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Abstract   

This study identifies the spatial and temporal change of three types of Urban Heat Island 

(UHI). The Surface Urban Heat Island (SUHI) and Canopy Urban Heat Island (CUHI) are common 

UHI phenomena; however, the Radiant Urban Heat Island (RUHI) is proposed as a new type of 

UHI. Surface temperature, air temperature, and mean radiant temperature are used as indicators 

to measure the SUHI, CUHI, and RUHI respectively. Visual, statistical and microclimate 

approaches are carried out to increase the spatial and temporal resolution of the UHI modelling. 

The modelling approaches employ the integration of remote sensing, GIS, and ground 

measurements to improve the 2D and 3D representation of the UHI. Furthermore, the influencing 

parameters on the formation of the three types of UHI are investigated. The research aim is to 

produce an integrated approach that improves the low spatial or temporal coverage of UHI models 

in the literature. Moreover, it quantifies the causative parameters on the formation of UHI, and 

proposes mitigation strategies accordingly.   

London, Baghdad and Birmingham are the study areas of the SUHI, to test the variability 

of the size, population, Land Use/Cover (LULC), geometry, microclimate, geography, and level of 

development. Birmingham is chosen to study the CUHI and RUHI, because of the availability of 

the required data to model these UHIs. The SUHI is carried out between (2000- 2015) by the 

Land Surface Temperature (LST) of the thermal bands of Landsat, ASTER, MODIS and other 

auxiliary data. The CUHI, on the hand, is undertaken for two years (June 2012- June 2014) using 

high density air temperature measurements (HiTemp data), and the RUHI is simulated based on 

the mean radiant temperature (Tmrt) for four seasonal days that are part of the HiTemp. The 

integrated approach of the research employs three indictors (LST, air temperature, and Tmrt) to 

model the UHI which is unprecedented in the literature. Furthermore, within the use of each 

indicator there is a novel approach. The LST is acquired for three different cities using thermal 

bands from 1 m to 1000 m spatial resolution by employing diverse satellite and airborne images 

for about 15 years. The air temperature is hourly measured for two years by over 100 ground 

stations to produce high spatial and temporal thermal maps, and some of the ground stations are 

used to simulate the Tmrt. The Tmrt is used for the first time to model the UHI as a new indictor, 

which upgrades the 2D UHI using LST and air temperature to 3D UHI simulation. The influencing 

parameters on the formation of three types of UHI derived from the three indicators are identified, 

and they include many potential factors not investigated together in the literature.         

The findings of such topic might be useful for decision-makers when building new cities or 

modifying the existing ones, even the public can know more about their environment. The results 

show that, London and Birmingham core area usually work as SUHI during the day and night-

time. However, Baghdad city exhibits low LST in the daytime except for high density residential 

area as well as indusial and commercial units. Similarly, Baghdad city becomes a SUHI in the 

night-time, and the water bodies have high LST during the cold nights for the three cities. Despite 
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the higher diurnal, daytime and night-time LST of Baghdad compared to London and Birmingham, 

the London SUHI intensities were higher than those of Baghdad.  

The temporal change of the average LST and SUHI for Birmingham did not show significant 

change over the study period just like London; however, they both gave high spatial variability. 

The diurnal averages of SUHI are 9.41, 11.29, and 7.63 ºC for Baghdad, London, and Birmingham 

(during 2003-2015) respectively.  The CUHI appear daytime and night-time in Birmingham urban 

and suburban areas throughout the different seasons for 56% of the total hours of two years, to 

reach 13.53 ºC. The simulation of Tmrt show the presence of daytime Radiant Urban Cool Island 

(RUCI) in the City Centre of Birmingham, while, the night-time induced the development of RUHI. 

Various influencing parameters contribute to the different types of UHI. The land cover types and 

anthropogenic heat are the main contributors to the SUHI. Fourteen controllable and 

uncontrollable predictors control the CUHI development. On the other hand, the radiation fluxes 

and shadow patterns direct the RUHI formation. Overall, the spatial and temporal behaviour of 

UHI varies for the different types of UHI. Each type of UHI is controlled by a set of causative 

parameters, and these might differ based on the type of UHI as well as where and when it occurs.   
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1.1. Research background 

The accelerating growth of global populations has led to more crowded cities being a 

driving force of human development. Besides, cities face major challenges such as air pollution, 

heat waves, and flooding. Consequently, urban planners need to take long term actions to build 

truly resilient cities to reduce their vulnerability and promote sustainable development (WHO, 

2008). Some of these serious challenges to sustainable cities is the excessive heat they generate, 

reduced vegetation, increased urban impervious materials, increased energy consumption and 

reduced air quality (Environmental Protection Agency, 2008, Gartland, 2008). Voogt (2004) 

defines an Urban Heat Island (UHI) as the unintentional climate modification when both 

atmosphere and surfaces in urbanised areas have warmth characteristic compared to their non-

urbanised surroundings. UHI was first documented in 1818 when Luke Howard found an artificial 

excess of heat in the city compared with the country (Gartland, 2008). The term UHI was first 

used in the literature by Manley (1958). Gartland (2008) clarifies that urban and suburban areas 

can have higher air and surface temperature than rural areas, due to several reasons such as 

replacing the natural areas by impervious surfaces. Urban expansion is becoming a common 

concern worldwide as people accumulate in the major cities leaving the rural areas. The 

percentage of the humans living in cities increased from one third of the 2.5 billion world’s 

population in 1950 to more than half of the 6.9 billion the global population in 2010 (Yang, 2011). 

The increase of urban population has economic and environmental consequences; however, the 

environmental changes have got much attention due to the climate change and global warming 

which have direct impacts on human’s life. Lenzholzer (2015) explains that the urban climate is 

very different from the countryside, and even the intra-urban microclimate varies among places 

in the same city. Morice et al. (2012) suggested two baselines of the global near-surface air 

temperature and sea-surface temperature. The first baseline is the pre-industrial period (1850-

1900), and the second baseline is the long term or post-industrial period (1961-1990). Recently, 

the National Aeronautics and Space Administration (NASA) has reported that most of the global 

warming occurred in the past 35 years, with 16 of the 17 warmest years on record for the two 

baselines occurring since 2001 (NASA, 2017). The Met Office has marked that the planet’s 

temperature series shows that 2016 was 0.77±0.1 °C above the long-term (1961-1990) average, 

and it is 1.1 °C above the pre-industrial (1850 – 1900) (MetOffice, 2017). Accordingly, the 

temperatures continue a long-term warming trend, and it is essential to monitor and mitigate this 

heat increase generated by man’s activities.   

 

There is a lack of awareness of the urban climate not only by the public, however, even 

some designers and policy makers do not take into account phenomena such as UHI when 

planning new cities or rebuilding existing cities (Lenzholzer, 2015). There is more than one type 

of UHI, and in this study the term UHI is used to describe the different types of UHI, which 

represents the difference in temperature between places where the place of the higher 

temperature forms the heat island. The definition and history of UHI will be discussed later more 

details. Studies in the literature have focused on the impacts and mitigation strategies of UHI. 
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However the spatial and temporal change of UHI have not been fully understood as well as the 

causes of UHI (Sung, 2013, Doick et al., 2014, Agency, 2013, Al-musaed, 2007, Gorsevski, 1998). 

Akbari and Muscio (2015) highlighted some of the negative impacts of UHI on urban inhabitants 

such as higher outdoor summertime temperature, higher urban air pollution, higher demand for 

air conditioning, and higher heat stress-related mortalities. They emphasised that urbanisation is 

driven by macro and global economic needs and little can be done in the short term to reverse 

the migration back to rural areas. Therefore, identifying the causative factors that induce the 

spatial and temporal development of UHI is crucial to countermeasure this phenomenon. 

However, prior to the analysis of influencing parameters, the spatiotemporal trends of the UHI 

need to be evaluated.  

Even though there have been a large number of UHI studies, they still fail to produce a 

high spatial and temporal evaluation of UHI trends (Zhou et al., 2015). The reason for that is the 

available technology is not sufficient to investigate the spatial and temporal change of UHI 

together, because air temperature measurements lack the high spatial resolution and remotely 

sensed or aerial images have poor temporal coverage (Gartland, 2008). Pairs of urban/rural 

weather stations or air temperature traverses have been the traditional ways of measuring near 

surface UHI. On the other hand, thermal remote sensing techniques are used to investigate the 

surface or skin UHI due to the heterogeneity of the urban surface (Hu and Brunsell, 2013, 

Tomlinson et al., 2012). Surface and air temperature have different behaviour. Guan (2011) 

examined the surface temperatures of impervious, pervious, and natural ground materials and 

their association to ambient air temperatures in the urban microclimate. The study found 

differences in surface temperatures of each material, but air temperatures showed no significant 

difference. Nevertheless, the study site was small and limited to the University of California, 

Berkeley (UCB) campus in Northern California. Schwarz et al. (2012) stated that different 

indicators quantify the different types of UHIs, as specific indicators are calculated with either air 

or surface temperatures. Accordingly, an integrated approach that adopts both surface and air 

temperatures is needed, because both approaches have advantages and disadvantages but are 

rarely combined. Moreover, the mean radiant temperature is adopted in this study as the third 

indictor that combines the causative parameters on air and surface temperature. 

 Gartland (2008) asserts that the ideal hypothesis of measuring the impacts of urban heat 

island on the climatic variables such as the temperature is to measure them with and without the 

city in place, which is impossible in the real world. The magnitude of UHI can be measured by 

various methods; these methods have been developing with the development of science and 

technology. However, measuring techniques cannot provide information about how the UHI 

works. Hence, models are used to tell us about UHI impacts, causes, and mitigation strategies 

under different conditions. This research adopts fixed stations and remote sensing as two 

measuring techniques, and a modelling application to fulfil the purpose of the study. The 

traditional methods in the literature (as will be discussed in detail in the literature review) mainly 

provide the ability to investigate the UHI change between urban and rural areas. Nevertheless, in 

this study the spatiotemporal change of various types of UHI will be investigated for intra-urban 
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differences, due to the development of technology and meteorological infrastructure. The intra-

urban differences provides a better understanding over the urban-rural difference to study the 

UHI, because it is impossible to remove or replace cities in the real world as Gartland (2008) 

stated. Furthermore, choosing a meteorological station in a rural area to be a reference to 

measure the UHI might give an inadequate value, as cities (compared to adjacent natural lands) 

fundamentally modify the aerodynamic, radiative, thermal, and moisture properties in the urban 

region (Roth, 2012). However, cities could be improved in terms of thermal comfort by mitigating 

the sources of anthropogenic heat in the cities themselves (Chrysoulakis and Grimmond, 2016).  

A detailed explanation of UHIs’ impacts, causes, types, and its measurement and modelling 

will be described later. Three study areas were chosen to highlight the effect of geographical 

location and different level of development on UHI formation. Accordingly, the broader aim of this 

study is to fill the gap in knowledge in the field of UHI studies which results due to the interaction 

between the urban climate and the biophysical parameters that form the underlying ground cover 

through the radiative fluxes. The specific aims and objectives that derived the research questions 

are detailed in the next section. 

 

1.2.  Research questions, aims, and objectives  

The research questions have been determined to answer unsolved problems highlighted 

in the literature. Furthermore, the objectives and aims have been developed to be achievable and 

realistic based on the study timeline and available technology. 

Question 1: What is the spatial change of UHI? 

Question 2: What is the temporal change of UHI? 

Question 3: What is the potential of quantifying the parameters that influence the development 

of UHI using remote sensing, GIS and ground measurements techniques? 

Question 4: To what extent do RS, GIS, and ground measurements improve the visual and 

statistical models of UHI?  

 

The research’s aims and objectives have been derived based on the research questions as follow:  

 

Aims: The first aim is to employ the ground measurements with remotely sensed and GIS data 

to produce an integrated approach that adopts high spatial and temporal resolution data, to cover 

the gap in knowledge resulting from only using one approach and so lacking either spatial or 

temporal coverage. The second aim is to investigate the influencing parameters on the formation 

of UHI, and discuss the potential causes of UHI. Achieving the first and second aims will enable 

the evaluation of the applicability of RS, GIS and ground measurements techniques to study the 

UHI. Furthermore, the air and surface temperature will be tested whether they provide enough 

prediction of the UHI formation. Consequently, the objectives are summarised to be: 
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Objective 1: Investigate the spatial change of UHI using air, surface and mean radiant 

temperatures. (Question 1) 

Objective 2: Investigate the temporal change of UHI using air, surface and mean radiant 

temperatures. (Question 2)  

 

Objective 3: Identify the relationship between the dependant variables (temperature layers) and 

independent variables (influencing parameters) by the statistical or visual analysis. (Question 3) 

Objective 4: Use the best available free remotely sensed, GIS and ground based data to enhance 

the spatial and temporal resolution of UHI visual and statistical models. (Question 4) 

 

The influencing parameters in objective 3 can be grouped into:  

1- Land use/cover and population: remotely sensed, GIS, or ground data from already 

available sources, or classification of the raw data where there is no already classified 

ones. 

2- Geometry and topography: these involve the preparation of digital elevation models 

Digital Surface Model (DSM) and Digital Terrain Model (DTM) about the study site, and 

their use to derive the geometrical and topographical variables such as sky view vector, 

shadow patterns or elevations.   

3- Radiation fluxes: a microclimate model and GIS techniques are used to deriving the 

shortwave and longwave radiations that impact people’s outdoor thermal comfort. 

Radiation fluxes are modelled based on the above two groups as well as the 

meteorological data. These fluxes already combine the surface and air temperature 

measurements, so they include many independent variables joined to represent 

additional influencing parameters.  

1.3. Research’s novelty, importance and motivation 

The integrated approach of the research employs three indictors (LST, air temperature, 

and Tmrt) to model the UHI which is unprecedented in the literature. Furthermore, within the use 

of each indicator there is a novel approach. The LST is acquired for three different cities using 

thermal bands from 1 m to 1000 m spatial resolution by employing diverse satellite and airborne 

images for about 15 years. The air temperature is hourly measured for two years by over 100 

ground stations to produce high spatial and temporal thermal maps, and some of the ground 

stations are used to simulate the mean radiant temperature (Tmrt). The Tmrt is used for the first 

time to model the UHI as a new indictor, which upgrades the 2D UHI using LST and air 

temperature to 3D UHI simulation. The influencing parameters on the formation of three types of 

UHI derived from the three indicators are identified, and they include many potential factors not 

investigated together in the literature. 

 
Planning for a sustainable city is a challenging task for decision makers, and evaluation of 

the long-term consequences should be taken on. The massive growth of urban areas makes them 

the biggest contributors to global greenhouse gas emissions by around 80% (Martos et al., 2016). 
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Martos et al. (2016) claims that UHI is one of the greatest environmental problems due to 

urbanisations and industrialisation. This makes the urban climate very different from the 

countryside, and even the intra-urban microclimate varies among places in the same city. For 

mega and medium and even small size cities the urban variation of climatic variables can be 

large, and the problem with larger cities is that the core is far away from the boundaries (Ng and 

Ren, 2015). Ng and Ren (2015) points out that the city must find its own solution as it is difficult 

to bring in help from rural areas, for instance cooling effects of rural vegetation cannot reach the 

City Centre. Studies in the literature have focused on the impacts and mitigation strategies of UHI 

with not much investigation on the causes and spatiotemporal change of UHI. To understand the 

influences of UHI and how to relieve it, that requires identifying the causes and the spatial as well 

as the temporal variation of UHI. The outcomes of such study might be beneficial to urban 

planners, architects, policy makers, civil engineers and even educated public. That will have a 

direct contribution to the efforts of meeting the sustainability criteria as the researcher’s project is 

in sustainable energy technology.  

The interaction between urban environment, morphology, land use/cover, geometry, and 

geography is a complicated issue. So, the research highlights some aspects of these 

relationships. That will help urban planners to make decisions for better cities in terms of surface 

cover and configurations as well as buildings’ energy use. Furthermore, the causes of UHI 

formation are quantified in this study for the different types of UHI. Then, identifying the drivers 

that induce the UHI formation will give recommendations about mitigation strategies. Also, the 

study gives a civil engineering insight toward the interaction between urban surfaces and the 

environment. Specifically, the study explains the spatial and temporal change of UHI not only 

using the air and surface temperature; the other urban surface energy parameters are 

incorporated. In addition, the role of GIS and RS data in improving the urban modelling is 

highlighted by using free access data for academic purposes. On the other hand, the potential of 

classifying urban cover by training classes and indices using RS data is investigated. As the focus 

is on the microclimate and the ecosystem due to urbanisation, this highlights the impact of 

anthropogenic releases in urban environment compared to sun energy in rural areas as the major 

source of energy. Besides, the fourth dimension (time) as well as the three dimensions of the 

globe are incorporated to reflect the impact of time on the surface energy balance. Moreover, the 

study introduces the potential of combining different sources of data to be processed using RS 

and GIS techniques. This will help researchers in fields such as engineering, geography and 

urban planning to judge what the best data combination is better to represent the real world, which 

gives a robust approach for urbanisation challenges. 

 

The engineering impacts of UHI can be societal, economic or environmental. For instance, 

the heat waves doesn’t only lead to a bit of minor discomfort, nevertheless, extreme heat waves 

can cause various health problems as well as high energy consumption. Lenzholzer (2015) claims 

that a two days short heat wave might lead to 10-15% higher mortality rate in many countries. 

One of the headlines in the Guardian news the summer of 2015 says ‘’the death toll in India’s 
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heatwave has climbed towards 1500’’ (Burke, 2015); another headline in Rudaw news says 

‘’Iraqi’s scorching heat kills 52 children in refugee camps’’ (Rudaw, 2015), for examples. The 

presence of UHI increases the energy use particularly in the summer which leads to the rise of 

CO2 equivalent annual emissions of up to 7% (Magli et al., 2015). Besides, some researchers 

relate the surface energy imbalance to high intensity UHI; also, higher surface temperature is 

responsible for impaired water quality due to thermal pollution (James, 2002). Santamouris (2013) 

emphasises that one of the most documented phenomena of climate change is the UHI for various 

places on the earth. Moreover, the United Nations have annual meeting to the level of world 

leaders to confront the climate change and cut the manmade negative emissions. One of the key 

elements agreed in these summits is to keep global temperatures "well below" 2.0 ºC above pre-

industrial times (UN, 2015).   

 
 

1.4. Thesis outline 

The thesis contains eight chapters. The first three chapters are the introduction, literature 

review and methodology. The next three chapters include the results and their specific 

discussions. Finally, the last two chapters answer the research questions and highlight the 

research contributions, to sum up with brief conclusions and some suggestions for future work. 

The outline briefly describes the contents of the thesis to provide a simple guide to the reader.  

Chapter one explains the research’s background and gives a general overview of the 

research problem. Accordingly, the research questions, aims, and objectives were set. Then, the 

importance and motivation to undertake such topic are highlighted. Chapter two reviews the 

existing studies in the literature and state of the art related to the topic. So, it clarifies the 

characteristics of the different types of UHI with the behaviour of these types temporarily. After 

that a comparison is drawn between the surface and atmospheric UHI. The impacts and causes 

on the UHI development are discussed. Then, the role of the UHI in the surface urban energy and 

its contribution to radiation fluxes are interpreted. The used scale is justified as this research 

studies entire cities, and the different modelling scales are identified. The microclimate model 

adopted in this study is clarified, which combines the contributors to surface and atmospheric 

UHI. Based on the reviewed literature, the gaps in knowledge that derived the research questions 

are highlighted. Next, chapter three introduces the study areas and why they have been 

employed. Furthermore, a brief description of the various data and approaches in this study is 

provided, since each result chapter has its own data and method that are further clarified in the 

same chapter.  

Chapters four, five and six are the body of the thesis where the results are presented and 

discussed. Each one of these three chapters tries to fulfil the four objectives that have been 

derived from the research’s questions. Chapter four employs the surface temperature to study 

the spatial and temporal change of Surface UHI and addresses its relationship with some spectral 

indices. Chapter five uses the air temperature to model the spatiotemporal change of the Canopy 

UHI, and investigates many influencing parameters on the formation of Canopy UHI. Chapter six 



 

8 
 

simulates the mean radiant temperature and radiation fluxes as well as shadow patterns. 

Furthermore, it investigates the impacts of radiation fluxes on the Radiant UHI. The latter was 

derived from the mean radiant temperature to introduce a new type of UHI.   

The last two chapters summarise the research findings and give concluding remarks for 

the future work. Chapter seven analyses the results from the previous chapters to answer the 

research questions. Moreover, it demonstrates the study’s contributions to knowledge and its 

limitations. Then, chapter eight draws the conclusions, and suggests some recommendations for 

future studies. Finally, the references are attached at the end, just after the appendices. 
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2.1. UHI types 

The different types of UHIs have been classified based on different attributes. Cermak et 

al. (1995) classifies the urban climate into three layers. The first layer describes a street and its 

surrounding buildings, which is called the canyon layer. Second, the canopy layer extends 

upwards from the surface to approximately mean building height. Third, the boundary layer is a 

layer of air up to 2000 metres height above the canopy layer. Srivanit and Hokao (2012) explains 

that there are three types of UHI.  First, the Surface Urban Heat Island (SUHI) refers to the 

difference in surface temperatures between urban and rural areas. Second, the Canopy Urban 

Heat Island (CUHI) indicates the difference in air temperature between urban and rural areas 

within the canopy layer. Third, the Boundary Urban Heat Island (BUHI) measures the difference 

in air temperature between the urban and rural areas within the boundary layer (see Figure 2.1). 

Yuan and Bauer (2007) mentions that the CUHI and BUHI are both Atmospheric Urban Heat 

Island (AUHI), since they measure the difference in air temperature, unlike the SUHI which adopts 

the surface temperature. This research investigates both SUHI and CUHI, as they have direct 

impact on people’s life and incorporate the complex interaction between the surface and above 

climate.   

As an example for the UHI,  Roth et al. (1989) used NOAA AVHRR (Advanced Very High 

Resolution Radiometer) satellite data to display the LST of Vancouver, British Columbia, Seattle, 

Washington, and Los Angeles, California. They found that the SUHI is largest in the daytime, 

which is the reverse of the known characteristics of CUHI. On the other hand, when the core of 

the city has lower temperature than the surrounding rural areas, the city works as a cool island in 

opposite to the behaviour of the heat island (Frey et al., 2005). Rasul et al. (2017) explain that 

only few studies have investigated the formation of Surface Urban Cool Island (SUCI) in arid and 

semi-arid climates. For example, Frey et al. (2005) found a distinct daily cool island for Dubai and 

daily cooling areas of Abu Dhabi city and its surrounding mangrove areas using four ASTER 

(Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite scenes.  
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Figure 2.1 Types of urban heat islands and the main components of the urban 

atmosphere. Modified after Srivanit and Hokao (2012). 

 

2.2. UHI development 

The CUHI intensity varies throughout the day and night, and the synoptic weather has a 

large impact on its intensity for a specific location. Morris and Simmonds (2000) studied the 

intensity of CUHI in Melbourne, Australia between the central business district and the airport 

using meteorological stations. They found that temperatures are always warmer in the central 

business district than they are at the airport based on daily variations in air temperature as shown 

in Figure 2.2. The summer and winter CUHI were calculated by Morris and Simmonds (2000), 

then Gartland (2008) adapted the results as shown in Figure 2.2. It can been seen that the 

intensity peaks overnight and gradually declines during the day. Gartland (2008) indicates that 

this behaviour is common in most cities of moderate climate and latitude. However, Gartland 

(2008) modifies that by saying the CUHI intensity differs in magnitude and the peak time from city 

to city. Conversely, Watkins et al. (2002) studied London’s UHI,  and they pointed out that the 

heat island can happen during the day specifically in the winter or during the night particularly in 

the summer. The reason for that, in the summer the air temperature of a green space (such as a 

park) is often higher than a built up area during the daytime, because it is more exposed to the 

Sun’s heat during the daytime (Watkins et al., 2002). Then, the cooling rate of the green space 

during the night is higher than the built-up area, and the green space acts as a cooling island 

towards the built-up area. While, in the winter the air temperature of the green space is roughly 

lower than the built up area, so the built up area works as heating island (Watkins et al., 2002). 

Morris and Simmonds (2000) did not differentiate between the summer and winter CUHI intensity, 

whereas, Watkins et al. (2002) notified different behaviours which supports the modification of 

Gartland (2008).  
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The SUHI is primarily measured using thermal RS, by capturing the radiances at the top of 

atmosphere, then retrieving the Land Surface Temperature (LST) (Hadjimitsis et al., 2013). A 

number of studies in the field have investigated the effect of SUHI using remote sensing 

techniques (Radhi et al., 2013, Agarwal et al., 2014, Shahmohamadi et al., 2011, Park and Suh, 

2013, Tomlinson et al., 2012, Sobrino et al., 2013, Peng et al., 2011, Sung, 2013, Schwarz et al., 

2011, Deng and Wu, 2013, Wu et al., 2013, Hu and Brunsell, 2013, Dousset and Gourmelon, 

2003, Streutker, 2002, Kato and Yamaguchi, 2005, Lo and Quattrochi, 2003, Tran et al., 2006, 

Roth et al., 1989, Gallo et al., 1993). Early studies utilised AVHRR satellite data for SUHI 

assessment (Gallo et al., 1993, Roth et al., 1989). Later on, ASTER and Landsat ETM+ 

(Enhanced Thematic Mapper Plus) were employed to study the SUHI (Kato and Yamaguchi, 

2005). However, recent studies have been trying to improve the spatial and temporal resolution 

of UHI by adopting multisource data as well as deriving new biophysical parameters for better 

representation and investigation of UHI. 

For example, Wu et al. (2013) developed a three dimensional urbanization index (3DUI) 

using digital terrain models to assess the SUHI influences during heat waves in subtropical areas. 

The daytime SUHI reached 10.2 Degree Celsius (°C), and the correlation coefficient between 

3DUI and surface temperature was greater than 0.6. Schwarz et al. (2011) explored indicators for 

quantifying the SUHI of European cities using MODIS (Moderate resolution imaging 

Spectroradiometer) satellite data, the indicators were almost land use/cover and deviation from 

the mean temperature. The research concluded that differences and instabilities of the indicators 

as well as several indicators in parallel should be taken for describing the SUHI of a city. 

 

 

Figure 2.2: Summer and winter CUHI intensity between the central business district 

(urban) and airport (rural) of Melbourne, Australia. Modified after Gartland (2008). 
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2.3. A comparison between surface and atmospheric UHI 

The relationship between surface and atmospheric UHI varies day and night over different 

land use areas. During the day surface temperatures vary more than air temperatures, however 

during the night they show fairly similar behaviour in spite of surface temperature showing more 

fluctuation (Environmental Protection Agency, 2008). The reason for that is during the day the 

main sources of energy are the Sun and anthropogenic activities, while, in the night the main 

source of energy is the anthropogenic activities. Surface temperature has significant indirect 

impact on air temperature, so green areas might cool the adjacent air in the night; whereas, the 

built-up areas emit the stored heat during the day to warm up the above air as illustrated in Figure 

2.3. Nonetheless, the temperatures might fluctuate according to several parameters such as 

season, weather condition, sun energy intensity and land use/cover (Environmental Protection 

Agency, 2008). Therefore, Environmental Protection Agency (2008) distinguishes between the 

AUHI and SUHI as they show different behaviours. So, in a hot sunny summer day the urban 

surface can have a temperature of 27-50 °C higher than the air temperature. While, the surface 

temperature stays near to air temperatures for shaded or moist surfaces in most rural 

surroundings. Table 2.1 compares the characteristics of surface and atmospheric UHI in terms of 

temporal development, peak intensity, identification method and depiction. 

 

 

Figure 2.3: Differences of Surface and Atmospheric Temperatures. Surface and 

atmospheric temperatures vary over different land use areas (Environmental 

Protection Agency, 2008). 
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Table 2.1: Basic Characteristics of Surface and Atmospheric Urban Heat Islands and 

the differences between these two heat island types. Modified after Environmental 

Protection Agency (2008). 

Feature SUHI AUHI 

Temporal Development 

❖ Present most of the day and night 

❖ Most intense during the day and in 

the summer 

❖ May be small or non-existent during 

the day 

❖ Most intense at night or predawn 

and in the winter 

Peak Intensity (Most intense 

UHI conditions) 

❖ More spatial and temporal variation: 

• Day: 18 to 27°F (10 to 15 

°C) 

• Night: 19 to 18°F (10 to 15 

°C) 

❖ Less variation: 

• Day: -1.8 to 5.4°F (-1 to 3 

°C) 

• Night: 12.6 to 21.6°F (7 to 

12 °C) 

Typical Identification Method 

❖ Indirect measurement: 

• Remote sensing 

❖ Direct measurement: 

• Fixed weather stations 

• Mobile traverses 

Typical Depiction ❖ Thermal image 
• Isotherm map 

• Temperature graph 

 
 

2.4. UHI impacts  

          Zhao et al. (2016) claim that the UHI generates profound effects on socioeconomics, 

human life, and the environment. The negative impacts of urban heat island can be increased 

energy consumption, air and water pollution, greenhouse gases, as well as reduced human health 

and comfort. In relation to increased energy consumption, the energy demand rises for cooling 

because of the increase in temperatures in cities. Akbari (2005) points out that the electricity 

demand for cooling increases by 1.5–2.0 % for every 0.6°C increase in air temperatures. Also, 5-

10 % of the electricity production is used to substitute the steadily elevating temperature in cities. 

Consequently, the air pollution increases as the electricity production increases. For example, in 

the United State of America (USA) the electricity production mainly relies on fossil fuel. The 

contaminants from most power plants include Sulfur Dioxide (SO2), Nitrogen Oxides (NOx) and 

others, which contribute to greenhouse gases and therefore to global warming and climate 

change (Agency, 2013).  

 With respect to water quality, SUHI degrades water quality mainly by thermal pollution and 

lead to impaired aquatic ecosystems. James (2002) found that “pavements that are 100ºF (38°C) 

can elevate initial rainwater temperature from roughly 70 ºF (21 ºC) to over 95 ºF (35 ºC)”. Agency 

(2013) asserts that the change in water temperature in aquatic ecosystems resulting from the 

warm storm water runoff can be harmful or even fatal to aquatic life. Human health effects due to 

UHI might cause human mortality and disease. For example, the temperature of the land surfaces 

might increase up to 60 ºC in the hot summer in Iraq (Al-musaed, 2007). The differences of tem-

perature between the surface and air cause a huge colonization of air, this can lead to nasal 
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bleeding due to the lack of air zones and high pressure on earth surfaces. Another example from 

the USA, the Centres for Disease Control and Prevention claims that UHI contributed to more 

than 8,000 early deaths in the USA between 1979 and 2003 (Senate, 2009). This has induced 

the researchers to model the human heat balance.  

 Accordingly, empirical thermal indices were derived and have been developed considering 

the relevant meteorological and thermal physiological parameters (Höppe, 1999). As the real 

ambient air temperature only tells how warm or cold the air around us is, there was a need to 

develop indices that indicate how warm or cool our bodies are. In this sense, Steadman (1971) 

and Steadman (1979) calculated the apparent temperature "feels-like" using two indices, which 

takes into account the real air temperature and other weather conditions. The Heat Index (HI) 

combined the air temperature and relative humidity to determine how hot it actually feels in hot 

weather (Steadman, 1979). And the wind chill index combined effects of low temperature and 

wind in cold weather (Steadman, 1971). Then, Höppe (1999) introduced the Physiological 

Equivalent Temperature (PET)  as a biometeorological index to assess the thermal environment. 

Since then much attention has been paid to evaluate the heat stress on the human body using 

thermal algorithms and indices (Rakib, 2013). 

   

2.5. UHI causes 

The formation of UHI in cities is a result of many factors. The main controllable motivators 

of the elevated temperatures in urban areas are reduced vegetation, increased urban impervious 

materials, urban geometry, and increased anthropogenic heat (Environmental Protection Agency, 

2008, Gartland, 2008). In terms of vegetation cover, trees and vegetation are dominant in rural 

areas, in which, they provide shade and release water to the surrounding air through the 

evapotranspiration process. That reduces the air temperature compared to urban areas which 

have dry and impervious surfaces (such as buildings, streets, parking lots). Urban and rural 

materials differ in terms of heat capacity and thermal conductivity. Materials with high thermal 

conductivity and heat capacity tend to store more heat in their volume. The indicator to these two 

properties is thermal diffusivity, which reflects how the heat can easily penetrate a material. 

According to Figure 2.4 that shows the values of thermal diffusivity for different materials, the 

urban materials (such as insulation and pavements) have thermal diffusivity larger than natural 

materials (such as wood and soils). Hence, the urban materials considerably contribute to the 

increase of heat storage energy (Oke, 1981). 

The urban geometry affects wind flow, energy absorption and emission as it represents the 

dimensions and spacing of buildings in a city (Environmental Protection Agency, 2008). The 

presence of built up areas reduces the wind speed by up to 60% because buildings act as wind 

breaks. The reduced wind speed minimises the convection of heat from surfaces to air and this 

increases the heat storage (Atkinson, 1982). Furthermore, the urban setting tends to collect the 

net radiation more than rural setting. The net radiation levels are affected by urban geometry 

because the heat radiates diffusely from surfaces to all directions evenly. For instance, building 
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walls capture a lot of radiation instead of escaping it to the atmosphere, which increases the heat 

storage (Oke, 1981). 

 

 

Figure 2.4: The values of thermal diffusivity for different urban materials. Urban 

materials considerably contribute to the increase of heat storage energy. Modified 

after Gartland (2008). 

 
The anthropogenic heat is another source of UHI, generally produced by people activities 

and comes from several sources like industrial process, buildings, cars and people themselves. 

In order to determinate how much anthropogenic heat is produced by any region, all energy use 

for commercial, residential, industrial and transportation must be counted to find their sums, and 

divide these sums by the region`s area (Khan and Simpson, 2001). Figure 2.5 demonstrates that 

urban areas in Brisbane are the biggest producer of anthropogenic heat compared to suburban 

and rural areas. 

Weather and location are additional factors that have strong impacts on the development 

of UHI, over which community has little control. Regarding the weather, clear sky and calm winds 

maximise the solar energy reaching the ground and minimise the heat convection. Moreover, 

climate and topography are governed by the geographical location. For instance, the presence of 

large water sheds reduces the above air temperature, and the mountains if present might block 

the winds (Environmental Protection Agency, 2008). 

 

0.1

0.12

0.13

0.14

0.18

0.18

0.2

0.23

0.29

0.32

0.39

0.45

0.47

0.51

0.61

0.72

0.74

0.97

1.5

>> 10.03

>> 13.56

>> 20.83

0 0.5 1 1.5 2

DRY PEAT SOIL

WET PEAT SOIL

DENSE WOOD

WATER @ 4 ᴼC

DRY CLAY SOIL

GYPSUM BOARD

LIGHT WOOD

DRY SANDY SOIL

AERATED CONCRETE

BUILT-UP ROOFING

ASPHALT

GLASS

CLAY TILE

WET CALY SOIL

BRICK

DENSE CONCRETE

WET SANDY SOIL

STONE

POLYSTYRENE INSULATION

FIBERGLASS INSULATION

STEEL

STILL AIR @ 10 ᴼC

Thermal Diffusivity (m2/s × 10 -6)



 

17 
 

 

Figure 2.5: Daily anthropogenic energy generation rural, suburban, and urban areas 

of Brisbane, Australia in Dec. 1993. Modified after (Khan and Simpson, 2001) . 

 

2.6. UHI mitigation  

To counterbalance the influence of the UHI, there are two main mitigation strategies as 

described by Akbari and Kolokotsa (2016). The first strategy is increasing the solar reflectance of 

the surfaces, to reduce the amount of solar radiation absorbed by the urban fabric. It uses high 

reflectance and high thermal emittance materials, these materials decrease the LST by using 

them in the building’s walls, roofs and pavements (Akbari and Kolokotsa, 2016). Morini et al. 

(2016) investigated the impact of albedo increase to countermeasure the UHI and its 

consequences in Terni (Italy) by using the Weather Research and Forecasting (WRF) model. 

Their findings after analysing three different scenarios of a summer heat wave in 2015 showed 

that albedo increase can mitigate the peak temperatures of the daytime by 1 ºC and night-time 

by up to 2 ºC. Furthermore, Rossi et al. (2015b) identified the beneficial effects of using Retro-

Reflective (RR) materials in urban canyons to reduce the impact of UHI. They tested the 

application of a new RR material, which is a high reflective material that should reflect the incident 

radiation backward to the same direction of incidence. The results suggested that RR materials 

can improve the summer urban climate through providing cooling potential as coatings in urban 

canyons.  

Furthermore, researchers in the field of UHI mitigation have demonstrated that the use of 

light-coloured surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) can 

have considerable positive impacts on the development of UHI (Akbari et al., 1999, Melvin et al., 

2000, Gartland, 2008). A study by Lawrence Berkeley National Laboratory pointed out that if 

rooftops were cooled using cool materials, the average surface temperature could be reduced by 
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5.5 °C (Akbari et al., 1999). This reduction is formed as soon as urban air is cooled by lessening 

the average of roof surface temperature. Also, Melvin et al. (2000) investigated the positive effects 

of cool paving on air temperatures, and their findings based on a model of Los Angeles predicted 

that the air temperature can be decreased by 0.5 °C when pavements are cooled. Also, a study 

that was done in Japan reported that the asphalt pavement with 10 % of solar reflectance reached 

up to 66 °C while a concrete pavement with 45% of solar reflectance reached up to 49°C 

(Gartland, 2008). 

On the other hand, the second strategy to minimise the UHI effects is increasing the 

evapotranspiration by intensifying the urban greenery such as parks and green roofs (Akbari and 

Kolokotsa, 2016). The green vegetation cover such as trees provides shading and reduces solar 

radiation, which can minimise the UHI (Yu Joe et al., 1990). For example, a study by Jim (2015)  

assessed the use of green roofs on thermal comfort in Hong Kong by developing a full scale 

experiment in a high rise building. The study concluded that the green roof with high rate of 

evapotranspiration can mitigate the UHI impact by reducing the foliage surface temperature and 

surrounding air. The most effective green covers can be green roofs, street trees and parks. For 

example, rooftops in hot regions sometimes reach temperature at about 90 °C, while green roof 

temperature remains below 50°C (Gartland, 2008). Nevertheless, the implementation of green 

roofs heavily requires the involvement of the public. Besides, the green roof requires special 

considerations when constructing the buildings’ roofs which increases the cost of construction 

materials. Therefore, other strategies have been implemented such as street trees and parks. 

Scott (2004) demonstrated that the temperature inside a car park can be declined by 25° C, when 

the cars are shaded by tress. However, Heiden et al. (2012) argues that even for large green 

areas within urban cities the small areas of buildings have larger impact.  

The effects of UHI can lead to detrimental consequences of the indoor and outdoor public 

and private spaces (Ali et al., 2017). The outdoor thermal natural and built environment are 

important particularly in public spaces during outdoor events, and they contribute to improve the 

quality of life (Rossi et al., 2015a). Rossi et al. (2015a) proposed an integrated approach to 

improve the global comfort condition during outdoor entertainment events in the summer. Their 

system suggested the use of proper architectural solutions and materials to enhance the outdoor 

environment. Accordingly, understanding the causes of UHI and trying to mitigate them in the 

development phase of existing cites and when designing new cities will help minimising the 

severity of the UHI and reduces the efforts to compact it. 

     

2.7.  Urban Surface Energy 

The urban ecosystem practise physical functioning called urban metabolism, which include 

a non-stop consumption of food, water, fuel, materials and power (Chrysoulakis et al., 2014). The 

intake of these resources results in waste products, some of them injected into the urban 

atmosphere such as waste heat, aerosols, and greenhouse gases (Chrysoulakis et al., 2014). 

Chrysoulakis et al. (2014) clarifies that the injected products into atmosphere convert to 
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exchangeable fluxes between the land and atmosphere, which formulate the energy, water and 

carbon balance. The major sources of energy in urban areas are the Sun and anthropogenic 

activities, and these sources are the drivers of the Urban Surface Energy (USE) and UHI. The 

causes of UHI and USE are the same, and the variation between urban and rural areas is evident 

for both (Britter and Hanna, 2003). Piringer et al. (2002) clarified that the energy budget is the 

sum of incoming and outgoing energy fluxes (see Figure 2.6), and it provides a balanced equation 

as shown in equation 2.1. The left side of the equation is the net radiation (shortwave (K) and 

longwave (L)) plus the Anthropogenic Heat (AH). The K originates from the Sun, and the L mainly 

radiates from the surfaces and the sky. The AH is the manmade energy and comes from for 

instance cars, air conditioners and industrial facilities, which contribute to the USE particularly in 

urban areas (Piringer et al., 2002). The right side of the USE equation consists of the sensible 

heat (QH), latent heat (QE) and ground heat flux (QG). The heat that people feel as temperature 

is the sensible heat, and the latent heat is the heat that felt as humidity to evaporate water from 

the surfaces to the air (Environmental Protection Agency, 2008).   

 

(𝐾 + 𝐿) + 𝐴𝐻 = 𝑄𝐻 + 𝑄𝐸 + 𝑄𝐺          (2.1) 

 

 

Figure 2.6: Urban surface energy budget. An energy budget provides the balance of 

incoming and outgoing energy fluxes (Environmental Protection Agency, 2008). 

 

2.8. Microclimate Scales and modelling  

          Britter and Hanna (2003) explains that the urban surface is heterogeneous and its impact 

varies on a range of spatial scales. For example, to study the buildings geometry and morphology, 

the scale in this case should start from the individual building level. However, when the aim is 
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investigating the diffusion of contaminants from a source within a building’s collection, a street or 

a neighbourhood scale might be enough for full detail of the urban surface. While, studying UHI 

and Urban Energy Balance (UEB) needs approximately a city size to test the variation of different 

land use/cover types, which has impact on the local and regional climatology. Accordingly, within 

a spatial scale the physical process can be impacted by other process acting on a different spatial 

scale as described in Figure 2.7. 

          Gartland (2008) clarifies that there is no single cause of the UHI, and many factors combine 

to warm cities and suburbs. Net radiation, evaporation, heat storage, convection and 

anthropogenic heat are the leading urban characteristics contributing to UHI formation (Gartland, 

2008).  However, these characteristics do not have a specific measure, and they are investigated 

separately. Therefore, in this research a microclimate model is adopted that includes most of the 

urban characterising factors causing the formation of UHI. SOlar and Long Wave Environmental 

Irradiation Geometry (SOLWEIG) model simulates the spatial variation of three dimensional (3D) 

radiation fluxes and Mean Radiant Temperature (Tmrt) in complex urban settings (Lindberg and 

Thorsson, 2009). Tmrt is one of the important meteorological parameters governing human energy 

balance and thermal comfort outdoors, which sums up all the K and L radiation fluxes (both direct 

and reflected) (Lindberg et al., 2014). Nevertheless, such model needs many urban 

characteristics data and meteorological data. It includes the effect of air and surface temperature 

and other parameters that impact on human outdoor thermal comfort (SOLWEIG-team, 2015). 

The advantage of using SOLWEIG is to include parameters that are not measured or modelled 

using the traditional approaches such as remote sensing and meteorological stations. Also, 

SOLWEIG enhances the lack of 2D representation of traditional approaches where building’s 

height is not fully included in the calculation of the influencing parameters on UHI formation. Most 

importantly it is using Tmrt as indicator of the presence of UHI for the first time as the major use of 

Tmrt in the literature is to predict the outdoor thermal comfort.       
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Figure 2.7: Spatial scales and urban climatology topics. Urban surface is 

heterogeneous and its impact varies on a range of spatial scales. Modified after 

Britter and Hanna (2003). 

 

2.9. UHI measuring  

The temperature and other climatic variables are temporarily and spatially varying, so the 

already available meteorological stations may not be sufficient to represent the formation of UHI. 

Earlier studies have used the fixed meteorological stations as an easy way to measure the urban- 

rural temperature difference (Brazel et al., 2000, Todhunter, 1996). However, Morris and 

Simmonds (2000) demonstrates that most of the fixed stations are arbitrarily located on high 

towers and buildings, in which the readings do not represent the canopy layer and the entire 

morphology of the urban areas. Oke (1988) clarifies that measuring the air temperature above 

the building’s level represents the impact of UHI in the boundary layer above the canopy layer. 

To overcome these problems, mobile traverses using thermometers have been employed to 

measure the UHI (Montávez et al., 2000). Nonetheless, this technique cannot capture two 

readings at two places at the same time unless having two equipments. The difference in time 

between getting readings at the beginning and end of a pathway might affect the results 

significantly, since the temperature should be measured at the same time in different locations 

for better UHI demonstration. To overcome the problems associated with the previous 

measurement techniques, the current study employs a unique dataset namely HiTemp (High 

density Temperature measurements), which is a project funded by NERC (the Natural 

Environment Research Council) within the canopy layer of the urban environment in Birmingham 

conurbation. Several research groups were involved, but the project was managed by the 

University of Birmingham Urban Climate Lab (BUCL). The project consists of a network of sensors 
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to record the air temperature and other meteorological parameters such as precipitation, relative 

humidity, wind speed and direction, pressure, and solar radiation (BUCL, 2014a). 

The previous methods can only provide information about climatic variables (such as air 

temperature), and other techniques are needed to provide information about the surface 

biophysical characteristics. For example, the type of land use/cover is an essential independent 

variable to quantify the UHI formation. Hence, the evolution of Remote Sensing (RS) has enabled 

the scientists to visualise the temperature over large areas as shown in Figure 2.8 with the land 

use/cover at the same time. The RS systems are able to capture images for visible and invisible 

energy radiation (Gorsevski, 1998). This equipment can be satellite or airborne, and usually pass 

over a specific place with a frequent revisit in the case of satellites. Moreover, specialized airplane 

can be used to measure the temperature in specific times that are not served by other equipment.  

The RS systems use sensors that are sensitive to the spectrum of the electromagnetic 

(EM) radiations. The EM regions are visible (0.4- 0.7 μm), near infrared (0.7- 1.2 μm), mid-infrared 

(1.2- 8 μm), thermal infrared (8- 14 μm), and microwave (>1 mm) (Chuvieco and Huete, 2010). 

The infrared and microwave sensors have been used in the literature to detect the LST.  Even 

though the microwave sensors are suitable for different weather conditions; however, they provide 

lower spatial resolution and precision compared to the infrared sensors. Hence, in this research 

the focus is on the thermal bands acquired by the infrared sensors. RS does not always provide 

consistent information, so days with clear weather should be chosen. To retrieve the LST from 

the raw data of the thermal bands, there are three common algorithms in the literature: the single-

channel, split-window, and multichannel algorithms (Kuenzer and Dech, 2013). To serve the aims 

of this research large number of thermal scenes are required. Thus, high level products are 

investigated to save the time of LST retrieval from raw data.  
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Figure 2.8: Thermal image of downtown Baton Rouge, LA taken about 1:00 p.m. local 

time on May 11, 1998, estimated 65 ᴼC roof tops and 25 ᴼC vegetation. It was 

acquired by the NASA Learjet’s ATLAS scanner at 10 m spatial resolution with red 

representing warmer surface temperatures and blue representing cooler surface 

temperatures. (Gorsevski, 1998). 

 

2.10. UHI modelling  

Modelling of the UHI helps to understand the mechanism of the heat island formation, and 

enables planners to evaluate the impacts of mitigation measures. There are two main approaches 

of modelling which are physical and mathematical (Tyson et al., 1973). The physical models are 

carried out at the laboratories under controlled conditions or via onsite small scale experiments. 

Erell et al. (2011) explains that physical models are hardware models, in which similarity and 

scaling issues need to be addressed. Therefore, these models are not capable to reproduce the 

full complexity of an urban site. The mathematical models are more common, and can represent 

larger scale impacts. There are various types of mathematical models which deal with different 

ranges of UHIs, the ranges start from the building level to the entire urban region and even larger 

(Tyson et al., 1973) . However, UHI models are created to solve specific problems and there is 

no one model that can deal with all the climatic variables and urban features. Table 2.2 lists and 

compares several UHI models, in which the modelling methods show different approaches to 

represent the UHI. From the analysis of the existing models, it has been observed that the 

modelling approach to deal with different scales and can handle large number of variables is the 

regression analysis. Accordingly, the outputs of the adopted measurement technique will be 

analysed using the regression models. 
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Table 2.2: Lists and compares several urban heat islands models based on the 

modelling method. 

Type of model Application Limitation Example (s) Reference (s) 

Meteorological 

nocturnal models 

express the urban-rural 

temperature difference 

(dT) as a function of 

various meteorological 

factors 

do not relate the dT to the land 

cover and urban design, it 

estimates the nocturnal dT 

dT=1.85-7.4 Y (lapse rate 

in ºC/millibar over the 

rural area) 

Givoni (1998) 

Urban design- 

oriented 

nocturnal models 

correlate the dT with 

several features of the 

urban structure 

do not link the urban land use 

with dT 

dT= P 1/4/ (4*U) ½, 

P(population), U 

(regional wind speed m/s) 

Givoni (1998) 

Building energy 

models 

compute the used energy 

by the buildings for 

heating and cooling 

suffers from problems with 

calculating the convective heat 

transfer from the roof 

DOE-2 program 

developed by US 

department of Energy 

Gartland et al. 

(1996) 

Roof energy 

calculators 

estimate the energy and 

cost that can be saved by 

using energy roof 

products 

only applied on the roofs 

Energy Star Roofing 

Comparison Calculator, 

ORNL/DOE Cool Roof 

Calculator, and Energy 

Wise Roof Calculator 

Gartland 

(2008) 

Canyon and 

comfort models 

study a configuration of 

buildings surrounding a 

street 

do not estimate the effects of 

cooling surfaces or adding 

vegetation 

OUTCOMES model 
Arnfield 

(1990) 

Ecosystem 

models 

assess the impacts of 

vegetation areas on UHI 

in terms of energy 

saving, air quality and 

stormwater runoff 

do not quantify the impacts of 

park and green spaces sizes on 

the UHI 

 

Citygreen & 

i-Tree 

 

American 

Forests (2002) 

& USDA 

Forest Service 

(2007) 

Regional models 

assess the regional 

influences on air 

temperature and quality 

require meteorological and 

photochemical modelling 

techniques, and do not deal 

with local scales 

WRF, MM5, CAMx & 

MIST 

Sailor and 

Dietsch (2007) 

Regression 

analysis models 

evaluate the criteria that 

are not achieved by other 

models such as 

quantifying the cooling 

impacts of parks on UHI 

right now, did not provide 

consistent results of the park’s 

effects on the UHI 

multivariate regression 
Cao et al. 

(2010) 

 
 

One of the most important objectives in scientific research is the possibility of predicting 

the value of a dependent random variable based on the values of other independent variables 

(Sá, 2007). It is commonly known that one independent variable is used to predict values of Y 

(dependent variable). However, in the real world, it is unlikely that only one variable can influence 

the dependent values. Therefore, it is necessary to consider many independent variables. A 

model for predicting change in a dependent variable by using more than one independent variable 

is called Multiple Regression Model (MRM) as opposed to simple linear model with one 

independent variable (Orlov, 1996). According to Sá (2007), MRM is one of the most common 
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statistical tools used in scientific research that takes into account more than one independent 

variable. David Weisburd (2007) points out that MRM is not only based on understanding the 

relationships among independent variables, but also on specifying why changes occur and what 

factors are directly responsible for these changes. In MRM, researchers try to separate the 

various potential factors that have an impact on the dependent variable, to provide an accurate 

estimation of which variables are in fact most important in causing the change. In addition, the 

MRM can identify the impact of a specific independent variable while holding constant the impact 

of other independent variables. This is a very important advantage of MRM over the other 

regression models (Vanderbei, 2008). So, MRM is used in this study, and wherever regression 

modelling is mentioned it means MRM.  

 

2.11. Research challenges 

The study of climate of cities has not been undertaken in depth by scholars, although cities 

have been recognised as unique environmental entities (Janković, 2013). Climatology of cities 

studies the anthropogenic process in urban atmosphere, as cities have different atmospheric 

regimes due to their various shape, size, materials, function, and social metabolism (Janković, 

2013). Webb (2016) identifies that UHI effect is the resultant of climate change, and highlights the 

high levels of variability of local government policy engagement or non-engagement in the use of 

urban climatology science worldwide. In spite of the large number of near-surface UHI studies, 

little substantial progress has been made since Howard’s findings more than a century ago (Mills, 

2014). Arnfield (2003) explains that the medium sensed (air or surface) and the sensing technique 

(atmospheric or ground) form the various types of UHI. The profound effects of urbanisation have 

made the residents more vulnerable to the future environmental changes, which imposes the 

cities to adopt climate mitigation strategies (Grimmond et al., 2015). Grimmond (2007) 

emphasises the complexity of the physical causes of UHI, as the dynamics of urban warming 

differ spatially and temporally.  

UHI studies vary in the scales and aims. The scales start from a building size to the entire 

city. The aims might be to study ventilation, health, comfort, spatial-temporal variation, future 

forecast, and energy saving (Mirzaei, 2015). The UHI studies’ findings sometime contradict with 

each other, for example the time of the maximum UHI intensity. Arnfield (2003) reported that UHI 

intensity  is greatest at night, while, Ripley et al. (1996) found that the peak UHI might occur in 

sunny days. Furthermore, Arnfield (2003) stated that the high intensity UHI concentrates in the 

City Centre, nevertheless, Steinecke (1999) spotted rural area warmer than urban area. Mirzaei 

and Haghighat (2010) presented the observational approaches to study the UHI, and reviewed 

the abilities and limitations of each approach. They concluded that field measurements lack the 

spatial representation, whilst, the thermal remote sensing techniques do not provide reasonable 

temporal revisit. Mirzaei and Haghighat (2010) added, even when the simulation solved the 

problem of small scale representation of the physical models, the simulation approaches struggle 

to provide reliable results.  
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Accordingly, the use of a specific approach suffers from weaknesses that cannot be 

overcome without employing other approaches s. This study adopts different approaches to 

quantify the spatial and temporal change of UHI, and investigates a large set of influencing 

parameters on the formation of UHI. The scale of this research and the number of approaches 

employed take it beyond the research reported in the literature. The air, surface and Tmrt are used 

altogether as indictors for the UHI presence, to substitute the lack of using only one of them. 

Furthermore, RS, GIS, ground measurements and a microclimate modelling technique are 

employed to improve the spatial and temporal representation of UHI.   
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3.1. Methods 

The procedure of solving the research questions consists of two major stages. The first 

stage is processing and deriving the dependent and independent variables for the next stage 

which is statistical and visual interpretation. The first stage includes four main pathways: 

 

➢ The first one is building geometrical or topographical models such as DSM and DTM 

for the study site by using different GIS and remotely sensed data such as height 

information (objectives 3 & 4). The purpose of that is investigating the topography and 

geometry of the study area as well as deriving these parameters.  

➢ The second is using ground measurements of air temperatures and the thermal data 

acquired in the thermal infrared region of the electromagnetic spectrum to retrieve the 

temperature maps (objectives 1 and 2).  

➢ Thirdly, using visible to shortwave remotely sensed data or already available derived 

GIS layers to characterise the land cover types or surface indices (objective 3).  

➢ The fourth pathway is employing the meteorological variables and climate data to 

derive the meteorological parameters and identify seasonal patterns (objective 3). 

Then, derive the radiation fluxes and mean radiant temperature using the microclimate 

model SOLWEIG (objective 4).  

The second stage is the statistical and visual interpretation of the results, and then 

validating the results using existing studies to investigate the spatiotemporal change of UHI and 

the influencing parameters on the UHI formation (objectives 1, 2, 3 & 4). Figure 3.1 illustrates a 

simplified flowchart of the proposed methods to achieve the research objectives. The flowchart 

describes the major steps and more details are clarified later as each results chapter has its own 

method. The calculation method of UHI intensity in this study is the same for the various types of 

UHI. The UHI intensity is calculated by subtracting the pixel value from the minimum values of 

the temperature within the boundary of each study site. Rural areas are excluded from the 

analysis and the focus is on intra-urban differences. Martin et al. (2015) excluded the rural areas 

when calculating the UHI as these areas have different surface energy exchange patterns 

compared to urban areas, because urban areas are places where people live who are affected 

by the UHI (Martin et al., 2015). 

Stewart and Oke (2009) proposed Urban Climate Zones (UCZs) that can be used to classify 

the UHI. Nevertheless, these zones are still not easy to use, and complex for risk management 

or alert systems (Martin et al., 2015). Some studies used the difference in mean or maximum 

temperature to compare between urban and rural areas for measuring the UHI intensity (Rizwan 

et al., 2008, Shangming et al., 2010). However, using the mean temperature for a certain area 

mixes the effects of different land cover types which might have different thermal zones (Martin 

et al., 2015). Chow et al. (2012) defines the maximum UHI intensity as the largest difference 

between urban and rural temperatures. Erell and Williamson (2007) used the intra-urban 

temperature differences to measure the CUHI, as they refer to the characteristics of the sites. 

This study adopts the difference between the pixel values and the minimum value of temperatures 
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within the city boundary. The rural area should have the lowest temperature when the temperature 

peaks at the city centre which is the basis of UHI formation. For this reason, the minimum 

temperature value was subtracted from each pixel to compare the areas of high and low heat 

gain. Even though the UHI was calculated by subtracting the minimum value across the city, this 

does not make much difference because the edges of the city were assumed to have similar 

temperature to the surroundings. 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Objectives 3&4 

Figure 3.1: Simplified flowchart of the proposed methods to achieve the research 

objectives. 

Objectives       1, 2, 3 & 4 

Objectives 3&4 

Objective 3 Objectives    1&2 
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data to grids 

Remotely sensed, GIS & Ground measurements 

Data acquisition & preparation 

Temperature data 
Land use/cover data 

Drive or interpolate thermal 
layers 

Analyse UHI patterns 

Classify UHI intensities  

Prepare the layers to the boundary 
of study site 

Derive land cover indices or 

parameters 

Output gathering, linking (time & place) & resampling  

Spatiotemporal change 

detection of CUHI  
Spatiotemporal change 

of SUHI  

Statistical or visual modelling of influencing 
parameters and validation 

Results 

Meteorological data Geometry or topography 
data 

Building 

models ex. 
DSM & DTM 

Deriving 

geometrical 
parameters 

Classify seasonal 

climates and patterns 

Extract different land cover/use data 

Input data to models 

when needed 
 

Spatiotemporal change 
of radiation fluxes  

First Stage  

Second Stage  
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3.2. Study areas 

Baghdad, London and Birmingham were chosen as the study areas for several reasons. 

Baghdad and London have different geographical location, climatic conditions, and land cover 

patterns. London is the capital of a developed country (UK) that has practised the UHI mitigation 

strategies (Greater London Authority, 2006), whereas, Baghdad is the capital of a developing 

country (Iraq) with a very few studies about UHI (Saleh, 2010). Baghdad had a population of 

7,055,200 in 2011 and covers 734 km2 (City Population, 2013). London; on the other hand; had 

a population of 8,173,941 in 2011 and extends over 1572 km2. So, compared with Baghdad, 

London has higher population by around a million people, while its area is approximately twice 

that of Baghdad. Baghdad’s climate is subtropical arid with hot summers and cold winters, while 

London’s climate is temperate oceanic with warm summers and mild winters (City Population, 

2013). Birmingham is the largest populated local authority in the UK by 1,101,400 persons based 

on the annual mid-year population estimates, 2014 report published by the office for National 

Statistics (Office for National Statisics, 2015). Its conurbation extends to around 278 km2 over the 

West Midlands (Tomlinson et al., 2012). 

Tomlinson et al. (2012) highlights that Birmingham used to have only one weather station 

for urban areas and another station outside in the rural areas, and its UHI studies are limited 

compared to its size and importance. The previously published research on Birmingham’s UHI 

are highlighted in Chapter 5.The study areas were chosen to have population more than one 

million, as Akbari (2005) points out that a city with a million or more population can be warmer 

than its surroundings by about 1-3 ºC. The size of the chosen cities ranges from medium 

(Birmingham) to large (Baghdad and London) to have a distinctive UHI impacts.  

Furthermore, the comparison between Baghdad and London might give typical 

recommendations for similar cities, as they represent different climatology, morphology, topology 

and development. Field measurements are crucial in cloudy cities like London and Birmingham 

due to the difficulty of getting cloud free satellite images. Baghdad’s climate offers better sights 

of the ground from satellites even in the winter. The two UK cities were chosen to represent a 

sample of a wet environment in different locations with good data availability. Besides, they differ 

in size and population. However, Baghdad was chosen as a sample of a dry environment that 

does not have much ground data, which demonstrates the importance of remote sensing and GIS 

techniques. The SUHI is investigated for the three cities; however, Birmingham is the case study 

for the other types of UHI because of the availability of HiTemp data. 
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3.3. Data 

This section gives a general description of the data used in the study. However more details 

are provided for each approach of the three techniques employed in this research when it is 

relevant.  

3.3.1. Remotely sensed data 

The best freely available remotely sensed data for this study with their spatial, spectral and 

temporal resolution that cover a whole city or a large part of it are investigated and summarised 

as below: 

 

 

Landsat:  

It is a co-operative initiative between the U.S. Geological Survey (USGS) and NASA, 

which gives the world’s longest constantly acquired collection of Spaceborne remotely sensed 

data. This project has been a source of data for different disciplines such urban mapping and 

environment for over four decades (USGS, 2013). Table 3.1 summarises the spectral, spatial, 

and temporal resolution of the historical Landsat missions. The spatial resolution has been 

improved over time, from 80 metres (m) pixel size for Landsat MSS (Multispectral Scanner 

System) bands to 30 m for the visible and infrared bands of Landsat 8. Also, the number of bands 

has increased from 5 bands for Landsat MSS to 11 bands for Landsat 8.  However, the temporal 

revisits of the Landsat missions have not been improved significantly.  Figure 3.2 describes the 

history of the Landsat program to show the temporal availability of each mission. The Landsat 5 

and 7 have the longest missions so far, and the Landsat 8 or LDCM (Landsat Data Continuity 

Mission) has started its mission in 2013. 

  

Table 3.1: A summary of the spectral, spatial, and temporal resolution of the 

historical Landsat missions (185×185 km spatial coverage). Adapted from USGS 

(2013). 

System Spectral resolution Spatial resolution (m) 
Temporal 
resolution 

Archive 
since 

Landsat MSS 

3 Bands visible 
1 Band infrared 

1 Band thermal Infrared 
80 18 1972 

Landsat TM 

3 Bands visible 
3 Bands infrared 

1 Band thermal Infrared 

30 - Visible and infrared 
60 - thermal infrared 

16 1986 

Landsat ETM+ 

3 Bands visible 
3 Bands infrared 

2 Bands thermal Infrared 
1 Band panchromatic 

30 - Visible and infrared 
60 - thermal infrared 
15 - panchromatic 

16 1999 

Landsat 8 

4 Bands visible 
4 Bands infrared 

2 Bands thermal Infrared 
1 Band panchromatic 

30 - Visible and infrared 
30 (resampled) - thermal infrared 

15 - panchromatic 
16 2013 

 



 

32 
 

 

Figure 3.2: History of the Landsat program (USGS, 2013). Credit: U.S. Geological 

Survey, Department of the Interior/USGS. 

 

ASTER:  

Imaging instrument on board of Terra Satellite a joint work between NASA and Japanese 

institution since 1999, is used to create detailed maps of LST, reflectance, and elevation. It 

acquires high spatial resolution data in 14 bands, which are 3 visible bands (15m), 6 infrared 

bands (30m) and 5 thermal infrared bands (90m). The repeating cycle is every 16 days with a day 

and night time mapping, and the spatial coverage for a scene is 60×60 km. ASTER acquires 

elevation data using stereo-pair images to create DEM (NASA, 2004).  

 

MODIS:  

An instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites, it views the 

entire Earth surface, and acquires data in 36 spectral bands from 250m-1km spatial resolution 

(visible-thermal spectral resolution). It provides daily night and day time images, also gives direct 

albedo, emissivity, reflectance and temperature products in moderate resolution. It covers a total 

spectral range of 0.4 to 14.4 µm. Two bands are captured at a spatial resolution of 250 m at nadir, 

with five bands at 500 m, and the remaining 29 bands at 1 km (NASA, 2010). 

 

Sentinel-2: 

It is part of the Copernicus Earth observation programme, which was mainly initiated by the 

European Commission (EC) and the European Space Agency (ESA). It provides continuity to 

services relying on multi-spectral high-resolution optical observations over global terrestrial 

surfaces. It consists of 13 spectral bands spanning from the visible and the near infrared to the 

short wave infrared, with a spatial resolution varies from 10 m to 60 m and a 290 km field of view 

(Drusch et al., 2012). 

 

 

http://terra.nasa.gov/
http://aqua.nasa.gov/
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LIDAR (Light Detection and Ranging):  

Active remote sensing technique like RADAR (Radio Detection And Ranging) uses a 

laser to deliver highly accurate height data. Aerial data is available for 70% of England and Wales 

from the Environment Agency. They offer a variety of elevation products free of charge for non-

commercial use. These products have a vertical accuracy in the range of 5-15 cm, and the spatial 

resolution ranges from 25cm to 2m (Geomatics, 2014). These data were obtained for the cities of 

London, Birmingham and Nottingham. However, only the data for Birmingham were used to serve 

the purpose of this research. 

 

TABI (Thermal Airborne Imagery):  

A sensor that is used to distinguish temperature differences at 0.1°C accuracy and spatial 

resolution of 1- 4 m by measuring the radiation in the 8-12 µm range of the electromagnetic 

spectrum. These licensed data were obtained for the city of Birmingham from the UK Environment 

Agency free of charge for non-commercial use (UK Environment Agency, 2014). 

 

OS Master Maps:  

A licence has been obtained from the Ordnance Survey (OS), and aerial images for 

Birmingham were received for the purpose of this research with a spatial resolution of 25 cm and 

spectral resolution within the visible wavelength (OS, 2015). 

          

3.3.2. GIS data 

Geographic information system (GIS) data originates from different types of sources such 

as RS and ground surveys acquired with their coordinates and thematic information  (Brimicombe, 

2010). One example is land use/cover data for the UK which are offered by the University of 

Edinburgh through the Digimap website (EDINA, 2016).  

3.3.3. Meteorological data 

The main source of UK meteorological data was the Met office, which provides different 

types of climatic variables. Data from ground stations about temperature grids and other climatic 

variables were acquired to this research. In particular, MIDAS datasets were used to get the 

required climatic parameters (MIDAS, 2015). 

3.3.4. HiTemp project 

It is a NERC-funded project, and several research groups are involved including BUCL at the 

University of Birmingham. The project consists of a network of two types of sensors, one is to 

record only the air temperature and the other to capture the air temperature and other 

meteorological parameters such as (precipitation, relative humidity, wind speed and direction, 

pressure, and solar radiation). The collection of the data started in June 2012, and they were 

obtained only until June 2014 even though the project is still ongoing. More information about 

HiTemp is available in Chapter 5. 
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Part of this chapter has been published as: 
ALI, JASIM M., MARSH, STUART H. and SMITH, MARTIN J., 2017. A comparison 
between London and Baghdad surface urban heat islands and possible engineering 
mitigation solutions. Sustainable Cities and Society. 29, 159-168. 
 

4.1. Introduction 

  The Surface Urban Heat Island (SUHI) is primarily measured using thermal RS, by 

capturing the radiance at the top of atmosphere, then retrieving that to land surface temperature 

(Hadjimitsis et al., 2013). RS techniques can be used to determine the spatial change of the most 

important urban biophysical and environmental characteristics. The wide application of RS 

techniques in urban areas has included urban feature mapping based on their spectral signatures, 

as a time and cost effective approach compared to traditional methods such as field surveys 

(Weng, 2012). They also provide quantitative observations about the environment in regions of 

the electromagnetic spectrum which are outside the visible region, such as temperature 

(Chuvieco and Huete, 2010). Oke et al. (1999) explain that the surface temperature is not only 

important to study urban climatology, but it is central to the energy balance of the surfaces. Balling 

(1988) study was one of the earliest studies to apply thermal remote sensing to examine urban 

climates; this study concluded that the surface temperature is correlated with the land use and 

day to day variability of its spatial patterns. Beyond this, a study by Wang et al. (2011) emphasised 

that surface temperatures and conductive heat fluxes through solid media (roofs, walls, roads and 

vegetated surfaces) are of major significance not only for outdoors microclimatic conditions, but, 

also for the comfort of residents indoors. 

  Sobrino et al. (2013) have evaluated the SUHI influence in the city of Madrid by thermal 

RS. They employed airborne hyperspectral data and in situ measurements, and the results 

demonstrated the presence of a night-time SUHI influence with a highest value of 5 K (Kelvin). 

Deng and Wu (2013) have examined the impacts of urban biophysical compositions on SUHI 

using normalized difference vegetation index (NDVI), percent green vegetation (%GV), and 

percent impervious surface area (%ISA). They used a spectral unmixing and thermal mixing 

approach; the result showed that NDVI and %GV-based regression models perform well in rural 

areas, while %ISA-based models perform well in urban areas. Furthermore, the influence of 

temporal aggregation of LST data for SUHI has been studied by Hu and Brunsell (2013). Their 

study found that the SUHI values in the daytime are larger than during the night-time, and the 

impacts of aggregation in the spring and summer are higher than in the autumn and winter. 

Hadjimitsis et al. (2013) used satellite Earth observation data and ground meteorological data to 

study the effect of SUHI in Cyprus using Artificial Neural networks (ANN). Their findings have 

revealed that the approach can perform successfully as good correlations between ground and 

satellite measurements were identified. However, further modification is needed to improve their 

methodology due to the coarse 1 km resolution of MODIS LST data. 

This chapter adopts some of these RS techniques to investigate the formation of areas of 

high and low temperatures known as SUHI. It investigates and compares the SUHI in Baghdad, 
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Birmingham and London as they represent different climatic conditions, natural environments and 

levels of urban development. Furthermore, it tests the reported correlation between LST and land 

cover types under different conditions. Finally, based on the findings, engineering mitigation 

strategies for each city might be suggested. 

 

4.2. Materials and method  

Various satellite and airborne RS data have been used for urban thermal and land cover 

mapping. Landsat, ASTER and MODIS were employed to provide information about the surface 

temperature and surface reflectance-derived spectral indices. These data were prepared for the 

three study areas Baghdad, London and Birmingham based on the availability of cloud free 

images and full coverage of the study area. Landsat and ASTER were the major source of high 

spatial resolution data compared to MODIS. However, MODIS data were also acquired as they 

have night-time coverage and daily revisit to substitute the low temporal coverage of Landsat and 

ASTER. The time frame for Landsat and ASTER was between 2000 and 2015, and the temporal 

coverage for MODIS was between 2003 and 2015 for the three cities. The MODIS and ASTER 

were the sources of only thermal data; nonetheless, Landsat was the source of thermal and land 

cover data. Therefore, Landsat, ASTER and MODIS were used to investigate the spatial and 

temporal change of SUHI. Whereas, the correlations between spectral indices (as indicators of 

land cover types) and LST were modelled using only Landsat data.  

Moreover, the MODIS data were used to validate the findings of Landsat and ASTER data 

in terms of the spatial change of SUHI. The land cover types of the study areas were clarified 

using already classified maps for London and Birmingham, and Sentinel 2 images after 

classification for Baghdad. Appendix A. provides detailed information about the Landsat and 

ASTER images used in this chapter for the three cities as summarised in Tables A.1, A.2, and 

A3.3. It gives details about the sensor type, date and time of acquisition, cloud cover, path and 

row, image quality as well as the spatial resolution. Furthermore, MODIS and Sentinel 2 images 

are clarified in this chapter when it is relevant. On the other hand, the methods to calculate the 

LST and SUHI as well as the regression modelling are clarified in this section.  

   

4.2.1 Landsat spectral indices    

The U.S. Geological Survey (USGS) have  funded a project to create higher level data 

products using the Landsat archive to capture changes of the land surface environment (USGS, 

2016c). These data provide the basis to identify the Earth’s historical changes and monitor the 

current conditions for regional to continental scale. USGS have produced an on demand interface 

called Earth Resources Observation and Science (EROS)/ Centre Science Processing 

Architecture (ESPA) to provide terrestrial variables such as brightness temperature and spectral 

indices (USGS, 2016a). USGS published a document that describes the spectral indices products 

that are derived from Landsat 4-5 Thematic Mapper (TM), Landsat 7, and Landsat 8 Surface 

Reflectance data generated at 30-m spatial resolution (USGS, 2016d). The Landsat 4 and 
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Landsat 6 were not used in this study since only images after 2000 were acquired when these 

satellites were out of service. 

   

 Masek et al. (2006) clarifies that USGS was the original research data source to create 

surface reflectance scenes by providing 30-m resolution wall-to-wall reflectance coverage for 

North America epochs centred on 1990 and 2000. Brightness temperature and spectral indices 

derived from surface reflectance were acquired from ESPA as Landsat high level products 

(HLPs). This could save the time of raw data processing, and provides large amount of HLPs free 

of charge for the three cities. The purpose of using spectral indices was to have land cover 

predictors mapped at the same time of the LST acquisition, which facilities the statistical modelling 

between them. Furthermore, it overcomes the problem of uncertainty when classifying the land 

cover types over long periods for the three cities. A reliable thematic map requires ground 

reference data or any other validation process to have a good accuracy classified map, which is 

challenging over time due to the land cover change (Foody, 2002). The surface reflectance-

derived spectral indices consist of four vegetation indices and another three spectral indices 

(USGS, 2016d). The vegetation indices include Normalized Difference Vegetation Index (NDVI), 

Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI) and Modified Soil 

Adjusted Vegetation Index (MSAVI). Furthermore, Normalized Difference Moisture Index (NDMI), 

Normalized Burn Ratio (NBR), Normalized Burn Ratio 2 (NBR2) are derived to produce land cover 

indices other than vegetation (USGS, 2016d). The seven indices as shown in equations (4.1- 4.7), 

were adapted from USGS (2016d) which provides more details about the derivation and nature 

of each index. 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
          (4.1) 

𝐸𝑉𝐼 = 𝐺 × ((𝑁𝐼𝑅 − 𝑅) ÷ (𝑁𝐼𝑅 + 𝐶1 × 𝑅 − 𝐶2 × 𝐵 + 𝐿1))          (4.2) 

𝑆𝐴𝑉𝐼 = ((𝑁𝐼𝑅 − 𝑅) ÷ (𝑁𝐼𝑅 + 𝑅 + 𝐿2)) × (1 + 𝐿2)          (4.3) 

𝑀𝑆𝐴𝑉𝐼 = (2 × 𝑁𝐼𝑅 + 1 − √ (2 × 𝑁𝐼𝑅 + 1)2 − 8 × (𝑁𝐼𝑅 − 𝑅)) ÷ 2          (4.4) 

𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1
          (4.5) 

𝑁𝐵𝑅 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2
          (4.6) 

𝑁𝐵𝑅2 =
𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2

𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2
          (4.7) 

 

Where: 

NIR= near infrared band, B4 in Landsat 4-7 & B5 in Landsat 8. 

R= red band, B3 in Landsat 4-7 & B4 in Landsat 8. 

B= blue band, B1 in Landsat 4-7 & B2 in Landsat 8. 

G= 2.5, C1= 6, C2= 7.5, B= & L1= 1 these enhancements for reducing the background noise, 

atmospheric noise, and saturation in most cases. 
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L2= 0.5 which is a soil brightness correction factor. 

SWIR1= first shortwave infrared band, B5 in Landsat 4-7 & B6 in Landsat 8. 

SWIR2= second shortwave infrared band, B7 in Landsat 4-7 & in Landsat 8. 

 

The spectral indices are calculated from the surface reflectance, and different algorithms 

of radiometric calibration and atmospheric corrections were applied on Landsat 4- 7 and Landsat 

8. The surface reflectance data are generated by a specialised software originally developed 

through NASA called the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS), for Landsat 5 (TM) and Landsat 7 (ETM+) data. LEDAPS applies MODIS atmospheric 

correction routines to level 1 products (USGS, 2017a). The inputs to the radiative transfer models 

are the water vapour, ozone, geopotential height, aerosol optical thickness, and digital elevation 

as well as Landsat data (Masek et al., 2006). On the other hand, for Landsat 8 a different algorithm 

is applied to generate surface reflectance data, this algorithm is called the Landsat Surface 

Reflectance Code (LaSRC) (USGS, 2017a). The main difference between LEDAPS and LaSRC 

is that the later makes use of the coastal aerosol band to perform aerosol inversion tests. 

Furthermore, the solar zenith and view zenith angles are used by LaSRC as part of the 

atmospheric correction (Vermote et al., 2016).  

The Landsat HLPs provide information about the clouds through Quality Assurance band. 

It gives the specifications of cloud and cloud shadow derived from the CFMask algorithm. CFMask 

algorithm re-calculates water values to give high-confidence cloud pixels (USGS, 2017a). That 

helped to distinguish between cloudy and cloud free pixels. Consequently, cloudy pixels were 

eliminated to have cloud free images. The spectral indices used in this chapter were limited to the 

Landsat HLPs, because deriving the spectral indices for the three study areas for the period 

(2000-2015) is tedious and requires a lot of time. Other spectral indices were investigated in a 

journal paper published out of this chapter, which compares between London and Baghdad SUHI 

and suggests possible engineering mitigation solutions. Furthmore, the paper used raw data to 

derive the spectral indices and more detials about how to convert the digital numbers to 

reflectance are available in Ali et al. (2017).   

      

4.2.2 Landsat LST    

Top of atmosphere Brightness Temperature (BT) for the thermal bands of Landsat was 

ordered as a separate product through the ESPA interface, but is included with all original 

products (USGS, 2016b). The general process of converting the digital numbers to radiances 

then to BT is discussed in Ali et al. (2017). For Landsat 5 and Landsat 7 the thermal band is Band 

6, while, Band 10 and Band 11 are the thermal bands of Landsat 8. The BT is derived from the 

top of atmosphere radiance using LEDAPS for Landsat 5 & 7 and LaSRC for Landsat 8 (USGS, 

2017a, USGS, 2017b). The atmospheric effect in the thermal infrared region was considered to 

be insignificant (Rasul, 2016). Chuvieco and Huete (2010) clarifies that the size of atmospheric 

small particles such as smoke and biomass burned aerosols are smaller than the thermal infrared 

wavelengths.  
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To derive the LST from BT the later needs correction for emissivity due to the strong 

heterogeneity of land surface characteristics such as vegetation, topography, and soil (Li et al., 

2013). There are a number of approaches to retrieve the Land Surface Emissivity (LSE) from 

satellite data, and a non-unique solution appears during the process of LSE retrieval (Li et al., 

2013). Three approaches were implemented based on the availability of emissivity data to derive 

LST from BT for the three study cities. The ideal emissivity data source should temporally coincide 

with the BT images overpass, and lies within the same wavelength of the thermal bands. Zhang 

et al. (2014) explains that LSE is a key physical parameter defined as the ratio of the energy 

emitted by the land surface to that emitted by a blackbody at the same temperature and 

wavelength. This why the LSE is referred to as spectral emissivity, as it differs based on 

wavelength (Zhang et al., 2014). The LST equals the BT when the emissivity value is 1, which is 

not applicable for land surface studies due to the heterogeneity of the surfaces. Dash et al. (2001) 

claims that RS is the only means to obtain LST and LSE for a large scale.  

The first approach used the emissivity from the ASTER On-Demand L2 Surface Emissivity 

(AST_05) generated using the five thermal infrared (TIR) bands (acquired either during the day 

or night time) between 8 and 12 µm spectral range (LPDAAC, 2014b). This approach was 

employed when there is an emissivity image close to the temperature acquisition’s time of Landsat 

5 & 7. The emissivity does not vary that much unless the surface properties and moisture change 

(Jin and Liang, 2006). This method provides an accepted approach of LSE retrieval by the 

scientific community working in the thermal infrared, as it adopts the TES (Temperature-

Emissivity Separation) method  (Gillespie et al., 1998).  Band 14 (10.95–11.65 µm) of AST_05 

was used as its centre wavelength close to the centre wavelength of Band 6 of Landsat 5 & 7 

(10.40-12.50 µm). 

The second approach was used as a possible alternative to obtain an LSE image from the 

values of NDVI, in which an emissivity value for the main land cover classes is calculated (Sobrino 

et al., 2004). The semi-empirical NDVI method is not very operative because it requires a good 

knowledge of the study area and emissivity measurements of the different land cover classes. 

However, it was used in this study to estimate the emissivity for satellite data possessing only one 

thermal channel (Sobrino et al., 2004), when there is no available ASTER emissivity coincident 

with the Landsat overpass. The NDVI were acquired from the HLPs of Landsat, and certain NDVI 

values (thresholds) to distinguish between soil pixels, vegetation pixel, and composed pixels of 

soil and vegetation (Sobrino et al., 2008). The pixel was considered as bare soil if the NDVI is 

less than 0.2, and the emissivity was obtained from reflectivity values in the red region. And if the 

NDVI is higher than 0.5, the pixel was assumed fully vegetated and the emissivity value is 0.99. 

However, for the NDVI values between 0.2 and 0.5, the general equation shown below for 

composite land cover to retrieve the LSE (𝜀) was applied as described by (Sobrino et al., 2004). 

  

𝜀 =  𝜀𝑣 × 𝑃𝑣 + 𝜀𝑠(1 − 𝑃𝑣) +  𝑑𝜀           (4.8) 
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Where: 

𝜀𝑣 = vegetation emissivity 

𝜀𝑠 = soil emissivity 

𝑃𝑣 = vegetation proportion obtained according to (Carlson and Ripley, 1997). 

𝑑𝜀 = includes the effect of the geometrical distribution of the natural surfaces and also the internal 

reflections obtained according to (Sobrino et al., 2004). 

 

The previous two approaches were adopted for the single thermal channel of Landsat 5 

and 7; however, for Landsat 8 Emissivity Normalisation Method (ENM) was applied. ENM 

calculates the emissivity of the highest temperature for each pixel (Rasul et al., 2015), it assumes 

a constant emissivity in all N channels for a given pixel (Li et al., 1999). Then, the emissivity-

corrected land surface temperature was computed for Landsat 5, 7 and 8 according to Zhang et 

al. (2013). Appendix B. gives an example of the model builder in ArcGIS used to convert the BT 

to LST. 

 

𝐿𝑆𝑇 =
𝐵𝑇

1 + (𝜆 × 𝐵𝑇 𝛼⁄ ) 𝑙𝑛𝜀
          (4.9) 

    

LST is land surface temperature (in Kelvin); BT is radiant surface temperature (in Kelvin); λ is the 

wavelength of emitted radiance; and α = h*c/K = (1.438 × 10-2 m K); where h is Planck’s constant 

(6.26 ×10-34 JS); c is the velocity of light (2.998 × 108 m/s); K is Stefan Boltzmann’s constant 

(1.38 × 10-23 J K-1); and ε is emissivity (Farina, 2012). 

 

4.2.3 ASTER and MODIS LST    

ASTER surface kinetic temperature (AST_08) images were acquired; these images contain 

surface temperatures at 90 m spatial resolution for the land areas only.  AST_08 is derived from 

the TES algorithm, which uses atmospherically corrected ASTER Surface Radiance data 

(LPDAAS, 2014b). AST_08 products acquired either during the day or night time by the five 

Thermal Infrared (TIR) bands between 8 and 12 µm spectral range (LPDAAS, 2014b). The TES 

algorithm first estimates the emissivity in the TIR channels using the ENM, then the LST is derived 

(LPDAAS, 2014b). These data were requested through the archive record of 

the Reverb and GloVis as they are on demand products.  

MODIS/Aqua level-3 products named MYD11A2, on the other hand, were processed using 

MODIS Reprojection Tool (MRT) to provide LST 8-day data composed from the daily 1-kilometer 

LST (LPDAAS, 2014a). Aqua passes over Baghdad at approximately 02:00 and 13:00 local time, 

and over London and Birmingham at around 01:30 and 13:30 local time. Although, NASA's Aqua 

and Terra satellites both carry MODIS sensor, only images from Aqua were used for this study. 

The reason for that is the night-time images of Aqua seem ideal to the formation of maximum 

UHI.  Oke (1988) explains that the maximum UHI magnitude happens (3– 5) hours after sunset. 
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This period of high intensity UHI is around the time of MODIS/Aqua acquisition; particularly, in the 

UK summer. 

Due to the presence of clouds and low revisit frequency of Landsat and ASTER, MODIS 

data were used to investigate the temporal change of SUHI as it provides night-time and daytime 

daily images. Tomlinson et al. (2012) demonstrates that a night image allows a more precise LST 

quantification as there is no solar irradiation to change the surface energy balance, and night-

time MODIS LST accuracy has been found to be better than daytime. MODIS data can produce 

a better precision in terms of LST retrieval, which attain the 1 K precision required for practical 

applications when used for homogenous surfaces (Rasul, 2016). Split window and day/night 

algorithms were used by the producers to retrieve the MODIS LST data, and to maintain the high 

precision of LST products (Liang et al., 2012). 

 

4.2.4 Data mask, convert, and rescale    

The satellite data were masked for the boundary of the study areas, this was undertaken 

for the spectral indices and LST. Furthermore, the LST was converted from K to ºC. MODIS and 

ASTER products were rescaled based on scale factors obtained from the Land Processes 

Distributed Active Archive Centre (LP DAAC) which is one of several discipline-specific data 

centres within the NASA Earth Observing System Data and Information System (EOSDIS) 

(LPDAAC, 2014a). Also, they were masked for the study areas. Appendix C. gives an example 

the process of masking and rescaling undertaken by the model builder in ArcGIS.  

 

4.2.5 Land cover of study areas  

To visually investigating the spatial variation of LST related to land cover, high resolution 

land cover images were acquired for the three cities (Baghdad, London and Birmingham). Land 

cover images for London and Birmingham were acquired as already classified images, however, 

Baghdad does not have a classified map that suits the purpose of this study. Therefore, Baghdad 

land cover map was created by the classification of multispectral (MS) images. For Baghdad, GF-

1 (Gaofen-1) satellite data were employed, which is one of the series of the China High-resolution 

Earth Observation System (CHEOS). Its images for Baghdad were provided in cooperation with 

Professors LiTao and Guanzhou, Wuhan University, China. GF-1 is configured with two 2 m Pan/8 

m MS camera and a four 16 m MS medium-resolution and wide-field camera set (eoPortal, 2016). 

Figure 4.1 shows the composite red, green and blue bands (RGB) images of Baghdad sensed on 

the 27th of June 2014, which helps to understand the nature and distribution of the different land 

features of the city. However, GF-1 data were provided as four bands which are not enough for 

land cover classification and were used as auxiliary data to choose the training points and test 

the accuracy of the classification. So, Sentinel-2 satellite launched on the 23th of June 2015 was 

used to create land cover map for Baghdad as it provides 13 spectral bands (443 nm–2190 nm) 

with a swath width of 290 km and spatial resolutions of up to 10 m for the visible to near infrared 

bands (ESA, 2016).  
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The Sentinel-2 image acquired on the 21 August 2015 was chosen to be in the summer 

just like the GF-1 image, so the vegetation cover condition would be similar even though they are 

one year apart. The classification was performed using ArcGIS Maximum Likelihood Classifier 

(MLC) as described by Dewan and Yamaguchi (2009) and Foody (2004). The accuracy 

assessment and Kappa index were undertaken using the confusion matrix, and the results were 

81.56% and 79.34% for the accuracy assessment and kappa index respectively. Figure 4.2 

classifies Baghdad’s land cover into seven classes with the domination of developed area, bare 

lands, vegetation and water.   

On the other hand, land cover maps for London and Birmingham were acquired from the 

Urban Atlas which provides pan-European comparable land use and land cover data (EEA, 2010). 

The Urban Atlas belongs to The European Environment Agency, and uses data from different 

sources mainly SPOT 5 images with 2.5 m spatial resolution and city maps with Google Earth 

dated between 2005 and 2010 (EEA, 2010). Figures 4.3 and 4.4 show the Land Use/Cover 

(LULC) patterns of London and Birmingham respectively using the Urban Atlas. Urban Atlas 

provides data for Large Urban Zones with more than 100.000 inhabitants as defined by the Urban 

Audit (EEA, 2010). 
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Figure 4.1: Baghdad’s true colour (RGB) images of the Chinese GF-1 (Gaofen-1) 

satellite sensed on the 27th of June 2014 (CHEOS, 2016). 
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Figure 4.2: Baghdad’s land cover classification using Sentinel-2 acquired on the 21 

August 2015. The classification was performed using ArcGIS Maximum Likelihood 

Classifier (MLC). 
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Figure 4.3: London land cover acquired from the Urban Atlas which uses data from 

different sources (EEA, 2010). 
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Figure 4.4: Birmingham land cover acquired from the Urban Atlas which uses data 

from different sources (EEA, 2010). 
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4.2.6 SUHI and NLST calculation     

The magnitude of SUHI was calculated by subtracting the minimum value from the pixel 

values. Since the study areas were all urban areas and the rural lands were masked, so the SUHI 

intensity was calculated for each pixel by subtracting the pixel LST from the minimum LST. One 

of the purposes of UHI studies is to identify the impact of urbanisation on the microclimate. Hence, 

the urbanisation effects are highlighted by subtracting the minimum LST which is assumed to 

represent the rural LST. Besides, using the mean LST for certain areas to calculate the SUHI was 

avoided, because of the mixed pixels where different land cover types maybe present in a small 

area. For example, Zhang et al. (2010) calculated the SUHI magnitude based on the difference 

in average LST between urban core and a rural buffer of 20 km² around the city.  

In Zhang et al. (2010) study the LST of the urban core was averaged to be subtracted from 

the rural buffer to calculate the SUHI. Tran et al. (2006) applied a Gaussian approximation to 

quantify spatial extents and intensity of individual UHIs for inter-city comparison. Their method 

employed the Gaussian approximation to the quantity SUHI based on the maximum difference in 

simultaneous temperature between urban and rural areas after the rural LST background has 

been subtracted. In this study, the rural background was eliminated by subtracting the minimum 

LST from each pixel value to have the maximum SUHI. The same assumptions were used to 

calculate the other types of UHI undertaken by this research.  

Then the spatial distribution of hot and cold spots was investigated. The spatial change of 

daytime SUHI was investigated using Landsat, ASTER, and MODIS data. The spatial change of 

night-time SUHI was investigated using ASTER and MODIS data. However, the temporal change 

of daytime and night-time SUHI was investigated using MODIS data. The temporal change of 

SUHI was annually investigated for the period (2003-2015). Furthermore, the available MODIS 

data for the months (July - December) in 2002 were included. This explains why some monthly 

figures start from 2003, and others begin in 2002.  

Since, the SUHI is the difference between two measurements, it did not need to be 

normalised. However, temperature values were rescaled between the minimum and maximum 

values, to calculate the Normalised Land Surface Temperature (NLST). This technique modifies 

the temperature from satellite images captured in different times, so a temporal comparison would 

be possible.  Amiri et al. (2009) highlights that the normalisation of the temporal analysis could 

modify the methodology to remove the effect of inter-scene variability. There are various 

normalisations in statistics, however, a simple technique was used in this study called feature 

scaling or (Min-max) which brings all values into the range between (0- 1) (Mohamad and Usman, 

2013). The calculation of SUHI magnitude was adapted from Schwarz et al. (2011), and the NLST 

was calculated according to Mohamad and Usman (2013) as below. 

 

𝑆𝑈𝐻𝐼 = 𝐿𝑆𝑇𝑖 − 𝐿𝑆𝑇𝑚𝑖𝑛             (4.10) 

𝑁𝐿𝑆𝑇 =
𝐿𝑆𝑇𝑖 − 𝐿𝑆𝑇𝑚𝑖𝑛

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛
         (4.11) 

 

https://en.wikipedia.org/wiki/Feature_scaling
https://en.wikipedia.org/wiki/Feature_scaling
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Where:  

𝐿𝑆𝑇𝑚𝑎𝑥  𝑎𝑛𝑑 𝐿𝑆𝑇𝑚𝑖𝑛 = maximum and minimum LST respectively, 𝐿𝑆𝑇𝑖= pixel LST  

 

4.2.7 Statistical modelling   

This approach assumes that the land cover is the major driver of the LST spatial variation, 

while the temporal change of SUHI is investigated in different climatic conditions and incident 

solar radiation. To overcome the need for a classified land cover map for each acquisition due to 

the land cover change, spectral indices were employed instead, as they are derived at the same 

time of the thermal maps. Since the spectral indices were derived from Landsat data, so the 

correlation between LST and these indices represent only the daytime, as Landsat data are 

acquired mainly in the day. The regression modelling between LST and spectral indices was 

undertaken by SPSS (Statistical Package for the Social Sciences), and the software was provided 

by the university of Nottingham as well as a training course on using it. The same regression 

modelling processes were applied on Baghdad, London and Birmingham.  

The significant models were derived by backward elimination of the non-significant 

predictors, until getting a model with all the predictors having p-values less than 0.001. Moreover, 

the models were tested for unusual and influential data (particularly Outliers), normality of 

residuals, heteroscedasticity and collinearity as described in details by IDRE (2016). Although the 

effects of land cover on urban-rural temperature differences have been extensively documented 

(Yan et al., 2014), the level of the quantitative effects of intra-urban are debatable. Some 

researches claim that LULC have strong impact on the LST (Shen et al., 2015, Yan et al., 2014), 

however, other studies assert that the atmosphere and urban morphology are also of the main 

drivers of the LST (Scarano and Sobrino, 2015, Materia et al., 2014). Accordingly, the quantitative 

effects of land cover indices on the LST was investigated, and the spatial and temporal change 

SUHI.  

    

4.3. Baghdad SUHI 

Baghdad is a desert and dry city, was first founded in the year 762 A.D. known as the round 

city at that time. The city expansion was enabled through the construction of dams on the Tigris 

River to cope with the growth of population which changed the boundary of the city (Saleh, 2010). 

Baghdad is the capital city of Iraq, which has hot-dry summers and cold-rainy winters (Awadh and 

Ahmad, 2010). Awadh and Ahmad (2010) report that about 90% of the annual rainfall occurs 

between November and April, most of it in the winter months (December - February) when the 

temperature goes down below freezing in January, while, the average temperature of the hottest 

summer months (June – August) is about 48 ºC. Generally, the climate of Mesopotamia is semi-

arid with a maximum air temperature up to 53 ºC in the summer and minimum temperature of -7 

ºC in the winter (Jassim and Goff, 2006). Jassim and Goff (2006) state that the annual 

precipitation is approximately 150 mm/year, and the prevailing wind is generally North-West. The 

land cover of Baghdad was clarified by the classified map in Figure 4.2, the Tigris River divides 
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the city into two parts Karkh on the west side of the Tigris River, and Rusafa on the east side of 

the river. The bare (soil) lands surround the city; whereas, the impervious areas extend on both 

sides of the river and the vegetation is available alongside the river. 

4.3.1  SUHI spatial change  

 Figure 4.5 shows the daytime spatial change of temperature differences between the pixel 

value and the minimum of values. The soil areas appear to have the highest LST values, higher 

than the built-up areas, while the water and vegetation have the lowest LST intensity. The built-

up areas inside the city have lower temperature than the bare lands on the boundary of the city, 

and in this case the city works as Cool Island towards hotter areas. In this case the phenomenon 

is called Surface Urban Cool Island (SUCI).  Some studies have found that built-up areas in semi-

arid regions might exhibit lower surface temperatures compared to non-urbanized dry 

surroundings (Rasul et al., 2015, Frey et al., 2006, Cai and Du, 2009, Shigeta et al., 2009). 

 The intensity of SUCI varies over different land cover types, to reach over 33 ºC on the 25th 

of September 2003 for bare lands during the daytime (see Figure 4.5). A study by Al-Lami (2014) 

found that the maximum difference of LST in Baghdad between the built-up and the surrounding 

area reach to 11.97 ºC. However, this study only employed one single Landsat-7 ETM+ image on 

the 18th of March 2001 which could not came up with the temporal variation of LST magnitude. 

However, during the night-time the SUHI distribution reveals different behaviour compared to 

daytime as seen in Figure 4.6, where the soil areas have the lowest temperature just lower than 

the vegetated areas. The built-up areas and water have the highest temperatures during the night-

time. So, on the 18th of November 2015 the Tigris River is distinguished on the map with its high 

temperature (Figure 4.6), where the mean air temperature on that day was 16 ºC (Weather 

Underground, 2016). On the other hand, the built-up areas give the highest temperature on nights 

of hot to moderate days, for example, on the 5th of October 2005 when the average air 

temperature was 26 ºC (Weather Underground, 2016). The higher temperature of water bodies 

during cold nights maybe attributed to its higher thermal capacity. Gibson (2013)  asserts that 

many natural surfaces (e.g. soil, rock, vegetation) have approximately 0.2 thermal capacity except 

water which has a thermal capacity of 1. Accordingly, at night-time, Baghdad’s built-up areas 

experience relatively high LST, and the city demonstrates a significant SUHI effect. In contrast, 

during the daytime densely built-up areas have relatively low LST acting as a SUCI.   



 

50 
 

 

Figure 4.5: Baghdad’s daytime SUCI spatial distribution using Landsat and ASTER 

images (ºC). Derived from the thermal bands of the satellite images acquired 

between 2000 and 2015.  
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Figure 4.6: Baghdad’s night-time SUHI spatial distribution using ASTER images (ᴼC). 

Derived from the thermal bands of the satellite images acquired between 2002 and 

2015. 

 

 MODIS images were employed for validating the findings of ASTER and Landsat data as 

it has more frequent revisits. The average (Ave.) annual images were calculated for the years 

(2003-2015) based on the data availability by ignoring the no data statistics per pixel. The findings 
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show that during the day the city experiences low SUCI intensity, which means it works as a 

cooling island except the areas north-east of the Tigris river as shown in Figure 4.7. These results 

are consistent with the Landsat and ASTER data findings (Figure 4.5). A study by Rasul et al. 

(2015) employed six Landsat images to examine the spatial formation of the daytime SUCI of the 

central districts of Erbil city in the north of Iraq. Their results indicated that the urbanised areas 

have lower LST acting as cool islands, compared to the rural area. Saleh (2011b) studied the 

mean surface temperatures of Basarah city in the south of Iraq using daytime Landsat images for 

the years 1990, 2000 and 2002. He found that barren land (dry and wet soil) exhibits highest 

surface temperature followed by urban, vegetated (orchards) and water areas. However, the hot 

spots in Figure 4.7 of Baghdad’s daytime SUHI have only appeared clearly using MODIS long 

term data. This implies the importance of using higher temporal resolution images, as some 

patterns cannot be captured by employing only few images on certain times.  

 After investigating the high LST spots in the core of the city, they have been found in areas 

of very high population density where the urban form configurations are mainly attached buildings. 

Alobaydi et al. (2016) describes the attached urban form configurations as rectangular long urban 

blocks, gridded street systems, and attached buildings from three sides. In this case, the aspect 

ratio or building height to street width (H/W) is about 0.6, and the ground is more exposed to the 

sun radiation with low vegetation and high heat storage of building’s mass (Alobaydi et al., 2016). 

Furthermore, industrial areas as well as attached urban configurations appear to have high SUHI 

intensity in the daytime, unlike, the night-time images in Figure 4.8 where all the urban areas 

exhibit higher temperature compared to city periphery. The annual average daytime SUHI 

reached to 21 °C in 2011, while, the night-time SUHI average peaked in 2013 by about 10.8 °C. 

The average SUHI were calculated for the whole period (2003 - 2015) to highlight the gross 

differences between daytime and night-time SUHI as shown in Figure 4.9 with the boundaries of 

Baghdad’s neighbourhoods. The densely populated with attached houses Sadar and Habbibiyah 

districts (no.27 & 28 in Figure 4.9) have higher daytime SUHI, and industrial areas next to them 

such as Sheik Omar (no. 7) also have higher SUHI compared to other urban areas.  

 Due to the limited availability of Iraq’s GIS data and the Iraqi governmental units tend to 

not publish their digital data online, Baghdad neighbourhoods boundaries were obtained from the 

Empirical Studies of Conflict Project (ESOC) which was initiated in 2009 by a number of 

practitioners and scholars (ESOC, 2016).  The night-time MODIS images in Figures 4.8 and 4.9 

have the same spatial SUHI distribution of ASTER images in Figure 4.6 where the urbanised 

areas exhibited higher LST compared to non-urbanised areas. The only difference is that Tigris 

River showed distinctive higher temperature than built-up environment in the cold night using 

ASTER data, while it did not appear in MODIS data due to its course spatial resolution. Similarly, 

Rasul et al. (2016) found that at night-time Erbil experienced higher LST and demonstrated a 

significant SUHI effect, their study employed MODIS data to assess the formation of night-time 

SUHI. 
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Figure 4.7: Baghdad’s daytime SUHI spatial distribution using MODIS images (ºC). 

Derived from the thermal bands of the satellite images acquired between 2003 and 

2015.  
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Figure 4.8: Baghdad’s night-time SUHI spatial distribution using MODIS images (ºC). 

Derived from the thermal bands of the satellite images acquired between 2003 and 

2015. 
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Figure 4.9: Daytime & night-time average SUHI of Baghdad’s neighbourhoods over 

the period (2003- 2015) using MODIS images (ºC). Different SUHI scales are used 

for daytime and night-time.  

 

4.3.2   SUHI temporal change   

 Figure 4.10 shows the total diurnal (day and night), daytime and night-time LST for the 

whole study period (2003-2015) with their Standard Deviation (SD). It can be seen clearly that the 

average of the LST has increased for both normal and normalised values. By comparing the 

normal and normalised values in Figure 4.10, there is no noticeable difference in the trends in 

spite the ranges were modified through normalisation. The averages of NLST range between 0.56 

- 0.58 for the diurnal, daytime and night-time NLST. The average of diurnal LST magnitude is 17 

ºC with SD of 1.74 as shown in Figure 4.10. The average of daytime LST fluctuates around 35.83 

ºC with SD of 1.9 which is higher than the night-time as it is about 17 ºC with 1.63 SD.  

 The increase of the diurnal LST is a consequence of the rise in trends of night-time LST, 

as daytime LST has not increased over time. The reason of night-time LST increase might be 

attributed to the increase of anthropogenic heat due to population growth. Baghdad’s population 

jumped from 5,423,964 in 1997 to 7,055,200 in 2011, and peaked to 7,665,300 in 2014 (Brinkhoff, 

2016). Rabee (2014) reports that Baghdad’s population formed approximately 10% of Iraq’s total 

population in 1947; however, Saleh (2011a) states that the density has increased to form nearly  

25% of the country population in 2011. The population density of Baghdad City reached 
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5233 persons / km2 by 2011; nonetheless, it is between 6 and 190 persons / km2 for other Iraqi 

cities (Saleh, 2011a). This explains the increase in the total LST night-time LST as daytime LST 

is more affected by the sun’s radiation which might include the effect of global climate change. 

However, the heat gained during the day is usually released back to the atmosphere in the night. 

The stable daytime LST might reveal that the urban expansion has not contributed to increase 

the diurnal LST, and the increase of population density has positively contributed to the night-time 

LST. 

     

  

  

  

Figure 4.10: Baghdad’s diurnal, daytime & nigh-time of LST change derived from 

MODIS data over the period (2003-2015), left (Normal) & right (Normalised). Only 

significant trend lines are shown.  

 
The average of diurnal SUHI magnitude is 9.41 ºC with SD of 3.09 as shown in Figure 4.11. 

The average of daytime SUHI fluctuates around 11.56 ºC with SD of 2.8 which is higher than the 

night-time SUHI as it is about 7.26 ºC with 1.38 SD.  Although the trend of daytime SUHI went 

down, the magnitude of the daytime SUHI is still high compared with the night-time. The overall 

trends of diurnal, daytime and night-time SUHI have decreased between (2003- 2015).    
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Figure 4.11: Baghdad’s diurnal, daytime & nigh-time average SUHI change derived 

from MODIS data over the period (2003-2015). 

 
Iraq has four seasons in the year, therefore, the incoming four figures include the months 

of each season. Figure 4.12 contains the winter’s months which do not show obvious increase in 

the trends for the study’s period. The LST averages for winter’s months range between 12 – 16 

ºC, and for the NLST the ranges are between 0.56 – 0.58. There is no noticeable difference 

between the trends of LST and NLST for the winter’s months (see Figure 4.12). Furthermore, 

Figure 4.13 includes the spring’s months which fluctuate in the trends over the study’s period. 

The LST averages for spring months range between 21 – 32 ºC, and for the NLST the ranges are 

between 0.56 – 0.57. There is a noticeable difference between the trends of LST and NLST for 

the spring’s months as shown in Figure 4.13. So, March LST average shows an increase for the 

LST values and does not show the same increase for the NLST values. April LST does not have 

the same decrease in the trend as the NLST. Similarly, May LST does not have the same increase 

of NLST. 

On the other hand, Figure 4.14 contains the summer months which show different 

increases in the trends for the study’s period. The LST averages for summer’s months range 

between 37 – 39 ºC, and for the NLST the ranges are between 0.58 – 0.59. There is no noticeable 

difference between the trends of LST and NLST except for August. Hence, the NLST has 

significantly increased (R2= 0.67, p= 0.0003) compared to the very low increase (R2 = 0.17) for 

the LST (see Figure 4.14). Moreover, Figure 4.15 contains the autumn months which do not show 

clear increase in the trends of LST and NLST for the study’s period. The LST averages for the 

autumn months range between 18 – 33 ºC, and for the NLST the ranges are between 0.55 – 0.57. 

There is no noticeable difference between the trends of LST and NLST for the autumn months 

(see Figure 4.15). In total, most months show different degrees of LST increase over the study 

period, and spring has the more noticeable rise. Furthermore, for some months the LST and NLST 

do not have the same trends direction, and in few cases, they have opposite behaviour.    
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Figure 4.12: The temporal change of the winter’s months LST and NLST in Baghdad 

derived from MODIS data, left (Normal) & right (Normalised) between 2002 and 

2015. 
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Figure 4.13: The temporal change of the spring’s months LST and NLST in Baghdad 

derived from MODIS data, left (Normal) & right (Normalised) between 2003 and 

2015. 

  

  

  

Figure 4.14: The temporal change of the summer’s months LST and NLST in Baghdad 

derived from MODIS data, left (Normal) & right (Normalised) between 2002 and 

2015. Only significant trend lines are shown. 
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Figure 4.15: The temporal change of the autumn’s months LST and NLST in Baghdad 

derived from MODIS data, left (Normal) & right (Normalised) between 2002 and 

2014. 

 

The monthly averages of SUHI for the whole study period range between 8.06 – 10.51 ºC 

as detailed in Figure 4.16. The average SUHI intensity fluctuated from about 8.05 ºC with SD of 

2.35 ºC for December to around 10.51 ºC with 3.63 SD for May. Almost all the monthly trends 

decreased, with a higher percentage of decrease identified by R-square (R2) more than 0.3 from 

(April – September). These months have the higher temperature averages compared to other 

months in the year, as their average LST ranges between 27 – 40 ºC. However, these months 

(April – September) still have the highest magnitudes of SUHI intensity. The relationship between 

LST and SUHI over the study period (2003 – 2015) is negative. And the high averages of SUHI 

coincided with months of high LST averages during the year (Figure 4.16). Hence, the increase 

of annual LST over 12 years has not enhanced the SUHI. Nevertheless, the seasonal differences 

might have maximised the average SUHI.  This agrees with Kumi-Baoteng et al. (2015) findings 

when they studied the effects of urban growth on urban thermal environment of Sekondi-Takoradi 

metropolis of Ghana. Their results suggested that urban expansion has a certain effect on the 

monthly average surface temperature as well the seasonal average temperature changes of the 

Metropolis. Furthermore, Du et al. (2016a) assessed the surface UHI and its relationship with 

types of land cover and other influencing parameters. Their results indicated that average 
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temperature is one of the positive contributors to SUHI intensity. Overall, the average SUHI 

intensity fluctuated from about 8.05 ºC for December to around 10.51 ºC for May. The next section 

explores the influencing parameters on the formation of SUHI, land cover types. 
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Figure 4.16: The monthly averages of Baghdad’s SUHI derived from MODIS data over 

the period (2003-2015). Only significant trend lines are shown. 

4.3.3 LST and land cover 

The correlation between land cover types and LST is evident in the literature. Aminipouri 

and Knudby (2014)  found a strong negative relationship (R2= 0.834) between mean LST and 

NDVI values, suggesting that vegetation can effectively reduce the LST. Wang et al. (2015) 

asserts that to determine effective mitigation and adaptation strategies, the hotspots should be 

more analysed with land surface composition. The land cover composition refers to the variety 

and relative abundance of patch types within the landscape, typically quantified using the 

proportions of different land cover types  (Du et al., 2016b). Accordingly, the land cover types 

were set to be the main contributors (predictors) to SUHI intensity.  

Table 4.1 gives the results of the highly significant models (p < 0.01) where the LST was 

the dependant variable and land cover indices were the predictors. Most of the vegetation indices 

(NDVI, EVI, SAVI and MSAVI) seem to have clear significant negative correlation with LST for 

Baghdad (Table 4.1). Furthermore, NDMI has a noticeable negative correlation with LST. Both of 

NBR and NBR2 indices have negative correlation with LST. NDVI is a good indicator of vegetation 

activity derived from the infrared and near-infrared bands of remote sensing imagery (Li et al., 

2016). So, higher NDVI values refer to denser presence of vegetation which has lower LST 

compared to soil and built-up lands. Similarly, the other vegetation indices (EVI, SAVI & MSAVI) 

indicate the intensity of greenness; however, they are derived to overcome the weaknesses in 

the NDVI. NDMI index contrasts the near-infrared index (NDVI), which is sensitive to the 

reflectance of shortwave-infrared to identify the moisture content of an object (Duran, 2015). 

Duran (2015) concluded that NDMI values higher than 0.1 are symbolised as high humidity level, 

and vice versa.  

NBR and NBR2 have been found to be highly correlated with field estimates of burn severity 

which is the degree of environmental change caused by fire, and consequently with organic soils 

(Epting et al., 2005). Therefore, the benefit of using NBR and NBR2 is to investigate the presence 

of soils since the other indices only give information about the vegetation and moisture (water). 

This would help identifying the impervious surfaces when all the indices have low values which 

means that pixel might be impervious area. All the derived land cover indices correlated negatively 

with LST, with different degrees of significance based on the nature of the index. Thus, low SUHI 

intensity is associated with more vegetation and moisture during the day. And high SUHI intensity 

is associated with more soil lands and built-up areas. This explains the high SUHI of Baghdad’s 
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barren and built-up areas compared to the vegetation and water lands. Unfortunately, there are 

no high-level products using Landsat database to derive LST images and land cover indices at 

night-time for the three cities.  

   

Table 4.1: Correlation between LST and land cover indices of Baghdad city. Derived 

from Landsat high level products between 2000 and 2015. 

Date 
Pearson correlation coefficients 

Regression equations 
R 

Square NDVI EVI SAVI MSAVI NDMI NBR NBR2 

8 September 2000 0 0 0 -0.57 -0.72 0 
-0.58 37.9-36.2NDMI-6.1NBR2+16.2MSAVI 0.53 

1 October 2000 0 0 0 -0.57 -0.70 0 
-0.53 30.4-28.3NDMI+7.6NBR2+5.6MSAVI 0.52 

2 October 2000 0 0 -0.60 0 -0.72 0 
0 32.2+6.8SAVI-28.2NDMI 0.52 

25 October 2000 0 -0.50 0 0 -0.62 0 
0 25.4-17.6NDMI+5.2EVI 0.40 

8 July 2001 0 0 0 0 -0.67 0 
-0.56 44.2-25.1NDMI-3.8NBR2 0.45 

6 April 2002 -0.56 0 0 0 -0.72 0 
0 26.8+6.5NDVI-29.3NDMI 0.54 

22 April 2002 0 0 0 
-0.62 -0.72 

0 
-0.60 26.6-18.1NDMI+7.7NBR2-6.1MSAVI 0.53 

15 October 2002 0 0 0 
-0.49 -0.54 

0 
-0.71 30.8+8.4NDMI-38.4NBR2+12.9MSAVI 0.54 

8 March 2003 -0.39 0 0 
0 -0.57 

0 
0 22.3+4.1NDVI-19.5NDMI 0.34 

2 April 2003 -.055 0 0 
0 .060 

0 
0 24.2-7.6NDVI+8.4NDMI .019 

14 June 2006 -0.31 0 0 
0 -0.74 

0 
-0.55 38.2+9.4NDVI-45.6NDMI-22.1NBR2 0.62 

14 July 2006 -0.53 0 0 
0 -0.67 

0 
-0.56 39.9+15.1NDVI-30.7NDMI-15.5NBR2 0.49 

22 March 2014 0 0 0 
0 -0.70 

0 
-0.40 26.4-13.8NDMI+5.5NBR2 0.51 

20 May 2015 -0.38 0 0 
0 -0.65 

0 
-0.31 37.7+7.4NDVI-58.7NDMI+31.4NBR2 0.57 

21 May 2015 0 0 0 
-0.40 -0.70 

0 
0 40.6-57.6NDMI+23.7MSAVI 0.50 

13 November 2015 0 0 0 
0 -0.59 -0.53 0 19.9-8.2NDMI+1.6NBR 0.36 

20 November 2015 0 0 0 
0 -0.48 -0.40 0 19.7-13.1NDMI+4.2NBR 0.26 

 

 

4.4. London SUHI 

London has 32 boroughs subdivided into electoral wards with a status similar to 

metropolitan districts, and also the City of London, which is a City Corporation and has a number 

of additional roles (ONS, 2016). The River Thames flows across Greater London, which is the 

major river system flowing through southern England, and supplies about two thirds of London’s 

water (Jin et al., 2012). The catchment of the River Thames is densely populated and highly 

vulnerable to changes in climate, land use and population, and the river basin drains 

approximately 10,000 km2 (Jin et al., 2012).  London has eight Royal Parks covering over 5,000 

acres (20.23 km2) of historic parkland, which provide green spaces right in the heart of the capital 

(RPF, 2016). The UK summer climate is expected to increase by 2.7 ºC by the 2050s (central 

estimate) in London based on The UKCP09 Climate Projections (Virk et al., 2015). While, in the 

sustainable development of buildings, summertime overheating is increasingly being recognised 

as a major design issue, Virk et al. (2015) assert. London’s climate is temperate with an average 

annual temperature of 11.1 °C, and 621 mm rainfall per year. February is the driest month with 
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39 mm of rainfall, whereas, November has the greatest amount of precipitation with an average 

of 61 mm rainfall (Climate-Data, 2016). July is the warmest month with an average temperature 

of 18.7 °C, while, January has the lowest average temperature of 4.9 °C per the year (Climate-

Data, 2016).  

4.4.1 SUHI spatial change 

The SUHI distribution of London in Figure 4.17 shows the daytime spatial change of 

temperature differences. The high daytime SUHI can be clearly seen in the heart of the city where 

the built-up areas are dominant, with an intensity of SUHI reaching to 24.2 ºC on the 27th of May 

2015 over the urban fabric. The land cover was shown earlier in Figure 4.3. The water areas have 

the lowest SUHI, so, the River Thames is recognised on most of the maps in Figure 4.17 with its 

low SUHI intensity. Furthermore, the vegetated areas and bare lands have moderate SUHI 

intensity, with low intensity for high trees. A study by Zhang (2015) found that in central London 

areas the high SUHI decreases towards the surrounding areas.  On the other hand, the water 

areas have the highest SUHI during the night-time, particularly, in the cold months as shown in 

Figure 4.18. The night-time images reveal the same SUHI distribution of daytime images 

decreasing towards the surrounding areas, except for water areas at cold nights. This introduces 

a new type of UHI, when the water areas record the highest LST. The water areas had a SUHI 

reaching to 15.5 ºC on the 19th of October 2007 (Figure 4.18). In this case, the heat island belongs 

to water, and can be called Water Urban Heat Island (WUHI). WUHI seems to be beneficial in 

terms of energy consumption as opposed to SUHI and CUHI. Because it appears in the cold 

nights when the average temperatures are low and the indoors heating loads are high. Which 

would reduce the electricity demand if that building were affected by the convective heat from the 

adjacent water areas. 

However, during the hot months such as July, the urban areas are still dominant to have 

the highest SUHI with the water as shown on the image of the 12th of July 2006 (Figure 4.18).  

The SUHI intensity for built-up and water areas ranged between 8 - 11.2 ºC on the 12th of July 

2006. Zhang (2015)  detected an urban warming in London of up to 7.34 °C for the average of 39 

cloudless nights using thermal satellite images.  However, Zhang (2015) study did not consider 

the impact of water bodies, so, the finding only referred to the urbanised areas. Also, it did not 

account for the diurnal and seasonal variation of SUHI. The high temperature of water bodies is 

a concerning issue, since it exerts major effects on biological activities and water chemistry. 

USGS (2016e) explains that temperature governs the kinds of organisms that can live in water, 

higher temperature increases the rate of chemical reactions, and it is related to the dissolved-

oxygen concentration in water. Accordingly, the temperature of the River Thames should be 

monitored in the cold nights, as when the temperature changes either by a natural event or by a 

human-induced event, there could be impact on the aquatic organisms. Also, the same thing for 

Baghdad as the Tigris River showed higher temperature in cold nights.  
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Figure 4.17: London’s daytime SUHI spatial distribution using Landsat and ASTER 

images (ºC). Derived from the thermal bands of the satellite images between 2000 

and 2015. 
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Figure 4.18: London’s night-time SUHI spatial distribution using ASTER images (ºC). 

Derived from the thermal bands of the satellite images between 2006 and 2015. 

 
MODIS daytime and night-time findings give slightly different spatial patterns to those of 

ASTER and Landsat as shown in Figures 4.19 & 4.20. So, the SUHI intensity is concentrated in 

the London City and its surroundings to reach 13.7 °C in 2013 as shown in Figure 4.19. Although, 

there are only 9,000 residents living within the Square Mile of the City of London, 
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however, over 300,000 people work in the City and almost 30,000 go there to study every day 

(City of London Corporation, 2007). Iamarino et al. (2012) computed the annual mean 

anthropogenic heat flux for Greater London, they found that the highest peaks in the central 

activities zone (CAZ) associated with extensive industry services. The anthropogenic heat flux 

decreases towards the outskirts of the city, with the domination of emissions from the domestic 

sector and road traffic. Therefore, the city has the highest SUHI in the daytime comparing with 

other urban areas. The founder of the UHI Howard (2007), concluded that the mean air 

temperature of London, is approximately 9.17 °C (48.50 °F), however, in the denser parts of the 

metropolis, it is raised to 10.28 °C (50.50 °F) by the effect of the population and fires. Also, 

Chandler (1965) found an intense heat island in the City of London by normal daytime standards. 

His results exhibited that temperatures in central London during the spring reached a minimum 

of 11 °C, whereas, in the suburbs they dropped to 5 °C, under clear skies and light winds.  

In Figure 4.20, the MODIS night-time SUHI distribution resembles the findings using 

ASTER images in Figure 4.18, where the water bodies have high LST. The SUHI reached 5.32 

°C in 2011 over water to stretch to the adjacent built-up areas, and decreases gradually when 

moving to outer London. Unlike Baghdad, London does not invert the SUHI spatial distribution 

between the daytime and night-time. Figure 4.21 gives the averages of daytime and night-time 

SUHI for the period (2003 - 2015) for Greater London Boroughs.  The boundaries of London 

Boroughs were acquired from the Digimap EDINA which is the Jisc-designated centre for digital 

expertise and online service delivery at the University of Edinburgh (EDINA, 2016). The average 

daytime SUHI reached to 12.6 °C for the City of London, while, the night-time SUHI average 

peaked over the River Thames and adjacent areas by about 5.06 °C. By looking at the boroughs 

with high night-time SUHI adjacent to the River Thames, they have been found to have only 

between 0.1 - 17.6 % of domestic gardens (Greater London.Authority, 2016). With the lowest 

percentage of domestic gardens is for the City of London by 0.1 % out of the total land use. Also, 

the City of London has the second highest percentage of roads by about 23.8 % just after 

Westminster which has the highest percentage by 23.9 % out of the total land use (Greater 

London.Authority, 2016). It reflects the amount of anthropogenic heat flux emitted by the vehicle, 

as well as metabolic heat. Boroughs like Tower Hamlets, Newham, Hammersmith & Fulham, and 

Kensington & Chelsea have low percentage of domestic gardens and consequently low 

greenness compared to other boroughs at the outskirt of London (Greater London.Authority, 

2016). Accordingly, the high intensity SUHI is associated with low percentage of green spaces. 

Furthermore, the River Thames does not appear to have mitigation role on the SUHI formation.     
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Figure 4.19: London’s daytime SUHI spatial distribution using MODIS images (ºC). 

Derived from the thermal bands of the satellite images between 2003 and 2015.  
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Figure 4.20 London’s night-time SUHI spatial distribution using MODIS images (ºC). 

Derived from the thermal bands of the satellite images between 2003 and 2015. 
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Figure 4.21: Daytime & night-time average SUHI of London’s boroughs over the 

period (2003-2015) using MODIS images (°C). Different SUHI scales are used for 

daytime and night-time. 

 

4.4.2 SUHI temporal change 

The average diurnal LST of Greater London did not show significant change from 2003 

to 2015 as shown in Figure 4.22, the average diurnal LST is 11.72 °C with 1.76 SD. The averages 

of diurnal LST, daytime LST, and night-time LST have very low R2 (< 0.1). The average of daytime 

LST is 17.46 °C with 2.13 SD, and the average of night-time LST is 6.02 °C with 1.39 SD. The 

averages of NLST range between 0.41 - 0.48 for the diurnal, daytime and night-time NLST. The 

NLST showed similar trends to the LST with some difference in the value of R-square (Figure 

4.22). Similarly, the average diurnal SUHI did not change over the study period, and its average 

magnitude was about 11.29 °C with 5.21 SD. The reason of the steady average SUHI is that the 

slight increase in the average daytime SUHI was equalised by the slight decrease in the average 

of night-time SUHI as shown in Figure 4.23. The average of daytime SUHI is 13.52 °C with 5.90 

SD, and the average of night-time SUHI is 9.07 °C with 3.01 SD. Accordingly, the overall temporal 

change of LST and SUHI do not show significant change; unlike Baghdad, which experienced an 

increase in LST and decrease in SUHI averages.  
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Figure 4.22: The temporal change of the diurnal, daytime & nigh-time LST in London 

derived from MODIS data over the period (2003-2015), left (Normal) & right 

(Normalised). 

 

  

 

Figure 4.23: The temporal change of the diurnal, daytime & night-time average SUHI 

in London derived from MODIS data over the period (2003-2015). Only significant 

trend lines are shown. 
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UK has four seasons in the year just like Iraq, therefore, the incoming four figures include 

the months of each season. Figure 4.24 contains the winter months which do not show obvious 

increase in the trends for the study’s period, as most of R-squares are low (< 0.1). The LST 

averages for the winter months range between 3.14 – 4.56 ºC, and the NLST ranges between 

0.41 – 0.44. There is a slight difference between the trends of LST and NLST for the winter 

months, in particular for December (see Figure 4.24). Furthermore, Figure 4.25 includes the 

spring months which reveal a very small decrease in the trends over the study’s period, except 

for the NLST in March. The LST averages for the spring months range between 9.20 – 15.55 ºC, 

and the NLST ranges between 0.44 – 0.46. There are some differences between the trends of 

LST and NLST for the spring months, in particular for March, as shown in Figure 4.25. March LST 

averages show weak decrease, while, they give significant increase for the NLST. However, the 

LST has the same trend as the NLS for both of April and May. 

On the other hand, Figure 4.26 contains the summer months which show low decreases in 

the trends for the study’s period. The LST averages for the summer months range between 19.17 

– 20.60 ºC, and the NLST ranges between 0.43 – 0.45. There are no noticeable differences 

between the trends of LST and NLST. Figure 4.27 contains the autumn months which show slight 

increases in the trends for the study’s period. The LST averages for the autumn months range 

between 6.55 – 15.53 ºC, and the NLST ranges between 0.42 – 0.47. There is no noticeable 

difference between the trends of the LST and NLST for the autumn months (see Figure 4.27). All 

in all, the spring and summer showed a slight decrease in LST, whereas, the autumn and winter 

reflected a bit of increase. The NLST for some months gave opposite trends to the LST, 

especially, for December and March.    
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Figure 4.24: The temporal change of the winter’s months LST and NLST in London 

derived from MODIS data, left (Normal) & right (Normalised) between 2002 and 

2015. 

 

  

  

  

Figure 4.25: The temporal change of the spring’s months LST and NLST in London 

derived from MODIS data, left (Normal) & right (Normalised) between 2003 and 

2015. Only significant trend lines are shown. 
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Figure 4.26: The temporal change of the summer’s months LST and NLST in London 

derived from MODIS data, left (Normal) & right (Normalised) between 2002 and 

2015. 
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Figure 4.27: The temporal change of the autumn’s months LST and NLST in London 

derived from MODIS data, left (Normal) & right (Normalised) between 2002 and 

2014. 

 
The monthly averages of SUHI for the whole study period range between 9.29 – 13.99 ºC 

as detailed in Figure 4.28. The average SUHI intensity fluctuated from about 9.29 ºC with 3.49 

SD for December to around 13.99 ºC with 6.19 SD for July. Months from June to September 

showed weak increase in the trends with R2 less than 0.16. These months (June – September) 

have higher temperatures compared to the rest in the year, as their average LST ranges between 

15.53 – 20.60 ºC. Lee (1992) tested the assumption that population expansion is usually 

accompanied by increases in the impervious surfaces such as housing, roads and public 

transport. He examined the claim in the literature that most of the cities experienced long-term 

increases in UHI intensity; cities also have been subjected to large population growth. His study 

area was London over the period 1962 to 1988 when the population has fallen from just over 8 

million to about 6.8 million. The study results showed that the daytime UHI have decreased over 

time and night-time UHI have increased. However, since then the population of London has grown 

to reach approximately 8.66 million in 2015 which is just over its peak in 1939 when it was 8.62 

million (Aldridge et al., 2015). This might explain the slight increase of daytime SUHI and the weak 

decrease in night-time SUHI in this study. Nevertheless, this is tested against the land cover types 

using different indices in the next section.  
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Figure 4.28: The monthly averages of London’s SUHI derived from MODIS data over 

the period (2003-2015). 
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4.4.3 LST and land cover 

Table 4.2 gives the regression results of the very significant models (p < 0.01), where the 

LST is the dependant variable and land cover indices are the explanatory variables. The 

correlations reveal the importance of vegetation in reducing the LST. So, vegetation indices 

(especially NDVI & MSAVI) played a major role to relieve the LST with up to 0.81 R2 for NDVI on 

the 19 of June 2000. Furthermore, NDMI contributed negatively to most of the LST models in 

Table 4.2 with up to 0.82 R2.  This reflects the importance of water bodies to reduce the LST; 

however, the River Thames did not play a significant role to reduce the spatial variability of SUHI. 

Hence, a specific land feature might have different impact on the LST and SUHI. Since the SUHI 

is the difference in temperature between the pixel LST value and the minimum LST within the 

scene. So, the land cover feature might have influences on the local area and the area of the 

minimum LST value that do not lead to SUHI reduction. Also, NBR2 gave significant negative 

correlation with nearly 70% of the models.  

The Mayor of London published a report on London’s UHI Authority, and it proved the 

association between high surface temperatures and high density continuously developed areas 

across London. The report results showed that the relatively cool areas to the southwest of the 

core of high surface temperatures coincide with the large open and green spaces of Richmond 

Park (Greater London Authority, 2006).  Furthermore, an ARUP (2016) report determined that 

London’s land cover has not been altered significantly from 2000 to 2015. Since, the increase of 

green areas, agricultural land and water bodies during this period was less than 2%, and these 

areas form around 31% of London’s surface. The report also investigated the effect of green 

spaces and water bodies on LST in the heatwave events. The results emphasised the importance 

of green spaces and water bodies in a city to cool the high LST areas during heatwave events in 

a summer day (ARUP, 2016). Consequently, this study findings agree with ARUP (2016) report 

conclusions about the role of green spaces and water bodies to minimise the effect of SUHI. 

However, this reduction exists in all high temperature days not only during the heatwaves. 

Therefore, the high significant models (R2 > 0.3) coincided with summer months to reach 0.7 R2 

on the 19 of June 2000 as described in Table 4.2. SAVI and NBR indices did not show any 

significant regression correlation with LST.  
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Table 4.2: Correlation between LST and land cover indices of London city. Derived 

from Landsat high level products between 2000 and 2015. 

Date 
Pearson correlation coefficients 

Regression equations 
R 

Square NDVI EVI SAVI MSAVI NDMI NBR NBR2 

7 April 2000 
-0.34 

-0.31 0 0 
-0.43 

0 
-0.45 16.6+1.4NDVI-3.3NDMI+5.9EVI-17.1NBR2 0.26 

19 June 2000 -0.81 0 
0 0 -0.82 

0 0 
36.5-5.7NDVI-11NDMI 0.70 

12 May 2001 
0 

0 0 0 
-0.71 0 

-0.76 
30.4-1.4NDMI-19.2NBR2 0.58 

28 March 2002 -0.58 0 0 
0 -0.52 

0 
-0.61 15.7-1.04NDVI+0.7NDMI-7.9NBR2 0.37 

16 April 2003 
0 

0 0 -0.39 
-0.52 

0 -0.50 
27.2-8NDMI-16.5NBR2+9.8MSAVI 0.34 

24 September 2003 -0.47 0 0 
0 -0.58 0 -0.48 16.7+1.3NDVI-6.6NDMI-5.7NBR2 0.37 

28 August 2005 0 -0.40 0 
0 -0.38 

0 
-0.45 23-1.9NDMI-10.3NBR2+0.9EVI 0.21 

10 May 2006 
-0.73 

0 0 0 
-0.76 

0 
0 23.5-2.3NDVI-11NDMI 0.59 

11 May 2006 
-0.42 

0 0 0 
-0.55 

0 
0 23.6+7.8NDVI-30.4NDMI 0.33 

12 June 2006 
0 

0 0 -0.73 
0 

0 
-0.74 31.8-10NBR-4.4MSAVI 0.57 

2 November 2006 
-0.43 

0 0 -0.26 
-0.43 

0 
0 7.6-1.3NDVI-3.1NDMI+2.51MSAVI 0.32 

20 September 2008 0 0 0 
-0.57 -0.69 0 -0.65 19.7-7.9NDMI+0.61MSAVI 0.50 

29 September 2011 0 0 0 
-0.32 -0.63 

0 
-0.47 24.5+0.53NDVI-9.72NDMI+2.1MSAVI 0.43 

30 September 2011 0 0 0 -0.37 -0.57 0 
-0.48 23.7-5.4NDMI-4.3NBR2+3MSAVI 0.34 

11 November 2012 
-0.21 

0 0 -0.1 
-0.24 

0 
-0.22 6.9-1.7NDVI-1.9NDMI-2.3NBR2+5.2MSAVI 0.23 

18 November 2012 -0.14 
0 

0 -0.1 
-0.19 

0 -0.15 
5.7-1.3NDVI-2.3NDMI-2NBR2+4.9MSAVI 0.12 

20 April 2013 -0.58 0 0 
0 -0.43 0 -0.61 21-1.19NDVI+3.3NDMI-15.9NBR2 0.39 

8 July 2013 
-0.70 

0 0 0 
-0.78 

0 
-0.77 29.2+4.2NDVI-8.8NDMI-14.8NBR2 0.65 

17 July 2013 
-0.58 

0 0 0 
-0.66 

0 -0.64 
32.4+5.7NDVI-12.3NDMI-18.3NBR2 0.48 

1 February 2014 
0.1 

0 0 0.01 
-0.1 

0 
0.1 2.2+0.9NDVI-1.9NDMI+2.7NBR2-1.1MSAVI 0.1 

4 July 2014 
-0.28 

0 0 0 
-0.48 

0 
-0.38 24.5+12.9NDVI-20.9NDMI-13.6NBR2 0.33 

9 April 2015 
-0.51 

0 0 -0.44 
-0.48 

0 
-0.56 20.4-3.6NDVI-0.1NDMI-19.9NBR2+10.1MSAVI 0.37 

27 May 2015 -0.64 0 0 
0 -0.73 0 0 24.9+4NDVI-21.8NDMI 0.53 

2 October 2015 
0 

0 0 -0.55 
-0.67 

0 
0 16.7-5.5NDMI+0.1MSAVI 0.44 

 

4.5. Birmingham SUHI 

Birmingham is the geographical heart of England, and it is the UK's second largest student 

city (The Complete University Guide, 2016). Birmingham has a various land use types such as 

urban fabric, industrial areas, and large green spaces as shown earlier in Figure 4.4. The urban 

fabric concentrates in the middle of the city and stretches towards the periphery in all directions, 

the industrial areas mainly in the east, with some parks around the city (Azevedo et al., 2016b). 

The climate is warm and temperate, and the average annual air temperature is about 9.2 °C with 

705 mm of rainfall (Climate Data, 2016). February is the driest month with 49 mm rainfall, and the 

greatest 70 mm rainfall happens in December. July has the highest average temperature with 

15.7 °C, and the coldest is January with 3.2 °C (Climate Data, 2016). The change of SUHI in time 

and space is discussed in the incoming sections with its correlation with land cover types. 
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4.5.1 SUHI spatial change 

The daytime SUHI distribution of Birmingham is shown in Figure 4.29, which gives the 

spatial change of temperature differences using Landsat and ASTER data. Unfortunately, ASTER 

cloud free images are not available at night-time for Birmingham during the study period. 

Accordingly, an airborne image acquired in March 2009 was employed. It was supplied by the UK 

Environment Agency (UK Environemnt Agency, 2014), and has 1 m pixel size and 0.1 ºC 

temperature accuracy (Figure 4.30). The airborne TABI image was a part of the aerial survey 

undertaken by the UK OS to capture the thermal losses of urban areas, in particular the buildings. 

It measures heat loss from rooftops, which have been used to advise local authorities where to 

target climate change mitigation strategies (UK Environment Agency, 2014). The airborne images 

were acquired on two missions to cover the entire Birmingham City. Both were at about the 

midnight, the first one started on the 10th of March 2009 at about 23:10 and ended on the 11th of 

March 2009 at about 01:27. The second fly started on the 26th of March 2009 at about 22:44 and 

ended on the 27th of March 2009 at about 00:01. The two missions were undertaken at times 

close to midnight when the air temperatures ranged between 2- 4 ºC in clear and calm weather 

(MIDAS, 2015). It seems that the acquisition times were chosen to have similar weather 

conditions, so the captured temperatures would not be biased. Therefore, the two images that 

represent the two missions were merged to have one image covers the entire Birmingham City.         

The daytime SUHI in Figure 4.29 concentrates in the urban fabric and industrial and 

commercial units (see land cover map in Figure 4.4), and stretches to the suburbs specifically the 

north-east ones. The maximum intensity of SUHI reached 22.8 ºC on the 1st of June 2009, and 

the lowest intensity was on the 19th of January 2015 at 4.5 ºC. On the other hand, the night-time 

image (Figure 4.30) gives a more detailed spatial SUHI change, as it has much higher spatial 

resolution (1 m) compared to Landsat and ASTER thermal images. Like Baghdad and London, 

Birmingham water bodies have the highest temperature with a maximum of 5.6 ºC in cold nights. 

However, in Birmingham trees seem to have the second highest temperature, which did not 

clearly appear in the other two cities.  The high temperature of water surface enhances 

evaporation to release large amounts of water vapour (Hughes, 2000). Monteith (1981) explains 

that when water evaporates from a wet surface to the atmosphere, an equilibrium status tends to 

happen to compensate the local loss of latent heat by the net supply of heat. The same 

mechanism applies in the transpiration process when the moisture leaves the leaf, as the water 

has relatively higher temperature due to interactions and higher storage capacity. It happens 

particularly during the cold nights where the temperature of other surfaces is low compared to 

water in ponds and trees. This can be seen clearly in Figure 4.30 when the trees and water areas 

in Sutton Park have higher temperature than bare lands and grass. The high canopy of the trees 

traps more energy in the daytime to be released at night-time and enhances the transpiration 

process.  

Moving to the City Centre in Figure 4.30, the streets enclosed by high buildings also have 

higher temperature, where the sky view factor is low. The streets outside the city showed lower 

temperature than the ones located inside the city. In this case, the geometry played a major role 



 

80 
 

in inducing the SUHI, not the only the land cover, as built-up areas exhibited lower temperature 

than grass in some places. The low temperature of built-up areas demonstrates the high insulation 

of buildings, which means minimum heat loss and high energy saving. The high spatial resolution 

of the night-time airborne thermal image (Figure 4.30) has enabled this study to highlight 

unprecedented SUHI patterns (the trees high LST), which urges the crucial need for high spatial 

resolution thermal images to study the SUHI. The 1 meter spatial resolution appears to be ideal 

for SUHI studies, because of the high heterogeneity of the urban surfaces and the presence of 

small width objects such as narrow streets. Zhang and Liang (2012) identify that the different 

types of urban surface features will greatly impact the brightness temperature. They also 

determine that different ground objects with the same spectrum still exist. Consequently, 

monitoring the LST should consider employing multi channels of spectrum with different 

observation time.  
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Figure 4.29: Birmingham’s daytime SUHI spatial distribution using Landsat and 

ASTER images (ºC). Derived from the thermal bands of the satellite images acquired 

between 2000 and 2015. 
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Figure 4.30: Birmingham’s night-time SUHI spatial distribution using airborne image 

(left), City Centre and Sutton Park SUHI distribution and overlaid OS maps (right) 

(ºC). 

On the other hand, MODIS annually averaged SUHI has provided daytime and night-time 

long-term records. The average maximum daytime SUHI ranged from 19.4 ºC in 2015 to 22.2 ºC 

in 2009 as shown in Figure 4.31. The City Centre is the core of the maximum daytime SUHI 

intensity, and the lowest intensity can be seen in Sutton Park. Similarly, the night-time average 

SUHI peaked at the City Centre to extend to the adjacent suburban’s areas (Figure 4.32). The 

average maximum night-time SUHI ranged from 5.73 ºC in 2003 to 6.79 ºC in 2006. Hence, both 

of daytime and night-time SUHI peaked at the City Centre, and extended to the surrounding areas. 

However, the difference is between the magnitudes of the SUHI intensity, as the daytime is much 

higher than the night-time SUHI. Also, the spatial dimension of the highest intensity SUHI class 

is different for each time. Azevedo et al. (2016b) found that the average SUHI of Birmingham in 

2006 peaked in the City Centre and was significantly lower in the urban green areas. They also 

indicated that the average daytime SUHI is higher than night-time, because of the solar heating 

during the daytime. Interestingly, the Sutton Park can be a heat island and cool island at the same 

time, because it includes dense trees and grass as shown in Figure 4.30. The trees look hot as 

they trap more radiation compared to the cold grass which has higher SVF. This reflects the 

importance of the geometrical parameters as the various features of the same land cover 

(vegetation) might give different thermal behaviour. These patterns cannot be identified using 

coarse spatial resolution images due to the problem of mixed pixels.     
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To visualise the averages of SUHI for the whole study period, daytime and night-time SUHI 

were calculated and overlaid on the wards of Birmingham District. Birmingham is divided into ten 

parliamentary constituencies, each constituency is divided into four wards (Council, 2003). The 

digital boundaries of Birmingham’s Wards were acquired from Digimap EDINA (EDINA, 2016), 

and adapted to be consistent with the description of the wards by Birmingham City Council 

(Council, 2003). Figure 4.33 demonstrates the daytime and night-time average SUHI for the entire 

study period (2003 – 2015). The maximum average daytime SUHI intensity is 19.9 ºC, and the 

maximum average night-time SUHI intensity is 5.77 ºC.  

There are five common wards that most of their areas recorded the maximum average 

daytime and night-time SUHI as shown in Figure 4.33. They are Laywood (19), Nechells (3), 

Aston (34), Sparkbrook (26), and Washwood Heath (4.35). The population of each of these five 

wards was more than 30000 residents in 2011 (Council, 2011). The major land uses of these 

wards are as follow: Ladywood (residential), Nechells (residential (west), industrial & commercial 

(north & east)), Aston (residential (centre & west), industrial & commercial (north & east)), 

Sparkbrook (residential), and Washwood Heath (industrial & trading estates (north), residential 

(west & east)) (Axinte, 2015). Accordingly, the high daytime and night-time SUHI intensity 

presents in the densely populated areas, which is used for residential, industrial, and commercial 

purposes. On the other hand, the lowest intensity of daytime and night-time SUHI appears in 

Sutton Park, which works as a cool island towards the urbanised areas. Sutton Park is one of the 

largest urban parks in Europe, extending over about 9.7 km2 (Council, 2016). It is located 9.6 Km 

north of the City Centre, and a site of special scientific interest, as it has open heathland, 

woodlands, seven lakes, wetlands, marshes, and ancient monuments (Council, 2016). It is 

evident that large green areas in Birmingham have cooling effects, with a significant temperature 

gradient extending northwards from the City Centre to Sutton Park (Tomlinson et al., 2013). The 

temperature decreases through the suburbs and urban green spaces, where the City Centre can 

be (7 - 8 ºC) hotter than the Sutton Park under heatwave conditions (Tomlinson et al., 2013). 
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Figure 4.31: Birmingham’s daytime SUHI spatial distribution using MODIS images 

(ºC). Derived from the thermal bands of the satellite images acquired between 2003 

and 2015. 
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Figure 4.32: Birmingham’s night-time SUHI spatial distribution using MODIS images 

(ºC). Derived from the thermal bands of the satellite images acquired between 2003 

and 2015. 
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Figure 4.33: Daytime & night-time average SUHI of Birmingham’s wards over the 

period (2003-2015) using MODIS images (ºC). Different SUHI scales are used for 

daytime and night-time. 

 

4.5.2 SUHI temporal change 

The average LST of Birmingham does not show significant change from 2003 to 2015 as 

shown in Figure 4.34, and the diurnal LST is 10.58 °C with 1.48 SD. The steady trend of average 

diurnal LST is as a result of the stability of the night-time LST and daytime average LST which all 

have R2 less than 0.1 for the entire study period (2003 – 2015). Johnson (1985a) studied heating 

and cooling rates of the heat island, and found that the most important changes occur at sunrise 

and sunset. The reason behind that is the change of the radiation budget of the urban surface, 

which highlights the importance of investigating the daytime and night-time SUHI separately. The 

average of daytime LST is 16.31 °C with 1.98 SD, and the average of night-time LST 4.86 is °C 

with 0.99 SD. The averages of NLST range between 0.39 - 0.43 for the diurnal, daytime and night-

time NLST. The NLST showed similar trends to the LST without noticeable differences in the 

values of R2 (Figure 4.34).  

Like the LST, the average diurnal SUHI has not considerably changed over the study 

period, and its average magnitude was about 7.63 °C with 4.74 SD. The average daytime SUHI 

and the average night-time SUHI did show important alteration as shown in Figure 4.35. The 

average of daytime SUHI is 10.14 °C with 5.14 SD, and the average of night-time SUHI 5.13 °C 
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with 2.41 SD. A study by Tomlinson et al. (2012) investigated the summer (June, July, August) 

night-time UHI of Birmingham between (2003-2009) using night-time MODIS imagery. They 

identified that during periods of high atmospheric stability, the SUHI intensity in Birmingham can 

reach up to 5 – 7 ºC, with a clear peak in the central business district and relatively lower 

temperature in the Sutton Park. Generally, the temporal change of average LST and SUHI of 

Birmingham did not show significant changes over the study period (2003-2015) just like London, 

however, they both gave high spatial variability. 

  

    

  

  

Figure 4.34: Birmingham’s diurnal, daytime & night-time LST derived from MODIS 

data over the period (2003-2015), left (Normal) & right (Normalised). 
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Figure 4.35: Birmingham’s diurnal, daytime & night-time average SUHI change 

derived from MODIS data over the period (2003-2015). 

 
Figure 4.36 contains the winter’s months which do not show obvious increase in the trends 

for the study’s period, as all the R2 are low (< 0.1). The LST averages for the winter months range 

between 2.23 – 3.57 ºC, and for the NLST the ranges are between 0.39 – 0.41. There is a slight 

difference between the trends of the LST and NLST for the winter months, in particular for 

December and January (see Figure 4.36). Furthermore, Figure 4.37 includes the spring months 

which reveal a very small change in the trends over the study’s period, except for March NLST. 

The LST averages for the spring months range between 7.56 – 14.53 ºC, and for the NLST the 

ranges are between 0.41 – 0.42. There are some differences between the trends of the LST and 

NLST for the spring months, in particular for March, as shown in Figure 4.37. March LST averages 

show weak decrease for the LST values, while, they give significant increase for the NLST values 

(R2= 0.21). However, the LST has the same the trend as the NLST for May, with a slight difference 

for April.  

On the other hand, Figure 4.38 contains the summer months which show low decreases in 

the trends for the study’s period. The LST averages for the summer months range between 17.66 

– 19.5 ºC, and for the NLST the ranges are between 0.40 – 0.41. There are some small 

differences between the trends of the LST and NLST, especially for June and July. Moreover, 

Figure 4.39 contains the autumn months which show slight increases in the trends for the study’s 

period. The LST averages for the autumn months range between 5.39 – 14.12 ºC, and for the 

NLST the ranges are between 0.40 – 0.42. There is no noticeable difference between the trends 

of LST and NLST for the autumn months, except for September (see Figure 4.39). In summary, 

the summer showed a slight decrease in LST, whereas, the autumn and spring reflected a bit of 

increase to moderate winter temporal change. The NLST for some months gave opposite trends 

to the LST, especially, for September and March.  
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Figure 4.36: The temporal change of the winter’s months LST and NLST in 

Birmingham derived from MODIS data, left (Normal) & right (Normalised) between 

2002 and 2015. 
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Figure 4.37: The temporal change of the spring’s months LST and NLST in 

Birmingham derived from MODIS data, left (Normal) & right (Normalised) between 

2003 and 2015. 

  

  

  

Figure 4.38: The temporal change of the summer’s months LST and NLST in 

Birmingham derived from MODIS data, left (Normal) & right (Normalised) between 

2002 and 2015. Only significant trend lines are shown. 
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Figure 4.39: The temporal change of the autumn’s months LST and NLST in 

Birmingham derived from MODIS data, left (Normal) & right (Normalised) between 

2002 and 2014. 

 
The monthly averages of SUHI for the whole study period range between 5.39 – 10.28 ºC 

as detailed in Figure 4.40. The average SUHI intensity fluctuated from about 5.39 ºC with 2.67 

SD for December to around 10.28 ºC with 6.21 SD for June. Months from July to December 

showed weak increase in the trends with R2 less than 0.1. The monthly temporal change of SUHI 

appears to fluctuate for the different months, thus, the weak increase (July – December) 

moderated by the weak decrease of (January, March, April & June). This might explain the slight 

increase of the average daytime SUHI, which was equalised by the weak decrease in the night-

time SUHI over the study period to have neutral SUHI over time. Azevedo et al. (2016a) used 

MODIS LST to identify the spatial pattern of the daytime and night-time UHI in Birmingham for 

June, July and August 2013. They demonstrated that the distribution of the surface UHI appears 

to be clearly linked to land use, and considered this as a significant finding of their work. 

Accordingly, the next section quantifies and identifies the role of land cover types in the formation 

of SUHI. 
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Figure: 4.40 The monthly averages of Birmingham’s SUHI derived from MODIS data 

over the period (2003-2015). 
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4.5.3 LST and land cover 

Table 4.3 gives the regression results of the very significant models (p < 0.01), where the 

LST is the dependant variable and land cover indices are the predictors. The correlations reflect 

the importance of NDMI and NBR2 in reducing the LST. Hence, NDMI contributed negatively to 

about 85% of the LST models in Table 4.3 with R2 up to 0.75.  Also, NBR2 gave significant 

negative correlation with nearly 89% of the models. The NBR2 could explain 82% of the LST 

variation on the 10th June 2006. Furthermore, vegetation indices (especially NDVI & MSAVI) 

played a major role to relieve the LST with up to 0.77 R2 for NDVI on the 12th of May 2001. The 

NDVI could explain 77% of the LST variation on the 10th June 2006, and negatively contributed 

to about 67% of the LST models. Also, the MSAVI relieved the temperature for about 63 % of the 

LST models with up to 0.62 R2 on the 16th of April 2003.   

The high significance models (p < 0.01) with (R2 > 0.4) formed about 55% of the total 

models, and the highest R2 (0.67) was on 10th of June 2006. SAVI and NBR indices did not show 

any significant regression correlation with LST.  Azevedo et al. (2016b) demonstrated that a 

strong negative correlation between LST and NDVI exists, with the strongest relationship evident 

during the daytime with −0.78 R (not R2) compared to night-time with −0.69 R. The difference 

between R2 and R is that R2 means the coefficient of determination, while, R is the coefficient of 

correlation (Bansal, 2015). R2 shows the percentage of variation in y (LST here) which is 

explained by all the x variables (land cover indices) together. Bansal (2015) clarified that it is easy 

to explain the regression in terms of R2, however, it is not easy to explain the regression in terms 

of R. Accordingly, the LST of Birmingham can be dramatically reduced by enhancing the 

vegetation and moisture of the surface cover, which shows a similar behaviour to London. 

Moreover, the correlation between LST and NBR2 is considerably negative for both of London 

and Birmingham. It was explained earlier that NBR2 is correlated with the presence of organic 

soils; consequently, the LST is negatively correlated with organic soils.  
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Table 4.3: Correlation between LST and land cover indices of Birmingham. Derived 

from Landsat high level products between 2000 and 2015. 

Date 

Pearson correlation coefficients 

Regression equations 
R 

Square NDVI EVI SAVI MSAVI NDMI NBR 
NBR2 

 

7 April 2000 -0.62 0 0 
-0.52 -0.54 

0 
-0.60 17.8-7.8NDVI-1.6NDMI-9.7NBR2+9.4MSAVI 0.43 

12 May 2001 
-0.77 

0 0 0 
0 

0 
-0.76 30.8-5.9NDVI-9.1NBR2 0.61 

28 March 2002 
-0.66 

0 0 -0.55 
-0.52 

0 
-0.61 16.5-8.5NDVI+NDMI-7.9NBR2+8.3MSAVI 0.48 

4 April 2002 -0.69 0 0 0 
-0.61 

0 
-0.65 20.1-4.1NDVI-1.9NDMI-3.3NBR2 0.49 

11 September 2002 0 0 0 
-0.60 -0.64 0 -0.66 22.8-5.1NDMI-8.4NBR2+1.3MSAVI 0.48 

22 March 2003 
-0.44 

0 0 -0.31 
-0.33 

0 
-0.40 14.3-7.9NDVI-0.5NDMI-5.6NBR2+10.8MSAVI 0.27 

16 April 2003 0 0 0 
-0.62 -0.63 0 -0.64 28.1-6.9NDMI-8.5NBR2-0.2MSAVI 0.45 

13 July 2003 -0.68 0 0 
0 -0.67 0 -0.74 30.6+1.6NDVI-4.6NDMI-15NBR2 0.56 

19 November 2004 0.57 -0.26 0 0 
0 

0 0.29 
-2.4+7.5NDVI+2.8NBR2-11.9EVI 0.65 

10 May 2006 -0.75 0 0 
0 -0.72 

0 
-0.75 24.5-3.5NDVI-4NDMI-6.8NBR2 0.59 

10 June 2006 0 0 0 
0 -0.75 

0 
-0.82 32.3-2.8NDMI-15.9NBR2 0.67 

20 July 2006 
-0.07 

-0.31 0 0 
-0.32 

0 0 
21.4-17.1NDMI-82.9EVI+64.6NDVI 0.53 

21 July 2006 
0 

0 0 0 
-0.29 

0 
-0.18 24.6-12.2NDMI-0.3NBR2 0.09 

28 July 2006 
-0.57 

0 0 0 
-0.56 

0 
-0.64 30.9+3NDVI-7.3NDMI-17.2NBR2 0.46 

2 November 2006 
-0.41 

0 0 -0.29 
-0.38 

0 
-0.39 6.9-2.6NDVI-0.7NDMI-2NBR2+3.1MSAVI 0.22 

18 November 2006 0.168 0 0 
0.21 0 0 0 4.2-0.2NDVI+1.2MSAVI 0.1 

20 September 2008 
0 

-0.37 0 0 
-0.33 0 -0.31 12.1-2.3NDMI+5.7NBR2-7.3EVI 0.14 

22 June 2010 
0 

0 0 0 
-0.43 

0 
-0.33 18.3-31NDMI+15NBR2 0.20 

20 October 2010 
-0.42 

0 0 -0.35 
-0.37 0 

-0.42 
7.1-2.1NDVI-0.3NDMI-2.6NBR2+2.5MSAVI 0.21 

30 April 2011 
-0.64 

0 0 0 
-0.62 

0 
-0.64 20-1.3NDVI-4NDMI-4.7NBR2 0.44 

28 September 2011 
0 

0 0 -0.41 
-0.50 

0 
-0.48 21.3-3.1NDMI-3.2NBR2-MSAVI 0.28 

29 September 2011 
-0.46 

0 0 0 
-0.56 

0 
-0.45 23.8-0.3NDVI-6.2NDMI+0.3NBR2 0.32 

18 November 2012 0 0 
0 0 -0.13 

0 -0.1 
3.1-NDMI-0.1NBR2 0.02 

18 November 2013 
0 

0 0 0 
-0.13 

0 -0.07 
3.1-1.3NDMI+0.1NBR2 0.02 

19 January 2015 
-0.22 

0 0 0 
-0.25 

0 
0 -1.4-0.2NDVI-0.8NDMI 0.07 

9 April 2015 
-0.63 

0 0 -0.59 
0 

0 
-0.62 21.7-4.5NDVI-6.9NBR2+2.7MSAVI 0.42 

8 July 2015 
-0.65 

0 0 0 
-0.71 

0 
-0.72 28.5+2.5NDVI-7.6NDMI-12.5NBR2 0.54 

 
 

4.6 Discussion and analysis 

The SUHI showed different behaviour for the three cities (Baghdad, London & 

Birmingham), as these cities gave different spatial and temporal SUHI change. The various SUHI 

distributions might be attributed to the specific LULC features of each city, the climatic and 

geographical condition or population density. For Baghdad using Landsat and ASTER data, built-

up areas recorded relatively higher LST at night-time compared to other land cover types, while, 

during the daytime densely built-up areas had lower LST to act as a cool island. The high spatial 

resolution of Landsat and ASTER images has made the higher temperature of water bodies 
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visible during the cold nights, which is probably due to its high thermal capacity. On the other 

hand, MODIS data provided higher temporal coverage compared to Landsat and ASTER images, 

and could be used to recognise the Industrial areas, and the highly populated attached urban 

configurations as high daytime SUHI intensity spots. Unlike the night-time SUHI, where all the 

urban areas exhibited higher temperature compared to the city boundary.  

London, on the other hand, experienced high daytime SUHI in the heart of the city where the built-

up areas are dominant using Landsat and ASTER data. The night-time SUHI also peaked in the 

city to decrease towards the surrounding areas, except for water bodies at cold nights. Similarly 

using MODIS images, the City of London had the highest SUHI at daytime comparing with other 

urban areas. At night-time, the water bodies and adjacent areas had the peak SUHI. The high 

intensity of SUHI over water was evident for the three cities during cold nights. Thus, the term 

WUHI was initiated to describe this phenomenon as a unique finding of this study.  

Birmingham high intensity daytime SUHI showed similar patterns to London, concentrated 

in the urban fabric and industrial and commercial units. However, the high spatial resolution of 

the airborne night-time thermal image could identify the trees to have the second highest 

temperature after the water bodies, which did not appear in London and Baghdad. Birmingham 

daytime SUHI intensity peaked at the City Centre using MODIS data, and the lowest intensity 

could be seen in Sutton Park. Furthermore, the night-time SUHI maximised at the City Centre to 

extend to the adjacent suburban’s areas. 

Figure 4.41 shows the overall averages of diurnal (day and night) SUHI for the entire study 

period (2003 – 2015) using MODIS data. The high intensity SUHI can be seen clearly in the heart 

of the three cities, and its magnitude reduces towards the boundaries. Consequently, the 

spatiotemporal distribution of SUHI gives similar patterns in general for the three cities, in spite of 

the specific characteristics of each city. Baghdad and London both have a major river that divides 

the cities, while Birmingham does not have a large water body; however, it does have a large 

park (Sutton Park). Table 4.4 provides a comparison of the summary statistics among the three 

cities of the LST, SUHI and NLST magnitudes for the entire study period. The diurnal average 

SUHI are 9.41, 11.29, and 7.63 ºC for Baghdad, London, and Birmingham respectively. The 

daytime average SUHI are 11.56, 13.52, and 10.14 ºC for Baghdad, London, and Birmingham 

respectively. The night-time average SUHI 7.26, 9.07, and 5.13 ºC for Baghdad, London, and 

Birmingham respectively. Despite the higher diurnal, daytime and night-time LST of Baghdad 

compared to London and Birmingham, the SUHI values of London are higher than those of 

Baghdad. Furthermore, the high magnitude of Baghdad’s NLST is compatible with the high 

averages of LST compared to other cities, whereas, London’s NLST has much variation in the 

range to enhance the SUHI. 

Although, London has vegetation cover much higher than Baghdad, London SUHI intensity 

is higher than Baghdad. Therefore, the size of the city in terms of population and anthropogenic 

fluxes are of the main contributors to SUHI besides the LULC. All the derived land cover indices 

correlated negatively with LST for the three cities, with different degrees based on the nature of 

the index. Some of the indices such as NDVI, MSAVI, NDMI and NBR2 showed very significant 
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negative correlation with LST. The land cover indices could explain up to 70 % of the LST variation 

for the significant models. The correlation between SUHI and LST was negative for the three 

cities over the study period (2003-2015) as detailed in Figure 4.42. This might suggest that the 

increase of global temperature might not be the cause of SUHI rise; however, the local biophysical 

parameters enhance the SUHI. And the elevating SUHI of the urban cities is one of the 

contributors to the global warming. Accordingly, the local climate for the neighbouring cities 

creates the regional climate which forms the global climate. Gartland (2008) explains that the UHI 

is one of the global warming causes, and on top of its negative effect it reduces the habitability of 

urban and suburban areas. In spite of some scientists are still doubtful about the effect of UHI, 

nevertheless, most scientists agree that the global warming observed in recent years is at least 

partially due to UHI (Stein, 2001).  Although, this chapter focuses on the SUHI formation using 

LST as an indicator; however, the typical definition of UHI employs the air temperature to measure 

the CUHI.     
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Figure 4.41: Diurnal averages SUHI of Baghdad, London and Birmingham derived 

from MODIS data over the period (2003 - 2015) (ºC). Different SUHI scales are used 

for daytime and night-time. 
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Table 4.4: Summary statistics of LST, SUHI and NLST for Baghdad, London and 

Birmingham calculated from MODIS data over the period (2003-2015). 

City 

Ave. 

diurnal 

LST (°C) 

Ave. 

daytime 

LST (°C) 

Ave.  

night-time 

LST (°C) 

Ave. 

diurnal 

SUHI (°C) 

Ave. 

daytime 

SUHI (°C) 

Ave.  

night-time 

SUHI (°C) 

NLST range 

Baghdad 17 35.83 17 9.41 11.56 7.26 0.56 - 0.58 

London 11.72 17.46 6.02 11.29 13.52 9.07 0.41 - 0.48 

Birmingham 10.58 16.31 4.86 7.63 10.14 5.13 0.39 - 0.43 

 
 

  

(a) (b)                 

 

 

(c) 

Figure 4.42: Correlations between SUHI and LST of (a) Baghdad, (b) London and (c) 

Birmingham derived from MODIS data over the period (2003 - 2015). Different axes 

scales are used for the three cities and only significant trend lines are shown. 

 

4.7 Conclusions 

The spatial and temporal change of SUHI was investigated in this chapter as well as the 

contributing parameters to the SUHI, in particular land cover. The study areas were Baghdad and 

London as large cities, as well as Birmingham as a medium size city. The different climatic 

conditions and land cover patterns for the cities provided the opportunity of investigating various 

SUHI behaviours in time and space. Baghdad is a dry city surrounded by soil lands, while, London 

and Birmingham are vegetated environments with a considerable amount of rainfall. The spatial 

distribution of SUHI in Baghdad slightly differs from London, even though, both cities have a large 

river crosses approximately in the middle. However, some soil lands in Baghdad exhibited higher 

LST than the densely built-up areas; unlike, London which has only small fraction of bare lands.  
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The vegetation and water classes had the lower temperatures during the daytime for the 

three cities. The densely built-up areas and the business districts recorded the largest 

temperatures at times of high anthropogenic activities. The water bodies were distinguished by 

their high thermal capacity to have the peak LST during cold nights. The trees were also 

highlighted to have high LST using high resolution airborne thermal images, which did not appear 

using moderate resolution images. The derived land cover indices negatively correlated with LST, 

and could explain up to 70 % of the LST variation for the significant models.  

The temporal change of SUHI negatively responded to the elevated LST. The SUHI had 

its maximum overall intensity in London, in spite of Baghdad having the highest average LST. 

Consequently, the mitigation techniques for London and Birmingham might not be the same for 

Baghdad. As the soil lands around Baghdad when it is replaced by concrete, asphalt or vegetation 

might relieve the SUHI if the expansion considered a strategy of low density sprawl. Nevertheless, 

the green areas surrounding London and Birmingham work as cool islands. Therefore, the key 

solution is less anthropogenic fluxes with higher moisturised surfaces. These findings are 

applicable to mitigate the SUHI; however, the next chapter will investigate the CUHI using air 

temperature by ground measurements. This will provide meaningful comparisons for the different 

measuring techniques of UHI, and Birmingham will be the study site of the CUHI. Then the 

differences and similarities can be drawn by applying different techniques on the same city.      
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Parts of this chapter have been published as: 
ALI, JASIM M., MARSH, STUART H. and SMITH, MARTIN J., 2016. Modelling the 
spatiotemporal change of canopy urban heat islands. Building and Environment. 107, 
64-78. 
 

5.1 Introduction 

A common measurement technique of the UHI is using air (canopy) temperature to monitor 

the CUHI, while, satellites measure the LST to map the SUHI (Tomlinson et al., 2013). Tomlinson 

et al. (2013) argues that the relationship between the CUHI and SUHI is especially complex 

across an urban area. The traditional approach to measure the CUHI is using a meteorological 

station in the City Centre and another one outside the city in a rural area (Gartland, 2008). 

However, due to the heterogeneity of the urban environment, the city climate requires a dense 

network of sensors to study its microclimate (Muller et al., 2013). Muller et al. (2013) investigated 

the relation between the spatial scales and climate networks, and found that a dense climate 

network covering an entire city or neighbourhood is required to monitor and model the UHI. 

Birmingham has adopted one of the densest climate monitoring systems worldwide, with 107 

sensors.  

The advantages of using a dense climate network over only pairs of stations were 

addressed by Stewart (2007). On top of the benefits of using a dense network of sensors is the 

ability to study the intra-urban differences of the climate patterns, and even to compare between 

different cities with  a similar monitoring system, Stewart (2007) remarks.  Lelovics et al. (2016) 

note that the air temperatures in the city differ based on the properties of the urban environment 

and the characteristics of the regional climate. There were not many city scale (local scale) urban 

climate monitoring networks in Europe and in other parts of the world in service in 2016. Table 

5.1 provides a review of the past and current local scale climate monitoring networks around the 

world, and compares them in terms of the number of sites, area covered, operating time period, 

and the aim of the project with the types of the installed instrument and method of communication.  

 

Table 5.1: A review of the past and current city scale urban climate monitoring 
systems worldwide. 

Country City 
Number 

of Sites 

Area 

(km2) 

Time 

Period 

Aim, Instruments, & 

Communication 
References 

England Birmingham 107 278 
2012-

present 

meteorological data, 25 AWS 

& 82 ASM, Wi-Fi 

transmission 

(Ali et al., 2016) 

England London 91 1572 
2009-

present 

Education, different survey 

sensors, Wi-Fi transmission 

(Davies et al., 

2011) 

Finland Helsinki 102 150 
2005-

present 

Mesoscale observation, 

Vaisala AWS, Mobile phone 

network 

(Dabberdt et al., 

2005) 

Finland Turku 63 206 
2002-

2007 

Urban Climate Research, 

temperature loggers, not 

provided 

(Hjort et al., 

2011) 
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Germany Berlin 10 892 
2000-

present 

Research data, different 

sensors, Ethernet cable 

(Fenner et al., 

2001) 

Italy Florence 35 102.41 
2004-

present 

intra-urban monitoring, 

temperature & humidity 

sensors, onsite collection 

(Petralli et al., 

2011) 

USA 
Washington 

DC 
16 177 

2003-

present 

Dispersion of hazards, 

various instruments, not 

provided, 

(Honjo et al., 

2015) 

USA Oklahoma 40 1440 
2007-

2010 

atmospheric monitoring, 4 

Mesonet & 36 micronet 

stations, traffic signals 

(Basara et al., 

2011) 

USA 
St. Louise, 

Missouri 
50 170 

2008-

present 

Real time weather forecast, 

different sensors, Wireless 

(Muller et al., 

2013) 

USA 
Cambridge, 

MA 
25 18.47 

2006-

2010 

Weather monitoring, various 

sensors, Dual Wi-Fi 

(Murty et al., 

2008) 

USA 
Madison, 

Wisconsin 
151 243.54 

2012-

present 

Urban climate, 

temperature/RH dataloggers, 

not provided 

(Yang et al., 

2013) 

USA 
Detroit, 

Michigan 
32 370 

2009-

2010 

urban–rural temperature 

difference, multiple networks, 

multiple 

(Oswald et al., 

2012) 

USA 
Minneapolis–

St. Paul 
170 5000 

2011-

present 

Urban climate, temperature 

sensors, not provided 

(Smoliak et al., 

2015) 

USA 
Barrow, 

Alaska 
68 55.2 

2001-

2002 

UHI studies, HoboPro two-

channel data loggers, onsite 

computers 

(Hinkel and 

Nelson, 2007) 

USA New York, NY 75 1,214 
1997-

1998 

mesoscale analysis UHI, 

meteorological stations, 

phone cables 

(Gedzelman et 

al., 2003) 

USA 
Orlando, 

Florida 
75 287 

1999-

2001 

Urban-rural climate, HOBO 

loggers, not provided 

(Yow and 

Carbone, 2006) 

Japan Tokyo 120 2187 
2002-

2005 

Observation system, 

temperature and precipitation 

equipment, not provided 

(Yamato et al., 

2009) 

Taiwan Taipei 60 271.79 
2003- 

present 

Education, different sensors, 

school Wi-Fi 

(Chang et al., 

2010) 

China Hong Kong 105 1104 
2007-

present 

Public weather education, 

various instruments, Wireless 

or LAN 

(Hung and Wo, 

2012) 

China Shanghai 200 6340.5 
NA-

present 

Multi-purpose, different 

instruments, various methods 

(Tan et al., 

2015) 

China Beijing 185 300 
2007-

present 

Weather monitoring, AWS, 

Wi-Fi transmission 

(Yang et al., 

2013) 

Serbia Novi Sad 27 112 
2013-

present 

urban climate monitoring, 

weather stations, not 

provided 

(Šećerov et al., 

2015) 

Hungary Szeged 24 280 
2013-

present 

intra-urban excess heat 

patterns, weather stations, 

onsite 

(Gál et al., 

2016) 
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Sweden Göteborg 30 172.88 
1998-

2000 

spatial air temperature 

variations, temperature 

stations, not provided 

(Eliasson and 

Svensson, 

2003) 

S. Korea Seoul 11 606 
1999–

2002 

UHI studies, weather 

stations, onsite collection 

(Lee and Baik, 

2010) 

Singapore Singapore 35 700 
2003-

2008 

CUHI Spatial change, HOBO 

ONSET, not provided 

(Li and Roth, 

2007) 

 

 

The UHI studies that employ the air temperature within the canopy layer presented in the 

literature either lack the high spatial and temporal resolution of temperature measurements, or 

they choose specific climatic conditions and ignore others. The reviewed climatic networks in 

Table 5.1 have been employed by the researchers for different purposes, and not much attention 

was paid to deeply study the UHI. Furthermore, they have not modelled all the important 

controllable factors that potentially affect the development of UHI. For example, Busato et al. 

(2014) reported their experimental results for three years of mobile traverses, which covered 

prefixed paths in the city of Padua in Italy. However, this traversing approach does not fully explain 

the impacts of topography and the effects of different land covers. Doick et al. (2014) investigated 

the impact of Kensington Gardens, a park land area in London, and the findings showed the 

importance of vegetation in UHI mitigation. Nevertheless, the study also revealed the uncertainty 

over the variables that govern the extent of UHI. This result supports Ivajnšič et al. (2014) who 

concluded that local and regional variables have a very important role in explaining spatial 

variation in mean air temperature.  

Whilst, large scale studies of UHI have been based mainly on remotely sensed satellite 

images, they lack the temporal variation of real time LST (Sismanidis et al., Weng and Fu, 2014, 

Rogan et al., 2013, Zhang et al., 2013). A study by Ho et al. (2014) assessed the ability of three 

remote sensing-based regression models to map the peak daytime air temperature using dense 

observation weather stations. However, this study was very limited temporarily as it used only six 

satellite images and focused on extreme events of air temperature. To address this deficiency, 

HiTemp has been carried out by the BUCL, funded by NERC (BUCL, 2014a). It has provided near 

real time data from one of the densest urban meteorological networks of automatic weather 

stations worldwide (Chapman et al., 2015a).  

The HiTemp project is still ongoing since June 2012, and covers the entire conurbation of 

Birmingham. A study by Azevedo et al. (2016a) employed the HiTemp data to compare between 

the LST and high resolution air temperature observations. Their findings have concluded that the 

spatial change of LST is strongly linked to land use, whereas, the CUHI is more affected by the 

advective process. Another finding of their study is the tendency for a larger core of CUHI to 

spread to the east of Birmingham City; whilst, SUHI extends more to the west of the city. Also, 

they found that the relationship between SUHI and CUHI is strong at a neighbourhood scale, and 

limited at the city scale (Azevedo et al., 2016a). Nevertheless, this study was limited to the time 

of the satellite over pass and did not fully include the whole air temperature observations in the 
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analysis which leaves gaps in understanding the spatiotemporal change of CUHI at times other 

than satellite overpass. Furthermore, the influencing parameters on the CUHI development were 

limited to specific factors.   

 Accordingly, the aim of this chapter is to model the spatial and temporal variation of UHI 

using a dense network of meteorological sensors, and to investigate the influence of a number of 

important influencing parameters on the CUHI formation. The temporal resolution of the data 

starts from hourly basis to monthly time increment, whereas, the spatial resolution relies on the 

distribution of HiTemp stations’ locations. The influencing parameters are grouped into LULC, 

geometrical and meteorological factors and these parameters are tested to investigate their 

impact on the CUHI. 

 

5.2  Study area and Data 

5.2.1 Study area 

Birmingham was chosen as a study area as it has experienced the deployment of a dense network 

of air temperature sensors and automated weather stations. Tomlinson et al. (2012) highlighted 

that the city used to have only one weather station for urban areas and another station outside 

the city in the rural areas. The UHI studies on Birmingham are limited compared to its size and 

importance. Unwin (1980) did one of the earliest studies about Birmingham UHI by comparing the 

temperature measurements between a site in the city and a rural area. A maximum of 5 ºC UHI 

intensity was observed in settled anticyclonic conditions. Similarly, Johnson (1985b)  found  a 

maximum of 4.5 ºC UHI intensity using a mobile traverse technique. After that, Bradley et al. 

(2001) used a 1-dimesional energy balance model to capture  a maximum of 4.7 ºC SUHI.  

Recently, Tomlinson et al. (2012) identified a maximum of 5 ºC in the central business 

district during high atmospheric pressure periods, and also recorded cold spots in one park of up 

to 7 ºC lower than the City Centre. On the other hand, the influencing parameters on the CUHI 

development have been quantified by very few studies. One of them was Azevedo et al. (2016a) 

study as discussed earlier, however, this study did not include the influence of the geometrical 

parameters and anthropogenic activities on the formation of CUHI. The influencing parameters 

were limited to the atmospheric conditions, land use, and advective process. Another one is 

Bassett et al. (2016) study which was one of the very few studies to quantify the horizontal wind 

impact on the spatial distribution of CUHI in a process called Urban Heat Advection (UHA). Their 

results indicated the mean contribution of UHA to the warming of areas downwind of Birmingham 

city can be up to 1.2 ºC. Consequently, Birmingham was considered a good site to investigate 

the biophysical effects on the UHI intensity, as it provides the required data to look into the change 

of CUHI in space and time with identifying and quantifying unprecedented number of influencing 

parameters.  
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5.2.2 Data 

The air temperature data from the HiTemp project was provided by NERC for the purposes 

of this study. The climate network consists of two main types of sensors. Over 80 wireless Aginova 

Sentinel Micro (ASM) sensors record only air temperature, while, another 25 Automatic Weather 

Stations (AWS) record the main meteorological variables (Chapman et al., 2015a). All these 

stations capture the meteorological data per minute, and the data obtained for this study is from 

June 2012 to June 2014. Figure 5.1 shows the HiTemp distribution of stations inside the boundary 

of the city, and the stations’ locations were obtained from the Metadata of the project.  AWS and 

ASM are denoted with the prefix W and S respectively as shown in Figure 5.1. Schools were 

selected to host the majority of sensors as they are relatively secure and representative of their 

local environment (Chapman et al., 2015a). Also, Birmingham’s schools have a good coverage 

of the city, and are mostly connected to Wi-Fi networks for data transmission. Furthermore, the 

sensors are installed more than 20 m away from heat sources, and the ASM sensors have 

approximately 3 km average spacing (Chapman et al., 2015a).  ASM provide only temperature 

data, however, AWS give other meteorological data such as wind speed and direction which are 

considered alongside the analysis of the temperature data (BUCL, 2014a). 
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Figure 5.1: HiTemp Stations' locations in Birmingham obtained from the Metadata of 

the project. AWS and ASM are denoted with the prefix W and S respectively. 

 
The air temperature is used as an indicator of UHI, and it is the dependent variable that is 

analysed and investigated against the predicting variables of the influencing parameters. The 

influencing parameters on the formation of UHI that are used in this study can be grouped into 

three main categories: LULC, urban geometry and meteorology. There are other influencing 

parameters not modelled in this chapter such as the radiation fluxes, which will be investigated in 

the next chapter. 

 

5.2.2.1 LULC  

Four LULC data sets of Birmingham City were used to capture all the variations of the 

physical environment such as buildings, pavements, parks and water. The first set of urban data 

is the OS Master Map Topography Layer which contains information about the objects on the 

ground divided into themes and descriptive groups (Ordnance Survey, 2015). The version of the 
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OS vector data updated in June 2015 has been used as it includes data stored in geodatabases 

useful for GIS urban mapping as detailed in Figure 5.2 and Figure 5.3. The descriptive groups 

are more detailed collections of the generalised themes, and it is feasible to examine the influence 

of both. A descriptive group is the primary classification attribute of a feature, which assigns a 

feature to one or more of 21 groups (EDINA, 2015). A theme is a set of features that have been 

grouped together for the convenience of customers, and to provide a high-level means of dividing 

the data on the layer coherently or logically. As a result, one classification might be more sensitive 

to air temperature change than the other. 

 

 

Figure 5.2: Descriptive group of Birmingham’s topography layer derived from OS 

vector data updated in June 2015 (EDINA, 2016). 
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Figure 5.3: Themes of Birmingham’s topography layer derived from OS vector data 

updated in June 2015 (EDINA, 2016). 

 
The second set of data is the land use map including low density urban fabric classified by 

the European Environment Agency based on SPOT 5 images (2010) and city map (2008). These 

high resolution classes as shown in Figure 5.4  were downloaded from the European Urban Atlas 

available for large urban zones with more than 100000 inhabitants, as defined by the Urban Audit 

(EEA, 2014). 
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Figure 5.4: Urban Atlas of Birmingham’s land use classified by the European 

Environment Agency based on SPOT 5 images (2010) and city map (2008) adapted 

from (Zhang et al., 2013). 

 
The third set of data classifies the differing urban land use to eight categories, and it splits 

the urban fabric into multiple categories allowing more in depth comparison (Tomlinson et al., 

2012). It uses data from OS and the UK Centre for Ecology and Hydrology (CEH) classified by a 

Principle Component Analysis (PCA) and cluster analysis (Owen et al., 2006). The classification 

scheme was based on 27 different input attributes and the output spatial resolution is a 1 km2
 grid 

showing similar urban land morphology (for more details see (Owen et al., 2006)). The result map 

of this approach is shown in Figure 5.5 and consists of eight categories of urban land use 

classification derived per pixel based on their common land use. It can be seen that the City 

Centre is classified as urban or transport, and most of the villages and farms are close to the city’s 

boundary.    
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Figure 5.5: Spatial distribution of land use classification. It uses data from OS and 

the UK Centre for Ecology and Hydrology (CEH) classified by a Principle Component 

Analysis (PCA) and cluster analysis (Tomlinson et al., 2012). 

 
The fourth data set is the high resolution raster images (25 cm) obtained from the OS based 

on a licensed agreement for the purpose of this study (Ordnance Survey, 2014). This dataset is 

employed to georeference other data layers and interpret the classification of the mentioned LULC 

maps with the help of the ArcGIS online basemap. These basemaps and reference layers are 

http://www.esri.com/PageNotFound.aspx?item=web%3a%7b25B58905-6FA5-486D-855D-03C3454D2ADD%7d%40en
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freely available to anyone and include World Imagery, World Street Map, World Topographic, 

Ocean Basemap, and more (Esri, 2015). Figure 5.6 gives examples of images for specific 

locations identified in Figure 5.1 using the high-resolution OS images.  

 

 

Figure 5.6: OS high resolution (25 cm) aerial photographs of Birmingham (a) City 

Centre, (b) Sutton Park, (c) Sandwell Valley and (d) Woodgate Valley Country Park 

at 1:2500 scales. 
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5.2.2.2  Urban Geometry 

Two digital elevation models were prepared to derive the geometrical factors (such as sky view 

factor and shadow patterns); the DSM and DTM as shown in Figure 5.7. The 1m resolution DSM 

was obtained from the UK Environment Agency free of charge for academic purposes. It provides 

height data of buildings and other features on the ground using airborne LiDAR technology 

(Geomatics, 2014). On the other hand, OS Terrain 5 DTM is a 5 m resolution product captured 

as a triangulated irregular network (TIN), which is a three dimensional model edited to exclude 

buildings, trees and other above ground features created within a photogrammetric environment 

(EDINA, 2015).  

 

 

Figure 5.7: DSM and DTM models (metres). DSM is 1m spatial resolution derived from 

LIDAR data, and DTM is 5m pixel size captured as a triangulated irregular network. 

 

5.2.2.3  Meteorological data 

The hourly meteorological variables not available from the HiTemp were acquired from The 

Centre for Environmental Data Archival (CEDA). CEDA is a data centre for the atmospheric 

sciences run by NERC. Rainfall, cloud cover and solar radiation data for ground stations in 

Birmingham were downloaded from the Met office Integrated Data Archive System (MIDAS) 

catalogue (MIDAS, 2015). 

 



 

113 
 

5.3  Method  

Most of the input data required format conversion, extent extraction and resampling to be 

handled and overlaid with other layers in ArcGIS and other software. GIS applications have been 

commonly used to represent the current status and plan the future of the urban environment, as 

they are well suited to address spatial data and visualization issues associated with multiscale 

geographical data (Xu and Coors, 2012). Wong et al. (2016) employed the integration of GIS, 

GPS and logging sensors in microclimate monitoring to study impacts of environmental and 

human factors on UHI in Hong Kong. Furthermore, ArcGIS and ENVI (an acronym for 

"Environment for Visualizing Images") were coupled to investigate and identify land use types 

which had the most influence to the increase of ambient temperature in Singapore (Jusuf et al., 

2007).  

Initially, the air temperature data are raw data divided into daily files for individual stations. 

Erroneous readings were identified from flags assigned to each observation provided by the 

Birmingham Urban Climate Lab (BUCL) guide, and omitted. Temperature records and other 

meteorological parameters were extracted from each station for a specific time with the 

coordinates and elevation. The process of cleaning the data and extracting them was undertaken 

by a MATLAB code as described in Appendix D. These text files were exported to ArcGIS to be 

converted to feature class and raster images by Inverse Distance Weighting (IDW). The spatial 

resolution of the air temperature raster following IDW interpolation of the point measurements is 

84.15 m. This spatial resolution is similar to the topography layers pixel size in Figures 5.2 and 

5.3 that were used to process the IDW.  A statistical and spatial analysis was then performed to 

find the high intensity UHI hours. The hourly time scale is sufficient for the purpose of this study, 

and any unexpected values were investigated. Some studies used filtration schemes to 

investigate the UHI events for certain weather conditions or specific times of the year. Tomlinson 

et al. (2012) employed an atmospheric stability approach named Pasquill-Gifford stability to 

classify the weather conditions from extremely unstable to extremely stable. Their results 

averaged UHI events over four Pasquill-Gifford stability classes which are neutral, slightly stable, 

moderately stable, and extremely stable. Azevedo et al. (2016a) quantified the daytime and night-

time UHI in Birmingham using LST data obtained for only June, July and August (JJA). 

Nevertheless, this study has not set any assumptions, so all the HiTemp data were included in 

the analysis. Accordingly, the underlying assumption is that the CUHI might happen in any 

weather condition and during the day and time throughout the whole year.   

The land cover data were extracted to the extent of the study site after converting its format 

to raster images. Also, a data extractor tool called CEDA Web Processing Service (WPS) was 

used to extract the meteorological data from MIDAS for the time period and spatial range of the 

study. The high-resolution DSM model and OS Mastermap were built by mosaicking the 1 km2 

grids and converting the formats to raster images. 

The next stage is processing and modelling the influencing parameters. Land cover data 

were extracted to include all the various physical parameters. Then, geometrical factors such as 

Sky View Factor (SVF), Visible Sky (VS) and Terrain View Factor (TVF) were derived using the 
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DSM as input to the free and open source Quantum GIS (QGIS). The SVF algorithm in QGIS was 

used to derive the SVF, VS, and TVF by using the DSM as the elevation model and choosing the 

default parameters of the maximum search radius and method. Shadow patterns and illumination 

images were constructed for the days of high UHI intensity. The last stage of the method was 

building multiple linear regressions, where the relationship between air temperature and the 

variables (influencing parameters) could be explored. After building and running the regression 

models using SPSS, the models were enhanced using the backward elimination method until a 

significant model was found. The backward elimination method is an economical procedure to 

choose the best regression equation by removing the variable being investigated that has the 

highest P value until the model becomes significant (Draper, 1998). The P value (or the observed 

significance level) is the smallest fixed level at which the null hypothesis can be rejected (Dallal, 

2000). A variable is considered significant if its p-value is less than 0.05 at a confidence level 

95%, and the relationship becomes highly significant if the p-value is less than 0.01. 

 

5.4  Results and discussion 

This section discusses the temporal and spatial change of CUHI. Also, it shows the derived 

geometrical parameters as well as some of the shadow patterns. These parameters and others 

are the inputs to the regression analysis to identify the correlation between the CUHI and 

influencing parameters.  

    

5.4.1 CUHI temporal change  

The historical air temperature data (1990- 2014) for the City Centre of Birmingham were 

acquired from the Met Office (MIDAS, 2015) for the purpose of validating the use of HiTemp data 

from June 2012- June 2014. Figure 5.8 draws the averages of the maximum and minimum air 

temperatures with their trends for the period (1990- 2014). The means of the maximum and 

minimum for the 25 years are 13.01 and 6.91 ºC, respectively, with SD of 0.75 for the maximum 

temperature and 0.77 for the minimum. The HiTemp means of the maximum temperature for the 

2012, 2013 and 2014 years are 12.83, 12.40 and 13.30 ºC, and for the minimum are 6.36, 6.96 

and 7.52 respectively. Therefore, the averages of the temperatures during the period 2012- 2014 

lie within the mean and the standard deviation of the 25 years historical data. So, this 2 years 

(HiTemp Project) period can be considered typical for the period covered by the historical data 

(1990- 2014). The averages of the maximum and minimum air temperatures during the whole 

(2012-2014) period of the collected data are 12.19 and 9.68 ºC with SD 5.30 and 5.72 

respectively.   
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Figure 5.8: Historical air temperatures of Birmingham City acquired from the Met 

Office over the period (1990- 2014). 

 
Next, the data were analysed per hour to summarise the variation of CUHI, then monthly 

statistics were calculated to show the seasonal change of temperature patterns as shown in Table 

5.2. Also, extreme events were identified with the climatic condition, and the spatial distribution 

of hot spots was extracted. The CUHI was derived from the air temperature measurements by 

subtracting the maximum value from the pixel value per hour. The hourly statistical analysis of 

CUHI for 2 years of measurements has demonstrated that around 56% of total 17520 hours gave 

an air temperature variation more than 1.5 °C in the City of Birmingham. This was used to set a 

threshold of 1.5 ºC difference in temperature as a minimum variation to indicate the CUHI’s 

presence. Interestingly, the maximum CUHI intensity was in September, at 13.5 °C, and the 

lowest intensity 5 °C was in January. However, the monthly highest average CUHI 3.9 °C was 

monitored in July, whereas, the lowest average was in January by 2.3 °C. Besides, the longest 

hours of CUHI occurrence were in June by 1323 hours, and the shortest, 471 hours of occurrence 

were in February. 

 

Table: 5.2: Statistical summary of CUHI analysis calculated from HiTemp data of 
Birmingham. 

Statistics\Month Dec. Nov. Oct. Sep. Aug. Jul. Jun. May Apr. Mar. Feb. Jan. 

Count (hr) 719 853 715 806 727 686 1323 1184 1104 854 471 476 

Ave. CUHI (°C) 2.5 2.6 2.5 3.5 3.3 3.9 3 3 2.8 2.8 2.4 2.3 

Max. CUHI (°C) 9.1 6.3 6.8 13.5 7.6 13.4 9.6 10.7 7.9 12.4 6.7 5 

 

  Moreover, CUHI events with intensity over 10 °C showed that it can happen in the evening, 

night or early morning times as detailed in Table 5.3. Table 5.3 includes the date and time of the 

highest CUHI events over 10 °C with the averages of wind speed, also the times of sunrise and 

sunset were added to distinguish between the day and night (Time and Date, 2013). The extreme 

events (over 10 °C) are listed in Table 5.3 in descending order, regardless, of the dates of 
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occurrence, to show their magnitude and time. It is important to notice that none of the highest 

intensity CUHI (over 10 °C) coincided with the heat wave that affected most of the UK from 3 to 

23 July 2013. This might be due to the local instant effect of the CUHI, while the heat waves have 

larger regional influence.   

  The UHI induces more intense heat waves through the global warming in the long term, 

and the former is being referred to as either a cause or consequence of the later (Alcoforado and 

Andrade, 2008).  The Met office has declared the July 2013 heat wave as the third warmest on 

record, and this month as the warmest and sunniest for the whole UK since 2006 (Met Office, 

2015). Nevertheless, the highest temperature in 2013 recorded by the Met Office stations in 

Birmingham was 30.5 °C on the 1 August 2013 at 3 p.m. (MIDAS, 2015), while, using HiTemp 

network the highest temperature in Birmingham at the same time was 31.2 °C. Furthermore, it 

was not the highest temperature recorded by HiTemp on that day, as it recorded 32.34 °C on the 

same day (1 August 2013) at 5 p.m. This difference between Met Office and HiTemp’ readings 

might be due to the height of the sensors.  HiTemp sensors were installed at 3 m (with exceptions 

no more than 0.5 m higher or lower), while Met Office sensors  were installed almost 5 m above 

the ground level (Chapman et al., 2015b). The 3m high sensors will be more affected by 

surrounding surface heat, as they are closer to the energy sources (Chapman et al., 2015b). 

Furthermore, the Met Office stations do not cover the full variation of the temperature due to the 

limited number of stations. On the other hand, most of the extreme events in Table 5.3 coincided 

with calm (< 1 m/s) or light air (1- 2 m/s) wind speed as described by the Beaufort wind force 

scale (Met Office, 2016).  This agrees with Roth (2012), that the heat island is greatest under light 

wind conditions.  

  The CUHI events with intensity over 10 °C were investigated to figure out where they had 

peaked. Figure 5.9 gives some examples of CUHI events with intensity over 10 °C in the form of 

(year_ month_ day_ hour), also some important features included to have a spatial reference of 

the peak temperature patterns. The peak events concentrated in two main places. The first place 

lies about 6 km to the south of the City Centre, and the air temperature sensor in this area is 

S110. The HiTemp project’s metadata states that the surface cover below the sensor S110 is 

grass and asphalt (BUCL, 2014b). The sensor S110 is in a school within a dense suburban area 

as shown in Figure 5.10, and it is adjacent to urban area. The second place that the CUHI over 

10 °C peaked at, is located around 6 km south-east of the Sutton Park (see Figure 5.9). Two 

sensors are available in this area, S144 and S025 which are located at school sites. S025 is in a 

dense suburban area, while, S144 is in a suburban just next to an urban area (see Figure 5.10). 

The surface cover below the S025 sensor is made of asphalt, grass, soft asphalt, wood, and 

metal. Whereas, the surface cover below the S144 sensor is made of asphalt, canvas, astroturf 

and soft asphalt (BUCL, 2014b). The important finding in this case (CUHI > 10 °C) is that the 

temperature patterns peaked at suburban areas far from the City Centre during out of working 

hours. The occurring time of the CUHI over 10 °C events are between 4 p.m. and 6 a.m., and the 

locations are almost suburban areas. The explanation of this phenomena is that when people are 

at home, they increase the anthropogenic heat release which elevates the air temperature. 
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However, when people go to work which is mostly moving towards the City Centre this limits the 

human activities in the suburban areas.  

  Furthermore, the sensors are located at schools, and the working hours for the schools are 

usually from 9 a.m. to 4p.m. However, anthropogenic fluxes released from student’s activities and 

school’s energy consumption do not appear to have significant effect on the temperature 

magnitude. Because the temperature values did not peak at working time, and the surrounding 

areas effect seems more dominant than the impact of the local environment on a specific point of 

measurement. This highlights the success of the network configuration, as sensors where 

installed at a distance from the sources of energy. So, the high intensity fluxes from specific 

sources will not highly influence the readings of temperature, which insures no bias in the 

monitoring system.     

      

Table 5.3: Birmingham’s CUHI intensity over 10 °C events and average wind speed 

listed in descending order, and Calculated from HiTemp data. 

Date Hour Sunrise Sunset 
CUHI 

Intensity (°C) 

Ave. Wind 

Speed (m/sec.) 

04/09/2013 19 06:25 19:47 13.53 0.44 

05/09/2013 17 06:26 19:45 13.46 1.52 

01/07/2013 21 04:50 21:33 13.37 0.53 

01/07/2013 20 04:50 21:33 13.22 0.88 

01/07/2013 22 04:50 21:33 13.17 0.54 

05/09/2013 18 06:26 19:45 12.74 2.04 

04/09/2013 20 06:25 19:47 11.83 0.39 

04/09/2013 18 06:25 19:47 11.68 0.92 

03/09/2013 19 06:23 19:49 11.60 0.36 

07/09/2013 18 06:30 19:40 11.56 1.13 

03/09/2013 18 06:23 19:49 11.27 0.53 

01/07/2013 19 04:50 21:33 11.26 1.31 

01/07/2013 16 04:50 21:33 11.20 1.85 

05/09/2013 19 06:26 19:45 11.04 2.13 

04/09/2013 21 06:25 19:47 11.02 0.31 

05/09/2013 05 06:26 19:45 10.72 0.40 

05/09/2013 01 06:26 19:45 10.70 0.62 

24/05/2013 11 04:57 21:11 10.67 2.31 

01/07/2013 17 04:50 21:33 10.64 1.85 

05/09/2013 04 06:26 19:45 10.63 0.36 

05/09/2013 03 06:26 19:45 10.60 0.47 

05/09/2013 02 06:26 19:45 10.56 0.47 

01/07/2013 18 04:50 21:33 10.45 1.84 

04/09/2013 17 06:25 19:47 10.38 0.97 

04/09/2013 22 06:25 19:47 10.33 0.45 

05/09/2013 00 06:26 19:45 10.25 0.67 

16/09/2013 17 06:45 19:19 10.18 2.33 

05/09/2013 06 06:26 19:45 10.18 0.67 

04/09/2013 23 06:25 19:47 10.01 0.43 
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Figure 5.9: Examples of Birmingham’s CUHI events with intensity over 10 °C, and 

the legend title in the form of (year_ month_ day_ hour). 
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Figure 5.10: Birmingham’s land use, urban features, and specific sensors. The land 

use classes adapted from Tomlinson et al. (2012), and  the locations of the sensors 

obtained from the HiTemp project metadata.    

 

5.4.2 CUHI spatial change 

  The CUHI was found to be concentrated in the City Centre when its intensity is close to the 

mean values; however, the extreme intensities were seen to stretch to the suburban areas due 

to the weather parameters in particular, the wind. Oke (1988) states that the maximum AUHI 

develops (3- 5) hours after the sunset in clear and calm weather. The analysis of HiTemp data 
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supports Oke’s claim. However, high CUHI intensity can happen in the early morning, before 

sunset, or during the day in a cloudy weather when not much of the sun’s radiation reaches the 

ground to change the surface energy balance. The higher spatial resolution of the HiTemp air 

temperature measurements compared to the data used by Oke (1988)  were able to detect that 

high CUHI intensity can occur at almost any time of the day. Figure 5.11 gives examples of strong 

CUHI’s at the City Centre for each season, and the layer name in the legend provides the date 

and time of the image in the format of year, month, day and hour. The highest intensities of CUHI 

appear in or around the City Centre, and the size of the red spot reveals the extent of the 

coverage. However, there are some spots of high intensity CUHI away from the City Centre; this 

is mainly due to the wind speed and direction as shown in Figure 5.12. Furthermore, the lower 

temperature areas clearly appear over the grass of the Sutton Park which is the largest park in 

Birmingham that has vegetation and trees.  

  Figure 5.12 shows the wind speed and direction at the same dates and time of Figure 5.11, 

and on average for the entire Birmingham area the low wind speed coincides with high CUHI 

intensity. Local wind speed is relatively high when the hot spots are concentrated in and around 

the City Centre, however, the average wind speed for the entire city is low. Because the presence 

of high buildings traps the release of heat into the atmosphere and increases the speed of the air 

flow. Whilst, the wind direction does not impact on the CUHI intensity, it affects the size and 

distribution of the hot and cold spots. So, the CUHI intensity is high for different wind directions, 

however, the size and distribution of hot spots are fluctuated for the dates and times in Figure 

5.11 especially for (2013_9_5_7). Which shows high wind speeds outside the city and its patterns 

change in direction around the city, to create sparse hot spots in the city and away from it.  

  To investigate the daily change of CUHI, Figure 5.13 shows the movement of hot and cold 

spots over the city in different times for a selected day when the CUHI intensities are close to the 

average, as detailed in Table 5.2. The heat islands concentrate in and around the City Centre 

during the night and early morning, and they move clockwise to Sutton Park to return to the City 

Centre after the sunset. Sunrise and sunset on the 6th October 2013 were 4:53 and 21:31 

respectively (Time and Date, 2013), with 1.33 m/s average wind speed. When Sutton Park 

becomes a heat island, the City Centre works as a cool island compared with their adjacent areas. 

The daily wind speed and direction as shown in Figure 5.14 matches the same date and times of 

the daily CUHI distribution in Birmingham shown in Figure 5.13. The CUHI peaks at the City 

Centre when the wind speed is lower than 2 m/s (light air), and its direction above the city is 

heading towards the north. Usually, the wind direction is described based on where it comes from, 

so when the wind moves to the north it is called the south wind (Cermak et al., 1995). This agrees 

with the finding of  Bassett et al. (2016) who indicate that the UHA can contribute to a maximum 

of 1.2 ºC to the warming of areas downwind of Birmingham City. Other influencing parameters on 

the formation of UHI are investigated later in this Chapter. 
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Figure 5.11: Seasonal examples of strong CUHI’s at the City Centre of Birmingham 

(°C).  

 

Figure 5.12: Seasonal wind speeds (m/s) and directions in Birmingham at the same 

dates and time of Figure 5.11. 
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Figure 5.13: Example of daily CUHI change over the city of Birmingham when the 

CUHI intensity is close to the average (°C).  
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Figure 5.14: Example of daily wind speed (m/sec) and direction in Birmingham at 

the same dates and time of Figure 5.13. 
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5.4.3 Geometrical parameters derivation 

  The derivation of the geometrical parameters provided layers of Sky View Factor (SVF), 

Visible Sky (VS) and Terrain View Factor (TVF). The SVF and VS are dimensionless measures 

to estimate the visible area of the sky from an earth viewpoint (Souza et al., 2003), while, TVF is 

the opposite to them (Böhner and Antonić, 2009). Figure 5.15 shows the variation of SVF, VS 

and TVF through the entire city of Birmingham. Gal et al. (2009) verifies that the use of high 

resolution DEM is very useful to obtain a general picture of the geometrical size and shape of an 

urban environment. The derived parameters in Figure 5.15 show that the SVF (0-1) and VS (1.9-

100) values are low in the City Centre and within the dense trees areas but high in the open 

spaces. Conversely, the values of TVF are high in the City Centre and low in the open spaces, 

due to the presence of high buildings in the City Centre which do not exist in the open areas. 

Pairs of stations close to each other were chosen to investigate the impact of shadow 

patterns on air temperature. To be sure that no other functions are responsible for the variations 

in temperature, it is necessary to compare stations that are close to each other, thus eliminating 

other variables. Another challenge is that the shadow is time dependant and varies significantly 

during the day.  For these reasons, the effect of shadow on CUHI formation has been investigated 

separately from other parameters. The hill-shade tool in ArcGIS creates a shaded relief from a 

surface raster by considering the illumination source angle and shadows (ArcGIS Resource 

Center, 2011). The shadow areas can be distinguished by the black colour (Figure 5.16), and the 

areas of minimal or no shadows are scaled in shades of grey between (1- 254). The analysis of 

level of shadow did not show significant correlation with the air temperature. However, the 

presence of shade reduced the air temperature by up to 2 °C, by comparing the air temperature 

of a station in the shade and with one in no shade. Stations in Figure 5.16 a & b recorded lower 

temperatures when they are under shade compared to those exposed to the sunshine. Figure 

5.16 c & d give examples when the shade moves from one station to another, and in both cases 

the station under the shade was slightly cooler than the one exposed to the sunshine. Moreover, 

all the pairs of stations in Figure 5.16 did not show significant variation of temperature 

measurements when they are both under the shade or exposed to the sunshine at the same time. 

So, the degree of illumination does not have a noticeable impact on the temperature’s readings. 
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Figure 5.15: Birmingham’s Sky View Factor (SVF), Visible Sky (VS) and Terrain View 

Factor (TVF) derived from the DSM (Dimensionless). 
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Figure 5.16: Birmingham’s shadow and illumination patterns for pairs of stations and 

the corresponding air temperatures on the (a) 1st July 2013 at 6 am, (b) 30th 

November 2013 at 10 am, (c) 11th July 2013 at 5 am, and (d) 11th July 2013 at 7 p.m. 

 

5.4.4 Identifying influencing parameters 

The influencing parameters on the generation of CUHI could be broadly characterised into 

two classes: controllable and uncontrollable (Rizwan et al., 2008). Rizwan et al. (2008) further 

characterised these classes into permanent, temporary and cyclic effects variables. The 

controllable variables which appear to be more permanent can be either urban design and 

structure related factors such as land cover and SVF, or population related such as anthropogenic 

heat and air pollutants (Cheung, 2011). The uncontrollable factors are environment and nature 

related which seem to have temporary effects such as anticyclone conditions, seasons, wind 

speed and cloud cover (Cheung, 2011). Shalaby (2012) clarifies that the controllable factors can 

be humanly controlled to some extent, while, the uncontrollable factors are normally beyond 

people’s control. On the other hand, solar irradiation has cyclic effects on both controllable and 

uncontrollable factors, Shishegar (2014) asserts. Accordingly, this study models both the 

controllable and uncontrollable influencing parameters.  

Four days were selected to represent the four seasons in Birmingham. These days were 

chosen to have CUHI intensity between the average and the maximum monthly values as detailed 

earlier in Table 5.2, and their CUHI spatial distributions for specific times are shown in Figure 
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5.11. The independent controllable parameters are VS, Urban Atlas (UA), Topographic Themes 

(TT), Topographic Groups (TG), TVF, SVF, Land Classes (LC), DTM, DSM, and Population (PO).  

The uncontrollable independent parameters are Solar Radiation (SR), Wind Speed (WS), Relative 

Humidity (RH), and Atmospheric Pressure (PR). Accordingly, the input predictors were 14 in total, 

10 of them are controllable and 4 uncontrollable. The population parameter can refer to the 

anthropogenic heat, as more people in a place means more energy consumption. Rizwan et al. 

(2008) reports that the UHI positively correlated with the city population. Another study by Tran 

et al. (2006) assessed the effects of UHI with satellite data in twelve Asian mega cities, and stated 

that the UHI intensity positively correlated with city population.  

The dependent parameter is the air temperature (Ta) which indicates the presence of 

CUHI. The modelling of the relationship between Ta and influencing parameters was carried out 

using SPSS multiple linear regressions by stepwise elimination of non-significant parameters. 

The Ta was regressed against the influencing parameters on hourly basis. A model was 

significant if the p values were less than 0.01 for the whole model and individual parameters. 

Furthermore, the models were tested for collinearity, heteroscedacity, outliers, and normality of 

residuals as described by IDRE (2016).  

Table 5.4 gives summary statistics of the output significant regression models on the 4th of 

April 2014, when the season is spring in Birmingham. The outputs include the Pearson correlation 

coefficients of the significant individual parameters as well as the R2 values for the entire model 

for each hour of the modelled day. Furthermore, the averages of hourly weather data were 

included to identify any significant weather patterns that coincide with the presence of significant 

entire models or individual parameters. The weather averages were calculated based on the data 

acquired from AWS sensors of the HiTemp project, as they record the main meteorological 

variables. Tables 5.5, 5.6 and 5.7 contain similar information to those in Table 5.4, however, each 

table represent a sample of one of the four seasons in Birmingham.  The Pearson coefficients are 

dimensionless values ranging between-1 to 1. The positive signs of the coefficients mean positive 

correlation between that parameter and the Ta. And the negative sign of the coefficients means 

negative correlation between that parameter and the Ta.  The zero fields in the tables mean that 

parameter did not show significant correlation with the Ta, or sometimes specific parameters have 

collinearity and the less important ones were eliminated from the regression. For instance, DTM 

and DSM almost have high correlation between them (over 70%), as the only difference between 

them is that the DTM is derived without the manmade objects on the ground. Furthermore, other 

sets of highly correlated parameters were SVF and VS, DTM and PR. These were found to be 

highly correlated, and consequently they do not frequently appear all together in significant 

models. The reason for including these parameters in the regression process is that their relative 

influence was unknown. So, the only way to investigate their effects was to include them and test 

their importance. It is important to note that the land cover maps, DSM, DTM were produced a 

few years prior to the air temperature measurements and this might be a possible source of errors 

in the fit of the regression models.  
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Table 5.4 highlights the importance of the selected parameters to predict the Ta as some 

of the models have R2 just over 90%. Most of the controllable and uncontrollable parameters 

showed high significant correlation with Ta over the 24 hours on the 18th of April 2014. The 

uncontrollable parameters (SR, WS, RH, & PR) showed higher influence on the Ta than the 

controllable ones. The lowest R2 was 0.30, and the highest was 0.91, which means the influencing 

parameters could predict up to 91% of the Ta variation. Nearly all the uncontrollable parameters 

participated to form the highly significant models. The SR and PR positively contributed to Ta, 

while WS and RH negatively contributed to Ta. The RH was the biggest contributor to Ta among 

the uncontrollable parameters. On the other hand, PO was the biggest contributor to Ta among 

the controllable parameters. Most of the controllable parameters positively contributed to Ta. The 

models with the highest R2 (0.91) were predicted after the sunset, when the WS was less than 1 

m/sec and the air was moist. Lawrence (2005) explains that the air is called moist when its RH is 

more that 50%. The most important LULC predictors were LC and TG. The TG appeared to have 

more effects during the night-time than the daytime. The SR values can give indication about the 

presence of clouds during the daytime, as SR is zero or close to it at night-time and in the case 

of clouds. From the temporal variation of SR values throughout the day on the 18th of April 2018, 

it is almost a clear day. Also, the weather data in Table 5.4 shows that there is a negative 

correlation between the SR and RH, and WS is weaker during the night. These conditions are 

typical for the formation of high intensity UHI as described by Oke (1981). The highest Ta was 

11.9 ºC at 15:00, and SR peaked at 13:00 by 71.4 w/m2. 

Table 5.5 gives the summary statistics of regression modelling on the 6th of July 2013 when 

it is summer in Birmingham. The highest R2 was 0.71, and the lowest was 0.34. The uncontrollable 

parameters are still dominant in the significant models, with new controllable parameters 

appearing that were not significant in Table 5.4. So, DTM and DSM appeared in few models to 

negatively contribute to Ta. In general, most of the important correlations with Ta and the 

significant parameters were the same as in Table 5.4. However, a small shift towards the 

controllable parameters having more influence can be seen in Table 5.5 compared to Table 5.4.  

In addition to DTM and DSM, UA and TVF negatively contributed to the Ta. The most important 

LULC predictors were LC and UA. The LC seems to have more effects during the night-time, 

whereas, the WS noticeably affected the models during the daytime. The R2 values show a 

pattern; they decreased with the time. So, they were relatively higher at the beginning of the day 

(00:00) in Table 5.5, and went down at the end of the day (23:00). From the weather averages, 

the Ta increased after the sun rise, while, the RH decreased, and the WS increased. The highest 

Ta was 25.2 ºC at 17:00 and 18:00, while the highest irradiance was 80 W/m2 at 12:00 (see Table 

5.5).   

Table 5.6 shows the outputs of modelling the influencing parameters on the 5th of 

September 2013, when it is autumn. The R2 values fluctuated from 0.24 to 0.84. The most 

dominant controllable parameter is PO, whereas, RH is still on top of the uncontrollable 

parameters. Table 5.6 reflects more role for the controllable parameters to form the significant 

models compared to Tables 5.5 & 5.4. The most important LULC predictor was LC, while, DTM 
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was the most important topographic parameter. The DTM appeared to influence the models 

during the daytime more than the night-time. The highest Ta was 21.7 ºC at 16:00 and 18:00, 

while the highest irradiance was 64.4 W/m2 at 11:00. The PR recorded low values in Table 5.6 

compared to Tables 5.4, 5.5, and 5.7, as it did not cross 1000 hPa (HectoPascals). The standard 

PR at sea level is 1013 hPa, and the ascending and descending air causes areas of high and low 

pressure on the Earth’ surface (Met Office, 2013). So, the air ascends when it is warm leading to 

low pressure at the surface, which leads to unsettled weather conditions (Met Office, 2013). The 

WS went over 2 m/s for two hours (19:00 & 20:00), and its correlation with Ta fluctuated from 

negative to positive.    

  On the other hand, a winter day on the 1st of December 2013 was modelled, and the 

regression outputs are summarised in Table 5.7. The regression models could explain up to 95% 

of the Ta variation, as the R2 at 16:00 was 0.95. And at least 40% of the dependant variable (Ta) 

could be explained by the predictors, which reveals the significance of the influencing parameters 

entered the regression process. The uncontrollable parameters were dominant in the significant 

models. PO, LC, and TT dominated the controllable parameters. The highest Ta was 9.4 ºC at 

14:00, and the lowest was 4.4 ºC at 20:00. The solar irradiation did not last for long, and peaked 

at 13:00 by 13.4 w/m2. The RH did not go below 74%, and the WS was over 1 m/s during the first 

half of the day. Accordingly, this day was a typical winter day, with a little sunshine and a lot of 

moisture in the cold air. Nearly 60% of the significant models in Table 5.7 have R2 values over 

0.7, and more than half of them with R2 over 0.8.  
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Table 5.4: A summary of the regression models of the controllable and uncontrollable influencing parameters on the formation of 
Birmimgham’ CUHI on the 18th of April 2014. 

hr. 

Pearson correlation coefficients 

Regression equations 
R 

Square 

Hourly weather data averages 

VS UA TT TG TVF SVF LC DTM DSM PO SR WS RH PR 
Ta 

(ᴼC) 
SR 

(W m-2) 
PR 

(hPa) 
RH 
(%) 

WS 
(m s-

1) 

0 0 0 0 0 
0.07 

0 
0.34 

0 0 
0.50 

0 0 
-0.33 

0 
7.1+2×10-5PO+0.01LC+0.1TVF-0.01RH 0.30 

6.5 0.0 1003.6 76.1 1.8 

1 0 0 0 0.01 0 
-0.08 

0.36 0 0 
0.54 

0 
-0.16 -0.50 

0 
12.7+2.6×10-5PO+0.01LC-0.07SVF+0.004TG-0.01RH-0.01WS 0.51 

6.0 0.0 1003.5 79.8 1.8 

2 0 0 0 0.09 
0.09 

0 0.32 0 0 
0.49 

0 
-0.32 -0.54 0.19 20+1.3×10-5PO+0.02LC+0.1TVF+0.0TG-0.8RH+0.05PR-0.08WS 0.62 

5.6 0.0 1003.7 83.7 1.5 

3 0 0 0 0 0 0 0 0 0 
0.39 

0 
-0.38 -0.78 0.14 38.7+4.1×10-6PO-0.2RH-0.02PR-0.2WS 0.67 

5.0 0.0 1004.2 83.6 1.1 

4 0 0 0 0 0 0 0 0 0 
0.39 

0 
-0.28 -0.58 0.13 -5.4-1.3.1×10-5PO-0.2RH+0.03PR-0.3WS 0.53 

4.5 0.0 1004.1 85.2 0.9 

5 0 0 0 0.09 0 0 0 0 0 
0.41 -0.02 -0.1 -0.83 0.30 61.9+2.4×10-5PO+0.004TG-1.9SR-0.2RH-0.04PR+0.2WS 0.85 

4.1 3 1004.4 83.2 0.8 

6 0 0 0 0 0 0 0 0 0 
0.34 0.26 

0 
-0.88 0.31 44.9+1.9×10-5PO-0.16RH-0.03PR+0.007SR 0.83 

4.4 64 1005.0 81.4 0.7 

7 0 0 0 0 0 
0.06 0.13 

0 0 0 
0.79 -0.11 -0.69 0.78 -33.3+0.008LC+0.03SVF-0.06RH+0.04PR+0.03SR-0.07WS 0.86 

6.0 193 1005.5 71.5 1.5 

8 0 -0.05 0 0 0 0 0.37 -0.65 0 0 
0.60 

0 
-0.44 

0 
11.1-0.004DTM+0.02LC-0.002UA-0.07RH-0.01SR 0.70 

7.0 351 1007.7 59.7 1.9 

9 0 0 0 0 0 0 0 0 0 
-0.15 0.62 -0.08 0.08 0.68 -67.1-2.3×10-5PO+0.08PR+0.009SR-0.04RH-0.08WS 0.68 

8.0 491 1006.4 53.7 2.0 

10 0 0 0 -0.03 0 0 -0.06 0 0 0 
0.46 -0.31 -0.50 0.50 -31.2-0.04LC-0.005TG-0.13RH+0.05PR+0.02SR-0.1WS 0.61 

8.9 618 1006.4 50.4 1.8 

11 0 0 0 0 0 0 0 0 0 
0.19 0.15 -0.03 -0.72 

0 
19.1+2.6×10-5-0.2RH-0.28WS+0.01SR 0.77 

9.9 615 1006.3 45.9 2.0 

12 0 0 0 0 0 0 
0.23 

0 0 
0.31 0.55 -0.17 -0.72 0.48 -54.1-1.5×10-5PO-0.01LC-0.1RH-0.39WS+0.07PR-0.004SR 0.63 

10.8 691 1006.2 40.2 1.9 

13 0 0 0 0 0 0 0.22 0 0 
0.32 -0.05 -0.06 -0.76 -0.03 -35.6-1.4×10-5PO-0.01LC-0.2RH+0.06PR-0.1WS+0.006SR 0.74 

11.3 714 1006.1 38.7 1.8 

14 0 0 0 0 0.11 0 
0.20 

0 0 
0.25 0.05 -0.35 -0.69 -0.02 -3.4-1.7×10-5PO+0.08TVF-0.0LC-0.2RH-0.3WS+0.02PR+0.00SR 0.58 

11.7 611 1005.9 39.0 1.5 

15 0 0 0.11 0 0 0 0.50 0 0 
0.63 

0 
-0.27 -0.68 0.33 -39.5+7.9×10-6PO+0.02LC+0.008TT-0.1RH+0.06PR-0.1WS 0.79 

11.9 486 1005.6 39.1 1.7 

16 0 -0.07 0 0 0 0 0 
-0.26 

0 0 
0.13 -0.08 -0.83 

0 
18.9-0.002DTM-0.002UA-0.2RH-0.007SR-0.08WS 0.77 

11.8 379 1005.2 40.1 1.9 

17 0 0 0 0 0.11 0 0.26 0 0 
0.38 

0 
-0.28 -0.72 0.12 -21.7-7.6×10-6PO+0.04TVF-0.007LC-0.2RH+0.04PR+0.02WS 0.68 

11.6 234 1004.9 41.3 1.5 

18 0 0 0 0.09 0.07 0 0 0 0 
0.44 0.11 -0.01 -0.63 0.49 -26.7+3.8×10-6PO+0.1TVF+0.0TG-0.2RH+0.04PR-0.1WS+0.1SR 0.68 

11.0 83 1004.9 44.6 1.5 

19 0 0 0 0.11 0 0 0 0 0 0 
-0.05 

0 
-0.89 0.25 -21.7+0.002TG-0.16RH+0.04PR-0.6SR 0.86 

9.9 9 1005.0 48.2 1.2 

20 0 0 0 0 0 0 0 0 0 0 
0.18 0.35 -0.91 0.20 

-48.6+3×10-6PO-0.2RH+0.07PR-0.18WS-3SR 0.91 8.8 0.0 1005.3 53.5 0.9 

21 0 0 0 0 0 0 0 0 0 0 0 
0.40 -0.95 0.18 1.5-0.24RH-0.14WS+0.02PR 0.91 

7.6 0.0 1005.3 60.1 0.9 

22 0 0 0 0.12 0 0 0.52 0 0 
0.64 

0 
0.53 -0.04 

0 
6.8+6.1×10-5PO+0.08LC+0.01TG+0.9WS-0.04RH 0.57 

6.7 0.0 1005.2 77.8 1.0 

23 0 0 0 0 0 0 0 0 0 
0.66 

0 
0.41 -0.94 0.15 -8.5+2.9×10-6PO-0.2RH+0.03PR-0.1WS 0.90 

5.8 0.0 1005.2 70.9 0.9 
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Table 5.5: A summary of the regression models of the controllable and uncontrollable influencing parameters on the formation of 
Birmimgham’ CUHI on the 6th of July 2013. 

hr. 
Pearson correlation coefficients 

Regression equations 
R 

Square 

Hourly weather data averages 

VS UA TT TG TVF SVF LC DTM DSM PO SR WS RH PR 
Ta 

(ᴼC) 
SR 

(W m-2) 
PR 

(hPa) 
RH 
(%) 

WS 
(m s-1) 

0 0 0 0.14 0 0 0 
0.52 -0.39 

0 
0.65 

0 0 
-0.73 

0 
21.1+4×10-5PO+0.06LC-0.003DTM+0.04TT-0.07RH 0.61 

16.9 0.0 1015.0 75.3 0.5 

1 0 0 0 0 0 0 0.57 0 0 
0.70 

0 0 
-0.80 0.35 -28.1+4×10-5PO+0.06LC-0.1RH+0.05PR 0.71 

16.4 0.0 1012.2 77.9 0.8 

2 0 0 0 0 0 0 0.52 0 0 
0.63 

0 0 
-0.80 

0 
24.7+1.7×10-5PO+0.04LC-0.1RH 0.67 

15.8 0.0 1012.1 83.1 0.8 

3 0 0 0 0 0 0 -0.25 
-0.20 

0 
-0.29 

0 0 
0.59 0.03 89.3+2.4×10-5PO-0.01DTM-0.03LC+0.2RH-0.09PR 0.46 

13.7 0.0 1012.2 85.1 0.9 

4 0 0 0 0 0 0 
0.53 

0 0 
0.66 0.29 

0 
-0.76 0.17 5.9+2.4×10-5PO+0.05LC-0.09RH+0.65SR+0.02PR 0.68 

14.9 4 1012.2 84.8 0.7 

5 0 0 0 0 
0.09 

0 
0.50 

0 0 
0.65 

0 
0.58 

0 
-0.01 66.6+5.4×10-5PO+0.07LC+0.2TVF+0.7WS-0.05PR 0.61 

14.5 44 1012.5 94.0 0.7 

6 0 0 0 0 0 0 
0.42 -0.01 

0 
0.62 0.22 -0.01 -0.75 

0 
25+2.8×10-5PO+0.003DTM+0.02LC-0.13RH-0.67WS-0.03SR 0.71 

14.9 158 1012.6 78.6 0.9 

7 0 0 0 0 0 0 0 0 0 
0.56 0.11 0.11 -0.64 0.31 -56.4+4.7×10-5PO-0.2RH+0.09PR-0.06SR-0.79WS 0.59 

16.6 333 1012.7 23.0 1.2 

8 0 -0.01 0 0 0 0 0 0 0 
0.56 0.27 0.46 -0.69 

0 
23.9+3×10-5PO-0.006UA-0.13RH+0.32WS+0.02SR 0.58 

18.3 491 1012.8 61.5 1.3 

9 0 0 0 0 0 0 0.28 0 -0.55 0 
0.4 0.01 -0.74 

0 
30.1-0.004DSM+0.009LC-0.19RH+0.33WS+0.01SR 0.67 

19.5 604 1012.9 59.6 1.4 

10 0 0 0.09 0 0 0 0 0 0 
0.34 0.41 

0 
-0.69 0.79 -202+1.9×10-5PO+0.02TT+0.22PR+0.007SR+0.03RH 0.66 

20.4 619 1012.7 57.5 1.4 

11 0 0 0 0 0 0 0 0 0 
0.35 0.46 -0.04 

0 
0.71 -109.3+1.8×10-5PO+0.13PR+0.006SR-0.14WS 0.55 

21.2 773 1012.7 52.9 1.7 

12 0 0 0 0 0 0 0 0 0 
0.40 0.47 -0.21 

0 
0.67 -91.1+1.9×10-5PO+0.11PR+0.006SR+0.15WS 0.54 

22.2 800 1012.6 50.5 1.1 

13 0 0 0.1 0 0 0 0 0 0 
0.39 0.28 0.13 -0.52 0.72 -114.3+1.9×10-5PO+0.01TT+0.14PR-0.2WS+0.004SR-0.04RH 0.59 

23.2 760 1012.1 47.7 1.8 

14 0 0 0.08 0 0 0 0 0 0 
0.33 0.53 0.22 -0.59 0.60 -46+1×10-5PO+0.01TT-0.07RH+0.02SR+0.07PR-0.06WS 0.57 

23.8 766 1011.9 45.0 1.6 

15 0 0 0 0 0 0 0 0 0 
0.38 0.52 0.34 -0.60 0.63 -87.4+1.4×10-5PO+0.1PR+0.03SR-0.03RH+0.04WS 0.63 

24.6 645 1011.7 41.9 1.4 

16 0 -0.04 0 0 -0.04 0 0 0 0 0 
0.40 

0 0 
0.60 -80.4-0.002UA-0.09TVF+0.1PR+0.02SR 0.43 

24.9 545 1011.6 41.0 1.2 

17 0 -0.04 0 0 0 0 0 0 
-0.58 

0 
0.35 -0.03 -0.32 0.75 -149-0.001DSM-0.002UA+0.2PR+0.02SR-0.2WS-0.007RH 0.64 

25.2 405 1011.6 40.6 1.0 

18 0 0 0 0 0 0 0 0 0 
0.07 0.43 

0 
-0.27 0.63 -100.5-1.3×10-5PO+0.13PR+0.02SR-0.03RH 0.51 

25.2 214 1011.8 40.8 1.1 

19 
0.03 

-0.03 0 0 0 0 0.27 0 
-0.56 0.1 0.42 

0 
-0.54 0 30.2-3×10-5PO -0.008DSM+0.03LC-0.005UA+0.001VS-0.1RH+0.02SR 0.53 

24.8 79 1012.1 43.1 0.9 

20 0 0 0 0 0 0 0.31 0 
-0.55 0.21 0.45 

0 
-0.42 0.44 -37.4-2.5×10-5PO -0.006DSM+0.03LC-0.05RH+0.67SR+0.06PR 0.52 

23.9 16 1012.4 50.0 0.7 

21 0 0 0 0 0 0 0.28 0 0 0 
0.31 0.5 

0 
0.40 -34.3+0.07LC+0.66WS+10.4SR+0.06PR 0.34 

22.4 0.0 1013.2 84.0 1.0 

22 0 0 0 0 -0.05 0 0.21 
-0.58 

0 0 0 
0.24 

0 0 
22.5-0.02DTM+0.04LC-0.3TVF+0.12WS 0.35 

20.6 0.0 1013.7 84.0 1.2 

23 0 0 0 -0.03 -0.06 0 0 
-0.46 

0 
0.01 

0 
-0.15 -0.28 

0 
37.3-0.01DTM-6.4×10-5PO-0.32TVF-0.01TG-0.2RH-0.5WS 0.39 

18.8 0.0 1014.2 75.7 1.2 
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Table 5.6: A summary of the regression models of the controllable and uncontrollable influencing parameters on the formation of 
Birmimgham’ CUHI on the 5th of September 2013. 

hr. 

Pearson correlation coefficients 

Regression equations 
R 

Square 

Hourly weather data averages 

VS UA TT TG TVF SVF LC DTM DSM PO SR WS RH PR 
Ta 

(ᴼC) 

SR 
(W m-

2) 

PR 
(hPa) 

RH 
(%) 

WS 
(m s-1) 

0 0 0 0 0 0 0 
0.38 

0 0 
0.59 

0 
0.53 -0.69 0.26 -60.5+6×10-5PO+0.02LC-0.09RH+0.08PR+0.5WS 0.59 

16.7 0.0 996.7 70.9 0.7 

1 0 0 0 0 0 0 0 0 0 
0.56 

0 0 
-0.71 0.20 -76.8+3.3×10-5PO-0.13RH+0.1PR 0.57 

16.0 0.0 996.3 73.4 0.6 

2 0 0 0 0 0 0 0.29 0 0 
0.50 

0 
0.29 -0.76 0.19 -10.4+2.5×10-5PO-0.03LC-0.2RH-0.96WS+0.04PR 0.61 

15.0 0.0 995.8 76.0 0.4 

3 0 0 0 0 0 0 0.28 0 0 0 
0.11 

0 
-0.80 0.25 -78.8-0.05LC-0.19RH+0.1PR+56.07SR 0.65 

14.0 0.0 995.3 79.9 0.4 

4 0 0 0 0 0 0 0 
-0.31 

0 0 0 
0.1 -0.73 

0 
31.5-0.004DTM-0.21RH-1.5WS 0.59 

13.2 0.0 994.5 82.6 0.3 

5 0 0 0 0 0 0 
0.31 -0.43 

0 
0.46 0.52 0.41 -0.80 

0 
26.5+4.7×10-5PO-0.001DTM-0.027LC-0.19RH+1.33WS+10.5SR 0.70 

12.4 0.0 994.4 85.7 0.4 

6 0 0 0 0.11 0 0 
0.38 

0 0 
0.57 

0 
-0.13 -0.78 0.25 92+4.8×10-5PO+0.03LC+0.01TG-0.2RH-0.06PR-0.7WS 0.67 

12.1 31 994.3 85.4 0.4 

7 0 0 0 0.13 
0.01 

0 
0.40 -0.01 

0 
0.57 

0 
-0.02 -0.63 

0 
20.8+9.2×10-5PO+0.01DTM+0.1LC+0.03TG+0.35TVF-0.16RH+0.5WS 0.53 

13.5 150 994.6 78.0 0.7 

8 0 0 0 
0.01 

0 0 0.37 -0.03 0 
0.48 0.12 

0 0 0 
11+9.6×10-5PO+0.1LC+0.005DTM+0.02TG+0.05SR 0.30 

16.3 310 994.7 92.8 1.3 

9 0 0 0 0.09 0 0 0.41 0 0 0 
0.13 -0.27 -0.69 0.45 -41.7+0.05LC+0.007TG-0.13RH+0.07PR+0.06SR+0.07WS 0.56 

18.3 482 994.6 63.6 1.4 

10 0 -0.06 0.11 0 0.09 0 0.41 -0.23 0 
0.59 

0 
-0.59 -0.70 

0 
24+1.5×10-5PO+0.05LC+0.001DTM+0.2TVF+0.03TT-0.004UA-0.1RH-0.3WS 0.60 

19.5 576 994.4 60.4 1.3 

11 0 0 0 0 0 0 0.23 -0.49 0 
0.32 0.31 

0 
-0.87 

0 
28.2-0.001DTM-4.4×10-6PO+0.03LC-0.14RH+0.001SR 0.76 

20.0 644 994.0 60.0 1.5 

12 0 0 0 0 0 0 0 -0.45 0 
0.22 0.04 

0 
-0.76 0.45 -128.4-0.003DTM-1.1×10-5PO-0.14RH+0.16PR-0.005SR 0.75 

20.5 537 993.4 58.2 1.7 

13 0 0 0 0 0 0 0 0 0 
0.31 -0.32 

0 
-0.83 

0 
36.8-2.6×10-5PO-0.26RH-0.02SR 0.84 

20.7 524 993.5 56.5 1.7 

14 0 0 0 0 0 0 0 
-0.44 

0 0 
-0.52 0.07 -0.14 

0 
22.8-0.004DTM-0.02SR+0.1WS-0.009RH 0.32 

21.1 396 993.1 49.6 1.4 

15 0 0 0 0.05 0 0 0.13 
-0.45 

0 
0.01 

0 
0.02 

0 0 
23.7-0.01DTM-2.6×10-5PO+0.03LC+0.009TG-0.14WS 0.24 

21.6 519 992.7 44.6 1.6 

16 0 0 0 0 0 0 0.09 
-0.55 

0 
-0.06 0.23 0.26 -0.25 

0 
25.5-0.01DTM-3.2×10-5PO+0.03LC+0.13WS-0.03RH+0.005SR 0.37 

21.7 292 992.4 46.7 1.7 

17 0 0 0 0 0 0 0 0 
-0.50 -0.18 0.38 0.26 -0.07 

0 
27.3-0.02DSM-6.8×10-5PO+0.68-0.1RH+0.2SR 0.41 

21.2 122 992.3 52.4 1.5 

18 
0.05 

0 0 0 0 0 -0.08 0 
-0.50 -0.20 0.37 

0 
-0.17 

0 
33.4-0.01DSM-9.3×10-5PO+0.003VS-0.03LC-0.17RH+0.29SR 0.41 

19.6 40 992.4 62.2 1.9 

19 
0.06 

0 0 0 0 0 -0.15 
-0.49 

0 
-0.26 -0.13 

0 0 0 
25.3-0.03DTM-9.7×10-5PO-0.05LC+0.002VS-25.4SR 0.47 

17.1 1 992.9 74.2 2.1 

20 
0.05 

0 0 0 0 0 -0.1 0 
-0.52 -0.25 

0 
0.05 -0.28 

0 
30.4-0.01DSM-7.8×10-5PO-0.04LC+0.002VS-0.15RH+0.07WS 0.45 

14.9 0.0 993.2 76.5 2.1 

21 
0.04 

0.01 0 0 0 0 0 0 
-0.58 -0.09 

0 
-0.07 -0.20 

0 
23.7-0.01DSM-4.4×10-5PO+0.002VS-0.006UA-0.09RH+0.04WS 0.43 

14.0 0.0 993.0 74.6 1.8 

22 
0.04 

0.01 0 0 0 0 0 0 
-0.58 -0.10 

0 
-0.11 -0.22 

0 
22.9-0.01DSM-4×10-5PO-0.005UA+0.002VS-0.09RH+0.04WS 0.45 

13.6 0.0 992.7 74.2 1.5 

23 0 0.01 0 0 0 0 0.06 
-0.56 

0 
-0.09 

0 
0.13 -0.11 

0 
19-0.01DTM-3.2×10-5PO+0.008LC-0.002UA-0.05RH+0.08WS 0.41 

13.4 0.0 992.6 72.4 1.7 
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Table 5.7: A summary of the regression models of the controllable and uncontrollable influencing parameters on the formation of 
Birmimgham’ CUHI on the 1st of December 2013. 

hr. 
Pearson correlation coefficients 

Regression equations 
R 

Square 

Hourly weather data averages 

VS UA TT TG TVF SVF LC DTM DSM PO SR WS RH PR 
Ta 

(ᴼC) 
SR 

(W m-2) 
PR 

(hPa) 
RH 
(%) 

WS 
(m s-1) 

0 0 0 0 0 0 0 0 0 0 
0.15 

0 
0.51 -0.62 0.84 -127.5+8.3×10-6PO+0.12PR+0.39WS+0.1RH 0.91 

6.2 0.0 1014.6 82.8 1.3 

1 0 0 0 0 0 0 0.22 0 0 0 0 0 
-0.83 0.78 -75.7-0.004LC-0.32RH+0.1PR 0.84 

6.7 0.0 1014.5 80.1 1.5 

2 0 0 0.07 0 0 0 0.33 0 0 0 0 
0.49 -0.94 0 31.5+9.6×10-6PO+0.008LC+0.008TT-0.31RH+0.06WS 0.90 

7.2 0.0 1014.4 79.0 1.7 

3 0 0 0 0 0 0 0 0 0 
0.47 

0 
0.28 -0.85 0.32 9.5-1.1×10-5PO-0.24RH+0.016PR-0.012WS 0.77 

7.4 0.0 1014.4 78.5 1.8 

4 0 -0.07 0 0 0 0 
0.35 -0.05 

0 
0.42 

0 
0.11 -0.80 

0 
21.6+3×10-6PO+0.013LC-0.002DTM-0.001UA-0.18RH+0.05WS 0.78 

7.4 0.0 1014.4 78.6 1.7 

5 0 0 0 0 0 0 
0.40 

0 
-0.18 0.42 

0 
-0.08 -0.86 

0 
20.7-3.2×10-6PO+0.005LC-0.001DSM-0.17RH+0.04WS 0.80 

7.4 0.0 1014.4 78.5 1.9 

6 0 0 0 0 0 0 
0.39 

0 0 
0.45 

0 
0.28 -0.91 -0.13 -10-4.6×10-6PO+0.003LC-0.19RH+0.03PR+0.07WS 0.89 

7.4 0.0 1014.4 76.8 1.9 

7 0 0 0 0 0 0 
0.46 

0 0 
0.45 

0 
0.38 -0.82 0.35 -13+0.003LC+1.52×10-6PO-0.12RH+0.03PR+0.1WS 0.84 

7.2 0.0 1014.8 77.0 1.5 

8 0 0 0 0 0 0 0.26 0 0 
0.26 

0 
0.15 -0.83 -0.16 -24.9-7.16×10-6PO+0.003LC-0.18RH+0.05PR+0.1WS 0.84 

7.5 4 1015.4 76.2 1.3 

9 0 0 0 0 0 0 0 0 -0.25 0 
0.23 

0 
-0.49 

0 
14.4-0.002DSM-0.09RH+0.12SR 0.60 

7.7 31 1015.0 75.6 1.0 

10 0 0 0 0 0 0 0.35 0 0 
0.35 -0.08 0.27 -0.52 0.56 -28.8-7×10-6PO+0.003LC+0.043PR-0.083RH+0.038WS-0.012SR 0.65 

8.3 61 1016.4 74.1 1.0 

11 0 0 0 0 0 0 0.21 0 0 
0.27 -0.09 -0.12 -0.42 0.59 -49.9-5.8×10-6PO+0.002LC+0.064PR-0.088RH+0.038WS-0.013SR 0.74 

8.4 65 1016.7 77.8 1.5 

12 0 0 -0.03 0 0 0 
-0.03 

0 0 
0.04 -0.18 

0 
-0.43 0.24 -35.2-5.62×10-6PO-0.006LC-0.005TT-0.092RH+0.05PR+0.017SR 0.66 

8.6 50 1016.4 79.1 1.4 

13 0 0 0 0 0 0 0 0 0 
0.35 0.31 0.08 -0.84 

0 
25.9-1.13×10-5PO-0.22RH+0.013SR+0.023WS 0.74 

9.3 134 1016.3 75.7 1.3 

14 0 0 0 0 0 0 0 0 0 
0.13 0.02 0.29 -0.84 

0 
22.3-1.6×10-5PO-0.17RH+0.02SR+0.037WS 0.79 

9.4 85 1016.4 74.2 0.8 

15 0 -0.08 0 0 0 0 0.47 0 0 
0.50 0.39 0.45 -0.84 0.19 25.4+7.2×10-6PO+0.02LC-0.001UA-0.11RH+0.13WS+0.03SR-0.008PR 0.78 

9.2 39 1016.4 74.1 0.7 

16 0 0 0 0 0 0 0.40 
0.14 

0 
0.60 -0.21 0.36 -0.94 

0 
22.42+1.42×10-5PO+0.002DTM-0.006LC-0.19RH+0.28WS-0.65SR 0.95 

8.0 07 1016.7 78.2 0.6 

17 0 0 0.12 0 0 0 0.29 0 0 
0.53 

0 
0.46 -0.68 -0.01 1.5+3×10-5PO+0.03TT-0.01LC-0.15RH+0.24WS+0.02PR 0.53 

6.5 0.0 1017.2 83.5 0.5 

18 0 0 0.12 0 0 0 0.34 0 0 
0.56 

0 
0.35 -0.64 0.24 -77.4+3.4×10-5PO-0.02LC+0.04TT-0.22RH+0.1PR+0.46WS 0.58 

5.6 0.0 1017.5 86.2 0.6 

19 0 0 0.13 0 0 0 0.33 0 0 
0.58 

0 
0.33 

0 
0.24 -42.9+7.7×10-5PO+0.08TT+0.02LC+0.62WS+0.04PR 0.40 

4.6 0.0 1018.2 92.0 0.5 

20 0 0 0 0 0 0 0.28 0 0 
0.46 0.45 0.49 -0.60 0.35 -89.4+3.1×10-5PO-0.03LC-0.3RH+0.12PR+18.6SR+0.56WS 0.60 

4.4 0.0 1018.6 90.0 0.7 

21 0 0 0.01 0 0 0 0.31 0 0 
0.42 

0 
0.02 -0.58 0.60 -228.7+2.2×10-5PO-0.02LC+0.04TT+0.26PR-0.34RH+0.93WS 0.65 

4.6 0.0 1018.7 90.6 0.7 

22 0 0 0.01 0 0 0 0 0 0 
0.45 

0 
0.02 -0.67 0.59 -99.5+8.3×10-6PO+0.02TT+0.12PR-0.23RH+0.3WS 0.66 

5.2 0.0 1018.9 89.6 0.5 

23 0 0 0 0.11 0 0 0 0 0 
0.45 

0 0 
-0.63 0 -51.1+6.6×10-6PO+0.005TG+0.07PR-0.15RH 0.59 

5.5 0.0 1019.3 89.6 0.3 
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The ability of the regression models to predict the Ta means that they are applicable to 

identify the excessive heat intensity (CUHI). As the CUHI is just the difference in Ta between two 

points, however, it was better to use the individual Ta as dependant parameters. This is because 

the magnitude of influencing parameters is local and changes spatially. So, it was not logical to 

use the CUHI magnitude instead of Ta, as the CUHI includes the influence of two different points.  

The derived models could explain the variation in Ta day and night-time, and consequently 

they are able to predict the day and night CUHI. If the sky is cloudy during the day preventing the 

sunshine from reaching the ground, the situation during the day will be like the night-time, and the 

only difference is the light which does not have noticeable impact on the CUHI, as proved earlier. 

From Tables (5.4- 5.7), the influencing parameters do not have the same influence during the day 

and night time. So, some parameters have shown to have notable impact during the night, and 

others dominated during the day-time. These outcomes agree with the results of Ryu and Baik 

(2012) that in the daytime the impervious surfaces contribute positively to the UHI, and the 3D 

urban geometry contributes negatively. 

Furthermore, the uncontrollable parameters were dominant over the controllable 

parameters in the significant models. The RH is the most distinguished uncontrollable predictor, 

and the PO is the highly significant controllable predictor. The importance of weather conditions 

in the formation of CUHI agrees with the derivation of thermal indices discussed earlier in the 

literature such as HI and wind chill.  Heat index and wind chill combine the humidity and wind 

speed respectively with other weather and physiological parameters, to assess the thermal stress 

on human bodies (Steadman, 1979, Steadman, 1971). In general, the 14 predictors could explain 

up to 0.91, 0.71, 0.84 and 0.95 of the Ta in spring, summer, autumn and winter respectively. 

Moreover, the weather averages gave an indication about the climatic condition for each hourly 

regression model. This highlighted the importance of the synoptic weather to model the CUHI, 

though the changeable (controllable) hourly parameters played a major role to make up the 

significant models after the uncontrollable ones. 

 

5.5 Conclusions  

The use of HiTemp data has improved the spatiotemporal modelling of CUHI, with its high-

density network of sensors which enabled the production of high spatial and temporal resolution 

CUHI images. Furthermore, the height of the stations provided information about the canopy layer 

under the level of buildings close to the energy sources. This chapter provided unprecedented in-

depth modelling of the CUHI, though the reasonable number of past and current dense 

meteorological network worldwide reviewed in Table 5.1. Nevertheless, none of the recent or past 

UHI studies within the canopy layer presented in the literature have used such a high spatial and 

temporal resolution of temperature measurements to study the CUHI in different climatic 

conditions. Furthermore, the number of controllable and uncontrollable parameters are 

unprecedented to be used in a single study. 
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It was found that the CUHI occurs in all seasons, day and night based on the climate 

condition. However, the high intensity CUHI happens during the clear and calm weather. The 

CUHI was found in approximately 56% of the total hours during the study period (June 2012 – 

June 2014). The maximum CUHI intensity in Birmingham during the period of the study was 13.53 

°C. The wind speed and direction have important impact on the spatial distribution of the hot 

spots, as well as the extent of the CUHI. The CUHI occurred in the suburban areas as well as the 

urban areas due to the presence of impervious surfaces and anthropogenic activities. The 

extreme CUHI events (UHI > 10 °C) happened at suburban areas far from the City Centre during 

the period of out of working hours. The occurring time of the UHI over 10 °C events were between 

4 p.m. and 6 am, and the locations are almost all suburban areas.  

 The City Centre showed the lowest values of SVF and VS due to high buildings, which 

provided the shade to reduce the air temperature by up to 2 °C. Fourteen parameters were 

derived to have large number of layers, enabling the regression analysis to pick up significant 

relationships with Ta. The influencing parameters were grouped into controllable and 

uncontrollable factors. They could effectively predict the day and night CUHI. The regression 

models could explain up to 95% of the air temperature variations when laid under the components 

of LULC, geometrical factors, and synoptic weather factors. Though the uncontrollable 

parameters dominated the significant models, some controllable ones were constantly 

participating in forming the highly significant models. The 14 predictors could explain up to 0.91, 

0.71, 0.84 and 0.95 of the Ta in the spring, summer, autumn and winter respectively.

 Moreover, the weather averages gave an indication about the climatic condition for each 

hourly regression model. This highlighted the importance of the synoptic weather to model the 

CUHI, though the controllable hourly parameters played a significant role to make up the 

significant models. However, other influencing parameters could not be included when modelling 

the CUHI such shortwave and longwave radiations, as these radiation fluxes need many inputs 

and a microclimate model to be simulated for a large scale. Therefore, the Ta seems not to be 

enough as a predictor to derive all the influencing parameters on the formation of UHI, and 

likewise the LST. Accordingly, the next chapter adopts a new indictor of UHI and employs a 

microclimate model.    
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6.1. Introduction 

  An excessive heat has been observed in urban and suburban areas as detailed in the 

previous two chapters where air and surface temperature are higher than their adjacent rural 

areas to form heat islands above the city. The SUHI and CUHI were investigated using surface 

temperature and air temperature respectively as indictors. There is no single indicator can fully 

investigate the spatiotemporal change of different types of UHI, because, there is no particular 

cause of the UHI, and many factors contribute to UHI formation (Gartland, 2008). The complexity 

of urban settings makes it difficult to have a specific measure of climatic variables (Lindberg and 

Thorsson, 2009), so different UHI types should be investigated separately. Accordingly, Tmrt is 

used as a new indicator of the UHI formation, which combines the effects of many influencing 

parameters on the UHI. Tmrt is derived using SOLWEIG microclimate model, and there are other 

different methods to obtain the Tmrt in the literature such as Rayman software (Thorsson et al., 

2007). The first version of SOLWEIG was developed by Lindberg et al. (2008) to predict the 

outdoor thermal comfort. However, SOLWEIG model is used for the first time to study the UHI in 

this research. Also, the Tmrt is used for the first time to model the UHI as a new indictor, which 

upgrades the 2D UHI using LST and air temperature to 3D UHI simulation 

However, SOLWEIG was evaluated using 3D integral radiation measurements at different 

sites with various building geometries. And the results of the evaluation gave about 0.94 (R2) 

agreement between the modelled and measured values with p values less than 0.01 and RMSE 

(Root Mean Square Error) about 4.8 K (Lindberg et al., 2008). The model used to require a limited 

number of inputs such as meteorological data, shortwave radiations, urban geometry, and 

geographical location (Lindberg et al., 2008). However, the recent developments of the model by 

Lindberg et al. (2016a) have incorporated the land cover, wall height and wall aspect grids as well 

as other modifications. SOLWEIG is able to model the K and L radiations, shadow patterns as 

well as the Tmrt that a standing or sitting person might receive in an outdoor environment (Lindberg 

et al., 2016a). The modelled Tmrt is used to investigate the presence of a new type of UHI which 

differs from SUHI and CUHI.  In a physical sense the Tmrt is the uniform temperature of a 

hypothetical spherical surface surrounding a subject that would result in the same net radiation 

energy exchange with the subject as the actual (Walikewitz et al., 2015). The term Radiant Urban 

Heat Island (RUHI) is introduced for the first time to measure the difference between the pixel Tmrt 

and minimum Tmrt within the city of Birmingham. The spatiotemporal change of RUHI is explored 

to compare it with the SUHI and CUHI. Furthermore, the K and L upward and downwards 

radiations are modelled to identify their effects on the RUHI formation as influencing parameters. 

 

6.2. Calculation and application of Tmrt 

  The calculation of Tmrt can be undertaken by several measuring and modelling techniques. 

Ali-Toudert et al. (2005) used integral radiation measurements and angular factors, which is a 

costly and complex technique. A cheap and simple measurement technique, the globe 

thermometer was used for indoor measurement, which was later developed for outdoor comfort 
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studies (Nikolopoulou et al., 2001). A three dimensional fluid dynamic coupled with an energy 

balance model formed the base of a software called ENVI-met, which models the microclimate 

including the Tmrt  (Bruse, 2006). The Rayman software is able to calculate the Tmrt and thermal 

indices (Matzarakis et al., 2000), which requires input information similar to SOLWEIG model. 

However, Rayman software is a site-specific measurement, and does not require information 

about building geometry and vegetation (Thorsson et al., 2007).  So, Rayman software cannot be 

used for large scale studies. Then, SOLWEIG 1.0 was released to model the spatial variations of 

3D radiant fluxes and Tmrt in complex urban settings including building geometry and vegetation 

(Lindberg et al., 2008). The calculation of Tmrt requires the determination of the mean radiant flux 

density (Sstr), which sums up the long and shortwave radiation in three dimensions as shown 

below (Lindberg et al., 2008) . 

𝑆𝑠𝑡𝑟 =  𝜁𝑘 ∑ 𝐾𝑖
6
𝑖=1 𝐹𝑖 + 𝜀𝑝 ∑ 𝐿𝑖

6
𝑖=1 𝐹𝑖        (6.1) 

𝑇𝑚𝑟𝑡 = √𝑆𝑠𝑡𝑟
𝜀𝑝𝜎⁄

4
− 273.15                 (6.2) 

𝑆𝑠𝑡𝑟 = the mean radiant flux density (Wm-2). 

𝐾𝑖  & 𝐿𝑖 = the short and longwave radiation fluxes respectively (i=1-6) (Wm-2). 

𝐹𝑖  = the angular factors between a person and the surrounding surfaces (0.22 for radiation fluxes 

from the four cardinal points and 0.06 for radiation fluxes from above and below). 

𝜁𝑘 = the absorption coefficient of a person for shortwave radiation (typically 0.7). 

𝜀𝑝 = the emissivity of the human body (typically 0.97). 

𝜎  = the Stefan-Boltzmann constant (5.67 * 10-8 Wm-2 K-4).          

  The applications of Tmrt have been used to investigate the outdoor thermal comfort, heat 

stress, and heat related mortality. Krüger et al. (2014) states that Tmrt plays an important role in 

human energy balance, and can be used as input to derive other thermal indices to monitor the 

urban microclimate. The simulation of Tmrt showed that urban geometry has significant impact on 

its intensity in the summer daytime, and the open spaces are warmer than adjacent narrow street 

canyons (Lau et al., 2016). Furthermore, Lau et al. (2016) found that high Tmrt in high density sub-

tropical urban environments causes severe thermal discomfort in the summer. This study raised 

a caution about over shadowing the dense urban environments which reduces the air ventilation. 

Lindberg et al. (2016b) evaluated the impact of urban planning strategies on heat stress, and 

found that the highest Tmrt occurs close to sun-exposed, south facing walls during clear and warm 

weather. Though, their results showed that the highest average daytime Tmrt happen at open 

location, because open areas have the highest frequency of sunlit occasions.  

  Furthermore, the intra-urban differences of Tmrt were found high in Shanghai due to the 

varying building density and height, street orientation and vegetation. Tmrt peaked to over 60 ºC 

during daytime when simulating a heat wave in 2013. On the other hand, Thorsson et al. (2014) 
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suggests Tmrt be used as a predictor of heat related mortality instead of Ta (air temperature), 

because Tmrt models gave a better fit than Ta models for daily mortality which makes it a good 

measure to identify urban hot spots. Their study chose a typical built-up area (100 m × 200 m) in 

Stockholm County, Sweden. Accordingly, the calculation of Tmrt is not a straight forward process 

and requires many inputs to give robust outputs that are critical for a wide range of urban planning, 

thermal comfort, and heat stress applications. 

 

6.3. Method and materials  

  SOLWEIG is a separate computer software model, that has a graphical user-friendly 

interface written in MATLAB programming language (SOLWEIG-team, 2015). It is an open source 

software, which makes use of a runtime engine called the MCR (MATLAB Compiler Runtime) to 

run the interface outside the MATLAB environment (SOLWEIG-team, 2015). However, the recent 

version is available in the larger tool package, UMEP (Urban Multi-Scale Environmental 

Predictor). UMEP is an open source climate service tool accessed through QGIS, and the feature 

development is to provide the user with the ability to interact with spatial information, improve and 

extend the modelling capabilities (Lindberg et al., 2016a). QGIS is written in C++, but it has 

bindings to the Python language that was exploited in the development of UMEP (Lindberg et al., 

2016a). The UMEP plugin contains pre-processors, processors and post-processors, and 

SOLWEIG is one of the processors. The pre-processors prepare the data for the processors, and 

the later include all the main models for the calculations (Lindberg et al., 2016a). Then, the post-

processors provide an initial quick look of the results; however, in this study, the post-processing 

was undertaken using ArcMap as it provides simple and more powerful tools compared to QGIS. 

The work flow of the pre-processor, processor and analyser is summarised in Figure 6.1, and 

several inputs were prepared using the pre-processors SVF, wall height and aspect, and 

meteorological data. Nevertheless, other input layers such as DEM, ground and building DSM, 

vegetation DSM and the land cover were created using ArcMap. Birmingham was chosen as the 

study site to apply SOLWEIG, so the results could be compared with SUHI and CUHI. 

Furthermore, the HiTemp project provided the required meteorological data with unprecedented 

spatial and temporal resolution.         
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Figure 6.1: Workflow and geodata for SOLWEIG. Bold outlines (Mandatory items), 

yellow (pre-processor), orange (processor), red (post-processor), and grey boxes 

(geodatasets) (Lindberg et al., 2016a). 

   

6.3.1 Pre-processing 

  The pre-processing included preparing all the data in the yellow and grey boxes shown in 

Figure 6.1. The ground and building DSM was made by combining the DTM (in Figure 5.7) with 

building’s footprints downloaded from the Digimap of the OS (EDINA, 2015). The ground and 

building DSM merges the elevation of the ground with the height of the buildings, however, it does 

not include the vegetation. Therefore, the vegetation DSM consists of pixels with vegetation 

canopy height (almost trees) above the ground where the ground represents the zero level. This 

layer has gaps on the map as it shows only the trees, while zero values are assigned for other 

features. The vegetation DSM was masked out of the LIDAR DSM derived earlier in Figure 5.7. 

On the other hand, the land cover types were classified into five classes (paved, building, grass, 

bare soil, and water) according to the land cover scheme described by Lindberg and Grimmond 

(2011a). The land cover classes exclude the trees as they are already represented by the 

vegetation DSM. The land cover classes were reclassified from the descriptive groups of the 

topographic map in Figure 5.2. The land cover map of Birmingham in Figure 6.2 appears to be 

dominated by the grass because the general surfaces and vegetation surfaces in Figure 5.2 were 

classified as grass. Furthermore, the grass class includes the mixed pixels of grass and soil when 

the grass is dominated the pixel area. However, the map is not that green when zoomed in due 

to the scale issue, and the other surfaces can be seen among the grass areas when the ratio of 

the distance on the map to the corresponding distance on the ground is increased. The ground 

and building DSM, vegetation DSM, and the classified land cover are shown in Figure 6.2, and 

these layers were processed using ArcMap based on the SOLWEIG model requirements 

described by Lindberg et al. (2016a).    

     

https://en.wikipedia.org/wiki/Ratio
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Figure 6.2: Birmingham’s ground and building DSM (metres), land cover, and 

vegetation DSM (metres). 

 
  The pre-processors of UMEP were used to derive the SVF, walls height and aspect, as 

well as the meteorological inputs to the format that suits the model. The SVF is the ratio of the 

radiation received to the emitted on a planar surface by the entire hemispheric environment, and 

the methodology to derive it is described by Lindberg and Grimmond (2010). The SVF plugin was 

used to generate the SVF per pixel using the ground and building DSM and vegetation DSM 

(Lindberg et al., 2016a). The SVF values in Figure 6.3 range between 0 and 1, and the lowest 

values can be seen in Sutton Park, which are even lower than the SVF values of the City Centre. 

Sutton Park contains dense trees, which obscure the ground visions more than the buildings in 

the City Centre (see Figures 6.4 and 5.6 to understand the places’ location and land cover 

respectively).  

  The wall height was generated by identifying wall pixels and their height from ground and 

building DSM. Similarly, the wall aspect was estimated by the same plugin that derives the height 

(wall height and aspect pre-processor ) using specific filters as described by Lindberg et al. 

(2015a). The values of wall aspect range between (0- 360) degrees where a north facing wall 

pixel has a value of zero. The wall height and aspect layers in Figure 6.3 contain gaps, as they 

only represent the wall pixels by ignoring the other surfaces. On the other hand, the 

MetPreprocessor was used to transform required temporal meteorological data into the format 

used in UMEP. The input variables were air temperature, relative humidity, barometric pressure, 
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wind speed, wind direction, and incoming shortwave radiation. Furthermore, the date and time of 

the meteorological data were specified for each of the input days, and more details about 

MetPreprocessor can be found in (Lindberg et al., 2016a). The meteorological data was acquired 

from the HiTemp project using AWS station (see Figure 6.4) as they provide the required input 

variables.     

 

Figure 6.3: Birmingham’s SVF (dimensionless), wall aspect (degrees) and height 

(metres). Derived from Birmingham’s DSM using the pre-processor of UMEP. 
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Figure 6.4: AWS stations to provide input meteorological data, and split tiles to divide 

Birmingham to six zones with some important places in the city. 
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6.3.2 SOLWEIG Processing  

  For the application of the SOLWEIG plugin, it is essential to have  all the spatial grids with 

the same extent and pixel size, and each grid should not be larger than 4000000 pixels (Lindberg 

et al., 2016a). Hence, the study area was split into six tiles before running the model as shown in 

Figure 6.5. The split tiles were overlapped by 100 metres (20 pixels), to overcome the problem of 

edge effects when merging the outputs later. As a result, modelling one day required to run the 

plugin six times, which increased the processing time multiple folds. However, this limitation was 

employed to test the impact of spatially varying the temporal meteorological data, since the model 

is only able to include the temporal meteorological data, and it is not possible to spatially vary the 

meteorological data. The model was tested by using spatially averaged meteorological data, and 

then the meteorological data were varied for each tile. The inputs required by the SOLWEIG 

plugin are the spatial, meteorological, environmental, optional settings, human exposure data as 

well as the types of output maps.  

  The meteorological inputs adopted hourly increments for four days to represent the four 

seasons in Birmingham. The four days were chosen to be the same to those used earlier in Tables 

5.4, 5.5, 5.6, and 5.7, and most of the averaged meteorological inputs used for SOLWEIG were 

presented in those tables. However, the tiled Tmrt was simulated using 24 meteorological input 

files to represent the six tiles for the four days as shown in Appendix E., Tables (E.1- E.6). The 

chosen output maps were Tmrt, Kdown (downward shortwave radiation), Kup (upward shortwave 

radiation), Ldown (downward longwave radiation), Lup (upward longwave radiation), and shadow 

patterns. Moreover, an optional output was used to calculate the daily average Tmrt. The Tmrt was 

calculated for a standing or walking person, and the input coefficients of K and L radiation 

absorption were 0.70 and 0.95 respectively (Lindberg et al., 2016a). The values of albedo for 

walls and ground were 0.2 and 0.15, and the emissivity for walls and ground were 0.9 and 0.95 

respectively according to Oke (1988).  In general, the default values of the parameters were 

applied as described by Lindberg et al. (2016a).  

 

6.3.3 Post-processing  

  The output maps from the UMEP-SOLWEIG are geoTIFF images just like the input data. 

The flexibility of using common formats like geoTIFF, makes it easy to deal with the outputs by 

other software that support this format. Thus, the output data were uploaded to ArcMap, as it 

provides simple and powerful tools compared with QGIS. The time-consuming task was 

mosaicking the tiled images for all outputs (Tmrt, Kup, Kdown, Lup, Ldown, and shadow). And before 

that the images were masked to the extent of the Birmingham City boundaries. These processes 

were repeated for the averaged input meteorological datasets and tiled input meteorological 

datasets. Then, the day and night averages were calculated from the hourly outputs, which gives 

better presentation of the results. Besides, it is not possible to display all the hourly outputs for all 

the results. The RUHI is calculated by subtracting the pixel Tmrt from the minimum Tmrt for each 

output map per hour. Furthermore, the areas of high and low RUHI were investigated, and the 
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spatiotemporal change of RUHI was identified. Also, the influencing parameters on the magnitude 

of Tmrt were clarified. 

   

6.4. Results and discussion 

  The results and discussion are separated into three parts. The spatial change of RUHI is 

investigated to identify the locations of hot and cold spots. Then, the occurrence time of these hot 

and cold spots is determined. After that, the influencing parameters on the formation of RUHI in 

particular radiation fluxes are examined. 

    

6.4.1 RUHI spatial change 

  The spatial change of RUHI was investigated by employing only temporarily varying 

meteorological data, and then using the spatiotemporal change of meteorological data. Indeed, 

the temporal and spatial change of RUHI are interconnected, so the spatial change cannot be 

investigated without varying the time as different times give various spatial variations. Figures 6.5, 

6.6, 6.7 and 6.8 demonstrate the simulated RUHI using the same averaged meteorological data 

for all tiles. The average maximum magnitude of RUHI could reach up to 23 ºC during the daytime 

on the 18th of April 2014 as shown in Figure 6.5. Whereas, the all-day average maximum RUHI 

was about 15.5 ºC just over the night-time which recorded 11.4 ºC on average. It is important to 

notice that the word diurnal was not used here and the word average or all day was employed. 

This is because diurnal was used to describe the average daytime and night-time LST, as the 

MODIS data has a day and night visit. So, to discriminate the average of 24-hour simulation of 

the Tmrt, a different word was used in this chapter to describe the daily mean.   

  The spatial variability of daytime RUHI is higher than the night-time, due to the presence 

of the sunshine. The all-day averages seem to be high in open spaces, and peak in dense trees 

to decrease in built-up areas (Figure 6.5). This is because, the built-up areas provide shadow 

which relieves the RUHI intensity. The daytime RUHI peaks in the open spaces when the city 

works as Radiant Urban Cool Island (RUCI). Lau et al. (2015) examined the daytime heat stress 

in three European cities (Gothenburg, Frankfurt, & Porto) to represent the northern, central, and 

southern European climates. They concluded that maximum daytime Tmrt is found in open spaces 

in all three cities despite differences in their geographical locations. Dense urban buildings with 

their narrow street canyons could mitigate the heat stress in the summer without causing 

significant changes in the winter. The situation during the night-time is reversed, the city has RUHI 

higher than surrounding areas. Though, the Sutton Park’ trees still have high RUHI always, that 

does not appear to be because of the land cover type. However, the geometry of the trees 

prevents the required ventilation to release the heat, as they have the lowest SVF among other 

urban features. Similarly, Lau et al. (2015) demonstrated that Tmrt is strongly influenced by urban 

geometry in the urban environment.  
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  Moving from a spring day to a summer day, Figure 6.6 gives a few differences from Figure 

6.5. The average maximum magnitude of RUHI was about 22.9 ºC during the daytime on the 6th 

of July 2013, whilst, the all-day average maximum RUHI was 16.2 ºC, and the night-time did not 

exceed 10 ºC on average. The spatial distribution of RUHI revealed that open spaces still have 

high RUHI during the daytime and all-day, but they do not have the highest values in these times. 

So, during the daytime the highest RUHI appears in the areas north-east of the City Centre where 

the main rails and streets transportation infrastructure run towards the city. This pattern can also 

be seen in the all-day average map in Figure 6.6, and the City Centre worked as RUCI in the 

daytime and RUHI in the night-time. Another major difference between the spring and summer 

days is the Sutton Park’s trees did have the highest RUHI during the daytime on the 6th of July 

2013. Figure 6.6 shows similar patterns to Figure 6.5, the only difference is the intensity of RUHI. 

The all-day, daytime and night-time averages of maximum RUHI were 13, 18.5 and 10.9 ºC 

respectively on the 5th of September 2013. 

  The spatial distribution of RUHI on the 1st of December 2013 gives different behaviour from 

previous days. Figure 6.8 gives an example of the winter RUHI, when the sun energy that reaches 

the ground is low which noticeably differs from the autumn example (Figure 6.7). The all-day, 

daytime and night-time averages of maximum RUHI were 9.29, 9.34, and 9.63 ºC respectively. 

The City Centre worked as a RUHI in the night-time, however, it did act as a RUCI during the 

daytime. The trees in the Sutton Park recorded the highest RUHI for the all-day, daytime and 

night-time averages. Similarly, high LST of the trees in the Sutton Park was identified using the 

night-time airborne thermal image of Birmingham. Indeed, the Sutton Park does not contain only 

trees, and there are areas of grass and soil. So, it can be considered a benchmark to identify the 

presence of RUHI in the City Centre. When land cover types other than trees have low RUHI, the 

RUHI peaks at the City Centre.  

  The LULC of Birmingham City was clarified earlier in the previous chapters, and the visual 

interpretation of the results in this section builds on the already introduced knowledge. The open 

spaces and suburban areas did not have the maximum RUHI in all times, and the intensity of 

RUHI did not give high spatial differences for most of the city parts for the winter day. The open 

spaces still have higher RUHI during the daytime compared with built-up areas; however, 

transportation routes and water bodies show higher RUHI (Figure 6.8). The open spaces receive 

higher amount of diffuse shortwave radiation from the sky (Lindberg et al., 2014), than the narrow 

canyons due to the variability of SVF for the different places. The anthropogenic heat released 

from vehicles might play a major role to elevate the RUHI of the transportation routes. With 

respect to water bodies, they have been recognised earlier as good heat stores, as they keep 

their temperature high compared to other land cover types especially in the winter. Lindberg et al. 

(2014) clarifies that the spatial patterns of Tmrt are altered, and its differences in magnitude are 

reduced if the cloudiness increases. Also, Chen et al. (2016) clarified that the intra-urban 

differences of the Tmrt are large due to a number of factors. Accordingly, the spatial change of 

RUHI varies in magnitude and distribution for the four seasons.           
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Figure 6.5: Spatial change of ave., day & night RUHI calculated from Tmrt of 

Birmingham on the 18 April 2014 (ᴼC). 

 

Figure 6.6: Spatial change of ave., day & night RUHI calculated from Tmrt of 

Birmingham on the 06 July 2013 (ᴼC). 
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Figure 6.7: Spatial change of ave., day & night RUHI calculated from Tmrt of 

Birmingham on the 05 September 2013 (ᴼC). 

 

Figure 6.8: Spatial change of ave., day & night RUHI calculated from Tmrt of 

Birmingham on the 01 December 2013 (ᴼC). 
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  Next, the meteorological inputs were varied for each tile to test the influence of 

meteorological data spatial variability. The outputs demonstrated in Figures 6.9, 6.10, 6.11 and 

6.12 show high spatial heterogeneity of RUHI for the tiles that did not appear before when using 

averaged meteorological inputs. For the magnitude of RUHI intensity, however, the winter and 

spring days did not show high differences between averaged and tiled meteorological data. 

Unlike, the summer and autumn days that gave slightly higher RUHI for the tiled meteorological 

inputs compared to averaged ones. Thus, on the 18th of April 2014 the all-day, daytime and night-

time averages of maximum tiled RUHI were 16.4, 24.3, and 13.2 ºC respectively. And on the 1st 

of December 2013 the all-day, daytime and night-time averages of maximum tiled RUHI were 

10.2, 10.5, and 10.7 ºC respectively. The RUHI intensity for these two days only differs by about 

1 ºC increase for most maps when compared to the outputs of the averaged meteorological inputs.  

  On the other hand, on the 6th of July 2013 the all-day, daytime and night-time averages of 

maximum tiled RUHI were 19, 25.1, and 14.6 ºC respectively. Moreover, the all-day, daytime and 

night-time averages of maximum tiled RUHI on the 5th of September 2013 were 15.4, 21.2, and 

14.4 ºC respectively. Which indicates (2-4) ºC rise in RUHI intensity of the tiled meteorological 

inputs over the averaged values of the meteorological data. So, it can be concluded that the 

spatial variability of meteorological inputs induces the formation of higher RUHI. Though, the 

spatial patterns of RUHI for specific feature in the city such as the City Centre and Sutton Park’s 

trees are still similar when using tiled meteorological inputs to the averaged ones. Nevertheless, 

the sharp transition in magnitudes of RUHI among the tiles prevent the formation of smooth colour 

balance for the entire map due to values variability. Consequently, the averaged meteorological 

inputs are only used for further analysis of the results in the incoming sections. The limitation of 

the current version of UMEP (0.3.0) model to use spatially variable meteorological inputs was a 

barrier, as only temporal meteorological datasets are allowed (Lindberg et al., 2016a). The 

temporal investigation of RUHI is built on the spatial change findings. So, the focus will be on 

locations such as the City Centre and Suttons Park, with other places that show specific patterns.                 
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Figure 6.9: Spatial change of tiled ave., day & night RUHI calculated from Tmrt of 

Birmingham on the 18 April 2014 (ᴼC). 

 

Figure 6.10: Spatial change of tiled ave., day & night RUHI calculated from Tmrt of 

Birmingham on the 06 July 2013 (ᴼC). 
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Figure 6.11: Spatial change of tiled ave., day & night RUHI calculated from Tmrt of 

Birmingham on the 05 September 2013 (ᴼC). 

 

Figure 6.12: Spatial change of tiled ave., day & night RUHI calculated from Tmrt of 

Birmingham on the 01 December 2013 (ᴼC). 
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6.4.2 RUHI temporal change 

  The temporal averages of Tmrt, Ta, and RUHI are investigated in Figure 6.13. The values 

were averaged for the entire Birmingham area on an hourly basis. The Tmrt magnitudes 

significantly increased for the four days during the daytime, when the downward shortwave 

radiation increases. Also, the Ta relatively increased during the daytime for the four days that 

represent the four seasons. However, the RUHI does not show the same behaviour for the four 

days, as the values here were calculated for the entire city. So, the intensity of RUHI might not 

be concentrated in the City Centre, and further analysis is needed to identify the RUHI peaks 

places.  

  On the 18th of April 2014, the Tmrt peaked at 11 a.m. by over 42 ºC, and decreased to about 

-6 ºC in the early morning at 5 a.m.  The peak of Ta did not coincide with the peak of Tmrt, and 

both did not coincide with the RUHI peak. The RUHI intensity which represent the spatial 

differences of Tmrt, recorded higher values during the night-time than the daytime. The RUHI 

peaked at 6 a.m. by around 18 ºC, and the lowest was 3.8 ºC at 5 p.m. The temporal change of 

Tmrt, Ta, and RUHI on the 6th of July 2013 resembles the patterns on the 18th of April 2014. 

However, the main difference is the magnitudes of Tmrt, Ta, and RUHI between the two days. On 

the 6th of July 2013, the highest Tmrt was 55.2 ºC at 11 a.m., and the lowest was 4.93 ºC at 4 a.m. 

Lau et al. (2015) have set thresholds for three European cities as indicators of the moderate and 

severe heat stress. The severe threshold is 59.4 ºC, and the moderate value is 55.5 ºC.  So, the 

highest Tmrt on the 6th of July was close to the condition of moderate heat stress. Furthermore, 

the highest RUHI intensity was 20.08 ºC at 5 a.m., and the lowest was 3.93 ºC at 6 p.m.  

  A new temporal pattern of Tmrt and RUHI can be seen on the 5th of September in Figure 

6.13. The trend of the Tmrt looks like the trend of RUHI, and the only difference between them is 

the magnitudes. The maximum Tmrt and RUHI were 50.37 ºC and 34.28 ºC respectively at 10 a.m. 

The minimum Tmrt was 2.47 ºC at 5 a.m., and the minimum RUHI was 6.54 ºC at 5 p.m. The Ta 

showed similar temporal behaviours for the last three days. The Ta recorded higher values than 

the Tmrt during the night-time, while, the Tmrt values were well higher than the Ta values during the 

daytime.  

  Nevertheless, the Ta temporal change on the 1st of December 2013 showed different 

behaviour. The Ta values were almost higher than the Tmrt for the night-time and daytime, because 

of the low sun energy radiation reaching ground during the winter. Moreover, unlike the other 

days the maximum RUHI is higher than the Tmrt on the 1st of December 2013. The maximum and 

minimum Tmrt values were 10.26 ºC and -1.75 ºC at 12 p.m. and 7 p.m. respectively. While, the 

maximum and minimum RUHI values were 30.09 ºC and 5.95 ºC at 9 a.m. and 12 p.m. 

respectively. Accordingly, the temporal change of Tmrt, Ta, and RUHI demonstrated a notable 

distinction between daytime and night-time, and the four days revealed seasonal variations. 

However, the preceding discussion employed the averaged values of the indicators of the entire 

city, which does not reflect the behaviour of specific places.    
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Figure 6.13: Seasonal averages of Tmrt, Ta, and RUHI of Birmingham City 
on hourly basis. 
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  The temporal change of Tmrt and RUHI was further investigated for the City Centre and 

Sutton Park, since, these places are the most important features in terms of the Tmrt temporal 

change. Figure 6.14 compares the temporal patterns between the City Centre and Sutton Park. 

For the Sutton Park, pixels other than dense trees were chosen to represent the status of rural 

areas for two reasons. The first reason is that the dense trees showed very high values of Tmrt, 

this might be due to the lack of ventilation or overestimation. This supports the finding of Lindberg 

and Grimmond (2011a), when they assessed the influence of vegetation on shadow patterns and 

Tmrt. They found a small overestimation of the Tmrt values at locations shadowed by vegetation. 

For the same reason Lai et al. (2017) suggested larger SVF for cooling open spaces if direct 

sunlight is blocked by the trees morphology. The second reason is the analysis of the spatial 

variation of RUHI, CUHI and SUHI showed that the Sutton Park can be a typical location to identify 

the presence of UHI.   

  The intensity of RUHI in Figure 6.14 was characterised into two major events. If the Tmrt 

values in the City Centre were higher than the Sutton Park, the phenomenon here called RUHI. 

However, if the Tmrt values in the City Centre were lower than the Sutton Park, the city works as 

Cool Island and the phenomenon called RUCI with negative values. On the 18th of April 2014, the 

Tmrt values dramatically increased during the daytime for both City Centre and Sutton Park. 

However, during the night-time the values of Tmrt in the City Centre are higher than in the Sutton 

Park. In the daytime the situation is reversed, as the values of Tmrt in the City Centre are by far 

lower than their values in the Sutton Park. The Tmrt peaked in the Sutton Park at 11 a.m. by 43.35 

ºC. Whereas, it peaked in the City Centre at 3 p.m. by 33.01 ºC. So, the Tmrt peaks at different 

times for the different places in Birmingham. The RUHI temporal patterns show night-time RUHI 

and daytime RUCI. Furthermore, the intensity of RUHI peaked at 5 a.m. by approximate 5 ºC. 

Conversely, the intensity of RUCI peaked at 9 a.m. by about -30.98 ºC. There is a difference 

between the Tmrt and Ta in terms of the magnitudes in outdoor conditions. Walikewitz et al. (2015) 

clarifies that Tmrt can be more than 30 K above Ta, and shows a clear spatial pattern.   

  On the 6th of July 2013, the maximum Tmrt in the City Centre was 51.68 ºC at 2 p.m., where, 

the maximum in the Sutton Park was 53.77 ºC at 11 p.m. The maximum RUHI was 3.92 at 12 

a.m., but, RUCI was at its maximum by -25.62 ºC at 10 a.m. On the 5th of September 2013, the 

temporal patterns and intensities of the Tmrt, RUHI, and RUCI did not significantly differ from those 

on the 6th of July 2013. Nonetheless, the temporal trends of the Tmrt did show significant variation 

between the City Centre and Sutton Park during the day and night-time on the 1st of December 

2013. With a slight increase of the Tmrt values during the daytime compared to the night-time. The 

Tmrt peaked at the City Centre at 1 p.m. by 8.18 ºC, while, it peaked in the Sutton Park at 9 a.m. 

by 20.30 ºC. The RUHI peaked at 6 a.m. by 2.88 ºC, and the RUCI peaked at 9 a.m. by -16.48 

ºC. Only one hour separates the peak of RUHI and RUCI, because, this hour was the sunrise 

time on the on the 1st of December 2013. Which tells how much the sun energy is important in 

the urban energy balance.          
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   In general, the temporal patterns of the four days demonstrate significantly higher Tmrt in 

the daytime compared to the night-time except for the winter day. Lindberg et al. (2014) found 

large Tmrt differences among seasons and between the day and night-time. Furthermore, the City 

Centre works as RUHI during the night-time, and RUCI during the daytime. Thus, built up areas 

can reduce the heat stress during the daytime through providing shadows. This agrees with Lau 

et al. (2015), as they suggested that dense urban structure can decrease the heat stress during 

the daytime through reducing the Tmrt in the summer. In opposition, the Sutton Park works as 

RUCI during the night-time, and RUHI during the daytime. The RUCI intensities are much higher 

than the RUHI as shown in Figure 6.14. The cold-related deaths were reported in the literature, 

which is expected to decrease due to milder winters (Astrom et al., 2013). However, the risk of 

heatwaves on the populations that adopted to long periods of cold weather might be greater, since 

they have not adapted to long hot periods (Astrom et al., 2013). 
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Figure 6.14: Seasonal Tmrt (left), RUHI and RUCI (right) of Birmingham’s City Centre 

and Sutton Park on hourly basis. 
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6.4.3 Radiation fluxes, RUHI, and RUCI 

  The radiation fluxes have great impact on the Tmrt, since the Tmrt includes the calculation of 

the shortwave and longwave radiation fluxes from the three dimensional surroundings of human 

(east, west, north, south, upward, and downward) (Thorsson et al., 2014). However, the 

calculation or measurement of radiation fluxes over a large extent is a challenging task. Therefore, 

another approach was investigated to model the energy balance on a large scale. This approach 

is called the Surface Energy Balance Algorithm for Land (SEBAL), that uses satellite based data 

(Shunlin et al., 2013). Both SOLWEIG and SEBAL calculate the outgoing shortwave and 

longwave radiation based on Stefan-Boltzmann law. Also, both approaches combine remote 

sensing images and routine meteorological data to derive the net all wavelength radiation. 

Nevertheless, SEBAL models the Ldown with a very course resolution, as it relies on the air 

temperature stations. Furthermore, SEBAL is often applied over flat surfaces, and when applied 

over mountainous areas adjustments based on a DEM need to be made (Bala et al., 2013). A 

promotion to the SOLWEIG model, it accounts the impacts of sky view factor and shadow patterns 

by employing a DSM of the study site (Lindberg and Thorsson, 2009). Hence, SOLWEIG model 

was employed to calculate the shortwave and longwave radiation fluxes as well as shadow 

patterns, as it overcomes several limitations that SEBAL surfers from. This section is meant to 

investigate the effects of radiation fluxes as influencing parameters on the spatial variability of the 

maximum RUHI and RUCI. 

   

6.4.3.1 Radiation fluxes and RUHI 

  The RUHI was identified when it peaked in the City Centre, which took place during the 

night-time. Figures 6.15, 6.16, 6.17 and 6.18 show the RUHI, Lup, Ldown, Kdown, Kup, and shadow, 

that represent the simulation of SOWLEIG at the time of maximum RUHI for the four seasons. 

Since the maximum RUHI occurs during the night-time where there is no sun energy, the Kdown, 

Kup, and shadow have zero values. Therefore, the maps of Kdown, Kup, and shadow do not show 

any variation in Figures 6.15, 6.16, 6.17 and 6.18. Which means that they do not have any impact 

on the formation of RUHI during the night-time. Hence, both longwave radiations Lup and Ldown 

are dominant during the night-time to influence the RUHI. On the 18th of April 2014 at 5 a.m., the 

Lup peaked in the built-up areas to 325 W/m2, and it did not show significant variation between 

the City Centre and other built-up areas. While, the Ldown maximum was 324 W/m2 with spatial 

variation like the RUHI (Figure 6.15). Which means the Ldown is the major contributor to the RUHI 

during the night-time to cause the high Tmrt in the City Centre. 

  On the 6th of July 2013 at 12 a.m., the Lup peaked at the City Centre by 382 W/m2, and the 

Ldown recorded its maximum in the Sutton Park’s trees by 382 W/m2. Though the spatial variation 

of RUHI looks like the Ldown, the Lup seems to have higher impact on the formation of RUHI in the 

City Centre (Figure 6.16). This reflects the influence of seasonal variation on the RUHI. When the 

RUHI was mainly influenced by the Ldown in the spring, the Lup had larger impact on the RUHI in 
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the summer. Lindberg et al. (2008) clarifies that the Ldown is modelled by using input information 

of air temperature and relative humidity, while, the ground surface’s temperature and properties 

are dominant in the calculation of Lup based on the Stefan-Boltzmann law. From that the summer 

Lup played a major role in the RUHI formation compared to the spring day. And for both days the 

Ldown contributed to the RUHI, with more noticeable impact on the spring day. 

  Moving to an autumn day on the 5th of September 2013 at 5 a.m., the behaviour of Lup and 

Ldown was almost like the summer day. The only minor difference is the maximum intensity of the 

Lup and Ldown values. The maximum value for both Lup and Ldown was 363 W/m2 (Figure 6.17). 

The situation of the radiation fluxes in the winter day on the 1st of December 2013 at 6 a.m. as 

shown in Figure 6.18 did not differ from the spring day. The intensity of the fluxes was the only 

difference between the winter and spring days.  The maximum values of Lup and Ldown were 344 

and 345 W/m2 respectively as shown in Figure 6.18. Accordingly, the influencing parameters on 

the variation of RUHI showed seasonal difference in terms of the distribution and intensity. The 

Kdown, Kup and shadow did not have any impact on the RUHI. However, the Lup and Ldown were 

the major contributors to the RUHI. The Lup has higher impact on the RUHI during the hot days 

in the summer and autumn, while, the Ldown has higher effect during the winter and spring. In other 

words, the ground surface’s properties and temperature are the major players in the formation of 

RUHI in the summer and autumn, nevertheless, in the winter and spring the sky’s temperature 

and properties played a major role in the formation of RUHI.                              

 

Figure 6.15: RUHI (ᴼC), Lup (W/m2), Ldown (W/m2), Kdown (W/m2), Kup (W/m2), and 

shadow of Birmingham on the 18th April 2014 at 5 a.m. There is no K component and 

shadow because the times stated were prior sunrise. 
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Figure 6.16: RUHI (ᴼC), Lup (W/m2), Ldown (W/m2), Kdown (W/m2), Kup (W/m2), and 

shadow of Birmingham on the 6th July 2013 at 12 a.m. There is no K component and 

shadow because the times stated were prior sunrise. 

 

Figure 6.17: RUHI (ᴼC), Lup (W/m2), Ldown (W/m2), Kdown (W/m2), Kup (W/m2), and 

shadow of Birmingham on the 5th September 2013 at 5 a.m. There is no K component 

and shadow because the times stated were prior sunrise. 
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Figure 6.18: RUHI (ᴼC), Lup (W/m2), Ldown (W/m2), Kdown (W/m2), Kup (W/m2), and 

shadow of Birmingham on the 1st December 2013 at 6 a.m. There is no K component 

and shadow because the times stated were prior sunrise. 

 

6.4.3.2 Radiation fluxes and RUCI 

  The City Centre works as a Cool Island in the daytime, when the buildings provide shadow 

to the street canyons, which significantly reduces the intensity of Tmrt, and in turns maximises the 

differences between the roof’s tops and street’s ground as shown in Figure 6.19. The roofs in the 

City Centre are directly exposed to the sun energy just like the open spaces. The RUCI was 

calculated by subtracting the pixel value from the minimum value over the entire city.  Even though 

the RUCI was calculated by subtracting the minimum value across the city, this does not make 

much difference because the edges of the city were assumed to have similar temperature to the 

surroundings. Thus, the zero pixels means that these pixels work as Cool Islands towards others. 

Jänicke et al. (2016) demonstrates that there is a differentiation in Tmrt between sunlit and shaded 

areas during the day. They added that the inner-city areas established an urban cool island during 

the day when analysing the Tmrt for the city of Berlin, Germany.  

  The seasonal changes of RUCI are represented in Figures 6.20, 6.21, 6.22 and 6.23, when 

all the radiation fluxes exist during the daytime. Figure 6.20 shows the RUCI, radiation fluxes and 

shadow on the 18th of April 2014 at 9 a.m. The maximum values of Lup, Ldown, Kdown, and Kup were 

380, 408, 568, and 149 W/m2 respectively. The shadow is concentrated in the City Centre with a 
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value of 1, and zero values means no shadow exists. The Lup and Ldown are low in the open 

spaces, and relatively high close the built-up areas, while, the Kdown is low in the canyons of the 

City Centre and within the trees. Lindberg et al. (2008) explains that the Kdown is the summation 

of direct, diffuse and global radiation, while, the Kup is the Kdown times the albedo. The direct 

radiation is low in the city canyons where the buildings prevent the penetration of radiation. This 

is the major cause of RUCI, when the shadow relives the Tmrt considerably. 

  Next, the maximum values of Lup, Ldown, Kdown, and Kup were 522, 522, 738, and 194 W/m2 

respectively on the 6th of July 2013 at 10 a.m. The spatial variation of radiation fluxes and shadow 

patterns in Figure 6.21 resembles those in Figure 6.20. So, the only difference between the spring 

and summer days is the intensity of radiation fluxes. On the 5th of September 2013 at 9 a.m. the 

maximum values of Lup, Ldown, Kdown, and Kup were 431, 463, 542, and 142 W/m2 respectively. 

When more features other than street canyons worked as Cool Islands to give slightly different 

spatial patterns of RUCI from the spring and summer days (see Figures 6.19 and 6.22). 

Nevertheless, the typical RUCI can be seen in the winter on the 1st of December 2013, when 

almost all the city features worked as Cool islands as shown in Figures 6.19 and 6.23. The 

maximum values of Lup, Ldown, Kdown, and Kup were 347, 346, 46.1, and 11.6 W/m2 respectively 

(Figure 6.23).  

  There are two reasons behind having different spatial patterns of the RUCI in the winter 

compared to other seasons. The first one, the Kdown values for the spring, summer and autumn 

are higher other radiation fluxes, while the Kdown values in the winter are lower than the Lup and 

Ldown due to the insufficient sun energy reaching the ground because of the clouds and sun angle. 

Lindberg et al. (2015b) found that the overall Kdown is higher during summer, when comparing a 

winter and a summer month. The second reason is that the shadow is concentrated in the City 

Centre for the spring, summer and autumn. In the winter; however, the shadow is spread across 

the entire city except for the open spaces, because of the inclined sun angle with the ground 

surface. Therefore, Lau et al. (2015) suggested a more diverse urban thermal environment in 

dense urban settings, to compensate for reduced solar access in the winter. The seasonal 

magnitudes of the Tmrt increase when the shortwave and longwave radiations increase. This 

agrees with Lai et al. (2017) who concluded that the increase of either shortwave or longwave 

fluxes by10 W/m2 leads to 1.6 Kelvin increase of Tmrt across different open spaces. Furthermore, 

a study by Marino et al. (2017) predicted that the direct component of solar radiation is strongly 

responsible for the rise of Tmrt during the daytime as well as the diffuse and reflected components. 

In general, the Kdown and shadow patterns primarily derived the spatial and temporal variation 

of RUCI.   
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Figure 6.19: Seasonal RUCI (ᴼC) at the City Centre of Birmingham (a) on the 18th of 

April 2014 at 9 a.m., (b) on the 6th of July 2013 at 10 a.m., (c) on the 5th of September 

2013 at 9 a.m., (d) on the 1st of December 2013 at 9 a.m., & (e) aerial photograph 

of City. 
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Figure 6.20: RUCI (ᴼC), Lup (W/m2), Ldown (W/m2), Kdown (W/m2), Kup (W/m2), and 

shadow of Birmingham on the 18th April 2014 at 9 a.m. 

 

Figure 6.21: RUCI (ᴼC), Lup (W/m2), Ldown (W/m2), Kdown (W/m2), Kup (W/m2), and 

shadow of Birmingham on the 6th July 2013 at 10 a.m. 



 

164 
 

 

Figure 6.22: RUCI (ᴼC), Lup (W/m2), Ldown (W/m2), Kdown (W/m2), Kup (W/m2), and 

shadow of Birmingham on the 5th September 2013 at 9 a.m. 

 

Figure 6.23: RUCI (ᴼC), Lup (W/m2), Ldown (W/m2), Kdown (W/m2), Kup (W/m2), and 

shadow of Birmingham on the 1st December 2013 at 9 a.m. 
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6.5 Discussion 

The use of Tmrt to measure the UHI in this study is an innovative approach as the common 

use of Tmrt is mainly for outdoor human thermal comfort.  This approach has enabled the author 

to compare the use of Tmrt, Ta and LST as predictors of the UHI presence. However, a comparison 

of the relevance of the findings in this study compared to the previously published research about 

the outdoor microclimate that adopted the Tmrt is needed to validate the research outcomes. Chen 

et al. (2016) studied the thermal radiant environment using the SOLWEIG model in Shanghai 

under heat waves, and found that the heat stress is quite severe in daytime with Tmrt commonly 

well above 60 ºC. Furthermore, they concluded that the spatial differences of Tmrt are largely 

influenced by building density and height, street orientation and vegetation. Similarly, in this study 

a spatial and temporal change of Tmrt was found with high magnitudes in hot weather. For 

example, the average Tmrt reached 55 ºC on the 6th of July 2013 when using averaged 

meteorological data.  

Lau et al. (2016) simulated the Tmrt using the SOLWEIG model in Hong Kong, and the 

results showed that urban geometry plays an important role in intra-urban differences in the 

summer daytime. Likewise, this study revealed that open areas are generally warmer than 

surrounding narrow street canyons in the daytime of the four seasons. Lindberg et al. (2016b) 

found that the shadow patterns of buildings and vegetation govern the spatial pattern of Tmrt during 

warm and clear weather in Gothenburg, Sweden. The open locations were found to have the 

highest average daytime Tmrt due to the high frequency of sunlit occasions. This agrees with this 

study finding that the shortwave radiation and shadow patterns govern the spatial change of 

daytime Tmrt.  The Land cover types also influenced the magnitude of the Tmrt where the grass for 

example had the lowest Tmrt in hot daytimes. In the same way, the vegetation was effective at 

reducing the heat stress in London within dense urban environments in the summer (Lindberg 

and Grimmond, 2011b).  

There are differences among the RUHI, SUHI and CUHI in terms of their spatiotemporal 

change and the contributing parameters of Birmingham. The City Centre worked as a RUCI in the 

daytime, while, the night-time induced the development of RUHI. The Kdown, Kup and shadow did 

not have any impact on the RUHI during the night-time, however, the Lup and Ldown were the major 

contributors to the RUHI. On the other hand, the densely built-up areas and the business districts 

recorded the largest LST at times of high anthropogenic activities. The land cover indices 

negatively correlated with LST, and could explain up to 70 % of the LST variation for the significant 

models. Whereas, the high intensity CUHI happened during the clear and calm weather. The 

CUHI occurred in the suburban areas as well as the urban areas due to the presence of 

impervious surfaces and anthropogenic activities. The regression models could explain up to 95% 

of the air temperature variations when laid under the components of LULC, geometrical factors, 

and synoptic weather factors. In summary, the findings of this research are supported by the 

previously published researches, and the employed integrated approach of using three indicators 

to model the UHI has shown the spatiotemporal patterns of each approach and quantified their 

various influencing parameters.  
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6.6 Conclusions 

This chapter used a new indictor of the presence of UHI. Tmrt includes the calculation of 

the longwave and shortwave radiation fluxes in the three-dimensional surroundings of human 

(east, west, north, south, upward, and downward). The modelled Tmrt was used to investigate the 

presence of a new type of UHI which differs from SUHI and CUHI. The term RUHI was introduced 

for the first time to measure the difference between the pixel Tmrt and minimum Tmrt within the city 

of Birmingham. The spatiotemporal change of RUHI was explored to compare it with the SUHI 

and CUHI. Furthermore, the shortwave and longwave upward and downwards radiations were 

modelled as the influencing parameters on the RUHI formation. The SOLWEIG plugin in the 

UMEP was employed to model the Tmrt, Lup, Ldown, Kdown, and Kup, and shadow as an open source 

climate service tool accessed through QGIS.  

The pre-processors in UMEP were used to prepare the spatial and meteorological inputs 

such as SVF, walls height and aspects, as well as meteorological files. However, other spatial 

data were created using ArcMap such as DEM, ground and building DSM, vegetation DSM, and 

the land cover. Due to the limitation of the UMEP, the spatial grids did not exceed 4000000 pixels 

per tile. Thus, the city of Birmingham was split into six tiles before running the model. The split 

tiles were overlapped by 100 metres (20 pixels), to overcome the problem of edge effects when 

merging the outputs later. The meteorological inputs applied two times when modelling the spatial 

change of RUHI, to identify the impact of varying the meteorological inputs. Four days were 

chosen to represent the four seasons in Birmingham, and the same days were used to identify 

the CUHI.  

The averaged meteorological inputs showed the presence of daytime RUCI in the City Centre, 

while, the night-time induced the development of RUHI. The spatial change of RUHI varied in 

magnitude and distribution for the four seasons. The open spaces revealed relatively high daytime 

RUHI, and low night-time RUHI except for the winter. The maximum averaged RUHI reached 

16.2 ºC on the 6th of July 2013, and it was at its minimum on the 1st of December 2013 by 9.29 

ºC. The spatial variability of the meteorological inputs induced the formation of higher RUHI. 

Although, the spatial patterns of RUHI for specific feature in the city such as the City Centre and 

Sutton Park’ trees still similar when using tiled meteorological inputs compared to the averaged 

ones. Nonetheless, the sharp transition in magnitudes of RUHI among the tiles prevented the 

formation of smooth colour balance for the entire map due to values variability. Consequently, 

only the averaged meteorological inputs were used for further analysis of the results.  

The temporal change of Tmrt, Ta, and RUHI demonstrated a notable distinction between 

daytime and night-time, and the four days revealed seasonal variations. It demonstrated 

significantly higher Tmrt in the daytime compared to the night-time except for the winter day. The 

City Centre worked as RUHI during the night-time, and RUCI during the daytime just opposite to 

the Sutton Park. The RUCI intensities (up to – 30 ºC) were much higher than the RUHI (+5 ºC) in 

the City Centre compared to the Sutton Park. The Kdown, Kup and shadow did not have any impact 

on the RUHI during the night-time. However, the Lup and Ldown were the major contributors to 

the RUHI. The Lup had higher impact on the RUHI during the hot days in the summer and autumn, 
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while, the Ldown had higher effect during the winter and spring. Furthermore, the Kdown and shadow 

patterns primarily derived the spatial and temporal variation of RUCI during the daytime. In 

general, the presence of RUHI and RUCI became evident, and the need for a new UHI indicator 

was crucial. Future work should allow the spatial variability of meteorological data and employ 

lager number of days to investigate the temporal variability of RUHI and RUCI. 
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7.1 Introduction 

Three major approaches were employed, and three terabytes of data were used to fulfil the 

aims of this research. For the SUHI, three study areas were undertaken Baghdad, London and 

Birmingham, however, Birmingham was the only case study of the CUHI and RUHI. Therefore, a 

comparison among SUHI, CUHI and RUHI is only possible for Birmingham City. Accordingly, the 

three types of UHI were investigated for the City of Birmingham. The term UHI referred to the 

three types of UHI (SUHI, CUHI, and RUHI) that were carried out by this research. The only type 

of UHI missing from this study that is reported in the literature is the BUHI. Since the BUHI studies 

the air layer above the average building’s height, the CUHI represented the AUHI as it is closer 

to where people live.  The SUHI was studied for the period (2000-2015), and the CUHI was 

investigated from June 2012 to June 2014. The RUHI was simulated for four days to represent 

the four seasons of Birmingham City. The day and night average SUHI was called diurnal, 

however, the averages of hourly RUHI were named all-day averages just to differentiate them 

from the diurnal. This chapter provides answers to the research’s questions, highlights the 

research’s contributions, and admits the research’s limitations.     

 

7.2 Research findings: fulfilment of research objectives 

In this study, four research questions were raised, and subsequently four objectives were 

formed to answer these questions. The research objectives are undertaken in the same order 

they originally formed, as they are linked to each other and should be discussed in that order. 

  

 

Objective 1: Investigate the spatial change of UHI using air, surface and mean radiant 

temperatures. 

The UHI refers to the SUHI, CUHI, and RUHI, and to investigate the change of UHI, the 

outcomes from the three types of UHI need to be incorporated. First, The SUHI showed different 

behaviour for the three cities (Baghdad, London & Birmingham), as these cities gave different 

spatial SUHI change, in particular, Baghdad and London. The various SUHI spatial distributions 

are attributed to the specific LULC features of each city, the climatic and geographical condition, 

as well as population density. For Baghdad, the built-up areas recorded relatively higher LST at 

night-time, and during the daytime they had lower LST to act as a Cool Island using Landsat and 

ASTER data. The high spatial resolution of Landsat and ASTER images has made the high 

temperature of water bodies visible during the cold nights, which is probably due to its high 

thermal capacity. The Industrial areas and highly populated attached urban configurations were 

recognised as daytime SUHI high intensity places, unlike the night-time SUHI, where all the urban 

areas exhibited higher temperature compared to the city boundary.         

Moving to London, the high daytime SUHI appeared in the heart of the city where the built-

up areas are dominant using Landsat and ASTER data. The night-time SUHI also peaked in the 

city to decrease towards the surrounding areas, except for water areas on cold nights. Similarly, 
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the City of London had the highest daytime SUHI compared to other urban areas using MODIS 

images. At night-time, the water bodies and adjacent areas had the peak SUHI. The high intensity 

of SUHI over water areas was evident for the three cities during cold nights. Thus, the term WUHI 

was introduced for the first time to describe this phenomenon as a unique fining of this study. 

Birmingham daytime SUHI showed similar patterns to London, it concentrated in the urban 

fabric as well as industrial and commercial units using Landsat and ASTER images. However, 

the night-time high spatial resolution airborne thermal image could identify the trees to have the 

second highest temperature after water bodies. This pattern did not appear in London and 

Baghdad using the moderate and course spatial resolution satellite data. Birmingham daytime 

SUHI intensity peaked at the City Centre using MODIS data, and the lowest intensity could be 

seen in the Sutton Park. Furthermore, the night-time SUHI maximised at the City Centre to extend 

to the adjacent suburban’s areas. Using MODIS data from 2003 to 2015, the diurnal averages of 

SUHI were 9.41, 11.29, and 7.63 ºC for Baghdad, London, and Birmingham respectively. 

Although, the higher diurnal, daytime and night-time LST of Baghdad compared to London and 

Birmingham, the London SUHI intensities were higher than those of Baghdad. 

The CUHI, on the other hand, was found to be concentrated in the City Centre of 

Birmingham when its intensity was close to the mean values. However, the extreme intensities 

were seen to stretch to the suburban areas due to the weather parameters; in particular, the wind. 

The coldest spots clearly appeared in the Sutton Park which is the largest park in Birmingham 

that has vegetation and trees. The CUHI peaked at the City Centre when the wind speed is lower 

than 2 m/s (light air), and its direction above the city is heading towards the north. The daily CUHI 

concentrated in and around the City Centre during the night and early morning, to move clockwise 

to the Sutton Park and return to the City Centre after the sunset. The maximum CUHI intensity in 

Birmingham during the period of the study (June 2012-June 2014) was 13.53 °C. The wind speed 

and direction had important impact on the spatial distribution of the hot spots, as well as the extent 

of the CUHI. The CUHI occurred in the suburban areas as well as the urban areas due to the 

presence of impervious surfaces and anthropogenic activities. The extreme CUHI events (UHI > 

10 °C) took place in the suburban areas far from the City Centre during the time of out of working 

hours. The occurring time of the UHI over 10 °C events were between 4 p.m. in day and 6 am in 

the next day, and the locations are almost suburban areas. However, the typical CUHI was found 

to have an intensity close to its mean magnitude pulse the standard deviation.  

Next, the simulation of Tmrt using averaged meteorological inputs showed the presence of 

daytime RUCI in the City Centre, while, the night-time induced the development of RUHI. The 

spatial change of RUHI varied in magnitude and distribution for the four seasons. The open 

spaces revealed relatively high daytime RUHI, and low night-time RUHI except for the winter. The 

maximum averaged RUHI reached 16.2 ºC on the 6th of July 2013, and it was at its minimum on 

the 1st of December 2013 by 9.29 ºC. The spatial variability of daytime RUHI is higher than the 

night-time, this is due to the presence of the sun energy in the daytime. The all-day averages 

RUHI seemed to be high in open spaces, and peaked in dense trees to decrease in built-up areas. 
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To sum up, the SUHI occurred at the City Centre of London and Birmingham during the 

daytime and night-time. However, Baghdad core was a SUCI during the day, to be a heat island 

in the night. The daily cycle of CUHI in Birmingham concentrated at the City Centre during the 

night-time, to stretch to the suburb and move to the Sutton Park clockwise during the daytime, 

and return to the City Centre after the sunset. The RUCI appeared in Birmingham City during the 

daytime, and both the CUHI and RUHI peaked in the night-time at the City Centre. 

 

Objective 2: Investigate the temporal change of UHI using air, surface and mean radiant 

temperatures. 

The temporal change of UHI is also discussed based on the type of UHI. For Baghdad 

during the period (2003-2015) the averages of daytime SUHI fluctuated around 11.56 ºC with 2.8 

SD, which is higher than the night-time SUHI as it was about 7.26 ºC with 1.38 SD. The areas of 

daytime SUHI in Baghdad were found to be in high population density places where the urban 

form configurations are mainly attached buildings when using high temporal resolution images 

(MODIS data). Although the trend of the average daytime SUHI went down, the magnitude of the 

daytime SUHI remained high compared to the night-time. The monthly analysis of LST showed 

different degrees of LST increases over the study period, and spring had the more noticeable 

rise. However, for some months the LST and NLST did not have the same trend direction, and in 

a few cases, they had the opposite behaviour. The average SUHI intensity fluctuated from about 

8.05 ºC for December to around 10.51 ºC for May.  

For London during the period (2003-2015) the average diurnal SUHI did not change that 

much. The average of daytime SUHI was 13.52 °C with 5.90 SD, and the average of night-time 

SUHI was 9.07 °C with 3.01 SD. The spring and summer showed a slight decrease in LST, 

whereas, the autumn and winter reflected a bit of increase. The monthly average SUHI intensity 

fluctuated from about 9.29 ºC with 3.49 SD for December to around 13.99 ºC with 6.19 SD for 

July. The NLST for some months gave opposite trends to the LST, especially for December and 

March. The overall temporal change of LST and SUHI did not show significant change; unlike 

Baghdad, which experienced an increase in LST and decrease in SUHI averages.  

Birmingham during the period (2003-2015); on the other hand, had an average daytime 

SUHI around 10.14 °C with 5.14 SD, and the average of night-time SUHI was 5.13 °C with 2.41 

SD. The summer showed a slight decrease in LST, whereas, the autumn and spring reflected a 

bit of increase to moderate the winter temporal LST decrease. The NLST for some months gave 

opposite trends to the LST, especially, for September and March. The monthly temporal change 

of SUHI appeared to fluctuate for the different months, thus, the weak increase (July – December) 

moderated by the weak decrease of (January, March, April & June). All in all, the temporal change 

of average LST and SUHI for Birmingham did not show significant change over the study period 

just like London; however, they both gave high spatial variability.  

The hourly statistical analysis of the CUHI for 2 years of measurements demonstrated that 

around 56% of total 17520 hours gave an air temperature variation more than 1.5 °C in 

Birmingham. The highest CUHI intensity was in September by 13.5 °C, and the lowest intensity 



 

172 
 

5 °C was in January. However, the monthly highest average CUHI 3.9 °C was monitored in July, 

whereas, the lowest average was in January by 2.3 °C. Besides, the longest hours of CUHI 

occurrence were in June by 1323 hours, and the shortest 471 hours of occurrence were in 

February. It was found that the CUHI occurs in all seasons, day and night based on the climate 

condition. However, the high intensity CUHI happened during the clear and calm weather. 

The temporal change of Tmrt, Ta, and RUHI demonstrated an important distinction between 

the daytime and night-time, and the four days revealed seasonal variations. It demonstrated 

significantly higher Tmrt in the daytime compared to the night-time except for the winter day. The 

City Centre worked as RUHI during the night-time, and it was a RUCI during the daytime just 

opposite to the Sutton Park. The RUCI intensities (up to – 30 ºC) were much higher than the RUHI 

(+5 ºC) in the City Centre compared to the Sutton Park. The SUHI, CUHI and RUHI showed 

temporal variability between the day and night, and demonstrated monthly and seasonal variation 

over the different study periods.   

 

Objective 3: Identify the relationship between the dependant variables (temperature layers) 

and independent variables (influencing parameters) by the statistical or visual analysis. 

Various influencing parameters contributed to the different types of UHI. The land cover 

types and anthropogenic heat were the main contributors to the SUHI. Fourteen controllable and 

uncontrollable predictors controlled the CUHI development. On the other hand, the radiation 

fluxes and shadow patterns directed the RUHI formation. 

 The densely populated attached houses, and their adjacent industrial and commercial 

areas motivated higher daytime SUHI compared to other urban areas in Baghdad. Interestingly, 

some of the urbanised areas (mainly low density residential areas) acted as SUCI, and other built-

up areas (mainly high density residential areas, commercial and industrial units) acted as SUHI 

at the same daytime. This leads to the distinction between the development of SUHI due to the 

land use, and the formation of the SUCI because of the land cover. The land cover has a direct 

impact on the net radiations, while, the land use affects the anthropogenic heat. Accordingly, each 

of the major two inputs to the surface energy equation might lead to a different microclimate 

behaviour. Although, there are only 9,000 residents living within the Square Mile of the City of 

London, which is one of the world’s main financial districts (City of London Corporation, 2007). 

However, it experienced day and night SUHI, because over 300,000 people work in the City and 

almost 30,000 go there to study every day (City of London Corporation, 2007). Furthermore, the 

high daytime and night-time SUHI intensity in Birmingham presented in the densely populated 

areas, which is used for residential, industrial, and commercial purposes. Overall, the 

anthropogenic heat released by the people, transportation or industrial and commercial activities 

was found responsible for the development of SUHI for the three cities.    

The quantification of the influence of the land cover indices on the SUHI demonstrated 

negative correlation between these indices and LST for the three cities, with different degrees 

based on the nature of the index. Some of the indices such as NDVI, MSAVI, NDMI and NBR2 

showed very significant negative correlation with LST. The land cover indices could explain up to 
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70% of the LST variation for the significant models. For Baghdad, low SUHI intensity was 

associated with dense vegetation and high moisture during the day. For example, NDMI had a 

noticeable negative correlation with LST. In London, green spaces and water bodies were 

significant parameters to reduce the high LST. NDVI and MSAVI played a major role to relieve 

the LST with up to 0.81 R2 for NDVI on the 19 of June 2000, for instance. The LST of Birmingham 

could be dramatically reduced by enhancing the vegetation and moisture of the surface cover, 

which showed a similar behaviour to London.  The NDVI could explain 77% of the LST variation 

on the 10th June 2006, and the MSAVI formed about 0.62 R2 of the LST model on the 16th of April 

2003, for examples.  

  For Birmingham, the air temperature was reduced by up to 2 °C due to the shadow of 

buildings. This led to lower temperature in the City Centre canyons which has relatively lower 

values of SVF and VS. The regression models could explain up to 95% of the air temperature 

variations, and the contributing components were LULC, geometrical factors, and synoptic 

weather factors. Though the uncontrollable parameters dominated the significant models, some 

controllable ones were constantly participating in forming the highly significant models. Fourteen 

predictors could explain up to 0.91, 0.71, 0.84 and 0.95% of the Ta in the spring, summer, autumn 

and winter respectively. Moreover, the weather averages gave an indication about the climatic 

condition for each hourly regression model. This highlighted the importance of the hourly synoptic 

weather to model the CUHI, though the controllable parameters played a significant role to make 

up the significant models.  

  On the other hand, the influencing parameters were visualised for Birmingham using Tmrt. 

The Kdown, Kup and shadow did not have any impact on the RUHI during the night-time. However, 

the Lup and Ldown were the major contributors to the RUHI during the night-time. The Lup had higher 

impact on the RUHI during the hot days in the summer and autumn, while, the Ldown had higher 

effect during the winter and spring. Furthermore, the Kdown and shadow patterns primarily derived 

the spatial and temporal variation of the RUCI during the daytime.  

  In summary, the land cover types and anthropogenic activities are the biggest influencing 

parameters on the SUHI formation. The uncontrollable parameters (such as synoptic weather 

variables) have higher impact on the CUHI than the controllable parameters. However, the 

shadow reduces the daytime CUHI and RUHI. The shortwave radiations control the daytime 

RUCI, and the longwave radiations govern the night-time RUHI.  

  Accordingly, the mitigation measures to minimise the UHI effects should focus on the 

significant influencing parameters. For instance, vertical expansion is advised in London and 

Birmingham to keep the green surfaces, and to minimise the UHI effect, more vegetation should 

be planted. The greenery does not have to be on the ground as green roofs and walls can reduce 

the heat stress and improve the air quality in the city without exploiting more lands. For Baghdad, 

horizontal expansion will cover the hot soil and change that to cooler built-up or vegetated areas. 

Moreover, increasing the shadow from trees and high buildings, while, allowing the wind flow to 

penetrate the closed spaces would minimise the UHI. Furthermore, using cool materials for the 
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walls and roofs and pavements would reduce the UHI significantly when applied with the previous 

mitigation strategies.  

 

Objective 4: Use the best available free remotely sensed, GIS and ground based data to 

enhance the spatial and temporal resolution of UHI visual and statistical models. 

The use of LST provided high spatial resolution representation of the UHI, which gives per 

pixel measurements of SUHI. The different urban features were captured and their thermal 

behaviour was evaluated. However, the surface temperature measures the radiant heat from the 

ground surface, and it only provides bird’s eye vision, so roofs and pavements are not captured. 

Nevertheless, the vertical objects such as walls are not involved in the sensing, and the inclined 

surfaces are seen as horizontal planes. The temporal revisit of LST by RS is limited to the satellite 

overpass, which provides in the best cases a day image and a night image. Therefore, temporal 

gaps are present using only RS techniques, and the problem of clouds makes a lot of scenes not 

useful, in particular, in the wet environments where clear weather is not common. These 

challenges have induced the researchers to use the air temperature, since the air temperature is 

ground measured and not affected by the sky condition.  

The ground measurements are usually cheaper than the RS for a point source reference, 

and ground measurement can have much higher temporal resolution than the RS. The spatial 

coverage of ground measurements adopted in this study is lower than the RS. Nevertheless, the 

HiTemp project could provide per minute air temperature readings, which were averaged to hourly 

basis. The HiTemp project consists of AWS and ASM sensors, and the ASM sensors have 

approximately 3 km average spacing. When it is compared to the MODIS 1 km thermal images, 

it can be found that RS provided at least 3 times better spatial coverage than the ground 

measurement technique in this study. However, Landsat TM and ETM+ provide 60 m TIR image 

spatial resolution, and ASTER gives 90 m as well as Landsat 8 originally produces 120 m 

resampled to 30 m.  

In regard to the temporal coverage of RS and HiTemp, MODIS provided about two daily 

visits for MODIS and HiTemp measurements were rescaled to hourly readings. Hence, the daily 

coverage of HiTemp is simply twelve times the thermal images. Even if the spatial coverage of 

the ground measurements were significantly increased, and the temporal coverage of the thermal 

images doubled in case of using both of MODIS/Aqua and MODIS/Terra, the type of information 

provided by air and surface temperature differs, as each indicator conveys the characteristics of 

its medium. The air temperature gives information about the air layer 3 m above the ground for 

HiTemp, and the surface temperature indicates how much longwave radiation in the region of TIR 

is released from the different features on the ground. Consequently, air and surface temperature 

thermal behaviour integrate each other and they do not substitute each other.  

The SUHI showed much higher spatial variability than the CUHI.  The Landsat and ASTER 

data were found to be indispensable to study the spatial variability of SUHI. However, using the 

MODIS data provided better temporal coverage, even though, mixed pixels of different land cover 

types were present in MODIS pixel more than when using Landsat or ASTER images. The 
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common technique that was used to process both of the RS and ground measurement is GIS. 

The ground measurements were converted to temperature maps by the interpolation tools, and 

the RS images were converted to classified maps by RS and GIS means. The ground and RS 

measuring techniques required a modelling approach to fill the gap in each of them. This why 

SOLWEIG was adopted as a microclimate model to include a large number of influencing 

parameters on the formation of different types of UHI.  

The simulated Tmrt combines the influencing parameters on the development of both of the 

SUHI and CUHI. Furthermore, it compensates the two-dimensional demonstration of the UHI by 

using only RS and ground measurements, by a 3D model that could show the impact of vertical 

objects such as trees. As the presence of RUHI and RUCI has become evident, so the need for 

a new UHI indicator was obvious. UMEP as a climate service tool to host the SOWLEIG and other 

applications that use the QGIS have facilitated the viewing, editing and analysis capabilities. From 

that the spatial and temporal representation of UHI have been enhanced dramatically, and better 

data were fed to the statistical packages (such as Excel, SPSS, and MATLAB). Accordingly, the 

integration of different measuring and modelling techniques is the key solution to improve the 

representation of the visual and statistical UHI models.  

                    

7.3 Research contributions 

The outcomes of this research might be beneficial to different aspects of life for the experts 

and public. The contributions of this study were drawn from the gaps in knowledge. Initially, 

increasing the people’s awareness of the serious threats due to the elevating global temperature 

and the increasing intra-urban differences was one of the contributions. The findings showed that 

there are high spatial differences in air and surface temperatures within the same city. People 

might need to do preparations when travelling inside their cities such as extra or less clothes. The 

common practice of people is using the weather applications when travelling to different cities to 

take actions or when leaving homes under unstable conditions. However, these applications 

mainly provide the averages for a city and do not show the spatial variations of the weather 

variables for different places within the same city. Thus, higher spatial resolution of climatic 

parameters should be provided to people, as they affect their health and comfort. People’s health 

and comfort influence their productivity and participation in the society.  

The spatial variability of the temperature means different energy consumption. So, higher 

outdoor temperature needs more indoor cooling loads to moderate the atmosphere, and low 

outdoor temperature induces more heating inside homes. This leads to variability in the energy 

bills which directly impact the economic budgets of individuals. Based on that places can be 

classified according to their environment to economically affordable or unaffordable. Furthermore, 

the construction practices and materials of buildings should vary to adapt with the environment. 

From that the term environmentally friendly buildings comes, which again a building either costs 

more or less to construct. Consequently, climatic maps and zones are becoming important 

sources of information for urban planners and engineers. The urban areas are experiencing 
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irreversible expansion and accumulation of people masses. Therefore, engineering practices 

should be adopted to deal with the different needs of urban sprawl. 

One of the most significant contributions of this research is employing three approaches to 

model the UHI with unprecedented spatial and temporal resolution. Moreover, a large number of 

influencing parameters on the formation of UHI were investigated some of them were not studied 

by previous researches.  The SUHI chapter gave a comparison among three cities in terms of 

their SUHI spatiotemporal change and the contributing parameters in particular the land 

use/cover. Specific patterns of SUHI and SUCI were identified in this study that were unknown 

previously. For example, the daytime SUCI appeared in Baghdad’s low-density population areas, 

while, at the same time highly populated areas showed SUHI behaviour.  Besides, the WUHI was 

distinguished over the water areas in cold nights. Thermal images and land cover indices were 

acquired for about 15 years for the three cities which was not done in a single study.  

The representation of the CUHI was improved significantly by employing hourly 

measurements of over 100 sensors for two years that covered the entire city of Birmingham.  

Fourteen controllable and uncontrollable parameters were investigated to model the CUHI with 

R2 of up to 95%, and this percentage has not been reached by any other study.  The Tmrt was 

introduced as a new predictor to model the RUHI which advances the traditional 2D UHI 

representation to 3D UHI for the first time in the literature. The RUHI and RUCI were identified 

just similar to the traditional surface and canopy UHI behaviour.  Also, the impact of shortwave 

and longwave radiations on the RUHI was highlighted on hourly basis which was not done before.  

Furthermore, this is the only study that compares among three types of UHI with their 

influencing parameters for the scale of a city using remote sensing, GIS and ground 

measurements data. Also, this research employed the intra-urban differences of temperatures to 

measure the UHI by assuming that the boundary of a city represents the rural areas. This will 

enable the researchers to find solutions of the UHI problems from the city itself without the need 

to use the rural areas as a reference to measure the UHI.  So, the size of the study area will be 

limited to the city boundary which will reduce the size of the data of the thermal images in 

particular. In this case larger cities can be studied with lower computing capabilities, and storage 

as the satellite and airborne data require huge storage space.        

Another contribution of this research is highlighting the complexity of the UHI phenomenon. 

This phenomenon does not only describe the temperature difference between two places. 

Nonetheless, it tells about the thermal behaviour, environmental patterns, level of development, 

geographical location and biophysical characteristics between the two places. This is why only 

one predictor was not enough to identify such a large number of variables. On the other hand, 

due to the large amount of data used with their different formats and nature, the methods 

employed in this study provide pathways to deal with huge spatial and temporal information. 

Moreover, the study makes use the different approaches of measuring and modelling techniques 

which might be used to study other topics that share similar characteristics with UHI. The critical 

gap in the UHI studies used to be employing a certain approach which adopts a limited amount 
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of data. That was highlighted by using unprecedented number of approaches and a large amount 

of data. Subsequently, the findings were novel in this field of the discipline. 

                                     

7.4 Research limitations  

The representation of the real world with its variation and complexity is not possible. 

However, the study areas were chosen based on the data availability to give examples of different 

climates with a novel spatiotemporal resolution, and the results can be applicable for similar 

places. Moreover, the influencing parameters on the UHI formation are very broad and this study 

tried to investigate the important factors based on the data availability, and some parameters will 

be suggested for future studies. Nevertheless, the large number of included influencing 

parameters in this study has not been adopted before by other studies.  

Another limitation is that the available technology does not provide data for the full 

classification of urban material due to the limited spectral and spatial resolution of the satellite 

data; however, this might be possible in the future using data from the Sentinel program and other 

projects. The land cover indices were acquired for only daytime Landsat HLPs to model the SUHI 

influencing parameters, as the Landsat mainly provides daytime images. The land cover indices 

were assumed as a major contributor to SUHI, and they could explain 70 % of the LST variation; 

however, the 30 % remaining might incorporate other influencing parameters. Besides, the 

spectral indices did not represent all the land cover types for the three study areas, and other 

spectral indices should be included such as Normalised Difference Built-up index (NDBI).  

Furthermore, free of charge data and applications were pursued due to the limited fund for 

the study, but it did not affect the novelty. The HiTemp data were acquired for only two years, and 

the project is still ongoing. The two years might not be enough to represent the historical record 

of the temperature and other climatic variables. Thus, longer temporal coverage of HiTemp data 

would help for a better understanding of the CUHI temporal change. Moreover, only four days 

were simulated to model the Tmrt to represent the four seasons in Birmingham. These days might 

not give the full seasonal changes of the RUHI, and more days should be modelled by future 

work. Furthermore, the spatial variability of the meteorological data was not included in the 

SOLWEIG model, and further development is needed by the producers. The SUHI was 

investigated for three cities, however, the CUHI and RUHI were studied for only Birmingham. So, 

the results of CUHI and RUHI are applicable for only Birmingham and similar places in terms of 

environment, climate, demography and level of development. So, more cities should be included 

in the investigation of the different types of UHI. Finally, the time was a limitation that minimised 

the research objectives to be achievable within the study timeline.      
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8.1. Conclusions  

The significant findings of this research are briefly summarised as below: 

❖ The City Centre of Baghdad works as SUHI during the night-time, and SUCI in the 

daytime, except for some industrial areas and attached urban configurations that showed 

high SUHI intensity in the daytime. 

❖  The City Centre of London and Birmingham work as SUHI in the day and night-time, and 

water has high LST in the cold nights. 

❖ The diurnal averages of SUHI (2003-2015) were 9.41, 11.29, and 7.63 ºC for Baghdad, 

London, and Birmingham respectively. 

❖  The correlation between SUHI and LST is negative for the three cities, and Baghdad’s 

SUHI showed a bit of decrease between (2003- 2015) opposite to London and 

Birmingham. 

❖ Land cover indices could explain up to 70% of the LST variations, and population as well 

as other anthropogenic activities contributed to the SUHI for the three cities. 

❖ Birmingham experienced the difference in air temperature above 1.5 ºC for 56% of the 

total hours from June 2012 to June 2014, and the CUHI reached up to 13.53 ºC. 

❖ The CUHI appeared daytime and night-time in Birmingham urban and suburban areas 

throughout the different seasons, and peaked during the calm and clear nights. 

❖ Fourteen controllable and uncontrollable predictors could explain up to 95% of the air 

temperature variations, grouped into LULC, geometrical factors, and synoptic weather 

parameters. 

❖ The Tmrt was introduced as an UHI indicator besides the air and surface temperatures.  

❖ The simulation of Tmrt showed the presence of daytime RUCI in the City Centre of 

Birmingham, while, the night-time induced the development of RUHI. 

❖ The shortwave radiations control the daytime RUCI, and the longwave radiations govern 

the night-time RUHI. 

❖ The air and surface temperature thermal behaviour integrate each other, and they do not 

substitute each other, so the need for a new UHI indictor was crucial.  

❖ The integration of different measuring and modelling techniques is the key solution to 

improve the representation of visual and statistical UHI models. 
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8.2. Recommendations and future work 

The UHI is a complicated phenomenon as it is connected to local, regional and global 

thermal and biophysical characteristics. Since, the UHI showed high spatial and temporal 

variability, generalising the findings from a specific place to other places might give biased 

conclusions. Similarly, using the characteristics of a certain type of UHI (SUHI for instance) to 

model another UHI’s type (CUHI for example) would lead to inadequate findings. For the SUHI, 

the use of different RS data is recommended to substitute the lack of temporal coverage 

especially for places that suffer from the presence of clouds all year round. For such places 

ground measurements are needed to fill the gaps of absent satellite images, nevertheless, 

thermal RS and air ground measurement would show different behaviours.  

The 1 km spatial resolution of MODIS data could help to identify some ground features, 

however, there were a lot of ground features smaller than 1 km not identified. Accordingly, it can 

be considered that the 1 km pixel size as the minimum spatial resolution required to study the 

SUHI. The ideal pixel size to identify all the important urban features is 1 m. The one metre spatial 

resolution can capture the thermal behaviour not only for features but compound materials might 

be investigated. The night-time airborne thermal image of Birmingham could show unprecedented 

SUHI patterns, in particular the high LST of the trees in the Sutton Park. That urges the crucial 

need for high spatial resolution thermal images to study the SUHI. Alternatively, the 3D SOLWEIG 

microclimate model can highlight the distinctive thermal behaviour of the trees in the Sutton Park. 

The spatiotemporal change of CUHI was investigated for only two years, and longer time 

scale is needed to identify the anomalies or events that were not picked up in this study. Since 

the HiTemp project is still ongoing and more data can be obtained. Moreover, the CUHI should 

be investigated for other places that have similar dense meteorological stations to be compared 

with Birmingham. The use of Tmrt opens the door for the researchers to investigate the potential 

of other indicators to identify and quantify the UHI. However, the new indicator should build on 

the current use of air and surface temperatures, as they represent the traditional definition of UHI.  

For the validation of the RUHI and RUCI presence longer time scale simulation is required. 

Furthermore, the spatial variability of the meteorological data should be included in the SOWLEIG 

model. Also, the input coefficients of shortwave and longwave radiation absorption as well as the 

emissivity and albedo should vary spatially and temporarily when running the SOWLEIG model. 

The use of a certain type of UHI depends on the objectives of the study and the availability 

of the data. Therefore, the SUHI is recommended to study phenomena related to land surface 

characteristics, and when the LST is a critical parameter. While, the climate of the canopy layer 

can be investigated by modelling the CUHI when two dimensional or a bird vision scale is 

sufficient. However, the RUHI is needed when the aim is to study the outdoor thermal comfort in 

three dimensional settings.  Furthermore, the availability of the data is a crucial point to decide 

which type of UHI to be undertaken. The ideal representation of the CUHI requires a dense 

meteorological network of the study area, whereas, the thermal maps provides a better spatial 

representation of the UHI when only pairs of stations is available. On the other hand, the RUHI 

requires a high spatial resolution DSM and detailed land cover information.       



 

181 
 

Future studies should adopt finer spatial resolution of multi day and night thermal images, 

coincide with high spatial resolution of visible to shortwave images. The later should be classified 

to have detailed LULC maps that provide information about the nature of ground surface 

materials. Furthermore, geometrical and demographical information should be incorporated to 

derive the influencing parameters as well as land cover indices. Furthermore, the effects of total 

anthropogenic heat fluxes on the UHI formation should be identified. The population density was 

used in this study as a component of the total anthropogenic heat fluxes; however, other heat 

sources such as transportation and industry were not included. The inputs to the energy balance 

equation are the net radiation fluxes plus the anthropogenic fluxes. The net radiation fluxes were 

modelled using the SOWLEIG model, nevertheless, a robust modelling or measuring technique 

for the total anthropogenic fluxes is still under development by the researchers.                   
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Appendices 

Appendix A. Landsat and ASTER images of Baghdad, London, and Birmingham 

 

 
Table A. 1: Baghdad’s Landsat and ASTER raw data used to derive the LST and land 

cover indices. 

Satellite/Sensor Date 
Time 

(GMT) 
Cloud 

Cover % 
Path/ Row 

Image 
Quality 

Spatial 
Resolution 

Multispectral/
Thermal 

Landsat 5/ TM 08/09/2000 07:11 0 168/37 7 30 m/120 m 

Landsat 5/ TM 01/10/2000 07:18 0 169/37 9 30 m/120 m 

Landsat 7/ ETM+ 02/10/2000 07:24 0 168/37 9 30 m/60 m 
Landsat 7/ ETM+ 25/10/2000 07:30 0.74 169/37 9 30 m/60 m 

Landsat 7/ ETM+ 02/04/2003 07:22 0  9 30 m/60 m 

Landsat 5/ TM 14/07/2006 07:33 0 169/37 7 30 m/60 m 

Landsat 7/ ETM+ 08/03/2003 07:28 0 169/37 9 30 m/60 m 

Landsat 5/ TM 14/06/2006 07:33 0 169/37 7 30 m/120 m 

Landsat 8/ OLI & 
TIRS 

20/05/2015 07:38 0.01 169/37 9 30 m/100 m 

Landsat 7/ ETM+ 21/05/2015 07:33 0 168/37 9 30 m/60 m 

Landsat 7/ ETM+ 08/07/2001 07:28 0 169/37 9 30 m/60 m 

Landsat 7/ ETM+ 22/04/2002 07:28 1.1 169/37 9 30 m/60 m 

Landsat 7/ ETM+ 15/10/2002 07:27 0 169/37 9 30 m/60 m 

Landsat 7/ ETM+ 22/03/2014 07:36 0 169/37 9 30 m/60 m 

Landsat 7/ ETM+ 20/11/2015 07:40 0.8 169/37 9 30 m/60 m 

Landsat 7/ ETM+ 13/11/2015 07:34 0 168/37 9 30 m/60 m 
Landsat 7/ ETM+ 06/04/2002 07:28 9.9 169/37 9 30 m/60 m 

Terra/ASTER/TIR 30/09/2005 07:50 0 168/37 - 15,30 m/90 m 

Terra/ASTER/TIR 25/09/2003 07:50 0 168/37 - 15,30 m/90 m 

Terra/ASTER/TIR 20/4/2002 19:12 1 34/207 - 15,30 m/90 m 

Terra/ASTER/TIR 13/10/2002 19:11 1 34/207 - 15,30 m/90 m 

Terra/ASTER/TIR 30/9/2003 19:10 1 34/207 - 15,30 m/90 m 

Terra/ASTER/TIR 03/12/2003 19:11 1 34/207 - 15,30 m/90 m 
Terra/ASTER/TIR 05/10/2005 19:09 7 34/207 - 15,30 m/90 m 

Terra/ASTER/TIR 18/11/2015 19:11 0 34/207 - 15,30 m/90 m 
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Table A. 2: London’s Landsat and ASTER raw data used to derive the LST and land 

cover indices. 

Satellite/Sensor Date 
Time 

(GMT) 
Cloud 

Cover % 
Path/ Row Quality 

Spatial 
Resolution 

Multispectral/
Thermal 

Landsat 7/ ETM+ 07/04/2000 10:51 2 202/24 9 30 m/60 m 

Landsat 7/ ETM+ 19/06/2000 10:44 0 201/24 9 30 m/60 m 

Landsat 7/ ETM+ 12/05/2001 10:48 0 202/24 9 30 m/60 m 

Landsat 7/ ETM+ 28/03/2002 10:47 0 202/24 9 30 m/60 m 

Landsat 7/ ETM+ 16/04/2003 10:47 0 202/24 9 30 m/60 m 

Landsat 5/ TM 24/09/2003 10.30 0 201/24 9 30 m/120 m 

Landsat 5/ TM 28/08/2005 10:40 10 201/24 9 30 m/120 m 
Landsat 7/ ETM+ 10/05/2006 10:48 2 202/24 9 30 m/60 m 

Landsat 5/ TM 12/06/2006 10:45 10 201/24 9 30 m/120 m 

Landsat 5/ TM 11/05/2006 10:44 4 201/24 9 30 m/120 m 

Landsat 7/ ETM+ 02/11/2006 10:48 1 202/24 9 30 m/60 m 

Landsat 7/ ETM+ 20/09/2008 10:47 1.77 202/24 9 30 m/60 m 

Landsat 7/ ETM+ 29/09/2011 10:52 0 202/24 9 30 m/60 m 

Landsat 5/ TM 30/09/2011 10:40 0 201/24 9 30 m/120 m 
Landsat 7/ ETM+ 11/11/2012 10:48 0 201/24 9 30 m/60 m 

Landsat 7/ ETM+ 18/11/2012 10:54 1 202/24 9 30 m/60 m 

Landsat 7/ ETM+ 20/04/2013 10:48 0 201/24 9 30 m/60 m 

Landsat 8/ OLI & 
TIRS 

08/07/2013 11:00 2 202/24 9 30 m/100 m 

Landsat 8/ OLI & 
TIRS 

17/07/2013 10:54 11 201/24 9 30 m/100 m 

Landsat 8/ OLI & 
TIRS 

01/02/2014 10:59 11 202/24 9 30 m/100 m 

Landsat 8/ OLI & 
TIRS 

04/07/2014 10:52 10 201/24 9 30 m/100 m 

Landsat 8/ OLI & 
TIRS 

09/04/2015 10:58 4 202/24 9 30 m/100 m 

Landsat 8/ OLI & 
TIRS 

27/05/2015 10:57 14 202/24 9 30 m/100 m 

Landsat 8/ OLI & 
TIRS 

02/10/2015 10:58 7 202/24 9 30 m/100 m 

Terra/ASTER/TIR 23/07/2004 11:15 1 201/24 - 15,30 m/90 m 

Terra/ASTER/TIR 26/05/2012 11:15 1 201/24 - 15,30 m/90 m 

Terra/ASTER/TIR 12/07/2006 21:43 1 59/220 - 15,30 m/90 m 

Terra/ASTER/TIR 19/10/2007 21:44 2 59/220 - 15,30 m/90 m 

Terra/ASTER/TIR 12/09/2011 21:43 1 59/220 - 15,30 m/90 m 

Terra/ASTER/TIR 09/10/2015 21:44 0 59/220 - 15,30 m/90 m 
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Table A. 3: Birmingham’s Landsat and ASTER raw data used to derive the LST and 

land cover indices. 

Satellite/Sensor Date 
Time 

(GMT) 

Cloud 
Cover 

% 
Path/ Row Quality 

Spatial 
Resolution 

Multispectral/
Thermal 

Landsat 7/ ETM+ 07/04/2000 10:51 2 202/24(23) 9 30 m/60 m 

Landsat 7/ ETM+ 12/05/2001 10:48 0 202/24(23) 9 30 m/60 m 

Landsat 7/ ETM+ 28/03/2002 10:47 0 202/24 9 30 m/60 m 

Landsat 7/ ETM+ 04/04/2002 10:53 5 203/23 9 30 m/60 m 

Landsat 7/ ETM+ 11/09/2002 10:52 0 203/24 9 30 m/60 m 

Landsat 7/ ETM+ 22/03/2003 10:53 0 203/23 9 30 m/60 m 
Landsat 7/ ETM+ 16/04/2003 10:47 0 202/24(23) 9 30 m/60 m 

Landsat 5/ TM 13/07/2003 10:35 0 202/24(23) 9 30 m/120 m 

Landsat 7/ ETM+ 19/11/2004 10:53 5 203/23 9 30 m/60 m 

Landsat 7/ ETM+ 10/05/2006 10:48 0 202/24(23) 9 30 m/60 m 

Landsat 5/ TM 10/06/2006 10:57 6 203/23 9 30 m/120 m 

Landsat 7/ ETM+ 20/07/2006 10:53 4 203/23 9 30 m/60 m 

Landsat 5/ TM 21/07/2006 10:51 13 202/24(23) 9 30 m/120 m 
Landsat 5/ TM 28/07/2006 10:57 9 203/23 9 30 m/120 m 

Landsat 7/ ETM+ 02/11/2006 10:48 6 202/24(23) 9 30 m/60 m 

Landsat 7/ ETM+ 18/11/2006 10:48 2 202/24(23) 9 30 m/60 m 

Landsat 7/ ETM+ 20/09/2008 10:47 12 202/24 9 30 m/60 m 

Landsat 7/ ETM+ 22/06/2010 10:50 11 202/23 9 30 m/60 m 

Landsat 5/ TM 20/10/2010 10:48 2 202/24(23) 9 30 m/120 m 

Landsat 5/ TM 30/04/2011 10:48 0 202/24(23) 9 30 m/120 m 
Landsat 5/ TM 28/09/2011 10:52 0 203/23 9 30 m/120 m 

Landsat 7/ ETM+ 29/09/2011 10:52 0 202/24(23) 9 30 m/60 m 

Landsat 7/ ETM+ 18/11/2012 10:54 1 202/24(23) 9 30 m/60 m 

Landsat 8/ OLI & 
TIRS 

18/11/2013 10:59 8 202/24(23) 9 30 m/100 m 

Landsat 8/ OLI & 
TIRS 

19/01/2015 10:58 12 202/24 9 30 m/100 m 

Landsat 8/ OLI & 
TIRS 

09/04/2015 10:58 2 202/24(23) 9 30 m/100 m 

Landsat 8/ OLI & 
TIRS 

08/07/2013 11:00 14 202/24(23) 9 30 m/100 m 

Terra/ASTER/TIR 01/06/2009 11:28 0 203/24 - 15,30 m/90 m 
Terra/ASTER/TIR 27/09/2011 11:27 0 203/24 - 15,30 m/90 m 
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Appendix B. Conversion of BT to LST 

 

 
Figure B. 1: ArcGIS model builder flowchart to derive the land surface temperature 

(LST) from the brightness temperature (BT). 

 
 
 

Appendix C. Masking and rescaling of Satellite images  

  

 
Figure C. 1: ArcGIS model builder flowchart to mask and rescale the satellite images 

 
 



 

203 
 

 

Appendix D. MATLAB code to extract HiTemp data 
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Appendix E. Meteorological inputs of the six tiles 

 

Table E. 1: Tile 0 meteorological inputs to model the Tmrt for the four days using UMEP 

plugin in QGIS.   

 

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 5.88 81.56 101.20 0.00 0.79 254.85 0 15.41 72.66 99.55 0.00 0.48 167.66

1 6.30 81.10 101.18 0.00 0.99 261.73 1 14.25 76.77 99.50 0.00 0.54 175.90

2 6.99 80.05 101.19 0.00 1.23 287.99 2 13.05 82.20 99.44 0.00 0.43 174.63

3 7.38 78.08 101.19 0.00 1.34 288.56 3 12.45 85.45 99.38 0.00 0.32 182.86

4 7.39 77.89 101.18 0.00 1.37 298.41 4 11.41 88.47 99.34 0.00 0.30 216.84

5 7.37 77.35 101.18 0.00 1.54 298.47 5 10.74 91.46 99.33 7.78 0.30 218.32

6 7.27 76.21 101.19 0.00 1.45 290.50 6 12.46 87.73 99.34 80.49 0.57 231.54

7 7.31 76.09 101.24 0.48 1.43 297.38 7 16.28 73.85 99.36 189.39 0.82 247.65

8 7.48 75.10 101.31 12.29 0.94 281.92 8 17.80 67.66 99.36 401.77 1.42 287.51

9 7.98 74.16 101.36 36.66 0.55 268.90 9 19.03 63.30 99.35 574.42 1.60 279.81

10 8.39 74.04 101.40 41.78 0.77 289.32 10 19.95 60.18 99.30 677.28 1.34 252.01

11 8.49 77.43 101.39 51.35 1.15 292.77 11 20.36 58.59 99.27 685.79 1.38 277.10

12 8.66 77.45 101.37 56.39 1.12 281.96 12 20.65 57.12 99.25 561.78 1.53 280.69

13 9.14 76.20 101.37 84.24 0.85 257.89 13 20.87 53.50 99.22 622.75 1.79 287.92

14 9.21 74.64 101.37 36.92 0.62 199.13 14 21.28 45.81 99.17 493.14 1.57 286.74

15 8.79 75.76 101.40 15.01 0.43 196.30 15 21.41 45.50 99.14 385.81 1.80 278.98

16 7.13 81.38 101.42 0.90 0.29 171.80 16 20.49 49.52 99.13 176.25 1.49 295.75

17 5.74 87.13 101.47 0.00 0.23 197.95 17 19.07 57.10 99.12 72.84 1.78 300.83

18 4.78 89.67 101.52 0.00 0.21 230.88 18 16.50 69.98 99.15 9.59 2.06 310.63

19 4.47 91.16 101.57 0.00 0.27 141.29 19 14.29 77.07 99.20 0.04 1.99 318.74

20 4.13 91.91 101.59 0.00 0.31 173.70 20 13.40 76.77 99.19 0.00 2.08 310.60

21 4.75 92.39 101.61 0.00 0.44 117.61 21 13.11 74.87 99.18 0.00 1.91 318.66

22 5.25 91.65 101.64 0.00 0.31 205.45 22 12.95 73.27 99.16 0.00 1.73 307.53

23 5.45 91.21 101.66 0.00 0.27 191.71 23 12.94 72.98 99.13 0.00 1.66 302.38

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 15.36 78.55 100.84 0.00 0.52 143.44 0 5.90 82.21 99.92 0.00 1.78 307.88

1 15.13 82.77 100.82 0.00 0.90 141.94 1 5.41 82.05 99.94 0.00 1.39 295.16

2 14.77 84.87 100.82 0.00 0.92 135.82 2 5.00 83.23 99.96 0.00 1.34 294.04

3 14.45 84.65 100.82 0.86 0.78 141.75 3 4.51 85.21 99.97 0.00 1.25 293.89

4 14.15 84.82 100.84 21.75 0.73 146.22 4 4.00 85.09 99.99 0.40 0.86 294.29

5 15.15 80.72 100.86 100.12 0.78 141.20 5 3.55 85.44 100.03 24.10 0.48 223.79

6 16.56 75.04 100.87 214.40 1.00 133.82 6 5.01 77.77 100.08 109.96 0.91 192.59

7 18.45 65.54 100.88 401.54 1.01 152.20 7 6.20 65.06 100.13 246.95 1.46 73.67

8 19.55 62.06 100.89 609.90 1.07 158.54 8 7.02 56.25 100.17 379.17 1.56 64.82

9 19.97 61.19 100.89 635.70 1.38 141.69 9 7.84 52.41 100.19 494.34 1.68 114.41

10 20.71 58.68 100.88 720.30 1.35 140.89 10 8.72 50.41 100.18 575.48 1.55 161.44

11 21.94 53.79 100.87 800.72 1.38 151.30 11 9.73 46.24 100.17 662.88 1.92 192.33

12 22.62 51.57 100.84 835.04 1.54 145.73 12 10.57 40.20 100.17 716.63 1.91 157.75

13 23.38 48.40 100.81 844.45 1.26 146.69 13 11.04 38.38 100.14 702.77 1.77 125.40

14 24.06 45.14 100.79 755.19 1.16 155.33 14 11.30 38.44 100.12 618.82 1.77 117.47

15 24.60 42.69 100.78 643.58 0.98 176.17 15 11.55 38.70 100.09 507.26 1.65 111.20

16 24.62 41.66 100.78 514.84 0.94 180.81 16 11.34 40.30 100.05 355.88 1.72 83.06

17 24.46 41.75 100.78 280.25 0.85 195.43 17 10.93 42.51 100.04 191.98 1.72 69.10

18 23.72 43.85 100.81 107.23 0.70 203.80 18 10.08 46.52 100.04 42.44 1.55 72.96

19 22.76 47.82 100.84 43.60 0.45 205.74 19 8.99 50.37 100.06 1.98 1.02 88.49

20 20.70 54.61 100.89 5.34 0.25 220.66 20 7.67 56.59 100.09 0.00 0.74 119.20

21 19.33 69.19 100.96 0.06 0.99 279.39 21 6.54 63.86 100.08 0.00 0.63 141.93

22 17.75 76.04 101.01 0.00 1.18 280.66 22 5.65 68.99 100.07 0.00 0.74 151.97

23 16.63 77.48 101.04 0.00 1.11 284.22 23 4.63 74.39 100.07 0.00 0.58 152.79

01/12/2013 05/09/2013

06/07/2013 18/04/2014
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Table E. 2: Tile 1 meteorological inputs to model the Tmrt for the four days using UMEP 

plugin in QGIS.   

 

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 6.24 80.93 101.43 0.00 1.00 249.89 0 15.52 71.86 99.85 0.00 0.30 173.57

1 6.81 80.03 101.41 0.00 1.22 259.06 1 14.28 75.87 99.80 0.00 0.24 172.84

2 7.43 78.60 101.42 0.00 1.57 295.55 2 13.31 79.25 99.74 0.00 0.23 186.89

3 7.64 77.24 101.42 0.00 1.26 284.36 3 12.47 82.41 99.68 0.00 0.30 197.90

4 7.65 77.33 101.41 0.00 1.30 293.75 4 11.97 83.81 99.64 0.00 0.31 198.84

5 7.58 76.82 101.41 0.00 1.37 290.28 5 11.57 84.96 99.63 8.08 0.35 219.27

6 7.42 75.92 101.41 0.00 1.69 300.94 6 12.86 80.64 99.63 70.35 0.53 228.95

7 7.46 75.92 101.48 0.84 1.09 286.51 7 16.02 72.84 99.65 221.57 0.56 214.34

8 7.70 75.10 101.55 15.05 0.78 262.10 8 18.95 62.77 99.65 397.46 1.09 264.76

9 8.10 74.02 101.59 48.54 0.75 273.57 9 20.13 58.70 99.64 561.16 1.06 229.78

10 8.71 73.13 101.62 62.86 1.05 294.90 10 21.17 54.58 99.59 707.69 1.15 208.47

11 8.74 76.60 101.61 68.85 1.09 287.81 11 21.64 54.49 99.56 656.94 1.22 213.49

12 8.81 77.79 101.60 91.26 0.90 248.89 12 21.81 54.00 99.53 545.66 1.26 177.22

13 9.34 74.54 101.60 82.58 1.14 90.49 13 21.80 52.51 99.51 577.75 1.27 212.72

14 9.46 72.70 101.60 56.50 1.03 45.25 14 21.75 46.69 99.47 369.13 1.17 236.67

15 8.94 73.06 101.63 20.09 0.80 45.51 15 22.20 42.41 99.43 482.42 1.26 178.52

16 7.26 80.52 101.66 1.67 0.35 94.18 16 21.43 46.06 99.42 171.69 1.21 228.47

17 5.75 86.59 101.70 0.00 0.26 133.18 17 19.92 53.80 99.41 71.16 1.46 154.11

18 5.04 89.41 101.76 0.00 0.30 123.62 18 17.68 64.92 99.44 12.45 1.30 240.26

19 4.79 90.75 101.81 0.00 0.42 85.27 19 15.17 73.31 99.49 0.06 1.48 278.77

20 5.15 90.01 101.83 0.00 0.61 86.46 20 14.14 74.32 99.49 0.00 1.29 252.23

21 5.63 88.91 101.85 0.00 0.77 75.62 21 13.81 72.56 99.48 0.00 1.27 264.01

22 5.79 88.08 101.87 0.00 0.43 109.41 22 13.50 71.66 99.45 0.00 1.15 264.50

23 5.79 88.54 101.90 0.00 0.24 192.65 23 13.48 70.57 99.42 0.00 1.14 255.94

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 15.87 76.45 101.19 0.00 0.67 204.80 0 6.51 76.17 100.31 0.00 1.31 283.32

1 15.02 81.85 101.18 0.00 0.87 201.51 1 6.11 79.15 100.32 0.00 1.30 295.34

2 14.71 84.35 101.17 0.00 0.86 198.01 2 5.62 80.97 100.35 0.00 0.95 271.80

3 14.39 85.10 101.18 1.04 0.77 192.41 3 5.07 82.52 100.36 0.00 0.87 233.25

4 13.83 87.13 101.19 20.25 0.81 195.69 4 4.62 81.78 100.37 0.44 0.73 167.63

5 14.30 84.12 101.22 106.68 0.87 197.16 5 4.69 78.60 100.42 27.12 0.80 56.00

6 16.21 74.84 101.22 245.12 1.04 201.28 6 5.67 73.16 100.47 116.33 1.51 44.56

7 18.10 66.77 101.23 455.67 1.32 208.50 7 6.51 64.09 100.52 291.35 2.74 45.03

8 19.08 64.99 101.24 574.55 1.82 208.94 8 7.37 57.30 100.56 464.33 2.62 51.33

9 20.14 61.49 101.24 736.98 1.52 205.73 9 8.27 52.55 100.58 565.17 2.53 52.22

10 21.76 52.66 101.23 868.83 1.48 203.83 10 9.38 48.28 100.58 615.31 2.14 57.32

11 22.28 51.70 101.22 819.65 1.57 202.51 11 10.28 42.12 100.57 697.73 2.27 82.56

12 23.20 49.30 101.19 772.67 1.33 207.16 12 10.87 38.90 100.56 620.32 2.15 67.70

13 23.97 46.76 101.15 870.90 1.36 196.41 13 11.31 38.84 100.54 606.79 1.95 72.70

14 24.60 44.36 101.14 770.69 1.24 178.17 14 11.75 38.85 100.52 558.83 1.89 83.14

15 25.15 41.91 101.12 646.10 1.16 194.24 15 11.77 39.83 100.49 418.05 1.75 64.76

16 25.34 40.81 101.12 533.53 1.12 222.06 16 11.55 40.47 100.45 243.04 1.93 68.53

17 25.11 38.70 101.13 301.69 1.17 212.53 17 11.15 43.05 100.44 108.69 2.01 63.20

18 24.55 40.14 101.15 173.52 1.24 219.55 18 10.51 45.31 100.44 34.01 1.70 68.43

19 23.70 44.70 101.18 49.12 0.77 224.01 19 9.52 49.55 100.46 1.96 1.11 88.04

20 22.09 51.25 101.23 5.50 0.37 219.12 20 8.26 56.42 100.48 0.00 0.61 122.00

21 20.53 60.48 101.29 0.00 0.63 271.52 21 7.38 61.42 100.47 0.00 0.79 108.92

22 19.09 71.27 101.34 0.00 0.99 304.24 22 6.33 67.31 100.47 0.00 0.94 103.33

23 17.51 74.38 101.38 0.00 1.12 309.12 23 5.37 72.09 100.47 0.00 0.66 109.61

01/12/2013 05/09/2013
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Table E. 3: Tile 2 meteorological inputs to model the Tmrt for the four days using UMEP 

plugin in QGIS.   

 

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 6.56 80.13 101.42 0.00 1.45 251.39 0 17.26 67.11 99.84 0.00 0.89 190.70

1 7.21 79.29 101.40 0.00 1.68 275.60 1 16.39 68.75 99.79 0.00 0.81 188.54

2 7.53 78.21 101.40 0.00 2.01 287.32 2 15.42 72.10 99.74 0.00 0.71 198.96

3 7.51 78.06 101.40 0.00 1.96 278.58 3 14.30 77.37 99.67 0.00 0.50 200.08

4 7.51 77.95 101.40 0.02 1.90 266.90 4 13.13 83.04 99.63 0.00 0.59 199.65

5 7.54 76.64 101.40 0.03 2.11 289.12 5 13.24 83.59 99.62 8.04 0.64 168.38

6 7.53 75.35 101.41 0.02 2.13 285.09 6 14.01 81.97 99.63 79.46 0.49 172.47

7 7.54 75.35 101.47 0.96 1.70 272.23 7 17.16 69.98 99.65 243.50 0.91 257.49

8 7.63 75.01 101.53 15.56 1.28 256.18 8 18.26 65.39 99.66 414.87 1.27 278.29

9 8.15 73.59 101.58 45.96 0.97 276.77 9 19.42 61.68 99.65 595.90 1.45 278.72

10 8.51 74.23 101.62 52.67 1.32 280.06 10 19.64 61.97 99.61 604.70 1.52 271.88

11 8.52 78.35 101.61 55.13 1.35 266.19 11 20.06 60.49 99.58 631.72 1.44 243.20

12 8.86 77.55 101.60 112.84 1.25 260.46 12 20.20 58.88 99.56 541.72 1.46 262.01

13 9.51 74.38 101.59 116.64 1.16 190.32 13 20.81 52.02 99.53 603.25 1.50 264.99

14 9.48 72.59 101.59 49.43 1.11 131.05 14 21.40 47.22 99.48 558.40 1.52 263.54

15 9.03 74.46 101.63 23.01 0.95 119.29 15 21.61 46.20 99.45 455.63 1.62 254.22

16 7.73 79.65 101.65 1.59 0.83 98.62 16 20.84 48.98 99.43 261.75 1.63 249.98

17 6.94 82.76 101.70 0.00 0.88 145.36 17 19.06 58.02 99.43 86.48 1.69 228.58

18 6.10 85.36 101.75 0.00 0.82 174.23 18 16.30 70.94 99.46 12.13 1.99 285.85

19 5.43 87.95 101.80 0.00 0.92 139.87 19 14.41 75.43 99.50 0.07 2.06 298.47

20 5.49 89.00 101.82 0.00 0.87 96.30 20 13.66 75.05 99.50 0.00 1.90 285.34

21 5.86 88.02 101.85 0.00 0.89 97.23 21 13.35 73.92 99.48 0.00 1.80 283.54

22 5.89 87.90 101.87 0.00 0.70 141.02 22 13.12 73.20 99.46 0.00 1.69 290.65

23 5.86 88.47 101.89 0.00 0.77 170.74 23 13.13 72.59 99.43 0.00 1.49 273.62

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 17.82 66.73 101.38 0.00 0.86 159.42 0 6.33 79.39 100.31 0.00 1.89 281.73

1 16.86 73.25 101.36 0.00 1.58 196.23 1 5.87 80.51 100.32 0.00 1.83 289.88

2 16.14 77.90 101.35 0.00 1.44 174.68 2 5.33 82.13 100.36 0.00 1.50 260.71

3 15.73 78.72 101.36 1.01 1.50 164.45 3 4.66 84.61 100.37 0.00 1.32 259.98

4 15.48 78.40 101.37 18.49 1.23 160.28 4 4.36 84.07 100.38 0.44 1.41 208.23

5 15.78 77.07 101.40 89.76 1.07 182.69 5 4.15 83.02 100.42 18.41 1.22 100.66

6 17.35 69.35 101.41 261.98 1.28 185.81 6 4.95 79.22 100.48 88.02 1.64 90.71

7 18.75 62.70 101.41 434.38 1.54 199.39 7 6.57 65.04 100.53 279.30 2.29 68.74

8 19.79 58.62 101.43 583.38 1.63 209.46 8 7.61 54.70 100.56 444.70 2.32 73.15

9 20.68 55.86 101.42 653.93 1.64 189.89 9 8.51 50.95 100.59 551.23 2.29 78.16

10 21.33 54.26 101.42 756.66 1.59 195.11 10 9.35 48.68 100.58 555.35 2.06 119.37

11 22.40 49.65 101.41 791.93 1.71 192.20 11 10.25 44.54 100.57 660.50 2.17 92.34

12 23.53 47.10 101.37 866.43 1.61 182.33 12 11.02 38.73 100.57 710.09 1.85 94.01

13 24.26 44.89 101.34 886.02 1.56 190.25 13 11.49 37.90 100.55 647.70 1.74 105.00

14 24.87 41.53 101.32 776.81 1.45 202.33 14 11.84 38.08 100.52 561.49 1.60 103.02

15 25.21 39.28 101.31 661.96 1.43 204.47 15 11.95 38.68 100.49 440.13 1.44 95.70

16 25.36 39.36 101.30 537.80 1.42 202.49 16 11.80 39.87 100.45 320.65 1.46 79.45

17 25.53 38.11 101.31 370.56 1.19 240.63 17 11.38 41.94 100.44 165.84 1.72 71.44

18 25.26 38.11 101.34 200.19 1.19 229.03 18 10.55 45.52 100.43 42.66 1.84 86.52

19 24.29 41.09 101.36 64.52 1.15 250.58 19 9.66 48.14 100.46 1.97 1.62 97.84

20 22.77 48.81 101.43 5.69 0.87 277.18 20 8.73 53.12 100.48 0.00 1.34 102.20

21 20.06 68.29 101.49 0.00 1.33 286.65 21 7.80 58.67 100.47 0.00 1.24 120.65

22 18.07 72.92 101.55 0.00 1.15 273.18 22 6.88 64.28 100.47 0.00 1.36 113.57

23 16.89 75.26 101.58 0.00 1.34 271.82 23 5.95 69.09 100.47 0.00 1.35 111.48
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Table E. 4: Tile 3 meteorological inputs to model the Tmrt for the four days using UMEP 

plugin in QGIS.   

 

 
 

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 6.68 81.32 101.72 0.00 1.37 274.82 0 16.25 69.94 100.12 0.00 0.57 154.70

1 7.38 78.72 101.70 0.00 1.96 293.41 1 15.07 72.96 100.07 0.00 0.57 176.26

2 7.66 77.63 101.71 0.00 2.28 304.35 2 14.02 76.24 100.02 0.00 0.41 194.05

3 7.42 78.17 101.71 0.00 1.73 301.80 3 13.15 79.51 99.96 0.00 0.34 195.02

4 7.44 78.51 101.70 0.00 2.08 308.64 4 12.61 81.31 99.91 0.00 0.38 203.59

5 7.44 77.60 101.70 0.00 2.39 306.01 5 12.29 82.72 99.90 11.01 0.45 219.43

6 7.29 76.54 101.71 0.00 2.24 305.69 6 13.67 78.88 99.91 106.30 0.41 223.07

7 7.41 76.24 101.77 0.99 1.58 307.58 7 16.91 69.77 99.93 269.30 0.79 229.78

8 7.55 76.49 101.84 16.22 1.19 295.49 8 18.68 63.74 99.93 411.63 1.52 285.36

9 8.11 75.06 101.88 48.91 1.06 281.97 9 19.68 60.80 99.91 557.09 1.51 287.77

10 8.55 74.91 101.92 66.87 1.64 303.71 10 20.45 58.76 99.87 726.71 1.66 266.95

11 8.58 78.50 101.91 57.33 1.57 303.61 11 20.85 57.65 99.84 679.49 1.50 277.78

12 9.09 78.09 101.90 134.19 1.46 282.73 12 20.86 57.38 99.82 554.23 1.73 261.19

13 9.42 74.11 101.89 84.17 1.29 243.17 13 21.24 52.85 99.79 628.80 1.91 303.30

14 9.51 72.34 101.90 49.49 1.09 152.29 14 21.45 46.54 99.74 430.29 1.75 298.00

15 8.83 74.96 101.93 21.14 0.68 127.79 15 21.92 44.56 99.71 489.30 1.86 287.29

16 7.30 79.96 101.96 1.60 0.45 123.65 16 21.19 47.18 99.69 215.04 1.79 290.05

17 6.43 84.08 102.00 0.01 0.35 143.69 17 19.51 56.85 99.69 82.17 2.10 306.78

18 5.52 86.88 102.06 0.00 0.34 147.26 18 17.24 67.32 99.72 13.92 2.21 301.39

19 4.82 89.57 102.11 0.00 0.43 159.17 19 14.93 73.84 99.77 0.03 2.30 311.92

20 5.07 89.94 102.13 0.00 0.59 105.43 20 14.00 74.26 99.77 0.00 2.17 310.05

21 5.44 89.45 102.16 0.00 0.56 104.49 21 13.70 73.38 99.76 0.00 1.95 311.30

22 5.60 88.86 102.18 0.00 0.42 202.23 22 13.42 72.76 99.74 0.00 1.75 307.61

23 5.65 89.10 102.20 0.00 0.29 223.34 23 13.37 71.70 99.70 0.00 1.72 301.68

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 16.75 71.50 101.37 0.00 0.57 156.61 0 6.34 75.52 100.64 0.01 1.94 300.04

1 15.85 77.22 101.35 0.00 0.58 175.45 1 5.86 79.44 100.65 0.01 1.80 302.25

2 14.89 82.68 101.35 0.00 0.55 168.13 2 5.34 81.67 100.69 0.01 1.35 294.58

3 14.49 84.01 101.36 0.90 0.60 170.51 3 4.84 83.08 100.70 0.01 1.19 292.09

4 14.37 84.02 101.37 21.55 0.62 168.09 4 4.49 82.30 100.72 0.44 1.01 285.68

5 15.12 80.93 101.40 112.39 0.77 167.87 5 4.34 80.88 100.76 26.77 0.78 231.74

6 17.20 71.31 101.40 287.88 0.94 164.24 6 5.59 74.80 100.82 149.92 1.07 185.57

7 19.09 62.84 101.41 460.88 1.02 184.47 7 6.85 63.64 100.87 317.25 1.92 88.41

8 20.17 58.77 101.42 597.19 1.23 186.37 8 7.62 56.74 100.90 468.05 2.16 93.15

9 20.84 56.84 101.41 700.22 1.33 170.85 9 8.57 51.50 100.92 591.86 1.93 102.26

10 21.60 54.08 101.40 735.45 1.24 197.23 10 9.56 47.42 100.91 650.68 1.91 125.27

11 22.66 48.78 101.40 888.80 1.43 169.46 11 10.42 41.67 100.91 725.97 2.10 134.58

12 23.44 47.72 101.36 873.89 1.47 186.79 12 11.00 38.93 100.90 731.00 2.06 113.65

13 24.18 45.64 101.33 846.35 1.24 180.49 13 11.48 38.98 100.88 672.85 1.66 99.77

14 24.72 43.31 101.31 768.79 1.21 169.61 14 11.85 39.19 100.86 596.16 1.63 118.70

15 25.21 40.44 101.29 640.66 1.19 194.32 15 11.92 39.79 100.83 484.10 1.65 83.04

16 25.65 38.71 101.28 525.00 1.05 237.96 16 11.87 40.63 100.79 304.87 1.60 94.76

17 25.51 38.79 101.29 302.21 1.04 231.16 17 11.43 42.99 100.77 153.25 1.55 84.55

18 25.16 39.01 101.32 144.08 0.88 252.45 18 10.63 45.70 100.77 46.36 1.40 84.59

19 24.19 43.21 101.34 53.33 0.95 251.11 19 9.55 49.79 100.79 2.10 1.05 98.83

20 22.86 47.49 101.41 5.96 0.96 273.17 20 8.49 55.20 100.82 0.01 0.90 112.99

21 20.64 65.82 101.47 0.01 1.77 298.23 21 7.53 60.57 100.81 0.01 0.84 112.36

22 18.38 72.45 101.53 0.00 1.70 295.68 22 6.59 66.42 100.81 0.01 1.04 113.74

23 17.02 75.49 101.56 0.00 1.44 296.43 23 5.58 71.47 100.81 0.01 0.81 101.06

01/12/2013 05/09/2013
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Table E. 5: Tile 4 meteorological inputs to model the Tmrt for the four days using UMEP 

plugin in QGIS.   

 

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 6.81 81.87 101.41 0.00 1.63 284.22 0 14.18 82.32 99.83 0.00 0.45 194.07

1 7.37 79.11 101.39 0.00 2.29 308.13 1 13.26 82.89 99.78 0.00 0.53 182.07

2 7.42 79.31 101.39 0.00 2.49 313.93 2 12.41 83.93 99.73 0.00 0.38 181.76

3 7.12 80.41 101.39 0.00 2.13 321.82 3 11.90 84.88 99.67 0.00 0.46 221.57

4 7.28 80.09 101.39 0.00 2.18 321.81 4 11.52 85.15 99.62 0.00 0.49 187.26

5 7.36 78.73 101.39 0.00 2.47 316.53 5 10.99 86.81 99.62 5.06 0.48 217.70

6 7.37 76.94 101.39 0.00 2.61 316.59 6 11.48 86.82 99.62 26.84 0.82 241.82

7 7.41 76.98 101.46 0.97 2.07 319.53 7 14.29 83.85 99.64 218.48 1.21 266.03

8 7.55 76.85 101.52 15.54 1.35 312.32 8 17.23 73.04 99.65 373.63 1.48 314.09

9 8.05 75.87 101.57 48.54 1.25 306.43 9 18.66 66.60 99.64 458.06 1.85 302.58

10 8.32 77.50 101.61 56.32 1.77 315.08 10 18.50 69.00 99.61 382.64 1.69 310.77

11 8.37 80.98 101.60 50.74 1.72 314.74 11 19.07 66.13 99.58 452.62 1.52 308.74

12 8.98 78.69 101.59 127.36 1.59 318.27 12 19.28 63.10 99.56 473.55 1.45 324.11

13 9.46 75.13 101.59 115.40 1.41 297.91 13 20.17 55.80 99.53 552.63 1.50 316.23

14 9.48 73.76 101.59 52.36 1.09 239.71 14 21.00 50.48 99.48 562.91 1.97 324.23

15 8.89 76.03 101.62 22.32 0.63 103.69 15 21.11 50.00 99.45 442.81 1.97 324.03

16 7.45 80.74 101.65 1.53 0.46 104.23 16 20.43 52.26 99.43 253.63 2.13 331.49

17 6.31 84.68 101.69 0.00 0.37 148.76 17 18.34 62.03 99.43 89.35 2.41 332.73

18 4.73 88.44 101.75 0.00 0.40 201.61 18 15.49 74.75 99.45 13.68 2.55 329.21

19 3.54 90.73 101.79 0.00 0.54 170.69 19 13.93 77.80 99.50 0.09 2.40 324.62

20 3.48 91.19 101.82 0.00 0.66 139.49 20 12.15 85.71 99.65 0.00 1.11 260.78

21 3.95 91.46 101.84 0.00 0.53 135.80 21 12.98 76.68 99.48 0.00 1.92 326.40

22 4.57 91.47 101.87 0.00 0.37 173.56 22 12.80 75.70 99.46 0.00 1.91 326.82

23 5.08 91.28 101.89 0.00 0.27 157.98 23 12.76 75.72 99.42 0.00 1.76 326.79

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 11.26 92.82 101.63 0.00 0.32 183.19 0 5.81 80.47 100.30 0.00 1.91 321.43

1 10.73 93.32 101.62 0.00 0.37 168.72 1 5.36 82.71 100.31 0.00 1.98 331.68

2 10.72 93.79 101.61 0.00 0.41 181.02 2 4.70 84.86 100.34 0.00 1.76 330.74

3 11.42 94.38 101.62 0.93 0.62 192.62 3 4.28 85.73 100.36 0.00 1.30 292.91

4 11.66 94.17 101.63 18.51 1.01 212.07 4 3.34 86.44 100.38 0.45 0.70 268.17

5 13.07 94.52 101.66 117.22 0.32 221.97 5 2.47 87.14 100.41 23.86 0.57 246.32

6 16.09 84.77 101.66 256.72 0.98 190.78 6 4.31 83.96 100.47 135.97 0.88 202.98

7 18.95 66.27 101.67 428.72 1.37 182.03 7 6.52 67.67 100.52 311.60 1.52 65.94

8 19.73 61.44 101.68 566.34 2.07 217.79 8 7.55 58.34 100.55 467.64 1.73 73.91

9 20.46 59.83 101.68 644.93 1.73 194.01 9 8.52 53.59 100.58 601.58 1.74 76.49

10 21.42 56.05 101.67 765.77 1.69 192.28 10 9.41 50.24 100.57 658.13 2.06 162.86

11 22.48 52.13 101.66 839.67 1.77 185.81 11 10.20 46.88 100.56 663.42 1.88 156.32

12 23.26 50.35 101.63 801.39 1.76 184.04 12 11.11 41.53 100.56 740.90 1.74 138.13

13 23.98 46.29 101.59 800.58 1.73 191.17 13 11.32 40.17 100.54 720.41 1.84 158.50

14 24.65 43.78 101.57 702.84 1.38 209.34 14 11.70 40.46 100.51 613.60 1.72 101.65

15 24.95 41.82 101.56 603.23 1.21 226.91 15 12.00 40.53 100.48 521.69 1.48 127.72

16 25.31 39.68 101.55 486.63 1.02 220.15 16 12.03 41.67 100.44 348.37 1.34 83.74

17 25.21 39.90 101.56 331.43 0.95 193.59 17 11.52 43.85 100.43 205.00 1.27 95.53

18 25.00 43.20 101.59 184.64 0.73 253.22 18 10.34 48.17 100.42 56.16 1.11 92.42

19 22.96 47.35 101.62 51.40 0.62 266.78 19 8.48 55.40 100.45 2.23 0.76 112.51

20 20.84 60.49 101.68 5.74 1.34 302.53 20 6.66 64.09 100.47 0.00 0.70 158.94

21 19.01 71.80 101.76 0.02 2.05 334.89 21 5.38 70.53 100.46 0.00 0.75 155.30

22 17.26 75.34 101.81 0.00 1.87 329.62 22 4.42 76.39 100.46 0.00 0.75 166.00

23 16.06 78.15 101.85 0.00 0.99 290.77 23 4.22 78.71 100.46 0.00 0.60 149.93
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Table E. 6: Tile 5 meteorological inputs to model the Tmrt for the four days using UMEP 

plugin in QGIS.   

 

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 6.91 83.06 101.62 0.00 1.24 292.37 0 11.46 92.77 100.06 0.00 0.31 218.43

1 7.30 78.91 101.60 0.00 1.47 294.62 1 10.46 92.98 100.02 0.00 0.28 250.84

2 7.16 79.95 101.61 0.00 1.01 270.83 2 9.91 93.18 99.96 0.00 0.38 330.98

3 6.65 81.56 101.61 0.00 0.76 253.12 3 9.35 93.14 99.90 0.00 0.31 269.54

4 6.98 81.27 101.61 0.00 0.90 274.48 4 8.57 93.25 99.86 0.02 0.25 258.56

5 6.82 81.65 101.60 0.00 1.09 287.32 5 8.05 93.32 99.85 6.47 0.29 285.87

6 6.65 81.19 101.61 0.01 1.23 298.80 6 8.70 93.60 99.85 41.85 0.21 174.30

7 6.92 80.27 101.68 1.07 0.98 286.52 7 12.63 93.75 99.88 241.68 0.28 157.18

8 7.16 80.02 101.74 16.36 0.69 267.58 8 16.69 83.23 99.88 384.95 0.64 205.07

9 7.92 78.05 101.79 48.12 0.62 247.31 9 19.04 68.83 99.87 516.44 1.16 235.26

10 8.50 77.57 101.83 64.52 0.98 299.71 10 19.62 67.85 99.84 506.39 0.83 230.00

11 8.41 81.07 101.82 46.34 0.94 280.25 11 20.02 66.23 99.80 444.56 0.91 244.38

12 9.16 78.36 101.81 118.88 0.98 250.11 12 20.32 62.92 99.78 508.95 0.95 233.79

13 9.76 74.16 101.81 95.60 0.88 177.40 13 20.79 56.98 99.75 533.87 1.00 260.98

14 9.23 76.15 101.81 39.56 0.42 182.60 14 21.21 53.76 99.71 506.00 1.04 247.37

15 7.50 82.59 101.85 22.10 0.41 225.36 15 21.47 51.71 99.67 461.64 1.07 252.90

16 5.85 87.83 101.87 1.33 0.41 237.30 16 20.75 54.97 99.66 301.73 0.96 267.97

17 5.35 88.82 101.92 0.00 0.31 243.98 17 18.32 65.05 99.66 89.29 0.94 271.89

18 4.07 91.27 101.98 0.00 0.41 299.09 18 15.95 74.80 99.67 14.24 1.10 270.53

19 3.34 91.90 102.02 0.00 0.57 188.06 19 14.01 79.64 99.72 0.08 1.06 288.37

20 3.40 92.50 102.05 0.00 0.49 180.56 20 13.16 79.76 99.72 0.00 0.97 236.05

21 4.33 91.99 102.07 0.00 0.45 201.98 21 12.87 79.29 99.70 0.00 0.90 270.51

22 4.87 91.87 102.09 0.00 0.38 258.49 22 12.58 78.84 99.68 0.00 0.90 233.49

23 5.16 91.80 102.11 0.00 0.29 243.07 23 12.38 79.09 99.65 0.00 0.60 184.24

HOUR TAIR RELH PRES SRAD WSPD WDIR HOUR TAIR RELH PRES SRAD WSPD WDIR

0 11.50 93.00 101.50 0.00 0.33 267.78 0 5.58 79.22 1005.07 0.00 1.14 297.05

1 11.50 93.00 101.50 0.00 0.33 267.78 1 5.15 82.46 1005.18 0.00 1.15 318.05

2 10.51 93.59 101.48 0.00 0.24 308.05 2 4.76 84.98 1005.58 0.00 0.83 266.78

3 10.27 93.73 101.49 0.84 0.25 241.27 3 4.27 85.62 1005.72 0.00 0.70 287.70

4 10.29 93.90 101.50 15.25 0.27 233.55 4 3.44 86.24 1005.92 0.45 0.43 227.72

5 11.36 94.14 101.53 43.44 0.27 220.83 5 2.81 87.19 1006.32 23.08 0.43 219.04

6 14.56 92.01 101.53 217.88 0.48 92.86 6 4.58 82.28 1006.85 126.08 0.98 124.53

7 18.50 69.02 101.54 398.49 0.83 182.16 7 5.02 67.47 1007.46 317.36 1.74 128.39

8 20.03 60.05 101.54 505.42 1.17 204.83 8 7.72 59.54 1007.84 470.77 1.87 101.22

9 20.85 57.79 101.54 611.37 1.16 177.61 9 8.70 54.00 1008.01 600.50 2.02 99.00

10 21.46 55.53 101.53 581.34 1.17 168.99 10 9.84 49.23 1007.86 616.49 1.43 152.94

11 22.21 51.84 101.53 729.59 1.33 166.43 11 10.60 43.29 1007.85 737.85 1.94 123.42

12 23.16 48.51 101.49 783.61 1.29 208.82 12 11.08 41.69 1007.83 749.47 1.72 112.80

13 23.85 47.74 101.45 732.18 1.24 192.12 13 11.22 42.57 1007.62 600.19 1.45 146.28

14 24.47 45.38 101.44 678.86 1.10 213.23 14 11.23 43.36 1007.36 449.92 1.55 126.62

15 24.99 43.22 101.42 549.95 0.94 191.44 15 11.52 43.95 1007.07 452.29 1.57 122.02

16 25.39 41.53 101.41 437.84 0.73 224.15 16 11.47 43.83 1006.69 327.85 1.41 128.01

17 25.34 43.92 101.42 330.83 0.61 187.24 17 11.15 46.03 1006.55 191.74 1.21 132.98

18 23.90 50.50 101.45 147.48 0.66 164.59 18 9.81 51.24 1006.46 28.87 0.85 115.37

19 21.38 63.62 101.48 41.38 0.57 254.88 19 7.62 60.55 1006.69 2.01 0.42 179.87

20 17.61 79.36 101.53 5.31 0.53 308.01 20 5.52 69.63 1006.94 0.00 0.43 284.08

21 16.66 85.06 101.60 0.00 0.37 159.63 21 4.18 75.86 1006.88 0.00 0.37 261.94

22 16.72 82.10 101.65 0.00 0.59 164.53 22 3.47 80.90 1006.89 0.00 0.55 173.92

23 15.32 85.79 101.69 0.00 0.29 100.64 23 2.89 84.26 1006.93 0.00 0.46 187.16
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