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Highlights

• Collaborative replenishment situations with multiple sources of supply
are modelled

• Conditions for concavity of associated cooperative games are intro-
duced

• Concavity cannot be guaranteed in general even with submodular cost
functions

• In the associated two-stage game the Shapley value induces complete
participation
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Abstract

In complex supply chains, downstream buyers would often replenish indi-
vidually from intermediaries instead of directly dealing with original manu-
facturers. Although collaborative replenishment from intermediaries might
generate benefits, significant cost reductions could be achieved when direct
replenishments from manufacturers are considered. This paper constructs a
general model to study collaborative replenishment in multi-product chains
with alternative sources of supply—i.e., manufacturers and intermediaries. A
collaborative organization determines the optimal choices of replenishment
sources on behalf of its members to minimize collective costs. We intro-
duce a class of cooperative games associated with these situations and give
sufficient conditions for their concavity. We investigate the choice of alloca-
tion rule and its effect on supply chain efficiency when buyers strategically
participate in the collaborative organization. We prove that the Shapley
value coordinates the supply chain, i.e., it makes complete participation the
best strategy for buyers even under asymmetric information. This setting is
compared with an alternative structure where buyers can only collaborate in
source-specific replenishment organizations that purchase all requested prod-
ucts either from intermediaries or manufacturers. Although there are always
participation strategies that result in minimum collective cost, it is impos-
sible to find allocation rules for source-specific replenishment organizations
that always motivate the buyers to choose such strategies.
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1. Introduction

Intermediaries are economic entities who arbitrate transactions in be-
tween upstream suppliers and downstream buyers (Wu, 2004). According
to the intermediation theory of the firm (Spulber, 1996), a firm is created
when the gains from intermediated exchange exceed the gains from direct
exchange. The gains created by intermediaries in many supply chains stem
from aggregating demands of competing downstream buyers to achieve econ-
omy of scale, and consolidating upstream supply to reduce order and delivery
costs. Traditionally, supply chain intermediaries generate these benefits via
procuring products, holding inventories, and reselling them at a margin. Such
activities add to the total cost of supply chains. This paper investigates the
possibilities of increasing supply chain efficiency by reducing intermediation
costs and excessive inventories—an objective that is attainable by collabora-
tion among downstream buyers.

The enduring presence of intermediaries in certain supply chains implies
that individual downstream buyers find it worthwhile to replenish indirectly
even though intermediaries charge considerably higher prices than manufac-
turers. Despite price disparity, replenishing from local intermediaries often
provides the opportunity to bundle orders for several products and receive
them in one delivery, instead of dealing with numerous manufacturers whose
minimum volume requirements, fixed ordering costs, or farther geographical
distance impose higher replenishment costs and/or longer lead-times. By
creating a critical mass, a collaborative organization of downstream buyers
can take advantage of both direct and indirect replenishment sources to re-
duce total costs by choosing among the feasible replenishment policies for
the organization’s members. This paper constructs a general model to study
collaborative replenishment in multi-product chains with alternative sources
of supply—i.e., manufacturers and intermediaries. To the best of our knowl-
edge, this paper is the first to consider collaborative organizations that could
take advantage of such mixed policies.

The role of supply chain intermediaries are more significant in industries
with high degree of product variability, market fragmentation, and sourcing
globalization, e.g., in fashion, agro-food, and healthcare sectors as studied
in Purvis et al. (2013), Appel et al. (2014), and Moss (2012) respectively.

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

This paper is particularly motivated by supply chain intermediation in the
automotive after-sale market. The automotive after-market deals with thou-
sands of products, comprises many echelons—e.g., manufacturers, importers,
wholesalers, garages, and car owners—and is filled with excessive invento-
ries and inefficiencies at various echelons (AASA, 2012). Collaborative pur-
chasing and replenishment in this context is becoming an emerging trend
to reduce costs and improve efficiency (London Economics, 2006). To ma-
terialize the joint replenishment initiatives and coordinate the decisions of
downstream buyers, however, collaborative organizations are needed. Such
collaborative organizations would serve as hubs for gathering relevant in-
formation from the members, taking and executing purchasing decisions,
managing payments, and sharing costs. The latter can be managed by an
independent firm. In our motivating case in automotive after-market, the
company IZI-motive (http://www.izimotive.nl/) coordinates the replenish-
ments of delegated products for downstream buyers. Supported by Dutch
Institute for Advanced Logistics (DINALOG), IZI-motive is created as a
platform to facilitate collaboration among buyers of automotive parts in or-
der to reduce the inefficiencies resulting from the presence of intermediaries
in the supply chain. Having negotiated volume discounts and arranged lo-
gistics infra-structure, IZI-motive enables buyers to jointly replenish directly
from manufacturers in volumes that make it less costly than individual pur-
chases from the intermediaries. Not only this practice reduces the purchasing
costs of the parts, but also it drastically limits the number of delivery trips
of the parts to the buyers (DINALOG, 2017). IZI-motive only deals with
purchases from the manufacturers since collaborative replenishments from
the local intermediaries does not generate substantial savings.

In this paper, we formalize Collaborative Replenishment in the presence
of Intermediaries as a CRI situation. CRI situations present a general mod-
elling framework for joint replenishment of multiple products by several buy-
ers with the option of sourcing each product directly or indirectly from man-
ufacturers or intermediaries. The downstream buyers sell to the market. The
manufacturers produce distinctive products. Meanwhile, intermediaries pro-
cure products from the manufacturers and supply to the downstream buyers
at higher unit prices. Note that although intermediaries and manufactur-
ers constitute alternative sources of supply, they exhibit some contrasting
features.

The potential savings are also obtained from consolidating orders (of dif-
ferent products or different buyers) from the same source. This is because
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Figure 1: Graphical representation of a replenishment policy in collaborative organization

average replenishment costs of a product could decrease if buyers (a) indi-
vidually replenish more products from intermediaries (and/or manufactur-
ers), and (b) jointly replenish from manufacturers (and/or intermediaries) in
larger groups. These conditions reflect the incentives for collaboration and
the possible conflict between the economies of scale in dealing with direct
and indirect replenishment sources. Figure 1 depicts an example of a CRI
situation with three buyers requiring three different products. The replenish-
ment policy chosen by the collaborative organization in this example dictates
that buyer 1 replenishes products c and b from the intermediary jointly with
buyers 2 and 3 who also replenish product c from intermediary, and prod-
uct a from its manufacturer jointly with buyers 2 and 3 who also replenish
product a and b directly.

The CRI situations in this paper combine source-specific replenishment
cost functions, i.e., cost components, that obtain minimum costs of replen-
ishing different sets of product-player pairs from manufacturers or interme-
diaries. Depending on the conditions imposed on such cost components,
the results in this paper are of three types. The first type of results per-
tains to general CRI situations with non-decreasing and subadditive cost
components—the most basic conditions that justifies collaborative replen-
ishment. The second type of results is specific to the class of submodular
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CRI situations, i.e., situations whose cost components are submodular. The
class of submodular CRI situations builds upon important joint replenish-
ment models in the literature including, but not limited to, Meca et al.
(2004), Anily and Haviv (2007), Zhang (2009), Van den Heuvel et al. (2007),
Hartman et al. (2000), and Özen et al. (2011) among others. Therefore,
the second type of results presented in this paper holds for multi-product-
multi-source extensions of aforementioned models. The third type of results
addresses submodular CRI situations with separable indirect replenishment
costs, that is, situations wherein collaborative replenishments by groups of
buyers from intermediaries do not provide additional cost savings—although
for individual buyers joint replenishments of multiple products from the in-
termediaries can still be beneficial. Such situations are motivated by our
observation in automotive after-market where collaborative purchases from
local intermediaries lack significant benefits.

The starting point in our study is to elaborate on the underlying optimiza-
tion problem in CRI situations and to study optimal replenishment policies.
Generally, obtaining the optimal replenishment policies requires solving a
combinatorial optimization problem. For submodular CRI situations, how-
ever, we show that total cost functions are submodular and consequently the
optimal replenishment policies can be found using a strongly polynomial al-
gorithm. Adding the separable indirect replenishment costs assumption, we
show that the optimal replenishments from manufacturers exhibit a nested
property meaning that if it is optimal for a group of buyers to replenish a
product directly from its manufacturer, doing so by those buyers remains op-
timal in every group containing the former buyers. Therefore, direct replen-
ishers of a product never grow smaller as more buyers join the collaborative
organization. The objectives and contributions of this paper are three fold:

1. To understand the nature of collaboration among the buyers, we con-
struct the class of cooperative CRI games and analyze their properties. Coop-
erative CRI games on the whole are subadditive which attests to the benefits
of collaborative replenishments. However, it can be challenging to devise
an allocation rule for sharing the costs among the players in ways that sup-
port the stability of collaborative organizations. We examine conditions that
result in concavity of cooperative CRI games. Concave games are appeal-
ing inasmuch as the Shapley value (Shapley, 1953) always constitutes an
allocation rule that (a) is within the core (Gillies, 1959) so that subgroup
of players do not have the incentive to break apart, and (b) is population
monotonic (Sprumont, 1990) so that joining of new members would never
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have a negative effect on the allocated gains of existing members. Somewhat
counter-intuitively, games associated with submodular CRI situations can be
non-concave, even though their total cost functions are always submodular.
Nevertheless, we prove that under the separability assumption on indirect
replenishment costs, games associated with submodular CRI situations are
concave.

2. We allow downstream buyers to strategically decide about the extent
of their participation in collaborative organizations and introduce the class of
two-stage CRI games. In the first stage the buyers choose the products they
wish to replenish via the collaborative organization. In the second stage the
withheld products would be replenished individually while the cooperative
CRI game induced by the participation strategies of the buyers in stage one
is played and the joint costs will be divided according to a known allocation
rule. In two-stage CRI games the grand coalition benefits the most if all
buyers participate with all of their products so that the collaborative organi-
zation can take the centrally optimal replenishment policies. But individual
buyers may choose other strategies if they perceive that partial participa-
tion would be to their interest. For general CRI situations, we show that
with the Shapley value as the allocation rule for sharing the joint costs, in-
dividual buyers can never make a better move than adopting the complete
participation strategies irrespective of others’ strategies, that is, the com-
plete participation strategy profile is always weakly dominant. In this sense
the Shapley value implements the centrally optimal replenishment policies
in dominant strategies. Maskin and Sjöström (2002) explain that this is
the most demanding form of implementation which is often impossible to
achieve. Moreover, with the Shapley value complete participation is the only
weakly dominant strategy profile when the buyers have asymmetric informa-
tion about the situation. We conclude that the Shapley value has the ability
to coordinate the supply chain in CRI situations.

3. We investigate the possibility of achieving supply chain coordination in
an alternative setting with source-specific replenishment organizations that
instead of making decisions on the sources of products, purchase every re-
quested product either from the intermediaries or the manufacturers. The
rationale is that it can be easier to set up and maintain collaborative organi-
zations that do not make strategic sourcing decisions on behalf of their mem-
bers. We answer the following question: is it possible to choose allocation
rules that motive the buyers to participate in source-specific replenishment
organizations in such a way that centrally optimal policies are always imple-
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mented? The answer to the latter question shed light on shortcomings of the
approach which combines existing single-source joint replenishment models
to deal with multi-source situations. We demonstrate that irrespective of the
choice of allocation rules, strategic participation of buyers in source-specific
replenishment organizations can make optimal supply chain performance im-
possible to achieve—even if joint replenishments from intermediaries are not
beneficial. The intuition derived from this result for our motivating case is
that the collaborative organization must take responsibility for making de-
cisions regarding the replenishment sources of requested products if supply
chain coordination is sought after.

The rest of this paper is organized as follows. In Section 2, we briefly
overview the relevant literature. Section 3 contains an overview of main
concepts used in this paper. In Section 4 we formally introduce the CRI
situations and examine their properties. The cooperative cost games associ-
ated with CRI situations are studied in Section 5 where the corresponding
cost-sharing problem is also addressed. The two-stage CRI games are in-
vestigated in Section 6. Section 7 discusses the alternative structure with
source-specific replenishment organizations where all the requested products
of the players are replenished via intermediaries or manufacturers. Section 8
concludes the paper.

2. Literature Review

Several papers in the literature elaborate on the opportunities for con-
solidating costs, obtaining lower purchase prices, carrying less stocks, and
reducing risks of supply/demand uncertainty as the result of collaboration
in replenishment and procurement activities. Dror and Hartman (2011)
and Fiestras-Janeiro et al. (2011) provide surveys of cooperative and non-
cooperative games associated with replenishment and procurement situa-
tions.

An important advantage in collaborative replenishment is the possibility
of aggregating order and/or delivery costs. Drawing upon basic EOQ model,
Meca et al. (2004) introduce the class of inventory games where downstream
players aggregate their logistics costs by placing joint orders and show that
the total cost is submodular on the set of players. Dror and Hartman (2007)
extend the basic inventory game to the setting which takes into account the
player-specific order costs in the joint replenishment process. They show that
collaborative replenishment may not necessarily be beneficial if players could
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only place joint orders simultaneously. However, Anily and Haviv (2007)
prove that if replenishment policies follow the powers-of-two (Jackson et al.,
1985) structure, so that downstream players are not forced to synchronize
all of their orders, the collaborative replenishment is always beneficial and
the total cost is submodular on the set of players. Zhang (2009) extends this
result to situations where players are allowed to have a joint inventory stock-
ing point and obtains similar results. Van den Heuvel et al. (2007) introduce
and investigate the class of economic lot-sizing games wherein players face
periodic, yet deterministic, demand and have the option to place joint or-
ders. They introduce cases in which the joint cost function is submodular.
In situations closely related to lot-sizing games, Guardiola et al. (2008) and
Guardiola et al. (2009) introduce and investigate production-inventory games
as another class of totally balanced combinatorial optimization games and
estate conditions for the concavity of these games that result in submodu-
larity of the joint cost functions. Timmer et al. (2013) extend the model in
Meca et al. (2004) to Poisson demand and conjecture the submodularity of
the corresponding cost function. In a related study that generalizes some
models of cooperative inventory management and group purchasing, Meca
and Sošić (2014) examine the role of different types of players in terms of the
benefits that they provide for or obtain from collaborative interactions and
their effect on the stability of the associated games. Meca and Sošić (2016)
extend the latter games and introduce the supremum-norm cost games as
yet another class of totally balanced cooperative games.

The collaborative replenishment problem has also been investigated in
settings with strategic players. Meca et al. (2003) study a single-item in-
ventory game in strategic form with players announcing their desired replen-
ishment cycles to an intermediary who places orders with the manufacturer.
Alternative games with players announcing their contribution to ordering
costs are investigated by Körpeoğlu et al. (2012) and Körpeoğlu et al. (2013).
The latter models allow players to be privately informed about their types.
Finally, Bylka (2011) analyze an inventory batching game in strategic form
and describe the structure of Nash equilibria.

In addition to consolidating fixed costs, collaborative replenishment can
also reduce the risks associated with stochastic demands. The extensive line
of research on risk pooling in inventory management and procurement starts
with the work of Hartman et al. (2000) and in the context of newsvendor
problems. Slikker et al. (2005) further study these situations while allowing
downstream players to transship unused products amongst themselves and
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show that allocations in the core always exists. Özen et al. (2011) particularly
study situations where the corresponding collaborative replenishment models
have submodular cost functions. Montrucchio et al. (2012) provide a review
of cooperative newsvendor games. Infinite-horizon versions of inventory risk
pooling games are studied in Karsten et al. (2012) and Karsten and Basten
(2014) in the context of expensive and low-demand spare parts.

Another stream of research focuses on the cost-sharing problems in col-
laborative purchasing organizations that take advantage of suppliers’ dis-
count schedules. Nagarajan et al. (2010) compare some of the well-known
allocations for dividing the joint costs in such situations. Schotanus et al.
(2008) discuss the unfairness of the equal price allocation method in pur-
chasing groups. Schaarsberg et al. (2013) introduce and analyze the class
of maximum collaborative purchasing situations and their associated games
where the purchase price of a group of players is determined by the largest
order quantity of the players in the group. In the context of health-care
supply chains, the effect of group purchasing organizations on distribution
of profit and providers’ total purchasing cost have been investigated in Hu
et al. (2012).

A number of papers in the operations management literature investigate
multi-stage games that mixes non-cooperative and cooperative games inter-
twined in sequential stages. Brandenburger and Stuart (2007) provide an
axiomatic approach to two-stage games which they refer to as biform games.
Stuart (2005) use the biform game structure to investigate the pricing deci-
sions following the inventory decisions among a group of competing newsven-
dors. In the context of inventory pooling and transshipments, Anupindi et al.
(2001) study the choice of allocation rules for the cooperative game in second
stage and its effect on the first stage strategies. They show that the use of
dual allocations (Owen, 1975) makes the centrally optimal order quantities
a Nash equilibrium (Nash, 1950) in the first stage non-cooperative game.
However, Granot and Sošić (2003) show that if the players have the option
to choose the extent of their participation in the transshipment stage, in
terms of the level of inventories they share, partial participation may be
more beneficial than complete participation. As they prove, the use of Shap-
ley value as the allocation rule provides sufficient incentives for the players
to participate completely but then it cannot guarantee that the grand coali-
tion is formed by the players. Nevertheless, Yan and Zhao (2015) show that
complete participation as well as the formation of grand coalition can be
achieved if collaboration is managed by an external entity who subsidizes
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the system. Including the supplier into the model analyzed by Anupindi
et al. (2001), Kemahlioglu-Ziya and Bartholdi (2011) establish that with the
Shapley value as the allocation rule, the retailers have incentive to join the
inventory pooling coalition and the supplier carries the level of inventory that
is optimal for the coalition. Özen et al. (2008) study a two-stage inventory
pooling game with warehouses and show that the set of pay-off vectors re-
sulting from strong Nash equilibria corresponds to the core of the cooperative
game played in the second stage.

3. Preliminaries

Set functions. Given a finite set Ω, and its power set ℘(Ω), f : ℘(Ω)→ R is
a set function that gives real values to subsets of Ω. The following properties
of set functions are of interest:

• f is non-decreasing if for every A ⊂ B ⊆ Ω we have f(A) ≤ f(B).

• f is subadditive if for every A,B ⊂ Ω, A∩B = ∅, we have f(A∪B) ≤
f(A) + f(B).

• f is submodular if for every A ⊆ B ⊂ Ω and every element a ∈ Ω \ B
it holds that f(B ∪ a)− f(B) ≤ f(A ∪ a)− f(A).1

The returned value of a non-decreasing set function never decreases as the
result of including more elements. Subadditivity limits the amount of increase
due to including more elements so that the value of union of two disjoint
sets does not exceed their sum. A submodular set function demonstrates a
diminishing returns property which makes it analogous to concave continuous
functions.

Cooperative games. A Transferable Utility (TU) cooperative cost game is a
pair (N, c) where N is a finite set of players and c : ℘(N)→ R a set function
with c(∅) = 0 that determines the cost to be paid by each group of players.
The game (N, c) is subadditive if c is subadditive on the set of players and it
is concave if c is submodular on the set of players. An allocation for players
in N is β = (βi)i∈N such that βi ∈ R for every i ∈ N . An allocation β is

1For notational convenience we do not use braces for union and exclusion of single
element sets. That is, we write A ∪ a instead of A ∪ {a} and A \ a instead of A \ {a}.
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efficient for (N, c) if
∑

i∈N βi = c(N). An allocation β is individually rational
for (N, c) if βi ≤ c({i}) for all i ∈ N . An allocation rule is stable for (N, c)
if for any S ⊆ N it holds that

∑
i∈S βi ≤ c(S). The core of a game contains

all of its efficient and stable allocations.

Non-cooperative games. A cost game in strategic form is a triple (N,A, z)
where N denotes the set of players, A = (Ai)i∈N is the vector of strategy
sets of players and z = (zi)i∈N is the vector of player-specific cost functions
which assign values to every strategy profile L = (Li)i∈N with Li ∈ Ai for
every i ∈ N . For S ⊆ N , let LS be the reduction of L to players in S and
let L−S be the reduction of L to players in N \ S. The following strategy
profiles are of interest in this paper:

• L is a Nash equilibrium if for every i ∈ N and every L
′
i ∈ Ai it holds

that zi(L) ≤ zi(L
′
i, L−i).

• L is a weakly dominant strategy profile if for every i ∈ N and every
L
′ ∈∏

i∈N Ai it holds that zi(Li, L
′
−i) ≤ zi(L

′
).

Unilateral deviations from a Nash equilibrium does not reduce the cost of any
players. A weakly dominant strategy for a player is its best choice of strategy
irrespective of other players’ choices. The last concept is a refinement of Nash
equilibrium meaning that if L is a weakly dominant strategy profile, it is also
a Nash equilibrium. The reverse does not hold necessarily.

4. CRI Situations

Consider a supply chain with a set of downstream buyers, hereafter the
players, represented by the index set N = {1, ..., n}, replenishing a variety of
different products to sell in their local markets. The set of products replen-
ished by a player i ∈ N is denoted by Ei. The vector E = (Ei)i∈N denotes
the player-specific product sets. Products are produced and sold by a set
of manufacturers. In addition to the manufacturers, supply chain intermedi-
aries, e.g., regional wholesalers or volume distributors, also sell some or all
products. The players have the option to obtain each product either from
its corresponding manufacturer or from the intermediaries. A CRI situation
is the tuple Γ = (N,E, rw, rm) with rw and rm being the indirect and direct
cost components which will be discussed in detail below. The set of all CRI
situations with player set N is denoted by Γ.
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Replenishment polices, which represent the various choices regarding the
replenishment sources of different products for different players, are the main
decision variables in CRI situations. We assume that the choices of replen-
ishment sources of all products and all players are binary, i.e., a product
required by a player is sourced either from the intermediaries or its corre-
sponding manufacturer. Thus, in order to completely describe the replen-
ishment actions of all players with regard to all products, it is sufficient to
underline the replenishments from one of the sources only. We define the
replenishment choice set of a player i, i ∈ N , as the set of all player-product
pairs specific to i and denote it by X Γ

i = {(i, l)|l ∈ Ei}. The replenishment
choice sets for groups of players are obtained accordingly by taking the union
of their individual choice sets. For every S ⊆ N , we denote the replenish-
ment choice set of S by X Γ

S =
⋃
i∈S X Γ

i . We define a replenishment policy, X,
as a collection of player-product pairs that are replenished directly from the
manufacturers. A replenishment policy X is feasible for players in S ⊆ N
whenever X ⊆ X Γ

S . Note that with this definition a feasible replenishment
policy for a subset of players is also feasible for other subsets of players which
contain the former players. However, the reverse does not hold necessarily.

We differentiate between the two major cost components corresponding
to the two sources of supply for products: indirect and direct replenishment
costs. When a rational buyer, or a group of rational buyers jointly, replen-
ishes a subset of products from a specific source, i.e. the intermediaries or
the manufacturers, corresponding decision variables— such as batch sizes,
ordering cycles, order bundles, etc.—would be chosen to attain the minimum
possible per-period replenishment cost for that specific source. We refrain
from the operational details at this level and instead introduce the indirect
replenishment cost function rw : ℘(X Γ

N) → R and direct replenishment cost
function rm : ℘(X Γ

N) → R that give the minimum per-period replenishment
cost of different sets of player-product pairs from the intermediaries and the
manufacturers respectively.

We assume that the indirect and direct replenishment cost functions
are non-decreasing and subadditive on the replenishment choice sets. The
first condition reflects the intuitive scenario where replenishing k+ 1 player-
product pairs from the intermediaries or the manufacturers is never less costly
that replenishing k player-product pairs among the latter set from the same
source. The second condition asserts that the sum of (in)direct replenish-
ment costs of mutually exclusive player-product sets is never less costly than
the (in)direct replenishment cost of their union. The last assumption follows
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immediately from the definition of rw and rm. If the joint ordering of two
disjoint player-product sets X and X

′
from intermediaries or manufacturers

involves more costs than the sum of their separate orderings from the same
source, rw(X ∪X ′) or rm(X ∪X ′) by definition would give the sum of sep-
arate ordering costs instead of the cost of joint ordering. In the rest of the
paper we let rw(∅) = rm(∅) = 0.

An important special case in CRI situations, which is observed in our
motivating case in automotive after-market, is when the indirect replenish-
ment costs from intermediaries are additive over the set of players, that is,
intermediaries cater to players on the individual bases and no additional sav-
ings can be obtained by combining the indirect replenishments of different
players. We refer to this case with separable indirect replenishment cost.

Definition 1. rw is separable over the set of players if for every T ⊆ N and
an arbitrary X ⊆ X Γ

T we have rw(X) =
∑

i∈N rw(X Γ
i ∩X).

Given S ⊆ N , we define the replenishment cost function for S, rΓ
S :

℘(X Γ
S )→ R, such that for every feasible replenishment policy for S, X ⊆ X Γ

S ,
we have

rΓ
S(X) = rm(X) + rw(X Γ

S \X). (1)

The cost of a replenishment policy X for S is the sum of direct replenish-
ment cost of player-product sets in X and the indirect replenishment costs
of the remainder of player-products sets in the choice set of S. An optimal
replenishment policy for a subset of players has the lowest replenishment cost
among all feasible replenishment policies for those players. The cost of an
optimal replenishment policy for S ⊆ N is denoted by:

cΓ(S) = min
X⊆XΓ

S

rΓ
S(X) (2)

4.1. Submodular CRI Situations

We call a CRI situation submodular if its cost components are submodular
on the replenishment choice sets. The following definition formalizes this.

Definition 2. A CRI situation Γ = (N,E, rw, rm) ∈ Γ is submodular if rw
and rm are submodular on X Γ

N . Γsm ⊂ Γ is the set of all submodular CRI
situations.

The motivation for focusing on this class of CRI situations is that in the
single-source joint replenishment literature, several cost functions are proven
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to have a submodular structure. These models include, but are not limited to,
deterministic joint replenishment problems discussed in Meca et al. (2004),
Anily and Haviv (2007), Zhang (2009), special cases in Van den Heuvel et al.
(2007), as well as stochastic models considered in Hartman et al. (2000) and
Özen et al. (2011). Therefore, a CRI situation with cost components derived
from the aforementioned single-source replenishment models is a specific in-
stance of a submodular CRI situation.

Submodularity of a CRI situation has important consequences. The first
result in this paper states that submodularity of the cost components is a suf-
ficient condition for submodularity of total cost functions in CRI situations.
All proofs are given in the supplement.

Lemma 1. Let Γ ∈ Γsm. For every S ⊆ N , rΓ
S is submodular on X Γ

S .

The submodularity of total cost in submodular CRI situations means that
as the set of player-product pairs replenished from the manufacturers grows,
the marginal cost of adding another player-product pair is non-increasing.
Thus, replenishing from manufacturers can become more beneficial if more
player-product pairs are included. This demonstrates the economy of scale
in direct replenishments from the manufacturers. A similar argument can
be stated in terms of player-product sets that are replenished via the inter-
mediaries. As the result of submodularity of total cost, it can be verified
that expanding the set of player-products that are replenished from the in-
termediaries has a non-increasing effect on the marginal costs of additional
player-product sets that are replenished from the intermediaries. Thus, one
can observe economies of scale in opposite directions in submodular CRI
situations.

The submodularity of CRI situations also has important consequences
with regard to the tractability of the optimization problem in (2). Grötschel
et al. (1988) show that for a submodular function, the Ellipsoid method can
be used to construct a strongly polynomial algorithm for its minimization.
Hence, submodularity of CRI situations implies that the optimal replenish-
ment policies can be found efficiently. In the remainder of this section we
elaborate on certain properties of optimal replenishment policies in submod-
ular CRI situations.

Lemma 2. Let Γ ∈ Γsm. If alternative optimal replenishment policies exist
for S ⊆ N , their union is also an optimal replenishment policy for S.
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Lemma 2 states that the union of two optimal replenishment policies for
a group of players is in itself another optimal replenishment policy. Thus, it
can be inferred that for every group of players, there exists an optimal re-
plenishment policy with the most number of player-product pairs replenished
from the manufacturers. Similar line of reasoning can be used to show that
in these situations there also exists an optimal replenishment policy with the
least number of player-product pairs replenished from the manufacturers.

When the indirect replenishment cost function is separable over the set
of players, additional insights can be gained. In order to do so, we use the
following relationship between the costs of a feasible replenishment policy
for two subsets of players in situations with separable indirect replenishment
costs.

Lemma 3. Let Γ ∈ Γ such that rw is separable over players, and consider
S ⊂ T ⊆ N . Let X be a feasible replenishment policy for S. We have
rΓ
T (X) = rΓ

S(X) + rw(X Γ
T\S).

Lemma 3 allows one to evaluate the cost of a replenishment policy X
that is feasible for S ⊂ N for its supersets. To do so, indirect replenishment
costs of the entire product sets of extra players must be added to the replen-
ishment cost of X for S. We are now ready to show a nested property in
growing subsets of players in submodular situations with separable indirect
replenishment costs.

Lemma 4. Let Γ ∈ Γsm such that rw is separable over players. Let X∗S be
an optimal replenishment policy for S ⊂ N . For every T ⊆ N , T ⊃ S, there
exists an optimal replenishment policy X∗T such that X∗T ⊇ X∗S.

According to the last Lemma, if it is optimal for a subset of players to
collectively replenish certain products from their manufacturers, it would
also be optimal that this subset of players keep on doing the same in any
other subset that contains the former players. The latter can be interpreted
in an alternative way: in submodular CRI situations with separable indirect
replenishment costs, the set of direct replenishers of a product never shrink
as the result of including more players to the collaborative organization. A
direct consequence of the nested property of optimal replenishment policies in
Lemma 4 is that in submodular CRI situations the optimal policies for larger
subsets of players can be built upon those of the smaller subsets. It must be
noted that without the separability condition on indirect replenishment costs
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X rw(X) rm(X)
{(1, a)} 20 15
{(2, a)} 10 10
{(3, a)} 10 10

{(1, a), (2, a)} 25 25
{(1, a), (3, a)} 25 25
{(2, a), (3, a)} 20 20

{(1, a), (2, a), (3, a)} 30 35

Table 1: Situation in Example 1

S X∗S
{1} {(1, a)} (unique)
{2} {(2, a)}
{3} {(3, a)}
{1, 2} {(2, a)}
{1, 3} {(3, a)}
{2, 3} {(2, a), (3, a)}
{1, 2, 3} ∅ (unique)

Table 2: Optimal policies in Example 1

the nested property cannot be guaranteed. The following example illustrates
this.

Example 1. Table 1 demonstrates the cost components in a CRI situation
with three players and a single product. It can be easily verified that this is
a submodular but not separable over players situation. From Table 2 we can
see that for player 1, it is uniquely optimal to replenish the product from the
manufacturer. However, in the grand coalition the unique optimal policy is
to replenish jointly from the intermediaries. Thus, the nested property does
not hold. 4

5. Cooperative CRI Games

In this section we study the collaboration among players in CRI situations
with the help of a class of cooperative cost games associated with these situ-
ations. The cooperative cost games associated with CRI situations, hereafter
cooperative CRI games, can be constructed by considering the set of players
N and defining the characteristic function to be the optimal replenishment
cost function. Thus, for every CRI situation Γ ∈ Γ, one can define an as-
sociated cooperative cost game by (N, cΓ) where for every S ⊆ N , cΓ(S) is
defined as in Equation (2). Note that by definitions of direct and indirect re-
plenishment cost functions we have cΓ(∅) = 0. The first result in this section
exhibits the subadditivity of general CRI games.

Theorem 1. For every Γ ∈ Γ, the associated cooperative game (N, cΓ) is
subadditive.
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X rw(X) rm(X)
{(1, a)} 6 8
{(2, a)} 6 8
{(3, a)} 5 7

{(1, a), (2, a)} 11 9
{(1, a), (3, a)} 10 13
{(2, a), (3, a)} 11 13

{(1, a), (2, a), (3, a)} 15 14

Table 3: Situation in Example 2

S cΓ(S)
{1} 6
{2} 6
{3} 5
{1, 2} 9
{1, 3} 10
{2, 3} 11
{1, 2, 3} 14

Table 4: Game in Example 2

Subadditivity of CRI games implies that the optimal replenishment cost
for the case where all players are participating in the collaborative organi-
zation is never higher than the sum of the costs of any other partitionings
of the players into independent collaborative organizations. Thus, subad-
ditivity of CRI games incentivizes the formation of the grand coalition as
the participation of all players in the game guarantees the minimum collec-
tive costs. However, incentives for individual players stemming from their
allocated costs still need to be addressed. In what follows we discuss the
possibilities for having appropriate cost allocations in the grand coalition.

5.1. Concavity of CRI Games

In a concave game the contributions of players to the cost of growing
subsets of players are non-increasing. The concavity of a cooperative game
has important implications with regard to ease of finding appropriate allo-
cation rules which will be discussed in the next section. Remember that for
a submodular CRI situation, its cost components are submodular on the re-
plenishment choice set while concavity of the associated game requires that
the optimal replenishment cost function be submodular on the set of players.
It is essential to understand that submodular CRI situations are not neces-
sarily associated with concave games. The following example demonstrates
this.

Example 2. Consider a CRI situation with three players and a single prod-
uct. The cost components are depicted in Table 3. It can be verified that both
rw and rm are submodular on the replenishment choice set. The cooperative
game associated with this situation is described in Table 4. We have:

cΓ({1, 3})−cΓ({1}) = 10−6 = 4, and cΓ({1, 2, 3})−cΓ({1, 2}) = 14−9 = 5.
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The inclusion of player 3 to player 1 adds less cost than inclusion of player
3 to coalition {1, 2}. Therefore the game is not concave, even though the
situation is submodular. 4

Example 2 shows that submodularity of total replenishment cost for all
subsets of players on the set of replenishment choices does not automatically
imply submodularity of the associated games on the set of players. How-
ever, when the indirect replenishment costs are separable, then the games
associated with submodular CRI situations are in fact concave.

Theorem 2. For every Γ ∈ Γsm with separable indirect replenishment costs,
the associated cooperative game (N, cΓ) is concave.

5.2. Allocation Rules
An important question in every cooperative situation concerns the divi-

sion of joint costs among the participants. There are certain properties that
a desirable allocation must satisfy. One of the most basic desirable properties
of an allocation is the efficiency property which requires that the total cost of
the set of all players (grand coalition) is entirely divided among the players.
Another desirable property is the stability property that ensures players do
not break apart from the grand coalition. The allocations in the core satisfy
both of these properties. In general the core of CRI games can be empty.
Below we provide an example where the core of the game associated with a
CRI situation is empty.

Example 3. Consider the situation Γ as follows. There are three players
N = {1, 2, 3}, replenishing a single product E1 = E2 = E3 = {a}. The
replenishment costs from the intermediaries are separable and equal to 4 for
all players, i.e., rw({i, a}) = 4 for all i ∈ N . The cost of replenishment from
the manufacturer is as follows: rm({i, a}) = 5 for i ∈ N , rm({i, a}, {j, a}) =
5 for i, j ∈ N such that i 6= j, and rm({1, a}, {2, a}, {3, a}) = 9. It is
straightforward to check that in this situation we have cΓ(S) = 4 if |S| = 1,
cΓ(S) = 5 if |S| = 2, and cΓ(N) = 9. The game is symmetric so if the core
is not empty, then the equal allocation of 9/3 = 3 for every player must be in
the core. However, every two player coalition can achieve the cost of 5 which
is smaller than 3 + 3 = 6. Thus the core of the game associated with Γ is
empty. 4

To provide insights about the nature of allocations in the core of CRI
games we present an observation regarding the minimum amount of payments
in separable situations.
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Theorem 3. Let Γ = (N,E, rw, rm) ∈ Γ be a situation with separable indirect
replenishment costs. Let X∗ be an optimal replenishment policy for the grand
coalition. For every allocation β in the core of the associated game (N, cΓ)
and every player i ∈ N it holds that βi ≥ rw(X Γ

i \X∗).

Theorem 3 asserts that in every core allocation, each player has to pay
at least its indirect replenishment cost for the products it obtains from the
intermediaries in the grand coalition. Therefore, irrespective of the contribu-
tion of a player to the total cost savings, the indirect replenishment cost of
no player would be subsidized in any core allocation. It is straightforward to
observe that if a player replenishes a product directly from its manufacturer
in an optimal replenishment policy, then in addition to its indirect replenish-
ment cost, the player must pay a positive portion of its direct replenishment
cost as well. Note that Theorem 3 does not require submodular situations
and holds whenever a CRI game has a non-empty core.

Although the core of a cooperative game can be empty, the core of a con-
cave game is always non-empty (Shapley, 1971). Our results in the previous
section regarding the concavity of CRI games also guarantees the existence
of allocations in the core.

Corollary 1. For every Γ ∈ Γsm with separable indirect replenishment costs,
the core of the associated cooperative CRI game (N, cΓ) is non-empty.

For the collaborative organization to be able to repeatedly carry out joint
replenishments without the need of renegotiating the appropriate allocations,
a formal scheme for allocating the costs in different situations should be in
place. This requirement is formalized with the notion of allocation rule.
An allocation rule is a function σ which determines an allocation for every
game in its domain of definition. The desirability of an allocation rule can
be evaluated by the desirable properties of the allocations it generates. For
example, an allocation rule is called efficient if it always generates efficient
allocations. The allocation to player i under allocation rule σ is denoted with
σi.

A well-known allocation rule in cooperative games literature is the Shapley
value (Shapley, 1953). The Shapley value of a cost game (N, c), i.e., Φ(N, c),
for every i ∈ N is calculated by the following formula:

Φi(N, c) =
∑

S⊆N\i

|S|!(n− |S| − 1)!

n!
[c(S ∪ i)− c(S)] . (3)
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Figure 2: Strategic participation in collaborative organization

The Shapley value divides the total cost of grand coalition according to the
average contributions of players in all subsets that they are a member of.
Because the Shapley value determines the players allocations based on their
average contributions, it is often regarded as a fair allocation rule and hence
it is deemed highly appropriate in many real-life situations—e.g. allocation
of airport landing fees (Littlechild and Owen, 1973), transmission costs (Tan
and Lie, 2002), pollution reduction costs (Petrosjan and Zaccour, 2003), and
logistics costs (Krajewska et al., 2007), among others.

In general the Shapley value of a game might not belong to its core. How-
ever, the core of a concave game always includes the Shapley value (Shapley,
1971). Therefore, in submodular CRI games with separable indirect replen-
ishment costs players can always divide the costs among themselves in a
stable and efficient way by implementing the Shapley value. Also, the Shap-
ley value is a population monotonic allocation scheme (Sprumont, 1990) in
concave games, which makes sure that inclusion of additional players to the
group would never increase the cost allocated to any players. In the next sec-
tion we demonstrate another appealing property of the Shapley value which
holds in general CRI situations.
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Figure 3: Sequence of events in a two-stage CRI game

6. Strategic Participation in Two-stage CRI Games

An implicit assumption made in the cooperative CRI game studied in
previous section was that once a player decides to join the collaborative or-
ganization, it puts forward its entire product set so that their replenishment
sources are decided by the collaborative organization in order to optimize the
replenishment cost of the grand coalition. However, in reality the players’
decisions with regard to their participation in collaborative replenishment
activities is more nuanced. Most notably, the players can decide the extent
of participation in the collaborative organization in terms of the products
whose replenishment policies are delegated to the collaborative organization.
In this section, the players are allowed to partially collaborate. The partic-
ipation decision with respect to each product is binary, i.e., each product is
entirely replenished either within the collaborative organization or outside
it. The question we investigate is the conditions under which centrally op-
timal outcomes would be achieved decentrally, i.e., strategic participation of
the players would not negatively affect the total replenishment cost of the
supply chain. Figure 2 demonstrates an example where players 1 and 2 do
not replenish product c through the collaborative organization. In this case
the collaborative organization replenishes product c for player 3 from the
intermediary and the rest of player-product pairs from the corresponding
manufacturer.

A crucial input to the players’ strategic decision making processes is the
allocation rule that will be implemented in the collaborative organization
to divide the joint costs. Hence, our analysis in this section enables us to
comment on appropriate allocation rules in CRI situations. We construct a
two-stage game comprising a non-cooperative stage followed by a subsequent
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X rw(X) rm(X)
{(1, a)} 10 10
{(2, a)} 10 10
{(2, b)} 10 10

{(1, a), (2, b)} 20 20
{(1, a), (2, a)} 20 18
{(2, a), (2, b)} 20 20

{(1, a), (2, a), (2, b)} 30 25

Table 5: Situation Γ in Example 4

cooperative stage. The sequence of events in our two-stage CRI game is as
follows. First, the allocation rule for the collaborative organization is set and
announced to the players. With this knowledge the players simultaneously
make their decisions regarding the extent of their participation in the collab-
orative organization. That is, each player strategically chooses the products
it would replenish via the collaborative organization. The cooperative CRI
game played in the second stage is associated with the modified version of the
original CRI situation which is induced by the players’ participation strate-
gies in the first stage. The total cost of the grand coalition in the induced
CRI situation in the second stage will be distributed according to the pre-
fixed allocation rule. Figure 3 illustrates the sequence of events. We start
by assuming that all information contained in the situation is known by all
players.

Given a CRI situation Γ = (N,E, rw, rm) and a player i ∈ N , let Li ⊆ Ei
be the set of participating products of i. In this manner, Li is the participa-
tion strategy of player i. A vector of players’ strategies L = (Li)i∈N is referred
to as a participation strategy profile. A participation strategy profile induces
a CRI situation wherein only the participated products of the players are
present. The modified situation induced by the participation strategy profile
L is denoted by Γ[L] = (N,L, rw, rm). Subsequently, the game associated
with the modified situation, to be played in the second stage, is (N, cΓ[L]).

Example 4. Consider the CRI situation with N = {1, 2}, E1 = {a} and
E2 = {a, b}. The cost components are shown in Table 5. The CRI game
associated with this situation is shown in Table 6. Suppose that player 2
decides to participate only with his product a. The modified CRI game asso-
ciated with the participation strategy L = {L1 = E1, L2 = {a}} is also shown
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S cΓ(S) cΓ[L](S)
{1} 10 10
{2} 20 10
N 25 18

Table 6: Original and modified games in Example 4

in Table 6. In this case, player 2 will replenish product b individually and
outside of the cooperative organization. 4

Given an allocation rule σ for CRI games, the two-stage participation
game under allocation rule σ is the triple (N,℘(E), zΓ,σ) where ℘(E) =
(℘(Ei))i∈N is the vector of individual participation choice sets—i.e., power
sets of player-specific product sets—and zΓ,σ is the vector of player-specific
cost functions with its i’th element, i ∈ N , defined such that for a participa-
tion strategy profile L we have

zΓ,σ
i (L) = cΓ[E\L](i) + σi(N, c

Γ[L]). (4)

The player-specific cost function of player i is comprised of the stand-alone
replenishment cost of player i for its withheld products and its allocation
under σ in the cooperative CRI game induced by L, i.e., the game associated
with the modified CRI situation Γ[L].

In two-stage CRI games, the individual decision making processes of the
players are intertwined as the player-specific cost functions of players will be
affected by the other players’ choices of strategies as well. The rational play-
ers choose their individual participation strategies in anticipation of the other
players’ moves in order to minimize their player-specific cost functions. A
particularly interesting outcome for the system is when the strategic choices
of players coincide with the strategies that minimize the total replenishment
costs of the entire system, i.e., when a centrally optimal participation strategy
profile is selected individually by the players. In the latter case the supply
chain would be coordinated. In the two-stage CRI game associated with Γ,
the complete participation strategy profile E minimizes the sum of player-
specific cost functions so that the total equals cΓ(N). This observation follows
from a technical result (Lemma 5) which we present in the supplement.

With the choice of complete participation strategy profiles there would be
no loss of efficiency in the two-stage CRI games. However, despite the cen-
tral optimality of complete participation strategy profiles in two-stage CRI
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L2

∅ {a} {b} {a, b}
L1

∅ 10,20 10,20 10,20 10,20
{a} 10,20 9,19 10,20 5,20

Table 7: Two-stage CRI game in Example 5

games, players may choose other participation strategies if such strategies
result in lower player-specific costs for them. An example of such behavior is
reported by Granot and Sošić (2003) and Yan and Zhao (2015) in the context
of transshipment games. A critical variable in this setting is the choice of
allocation rule.

Example 5. Consider the CRI situation in Example 4. Suppose the chosen
allocation rule assigns the costs proportional to the squared stand-alone costs
of participating products of the players, that is given the strategy L and for
i ∈ N we have σi(N, c

Γ[L]) = [cΓ[L](i)2/
∑

j∈N c
Γ[L](j)2]cΓ[L](N). Table 7

shows the two-stage CRI game associated with this situation. Each cell in the
table gives the player-specific costs of both players under the corresponding
participation strategy. Observe that the strategy profile L = (L1 = {a}, L2 =
{a}) is a Nash equilibrium—as well as the weakly-dominant strategy profile.
However, this strategy profile does not result in centrally optimal total costs
as the allocation rule chosen does not induce complete participation. 4

The following definition captures the formal relation between the choice
of allocation rules and the players’ participation strategies in two-stage CRI
games.

Definition 3. Let Γ = (N,E, rw, rm) ∈ Γ and suppose allocation rule σ is
given. We say σ implements the participation strategy profile L ∈ ℘(E) in
Nash equilibrium (respectively, weakly dominant strategies) in the two-stage
CRI game associated with Γ if L is a Nash equilibrium (respectively, a weakly
dominant strategy profile) in that game.

Definition 3 introduces two types of implementations. From Section 3,
Nash equilibrium implementation requires that for every i ∈ N and every
L
′
i ∈ ℘(Ei) it holds that zΓ,σ

i (L) ≤ zΓ,σ
i (L

′
i, L−i). Also, the second type

of implementation, i.e. weakly dominant strategies, implies that for every
i ∈ N and every L

′ ∈ ℘(E) it holds that zΓ,σ
i (Li, L

′
−i) ≤ zΓ,σ

i (L
′
). Remember
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from Section 3 that every weakly dominant strategy profile is also a Nash
equilibrium. Thus, if an allocation rule could implement a participation
strategy profile in weakly dominant strategies it can also implement that
strategy in Nash equilibrium. The reverse, however, may not hold necessarily.
It has been argued that implementation in (weakly) dominant strategies is
the most demanding form of implementation (Maskin and Sjöström, 2002).
In the next step we present the main result of this section regarding the ability
of the Shapley value to implement centrally optimal participation strategy
profiles in two-stage CRI games.

Theorem 4. The Shapley value implements the complete participation strat-
egy profile in weakly dominant strategies in every two-stage CRI game.

According to Theorem 4, if the Shapley value is set as the allocation rule,
no player can obtain any benefit by withholding some of its products from
the collaborative organization. The power of the Shapley value in enforcing
the centrally optimal strategies in CRI situations becomes clearer once we
realize that the complete participation strategy is a feasible choice for every
player in every CRI situation. The next observation follows immediately.

Corollary 2. Let i ∈ N be a player. With the Shapley value as the allocation
rule, the complete participation strategy Ei is the best strategy for player i in
every two-stage CRI game irrespective of the strategies of all other players.

Corollary 2 has important consequences in terms of the information avail-
able to every player and its effect on the choice of centrally optimal partic-
ipation strategies. Since complete participation strategies are always best
choices of strategies at the individual level under the Shapley value, the
players do not need to know the specific details of the situation in order to
realize that announcing their complete player-specific product sets to the col-
laborative organization is their best options. We conclude that the Shapley
value can lead to the coordination of the decentralized system under study
even in settings with asymmetric information.

7. Source-Specific Replenishment Organizations

The collaborative organizations in previous sections make decisions on
the replenishment sources of the products that are requested by the play-
ers. We study an alternative structure for collaborative organizations in this
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Figure 4: Participation in source-specific replenishment organizations

section which might be easier to manage. That is, we consider two types of
source-specific replenishment organizations such that one purchases every re-
quested product from the intermediaries and the other purchases solely from
the manufacturers. Thus, the collaborative organizations in this section do
not make strategic sourcing decisions. Drawing upon the logic of two-stage
games elaborated upon previously, the purpose of this section is to answer
the following question: can buyers be motivated, through the choice of right
allocation rules, to participate in the two collaborative organizations such
that centrally optimal replenishment policies be attained? Thus, we exam-
ine if sourcing decisions can be efficiently decentralized. Figure 4 shows an
example of this structure. Player 1 replenishes product b as well as product c
together with players 2 and 3 from the collaborative organization that buys
everything from the intermediary. The players replenish the rest of their
products via the collaborative organization which buys everything from the
corresponding manufacturers. Comparing this figure with Figure 1 reveals
that any replenishment strategy prescribed by the former kind of collabora-
tive organization can be obtained via a corresponding participation strategy
for the players in source-specific replenishment organizations.

To carry out the analysis, we construct two alternative source-specific
cooperative games. Given the CRI situation Γ = (N,E, rw, rm), define the
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Figure 5: Sequence of events in a source-specific two-stage CRI game

direct CRI game (N, cΓ
m) and the indirect CRI game (N, cΓ

w) where for every
S ⊆ N :

cΓ
m(S) = rm(X Γ

S ), and cΓ
w(S) = rw(X Γ

S ). (5)

The cost to every coalition in the direct (indirect) CRI game is the direct
(indirect) replenishment cost of all products of every player. In this man-
ner, source-specific CRI games disregard the alternative option for replenish-
ments. Subsequently, we define alternative two-stage games associated with
CRI situations in the same spirit as in the previous section. In the first stage
of this game, each player decides the products it would replenish in either of
the source-specific replenishment organizations knowing the allocation rules
for the corresponding games. In the second stage, the source-specific coop-
erative games induced by the chosen strategies is played and the costs will
be divided according to the pre-fixed allocation rules. We refer to these two-
stage games as the source-specific two-stage CRI games. Figure 5 depicts the
sequence of events in these games.

The source-specific two-stage CRI game associated with situation Γ =
(N,E, rw, rm) under allocation rules σ and σ̃, corresponding to indirect and
direct replenishment games respectively, is the triple (N,℘(E), z̃Γ,σ,σ̃) where
℘(E) = (℘(Ei))i∈N is the vector of individual participation choice sets, and
z̃Γ,σ,σ̃ is the vector of alternative player-specific cost functions with its i’th el-
ement, i ∈ N , defined such that for a strategy profile L ∈∏

i∈N ℘(Ei), which
represents the products that each player replenishes via direct collaborative
organization, we have

wΓ,σ,σ̃
i (L) = σi(N, c

Γ[L]
m ) + σ̃i(N, c

Γ[E\L]
w ). (6)

Thus the cost to a player in the above games is the sum of allocations in
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corresponding direct and indirect replenishment games associated with the
participation strategy of the players.

From the formulation in (6) it must be evident that there is a bijection
between the set of participation strategies for a source-specific two-stage CRI
game and the replenishment policies in the original situation. Drawing upon
the latter fact, the next observation, which we provide without proof, high-
lights a centrally optimal participation strategy profile for a source-specific
two-stage CRI game that minimizes the sum of player-specific cost functions
of the players so that the total boils down to the minimum total replen-
ishment cost of the corresponding centralized system. In the source-specific
two-stage CRI game associated with Γ, the participation strategy profile
L∗ = X∗ minimizes the sum of player-specific cost functions so that the to-
tal equals cΓ(N). Thus, if players choose the right participation strategies,
then there would be no efficiency lost in the setting with source-specific re-
plenishment organizations. In fact, minimum total replenishment cost of the
centralized system can be achieved if each player puts forward the same set
of products to direct collaborative replenishment organization that it should
have replenished from manufacturers in an optimal replenishment policy for
the corresponding CRI situation. Modifying the notion of implementation in
Definition 3 for source-specific two-stage CRI games, next we investigate the
existence of allocation rules that could implement centrally optimal partici-
pation strategy profiles in these games. As we show in the example below,
such allocation rules do not exists even if we require implementation in the
weaker form, i.e., in Nash equilibrium.

Example 6. Consider the CRI situation Γ with N = {1, 2}, E1 = {a, b}
and E2 = {a}. The cost components for different policies are given in Ta-
ble 8. In the CRI game associated with this situation we have cΓ({1}) =
16, cΓ({2}) = 9, and cΓ(N) = 9 + 15 = 24. Observe that the only cen-
trally optimal participation strategy profile in the source-specific two-stage
game associated with Γ is L∗ = (L∗1 = {a}, L∗2 = E2). That is, player
1 should replenish product b indirectly. The modified situation in the di-
rect replenishment game associated with the latter participation strategy pro-
file is Γ[L∗] = (N, ({a}, {a}), rw, rm). The modified situation in the indi-
rect replenishment game associated with the latter participation strategy pro-
file is Γ[E \ L∗] = (N, ({b}, {}), rw, rm). Accordingly, in the indirect CRI

game associated with modified situation Γ[E \ L∗] we have c
Γ[E\L∗]
w ({1}) = 9,

c
Γ[E\L∗]
w ({2}) = 0, and c

Γ[E\L∗]
w (N) = 9. In the modified direct CRI game
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X rw(X) rm(X)
{(1, a)} 9 10
{(2, a)} 9 10
{(1, b)} 9 10

{(1, a), (1, b)} 16 20
{(1, a), (2, a)} 18 15
{(2, a), (1, b)} 18 20

{(1, a), (2, a), (1, b)} 25 25

Table 8: Situation Γ in Example 6

X rw(X) rm(X)
{(1, a)} 9 10
{(2, a)} 9 10
{(2, b)} 9 10

{(2, a), (2, b)} 16 20
{(1, a), (2, a)} 18 15
{(1, a), (2, b)} 18 20

{(1, a), (1, b), (2, b)} 25 25

Table 9: Situation Γ̂ in Example 3

associated with situation Γ[L∗] we have c
Γ[L∗]
m ({1}) = c

Γ[L∗]
m ({2}) = 10, and

c
Γ[L∗]
m (N) = 15.

Next, consider the situation Γ̂ with N = {1, 2}, E1 = {a} and E2 =
{a, b} and cost components that are given in Table 9. It can be seen that

cΓ̂({1}) = 9, cΓ̂({2}) = 16, cΓ̂(N) = 9 + 15 = 24. The unique optimal
participation strategy profile in the source-specific two-stage game associated
with Γ̂ is L̂∗ = (L̂∗1 = E1, L̂

∗
2 = {a}). The modified situation in the direct

replenishment game associated with the latter participation strategy profile
is Γ̂[L̂∗] = (N, ({a}, {a}), rw, rm). The modified situation in the indirect re-
plenishment game associated with the latter participation strategy profile is
Γ̂[E \ L̂∗] = (N, ({}, {b}), rw, rm). In the indirect CRI game associated with

modified situation Γ̂[E \L∗] we have c
Γ̂[E\L̂∗]
w ({1}) = 0, c

Γ̂[E\L̂∗]
w ({2}) = 9, and

c
Γ̂[E\L̂∗]
w (N) = 9. In the modified direct CRI game associated with situation

Γ̂[L̂∗] we have c
Γ̂[L̂∗]
m ({1}) = c

Γ̂[L̂∗]
m ({2}) = 10, and c

Γ̂[L̂∗]
m (N) = 15.

Any efficient and individually rational allocation rule σ for the indirect re-

plenishment games obtains σ̃(N, c
Γ[E\L∗]
w ) = (9, 0) and σ̃(N, c

Γ̂[E\L̂∗]
w ) = (0, 9).

For the direct replenishment game, suppose that an efficient and individually
rational allocation rule σ is chosen that divides the costs between the players
in such a way that σ1(N, c

Γ[L∗]
m ) ≥ σ2(N, c

Γ[L∗]
m ). Consider the situation Γ.

With any efficient and individually rational allocation rule σ̃ for the indirect
replenishment game and the allocation rule σ described above, it would be the
case that

wΓ,σ,σ̃
1 (L∗) = σ1(N, cΓ[E\L∗]

w ) + σ̃1(N, cΓ[L∗]
m ) ≥ 7.5 + 9 = 16.5.

In this situation, if player 1 deviates from choosing L∗1 and instead chooses
L1 = {}, while player 2 chooses L∗2, allocation rule σ̃ obligates player 1 to pay
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16 and allocation rule σ assigns zero payments to player 1 (since its stand-
alone cost in the corresponding direct replenishment game is zero). Thus,
player 1 would get wΓ,σ,σ̃

1 (L1, L
∗
2) = 16 < wΓ,σ,σ̃

1 (L∗). Therefore the choice of
σ as above results in optimal participation strategy profile not being a Nash
equilibrium in this situation.

To remedy this, suppose a different allocation rule σ
′

is chosen such that
σ
′
1(N, c

Γ[L∗]
m ) < σ

′
2(N, c

Γ[L∗]
m ). However, once we apply these allocation rules

to the original situation Γ̂, a similar argument as above shows that a direct
allocation rule that gives player 2 a higher allocation than player 1 is unable
to implement the corresponding centrally optimal participation strategy pro-
file in Nash equilibrium. We conclude that there exists no allocation rules
that could implement the optimal participation strategy profiles in Nash equi-
librium in source-specific two-stage CRI games associated with situations Γ
and Γ̂ simultaneously. 4

Thus, we can state the following final result.

Theorem 5. There exists no efficient and individually rational allocation
rules for indirect and direct CRI games that could implement the centrally
optimal participation strategy profiles in every source-specific two-stage CRI
game.

The result of the last theorem is that the strategic participation of play-
ers in source-specific replenishment organizations can damage optimal supply
chain efficiency. Moreover, the fact that indirect replenishment costs in Ex-
ample 6 are separable means that even when collaborative replenishment
from intermediaries are not beneficial, having a collaborative organization
that solely deals with purchases from manufacturers can attain sub-optimal
supply chain performance. Hence, to obtain the system wide optimal per-
formance, it is crucial that a single collaborative replenishment organization
considers the players’ replenishment options both from the intermediaries
and the manufacturers.

8. Final Remarks

In this paper, we investigated potential opportunities for direct and in-
direct replenishments for collaborating downstream buyers in supply chains
with alternative sources of supply. In a typical situation with the interme-
diaries offering low order costs, possibility to bundle multiple products in
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one order, yet higher unit costs than manufacturers, the incentives for re-
plenishing from different sources are conflicting. The main insight obtained
from our study is that although collaboration is always fruitful, under cer-
tain conditions the buyers’ incentives can be aligned with a choice of right
allocation rules so that the corresponding collaborative organization is both
stable and welcoming to new members. However, collaborative organization
should take control of both indirect and direct replenishment of the buyers
to guarantee optimal supply chain performance. For example, the collabora-
tive organization might require buyers to obtain low-demand products from
the intermediaries and high-demand products from the manufacturers. In
this regard, collaboration increases the supply chain efficiency by eliminat-
ing double marginalization and excessive inventories.

The conditions that guarantee the stability of collaborative organizations
in our setting are sub-modularity and separability of situations. As we prove,
sub-modularity of both direct and indirect cost components are a sufficient
condition for sub-modularity of the situation. Although there are many ex-
amples of sub-modular cost components in the literature, it must be noted
that non-sub-modular cost components exist as well. The latter happens for
example when additional logistical constraints such as truck capacities and
product shortages are taken into consideration (see for example Engevall
et al. (2004)).

We showed that the Shapley value possesses several desirable properties
for being the allocation rule of choice in CRI situations. Apart from its ap-
pealing properties in concave games, the Shapley value implements complete
participation strategy profiles in all CRI situations in such a way that for
every player, delegating the replenishment decisions of all products to the
collaborative organization is the best strategy, even if no information about
the other players is available. As we work under the assumption of com-
plete information regarding the cost components, the input for calculating
the Shapley value would be readily available as soon as the players enter the
collaborative organization by revealing their product sets. We further showed
that even if collaborative replenishments from intermediaries do not provide
additional benefits, the collaborative organization that focuses on direct re-
plenishments from manufacturers but allows buyers to partially participate
may never achieve efficient outcomes.

There are many other perspectives to consider when horizontal collabora-
tion in supply chains are carried out in the presence of intermediaries. Joint
replenishment activities are likely to affect the pricing schemes of manufac-
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turers, intermediaries, and downstream buyers. So an important direction for
future research is to study the dynamics stemming from price competitions
among supply chain entities. This would be in line with the work of James
and Dana (2012) who study the impact of collaborative purchasing organiza-
tions on price competition among the suppliers. It is worth mentioning that
although collaborative purchasing results in lower purchasing prices for the
downstream players, competition in price-setting may leave them worse off—
an instance of this situation discussed by Chen and Roma (2011). Another
possible extension of our work is to address the additional costs faced by the
organizations of collaborating buyers. It has been observed in the literature,
e.g., in Hezarkhani and Kubiak (2013), that increasing collaboration costs
can be a threat to the stability in supply chains. Hence, it is important to
understand to what extent collaborative organizations can afford the increas-
ing costs of required communication, negotiations, and infrastructure. We
leave these for future research.
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