†
l̄
] = (2π)2δ2(k̄− l̄). (2.13)

This notably ensures that the mode expansion recovers the constraint on the full

quantum-operator to satisfy the constraint canonical commutator (2.6)2.

2The mode expansion may be determined to reproduce the canonical commutator most
readily for the vacuum initial conditions (examined in Section 2.2.4); the conservation of the
canonical commutator hence implies this constraint remains valid at later times. (This proce-
dure is outlined in the particular case of fermions on the lattice in the subsequent Section5.6.1.)
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The annihilation operator also de�nes the vacuum state:

ˆ̄ak̄ |0〉 = 0.

This will provide the initial state of the system; and in the Heisenberg picture,

this initial state-vector will remain the relevant state acted on at all subsequent

times.

Substituting the expansion into the correlator 〈δ ˆ̄φ(t̄, x̄)δ ˆ̄φ(t̄, ȳ)〉 and applying

the de�nition of the vacuum state yields

〈δ ˆ̄φ(t̄, x̄)δ ˆ̄φ(t̄, ȳ)〉 = ~c
∫

d2k̄

(2π)2
f̄k̄(t̄, x̄)f̄∗

k̄
(t̄, ȳ).

This expression substituted into the correlator dynamics (2.11) hence determines

[
∂̄0∂̄0 −

∑
i

∂̄i∂̄i −
c2m2

~2
+

3λ

~2

[
Φ̄2(t̄, x̄) + 〈δ ˆ̄φ(t̄, x̄)δ ˆ̄φ(t̄, x̄)〉

]]
f̄k̄(t̄, x̄) = 0,

(2.14)

where the orthogonality of the modes and the action of the dynamics on only the

x-coordinates (and not the y-coordinates) yields the linear expression in the mode

function. Substituting the mode expansion (2.12) into the two-point correlator

evaluated at identical coordinates further yields

〈δ ˆ̄φ(t̄, x̄)δ ˆ̄φ(t̄, x̄)〉 = ~c
∫

d2k̄

(2π)2

∣∣f̄k̄

∣∣2 . (2.15)

This result and the dynamical equation (2.14), together, determine the evolution

of the mode functions. The correlator expression (2.15) at equal points, moreover,

speci�es the quantum back-reaction on the mean-�eld dynamics entirely in terms

of the mode functions. These results thus determine the quantum evolution

through the mode functions

The correlator (2.15) evaluated at equal coordinates, signi�cantly, is diver-

gent. Subtracting the initial (t̄ = 0) correlator though eliminates the constant,
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in�nite contribution to the correlator. This modi�cation, in both the mean-�eld

(2.10) and mode function (2.14) dynamics, generates a contribution to the equa-

tions of motion equivalent to a mass term. The subtraction, thus, corresponds

to performing a standard, mass renormalization throughout the dynamics:

m2 → m2 − 3λ

c2
〈δ ˆ̄φ(0, x̄)δ ˆ̄φ(0, x̄)〉.

2.2.3 The Scaled System

Performing the transformation to dimensionless variables (2.4), with the �eld

scaling imposed on both the mean-�eld and perturbations yields

[
∂0∂0 −

∑
i

∂i∂i −
c2

~2

+
1

~2

[
Φ2(t,x) + 3〈δφ̂(t,x)δφ̂(t,x)〉

] ]
Φ(t,x) = 0, (2.16a)

[
∂x,0∂x,0 −

∑
i

∂x,i∂x,i −
c2

~2

+
3

~2

[
Φ2(t̄, x̄) + 〈δφ̂(t,x)δφ̂(t,x)〉

] ]
〈δφ̂(t,x)δφ̂(t,y)〉 = 0. (2.16b)

These notably exclude any explicit parameters in the potential.

Forming the mode expansion for this case yields

δφ̂(t,x) =
√
~c
∫

d2k

(2π)2

[
âkfk(t,x) + â†kf

∗
k(t,x)

]
, (2.17)

where each mode function independently satis�es the scaled, correlator dynamics

(2.16b). The {â†k} and {âk} are respectively the creation and annihilation oper-

ators in the scaled system. These are time independent; and the requirement for

them to reproduce the commutator (2.6) determines

[âk, â
†
l ] =

λ

|m|
(2π)2δ2(k− l). (2.18)
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The coordinate scaling also implies

k̄ = |m| k, (2.19)

and, hence, the ladder commutators in the scaled system (2.18) and the unscaled

system (2.13) further determine that these operators transform under

ˆ̄ak̄ =

√
λ

|m|
âk,

ˆ̄a†
k̄

=

√
λ

|m|
â†k. (2.20)

Equating the mode expansion in the scaled case (2.17) and the unscaled case

(2.12) through the �eld scaling, on applying also the ladder scalings (2.20) and

the wave-vector relation (2.19) hence determines

f̄k̄ =
√
|m|fk. (2.21)

This relation importantly will be necessary later to de�ne the initial mode func-

tions.

Lastly, substituting the mode expansion into the two-point correlator of the

perturbation �eld yields

〈δφ̂(t,x)δφ̂(t,x)〉 = ~c
λ

|m|

∫
d2k

(2π)2
|fk|2 . (2.22)

The resultant expression notably involves the mass and coupling only in the ratio

λ/ |m|. This ratio also notably performs an identical role in the correlator to the

Planck's constant and thus setting the value of the ratio determines the scale of

the quantum corrections on the mean-�eld dynamics.

The scaling importantly has eliminated the explicit mass and coupling pa-

rameters in the dynamics (2.16) with the parameters present only through the
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correlator where they occur in the ratio λ/ |m|. This importantly limits the pa-

rameter choice to simply choosing this ratio; and further implies that the results

obtained for a particular choice are entirely general to any coupling and mass in

that ratio.

2.2.4 Initial Conditions

Mean Field

Considering the previous identi�cation of the analogy between the mean �eld

and the classical scalar hence informs the intialization of the mean �eld to the

Gaussian con�guration (1.1); and the mean-�eld time derivative zero everywhere.

This will enable examining the Gaussian attractor basin of the quantum oscillons

directly in comparison to the classical case.

Quantum Perturbation

The expansion (2.12) de�nes the perturbation �eld in particular at initializa-

tion in terms of the initial mode functions; and further yields the perturbation

time derivative speci�ed through the mode functions in particular at the initial

time. This fully speci�es the independent, perturbative variables at initialization

through the initial modes and their time derivatives.

From the assertion that the perturbation �eld is small, the initial mode func-

tions in the unscaled system are chosen to yield the vacuum con�guration of

the perturbations where the two-point correlator of the �eld vanishes. This im-

plies that the (unscaled) mode dynamics (2.14) reduce to the free (λ = 0) vacuum

equations except with the mean-�eld term modifying the mass. The initial modes

accordingly are the familiar, plane-wave con�guration:

f̄k̄(0, x̄) =
1√
2ωk̄

exp(ik̄ · x̄), ∂̄0f̄k̄(0, x̄) = i

√
ωk̄

2
exp(ik̄ · x̄), (2.23)

where ωk̄ = (k̄2 + c2m2/~2 + 3λΦ̄2/~2)
1
2 includes the mean �eld modi�cation
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to the mass term. Self-consistency with the vacuum mode-con�guration requires

that the background mean-�eld � determining the ωk̄ in each mode � occupies

the classical-vacuum Φ̄2 = c2m2/λ.

Applying the mode functions scaling (2.21) in particular, at the initial time

yields our choice for the initial quantum-perturbation and its time derivative

in the scaled system; the �eld-transformation (2.4b), also at the initial time

yields the background-vacuum Φ2 = c2 to fully specify the scaled, vacuum mode

functions.

2.2.5 Lattice Site Quantity: Mode Functions

The quantum evolution may directly be computed from the equation (2.16a) and

(2.16b) with the two-point correlators computed through the expansion in the

scaled mode functions (2.22).

Discretizing the system onto a square lattice of N sites in each direction

corresponds to forming a discrete momentum space of equally many sites; and

accordingly, the mode expansion of the lattice �eld is reduced to the �nite sum

over the conjugate lattice. The numerical simulation thus entails N2 modes and

the one mean �eld, on a N ×N lattice: for any reasonably large lattice (N � 1),

the total number of sites scales as ∼ N4.

2.3 The Ensemble Method

An alternative method to evolve the quantum system eliminates all the perturba-

tions from the dynamics, requiring instead an ensemble of M scalar �elds {ϕn}.

These �elds are constructed to satisfy

ϕn(t,x) =
√
~c
∫

d2k

(2π)2

[
ck,nfk(t,x) + c∗k,nf

∗
k(t,x)

]
, (2.24)

where the fk are the quantum mode functions and {ck,n} are random, complex

numbers.
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Each of the ensemble �elds e�ectively comprises a linear combination of the

mode functions; the linearity of the mode dynamics (2.16b) hence implies these

linear combinations each also satisfy this equation. Evolving an ensemble �eld

under the mode dynamics thus e�ectively evolves all the mode functions simul-

taneously.

The random numbers for each k, on averaging over the ensemble are chosen

to satisfy a Gaussian form of mean zero and variance

〈ckc∗l 〉E =
1

2

λ

|m|
(2π)2δ2(k− l),

〈ckcl〉E = 0.

This provides equality between the two-point correlator and the variance of the

ensemble �elds:

〈ϕ(t,x)ϕ(t,x)〉E = ~c
λ

|m|

∫
d2k

(2π)2
|fk|2 = 〈δφ̂(t,x)δφ̂(t,x)〉,

(2.25a)

〈∂0ϕ(t,x)∂0ϕ(t,x)〉E = ~c
λ

|m|

∫
d2k

(2π)2
|∂0fk|2 = 〈∂0δφ̂(t,x)∂0δφ̂(t,x)〉.

(2.25b)

In particular, choosing the set of the real-part Ak,n and of the imaginary-part

Bk,n of ck,n to both be independent, Gaussian distributions of mean zero and

variance

〈AkAl〉E = 〈BkBl〉E =
1

4

λ

|m|
(2π)2δ2(k− l)

may produce the Gaussian constraints on the complex, random numbers. These

purely real numbers thus, in e�ect, replace the ladder operators in the quantum

dynamics.

The equivalence (2.25) may be obtained expressly at the initial time for the

vacuum mode functions (2.23 and 2.21). This, therefore, ensures the initial en-
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semble variance matches the resultant quantum correlator for the choice of vac-

uum initial conditions. The e�ective evolution of all the mode functions in the

ensemble dynamics hence implies that these modes forming each ensemble �eld

at all times equal those evolved from the vacuum in the mode function method.

This, therefore, crucially ensures the equivalence (2.25) remains valid throughout

the evolution.

The quantum correlator can hence consistently be replaced everywhere in the

dynamics with the ensemble variance:

[
∂0∂0 −

∑
i

∂i∂i −
c2

~2

+
1

~2

[
Φ2(t,x) + 3〈ϕ(t,x)ϕ(t,x)〉E

] ]
Φ(t,x) = 0, (2.26a)

[
∂0∂0 −

∑
i

∂i∂i −
c2

~2

+
3

~2

[
Φ2(t,x) + 〈ϕ(t,x)ϕ(t,x)〉E

] ]
ϕn(t,x) = 0. (2.26b)

This result thus speci�es the quantum dynamics entirely in the mean-�eld and

the ensemble.

2.3.1 Lattice Site Quantity: Ensemble Method

The quantum evolution may directly be computed from the equation (2.26a) and

(2.26b) with the quantum back-reaction on the mean-�eld computed through the

variance of the ensemble �eld (2.25a).

Numerical analysis on a square lattice of N sites per dimension entails dis-

cretizing both the mean-�eld and the M ensemble �elds on this space: for any

reasonably large lattice (N � 1), the total site number scales as ∼ MN2. The

ensemble size (corresponding to the continuum of Gaussianly distributed Ak,n)

in principle is in�nite. In practice though, a �nite number of �elds is su�cient



Chapter 2. Quantum Oscillons: Dynamical Model 30

for numerical convergence of the mean-�eld evolution to reasonable accuracy3.

Notably, if M < N2 at convergence, the system increases in size slower than the

∼ N4 scaling on explicitly computing the mode functions.

2.4 Discretized Dynamics

2.4.1 Derivatives

Discretizing the system at the level of the dynamics presently will yield the

equations to evolve on the lattice4. Implementing this where the dynamics are

�rst expressed in terms of the conjugate momentum will provide the basis to

implement the evolution using a leap-frog algorithm.

The standard approximation of the di�erential with respect to xµ, accurate

to second order in ∆xµ, is explicitly

∂µf(x) ≈ f(x+ µ)− f(x− µ)

∆xµ
+O

(
(∆xµ)2

)
; (2.27)

and likewise, the second-order approximation to the second derivative satis�es

∂2
µf(x) ≈ f(x+ µ) + f(x− µ)− 2f(x)

(∆xµ)2
+O

(
(∆xµ)2

)
.

These provide the essential relations for completing the discretization.

3For an in�nite random ensemble, the imposed initial ensemble-variance exactly matches the
initial, quantum, two-point correlator; while an analytic expression for the initial variance may
provides an alternative method to accurately compute this quantity. In practice, for a �nite
ensemble-size, the variance di�ers from the full ensemble, and hence from the initial two-point
correlator. Computing the di�erence between the analytic expression for the correlator and
the ensemble variance, therefore, provides a measure of the precision of the �nite ensemble in
reproducing the quantum result.

4Constructing the discrete equivalent to the continuum action (2.1) and applying the vari-
ational principle may likewise yield the lattice dynamics. Forming the discrete equivalent of
the continuum dynamics provides a simpler alternative. The results in both cases though are
identical.
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2.4.2 Classical Lattice-Dynamics

Constructing a scaled momentum satisfying

π(t,x) = ∂0φ(t,x) (2.28)

will provide a convenient variable to formulate the lattice dynamics. (This no-

tably de�nes the scaled momentum analogously to the unscaled version (2.3)

except x̄0 → x0 and φ̄ → φ. The de�nition would also equate precisely to the

conjugate momentum obtained on scaling the action.) Substituting this de�ni-

tion into the scaled, classical equations of motion (2.5) hence implies

∂0π(t,x)−

[∑
i

∂i∂i +
c2

~2
− 1

~2
φ2(t,x)

]
φ(t,x) = 0.

Applying the approximation of the �rst and second derivative respectively to the

momentum term and the spatial gradient and evaluating the equation only at the

discrete coordinates Xi on the lattice and at the discrete time-step T yields the

discretized version of the dynamics. The approximation of the �rst derivative ap-

plied to the scaled momentum (2.28) (and evaluating this only at the discretized

spacetime coordinates) further de�nes the discrete momentum. Rearranging the

resultant equations into an expressly iterative form hence speci�es

π(T + 0, X) = π(T − 0, X)

+
∑
i

∆x0

(∆xi)2
[φ(T,X + i) + φ(T,X − i)− 2φ(T,X)]

+ ∆x0

[
c2

~2
− 1

~2
φ2(T,X)

]
φ(T,X), (2.29a)

φ(T + 0, X) = φ(T − 0, X) + ∆x0π(T,X). (2.29b)

These relations form the basis to evolve the discrete system in a leap-frog al-

gorithm. This procedure evaluates the momentum at a time T + ∆t using the
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scalar �eld at time T in the former equation (2.29a). The discretized momentum

(2.29b) consequently enables calculating the �eld values at T+2∆t. This process

may then be repeated to iteratively evolve the �elds.

2.4.3 Quantum Lattice-Dynamics

The momentum of the scaled, mean-�eld may be construed analogously to the

classical de�nition (2.28):

Π(t,x) ≡ ∂0Φ(t,x). (2.30)

(This notably equates precisely to the expectation value of the momentum ob-

tained on quantizing the scaled action with the expectation of the (unscaled)

perturbations vanishing.) Substituting this de�nition into the scaled, quantum,

mean-�eld dynamics (2.26a), and evaluating the equation only at the discrete

coordinates Xi on the lattice and at the discrete time-step T yields

∂0Π(T,X)−
[∑

i

∂i∂i +
c2

~2

− 1

~2

[
Φ2(T,X) + 3〈ϕ(T,X)ϕ(T,X)〉E

] ]
Φ(T,X) = 0. (2.31)

Applying the approximation of the �rst and second derivative respectively to the

momentum term and the spatial gradient yields the discretized version of the

dynamics; the approximation of the �rst derivative applied to the quantum mo-

mentum (2.30) further de�nes the discrete momentum. Rearranging the resulting
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equations into an expressly iterative form speci�es

Π(T + 0, X) = Π(T − 0, X)

+
∑
i

∆x0

(∆xi)2
[Φ(T,X + i) + Φ(T,X − i)− 2Φ(T,X)]

+ ∆x0

[
c2

~2
− 1

~2

[
Φ2(T,X) + 3〈ϕ(T,X)ϕ(T,X)〉E

]]
Φ(T,X),

Φ(T + 0, X) = Φ(T − 0, X) + ∆x0Π(T,X). (2.32)

These relations enable evolving the quantum mean �elds in a leap-frog algorithm

equivalently to the classical dynamics. The essential di�erence though is the

requirement to also calculate the ensemble variance, modelling the quantum back-

reaction, in the scalar �eld evolution.

Obtaining the iteration relations for the ensemble �elds enables evaluating

this variance at successive time steps in the simulations. De�ning the momentum

of the ensemble �eld

πn(t,x) = ∂0ϕn(t,x),

analogously to the mean-�eld momentum (2.30) (and also the classical momen-

tum (2.28)), enables discretizing the ensemble dynamics equivalently to the mean-

�eld. The resultant equations in expressly iterative form thus specify:

πn(T + 0, X) = πn(T − 0, X)

+
∑
i

∆x0

(∆xi)2
[ϕn(T,X + i) + ϕn(T,X − i)− 2ϕn(T,X)]

+ ∆x0

[
c2

~2
− 3

~2

[
Φ2(T,X) + 〈ϕ(T,X)ϕ(T,X)〉E

] ]
ϕn(T,X),

ϕn(T + 0, X) = ϕn(T − 0, X) + ∆x0πn(T,X). (2.33)

These determine that a leap-frog algorithm may likewise evolve the ensemble

�elds to hence obtain the quantum back-reaction at successive time-steps.
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Quantum Oscillons: Simulations

3.1 Parameter Choice for Numerical Simulations

Imposing throughout the dynamics natural units of ~ = c = 1 simpli�ed the

numerical implementation. This fully sets the evolutionary scales in the trans-

formed, classical system. The single ratio in the potential parameters remains to

uniquely determine the perturbation scale (equivalent to ~; see Section 2.2.3) in

the transformed, quantum system. This ratio, for simplicity, is also asserted to

satisfy λ/m = 1 throughout.

3.2 Numerical Code

Converting the iteration relations (2.29) for the classical �eld and the conjugate

momentum into a C code provided the basis for evolving the classical system.

The scalar �eld initialization simply involves setting the discretized �eld to the

value of the Gaussian ansatz (1.1) evaluated at the relevant lattice sites. These

values were computed using the standard library of C maths operations, with the

amplitude and radius provided through user input on intialization. The initial

conjugate momentum is likewise set simply to zero everywhere on the lattice.

Computing the classical evolution was accomplished, conveniently, using only a

34



Chapter 3. Quantum Oscillons: Simulations 35

serial code.

Implementing the iteration relations (2.32) of the quantum mean-�eld and

those of the ensemble �eld (2.33) also in a C code provided the basis for com-

puting the quantum evolution. The code applies the Open MPI libraries to

parallelize the evolution for the large number of ensemble �elds. Each processor

evolves the mean �eld and corresponding momentum to compute the ensemble

evolution, with a subset of the ensemble �elds and the corresponding momenta;

an MPI reduce command calculates the summation over the ensemble variables

to compute the ensemble variances in the dynamics.

The mean �eld initialization involved simply setting the values of the �eld

and the conjugate momentum across the lattice, equivalently to the classical

�elds. Forming the discrete equivalent to the mode expansion of the ensemble

�elds (2.24) enabled constructing the initial con�guration in wave-vector space.

The standard vacuum solution chosen for the initial mode functions (see Sec-

tion 2.2.4) determines the expansion at the initial time forms, simply, a Fourier

Transform. This was computed e�ciently using the FFTW routines. A standard

numerical method generates the randomly distributed numbers for the coe�-

cients in the expansion. This procedure employs a standard algorithm [73] to

generate random numbers uniformly distributed in the interval [0, 1). A further

routine subsequently converts these to Gaussianly distributed variables, where

the mean and variance for those coe�cients of a single k-value are set to satisfy

the constraints (see Section 2.3) on the ensemble. The e�ective independence

of the random numbers in the initial stage ensures the variance for coe�cients

of di�ering wave-vectors vanish, to impose also the independence of the distinct

k-components in the expansion (see again Section 2.3). A characteristic value in

the initial stage, importantly, determines the pseudo-random numbers generated;

hence, setting this distinctly on each processor ensures each processor contributes

a distinct set of �elds to the total ensemble.



Chapter 3. Quantum Oscillons: Simulations 36

3.2.1 Ensemble Size

The discretization of the system onto a square lattice of N = 256 ensured com-

putations over practical durations. Choosing the lattice spacing ∆x1 = ∆x2 =

∆x3 = 0.8 and time-step ∆x0 = 0.05 provided convergence in the evolved �elds.

These intervals, in particular, eliminated the (evidently unphysical) regrowth of

the �eld observed at larger values of these parameters for some of the initial

conditions.

A very large number of realizations M was necessary in this inhomogeneous

system: the results only converged aroundM = 60000 and above. For a lattice of

N = 256, this is a very small gain in computational operations time compared to

solving all the N2 = 65536 mode functions. This demonstrates the considerable

di�culty in computing the quantum e�ects on the oscillon dynamics

3.3 Choosing Initial Conditions

The space of the Gaussian initial pro�le (1.1) in the region A0 ∈ [−4, 4] and

r0 ∈ [0, 4] covers the main boundaries of the classical-oscillon basin of attraction

[42]. Each point in the region of negative, initial amplitude A0 corresponds, in a

non-trivial manner, to a point in the positive region. The initial con�guration, in

particular, evolves through half an oscillon to a maximum excursion, equivalent

to an initial Gaussian con�guration of opposite sign in the amplitude. This indi-

cates that studying only the positive range of A0 is su�cient to comprehensively

examine the quantum system in contrast to the classical case. Excluding also low

values of r0 and A0 where no oscillons are formed classically further constrains

the parameter space to study, and correspondingly reduces the necessary com-

putation time. The pairings (A0, r0) are thus chosen in the region A0 ∈ [0.25, 4]

and r0 ∈ [1, 4]. In particular, every pairing was constructed in this space, from

the minimum value of each range and increasing at discrete intervals of 0.25 up

to the maximum.
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These initial con�gurations were then evolved on the square lattice of size

N = 256 with a converged ensemble of size M = 2562 = N2. Selected parameter

pairings were repeated on larger lattices of N = 384 and N = 512. The ensemble

size was also increased toN2 for each larger simulation, ensuring these maintained

the condition obtained on the smallest lattice for the ensemble to converge. For

�xed lattice spacing, the increasing lattice-size provided a test for �nite volume

e�ects; and for a decreasing lattice spacing to maintain �xed physical volume,

the set of larger simulations provided checks on resolution e�ects.

3.4 The Oscillon End-point

A convenient de�nition for the endpoint of the oscillon will be when the envelope

of the oscillations at the centre of the con�guration �rst crosses the classical

in�ection-point in the scaled potential.

The abrupt change in the dominant frequency of oscillations from below to

above the mass threshold provides an distinctive indication of the collapse of the

classical oscillon. This equivalently occurs where the amplitude of the con�gu-

ration is only slightly greater than the in�ection-point in the (classical) poten-

tial, closest to the vacuum around which the �eld oscillates; then the amplitude

rapidly decreases. (For the details on the eventual decay, see Section 1.2.2). Ex-

amining the �eld in real space provides a more convenient measure to determine

the �nal collapse � without the need to complete a Fourier transform to examine

the frequency components present. Where the envelope of the (scaled) �eld at the

centre of the con�guration �rst ceases to extend further than the in�ection-point

in the (scaled) classical potential, and closest to the vacuum around which the

oscillations occur, will therefore provide a convenient de�nition for the endpoint

of the oscillon.

Applying the �eld scaling (2.4b) to the classical potential in the (unscaled)
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action (2.1) yields

V (φ) ≡ −c
2m4

2~2λ
φ2(t,x) +

m4

4~2λ
φ4(t,x) +

c4m4

4~2
.

The in�ection-point φf of this potential in the scaled system may hence readily

be determined:
d2

dφ2
V (φ)

∣∣∣∣
φf

= 0 ⇒ φf = ±
√
c2

3
.

This implies φf = ±
√

1/3 for the choice of natural units. For also the �eld con-

�guration oscillating around the positive vacuum (see section 2.1.3), the positive

value will form nearest the vacuum around which the con�guration oscillates and

thus de�ne the endpoint of the oscillon.

3.5 Typical Evolution Pro�les

A comparison of the core �eld-value from identical, Gaussian con�gurations (1.1)

in both the classical and quantum case in �gure 3.1 illustrates the typical evolu-

tion both inside (left) and outside (right) the basin of attraction.

The classical evolution inside the basin of attraction (top, left) settles into an

oscillon lasting beyond the simulation time; while outside the basin (top right),

the central value decays below the in�ection-point of the potential in under two

oscillations of the �eld.

In the quantum case, the initialization outside the basin of attraction evolves

almost identically to the classical system: no oscillon forms and the �eld decays

in only a few oscillations. The quantum back-reaction, thus, generates no sig-

ni�cant e�ect outside the basin of attraction. Comparing the evolution within

the basin of attraction, however, readily shows a distinctive change on including

the quantum e�ects. The oscillations in the classical case remain fairly constant

through the majority of the evolution and below the classical in�ection-point;

the quantum case, though, decays within a gently decreasing envelope until after
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Figure 3.1: The time evolution of the centre of a con�guration with an initial

condition inside (left) and outside (right) the basin of attraction for the classical

(top) and quantum (bottom) oscillon, where the �eld amplitude is in units of√
m2/λ. (A0, r0) = (2.25, 2.5) and (1.0, 1.5) respectively in the initial Gaussian

con�guration (1.1). The con�gurations oscillates around the positive vacuum

(black, dashed), and the change in amplitude to above the in�ection-point (red,

dashed) of the classical potential de�nes the endpoint of the oscillon.

approximately one hundred periods, the amplitude ceases to extend below the

classical in�ection-point.

These cases, for the particular choice of initial Gaussian con�guration, also

demonstrate a much larger decrease in the amplitude within than �rst two oscilla-

tions in the quantum system, compared to the classical case. The Gaussian form,

only an approximation to the oscillon con�guration causes an initial transient, in

both the classical and quantum system. This transient is relatively small in the
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classical case illustrated; and, thus, con�rms the highly accurate approximation

of the Gaussian to the oscillon con�guration in the classical system. The compar-

atively larger, initial decay in the quantum case simply illustrates the Gaussian

con�guration forms a poorer approximation to the true oscillon in the quantum

system.

The quantum case, nonetheless, demonstrates that the e�ective Hartree ap-

proximation may yield long-lived, oscillon solutions. This con�rms certain Gaus-

sian con�gurations are su�ciently similar to these solutions to evolve into the

true oscillon-con�guration. The lifetimes of these oscillons are evidently much

shorter than in the classical case. Further, the manner of the eventual decay by

these quantum oscillons is distinctly di�erent: while the classical con�gurations

terminate in a sudden collapse (see Section 1.2.2 for a discussion), the quantum

oscillations gradually deceases in amplitude. No signi�cant change, in particu-

lar, occurs in the quantum evolution when the oscillation amplitude nears the

classical in�ection-point. This notably contrasts the collapse at this stage of the

classical oscillon, indicating that this classical value has no relation to the shape

of the e�ective, quantum potential.

The quantum oscillon also, notably decays towards the positive vacuum of

the classical potential: verifying that the renormalization procedure, although

only approximate, is adequate.

Several of the initial con�gurations in the quantum system generate an oscil-

latory envelope at a longer period, modulating the basic, underlying oscillations.

Simulations at the higher resolutions for a selection of such cases eliminated the

strong modulations (see �gure 3.2, left for an illustrative case). These artefacts

of the coarser lattice spacing (grey line, in the �gure 3.2) essentially vanished on

the increase in spatial resolution (blue line, in the �gure 3.2), to generate purely

oscillations around the positive vacuum (black, dashed line, in the �gure 3.2) at

an amplitude below the in�ection-point (red, dashed line, in the �gure 3.2) of the

potential . This revealed the endpoint of these oscillatory con�gurations to have
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clearly occurred around the time when the �eld in even the coarsest simulation

�rst crossed the classical point of in�ection. Any distinctive appearance of com-

parably strong beats further to those explicitly examined were hence disregarded

as unphysical; and the end of oscillations considered to be where the �eld �rst

crossed the in�ection-point1.

A beat-frequency of shorter period and smaller amplitude than the evidently

unphysical instances also modulated the underlying oscillations in several in-

stances (see �gure 3.2, right for an illustrative case; the grey line shows the lower

spatial resolution). Evolving a set of these instances at the higher spatial resolu-

tions (blue line, in the �gure 3.2) demonstrated the beat-frequencies remained.

This type of beat-frequency notably also modulated the underlying oscillon in

several classical cases.

Beating of this type has been observed in previous, detailed examinations

of scalar �eld oscillons in similar contexts: formed in symmetric double-well

potentials, from Gaussian initial conditions [37, 43]2. A careful examination

demonstrated certain values of the radius in the initial pro�le (1.1) produce a

local resonance in the oscillon lifetime. Small deviations from such a resonant

radius generates the type of beating observed in the present quantum-simulations

[37].

This type of beating has also been found in the scalar �eld oscillons, evolved

from Gaussian initial conditions in the sine-Gordon potential [43]. The oscillons

forming in the SU(2)-gauged, Higgs system also demonstrate similar beating

dependent on the particular initial conditions [55].

1These strong beats arose at varied points in the parameter space of initial pro�les. The
stark emergence of the beat-frequency after initially evolving similarly to neighbouring points in
parameter space, together with the peculiar nature of the beat-frequency in comparison to the
evolution on the underlying oscillons was su�cient to distinguish the unphysical modulations.
Completing the larger simulations to con�rm the beat-frequencies to be unphysical in every
such case was prohibitively time consuming.

2An investigation of oscillons in an anti-symmetric, double-welled potential has also noted
the occurrence of these beat-frequencies [36].
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Figure 3.2: Initial conditions illustrating the two, distinct classes of beat-

frequencies modulating the oscillon evolution where the �eld amplitude is in units

of
√
m2/λ. These oscillate around the positive vacuum-value (black, dashed) and

when crossing the in�ection-point (red, dashed), are considered to have decayed.

The choice of (A0, r0) = (2.5, 1.5) in the Gaussian initial condition (1.1) produces

the large-amplitude modulations of the oscillon (grey) on the coarser lattice spac-

ing. These entirely vanish (blue) for �xed volume, on reducing the lattice spacing.

This determines the large-amplitude modulations are purely lattice spacing arte-

facts. The initial choice of (A0, r0) = (2.5, 2.5) (right) demonstrates the smaller-

amplitude and shorter-period modulations of the oscillon (blue) for the coarser

lattice spacing. These remain qualitatively unchanged (although the frequency

changes slightly) on reducing the lattice spacing, with the volume �xed. This

type of beat-frequency also occurs in the classical evolution; this is illustrated

in the oscillon con�guration in �gure 3.1 (top, left), where the beat-frequency

is more pronounced than in the quantum illustration above. The examination

of this type of modulations in various, more detailed studies implies these beat-

frequencies are a physical, long-lived transient, resulting from the discrepancy

in the initial conditions to the true oscillon structure. These modulations also

include an unphysical component demonstrated in their change on reducing the

lattice spacing. This may be neglected though in the measurement of the oscillon

lifetime.
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These studies thus demonstrate a physical type of beat-frequency, with the

form depending on the initial conditions. This beating is hence likely a long-

lived transient, occurring due to the discrepancy between the Gaussian initial

conditions and the true oscillon3.

The similar nature of the modulations in this study and the persistence on

the change in lattice resolution, therefore, con�rms the physical nature of these

small-amplitude modulations in the current simulations. Their changing ampli-

tude and frequency on the change in resolution implies an unphysical component

also in their behaviour. This therefore indicates the lattice spacing simply pro-

vides insu�cient resolution to accurately study these physical beat-frequencies.

Examining this feature, though, is not the subject of the present study. Accu-

rately determining the beat-frequencies is also not required to detect the existence

of the underlying oscillon, nor is the overall decay of the oscillon substantially

altered through the details of the beating frequencies (see also Section 3.7 sub-

sequently). Setting the resolution to accurately reproduce these beat-frequencies

therefore may reasonably be neglected to examine the oscillon lifetimes.

Any similar, comparably weak beat-frequencies, further to the sample exam-

ined, were therefore considered to represent a physical modulation (if not of accu-

rate amplitude and frequency) without simulations at a higher lattice-resolution.

The oscillons modulated by these beat-frequencies likewise were regarded to be

physical, with their decay obtained to su�cient accuracy.

3This is analogous to evolving a `kink and anti-kink' con�guration from imprecise initial
conditions. The system rapidly sheds energy to form the combined kink and anti-kink but with
oscillations superimposed on this soliton con�guration. (See [37] for a more detailed comparison
between the oscillon and kink cases.)



Chapter 3. Quantum Oscillons: Simulations 44

3.6 Evolution of the Oscillon Frequency

Figure 3.3: The frequency (in units of |m|) for a classical (blue) and the cor-

responding quantum (red) oscillon where (A0, r0) = (2.25, 2.5) in the Gaussian

initial condition (1.1), with also the natural frequency (black, dashed) equal to

the particle mass of
√

2 (in units of |m|) in the classical system.

An illustration of the oscillation frequency in �gure 3.3 contrasts the typical

oscillon evolution from a particular, Gaussian initial condition (1.1) in both the

classical (blue) and quantum (red) case.

This classical con�guration evolves to a slowly increasing oscillation-frequency

with the oscillon persisting throughout the simulated period. The mass of the

particle-like excitation for the classical system importantly determines the nat-

ural frequency. This equals to
√

2 |m| (�gure 3.3, black line) for the chosen

quartic potential (see the equation (2.1)). The classical frequency notably re-
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mains smaller than this natural frequency throughout the entire period. This

case, thus, demonstrates the behaviour typical of the stable phase in the classical

evolution (see Section 1.2.2 for details).

In the quantum case, the oscillon similarly evolves to a slowly increasing fre-

quency (again smaller than the classical, particle-like mass), although the exact

value is lower than the classical oscillations. The natural frequency of the oscillon

subject to the quantum perturbations is uncertain. Nonetheless for the pertur-

bation correlator almost equal to the vacuum value at the end of the simulation

and with the application of the renormalization scheme, the mass of the parti-

cle excitation in the quantum case will approximately equal the classical mass.

Thus, the threshold at the classical particle-mass of
√

2 (�gure 3.3, black line) is

likewise a signi�cant bound in the quantum case, bounding the frequency of the

oscillon.

The stage shortly before the classical oscillon decays through the in�ection-

point in the potential accompanies an abrupt change from below to above the

radiation frequency (see Section 1.2.2) � for the current system, the frequency

would expectedly increase rapidly from less to more than the particle-like mass of
√

2. This forms a distinctive endpoint to the classical con�guration. In contrast,

the quantum case shown in the �gure 3.3 passes through the classical in�ection-

point when t̄ ≈ 460 |m|−1. Examining the frequency around this time reveals no

dramatic transition. The frequency continues in the gradual increase below the

particle mass with this increase only changing to be slightly more irregular when

t̄ ≈ 600 |m|−1.

This change occurs around a duration equal to the crossing time (t̄c =

204.8 |m|−1) of the lattice and after the oscillon is expected to have decayed. The

increased irregularity, therefore, likely corresponds to the radiation produced on

the collapse of the oscillon, having crossed the periodic boundaries and reached

the former centre of the oscillon.

Examining the oscillation evolution over the entire lattice-plane con�rmed
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Figure 3.4: The distance dpeak (in the scaled coordinates) from the origin to

the extrema of the oscillon evolution, evaluated when the core value Φ(t,0) is

also an extremum. This stage in the core evolution provides the time expectedly

corresponding to a (global) extrema of the oscillon con�guration. The extrema

of the oscillon are shown throughout the main evolution of the con�guration,

during the time t̄ = 100 |m|−1 to t̄ = 320 |m|−1 for the quantum case examined

in frequency space � evolving the Gaussian initial condition (1.1) where (A0, r0) =

(2.25, 2.5). This con�rms the oscillon remains relative static near to the origin

on the lattice compared to the initial, characteristic width of the pro�le.

that the change in the amplitude at the origin occurred in the peak value of the

oscillon. The �gure 3.4 shows the distance (in the scaled coordinates) from the

origin to the extrema in the oscillon, when the core-value Φ(t,0) is an extremum.

For a pure oscillon con�guration around the origin, the extrema of the core values

may precisely determine when the oscillatory con�guration also forms a global

extremum. The radiation (generated through the decay of the con�guration),

though, complicates the oscillon evolution on the periodic lattice. This radia-

tion expectedly contain much less energy than the oscillon throughout the main
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evolution of the oscillations and, hence, are expected to only negligibly alter the

extrema of the oscillations. The waves, further, only infrequently cross the core of

the oscillon, on travelling through the periodic volume. This implies the radiation

may only infrequently alter the oscillon extrema, and likewise infrequently may

disrupt the correspondence between the core and global extrema4.) The extrema

of core value therefore provide a reasonable estimate of when the extrema in the

oscillations occur. Measuring the length from the origin to the extremum of the

oscillon in these instances thus determines any change in the central position

of the con�guration. This, importantly, involves no gradual shift, which could

potentially generate the gradual decrease noted in the core value throughout the

evolution. The position of the oscillation extrema, moreover, con�rm the central

extremum of the oscillon remains close to the origin on the lattice, compared to

the initial, characteristic width of the pro�le. This, hence, con�rms the core �eld

values (Φ(t,0)) provides a reasonable indication of the evolution of the oscillon

amplitude.

The continual increase in frequency at the origin (before the later irregu-

larities), therefore, genuinely characterizes the oscillon amplitude. This grad-

ual change without any distinctive indicator when the oscillon decays notably

matches the ambiguity in the endpoint de�ned through the �eld amplitude. The

oscillation envelope therefore provides a measure, equally suitable to any measure

involving the frequency, for de�ning the decay of the quantum oscillon.

4The radiative waves superimposed on the oscillon pro�le may alter the resultant extrema of
the oscillations, and also disrupt the correspondence between the core extrema and the oscillon
extrema. This radiation will begin to a�ect central region of the oscillon pro�le around the origin
after approximately the lattice crossing time. The seeming peaks in the distance (dpeak) to the
extrema, after this time likely correspond simply to waves crossing the oscillon and consequently
shifting where the peak in the oscillon con�guration occurs. While the energy in the radiation
is much less than the energy in the oscillon, the wave amplitude correspondingly will be much
smaller than the oscillon amplitude. This, therefore, assures the neglect of the waves provides
a reasonable approximation throughout the majority of the oscillon evolution. The much larger
size of the lattice compared to the oscillon radius, also, indicates the radiation will cross the
oscillon only infrequently. This further validates the neglect of the waves on the extrema of the
oscillations. The low crossing frequency likewise implies the waves only infrequently alter the
core value and hence assures the infrequent disruption of the correspondence between the core
and the global extrema of the con�guration.
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3.7 Determining Oscillon Lifetimes

The categorization of the evolution types and the de�nition of the oscillon end-

point allow a consistent determination of the oscillon lifetimes over both the

classical and quantum initialization space.

An illustration of a classical oscillon in �gure 3.1 (top, left) shows the typical

stability of the oscillations around the positive (broken-phase) minimum over the

simulation. The envelope never decreases below or nears the in�ection-point; and

hence a slight modi�cation in the precise de�nition of the endpoint creates no

change in the detection of the oscillon.

The characteristic quantum-oscillon in �gure 3.1 (bottom, left) shows the

gradual decay in amplitude. This implies the precise lifetime will depend on the

de�ned �eld-value for the endpoint. Nonetheless, a slight shift in the value de�n-

ing the decay point only slightly alters the lifetime due to the gradual decrease

of the envelope. The altered endpoint would, further, produce a change to the

lifetime similarly in each case. This hence assures the di�erences between the

lifetimes would remain largely unaltered.

The de�nition of the oscillon endpoint is thus robust for both the classical

and quantum systems.

Additionally, the distinctive variants in the quantum system demonstrated

(in the previous section) that the strong beat-frequency distinguishes that the

oscillations have decayed in actuality when the envelope �rst crosses below the

classical point of in�ection. This endpoint importantly is largely unchanged

(�gure 3.2, left) in the high-resolution simulations eliminating the unphysical

modulation. The �rst modulated oscillation at an amplitude below the classical

point of in�ection thus provides a reliable de�nition of the endpoint in such cases.

Those cases where a small, physical beat-frequency modulates the oscillations

equally signify the decay to arise when the envelope �rst decreases below the

classical in�ection-point (�gure 3.2, right). Again, the position where the net,
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modulated �eld-amplitude �rst decreases below this threshold suitably de�nes

the endpoint.

These de�nitions, notably, in the case of beat-frequencies involve the net,

modulated �eld, although the instant where the envelope decreases below the

in�ection may de�ne an equally valid endpoint. This poses an ambiguity in

the oscillon lifetimes evaluated through the alternative methods. These variable

de�nitions (in each case) though involved only minor di�erences compared to the

computed lifetimes.

The changing in the beat-frequency on varying the lattice spacing also may

alter the instant when the net, modulated-�eld amplitude decreases below the

in�ection point. These di�erences in each cases examined at di�ering lattice

spacings, though, were negligible compared to the oscillon lifetime.

This consistency in the obtained values (at di�ering lattice spacings and for

distinct de�nitions) therefore ensures the choice to examine the net, modulated

�eld forms a robust quantity to determine the lifetime.

These small-amplitude beat-frequencies further generate oscillations of the

net �eld around the in�ection classical point over a period. This creates an am-

biguity in precisely de�ning the endpoint of the oscillon. The choice to de�ne the

�rst instant when the oscillation amplitude decreases below the in�ection-point

to be the endpoint thus creates a systematic error compared to the alternative

crossings of either the net �eld or the envelope. Nonetheless, the chosen crossing

provides consistency in the de�nition over the entire parameter-space, and the

variation from choosing the alternative points for the cases examined (compared

to the calculated lifetime) were minor.

3.8 Mapping the Attractor Basin

Applying the de�ned endpoint to the oscillons over the parameter space of Gaus-

sian initial conditions (1.1) reveals the classical (�gure 3.5) and quantum (�gure
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3.7) basin of attraction.

Figure 3.5: The lifetime of classical oscillons projected onto the parameter space

of Gaussian initial conditions (1.1).

The classical case shows oscillons arise from the Gaussian initial conditions in

two main regions: over a broad section of the positive-amplitude con�gurations

and in a narrower range of the negative amplitudes. These are separated by

a band of instability failing to generate oscillons around a zero amplitude. A

minimum initial width, thus, bounds these regions, de�ning the minimum size

(and corresponding minimum-energy) necessary for generating an oscillon.

These classical oscillons last at least O(104 |m|−1) and have not decayed be-

fore the end of the simulation, con�rming previous observations [42�44, 46, 52].

This bifurcated attractor basin presents a potentially misleading illustration.

In actuality, the oscillons of a positive initial amplitude oscillate to values above
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the vacuum, corresponding to a negative-amplitude initialization (see Section

2.1.3); and vice-versa. The initial con�gurations in the positive and negative

regions thus form � although in a non-trivial manner � related pairings.

Examining the energy of the Gaussian con�gurations, at least in the classical

case, o�ers a method to establish an approximate relation between the positive

and negative-amplitude initial conditions. Constructing the classical Hamiltonian

of the action (2.1) and applying the �eld scaling (2.4) yields

H(t) =
m2

λ

∫
d2x

[
1

2

∑
µ

(∂µφ(t,x))2 − c2

2~2
φ2(t,x) +

1

4~2
φ4(t,x) +

c4

~2

]
. (3.1)

Substituting the initial, Gaussian con�guration (1.1) and the choice of zero mo-

mentum into the classical Hamiltonian and evaluating the integral hence deter-

mines

H =
1

2
A2

0r
2
0 −

1

3
A3

0r
3
0 +

1

16
A4

0r
4
0. (3.2)

This provides a precise expression of the initial energy for the classical con�gura-

tion. The reasonably accurate approximation of the Gaussian to the true oscillon

con�guration (see Section 1.2.1 and 3.5) implies that this expression also remains

a close approximation to the energy of the subsequently evolving oscillon at the

maxima of the amplitude, where the �eld momentum again equals zero. Only

a small change in the radius of the oscillons typically occurs throughout their

evolution [36, 42]. This therefore indicates con�gurations of a positive, initial

amplitude A0 may oscillate to an approximately Gaussian con�guration of an

identical radius but a negative A0 at the maximum of the oscillation, where the

maximum amplitude corresponds to a con�guration of equal energy to the initial

Gaussian. The con�gurations of a negative initial amplitude may, likewise, evolve

to a minimum amplitude of equal energy to the initial con�guration. This, thus,

indicates an equivalence in the classical evolution of the positive and negative

initial amplitudes.

Examining the contours of equal energy in the parameter space of the Gaus-
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sian con�gurations (�gure 3.6) demonstrates that large ranges of positive am-

plitudes match to much smaller ranges of negative amplitudes, and the equal

ranges gradually change to more negative amplitudes at smaller radii. The range

of positive and negative initial-amplitudes at a �xed radius, generating classical

oscillons (�gure 3.5) closely matches these energy contours. This con�rms the set

of positive amplitudes generating oscillons closely corresponds to the negative-

amplitude con�gurations of an equal radius and initial energy.

Figure 3.6: The contours of equal energy for the Gaussian initial conditions (1.1)

with zero momentum. This illustrates the highly similar structure in the range of

the positive and negative, initial amplitudes (A0) at �xed radius (r0), to generate

classical oscillons (�gure 3.5).

Quantizing the Hamiltonian (3.1) in the Hartree approximation yields quan-

tum corrections to the classical expression. These modi�cations equal zero in the

vacuum state and, thus, the classical result for the energy (3.2) remains valid at
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the initial time in the quantum case. The quantum corrections in the subsequent

evolution, in general, though are non-zero, and thus the classical result is inval-

idated at later times. (Calculating the corrections would involve obtaining the

correlators of the quantum perturbation and hence poses an equivalent di�culty

to the challenge of solving the quantum dynamics. Neither is a suitable analytic

approximation readily attainable to examine the quantum corrections.) This

purely quantum modi�cation, thus, eliminates the simple, classical equivalence

of each initial, positive-amplitude con�guration to the Gaussian of correspond-

ing negative amplitude but equal energy, and vice versa. The stronger di�erence

between the Gaussian and the true oscillon con�guration (Section 3.5) in the

quantum case, further, indicates that the energy evaluated for the Gaussian �eld

con�guration (1.1) provides a poorer estimate of the actual energy on the evolv-

ing the quantum oscillon. This again invalidates the simple, classical equivalence

between the evolution of the positive and negative amplitudes. The positive, ini-

tial amplitudes generating oscillons, nonetheless, evolve to a state of amplitude

above the vacuum, equal to a negative, initial amplitude (see Section 2.1.3), and

vice versa. A careful examination of the initial maximum and minimum (imme-

diately subsequent to the initial transient) might enable more precisely matching

the positive and negative initial amplitudes evolving to equivalent con�gurations.

This is unnecessary though for examining the quantum e�ects on the oscillon life-

time. The assured equivalence in the evolution of the positive and negative initial

amplitudes implies that the positive initial conditions, thus, incorporate the en-

tirety of quantum oscillon-evolution. Examining the positive region, therefore,

provides a su�cient range of amplitude to fully assess the quantum e�ects on the

oscillon lifetime.

The �gure 3.7 illustrates the quantum equivalent to the classical evolution in

the �gure 3.5, except across the restricted range in Gaussian initial conditions.

Oscillons in the quantum case arise over a largely similar region of the Gaussian

parameter space to those in the classical case (white lines, 3.7). In particular,
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Figure 3.7: The lifetime of quantum oscillons projected onto the parameter space

of Gaussian initial pro�les (1.1). The white contours indicate the classical basin.

a band for amplitudes below a value around the in�ection-point generates no

oscillons; and a minimum radius also bounds the attractor-basin threshold. The

quantum perturbations, though, alter the precise bounds of the attractor basin

from the classical case. Most signi�cantly also, these oscillons, subject to the

quantum �uctuations, persist for considerably less time than the classical coun-

terparts: typically ending before O(103 |m|−1).

3.9 Conclusion

These results have shown the �rst quantum, dynamical simulations of oscillons.

These demonstrated that (with ~ = c = λ/m = 1) the quantum �uctuations

signi�cantly reduced oscillon lifetimes compared to the classical case. Further,

the decay under the quantum evolution occurs gradually, without distinctive
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change in either the oscillation amplitude or frequency. This markedly contrasts

the classical oscillons. The detailed decay-process, though, remains unclear.

Conducting the comparison of the Gaussian attractor basin (for positive, ini-

tial amplitudes) showed that both the classical and quantum oscillons result in a

similar region of the parameter space � despite the distinctly di�ering evolution

and lifetimes. This indicates that, at least initially, the purely classical terms

in the potential � the terms present in both cases � dominate the formation of

oscillons. The stronger, initial decay in the amplitude of the quantum oscillons,

in contrast to the classical case, implied that the quantum back-reaction alters

the oscillon con�guration. Those con�gurations creating an oscillon, thus, react

to the quantum �uctuations. The progression after the initial transient to a com-

paratively stable phase, similar to the classical case, indicates that the classical

components of the potential dominate during this early phase of the evolution;

and the quantum �uctuations predominantly alter the later decay.

These quantum, dynamical simulations have been accomplished through ap-

plying the inhomogeneous Hartree approximation to solve the equations of motion

on a two-dimensional lattice. The construction of a statistical ensemble of �elds

was used to approximate the quantum correlators. These �elds are of the form

ϕn(t,x) =

∫
d2k

(2π)2

[
ck,nfk(t,x) + c∗k,nf

∗
k(t,x)

]
, (3.3)

where the random numbers ck,n are chosen to reproduce the ladder-operator

correlators. The statistical mean of these ordinary numbers in e�ect replaces

the quantum average of the operators in the system. This hence determines

the variance of the ensemble �elds may replace the quantum correlators in the

dynamics:

〈ϕn(t,x)ϕn(t,x)〉E −→ 〈δφ̂(t,x)δφ̂(t,x)〉. (3.4)

Requiring each ensemble �eld to satisfy the mode dynamics (2.14) implies that

the constructed equation e�ectively evolves all the mode functions simultaneously
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within the ensemble �eld. This ensures the variance of the ensemble �elds (with

the correct choice of the random numbers) corresponds to the quantum correlator

at all times. Establishing this equivalence, thus, forms the basis to examine the

quantized dynamics through the ensemble �elds.

The ensemble method, in principle, involves in�nitely many �elds for a pre-

cise equivalence between the quantum correlator and the statistical variance. In

practice, the use of a �nite ensemble size to accurately approximate the exact

quantum value o�ered the possibility to reduce the computational requirements

compared to evolving the mode functions. This method, though, for the quantum

dynamical simulations of the oscillon provided negligible computational bene�t.

The tests demonstrated the need for an ensemble size of M = 60000 to obtain

su�cient convergence in the �elds. On the square lattice of N = 256 point, this

was only marginally fewer �elds than the N2 = 65536 modes required in the

mode function method.

This result contrasts the use of the ensemble method in the quantum, dy-

namical simulations of Q-Balls [13] in 3 + 1D. These only required an ensemble

size less than one tenth of the total modes on the lattice. The oscillon case like-

wise contrasts the 2 + 1D simulations of domain walls [8]. These also required a

consistently smaller ensemble size compared to the mode functions. This discrep-

ancy demonstrates the exceptionally di�cult nature of examining oscillons in the

quantum regime. The strongly inhomogeneous nature of the oscillon likely cre-

ates the need for a large ensemble to accurately examine the quantum dynamics

of the (highly non-perturbative) con�guration. Obtaining the oscillon lifetimes

also involved the examination of the �eld evolution directly, without any averag-

ing � unlike in the domain wall case � to potentially help reduce any statistical

�uctuations. This might necessitate considerable accuracy in the approximation

of the ensemble to the quantum correlators, and accordingly requires a large

ensemble size.

The comparable size of the ensemble to the number of modes notably matches
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the results in 1 + 1D simulations applying a statistical ensemble to compute the

quantum, fermion correlators [74]. This may indicate that the low dimension-

ality of the oscillon simulations also results in the ine�ciency of the ensem-

ble method for examining the quantum scalar-�eld. Implementing the ensemble

method might therefore provide a signi�cant increase in the computational e�-

ciency for similar investigations in three and higher dimensions.



Chapter 4

Introduction: Fermions

The preceding discussion and the detailed investigation into oscillons have pri-

marily concerned bosonic �elds. A comprehensive understanding of quantum

�elds though must also incorporate fermionic degrees of freedom.

Their inherently quantum nature prevents any classical approximation pro-

viding an accurate treatment, and accordingly analysing fermions is problematic.

Perturbation theory provides a powerful technique for understanding fermionic

�elds and ultimately establishing their central role within the Standard Model of

particle physics: Quantum Electrodynamics provides a principal component in

the current, foremost theory for explaining fundamental physics [75].

Various contexts of potentially fascinating and relevant consequence involve

fermions in an inherently non-perturbative regime. The consequent e�ects in

several important cases will be examined in this chapter, where the discussion

will consider the results in relation to the methods for solving the systems. In-

corporating both the quantum and the non-perturbative nature in the analysis

poses a considerable challenge. The examined applications of these methods

though demonstrate the importance of solving such di�cult systems, to obtain

a comprehensive and accurate understanding. An overview of the techniques

for examining fermionic systems will presently form the introductory discussion

to the various applications. These methods, in particular, will ultimately be

58
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exploited for analysing quantum tunnelling in an idealized laboratory scenario.

4.1 Solving Fermion Dynamics

The Dirac equation provides the basis for understanding fermions:

(
γµDµ +

mc

~

)
Ψ(x) = 0. (4.1)

This strikingly simple equation, remarkably, determines various important fea-

tures of fermions [76]. The equation may be constructed essentially on attempting

to obtain �eld dynamics also satisfying relativistic, Lorentz invariance [75, 77].

This condition producing the Dirac equation inherently determines the spin-half

nature of fermions [77]. The equation, importantly, also implies the existence of

the negative-energy, anti-particle positrons [78].

Adding a fermion-gauge interaction through

i
q

~
Ψ̄(x)γµAµ(x)Ψ(x)

into the action for the Dirac equation, together with the terms for classical

electromagnetism, produces the standard, quantum electrodynamics Lagrangian.

This equally forms a remarkably simple basis for the analytical power to describe

nearly all phenomena across macroscopic scales to 10−3cm [75]. The (three-

point) gauge-fermion interaction yields an inherently two-point correlator in the

equations of motion and correspondingly the mode function method o�ers a con-

venient method to evaluate this contribution [75, 79]. This procedure (in contrast

to the bosonic case) enables accurate evaluation of the fermionic e�ects without

further approximation.

Implementing the mode expansion on the lattice, equivalently to the bosonic

case, involves a summation over the discrete mode space. This process likewise

for the fermions, on a d-dimensional lattice of NL sites in each direction, entails
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evaluating the functions for each of the Nd
L mode values in the summation. The

problem is also moderately worsened in the fermionic case since the fermionic �eld

comprises a four component spinor and the modes include both the particle and

anti-particle contributions: creating a factor of eight in the total �eld components

required for evolution. This Nd
L scaling equivalently to the bosonic case therefore

implies that any case with d > 1 requires increasingly extensive computational

resources.

Canonical quantization imposes an anti-commutation relation on the fermion

�elds. The ladder operators, on forming the mode expansion subsequently, en-

capsulate the anti-commutation structure; and, hence, the mode analysis to eval-

uate the correlators intrinsically also incorporates the anti-commuting properties.

Simply substituting a single ensemble for the fermionic operator equivalent to the

bosonic case, consequently, fails to reproduce the fermionic correlator. This sin-

gle ensemble crucially involves only ordinary, commuting numbers excluding the

possibility to represent the anti-commuting nature. Creating a second ensemble

may resolve this problem [74, 80, 81]. The �elds explicitly satisfy

ΨM,c(x) =

√
~c
2
Vx
∑
s

∫
d3k

(2π)3

(
ξk,s,cψ

(U)
k,s (x) + ζk,s,cψ

(V )
k,s (x)

)
,

ΨF,c(x) =

√
~c
2
Vx
∑
s

∫
d3k

(2π)3

(
ξk,s,cψ

(U)
k,s (x)− ζk,s,cψ

(V )
k,s (x)

)
,

where {ψ(U)
k,s } and {ψ

(V )
k,s } are the modes with {ξk,s,c} and {ζk,s,c} independent

sets of (complex) random numbers, and Vx is the total, real-space volume. These

integrands, importantly, di�er only in the plus or minus sign; these very simi-

lar counterparts are termed the �male� and �female� �elds. The plus and minus

signs ensure computing combinations of both the male and female �elds may

yield an integrand involving a sign di�erence between the term in the ψ
(U)
k,s and

that in the ψ
(V )
k,s for a �xed wavevector. This, importantly, reproduces the struc-

tures resulting on applying the anti-commutator relation of the ladder-operators,
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unattainable if only using a single ensemble.

A judicious choice of the random numbers (as in the the bosonic case) may,

hence, ensure these combinations of male and female �elds precisely reproduce

the quantum correlator. Choosing the random numbers in particular to form a

Gaussian random distribution proportional to the ladder anti-commutators [74,

80, 81] implies

〈T ˆ̄Ψ(x)ÔΨ̂(x)〉 = −〈Ψ̄M (x)ÔΨF (x)〉E = −〈Ψ̄F (x)ÔΨM (x)〉E ,

for Ô an arbitrary operator. (The male and female �elds thus notably perform an

interchangeable role, and in practice the quantum correlator may be constructed

through the average of these symmetric expectations.) These Gaussian distribu-

tions create the evident di�culty, also present in the bosonic case, of requiring

an in�nite ensemble; and this problem is worsened in the fermionic case through

the additional requirement to evolve two ensembles, both in�nite. The method

in practice, though, equivalently to the bosonic case, might reproduce the cor-

relators to a su�cient accuracy when the total number of both the male and

female �elds is smaller than the mode space: thus, reducing the computational

requirements required, compared to the standard, mode evolution.

This ensemble method for fermions has demonstrated an exceptional e�ec-

tiveness in examining the the fermionic back-reaction on classical, scalar-�eld

oscillons [80]. The computations uncovered an exponential decay in the total

oscillon-number starkly contrasting the slow, power law decay in the absence of

fermions for the ensemble size only around one hundredth of the total lattice

sites.

A 1 + 1D system to examine charge-parity (CP) violation within an Abelian-

Higgs model carefully determined the variation in ensemble size to produce con-

vergence in the results only for an ensemble larger than the total lattice-sites

[81]. This analysis though proved the reliability of the method for examining CP
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violation � the fermion number accurately approximating the dynamical Chern-

Simons number characterizing the gauge �elds and thus satisfying the theoretical

expectation. A further study examined CP-violation in a 3 + 1D system for the

SU(2)-Higgs �elds [74]. The ensemble method provided su�cient accuracy to

examine the particle production for the ensemble sizes typically around a third

to a tenth of the total sites (N3
L) on the lattice.

These systems thus demonstrate the potential for the ensemble method for

fermionic �elds to detriment computational e�ciency in 1 + 1D but provide a

bene�t in 3 + 1D. The signi�cant enhancement for the case involving fermionic

back-reaction onto oscillons further examined a 2 + 1D space. This thus further

supports the ensemble method for fermions provides bene�t only in higher than

1 + 1D.

4.2 Fermions on the Lattice

Naively discretizing the fermion dynamics onto the lattice creates the familiar

�doubler problem�. This phenomenon involves 24 = 16 fermion species � each

with two charges and two spin states � occurring on the lattice and these unphys-

ical particles potentially contributing pronounced lattice-artefacts. A variety of

methods may help to alleviate the spatial doublers including most notably Wilson

fermions [82] and also staggered fermions [83, 84] or Ginsparg-Wilson fermions

[85]. The Wilson Fermion methodology may, equivalently, ameliorate the tempo-

ral doublers; a judicious choice of the initial conditions with a su�ciently small

time-step, alternatively, may suppress the presence of temporal doublers [82, 86].

This problem of doublers on the lattice results, essentially, through the fer-

mion evolution involving the solutions to a �rst-order di�erential equation. The

basic origin of the doublers may be most readily examined on considering a

homogeneous, �rst-order di�erential equation of a one-dimensional function:

∂x1f(x1) = 0.
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Each component of the fermionic spinor notably satis�es (dependently) an equa-

tion of this type on applying the Dirac equation (4.1) for masless fermions

(m = 0) in either a homogeneous system or, equivalently, in the static state

of a 1 + 1D system.

This �rst-order equation, in the continuum, implies only a single, possible

solution, where f equals a constant. Forming the standard, symmetric1 dis-

cretization of the �rst-order derivative (see equation 2.27) yields

f(X1 + 1)− f(X1 − 1)

∆x1
= 0.

This forms the equivalent �eld equation on the lattice to the continuum, �rst-

order equation. The lattice expression, importantly, involves the �eld evaluated,

rather than at consecutive intervals, two intervals apart. This, hence, implies the

even intervals may satisfy one solution, f(2n1∆x1) = C1 and the odd sites may

satisfy an independent solution f((2n1 + 1)∆x1) = C2, for integers n1 and where

C1 and C2 are constants. The solution matching the continuum result, thus,

reproduces the continuum dynamics on the lattice, while the alternative solution

forms a solution unique to the lattice. This result, an artefact of the discretiza-

tion, thus, encapsulates the origins of the doubler in the fermionic system.

Examining the fermionic propagator and the corresponding excitation-energy

spectrum, more formally, demonstrates the existence of these doublers on the

lattice in 3 + 1D (for a detailed discussion see for instance [86]). Forming the

naive discretization of the Dirac equation (4.1) on the lattice may yield the free-

1An asymmetric approximation to the �rst derivative may also be formed, involving function
the �eld at the chosen point f(X1) and either of the consecutive intervals: f(X1+1) or f(X1−1).
Using this asymmetric form would, importantly, invalidate the basic explanation for doublers.
The symmetric derivative, though, provides both the more accurate discretization on the lattice
and also retains the isotropic nature of derivative through not incorporating any directional
preference. This therefore forms the more desirable choice of discretization on the lattice. The
examination of the symmetric form, moreover, provides an intuitive insight the basic structures
in the lattice theory generating the doublers. Examining the fermionic propagator, may more
rigorously, demonstrate the existence of the doublers � this process is outlined, subsequently,
in the case of fermions in 3 + 1D.
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fermion propagator in wave-vector space:

S(K) =

mc
~ − i

∑
µ

1
∆xµ

γµ sin(Kµ∆xµ)(
mc
~
)2

+
∑

µ
1

(∆xµ)2 sin2(Kµ∆xµ)
, (4.2)

for the fermion mass m and the wavevector K (with components Kµ) on the

lattice. Subsequently integrating the temporal wave-vector component explic-

itly yields the time dependency of the propagator. The resultant expression

includes two terms: both the usual time-evolution factor in the continuum and

a further term involving a rapidly oscillating factor (−1)t. This indicates the

presence of the second temporal-species on the lattice and the corresponding

rapid-oscillations in time. These oscillations in practice are typically evident in

the physical variables oscillating between extrema on successive timesteps � and

superimposed on the physical variation corresponding to the continuum evolu-

tion.

Setting the initial conditions to purely the discrete equivalent of the con-

tinuum con�guration ensures initially only the physical particles are present.

Ultimately, energy transfer may create the temporal doublers in system. Typ-

ically though for su�ciently small lattice-spacings, this doubler production is

heavily suppressed throughout the simulation and hence prevents the distinctive

oscillatory disturbance. This method, accordingly, will provide the mechanism

to prevent the temporal doublers within the subsequent computations.

The integration of the propagator (4.2), further, determines the energy spec-

trum of the naively discretized Dirac equation:

sinh

(
ω∆x0

c

)
= ∆x0

√(mc
~

)2
+
∑
i

sin2(Ki∆xi).

A particle state corresponds to a local minimum in the energy surface. The

spectrum, hence, implies that the naively discretized system involves 23 fermion

species. These further subdivide into those corresponding to the usual time
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variation in the continuum and the temporal-doublers. This, hence, amounts to

the �nal count of 24 fermion species in the naively discretized system. The 23

spatial variants, signi�cantly, include both particles with a mass corresponding

to those particles in the continuum theory but also additional particles, forming

the spatial-doublers in the naive discretization.

Implementing instead the Wilson fermions on the lattice will provide the

method to eliminate the spatial doublers in the subsequent simulations. This

procedure involves adding a Wilson term to the action:

1

c

∫
cdtd3x

rw
2

∑
i

∆xiΨ̄(x)DiDiΨ(x),

where DiΨ(x) = (∂i − (iq/~)Ai(x)) Ψ(x). This additional term notably reduces

to zero in the continuum limit to recover precisely the Dirac fermions; but on

the lattice, the term importantly modi�es the energy spectrum. Setting the

Wilson parameter rW = 1 essentially modi�es the higher momentum modes to

entirely remove the energy degeneracy and produces a single energy-minimum

corresponding to the continuum particle state. Choosing the Wilson parameter

rW < 1 may still create doublers corresponding to local energy minima (for a

detailed examination in 1 + 1 see also [76]); but if the modi�cation to the energy

spectrum increases the energies to high values this may help prevent exciting

these unphysical particles.

The spatial doublers equivalently to the temporal doublers generate spatial

oscillations in the physical observables on the lattice-spacing scales. Selecting

the Wilson parameter to adequately limit these oscillations in practice provides a

su�cient method to choose the parameter value. The absence of the characteristic

spatial oscillations therefore will su�ciently validate the chosen rW < 1 in the

subsequent simulations.
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4.3 Quantum Tunnelling

Examining the potential for quantum interactions to generate tunnelling of a par-

ticle through a potential barrier will form the essential context for implementing

numerical simulations of fermions in the subsequent sections. Tunnelling through

a potential barrier, in general, is a distinctly quantum phenomenon. The paradig-

matic case occurs in quantum mechanics, for a particle classically con�ned by a

potential barrier of �nite strength [87]. Where the energy of the particle is less

than the potential barrier, the particle classically is unable to move through the

barrier. In quantum mechanics though, the location of the particle is determined

through a wavefunction satisfying the Schrödinger equation. The wavefunction

decays through the barrier but is non-zero, implying a �nite probability for the

particle to traverse the barrier. Continuity at the boundaries further constrains

the wavefunction in the free space, outside the classically allowed region to be

�nite. The result hence implies a �nite probability to observe the particle within

the classically forbidden region. This process occurs also in accordance with

the Heisenberg Uncertainty Principle [87]. The constraint on the uncertainty in

measuring both the position and the momentum of the particle precludes a zero

probability to detect the particle; and thus determines the quantum system to

involve this �nite probability for observing the particle to have tunnelled through

the barrier. This phenomenon historically has explained radioactive decay [88,

89]; while also being applied practically in scanning tunnelling microscopes [90]

and for everyday use in solid state memory [91].

Quantum �eld theory enables a second type of tunnelling. The quantum in-

teraction between di�erent particle species may enable the one kind to transmute

into the second in an oscillatory species-mixing. A barrier may form a classically

impenetrable obstruction to the original species while the second species may

freely travel through this region. The generated particle having traversed the

barrier may revert to the original species through the continuing quantum os-
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cillations, and thus produce the tunnelling into the classically forbidden region.

This process forms the basis of the standard �light shining through a wall experi-

ments� typically proposed to detect either axions [92, 93] or similar light particles

within the laboratory [94, 95].

The quantum �eld theory interactions enable a further mechanism for the

particles to tunnel through a barrier. This generalization to the preceding mech-

anism involves the original species transforming through pair-creation into a sec-

ond species able to travel through the barrier. These pair-created particles, on

passing through the barrier, subsequently annihilate to (re-)create the original

species. This �tunnelling of the 3rd kind� thus forms a distinct and purely quan-

tum mechanism for particles to traverse a barrier [96�98].

The process may occur in a (generic) non-local, e�ective theory, where the

tunnelling predictions hence form a test of the model. This may be the case,

in particular [96], where an electromagnetic �eld traps a particle in a particular

state, but an excited state of the atom may freely traverse the �eld.

Tunnelling of the 3rd kind also provides an alternative mechanism for the

standard �light shining through a wall experiments� [97, 98]. The photons may

encounter an opaque surface where they split into mini-charged fermions. For

the charge su�ciently small, the fermionic particles only weakly interact with

the opaque material. This essentially enables their free propagation through the

barrier. The fermion particles and anti-particle pairs subsequently annihilating to

photons again after traversing the barrier, thus, completes the tunnelling process.

Where this process occurs within a uniform magnetic �eld, the transmission signal

may be signi�cantly enhanced to detect the signal within a laboratory setup [97].

This o�ers a practical method to test the mini-charged particle extensions to

standard particle physics.

A uniform magnetic �eld external to an enclosed superconducting region

forms a variant to the standard light experiment for testing the existence of

mini-charged particles [98]. The magnetic �eld converting into the mini-charged
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fermions generates the tunnelling mechanism; while the superconductor although

enabling transmission, nonetheless strongly suppresses the classical magnetic �eld

within the barrier. This system thus provides the potential to test fundamental

physics in the laboratory. The detection of the tunnelled particles may con-

�rm the existence of mini-charged particles; or measurements may at least place

constraints on these extensions to the standard model. Determining the size

of the expected transmission and determining the regime where a distinctive

tunnelling signal may be detected therefore poses an interesting topic for consid-

eration. This process involves an inherently quantum interaction in an entirely

non-perturbative system, and thus forms a suitable case to examine through

quantum simulation on the lattice.

Examining the magnetic-tunnelling process within an idealized laboratory

scenario will form the central aim in the technical developments following. The

basic arrangement will involve two in�nite, planar sheets positioned parallel and

separated a short distance. These superconducting sheets thus divide the three-

dimensional space into three regions: the enclosed space between the sheets and

an external region to either side. The superconductors form the classical barrier

to the uniform magnetic �eld in the external regions, while a classical, planar

current within each external region (and parallel to the barriers) sources the

external �eld.

A classical Higgs-�eld may model the superconducting barriers (see for in-

stance [99]). Coupling the gauge �eld to this classical scalar generates a photon

mass dependent on the scalar. Constructing the scalar to involve a large, local-

ized �eld value may hence impede the photon propagation within this restricted

region. The scalar �eld thus e�ectively forms a barrier to the magnetic transmis-

sion. Excluding also a direct coupling between the Higgs �eld and the fermion

essentially enables the fermions to propagate through the barrier without a di-

rect interaction. The resultant magnetic transmission into the enclosed region

� comprising both the classically transmitted magnetic �eld and the tunnelled
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particles � may hence determine the magnetic tunnelling.

This system further forms a suitable context for applying the simulation tech-

niques devised for fermions. These will importantly provide the method for the

non-perturbative examination in the full QED theory for the idealized laboratory

scenario.



Chapter 5

Tunnelling of the 3rd Kind: Dynamical

Setup

5.1 Continuum Dynamics

5.1.1 Action

We consider a fermionic �eld and Higgs �eld coupled to a U(1) gauge �eld in

3+1 dimensions, Minkowski spacetime of positive signature:

S(x) =
1

c

∫
cdtd3x

[
− 1

4µ0
Fµν(x)Fµν(x)− jµ(x)Aµ(x)

−Ψ̄(x)γµDµΨ(x)− mc

~
Ψ̄(x)Ψ(x)− 1

2
Dµφ

†(x)Dµφ(x)

]
,

with Ψ̄ ≡ iΨ†γ0, and where the coupling occurs through the covariant derivatives

Dµφ(x) =
(
∂µ − i

e

~
Aµ(x)

)
φ(x),

Dµφ
†(x) =

(
∂µ + i

e

~
Aµ(x)

)
φ†(x),

DµΨ(x) =
(
∂µ − i

q

~
Aµ(x)

)
Ψ(x).

70
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The electromagnetic �eld tensor incorporates the standard (free) electric and

magnetic �elds while the second term in the action adds an external current into

the dynamics for generating the electromagnetic �elds. Massive fermions are in-

corporated in the fourth and �fth terms of the action, where the parameter m

speci�es the mass. The Higgs �eld, for modelling the barrier to the electromag-

netic �eld, is included in the �nal term. This scalar and the fermion each interact

with the gauge �eld through the couplings in the covariant derivative; though the

action notably excludes a direct interaction between the Higgs and fermion �eld.

The parameter e in the Higgs coupling speci�es the Higgs charge; and likewise,

q in the fermion coupling speci�es the fermion charge.

This action, further, is invariant under the gauge transformation

Ãµ(x) = Aµ(x) + ∂µλ(x), (5.1a)

Ψ̃(x) = exp
(
i
q

~
λ(x)

)
Ψ(x), (5.1b)

φ̃(x) = exp
(
i
e

~
λ(x)

)
φ(x), (5.1c)

thus forming a gauge freedom in the system.

For de�nitiveness, we employ the Weyl representation in the fermion algebra:

γ0 =

 0 iI2

iI2 0

 , γj =

 0 iσj

−iσj 0

 , (5.2)

satisfying the anticommutator-relation

{γµ, γν} = 2ηµνI4.
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These imply, further,

γ5 = −iγ0γ1γ2γ3,

=

 I2 0

0 −I2

 .

The fermion massm will de�ne the unit of mass in the subsequent simulations

and likewise the Higgs-charge e will de�ne the unit of mass. Both parameters will

in practice, ultimately, therefore, be set to unity in the equations of motion, with

the further physical variables implicitly expressed in relation to these quantities.

5.1.2 Higgs-Field Con�guration

Expressing the Higgs �eld in exponent form

φ = ρ(x) exp (iθ(x))

separates the �eld into its phase θ and modulus ρ and may reframe the Higgs

term in the action into the form

− 1

2
Dµφ

†(x)Dµφ(x) =

− 1

2
∂µρ(x)∂µρ(x)− 1

2
ρ2(x)

(
∂µθ(x)− e

~
Aµ

)(
∂µθ(x)− e

~
Aµ
)
.

The gradient of the modulus entirely decouples in this expression from the phase

and the additional �elds in the system. This enables either added source terms in

the action or equivalently a Lagrangian multiplier to �x the modulus to be static

and without these constraints otherwise contributing to the dynamics; these ad-

ditional terms may further cancel the static gradients. Thus for simplicity, the

modulus may validly be considered static and the gradient-term neglected in the
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dynamics, without examining the source terms imposing the constraints:

S =

∫
cdtd3x

[
− 1

4µ0
Fµν(x)Fµν(x)− jµ(x)Aµ(x)

−Ψ̄(x)γµDµΨ(x)− mc

~
Ψ̄(x)Ψ(x)− 1

2
ρ2(x)Dµθ(x)Dµθ(x)

]
. (5.3)

with Dµθ ≡ ∂µθ(x)− (e/~)Aµ.

Figure 5.1: The typical form of the imposed Higgs modulus (5.4) for the structural

parameters used in the subsequent simulations, where S = 5.7 and d = 1.5 with

also δ < ∆3 = 0.3 and M = Lz/2 = 9 determined on the choice of lattice size

and spacing applied in the subsequent tunnelling simulations (see Section 6.5.1

and Section 6.5.2). This plots shows the �eld value in particular for η = 1.

Choosing the form of the static Higgs-modulus, ultimately, sets the position

of the super-conducting barrier. The explicit form of the modulus imposed in
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the simulations is

ρ2(x) = ρ2(x3) ≡ 2η2

− η2

[
tanh

(
x3 + S/2 + d/2−M

δ

)
tanh

(
x3 + S/2− d/2−M

δ

)

+ tanh

(
x3 − S/2 + d/2−M

δ

)
tanh

(
x3 − S/2− d/2−M

δ

)]
. (5.4)

This creates two sheets aligned perpendicular to the z-direction (�gure 5.1).

The sheets are separated a distance S on the z-axis and equidistant from the

coordinate M along this direction. Each barrier extends a �nite width d in

the z-direction and throughout the entire perpendicular plane. The barriers each

increase to a maximum amplitude of ρ2(x3) = 2η2, with the parameter δ de�ning

the skin-width of the tanh function, in increasing from zero to the maximum

barrier strength.

5.1.3 Equations of Motion

Implementing the variational principle on the action (5.3) and choosing the tem-

poral gauge A0 ≡ 0 within the gauge freedom yields the dynamical equations:

1

µ0c
Σi∂iEi(x)− i q

~
Ψ̄(x)γ0Ψ(x) +

e

~
ρ2(x)D0θ(x)− j0(x) = 0, (5.5a)

1

µ0c
∂0Ei(x) +

1

µ0
Σj∂jFji(x) + i

q

~
Ψ̄(x)γiΨ(x)

+
e

~
ρ2(x)Diθ(x)− ji(x) = 0, (5.5b)

(
γµDµ +

mc

~

)
Ψ(x) = 0, (5.5c)

∂µ
(
ρ2(x)Dµθ(x)

)
= 0, (5.5d)
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with the temporal gauge on the chosen �at-space metric implying

Ei(x) = −c∂0Ai(x); (5.6)

the gauge �eld similarly determines the magnetic �eld through

Ba(x) =
∑
b,c

εabc∂bAc. (5.7)

These equations comprise the classical dynamics in the unconstrained, 3 + 1

dimensional system without imposing in particular any symmetry assumptions

on the �eld evolution. The electromagnetic �elds thus evolve coupled to the

superconducting barrier and the fermionic interaction, in the presence also of the

external current. Both the fermionic and the Higgs back-reaction onto the gauge

�eld contribute to the evolution in an analogous manner to this external current:

in e�ect, forming respectively a fermionic and Higgs current contribution to the

net current and likewise a fermion and Higgs charge contributing to the total

electric charge.

5.2 Continuum Quantum-Dynamics

5.2.1 Quantized Equations of Motion

The fermions require a quantum analysis to examine these intrinsically-quantum

particles. Contrastingly, the gauge �eld will form a sizeable magnetic �eld (and

ideally no electric �eld); hence, the gauge �eld corresponds to large occupation

numbers and, thus, occupies the classical regime. The Higgs �eld, modelling the

superconducting sheets, represents a classical barrier to a magnetic �eld, and

hence, may also reasonably be assumed to e�ectively occupy the classical regime.

A semi-classical analysis therefore, is employed to examine the system: a classical

treatment determines both the gauge and Higgs �eld dynamics, with the fermions
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in the quantum regime.

Completing this (limited) quantization promotes the fermionic �eld and the

conjugate momentum to an operator in the Heisenberg representation and im-

poses the canonical commutation relations on these operators:

{Ψ̂a(t,x), Ψ̂†b(t,y)} = ~c (2π)3 δ3(x− y)δab. (5.8)

Applying the Heisenberg equation of motion (2.7) to these �elds, equivalently to

the scalar �eld for the oscillon, yields the quantum dynamics of the fermions.

These, in e�ect, simply convert the �eld in the classical equation (5.5c) to the

corresponding Heisenberg operator. Applying the Heisenberg equations to the

gauge �eld in a complete quantization of the system would, likewise in e�ect,

reproduce the classical equation of motion for the gauge �eld, except converting

the gauge, electric and fermion �elds to operators. The quantum dynamics for the

gauge �eld, where this �eld is to be treated classically, may therefore simply be

obtained on converting the fermion �eld to an operator in the classical dynamics

(5.5a) and (5.5b).

Forming, lastly, the quantum expectation of these gauge-�eld operator equa-

tions yields the semi-quantized dynamics of the system:

1

µ0c
Σi∂iEi(x)− i q

~
〈T ˆ̄Ψ(x)γ0Ψ̂(x)〉+

e

~
ρ2(x)D0θ(x)− j0(x) = 0, (5.9a)

1

µ0c
∂0Ei(x) +

1

µ0
Σj∂jFji(x) + i

q

~
〈T ˆ̄Ψ(x)γiΨ̂(x)〉

+
e

~
ρ2(x)Diθ(x)− ji(x) = 0, (5.9b)

(
γµDµ +

mc

~

)
Ψ̂(x) = 0, (5.9c)

∂µ
(
ρ2(x)Dµθ(x)

)
= 0. (5.9d)

The quantized fermions, thus, evolve under the equation (5.9c) in a background of
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classical electromagnetic �elds and a superconducting barrier. This fermion �eld

back-reacts through the fermionic current in the equation (5.9b), onto the gauge-

�eld evolution. The quantum dynamics notably match the classical dynamics,

except the fermion dynamics now determine the behaviour of the operator �eld

and, most importantly, the gauge equations evolve the quantum, two-point cor-

relators of the fermion �eld. These importantly result on a precise quantum

treatment, in the limit where the gauge and Higgs �eld behave classically; and,

thus, the fermion correlators comprehensively encapsulate the quantum evolution

(both on- and o�-shell) to examine the consequent tunnelling e�ects.

5.2.2 Mode Expansion

An expression of the fermionic-�eld operator in the mode-space may provide the

basis to evaluate the fermion correlators determining the dynamics. The mode

expansion in particular may be constructed to satisfy

Ψ̂(x) =
√
~cVx

∑
s

∫
d3k

(2π)3

(
b̂k,sψ

(U)
k,s (x) + d̂†k,sψ

(V )
k,s (x)

)
, (5.10)

where Vx is the total, real-space volume. Each of {ψ(U)
k,s } and {ψ

(V )
k,s } comprises an

orthonormal set with these mode functions independently satisfying the fermion

equation of motion (5.5c):

(γµDµ +m)ψ
(A)
k,s (x) = 0. (5.11)

The {b̂†k,s} {b̂k,s} are respectively the creation and annihilation operators

for the fermionic particle and {d̂†k,s} {d̂k,s} are respectively the creation and

annihilation operators for the anti-particle. These are time-independent and
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asserted to satisfy1

{b̂k,s, d̂l,r} = 0,

{b̂†k,s, d̂l,r} = 0;

{b̂k,s, b̂†l,r} = V −2
x (2π)3 δ3(k− l)δsr,

{d̂k,s, d̂
†
l,r} = V −2

x (2π)3 δ3(k− l)δsr. (5.12)

The annihilation operators conjointly also de�ne the vacuum state:

b̂k,s |0〉 = 0,

d̂k,s |0〉 = 0 ∀k, s. (5.13)

This provides a standard, initial state of the system; and in the Heisenberg

picture, remains the state vector acted on at later times.

Substituting therefore the mode expansion (5.10) into the correlators forming

the fermionic currents, applying the de�nition of the vacuum state and also the

1 The choice of the ladder anti-commutators imposes a standard con�guration to satisfy the
constraint for the mode expansion (5.10) to reproduce the canonical �eld-commutator (5.8).
Validating the ladder commutator-structure in general may result on specifying the mode

functions at a particular time and enforcing the consistency constraint. The time invariance
of the �eld commutator hence ensures the determined constraint remains valid throughout
the evolution; and the time invariance of the ladder operators likewise imply the asserted
commutator structure remains unaltered.
This procedure may most readily be accomplished in the particular case of the vacuum

mode functions satisfying the imposed boundary conditions on the space. The vacuum modes
comprise the initial modes (see also Section 5.6.1), and therefore con�rming the ladder com-
mutators reproduce the canonical �eld-commutator for these modes may validate the choice of
the asserted structure of anti-commutators. The process, also, is expressly demonstrated, sub-
sequently, in the non-standard case of the ansatz mode-expansion with Neumann boundaries
on the lattice in the Section 5.6.1.
The necessary condition on the ladder operators enables further considerable variation in

the potential anti-commutator structures. This choice of the V −2
x (2π)3 factors in the relations

implies the dimensionality of the ladder operators equals the inverse square-root of volume;
and hence the number operators b̂†k,sb̂k,s and d̂†k,sd̂k,s corresponding to the ladder operators
form variables of dimensionality equal to the inverse volume. The eigenvalues of the number
operators therefore for this choice of the anti-commutators might be associated directly to the
number density of the fermion particles in the mode k.
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ladder commutators (5.12) yields

〈T ˆ̄Ψ(x)γµΨ̂(x)〉 =
~c
2

∑
s

∫
d3k

(2π)3

(
ψ̄

(V )
k,s (x)γµψ

(V )
k,s (x)− ψ̄(U)

k,s (x)γµψ
(U)
k,s (x)

)
,

(5.14)

with ψ̄
(A)
k,s ≡ iψ

(A)†
k,s γ

0. This expression of the correlator in the modes, thus

notably incorporates the quantum structure, implicitly, through the application

of the ladder commutators in obtaining the �nal expression.

The correlator expansion substituted into both the electric �eld equations

(5.9b) and (5.9a) and the mode dynamics (5.11), together with the expression

of the electric �eld in the temporal gauge (5.6) and the Higgs dynamics (5.5d),

therefore, fully de�ne the evolution of the quantized system.

5.2.3 The Ensemble Approach

An ensemble of �elds, analogously to the Ensemble Method in the bosonic case

(Section 2.3), may consistently replace the fermionic operator throughout the

gauge-�eld system to determine these semi-quantized dynamics. This method in

the fermionic case involves two sets of �elds to reproduce the correlator structure

of the fermions. These �elds in the respective sets are labelled `male', ΨM,c and

`female', ΨF,c conventionally, where the second index denotes the distinct element

within the set. The male and female �elds respectively are constructed according

to

ΨM,c(x) =

√
~c
2
Vx
∑
s

∫
d3k

(2π)3

(
ξk,s,cψ

(U)
k,s (x) + ζk,s,cψ

(V )
k,s (x)

)
,

ΨF,c(x) =

√
~c
2
Vx
∑
s

∫
d3k

(2π)3

(
ξk,s,cψ

(U)
k,s (x)− ζk,s,cψ

(V )
k,s (x)

)
,

where {ψ(U)
k,s } and {ψ

(V )
k,s } are exactly the previous, fermionic modes with {ξk,s,c}

and {ζk,s,c} each comprising a set of complex, random numbers. A statistical

average 〈·〉E over the ensemble may specify the random numbers and hence �elds
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forming the system.

The two sets of random numbers at each wave-vector are asserted to be inde-

pendent both from one another and likewise from the distributions at a di�erent

wave-vector. Each set further is chosen in the limit of an in�nite ensemble size

to form a Gaussian distribution of mean zero and variance

〈ξk,sξ∗l,r〉E = 〈ζk,sζ∗l,r〉E = V −2
x (2π)3 δ3(k− l)δsr,

where the variables in this limit denote a frequency density and, accordingly, the

statistical average involves an integration over the variable space.

This, on applying the de�nition of the vacuum state (5.13) provides direct

equality between the renormalized correlators forming the fermionic current and

the variance of the male and female �elds at a particular instant:

〈T ˆ̄Ψ(x)γµΨ̂(x)〉 = −1

2

(
〈Ψ̄M (x)γµΨF (x)〉E + 〈Ψ̄F (x)γµΨM (x)〉E

)
. (5.15)

In particular, we may choose the set of the real-part Wk,s,c and imaginary-

part Xk,s,c of the ξk,s,c, and likewise the real-part Yk,s,c and imaginary-part Zk,s,c

of the ζk,s,c each form an independent, Gaussian distribution of mean zero and

ensemble-variance
1

2
V −2
x (2π)3 δ3(k− l)δsr,

to generate the Gaussian constraint on the complex random-numbers. These

constraints on the random numbers hence may yield the equivalence of the en-

semble variance to the fermionic correlator and thus an alternative method to

evaluate the fermionic currents at a particular instant.

The ensemble �elds further each comprise a distinct linear-combination of the

modes; and hence the linearity of the mode equation (5.9c) implies the male and

female �elds individually satisfy the mode dynamics. Evolving the ensemble thus

in e�ect evaluates the evolution of every mode function simultaneously according
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to the mode dynamics:

(γµDµ +m) ΨM/F,c(x) = 0. (5.16)

This moreover ensures that if the equality (5.15) holds at any instant, the result

remains valid throughout the subsequent evolution. Establishing this relation

in particular at the initial time therefore determines the evolved ensemble-�elds

yield the quantum correlators at subsequent times. The fermionic correlator,

thus, may be consistently replaced by the ensemble variance in the electric �eld

equations (5.9a) and (5.9b) to incorporate the quantum e�ects within the system.

Equal sample sizes of the random sets in practice may de�ne the ensemble,

and accordingly the statistical properties entail the discrete average over the

NE sample-size. These reduced sets approximate the Gaussian distribution and

hence yield a variance closely approximating the fermionic correlators at any

instant. This �nite set might therefore highly accurately determine the electric

�eld evolution.

These equations formed on constructing the �nite, statistical variances, and

the ensemble-�eld dynamics (5.16) (replacing the equivalent mode function equa-

tion), together with the electric �eld expression in the temporal gauge (5.6) and

the Higgs dynamics (5.5d) thus provide an alternative method to fully determine

the evolution of the quantum system.

5.2.4 An Ansatz for the Fields

The structure of the superconducting sheets, de�ned through the Higgs �eld,

imposes an intrinsic symmetry in the system that may simplify the dynamics.

Orientating both sheets in the x-y plane, with the two uniform and in�nite

in the x-y direction and separated a �nite distance in the z-direction constrains

the variation in the superconductor to solely along the z-axis, while the x and

y directions are physically identical. The Higgs modulus (5.4) representing this
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positioning hence involves purely a z-dependence.

For the electromagnetic �elds, likewise, generated homogeneously over the

x-y plane and with the fermion current evolving from a uniform con�guration

in this background, the symmetries suggest that the gauge and Higgs �eld both

reduce to a 1 + 1D problem:

θ(x) = θ(t, x3), (5.17a)

Ai(x) = Ai(t, x3), (5.17b)

where gauge indices include the spatial components with A0 ≡ 0 already set in

the choice of the temporal gauge.

To achieve this homogeneity in the electromagnetic �elds requires that the

external current generating the electromagnetic �eld also involves only a z-

dependence:

jµ(x) = jµ(t, x3).

The homogeneity of this con�guration over the x-y plane further implies the elec-

tromagnetic �elds can be aligned in a particular direction without any physically

distinct consequences. To orientate the electric �eld along the x-direction, in

the absence of the fermions and the Higgs �eld, would result from aligning the

external current also in this direction:

ji(x) =


j1(t, x3), i = 1

0, i = 2, 3.

(5.18)

This con�guration thus provides the form for the external current satisfying the

symmetry constraints.

The currents of the Higgs-�eld and fermions forming in reaction to the pro-

duced gauge �elds may reasonably be assumed to match the orientation of the

source generating the electromagnetic �elds: the resulting Higgs and fermionic
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currents in the gauge electric �eld dynamics aligning in the direction of the ex-

ternal current. For the currents, thus, orientated entirely along the x-axis, the

resultant magnetic �eld aligns entirely along the y-axis. A consistent choice of

the gauge �elds for this con�guration is obtained in the simple formulation

Ai(x) =


A1(t, x3), i = 1

0, i = 2, 3.

(5.19)

The homogeneity perpendicular to the z-direction might naively indicate that

the fermion modes likewise satisfy an equation of the form:

ψ
(A)
k,s (x) = ψ

(A)
k,s (t, x3).

Considering the inherently quantum nature of the fermions in the vacuum,

though, indicates this simpli�cation is insu�cient. The free fermion-modes

(through e�ectively setting the gauge �eld to zero in the interacting case (5.11))

satisfy

(γµ∂µ +m)ψ
(A)
k,s (x) = 0.

This system is solved by respectively the standard positive- and negative-energy

con�guration

ψ
(+)
k,s = eik·xUk,s ,

ψ
(−)
k,s = e−ik·xVk,s , (5.20)

where Uk,s and Vk,s specify the constant, four-component spinors satisfying the

resultant equations on substituting the respective con�gurations into the vacuum

dynamics. These con�gurations notably incorporate a dependence on each spatial

coordinate even in the entirely isotropic vacuum.

This indicates that any ansatz for the fermion modes must incorporate this
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dependence on every spatial direction; moreover, the assertion (in deriving the

fermionic correlator (5.14)) that the system evolves from the vacuum state im-

plies that the standard result may exactly specify the initial con�guration of the

ansatz in the case where these solutions also satisfy the boundary conditions.

The application of Neumann boundary conditions in the z-direction expectedly

will alter the initial condition2; the separation of the spatial coordinates into

distinct factors in the original solution further indicates that the change to the

boundary conditions in only the z-direction will alter only the factor including

the z-component. Hence, the �elds corresponding respectively to the positive

and negative energy solutions at the initial time may reasonably be asserted to

satisfy

ψ
(U)
(k1,k2,λ,s)

(0,x) = eik1x1eik2x2χ
(U)
(k1,k2,λ,s)

(0, x3),

ψ
(V )
(−k1,−k2,−λ,s)(0,x) = e−ik1x1e−ik2x2χ

(V )
(−k1,−k2,−λ,s)(0, x3),

where the variable λ labels each element in a complete and orthonormal set of

�eld-con�gurations3.

2The precise vacuum state for the Neumann boundaries is obtained on the lattice sub-
sequently in Section 5.6.1 where the detailed form is explicitly distinct from the standard,
continuum expression simply discretized onto the lattice.

3The operator p̂i = −i~∂i may de�ne the momentum in the ith direction with the eigenvalues
correspondingly specifying the momentum of the fermion particles in this direction. Acting this
operator on the fermion vacuum-solutions (5.20), hence, readily determines the values ±~ki
form the momentum of the fermion in the ith direction, and the variable ±ki, correspondingly,
speci�es the wave-vector in the ith direction.
This analysis remains valid in the x1 and x2 directions for the fermion ansatz, and thus the

wavevector k1 and k2 remain the relevant variables labelling these directions. Contrastingly,
the χ

(A)

(k1,k2,λ,s)
in the ansatz for the fermion modes are not necessarily eigenfunctions of the

momentum operators and, hence, the variable λ may not necessarily correspond to the particle
momentum.
The choice of the initial modes in the ansatz, subsequently (Section 5.6.1), incorporate a

linear combination of the standard vacuum solutions. This therefore implies the wave-vector k3

distinguishes the initial modes and thus, forms the particular value of λ, labelling each mode, at
the initial time. The χ

(A)

(k1,k2,λ,s)
in the modes though, are each subsequently evolved according

to the coupled, semi-quantized dynamics of the system (5.28). These at later times, therefore,
will not necessarily form functions involving a linear combination of the vacuum modes nor
otherwise necessarily, remain an eigenfunction of the momentum operator. The wave-vector k3

will, therefore, not necessarily remain the relevant variable to label these functions throughout
the evolution; while the more general variable λ may denote the element in the (complete and
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While the electric and magnetic �elds break the identical state of the x-y di-

rections in the presence only of the superconductor, the fermions interact � rather

than with the physical, electromagnetic �elds � directly with the gauge �eld that,

under the simplifying symmetry assumption, depends only on the z-coordinate

and is homogeneous over the x-y plane. The fermion dynamics thus exclude any

source of potential variation in these directions and hence the initial con�gura-

tion in these dimensions might reasonably remain unaltered in the ansatz at all

times with the time dependence solely in the z-dependent factor. This perma-

nent identicality of the x and the y-directions further consistently matches the

asserted, constant homogeneity of the interactions a�ecting the fermion evolu-

tion. The ansatz for the fermions incorporating the semi-quantum dynamics thus

reasonably imposes

ψ
(U)
(k1,k2,λ,s)

(x) = eik1x1eik2x2χ
(U)
(k1,k2,λ,s)

(t, x3),

ψ
(V )
(−k1,−k2,−λ,s)(x) = e−ik1x1e−ik2x2χ

(V )
(−k1,−k2,−λ,s)(t, x3),

where the variable λ label the elements in the complete and orthonormal set of

modes to form the expansion of the fermion �eld.

Substituting this form into the mode expansion (5.10) and accordingly switch-

ing the z-integral to vary over the ansatz-label λ in the modi�ed direction4 there-

fore yields the expansion in the mode ansatz; with the ladder operators likewise

relabelled to denote association to this alternative variable:

Ψ̂(x) =
√
~cVx

∑
s

∫
dk1

(2π)

dk2

(2π)

dλ

(2π)

[
b̂(k1,k2,λ,s)e

ik1x1eik2x2χ
(U)
(k1,k2,λ,s)

(t, x3)

+ d̂†(k1,k2,λ,s)
e−ik1x1e−ik2x2χ

(V )
(−k1,−k2,−λ,s)(t, x3)

]
.

orthonormal) set of �eld con�gurations throughout the evolution.
4The explicit form of the integration-weighting dλ/(2π) might be determined through the

relation of the mode functions to the fermionic anti-commutator � equivalently to the discrete
analogue ∆λ/(2π) (see Section 5.6.1).
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The ladder-operator anti-commutators correspondingly are asserted to satisfy

{b̂(k1,k2,λ,s), d̂(l1,l2,υ,r)} = 0,

{b̂†(k1,k2,λ,s)
, d̂(l1,l2,υ,r)} = 0;

{b̂(k1,k2,λ,s), b̂
†
(l1,l2,υ,r)

} = V −2
x (2π)3 δ(k1 − l1)δ(k2 − l2)δ(λ− υ)δsr,

{d̂(k1,k2,λ,s), d̂
†
(l1,l2,υ,r)

} = V −2
x (2π)3 δ(k1 − l1)δ(k2 − l2)δ(λ− υ)δsr, (5.21)

where notably, the ansatz-label λ replaces the wave-vector in the delta function

compared to the operator relations (5.12) in the standard expansion5.

Implementing the transformation k1,2 → −k1,2, λ→ −λ on the second term

of the ansatz expansion yields the expression

Ψ̂(x) =
√
~cVx

∑
s

∫
dk1

(2π)

dk2

(2π)

dλ

(2π)

[
b̂(k1,k2,λ,s)e

ik1x1eik2x2χ
(U)
(k1,k2,λ,s)

(t, x3)

+ d̂†(−k1,−k2,−λ,s)e
ik1x1eik2x2χ

(V )
(k1,k2,λ,s)

(t, x3)
]
;

(5.22)

both the positive- and the negative-energy ansatz in the expansion thereby reduce

to the identical, general form

ψ
(A)
(k1,k2,λ,s)

(x) = eik1x1eik2x2χ
(A)
(k1,k2,λ,s)

(t, x3),

thus simplifying the fermion ansatz.

This form for the fermion modes together with the selected, spatial gauge-

con�guration (5.19) and the Higgs phase (5.17a) provide the ansatz for the �eld

evolution under the choice of the temporal gauge, in the presence of the speci�ed

5The structure of the ladder anti-commutators may ultimately be validated through their
use to generate the �eld commutator (5.8), equivalently to the ladder commutators in the mode
function case (see footnote 1).
This procedure will be demonstrated subsequently in the ansatz-case on the lattice with

Neumann boundaries (Section 5.6.1).
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external current (5.18) and the chosen structure of the Higgs modulus (5.4).

Substituting the gauge and Higgs-phase ansatz into the electric �eld evolution

(5.9a) and (5.9b) and the Higgs dynamics (5.9d) with the modulus structure (5.4)

and imposed external-current (5.18) yields

i
q

~
〈T ˆ̄Ψ(x)γ0Ψ̂(x)〉 − e

~
ρ2(x3)∂0θ(t, x3) + j0(t, x3) = 0, (5.23)

i
q

~
〈T ˆ̄Ψ(x)γ2,3Ψ̂(x)〉+

e

~
ρ2(x3)∂0θ(t, x3) = 0, (5.24)

1

µ0c
∂0E1(t, x3) +

1

µ0
∂2

3A1(t, x3) + i
q

~
〈T ˆ̄Ψ(x)γ1Ψ̂(x)〉

−
( e
~

)2
ρ2(x3)A1(t, x3)− j1(t, x3) = 0, (5.25)

(
ρ2(x3)

[
∂2

0 − ∂2
3

]
− 2ρ(x3)∂3ρ(x3)∂3

)
θ(t, x3) = 0; (5.26)

where

E1(t, x3) = −c∂0A1(t, x3) (5.27)

results on applying the gauge ansatz to the electric �eld expression (5.6). Like-

wise, the gauge, Higgs-phase and mode ansatz substituted into the mode function

dynamics (5.11) with the modulus structure (5.4) determines

(
γ0∂0 + i

[
k1 − i

q

~
A1(t, x3)

]
γ1 + ik2γ

2 + γ3∂3 +
mc

~

)
χ

(A)
(k1,k2,λ,s)

(t, x3) = 0.

(5.28)

Substituting the ansatz-expansion (5.22) also into the fermionic-correlator, on

applying the ladder anti-commutator (5.21) and vacuum-state de�nition (5.13)
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yields

〈T ˆ̄Ψ(x)γµΨ̂(x)〉 =

~c
2

∑
s

∫
dk1

(2π)

dk2

(2π)

dλ

(2π)

(
χ̄

(V )
(k1,k2,λ,s)

(t, x3)γµχ
(V )
(k1,k2,λ,s)

(t, x3)

− χ̄(U)
(k1,k2,λ,s)

(t, x3)γµχ
(U)
(k1,k2,λ,s)

(t, x3)
)
, (5.29)

with χ̄
(A)
(k1,k2,λ,s)

≡ iχ(A)†
(k1,k2,λ,s)

γ0. This expansion in the mode ansatz (equivalently

to the standard mode expansion, Section 5.2.2), thus, implicitly incorporates the

quantum structure through the application of the ladder commutators. These

results for the ansatz, importantly therefore, simplify the quantum dynamics to

a one-dimensional system varying only over the z-direction in coordinate space,

with the correlator involving a summation over a three-dimensional mode-space.

The Higgs-�eld phase entirely decouples from the gauge and fermionic �elds,

and thus has no e�ect on the electromagnetic �elds interacting with the barrier,

with or without fermions present. Hence, we may for simplicity neglect the phase

throughout the evolution � in e�ect choosing θ(t, x3) = 0 to satisfy the evolution

equation (5.5d) � without constraint on the interactions of principal interest.

This assertion therefore eliminates the phase evolution from the dynamics;

and further determines the gauge constraints (5.23) and (5.24) in the ansatz

satisfy

i
q

~
〈T ˆ̄Ψ(x)γ0Ψ̂(x)〉+ j0(t, x3) = 0,

i
q

~
〈T ˆ̄Ψ(x)γ2Ψ̂(x)〉 = 0,

i
q

~
〈T ˆ̄Ψ(x)γ3Ψ̂(x)〉 = 0.

These results thus specify the constraints on the gauge �eld in the ansatz case;

while the electric �eld dynamics (5.25) and mode function ansatz-equation (5.28),

together with the corresponding correlator expansion (5.29) and the expression of
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the electric �eld (5.27) in the ansatz may fully determine the quantized evolution

under the inherent symmetries of the system.

5.3 Tunnelling of the 3rd Kind: Simple Estimate

An e�ective one-loop action provides the basis in perturbative expressions ob-

tained for tunnelling of the 3rd kind (see [98] for details). These calculations

in a comparable system to the present con�guration but involving only a single

barrier imply the constant, external �eld Bext induces a �eld Bint having crossed

the barrier through the tunnelling process. The transmission asymptotically far

from the barrier results proportionately to the external �eld, in the ratio

|Bint|
|Bext|

=
q2

48π2

∫ ∞
1

dτ

τ4

√
τ2 − 1

(
1 + 2τ2

)
exp(−2mdτ), (5.30)

for the fermion mass m and charge q through the barrier of thickness d, with

the result obtained in natural units � matching, importantly, the analysis in the

subsequent tunnelling simulations. This integral is to be evaluated analytically,

and for m = 1, q = 0.3, e = 1 and d = 1.5, chosen in the ensuing simulations

(Section 6.1 and 6.5.1), hence yields |Bint|/|Bext| = 3.4 · 10−6. The present

con�guration in contrast to the analytic case involves two barriers and encloses

the tunnelled �eld within a �nite distance from the barriers. This therefore

indicates the true result in the simulated case involves a multiplicative correction

between one and two to the analytic estimate.

A superconducting barrier experimentally would induce the distinctive ex-

ponential decay in the magnetic �eld; and the Higgs-�eld model likewise can

reproduce this characteristic decay. Solving the continuum dynamics exclud-

ing the fermions can, therefore, provide an estimate for the classical �eld decay

through the barrier. Adding this to the tunnelling result hence forms a rea-

sonable estimate for the observed transmission. The classical solution further

enables distinguishing the contrastive tunnelling e�ects.
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Establishing the constant magnetic �eld outside the superconducting enclo-

sure essentially produces a static, �nal state for measuring the transmission.

Accordingly setting the gauge �elds constant in the electric �eld dynamics (5.25)

(incorporating the symmetries) outside the external current and for the fermions

omitted hence implies

∂2
3A1(t, x3) = −e2ρ2(x3)A1,

on also imposing natural units to match the tunnelling case � and the subsequent

simulations. A step-function of the maximum barrier amplitude 2η2 provides an

accurate and simple approximation to the barrier con�guration in the limiting

case where the modulus function rises steeply � on setting δ su�ciently small.

This provides a readily tractable system; the classical solutions in this case simply

satisfy

A1(t, x3) = A1,ext exp
(
−
√

2eη
)
,

where imposing continuity at the exterior boundary to the barrier further de-

termines A1,ext equals the gauge �eld adjoining this boundary. The gauge-�eld

relation to the magnetic �eld (5.7) hence readily determines the magnetic �eld

B2,int inside the enclosure satis�es

B2,int(t, x3) = B2,ext exp
(
−
√

2eη
)
, (5.31)

where again the continuity at the boundary implies B2,ext, equals the (uniform)

external value. This accordingly provides the estimate to add to the tunnelling

contribution and for contrasting the classical and quantum cases.

The �gure 5.2 shows the constant tunnelling contribution and the varying

transmission on changing the wall thickness for e = 1 and d = 1.5 in the case

without fermions and, additionally, q = 0.3 and m = 1 with the fermions �

notably, matching the parameter choice in the subsequent simulations. The tun-
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Figure 5.2: The (constant) analytic estimate for tunnelling of the 3rd kind (grey)

obtained through the equation (5.30) where m = 1, q = 0.3, e = 1 and d = 1.5;

the simpli�ed estimate of the classical transmission (blue) through the supercon-

ducting barrier (equation 5.31) on varying the wall strength for the chosen values

of e and d; the combined classical and tunnelling contributions (red) to estimate

the quantum magnetic-transmission. These indicate the tunnelling generates a

distinctive signal where η & 6.

nelling fermions notably form the main contribution where η & 6 while for the

weaker barrier strengths, the classical contribution dominates the transmission.

Deviations in the numerical results compared to the simplistic estimates would

likely result through forming the magnetic �eld, in practice, using the boundary

current, and also with the damping terms present (to produce the static, �nal

state); the approximation to the barrier con�guration for deriving the estimate

would expectedly also contribute to the discrepancy. The analytic calculations,
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though, usefully indicate the approximate tunnelling contribution. This hence

will enable evaluating whether the perturbative (one-loop) approximations for

the tunnelling accurately describe the resultant signal. These estimates more-

over indicate the regime where the signal deviates from the classical case; and

thus, usefully, indicates the barrier strengths to examine for detecting this tun-

nelling signal.

5.4 Discretized Dynamics

5.4.1 Action

We discretize the system onto a lattice through the action while retaining the

U(1) symmetry (5.1) through the application of a link-function to incorporate

both the gauge �elds and the Higgs phase:

S(X) =

1

c
∆V

[∑
i

~2

2qµ0(∆xi)2(∆x0)2
(2− Ui0(X)− U0i(X))

−
∑
ij

~2

4q2µ0(∆xi)2(∆xj)2
(2− Uij(X)− Uji(X))

−
∑
µ

1

2∆xµ
Ψ̄(X)γµ

(
Uµ(X)Ψ(X + µ)− U †µ(X − µ)Ψ(X − µ)

)
+
mc

~
Ψ̄(X)Ψ̄(X)

+
ρ2(X)

2(∆x0)2

(
2−Θ†(X)U

e/q
0 (X)Θ(X + 0)−Θ†(X + 0)U

(e/q)†
0 (X)Θ(X)

)
−
∑
i

ρ2(X)

2(∆xi)2

(
2−Θ†(X)U

e/q
i (X)Θ(X + i)−Θ†(X + i)U

(e/q)†
i (X)Θ(X)

)]
,

(5.32)
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with ∆V ≡ ∆x0∆x1∆x2∆x3 = c∆t∆x1∆x2∆x3, and where the lattice-links are

de�ned through

Uµ(X) ≡ exp
(
−i q

~
∆xµAµ(X)

)
, (5.33a)

Uµν(X) ≡ Uµ(X)Uν(X + µ)U †µ(X + µ)U †ν (X), (5.33b)

Θ(X) ≡ exp (iθ(X)) . (5.33c)

To alleviate the issue of (the unphysical) fermion spatial-doublers on the lattice,

a Wilson term is added to the lattice action:

1

c
∆V

∑
i

rw
1

2∆xi
Ψ̄(X) (Ui(X)Ψ(X + i)− 2Ψ(X) + Ui(X − i)Ψ(X − i)) .

(The addition notably vanishes in the limit of small coordinate-spacings, and

the action hence reduces to precisely the continuum action (5.3) in the limit of

small-spatial and -temporal divisions.)

Applying the variational principle that δS = 0 to the discretized action for

each �eld and imposing the temporal gauge yields the gauge-invariant dynamics



Chapter 5. Tunnelling of the 3rd Kind: Dynamical Setup 94

for the discrete system:

∑
i

1

(∆xi)2(∆x0)2

~2

2q2µ0
([U0i(X)− Ui0(X)]− [U0i(X − i)− Ui0(X − i)])

+
i

∆x0
Im
{

Ψ̄(X)γ0Ψ(X + 0)
}

+
i

(∆x0)2

e

q
ρ2(X)Im

{
Θ†(X)Θ(X + 0)

}
= 0, (5.34a)

1

(∆xi)2(∆x0)2

~2

2q2µ0
([U0i(X)− Ui0(X)]− [U0i(X − 0)− Ui0(X − 0)])

+
∑
j

i

(∆xi)2(∆xj)2

~2

q2µ0
Im {Uij(X)− Uji(X − j)}

− i

∆xi
Im
{

Ψ̄(X)γiUi(X)Ψ(X + i)
}

+
i

∆xi
rwIm

{
Ψ̄(X)Ui(X)Ψ(X + i)

}
+

i

(∆xi)2

e

q
ρ2(X)Im

{
Θ†(X)U

e/q
i Θ(X + i)

}
= 0, (5.34b)

1

2∆x0
γ0 (Ψ(X + 0)−Ψ(X − 0))

+
∑
i

1

2∆xi
γi
(
Ui(X)Ψ(X + i)− U †i (X − i)Ψ(X − i)

)
+
mc

~
Ψ(X)

−
∑
i

1

∆xi

rw
2

(
Ui(X)Ψ(X + i)

− 2Ψ(X) + U †i (X − i)Ψ(X − i)
)

= 0, (5.34c)

1

∆x0
ρ2(X) (S(X)− S(X − 0))

−
∑
i

1

(∆xi)2

(
ρ2(X)Im

{
Θ†(X)U

e/q
i (X)Θ(X + i)

}
− ρ2(X − i)Im

{
Θ†(X − i)U e/qi (X − i)Θ(X)

})
= 0, (5.34d)

where the evolution of the phase link in the dynamics is expressed in the �nal
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equation through6

S(X) ≡ 1

2i∆x0

(
Θ†(X)Θ(X + 0)−Θ†(X + 0)Θ(X)

)
. (5.35)

The electric �eld in the discretized system, corresponding in the limit of small

lattice-spacing to the continuum form of the electric �eld (5.6) may be de�ned

in relation to the gauge links by

Ei(X) =
−i

∆x0∆xi

~c
2q

(U0i(X)− Ui0(X)) . (5.36)

This de�nition substituted into the discretized gauge-dynamics (5.34a) and

(5.34b) hence determine respectively that the electric �eld on the lattice satis�es

∑
i

1

∆xi

1

µ0c
(Ei(X)− Ei(X − i))

+
1

∆x0
Im
{

Ψ̄(X)γ0Ψ(X + 0)
}

+
1

∆x0

e

~
ρ2(X)Im{Θ†(X)Θ(X + 0)} = 0, (5.37a)

1

∆x0

1

µ0c
(Ei(X)− Ei(X − 0))

+
∑
j

1

∆xi(∆xj)2

~
qµ0

Im {Uij(X)− Uji(X − j)}

− q

~
Im
{

Ψ̄(X)γiUi(X)Ψ(X + i)
}

+
q

~
rwIm

{
Ψ̄(X)Ui(X)Ψ(X + i)

}
+

1

∆xi

e

~
ρ2(X)Im

{
Θ†(X)U

e/q
i Θ(X + i)

}
= 0. (5.37b)

A discrete approximation of the magnetic �eld in the continuum further may

6This de�nition of S(X) in the Higgs dynamics (5.34d) simpli�es the relation of the phase
at di�ering times � subsumed into the constructed variable � to the spatial summation over
components at a single instant. (Ultimately, this enables evolving the phase through iterating
the S(X) according to the equation (5.34d) then applying this constructed de�nition to compute
the successive Θ(X) (see also Section 5.4.4).
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de�ne the equivalent �eld on the lattice:

Ba(X) =
∑
b,c

εabc

(
Ac(X + b)−Ac(X − b)

2∆xb

)
. (5.38)

These equations specify the discretized electric �eld dynamics determined

on varying the action. Both the Higgs �eld and the fermion term without the

Wilson parameter, equivalently to the continuum, each contribute, in e�ect, a

current to electric �eld dynamics and an additional charge in the total electric

charge. The inclusion of the Wilson term in the action also generates similar

terms in the lattice equations: likewise, in e�ect, forming an additional Wilson-

contribution in the electric �eld dynamics, and a Wilson component in the total

electric charge. These additional terms, in the continuum limit, notably reduce to

zero; and thus, ensures the Wilson terms in the action, to eliminate the unphysical

doublers in the discrete system, produces an e�ect distinctively on the lattice.

The lattice electromagnetic-dynamics, therefore, form the discrete analogue to

the continuum gauge-�eld dynamics (5.5), except, notably, omitting the external

current.

Simply subtracting the term jµ(X) consistently � to match the free-indices

� in the lattice equations may provide discrete form of the continuum external

current. This suitably both reproduces the external current in the continuum on

reducing the lattice spacings to zero while the gauge-invariance of the external

current under gauge transformations ensures the dynamics retain the overall

gauge symmetry.

(Comparing both the Higgs and the fermion current on the lattice to the

continuum dynamics demonstrates that the discrete form for these continuum

currents involves the �eld values at both X and X + µ. The Wilson current

similarly involves the fermion �eld evaluated at both X and X+µ. This indicates

the discrete analogue to the external current likewise involves values evaluated at

adjacent sites. The single term jµ(X) though in practice may de�ne the e�ective
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current at any site: incorporating the adjacent values.)

Implementing this modi�cation to the gauge dynamics on the lattice yields:

∑
i

1

∆xi

1

µ0c
(Ei(X)− Ei(X − i))

+
q

~
Im{Ψ̄(X)γ0Ψ(X + 0)}

+
1

∆x0

e

~
ρ2(X)Im{Θ†(X)Θ(X + 0)} − j0(X) = 0,

1

∆x0

1

µ0c
(Ei(X)− Ei(X − 0)) +

∑
j

1

∆xi(∆xj)2

~
qµ0

Im {Uij(X)− Uji(X − j)}

− q

~
Im
{

Ψ̄(X)γiUi(X)Ψ(X + i)
}

+
q

~
rwIm

{
Ψ̄(X)Ui(X)Ψ(X + i)

}
+

1

∆xi

e

~
ρ2(X)Im

{
Θ†(X)U

e/q
i Θ(X + i)

}
− ji(X) = 0.

This result, together with the Higgs-phase and fermionic equations on the

lattice form the discretized analogue to the continuum system (5.5) in 3 + 1-

dimensions without symmetry assumptions. These dynamics, accordingly, with

the Higgs -variable (5.35) to express the phase evolution, and also the electric

and magnetic �eld de�nitions on the lattice fully specify the evolution of the

discrete system.

5.4.2 Quantized Equations of Motion

Implementing the semi-quantization, as in the continuum case, promotes solely

the fermionic �eld and conjugate momentum to an operator in the Heisenberg

representation and imposes the canonical commutation relations on these �elds,

though in the discrete functions:

{Ψ̂a(T,X), Ψ̂†b(T,Y)} = ~c
δ3
XY

∆x1∆x2∆x3
δab, (5.39)

where the δ3
XY/ (∆x1∆x2∆x3) has replaced the continuum Dirac-delta.

The quantum dynamics in the discrete system may be obtained equivalently
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to those in the continuum on applying the Heisenberg equation of motion. This

again, in e�ect, simply converts the fermion �eld in the classical equations to

the corresponding Heisenberg operator. Forming the expectation of the operator

equations hence yields the semi-quantized dynamics of the system:

∑
i

1

∆xi

1

µ0c
(Ei(X)− Ei(X − i))

+
q

~
Im{〈T ˆ̄Ψ(X)γ0Ψ̂(X + 0)〉}

+
1

∆x0

e

~
ρ2(X)Im{Θ†(X)Θ(X + 0)} − j0(X) = 0, (5.40a)

1

∆x0

1

µ0c
(Ei(X)− Ei(X − 0))

+
∑
j

1

∆xi(∆xj)2

~
qµ0

Im {Uij(X)− Uji(X − j)}

− q

~
Im
{
〈T ˆ̄Ψ(X)γiUi(X)Ψ̂(X + i)〉

}
+
q

~
rwIm

{
〈T ˆ̄Ψ(X)Ui(X)Ψ̂(X + i)〉

}
+

1

∆xi

e

~
ρ2(X)Im

{
Θ†(X)U

e/q
i Θ(X + i)

}
− ji(X) = 0, (5.40b)

1

2∆x0
γ0
(
〈Ψ̂(X + 0)〉 − 〈Ψ̂(X − 0)〉

)
+
∑
i

1

2∆xi
γi
(
Ui(X)〈Ψ̂(X + i)〉 − U †i (X − i)〈Ψ̂(X − i)〉

)
+
mc

~
〈Ψ̂(X)〉

−
∑
i

1

∆xi

rw
2

(
Ui(X)〈Ψ̂(X + i)〉

− 2〈Ψ̂(X)〉+ U †µ(X − i)〈Ψ̂(X − i)〉
)

= 0, (5.40c)

1

∆x0
ρ2(X) (S(X)− S(X − 0))

−
∑
i

1

(∆xi)2

(
ρ2(X)Im

{
Θ†(X)U

e/q
i (X)Θ(X + i)

}
− ρ2(X − i)Im

{
Θ†(X − i)U e/qi (X − i)Θ(X)

})
= 0. (5.40d)

These form the discretized analogue of the fundamental, continuum equations of

motion (5.9) to determine the quantum-fermion evolution in the background of
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the classical electromagnetic �elds and a superconducting barrier, with the quan-

tum back-reaction through the fermionic (and Wilson) current onto the gauge

�eld.

5.4.3 Mode Expansion

Expanding the fermionic �elds on the lattice into the mode functions results

in the standard substitution of the integral in the continuum expansion to a

summation over the �nite and discrete mode-space7:

Ψ̂(X) =
√
~cVx

∑
s

∑
K

∆k1

2π

∆k2

2π

∆k3

2π

[
b̂K,sψ

(U)
K,s(X) + d̂†K,sψ

(V )
K,s(X)

]
. (5.41)

The orthonormal modes {ψ(U)
K,s} and {ψ

(V )
K,s} on the lattice independently satisfy

the discrete, fermion equation of motion (5.40c):

1

2∆x0
γ0
(
ψ

(A)
K,s(X + 0)− ψ(A)

K,s(X − 0)
)

+
∑
i

1

2∆xi
γi
(
Ui(X)ψ

(A)
K,s(X + i)− U †i (X − i)ψ(A)

K,s(X − i)
)

+
mc

~
ψ

(A)
K,s(X)

−
∑
i

1

∆xi

rw
2

(
Ui(X)ψ

(A)
K,s(X + i)− 2ψ

(A)
K,s(X) + U †i (X − i)ψ(A)

K,s(X − i)
)

= 0.

(5.42)

7The choice of a particular boundary condition on the spatial lattice will determine the
precise relationship between the site index ei in the mode-space and the lattice wave-vector K
(see Section 5.6.1)
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Asserting, further, the creation and annihilation operators satisfy analogous re-

lations to those in the continuum thus imposes

{b̂K,s, d̂L,r} = 0, (5.43a)

{b̂†K,s, d̂L,r} = 0; (5.43b)

{b̂K,s, b̂
†
L,r} = V −2

x (2π)3 δsr
δ3
KL

∆k1∆k2∆k3
, (5.43c)

{d̂K,s, d̂
†
L,r} = V −2

x (2π)3 δsr
δ3
KL

∆k1∆k2∆k3
, (5.43d)

where the Dirac delta-function in the respective, continuum commutators has

been substituted for the equivalent Kronecker-delta factor8.

Substituting the discretized mode-expansion (5.41) into the fermionic corre-

8The choice of the ladder anti-commutators ensure the mode-expansion (5.41) satis�es the
necessary constraint to reproduce the canonical �eld-commutator (5.39): equivalently to the
mode function method in the continuum (see footnote 1).
This procedure will be demonstrated subsequently on the lattice, in the non-standard case

of the ansatz mode-expansion with Neumann boundaries (Section 5.6.1).
The choice of the V −2

x (2π)3 factor analogous to the continuum case further implies the
dimensionality of the ladder operators and hence the corresponding number operators b̂†K,sb̂K,s

and d̂†K,sd̂K,s in the discrete case likewise match. Hence the eigenvalues of the number operators
for the choice of discretized anti-commutators might be be associated directly to the number
density of the fermion particles in a mode K on the lattice.
An alternative choice in the variety of potential anti-commutators might be to entirely elim-

inate all except the dimensionless factors in the relations; and accordingly modify the factors
in the mode-expansion to satisfy the condition to reproduce the canonical �eld-commutator.
This con�guration implies the ladder operators and hence corresponding number operators to
equally be dimensionless. The eigenvalues of the number operators in this system may there-
fore be associated directly to the total fermion particle number in the associated mode. This
may be considered to provide a more sensible quantity on the lattice; with the corresponding
anti-commutator structure, accordingly, forming a more sensible choice on the lattice than the
direct equivalence to the continuum.
Since the ladder operators occur only in the fermion correlators within the dynamics and these

are invariant under the change in ladder-commutator structure; and further since this study
omits any direct measurement of the particle number, the particular choice of the ladder com-
mutator structure is irrelevant to the analysis. The construction of the ladder anti-commutators
on the lattice directly equivalent to the continuum provides a simple uniformity in the choice
of commutator structure.
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lators on the lattice and applying the vacuum-state de�nition (5.13) provides

〈T ˆ̄Ψ(X)ÔΨ̂(X + µ)〉 =

~c
2

∑
s

∑
K

∆k1

2π

∆k2

2π

∆k3

2π

[
ψ̄

(V )
K,s(X)Ôψ

(V )
K,s(X + µ)

− ψ̄(U)
K,s(X)Ôψ

(U)
K,s(X + µ)

]
, (5.44)

for the relevant operators Ô and direction µ in the dynamics: thus obtaining the

fermion self-interaction on the lattice entirely in terms of the mode functions.

This mode function expression of the correlators (5.40b) and the evolution

(5.42) of the discrete modes together with the de�nition of the electric �eld (5.36)

in terms of the gauge link, and the discretized, classical, Higgs dynamics (5.34d)

may fully de�ne the evolution of the quantized system on the lattice.
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5.4.4 Numerical Evolution: Mode Functions

Rearranging the evolution equations of the electric �eld (5.40b), fermion modes

(5.42) and the Higgs phase (5.40d) provides iteration relations for evolving the

system:

Ei(X) = Ei(X − 0)−
∑
j

∆x0

∆xi(∆xj)2

~c
q
Im {Uij(X)− Uji(X − j)}

+ ∆x0
µ0cq

~
Im
{
〈T ˆ̄Ψ(X)γiUi(X)Ψ̂(X + i)〉

}
−∆x0

µ0cq

~
rwIm

{
〈T ˆ̄Ψ(X)Ui(X)Ψ̂(X + i)〉

}
− ∆x0

∆xi

µ0ce

~
ρ2(X)Im

{
Θ†(X)U

e/q
i Θ(X + i)

}
+ ∆x0µ0cji(X), (5.45a)

ψ
(A)
K,s(X + 0) = ψ

(A)
K,s(X − 0)

+
∑
i

∆x0

∆xi
γ0γi

(
Ui(X)ψ

(A)
K,s(X + i)− U †i (X − i)ψ(A)

K,s(X − i)
)

+
mc

~
ψ

(A)
K,s(X)

−
∑
i

∆x0

∆xi
rwγ

0
(
Ui(X)ψ

(A)
K,s(X + i)

− 2ψ
(A)
K,s(X) + U †i (X − i)ψ(A)

K,s(X − i)
)
, (5.45b)

S(X) = S(X − 0) +
∑
i

∆x0

(∆xi)2

(
Im
{

Θ†(X)U
e/q
i (X)Θ(X + i)

}
− ρ2(X − i)

ρ2(X)
Im
{

Θ†(X − i)U e/qi (X − i)Θ(X)
})

, (5.45c)

where the expansion (5.44) in the modes on renormalization provides the stan-

dard method to determine the correlators. This evolution further entails deter-

mining both the gauge and phase links. These may be obtained respectively

through the de�nition on the lattice of the electric �eld (5.36) and the variable

S(X) (5.35) expressing the Higgs evolution.

The electric �eld de�nition in the temporal gauge implies

Im
{
Ui(X + 0)U †i (X)

}
= ∆x0∆x1

q

~c
Ei(X);
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the unitarity of the gauge links, in general, hence yields

Re
{
Ui(X + 0)U †i (X)

}
= ±

√(
1−

(
∆x0∆xi

q

~c
Ei(X)

)2
)
,

while the unitarity, in particular, where Ei = 0 consequently determines

Re
{
Ui(X + 0)U †i (X)

}
= +

√(
1−

(
∆x0∆xi

q

~c
Ei(X)

)2
)
.

This result on rearrangement therefore provides the iteration relation to evolve

the gauge-link terms in the dynamics:

Ui(X + 0) =

(
+

√(
1−

(
∆x0∆xi

q

~c
Ei(X)

)2
)

+ i∆x0∆x1
q

~c
Ei(X)

)
Ui(X).

(5.46)

Likewise, the constructed Higgs-variable S(X) implies

Im
{

Θ†(X)Θ(X + 0)
}

= ∆x0S(X),

while the unitarity of phase-link in general and at S(X) = 0, together, determine

Re
{

Θ†(X)Θ(X + 0)
}

= +

√(
1− (∆x0S(X))2

)
;

and hence, the constructed variable S(X) yields the iteration relation to evolve

phase link:

Θ(X + 0) =

(
+

√(
1− (∆x0S(X))2

)
+ i∆x0S(X)

)
Θ(X). (5.47)

This expression, the equivalent gauge-link evolution (5.46), and the �eld iter-

ation relations (5.45) with the mode function expansion (5.44) of the correlators

fully specify the dynamics to evolve the system numerically from a given initial

state.
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Con�rming the constraint (5.40a) on the lattice to machine-level accuracy in

addition o�ers a convenient indicator for validating the reliability of the mode

function simulation.

5.4.5 The Ensemble Approach

A summation over the discrete lattice, mode-space replaces the integral over this

space in the continuum, to de�ne the discretized ΨM,c and ΨF,c �elds:

ΨM,c(x) =

√
~c
2
Vx
∑
s

∑
K

∆k1

2π

∆k2

2π

∆k3

2π

1

2ωK

[
ξK,s,cψ

(U)
K,s(X) + ζK,s,cψ

(V )
K,s(X)

]
,

ΨF,c(x) =

√
~c
2
Vx
∑
s

∑
K

∆k1

2π

∆k2

2π

∆k3

2π

1

2ωK

[
ξK,s,cψ

(U)
K,s(X)− ζK,s,cψ

(V )
K,s(X)

]
,

and each evolves according to the discretized, fermionic equation of motion

(5.40c).

The independence constraints on the two sets of random numbers at each

wave-vector value are imposed to be identical to the continuum case; and with

each set again chosen to form a Gaussian distribution of mean zero but with a

variance in the discrete case equal to

〈ξK,sξL,r〉E = 〈ζK,sζL,r〉E = V −2
x (2π)3 δsr

δ3
KL

∆k1∆k2∆k3
.

These conditions along with the vacuum-state de�nition (5.13) consequently yield

equality between the lattice, quantum correlators and the equivalent variance of

the ensemble �elds:

〈 ˆ̄Ψ(X)ÔΨ̂(X + µ)〉 =

− 1

2

(
〈Ψ̄M (X)ÔΨF (X + µ)〉E + 〈Ψ̄F (X)ÔΨM (X + µ)〉E

)
. (5.48)

Setting in particular the real- and imaginary-part of both the ξK,s,c, and the
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ζK,s,c identically to the continuum case except in the non-trivial cases imposing

the variance
1

2
V −2
x (2π)3 δsr

δ3
KL

∆k1∆k2∆k3
(5.49)

may produce the discretized constraints on the complex-numbers.

The discrete ensemble �elds importantly each comprise a linear combination

of the mode functions. This with also the linearity of the mode function dynamics

(5.42), equivalently to the continuum (see Section 5.2.3), determines the ensemble

�elds on the lattice each satisfy the discrete mode dynamics (5.42). Establishing

the equality (5.48) at the initial time likewise also ensures the evolved ensemble-

�elds may yield the quantum-correlators at subsequent times. These correlator

expansions thus can be consistently replaced by the ensemble variance in the

electric �eld equations (5.40a) and (5.40b).

Equal sample-sizes of the random sets, identically to the continuum case, may

de�ne the ensemble in practice, and accordingly the statistical properties involve

the discrete average over the NE samples. These reduced sets approximating the

Gaussian-distribution may yield a variance closely approximating the fermionic

correlators at any instant; and hence this �nite sample may highly accurately

determine the fermionic contribution in the electric �eld equations.

These �nite-ensemble equations and the ensemble-�eld dynamics, together

with the de�nition of the electric �eld on the lattice (5.36), and the classical

Higgs-dynamics (5.34d) with the variable (5.35) specifying the phase-link evo-

lution comprises the ensemble-�eld method for determining the semi-quantized

dynamics on the lattice.

5.4.6 Numerical Evolution: Ensemble Method

The determined iteration-relations (5.45), (5.46) and (5.47) again for the ensem-

ble case fully specify the numerical evolution from an initial state except with

the correlators determined through the variances (5.48) of the ensemble �elds.
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Con�rming the constraint (5.40a) to machine-level accuracy on computing

the renormalized correlator through the ensemble-variance (5.48) again for this

method o�ers a convenient indicator for assuring the validity of the simulation.

5.4.7 An Ansatz for the Fields

The symmetry of the superconducting sheets de�ned through the Higgs modu-

lus (5.4) and the homogeneity of the electromagnetic �elds and fermionic �elds

remain on discretization; the ansatz determined in the continuum for the Higgs

phase (5.17a) and the gauge �eld (5.19) generated further from the chosen extern-

al-current (5.18) hence likewise remain valid on the lattice.

This homogeneity perpendicular to the z-direction and the quantum nature of

the fermions also recreate on the lattice precisely the conditions in the continuum

indicating the fermion modes comprise the vacuum solutions with the factor in

the z-direction modi�ed; and hence these considerations likewise may reasonably

determine the mode ansatz on the lattice. The vacuum con�guration on the

lattice � through e�ectively setting the gauge �eld to zero in the interacting case

(5.42) � speci�cally satisfy

∑
µ

1

2∆xµ
γµ (Ψ(X + µ)−Ψ(X − µ)) +

mc

~
Ψ(X)

−
∑
i

1

∆xi

rw
2

(Ψ(X + i)− 2Ψ(X) + Ψ(X − i)) = 0, (5.50)

with the standard positive- and negative-energy solutions respectively specifying9

ψ
(+)
k,s (X) = eiK·XUK,s,

ψ
(−)
k,s (X) = e−iK·XVK,s; (5.51)

9For further details on the lattice solutions to the vacuum-dynamics see also (5.6.1).
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and the modi�cation in the z-direction hence yields

ψ
(U)
(K1,K2,Λ,s)

(X) = eiK1X1eiK2X2χ
(U)
(K1,K2,Λ,s)

(T,X3),

ψ
(V )
(−K1,−K2,−Λ,s)(X) = e−iK1X1e−iK2X2χ

(V )
(−K1,−K2,−Λ,s)(T,X3).

Substituting this form into the discrete mode-expansion (5.41) and similarly

to the continuum case, switching the z-variable to sum over the ansatz label10

Λ yields the expansion in the mode ansatz; with the ladder operators likewise

relabelled to denote association to the variable in the modi�ed direction:

Ψ̂(X) =
√
~cVx

∑
K1,K2,Λ,s

∆k1

(2π)

∆k2

(2π)

∆λ

(2π)[
b̂(K1,K2,Λ,s)e

iK1X1eiK2X2χ
(U)
(K1,K2,Λ,s)

(T,X3)

+ d̂†(K1,K2,Λ,s)
e−iK1X1e−iK2X2χ

(V )
(−K1,−K2,−Λ,s)(T,X3)

]
.

The ladder-operator anti-commutators on the lattice correspondingly are asserted

to satisfy

{b̂(K1,K2,Λ,s), d̂(L1,L2,Υ,r)} = 0,

{b̂†(K1,K2,Λ,s)
, d̂(L1,L2,Υ,r)} = 0,

{b̂(K1,K2,Λ,s), b̂
†
(L1,L2,Υ,r)

} = V −2
x (2π)3 δsr

δK1L1δK2L2δΛΥ

∆k1∆k2∆λ
,

{d̂(K1,K2,Λ,s), d̂
†
(L1,L2,Υ,r)

} = V −2
x (2π)3 δsr

δK1L1δK2L2δΛΥ

∆k1∆k2∆λ
, (5.52)

where the ansatz label notably replaces the z wave-vector in the delta functions

compared to the standard relations (5.43)11.

10The relation of the measure ∆λ/(2π) to the known, physical quantities in the system is
expressly considered subsequently on Neumann boundaries in Section 5.6.1 when examining
the relation of the ansatz mode functions to the fermion anti-commutator.

11The validity of these ladder anti-commutators may be determined through establishing
these reproduces the �eld anti-commutator (see footnote 1). This procedure will be expressly
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Completing equivalently to the continuum the transformation K1 → −K1,

K2 → −K2, Λ→ −Λ in the lattice ansatz-expansion yields

Ψ̂(X) =
√
~cVx

∑
K1,K2,Λ,s

∆k1

(2π)

∆k2

(2π)

∆λ

(2π)[
b̂(K1,K2,Λ,s)e

iK1X1eiK2X2χ
(U)
(K1,K2,Λ,s)

(T,X3)

+ d̂†(−K1,−K2,−Λ,s)e
iK1X1eiK2X2χ

(V )
(K1,K2,Λ,s)

(T,X3)
]
. (5.53)

Both the positive- and the negative-energy ansatz in the expansion on the lattice

as in the continuum thereby reduce to the identical, general form

ψ
(A)
(K1,K2,Λ,s)

(X) = eiK1X1eiK2X2χ
(A)
(K1,K2,Λ,s)

(T,X3), (5.54)

thus simplifying the fermion ansatz.

Substituting the gauge and Higgs-phase ansatz on the lattice into the electric

�eld equations (5.40a) and (5.40b), and likewise into the Higgs dynamics (5.40d),

demonstrated for the ansatz expansion with Neumann boundaries on the lattice subsequently
(Section 5.6.1).
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with both the modulus structure (5.4) and external current (5.18) discretized

yields

q

~
Im{〈 ˆ̄Ψ(X)γ0Ψ̂(X + 0)〉}

+
1

∆x0

e

~
ρ2(T,X3)Im{Θ†(T,X3)Θ(T + 0, X3)} − j0(X) = 0, (5.55)

q

~
Im
{
〈 ˆ̄Ψ(X)γ2Ψ̂(X + 2)〉

}
− q

~
rwIm

{
〈 ˆ̄Ψ(X)Ψ̂(X + 2)〉

}
= 0, (5.56)

q

~
Im
{
〈 ˆ̄Ψ(X)γ3Ψ̂(X + 3)〉

}
− q

~
rwIm

{
〈 ˆ̄Ψ(X)Ψ̂(X + 3)〉

}
− 1

∆x3

e

~
ρ2(T,X3)Im{Θ†(T,X3)Θ(T,X3 + 3)} = 0, (5.57)

1

∆x0

1

µ0c
(E1(T,X3)− E1(T − 0, X3))

+
1

∆x1(∆x3)2

~
qµ0

Im {U13(T,X3)− U31(T,X3 − 3)}

− q

~
Im
{
〈 ˆ̄Ψ(X)γ1U1(T,X3)Ψ̂(X + 1)〉

}
+
q

~
rwIm

{
〈 ˆ̄Ψ(X)U1(T,X3)Ψ̂(X + 1)〉

}
+

1

∆x1

e

~
ρ2(T,X3)Im

{
U
e/q
1 (T,X3)

}
− j1(X) = 0, (5.58)

1

∆x0
ρ2(T,X3) (S(T,X3)− S(T − 0, X3))

− 1

(∆x3)2

(
ρ2(T,X3)Im

{
Θ†(T,X3)Θ(T,X3 + 3)

}
− ρ2(T,X3 − 3)Im

{
Θ†(T,X3 − 3)Θ(T,X3)

})
= 0; (5.59)

and where

E1(T,X3) =
−i

∆x0∆x1

~c
2q

(U01(T,X3)− U10(T,X3)) (5.60)

results on substituting the gauge ansatz into the electric �eld de�nition (5.36).

Likewise, the gauge, Higgs phase and mode ansatz substituted into the mode
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function dynamics (5.11) with the modulus structure determines

1

∆x0

1

2
γ0
(
χ

(A)
(K1,K2,Λ,s)

(T + 0, X3)− χ(A)
(K1,K2,Λ,s)

(T − 0, X3)
)

+
1

∆x1
γ1i sin

(
∆x1

[
K1 −

q

~
A1(T,X3)

])
χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
1

∆x2
γ2i sin (∆x2K2)χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
1

∆x3

1

2
γ3
(
χ

(A)
(K1,K2,Λ,s)

(T,X3 + 3)− χ(A)
(K1,K2,Λ,s)

(T,X3 − 3)
)

+
mc

~
χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
1

∆x1
rw

(
cos
(

∆x1

[
K1 −

q

~
A1(T,X3)

])
− 1
)
χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
1

∆x2
rw (cos (∆x2K2)− 1)χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
1

∆x3

rw
2

(
χ

(A)
(K1,K2,Λ,s)

(T,X3 + 3)− 2χ
(A)
(K1,K2,Λ,s)

(T,X3)

+ χ
(A)
(K1,K2,Λ,s)

(T,X3 − 3)
)

= 0. (5.61)

Substituting the mode ansatz into the discrete, fermionic correlator, on ap-
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plying the ladder anti-commutator (5.52) and vacuum-state de�nition (5.13) pro-

vides

〈 ˆ̄Ψ(X)ÔΨ̂(X + 0)〉 =

~c
2

∑
K1,K2,Λ,s

∆k1

(2π)

∆k2

(2π)

∆λ

(2π)

(
χ̄

(V )
(K1,K2,Λ,s)

(T,X3)Ôχ
(V )
(K1,K2,Λ,s)

(T + 0, X3)

− χ̄(U)
(K1,K2,Λ,s)

(T,X3)Ôχ
(U)
(K1,K2,Λ,s)

(T + 0, X3)
)
,

〈 ˆ̄Ψ(X)ÔU1(T,X3)Ψ̂(X + 1)〉 =

~c
2

∑
K1,K2,Λ,s

∆k1

(2π)

∆k2

(2π)

∆λ

(2π)
ei∆x1(K1−qA1(T,X3))

(
χ̄

(V )
(K1,K2,Λ,s)

(T,X3)Ôχ
(V )
(K1,K2,Λ,s)

(T,X3)

− χ̄(U)
(K1,K2,Λ,s)

(T,X3)Ôχ
(U)
(K1,K2,Λ,s)

(T,X3)
)
,

〈 ˆ̄Ψ(X)ÔΨ̂(X + 2)〉 =

~c
2

∑
K1,K2,Λ,s

∆k1

(2π)

∆k2

(2π)

∆λ

(2π)
ei∆x2K2

(
χ̄

(V )
(K1,K2,Λ,s)

(T,X3)Ôχ
(V )
(K1,K2,Λ,s)

(T,X3)

− χ̄(U)
(K1,K2,Λ,s)

(T,X3)Ôχ
(U)
(K1,K2,Λ,s)

(T,X3)
)
,

〈 ˆ̄Ψ(X)ÔΨ̂(X + 3)〉 =

~c
2

∑
K1,K2,Λ,s

∆k1

(2π)

∆k2

(2π)

∆λ

(2π)

(
χ̄

(V )
(K1,K2,Λ,s)

(T,X3)Ôχ
(V )
(K1,K2,Λ,s)

(T,X3 + 3)

− χ̄(U)
(K1,K2,Λ,s)

(T,X3)Ôχ
(U)
(K1,K2,Λ,s)

(T,X3 + 3)
)
. (5.62)

These equations, equivalently to the continuum, thus simplify the dynamics to

a one-dimensional system in the z-coordinate with the correlator involving a

summation over a three-dimensional mode-space.

The Higgs-�eld phase again as in the continuum entirely decouples from the

gauge and fermionic �elds ensuring likewise on the lattice that the phase may be

neglected throughout the evolution � in e�ect setting θ(T,X3) = 0 to satisfy the
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evolution equation (5.34d) � without constraint on the primary interactions.

This assertion, hence, eliminates the phase-evolution equation from the dy-

namics; and further determines that the gauge-�eld equations (5.55), (5.56) and

(5.57), involving the phase, respectively simplify to

q

~
Im{〈 ˆ̄Ψ(X)γ0Ψ̂(X + 0)〉} − j0(X) = 0, (5.63)

q

~
Im
{
〈 ˆ̄Ψ(X)γ2Ψ̂(X + 2, 3)〉

}
− q

~
rwIm

{
〈 ˆ̄Ψ(X)Ψ̂(X + 2, 3)〉

}
= 0. (5.64)

These results thus specify the constraints on the gauge �eld in the ansatz case

on the lattice; while the electric �eld dynamics (5.58) and mode function ansatz-

equation (5.61), together with the corresponding correlator expansions (5.62) and

the de�nition of the electric �eld (5.60) in the ansatz may thus determine the

quantized evolution on the lattice under the inherent symmetries of the system.
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5.4.8 Numerical Evolution: Ansatz Case

Rearranging the electric �eld evolution (5.58) and the mode-ansatz dynamics

(5.61) yields iteration relations to numerically evolve the ansatz case:

E1(T,X3) = E1(T − 0, X3)

− ∆x0

∆x1(∆x3)2

~c
q
Im {U13(T,X3)− U31(T,X3 − 3)}

+ ∆x0
µ0cq

~
Im
{
〈 ˆ̄Ψ(X)γ1U1(T,X3)Ψ̂(X + 1)〉

}
− q

~
rwIm

{
〈 ˆ̄Ψ(X)U1(T,X3)Ψ̂(X + 1)〉

}
− ∆x0

∆x1

µ0ce

~
ρ2(X)Im

{
U
e/q
1 (T,X3)

}
+ ∆x0µ0cj1(X), (5.65a)

γ0χ
(A)
(K1,K2,Λ,s)

(T + 0, X3) = χ
(A)
(K1,K2,Λ,s)

(T − 0, X3)

+
∆x0

∆x1
γ0γ12i sin

(
∆x1

[
K1 −

q

~
A1(T,X3)

])
χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
∆x0

∆x2
γ0γ22i sin (∆x2K2)χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
∆x0

∆x3
γ0γ3

(
χ

(A)
(K1,K2,Λ,s)

(T,X3 + 3)− χ(A)
(K1,K2,Λ,s)

(T,X3 − 3)
)

+ ∆x0γ
0 2mc

~
χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
∆x0

∆x1
γ02rw

(
cos
(

∆x1

[
K1 −

q

~
A1(T,X3)

])
− 1
)
χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
∆x0

∆x2
γ02rw (cos (∆x2K2)− 1)χ

(A)
(K1,K2,Λ,s)

(T,X3)

+
∆x0

∆x3
γ0rw

(
χ

(A)
(K1,K2,Λ,s)

(T,X3 + 3)− 2χ
(A)
(K1,K2,Λ,s)

(T,X3)

+ χ
(A)
(K1,K2,Λ,s)

(T,X3 − 3)
)

= 0, (5.65b)

with the fermionic correlators determined through the ansatz mode-expansion

(5.62). This evolution further entails determining both the gauge �eld in the

x-direction and the corresponding gauge-link.

The expression (5.46) determined on rearranging the discrete electric �eld

again in the ansatz provides an iteration relation for evolving the gauge link.
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Applying the gauge ansatz (5.19) and the corresponding electric �eld (5.60),

though, readily determines that the gauge link dynamics depends purely on the

z-coordinate:

U1(T + 0, X3) =

(
+

√(
1−

(
∆x0∆x1

q

~c
E1(T,X3)

)2
)

+ i∆x0∆x1
q

~c
E1(T,X3)

)
U1(T,X3). (5.66)

Substituting the (evolved) gauge link into the de�nition (5.33a) of the link hence

yields

A1(T,X3) =
i

∆x1

~
q

ln (U1(T,X3)) ,

to thus determine the evolution of the gauge �eld.

This relation and the gauge-link evolution (5.66), with the �eld iteration

relations (5.65) and the ansatz expansion (5.62) of the correlators on the lattice

fully specify the dynamics to evolve the system numerically from a given initial

state.

Con�rming, also, the constraint equations (5.63) and (5.64) on the lattice to

machine-level accuracy o�ers a test to con�rm the self-consistency of the ansatz;

and, further, may provide assurance of reliability of the simulation.

5.5 Lattice Boundary Conditions

5.5.1 Periodic Boundaries

Asserting periodic boundary conditions on the lattice forms the standard

method to compute those spatial derivatives across the lattice boundaries.

This e�ectively imposes a circular geometry in each orthogonal direction on the

lattice12; the wavefunctions on the lattice thus correspond to a complete rotation

12The boundary conditions correspond, most intuitively, to an in�nite space formed of the
�nite lattice-volume periodically repeated in each direction or equivalently, to a (spatial) three-
dimensional torus.
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of the �eld in each periodic direction.

Implementing a complete rotation on a Bosonic �elds simply returns the �eld

to the initial value. The �eld value at the site beyond the upper or lower boundary

in the sequence of lattice sites ni = [0, Ni − 1], under the periodic constraints

therefore respectively satisfy

f(X)|ni=−1 = f(X)|ni=Ni−1 ,

f(X)|ni=N = f(X)|ni=0 .

Applying the periodic boundary conditions to the superconductor system accord-

ingly imposes:

Ej(X)|ni=−1 = Ej(X)|ni=Ni−1 ,

Ej(X)|ni=Ni = Ej(X)|ni=0 ,

Aµ(X)|ni=−1 = Aµ(X)|ni=Ni−1 ,

Aµ(X)|ni=Ni = Aµ(X)|ni=0 ,

θ(X)|ni=Ni = θ(X)|ni=0 ,

θ(X)|ni=−1 = θ(X)|ni=Ni−1 . (5.67)

The spin-half property of a fermion �eld determines that conducting a com-

plete rotation of the �eld negates the initial value. This therefore implies that in

each periodic direction, the fermion �eld-value respectively at the adjacent site

beyond the upper and lower boundary satis�es

Ψ(X)|ni=−1 = −Ψ(X)|ni=Ni−1 ,

Ψ(X)|ni=Ni = − Ψ(X)|ni=0 . (5.68)
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These and the conditions (5.67) on the bosonic �elds provide the complete set of

periodic boundary conditions to evolve the dynamics on the lattice.

5.5.2 Neumann Boundaries

Implementing Neumann boundaries in the z-direction on the lattice enables con-

sistently setting independent initial conditions on the bounding, x-y planes13.

The Neumann conditions on a scalar �eld in 3+1D impose the gradient normal

to the bounding surface vanishes. Forming the standard, �rst-order approxima-

tion of the di�erential on a cuboidal lattice speci�es the discretized derivative in

the z-direction comprises14

f(X + 3)− f(X)

∆x3
.

Further, asserting the sites at n3 = −1 and n3 = N3 − 1 respectively form the

upper and lower boundaries in the z-direction hence determines the derivatives

normal to the z-boundaries:

f(X)|n3=0 − f(X)|n3=−1

∆x3
,

f(X)|n3=N3
− f(X)|n3=N3−1

∆x3
.

Applying the Neumann boundary condition to the discretized gradients corre-

13In particular, this will enable consistently setting an external current aligned in opposite
directions at the opposing boundaries in the z-direction. This may be used to generate a
uniform magnetic �eld of identical orientation in the two regions outside the region enclosed
by the superconductor; or a single, electromagnetic pulse travelling along the z-axis may be
generated from an oscillating current at only one boundary.

14The standard, �rst-order approximation of the di�erential may alternatively impose
f(X)−f(X−3)

∆x3
to de�ne the discretized derivative on the lattice. This in the scalar case yields

an identical result to the original de�nition except asserting the boundaries at the sites n3 = 0
and n3 = N3. The chosen derivative and the associated boundary site simply o�ers a de�nite
convention for obtaining consistent, explicit boundary conditions. (see also footnote 16)
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spondingly yields

f(X)|n3=−1 = f(X)|n3=0 ,

f(X)|n3=N3
= f(X)|n3=N3−1 .

These constraints on the super-conducting system therefore impose the Higgs

phase on the z-boundaries satis�es

θ(X)|n3=−1 = θ(X)|n3=0 ,

θ(X)|n3=N3
= θ(X)|n3=N3−1 .

Implementing the Neumann conditions further on a 3+1D vector imposes the

spatial component perpendicular to the boundary vanishes while the gradient of

those parallel to the boundary vanish15. The standard, �rst-order approximation

of the di�erential hence implies the components parallel to the z boundaries,

under the Neumann constraints satisfy

a1/2(X)
∣∣
n3=−1

= a1/2(X)
∣∣
n3=0

,

a1/2(X)
∣∣
n3=N3

= a1/2(X)
∣∣
n3=N3−1

;

15These conditions on the scalar and vector are equivalent to considering the Neumann
conditions impose a re�ectional symmetry at the boundary.
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while the condition on the perpendicular component yields16

a3(X)|n3=−1 = 0,

a3(X)|n3=N3−1 = 0.

Hence, the electric �eld components under the Neumann boundary conditions

satisfy

E1/2(X)
∣∣
n3=−1

= E1/2(X)
∣∣
n3=0

, E3(X)|n3=−1 = 0,

E1/2(X)
∣∣
n3=N3

= E1/2(X)
∣∣
n3=N3−1

, E3(X)|n3=N3−1 = 0, (5.69)

and likewise the boundary conditions on the gauge �eld imply

A1/2(X)
∣∣
n3=−1

= A1/2(X)
∣∣
n3=0

, A3(X)|n3=−1 = 0,

A1/2(X)
∣∣
n3=N3

= A1/2(X)
∣∣
n3=N3−1

, A3(X)|n3=N3−1 = 0. (5.70)

Further, the vector boundary conditions impose the fermion current satis�es

q

~
Im
{
〈T ˆ̄Ψ(X + γ)1/2U1/2(X)Ψ̂(X + 1/2)〉

}∣∣∣
X=XB

=

q

~
Im
{
〈T ˆ̄Ψ(X + 3)γ1/2U1/2(X)Ψ̂((X) + 1/2 + 3)〉

}∣∣∣
X=XB

,

q

~
Im
{
〈T ˆ̄Ψ(X)γ3U3(X)Ψ̂(X + 3)〉

}∣∣∣
X=XB

= 0, (5.71)

at the coordinates XB on the z-boundaries; and the Neumann conditions likewise

16 The alternative choice of the derivative at the boundary yields, equivalently to the scalar
�eld, an identical result to the employed de�nition, except assuming the boundaries occur at
the sites n3 = 0 and n3 = N . This alternative boundary location further in the vector case
interchanges the actual sites on the lattice where the �eld value vanishes: switching from �xing
the �eld to zero at the sites where n3 = −1 and n3 = N − 1 to where n3 = 0 and n3 = N .
Physically though, this variation in the boundary location only corresponds trivially to a shift
in the positioning equal to a single lattice spacing.
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constrain the Wilson current:

q

~
rwIm

{
〈T ˆ̄Ψ(X + Uµ)[1/2](X)Ψ̂(X + 1/2)〉

}∣∣∣
X=XB

=

q

~
rwIm

{
〈T ˆ̄Ψ(X + 3)[1/2](X)Ψ̂((X) + 1/2 + 3)〉

}∣∣∣
X=XB

,

q

~
rwIm

{
〈T ˆ̄Ψ(X)U3(X)Ψ̂(X + 3)〉

}∣∣∣
X=XB

= 0. (5.72)

These requirements on the fermionic currents may be attained at the upper and

lower limits of the z-direction, through a matrix relating the �eld value across

the boundary:

Ψ(X)
∣∣
n3=−1

= B0Ψ(X)
∣∣
n3=0

,

Ψ(X)
∣∣
n3=N

= BNΨ(X)
∣∣
n3=N−1

.

Substituting these relations, accordingly, into the boundary conditions on the

fermionic current, and applying the Neumann conditions on the gauge �eld (5.70)

in the de�nition of the gauge link (5.33a) determines

B†0/Nγ
0γ1/2B0/N = γ0γ1/2, B†0/Nγ

0γ3 = −γ0γ3B0/N ,

B†0/Nγ
0B0/N = γ0, B†0/Nγ

0 = γ0B0/N .

These matrices, in constraining the fermions, may reasonably be expected to

derive from the γ-matrices central in determining the fermion behaviour. This

constraint moreover on the z-direction indicates the γ3 matrix in particular �

related uniquely among the γ matrices to the z-direction � may reasonably be

selected for creating the B0/N -matrices; and also the γ5 without association to

any direction in particular may in general be reasonably chosen to form the

boundary matrices. The simplest combination of these matrices satisfying the
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boundary conditions, hence, imposes

B0/N = ±iγ5γ3, (5.73)

with either the positive or negative combination possible (independently) at each

boundary. Further, the de�nition of the Neumann conditions through the direc-

tions perpendicular to the boundary involve an inherent orientation, and, thus,

indicate the choice of the relative sign of the matrices. Speci�cally, the operation

±i
(
N̂1γ

5γ1 + N̂2γ
5γ2 + N̂3γ

5γ3
)

de�nes the projection of the matrix ±iγ5γi on the outward-orientated, normal

vector-�eld N̂(X) of the lattice. This in particular on the z-boundaries implies

±i
(
N̂1γ

5γ1 + N̂2γ
5γ2 + N̂3γ

5γ3
) ∣∣∣

n3=−1
= ∓iγ5γ3,

±i
(
N̂1γ

5γ1 + N̂2γ
5γ2 + N̂3γ

5γ3
) ∣∣∣

n3=N−1
= ±iγ5γ3;

and thus on comparison to the boundary constraints (5.73) indicates that the

choice of the boundary matrices includes only those including a relative sign

di�erence:

B0 = +iγ5γ3,

BN = −iγ5γ3,

or
B0 = −iγ5γ3,

BN = +iγ5γ3.

(Notably, the imposed fermion-constraints in the continuum limit consistently

reproduce those relations satisfying the continuum Neumann-conditions while

enabling an arbitrary current in the x-direction on the z-boundaries: consistent

with the ansatz assertion that current may exist in this direction. For further

details see the Appendix B.) The positive option at the lower boundary and

accordingly negative at the upper will be applied for de�nitiveness in the subse-
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quent analysis17. These constraints on the fermion �eld together with the electric

�eld conditions (5.69) and those on the gauge �eld (5.70) complete the Neumann

boundaries in the z-direction on the cuboidal lattice.

Imposing the periodic conditions additionally on the remaining directions

provides a complete set of boundary conditions in the 3 + 1D system.

The ansatz case signi�cantly eliminates both the x- and y-directions expressly

in the dynamics and thus the need to explicitly constrain the boundaries in these

directions; these boundary conditions though shall implicitly determine the valid

lattice-modes determining the fermion �eld-expansion. Applying the periodic

boundaries matches the asserted uniformity in the x- and y-directions, and, thus,

these boundary conditions may consistently provide the necessary, additional

constraints on the x- and y-boundaries. The Neumann constraints on the z-

direction, with also the periodic boundaries on the x and y-directions determining

the lattice wave-vectors, therefore, form a complete and self-consistent set of

boundary conditions for the ansatz case.

5.6 Initial Conditions

5.6.1 Fermion Field

Evolving the fermionic �elds numerically in the mode, ensemble or ansatz case

requires initially setting the mode functions for subsequent iteration through the

leap-frog algorithm.

To obtain consistency with the correlator results requires the initial con�gura-

tion in the vacuum state to match the assumption in the derivations. Further, the

vacuum provides a tractable con�guration to analytically determine the fermion

mode functions. The standard, free-fermion solutions provide the vacuum dy-

17The particular choice of boundary matrix a�ects the precise form of the mode functions and
notably the vacuum initial-modes satisfying the Neumann conditions (see Section 5.6.1); the
di�erence in signs on the surface though would not be expected to create signi�cant qualitative
di�erences in the physical system.
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namics in an in�nite, continuum space; and the equivalent result on the lattice

satis�es the discretized fermion dynamics with the periodic boundary conditions

mimicking an in�nite volume. These functions on the periodic lattice usefully

remain the basis for determining the vacuum modes in this case imposing the

Neumann boundary conditions.

Periodic Boundaries

The vacuum fermion-dynamics on the lattice (5.50) yield

(
iγµSµ +

MLc

~

)
UK = 0,

−
(
iγµSµ −

MLc

~

)
VK = 0,

for respectively the discrete, positive- and negative-energy con�gurations (5.51)

where

Si ≡
sin (Ki∆xi)

∆xi
,

ML ≡ m+
rW~
c

∑
i

1

∆xi
(1− cos (Ki∆xi)) .

These equations thus exactly reproduce the respective, standard vacuum-dy-

namics in the continuum except the variable Sµ replaces the continuous-variable

kµ and likewise the quantity ML substitutes the free-fermion mass. (This equiv-

alence notably establishes the correspondence of the fermionic wave-vectors and

mass on the lattice to the equivalent physical quantities.) Applying accordingly

the substitutions to the standard positive and negative-energy solutions in the

continuum may therefore solve the positive- and negative-energy con�gurations
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on the lattice:

ψ
(+)
K,±(X) =

1
√
ωK

 −√ωKI2 − σ · S ξ±
√
ωKI2 + σ · S ξ±

 eiK·X ,

ψ
(−)
K,±(X) =

1
√
ωK

 √ωKI2 − σ · S ξ±
√
ωKI2 + σ · S ξ±

 e−iK·X , (5.74)

where ωK =
√

(MLc/~)2 + S2 and the square root of the matrices is formed

through the standard, Taylor-series of the matrix function18. The orthogonality

of the mode functions asserted in creating the expansion further constrains the

spinors ξs to an orthogonal set:

ξsξr = 0, s 6= r.

These for simplicity are typically constructed to form

ξsξs = I2;

and thus these spinors satisfy both the orthonormal constraint and the vacuum

mode-equation. The choice

ξ+ =

 1

0

 , ξ− =

 0

1

 ,

in particular provides a simple con�guration of the orthonormal spinors to specify

the basis modes chosen in the initial expansion. The solutions thus de�ne an

orthogonal, vacuum con�guration.

Asserting that the physical distances relate to the lattice-site index ni in the

18See the Appendix C for the detailed form and a practical method to numerically compute
this expansion.
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respective direction through

X1 = n1∆x1,

and substituting either the positive or negative energy mode into the periodic

boundary condition (5.68) on the corresponding direction consistently for both

the modes implies

Ki =
2π

Li

(
ei +

1

2

)
,

where ei is the site index in the respective direction of the discrete mode-space.

These constraints on the lattice wave-vectors thus ensure that the vacuum solu-

tions satisfy the boundary conditions imposed in the x and y directions.

The positive- and negative-energy solutions accordingly may provide the or-

thogonal, vacuum modes for the initial conditions on the lattice satisfying the

periodic boundary conditions19.

Neumann Boundaries

Imposing the Neumann Boundaries determines, in particular, the initial, vacuum-

state fermions satisfy the constraints

Ψ(0,X)
∣∣
n3=−1

= B0Ψ(0,X)
∣∣
n3=0

,

Ψ(0,X)
∣∣
n3=N

= BNΨ(0,X)
∣∣
n3=N−1

,

with also the choice B0 = +iγ5γ3 and BN = −iγ5γ3 (see Section 5.5.2). This,

hence, invalidates the standard, discrete vacuum con�guration (5.74), and an

19The vacuum con�guration on substitution into the mode and ansatz expansion with
the respective ladder-commutators may satisfy the condition to reproduce the fermion anti-
commutator (5.39) in particular at the initial time. These initial modes therefore validate the
expansions and associated ladder-commutators throughout the evolution on the periodic lattice
(see footnote 1).
This procedure to reproduce the anti-commutator in the ansatz case notably asserts the

wave-vector in the z-direction initially forms the ansatz-variable. The process further involves
setting the summation weighting dλ/(2π) to yield the required anti-commutator; and the time
invariance of the weighting hence determines the determined form remains valid throughout
the evolution in the periodic case. This process is demonstrated explicitly in the subsequent
Section (5.6.1) for the Neumann boundaries.
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alternative vacuum con�guration is required to satisfy the Neumann boundaries

for the ansatz.

The linearity of the vacuum equation (5.50) yields the possibility for linear

combinations of the standard results to likewise form further modes satisfying

the dynamics. Creating in particular the combination

ψ̃
(+)
K,s(X) = ei(K1X1+K2X2)

(
eiK3X3UK,s + iγ5γ3e−iK3X3UK,s

)
(5.75)

employs two terms each independently satisfying the vacuum equation (5.50) with

the associated spinor UK,s; these con�gurations importantly also involve only this

single spinor from the standard orthogonal set and hence form an orthogonal set

to satisfy the orthogonality assumption in de�ning the modes expansion. These

linear combinations thus readily de�ne an alternative set of mutually-orthogonal,

vacuum solutions associated to the positive-energy modes.

Likewise, the linear combination

ψ̃
(−)
K,s(X) = e−i(K1X1+K2X2)

(
e−iK3X3VK,s + iγ5γ3eiK3X3VK,s

)
(5.76)

incorporates two terms each independently satisfying the vacuum dynamics (5.50)

with the associated spinor VK,s and involving only this single spinor from the

standard orthogonal set; these hence de�ne a set of mutually-orthogonal, vacuum

solutions associated to the negative-energy modes20.

Asserting that the z-coordinate relates to the lattice-site index n3 in the z-

direction through

X3 =

(
n3 +

1

2

)
∆x3 (5.77)

ensures that the constructed, linear combinations both satisfy the Neumann con-

20A more complex combination of the standard modes may conceivably form an orthogonal
basis satisfying both the vacuum dynamics and the Neumann boundaries: potentially adding
more terms involving a single spinor, combining distinct spinors of either the positive- or the
negative-energy modes or mixing both the positive- and negative-energy spinors. These though
involve an unnecessary, additional complexity; and the case of mixing the positive- and negative-
energy solutions poses a particularly unclear form to interpret physically.
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ditions at the origin:

iγ5γ3ψ̃
(+)
K,s(X)

∣∣∣
n3=0

= ei(K1X1+K2X2)
(
iγ5γ3ei

1
2
K3∆x3UK,s + e−i

1
2
K3∆x3UK,s

)
= ψ̃

(+)
K,s(X)|n3=−1,

iγ5γ3ψ̃
(−)
K,s(X)

∣∣∣
n3=0

= e−i(K1X1+K2X2)
(
iγ5γ3e−i

1
2
K3∆x3VK,s + ei

1
2
K3∆x3VK,s

)
= ψ̃

(−)
K,s(X)|n3=−1.

Substituting either mode combination into the Neumann condition at the

upper z-boundary in both cases consistently implies

K3 =
π

L3

(
n3 +

1

2

)
, (5.78)

where n3 is the site-index in the z-direction of the discrete mode-space.

These linear combinations with the constraints on the wave-vectors and coor-

dinate in the z-direction thus provide the vacuum �eld-con�gurations satisfying

also the Neumann boundary conditions imposed on the z-axis.

Asserting that the x and y-coordinate relates to the respective, lattice-site

index ni through

Xi = ni∆xi,

equivalently to the periodic case � only instead substituting the linear combina-

tions into the boundary conditions � determines

Ki =
2π

Li

(
ei +

1

2

)
, (5.79)

where ei is the site index in the corresponding direction of the discrete mode-

space.

These constraints on the lattice wave-vectors in the x- and y-direction thus

ensure that the constructed, linear vacuum-solutions satisfy the boundary con-
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ditions imposed in the x and y directions. This result further e�ectively incor-

porates the x- and y-boundary choices into the dynamics although the ansatz

notably eliminates any explicit x- or y- spatial gradient terms that would require

directly implementing the periodicity conditions.

The constructed linear-combinations with the determined form of the mode-

and the lattice-space coordinates thus ultimately provide the vacuum mode func-

tions comprehensively satisfying the boundary-conditions on the lattice. This

choice of the initial condition further speci�es the mode-variable Λ notably to be

K3 for the initialization.

Implementing the transformation Ki → −Ki on the negative energy solution

further yields the initial mode function

ψ̃
(−)
K,s(X) = ei(K1X1+K2X2)

(
eiK3X3V−K,s + iγ5γ3e−iK3X3V−K,s

)
.

Thus, the x and y dependency becomes identical to the positive energy solution.

Matching these con�gurations to the simpli�ed ansatz expression (5.54) hence

readily determines the constructed initial conditions satisfy the ansatz expression

and yields

χ
(U)
(K1,K2,Λ,s)

(0, X3) = eiK3X3UK,s + iγ5γ3e−iK3X3UK,s,

χ
(V )
(K1,K2,Λ,s)

(0, X3) = eiK3X3V−K,s + iγ5γ3e−iK3X3V−K,s, (5.80)

with also the recognition Λ = K3 in this initial con�guration.

Consistency with the Canonical Quantization

To validate these vacuum solutions for the Neumann boundaries requires con-

�rming their consistency with the standard, anti-commutator relations imposed

on quantization.
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The canonical commutator (5.39), in particular, at the initial time imposes

{
Ψ̂a(0,X), Ψ̂†b(0,Y)

}
= ~c

δ3
XY

∆x1∆x2∆x3
δab,

This therefore requires the mode expansion of the fermion operator (5.53) with

the standard (time-independent) commutator relations for the ladder operators

(5.43) together reproduce this �eld commutator for the choice of initial modes.

Asserting the ladder-operator relations to be valid at the initial time, and

substituting the constructed vacuum-solutions (5.80) into the mode expansion

(5.53) � with the identi�cation that initially Λ = K3 (though importantly, the

weighting ∆λ/(2π) of the integral remains to be determined subsequently) �

yields:

{
Ψ̂a(0,X), Ψ̂†b(0,Y)

}
= ~c

∑
K1,K2,K3

∆k1

(2π)

∆k2

(2π)

∆λ

(2π)
eiK1(X1−Y1)eK2(X2−Y2)

((
eiK3(X3−Y3) + e−iK3(X3−Y3)

)∑
s

(
(UK,s)a(U

†
K,s)b + (V−K,s)a(V

†
−K,s)b

)
+
∑
c,d

e−iK3(X3+Y3)i
(
γ5
)
ac

(
γ3
)
cd

∑
s

(
(UK,s)d(U

†
K,s)b + (V−K,s)d(V

†
−K,s)b

)
+
∑
c,d

eiK3(X3+Y3)i
(
γ5
)
dc

(
γ3
)
cb

∑
s

(
(UK,s)a(U

†
K,s)d + (V−K,s)a(V

†
−K,s)d

))
.

The conventional positive and negative-energy solutions further satisfy the stan-

dard result

∑
s

UK,sU
†
K,s =

i

2ωK

((mc
~

)
I4 − iγ0ωK − i

∑
i

γiKi

)
γ0,

∑
s

VK,sV
†
K,s =

i

2ωK

(
−
(mc

~

)
I4 − iγ0ωK − i

∑
i

γiKi

)
γ0;
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and this in the initial condition readily determines

{
Ψ̂a(0,X), Ψ̂†b(0,Y)

}
=

~c
∑

K1,K2,Λ

∆k1

(2π)

∆k2

(2π)

∆λ

(2π)
eiK1(X1−Y1)eK2(X2−Y1)

(
cos (K3[X3 − Y3]) (I4)ab + cos (K3[X3 + Y3])

∑
c

i
(
γ5
)
ac

(
γ3
)
cb

)
.

(5.81)

Considering the form of the spatial coordinates (5.77) satisfying the boundary

conditions determines

X3 + Y3 = (n3 + n3 + 1)∆x3.

This is non-zero everywhere on the lattice, and hence, the second term in the

correlator expansion (5.81) involves a summation in the k3 direction over anti-

symmetric, cosine values: entirely cancelling pairwise for even N3, to zero at any

pair of z-coordinates.

The spatial-coordinate structure (5.77) similarly implies

X3 − Y3 = (n3 −m3)∆x3.

This is non-zero over the lattice except at X3 = Y3; and for X3 6= Y3, the

summation in the z-mode direction again equals zero for even N3, through the

pairwise cancellations of the summed cosine-values. At X3 = Y3 though, the

cosine term equals unity; and equally the summation over the x- and y-mode

directions vanish everywhere except where X1 = Y1 and X2 = Y2. The �rst term

in the correlator expansion therefore yields

{
Ψ̂a(0,X), Ψ̂†b(0,Y)

}
= N1N2N3~c

∆k1

(2π)

∆k2

(2π)

∆λ

π
δ3
XYδab.
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This result notably involves the undetermined summation weighting ∆λ/2π.

The initial relation λ = k3 indicates the weighting relates to ∆k3; choosing the

weighting in particular to satisfy

∆λ

π
=

∆k3

π
=
K3|e3+1 − K3|e3

π
,

thus, explicitly speci�es this constant through the lattice wave-vectors. Sub-

stituting the expressions (5.79) and (5.78) for the wave-vectors into the initial

correlator therefore yields

{
Ψ̂a(0,X), Ψ̂†b(0,Y)

}
= ~c

δ3
XY

∆x1∆x2∆x3
δab.

This precisely forms the canonical-quantization requirements on the fermionic

anti-commutators for the fermionic initial conditions satisfying the Neumann

boundaries, notably through the implementation of the standard, ladder-operator

relations. These derived, vacuum mode functions thus provide an initial con-

dition entirely consistent with the canonical quantization of the discrete sys-

tem. The time independence of the ladder operators determine their initial

commutation relation remains valid at all times; and equivalently, the conser-

vation standardly of the �eld commutator ensures that the implementation of

the canonical-quantization relation at the initial time remains throughout the

evolution. This choice of initial modes in the Neumann system hence ensures the

required, canonical-quantization conditions remain valid for all time.

The initial consistency results, further, through the particular weighting of

λ in the summation21. This consistency thus validates the chosen value of the

21This form of the summation weighting ∆λ/(2π) creating the canonical, �eld-quantization
commutator signi�cantly results for the particular choice of the initial modes, the ladder-
operators and the expansion summation. The ansatz speci�es the initial form of the fermions
�elds only up to an arbitrary factor; while the �eld commutator places the only further con-
straint on these modes and the additional components forming the mode expansion. This
therefore enables a considerable freedom in specifying the quantities multiplying either the
mode functions, the ladder operators, the sum weightings or additional factors within the ex-
pansion: rede�ning the particular factors in any component with a rede�nition within the
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summation weighting initially; the time independence of the weighting further

ensures this expression throughout the evolution (although the relevant variable

in the summation may no longer be K3) speci�es the relevant weighting.

5.6.2 Gauge Field, External Current and Higgs Phase

Consistency with the vacuum initial conditions for the fermions requires no initial

magnetic or electric �eld; this hence implies that the initial gauge �elds likewise

are trivially zero everywhere. The electromagnetic �elds required in the dynamics

for the initialization thus satisfy

Ei(0,X) = 0,

Aµ(0,X) = 0.

Creating the consistency with the vacuum initial con�guration further de-

termines the external current is uniformly zero. This with the absence of the

electromagnetic �elds, and setting both the fermion and the Wilson current ef-

fectively to zero through the vacuum mode-con�guration, on substitution into

the gauge dynamics implies that the initial Higgs charge and current vanish ev-

erywhere. These conditions may most simply be accomplished through setting

the phase uniformly to zero at the initial time:

θ(0,X) = 0.

This con�guration with the vacuum modes and the absence of the electro-

magnetic �elds, thus, trivially satisfy the electric �eld dynamics at the initial

time; and notably in particular, the discretized Gauss'-law constraint, specifying

charge conservation on the lattice.

further quantities might equally produce the required result. Thus in general, the asserted ini-
tial modes and the ladder, anti-commutator relations through the particular form of the �eld
expansion determine the speci�c summation weighting of Λ.
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The ensemble variances of the in�nite, Gaussian distributions may precisely

reproduce the fermionic correlator, and hence, these initial conditions for the

�elds may likewise trivially satisfy the Gauss'-law constraint in the ensemble

method. In practice though, the variation in the ensemble-averages of the �nite

sample selected may prevent the trivial initial conditions satisfying the Gauss'-

law constraint. This deviation, in particular, determines the fermions contribute

a �nite change in the Gauss'-law constraint. Satisfying this condition, even in

the case of a zero external current and Higgs �eld, hence involves a �nite, initial

electric �eld.

De�ning the discrete Fourier transform on the lattice through

f(X) ≡
∑
j

∑
ej

exp

(
−2πi

ejnj
Nj

)
f̃(K)

and implementing this transformation on the Gauss'-law constraint (5.40a) im-

plies ∑
j

iK̃jẼj(K) = ρ̃(K),

with also

K̃j ≡
i

∆xj

(
1− exp

(
2πi

ejnj
Nj

))
,

and where the term sourcing the electric �eld is derived through acting the Fourier

transform on the discretized charge-densities:

ρ(X) ≡ q

~
Im{〈T ˆ̄Ψ(X)γ0Ψ̂(X+0)〉}− 1

∆x0

e

~
ρ2(X)Im{Θ†(X)Θ(X+0)}+j0(X).

Asserting that the electric �eld satis�es

Ej ∝ K̃j
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consequently yields

Ẽj(K) =
iρ̃(K)∑
i K̃

2
i

K̃j , (5.82)

specifying the electric �eld in Fourier space. The inverse Fourier transform hence

provides the initial electric �eld satisfying also the non-trivial, Gauss'-law con-

straint in practice for the ensemble case.

5.7 Generating the Uniform Magnetic-Field

To examine tunnelling of a magnetic �eld through the superconducting barrier

involves forming a static magnetic �eld outside the region enclosed by the barrier.

The external current may produce this magnetic �eld; while the initial vacuum-

state requires evolving the �elds to the �nal, static state.

5.7.1 External Current Con�guration

Imposing, in particular, the only non-zero component of the external current

j1(X) = Θ(T )

(
|J | exp

(
−(X3 − z1)2

2σ2

)
− |J | exp

(
−(X3 − z2)2

2σ2

))
, (5.83)

with z1 < z2 and σ � z2 − z1 provides a smooth distribution generating an

approximately uniform magnetic �eld in the z-direction, away from the Gaussian

peaks in the current; while the time-dependent coe�cient may gradually increase

the external current from the vacuum initial state to the static, �nal state. (This

con�guration notably both satis�es the constraint on the current for the ansatz,

and likewise provides an equivalent expression suitable to use in the full 3 + 1D

case.)

The Gaussian terms e�ectively each form a sheet of current localised around

zi with the width equal to σ. Any sheet of constant current without additional

modi�cation generates a uniform magnetic �eld in the region external to the

current; the current, the normal from the sheet to the point in the �eld and
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the magnetic force in this con�guration form a right-handed set. The Gaussian

centred at z1, hence, in the �nal, static state generates a uniform magnetic �eld,

orientated in the positive y-direction at X3 > z1 + σ; while the negative current

centred at z2, likewise, produces a magnetic �eld at X3 < z2−σ. These two �elds

therefore, in the absence of any barrier or the fermionic �elds, mutually reinforce

in the region z1 + σ < X3 < z2 − σ to generate a uniform �eld in the static

state. The Gaussian centred at z1 further may generate a uniform magnetic

�eld at X3 < z1 − σ except orientated in the negative direction and likewise

the current centred at z2. On periodic boundaries, these generated �elds may

mutually reinforce: thus in the static, �nal state, without fermions or any barrier,

the two combine to form a uniform �eld in the region X3 < z1 − σ, X3 > z2 + σ

aligned though oppositely to in the region z1 + σ < X3 < z2 − σ.

The form of the magnetic �elds demonstrates the re�ectional symmetry arou-

nd the centre of the z-axis. Positioning the super-conducting enclosure centrally

on this axis will retain the symmetry, and hence ensure the currents generate

the magnetic �eld symmetrically in the two regions outside the barrier. The

symmetry in the location of the currents and the barriers remains also on the

inclusion of the fermions. This therefore implies both the magnetic �eld and

the fermion �eld will incorporate the symmetry around the centre of the z-axis.

Observing this symmetry, in both the quantum and classical case, may therefore

con�rm the validity of the simulation.

Setting the time variation to

Θ(T ) =
1

2
tanh (θ) +

1

2
, θ = tan

(
πT

τ
− π

2

)
(5.84)

enables a smooth initial transition from zero and rapid stabilization after the

time τ to produce the �xed, �nal state for investigation.
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5.7.2 Siting the External Current on the Lattice

Centring the oppositely-aligned currents respectively on the z-boundaries in the

Neumann case provides a distinct and de�nite location for the current peaks,

while the independence of the boundaries excludes any inherent inconsistency

in the con�guration. This choice also importantly maximises the region of the

magnetic �eld on the lattice external to the current and the superconducting

barrier.

The fermionic terms contributing to the current notably de�ne the location of

the currents within the discrete system: thus, in particular, de�ning the bound-

ary position of the external current. These fermionic contributions on the lattice

involve the �eld value at adjacent sites; the fermion (and Wilson) current as-

sociated to the site of index n3 in the z-direction hence occurs physically at

X3|n3 +X3|n3−1 = (n3 − 1/2)∆x3: o�set, midway between the discretization in-

terval. This � with the boundaries de�ned respectively at n3 = −1 and n3 = N−1

� therefore determines z1 = −∆x3/2 and z2 = (N3 − 1/2)∆x3.

In the periodic case, the relation between the boundaries prevents position-

ing the oppositely aligned currents on the boundaries without inconsistency. The

current peaks, though, may likewise be positioned midway between the discretiza-

tion interval to match their position in the Neumann case; this notably enables

producing a region in the periodic case equivalent to the Neumann system for

direct comparison. Choosing the distance z1 < X3 < z2 equal to the combined

length of the regions z2 < X3 and X3 < z1 may de�ne the location of the peaks.

This, in particular, may be obtained through setting z1 = (N3/4− 1/2)∆x3 and

z2 = (3N3/4−1/2)∆x3. These coordinates thus, de�ne the explicit con�guration

of the current, for use in the periodic case.
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5.7.3 Dissipating Generated Waves

The varying external current in the smooth increase to the static, �nal state in-

herently generates electromagnetic waves. These disrupt the uniform magnetic

�eld usefully generated and further may excite similar oscillations in the fermion

and Wilson current. (Increasing the transition time to the �nal state may de-

crease the amplitude of the generated waves but the system still includes waves

and the longer time impairs the computational e�ciency.) Enabling the energy

in the waves to dissipate from system provides an e�cient method to prevent the

disruption of these oscillations in the �nal, static con�guration. Adding a dissipa-

tive term proportional to the time derivative of the gauge �eld provides a simple

method for accomplishing this decay without disrupting the static magnetic �eld.

The dissipative term, speci�cally, in the classical dynamics may comprise simply

− ζ

µ0
∂0Ai(x),

with ζ a constant and > 0 added onto the non-zero terms (on the left-hand

side) in the quantized, electric �eld dynamics (5.9b). This notably reduces to

zero when the gauge �eld is constant, and therefore contributes nothing to the

ideally static, �nal state of the system; the term, also, acts to oppose any change

in the gauge �eld and, thus, generates the required dissipative e�ect while the

electromagnetic �elds evolve to the �nal state.

Applying the de�nition of the continuum electric �eld (5.6) to the dissipative

term yields

− ζ

µ0
∂0Ai(x) =

ζ

µ0c
Ei(x).

This expression in terms of the electric �eld forms the basis to hence readily

obtain the equivalent dissipative term on the lattice:

ζ

µ0c
Ei(X),
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where the discrete electric �eld (5.36) implicitly involves a discretized equivalent

of the gauge-�eld derivative, de�ned through the gauge links. This addition

into the non-zero terms (on the left-hand side) in the quantized, electric �eld

dynamics (5.40b) on the lattice, hence equivalently to the continuum, generates

the required dissipation without altering the ideally static, �nal state.

The dissipative term correspondingly modi�es the iteration relations for the

electric �eld evolution; and notably under the ansatz, this modi�cation reduces

to purely the addition of the Ei(X) contribution. These additions thus form the

practical mechanism to obtain the static, �nal state of the system.



Chapter 6

Tunnelling of the 3rd Kind: Simulations

6.1 Parameter Choices for Numerical Simulations

Throughout the simulations, natural units of ~ = c = 1 are imposed for simplicity.

The fermion massm and the Higgs charge e respectively de�ning the units of mass

and of charge corresponds to these parameters equalling unity in the dynamics.

Setting the gauge-fermion coupling to q = 0.3 provides a fermion-gauge coupling

smaller than the Higgs-charge e, while su�ciently large to compute numerically.

Choosing also rW = 0.5 accomplishes the e�ective prevention of spatial-doublers

in the simulation.

6.2 Numerical Code

Converting the iteration relations for the �elds in the ensemble case (see Section

5.4.6) and in the ansatz case (see Section 5.4.8) for the �elds into a C code

provided the basis for evolving the system. The simulations without the fermions

involved su�ciently few �eld values to compute, conveniently, using only a serial

code. Employing the Open MPI libraries enabled parallelizing the evolution

to compute the substantially increased number of �eld values, on incorporating

the fermions. Constructing the current (5.83) con�guration and the static, super-

138
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conducting barrier (5.4) involves simply evaluating these functions on the relevant

lattice sites, using the standard library of C maths operations.

The ensemble code with the periodic boundaries computes the �eld evolution

equivalently to the ensemble method in the bosonic system (see Section 3.2).

This procedure, in the tunnelling case, divides the fermion ensemble onto the

processors, with the gauge �eld and Higgs phase also computed on each proces-

sor to evolve the ensemble; the MPI-sum algorithm again yields the ensemble

variances throughout the dynamics. The initialization of the fermions, also, is

accomplished equivalently to the boson ensemble (see Section 3.2). This process,

though, for the fermions notably instead uses the (updated) FFTW3 algorithms

to e�ciently compute the Fourier transforms. The random numbers, further,

are employed to generate both the male and female �elds, and the e�ective in-

dependence of these random coe�cients further, ensures the variances vanish

except for identical spin-states and spinor components, in addition to identical

wave-vectors. Computing the non-zero Electric �eld components in the ensemble

case also involves a Fourier transform, again, e�ciently accomplished using the

FFTW routines. Simply setting the initial Higgs-phase and gauge �eld to zero

in the code completes the initialization.

Implementing the ansatz case, on both periodic and Neumann boundaries,

involved an equivalent procedure to the ensemble case, though each processor,

rather than computing a portion of the ensemble, instead evolves a portion of

the fermion modes. The processors, in particular, compute, the modes for every

coordinate in the z-direction of the wave-vector space but only a section of the x

and y directions, along the entire, real-space z-axis on the lattice. Constructing

the initial fermion �elds importantly only involves computing the vacuum modes

without the need for a Fourier transform; the electric �eld involves also simply

the initial value to zero, without the FFTW3 routine needed to compute the

�eld. This notably, thus, entirely alleviates the need for the (computationally

demanding) FFTW3 routines on applying the ansatz.
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6.3 Computational E�ciency

6.3.1 Lattice-Site Quantity: Mode Functions

Completing the numerical analysis on an array of Ni sites in each spatial di-

mension entails the electric vector and spatial gauge-components � the time

component set to zero in the temporal gauge � with the Higgs phase eval-

uated on N1N2N3 sites: comprising in total 6N1N2N3 values. The discrete

mode space correspondingly forms an equally sized lattice; and evaluating the

correlator-expansion entails the summation over this mode space at each site

on the spatial lattice, with each mode-value including both spin states, each

themselves a four-component spinor: a total of 8(N1N2N3)2 values. This evo-

lution through the mode function method, therefore, in total, requires evolving

6N1N2N3 + 8(N1N2N3)2; and thus � notably through the quantized, fermion

�elds � depends quadratically on the lattice dimensions.

6.3.2 Lattice-Site Quantity: Ensemble Method

The ensemble-method evolution computes the electric �eld, gauge-components

and Higgs phase identically to the mode function case except altering the method

to compute the correlators. This therefore entails an equal number of these �eld-

values: in total, 6N1N2N3.

Obtaining each ensemble correlator at a site on the lattice involves the av-

erage over the NE ensemble �elds for the four-components of each ensemble

�eld: 4NEN1N2N3 values in total. The ensemble size � precisely reproduc-

ing the quantum correlators � in principle is in�nite; the �nite sample of NE

�elds in practice though is su�cient for numerical convergence of the evolution1.

1The ensemble-variance in the �nite case di�ers from the quantum variance in particular at
the initial time. An analytic expression of the initial correlators further may be obtained on the
choice of the modes initializing equally the ensemble and the quantum �elds. This therefore
enables quantifying the discrepancy between the cases; and thus may as in the Bosonic case
provide a measure of the precision of the �nite ensemble in reproducing the quantum result.
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This evolution through the ensemble method therefore in total requires evolving

6N1N2N3 + 4NEN1N2N3; and hence if NE < 2N1N2N3 at the convergence in

the ensemble size, the technique reduces the number of computed �eld values

scales slower than the quadratic variation in the mode function case.

6.3.3 Lattice-Site Quantity: Ansatz Case

The ansatz method entails the electric vector and spatial gauge-components with

Higgs phase evolved on the N3 lattice sites in purely the z-direction: these 6N3

values, in total, signi�cantly fewer than the number evolved in the previous

3 + 1D-cases.

Obtaining the correlator involves the summation over the discrete mode-space

at each real-space site. The mode-space in each direction comprises a site number

equal to the respective quantity in real-space direction. Hence, the z-direction in

the mode space incorporates N3 sites.

The site number in the transverse mode space remains unconstrained directly

by the existence of any real-space sites � in contrast to the 3 + 1D mode function

case. Both the real-space length and the lattice sites in these directions though

remain relevant quantities in the mode space through the discrete wave-vectors

on the lattice (Section 5.6.1).

Specifying the real-space lengths and requiring convergence in the lattice

spacing may determine these parameters on the real-space lattice: and hence in

particular de�nes the lattice-site quantity in the real-space, x and y-directions.

This procedure thus indirectly yields the number of real-space sites in the trans-

verse directions and hence the equality of the sites in the real and the mode space

determines the number of sites in the respective directions of the mode space.

The correlator summation over the mode space of Ni sites in the ith direc-

tion while including both spin states (each a four-component spinor) involves

in total 8N1N2N
2
3 values. This ansatz method therefore in total requires the

computation of 6N3 + 8N1N2N
2
3 . The greatest reduction in the computational
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requirements compared to the mode function simulations thus occurs through

this total depending quadratically only on the z-direction rather than the en-

tire three-dimensional space. These ansatz dynamics in contrast to the ensemble

system provide a signi�cant reduction in the computational requirements when

N1N1N
2
3 , in the ansatz case, is much less than N1N2N3NE , in the ensemble case;

this may notably result if NE ∼ N1N2N3, while both cases involve a similar site

quantity in each direction.

6.3.4 Measured Computational-E�ciencies

Implementing the ensemble method on a lattice of length Lx = Ly = 9.6 and

Lz = 18 for ∆x1 = ∆x2 = ∆x3 = 0.3 and with the periodic boundaries provides

a trial to evaluate the procedure.

Setting the external current amplitude to |J | = 0.5 (and located at the sites

equivalent to the Neumann case, see Section 5.7.2) sourced a magnetic �eld den-

sity of O(1). The width set to σ = 0.8/
√

2 su�ciently smoothed the current to

prevent numerical di�culties, while still remaining comparatively localized in the

volume. Choosing τ = 80 in increasing the current from zero to the �nal state,

further, provided a practicably brief transition time. Preliminary simulations

without fermions con�rmed this choice, with the damping coe�cient set to 2π/9,

generated negligible transient disruptions in the �nal state.

Choosing further ∆x0 = 0.002 set the time-step necessarily smaller than the

lattice spacing; and the preliminary numerical tests without fermions indicated

this yielded su�cient convergence in the magnetic �eld.

The trial lattice comprises N1 × N2 × N3 = 61440 sites � notably, also the

total number of fermion modes in the lattice system. A comparatively small

ensemble of 1536 �elds, equal to two and a half per cent of the mode number

forms the case for assessment.

This trial con�guration omits the Higgs �eld, for simplicity. The evolution

without fermions therefore generates a uniform magnetic �eld between the cur-
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rents centred at z1 = (N3/4−1/2)∆x3 and z2 = (3N3/4−1/2)∆x3, with the �eld

oppositely aligned in the regions either side (in the e�ectively contiguous space

crossing the periodic boundary) � the �gure 6.5 illustrates the generic form.

Incorporating the fermions through the ensemble method produces a mag-

netic �eld of the typical form illustrated in the �gure 6.1 (top, left). This shows

the �eld su�ciently long after the external current has ceased increasing for the

magnetic �eld in the case without fermions to have settled to a steady value.

The �eld with the fermions, though, continues �uctuating throughout the sim-

ulation. These continuous variations thus prevent a non-uniform �eld forming

between the current peaks even when the current is static. The �gure 6.1 (top,

left) illustrates the typically signi�cant deviations.

This persistent �uctuation indicates simply an insu�cient ensemble size was

applied in the simulation. The initial statistical variation in the ensemble cur-

rent across the lattice for the �nite ensemble inherently sources an inhomogeneous

evolution contrasting the true, zero vacuum-current. These deviations for a suf-

�ciently small ensemble may form substantial deviations, ampli�ed through the

subsequent evolution averaging over the insu�cient ensemble size. The �gure 6.1

illustrates the irregular spatial-variation typical in the x- y- and z-components

(respectively top, right; bottom, left; bottom, right) of the ensemble current.

These variations also �uctuate throughout the simulation. This consequently

con�rms the inadequate size of the ensemble.

The symmetry in the system, notably, yielding the constraint equation (5.64)

determines the system excludes any fermion or Wilson current (within the bulk,

outside the external current) in respectively the y- and z-directions. The current

measured in these directions for the ensemble, hence, may only result through

the inaccuracies in the method approximating to the true quantum correlators.

These measured, erroneous currents, thus, indicate the approximate error for the

chosen ensemble-size. The �gure 6.1, in particular, illustrates the ensemble of

1535 �elds produces an ε ∼ O(10−4) error in the average current-density across
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Figure 6.1: A trial simulation using the ensemble method for an ensemble of 1536

�elds, without the superconducting barrier and on periodic boundaries in each

direction. The trial was completed for the lattice of length Lx = Ly = 9.6 and

Lz = 18, with ∆x1 = ∆x2 = ∆x3 = 0.3. These �gures show t = 100 when the

external current is constant, having increased to the �nal value in time τ = 80.

Each �eld is averaged over the x-y plane, at every lattice site in the z-direction.

These results illustrate the typically large �uctuations in the combined fermion-

and Wilson-current (top-right and bottom) because of the inadequate ensem-

ble size. The combined fermion- and Wilson-current at a site X on the lattice

notably involves an asymmetric combination of the fermion �eld (see Section

5.1.1, and also the equation (5.40b)); and the electric �eld dynamics (5.40b).

This determines that despite the periodic boundary conditions, the combined

fermion- and Wilson-current at the boundaries in each direction may form the
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considerably asymmetric con�guration shown. The magnetic �eld (top, left) il-

lustrates the resultant disruption to the uniformity of this �eld between the peaks

of the current at z1 = 4.35 and z2 = 13.35, generated by the large �uctuations

in the combined fermion- and Wilson-current.

the x-y plane. This notably matches the typical amplitude of the current in

the x-direction, also illustrated in the �gure. The statistical error, thus, domi-

nates the expectedly physical fermionic current. This computed current in the

x-direction further sources the x-component of the electric �eld (through the

equation (5.40b)); and hence, the statistical errors in the ensemble current dis-

rupt the magnetic �eld. The irregularities in the �eld thus correspond precisely

to the inadequate approximation of the ensemble to the exact fermion and Wilson

current.

A larger ensemble-size would ameliorate the di�culties observed in the trial

case. This simulation though already required over 156 hours (real-time) to

complete on 256 processors. A signi�cant increase in the ensemble size � the

lattice sites scaling according to 4NEN1N2N3 � would entail further processors

and protract the simulation. These both in computational resources and the time

involved to examine varying parameters constitute a highly impractical option.

The ansatz case for an equal volume and equal discretization intervals to a

(longer) simulation time of t = 150 involve again 256 processors but reliably

complete in less than an hour. These thus o�er a substantially more practical

option to evaluate; and accordingly will form the method employed in the ensuing

tunnelling simulations.
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6.4 Renormalization

6.4.1 Numerical Renormalization Procedure

Renormalization essentially implies that the potentially observable quantities in

the quantum system prior to implementation of the procedure include an unphys-

ical component. This component occurs through the correlator mode-expansion

involving a non-convergent integrand. In the continuum, the integration of this

integrand over all modes produces an in�nite result. The restriction to a �nite

number of modes on the lattice ensures a �nite result. Reducing the lattice

spacing on a �xed physical length, though, increases the number of modes in

the summation and, hence, the non-convergence of the additional contributions

causes the summation to diverge. Any physical observable may reasonably be

assumed to remain independent of the lattice parameters. This, hence, implies

the divergence on the reduction of the lattice spacing results entirely through

the unphysical contribution to the correlators. (In practice, the physical vari-

ables converge to a constant value, rather than remaining strictly invariant, on

reducing the lattice spacing. The convergence of the results to a su�cient degree,

though, may ensure the physical values remain constant to an arbitrarily high

accuracy on changing the spacing. This hence enables distinguishing any much

larger, unphysical contributions.) The correlator, prior to any renormalization,

thus includes both this physical component, invariant on the reduction in lat-

tice spacing, and the unphysical contribution dependent on the lattice spacing.

This in particular implies that the combined fermion- and Wilson-current on the

lattice, without renormalization, likewise involves both these contributions:

jf (X,∆x) ≡
(
q

~
Im
{
〈 ˆ̄Ψ(X)γ1U1(T,X3)Ψ̂(X + 1)〉

}
− q

~
rwIm

{
〈 ˆ̄Ψ(X)U1(T,X3)Ψ̂(X + 1)〉

})∣∣∣∣
∆x

= jphys(X) + jdiv(X,∆x).
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Obtaining the renormalized dynamics hence e�ectively entails subtracting the

spacing-dependent contribution in the fermion current.

The invariance of the physical component at di�ering lattice spacing implies:

jdiv(X,∆x) = jf (X,∆x)− jf (X,∆xref ) + jdiv(X,∆xref );

thus expressing the renormalizable contribution at any lattice spacing through the

fermionic current at the selected reference-spacing. Further, the �eld renormal-

ization in principle results through adding contributions in the action constructed

through a coordinate-independent variable multiplying the existing terms; and

these factors accordingly modifying the corresponding components in the dynam-

ics. These additional terms may reasonably be derived from the multiplying of

the plaquette terms � de�ning the discrete equivalent to the electromagnetic �eld

tensor � in the action (5.32) on the lattice:

1

c
∆V

[
αE
∑
i

~2

2qµ0(∆xi)2(∆x0)2
(2− Ui0(X)− U0i(X))

− αB
∑
ij

~2

4q2µ0(∆xi)2(∆xj)2
(2− Uij(X)− Uji(X))

]
.

The �rst summation, on varying the action and applying the ansatz, corresponds

to additional terms (on the non-zero side) in the electric �eld dynamics (5.58),

identical to the existing electric �eld contribution except with the renormalization

coe�cient αE multiplying the �eld:

αE
1

∆x0

1

µ0c
(E1(T,X3)− E1(T − 0, X3)) .

Likewise, the second summation yields additional terms in the electric �eld dy-

namics, identical to the existing plaquette terms � corresponding to the magnetic

�eld in the continuum limit � except with the renormalization coe�cient αB mul-
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tiplying each term2:

αB
1

∆x1(∆x3)2

~
qµ0

Im {U13(T,X3)− U31(T,X3 − 3)} .

An identical renormalization coe�cient may be chosen, for simplicity, in both

the additional contributions to the action: αE ≡ αB ≡ α. This single factor α

may specify the renormalization factor multiplying both the electric and plaque-

tte term3.

For the renormalization terms to cancel the divergent contribution to the

current in the electric �eld dynamics, hence, implies these opposing components

relate through

jdiv(X,∆x) =

α

(
1

∆x0

1

µ0c
(E1(T,X3)− E1(T − 0, X3))

+
1

∆x1(∆x3)2

~
qµ0

Im {U13(T,X3)− U31(T,X3 − 3)}
)
. (6.1)

This expression for the divergent contribution, further, involves purely �xed pa-

rameters, the discretized electromagnetic �elds and the renormalization coe�-

cient. The requirement for physical observables to essentially remain indepen-

dent of lattice spacing, further, applies to the discrete electric �eld and plaquette

terms inside the bracket, respectively corresponding to the time derivative of

the electric �eld and of the spatial derivative of the magnetic �eld. Any lattice

spacing dependency in the renormalization current therefore occurs within the

renormalization coe�cient; and the coordinate independence of the coe�cient

determines the spatial variation of the renormalization piece occurs entirely in

2These additions to the action notably also will contribute to the Gauss'-law constraint on
the lattice (5.55); consideration of this is not necessary to obtain the correct dynamics of the
system.

3This contrasts the more complicated choice examining distinct factors in the analytic cal-
culation.
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the electric �eld and plaquettes:

jdiv(X,∆x) =

α(∆x)

(
1

∆x0

1

µ0c
(E1(T,X3)− E1(T − 0, X3))

+
1

∆x1(∆x3)2

~
qµ0

Im {U13(T,X3)− U31(T,X3 − 3)}
)
. (6.2)

This, thus, provides the expressions for determining the renormalization co-

e�cient. The renormalization procedure correspondingly involves evaluating the

unrenormalized current minus this contribution in the electric �eld dynamics

(5.58). This e�ectively implies modifying the equation to include a factor of

1 +α(∆x) multiplying each electric �eld term and plaquette to, thus, obtain the

renormalized dynamics.

6.4.2 Evaluating the Renormalization

Considering the expression (6.2) in the simple case involving a static state and

the magnetic gradient identical with both the lattice spacings therefore yields

α(∆x) = ∆x1(∆x3)2 qµ0

~
jf (X,∆x)− jf (X,∆xref )

Im {U13(T,X3)− U31(T,X3 − 3)}
+ α(X,∆xref ).

This, thus, determines the renormalization coe�cient at any lattice spacing. The

evaluation involves measuring the unrenormalized current at both the relevant

scale and at a reference lattice spacing for an identical, set magnetic �eld in both

cases, with also the renormalization coe�cient speci�ed at the reference lattice

spacing.

This reference coe�cient forms a constant addition to the expression, and

correspondingly to the unrenormalized current at any scale. The (unphysical)

divergence in the current, thus, occurs independently of this piece. This, there-

fore, implies the precise value of this term may simply be ignored for obtaining
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the physical, convergent current4. Alternatively, this constant piece may be con-

sidered to arbitrarily de�ne the scale of the renormalization and accordingly the

value simply set at the reference lattice spacing to de�ne the renormalization

scheme. The simplest case may therefore impose the coe�cient at the reference

scale to equal zero.

Obtaining the convergence in the current regardless may thus result on de-

termining the renormalization coe�cient speci�ed through

α(∆x) = ∆x1(∆x3)2 qµ0

~
jf (X,∆x)− jf (X,∆xref )

Im {U13(T,X3)− U31(T,X3 − 3)}
+ α(X,∆xref ),

(6.3)

and the corresponding physical current replacing the bare current in the dynamics

may fully specify the renormalization scheme to yield the physical dynamics.

To obtain the renormalization coe�cient may in practice be accomplished

through simulating the fermion and gauge-�eld evolution (without the Higgs-

superconductor) from the initial vacuum-con�guration to the �nal static state.

Setting the gauge �eld manually ensures an identical magnetic gradient in each

case. A simple scaling in time may uniformly multiply the �nal con�guration

to increase the �eld from zero to the �nal static, state; in particular the scaling

(5.84) may provide a smooth variation5.

4A standard interpretation of the renormalization procedure considers the process to modify
the coupling constant in the system. The particular expression of the gauge terms in this system
excludes an explicit coupling constant multiplying the gauge-�eld tensor in the action. A simple
�eld rede�nition though may produce this form in an equivalent action, and hence the addition
of renormalization terms multiplying the �eld tensor may be factorized to form a single, new
coe�cient. This factor thus incorporates the renormalization coe�cient; and the resultant
term multiplying the �eld tensor de�nes e�ective coupling. Determining the precise value of
the renormalization coe�cient therefore determines the e�ective coupling; the neglecting of
the constant contribution to the renormalization coe�cient thus simply prevents the precise
determination of the e�ective coupling constant in the system.

5The electric �eld de�nition on the lattice implies the time-varying gauge �eld forms a non-
zero electric �eld, ultimately vanishing in the �nal, static state. This time -variation, thus,
models a damping of the electric �eld in the evolution to the �nal state.
Imposing the tanh variation in the continuum, further, implies the resultant electric �eld

varies proportionally to sech2 (tan (πt/τ − π/2)). Hence in the limit t → τ , the electric �eld
decays approximately exponentially. The �nal decay in the equivalent discrete-case, notably
therefore, models an exponentially-damped �eld.
Further, the sech variation at times close to zero determines the electric �eld increases ap-
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The static solution to the pure gauge-dynamics in the continuum � omitting

the Higgs-�eld, fermion and Wilson currents � readily provides a suitable analytic

expression for the �nal gauge-�eld. This con�guration reasonably approximates

the result on the lattice in the full dynamical case including also the (expectedly

perturbative) fermionic currents.

Substituting the chosen form (5.83) of the external current into the conse-

quent dynamics in particular determines the �nal state:

1

µ0
∂3B2(t, x3) =

1

µ0
∂2

3A1(t, x3) =

|J | exp

(
−(X3 − z1)2

2σ2

)
− |J | exp

(
−(X3 − z2)2

2σ2

)
.

Integrating this expression once hence determines

B2(t, x3) = ∂3A1(t, x3) =

µ0

√
π

2
σ|J |

[
erf

(
−(X3 − z1)2

2σ2

)
− erf

(
−(X3 − z2)2

2σ2

)]
+BC . (6.4)

The condition on the magnetic �eld to form anti-symmetrically in the two,

separate regions between the external currents on the periodic boundaries (see

Section 5.7) constrains the arbitrary constant. For the current peaks positioned

to divide the periodic z-axis into two equal regions, simply subtracting half the

maximum height of the combined error function pieces yields a suitably sym-

metric form: the error functions matching the requisite symmetry except about

proximately exponentially in the continuum; and accordingly the discrete analogue models a
similarly smooth increase in the initial electric �eld on the lattice.
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the half-maximum value rather than zero. This thus determines the constant

satis�es

BC = −µ0

√
π

8
σ|J |

[
erf

(
−(zM − z1)2

2σ2

)
− erf

(
−(zM − z2)2

2σ2

)]
,

zM =
z1 + z2

2
.

Integrating the resultant expression again hence determines

A1(t, x3) =

µ0

√
π

2
σ|J |

[
(X3 − z1) erf

(
−(X3 − z1)2

2σ2

)
− (X3 − z2) erf

(
−(X3 − z2)2

2σ2

)

+

√
2

π
σ exp

(
−(X3 − z1)2

2σ2

)
−
√

2

π
σ exp

(
−(X3 − z2)2

2σ2

)]
+BCX3 +AC .

The symmetry constraint on the magnetic �eld further indicates the gauge

�eld ranges between equal and opposite values. This, hence, constrains the half-

maximum value to zero. Subtracting the value at the location X3 = zM midway

between the current peaks correspondingly imposes the constraint and thus sets

the second integration constant. This therefore fully de�nes the express analytic

form of the gauge �eld in the �nal, static state.

Figure 6.2: The magnetic �eld (left) and gauge �eld (right) evaluated analytically

for calculating the renormalization coe�cient.
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This gauge-�eld con�guration and the tanh prefactor thus together provide

the analytic expression of the magnetic �eld to determine the renormalization

coe�cients numerically.

Setting the current width to satisfy 2σ2 = 1, for simplicity, and choosing the

amplitude J to set the magnitude of the analytic magnetic �eld to Bmax = 1.0

(comparable to the subsequent, fully-dynamical simulations) in the analytic ex-

pressions generates the �nal gauge �eld and corresponding magnetic �eld, shown

in �gure 6.2.

Figure 6.3: The fermionic current in the x-direction generated by the analytically

set gauge-�eld for ∆x1 = 0.4 (blue), 0.3 (black), 0.2 (red) with ∆x2 = ∆x3 = 0.3

and the physical volume constant; ∆x0 = 0.002, |J | = 1.

Determining the renormalization coe�cients consequently for di�ering ∆x1

demonstrates the e�ectiveness of the renormalization scheme. Setting the lattice

spacing in the x-direction separately to ∆x1 = 0.4, 0.3, 0.2 while �xing ∆x2 =

∆x3 = 0.3 and in a �xed physical volume of Lx = Ly = 9.6 and Lz = 24

produces the unrenormalized fermionic current � including both the fermion and

Wilson parts � illustrated in the �gure 6.3. Choosing the combined fermion-
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and Wilson-current generated at ∆x3 = 0.3 to provide the reference with the

determined magnetic gradient and the measured current substituted into the

expression (6.3) hence yields the renormalization coe�cients.

Figure 6.4: The fermionic current in the x-direction in the fully-dynamical sim-

ulations without renormalization (top) and with renormalization (bottom) for

∆x1 = 0.4 (blue), 0.3 (black), 0.2 (red) with ∆x2 = ∆x3 = 0.3 and the physical

volume constant; ∆x0 = 0.002, |J | = 0.5 and ζ = π/6.
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The coe�cient in principle is coordinate independent; in practice though,

numerically determined value varies both in time and along the z-direction. Av-

eraging the unrenormalized current over times much longer than the typical tem-

poral �uctuations though helps reduces this random error. The peaks in the

external current o�er a de�nite and distinctive location for determining the pre-

cise coe�cient-value; while the anti-symmetry in the peak locations implies the

averaging the coe�cient evaluated at both peaks may help further reduce the

error. These peak values though notably occur at sites o� the lattice and hence

the simulations provides no direct measure of the unrenormalized-current at this

location. Obtaining the numerically measured current at the two adjacent sites

of the peak provides a simple alternative while retaining the distinction and def-

initeness of the location. The time-averaged value of the current at these four

sites and the average of the corresponding coe�cients in the physical current

therefore fully de�nes the renormalization procedure.

For the cases ∆x1 = 0.2, 0.4, this yields respectively α = −0.000265269471

and α = 0.00026365064. Implementing these renormalization parameters in the

equivalent fully-dynamical case (for the respective lattice spacings with both the

volume and time-step identical to the manual analysis) yields the renormalized

current illustrated in �gure 6.4, bottom. A comparison of the renormalized cur-

rents to the unrenormalized current (top) in �gure 6.4 � especially at the peaks

(coincident with the peaks in the external current) � clearly demonstrates the

procedure e�ectively eliminates the lattice-dependent divergence. The concomi-

tant magnetic �eld in the renormalized case further con�rms the e�ectiveness:

the �gure 6.5 demonstrates the closely distributed values of the �eld after renor-

malization.
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Figure 6.5: The magnetic �eld in the dynamical simulations with renormalization

for ∆x1 = 0.4 (blue), 0.3 (black), 0.2 (red) with ∆x2 = ∆x3 = 0.3 and the

physical volume constant; ∆x0 = 0.002, |J | = 0.5 and ζ = π/6.

These example cases, con�rming the convergence in the observable values,

therefore validate the selected lattice-parameters and the corresponding renor-

malization coe�cient for examining the superconducting system. In particular,

the parameters setting the lattice spacing equally to 0.3 where also α = 0 are

chosen for simplicity throughout the subsequent simulations.

6.5 Tunnelling System on the Lattice

6.5.1 Wall Parameters

Fixing the skin width of the barriers to smaller than the lattice spacing and the

thickness of each to d = 1.5 forms the narrowest feasible barrier � only �ve sites,

for the chosen lattice spacing � to reliably examine the transmission through the

barrier. This, in particular, includes a region on the lattice entirely within the

barrier and not purely on the surface, to examine the transmission without simply
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examining any surface e�ects. The minimizing of the barrier thickness further

ensures the maximum potential to observe the fermionic tunnelling. Setting

the separation of the barrier centres to S = 5.7 prevented an overlap of the the

edges for the barrier thickness chosen. This also created a reasonably sized region

(larger than both the skin width, δ < 1 and the chosen thickness d = 1.5) enclosed

between the barriers where the magnetic �eld transmitted through the sheets

could form without further interference of the barriers. Positioning the barriers

centrally between currents (see Section 5.7.2) requires setting the midpoint of

the barriers to M = N3∆x3/2 = Lz/2 for the choice of length Lz on the lattice.

This, for simplicity, creates an identical region where the magnetic �eld may form

between the current and barrier on both sides external to the enclosed volume

6.5.2 Lattice Parameters

Implementing the renormalized dynamics for the lattice spacing ∆x1 = ∆x2 =

∆x3 = 0.3 in the volume of length Lx = Ly = 9.6 and Lz = 18 with the

Neumann boundaries forms the discretized system for examining transmission

through the the superconducting barrier. The chosen length in the z-direction

further o�ered su�cient space to produce an almost uniform magnetic �eld in

the region between the barrier and the external-current width with a region to

examine the �eld penetrating the barrier: the �gure 6.6 (top) shows a typical

con�guration in the static state.

Setting ∆x0 = 0.002 provided time-step necessarily smaller than the lattice

spacing and su�cient to readily yielding convergence in the observable param-

eters; while setting τ = 80 to transition from the vacuum to the static state

further provided a practicably brief transition with negligible transient features

perturbing the static state.

The lattice discretization intervals, further, involved a total number of lattice

sites readily implemented on a computer; while this total lattice size, along with

the choice of temporal discretization-interval and the brief initial-increase time
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ensured numerical evaluation within a practicable time-frame.

6.5.3 Typical, Magnetic-Field Transmission

Setting the external-current magnitude to |J | = 0.5 with the width σ = 0.8/
√

2

while varying the squared wall-strength through η = [2, 7.5] in half-integer incre-

ments will provide the speci�c con�guration for examining the transmission on

varying the wall strength.

The analytical estimates indicating the bound for detecting the tunnelling sig-

nal (Section 5.3) determines the maximum wall-strength. Examining the trans-

mission, therefore, up to η = 7.5 will su�ciently encompass the region where the

tunnelling signal is expected to dominate.

Choosing the increase in the external current to the �nal, maximum ampli-

tude in a time τ = 80 produces increasing �elds until this time. The generated

electromagnetic waves subsequently decay: their amplitude rapidly negligible,

with the damping coe�cient set to ζ = 6π/35. This hence generates the essen-

tially static, �nal state before X0 = 150, when the resultant �elds are examined.

The �gure 6.6, top illustrates the typical magnetic �eld variation in the static

state: the �eld strongly decays through even the narrow wall to a magnitude

several orders smaller in between the superconducting barriers.

A signi�cant Higgs current also occurs within the wall: the �gure 6.6, bottom

demonstrates the typical form. The Higgs current varies essentially ∝ A1ρ
2;

hence, the decrease in the current occurs, essentially, due to the decay in the

gauge-�eld, while the sharp peak at the boundary results through the almost step-

function variation in ρ. This current also notably acts in accordance with Lenz's

Law to essentially oppose the magnetic �ux generating the current: the current

aligns in the negative x-direction to form a magnetic �eld counteracting the gauge

�eld generated by the external current. The Higgs current, in the absence of any

fermion contribution, notably coincides with the several orders decrease in the

magnetic amplitude through the barrier; the current, thus, corresponds to the
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Figure 6.6: The typical magnetic �eld (top) and Higgs-current (bottom) without

fermions (left) and with fermions (right) in the presence of the superconducting

barrier (grey-shaded region): |J | = 0.5, η2 = 8.

purely classical decay in the magnetic �eld.

This strong decay in the magnetic �eld notably results both with and with-

out the fermions: the �gure 6.6, top and right incorporating fermions and the

case excluding fermions in �gure 6.6, top and left demonstrate the typical simi-

larity. The Higgs superconductor-current, both with and without fermions, thus

produces the most substantial change in the magnetic �eld.

A comparably small fermionic current results within the barrier: the �gure 6.7

illustrates the fermions within the barrier typically generate a combined fermion-

and Wilson-current several orders of magnitude smaller than the Higgs current.

The fermionic current thus forms a sub-dominant e�ect in the �eld decay.

This current may, nonetheless, generate a signi�cant contribution to the
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Figure 6.7: The typical fermion current in the presence of the superconducting

barrier (grey, shaded region): |J | = 0.5, η2 = 8.

transmission where the resultant change in transmission becomes comparable

to the classical transmission. The typical fermion contribution forms an addi-

tional current opposing the Higgs current within the barrier. This fermionic

contribution, hence, counteracts the Higgs-�eld suppression of the magnetic �eld

to increase the magnetic transmission. The fermion current, moreover, comprises

the fermions formed within the barrier and therefore e�ectively includes the par-

ticles contributing to the tunnelling. These particles, in counteracting the Higgs

suppression to increase the transmission, thus act in qualitative accordance with

the tunnelling e�ect. Both the fermion and Higgs current within the barrier vary

on the change in the barrier strength and thus complicate the precise correspon-

dence between the fermionic current and the tunnelling amplitude. Examining

the magnetic transmission, regardless, may enable measurement of the resultant

tunnelling.

The fermionic current, further, at the boundaries acts in accordance with

Lenz's Law. These currents, thus, align opposite to the external current and,
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hence, generate a magnetic �ux opposing the �eld corresponding to the external

current. Increasing the wall strength without fermions also, notably, alters the

magnetic �eld amplitude in the regions between the boundary and superconduc-

tor. This variation in the presence of fermions, reacting to the external current

in accordance to Lenz's Law, causes the induced fermion current to generate a

magnetic �ux, varying on the change in wall strength. The resultant magnetic

�eld in the regions between boundary and the superconductor thus varies on the

change in wall strength, both with and without fermions; and the resultant �elds

di�er in the case with fermions, compared to the equivalent case without the

fermions.

This variation in the external magnetic �eld, thus, prevents a direct compar-

ison between the �eld transmission on varying the wall strength or on including

the fermions. Forming the ratio of the central value between the superconducting

barriers, to a representative �eld-value external to the superconducting enclosure

provides an equivalent variable for directly comparing the di�ering cases:

BR =
Bint

Bext
. (6.5)

To attribute the variation in this ratio purely to the changes in wall strength

and the presence (or absence) of fermions neglects the potentially complex varia-

tion in the transmitted electric �eld related simply to the changes in the external

�eld. This variation, though, may approximate a linear relation over a su�ciently

small range in the external �eld. The ratio in this limit meaningfully comprises

the proportionality constant distinguishing the linear relation; and, thus, within

the linear regime, represents the transmission independently of the precise exter-

nal �eld. Examining a common range of the external �eld in each case, further,

forms a suitably equivalent context for comparison.

The magnetic �eld halfway between each boundary and the adjacent wall

provides a de�nite representative-value external to the superconductor within
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the accurately-uniform region; while the symmetry in the system implies an

identical magnetic �eld forms at these two positions. Averaging the �eld at both

locations, hence, may reduce the computational error in the measured exterior

�eld-value. Selecting the central �eld value between the superconducting barrier

may provide a de�nite, distinctive location to measure the transmitted magnetic

�eld.

These speci�ed positions, though, in practice, may occur o� the de�ned

lattice-sites. The only minor deviation from uniform over a wide region external

to the superconductor ensures in this case that the �eld value at the adjacent

sites provides a highly similar value to the �eld at the o�-lattice site; and thus

essentially yields an equally-representative value of the �eld external to the su-

perconductor. Selecting, in particular, the �eld value at the adjacent site closest

to the boundary when the de�ned external-location occurs o� the lattice, there-

fore, provides the external-�eld values to average. Comparing these in each case

to the �eld at the adjacent site, but nearer the barrier, and assuming a smooth

variation in the �eld between the lattice sites may, hence, provide an upper bound

on the deviation between the �eld at the speci�ed site and the measured value

at the adjacent site nearer the boundary. The magnitude of this di�erence for

each case in the subsequent data set to measure the tunnelling (�gure 6.9) equals

∼ O(10−5) per cent of the representative value used in computing the transmis-

sion. This con�rms the chosen, adjacent site provides a highly comparable value

to the true measurement at the de�ned location, o� the lattice; the measured

�eld, therefore, forms an equally suitable, representative value for examining the

transmission ratio.

The �eld value inside the superconducting enclosure also varies very little;

hence, the values at the adjacent sites to the midpoint between the barriers,

when the midpoint occurs o� the lattice may provide a suitably-representative

value of the internal �eld. Further, the symmetry in the system implies the

�eld at these sites are equal, and thus either value may equivalently de�ne the
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internal value. Averaging the pair therefore technically reduces the error in this

representative value. These �eld values thus practically de�ne the internal and

external �elds examined on the lattice.

Varying the current through the range |J | = 0.5, 0.5 + 5 · 10−5, 0.5 + 5 ·

10−4, 0.5+5·10−3 for a �xed wall-strength produces a variable, external � and cor-

respondingly varied, internal � magnetic �eld. Calculating the linear-regression

�t to these correlated variables, hence, yields the proportionality constant de-

scribing the magnetic transmission.

The �gure 6.8 shows the typical ratio and linear regression both with and

without fermions for the examined wall-strengths within a common range of the

external �eld.

Figure 6.8: The typical variation in magnetic �eld inside the shielded region

(Bint) on varying the uniform, external �eld (Bext) both without (left) and with

(right) fermions. These demonstrate the highly linear relation between these

�elds over approximately an order or magnitude in the external �eld.

These cases illustrate the highly linear relation between the external and

internal currents over around an order of magnitude range in the external �eld.

The wall strength and presence of fermions a�ecting the generated �eld causes

the precise range to vary within each case; but these various regimes, importantly,

include a common range.

This high linearity, therefore, con�rms the suitability of the ratio for describ-
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ing the transmission; while the common range enables the examination of the

di�ering transmissions in a consistent context. These ratios thus form a suitable

variable for comparing the transmission.

6.5.4 Tunnelling of the 3rd Kind: Detection

Evaluating the magnetic �eld ratio for the chosen range in wall strength forms

the method for quantifying the transmission dependency on the barrier strength

both with and without fermions.

Figure 6.9: The ratio of magnetic �elds inside and outside the box, when varying

the wall strength η with (red) and without (blue) fermions. Also shown is the

analytic estimate (5.31) of the classical transmission (grey, dashed) and the result

of the perturbative calculation (5.30) (grey, solid) for m = 1, e = 1, q = 0.3 and

d = 1.5. (Note the log scale.)

The �gure 6.9 illustrates the measured variation in the transmission ratio.
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Both the case with (red line) and without (blue line) fermions, for low wall

strengths of η . 5 produce e�ectively identical transmission. This indicates the

classical transmission dominates within this regime of wall strength. The �gure

also shows the simplistic heuristic guide (grey, dashed line) for comparison. This

simple estimate di�ers in the absolute value; the discrepancy, though, is expected

to result, considering the classical guide neglected both the �nite volume and dis-

cretization e�ects on the transmission in the fully dynamical simulations (see also

the discussion on this in Section 5.3). The simulation results in the weak barrier

regime, nonetheless, notably form the exponentially decaying relation predicted

in the simplistic, classical estimate: thus, further con�rming the dominance of

classical e�ects within this regime.

Signi�cant di�erences in the measured transmission with the fermions, com-

pared to without begin where η ≈ 5. The increasing barrier strength produces a

progressive decrease in the case without fermions, while the system with fermions

begins to asymptote to a value around 2 · 10−6. This indicates the quantum in-

teraction a�ect the system more markedly within this regime of barrier strength.

The computed transmission without the fermions also noticeably grows to val-

ues larger than continued exponential decreasing transmission predicted through

the simple guide. This may simply result since the measured external �eld is

lower than the actual magnetic �eld strength incident on the barrier.

Although the magnetic �eld forms a predominantly level region outside the

superconducting enclosure (see �gure6.6 for an illustrative case), the magnetic

�eld, actually, increases slightly towards the barrier. This rise, thus, implies an

increased in the �eld of Berr ∼ O(10−5) incident on the barrier, compared to the

measured external-�eld, at the position only partway between the boundary and

the wall (see Section 6.5.3). The stronger magnetic �eld incident on the barrier

causes a larger, classical transmission compared to the classical estimate for the

measured external �eld. This may, hence, signi�cantly increase the measured

transmission-ratio without fermions, compared to the classical guide where the
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discrepancy in the ratio matches the order of the classical estimate. Examin-

ing the classical estimate (5.31) determines the increased, incident �eld value of

Berr ∼ O(10−5) yields an approximately O(10−4) increased transmission ratio

for the measured external �eld value of Bext ∼ O(10−1) (see the �gure 6.6 for

an illustrative case), in contrast to the classical estimate for the measured ex-

ternal value. (The consequent variation is also reasonably assumed, simply, to

superimpose on the �nite volume and discretization e�ects expected to alter the

classical guide � and evidenced for the low barrier-strengths.) This, therefore,

indicates the discrepancy in the incident �eld generates a signi�cant a�ect where

η & 4 and this e�ect grows. The measured transmission-ratio without fermions,

notably, increases slightly at η ∼ 4, to a slower decay compared to the strictly

exponential form, predicted in the classical estimate; and this grows on increas-

ing wall-strength until the transmission ratio exceeds the classical guide. These

deviations, thus, match the discrepancy expected simply through the di�erence

in the incident �eld on the wall and the measured external value.

The classical estimate indicates the magnetic transmission tends to zero on

increasing barrier strength, irrespective of the magnitude of the external �eld.

This implies any contribution independent of wall strength will dominate for

su�ciently high wall strength. The decay to zero of the classical transmission,

thus, assures the asymptoting to a �xed value for η & 5 in the simulations

with fermions results through the quantum contributions to the transmission.

This asymptotic value equal to around 2 · 10−6, moreover, matches the analytic

result (grey, solid line) to within the expected factor of two. The numerical

transmission, though, notably, tends to a value slightly lower than the analytic

estimate. This may result through the measurement of the magnetic �eld at

a �nite distance inside the enclosure. The analytic calculation evaluates the

tunnelling expectation in�nitely far from the barrier, where the entirety of the

fermions tunnelling through the barrier may be expected to have (re-)combined

to generate magnetic �eld. In contrast, the simulations measure the magnetic
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�eld near the barrier, compared to the width of the barrier. The �nite fermion

current (if smaller than visible on the scale for the illustrative case in �gure 6.7)

generated inside the superconducting enclosure, from an initial absence of current

in the vacuum, indicates a small portion of the fermions having tunnelled through

the barrier remain to (re-)combine into magnetic �eld. These fermions, hence,

reduce the transmitted �eld compared to the complete conversion expected at

in�nite distance and, thus, may cause the slightly lower measured value of the

tunnelling contribution.

Repeating the analysis, using di�erent lattice spacings, for a �xed physical

volume and �xed couplings may provide a quantitative estimate of the numerical

error in the measured transmission. The variation in the observed �elds on the

change in lattice spacing would indicate the dependence of the discretization er-

rors on the lattice spacing. Evaluating this error for the lattice spacing in the sim-

ulation, hence, would provide a quantitative measure of the discrepancy between

the computed and analytic estimates resulting simply through discretization; any

remaining deviation might be attributed to physical e�ects. This computationally

intensive analysis to compute the numerical errors in the transmission, currently

though, remains a work to complete. The discrepancies without distinguishing

the numerical errors, notably, nonetheless, match the qualitative expectation on

considering the physical e�ects in the system. This provides assurance the results

accurately demonstrate the physical, �eld transmission.

The strong deviation in the case on incorporating fermions, compared to

without, and the transmission ratio asymptoting to a constant, slightly below the

analytically determine value, therefore, forms a reasonable con�rmation of the

analytic estimate. This result likewise indicates the measured fermionic current

includes the tunnelling fermions and, thus, the dynamical system incorporates

the tunnelling of the 3rd kind.
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6.5.5 Conclusion

The work in this chapter has, in summary, developed and re�ned the techniques

for examining tunnelling of the 3rd kind in real-time simulations. This distinct

form of tunnelling provides a potentially interesting application of quantum �eld

e�ects in a laboratory arrangement. The simulations have examined this phe-

nomenon in an idealized laboratory scenario where two parallel and in�nite su-

perconducting planes shield a central region from the uniform magnetic �eld in

the regions to either side. These superconducting sheets strongly suppressing

the magnetic transmission form the classical barrier to the external magnetic

�eld. The simple estimate of this e�ect predicted the exponential decay in the

transmission. Incorporating the quantum e�ects also enables the magnetic �eld

external to the barrier to convert into fermionic particles. These cross unhindered

through the barrier with the subsequent annihilation (re-)creating the magnetic

�eld. This tunnelling of the 3rd kind thus contributes to the magnetic transmis-

sion through the barrier. The perturbative calculation of this e�ect implies the

resultant transmission equals only around 3.4 · 10−6 times the external �eld with

a possible correction to this by a factor between one to two � accounting for the

di�erences between the analytic calculation and the numerical simulation. This

e�ect becomes detectable only where the superconductors reduce the classical

transmission to less than the tunnelled component. The combination of the clas-

sical decay and the tunnelling e�ected together formed the basic estimate for the

expected transmission both with and without the fermions.

These results matched the dynamical simulations with signi�cant accuracy.

The decay on increasing wall-strength without fermions qualitatively reproduced

the estimated exponential-decrease to reasonable precision; though, the absolute

numerical values were signi�cantly less than the analytic estimate. This discrep-

ancy likely resulted through the intricacies involved in implementing the results

in the �nite volume on the lattice, unaccounted for in the simple estimate. The
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transmission without fermions also demonstrated a slightly slower than exponen-

tial decay where η & 5. This simply occurred through the consistently larger

�eld incident on the barrier compared to the measured external �eld generat-

ing a signi�cant increase in the transmission for the larger wall strengths. The

tunnelling signal of Bin/Bout ≈ 2 · 10−6, signi�cantly, equalled the perturbative

estimated within the expected correction factor. Determining the discretization

errors in the result may be accomplished on the repetition of the simulation us-

ing di�erent lattice sizes, for a �xed physical volume and �xed couplings. This

may enable quantifying the lattice spacing errors and, correspondingly, distin-

guishing the genuine physical discrepancies between the numerical results and

the analytic estimates. The qualitative consistence in the discrepancies to the

expected deviation, nonetheless, validated the physical nature of the computed

transmission. These results, therefore, provided a reasonable con�rmation of

the tunnelling-e�ect, and the perturbatively calculated transmission signal. The

successful implementation of the system indicates, further, the potential for real-

time simulations of fermionic systems to produce accurate predictions for testing

in the laboratory.

This numerical simulation of tunnelling were accomplished on applying the

established techniques for dynamical fermions to the idealized experimental ar-

rangement. The ensemble method o�ered a possible procedure to solve the dy-

namics analogously to the oscillon system. This essentially involved the statisti-

cal average of ordinary numbers replacing the ladder operators for evaluating the

fermionic correlators. The method required an additional set of �elds in contrast
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to the purely bosonic case. These �male� and �female� �elds respectively were of

the form

ΨM,c(x) =

√
~c
2
Vx
∑
s

∑
K

∆k1

2π

∆k2

2π

∆k3

2π

1

2ωK

[
ξK,s,cψ

(U)
K,s(X) + ζK,s,cψ

(V )
K,s(X)

]
,

ΨF,c(x) =

√
~c
2
Vx
∑
s

∑
K

∆k1

2π

∆k2

2π

∆k3

2π

1

2ωK

[
ξK,s,cψ

(U)
K,s(X)− ζK,s,cψ

(V )
K,s(X)

]
,

where the minus sign between the terms of the integrand distinguishes the two

sets. This di�erence, importantly, ensures the statistical variance of the male

and female �elds in combination can reproduce the potentially negative values

of the fermionic correlators.

The ensemble method for the fermions � equivalently to the oscillon case �

o�ered the possibility to reduce the computational requirements. This method,

in principle, entails in�nitely many �elds to precisely reproduce the quantum

correlators. The use, though, of a �nite ensemble, in practice, may adequately

approximate the correlators. Had this �nite ensemble in the fermionic system

involved fewer �elds than the total modes in the 3 + 1D system, the ensemble

technique may have o�ered the possibility to readily evolve the system. The trial

simulation involving the male and female �elds, though, indicated a small en-

semble, equal to two and a half per cent of the total modes, produced substantial

statistical-noise in the fermionic current; this strongly distorted the formation

of the uniform magnetic �eld. This demonstrated the need for a much larger

ensemble size to accurately evolve the fermions. The comparatively small ensem-

ble in the trail case also required over 156 hours (real-time) to simulate. This

indicated the impracticable times required for the larger ensemble and therefore

the unsuitability of this method for simulating the system.

Imposing the symmetries of the system explicitly on the �elds provided the al-

ternative method for simplifying the system. The superconducting planes aligned

parallel and extended in�nitely in the x and y directions, with the magnetic �eld
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also aligned parallel to the planes essentially formed a homogeneous system or-

thogonal to the z-axis. This, hence, determined the ansatz for the �elds:

A1(x) = A1(t, x3), A2(x) = A3(x) = 0;

j1(x) = j1(t, x3), j2(x) = j3(x) = 0;

θ(x) = 0;

ψ
(U/V )
(k1,k2,λ,s)

(x) = eik1x1eik2x2χ
(U/V )
(k1,k2,λ,s)

(t, x3).

The ansatz e�ectively reduced the dynamical equations to a 1+1D system in the

z-direction with the quantum correlators involving a sum also over the x- and

y-directions in mode space. This produced a signi�cant decrease in the �eld val-

ues to compute on the lattice and the consequent simulation times. The ansatz

evolution typically required under an hour (real-time) for each simulation. This

greatly improved on the ensemble method timings and, moreover, provided a

practicable method for examining the tunnelling. The considerable increase in

e�ciency thus demonstrates the potential power of a suitable ansatz to signi�-

cantly reduce the computational times in fermion simulations.



Chapter 7

Summary and Outlook

This work has presented the �rst dynamical, quantum simulations of oscillons.

The precise quantum treatment of the decay substantially reduced the oscillon

lifetimes. These structures classically lasted longer than O(104 |m|−1) (while

simulations have demonstrated them to last longer than O(106 |m|−1) [37, 41,

43, 44]) and most remained beyond the end of the simulations. The structures in

the quantum evolution, in contrast, lasted less than O(103 |m|−1) with the decay

in all cases occurring before the end of the simulation. These also decayed grad-

ually: in contrast to the abrupt endpoint (at a critical frequency) in the classical

evolution. Despite the distinctly di�ering evolution, the classical and quantum

oscillons occur for similar Gaussian initial conditions. This indicated that the

Gaussian pro�les, at least during the early stage (after that initial transients),

evolve largely una�ected by the quantum �uctuations; and those con�gurations

generating oscillons only react to the quantum e�ects at later times.

The procedure to examine the quantum system employed the Hartree ap-

proximation to expand the quantum correlators. This essentially split the �eld

into the classical background and the quantum perturbation to the system with

the correlators expanded in these two �elds. The resultant correlators of the per-

turbation higher than second order were then set to vanish. This approximation

might, perhaps most evidently, be improved through expanding to higher orders
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in the perturbations. An equivalent system in the 1/N approximation for the

scalar �eld likewise expanded to higher order in the perturbations may also pro-

vide an alternative method to precisely examine the quantum decay of oscillons.

These possibilities remain to be examined.

This thesis has also presented the �rst dynamical simulations to examine tun-

nelling of the 3rd kind in an idealized laboratory scenario. The system involved

two parallel, in�nite superconducting-sheets shielding a central region from the

uniform magnetic �eld in the regions to either side. These superconducting sheets

formed the classical barrier to the external magnetic �eld. Incorporating the

quantum interaction enabled the �eld to pair-create fermionic particles. These

could cross unhindered through the barrier with their subsequent annihilation

(re-)creating the magnetic �eld inside the shielded region. This tunnelling of the

3rd kind thus increased the transmission through the barrier.

The measurements of the transmitted �eld in the dynamical simulations re-

markably accurately con�rmed the simple, analytic estimates. These dynamical

results qualitatively reproduced the exponential decrease estimated in the trans-

mission on varying the interaction strength between the barrier and the magnetic

�eld. The tunnelling signal in the transmitted magnetic �eld, moreover, equalled

approximately 2 · 10−6 per cent of the external �eld value. This matched the

analytic value, within the expected correction factor and matched the qualita-

tive deviation expected through heuristic arguments. The result, thus, provided

a reasonable con�rmation of this perturbative result.

Completing the simulations using di�erent gauge-fermion couplings (q) o�ers

a further method to test the validity of the analytic calculation. Obtaining the

predicted analytic result in the regime where the total transmission tends to a

constant value, correspondingly, would further con�rm the existence of tunnelling

of the 3rd kind.

The repetition of the analysis also, using di�erent lattice sizes, for a �xed

physical volume and �xed couplings, may provide a method to estimate the
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discretization errors on the lattice. This, correspondingly, may ensure the dis-

tinguishing of physical e�ects in the discrepancies between the numerical results

and the simpli�ed, analytic estimates. The detailed examination may further as-

sure the dynamical system accurately encapsulates the quantum tunnelling; and

potentially also o�ers a more precise comparison to experiments, for claiming

detection of the tunnelling.

These current results successfully implementing the tunnelling of the 3rd kind,

importantly, demonstrate the potential for real-time simulations of quantum sys-

tems to produce accurate predictions for testing in the laboratory. The examined

tunnelling con�guration might most simply be adapted to examine the transmis-

sion of electromagnetic waves � this would form a version �light shining through a

wall� experiments. A perturbative calculation, in reasonable limits where the sys-

tem is tractable, predicts this case involves a frequency dependent transmission

[98]. The simulations might test the validity of this estimate; and also examine

the transmission in regimes where the analytical calculations are unable to pro-

vide explicit predictions. Preliminary trials to generate an electromagnetic wave

on the lattice with Neumann boundaries have been attempted. The Neumann

condition on the z-component of the gauge �eld, though, disrupt the correct

formation of an sinusoidal pulse on the boundaries. Overcoming this numeri-

cal di�culty remains a challenge to solve for the practicable simulation of the

sinusoidal pulses undergoing tunnelling of the 3rd kind.

These procedures developed for tunnelling, further, o�er the potential to ex-

amine the quantum hall e�ect within a (fundamental) �eld-theoretic framework

(for a detailed discussion of this quantum phenomenon, see for instance [100]).

This phenomenon occurs in a current restricted to a planar conductor with a

strong magnetic �eld perpendicular to the plane. The resistance in the direc-

tion perpendicular both to the direction of the current and to the magnetic �eld

increases stepwise on increasing the magnetic �eld strength. These step sizes

involve the ratio of the electron charge to Planck's constant either in integer
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multiples or a limited set of fractional values. The integer values result essen-

tially through the magnetic �eld quantizing the electrons into the (quantum-

mechanical) Landau levels with the steps in the resistance corresponding to the

number of occupied Landau levels in the system. Electron-electron interactions

generate the fractional steps in the resistance although this process is much less

understood. The dynamical simulations of these systems might provide insight

into the �eld theoretic origin of the integer steps and help further explain the

nature of the fractional e�ect.

Both the scalar-�eld oscillon and the tunnelling systems demonstrated the ap-

plication of a statistical ensemble to approximate the quantum two-point func-

tions in the dynamics. This procedure for the bosonic scalar-�eld involves a

single ensemble, constructed analogously to the operator mode expansion but

where a Gaussianly-distributed number replaced the ladder operator. The sta-

tistical mean of these ordinary numbers in e�ect replaces the quantum average

of the operators in the system. This determines the statistical variance of the

ensemble �elds may replace the quantum correlators throughout the dynamics.

The statistical method likewise involves the statistical ensemble replacing the

fermionic correlators in the dynamics, except the fermionic system requires two

ensembles di�ering only in a minus sign. This crucial di�erence ensures that the

statistical variances � on forming the products of �elds in the two sets � can

reproduce the potentially negative values of the fermion correlators.

The ensemble method o�ered the possibility to reduce the total �eld values to

evolve on the lattice. This process, in the bosonic case, failed to o�er signi�cant

gains. The convergence of the scalar-�eld evolution needed an ensemble size of

M = 60000. On the square lattice of N = 256 point, this was only marginally

fewer �elds than the N2 = 65536 modes required in the mode function method.

The trial case in the fermionic system, similarly, indicated that the method re-

quired substantial computational resources and an impracticable real-time for

completion.
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These applications demonstrate an evident limit in the e�ectiveness of the

ensemble method. The strongly inhomogeneous nature of the oscillon and the

results obtained without volume averaging� to potentially reduce the statistical

�uctuations � likely were the reasons for requiring a sizeable ensemble. These

di�culties likewise potentially also caused the ensemble method to fail in the

fermion case. The low dimensionality of the oscillon simulations also likely con-

tributed to the large ensemble-size in comparison to the number of modes. These

potential di�culties may therefore indicate that both the dimensionality and

whether the results involve volume averaging are important factors in consider-

ing the ensemble method for use in future simulations.

Constructing an ansatz for the �elds incorporating the symmetries in the

system provided an alternative method for simplifying the tunnelling dynamics.

This e�ectively reduced the system to a 1 + 1D problem in the z-direction with

the quantum correlators involving a sum also over the x- and y-directions in

mode space. This produced a signi�cant decrease in the �eld values to compute

on the lattice, and consequently enabled the evolution of the fermionic system in

a practical time.

The ansatz dynamics reliably required less than an hour for each simulation

in contrast to the more than six days in computing the trial ensemble case � still

using fewer than the necessary �elds. This considerable increase in e�ciency thus

demonstrates the potential power of a suitable ansatz to signi�cantly reduce the

computational times in fermion simulations. Using a spherically symmetric form

of the fermion spinors [101], for instance, may simplify the dynamics to enable the

completion of otherwise impracticable simulations. Devolving the techniques for

fermion �elds satisfying various symmetries, alongside the advances in computing

resources to support larger numbers of �elds on the lattice may increasingly

enable practicable simulations using the exact mode functions to examine the

dynamical evolution of fermions.



Appendix A

Neumann Boundaries: Continuum

The Neumann conditions on the z-boundaries, in the continuum (see Section

5.5.2) constrain both the gradient of the fermion current in the perpendicular

directions and also the component parallel to vanish everywhere on these bound-

aries:

i
q

~
∂3〈T ˆ̄Ψ(x)γ1/2Ψ̂(x)〉

∣∣∣
x=xB

= 0, (A.1a)

i
q

~
〈T ˆ̄Ψ(x)γ3Ψ̂(x)〉

∣∣∣
x=xB

= 0, (A.1b)

where xB is a location on these boundaries.

These conditions imply a constraint on the fermion �elds on the boundary.

In particular, the �eld at the lower and upper boundaries respectively may be

asserted to satisfy a relation of the form

Ψ(x)
∣∣
x=x0

= lim
δx3→0

B0Ψ(x+ δx3)
∣∣
x=x0

,

Ψ(x+ δx3)
∣∣
x=xN

= lim
δx3→0

BNΨ(x)
∣∣
x=xN

, (A.2)

where (x + δx3) ≡ (x0, x1, x2, x3 + δx3), x0 speci�es a coordinate on the lower
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boundary, xN likewise on the upper boundary1, and B0/N are the matrices to

determine.

Substituting these relations into the conjugated spinor in the z-component of

the fermions current, at both the upper and lower boundaries, implies

i
q

~
〈T ˆ̄Ψ(x)γ3Ψ̂(x)〉

∣∣∣
x=xB

= i
q

~
lim
δx3→0

〈T Ψ̂†(x+ δx3)B†0/Nγ
0γ3Ψ̂(x)〉

∣∣∣∣
x=xB

;

likewise, substituting this into the unconjugated spinor in the current yields

i
q

~
〈T ˆ̄Ψ(x)γ3Ψ̂(x)〉

∣∣∣
x=xB

= i
q

~
lim
δx3→0

〈T Ψ̂†(x)γ0γ3B0/N Ψ̂(x+ δx3)〉
∣∣∣∣
x=xB

.

These both evaluated in the limit δx3 → 0, hence, determine the condition for

the z-component to vanish on the boundary may be satis�ed if and only if

〈T Ψ̂†(x)B†0/Nγ
0γ3Ψ̂(x)〉

∣∣∣
x=xB

= − 〈T Ψ̂†(x)γ0γ3B0/N Ψ̂(x)〉
∣∣∣
x=xB

.

This may be obtained through asserting, in particular

B†0/Nγ
0γ3 = −γ0γ3B0/N . (A.3)

The strict de�nition of the derivative in the continuum speci�es

∂3f(x) ≡ lim
δx3→0

f(x+ δx3)− f(x)

δx3
.

Applying this to the Neumann condition (A.1a) in the directions perpendicular

to the boundary implies

lim
δx3→0

1

δx3

(
〈T ˆ̄Ψ(x+ δx3)γ1/2Ψ̂(x+ δx3)〉 − 〈T ˆ̄Ψ(x)γ1/2Ψ̂(x)〉

)∣∣∣∣
x=xB

= 0.

1The coordinates where x3 = −δx3 may be asserted to form the lower boundary and those
coordinates where x3 = (N3 − 1)∆x3 likewise for the upper boundary. This ensures both the
location of these boundaries and the matrix conditions (A.2) on the �eld match the equivalent
constraints, in the continuum limit, imposed on the lattice (see Section 5.5.2, and also the
appendix B).
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Substituting the boundary-matrix expressions (A.2) into this form of the deriva-

tive at the lower and upper boundaries, respectively yields

lim
δx3→0

1

δx3

(
〈T Ψ̂†(x+ δx3)

[
B†0γ0γ

1/2B0 − γ0γ
1/2
]

Ψ̂(x+ δx3)〉
)∣∣∣∣
x=x0

= 0,

lim
δx3→0

1

δx3

(
〈T Ψ̂†(x)

[
B†0γ0γ

1/2B0 − γ0γ
1/2
]

Ψ̂(x)〉
)∣∣∣∣
x=xN

= 0.

These constraints may both be satis�ed if

B†0/Nγ0γ
1/2B0/N = γ0γ

1/2. (A.4)

This result and the condition (A.3) obtained from the z-component of the

current together form the necessary constraints on the boundary matrices to

satisfy for implementing the Neumann boundaries on the fermions.

A.1 Solutions to the Neumann Constraint

The γ-matrices, in general, generate the relevant matrix-operations on fermions

and thus are expected also to form the matrices B0/N . Uniquely among the γ

matrices, the relation of the γ3 to the z-direction matches the distinctive direc-

tion in the Neumann conditions. Further, the γ5 matrix provides a canonical

combination of the direction-related γ-matrices but without association to a spe-

ci�c direction. This therefore indicates the boundary matrices may be comprised

of any combination of γ5 and γ3 matrices.

A possible form incorporating these conditions may be to impose

B0/N = ±γ3. (A.5)

Substituting this possibility into the constraints (A.3) and (A.4) on the boundary

matrices readily determines this form satis�es the Neumann conditions for the

fermions, on the z-boundaries.
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The γ5 matrix might likewise form a comparably simple alternative imposing

B0/N = ±iγ5. (A.6)

Again substituting this into the constraints on the boundary matrices deter-

mines this form o�ers an alternative to produce the Neumann conditions for the

fermions.

Combining both the γ5 and γ3 matrices through multiplication provides a

further possible form of the boundary matrices:

B0/N = ±iγ5γ3. (A.7)

Substituting the possibility into the boundary constraints likewise con�rms this

combination also satis�es the Neumann conditions.

A.2 Selecting the Fermion Boundary Condition

The imposed matrix-constraint (A.2) on the boundary (in the limit δx3 → 0)

implies

(I4 −B0/N )Ψ(x)
∣∣
xB

= 0. (A.8)

This in the simplest γ5-case (A.6) yields

(I4 ∓ iγ5)Ψ(x)
∣∣
xB

= 0,

where the plus corresponds to the negative option and the minus to the positive.

Evaluating this explicitly using the Weyl representation of the γ-matrices (5.2)

and specifying the four-component, fermion spinor through the two-component,
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up-spinor Ψu and down-spinor Ψd yields

(1∓ i)Ψu(x)
∣∣
xB

= 0,

(1± i)Ψd(x)
∣∣
xB

= 0.

Each equation may be satis�ed only if the spinor equals zero. The simple matrix-

constraints hence impose Ψ(x)
∣∣
xB

= 0 and correspondingly the fermion current

on the boundary at all times vanishes.

Applying the result (A.8) in the pure γ3 case (A.5) yields

(I4 ∓ γ3)Ψ(x)
∣∣
xB

= 0,

where the positive and negative possibilities correspondingly produce the mi-

nus and plus equalities. Evaluating this using the explicit representation of the

matrices and the two-component spinors to form the fermion-�eld yields

Ψu(x)
∣∣
xB
∓ iσ3Ψd(x)

∣∣
xB

= 0,

Ψd(x)
∣∣
xB
± iσ3Ψu(x)

∣∣
xB

= 0. (A.9)

These separate equations trivially imply an equivalent constraint on the up and

down spinors. Thus, the matrix constraint underdetermines the variables and

hence enables an arbitrary, either up or down, two-component spinor. This ulti-

mately (through the constraint on the z-component at the surface to permanently

vanish2) supports an arbitrary fermion-current in the x- and y-direction on the

boundary.

2Evaluating the current in the z-direction using the explicit forms of the constituent contri-
butions and substituting the derived relation between the up and down components into the
resultant expression con�rms the consistency of the constraint (A.9) with the initial requirement
for the current in this direction to vanish on the boundary.
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The relation (A.8) in the combined-matrices case (A.7) implies

(I4 ∓ iγ5γ3)Ψ(x)
∣∣
xB

= 0,

where the plus corresponds to the negative and the minus to the positive option.

Again explicitly evaluating the constraint on the two-component spinors yields

Ψu(x)
∣∣
xB
± σ3Ψd(x)

∣∣
xB

= 0,

Ψd(x)
∣∣
xB
± σ3Ψu(x)

∣∣
xB

= 0.

These separate equations trivially imply an equivalent constraint on the up and

down spinors and thus underdetermines these variables. This case also, therefore,

enables an arbitrary, either up or down, two-component spinor and ultimately

(consequent to the initial requirement on the z-component to vanish3) supports

an arbitrary fermion-current in the x and y-direction on the boundary.

The weaker constraint in the latter two cases thus enables a very general con-

�guration. This also importantly encompasses the possibility of a fermion current

along the x-direction, in reaction to the external-current likewise aligned in the

ansatz (see Section 5.2.4). Imposing the simplest γ5-constraint creates a signi�-

cantly stronger constraint on the fermion-current and distinctly stronger than the

constraint on the current in the ansatz. Hence, the matrix-relation B0/N = γ3 or

B0/N = ±iγ5γ3 o�er a preferable boundary constraint to implement Neumann-

conditions on the z-axis in the continuum. The greater generality in the con-

stituent matrices forming the latter case di�erentiates the options and provides a

slight preference for this case in implementing the Neumann-boundaries for the

fermions.

Linear combinations of the matrix-constraints might also satisfy the Neu-

3Explicitly evaluating the current in the z-direction and substituting the derived relation
between the up and down components into the expression (as in the pure-γ3 case) con�rms the
consistency of the constraint on the fermion �eld with the initial requirement for the current
in this direction to vanish on the boundary.
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mann-boundary conditions since the analysis to determine the suitable matrices

involves each only operating linearly. Constructing odd powers of the matrix-

constraints, also, may individually satisfy the boundary constraints since the

square of the γ3/5 matrices produces the identity. The most general boundary-

condition may therefore be obtained in the arbitrary linear combination of the

possible constraint matrices and their odd powers4. This provides a very complex

condition, though; accordingly, the use of the single matrix-term case remains

the most convenient choice for implementation of the Neumann-boundaries.

4The combined, odd powers of the constraints might in particular create a standard matrix-
function de�ned through the Taylor expansion � for instance, sin(γ3).



Appendix B

Neumann Boundaries: Discrete

The Neumann conditions on both the fermion current (5.71) and on the Wilson

current (5.72) in the discretized system imply a constraint on the fermion �elds.

Asserting, in particular, the �eld to satisfy the matrix relations specifying

Ψ(X)
∣∣
n3=−1

= B0Ψ(X)
∣∣
n3=0

, (B.1)

Ψ(X)
∣∣
n3=N

= BNΨ(X)
∣∣
n3=N−1

, (B.2)

across respectively the upper and lower boundaries in the z-direction, may de�ne

the implicit, Neumann condition on the fermions, for the lattice.

These conditions notably match the general, continuum-constraint (A.2) on

the fermions, except relating the �eld at neighbouring points. This discrete case

in the continuum limit (where the site separation reduces to zero), moreover,

reproduces the equivalent, continuum condition.

The substitution of these lattice boundary constraints into the Neumann

conditions (5.71) on the discrete fermion current, and the application of the

Neumann constraint (5.70) on the gauge �eld together determine

B†0/Nγ
0γ1/2B0/N = γ0γ1/2, B†0/Nγ

0γ3 = −γ0γ3B0/N . (B.3)

184
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These notably exactly match the constraint on the boundary matrices to satisfy

the Neumann conditions in the continuum. The substitution of the �eld con-

straints (B.1) for the fermions also into the Neumann conditions (5.72) on the

Wilson current, again with the application of the Neumann constraints on the

gauge �eld, implies

B†0/Nγ
0B0/N = γ0, B†0/Nγ

0 = γ0B0/N , (B.4)

forming the additional constraints on the boundary matrices for the fermions on

the lattice.

B.1 Solutions to the Neumann Constraint

Those constraint matrices obtained in the continuum system through consider-

ing the symmetry of the boundaries, likewise, o�er a potential solutions to the

matrix-constraints (B.3) and (B.4) on the lattice. Substituting the three, basic

possibilities into the lattice constraints readily determines only the matrix

B0/N = ±iγ5γ3 (B.5)

satis�es all the conditions. This therefore provides the simplest, boundary ma-

trix for the Neumann conditions on the lattice. The matrix constraint in the

continuum limit, also notably corresponds to the preferred option in the contin-

uum case (see Section A.2). This con�rms the suitability of this basic option in

implementing the Neumann conditions on the lattice.

The linearity of the matrix constraints (B.3) and (B.4) in the discrete case

implies linear combinations of the simplest solution, equivalently to the contin-

uum, may also satisfy the Neumann-boundary conditions. Any combination,

in the continuum, involving purely the iγ5γ3 option, hence, may also consis-

tently provide a valid lattice constraint to satisfy the Neumann conditions. The
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increased complexity on imposing these linear combinations in the continuum,

though, causes a considerable di�culty in computing the equivalent constraint

in the discrete system. Imposing the simplest, matrix, thus, o�ers the most

practical choice for implementing the Neumann-boundaries on the lattice.



Appendix C

Functions of Pauli Matrices

Employing the general properties of the Taylor series to the particular expansion

de�ning the square root of the Pauli matrices � required for forming the fermionic,

vacuum mode functions � enables de�ning this expansion in �nite terms, to

compute numerically.

A Taylor expansion of a general function f(x) around the point x = a is of

the form

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n;

this additionally implies

1

2
(f(x) + f(−x)) =

∞∑
n=0

f (2n)(a)

2n!
(x− a)2n, (C.1a)

1

2
(f(x)− f(−x)) =

∞∑
n=0

f (2n+1)(a)

(2n+ 1)!
(x− a)2n+1. (C.1b)

The square root
√
ωKI2 ± σ ·K in the vacuum mode functions is de�ned through

the standard, matrix-function expansion: substituting the square-matrix ±σ ·K

into the equivalent Taylor series (ω + x)
1
2 around x = 0 and promoting the
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operations to the matrix equivalent yields

√
ωKI2 ± σ ·K =

∞∑
n=0

1

n!

(
dn

dxn
(ω ± x)

1
2

) ∣∣∣∣
x=0

(±σ ·K)n.

Applying the unitarity of the Pauli matrices and grouping the terms including

the Pauli Matrices together and those without hence provides

√
ωKI2 ± σ ·K =

∞∑
n=0

1

(2n)!

(
d2n

dx2n
(ω + x)

1
2

) ∣∣∣∣
x=0

|K|2n I2

±
∞∑
n=0

1

(2n+ 1)!

(
d2n+1

dx2n+1
(ω + x)

1
2

) ∣∣∣∣
x=0

|K|2n+1 σ · K̂,

where K̂ ≡ K/ |K|.

Comparing the �rst term to the result (C.1a) from the Taylor series and

likewise the second to the result (C.1b) hence implies

√
ωKI2 ± σ ·K =

1

2

(
(ω + |K|)

1
2 + (ω − |K|)

1
2

)
I2

±1

2

(
(ω + |K|)

1
2 − (ω − |K|)

1
2

)
σ · K̂.

This, thus, provides the expression in�nite terms used to generate the fermion,

vacuum initial conditions in the numerical simulations.



Bibliography

[1] Zoltán Dörnyei, �Progressive Creation and the Struggles of Humankind:
An Experiment in Canonical Narrative Interpretation�, PhD thesis, Uni-
versity of Durham, 2017.

[2] Angela Anderson, Art Draws Out the Beauty of Physics, 2016, url: http:
//www.symmetrymagazine.org/article/art-draws-out-the-beauty-

of-physics (visited on 03/21/2017).

[3] Proms Plus Literary � 17:45 Saturday 31 Aug 2013, Royal College of Mu-

sic, 2013, url: http://www.bbc.co.uk/events/exdj5v (visited on
03/21/2017).

[4] Robert Mann, An Introduction to Particle Physics and the Standard

Model, CRC Press, 2011, isbn: 978-1-4398-8760-8.

[5] Matthew D. Schwartz, Quantum Field Theory and the Standard Model,
Cambridge University Press, 2014, isbn: 978-1-107-03473-0.

[6] Mischa Salle, Jan Smit, and Jeroen C. Vink, �Thermalization in a Hartree
Ensemble Approximation to Quantum Field Dynamics�, in: Physical Re-
view D 64.2 (2001), [arXiv: hep-ph/0012346].

[7] Daniel Boyanovsky, Héctor J. de Vega, and Richard Holman, �Erice Lec-
tures on In�ationary Reheating�, in: (1997), url: http://arxiv.org/
abs/hep-ph/9701304 (visited on 03/21/2017).

[8] Szabolcs Borsanyi and Mark Hindmarsh, �Semiclassical Decay of Topolog-
ical Defects�, in: Physical Review D 77.4 (2008), [arXiv: 0712.0300 [hep-
ph]].

[9] Daniel Boyanovsky and Héctor J. de Vega, �Quantum Rolling Down out
of Equilibrium�, in: Physical Review D 47.6 (1993), [arXiv: hep-th/
9211044].

[10] Daniel Boyanovsky, Da-Shin Lee, and Anupam Singh, �Phase Transitions
out of Equilibrium: Domain Formation and Growth�, in: Physical Review
D 48.2 (1993), [arXiv: hep-th/9212083].

[11] Daniel Boyanovsky et al., �Dissipation via Particle Production in Scalar
Field Theories�, in: Physical Review D 51.8 (1995), [arXiv: hep-ph/
9408214].

189



Bibliography 190

[12] Daniel Boyanovsky, Héctor J. de Vega, and Richard Holman, �Can Disor-
dered Chiral Condensates Form? A Dynamical Perspective�, in: Physical
Review D 51.2 (1995), [arXiv: hep-ph/9401308].

[13] Anders Tranberg and David J. Weir, �On the Quantum Stability of
Q-balls�, in: Journal of High Energy Physics 2014.04 (2014), arXiv:
1310.7487.

[14] Michael C. Cross and Pierre C. Hohenberg, �Pattern Formation Outside
of Equilibrium�, in: Reviews of Modern Physics 65.3 (1993).

[15] Nadav M. Shnerb et al., �The Importance of Being Discrete - Life Always
Wins on the Surface�, in: Proceedings of the National Academy of Sciences
97.19 (2000).

[16] Tanmay Vachaspati, Kinks and Domain Walls: An Introduction to Clas-

sical and Quantum Solitons (1st Edition), Cambridge University Press,
2010, isbn: 978-05-211-4191-8.

[17] Sebastian E. Larsson, Subir Sarkar, and Peter L. White, �Evading the
Cosmological Domain Wall Problem�, in: Physical Review D 55.8 (1997),
[arXiv: hep-ph/9608319].

[18] Theodore Garagounis and Mark Hindmarsh, �Scaling in Numerical Sim-
ulations of Domain Walls�, in: Physical Review D 68.10 (2003), [arXiv:
hep-ph/0212359].

[19] Marcelo Gleiser and Rafael C. Howell, �Resonant Emergence of Global
and Local Spatiotemporal Order in a Nonlinear Field Model�, in: Physical
Review E 68.6 (2003), [arXiv: hep-ph/0209176].

[20] Marcelo Gleiser and Rafael C. Howell, �Resonant Nucleation of Spatio-
Temporal Order via Parametric Modal Ampli�cation�, in: Physical Review
E 68 (2003), [arXiv: cond-mat/0310157].

[21] Marcelo Gleiser and Rafael Howell, �Resonant Nucleation�, in: Physical
Review Letters 94.15 (2005), [arXiv: hep-ph/0409179].

[22] Marcelo Gleiser, �Oscillons in Scalar Field Theories: Applications in
Higher Dimensions and In�ation�, in: International Journal of Modern

Physics D 16.02n03 (2007), [arXiv: hep-th/0602187].

[23] Alexander Vilenkin, �Cosmic Strings and Domain Walls�, in: Physics Re-
ports 121.5 (1985).

[24] Alexander Kusenko, �Solitons in the Supersymmetric Extensions of the
Standard Model�, in: Physics Letters B 405.1-2 (1997).

[25] Alexander Kusenko and Mikhail Shaposhnikov, �Supersymmetric Q-
balls as Dark Matter�, in: Physics Letters B 418 (1998), [arXiv: hep-
ph/9709492].



Bibliography 191

[26] Kari Enqvist and John McDonald, �Q-Balls and Baryogenesis in the
MSSM�, in: Physics Letters B 425 (1998), [arXiv: hep-ph/9711514].

[27] Uros Seljak, Ue-Li Pen, and Neil Turok, �Polarization of the Microwave
Background in Defect Models�, in: Physical Review Letters 79.9 (1997),
[arXiv: astro-ph/9704231].

[28] Michel Remoissenet, Waves Called Solitons: Concepts and Experiments

(2nd Revision and Enlarged Edition), Springer, 1996, isbn: 978-35-406-
0502-7.

[29] Malcolm R. Anderson, The Mathematical Theory of Cosmic Strings: Cos-

mic Strings in the Wire Approximation, CRC Press, 2015, isbn: 978-1-
4200-3336-6.

[30] Daren Austin, Edmund J. Copeland, and Thomas W. B. Kibble, �Char-
acteristics of Cosmic String Scaling Con�gurations�, in: Physical Review
D 51.6 (1994), [arXiv: hep-ph/9406379].

[31] Mark B. Hindmarsh and Thomas W. B. Kibble, �Cosmic Strings�, in:
Reports on Progress in Physics 58.5 (1995), [arXiv: hep-ph/9411342].

[32] Alexander Vilenkin and Edward Paul S. Shellard, Cosmic Strings and

Other Topological Defects, Cambridge University Press, July 2000, isbn:
978-0-521-65476-0.

[33] Sidney Coleman, �Q-balls�, in: Nuclear Physics B 262.2 (1985).

[34] Mitsuo I. Tsumagari, Edmund J. Copeland, and Paul M. Sa�n, �Some
Stationary Properties of a Q-ball in Arbitrary Space Dimensions�, in:
Physical Review D 78.6 (2008), [arXiv: 0805.3233 [hep-th]].

[35] Tsung-Dao. Lee and Yang Pang, �Nontopological Solitons�, in: Physics
Reports 221.5 (1992).

[36] Edmund J. Copeland, Marcelo Gleiser, and Hans-Reinhard Müller, �Os-
cillons: Resonant Con�gurations During Bubble Collapse�, in: Physical
Review D 52.4 (1995), [arXiv: hep-ph/9503217].

[37] Ethan P. Honda and Matthew W. Choptuik, �Fine Structure of Oscillons
in the Spherically Symmetric φ4 Klein-Gordon Model�, in: Physical Review
D 65.8 (2002), [arXiv: hep-ph/0110065].

[38] Gyula Fodor et al., �Oscillons and Quasi-Breathers in the φ4 Klein-Gordon
Model�, in: Physical Review D 74.12 (2006), [arXiv: hep-th/0609023].

[39] Marcelo Gleiser, �Pseudo-Stable Bubbles�, in: Physical Review D 49.6
(1994), [arXiv: hep-ph/9308279].

[40] Marcelo Gleiser, �D-Dimensional Oscillating Scalar Field Lumps and the
Dimensionality of Space�, in: Physics Letters B 600.1-2 (2004), [arXiv:
hep-th/0408221], (visited on 12/29/2015).



Bibliography 192

[41] Paul M. Sa�n and Anders Tranberg, �Oscillons and Quasi-Breathers in
D+1 Dimensions�, in: Journal of High Energy Physics 2007.01 (2007),
[arXiv: hep-th/0610191].

[42] Erik Alexander Andersen and Anders Tranberg, �Four Results on Φ4 Os-
cillons in D+1 dimensions�, in: Journal of High Energy Physics 2012.12
(2012), [arXiv: 1210.2227 [hep-ph]].

[43] Mark Hindmarsh and Petja Salmi, �Numerical Investigations of Oscil-
lons in 2 Dimensions�, in: Physical Review D 74.10 (2006), [arXiv: hep-
th/0606016].

[44] Petja Salmi and Mark Hindmarsh, �Radiation and Relaxation of Oscil-
lons�, in: Physical Review D 85.8 (2012), [arXiv: 1201.1934 [hep-th]].

[45] Mark Hindmarsh and Petja Salmi, �Oscillons and Domain Walls�, in:
Physical Review D 77.10 (2008), [arXiv: 0712.0614 [hep-th]].

[46] Artur B. Adib, Marcelo Gleiser, and Carlos A. S. Almeida, �Long-Lived
Oscillons from Asymmetric Bubbles�, in: Physical Review D 66.8 (2002),
[arXiv: hep-th/0203072].

[47] Marcelo Gleiser and Joel Thorarinson, �A Phase Transition in U(1) Con-
�guration Space: Oscillons as Remnants of Vortex-Antivortex Annihila-
tion�, in: Physical Review D 76.4 (2007), [arXiv: hep-th/0701294].

[48] Marcelo Gleiser and Noah Graham, �Transition To Order After Hilltop
In�ation�, in: Physical Review D 89.8 (2014), [arXiv: 1401.6225].

[49] Mustafa A. Amin, Richard Easther, and Hal Finkel, �In�aton Fragmen-
tation and Oscillon Formation in Three Dimensions�, in: Journal of Cos-
mology and Astroparticle Physics 2010.12 (2010), [arXiv: 1009.2505 [astro-
ph]].

[50] Mustafa A. Amin, �In�aton Fragmentation: Emergence of Pseudo-Stable
In�aton Lumps (Oscillons) after In�ation�, in: (2010), url: http : / /

arxiv.org/abs/1006.3075 (visited on 08/26/2014).

[51] Mustafa A. Amin et al., �Oscillons After In�ation�, in: Physical Review
Letters 108.24 (2012), [arXiv: 1106.3335 [astro-ph]].

[52] Marcelo Gleiser and Andrew Sornborger, �Long-Lived Localized Field
Con�gurations in Small Lattices: Application to Oscillons�, in: Physical
Review E 62.1 (2000), [arXiv: patt-sol/9909002].

[53] Edward Farhi et al., �Emergence of Oscillons in an Expanding Back-
ground�, in: Physical Review D 77.8 (2008), [arXiv: 0712.3034 [hep-th]].

[54] Marcelo Gleiser and Joel Thorarinson, �A Class of Nonperturbative Con-
�gurations in Abelian-Higgs Models: Complexity from Dynamical Sym-
metry Breaking�, in: Physical Review D 79.2 (2009), [arXiv: 0808.0514
[hep-th]].



Bibliography 193

[55] Edward Farhi et al., �An Oscillon in the SU(2) Gauged Higgs Model�, in:
Physical Review D 72.10 (2005), arXiv: hep-th/0505273.

[56] Noah Graham, �An Electroweak Oscillon�, in: Physical Review Letters

98.18 (2007).

[57] Noah Graham, �Numerical Simulation of an Electroweak Oscillon�, in:
Physical Review D 76.8 (2007), [arXiv: 0706.4125 [hep-th]].

[58] Evangelos I. Sfakianakis, Analysis of Oscillons in the SU(2) Gauged

Higgs Model, 2012, url: http://arxiv.org/abs/1210.7568 (visited on
03/20/2017).

[59] Pedro P. Avelino et al., �Cosmic-String-Seeded Structure Formation�, in:
Physical Review Letters 81.10 (1998), [arXiv: astro-ph/9712008].

[60] Edmund J. Copeland, Joao Magueijo, and Danièle A. Steer, �Cosmological
Parameter Dependence in Local String Theories of Structure Formation�,
in: Physical Review D 61.6 (2000), [arXiv: astro-ph/9903174].

[61] Uros Seljak and Anze Slosar, �B Polarization of Cosmic Microwave Back-
ground as a Tracer of Strings�, in: Physical Review D 74.6 (2006), [arXiv:
astro-ph/0604143].

[62] Neil Bevis et al., �CMB Polarization Power Spectra Contributions from
a Network of Cosmic Strings�, in: Physical Review D 76.4 (2007), [arXiv:
0704.3800 [astro-ph]].

[63] Levon Pogosian and Mark Wyman, �B-modes from Cosmic Strings�, in:
Physical Review D 77.8 (2008), [arXiv: 0711.0747 [astro-ph]].

[64] Benjamin Shlaer, Alexander Vilenkin, and Abraham Loeb, �Early Struc-
ture Formation from Cosmic String Loops�, in: Journal of Cosmology and
Astroparticle Physics 2012.05 (2012), [arXiv: 1202.1346 [astro-ph]].

[65] Sidney Coleman, �Fate of the False Vacuum: Semiclassical Theory�, in:
Physical Review D 15.10 (1977).

[66] Curtis G. Callan and Sidney Coleman, �Fate of the False Vacuum. II. First
Quantum Corrections�, in: Physical Review D 16.6 (1977).

[67] Shuang-Yong Zhou et al., �Gravitational Waves from Oscillon Preheat-
ing�, in: Journal of High Energy Physics 2013.10 (2013), [arXiv: 1304.6094
[astro-ph]].

[68] Marcelo Gleiser and David Sicilia, �Analytical Characterization of Oscil-
lon Energy and Lifetime�, in: Physical Review Letters 101 (2008), [arXiv:
0804.0791 [hep-th]].

[69] Marcelo Gleiser and David Sicilia, �A General Theory of Oscillon Dynam-
ics�, in: Physical Review D 80.12 (2009), [arXiv: 0910.5922 [hep-th]].

[70] Mark P. Hertzberg, �Quantum Radiation of Oscillons�, in: Physical Review
D 82.4 (2010), [arXiv: 1003.3459 [hep-th]].



Bibliography 194

[71] Gyula Fodor et al., �Radiation of Scalar Oscillons in 2 and 3 Dimensions�,
in: Physics Letters B 674.4-5 (2009), [arXiv: 0903.0953 [hep-th]].

[72] Mustafa A. Amin and David Shiroko�, �Flat-Top Ocillons in an Expand-
ing Universe�, in: Physical Review D 81.8 (2010), [arXiv: 1002.3380 [astro-
ph]].

[73] Makoto Matsumoto and Takuji Nishimura, �Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number Gener-
ator�, in: ACM Transactions on Modeling and Computer Simulation 8.1
(1998).

[74] Paul M. Sa�n and Anders Tranberg, �Dynamical Simulations of Elec-
troweak Baryogenesis with Fermions�, in: Journal of High Energy Physics
2012.02 (2012), [arXiv: 1111.7136 [hep-ph]].

[75] Michael E. Peskin and Daniel V. Schröder, An Introduction to Quantum

Field Theory, Springer Science & Business Media, 1995, isbn: 978-02-015-
0397-5.

[76] Zong-Gang Mou, �Fermions in Electroweak Baryogenesis�, PhD thesis,
University of Nottingham, 2015.

[77] Paul A. M. Dirac, �The Quantum Theory of the Electron�, in: Proceedings
of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences 117.778 (1928).

[78] Paul A. M. Dirac, �A Theory of Electrons and Protons�, in: Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering

Sciences 126.801 (1930).

[79] Gert Aarts and Jan Smit, �Real-Time Dynamics with Fermions on a Lat-
tice�, in: Nuclear Physics B 555.1-2 (1999), [arXiv: hep-ph/9812413].

[80] Szabolcs Borsanyi and Mark Hindmarsh, �Low-Cost Fermions in Classical
Field Simulations�, in: Physical Review D 79.6 (2009), [arXiv: 0809.4711
[hep-ph]].

[81] Paul M. Sa�n and Anders Tranberg, �Real-time Fermions for Baryoge-
nesis Simulations�, in: Journal of High Energy Physics 2011.07 (2011),
[arXiv: 1105.5546 [hep-ph]].

[82] Kenneth G. Wilson, �Quarks and Strings on a Lattice�, in: 13th Inter-

national School of Subnuclear Physics: New Phenomena in Subnuclear

Physics Erice, Italy, July 11-August 1, 1975 (1975).

[83] Leonard Susskind, �Lattice Fermions�, in: Physical Review D 16.10 (1977).

[84] Heinz J. Rothe, Lattice Gauge Theories: An Introduction, World Scienti�c,
2005, isbn: 978-981-256-062-9.

[85] Paul H. Ginsparg and Kenneth G. Wilson, �A remnant of chiral symmetry
on the lattice�, in: Physical Review D 25.10 (1982).



Bibliography 195

[86] Jan Smit, Introduction to Quantum Fields on a Lattice, Cambridge Uni-
versity Press, 2002, isbn: 978-0-521-89051-9.

[87] Guy Blaylock, Introduction to High Energy Physics, Lecture Notes, 2010,
url: https : / / www . physics . umass . edu / sites / physics / files /

admupld/Tunneling-UMass-12Feb10.pdf (visited on 03/16/2017).

[88] George Gamow, �Zur Quantentheorie des Atomkernes�, in: Zeitschrift für
Physik 51.204 (1928).

[89] University of Colorado, Application of Quantum Tunneling: Radioactive

Decay, Lecture Notes, 2011, url: http://www.colorado.edu/physics/
phys2130/phys2130_fa11/lecture_pdfs/pclass35.pdf (visited on
03/16/2017).

[90] Midlands Physics Alliance Graduate School, STM-Scanning Tunneling

Microscope, url: https://www2.warwick.ac.uk/fac/sci/physics/
current/postgraduate/regs/mpags/ex5/techniques/electronic/

microscopy/ (visited on 03/16/2017).

[91] Rino Micheloni, Luca Crippa, and Alessia Marelli, Inside NAND Flash

Memories, Springer Science & Business Media, 2010, isbn: 978-90-481-
9431-5.

[92] Maurizio Gasperini, �Axion Production by Electromagnetic Fields�, in:
Physical Review Letters 59.4 (1987).

[93] Cecile Robilliard et al., �No Light Shining Through a Wall : New Results
from a Photoregeneration Experiment�, in: Physical Review Letters 99.19
(2007), [arXiv: 0707.1296 [hep-ex]].

[94] Markus Ahlers et al., �Light from the Hidden Sector�, in: Physical Review
D 76.11 (2007), [arXiv: 0706.2836 [hep-ph]].

[95] Markus Ahlers et al., �Laser Experiments Explore the Hidden Sector�, in:
Physical Review D 77.9 (2008), [arXiv: 0711.4991 [hep-ph]].

[96] Simon A. Gardiner et al., �Tunneling of the 3rd Kind: A Test of the
E�ective Non-locality of Quantum Field Theory�, in: EPL (Europhysics

Letters) 101.6 (2013), [arXiv: 1204.4802 [quant-ph]].

[97] Babette Döbrich et al., �Magnetically Ampli�ed Tunneling of the 3rd Kind
as a Probe of Minicharged Particles�, in: Physical Review Letters 109.13
(2012), [arXiv: 1203.2533 [hep-ph]].

[98] Holger Gies and Joerg Jaeckel, �Tunneling of the 3rd Kind�, in: Journal
of High Energy Physics 2009.08 (2009), [arXiv: 0904.0609 [hep-ph]].

[99] Steven Weinberg, The Quantum Theory of Fields: Modern Applications,

Volume II, Cambridge University Press, 2013, isbn: 978-11-396-3247-8.

[100] David Tong, �Lectures on the Quantum Hall E�ect�, in: (2016), url:
http://arxiv.org/abs/1606.06687 (visited on 03/31/2017).



Bibliography 196

[101] Paul M. Sa�n, �Recrudescence of Massive Fermion Production by Oscil-
lons�, in: (2016), url: http://arxiv.org/abs/1612.02014 (visited on
03/29/2017).


