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Abstract

A programoptimisationmust have two key properties: it must preserve themeaning

of programs (correctness) while alsomaking themmore e�icient (improvement). An

optimisation’s correctness cano�enbe rigorously provenusing formalmathematical

methods, but improvement is generally considered harder to prove formally and is

thus typically demonstrated with empirical techniques such as benchmarking. The

result is a conspicuous “reasoning gap” between correctness and e�iciency. In this

thesis, we focus on a general-purpose optimisation: theworker/wrapper transforma-

tion. We develop a range of theories for establishing correctness and improvement

properties of this transformation that all share a common structure. Our develop-

ment culminates in a single theory that canbeused to reason about both correctness

and e�iciency in a unified manner, thereby bridging the reasoning gap.
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Chapter 1

Introduction

“Begin at the beginning and go on till you come to

the end: then stop.”

— the King, Alice’s Adventures in Wonderland

In programming, as in many things, there is o�en a tension between clarity and ef-

ficiency. Programs that are written with clarity in mind o�en use ine�icient abstrac-

tions tomake thingsconceptuallyeasier,whilee�iciencyo�en requireswriting “close

to the bare metal”, i.e. avoiding abstractions in favour of e�icient low-level opera-

tions. When abstraction is less of an issue, there are still tricks and twists to writing

e�icient code that are o�en incomprehensible to a casual reader. Put simply, pro-

grams that are written for people to read are o�en very di�erent from programs that

are written for machines to run.

To bridge the gap between clarity and e�iciency, we need optimisations. Optimi-

sationsareprocesses, usually appliedduring the compilationprocess, that transform

ine�icient programs intomore e�icient ones. This allows a programmer towrite pro-

grams in a style that is less e�icient but more clear, secure in the knowledge that the

ine�iciencies will be dealt with by the compiler.

Unfortunately, this picture is far too good to be true. Many complex program op-

timisations cannot be applied automatically, instead requiring human insight to see
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when they are applicable. Even among those that can be automated an e�iciency

gain is o�en not guaranteed, having been only verified through empirical techniques

such as benchmarking. Clearly, more research is required before we can live in the

utopian world we have described.

This thesis goes some way toward solving this problem in the context of one par-

ticular program optimisation: the worker/wrapper transformation. This transforma-

tion is a very general pattern that captures a wide range of optimisations. The gener-

ality of the worker/wrapper transformation means not only that it is widely applica-

ble, but that it lends itself to general theoretical techniques that will likely be appli-

cable elsewhere. Hence, research on the worker/wrapper transformation can likely

lead to theoretical advances inotherareasofprogramoptimisation. Inparticular, this

thesis demonstrates the practicality and generality of several techniques that have

previously been neglected in the field of program optimisation.

The worker/wrapper transformation already comes with a significant amount of

theoretical work behind it tackling the problem of correctness. This thesis extends

this correctness work, as well as making a major contribution toward the improve-

ment side of the worker/wrapper transformation.

1.1 Dualities

This thesis touches on a number of interesting dualities: situations where two things

are somehow simultaneously opposed and connected. The idea of duality can be

taken philosophically as a broad notion of two-ness that appears inmany places: for

example,mindversusmatter (Descartes, 1641), life versusdeath (Anon., C. 3500–1900

BCE), particles versus waves (de Broglie, 1924). More specifically, there are mathe-

maticaldualities,whicharisewhenonemathematical system is shown tocorrespond

directly to the “inverse” of another.

Mathematical dualities arise everywhere. For example, boolean algebra has the
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duality of the De Morgan laws, where conjunction and disjunction seemingly play

opposite roles but can be replaced by one another by applying negations. As such,

boolean algebra can be seen as its own dual.

Dualities are important for several reasons. Firstly, observing a duality between

two systems or ideas can lead to important observations about the systems or ideas

themselves, as properties of one give us properties of the other. Secondly, mathe-

matical duality provides a handyproof technique, where in order to prove something

aboutoneparticular systemonecanprove thedual statementabout thedual system.

The first duality in this thesis is categorical duality. Categorical duality is a phe-

nomenon that arises from the generality of category theory, where every category

gives rise to a dual category where the direction of arrows is reversed. This allows

properties of categories to be dualised aswell, and provides the useful result that if a

given property holds of all categories, so does the dual property. This thesis exploits

duality in its treatment of categorical folds and unfolds.

The second duality in this thesis is the duality between correctness and improve-

ment. These are the two sides of any successful program optimisation: an optimised

programmust be correct, and itmust be somehow“better”. In this thesis, weobserve

that while these two aspects are seemingly disparate, they are in fact closely linked.

The thirdduality in this thesis is thedualitybetweenoperationalanddenotational

semantics. Operational semantics is the idea of defining the meaning of a program

by what it does, i.e. by its behaviour. Denotational semantics, however, is the idea of

defining the meaning of a program by what it is in some mathematical model. This

is related to the first duality as operational semantics are o�en put in terms of coal-

gebras, and denotational semantics in terms of algebras, these concepts being cate-

gorically dual. This is also related to the second duality, as denotational approaches

frequently suit themselveswell to reasoning about correctnesswhile operational ap-

proaches are more suited to reasoning about improvement. However, this is by no

means a hard-and-fast rule. This thesis uses both operational and denotational ap-

7



proaches to reasoning about programs, as well as noting key similarities and di�er-

ences between the approaches.

The fourth duality in this thesis is the duality between clarity and e�iciency, as

mentioned earlier in this chapter. This duality reflects the twin purposes of source

code, which ismeant to be read by both humans and computers. This is linked to the

duality between denotational and operational semantics, as declarative code that

lends itself to denotational reasoning is typically more clear, while imperative code

that lends itself to operational reasoning is typically more e�icient.

Finally, this thesis can itself be viewed in two opposite ways. On the one hand,

it can be viewed as a thesis primarily about the worker/wrapper transformation that

explores this transformation through the lens of various di�erent theories and tech-

niques. On the other hand, it can be viewed as being an exploration of those theories

and techniques as viewed through the lens of theworker/wrapper transformation. In

other words, the thesis has its own duality.

It should be noted that while duality is a powerful concept, it is rarely the whole

story. Even in cases of strict mathematical duality, it is o�en valuable to examine the

di�ering pragmatic implications of both sides. Things are o�en dual, but they are

rarely “just” dual.

1.2 The Organisation of This Thesis

In keeping with the theme of duality, the bulk of this thesis is divided into two parts.

To be specific:

• Part I consists of two chapters. The first chapter is this introduction, while the

second chapter introduces and demonstrates theworker/wrapper transforma-

tion by way of examples. We demonstrate the worker/wrapper transforma-

tions’s original form of unboxing and give a history of the transformation.
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• Part II presents the first half of the work, addressing the problem of proving

the correctness of the worker/wrapper transformation. This consists of three

separate correctness theories: one for programs written using general recur-

sion, one for programswritten in the formof anunfold andageneralised theory

based on the categorical notion of strong dinatural transformations.

• Part III presents the second half of thework, addressing the problemof reason-

ing about program improvement. In other words, this part is concerned with

proving that the worker/wrapper transformation improves performance. We

present two improvement theories: an operational theory for programs writ-

ten using recursive let bindings and a theory that models improvement using

preorder enriched categories.

• Part IV serves as a conclusion, in which we summarise the contributions of

the thesis, compare and contrast the various worker/wrapper theories we pre-

sented and discuss possible avenues for future work.

Each of the two central parts consists of an initial chapter introducing the prob-

lem addressed in that part, chapters discussing the work of this thesis, and finally a

concluding chapter.

1.3 Contributions

Wemake the following contributions:

• In Chapter 5 we give a novel presentation of the worker/wrapper transforma-

tion for programs written in the form of an unfold, and discuss the ways in

which it compares to its dual theory for folds and the existing theory for least

fixed points.

• InChapter 6wepresent a generalworker/wrapper transformationbasedon the

category-theoretic notionof strongdinaturality, alongwitha correctnessproof.
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This establishes strongdinaturality, a generalisationof fusion, as the coreof the

worker/wrapper transformation.

• In Chapter 8we introduce the technique of using preorder-enriched categories

to reason about notions of program improvement, taking inspiration from ear-

lier work on similar approaches to program refinement.

• In Chapter 9 we use improvement theory (Moran and Sands, 1999a) to verify

that, under certain natural conditions, the worker/wrapper transformation for

least fixed points does not make programs slower. This not only proves an im-

portant property of the worker/wrapper transformation, it also demonstrates

the application of a theory that has been underappreciated in the literature.

• In Chapter 10 we extend the presentation of the worker/wrapper transforma-

tion based on strong dinaturality to one based on bilax strong dinaturality, re-

sulting in a generalised theory giving conditions under which the generalised

worker/wrapper transformation does not make programs worse.

Some of this work has been published in earlier papers. Specifically:

• The material in Chapter 5 on the worker/wrapper transformation for unfolds

is based on work published in the post-proceedings of the ACM Symposium

on Implementation and Application of Functional Languages (Hackett, Hutton,

and Jaskelio�, 2013).

• Thematerial in Chapter 9 on the worker/wrapper theorem for call-by-need im-

provement is based onwork presented at the ACM SIGPLAN International Con-

ference on Functional Programming (Hackett and Hutton, 2014).

• The material in Chapters 6 and 10 on worker/wrapper for (bilax) strong dinat-

ural transformations is based on work presented at the ACM/IEEE Symposium

on Logic In Computer Science (Hackett and Hutton, 2015).

The author of this thesis was the lead author of all of these papers.
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1.4 Prerequisites

Much of this thesis requires basic knowledge of category theory, up to natural trans-

formations. Any introductory text will go this far, but the standard text is Categories

for the Working Mathematician by Mac Lane (1971). We assume knowledge of pro-

gram semantics including the basics of domain theory and call-by-need evaluation;

for an introduction to these concepts, see Reynolds (1998b). Program examples are

written in Haskell syntax, so basic knowledge of Haskell will also be useful. There are

numerous introductory texts on Haskell, including Hutton (2016) and Bird (1998).
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Chapter 2

Worker/Wrapper By Example

“In every job that must be done, there is an ele-

ment of fun. You find the fun, and: snap! The job’s

a game!”

—Mary Poppins, A Spoonful of Sugar

This thesis is primarily about the worker/wrapper transformation. Broadly speaking,

the worker/wrapper transformation is a program factorisation where an ine�icient

program is split into two parts. The first part, the “worker”, does the bulk of thework,

hopefully in a more e�icient way and generally at a new type. The second part, the

“wrapper”, is an adaptor that allows theworker to be used in the same context as the

original program. This general idea is illustrated in Figure 2.1.

Original program

=⇒

Wrapper function

Worker program

Figure 2.1: The Worker/Wrapper Transformation in Pictures
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2.1 A Change of Representation

The general idea behind the worker/wrapper transformation is that costs can be re-

duced byworkingwith a new representation of data that supportsmore e�icient op-

erations. Letting A be a type corresponding to the original representation and B be

a type corresponding to the new representation, this representation change is cap-

tured by a pair of functions abs and rep, where rep represents something of typeA in

type B and abs abstracts from type B to typeA.

We can demonstrate this idea with an example. We begin with the following im-

plementation of the reverse function, which reverses a list:

reverse :: [a ]→ [a ]

reverse [ ] = [ ]

reverse (x : xs) = reverse xs ++ [x ]

This can be improved by applying the worker/wrapper transformation, factorising

into a form that uses a secondary function revcat:

reverse xs = revcat xs [ ]

where revcat :: [a ]→ [a ]→ [a ]

revcat [ ] ys = ys

revcat (x : xs) ys = revcat xs (x : ys)

The new function revcat is the worker. It performs the same task as the original re-

verse — that of reversing elements — but uses an accumulating parameter to do this

in a more e�icient way. Equivalently, this can be viewed as producing the reversed

output in a form known as a di�erence list (Hughes, 1986), where a list is represented

by the function that prepends its elements to another list. In either case, the func-

tion revcat iswrapped by an application to the empty list, resulting in a function that

is equivalent to the original reverse function, but more e�icient. (To be precise, the

original function takes quadratic time, while the factorised version is linear.)
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Theworker/wrapper transformationhasmanypresentations, eachwith their own

set of preconditions for correctness. However, common to all of these presentations

is the idea of factorising a program into two parts to facilitate a change of type. The

type conversions this requires carry a cost, but the hope is that the costs saved by

using the new type will be more than enough to o�set this. This idea is at least infor-

mally understood by a large number of programmers, though the formalised forms

of the transformation are less widely-known.

2.2 Unboxing

The name “worker/wrapper” comes from when the transformation was originally

presented in the limited form of unboxing by Peyton Jones and Launchbury (1991).

In strict languages, values such as integers can be stored inmemory using their stan-

dard representations. In lazy languages like Haskell, however, an integer stored in

memory could either be an actual value or a stored computation that has yet to be

fully evaluated. Most implementations use some form of tagging to indicate which is

the case. These tagged representations are called boxed values, while the raw rep-

resentations as in strict languages are called unboxed. In Haskell, unboxed types,

functions and values are typically denoted with a hash (#) sign.

Unboxing is a transformation of Haskell programs that replaces the usual boxed

primitive typeswith “unboxed” types that are forced tobe treated strictly. Essentially

we replace the standard boxed type Intwith its unboxed counterpart Int#, which can

only be used when fully-evaluated. We can use these types as though we had the

following data declaration for Int:

data Int = I# Int#

Unboxing can therefore be used to avoid undesired side-e�ects of laziness. Consider

this implementation of the factorial function that uses an accumulating parameter:
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afac :: Int→ Int→ Int

afac n r = case n of

0→ r

→ afac (n− 1) (n ∗ r)

Because nothing in afac forces the evaluation of the parameter r, large products build

up during evaluation, as demonstrated by the following evaluation of afac 3 1:

afac 3 1

→ afac (3− 1) (3 ∗ 1)

→ afac 2 (3 ∗ 1)

→ afac (2− 1) (2 ∗ (3 ∗ 1))

→ afac 1 (2 ∗ (3 ∗ 1))

→ afac (1− 1) (1 ∗ (2 ∗ (3 ∗ 1)))

→ afac 0 (1 ∗ (2 ∗ (3 ∗ 1)))

→ (1 ∗ (2 ∗ (3 ∗ 1)))

→ (1 ∗ (2 ∗ 3))

→ (1 ∗ 6)

→ 6

Using unboxing, this can be factorised to the following:

afac n r = case n of I# n#→ case r of I# r#→ I# (afac# n# r#)

where afac# n# r# =

case n# of

0#→ r#

→ case (n#−# 1#) of

n1#→ case (n# ∗# r#) of

r1#→ afac n1# r1#

The subprogram afac# has parameters and result of type Int#, rather than the stan-

dard Int. In particular, this means that the parameter r# must be treated strictly, so
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the large products that plagued the first implementation cannot be built. Note that

the only unboxed values that appear in expressions are those that have already been

evaluated by a case statement, ensuring that no unboxed thunks ever appear.

2.3 History of the Worker/Wrapper Transformation

The full version of theworker/wrapper transformationwas first presented by Gill and

Hutton (2009). This presentation was based on least fixed points, and provided a

definition of the worker program that required some simplification in order to reap

the full benefits of the transformation. The authors presented a “worker/wrapper

fusion theorem” to assist in this process.

The next stage in the history of the worker/wrapper transformation was the pre-

sentation due to Hutton, Jaskelio�, and Gill (2010). This presentation was based on

the category-theoretic notion of folds and had a four-pointed lattice of related pre-

conditions, all but one of which was strong enough to imply the correctness of the

transformation. This gave the treatment a degree of theoretical elegance, but unfor-

tunately meant that it was incompatible with the previous presentation.

Once these two separate theories of the transformation had been presented, the

question was raised as to whether they could be unified. A partial answer was given

by Sculthorpe and Hutton (2014), who gave a uniform presentation of the worker/

wrapper transformation forboth least fixedpoints and folds. Furthermore,while they

could not unify the two theories entirely, they did show some compelling links be-

tween the two.

Notwithstanding the implementation of unboxing in GHC, the question remained

as to whether the general form of the transformation could be automated. An in-

teractive program transformation tool called HERMIT was developed by Farmer, Gill,

Komp, and Sculthorpe (2012); this tool is capable of applying the worker/wrapper

transformation, among others (Sculthorpe, Farmer, and Gill, 2013). However, there
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is not yet an implementation of the general worker-wrapper transformation that can

be applied fully automatically.

2.4 Worker/Wrapper Prehistory

Thegeneral formof theworker/wrapper techniqueappeared longbefore itwasknown

by that name. Possibly the earliest example of a worker/wrapper-like technique is in

Milner’s work on program simulation (Milner, 1971). This work deals with programs

in the form of state machines; aweak simulation between state machinesA and B is

a relation R between the states of A and the states of B such that if (x, y) ∈ R and

x → x′, y → y′ then (x′, y′) ∈ R. These machines have privileged input and output

states that the simulation relation is required to respect, in the sense that input states

are related only to input states and the same for outputs.

If it is also the case that the relationR’s action on input states can be represented

by a function f : inputs A → inputs B and its action on outputs by a function g :

outputs B → outputs A, it is a strong simulation. In this case, the program repre-

sented by A can be factorised into A′ = g ◦ B′ ◦ f , where A′ and B′ are the partial

functions represented by the state machines A and B. In other words, this theory

gives us conditions under which a program A can be factorised into a worker B and

functions f , g that e�ect a change of data representation: a worker/wrapper trans-

formation. However, unlike the worker/wrapper transformations we discuss in this

thesis, Milner’s work is not primarily concernedwith deriving the factorised program,

only proving it correct.

Related to this is Hoare’s work on data representations (Hoare, 1972). This work

is based on the idea of abstract data, where the representation of data is postponed

until a�er a�er the algorithm has been designed. The data is treated as an abstract

mathematical object with a set of operations, and correctness of the concrete pro-

gram is proved by verifying the correctness of both the abstract algorithm and the
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implementation of the data representation. In order to verify the correctness of the

implementation, we must have a function that maps concrete data to its abstract

meaning, akin to our function abs. However, there is no explicit definition of rep; in-

stead, the abs function is used to create logical pre- and postconditions that can then

be verified via Hoare logic. Like Milner’s work, this work is not primarily concerned

with the derivation of the concrete program, although it does go further in that the

work of creating the concrete program is straightforward once the concrete imple-

mentation of the abstract operations has been produced. This work is generally ap-

plied to imperative languages, in contrast with the worker/wrapper transformation’s

functional style.

One particular worker/wrapper-style technique is popularly known in the pro-

gramming language community by another name: “defunctionalisation” (Reynolds,

1998a). Defunctionalisation is the process by which one transforms a program that

uses higher-order functions to one that is based entirely on first-order functions. This

is useful when building interpreters, as an initial implementation that uses functions

to represent constructs in the interpreted language can be transformed into one that

uses first-order data for the same purposes. This process generally involves creating

a function to “apply” these function objects, i.e. a function that converts the con-

crete implementation of a function to its abstract representation. Once again, this is

just like the abs function we use here. However, this generally results in a type that is

“smaller”, in the sense that there are some functions that couldbe representedby the

original function type that are no longer representable, simply because those extra

possible values were unneeded. This di�ers from the case of worker/wrapper here,

where the concrete type B is generally larger than the abstract typeA.

Another interesting proto-worker/wrapper application is inwork on the logic pro-

gramming language Prolog by de Bruin and de Vink (1990). The authors create two

semantics of Prolog, one operational and one denotational, and prove them equiva-

lent. The point of interest here is that they define a notion of retract between CPPOs
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whereD′ is a retract ofD if there are functions i : D → D′ and j : D′ → D such that

j ◦ i = id. If we replace i for rep and j for abs we can see that this is exactly the same

as the precondition of the worker/wrapper transformation. The authors go further,

however, developing conditions under which fix f = j (fix g), where fix is the least

fixed point operator. These conditions are not the same as those of Gill and Hutton

(2009), but the idea is clearly the same: fix f has been factorised intoworker fix g and

wrapper j. Note that this is not the same as simple fixed point fusion for precisely the

same reason that worker/wrapper for fixed points di�er from simple fusion: the re-

quirement that the data representation be faithful.
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PART II: CORRECTNESS
Getting it right
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Chapter 3

Introduction

“Measure twice, cut once.”

— English proverb

This part of the thesis is concerned with the problem of proving the correctness of

various forms of the worker/wrapper transformation. As stated before, this is simply

the requirement that the transformation should not change the meaning of a pro-

gram. Clearly this is an important property for any optimisation. However, a correct-

ness theory can be used in one of two ways. Obviously, given two programs we can

ask if one is a correct transformation of the other. But perhaps less obviously, given

one program, we can obtain conditions that we can use to derive the correctly trans-

formed program.

Beforewe can begin to ask the question of correctness, wemust first decidewhat

theprogramsmean tobeginwith; this is aproblem for the fieldofprogramsemantics.

The bulk of this chapter is therefore given to an overview of this field. A�er this intro-

ductory material, the main body of this part of the thesis consists of three chapters.

Each chapter presents the correctness theory for one form of the worker/wrapper

transformation. The first such theory is for the worker/wrapper transformation for

least fixed points, a denotational theory that can be used to reason about generally-

recursive functions. The second theory is for the worker/wrapper transformation for
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unfolds, a pattern of structured recursion (actually, corecursion) where a single seed

is used to generate a potentially-infinite data structure. The final theory is a worker/

wrapper theory fordinatural transformations, a categorical concept that aims tounify

the prior worker/wrapper theories. A�er this, there is a short concluding chapter.

3.1 Background

In this section, we review the background of the study of program semantics, focus-

ing on the three areas of denotational, operational, and categorical semantics. Each

of these areas comes with its own set of notions of what a program canmean and its

own techniques for proving program correctness.

3.1.1 Denotational Semantics

The key idea behind denotational semantics is that a program’s meaning is what the

program is. A denotational semantics is defined firstly by choosing a set of math-

ematical values, called the domain, which will contain all the possible meanings of

programs. Programsare then interpreted bymeansof somemapping from the syntax

to this domain, so that every program is assigned a single value in the domain. This

mappingwill typically be defined recursively on the structure of the program, so that

the meaning of a program is some function of the meaning of its subprograms. We

say that a semantics defined in this way is compositional.

Under denotational semantics, two programs are considered equivalent if they

map to the same value in the domain. It is therefore natural to prove correctness of

a transformation by proving the equality of these values. Thus, denotational seman-

tics lends itself to techniques of equational reasoning, where two program terms are

shown to be equivalent by presenting a sequence of terms with equalities between

adjacent terms. Denotational approaches also lend themselves well to calculational

programming, where algebraic techniques are used to derive a program that satisfies
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some specification. Both techniques are used extensively in this thesis.

The concept of denotational semanticswas first developed by Scott and Strachey

(1971), who proposed interpreting an imperative program as a function taking an ini-

tial state as input and producing a final state as output. Furthermore, their approach

could deal with recursively-defined programs by making the set of possible states

into a lattice, a kind of ordered set where every pair of elements has both a least up-

per bound and greatest lower bound. This was based on an idea from previous work

by Scott (1970), where data types were interpreted as partially-ordered sets.

The types-as-lattices approach was subsequently refined to semantics based on

complete (pointed) partial orders (CPPOs) (Scott, 1982), which are partial orders with

a di�erent completeness property that implies that functions have least fixed points.

This structure also provides an algorithm to calculate such fixed points, in the form

of the Kleene fixed point theorem (Kleene, 1952). CPPOmodels form the basis ofmost

modern denotational semantics for functional languages. An important exception to

this is total languages, which do not allow unrestricted use of recursion.

3.1.2 Operational Semantics

In contrast to denotational semantics, operational semantics defines a program not

by what it is, but by what it does. In this approach, the meaning of a program is the

sequence of steps, inputs and outputs thatmust be performed to calculate its result.

These stepsmay ormay not be the steps thatwould be performedwhen the program

is executed by a real computer. The term “operational” was first used in this sense by

Scott (1970), though the concept itself had already been used in specifications of the

LISP programming language (McCarthy, 1960).

Operational semantics can be divided into two main approaches. Small-step se-

manticsdescribeshowaprogram is executed in individual steps, either as steps taken

by some abstract machine or by showing how a program reduces to some other pro-

gram. Big-step semantics, also knownasnatural semantics, describes the final result
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of a program’s execution, typically by inductively defining a judgement “program p

in environment E produces result r”. Small-step semantics were initially developed

by Plotkin (2004), while big-step semantics were initially developed by Kahn (1987).

The terms “small-step” and “big-step” are also due to Kahn.

In an operational setting, equality of programs is generally taken to be a sim-

ple syntactic notion. Unlike in denotational semantics, equivalent programs are not

equal, making simple equality much less useful. Therefore we require a notion of

equivalence between programs that is separate from equality. For this purpose we

have the concept of bisimulation, a notion of equivalence between systems first de-

veloped by Park (1981). Two systems are said to be bisimilar if there is a relation be-

tween the states of the systems such that related states have related successor states.

To put it more formally, if the first system is in state p and the second system is in re-

lated state q, and the first system can transition to state p′ producing output a, the

second systemmust be able to transition to some state q′ byproducing the sameout-

put a, and p′ must be related to q′. Furthermore, this condition must also hold if the

two systemsare exchanged. Thenotionof bisimulation canbe tailored to suit various

types of systems and semantics, but all have the same general form.

Bisimulation is best suited to small-step semantics, as it involves considering two

programs evaluating in lockstep. When dealing with big-step semantics, we can use

the alternative notion of observational equivalence, as introduced by Hennessy and

Milner (1980). The idea here is that if an external observer would not be able to dis-

tinguish two programs, then they are equivalent. Put more formally, if for all valid

contextsC the programsC[p] andC[q] have indistinguishable results, then p and q

are equivalent. The exact nature of the observations possible can vary, but in many

cases it is enough to just consider termination, as we can o�en choose C[x] of the

form “if some particular property holds of x then terminate, otherwise loop”.

Related to observational equivalence is the proof technique of coinduction (Co-

quand, 1993; Turner, 1995), which comes frombisimulation. Dual to themore familiar

24



technique of induction, coinduction allows us to reason about infinite data by treat-

ing observationally equivalent data structures as identical. One specific case of coin-

duction is guarded coinduction, which allows use of the “coinductive hypothesis” so

long as the use of the hypothesis is “guarded” by a constructor. For example, we can

use guarded coinduction to provemap f ◦map g = map (f ◦ g) for infinite streams,

despite the fact that infinite streams o�er no base case:

map f (map g (x : xs))

= { definition ofmap }

map f (g x : map g xs)

= { definition ofmap }

f (g x) : map f (map g xs)

= { coinductive hypothesis }

f (g x) : map (f ◦ g) xs

= { definition of (◦) }

(f ◦ g) x : map (f ◦ g) xs

= { definition ofmap }

map (f ◦ g) (x : xs)

Note that the “coinductive hypothesis” steponly substitutes terms that appear as the

stream argument to the constructor (:). This is what we mean by a “guarded” use of

the hypothesis.

This apparently circular proof can be justified by appealing to an induction proof

based on finite approximations. In the case of infinite streams, the nth approximation

of a stream xs (written approx n xs) is the stream consisting of the first n elements of

xs followed by the undefined stream⊥. Any observable behaviour of a program that

operates on streams must occur a�er only finitely many steps, and so there must be

some n such that the program only depends on the first n elements of xs. In other

words, because the program can only look at finitely many places of its input before

producing an output (or else it is non-terminating), there must be some n such that
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if approx n xs = approx n ys, then the program cannot distinguish xs and ys. There-

fore, we can conclude:

∀ n .approx n xs = approx n ys ⇒ xs∼ys

where∼ is observational equivalence. This implication is known as the approxima-

tion lemma (Bird, 1998).

We can use this idea to convert our coinductive proof above to an induction on n.

The base case is trivial, as approx 0 xs = ⊥ for any xs. The inductive case is:

take (n + 1) (map f (map g (x : xs)))

= { coinductive proof up to the application of the hypothesis }

take (n + 1) (f (g x) : map f (map g xs))

= { definition of take }

f (g x) : take n (map f (map g xs))

= { inductive hypothesis }

f (g x) : take n (map (f ◦ g) xs)

= { definition of take }

take (n + 1) (f (g x) : map (f ◦ g) xs)

= { coinductive proof a�er the application of the hypothesis }

take (n + 1) (map (f ◦ g) (x : xs))

Since all finite approximations ofmap f (map g xs) andmap (f ◦ g) xs are equal, no

program can distinguish them, so they must be observationally equivalent. There-

fore it is safe to treat them as equal.

The approximation lemma can be generalised to a wide class of algebraic data

types (Hutton and Gibbons, 2001). Therefore, the proof technique of guarded coin-

duction can be similarly generalised.
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3.1.3 Categorical Semantics

Category theory, first introduced by Eilenberg and Mac Lane (1945), is the study of

categories, a general kind of mathematical structure. A category consists of a collec-

tion of objects, along with a collection of arrows, each arrow being associated with

both a source and a target object. Furthermore, arrows can be composed so long as

the source of one arrow is the target of the other, and this composition is associa-

tive. Finally, each object is equipped with an identity arrow that serves as the unit

of composition. This machinery abstracts from the common mathematical pattern

of having a kind of structure (for example, monoids) equippedwith a notion of when

one structure can be transformed into another.

Category theory enables us to have notions of structures like products, sums and

exponentials that are agnostic in the kind of object in question. For example, the

cartesian product of sets, direct product of groups, greatest lower bound of poset el-

ements and tuple types ofmany programming languages are all examples of the cat-

egorical product. This high level of abstraction category theory provides has earned

it the nickname “generalised abstract nonsense”. Despite thismoniker, category the-

ory provides a very useful toolkit for many branches of mathematics and computer

science. Typically, categorical approaches to program semantics will use objects to

model datatypes and arrows to model either terms or functions.

Category theory neatly characterises themodels of the simply-typed lambda cal-

culus as being exactly the cartesian closed categories (Lambek, 1980), categories that

are closedunderbothproducts andexponentials. It canalsobe shown that complete

pointedpartial orders (asmentionedabove) formacartesian closed category (Baren-

dregt, 1984). However, as the simply-typed lambda calculus is total, it also has mod-

els that do not givemeaning to general recursion, for example the sets and functions

of standard set theory.

As well as providing a useful perspective on the simply-typed lambda calculus,

category theory can also be used to give a meaning to recursive data types with ini-
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tial algebras and final coalgebras. Typically, initial algebras correspond to finite data

structuresand final coalgebrascorrespond topotentially infinitedata structures. This

model of data types comes with a natural notion of fold and unfold operators, which

break down and build up recursive data respectively. This approach was originally

developed by Hagino (1987), and subsequently by Malcolm (1990).

Categorical work on initial algebras and final coalgebras was applied to the cate-

gory of complete pointed partial orders by Meijer, Fokkinga, and Paterson (1991). In

this setting, initial algebras and final coalgebras coincide, allowing folds and unfolds

to be used at the same types. This allows us tomodel computations that pass around

infinite data structures, which canmake sense in lazy languages such as Haskell.
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Chapter 4

Worker/Wrapper for Fix

“I subscribe to the myth that an artist’s creativity

comes from torment. Once that’s fixed, what do

you draw on?”

— David Byrne

4.1 Motivation

This chapter explains the basics of a denotational semantics based on complete poin-

ted partial orders (CPPOs), alongwith a version of theworker/wrapper theory for this

setting. CPPOs are a commonly-used way of giving meaning to programs written in

both typedanduntyped lazy functional languages, comingwith a very natural notion

ofwhat itmeans for a function tobe strict anda straightforward semantics for general

recursion. The approach to the presentation of the worker/wrapper transformation

given in this chapter is originally due to Sculthorpe and Hutton (2014).

4.2 Background: Least Fixed Point Semantics

Least fixedpoint semantics givemeaning to recursiveprogramsand typesusing com-

plete pointed partial orders. This section provides an overview of the theory.
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4.2.1 Complete Pointed Partial Orders

Adirected set is a nonempty setDwhere every pair of elements x, y ∈ Dhas anupper

bound that is also inD. A poset is a complete partial order (CPO)when every directed

subset has a least upper bound — in other words, when there is a least y such that

x 6 y for all elements x of the set. A complete partial order is pointed (a CPPO) if

there is a least element. By convention, we call this least element⊥.

Functions between CPPOs are called continuous if they map directed sets to di-

rected sets while preserving their least upper bounds. It follows from this definition

that all continuous functions are monotone. In the case that f preserves the least

element⊥ then we also say that f is strict.

IfA is a CPPO, then a continuous function f : A→ A has a least fixed point. A least

fixed point of f is an element x ofA that satisfies the following two properties:

• Fixed point property: f x = x

• Least prefix point property: for all y such that f y 6 y, we have x 6 y.

It follows from these two properties that least fixed points are unique. We denote the

least fixed point of f as fix f .

CPPOs can be used as the basis of a denotational semantics for lazy functional

languages, where the types are represented by CPPOs and the functions are con-

tinuous functions between those CPPOs. The bottom element⊥ represents a value

whose computation never terminates, and strictness for continuous functions there-

fore corresponds precisely to strictness in the functional programming sense.

4.2.2 Fixed Point Induction, Fusion and Rolling

In order to develop our theory, we will need some rules and proof techniques to ap-

ply. We need three rules in particular, namely: fixed point induction, fixed point fu-

sion and the rolling rule.
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A chain is a possibly infinite sequence of elements of an order such that for each

adjacent pair x1, x2 in the sequence, we have x1 6 x2. As a chain is a special case of

a directed set, all chains in CPPOs have least upper bounds. A predicate P is chain-

complete if whenever it holds for all elements of a chain, it holds for the least up-

per bound of the chain. Generally predicates based on equalities between terms will

be chain-complete. For any chain-complete predicate P, we have the following fixed

point induction rule (Winskel, 1993):

P ⊥ ∧ (∀x .P x⇒ P (f x))⇒ P (fix f )

We can use fixed point induction to prove a number of useful properties, including

the fixed point fusion rule (Meijer et al., 1991). Fusion allows us to combine a function

with a fixed point to make another fixed point:

h (fix f ) = fix g ⇐ h ◦ f = g ◦ h ∧ h strict

To prove this via fixed point induction, we let our predicate P be P (x, y)⇔ h x = y.

Starting with the base case we reason as follows:

P ⊥

⇔ { the bottom of a product order is (⊥,⊥) }

P (⊥,⊥)

⇔ { definition of P }

h ⊥ = ⊥

⇔

h strict

The inductive case is also fairly straightforward:

P (f x, g y)

⇔ { definition of P }

h (f x) = g y
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⇔ { h ◦ f = g ◦ h }

g (h x) = g y

⇐ { g is a function }

h x = y

⇔ { definition of P }

P (x, y)

Noting that the fixed point of λ(x, y) → (f x, g y) is (fix f , fix g), we can thus con-

clude h (fix f ) = fix g) by fixed point induction.

Finally, the rolling rule allows us “roll out” an f from fix (f ◦ g) tomake f (fix (g ◦

f )). This can be viewed as a special case of fusion where f (fix (g ◦ f )) can be fused

to make fix (f ◦ g). However, this would include a side condition that f is strict. With

careful reasoning, we can eliminate this requirement. We prove this by antisymme-

try, proving first that one side is less than the other, and then vice-versa. Firstly:

fix (f ◦ g) 6 f (fix (g ◦ f ))

⇐ { least prefix point property }

(f ◦ g) (f (fix (g ◦ f ))) 6 f (fix (g ◦ f ))

⇔ { expanding ◦ }

f (g (f (fix (g ◦ f ))) 6 f (fix (g ◦ f ))

⇔ { contracting ◦ }

f ((g ◦ f ) (fix (g ◦ f ))) 6 f (fix (g ◦ f ))

⇔ { fixed point property }

f (fix (g ◦ f )) 6 f (fix (g ◦ f ))

⇔ { reflexivity }

True

Having proved this, we can now complete the proof as follows:

f (fix (g ◦ f )) 6 fix (f ◦ g)

⇔ { fixed point property }
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Given functions

abs : B→ A f : A→ A
rep : A→ B g : B→ B

satisfying one of the assumptions

(A) abs ◦ rep = id
(B) abs ◦ rep ◦ f = f
(C) fix (abs ◦ rep ◦ f ) = fix f

If any one of the following conditions holds:

(1) g = rep ◦ f ◦ abs (1β) fix g = fix (rep ◦ f ◦ abs)
(2) g ◦ rep = rep ◦ f ∧ rep strict (2β) fix g = rep (fix f )
(3) abs ◦ g = f ◦ abs

then we have the factorisation:

fix f = abs (fix g)

Figure 4.1: The Worker/Wrapper Theorem for Least Fixed Points

f (fix (g ◦ f )) 6 (f ◦ g) (fix (f ◦ g))

⇔ { expanding ◦ }

f (fix (g ◦ f )) 6 f (g (fix (f ◦ g)))

⇐ { monotonicity }

fix (g ◦ f ) 6 g (fix (f ◦ g))

⇔ { above result, swapping f and g }

True

4.3 AWorker/Wrapper Theorem for Least Fixed Points

Supposewehaveaprogramof typeA that iswrittenasfix f for some function f : A→

A, andwewish tooptimise this functionbyapplying theworker/wrapper transforma-

tion. To do this, we need a new type B along with functions abs and rep that allow B
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to faithfully represent elements ofA: recall that the function rep represents elements

ofA in Bwhile the function abs abstracts back to the original typeA.

In order to ensure that the representation of A in B is faithful, we require a con-

dition on abs and rep. The obvious requirement is that abs ◦ rep = id, but there may

also be weaker conditions that su�ice.

Given this, we want a specification of the new worker program. We can assume

that this will be of the form fix g for some g : B → B, so it is enough to have a spec-

ification of g. The function abs can then be used as the wrapper to convert from the

new worker’s type B back toA.

These requirements are satisfied by theWorker/Wrapper Theorem for Least Fixed

Points, which can be seen in Figure 4.1. Assumptions (A), (B) and (C) capture the re-

quired relationship between abs and rep, while the five numbered conditions can be

used as specifications for g.

4.3.1 Discussion

The variety of preconditions of this theorem bears some explaining. Assumption (A),

the strongest of the three letter assumptions, is simply the requirement that rep give

a faithful (in other words, reversible) representation ofA in B. However, in some sit-

uations this may be too strong a requirement, and hence we have the alternate as-

sumptions (B) and (C). Assumption (B) can be interpreted as the requirement that rep

need a faithful representation for values that are possible results of f . Assumption (C)

is similar, but adds a recursive context.

The numbered conditions are also varied. Condition (1) gives a direct definition of

the function g, and so at first this might seem like the obvious choice, but this defini-

tion will o�en require a nontrivial amount of simplification to o�er an improvement

in e�iciency. Conditions (2) and (3) are almost dual, providing ways to derive the

function g by “pushing” either rep or abs through the definition of f . The β conditions

are weakened versions of conditions (1) and (2), introducing a recursive context. This
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added recursive context can make the conditions harder to prove, but these condi-

tions do serve an important role in simplifying the proof, as will be seen below.

The assumptions and conditions of the theorem are not independent. In fact,

they have the following implications between them:

• Theassumptions formahierarchy (A)⇒ (B)⇒ (C). Assumption (A) canbeweak-

ened to (B) by composing both sides with f , and (B) can be further weakened

to (C) by applying fix to both sides.

• Both conditions (1) and (2) imply their respective β versions. Condition (1) can

beweakened to (1β) by applying fix to both sides, while (2) implies (2β) by fixed

point fusion.

• Under assumption (C) (and hence under any assumption), both β conditions

are equivalent. This can be proved as follows:

fix g = rep (fix f )

⇔ { fixed point property }

fix g = rep (f (fix f ))

⇔ { (C) }

fix g = rep (f (fix (abs ◦ rep ◦ f )))

⇔ { rolling rule }

fix g = fix (rep ◦ f ◦ abs)

4.4 Proof

Because of the relationships between the preconditions of the theorem, it is enough

to prove the theorem for theweakest assumption (C) and the twoweakest conditions

(1β) and (3). The case for (1β) is straightforward:

fix f

= { (C) }
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fix (abs ◦ rep ◦ f )

= { rolling rule }

abs (fix (rep ◦ f ◦ abs))

= { (1β) }

abs (fix g)

Now wemust tackle the case of condition (3). Under (A), abs ⊥ 6 abs (rep ⊥) = ⊥,

so abs is strict and (3) implies the result by fusion. However, the proof for the weaker

condition (C) ismore involved. Weprove the result by antisymmetry. Showingfix f 6

abs (fix g) is fairly simple:

fix f 6 abs (fix g)

⇐ { least prefix point }

f (abs (fix g)) 6 abs (fix g)

⇔ { (3) }

abs (g (fix g)) 6 abs (fix g)

⇔ { fixed point property }

abs (fix g) 6 abs (fix g)

⇔ { reflexivity }

True

Toshowtheotherdirection,wemustuse fixedpoint induction. LettingP y = abs y 6

fix f , we have that our desired result abs (fix g) 6 fix f is equivalent to P (fix g),

which we prove by induction. Firstly, the base case:

P ⊥

⇔ { definition of P }

abs ⊥ 6 fix f

⇔ { (C) }

abs ⊥ 6 fix (abs ◦ rep ◦ f )
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⇔ { rolling rule }

abs ⊥ 6 abs (fix (rep ◦ f ◦ abs))

⇐ { monotonicity }

⊥ 6 fix (rep ◦ f ◦ abs)

⇔ { bottom element }

True

Then the inductive step:

P (g y)

⇔ { definition of P }

abs (g y) 6 fix f

⇔ { (3) }

f (abs y) 6 fix f

⇔ { fixed point property }

f (abs y) 6 f (fix f )

⇐ { monotonicity }

abs y 6 fix f

⇔ { definition of P }

P y

Finally, we note that in the case of a non-strict abs, (3) alone is not enough for the

result of the theoremtohold—acounterexample for this caseandanumberofothers

can be found in Sculthorpe and Hutton (2014).

4.5 Example: Fast Reverse

Recall the example of the reverse function from Section 2.1.

reverse :: [a ]→ [a ]

reverse [ ] = [ ]
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reverse (x : xs) = reverse xs ++ [x ]

If we wish to optimise this using our least fixed point-based theory, we must first

transform the program into the form fix f for some function f . We do this simply

by abstracting out the recursive calls in the definition of reverse:

reverse = fix f

where

f :: ([a ]→ [a ])→ ([a ]→ [a ])

f rev [ ] = [ ]

f rev (x : xs) = rev xs ++ [x ]

Now, whenever before a recursive call to reverse is made, the same call is instead

made to the function parameter of f . In this way, least fixed point semantics can give

a meaning to directly recursive definitions.

The change of representationwewant to apply is based on di�erence lists, due to

Hughes (1986). This scheme represents a list xs by the function takes another list ys

and returns xs ++ ys. We have the following two conversion functions:

toDiffList :: [a ]→ ([a ]→ [a ])

toDiffList xs = (xs++)

fromDiffList :: ([a ]→ [a ])→ [a ]

fromDiffList func = func [ ]

It is easy to show that fromDiffList is a le� inverse of toDiffList.

fromDiffList (toDiffList xs)

= { definitions }

(xs++) [ ]

= { operator sections }
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xs ++ [ ]

= { [ ] is the identity of++ }

xs

This change of representation works on lists. However, reverse is a not a list, but a

function that returns a list. Therefore, our abs and repmust act on functions, convert-

ing the return value of the function to and from the di�erence list representation.

abs :: ([a ]→ ([a ]→ [a ]))→ ([a ]→ [a ])

abs func = fromDiffList ◦ func

rep :: ([a ]→ [a ])→ ([a ]→ ([a ]→ [a ]))

rep func = toDiffList ◦ func

Our A type is therefore [a ] → [a ], the type of reverse, while our B type is [a ] →

([a ]→ [a ]). It is straightforward to show that assumption (A) is satisfied:

abs (rep func)

= { definitions }

fromDiffList ◦ toDiffList ◦ func

= { above proof }

func

Now that we have our abs and rep satisfying assumption (A), we must find a function

g that satisfies one of the numbered conditions. In this case, it turns out to be easiest

to use (2) as a specification. Firstly, we show that rep is strict:

rep ⊥

= { definition of rep }

toDiffList ◦ ⊥

= { expanding ◦ }
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λxs→ toDiffList (⊥ xs)

= {⊥ x = ⊥ for all x }

λxs→ toDiffList ⊥

= { definition of toDiffList }

λxs→ (⊥++)

= { operator sections }

λxs ys→ ⊥++ ys

= {++ is strict in its first argument }

λxs ys→ ⊥

= { functions that are everywhere⊥ are equivalent to⊥ }

⊥

Now, we must calculate g such that rep ◦ f = g ◦ rep. If we fully apply both sides of

this equation, the calculation is fairly straightforward. The type of rep ◦ f is ([a ] →

[a ]) → [a ] → ([a ] → [a ]), so the first argument is a function and the second argu-

ment is a list. We proceed by case analysis on the list argument. Firstly, we consider

the case where the argument is [ ]:

(rep ◦ f ) rev [ ]

= { definition of rep }

toDiffList (f rev [ ])

= { definition of f }

toDiffList [ ]

= { definition of toDiffList }

([ ]++)

= { [ ] is the identity of++ }

id

To satisfy the equation, we need a definition of g such that

(g ◦ rep) rev [ ] = g (rep rev) [ ] = id
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We take g r [ ] = id. Now we consider the case where the input is x : xs:

(rep ◦ f )) rev (x : xs)

= { definition of rep }

toDiffList (f rev (x : xs))

= { definition of f }

toDiffList (rev xs ++ [x ])

= { definition of toDiffList }

((rev xs ++ [x ])++)

= { associativity of++ and properties of operator sections }

(rev xs++) ◦ ([x ]++)

= { definition of++ }

(rev xs++) ◦ (x:)

We need this to equal g (rep rev) (x : xs). Starting from this side, we reason:

g (rep rev) (x : xs)

= { definition of rep }

g (toDiffList ◦ rev) (x : xs)

= { definition of toDiffList }

g (λys→ (rev ys++)) (x : xs)

We can thus make the two sides equal by letting g r (x : xs) = r xs ◦ (x:). Thus we

have derived the following definition of g:

g r [ ] = id

g r (x : xs) = r xs ◦ (x:)

This gives us the following optimised definition of reverse:

reverse = abs (fix g)

where
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g r [ ] = id

g r (x : xs) = r xs ◦ (x:)

Rewriting this using direct recursion and expanding out the definition of abs, we get:

reverse xs = rev xs [ ]

where

rev [ ] = id

rev (x : xs) = rev xs ◦ (x:)

Finally, if we η-expand our definition of rev and simplify, we obtain:

reverse xs = rev xs [ ]

where

rev [ ] ys = ys

rev (x : xs) ys = rev xs (x : ys)

The resulting program is precisely the optimised definition from section 2.1, modulo

some renaming.

4.6 Conclusion

This chapter introduced thenotionof CPPOs, demonstratedhow these couldbeused

to give a meaning to recursive programs and presented the worker/wrapper trans-

formation for such programs, along with a correctness theorem. This theory had a

correctness theorem with a wide range of potential preconditions, any one of which

could be used to calculate an optimised program.

The format of the central theoremof this chapterwill be repeated throughout this

thesis, as other worker/wrapper theories will tend to follow the same patterns. How-

ever, as will be shown later on, the task of unifying these theories is not as straight-

forward as onemight expect.
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Chapter 5

Worker/Wrapper for Unfold

“The opposite of a correct statement is a false

statement. But the opposite of a profound truth

may well be another profound truth.”

— Neils Bohr

5.1 Motivation

The previous chapter demonstrated a version of the worker/wrapper transformation

for least fixedpoints, built on the frameworkof completepointedpartial orders. How-

ever, this approach has some limitations, two of which we shall outline here.

Firstly, the setting of complete pointed partial orders assumes a partial program-

ming language, where functions can fail to return. Programming languages with to-

tality checkers such as Idris (Brady, 2011) are becoming increasingly popular, and

while we could simply ignore the partial aspects of our framework, it would clearly

be a disservice not to explore the possibilities of a theory for total programs.

Secondly, least fixed points are amodel of unstructured recursion. Wemightwish

to make use of the reasoning tools given to us by more structured patterns, such as

folds, paramorphisms or unfolds. Not only are these patterns of recursion available

in languages without general recursion, the specificity can give us results that do not

hold in the general case.
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In this chapter, we present a worker/wrapper transformation for unfolds, based

on the categorical concept of final coalgebras. An unfold is a function which starts

from a single seed value and builds up a data structure, using recursive calls tomake

subterms of the structure. This pattern of building subterms with recursive calls is

known as corecursion. For example, consider the Haskell type of infinite streams:

data Stream a = a : Stream a

The unfold pattern for this type can be captured by the following function:

unfold :: (a→ b)→ (a→ a)→ a→ Stream b

unfold h t x = h x : unfold h t (t x)

Not only are unfolds useful in general, the language of final coalgebras allows us to

use “infinite” data in a total setting by treating the data as lazy (i.e. produced on de-

mand). Furthermore, coalgebras can also be viewed as behaviours of a system, which

means that theories about them can also be applied in more operational contexts.

5.2 Background: Worker/Wrapper for folds

As unfolds and final coalgebras are dual to folds and initial algebras, it is informative

to see theworker/wrapper transformation as itwasdeveloped for folds. Givena func-

tor F : C → C, an F-algebra is a pair (A, f ) of objectA in C and an arrow f : F A→ A.

A homomorphism between algebras (A, f ) and (B, g) is an arrow h : A→ B satisfying

the property h ◦ f = g ◦ F h. This property is captured by the following commutative

diagram:

F A F h //

f

��

F B

g

��
A

h
// B

The initial algebra, denoted (µF, in), is the uniqueF-algebra fromwhich there is a

unique homomorphism to any F-algebra. We write the unique homomorphism from
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(µF, in) to (A, f ) as fold f . The initial algebra can be thought of as a type of terms

with syntax defined by F, and fold f a function that recursively evaluates a term by

applying f to the evaluation of its subterms.

As the operator fold captures a notion of structural recursion, it makes sense to

ask whether programs written in terms of fold can be factorised in the same way as

programswritten in termsoffix, into aworker programat adi�erent type andawrap-

per program handling the conversion. The answer is yes: fold has fusion and rolling

rules similar to those for fix, so a similar worker/wrapper development is possible.

The resulting worker/wrapper transformation for folds was initially developed by

Hutton et al. (2010). This work produced the insight of having multiple numeric con-

ditions: the original version of the transformation for fix had the assumptions (A–

C) but only condition (1). The subsequent development by Sculthorpe and Hutton

(2014) integrated both versions of the theory, creating fix and fold theories with the

full breadth of conditions that we consider in this thesis. We present the central the-

orem from this latter work in Figure 5.1.

5.3 Background: Final Coalgebras

Suppose that we fix a category C and a functor F : C → C on this category. Then an

F-coalgebra is a pair (A, f ) consisting of an objectA alongwith an arrow f : A→ F A.

We o�en omit the objectA as it is implicit in the type of f . A homomorphism between

coalgebras f : A→ F A and g : B→ F B is an arrow h : A→ B satisfying the property

F h ◦ f = g ◦ h. This property is captured by the following commutative diagram:

A h //

f

��

B

g

��
F A

F h
// F B
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Given functions

abs : B→ A f : F A→ A
rep : A→ B g : F B→ B

satisfying one of the assumptions

(A) abs ◦ rep = id
(B) abs ◦ rep ◦ f = f
(C) fold (abs ◦ rep ◦ f ) = fold f

If any one of the following conditions holds:

(1) g = rep ◦ f ◦ F abs (1β) fold g = fold (rep ◦ f ◦ F abs)
(2) g ◦ F rep = rep ◦ f (2β) fold g = rep ◦ fold f
(3) abs ◦ g = f ◦ F abs

then we have the factorisation:

fold f = abs ◦ fold g

Figure 5.1: The Worker/Wrapper Theorem for Folds (Sculthorpe and Hutton, 2014)
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Intuitively, a coalgebra f : A → F A can be thought of as giving a behaviour to

elements ofA, where the possible behaviours are specified by the functor F. For ex-

ample, if we define F X = 1 + X on the category Set of sets and total functions,

then a coalgebra f : A→ 1 + A is the transition function of a state machine in which

each element of A is either a terminating state or has a single successor. In turn, a

homomorphism corresponds to a behaviour-preserving mapping, in the sense that

if we first apply the homomorphism h and then the target behaviour captured by g,

we obtain the same result as if we apply the source behaviour captured by f and then

map h across theA components of the result.

A final coalgebra, denoted (νF, out), is an F-coalgebra to which any other coalge-

bra has a unique homomorphism. If a final coalgebra exists, it is unique up to iso-

morphism. Given a coalgebra f : A→ F A, the unique homomorphism from f to the

final coalgebra out is denoted unfold f :: A → νF. This uniqueness property can be

captured by the following equivalence:

h = unfold f ⇔ F h ◦ f = out ◦ h

We also have a fusion rule for unfold. Given arrows f : A → F A, g : B → F B and

h : A→ Bwe have the following implication:

unfold g ◦ h = unfold f

⇐

F h ◦ f = g ◦ h

The proof of this rule can be conveniently captured by the following commutative

diagram:

A

f

��

h //

unfold f

&&
B

g

��

unfold g
// νF

out

��
F A

F h
// F B

F (unfold g)
// F (νF)
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The le� square commutes by assumption while the right square commutes because

unfold g is a coalgebra homomorphism. Therefore, the outer rectangle commutes,

meaning that unfold g ◦ h is a homomorphism from f to out. Finally, because homo-

morphisms to the final coalgebra out are unique and unfold f is also such a homo-

morphism, the result unfold g ◦ h = unfold f holds.

A corollary of fusion is the rolling rule for unfold, which echoes the rolling rule for

least fixed points. The proof is simple:

unfold (F f ◦ g) ◦ f = unfold (g ◦ f )

⇐ { fusion }

F f ◦ g ◦ f = F f ◦ g ◦ h

⇐ { identity }

True

We illustrate the above concepts with a concrete example. Consider the func-

tor F X = Nat × X on the category Set. This functor has a final coalgebra con-

sisting of the set Stream Nat of streams of natural numbers together with the func-

tion 〈head, tail〉 : Stream Nat→ Nat× Stream that combines the stream destructors

head : Stream Nat → Nat and tail : Stream Nat → Stream Nat. Given any set A and

functions h : A → Nat and t : A → A, the function unfold〈h, t〉 : A → Stream Nat is

uniquely defined by the two equations

head ◦ unfold〈h, t〉 = h

tail ◦ unfold〈h, t〉 = unfold〈h, t〉 ◦ t

which are equivalent to following more intuitive definition we had earlier.

For a more thorough treatment of the subject of coalgebras, see Rutten (2000).

48



Given functions

abs : B→ A f : A→ F A
rep : A→ B g : B→ F B

satisfying one of the assumptions

(A) abs ◦ rep = id
(B) f ◦ abs ◦ rep = f
(C) unfold (f ◦ abs ◦ rep) = unfold f

If any one of the following conditions holds:

(1) g = F rep ◦ f ◦ abs (1β) unfold g = unfold (F rep ◦ f ◦ abs)
(2) F abs ◦ g = f ◦ abs (2β) unfold g = unfold f ◦ abs
(3) g ◦ rep = F rep ◦ f

then we have the factorisation:

unfold f = unfold g ◦ rep

Figure 5.2: The Worker/Wrapper Theorem for Unfolds

5.4 TheWorker/Wrapper Theorem for Unfolds

Given all this background, we can now present the worker/wrapper theorem for un-

folds, as seen in Figure 5.2. (The proof of this theorem is given in section 5.7.) Given

a program of the form unfold f : A → νF and conversion functions abs : B → A and

rep : A→ Bwe can use the theorem to factorise the original unfold to unfold g ◦ rep,

with the theorem itself providing us with a specification for g.

5.5 Discussion

This theorembears a great degree of similarity to the theorem for least fixed points in

the previous chapter. However, there are also a number of key di�erences between

this theorem and the fix theorem. It is also worth comparing the theorem here to the

theorem given in Figure 5.1 for folds, which are dual to unfolds. In this section, we

49



make some observations on how our unfold theorem compares to these two theo-

rems.

Firstly, assumption (B) in the fix and fold theorems, i.e. abs ◦ rep ◦ f = f , can be

interpreted as “for any x in the range of f , abs (rep x) = x”. This can therefore be

proven by reasoning only about such x. When applying the theorem for unfolds, this

kind of simple reasoning for assumption (B) is not possible, as f is now applied last

rather than first and hence cannot be factored out of the proof in this way.

Secondly, condition (2) in the fix case (that rep is strict and rep ◦ f = g ◦ rep) and

the similar condition (2) in the fold theorem allow g to depend on a precondition set

up by rep. If such a precondition is desired for the unfold case, condition (3) must be

used. This has important implications for use of this theorem as a basis for optimisa-

tion, as wewill o�en derive g based on a specification given by one of the conditions.

Thirdly, while condition (2) in the fix case had a strictness side-condition, in this

case there are no side conditions. This ought to make the theorem easier to apply.

The fold theorem also has no side conditions.

Finally, wenote that proving (C), (1β) or (2β) for the fix or fold caseusually requires

induction. To prove the corresponding properties for the unfold case will usually re-

quire the less widely-understood technique of coinduction. These properties may

therefore turn out to be less useful in the unfold case for practical purposes, despite

only requiring a technique of comparable complexity. If we want to use this theory

to avoid coinduction altogether, assumption (C) and the β conditions are not appli-

cable. The following section o�ers a way around this problem in the case of (C).

5.6 Refining Assumption (C)

As it stands, assumption (C) is expressed as an equality between two corecursive pro-

grams defined using unfold, and hencemay be non-trivial to prove. However, we can

derive an equivalent assumption that may be easier to prove in practice:
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unfold f = unfold (f ◦ abs ◦ rep)

⇔ { uniqueness property of unfold (f ◦ abs ◦ rep) }

out ◦ unfold f = F (unfold f ) ◦ f ◦ abs ◦ rep

⇔ { unfold f is a coalgebra homomorphism }

out ◦ unfold f = out ◦ unfold f ◦ abs ◦ rep

⇔ { out is an isomorphism }

unfold f = unfold f ◦ abs ◦ rep

We denote this equivalent version of assumption (C) as (C’). As this new assumption

concerns only the conversions abs and rep along with the original program unfold f ,

it may be provable simply from the original program’s correctness properties.

This proof dualises easily for the fold theoremdue to Sculthorpe andHutton. Un-

fortunately however, we cannot apply this kind of trick to the theorem for least fixed

points as least fixed points lack an equivalent to the unfolds’ uniqueness property.

5.7 Proof

The assumptions and conditions have the same interrelationships as they did in the

previous chapter, namely that (A)⇒ (B)⇒ (C); that (1) and (2) each imply their re-

spective β conditions; and that under assumption (C) the two β conditions are equiv-

alent. Unlike the fix case, however, there are no strictness side-conditions to work

around: (3) implies the result simply by fusion, so no involved proof-by-induction is

needed. It therefore su�ices to prove the theorem for assumption (C) and condition

(1β). The proof of this follows the same structure as that for fix, being centred around

an application of the rolling rule:

unfold f

= { (C) }

unfold (f ◦ abs ◦ rep)
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= { rolling rule }

unfold (rep ◦ f ◦ abs) ◦ rep

= { (1β) }

unfold g ◦ rep

Noting that (C) can be equivalently phrased as the (C’) condition we derived above,

there is an even simpler proof available. Assuming (C’) and (2β), we have:

unfold f

= { (C’) }

unfold f ◦ abs ◦ rep

= { (2β) }

unfold g ◦ rep

However, it was not trivial to prove that (C’) is equivalent to (C). Essentially, we have

moved work from one place to another.

5.8 Unifying

Now that we have two di�erent versions of the worker/wrapper theory with similar

theoremsand similar proofs, it wouldbe logical to ask ifwe canunify them. Ifweonly

wish to deal with unfolds in the category of CPPOs, then we can simply rewrite our

unfolds using general recursion. A similar approach to this was used by Sculthorpe

and Hutton to partially unite the fix theory with a theory for folds, the dual of un-

folds (Sculthorpe and Hutton, 2014). This resulted in a fold theory with an additional

strictness side-condition. This reflects the fact that the folds in the category of CPPOs

are not true folds: they are not the unique homomorphism from the initial algebra,

merely the least homomorphism from a weakly initial algebra1. The category of CP-

POs does have true unfolds, so in this case there is no need for any side conditions.
1By weakly initial, we mean that there is a (not necessarily unique) homomorphism from it to any

other algebra.
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Unfortunately, going further than this presents a number of obstacles. Firstly, a

unified theory would have to explain why there is a strictness side condition in the

caseof least fixed-points, butnot forunfolds. Secondly, the fact that there is anequiv-

alent formulationof (C’) herebutnot in theprevious theory suggests that the theories

are in some way unequal, which is something we would have to address. Finally, we

noted above that condition (2) of the fix theory seems to serve the same purpose of

condition (3) here, suggesting that conditions (2) and (3) have swapped roles. How-

ever, condition (3) hasno β condition. This suggests that our theories so far lack some

symmetry that will be needed if we are to truly unify them. In fact this is exactly the

case, as the next chapter will show.

5.9 Examples

Before wemove on to the next chapter, however, we will demonstrate the use of the

worker/wrapper transformation with some worked examples. Firstly, we look at the

problem of tabulating the results of a function. Secondly, we look at the problem of

cycling a list. In both of these cases the examples take place in a total setting, namely

the category Set of sets and total functions.

5.9.1 Tabulating a Function

The function tabulate takes a function on the natural numbers and produces the infi-

nite stream of its results:

tabulate f = [ f 0, f 1, f 2, f 3, ...

A fairly straightforward definition of this is as follows:

tabulate :: (Nat→ a)→ Stream a

tabulate f = f 0 : tabulate (f ◦ (+1))
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Unfortunately, thisdefinition repeats agreatdeal ofwork, as each result of theoutput

stream is the result of evaluating a term of the form (f ◦ (+1) ◦ (+1) ◦ ... ◦ (+1)) 0.

Essentially, this definition obscures the opportunity to reuse work in calculating the

input of f . Noting that Stream a is the final coalgebra of the functor F X = a×X, we

can rewrite tabulate as an unfold:

tabulate = unfold h t

where h f = f 0

t f = f ◦ (+1)

To improve this, we want to use the worker/wrapper transformation to factorise the

repeatedcompositionof f with (+1). Wecando thisbykeeping themost recent input

value to f alongside it, changing our original typeNat→ a to the tuple type (Nat→

a, Nat). We convert between these types with the following abs and rep functions.

rep :: (Nat→ a)→ (Nat→ a, Nat)

rep f = (f , 0)

abs :: (Nat→ a, Nat)→ (Nat→ a)

abs (f , n) = f ◦ (+n)

Assumption (A) can be proven easily:

abs (rep f )

= { definition of rep }

abs (f , 0)

= { definition of abs }

f ◦ (+0)

= { (+0) = id }

f

Nowwe choose a condition to use as the specification for our transformed program.

In this instance we use condition (2). We can specialise this condition as follows:
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F abs ◦ g = f ◦ abs

⇔ { let f = 〈h, t〉, g = 〈h′, t′〉 }

F abs ◦ 〈h′, t′〉 = 〈h, t〉 ◦ abs

⇔ { definition of F, products }

〈h′, abs ◦ t′〉 = 〈h ◦ abs, t ◦ abs〉

⇔ { separating components }

h′ = h ◦ abs ∧ abs ◦ t′ = t ◦ abs

Therefore, if we can find h′ and t′ that match this specification, then we will be able

to use unfold h′ t′ ◦ rep as our factorised version of tabulate. Starting with the le�

equation, we calculate the following definition of h′:

h′ (f , n) = (h ◦ abs) (f , n) = h (f ◦ (+n)) = f (0 + n) = f n

The right equation is slightly more involved. We start with the right hand side:

(t ◦ abs) (f , n)

= { definition of abs }

t (f ◦ (+n))

= { definition of t }

(f ◦ (+n)) ◦ (+1)

= { associativity of function composition }

f ◦ ((+n) ◦ (+1))

= { arithmetic }

f ◦ (+(n + 1))

= { definition of abs }

abs (f , n + 1)

= { letting t′ (f , n) = (f , n + 1) }

(abs ◦ t′) (f , n)

Therefore, we have that tabulate = unfold h′ t′ ◦ rep. Writing this out in full, we get:
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tabulate f = work (f , 0)

where work (f , n) = f n : work (f , n + 1)

In this version, repeatedwork is avoidedby keeping the input to f alongside the func-

tion itself, andmodifying this rather than the function. This saves an amount of time

linear in the number of elements of the output stream that is requested.

5.9.2 Cycling a List

The function cycle takes a non-empty finite list and produces the stream consisting

of repetitions of that list. For example:

cycle [1, 2, 3 ] = [1, 2, 3, 1, 2, 3, 1, 2, 3, ...

One possible definition for cycle is as follows, in which we write [a ]+ for the type of

non-empty lists of type a:

cycle :: [a ]+ → Stream a

cycle (x : xs) = x : cycle (xs ++ [x ])

However, this definition is ine�icient, as the append operator++ takes linear time in

the length of the input list. We can rewrite cycle as the unfold:

cycle = unfold h t

where h xs = head xs

t xs = tail xs ++ [head xs ]

The idea we shall apply to improve the performance of cycle is to combine several

++ operations into one, thus reducing the average cost. To achieve this, we create a

new representationwhere the original list of type [a ]+ is augmentedwith a (possibly

empty) list of elements that have been added to the end. We keep this second list in

reverse order so that appending a single element is a constant-time operation. The

rep and abs functions are as follows:
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rep :: [a ]+ → ([a ]+, [a ])

rep xs = (xs, [ ])

abs :: ([a ]+, [a ])→ [a ]+

abs (xs, ys) = xs ++ reverse ys

Given these definitions it is easy to verify assumption (A):

abs (rep xs)

= { definition of rep }

abs (xs, [ ])

= { definition of abs }

xs ++ reverse [ ]

= { definition of reverse }

xs ++ [ ]

= { [ ] is unit of++ }

xs

For this examplewe take condition (2), i.e.F abs ◦ g = f ◦ abs, as our specification

of g, once again specialising to the two conditions h ◦ abs = h′ and t ◦ abs = abs ◦ t′.

From this we can calculate h′ and t′ separately. First we calculate h′:

h′ (xs, ys)

= { specification }

h (abs (xs, ys))

= { definition of abs }

h (xs ++ reverse ys))

= { definition of h }

head (xs ++ reverse ys)

= { xs is nonempty }

head xs
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Nowwe calculate a definition for t′. Starting from the specification abs ◦ t′ = t ◦ abs,

we calculate as follows:

t (abs (xs, ys))

= { definition of abs }

t (xs ++ reverse ys))

= { case analysis }

case xs of

[x ] → t ([x ] ++ reverse ys)

(x : xs′)→ t ((x : xs′) ++ reverse ys)

= { definition of++ }

case xs of

[x ] → t (x : ([ ] ++ reverse ys))

(x : xs′)→ t (x : (xs′ ++ reverse ys))

= { definition of t }

case xs of

[x ] → [ ] ++ reverse ys ++ [x ]

(x : xs′)→ xs′ ++ reverse ys ++ [x ]

= { definition of reverse,++ }

case xs of

[x ] → reverse (x : ys)

(x : xs′)→ xs′ ++ reverse (x : ys)

= { definition of abs }

case xs of

[x ] → abs (reverse (x : ys), [ ])

(x : xs′)→ abs (xs′, x : ys)

= { pulling abs out of cases }

abs (case xs of

[x ] → (reverse (x : ys), [ ])
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(x : xs′)→ (xs′, x : ys)

)

Hence, t′ can be defined as follows:

t′ ([x ], ys) = (reverse (x : ys), [ ])

t′ (x : xs, ys) = (xs, x : ys)

In conclusion, by applying our worker-wrapper theorem, we have calculated a

factorised version of cycle

cycle = unfold h′ t′ ◦ rep

where h′ (xs, ys) = head xs

t′ ([x ], ys) = (reverse (x : ys), [ ])

t′ (x : xs, ys) = (xs, x : ys)

which can be written directly as

cycle = cycle′ ◦ rep

where

cycle′ ([x ], ys) = x : cycle′ (reverse (x : ys), [ ])

cycle′ (x : xs, ys) = x : cycle′ (xs, x : ys)

This version only performs a reverse operation once for every cycle of the input list,

so the average cost to produce a single element is now constant. We believe that this

kind of optimisation — in which costly operations are delayed and combined into a

single operation —will be a common use of our theory.

5.10 Conclusion

This chapter introduced the categorical notion of coalgebra, and showed that final

coalgebras could be used to give a semantics to potentially infinite data structures.
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This comes with a suitable categorical definition of unfolds, a recursion scheme that

builds up largedata structuresbyusing recursive calls to compute subterms. We then

presented aworker/wrapper transformation for unfolds completewith a correctness

theorem, and demonstrated its similarity to the previous worker/wrapper transfor-

mation for least fixed points.

So far we have two similar worker/wrapper theories, but no satisfactory way to

unify them. The problem of unification will be the focus of the next chapter.
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Chapter 6

Generalising

“TheEnglishhaveall thematerial requisites for the

revolution. What they lack is the spirit of general-

ization and revolutionary ardour.”

— Karl Marx, Importance andWeakness of English

Labour

6.1 Introduction

Thus far, all instances of theworker/wrapper transformation have centered on an ap-

plication of a rolling or fusion rule, properties that allow functions to be moved into

and out of a recursive context. Variants of these rules exist for a wide class of recur-

sion operators, so this seems a natural starting point for developing a generic theory.

As it turns out, the appropriate generalisations of rolling and fusion rules are the cat-

egorical notions of weak and strong dinaturality.

Dinaturality arises in category theory as a generalisation of the notion of natural

transformations, families ofmorphismswith a commutativity property. For example,

the natural transformation reverse : [A ] → [A ] that reverses the order of a list satis-

fies the property reverse ◦map f = map f ◦ reverse, wheremap applies a function to

each element of a list. In a simple categorical semantics where objects correspond

to types and arrows correspond to functions, natural transformations correspond to
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the familiar notion of parametric polymorphism, and their commutativity properties

arise as free theorems (Wadler, 1989) for the types of polymorphic functions.

However, as amodel of polymorphism, natural transformationshavea significant

limitation: their source and target must be functors. This means that polymorphic

functionswhere the typevariableappearsnegatively in either the sourceor target, for

example fix : (A→ A) → A, cannot be defined as natural transformations. For this

reason, the concept of naturality is sometimes generalised to dinaturality and strong

dinaturality. To put it in categorical terms, dinatural transformations generalise nat-

ural transformations to the case where the source and target of the transformation

may havemixed variance.

It hasbeenwidelyobserved (Bainbridge, Freyd, Scedrov, andScott, 1990;Uustalu,

2010) that there is a relationship between (strong) dinaturality and parametricity, the

property fromwhich free theorems follow, although the exact details of this relation-

shipareunclear. It is knownthatparametricity entailsdinaturality (PlotkinandAbadi,

1993) and for certain types even strong dinaturality (Ghani, Uustalu, and Vene, 2004).

These observations suggest the possibility of a categorical notion of parametricity

that sits between the two, but as of yet there is no such property that we are aware

of. The situation is not helped by the wide variety of models of parametricity that

have been developed. For the purposes of this chapter, we assume that all recursion

operators of interest are strongly dinatural; in practice, we are not aware of any such

operators in common use that do not satisfy this assumption.

This chapter develops a generic version of the worker/wrapper transformation,

applicable to a wide class of recursion operators, with a correctness theorem based

around the categorical notion of strong dinaturality. In this way we establish strong

dinaturality as the essence of the worker/wrapper transformation, and obtain a gen-

eral theory that is applicable to a wide class of recursion operators. Not only do all

existing worker/wrapper correctness theories arise as instances of the general the-

ory, but the theory can also be used to derive new instances, including a theory for
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monadic fixed points and an interesting degenerate case for arrow fixed points.

6.2 The Essence of Worker/Wrapper

Recall theworker/wrapper theory for least fixed points. In this case, wehave the orig-

inal programwritten as a fixedpoint of a function f : A→ A, andwish to derive a new

function g : B→ B, such that the following equation holds:

fix f = abs (fix g)

Here, fix f is the original program of typeA, while abs is the wrapper and fix g is the

worker of typeB. The original formulation of worker/wrapper (Gill andHutton, 2009)

used the following proof of correctness:

fix f

= { abs ◦ rep = id }

fix (abs ◦ rep ◦ f )

= { rolling rule }

abs (fix (rep ◦ f ◦ abs)

= { define g = rep ◦ f ◦ abs }

abs (fix g)

This proof gives us a direct definition for the new function g, to which standard tech-

niques can then be used to ‘fuse together’ the functions in the definition for g to give

a more e�icient implementation for the worker program fix g.

The worker/wrapper theory for folds (Hutton et al., 2010) has a proof of correct-

ness based on fusion. Adapting this proof to the fix case, we obtain:

fix f = abs (fix g)

⇔ { abs ◦ rep = id }

abs (rep (fix f )) = abs (fix g)
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⇐ { unapplying abs }

rep (fix f ) = fix g

⇐ { fusion, assuming rep is strict }

rep ◦ f = g ◦ rep

This proof gives a specification for the new function g in terms of the given functions

rep and f , fromwhich the aim is then to calculate an implementation. It also appears

as a subproof of the complete proof for the worker/wrapper transformation for fixed

points that is presented in Sculthorpe and Hutton (2014).

Both of the above proofs essentially have only one non-trivial step. In the first

proof, this is the use of the rolling rule. In the second proof, it is the use of fusion.

6.2.1 Generalising

There are several reasons why we would like to generalise the least fixed point pre-

sentation to a wider range of settings. Firstly, the full power of the fixed-point op-

erator fix is not always available to the programmer. This is becoming increasingly

the case as the popularity of dependently typed languages such as Agda and Coq in-

creases, as these languages tend to have totality requirements that preclude the use

of general recursion. Secondly, the general recursion that is provided by the use of

fixed-points is unstructured, and other recursion operators such as folds and unfolds

can be significantly easier to reason with in practice. Finally, the least fixed points

presentation is tied to the framework of complete pointed partial orders, preventing

us from applying the theory to languageswhere this semanticmodel does not apply.

The uniform presentation of two previously unrelated worker/wrapper theories

due to Sculthorpe and Hutton (2014) is promising but also somewhat unsatisfactory,

as it does little to explain why such a uniform presentation is possible, only demon-

strating that it is. Nevertheless, this work provided a vital stepping-stone toward the

general theory we present in this chapter.
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Earlier in this section,wenoted that bothproofs center onanapplicationof either

the rolling rule or fusion. For this reason, we believe it is appropriate to view these

rules as the “essence” of theworker/wrapper transformation. Thus, to generalise the

worker/wrapper transformation, the first step is to generalise these rules. In this case,

the appropriate generalisation of the rolling rule is the category-theoretic notion of

dinaturality (Mulry, 1990). The fusion rule can be similarly generalised to the notion

of strong dinaturality (Uustalu, 2010).

6.3 Dinaturality and Strong Dinaturality

Now we shall explain the concepts of dinaturality and strong dinaturality, including

their relationship with the rolling rule and fusion.

Firstly, we recall the notion of a natural transformation. For two functors F,G :

C → D, a family of arrows αA : F A → G A is a natural transformation if for any

f : A→ B, the following diagram commutes:

F A
αA //

F f

��

G A

G f

��
F B

αB // G B

This diagram is a coherenceproperty, essentially requiring that eachof the αA, αB “do

the same thing”, independent of the choice of the particular A. In this way, natural

transformations provide a categorical notion of parametric polymorphism.

However, somepolymorphic operators, such as fix : (A→ A)→ A cannot be ex-

pressed as natural transformations. This is because natural transformations require

both their source and target to be functors, whereas in the case of fix the source type

A → A is not functorial because A appears in a “negative” position. It is natural to

askwhether there is a categorical notion that captures these operators aswell, where

the source and target may not be functors. The notion of dinaturality was developed
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for precisely such cases.

For two functorsF,G : Cop×C → D, a family of arrows αA : F (A, A)→ G (A, A)

is a dinatural transformation if for any h : A→ B, the following diagram commutes:

F (A, A)
αA // G (A, A)

G (idA,h)
##

F (B, A)

F (h,idA) ;;

F (idB,h) ##

G (A, B)

F (B, B) αB
// G (B, B)

G (h,idB)

;;

For fix, this property exactly captures the rolling rule. To see this, take C = Cpo

(the category of complete pointed partial orders and continuous functions) andD =

Set (the category of sets and total functions). We let F (X, Y) = Hom (X, Y) and

G (X, Y) = U Y where U is the forgetful functor that takes a CPPO and returns its

underlying set, and assumea (continuous) function f ∈ F (B, A) = B→ A. Then fix

will be a dinatural transformation that takes an element of F (X, Y) and returns one

of G (X, Y), i.e. a function fromHom (X, Y) to U Y. (Actually, fix is a transformation

inCpo rather than in Set, but we can forget this extra structure for our purposes.)

Chasing the function f around the above diagram, we obtain the rolling rule:

f ◦ h � fix
// fix (f ◦ h)

� U h
##

f
7

Hom (h,idA) ;;

�

Hom (idB,h) ##

h (fix (f ◦ h)) = fix (h ◦ f )

h ◦ f �
fix

// fix (h ◦ f )
7 id

;;

Note that G (h, idB) expands simply to idB because G ignores its contravariant ar-

gument. We can use this diagram-chasing technique to obtain rolling rules for other

recursion operators such as fold andunfold. Thuswe see that dinaturality can be con-

sidered a generalisation of the rolling rule.

For some purposes, however, the notion of dinaturality is too weak. For exam-
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ple, the composition of two dinatural transformations is not necessarily dinatural.

For this reason, the stronger property of strong dinaturality is sometimes used. This

property is captured by the following diagram, which should be read as “if the dia-

mond on the le� commutes, then the outer hexagon commutes”.

F (A, A)
αA //

F (idA,h)
##

G (A, A)
G (idA,h)
##

X

p ;;

q ##

F (A, B) ⇒ G (A, B)

F (B, B) αB
//

F (h,idB)

;;

G (B, B)
G (h,idB)

;;

If we set X = F (B, A), p = F (h, idA) and q = F (idB, h), then the diamond on

the le� commutes by functoriality and so the diagramas awhole reduces to ordinary

dinaturality. Thus we confirm that strong dinaturality is indeed a stronger property.

Applying strong dinaturality to fix in a similar manner to previously, we see that

it corresponds to a fusion rule. Choosing some x : X and letting p x = f : A→ A and

q x = g : B→ B, we chase values around the diagram as before:

f � fix
//

�
Hom (idA,h)
##

fix f
� U h

##
x

7

p
;;

�

q ##

h ◦ f = g ◦ h ⇒ h (fix f ) = fix g

g �
fix

//
7 Hom (h,idB)

;;

fix g
7 id

;;

Thus, strong dinaturality in this case states that h ◦ f = g ◦ h implies h (fix f ) = fix g.

The fusion rule is precisely this property, with an extra strictness condition on h. This

strictness condition can be recovered by treating F and G as functors from the strict

subcategory Cpo⊥ in which all arrows are strict. The functor F (X, Y) is still defined

as the full function space Cpo (X, Y), including non-strict arrows. The mixing of

strict and non-strict arrows is a little awkward, but we must do this as fix is useless

when limited to strict arrows, as the least fixed point of any strict arrow is⊥.
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Thus we see that while dinaturality is a generalisation of the rolling rule, strong

dinaturality is a generalisation of fusion. Because the rolling and fusion rules are the

essence of the worker/wrapper transformation, it makes sense to use (strong) dinat-

urality as the basis for developing a generalised theory. We develop such a theory in

the following section.

6.4 Worker/Wrapper For Strong Dinaturals

Suppose we have chosen a particular programming language to work with, and let

C be the category where the objects are types in that language and the arrows are

functions from one type to another. Then a polymorphic type ∀x . T where x ap-

pears in both positive and negative positions in T can be represented by a functor

F : Cop×C → Set, whereF (A, A) is the set of terms in the languageof typeT[A/x ].

In turn, a recursion operator that takes terms of type F (A, A) and produces terms of

type G (A, A) can be represented by a strong dinatural transformation from F to G.

It is known that for certain types, strong dinaturality will follow from a free theorem

(Ghani et al., 2004). For example, the free theorem for the typing fix : (A→ A)→ A

is fusion, which we showed in the previous section to be equivalent to strong dinat-

urality.

Now we present the central result of this chapter, a general categorical worker/

wrapper theorem, inFigure6.1. Thedata in the theoremcanbe interpretedas follows:

• The category C is a programming language.

• The objectsA and B are types in the language.

• The functors F,G are type expressions with a free variable, possibly with expo-

nentials and of mixed variance.

• The arrows abs : B→ A and rep : A→ B are functions in the language.
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Given:

• A category C containing objectsA and B

• Functors F,G : Cop × C → Set

• Arrows abs : B→ A and rep : A→ B in C

• The assumption abs ◦ rep = idA

• Elements f ∈ F (A, A) and g ∈ F (B, B)

• A strong dinatural transformation
α : F→ G

If any one of the following conditions holds:

(1) g = F (abs, rep) f
(1β) αB g = αB (F (abs, rep) f )
(1γ) G (rep, abs) (αB g) = G (rep, abs) (αB (F (abs, rep) f ))

(2) F (rep, id) g = F (id, rep) f
(2β) G (rep, id) (αB g) = G (id, rep) (αA f )
(2γ) G (rep, abs) (αB g) = G (id, abs ◦ rep) (αA f )

(3) F (id, abs) g = F (abs, id) f
(3β) G (id, abs) (αB g) = G (abs, id) (αA f )
(3γ) G (rep, abs) (αB g) = G (abs ◦ rep, id) (αA f )

then we have the factorisation:

αA f = G (rep, abs) (αB g)

The conditions of the
theorem are related as
shown in the following
diagram:

(1)
rz $,

��
(2)

��

(3)

��
(1β)

rz $,

��

(2β)

��

(3β)

��
(2γ) ks +3 (1γ) (3γ)+3ks

Figure 6.1: The Worker/Wrapper Theorem for Strong Dinatural Transformations
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• The elements f ∈ F (A, A) and g ∈ F (B, B) are terms in the language.

• The strong dinatural α is a recursion operator.

Under these interpretations, we can see that the theoremallows us to factorise a pro-

gramwritten as αA f into a worker program αB g and wrapper function G (rep, abs).

The wealth of conditions in Figure 6.1 requires some explanation. Up until this

point, worker/wrapper theorems in the literature had varying numbers of possible

correctness conditions, ranging from just one in the original theory (Gill and Hutton,

2009) to a total of five in Sculthorpe and Hutton (2014) and previous chapters of this

thesis. This variation is a result of thewayprevious theorieswere first developed sep-

aratelyand thenunified, andall previousconditionsare included in somegeneralised

form in our presentation. The nine conditions given herewere chosen to best expose

the symmetries in the theory. In practical applications, one selects the condition that

results in the simplest calculation for the worker program.

The conditions are related in various ways. Firstly, the (2) and (3) groups of con-

ditions are categorically dual. This can be seen by exchanging C for the opposite cat-

egory Cop, and then swapping the roles of abs and rep. Note that the dinatural trans-

formation is still in the same direction.

Secondly, each numeric condition (n) implies the corresponding condition (nβ),

which in turn implies (nγ). Thus the γ conditions are the weakest conditions for the

theorem. These relationships can be proved as follows:

• (1) is weakened to (1β) by applying αB to each side.

• (2) implies (2β) and (3) implies (3β) by strong dinaturality. Note that because

the target of the functors is Set, strong dinaturality can bewritten pointwise as

F (h, id) f = F (id, h) g

⇒

G (h, id) (αA f ) = G (id, h) (αB h)
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• (1β), (2β) and (3β) can beweakened to their corresponding γ conditions by ap-

plying G (rep, abs), G (id, abs) and G (rep, id) to each side respectively.

Thirdly, using the assumption that abs ◦ rep = id, condition (1) implies conditions

(2) and (3). The same can be said of the corresponding β conditions. In the first case

this can be shown by simply applying F (rep, id) or F (id, abs) to both sides of condi-

tion (1). In the second case, one applies either G (rep, id) or G (id, abs) to both sides

of (1β), and the result then follows from applying dinaturality.

Finally, using abs ◦ rep = id all three γ conditions are equivalent. In fact, the right

hand sides are all equal. The proof that (1γ) is equivalent to (2γ) is as follows:

G (rep, abs) (αB (F (abs, rep) f ))

= { functors }

G (id, abs) (G (rep, id) (αB (F (id, rep) (F (abs, id) f ))))

= { dinaturality }

G (id, abs) (G (id, rep) (αA (F (rep, id) (F (abs, id) f ))))

= { functors }

G (id, abs ◦ rep) (αA (F (abs ◦ rep, id) f ))

= { abs ◦ rep = id implies F (abs ◦ rep, id) = id }

G (id, abs ◦ rep) (αA f )

The proof for (1γ) and (3γ) is dual. Thus we see that all three are equivalent.

Thebasic relationships between the conditions are summarised in the right-hand

side of Figure 6.1. Given these relationships, it su�ices to prove the theorem for one

of the γ conditions. For example, it can be proved for (2γ) simply by applying the

assumption abs ◦ rep = id:

G (rep, abs) (αB g)

= { (2γ) }

G (id, abs ◦ rep) (αA f )

= { abs ◦ rep = id }
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G (id, id) (αA f )

= { functors }

αA f

We include these trivial conditions as it allows us to break up the proof as a whole

into individually trivial steps.

Conditions (1), (2) and (3) are precisely the three correctness conditions given

in the original worker/wrapper theory for fold (Hutton et al., 2010), while the corre-

sponding β and γ conditions are weakenings of those conditions. The β conditions

are simply the weakenings obtained by adding a recursive context, while the γ con-

ditions are weakened further so that they are all equivalent, much like the twoweak-

ened conditions of Sculthorpe and Hutton (2014). However, those two conditions

correspond here to the conditions (1β) and (2β), which in this generalised setting are

not in general equivalent.

It is also worth noting that only conditions (2) and (3) rely on strong dinaturality,

which is necessary for them to imply the β conditions. With all other conditions, the

theorem follows from the weaker dinaturality property.

In earlier work, weaker versions of the assumption abs ◦ rep = id were also con-

sidered (Gill andHutton, 2009; Sculthorpe andHutton, 2014). For example, the proof

of correctness for the original presentation of the worker/wrapper transformation in

termsof least fixedpoints still holds if theassumption isweakened toabs◦ rep◦ f = f ,

or further to fix (abs ◦ rep ◦ f ) = fix f . The lack of weaker alternative assumptions

means that our new theory is not a full generalisation of the earlier work. While this

is not a significant issue, it is a little unsatisfactory. In our theorem, the assumption

abs ◦ rep = id is used four times. For each of those four uses, a di�erent weakening

can bemade. The four weakened versions are as follows:

(C1) αA (F (abs ◦ rep, id) f ) = αA f

(C2) αA (F (id, abs ◦ rep) f ) = αA f
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(C3) G (id, abs ◦ rep) (αA f ) = αA f

(C4) G (abs ◦ rep, id) (αA f ) = αA f

Wecall theseassumptions (Cn), as theyare related to the (C)assumptions fromthe lit-

erature. The first two assumptions, (C1) and (C2), are used to prove that (1γ) is equiv-

alent to (2γ) and (3γ) respectively, while (C3) and (C4) are used to prove the result

from those two same conditions. As would be expected from this, (C1) is dual to (C2),

and (C3) is dual to (C4).

There is also some duality between (C1) and (C4), and between (C2) and (C3).

Strengthening the assumptions by removing the application to f gives us

(C1) αA ◦ F (abs ◦ rep, id) = αA

(C2) αA ◦ F (id, abs ◦ rep) = αA

(C3) G (id, abs ◦ rep) ◦ αA = αA

(C4) G (abs ◦ rep, id) ◦ αA = αA

in which case the duality holds exactly.

Despite these relationships, we have yet to devise a single equality weaker than

abs ◦ rep = id that implies the correctness of the generalised worker/wrapper the-

orem. We suspect that doing so would require additional assumptions to be made

about the strong dinatural transformation α.

6.5 Examples

In this section, we demonstrate the generality of our new theory by specialising to

four particular dinatural transformations. The first two such specialisations give rise

to the worker/wrapper theories for fix and unfold as presented in previous chapters.

The last two specialisations are new.
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6.5.1 Least Fixed Points

Firstly, we shall consider the least fixed point operator, fix : (A → A) → A. This

can be considered a dinatural transformation of type F→ G if we take the following

definitions for the underlying functors F and G:

F (A, B) = Cpo (A, B)

G (A, B) = U B

Where U is the forgetful functor that takes a CPPO and returns its underlying set.

Recalling the discussion from Section 6.3, we note that the functors must be typed

F,G : Cpoop
⊥ × Cpo⊥ → Set in order to obtain the correct version of the strong di-

naturality property.

By instantiating the theorem from Figure 6.1 for the fix operator, we obtain the

following set of preconditions:

(1) g = rep ◦ f ◦ abs

(2) g ◦ rep = rep ◦ f

(3) abs ◦ g = f ◦ abs

(1β) fix g = fix (rep ◦ f ◦ abs)

(2β) fix g = rep (fix f )

(3β) abs (fix g) = fix f

(1γ) abs (fix g) = abs (fix (rep ◦ f ◦ abs))

(2γ) abs (fix g) = abs (rep (fix f ))

(3γ) abs (fix g) = fix f

Note that the functions abs and repmust be strict, because they are arrows inCpo⊥.

However, the hom-sets Cpo (A, A) and Cpo (B, B) are the full function spaces, so

their respective elements f and g need not be strict. By instantiating the conclusion

of the theorem we obtain the worker/wrapper factorisation fix f = abs (fix g) from

Gill and Hutton (2009); Sculthorpe and Hutton (2014).
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As one would expect from the previous section, the first five of the preconditions

correspond to the five conditions given for the least fixed point theory presented ear-

lier int this thesis. However that theory had only one strictness requirement: for con-

dition (2), rep must be strict to imply the conclusion. Here, we require both abs and

rep to be strict for all conditions.

We can eliminatemost of these strictness conditions by noting two things. Firstly,

we note that the strictness of abs is guaranteed by the assumption abs ◦ rep = id:

abs ⊥

� { monotonicity }

abs (rep ⊥)

= { abs ◦ rep = id }

⊥

Secondly, by examining theproofwe can see that the full power of strongdinaturality

is only needed for conditions (2) and (3), and in all other cases dinaturality su�ices.

As there are no strictness side conditions for the rolling rule, we can also elide strict-

ness conditions for the normal dinaturality property. As condition (3) relies on strong

dinaturality being appliedwith abs, for whichwe already have strictness guaranteed,

the only strictness condition remaining is the requirement that rep be strict in (2) as

in the earlier paper.

6.5.2 Unfolds

Next, we consider the unfold operator. For a functor Hwith a final coalgebra νH, the

unfold operator for the typeA takes an arrow of typeA → H A and extends it to an

arrow of typeA→ νH. That is, we have the following typing:

unfold : (A→ H A)→ A→ νH

Aswe stated in the previous chapter, one of the key properties of the unfold operator

is the fusion law. Given arrows f : A → H A, g : B → H B, h : A → B, fusion is
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captured by the following implication:

unfold f ◦ h = unfold g ⇐ f ◦ h = H h ◦ g

This can be recast into the language of strong dinatural transformations in a fairly

straightforwardmanner. In particular, if we define the functors F,G : Cop × C → Set

by

F (A, B) = C (A,H B)

G (A, B) = C (A, νH)

then the operator unfold is a strong dinatural transformation from F toG. The strong

dinaturality property correspondsprecisely to the fusion law for unfolds givenabove.

Instantiating theworker/wrapper theorem fromFigure6.1 in this context gives the

following set of preconditions:

(1) g = H rep ◦ f ◦ abs

(2) g ◦ rep = H rep ◦ f

(3) H abs ◦ g = f ◦ abs

(1β) unfold g = unfold (H rep ◦ f ◦ abs)

(2β) unfold g ◦ rep = unfold f

(3β) unfold g = unfold f ◦ abs

(1γ) unfold g ◦ rep = unfold (H rep ◦ f ◦ abs) ◦ rep

(2γ) unfold g ◦ rep = unfold f

(3γ) unfold g ◦ rep = unfold f ◦ abs ◦ rep

Instantiating the conclusion gives us unfold f = unfold g ◦ rep. In this case, five of

the conditions (namely (1),(2),(3),(1β) and (3β)) are identical to conditions from the

theorem in the previous chapter. The roles of the (2) and (3) conditions have been

swapped, explaining the exchanged roles of these conditions that we noted before.

We note that it is unnecessary to assume anything about the object νH in this

presentation: strong dinaturality is su�icient to get all the necessary properties of
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the unfold operator. Thus, we have generalised the unfold theory to a more general

theory that can apply to “unfold-like" operators, i.e. dinatural operators with type

∀ A, B . (A → H B) → (A → X), where X does not vary in A or B. The resulting

theory could be applied in settings where final coalgebras do not exist.

6.5.3 Monadic Fixed Points

Monadsareamathematical construct commonlyused inprogramming language the-

ory to deal with e�ects such as state and exceptions (Wadler, 1992). Languages like

Haskell use monads to embed e�ectful computations into a pure language. In this

context, a value of typeM A for somemonadM is an e�ectful computation that pro-

duces a result of typeA, where the nature of the underlying e�ect is captured by the

monadM.

Formally, a monad is a type constructorM equipped with two operations of the

following types:

return : A→ M A

bind : M A→ (A→ M B)→ M B

The bindoperation is o�enwritten infix as>>=. Themonadoperationsmust obey the

following threemonad laws:

xm >>= return = xm

return x >>= f = f x

(xm >>= f )>>= g = xm >>= (λx→ f x >>= g)

Given these operations and properties, the type constructor M can be made into a

functor by the following definition:

(M f ) xm = xm >>= (return ◦ f )

It is o�en useful to be able to perform recursive computations within a monad.

For many e�ects, the appropriate interpretation of recursion is unclear, as there are
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sometimes multiple plausible implementations with significantly di�erent seman-

tics. Furthermore, while one could define a uniformmonadic recursion operator us-

ing fix, for most monads this results in nontermination. For these reasons, some

monads come equipped with a monadic fix operation mfix : (A → M A) → M A.

Monadic fix operations are required to follow a number of laws, but here we con-

cern ourselves only with one such law, which follows from parametricity (Erkök and

Launchbury, 2000). For any strict function s : A → B and functions f : A → M A,

g : B→ M B, we have:

M s (mfix f ) = mfix g ⇐ M s ◦ f = g ◦ s

This property is similar to the fusion property of the ordinary fix operator. In fact, if

we define functors F (A, B) = C (A,M B) and G (A, B) = M B, we can see that

this property precisely states that mfix is a strong dinatural transformation from F

to G. Using this fact, we can instantiate our worker/wrapper theorem for the case of

monadic fixed points.

The preconditions are listed below. Note that once again we have a strictness

side condition on rep, though in this case we cannot eliminate it from conditions as

we could before as we lack the necessary non-strict rolling rule property. However,

once again we can ignore strictness conditions on abs.

(1) g = M rep ◦ f ◦ abs

(2) g ◦ rep = M rep ◦ f

(3) M abs ◦ g = f ◦ abs

(1β) mfix g = mfix (M rep ◦ f ◦ abs)

(2β) mfix g = M rep (mfix f )

(3β) M abs (mfix g) = mfix f

(1γ) M abs (mfix g) = M abs (mfix (rep ◦ f ◦ abs))

(2γ) M abs (mfix g) = M (abs ◦ rep) (mfix f )

(3γ) M abs (mfix g) = mfix f
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Instantiating the conclusion gives the factorisation mfix f = M abs (mfix g). This

theorem is more-or-less what one might expect given the similarity between mfix

and the normal fix operation, but monadic recursion has not previously been stud-

ied in the context of the worker/wrapper transformation and the theorem is there-

fore new. It is our general theory of strong dinatural transformations that allows us

to quickly and easily generate a theorem that can now be used to apply the worker/

wrapper transformation to programs written using monadic recursion. Note that we

used none of the monad operations and rules, relying entirely on the strong dinatu-

rality property ofmfix, so our theory requires only thatM be a functor to ensure that

F and G are truly functorial in bothA and B.

6.5.4 Arrow Loops

Unfortunately, monads cannot capture all notions of e�ectful computation we may

wish to use. For this reason, wemay sometimes choose to use amore general frame-

work such as arrows (Hughes, 2000). An arrow is a binary type constructor Arr to-

gether with three operations of the following types:

arr : (A→ B)→ Arr A B

seq : Arr A B→ Arr B C→ Arr A C

second : Arr A B→ Arr (C×A) (C× B)

The seqoperator is typicallywritten infix as≫. Arrowsare required toobeyanumber

of laws, which we shall not list here. However, we do note the associativity law:

(f ≫ g) ≫ h = f ≫ (g ≫ h)

In general, arrows are a particular form of category, where the objects are the same

as the underlying category of the programming language, and Arr A B represents

the set of arrows fromA toB. The operation arr is thus a functor from the underlying

category of the language to the category represented by the arrow structure.
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Thus far, arrows have no notion of recursion. However, some arrows provide an

extra loop combinator (Paterson, 2001):

loop : Arr (A× C) (B× C)→ Arr A B

Intuitively, loop connects one of the outputs of an arrow back into one of its inputs,

as in the following picture:

A //

f

// B
⇒

A //

loop f

// B

C // // C //

Once again, loops are expected to satisfy a number of laws that we shall not list here.

The arrow and loop laws imply that if f ≫ second (arr h) = second (arr h) ≫ g

then loop f = loop g, which in turn implies that loop is a dinatural transformation

F→ G between the following functors:

F (X, Y) = Arr (A×X) (B× Y)

G (X, Y) = Arr A B

Therefore, by instantiating ourworker/wrapper theoremwe can conclude that, given

abs and rep such that abs ◦ rep = id and one of the following preconditions:

(1) g = second (arr abs) ≫ f ≫ second (arr rep)

(2) g ≫ second (arr rep) = second (arr abs) ≫ f

(3) second (arr abs) ≫ g = f ≫ second (arr rep)

(1β) loop g = loop (second (arr abs) ≫ f ≫ second (arr rep))

(1γ) loop g = loop (second (arr abs) ≫ f ≫ second (arr rep))

thenwe can conclude loop f = loop g. (The remaining conditions (2β), (2γ), (3β) and

(3γ) all amount to loop f = loop g, so they are not particularly useful.)

Wehaveagain instantiatedourgeneral theory toproduceanovelworker/wrapper

theory with very little e�ort, allowing the worker/wrapper transformation to be ap-
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plied to programs written using the arrow loop combinator. Just as was the case for

monadic recursion, our theorem is basedentirely on theproperty of strongdinatural-

ity, and thus does not require any of the arrow laws to hold beyond the assumption

that the loop operator is strongly dinatural. Note that in this casewe have a degener-

ate formof the conclusionwhere thewrapper is just the identity, because the functor

G ignores its inputs.

6.6 Conclusion

We began this chapter by observing that the worker/wrapper transformation is typ-

ically centered around an application of either a rolling rule or a fusion rule. From

this simple observation, we have developed a generic worker/wrapper transforma-

tion based on strong dinatural transformations that can be applied to awide range of

recursionoperators. As is fittingof ageneralisation,manyof theproofs in this chapter

follow the same basic structure as the proofs in earlier chapters. These proofs retain

the same simple character as the originals, albeit in a more abstract language.

We demonstrated the broad utility of this new generic theory by instantiating it

to a number of di�erent specific recursion operators. Each instantiation provides the

same variation of preconditions as was found in previous worker/wrapper theories,

and thus retains the same wide applicability.
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Chapter 7

Summary and Evaluation

“Let’s do the time warp again!”

— Chorus of Phantoms, The Rocky Horror Show

In Part I, we presented three theories of the correctness of theworker/wrapper trans-

formation. All three theories have some commonalities, with the structure of the

proofs and theorems following roughly the same basic structure in all three cases.

In two out of the three cases there were three choices available for the relationship

between the functions abs and rep, and in all three there were multiple choices for

the specification to use to derive the newprogram. On the other hand, all three di�er

greatly in which programs and settings they are applicable to.

The first correctness theory was based on general recursion, specifically mod-

elling generally-recursive programs as least fixed points of functions on CPPOs. In

one sense, this is a highly general theory, as any form of recursion can be imple-

mented using general recursion. However, this restricts us to CPPO-based denota-

tional semantics rather than broadermodels. Furthermore, implementing recursion

schemes in thisway introduces a certain amount of overhead into the theory,making

the presentation less clean.

The secondcorrectness theorywasbasedoncategorical unfolds. This gains some

generality over the first theory, as it can be applied to any setting in which unfolds
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exist rather than being restricted to one particular setting. On the other hand, the

less general form of recursion means that the theory is only applicable to programs

written in the form of an unfold, rather than any generally-recursive program as was

the casebefore. This is less of a restriction than itmay initially seem, as a great deal of

programs that build data structures can be expressed as unfolds. However, this still

serves as motivation to develop a theory that is general with regard to both setting

and recursion scheme.

The third correctness theorywas based on strong dinatural transformations. This

is a generalisation of the prior theories, and we showed how it could be instantiated

togivebothexistingandnewworker/wrapper theories. Theprocessof generalisation

gave us important insights, most significantly in demonstrating that fusion and/or

rolling is the core of the worker/wrapper transformation. However, this theory is not

a perfect generalisation for two main reasons. Firstly, it lacks the separate (A), (B)

and (C) assumptions of the prior theories. Part of the problem is that it is unclear

what the appropriate generalisations of (B) and (C) would be, or even if they exist at

all. Finding such generalisations would be a matter for further work. It should be

noted that assumption (A) is by far the most commonly used in practice. Secondly,

the way in which the strictness side conditions were obtained for the fix theory was

rather ad hoc, relying on the observation that the conditions were only present for

strong dinaturality, and not for ordinary dinaturality. Wemay need better categorical

models of strictness in order to rectify this.
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PART III: IMPROVEMENT
Making it better
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Chapter 8

Introduction

“I’ve got to admit, it’s getting better; a little better,

all the time. (It can’t get no worse!)”

— The Beatles, Getting Better

In the second part of this thesis, we addressed the problem of correctness for the

worker/wrapper transformation, proving for various frameworks that the transfor-

mation does not alter the meaning of a program. However, it is not enough to know

that our transformations are correct: we must also know that they improve the pro-

gram in some way, typically in terms of memory or time needed to execute. There

is little point in an “optimisation” that doubles the running time of any program it is

applied to. If we are to justify theworker/wrapper transformation as an optimisation,

wemust be able to make statements about these e�iciency properties.

Typically, such statements are justified by empirical tests, for example bench-

marks (Partain, 1992), and formal proofs of e�iciency properties are rarely provided.

This is in stark contrast to the case of correctness, where formal proofs are o�en used

to the exclusion of any empirical method. Consider the Knuth aphorism: “Beware of

bugs in the above code; I have only proved it correct, not tried it” (Knuth, 1977).

In this thesis we aim to redress the balance by backing up statements about e�i-

ciencywith formal proofs. In this waywe hope not only to justify theworker/wrapper
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transformation itself, but also to promote more formal ways of justifying e�iciency

properties. The bulk of this chapter is given to an overview of various theories and

techniques for reasoning about program e�iciency.

A�er this chapter, themain body of this part of the thesis is divided into two chap-

ters. The first chapter presents proofs of e�iciencyproperties for a general-recursion-

based form of the worker/wrapper transformation, using the operational improve-

ment theory. The second chapter extends the generalised worker/wrapper transfor-

mation of chapter 6 to consider e�iciency properties based on the categorical frame-

work of preorder-enriched categories. A�er this, there is a short concluding chapter.

8.1 Background

For our work on program correctness, we first had to explain what wemeant by cor-

rectness. To do this, we had to review the field of program semantics. Now, beforewe

can work on the problem of program improvement, we must define what we mean

by improvement. In this section, we shall explain the two frameworks used in this

thesis for reasoning about program improvement. The first, improvement theory à

la Sands, has its basis in operational semantics, while the second, preorder-enriched

categories, has its basis in category theory. A�er this, wegiveabrief overviewof other

techniques for reasoning about e�iciency.

8.1.1 Improvement Theory à la Sands

Improvement theory is an approach to reasoning about e�iciency based on opera-

tional semantics. The general idea is that two terms can be compared by counting

the resources each term uses in all possible contexts. Given two terms S and T, if

for every contextCwe know thatC[S ] requires no more resources to evaluate than

C[T ], we say that S is an improvement of T. This idea can be applied to a wide range

of resources, including both time and space usage.
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This theory was developed initially by Sands (1991) for the particular case of the

call-by-name lambda calculus. Subsequently, Moran and Sands (1999a) developed

a theory for call-by-need time costs, while Gustavsson and Sands (1999, 2001) devel-

oped the corresponding theory for space usage.

While improvement theory provides the machinery needed to reason about the

behaviour of call-by-need languages that are traditionally considered unpredictable,

it is unfortunately limited by being tied to specific operational semantics. As a result,

the conclusions that can be drawn are only valid so long as the operational seman-

tics is a good model of the actual implementation, and so long as the model of re-

source usage is accurate. In particular, the theory of Sands (1991) assumes that the

language implementation is based on a certain abstract machine and that counting

heap lookups is a goodmodel of time cost.

8.1.2 Preorder-Enriched Categories

Category theory o�ers us one fundamental way to compare arrows: by asking if they

are equal or not. Thismakes the theory ideal for reasoning about equivalence of pro-

grams. However, if we wish to reason about other properties, we require additional

structure. For this purpose, we use themachinery of enriched category theory (Kelly,

1982). In general, categories can be enriched over a wide variety of structures, but in

this case we shall use preorders to enrich our categories.

A preorder-enriched category is a category where each hom-set Hom (A, B) is

equipped with a preorder �, requiring also that composition is monotonic with re-

spect to these orderings:

f � g ∧ h � j ⇒ f ◦ h � g ◦ j

Functors betweenpreorder-enriched categories are also typically required to respect

the ordering of arrows:

f � g ⇒ F f � F g
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As arrows are used to model programs, the use of a preorder structure allows us to

makeordering comparisonsbetweenprograms. Anynotionof improvementwill lead

toanorderingonprograms, sowecanuse thismachinery tomakegeneral arguments

about improvement; while appeals to a particular semantics are needed to establish

an ordering on programs, once such an ordering is in place we can continue reason-

ing with categorical techniques. Where before we used equational reasoning in our

proofs, the preordering allows us to use the technique of inequational reasoning.

Any ordinary (locally small) category can be treated as a preorder-enriched cate-

gory simply by equipping its hom-sets with the discrete ordering (i.e. f � f for all ar-

rows f ). Thus, any statement true of preorder-enriched categories can be specialised

to a statement that is true of ordinary categories.

The idea of using preorder-enriched categories to compare programs was previ-

ously employed in the area of program refinement (Hoare and He, 1990; Back and

Wright, 1998). While improvement is the problem of making a program more e�i-

cient, refinement is the related problem of making a program more executable, in

the sense of transforming a specification into an implementation.

8.1.3 Other Work

Okasaki (1999) uses techniques of amortised cost analysis to reason about asymp-

totic timecomplexity of lazy functional data structures. This is achievedbymodifying

analysis techniques such as the Banker’s Method, where the notion of credit is used

to spread out the notional cost of an expensive but infrequent operations over more

frequent and cheaper operations. The key idea in Okasaki’s work is to invert such

techniques to use the notion of debt. This allows the analyses to deal with the per-

sistence of data structures, where the same structure may exist in multiple versions

at once. While credit may only be spent once, a single debt may be paid o� multiple

times (in di�erent versions of the same structure) without risking bankruptcy. These

techniques have been used to analyse the asymptotic performance of a number of
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functional data structures.

Sansom and Peyton Jones (1997) give a presentation of the GHC profiler, which

can be used tomeasure time aswell as space usage of Haskell programs. In doing so,

they give a formal cost semantics for GHC Core programs based around the notion

of cost centres. Cost centres are a way of annotating expressions so that the profiler

can indicate which parts of the source program cost the most to execute. The cost

semantics is used as a specification to develop a precise profiling framework, as well

as to prove various properties about cost attribution and verify that certain program

transformations do not a�ect the attribution of costs, though they may of course re-

duce cost overall. Cost centres are now one of the standard techniques for profiling

Haskell programs.

Hope (2008) applies a technique based on instrumenting an abstract machine

with cost information to derive cost semantics for call-by-value functional programs.

More specifically, starting from a denotational semantics for the source language,

one derives an abstract machine for this language using standard program trans-

formation techniques, instruments this machine with cost information, and then re-

verses the derivation to arrive at an instrumented denotational semantics. This se-

mantics can then be used to reason about the cost of programs in the high-level

source language without reference to the details of the abstract machine. This ap-

proach was used to calculate the space and time cost of a range of programming ex-

amples, as well as to derive a new deforestation theorem for hylomorphisms.

Hammond and Michaelson (2003) present Hume, a domain-specific functional

language for contexts where resources are constrained such as embedded and real-

time systems. Hume aims to provide many of the programming features of a high-

level functional language, while stillmaking strong guarantees about space and time

costs of programs. In order to facilitate programming for systems with limited mem-

ory, HammondandMichaelsonpresent a set of axioms that canbeused todetermine

the space cost of evaluating an expression, allowing the space cost of programs to be
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predicted at compile time.

A number of type-based approaches have also been investigated for reasoning

about resource usage. Vasconcelos and Hammond (2003) present a system that can

infer size and cost equations for recursive functional programs. This system is based

on earlier work by Hughes, Pareto, and Sabry (1996) on sized types, type systems

where recursive types are indexed by the recursion depth of their values. Further-

more, Hofmann and Jost (2003) present a type system for first-order functional pro-

grams that can be used to obtain linear bounds on heap space consumption. Of par-

ticular interest is work by Hofmann andMoser (2014) on amortised resource analysis,

which combines type-based analysis with techniques from amortised cost analysis

to give results that can be applied a wide range of di�erent settings.
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Chapter 9

Operational Improvement

“A LISP programmer knows the value of every-

thing, but the cost of nothing.”

— Alan Perlis, Epigrams on Programming

9.1 Motivation

Time and space usage are generally thought of as operational properties rather than

denotational ones. These properties generally depend on the specifics of the algo-

rithms used and the model of execution, details that most denotational semantics

leave out. Therefore, the natural starting point for reasoning about e�iciency is an

operational theory. In this chapter, we prove e�iciency properties about the worker/

wrapper transformation using the operational improvement theory. Specifically, this

chapter makes the following contributions:

• We show how work on call-by-need improvement theory by Moran and Sands

(1999a) can be applied to formally justify that the worker/wrapper transforma-

tion for least fixed points preserves or improves time performance;

• We present preconditions that ensure the worker/wrapper transformation im-

proves performance in this manner, which come naturally from the precondi-

tions that ensure correctness;
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• We demonstrate the utility of the new theory by verifying that examples from

previous chapters indeed exhibit a time improvement.

The use of call-by-need improvement theory means that our work applies to lazy

functional languages such as Haskell. Traditionally the operational beheaviour of

lazy evaluation has been seen as di�icult to reason about, but we show here that

with the right tools this need not be the case.

Improvement theory does not seem to have attracted much attention in recent

years, butwe hope that this work can help to generatemore interest in this and other

techniques for reasoning about lazy evaluation.

9.2 Background: Improvement Theory

In order to develop aworker/wrapper theory that can prove e�iciency properties, we

need an operational theory of program improvement. More than just expressing ex-

tensional information, this should be based on intensional properties of resources

that a program requires. For the purpose of this chapter, the resource we shall con-

sider is execution time.

We have two main design goals for our operational theory. Firstly, it ought to

be based on the operational semantics of a realistic programming language, so that

conclusions we draw from it are as applicable as possible. Secondly, it should be

amenable to techniques of (in)equational reasoning, as these are the techniques we

used to develop the worker/wrapper correctness theory.

For the first goal, we use a language with similar syntax and semantics to GHC

Core, except that arguments to functions are required to be atomic, as was the case

in earlier versions of the core language (Peyton Jones, 1996). (Normalisation of the

current version of GHC Core into this form is straightforward.) The language is call-

by-need, reflecting the use of lazy evaluation in Haskell. The e�iciency behaviour of

call-by-need programs is notoriously counterintuitive. Our hope is that by providing
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formal techniques for reasoning about call-by-need e�iciency, we will go some way

toward easing this problem.

For the second goal, our theory must be based around some relation R that is a

preorder, as transitivity and reflexivity are both necessary for inequational reasoning

tobe valid. Furthermore, to support reasoning in a compositionalmanner, it is essen-

tial that our relation respect substitution. That is, given terms M and N, if M R N

then C[M ] R C[N ] should also hold for any context C. A relation R that satisfies

both of these properties is called a precongruence.

A naïve approach tomeasuring execution timewouldbe to simply count thenum-

ber of steps taken to evaluate a term to some normal form, and consider that a term

M is more e�icient than a term N if its evaluation finishes in fewer steps. The result-

ing relation is clearly a preorder. However, it is not a precongruence in a call-by-need

setting, because meaningful computations can be done with terms that are not fully

normalised. Just because M normalises and N does not, it does not follow that M is

necessarily always more e�icient.

The approach we use is due to Moran and Sands (1999a). Rather than simply

counting the steps taken tonormalise a term in isolation,we compare the steps taken

in all contexts, only saying that M is improved by N if for any context C, the term

C[M ] requires no more evaluation steps than the term C[N ]. The result is a rela-

tion that is trivially a precongruence: it inherits transitivity and reflexivity from the

numerical ordering6, and is substitutive by construction.

Improvement theorywas originally developed in the context of call-by-name lan-

guages by Sands (1991). The remainder of this section reviews the call-by-need time

improvement theory due to Moran and Sands (1999a), which will provide the setting

for our operational worker/wrapper theory. The essential di�erence between call-

by-name and call-by-need is that the latter implements a sharing strategy, avoiding

the repeated evaluation of terms that are usedmore than once.
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〈Γ {x = M}, x, S〉 → 〈Γ, M, #x : S〉 { LOOKUP }
〈Γ, V, #x : S〉 → 〈Γ {x = V}, V, S〉 { UPDATE }
〈Γ, M x, S〉 → 〈Γ, M, x : S〉 { UNWIND }
〈Γ, λx→ M, y : S〉 → 〈Γ, M [y / x ], S〉 { SUBST }
〈Γ, case M of alts, S〉 → 〈Γ, M, alts : S〉 { CASE }
〈Γ, cj ~y, {ci ~xi → Ni} : S〉 → 〈Γ, Nj [~y / ~xj ], S〉 { BRANCH }
〈Γ, let {~x = ~M} in N, S〉 → 〈Γ {~x = ~M}, N, S〉 { LETREC }

Figure 9.1: The call-by-need abstract machine

9.2.1 Operational Semantics of the Core Language

We shall begin by presenting the operational model that forms the basis of this im-

provement theory. The semantics presented here are based on Sesto�’s Mark 1 ab-

stract machine (Sesto�, 1997).

We start from a set of variablesVar and a set of constructors Con. We assume all

constructors have a fixed arity. The grammar of terms is as follows:

x, y, z ∈ Var

c ∈ Con

M, N ::= x

| λx→ M

| M x

| let {~x = ~M} in N

| c ~x

| case M of {ci ~xi → Ni}

We use~x = ~M as a shorthand for a list of bindings of the form x = M. Similarly, we

use ci ~xi → Ni as a shorthand for a list of cases of the form c ~x → N. All constructors

are assumed to be saturated, that is, we assume that any ~x that is the operand of a

constructor c has length equal to the arity of c. Literals are represented by construc-

tors of arity 0. We treat α-equivalent terms as identical.

A term is a value if it is of the form c ~x or λx→ M. In Haskell this is referred to as

94



aweak head normal form. We shall use letters such asV,W to denote value terms.

Termcontexts take the following form,with substitutiondefined theobviousway.

C, D ::= [− ]

| x

| λx→ C

| C x

| let {~x = ~C} in D

| c ~x

| case C of {ci ~xi → Di}

A value context is a context that is either a lambda abstraction or a constructor ap-

plied to variables.

The restriction that the arguments of functions and constructors always be vari-

ables has the e�ect that all bindingsmadeduring evaluationmust have been created

by a let. Sometimes we will use M N (where N is not a variable) as a shorthand for

let {x = N} in M x, where x is fresh. We use this shorthand for both terms and

term contexts.

An abstract machine for executing terms in this language maintains as a state a

triple 〈Γ, M, S〉 consistingof: theheapΓ, a setofbindings fromvariables to terms; the

termM currently being evaluated; and the evaluation stackS, a list of tokens used by

the abstract machine. The machine evaluates the current term to a value, and then

decides what to do with the value based on the top of the stack. Bindings generated

by let constructs are put on the heap, and only taken o�when performing a LOOKUP.

A LOOKUP executes by putting a token on the stack representing where the termwas

looked up, and then evaluating that term to value form before replacing it on the

heap. In this way, each binding is only ever evaluated atmost once. The semantics of

themachine is given in Figure 9.1. Note that the LETREC rule assumes that~x is disjoint

from the domain of Γ; if not, we need only α-rename so that this is the case.
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9.2.2 The Cost Model and Improvement Relations

Now that we have a semantics for our model, we must devise a cost model for this

semantics. The natural way to do this for an operational semantics is to count steps

taken to evaluate a given term. We use the notation M↓n to mean the abstract ma-

chine progresses from the initial state 〈∅, M, ε〉 to some final state 〈Γ, V, ε〉 with n

occurrences of the LOOKUP step. It is su�icient to count LOOKUP steps because the

total number of steps is bounded by a linear function of the number of LOOKUP steps

(Moran and Sands, 1999a). Furthermore, we use the notation M ↓6n to mean that

M↓m for somem 6 n.

From this, we can define our improvement relation. We say that “M is improved

by N”, written M .∼ N, if the following statement holds for all contextsC:

C[M]↓m =⇒ C[N]↓6m

In otherwords, a termM is improvedbya termN ifN takesnomore steps toevaluate

than M in all contexts. That this relation is a congruence follows immediately from

the definition, and that it is a preorder follows from the fact that6 is itself a preorder.

We sometimes write M /∼ N for N .∼ M. If both M .∼ N and M /∼ N, we write

M /.∼ N and say that M and N are cost-equivalent.

For convenience, we define a “tick” operation on terms that adds exactly one unit

of cost to a term:

XM ≡ let {x = M} in x { where x is free in M }

This definition forXM takes exactly two steps to evaluate toM: one to add the bind-

ing to the heap, and the other to look it up. Only one of these steps is a LOOKUP step,

so the result is that the cost of evaluating the term is increased by exactly one. Using

ticks allowsus to annotate termswith individual units of cost, allowingus touse rules

to “push” cost around a term and thus make the calculations more convenient. We
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could also define the tick operation by adding it to the grammar of terms and modi-

fying the abstract machine and cost model accordingly, but this definition is equiva-

lent. Clearly, ticks satisfy the following law:

XM .∼ M

The improvement relation .∼ covers when one term is at least as e�icient as an-

other in all contexts, but this is a very strong statement. We use the notion of “weak

improvement” when one term is at least as e�icient as another within a constant fac-

tor. Specifically, we say M is weakly improved by N, written M .≈ N, if there exists

a linear function f (x) = kx + c (where k, c > 0) such that the following statement

holds for all contextsC:

C[M]↓m =⇒ C[N]↓6 f (m)

This canbe readas “replacingMwithNmaymakeprogramsworse, but cannotmake

them asymptotically worse”. We use symbols /≈ and /.≈ for inverse and equivalence

analogously as for standard improvement.

Because weak improvement ignores constant factors, we have the following tick

introduction/elimination law:

M /.
≈

XM

It follows from this that any improvement M .∼ N can be weakened to a weak im-

provementM′ .≈ N′ where M′ andN′ are the terms M andN with the ticks omitted.

The last notation we define is entailment, which is used when we have a chain of

improvements that all apply with respect to a particular set of definitions. Specifi-

cally, where Γ = {~x = ~V} is a list of bindings, we write

Γ ` M1 .∼ M2 .∼ · · · .∼ Mn

as a shorthand for
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let Γ in M1 .∼ let Γ in M2 .∼ · · · .∼ let Γ in Mn

9.2.3 Selected Laws

We finish this section with a selection of laws due to Moran and Sands (1999a). The

first two are β-reduction rules. Firstly we have β-reduction for lambdas, which is a

cost equivalence:

(λx→ M) y /.∼ M [y / x ]

This holds because the abstract machine evaluates the le�-hand-side to the right-

hand-side without performing any LOOKUPs, resulting in the same heap and stack

as before. Note that the substitution is variable-for-variable, as the grammar for our

language requires that the argument to function application always be a variable. In

general, where a term M can be evaluated to a term M′, we have the following:

M .∼ M′

M′ /.
≈

M

The latter fact may be non-obvious, but it holds because evaluating a term will pro-

duce a constant number of ticks, and tick-elimination is a weak cost-equivalence. In

this manner we can see that partial evaluation by itself will never save more than a

constant-factor of time.

The following cost equivalence allows us to substitute a variable for its binding.

However, note that this is only valid for values, as bindings to other terms will be

modified in the course of execution. We thus call this rule value-β.

let {x = V,~y = ~C[x ]} in D[x ]

/.∼

let {x = V,~y = ~C[XV ]} in D[XV ]
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The following law allows us to move bindings in and out of a context when the

binding is to a value. Note that we assume that x does not appear in C, which can

be ensured by α-renaming, and that no free variables inV are captured inC. We call

this rule value let-floating.

C[ let {x = V} in M ] /.∼ let {x = V} in C[M ]

We also have a garbage collection law allowing us to remove unused bindings.

Assuming that x is not free in ~N or L, we have the following cost equivalence:

let {x = M;~y = ~N} in L /.∼ let {~y = ~N} in L

The final law we present here is the rule of improvement induction. The version

that we present is stronger than the version in Moran and Sands (1999a), but can be

obtained by a simplemodification of the proof given there. For any set of value bind-

ings Γ and contextC, we have the following rule:

Γ ` M .∼ XC[M ] Γ ` XC[N ] .∼ N
Γ ` M .∼ N

This allows us to prove an M .∼ N simply by finding a context C where we can “un-

fold”M toXC[M ] and “fold”XC[N ] toN. In otherwords, the following apparently

circular proof is valid:

Γ ` M

.∼

XC[M ]

.∼ { hypothesis }

XC[N ]

.∼

N

This technique is similar to proof principles such as guarded coinduction (Coquand,

1993; Turner, 1995).
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As a corollary to this law, we have the following law for cost-equivalence improve-

ment induction. For any set of value bindings Γ and contextC, we have:

Γ ` M /.∼ XC[M ] Γ ` XC[N ] /.∼ N
Γ ` M /.∼ N

To prove this, we simply start from the assumptions and make two applications of

improvement induction: first to prove M .∼ N, and second to prove N .∼ M.

9.3 Worker/Wrapper and Improvement

Asweobserved inChapter6, theessenceof theworker/wrapper transformation is the

application of one of the two related rules of rolling and fusion. It is natural to expect

that a worker/wrapper transformation based in improvement theory will require its

ownversionsof these rules. In this section, therefore,we first prove fusionand rolling

rules for improvement theory, and thenuse these toprovea factorisation theoremfor

improvement theory analogous to the worker/wrapper factorisation theorem given

in Chapter 4.

9.3.1 Preliminary Results

The first rule we prove corresponds to the rolling rule. In the context of improvement

theory, this translates to the statement that for any pair of value contexts F, G we

have the following weak cost equivalence:

let {x = F[G[x ] ]} in G[x ] /.
≈

let {x = G[F[x ] ]} in x

The proof begins with an application of cost-equivalence improvement induc-

tion. We let Γ = {x = F [XG [x ] ], y = G [XF [y ] ]}, M = XG [x ], N = y,

C = G[XF[− ] ]. The premises of induction are proved as follows:

Γ ` M
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≡ { definitions }

XG[x ]

/.∼ { value-β }

XG[XF[XG[x ] ] ]

≡ { definitions }

XC[M ]

and

Γ ` XC[N ]

≡ { definitions }

XG[XF[y ] ]

/.∼ { value-β }

y

≡ { definitions }

N

Thus we can conclude Γ ` M /.∼ N, or equivalently let Γ in M /.∼ let Γ in N. We

expand this out and apply garbage collection to remove the unused bindings:

let {x = F[XG[x ] ]} inXG[x ] /.∼ let {y = G[XF[y ] ]} in y

By applying α-renaming and weakening we obtain the desired result

The second ruleweprove is letrec-fusion, analogous to fixed-point fusion. For any

value contextsF,G, we have the following implication:

H[XF[x ] ] .∼ G[XH[x ] ]

⇒

let {x = F[x ]} in H[x ] .≈ let {x = G[x ]} in x

For the proof, we assume the premise and proceed by improvement induction.

Let Γ = {x = F[x ], y = G[y ]}, M = XH[x ], N = y, C = G. The premises are

proved as follows:
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Γ ` M

≡ { by definitions }

XH[x ]

/.∼ { value beta }

XH[XF[x ] ]

.∼ { by assumption }

XG[XH[x ] ]

≡ { definition }

XC[M ]

and

Γ ` XC[N ]

≡ { by definitions }

XG[y ]

/.∼ { value beta }

y

≡ { definition }

N

Thus we conclude that Γ ` M .∼ N. Expanding and applying garbage collection, we

obtain the following:

let {x = F[x ]} inXH[x ] .∼ let y = G[y ] in y

Again we obtain the desired result via weakening and α-renaming. As improvement

induction is symmetrical, we can also prove the following dual fusion law, in which

the improvement relations are reversed:

H[XF[x ] ] /∼ G[XH[x ] ]

⇒

let {x = F[x ]} in H[x ] /≈ let {x = G[x ]} in x
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For both the rolling and fusion rules, we first proved a version of the conclusion

with normal improvement, and then weakened to weak improvement. We do this to

avoid having to deal with ticks, and because the weaker version is strong enough for

our purposes.

Our fusion law di�ers from the fusion law that was originally presented by Moran

and Sands. Their law requires that the contextH satisfy a form of strictness. Specifi-

cally, for any value contextsF,Gand fresh variablex, the following implicationholds:

H[F[x ] ] .∼ G[H[x ] ] ∧ strict (H)

⇒

let {x = F[x ]} in C[H[x ] ] .∼ let {x = G[x ]} in C[x ]

This versionof fusionhas theadvantageof havinga stronger conclusion, but its strict-

ness side-condition and lack of symmetry make it unsuitable for our purposes.

9.3.2 TheWorker/Wrapper Improvement Theorem

Using the above set of rules, we can prove the worker/wrapper improvement theo-

rem in Figure 9.2, giving conditions under which a program factorisation is a time

improvement. Given a recursive program let x = F[x ] in x and abstraction and

representation contexts Abs and Rep, this theorem gives us conditions we can use to

derive a factorised program let x = G[x ] in Abs[x ]. This factorised program will

be atworst a constant factor slower than the original program, but can potentially be

asymptotically faster. In other words, we have conditions that guarantee that such

an optimisation is “safe” with respect to time performance.

The proofs for the correctness theorems center on the use of the rolling and fu-

sion rules. Because we have proven analogous rules in our setting, the proofs can

be adapted fairly straightforwardly, simply by keeping the general form of the proofs

and using the rules of improvement theory as structural rules that fit between the

original steps. The details are as follows.
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Given value contexts Abs, Rep, F, G for which x is free satisfying one of the as-
sumptions

(A) Abs[Rep[x ] ] /.
≈

x
(B) Abs[Rep[F[x ] ] ] /.

≈
F[x ]

(C) let x = Abs[Rep[F[x ] ] ] in x /.
≈

let x = F[x ] in x

If any one of the following conditions holds:

(1) G[x ] /≈ Rep[F[Abs[x ] ] ]
(2) G[XRep[x ] ] /∼ Rep[XF[x ] ]
(3) Abs[XG[x ] ] /∼ F[XAbs[x ] ]

(1β) let x = G[x ] in x /≈ let x = Rep[F[Abs[x ] ] ] in x
(2β) let x = G[x ] in x /≈ let x = F[x ] in Rep[x ]

then we have the improvement:

let x = F[x ] in x .≈ let x = G[x ] in Abs[x ]

Figure 9.2: The Worker/Wrapper Improvement Theorem

We begin by noting that (A)⇒ (B)⇒ (C), as in the original case. The first implica-

tion (A)⇒ (B) no longer follows immediately, but the proof is simple. Letting y be a

fresh variable, we reason as follows:

Abs[Rep[F[y ] ] ]

/.
≈

{ garbage collection, value-β }

let x = F[y ] in Abs[Rep[x ] ]

/.
≈

{ (A) }

let x = F[y ] in x

/.
≈

{ value-β, garbage collection }

F[y ]

The final step is to observe that as both x and y are fresh, we can substitute one for

the other and the relationship between the terms will remain the same. Hence, we

can conclude (B).
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As in the original theorem, we have that (1) implies (1β) by simple application of

substitution, (2) implies (2β) by fusion and (3) implies the conclusion also by fusion.

Under assumption (C), we have that (1β) and (2β) are equivalent. We show this by

proving their right hand sides cost-equivalent, a�er which we can apply transitivity.

let x = F[x ] in Rep[x ]

/.
≈

{ value-β }

let x = F[x ] in Rep[F[x ] ]

/.
≈

{ value let-floating }

Rep[F[ let x = F[x ] in x ] ]

/.
≈

{ (C) }

Rep[F[ let x = Abs[Rep[F[x ] ] ] in x ] ]

/.
≈

{ value let-floating }

let x = Abs[Rep[F[x ] ] ] in Rep[F[x ] ]

/.
≈

{ rolling }

let x = Rep[F[Abs[x ] ] ] in x

Finally, we must show that condition (1β) and assumption (C) together imply the

conclusion. This follows exactly the same pattern of reasoning as the original proofs,

with the addition of two applications of value-let floating:

let x = F[x ] in x

/.
≈

{ (C) }

let x = Abs[Rep[F[x ] ] ] in x

/.
≈

{ rolling }

let x = Rep[F[Abs[x ] ] ] in Abs[x ]

/.
≈

{ value let-floating }

Abs[ let x = Rep[F[Abs[x ] ] ] in x ]

.≈ { (1β) }

Abs[ let x = G[x ] in x ]
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/.
≈

{ value let-floating }

let x = G[x ] in Abs[x ]

We conclude this section by discussing a few important points about the worker/

wrapper improvement theorem and its applications. Firstly, we note that the condi-

tion (A) will never actually hold. To see this, we let Ω be a divergent term; that is,

one that the abstract machine will never finish evaluating. By substituting into the

context let x = Ω in [− ], we obtain the following cost-equivalence:

let x = Ω in Abs[Rep[x ] ] /.
≈

let x = Ω in x

This is clearly false, as the le�-hand sidewill terminate almost immediately (asAbs is

a value context), while the right-hand side will diverge. Thus we see that assumption

(A) is impossible to satisfy. We leave it in the theorem for completenessof theanalogy

with the earlier worker/wrapper theorems. In situations where (A) would have been

used with the earlier theory, the weaker assumption (B) can always be used instead.

Aswewill see laterwith the examples, frequently only very fewproperties of the con-

textFwill be used in the proof of (B). A typed improvement theorymight allow these

properties to be assumed of x instead, thus making (A) usable again.

Secondly, we note the restriction to value contexts. This is not actually a particu-

larly severe restriction: for the common application of recursively-defined functions,

it is fairly straightforward to ensure that all contexts be of the form λx → C. For

other applications it may be more di�icult to find Abs and Rep contexts that satisfy

the required relationship.

Finally, we note that only conditions (2) and (3) use normal improvement, with all

otherassumptionsandconditionsusing theweaker version. This isbecauseweak im-

provement is not strong enough to permit the use of fusion, which these conditions

rely on. This makes these conditions harder to prove. However, when these condi-

tions are used, their strength allows us to narrow down the source of any constant-

factor slowdown that may take place.
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9.4 Examples

9.4.1 Reversing a List

In this sectionwe shall demonstrate the utility of our theorywith two practical exam-

ples. We begin by revisiting the earlier example of reversing a list. In order to apply

our theory, wemust first write reverse as a recursive let:

reverse = let { f = Revbody [ f ]} in f

Revbody[M ] = λxs→ case xs of

[ ]→ [ ]

(y : ys)→ M ys ++ [y ]

The abs and rep functions from before give rise to to the following contexts:

Abs[M ] = λxs→ M xs [ ]

Rep[M ] = λxs→ λys→ M xs ++ ys

We also require some extra theoretical machinery that we have yet to introduce.

To start with, we must assume some rules about the append operation++. The fol-

lowing associativity rules were proved by Moran and Sands (1999a).

(xs ++ ys) ++ zs .∼ xs ++ (ys ++ zs)

xs ++ (ys ++ zs) .≈ (xs ++ ys) ++ zs

Weassume the following identity improvement aswell, which follows from theorems

also proved by Moran and Sands (1999a):

[ ] ++ xs .∼ xs

We also require the notion of an evaluation context. An evaluation context is a

context where evaluation is impossible unless the hole is filled. Such contexts are of

the following form:
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E ::= A

| let {~x = ~M} in A

| let {~y = ~M;

x0 = A0[x1 ];

x1 = A1[x2 ];

. . .

xn = An}

in A[x0 ]

A ::= [− ]

| A x

| case A of {ci ~xi → Mi}

Note that a context of this formmust have exactly one hole. The usefulness of evalu-

ation contexts is that they satisfy some special laws. We use the following laws in this

particular example:

E[XM ]

/.∼ { tick floating }

XE[M ]

E[case M of {ci ~xi → Ni} ]

/.∼ { case floating }

case M of {ci ~xi → E[Ni ]}

E[ let {~x = ~M} in N ]

/.∼ { let floating }

let {~x = ~M} in E[N ]

We conclude by noting that while the context [− ] ++ ys is not strictly speaking an

evaluation context (as the hole is in the wrong place), it is cost-equivalent to an eval-

uation context and so also satisfies these laws. The proof is as follows:
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[− ] ++ ys

≡ { desugaring }

(let {xs = [− ]} in (++) xs) ys

/.∼ { let floating [− ] ys }

let {xs = [− ]} in (++) xs ys

/.∼ { unfolding++ }

let {xs = [− ]} in

Xcase xs of

[ ]→ ys

(z : zs)→ let {rs = (++) zs ys} in z : rs

/.∼ { desugaring tick and collecting lets }

let { xs = [− ];

r = case xs of

[ ]→ ys

(z : zs)→ let {rs = (++) zs ys} in z : rs

} in r

Now we can begin the example proper. We start by verifying that Abs and Rep

satisfy one of the worker/wrapper assumptions. While earlier we used (A) for this

example, the corresponding assumption for worker/wrapper improvement is unsat-

isfiable. Thus we instead verify assumption (B). The proof is fairly straightforward:

Abs[Rep[Revbody[ f ] ] ]

≡ { definitions }

λxs→ (λxs→ λys→ Revbody[ f ] xs ++ ys) xs [ ]

/.∼ { β-reduction }

λxs→ Revbody[ f ] xs ++ [ ]

≡ { definition of Revbody }

λxs→ (λxs→ case xs of

109



[ ]→ [ ]

(y : ys)→ f ys ++ [y ]) xs ++ [ ]

/.∼ { β-reduction }

λxs→ (case xs of

[ ]→ [ ]

(y : ys)→ f ys ++ [y ]) ++ [ ]

/.∼ { case floating [− ] ++ [ ] }

λxs→ case xs of

[ ]→ [ ] ++ [ ]

(y : ys)→ (f ys ++ [y ]) ++ [ ]

/.
≈

{ associativity is weak cost equivalence }

λxs→ case xs of

[ ]→ [ ] ++ [ ]

(y : ys)→ f ys ++ ([y ] ++ [ ])

/.
≈

{ evaluating [ ] ++ [ ], [y ] ++ [ ] }

λxs→ case xs of

[ ]→ [ ]

(y : ys)→ f ys ++ [y ]

≡ { definition of revbody }

Revbody [ f ]

As before, we use condition (2) to derive our G. The derivation is somewhat more

involved than before, requiring some care with the manipulation of ticks.

Rep[XRevbody[ f ] ]

≡ { definitions }

λxs→ λys→

(Xλxs→ case xs of

[ ]→ [ ]
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(z : zs)→ f zs ++ [z ]) xs ++ ys

/.∼ { float tick out of [− ] xs ++ ys }

λxs→ λys→

X((λxs→ case xs of

[ ]→ [ ]

(z : zs)→ f zs ++ [z ]) xs ++ ys)

/.∼ { β-reduction }

λxs→ λys→ X((case xs of

[ ]→ [ ]

(z : zs)→ f zs ++ [z ]) ++ ys)

/.∼ { case floating [− ] ++ ys }

λxs→ λys→ X(case xs of

[ ]→ [ ] ++ ys

(z : zs)→ (f zs ++ [z ]) ++ ys)

.∼ { associativity and identity of++ }

λxs→ λys→ X(case xs of

[ ]→ ys

(z : zs)→ f zs ++ ([z ] ++ ys))

.∼ { evaluating [y ] ++ ys }

λxs→ λys→ X(case xs of

[ ]→ ys

(z : zs)→ f zs ++ (z : ys))

/.∼ { case floating tick (?) }

λxs→ λys→ case xs of

[ ]→ Xys

(z : zs)→ X(f zs ++ (z : ys))

.∼ { removing a tick }

λxs→ λys→ case xs of
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[ ]→ ys

(z : zs)→ X(f zs ++ (z : ys))

/.∼ { desugaring }

λxs→ λys→ case xs of

[ ]→ ys

(z : zs)→ X(let ws = (z : ys) in f zs ++ ws)

/.∼ { β-expansion }

λxs→ λys→ case xs of

[ ]→ ys

(z : zs)→ Xlet ws = (z : ys) in

(λas→ λbs→ f as ++ bs) zs ws

/.∼ { tick floating [− ] zs ws }

λxs→ λys→ case xs of

[ ]→ ys

(z : zs)→ let ws = (z : ys) in

(Xλas→ λbs→ f as ++ bs) zs ws

≡ { definition of Rep }

λxs→ λys→ case xs of

[ ]→ ys

(z : zs)→ let ws = (z : ys) in (XRep[ f ]) zs ws

≡ { taking this as our definition ofG }

G[XRep[ f ] ]

The step marked ? is valid becauseX[− ] is itself an evaluation context, being syn-

tactic sugar for let x = [− ] in x. Thuswe have derived a definition ofG, fromwhich

we create the following factorised program:

reverse = let {rec = G[rec ]} in Abs[rec ]

G[rec ] = λxs→ λys→ case xs of
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[ ]→ ys

(z : zs)→ let ws = (z : ys) in rec zs ws

Expanding this out, we obtain:

reverse = let {

rec = λxs→ λys→ case xs of

[ ]→ ys

(z : zs)→ let ws = (z : ys)

in rec zs ws

}

in λxs→ rec xs [ ]

The result is an implementation of fast reverse as a recursive let. The calculations

here have essentially the same structure as the correctness proofs, with the addition

of some administrative steps to do with the manipulation of ticks.

9.4.2 Tabulating a Function

Our second example is that of tabulating a function by producing a stream (infinite

list) of results. Recall that such a function can be implemented in Haskell as follows:

tabulate :: (Int→ a)→ Stream a

tabulate f = f 0 : tabulate (f ◦ (+1))

As noted before, this definition repeats a great deal of work, as each result of the

output stream is the result of evaluating a term of the form (f ◦ (+1) ◦ (+1) ◦ . . . ◦

(+1)) 0. We wish to apply the worker/wrapper technique to improve the time per-

formanceof this program. The first step is towrite it as a recursive let in our language:

tabulate = let {h = F[h ]} in h
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F[M ] = λf → let { f ′ = λx→ let {x′ = x + 1} in f x′}

in f 0 : M f ′

Next, we must devise Abs and Rep contexts. In order to avoid the repeated work,

we hope to derive a version of the tabulate function that takes an additional number

argument telling itwhere to “start” from. The followingAbs andRep contexts convert

between these two versions:

Abs[M ] = λf → M 0 f

Rep[M ] = λn→ λf → let { f ′ = λx→ let {x′ = x + n} in f x′}

in M f ′

Once again, we must introduce some new rules before we can derive the fac-

torised program. Firstly, we require the following two variable substitution rules from

Moran and Sands (1999a):

let {x = y} in C [x ] .∼ let {x = y} in C [y ]

let {x = y} in C [y ] /.
≈

let {x = y} in C [x ]

Next, wemust use someproperties of addition. Firstly, we have the following identity

properties:

x + 0 /.∼ x

0 + x /.∼ x

We also use the following property, combining associativity and commutativity. We

shall refer to this as associativity of+. Where t is not free inC, we have:

let {t = x + y} in

let {r = t + z} in C [r ]

/.∼

let {t = z + y} in

let {r = x + t} in C [r ]
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Finally, we use the fact that sums may be floated out of arbitrary contexts. Where z

does not occur inC, we have:

C [ let {z = y + x} in M ] /.∼ let {z = y + x} in C [M ]

Now we can begin to apply worker/wrapper. Firstly, we verify that Abs and Rep

satisfy assumption (B). Again, this is relatively straightforward:

Abs[Rep[F[h ] ] ]

≡ { definitions }

λf → (λn→ λf → let { f ′ = λx→ let {x′ = x + n} in f x′}

in F[h ] f ) 0 f ′

/.∼ { β-reduction }

λf → let { f ′ = λx→ let {x′ = x + 0} in f x′}

in F[h ] f ′

/.
≈

{ x + 0 /.
≈

x }

λf → let { f ′ = λx→ let {x′ = x} in f x′}

in F[h ] f ′

/.
≈

{ variable substitution, garbage collection }

λf → let { f ′ = λx→ f x} in F[h ] f ′

≡ { definition ofF }

λf → let { f ′ = λx→ f x}

in (λf → let { f ′′ = λx→ let {x′ = x + 1} in f x}

in f 0 : h f ′′) f ′

/.∼ { β-reduction }

λf → let { f ′ = λx→ f x}

in let { f ′′ = λx→ let {x′ = x + 1} in f ′ x′}

in f ′ 0 : h f ′′

/.
≈

{ value-β on f ′ }

λf → let { f ′′ = λx→ let {x′ = x + 1} in (λx→ f x) x′}
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in (λx→ f x) 0 : h f ′′

/.∼ { β-reduction }

λf → let { f ′′ = λx→ let {x′ = x + 1} in f x′}

in f 0 : h f ′′

≡ { definition ofF }

F[h ]

Now we use condition (2) to derive the new definition of tabulate. This requires the

use of a number of the properties that we presented earlier:

Rep[XF[h ] ]

≡ { definitions }

λn→ λf → let { f ′ = λx→ let {x′ = x + n} in f x′}

in (Xλf → let { f ′′ = λx→ let {x′′ = x + 1} in f x′′}

in f 0 : h f ′′) f ′

/.∼ { tick floating [− ] f ′ }

λn→ λf → let { f ′ = λx→ let {x′ = x + n} in f x′}

inX(λf → let { f ′′ = λx→ let {x′′ = x + 1} in f x′′}

in f 0 : h f ′′) f ′

/.∼ { β-reduction }

λn→ λf → let { f ′ = λx→ let {x′ = x + n} in f x′}

inXlet { f ′′ = λx→ let {x′′ = x + 1} in f ′ x′′}

in f ′ 0 : h f ′′

/.∼ { value-β on f ′, garbage collection }

λn→ λf → Xlet { f ′′ = λx→

let {x′′ = x + 1} in

(Xλx→ let {x′ = x + n} in f x′) x′′}

in (Xλx→ let {x′ = x + n} in f x′) 0 : h f ′′

.∼ { removing ticks, β-reduction }
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λn→ λf → Xlet { f ′′ = λx→ let {x′′ = x + 1} in

let {x′ = x′′ + n} in f x′}

in (let {x′ = 0 + n} in f x′) : h f ′′

/.∼ { associativity and identity of+ }

λn→ λf → Xlet { f ′′ = λx→ let {n′ = n + 1} in

let {x′′ = x + n′} in f x′}

in (let {x′ = n} in f x′) : h f ′′

.∼ { variable substitution, garbage collection }

λn→ λf → Xlet { f ′′ = λx→ let {n′ = n + 1} in

let {x′′ = x + n′} in f x′}

in f n : h f ′′

/.∼ { value let-floating }

λn→ λf → f n : Xlet { f ′′ = λx→ let {n′ = n + 1} in

let {x′′ = x + n′} in f x′}

in h f ′′

/.∼ { sums float }

λn→ λf → f n : let {n′ = n + 1} in

Xlet { f ′′ = λx→ let {x′′ = x + n′} in f x′}

in h f ′′

/.∼ { β-expansion, tick floating }

λn→ λf → f n : let {n′ = n + 1} in

X(λn→ λf →

let { f ′′ = λx→ let {x′′ = x + n} in f x′}

in h f ′′) n′ f

≡ { definition of Rep }

λn→ λf → f n : let {n′ = n + 1} in (XRep[h ]) n′ f

≡ { taking this as our definition ofG }

G[XRep[h ] ]
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Thuswehavederived adefinition ofG, fromwhichwe create the following factorised

version of the program:

tabulate = let {h = G[h ]} in Abs[h ]

G[M ] = λn→ λf → f n : let {n′ = n + 1} in M n′ f

This is the same optimised tabulate function that was proved correct in chapter 5.

The proofs here have a similar structure to the correctness proofs from that chapter,

except that we have now formalised that the new version of the tabulate function is

indeed a time improvement of the original version. We note that the proof of (B)

is complicated by the fact that η-reduction is not valid in this setting. In fact, if we

assumed η-reduction then our proof of (B) here could be adapted into a proof of the

assumption (A).

9.5 Conclusion

In this chapter, we have shown how improvement theory can be used to justify the

worker/wrapper transformation as a programoptimisation, by formally proving that,

under certain natural conditions, the transformation is guaranteed to preserve or im-

prove asymptotic time performance. This guarantee is proven with respect to an es-

tablished operational semantics for call-by-need evaluation. We then verified that

two examples from earlier in this thesis met the preconditions for this performance

guarantee, demonstrating theuseof our theorywhile also verifying the validity of the

examples. This work is the first time that a general purpose optimisationmethod for

lazy languages has had its e�ect on e�iciency formally verified.

This work has a number of limitations, however. Firstly, improvement theory is

untyped. Aswementioned earlier in this chapter, a typed theorywould bemore use-

ful, allowing more power when reasoning about programs. This would also match

more closelywith theoriginalworker/wrapper theories, whichwere typed. Secondly,
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the theorywe present here is limited to general recursion based on recursive let con-

structs. A general recursion theory can be adapted to deal with other recursion oper-

ators, butdoing somayobscure theuseful insightswecouldgain fromother theories.

In fact, it was adapting the original worker/wrapper theory for fix to other operators

that gave rise to some of the key insights we use here. We address these two limita-

tions in the next chapter, where we present a theory of the worker/wrapper transfor-

mation based on bilax dinatural transformations.
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Chapter 10

Denotational Improvement

“I know the kings of England, and I quote the fights

historical / from Marathon to Waterloo, in order

categorical!”

— Major-General Stanley, The Pirates of Penzance

10.1 Introduction

In Chapter 6, we used category theory to generalise the correctness theory of the

worker/wrapper transformation to a wide range of recursion operators. This raises

the question of whether we can make a similar generalisation for the improvement

side of the theory, generalising the work of the previous chapter to apply to a wider

range of recursion schemes. Such a generalisation would improve on two other lim-

itations of the original theory: it would be applicable to a wider range of resources,

and would also be a typed theory.

If we limit ourselves to standard category theory, the answer to this question is

no. A�er all, ordinary categories only allow arrows to be compared for equality, pro-

viding none of the structure needed to compare arrows to decide if one is “better”

than another. However, enriched category theory can be used to give extra structure

to sets of arrows. Specifically, if we enrich our categories with preorders, we obtain a

theory that can naturally be used to compare programs.
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10.2 Generalising Strong Dinaturality

Recall that a family of arrows αA : F (A, A) → G (A, A) is strongly dinatural if the

following diagram commutes for any h : A→ B:

F (A, A)
αA //

F (idA,h)
##

G (A, A)
G (idA,h)
##

X

p ;;

q ##

F (A, B) ⇒ G (A, B)

F (B, B) αB
//

F (h,idB)

;;

G (B, B)
G (h,idB)

;;

In Chapter 6 we used this property as a generalisation of fusion rules, allowing us

to create a generalised worker/wrapper theory applicable to any strongly dinatural

recursion operator. In order to apply the same technique, we need to convert this

property fromanequationalproperty toan inequationalproperty that canbeapplied

in the setting of preorder-enriched categories.

To generalise properties of categories to preorder-enriched categories, we can

use the technique of laxification. Put simply, laxification is the process of replacing

equalities with inequalities (or in the case of 2-categories, with 2-cells). By applying

laxification to theearlier diagram for strongdinaturality, anddrawing the inequalities

� as a new style of arrow +3 , we obtain the following diagram for the property

of lax strong dinaturality:

F (A, A)
αA //

F (idA,h)
##

��

G (A, A)
G (idA,h)
##

��

X

p ;;

q ##

F (A, B) ⇒ G (A, B)

F (B, B) αB
//

F (h,idB)

;;

G (B, B)
G (h,idB)

;;

Note that F and G are now functors between preorder-enriched categories that re-

spect the arrow ordering�. The diagram expresses the following implication:

121



F (idA, h) ◦ p � F (h, idB) ◦ q

⇒

G (idA, h) ◦ αA ◦ p � G (h, idB) ◦ αB ◦ q

We also use the term oplax strong dinaturality when the ordering is reversed, i.e.

when the following implication holds:

F (idA, h) ◦ p � F (h, idB) ◦ q

⇒

G (idA, h) ◦ αA ◦ p � G (h, idB) ◦ αB ◦ q

The choice of which direction is lax and which is oplax is arbitrary. Note that these

properties do not necessarily hold in the opposite category, but lax strong dinatural-

ity implies oplax strong dinaturality in the opposite category and vice-versa. When

both lax and oplax properties hold, we describe this as bilax strong dinaturality. For

thepurposesof this chapter,wechoosebilax strongdinaturality asourgeneralisation

of strong dinaturality.

We specifically choose to use bilax strong dinaturality for three reasons. First of

all, in the previous chapter we used a fusion theorem for fixed-points that bears a

great deal of similarity to bilax strong dinaturality, and its bidirectionality was useful

in proving the central theorem of that chapter. Secondly, Johann and Voigtländer’s

technique to generate inequational free theorems from polymorphic types (Johann

and Voigtländer, 2004) results in precisely this same bidirectionality. Finally, unlike

the other two properties, bilax strong dinaturality is self-dual.

We conclude this section by noting that bilax strong dinaturality implies an up-to-

equivalence form of ordinary dinaturality. Letting∼= be the conjunction of� and�,

i.e. x ∼= y i� x � y and x � y, we reason as follows:

G (idA, h) ◦ αA ◦ F (h, idA) ∼= G (h, idB) ◦ αB ◦ F (idB, h)

⇔ { definition of∼= }
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G (idA, h) ◦ αA ◦ F (h, idA) � G (h, idB) ◦ αB ◦ F (idB, h)

∧

G (idA, h) ◦ αA ◦ F (h, idA) � G (h, idB) ◦ αB ◦ F (id_B, h)

⇐ { lax and oplax strong dinaturality }

F (idA, h) ◦ F (h, idA) � F (h, idB) ◦ F (idB, h)

∧

F (idA, h) ◦ F (h, idA) � F (h, idB) ◦ F (idB, h)

⇐ { bifunctors and reflexivity of preorders }

True

We call this property “weakened dinaturality”.

10.3 Worker/Wrapper and Improvement, Redux

Using bilax strong dinaturality as our generalisation of strong dinaturality, we can

adapt the theoremwepresented in Figure 6.1 to an inequational version. By exchang-

ing the ordinary categorySet in the theorem for the preorder-enriched categoryOrd

of preorders andmonotonic functions, we canmake ordering comparisons between

the two sides of each precondition and the conclusion. The resulting theorem is pre-

sented in Figure 10.1.

Note that we relax the assumption abs ◦ rep = id to abs ◦ rep ∼= id in the new

theorem, as the full strength of equality is no longer required. All other equalities

have been weakened to inequalities. The resulting inequalities can be interpreted

as comparisons of e�iciency, where f � gmeans that f is improved by g in terms of

e�iciency, i.e. ‘bigger’ in the preorder means ‘better’ in e�iciency. Under this inter-

pretation, the theorem in Figure 10.1 gives e�iciency conditions under which we can

factorise an original programwritten as αA f into amore e�icient version comprising

a worker program αB g and a wrapper function G (rep, abs).
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Given:

• A preorder-enriched category C
containing objectsA and B

• Functors F,G : Cop × C → Ord that
respect the preorder

• Arrows abs : B→ A and rep : A→ B in
the category C

• The assumption abs ◦ rep ∼= idA (where∼=
is the conjunction of� and�)

• Elements f ∈ F (A, A) and g ∈ F (B, B)

• A bilax strong dinatural transformation
α : F→ G

If any one of the following conditions holds:

(1) g � F (abs, rep) f
(1β) αB g � αB (F (abs, rep) f )
(1γ) G (rep, abs) (αB g) � G (rep, abs) (αB (F (abs, rep) f ))

(2) F (rep, id) g � F (id, rep) f
(2β) G (rep, id) (αB g) � G (id, rep) (αA f )
(2γ) G (rep, abs) (αB g) � G (id, abs ◦ rep) (αA f )

(3) F (id, abs) g � F (abs, id) f
(3β) G (id, abs) (αB g) � G (abs, id) (αA f )
(3γ) G (rep, abs) (αB g) � G (abs ◦ rep, id) (αA f )

then we have the factorisation:

αA f � G (rep, abs) (αB g)

The conditions of the
theorem are related as
shown in the following
diagram:

(1)
rz $,

��
(2)

��

(3)

��
(1β)

rz $,

��

(2β)

��

(3β)

��
(2γ) ks +3 (1γ) (3γ)+3ks

Figure 10.1: TheWorker/Wrapper Theorem forBilax StrongDinatural Transformations
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The proof of this theorem follows precisely the same form as the proof of the the-

orem from Chapter 6. We begin by listing the relationships between the various con-

ditions, which follow the same pattern as before. Firstly, the (2) and (3) groups of

conditions are dual, as can be seen by exchanging C for Cop. However, the inequality

is not reversed.

Secondly, each numeric condition (n) implies its corresponding (nβ) condition,

which in turn implies (nγ). The proofs are as follows:

• (1) is weakened to (1β) by applying αB to each side.

• (2) implies (2β) by lax strong dinaturality, and (3) implies (3β) by oplax strong

dinaturality.

• (1β), (2β) and (3β) can beweakened to their corresponding γ conditions by ap-

plying G (rep, abs), G (id, abs) and G (rep, id) to each side respectively.

Thirdly, condition (1) implies conditions (2) and (3), while condition (1β) implies

conditions (2β) and (3β). In the first case this canbeshownbysimplyapplyingF (rep, id)

or F (id, abs) to both sides of condition (1). In the second case, one applies either

G (rep, id) or G (id, abs) to both sides of (1β), and the result then follows from apply-

ing the weakened form of dinaturality given above.

Finally, using abs ◦ rep ∼= id, all three γ conditions are equivalent. We show this

by proving that the right-hand sides are all equivalent under ∼=. The proof for (1γ)

and (2γ) is as follows:

G (rep, abs) (αB (F (abs, rep) f ))

= { functors }

G (id, abs) (G (rep, id) (αB (F (id, rep) (F (abs, id) f ))))

∼= { weakened dinaturality }

G (id, abs) (G (id, rep) (αA (F (rep, id) (F (abs, id) f ))))

= { functors }
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G (id, abs ◦ rep) (αA (F (abs ◦ rep, id) f ))

∼= { abs ◦ rep ∼= id implies F (abs ◦ rep, id) ∼= id because functors respect the preorder }

G (id, abs ◦ rep) (αA f )

The proof for (1γ) and (3γ) is dual. Thus we see that all three are equivalent.

Given these relationships, it su�ices to prove the theorem for one of the γ con-

ditions. For example, it can be proved for (2γ) simply by applying the assumption

abs ◦ rep = id:

G (rep, abs) (αB g)

� { (2γ) }

G (id, abs ◦ rep) (αA f )

∼= { abs ◦ rep ∼= id }

G (id, id) (αA f )

= { functors }

αA f

This simple generalisation of our earlier theorem allows us to reason about any

notion of improvement so long as our recursion operator treats it parametrically. We

conjecture that this will be the case for a wide class of resources and operators. A

proof of this will likely require a generic form of operational semantics that captures

the necessary properties, perhaps akin to the globally-deterministic structural oper-

ational semantics used by Sands (1997).

By using the techniquewe outlined above to convert statements about preorder-

enriched categories to statements about ordinary categories, we see that this new

theorem for improvement is a generalisation of our earlier theorem for correctness.

Thus, we have a single unified theory that covers both e�iciency and correctness as-

pects of the worker/wrapper transformation.
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10.4 Examples

10.4.1 Example: Least Fixed Points

In the previous chapter, we developed a theorem for the worker/wrapper transfor-

mation in the context of improvement theory à la Sands, based on general recursion.

It makes sense to instantiate the theorem from this chapter in the case of general

recursion, to see how the two theories compare.

To obtain such a theory, we take the same F andG as we did for least fixed points

in Chapter 6:

F (X, Y) = Cpo (X, Y) G (X, Y) = U Y

In order to apply the new version of the theory to this example, we simply change

the target category of these functors from Set to Ord, equipping the sets with the

same ordering they had in the Cpo setting. Thus, in the case of F, for any two ele-

ments f , g ∈ F (X, Y), f � g if and only if f � g in the CPPOX → Y. Likewise in the

case ofG, for any two elements a, b ∈ G (X, Y), a � b if and only if a � b in the CPPO

Y. This allows us to use our theorem to reason about the definedness of programs.

By instantiating the theorem to this case, we obtain the following preconditions:

(1) g � rep ◦ f ◦ abs

(2) g ◦ rep � rep ◦ f

(3) abs ◦ g � f ◦ abs

(1β) fix g � fix (rep ◦ f ◦ abs)

(2β) fix g � rep (fix f )

(3β) abs (fix g) � fix f

(1γ) abs (fix g) � abs (fix (rep ◦ f ◦ abs))

(2γ) abs (fix g) � abs (rep (fix f ))

(3γ) abs (fix g) � fix f
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In this case, we only need a strictness side condition for condition (2), because in the

� direction the fusion theorem h ◦ f � g ◦ h ⇒ h (fix f ) � fix g holds with no

additional strictness requirements. In turn, instantiating the conclusion of our new

theorem gives fix f � abs (fix g).

The resulting improvement theorem for fix is similar to the version from the pre-

vious chapter, with some di�erences. Most obviously and superficially, the theorems

are di�erent in that the previous chapter used recursive let statements rather than

explicit fixed points. However, there are twomore significant di�erences. Firstly, our

new theorem is for arbitrary resource usage in the Cpo setting, whereas the earlier

theorem was specific to time performance. Secondly, the earlier theorem had no

strictness conditions, whereas the above theorem does, replacing the explicit ticks

we had before. In both cases, these di�erences are inherited from the fusion theo-

rem or strong dinaturality property of the underlying theory.

10.4.2 Example: Monadic Fixed Points

In Chapter 6we gave an example instantiation for our correctness theory formonadic

fixed points, which occur when monads are equipped with a monadic recursion op-

erator mfix : (a → M a) → M a. We can apply our improvement theory to the

same example, obtaining the following set of conditions:

(1) g � M rep ◦ f ◦ abs

(2) g ◦ rep � M rep ◦ f

(3) M abs ◦ g � f ◦ abs

(1β) mfix g � mfix (M rep ◦ f ◦ abs)

(2β) mfix g � M rep (mfix f )

(3β) M abs (mfix g) � mfix f
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(1γ) M abs (mfix g) � M abs (mfix (M rep ◦ f ◦ abs))

(2γ) M abs (mfix g) � M (abs ◦ rep) (mfix f ))

(3γ) M abs (mfix g) � mfix f

Instantiating the conclusion gives the factorisation mfix f � M abs (mfix g). Once

again, the resulting theorem bears a close similarity with the standard fix theorem,

and the results depend only on the bilax strong dinaturality of mfix. The result is a

theory that allows us to reason about when factorising a monadic fixed point will

result in an improved program.

As an example, consider the following monadic FRP expression, where Sig a is

the type of varying values of type a.

delay :: a→ Sig a→ Sig a

xss :: Sig [Int ]

cat :: Sig [Int ]

cat = mfix (λs→ delay [ ] (xss >>= λxs→ return (s ++ xs)))

When these definitions are evaluated, cat will be a signal of lists such that the ith

value of cat will be the concatenation of the first i − 1 values of xs. However, this

definition is ine�icient, as each step of the progression requires the entire current

list to be traversed in order to append the current value of xs. We may be able to

improve this by factorising cat into a signal that produces a so-called “di�erence list”

in the sense of Hughes (1986), and a function that maps along that signal to turn the

di�erence lists back into ordinary lists. Thus, our A type is [Int ] and our B type is

[Int ]→ [Int ]. The abs and rep functions are as follows:

abs f = f [ ]

rep xs = λys→ xs ++ ys

The definition cat is the monadic fixed point of the following function:
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f :: Int→ Sig Int

f s = delay [ ] (xss >>= λxs→ return (s ++ xs))

We can use condition (2) to derive a function g that will serve as the core of our fac-

torised program. This process also helps us to work out what assumptions we need

to make, so that we can verify them later on.

M rep ◦ f

= { definitions }

λs→ delay [ ] (xss >>= λxs→ return (s ++ xs))

>>= (λrs→ return (λys→ rs ++ ys))

∼= { assumption 1: delay x xm >>= f ∼= f x >>= λy→ delay y (xm >>= f ) }

λs→ return (λys→ [ ] ++ ys)

>>= λy→ delay y (xm >>= λrs→ return (λys→ rs ++ ys))

= { monad laws, ([ ]++) is identity }

λs→ delay id (xss >>= λxs→ return ((s ++ xs)++))

� { assumption 2: ((x ++ y)++) � (x++) ◦ (y++) }

λs→ delay id (xss >>= λxs→ return (rep s ◦ (xs++)))

= { definition of rep }

λs→ delay id (xss >>= λxs→ return ((s++) ◦ (xs++)))

= { let g s = delay id (xss >>= λxs→ return (s ◦ (xs++))) }

g ◦ rep

The resulting definition of g can be used to produce the following program:

work :: Sig ([Int ]→ [Int ])

work = mfix (λs→ delay id (xss >>= λxs→ return (s ◦ (xs++))))

cat = do r← work

return (abs r)

In this reasoning, we have made some assumptions. Firstly, we have assumed

that delay x xm >>= f ∼= f x >>= λy → delay y (xm >>= f ), which is a requirement
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thatdelay is in somesensewell-behavedwith respect toe�iciency. Secondly,wehave

assumed that ((x ++ y)++) � (x++) ◦ (y++), which we can verify as follows:

((x ++ y)++)

= { operator sections }

λz→ (x ++ y) ++ z

� { right-association is more e�icient than le�-association }

λz→ x ++ (y ++ z)

∼= { reverse beta-reduction }

λz→ x ++ (λw→ y ++ w) z

= { operator sections, function composition }

((x++) ◦ (y++))

Therefore, so long as right-association is more e�icient than le�-association (which

we know to be true for the standard Haskell append) this assumption holds. We can

thus conclude that, so long as ourmfix operator is bilax strong dinatural and so long

as delay behaves as we expect with regard to e�iciency, the factorised program is

faster.

10.5 Remarks

The process of generalising from the correctness theorem of Figure 6.1 to the im-

provement theorem of Figure 10.1 was entirely straightforward, our treatment of cor-

rectness leading immediately to a related treatment of improvement. This is encour-

aging, as it helps to justify our choice of machinery. Furthermore, the similarities be-

tween the two theorems mean that it should be straightforward to adapt a proof of

correctness into a proof of improvement, a benefit this work shares with the work of

the previous chapter. However, in this work the correctness theorem can be consid-

ered a specialisation of the improvement theorem, which serves as progress toward

bridging the gap between correctness and e�iciency.
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Chapter 11

Summary and Evaluation

“If every pork chopwere perfect, wewouldn’t have

hot dogs.”

— Greg Universe, Steven Universe

InPart III,wepresented twotheoriesofprogram improvement for theworker/wrapper

transformation. These theories had some commonalities with each other, as well as

with the correctness theories presented in theprevious part. Neither theory is strictly

stronger than the other, although a theory similar to the first can be derived as an in-

stantiation of the second.

The first improvement theory was based on general recursion, modelling recur-

sive programs in an operational semantics with recursive let statements. As was the

case for the correctness theory for fixed points, in one sense this has a high degree of

generality as other recursion schemes can be implemented using general recursion.

However, the same problems of overhead and restricted setting also apply, with this

theory restricting us to a specific operational semantics. This theory also lacks a type

system,meaning that theuser of the theory cannotuseproperties derived fromtypes

when applying it. Finally, while this theory has separate (A), (B) and (C) assumptions

corresponding to the selection of assumptions of the correctness theories for fix and

unfold, assumption (A) is unsatisfiable in this context andonly included for complete-
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ness. A typed theory may allow assumption (A) to be satisfiable again.

The second improvement theory was based on bilax strong dinatural transfor-

mations. This is a generalisation of the previous correctness theory for strong dinat-

ural transformations and inherits the same degree of generality, being applicable to

a wide variety of recursion operators so long as they satisfy the underlying assump-

tion of bilax strong dinaturality. It also inherits the same limitations, lacking sepa-

rate (A), (B) and (C) conditions and requiring an ad hoc approach to strictness. Fur-

thermore, proving bilax strong dinaturality of an operator will be more di�icult than

merely proving strong dinaturality inmost cases, themain exception beingwhen the

ordering is discrete (and the properties therefore coincide).
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PART IV: CONCLUSION
Wrapping it up
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Chapter 12

Summary and Further Work

“It’s the end... but the moment has been prepared

for.”

— The Fourth Doctor, Logopolis

In this thesis, we studied the dual aspects of correctness and improvement for a gen-

eral program optimisation, the worker/wrapper transformation. We developed new

general theoriesof this transformation, andshowedthat these theorieswereall linked

by the same structure centered around an application of one of the related proper-

ties of rolling, fusion or (bilax) strong dinaturality. This showed that the transforma-

tion could be unified along several directions, ultimately leading to a general worker/

wrapper theory that could be applied to both improvement and correctness. Specif-

ically, wemade the following contributions:

• In Chapter 5 we gave a novel presentation of the worker/wrapper transforma-

tion for programs written in the form of an unfold. This presentation bore a

great deal of similarity to existingpresentations given for folds and fixedpoints,

but was di�erent in that it could be applied in the setting of CPPOswithout the

need for strictness conditions. Furthermore, we were able to develop a modi-

fied version of the (C) assumption that was not applicable in the fix case.

• In Chapter 6 we demonstrated that the core of existing worker/wrapper theo-
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ries was the application of either the rolling rule or fusion, and used this to de-

velop a general worker/wrapper transformation based on the categorical no-

tion of strong dinaturality. This form of the transformation could be applied

to any operator satisfying the property of strong dinaturality, which in many

cases follows from parametricity, and the correctness proof for this transfor-

mation followed the same structure as existing correctness proofs. We showed

how several other worker/wrapper theories could be obtained by instantiating

this one, including the previous theories for fixed points and unfolds.

• In Chapter 9 we used improvement theory to verify that, under certain natural

conditions, the worker/wrapper transformation for least fixed points does not

make programs slower. This was the first case of such a result being proved for

a general-purpose program optimisation, and demonstrates the utility of both

the worker/wrapper transformation and improvement theory.

• In Chapter 8 we introduced the idea of using preorder-enriched categories to

reason about notions of program improvement, which we subsequently used

in Chapter 10 to extend the presentation of the worker/wrapper transforma-

tion based on strong dinaturality to one based on bilax strong dinaturality. The

result was a generalised theory of improvement for the worker/wrapper trans-

formation, giving improvementproperties for any recursionoperator satisfying

its preconditions. This theory was strictly stronger than the theory for strong

dinaturality, as this theory could be recovered simply by choosing the ordering

in which program improvement and program equivalence coincide.

12.1 Conclusion

This thesis presents five di�erent theorems, each one giving correctness or improve-

ment properties for theworker/wrapper transformation. These theorems havemany
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commonalities: all five are factorisation theorems for recursive programs, all have

proofs with the same fundamental structure centred on applications of either fusion

or rolling rules and all provide a range of conditions that canbeused to derive the im-

proved program. However these theorems di�er by the settings and operators they

areapplicable toaswell aswhether theyprovecorrectnessor improvement. Wesum-

marise the five theorems in the following table:

Type Correctness Improvement

Theorem Fig. 4.1 Fig. 5.2 Fig. 6.1 Fig. 9.2 Fig. 10.1

Setting CPPOs Category
Theory

Category
Theory

Sesto�
Abstract
Machine

Enriched
Category
Theory

Operators fix unfold strong
dinaturals

recursive
bindings

bilax strong
dinaturals

For the restof this sectionweshall discuss some importantdi�erencesbetween these

five theorems.

Wehave twotheoremscovering recursivebindings, onebasedon least fixedpoints

and one based on recursive bindings. However, while generally recursive programs

can be modelled equally well by both of these, the two theorems cannot be unified

becauseof their di�erent settings. The correctness theorem forfixhas adenotational

setting of CPPOs, while the improvement theorem for recursive bindings is based on

an operational semantics. While CPPOs are a natural setting for reasoning about the

correctness of lazy functional programs, anoperational settingwasneeded to reason

about time costs.

The correctness theorems for unfolds and strong dinaturals are both in the same

setting of category theory. However, once again these theorems are not perfectly

unifiable. The unfold theorem has a choice of assumptions (A), (B) and (C) for the

relationship between abs and rep, while the strong dinaturality theorem o�ers only

one such option. While it is possible to generate an unfold theorem by instantiating

the strong dinaturality theorem, it is quite as strong as the original unfold theorem.
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Finally, the first improvement theory is based on an operational semantics, and

the second is based in category theory and thus geared more toward denotational

semantics. Both are general, as theoperational improvement theory is basedongen-

eral recursion which can be used to implement any recursion scheme while the cat-

egorical theory allows for a wide range of recursion operators. However, in order to

use the categorical theorem it is necessary to prove that the recursion operator and

the relevant notion of improvement satisfy the assumptions of the theory. The oper-

ational theory ismore immediately applicable, but can only be used to reason about

time costs in a call-by-need setting.

12.2 Relation to Other Work

Because of the generality of the dinaturality-based theories, it is informative to con-

sider how they relate to other worker/wrapper-style techniques.

The bilax dinaturality-based worker/wrapper theory can be applied to Milner’s

theory of programsimulation (Milner, 1971). The operation that takes a statemachine

and produces the associated partial function is bilax strong dinatural in the category

of relations from the functor λX Y Z . X + Y ↔ Y + Z to λX Y Z . X ↔ Z.

Given state machines S : A + B ↔ B + C, T : A′ + B′ ↔ B′ + C′ and relations

R1 : A ↔ A′, R2 : B ↔ B′, R3 : C ↔ C′, lax strong dinaturality gives us that if

(R2 + R3) ◦ T � S ◦ (R1 + R2) thenR3 ◦ func (T) � func (S) ◦ R1, where� is the

inclusion of relations. This implication is precisely Milner’s theorem 3.3(i). The oplax

case follows from duality, as all arrows in the category of relations are reversible.

The dinaturality theories can be seen as a functional analogue to Hoare’s work

on abstract data (Hoare, 1972). We can consider the abstract program as a dinatural

transformation: it takes a concrete type A and a set of operations on that type, and

produces a program that uses that type in place of the original abstract type. The

worker/wrapper theory then tells us when it is safe to replace one implementation

138



with another, providing a wide variety of conditions we can use to verify this safety.

Wecannot yet apply theworker/wrapper theory to thecaseofdefunctionalisation

(Reynolds, 1998a), as while it is straightforward to use the worker/wrapper theory to

move to a larger type, there is not yet a good story for moving to a smaller type. The

condition (C) allowsus todo this in some theories byweakening the requirement that

abs ◦ rep = id (and it is this requirement that implies that thenew typeB is larger than

the original type A), but as yet there is no equivalent condition for either of the two

dinaturality-based theories.

12.3 Further Work

There are a number of potential avenues for further work, whichwe outline here. For

convenience, we split these ideas into the two categories of theory and practice.

12.3.1 Theory

Our generalised theory based on (bilax) strong dinaturality lacks the separate (A), (B)

and (C) assumptions of previous theories. This flaw is minor, as the assumption (A)

is by far the most used assumption in practice, but it is still worth seeing if this could

be rectified. Not only would this make the strong dinaturality theory a true gener-

alisation of previous theories, it would also give us further insight into the worker/

wrapper transformation in general.

Complementing thepreviouspoint, furtherworker/wrapper theories couldbede-

veloped for other recursion operators or settings. Comparing these theories to the

corresponding instantiations of the generalised theorywould point towayswe could

improve the generalised theory. Furthermore, specific theories will be generally eas-

ier to apply than generalised ones, as they require less knowledge of the underlying

theory. By the same token, itmaybeworthdevelopingmore specificworker/wrapper

improvement theories for recursion patterns other than general recursion.
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In developing our generalised theories, we made the assumption that all oper-

ators of interest would be (bilax) strong dinatural, and justified this with an appeal

to parametricity. However, there are some cases where parametricity is not strong

enough to fulfil the requirement that an operator be strongly dinatural. Thus, we

should investigate the relationship between strong dinaturality and parametricity

more closely and use our findings to refine our generalise worker/wrapper theory,

either by addingmore requirements or bymodifying our assumption of strong dinat-

urality to better fit what is provided by parametricity.

The only worker/wrapper theory for improvement tied to a concrete operational

semantics is limited to reasoning about time e�iciency. Gustavsson and Sands (1999,

2001) have developed an improvement theory for space, so this would be an obvious

next step. More generally, we could apply a technique such as that used by Sands

(1997) to develop a theory that applies to a large class of resources, and examine

which assumptions must be made about the resources we consider for our theory

to apply. Such a theory would put our categorical improvement theory on a more

solid footing.

In Chapter 9, we briefly discussed the potential of a typed improvement theory.

While this is partially fulfilled by our worker/wrapper theory based on bilax strong

dinaturality, we may also benefit from developing an operational typed theory. This

could be used to justify the assumptions made by the dinaturality theory as well as

being a useful theory in its own right.

At the moment, in order to verify preconditions for our improvement theorems,

onewouldneed to fall backonpre-existing theoriesof improvementbasedon theop-

erational semantics of a programming language. This is undesirable, as it increases

the amount of theoretical knowledge andproof skills that a programmerwould need

to use our theory. We would like to develop a purely categorical theory of improve-

ment, allowing improvement relations to be proved in a purely abstract way without

the need to reason at the level of an underlying concrete semantics.
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Finally, in all cases, our assumed relationship between abs and rep is some kind

of equivalence. In the context of improvements, this implies that abs (rep x) cannot

bemore than a constant factor slower than x, which limits our choice for these oper-

ations. We would like to also be able to cover cases where abs and rep are expensive,

but the extra cost is made up for by the overall e�iciency gain of the transformation.

To cover such cases, wewould require a richer version of improvement theory that is

able to quantify howmuch one program is better than another.

12.3.2 Practice

As our examples show, the calculations required to derive an improved program can

o�en be quite involved. This is especially the case when applying improvement the-

ory, where much of the work involves the careful bookkeeping of ticks. The HERMIT

system, devised by a teamat theUniversity of Kansas (Farmer et al., 2012; Sculthorpe

et al., 2013), facilitates program transformations by providing an interactive interface

for program transformation that verifies correctness. If improvement theory could

be integrated into such a system, it would be significantly easier to apply our new

improvement-based worker/wrapper theories.

Finally, we would like to investigate the potential for automating the transforma-

tion. By far the biggest hurdle for this would be automating the verification of the

preconditions. We believe that the best approach to doing this would be to adapt

algorithms designed for higher-order unification (Huet, 1975), the problem of solving

equations on lambda terms. It may even be possible to adapt these algorithms to

deal with the inequational conditions of our improvement theorems. It may be pos-

sible to integrate higher-order unification into either HERMIT or GHC to facilitate the

automation of the worker/wrapper transformation.
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