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Abstract 
 
Background 
Airways diseases are increasingly recognised to be poorly defined phenomena with 

overlapping pathophysiology and symptoms. They are a significant and growing cause of 

morbidity, with increasing numbers of people affected globally and no improvement in key 

outcomes in the UK for the last decade despite ever increasing expenditure. The 

classification of airway diseases has changed little in the last 50 years, and may no longer be 

fit for purpose due to the growing appreciation of the complexity and heterogeneity of 

airways disease and the advent of molecular-based diagnostic techniques to target specific 

treatment.  

 

Aim 

To investigate whether strategies based on the measurement of selected phenotypic and 

biological characteristics of airways disease can help to improve the understanding of their 

pathogenesis and targeting of treatment. 

 

Methods 

Three characteristics of airways disease, namely (1) exhaled nitric oxide, (2) chronic 

productive cough of unknown cause and (3) the airway microbiota were 

described/measured in selected cohorts of patients in three clinical studies. Measurement 

of each of these characteristics was used to answer focused clinical questions regarding the 

pathogenesis and treatment of aspects of airways disease.  

 

Results 

(1) The baseline measurement of FENO in steroid naïve subjects with symptoms suggestive of 

asthma had a low diagnostic value for asthma but was an excellent predictor of inhaled 

steroid treatment response. (2) A cohort of subjects with chronic productive cough of 

unknown cause was described. These subjects tended to have radiological evidence of 

airway dilatation and chronic inflammatory changes but not significant bronchiectasis. Their 

cough responded well to treatment with azithromycin, with ongoing neutrophilic airway 

inflammation a particularly strong predictor of treatment response. (3) There were no 

significant differences in the abundance or community structure of the bacterial 

communities in the airways between subjects with mild (BTS 2) or severe (BTS 4) asthma or 

between severe (BTS 4) asthma patients taking inhaled fluticasone or budesonide. However 

a number of differences in relative abundance of certain species (including enrichment of 

Haemophilus parainfluenzae in the fluticasone group) were noted on comparison of the 

groups.  
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Conclusions 

This thesis provides support for a new approach to the classification and treatment of 

airways disease. The recognition of pathologically important processes (treatable traits) 

which can be used to predict response to targeted treatment has the potential to 

revolutionise the management of airways disease and result in improved patient outcomes. 
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Thesis: Aim and Outline 
 

Airways diseases are increasingly recognised to be poorly defined phenomena with 

overlapping pathophysiology and symptoms. They are a significant and growing cause of 

morbidity, with increasing numbers of people affected globally and no improvement in key 

outcomes in the UK for the last decade despite ever increasing expenditure. The 

classification of airway diseases has changed little in the last 50 years, and may no longer be 

fit for purpose due to the growing appreciation of the complexity and heterogeneity of 

airways disease and the advent of molecular-based diagnostic techniques to target specific 

treatment. Recognition of specific phenotypic and biological markers underlying patterns of 

disease which will respond to targeted treatments has the potential to revolutionise the 

management of airways disease and result in improved patient outcomes.  

The overall aim of this thesis is to investigate whether selected phenotypic and biological 

characteristics of airways disease can be used to improve targeting of treatment. An outline 

of the structure of the thesis with individual study aims is as follows: 

Firstly, the current definitions of airways disease and the existing healthcare burden of 

these conditions will be determined. Existing literature regarding the causes and specificity 

of symptoms of airways disease will be reviewed. The pathophysiological processes 

underlying airways disease and main phenotypic groups in which these characteristics 

predominate will then be considered along with review of the main treatments targeting 

these processes. 

Chapter 2 titled ‘The utility of exhaled nitric oxide in patients with suspected asthma’ 

explores the importance of making a diagnosis of asthma in order to institute timely and 

effective treatment to control symptoms, the features and diagnostic accuracy of tests used 

to ‘diagnose’ asthma and the most recent guidelines for asthma diagnosis. The aim of the 

study is to investigate the utility of measuring exhaled nitric oxide for diagnosing asthma or 

predicting response to inhaled steroid treatment.  

Chapter 3 ‘Chronic Productive Cough and the use of Macrolides in Airways Disease’ reviews 

the current literature regarding the symptom of chronic productive cough and its causes as 

well as the mechanisms of action and use to date of macrolides in respiratory disease. The 

aim of the study is to describe in detail the underlying pathophysiology of a cohort of 

patients with the symptom of chronic productive cough who have had the usual underlying 

causes for this symptom excluded whilst simultaneously assessing the effectiveness of an 

open label trial of low dose azithromycin in treating this symptom.   

Chapter 4 ‘The microbiota in asthma’ examines the small but rapidly growing body of 

evidence in the emergent field of respiratory bacterial microbiota analysis. These techniques 

use DNA based sequencing to examine the bacterial communities of the airways in 

unprecedented detail. A systematic study of the airways microbiota of subjects with 

different severities of asthma using different doses and types of inhaled steroids is 

described. The aim of this study is to examine the effect of inhaled steroid dose and type on 
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the bacterial content of the airways, providing information that may be relevant to the 

targeting of inhaled steroid treatment.  
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Chapter 1: Background 

1.1 Introduction 
“Airways diseases” can be broadly defined as diseases affecting the transmitting structures 

(airways) that allow the passage of gases into and out of the lungs. They affect the airways 

by causing inflammation of the airway walls, which can result in tissue damage, narrowing 

or obstruction of the airways. Many different ‘types’ of airway disease including asthma, 

chronic obstructive pulmonary disease (COPD),’bronchitis’ and bronchiectasis have been 

described which affect over 400 million people worldwide (1). 

Despite the increasingly high global burden of airways disease and many advances in the 

understanding of the causes, progression and management of these conditions they remain 

poorly defined with few changes in their classification in the last 50 years. A change in the 

approach to classifying airways diseases may be required owing to an increasing recognition 

of their underlying complexity and heterogeneity and the promise of forthcoming novel 

biological agents that may be targeted to specific patients using certain biomarkers.  

Airways diseases lead to the development of various symptoms including cough, wheeze 

and shortness of breath.  The accuracy of diagnosing airways diseases based upon eliciting 

these symptoms in a clinical history is uncertain. However, previous work has indicated that 

a significant proportion of primary care physicians often make diagnoses of airways diseases 

on features from clinical history alone so it is important to establish the discriminatory value 

of these symptoms.  

The diagnosis and management of airways disease may be improved using objective tests 

capable of measuring and quantifying the pathophysiological processes that underlie them. 

For example, establishing the underlying pattern of airway inflammation in subjects with 

airways disease has been determined to be of great value in guiding treatment. Exhaled 

nitric oxide (FENO) is an easily measured biomarker of ongoing Th2 inflammation in the 

airways, but its role in the diagnosis and management of airways disease remains unclear.  

The current classification of airways diseases means that some subjects presenting with 

symptoms of airways disease are not easily categorised with one of the existing disease 

labels. One such cohort of subjects present with the symptom of chronic productive cough 

(“chronic bronchitis”) which is not explained by any of the recognised causes for this 

symptom even after thorough investigation. Initial indications suggest that treatment with 

long term low dose macrolides may improve the symptom burden in this group of patients. 

However, the underlying pathophysiology of this cohort of patients and their response to 

macrolide treatment are still to be determined.  

Finally, a hitherto under-explored component of the pathophysiology of airways disease is 

the contribution of bacteria extant within the airways to features of disease. New DNA-

based detection techniques have revealed that communities of bacteria (microbiota) in the 

airways of subjects with airways disease are different to those from healthy subjects and 

include potentially pathogenic species. Whether or not the composition of the microbiota 
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differs between subjects with different severities of airways disease using different doses 

and types of inhaled steroids is yet to be established. 

It is clear from the preceding background that there are a number of important factors in 

the treatment and management of airways disease that require further consideration and 

investigation. Accordingly it would be appropriate to review in greater detail: the 

epidemiology, symptoms, and pathophysiology of airways disease, the use of investigations 

in the diagnosis of airways disease, causes of chronic productive cough and the use of 

macrolides in airways disease and the existing knowledge regarding the composition of the 

microbiota in airways disease.  

1.2 Airways Disease: Definitions and Epidemiology 
The terminology used to describe airways disease has an interesting history and has long 

been a subject of great debate. Arguably the modern roots of current definitions of airways 

disease arise from a meeting of the CIBA Guest Symposium in 1959 (2), when at that time 

the terms “asthma”, “emphysema” and “chronic bronchitis” were often used 

interchangeably. The recommendations of the symposium were that these conditions 

should collectively be known as “chronic non-specific lung disease” (CNSLD). However, this 

phrase was considered too “cumbersome” for clinical practice and it was suggested 

therefore that patients should be classified with the following diagnostic labels: (1) “Chronic 

bronchitis” which “refers to the condition of subjects with chronic or recurrent excessive 

mucous secretion in the bronchial tree” and/or (2) “Generalised obstructive lung disease” 

which “refers to the condition of subjects with widespread narrowing of the bronchial 

airways, at least on expiration, causing an increase above the normal in resistance to air 

flow”. The latter category could be further subdivided into groups comprising (i) 

“intermittent or reversible” i.e. asthma or (ii) “irreversible or persistent” which would later 

come to be known as chronic obstructive pulmonary disease (COPD).  

The idea that these described diagnostic labels were distinct conditions and arose from 

different underlying pathophysiological processes would become known as the “British 

hypothesis” (3). This was in contrast to the so called “Dutch hypothesis”, first put forward by 

Orie and de Vries in 1961 (4). This alternative hypothesis stated that “asthma, chronic 

bronchitis and emphysema should be considered as different expressions of the same 

disease entity, in which both endogenous (host) and exogenous (environmental) factors play 

a role in the pathogenesis”. The Dutch hypothesis therefore opposed the use of distinct 

diagnostic labels, and recommended instead the original collective term of CNSLD. Debate 

still continues as to the pros and cons of these different hypotheses of airways disease (5, 6) 

with both protagonists seemingly accumulating growing bodies of evidence to endorse their 

respective positions (7, 8) and some studies also providing support for both hypotheses (9). 

Current international guidelines regard asthma and COPD as distinct and epidemiological 

studies also define them differently, although in recent years the ‘crossover’ diagnostic label 

of Asthma-COPD Overlap Syndrome has also been formally recognised (10).  

The current definitions of asthma, COPD and bronchiectasis with estimates of their 

prevalence, morbidity and mortality are discussed in more detail below. 
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1.2.1 Asthma 

1.2.1.1 Definition 

Asthma is defined by the Global Initiative for Asthma (GINA) principally as “a heterogeneous 

disease, usually characterized by chronic airway inflammation” which “is defined by the 

history of respiratory symptoms such as wheeze, shortness of breath, chest tightness and 

cough that vary over time and in intensity, together with variable expiratory airflow 

limitation” (11). 

This definition, which is notable in its lack of specificity, describes asthma as a 

heterogeneous disease, i.e. a disease that is diverse in its characteristics and identifies the 

key features of the condition as being airway inflammation, variable respiratory symptoms 

and intermittent airflow obstruction. It does not attempt to objectively define asthma based 

on physiological or biological parameters. 

1.2.1.2 Epidemiology 

Asthma is one of the most common chronic diseases in the Western world, with around 10% 

of the UK population affected (12) and with an estimated 300 million cases worldwide. 

However, national prevalence figures are difficult to compare owing to the lack of a 

universal standardised definition (13). After increasing for many decades the prevalence of 

asthma in Western industrialised countries now seems to be falling (14). Nevertheless, the 

increasing incidence in developing countries such as China and India means that global 

prevalence of the condition is rising (15). 

1.2.1.3 Morbidity/Mortality 

Asthma is a significant cause of morbidity globally, accounting for an estimated 22.2 million 

disability adjusted life years (DALYs - i.e. the sum of years lost due to premature mortality 

and years of life lived with disability, adjusted for the severity of disability). This figure 

represented ~1% of the global disease burden in 2013 (16). The condition is estimated to 

cause 489,000 deaths worldwide per year (0.9% of all causes globally) (17) and was 

responsible for 1216 deaths in the UK in 2014 (18). 

Both the morbidity and mortality from asthma improved markedly from the 1950s to the 

2000s (19, 20). However, over the last decade the rates of asthma exacerbations (21), 

hospitalisation from asthma (22), asthma control measures (23) and mortality from asthma 

in the UK (24, 25) have not significantly changed.  

The social and economic costs of asthma are substantial in developed and developing 

countries (26, 27) and the overall cost of asthma to the UK economy is estimated to be 

around £1 billion per year (18, 28). This increasing cost burden is mostly due to the 

increasing direct costs of asthma from treatment and hospitalisation due to asthma 

exacerbations (26, 29) but also significant indirect costs due to absenteeism from work and 

loss of productivity (30).  
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1.2.2 Chronic Obstructive Pulmonary Disease (COPD) 

1.2.2.1 Definition 

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) defines COPD as follows 

(31): 

 "COPD, a common preventable and treatable disease, is characterized by airflow limitation 

that is usually progressive and associated with an enhanced chronic inflammatory response 

in the airways and the lung to noxious particles or gases. Exacerbations and comorbidities 

contribute to the overall severity in individual patients” 

Again it is evident that this definition is more a general description of features usually 

associated with COPD than an attempt to define the condition based on objective 

physiological or biological parameters.  

1.2.2.2 Epidemiology 

The prevalence of COPD is difficult to estimate accurately due to the lack of a standardised 

definition. Different studies have used varying case definition criteria, including 

symptomatology as assessed by questionnaire, doctor diagnosis or lung function criteria 

(32). Indeed, differences in the lung function testing criteria for assessing limitation between 

the two main published guidelines in this area led to a significant difference in the number 

of subjects classified as having airflow obstruction, and hence COPD (33).  

A meta-analysis of population based COPD prevalence data published between 1990 and 

2004 generated a pooled prevalence of 7.6%, but this was largely based on data from 

Europe and North America with limited reports from elsewhere (34). A more recent meta-

analysis suggested a global increase in the prevalence of COPD, with prevalence increasing 

in all regions, but particularly in the Eastern Mediterranean and African regions (albeit 

based on limited data) (35). 

1.2.2.3 Morbidity/Mortality 

Morbidity and mortality from COPD is substantial and increasing globally. In 2013 an 

estimated 72 million DALYs (2.9% of global disease burden) were lost to COPD (16) 

representing an increase of 8.2% since 2005. COPD caused an estimated 2,931,000 deaths 

worldwide in 2013 (5.3% of all causes globally) (17); an increase of 21% since 1990. In the 

UK, COPD caused 29,776 deaths in 2012 (36). 

Premature mortality from COPD seems to be improving in developed countries although 

figures from the World Health Organisation (WHO) showed that early mortality from COPD 

was twice as high in the UK than the rest of Europe in 2012 (37). 

The number of hospitalisations and emergency admissions of patients with COPD increased 

in the USA between 2001-2012 (38) and the rate of emergency admissions for the condition 

in the UK did not change significantly between 2003 and 2013 (39). The overall cost of COPD 

to the UK economy is estimated at £1.2 billion (40) and both direct and indirect costs of 

COPD are expected to continue increasing globally over coming years (41). 
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1.2.3 Bronchiectasis 

1.2.3.1 Definition 

Bronchiectasis is generally defined as the “irreversible abnormal dilatation of the bronchi”. 

This structural pathological change is usually accompanied by clinical symptoms, the most 

common of which is a chronic productive cough (42). The condition is diagnosed by a high 

resolution computed tomography (HRCT) scan demonstrating a bronchus with an internal 

diameter wider than its adjacent pulmonary artery which fails to taper. Bronchi which can 

be visualised 1-2 cm from the pleural surface is an additional radiological feature (43). 

1.2.3.2 Epidemiology 

Limited current data regarding international prevalence rates for bronchiectasis are 

available, although studies from the UK and USA suggest the prevalence of the condition is 

increasing (44-46). The total prevalence in the UK was estimated at 301/100,000 men and 

351/100,000 women in 2004, rising to 486/100,000 in men and 566/100,000 in women in 

2013 (46). It is unclear if this reflects a true increase in the number of cases or increased 

recognition of the condition due to more widespread HRCT scanning (45, 47). Bronchiectasis 

is more prevalent in women and the prevalence generally rises with age, being highest in 

those aged ≥70 years (46).  

1.2.3.3 Morbidity/Mortality 

A valid estimate of the morbidity from bronchiectasis is difficult owing to a lack of data in 

comparison to other chronic respiratory diseases. Subjects with bronchiectasis have a 

significantly increased risk of mortality in comparison with the general population. In the UK 

the age adjusted mortality rate is 1438/100,000 for women with bronchiectasis as 

compared to 636/100,000 in the general population, whilst for men these mortality rates 

are 1915/100,000 vs. 895/100,000 respectively (46). Mortality due to bronchiectasis 

apparently increased in the UK from 797 recorded deaths in 2001 to 908 in 2007, although 

this increase was driven by increasing mortality rates in the two oldest age groups which 

were simultaneously falling in the three youngest age groups (48). 

The limited data available regarding the cost of inpatient episodes of bronchiectasis suggest 

the direct costs of managing the condition are considerable (49, 50). These direct costs are 

likely to continue to rise, with increased numbers of hospitalisations and emergency 

admissions secondary to the condition reported in both the USA (51) and Germany (52); as 

well as increasing numbers of ICU admissions secondary to bronchiectasis in the UK (53). 

The indirect costs of bronchiectasis are unclear but these are also likely to be significant.   
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1.2.4 Airways Disease: The scale of the problem 
Ambiguity in the definitions of distinct ‘conditions’ of airways disease above may reflect the 

growing recognition of the complexity and heterogeneity of airways disease. A lack of 

specificity has almost become necessary when “defining” asthma and COPD so that these 

disease labels might encompass the increasingly diverse spectrum of airway pathology and 

resultant patterns of disease recognised in a growing number of people worldwide. 

The massive, and increasing, healthcare and socioeconomic burden secondary to airways 

disease is readily apparent. The growing numbers of people affected are likely to lead to 

increasing direct and indirect healthcare costs in the coming decades and treatment costs 

are also likely to increase due to growing availability of a number of novel therapies. 

Unfortunately, the improvements seen from the 1950s to the 2000s in key outcomes such 

as exacerbations of airways disease, hospitalisations for airways disease and asthma control 

measures seem to have stalled over the last decade despite an increased expenditure (23). 

A new approach to the characterisation and management of airways disease may be 

required to reflect their complex and heterogeneous nature and to improve treatment 

outcomes. The purpose of this thesis was 1) to examine the phenotypic and 

pathophysiological characteristics of certain airways diseases and 2) to investigate novel 

strategies based on the identification of these characteristics that might improve the 

treatment of disease.  

The first step in this process is to consider the importance and discriminatory value of the 

most obvious and direct phenotypic characteristics expressed by individuals with airways 

disease:  their symptoms.  
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1.3 Symptoms of Airways Disease  
Airways disease usually leads to the development of various symptoms in an affected 

subject. These symptoms include cough, wheeze, shortness of breath (or dyspnoea) and a 

sensation of ‘tightness’ of the chest.  

The accuracy of diagnosing airways disease based upon eliciting these symptoms in a clinical 

history is unclear. However, previous work has indicated that a significant proportion of 

primary care physicians often make diagnoses of airways disease based on history alone (54-

56). It is important therefore, to establish the discriminatory value of these symptoms. 

Accordingly, the prevalence of certain respiratory symptoms and their predictive value for 

the diagnosis of airways disease will be discussed along with a brief overview of other 

pulmonary and extrapulmonary conditions that can also cause these symptoms. 

1.3.1 Cough 
Causes of the symptom of cough are often classified by duration, for example the categories 

used by the American College of Chest Physicians (ACCP), are “acute” (<3 weeks), “sub-

acute” (3-8 weeks), or “chronic” cough (>8 weeks) (57). As the majority of cases of acute 

and sub-acute cough are secondary to infection these will not be discussed further in this 

section, and only cough more likely to be secondary to airways disease, i.e. “chronic” cough 

with a duration of >8 weeks, will be considered. 

The causes of a predominantly productive cough are discussed later (Section 1.6.2) and so 

this section describes cough in general terms.  

1.3.1.1 Prevalence 

A recently completed meta-analysis found that the regional prevalence of chronic cough 

varied between ~2% in Africa to ~18% in Oceania, with a prevalence in Europe of around 

13% (58). However, this analysis was subject to several limitations including significant 

heterogeneity in the definition of chronic cough and a relative lack of data from non-

European countries. 

Other factors or conditions that have recognised associations with chronic cough include 

respiratory wheezing (59), symptoms of gastro-oesophageal reflux disease (60), smoking 

(61) and exposure to airborne environmental pollutants (62, 63). 

1.3.1.2 Specificity as a symptom of airways disease 

a) Asthma 

Several investigators have attempted to determine the sensitivity and specificity of 

symptoms of airways disease for the diagnosis of asthma. These studies have differed 

slightly in their use of a ‘gold standard’ signifier of asthma diagnosis. In some studies this 

‘standard’ has been a physician diagnosis of asthma based on symptoms alone, whilst others 

have used a physician diagnosis of asthma based on symptoms plus an objective test. A 

comparison of the values of sensitivity and specificity of each of these symptoms for asthma 

diagnosis is shown in Table 1.1.  
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Sistek et al. in the SAPALDIA study (64) attempted to predict the diagnostic value of 11 

different respiratory symptoms to diagnose asthma in 9651 subjects who completed a 

symptom questionnaire. ‘Doctor diagnosed asthma’ (DDA) was defined as a positive answer 

to each of the questions: “Have you ever had asthma?” “Was this asthma confirmed by a 

doctor?” and “Have you had an attack of asthma in the last 12 months?”. Two-hundred and 

twenty-five subjects (2.3%) had DDA. The symptom of chronic cough was defined as a 

positive answer to the question: “Do you usually cough during the day or at night, on most 

days for as much as 3 months each year over at least 2 years?” and the symptom of 

nocturnal cough defined as a positive answer to the question: “Have you been woken up by 

an attack of coughing at any time in the last 12 months?”. Chronic cough had a sensitivity of 

21.5% with a specificity of 95.2% for DDA, whilst nocturnal cough had a sensitivity of 49.3% 

and a specificity of 72.3%. 

A similar study by Sistek et al. (65) used the same symptom questionnaire in 784 patients 

who also underwent objective testing for asthma in the form of the methacholine bronchial 

challenge test. This test assesses the response of the airways to a nebulised agent that is 

known to cause airway constriction (methacholine) and a positive result is often interpreted 

as objective evidence of a diagnosis of asthma (discussed in greater detail in Section 

2.2.2.4). The same definitions of DDA, chronic cough and nocturnal cough were used and 

one-hundred and four subjects (8.3%) had DDA. In this population the sensitivity and 

specificity for the symptom of chronic cough were found to be 43.1% and 83.9% 

respectively for DDA whilst the symptom of nocturnal cough had a sensitivity of 60% and a 

specificity of 66.1%. Bronchial challenge testing by comparison had a sensitivity of 84.6% 

and specificity of 80.5% for DDA.  

Choi et al. (66) assessed the use of a questionnaire containing five questions regarding the 

symptoms of asthma to discriminate between 210 subjects with asthma, as diagnosed by a 

positive methacholine challenge or bronchodilator reversibility testing, and 92 without 

asthma. These authors found that paroxysmal coughing was less common in asthmatics 

than in non-asthmatics and had only a 16% and 42% sensitivity and specificity respectively 

for diagnosing asthma. 

Schleich et al. (67) used a similar symptom questionnaire to interrogate the symptoms 

experienced by 174 corticosteroid naïve subjects with respiratory symptoms who were 

diagnosed as having asthma (n=82) or not having asthma (n=92). Subjects were assigned to 

the two groups on the basis of methacholine challenge testing. The symptoms of diurnal 

cough (sensitivity 66% and specificity 26%) and nocturnal cough (sensitivity 37% and 

specificity 65%) were again found to be lacking in both sensitivity and specificity for the 

diagnosis of asthma. 

Schneider et al. (68) attempted to determine the diagnostic accuracy of certain respiratory 

symptoms listed on a structured questionnaire for asthma and COPD in subjects from GP 

(n=219), inpatient (n=300) and outpatient (n=259) settings. Asthma was diagnosed by a 

respiratory physician on the basis of results of whole body plethysmography as well as 

bronchodilator reversibility testing (in those with airways obstruction) or methacholine 

challenge (in those without obstruction). The sensitivity and specificity for the symptom of 
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cough for asthma diagnosis varied from 43-53% and 32-64% respectively in the different 

healthcare settings. 

Finally Lim et al. (69) investigated whether five questions on symptoms of asthma as 

recommended by the GINA guidelines could accurately diagnose asthma, as defined by a 

positive methacholine challenge test, in a group of 680 subjects. Methacholine challenge 

testing was positive in 164 patients and negative in 516 and the symptom of nocturnal 

cough had a sensitivity of 62% and a specificity of 44% for the identification of methacholine 

test positive patients. 

b) COPD 

A number of studies have observed significant associations between symptoms of cough 

and productive cough and a diagnosis of COPD or “airflow limitation”. An increased 

likelihood of COPD diagnosis in subjects with the symptom of dry cough or “cough” 

(unspecified if productive or not) has been observed  in studies by Lamprecht (70), Freeman 

(71), Hanania (72), Van Schayck (73), Albers (74), Minas (75) and Ohar (76) (See Table 1.2). 

Increased odds of COPD in subjects specifically with a cough productive of sputum were 

noted in studies by Lamprecht (70), Medbo (77) and Ohar (76). 

Few studies have attempted to assess the predictive value of symptoms for diagnosing 

COPD. Ohar et al. (76) investigated the accuracy of respiratory symptoms to diagnose 

airflow obstruction in 3955 subjects undergoing work-related medical evaluations. COPD 

was diagnosed in subjects with airflow obstruction ≥40 years who had a smoking pack year 

history of ≥20 years. Subjects with cough had increased likelihood of airflow obstruction, 

and this was further increased in smoking subjects with a cough (n=2917). The sensitivity 

and specificity of cough for COPD (airflow obstruction and specified smoking history) in the 

whole population were 69% and 48% respectively and were very similar in the smoking 

subjects alone at 71% and 44% (Table 1.2).   

Murgia et al. (78) investigated the sensitivity and specificity of chronic bronchitis symptoms 

(cough with sputum production for ≥3 months within 1 year for 2 consecutive years) for the 

diagnosis of COPD (actually airways obstruction as defined by pulmonary function 

measures) in a sample of 3892 subjects from the general Swedish population. For the whole 

population chronic bronchitis symptoms were found to have a sensitivity of ~5% and a 

specificity of ~98% for airways obstruction. These values were similar when groups were 

sub-classified by gender and smoking status. 

The definitions of ‘COPD’ in both of these studies (76, 78) are questionable and both studies 

could more accurately be described as assessing the value of symptoms to predict airways 

obstruction (both of which may include a significant percentage of subjects with asthma) 

but their findings are summarised here for completeness.  

c) Bronchiectasis 

Published data for the predictive value of symptoms for diagnosing radiologically significant 

bronchiectasis is scarce. 
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It is clear that the symptom of productive cough is present in a high proportion of subjects 

with bronchiectasis. For example, King et al. (42) found that 99/103 (96%) subjects in a 

cross-sectional study of patients with new diagnoses of bronchiectasis had the symptom of 

productive cough 

A few authors have previously investigated the degree of correlation between the symptom 

of sputum production/productive cough and the diagnosis and extent of bronchiectasis as 

demonstrated on HRCT scan. Smith et al. (79) studied 40 subjects with chronic sputum 

production and found the continual production of purulent sputum (as described on clinical 

history taking) had a significant predictive value for the presence of bronchiectasis. This 

value is not listed in the paper, but by calculation using a 2x2 table the odds of a subject 

having bronchiectasis with the symptom of continuous purulent sputum were around 7 

times those of subjects who never produced purulent sputum or only did so during 

exacerbations  (odds ratio (OR) 6.9; 95% confidence interval (CI) 1.3-37.2). The calculated 

sensitivity and specificity of this symptom for bronchiectasis were 55.6% and 84.6% 

respectively. Lynch et al. (80) assessed the relationship between the clinical and HRCT 

findings of 261 subjects with radiologically diagnosed bronchiectasis. They found a weak but 

significant positive correlation between daily sputum volume and scores of bronchiectasis 

severity on CT (r=0.2; p<0.01) but no correlation between dyspnoea and bronchiectasis 

score.   

Finally, Kamath et al. (81) investigated the association between clinical features and a 

radiological diagnosis of bronchiectasis in 46 subjects with clinical features suggestive of 

bronchiectasis (results only available as conference abstract). Cough, cough productive of 

sputum, and haemoptysis were not found to be significant predictors of bronchiectasis (See 

Table 1.3).  

1.3.1.3 Other conditions that cause cough 

As well as asthma there are a number of other conditions that can cause chronic cough. 

a) Cough variant asthma/atopic cough/eosinophilic bronchitis 

These three related conditions have all been described as causes of chronic cough. 

Cough variant asthma (CVA) presents as a dry cough without other symptoms of asthma 

such as dyspnoea or wheeze (82, 83). Diagnosis is based on the clinical history plus 

demonstration of airways hyperreactivity (84) and eosinophilic inflammation in sputum or 

broncho-alveolar lavage (BAL) (85).  The pathophysiological mechanism for cough in CVA is 

not fully understood (86). 

Eosinophilic bronchitis (EB) describes a group of patients with cough secondary to 

eosinophilic airway inflammation but with no bronchial reactivity (87). Diagnosis of the 

condition is made in patients with an appropriate clinical history, negative bronchial 

challenge and significant sputum eosinophilia (88). EB shares many similar pathological 

features to asthma but unlike in asthma the airway submucosa does not demonstrate mast 

cells within airway smooth muscle (89), which may explain why subjects with EB do not have 

hyperreactive airways like many of those with asthma. 
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Atopic cough (or eosinophilic tracheobronchitis) was described by Fujimura et al. (90) as an 

isolated chronic cough in atopic individuals with cough hypersensitivity and normal 

bronchial responsiveness who demonstrate eosinophilic inflammation in sputum (91). These 

authors have suggested that atopic cough is a distinct entity to CVA and EB with a differing 

clinical course (92) although this view is controversial (93). Many of the features of atopic 

cough and EB overlap, although a few differentiating features have been described including 

a) a lack of eosinophils in BAL fluid of subjects with atopic cough (94), b) a lower risk of 

progression to asthma in atopic cough (95) than in EB patients and c) a significant treatment 

response to H1 receptor antagonists in atopic cough patients (94) that is not usually seen in 

those presenting with EB.  

The reported percentage of cases of cough seen in the specialist respiratory clinic owing to 

asthma or one of these three conditions (which are difficult to separate owing to the 

definitions used) have varied between 10-35% in the UK and USA and ~50% in Japan (96). EB 

alone has previously been estimated to account for around 15% of cases of cough referred 

to secondary care in the UK (97).  

b) Gastro oesophageal reflux disease (GORD) 

GORD is defined as “symptoms or complications resulting from the reflux of gastric contents 

into the oesophagus or beyond, into the oral cavity (including larynx) or lung” (98). The 

condition has a prevalence of 10-30% in both Europe and the USA which is thought to be 

increasing (99). 

Typical symptoms of GORD include heartburn, chest pain and regurgitation but the 

condition may also cause chronic cough. Several mechanisms for GORD-associated cough 

have been proposed but the two most commonly accepted of these are the “reflux” and 

“reflex” theories (100). The reflux theory posits that reflux (which may be acidic or non-

acidic in pH) that rises above the oesophagus is aspirated into the larynx and pulmonary 

tree and stimulates cough as a protective mechanism (101). The reflex theory states that 

due to the shared embryological origin of the oesophagus and trachea reflux into the 

oesophagus can trigger an oesophageobronchial reflex which manifests as cough (102). 

There is some evidence that cough itself can trigger reflux, which may in turn lead to more 

cough and the establishment of a so-called “cough-reflux-cough” cycle (102). 

Estimates of the contribution of GORD to the overall burden of chronic cough vary greatly. 

Figures from various studies included in a review of the literature of causes of chronic cough 

range between 5-40% of cases of cough secondary to GORD in the specialist respiratory 

clinic in the UK and USA (96). GORD associated cough would appear to account for far fewer 

cases of chronic cough in Japan (96). 

c) Post-nasal drip syndrome (PNDS) 

PNDS refers to the drainage of nasal secretions into the pharynx. It is a clinical diagnosis 

based on patient reported symptoms of a ‘drip’ sensation at the back of the throat, 

accompanied by the need for frequent throat clearing and nasal stuffiness or nasal 

discharge. Other clinical features that support the diagnosis include the presence of 

nasopharyngeal or oropharyngeal secretions and/or mucosal ‘cobblestoning’ on 
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examination, radiological findings and an improvement in cough symptoms with 

appropriate treatment (103). 

The pathophysiological mechanism of cough associated with PNDS was classically thought to 

be due to stimulation of cough receptors in the larynx from the ‘drip’ down of secretions 

from the nose and sinuses (104), although there appears to be little direct evidence to 

support this. Alternative mechanisms such as increased sensitivity of cough receptors in the 

upper airway (105) or increased central sensitisation to nasal sensory afferent input (106) 

may be involved. Owing to the unclear mechanism of cough the 2006 ACCP guidelines 

recommended the term ‘Upper Airway Cough Syndrome’ be used in preference to PNDS 

(103). 

The percentage of cases of cough seen in the specialist respiratory clinic caused by PNDS is 

difficult to determine owing to the lack of pathognomonic features of the condition and 

different diagnostic criteria and estimates have ranged from 6% to 87% in the UK and USA 

(96). 

1.3.2 Wheeze  
A wheeze is a continuous musical sound produced on expiration that is often thought to be 

a “classic” sign or symptom of asthma although it can result from a spectrum of respiratory 

disorders that cause airflow obstruction (107, 108). Wheezing results from the passage of air 

through narrowed or obstructed airways from the larynx down to the small bronchi and is 

thought to be due to oscillations of opposing walls of the narrowed airway (109). Airway 

narrowing may occur due to bronchoconstriction which can be a feature of asthma but can 

also be caused by airway wall oedema as well as extrinsic or intrinsic compression of the 

airways (110). 

The causes of wheeze in children and adults differ greatly. Wheeze is extremely common in 

children and by the age of six up to 50% will have had at least one episode of wheeze (111). 

Small children commonly develop wheeze acutely secondary to upper and lower airway 

infections and sometimes may develop more serious conditions such as 

laryngotracheobronchitis (croup) or bronchiolitis. Recurrent childhood wheeze is often 

secondary to asthma, allergy and GORD (112). 

In adults, asthma and COPD are two of the most common causes of recurrent wheeze 

although there are various other extra- (e.g. vocal cord dysfunction) and intra-thoracic (e.g. 

bronchiectasis, cardiac failure) causes of chronic wheeze (113).  

1.3.2.1 Prevalence 

The prevalence of wheeze in adults has previously been assessed in three large scale 

population studies that were used to estimate the prevalence of asthma. 

The first of these, the National Health And Nutrition Examination Survey (NHANES) included 

nearly 19,000 US adults aged ≥20 surveyed between 1988-1994 (114). The mean prevalence 

of wheeze (defined as any episode of wheeze in the last 12 months), including all age and 

ethnic groups was 16.4% and this figure was significantly higher (17.7%) in non-Hispanic 
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whites than in any other ethnic group. In addition to ethnicity, poverty, smoking status, hay 

fever and obesity were all found to be significantly associated with wheezing. 

The European Community Respiratory Health Survey (ECRHS) I included nearly 140,000 

adults aged 20-44 surveyed between 1990 and 1993 from 22 different countries including a 

few non-European countries such as India, USA and New Zealand (115). The median 

prevalence of wheeze (any episode of wheeze in the last 12 months) was 20.7% and this 

figure varied greatly between the countries surveyed from 4.1% in India to 32% in Ireland 

(115). Factors found to be significantly associated with wheeze considering the data as a 

whole included the use of gas cookers and occupational exposure. Independent analysis of 

regional data demonstrated significant associations between wheeze and age, allergic 

sensitisation, smoking status, living in damp dwellings and number of siblings (116). 

Finally the RHINE study included nearly 15,000 adults aged 30-54 from Northern Europe 

surveyed between 1999-2001 who had previously taken part in the first ECRHS survey (117). 

The prevalence of wheeze (any episode of wheeze in the last 12 months) was 17.3% and 

wheeze was found to be strongly associated with increased risk of new onset asthma.  

1.3.2.2 Specificity as a symptom of airways disease 

a) Asthma 

The SAPALDIA study reported wheeze (i.e. a “wheezing or whistling in your chest at any time 

in the last 12 months”) to be the most sensitive symptom for diagnosing asthma with a 

sensitivity of 75% and specificity of 87% (Table 1.1) (64). When subjects were asked 

additionally if they had experienced shortness of breath in combination with wheeze in the 

last 12 months the sensitivity was reduced to 65% but with an increase in specificity to 95%. 

Subjects were also asked if they had experienced wheeze without having a cold at the time 

and this question was also less sensitive (60%) but more specific (94%) than asking about 

wheeze alone. The authors calculated a measure of diagnostic efficacy which combines the 

values of sensitivity and specificity (a ‘Youden index’) for each individual symptom and for 

combinations of all the different symptoms. Wheeze had the highest Youden index (with 0 

being the minimum value and 1 the maximum) of 0.62 of the individual symptoms. The 

combination of symptoms with the highest Youden index was wheezing in addition to two 

or more nocturnal symptoms (from cough, chest tightness and dyspnoea) with an index of 

0.66. 

The study by Sistek et al. (65) of adult New Zealanders also found wheeze to be the most 

sensitive symptom for asthma diagnosis with a sensitivity of 93.9%, although the specificity 

of wheeze was lower than that determined in the SAPALDIA study at 76.4%. The symptom 

and combination of symptoms with the highest Youden indices were wheeze alone (0.7) and 

wheeze plus dyspnoea (0.72). 

Tomita et al. (118) attempted to derive a ‘scoring algorithm’ to use for predicting asthma in 

adult patients by collecting clinical data from 566 adult patients with non-specific 

respiratory symptoms. Asthma was diagnosed by respiratory physicians on the basis of 

symptoms and signs with either bronchodilator reversibility and/or bronchial 

hyperresponsiveness. The only symptom enquired about was wheeze which was found to 
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have a sensitivity of 30% and a specificity of 87% for asthma diagnosis and this was not used 

in the final algorithm where instead a “wheeze sound” on examination was used owing to 

its higher sensitivity (90%) and specificity (95%). 

Sensitivities and specificities for wheeze as a diagnostic symptom of asthma in the studies 

by Choi et al. (66), Schleich et al. (67), Schneider et al. (68), and Lim et al. (69) are 

summarised in Table 1.1. 

b) COPD 

Wheeze has been demonstrated to have a significant association with a diagnosis of COPD. 

Odds ratios from studies by Medbo et al. (77), Lamprecht et al. (70), Hanania et al. (72), Van 

Schayck et al. (73), Kotz et al. (119), Minas et al. (75) and Vandervoorde et al. (120) are 

listed in Table 1.2. Ohar et al. (76) also found a significant association between wheeze and 

COPD diagnosis and calculated wheeze to have a sensitivity of 68% and specificity of 55% for 

diagnosing COPD (airflow obstruction).  

c) Bronchiectasis 

It is unclear how useful the symptom of wheeze is for identifying underlying bronchiectasis 

although it is likely to have a low predictive value. Previous studies have reported low 

incidence of reported wheeze as a symptom in populations of bronchiectatic patients. Li et 

al. (121)  found that 14/136 subjects had wheeze on presentation, in comparison to 47/136 

with cough. Also, King et al. (42) noted wheeze on examination in only 22 out of 103 (21%) 

subjects with newly diagnosed bronchiectasis. Kamath et al. (81) did not find wheeze to be a 

significant predictor of radiological bronchiectasis (Table 1.3).      

1.3.2.3 Other conditions that cause wheeze 

The symptom of wheeze, owing to its underlying pathophysiology, might be expected to 

have a degree of specificity for airways disease. 

However, as mentioned above, some conditions that are not primarily diseases of the lower 

airways may present as wheeze and be mistaken for cases of airways disease, perhaps most 

notably vocal cord dysfunction and ‘cardiac asthma’ (secondary to congestive heart failure) 

and these will be discussed briefly here. 

a) Vocal Cord dysfunction (VCD) 

VCD or “paradoxical vocal fold motion” is a syndrome characterised by abnormal vocal cord 

adduction leading to partial airway obstruction at the level of the larynx (122). The vocal 

cords may adduct in a paroxysmal fashion during the inspiratory or expiratory phases of the 

respiratory cycle resulting in symptoms such as inspiratory stridor (often mischaracterised 

as wheezing), cough and a feeling of tightness in the chest or throat (123). 

The three main criteria used to establish a diagnosis of VCD are (1) clinical symptoms e.g. 

dyspnoea, noisy breathing or stridor (2) visualisation of vocal cord adduction on 

laryngoscopy and (3) consistent pulmonary function tests. Pulmonary function testing 

usually reveals normal spirometry with no significant reversibility, normal airway reactivity 

as assessed by bronchial challenge testing and an abnormal flow volume loop, normally with 
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a flattened inspiratory limb which can be reproduced with a challenge test such as 

histamine (124, 125).  

The proportion of cases of wheeze (or more correctly, stridor) secondary to VCD is unclear. 

The condition is frequently misdiagnosed as asthma (126) and the two conditions commonly 

co-exist with up to 50% of VCD patients also having a diagnosis of asthma based on 

objective measures (123, 127). This may make it difficult to determine which of these two 

conditions is the primary cause of a subject’s symptoms. Wheeze is a common symptom 

reported by VCD patients, with a prevalence of 36% (124) and 51% (128) being reported in 

two previous reviews of the literature. 

b) Cardiac asthma 

The term “cardiac asthma” has been used to describe airflow obstruction and resultant 

wheezing secondary to congestive heart failure (129). The observation that airflow 

obstruction occurs during times of cardiogenic pulmonary oedema was first made over a 

century ago (130) and various mechanisms including reflex bronchoconstriction due to 

increased pulmonary vascular pressure (131), airway obstruction due to intraluminal 

oedema (131) or bronchial mucosal hypertrophy (132) and increased airway 

hyperresponsiveness (AHR) (133, 134) have been postulated.  

Cardiac asthma is prevalent in elderly patients (>65 years old) with congestive heart failure 

and may be present in up to a third of these cases (135). However, other signs and 

symptoms of congestive heart failure would usually be present in these patients, making 

primary airways disease less likely as the cause of wheeze. 

1.3.3 Dyspnoea 
Dyspnoea has been defined as “a subjective experience of breathing discomfort that 

consists of qualitatively distinct sensations that vary in intensity” (136). 

Three of the most well described of these sensations include “air hunger”, increased work or 

effort of breathing and chest tightness. Accumulating evidence suggests that distinct 

pathophysiological mechanisms may underlie these sensations, which may be experienced 

separately or in combination by a subject whose perception of these sensations is 

influenced by myriad non-sensory factors including emotional state (137) and attention 

(138). 

“Air hunger” or “unsatisfied inspiration” is the perception of not being able to “take in” 

enough air. This seems to arise when increased ventilatory demand (e.g. due to exercise or 

when a subject is hypercapnic or hypoxic) cannot be met by a subject’s ventilatory capacity 

(139). This creates an imbalance between the respiratory motor drive of the brainstem 

(which is relayed to the cerebral cortex via a so-called ‘corollary discharge’) and the afferent 

feedback from mechanoreceptors in the lungs, airways and chest wall leading to the 

development of the unpleasant air hunger sensation (140). 

An unpleasant sensation of increased “work” or “effort” of breathing is often reported by 

patients with obstructive lung diseases or respiratory muscle weakness (141). This sensation 

has been reproduced in research volunteers by increasing external resistance to breathing 
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(142), weakening respiratory muscles through fatigue (143) or neuromuscular blockade 

(144). This unpleasant sensation is probably due in some way to the decreased ability of 

respiratory muscles to meet ventilatory demand when required (owing to deranged 

ventilatory mechanics). This phenomenon leads, in turn, to an increased central respiratory 

motor drive and heightened perception by the subject of increased respiratory effort (142, 

145).  

The cause of the sensation of ‘chest tightness’ in subjects with asthma has not been fully 

explained although this is likely to be related to bronchoconstriction (146). The chest 

tightness sensation may not result from the increased work of breathing during 

bronchoconstriction but instead be due to the stimulation of airway receptors such as 

rapidly adapting receptors (RARs) or C-fibre receptors (147). 

1.3.3.1 Prevalence 

Prevalence rates of dyspnoea symptoms are difficult to estimate owing to the subjective 

description of this sensation (148, 149) as well as linguistic differences that may lead to 

either conflation or separation of dyspnoea or ‘shortness of breath’ with a chest tightness 

sensation (150). Also, some subjects may be more likely to perceive they are dyspnoeic in 

the absence of an organic cause (151) and activity induced dyspnoea may sometimes be 

mistakenly perceived as pathological when in fact it is appropriate for an individual at a 

certain level of fitness (152). 

Figures from the ECHRS I survey suggested a median prevalence of nocturnal dyspnoea (any 

episode of being woken by shortness of breath in the last 12 months) of 7.3% with a range 

of 1.5% in Iceland to 11.4% in Australia. The same survey also found a median prevalence of 

nocturnal chest tightness (any episode of being woken by chest tightness in the last 12 

months) of 13.5% with a range of 6.2% in Italy to 20.5% in Australia (115). 

The RHINE study found a prevalence of nocturnal dyspnoea (any episode of being woken by 

shortness of breath in the last 12 months) of 3.5% with no association between this 

symptom and increased risk of new onset asthma. The prevalence of nocturnal chest 

tightness (any episode of being woken by chest tightness in the last 12 months) was 7.3% 

and there was no association with this symptom and increased risk of new onset asthma 

(117). 

1.3.3.2 Specificity as a symptom of airways disease 

a) Asthma 

Despite the subjectivity in the definitions of dyspnoea and chest tightness, sensitivity and 

specificity values for their potential for asthma diagnosis have been determined. However 

the values obtained for both sensitivity and specificity of dyspnoea and chest tightness as 

symptoms of airway disease vary markedly from study to study (Table 1.1). Generally the 

specificity values of dyspnoea at rest from these studies are high for asthma, whereas values 

for sensitivity and specificity of dyspnoea on exertion are moderately good. 

b) COPD 

Dyspnoea has been demonstrated to have a significant association with a diagnosis of 

COPD. Odds ratios from a number of studies are listed in Table 1.2. Ohar et al. also found a 
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significant association between dyspnoea and COPD diagnosis and calculated dyspnoea to 

have a sensitivity of 75% but a specificity of only 37% for diagnosing COPD.  

c) Bronchiectasis 

The predictive value of dyspnoea for bronchiectasis is again unclear, although this is likely to 

be low. King et al. (42) found 62/103 (60%) subjects to be dyspnoeic at the time of diagnosis 

of bronchiectasis. Lynch et al. (80) found no correlation between dyspnoea score and extent 

of bronchiectasis on HRCT, although the study by Smith et al. (79) found a weak positive 

correlation between these two variables.  

Kamath et al. (81) did not find “breathlessness” to be a useful predictor of radiological 

bronchiectasis (Table 1.3).  
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 Sistek et 
al. 
(2001) 

Sistek et 
al. 
(2006) 

Choi et 
al. 

Schleich 
et al. 

Schneider 
et al. 

Lim et al. Tomita 
et al. 

Cough: 
Diurnal        

Sensitivity 21.5 43.1 16 66 43-53   

Specificity 95.2 83.9 42 26 32-64   

Nocturnal        

Sensitivity 49.3 93.9    62  

Specificity 72.3 76.4    45  

Wheeze: 
Diurnal        

Sensitivity 75 65 9 57 52-76 51 30 

Specificity 87 95 79 62 34-66 66 87 

Nocturnal        

Sensitivity    56    

Specificity    79    

Chest tightness: 
Diurnal        

Sensitivity    73 31-44   

Specificity    60 54-83   

Nocturnal        

Sensitivity 49 20      

Specificity 86 75      

Dyspnoea: 
At rest        

Sensitivity 47.1 43.1 11 73 9-40   

Specificity 94.9 92.9 71 55 78-88   

On 
exercise 

    On 
walking 

  

Sensitivity 69.3 75.4   5-36 70  

Specificity 75.7 76.5   32-93 49  

     With 
minimal 
exercise 

  

Sensitivity     3-32   

Specificity     43-94   

Nocturnal        

Sensitivity 46.2 41.5      

Specificity 96 95.8      

Table 1.1: The sensitivities (%) and specificities (%) of different 
symptoms of airways disease for the diagnosis of asthma, as 
reported in different studies
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 Lamprecht 
et al.  

Medbo 
et al. (a) 

Freeman 
et al.  

Hanania 
et al. (b) 

Van Schayck 
et al.  (c) 

Kotz et 
al.  

Albers et 
al. 

Minas 
et al. 

Vandevoorde 
et al. 

Ohar et 
al.  (d) 

Murgia 
et al.  

Cough: 
Odds Ratio 
(95% CI) 

2.3* 
(1.7-3.1) 

1.1† (0.8-
1.5) 

2.4 
(1.2-4.7) 

2 
(1.3-3.0) 

1.2  2.3 
(1.1-4.6) 

2.5 
(1.7-3.6) 

NS 2.0*  
(1.7-2.3) 

 

Sensitivity          69  
Specificity          48  

Cough with sputum: 
Odds Ratio 
(95% CI) 

2.6* 
(1.9-3.4) 

1.6† (1.1-
2.4) 

  1.3 1.5 
(0.7-2.2) 

2.2 
(0.8-5.9) 

NS NS 1.7 
(1.4-2.1) 

 

Sensitivity          56 0.05 

Specificity          60 0.98 

Wheeze: 
Odds Ratio 
(95% CI) 

3.4* 
(2.6-4.5) 

1.5† (1.2-
1.8) 

2.2 
(0.9-5.5) 

1.8 
(1.1-2.8) 

1.6 
(p<0.001) 

1.7 
(1.1-2.7) 

 1.5 
(1-2.3) 

4.7 
(2.1-10.4) 

1.9 
(1.6-2.3) 

 

Sensitivity          68  
Specificity          55  

Dyspnoea: 
Odds Ratio 
(95% CI) 

2.4* 
(1.9-3.2) 

1.8† (1.2-
2.6) 

3 
(1.5-5.9) 

0.9 
(0.5-1.4) 

1.3 
(p<0.001) 

 0.9 
(0.4-1.9) 

2.4 
(1.6-3.5) 

NS 1.2 
(1-1.5) 

 

Sensitivity          75  
Specificity          37  

Table 1.2: The odds ratios, sensitivities (%) and specificities (%) of different symptoms of airways disease 
for the diagnosis of COPD (statistically significant odds ratios highlighted in bold)  
 

All OR calculated using multivariate logistic regression except *univariate analysis and †binary logistic regression 

COPD case definition unless otherwise noted defined as post-bronchodilator FEV1/FVC ratio <0.70 

(a) COPD case definition: pre BD FEV1/FVC ratio <0.7 if ≤69 years; pre BD FEV1/FVC ratio <0.65 if ≥70 years 

(b) COPD case definition: pre BD FEV1/FVC ratio <0.7 

(c) COPD case definition: pre BD FEV1/FVC ratio < lower limit of normal as per ATS-ERS guidelines 

(d) COPD case definition: pre BD FEV1/FVC ratio <0.7 and aged ≥40 years and ≥20 pack year smoking history
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 Kamath et al. Smith et al. 

Cough: 
Odds Ratio (95% CI) 1.7 (0.3-11)  

Sensitivity 91.3  

Specificity 13.6  

Cough with sputum: 

Odds Ratio (95% CI) 0.32 (0-3.3) 6.9 (1.3-37.2) 

Sensitivity 87 55.6 

Specificity 4.6 84.6 

Haemoptysis: 

Odds Ratio (95% CI) 1.2 (0.3-4.3)  

Sensitivity 30.4  

Specificity 72.7  

Wheeze: 

Odds Ratio (95% CI) 2.3 (0.7-7.5)  

Sensitivity 65.2  

Specificity 54.5  

Dyspnoea: 

Odds Ratio (95% CI) 1.31 (0.4-4.5)  

Sensitivity 69.6  

Specificity 36.4  

Table 1.3: The odds ratios, sensitivities (%) and specificities (%) of 
different symptoms of airways disease for the diagnosis of 
bronchiectasis 
 

1.3.4 Summary 
In summary the predictive value of cough, wheeze and dyspnoea have been evaluated in 

large population studies. 

Evidence suggests that none of these symptoms are particularly sensitive or specific for 

diagnosing airways disease when used alone. Wheeze is likely to be the most useful 

symptom in identifying disease with a significant component of airway obstruction such as 

classical descriptions of asthma or COPD, whilst productive cough is likely to be most useful 

for diagnosing bronchiectasis. The presence of certain combinations of symptoms that vary 

in time and intensity may be more specific for an underlying diagnosis of asthma. 

Such a lack of discriminatory value for symptoms in diagnosing airways disease is likely due 

to the fact that multiple types of airways disease and many other conditions not related to 

the airways cause the same symptoms. Accordingly, although eliciting an accurate 

description of symptoms will always be an important starting point in the description of 

airways disease, superior ways of characterising patients disease are required. This process 

should begin with an understanding of the underlying pathophysiology of airways disease.  
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1.4 Pathophysiology of Airways Disease 

1.4.1 Introduction 
There is some controversy in the field of airways disease regarding the extent to which 

airways disorders can be classified as distinct conditions or whether these should be 

considered as a spectrum of disease with different pathological components. Key concepts 

that require definition at this point are the phenotype and endotype of an individual. The 

phenotype of an individual refers to the observable disease characteristics of that individual 

resulting from the interaction of its genetic material with the environment. The term 

endotype describes a subtype of a disease defined by a distinct pathological mechanism 

(153).  

Clearly there are many patients who display the ‘classical’ asthma phenotype with features 

of allergic asthma starting in childhood, just as there are many of those with the ‘classical’ 

COPD phenotypes of smoking-induced neutrophilic chronic bronchitis or emphysema. 

However, there are also a significant number of individuals who exhibit features classically 

attributed to both of these conditions (154) or who may additionally display features of 

disease more commonly associated with chronic infective states such as bronchiectasis 

(155). 

The recognition of different phenotypes of airways disease and the different pathological 

components that contribute to this disease is a research area of growing interest. This has 

led to the development of biological therapies targeting specific endotypes. There is much 

further work to be done to elucidate the distinctive patterns of disease underlying particular 

phenotypes. Such an understanding should ultimately lead to more targeted therapies 

required for successful treatment of a spectrum of disease and this will enable clinicians to 

progress from the current ‘one size fits all’ approach to the management of airways disease. 

1.4.2 Previous definitions and divisions of airways disease components 
The characterisation of airways disease as a combination of clearly defined pathological 

components is not a new concept, having first been proposed in the 1960s as part of the 

“Dutch Hypothesis” (4) outlined in Section 1.2. This hypothesis emphasised the description 

of different pathological components in each individual patient on an overall spectrum of 

“chronic non-specific lung disease”.  

The separation of different pathological mechanisms into “components” of lung disease is 

known as a nominalist approach to the definition of disease (156), and this approach has 

been advocated by various authors (5, 157, 158) in contrast to the essentialist approach that 

considers asthma, COPD and bronchiectasis as being distinct disease entities with little or no 

overlap. 

A system devised to characterise airways disease based on the assessment of five relatively 

independent pathophysiological abnormalities, “the A to E of airways disease” has 

previously been described (159). The aim of this approach is to provide a framework by 

which to assess the relative contribution of each of these disease components to an 

individual patient’s disease and use this to guide phenotype-directed treatment. Even more 

recently a new paradigm based on the identification of phenotypic or endotypic 
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characteristics (‘treatable traits’) to guide individualised treatment in airways disease 

irrespective of a disease label has been proposed (160). It is therefore important to discuss 

some of the most well characterised pathological components of airways disease and 

explore the relationships between these different factors. In addition, the relative 

contributions of these factors to common phenotypes of airways disease and targeted 

treatments for each of these components is also assessed. 

1.4.3 Airway Hyperresponsiveness (AHR) 

1.4.3.1 Definition 

AHR refers to the exaggerated narrowing of airways through airway smooth muscle 

mediated bronchoconstriction following exposure to a direct or indirect stimulus (161). 

This is detected clinically using bronchial challenge testing, which exposes subjects to a 

stepwise increase in the dose of a recognised bronchoconstriction stimulus such as 

methacholine whilst measuring their lung function, as in the so-called methacholine 

challenge test (MCT). The measure used to quantify AHR is the provocative concentration or 

dose of the agent that induces a 20% fall in FEV1 (PC20 or PD20). This test will be discussed 

further in the ‘Diagnosis of Asthma’ section (Section 1.5.3.4). 

1.4.3.2 Affected Phenotypes 

AHR is a particularly characteristic feature of the classical asthma syndrome, and is thought 

to be responsible for the symptoms of short term, sudden onset shortness of breath, 

wheeze and chest tightness, sometimes in response to a recognised allergen. It has been 

suggested that the presence of AHR in asthmatic patients may be an independent risk factor 

for a reduced FEV1 later in life (162, 163) and fixed airflow obstruction (164). 

AHR is also commonly noted in patients with a diagnosis of COPD (165) with up to 50% of 

COPD patients having some degree of AHR (166).  Its presence in patients diagnosed with 

this condition is associated with an increased risk of mortality (167).  

Healthy individuals with no recognised respiratory disease can also demonstrate AHR on 

bronchial challenge testing as well as smokers and those with conditions including allergic 

rhinitis and respiratory infections (168). Data from a cohort study suggest that in 

asymptomatic individuals, AHR is a risk factor for the later development of airways disease 

(169). 

1.4.3.3 Pathological Mechanism 

It has been observed that some patients with asthma lack a protective bronchodilator effect 

that occurs on deep inspiration which is present in healthy individuals (170). The loss of this 

protective mechanism appears to be critical in the development of AHR (171) and may be 

due to increased inflammation and mast cell infiltration of airway smooth muscle as noted 

in a group of asthma patients (172). Mast cell infiltration of the smooth muscle bundle 

seems to be one of the key pathological changes in AHR (173), and previous work has 

demonstrated a linear relationship between these two variables (174). 

A series of in vitro studies have implicated abnormalities in airway smooth muscle structure 

and function in the development of AHR. These include increased airway smooth muscle 
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mass (175), which was thought to lead to AHR by generating excessive force when 

contracting (175, 176). However, more recent work suggests that increased dynamic muscle 

stiffness (due to the failure of the airway smooth muscle to relax and lengthen during deep 

inspiration) may be a more important mechanism (177). Other factors that have been 

proposed to contribute to AHR in asthma include increased vagal tone (178) and increases in 

free intracellular calcium (179) or activation of the Rho kinase pathway (180) leading to 

increased smooth muscle contractility. 

1.4.3.4 Treatment  

a) β-agonists  

Short and long acting β2-agonists are the most effective established treatments for AHR, 

although β2-adrenergic receptors may become downregulated with over frequent exposure 

to inhaled β2-agonist (181) and lead to patient tolerance to β2-agonist therapy (182, 183). 

New ultra-long-acting forms of β2-agonists (indacaterol) have recently been developed. 

b) Long acting anti muscarinic receptor antagonists (LAMAs) 

LAMAs have been demonstrated to have a significant and sustained bronchodilator effect in 

patients with COPD (184) and a modest sustained improvement in bronchodilation using 

LAMAs has also been observed in subjects with asthma poorly controlled by standard 

treatment (185). The bronchodilation effect of LAMAs occurs via competition with 

acetylcholine at muscarinic receptors on airway smooth muscle (186). This established 

bronchodilator effect of LAMAs might be expected to mitigate against AHR although the 

direct evidence that LAMAs reduce AHR (“bronchoprotective” effect) is mixed as some 

studies have demonstrated a bronchoprotective effect of LAMAs (187, 188) whilst others 

have not (189). It has been suggested that LAMAs may exert a bronchoprotective effect via 

indirect mechanisms (i.e. by effects on the levels of inflammatory mediators) rather than by 

a direct effect on airway smooth muscle (190). Therefore any future studies aiming to 

further elucidate the effect of LAMAs on AHR may need to utilise different types of 

(‘indirect’) bronchial challenge testing that do not assess bronchoconstriction to direct 

challenge agents such as methacholine or histamine.  

c) Inhaled steroids 

It is well established that inhaled steroids improve AHR (191, 192), possibly as early as 3 

hours after the first dose (193, 194). This effect is dose dependent (195) and AHR may 

continue to improve for weeks to months after starting treatment (191, 196, 197) . The 

improvement is usually at least one doubling dose shift in PC20/PD20 with a low-medium 

dose inhaled corticosteroid (ICS) (<1000 µg BDP equivalent/day) and two doubling dose 

shifts with high dose ICS (≥1000 µg BDP equivalent/day) (192). The mechanisms by which 

ICS improve AHR are not fully delineated but these may include a decrease in airway 

vascular permeability (198) or inhibition of the overexpression and activation of CPI-17 

(199), an inhibitor protein which inhibits phosphorylation of myosin phosphatase and 

ultimately leads to smooth muscle contraction. 

d) Anti TNFα agents 

TNFα is a mast cell produced mediator that has been strongly linked to the development of 

AHR making it a promising therapeutic target in refractory asthma (200, 201). Use of the 
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TNFα blocker etanercept was initially evaluated in a small randomised controlled trial (RCT) 

conducted by Berry et al. (202) which compared this treatment against placebo in a double-

blind, crossover pilot study of 10 patients with refractory asthma. Etanercept treatment 

significantly improved bronchial reactivity, as assessed by MCT, and quality of life scores in 

refractory asthma patients. 

Unfortunately, a multicentre RCT (203) assessing the effect of TNFα blockade using 

golimumab in 309 patients with severe persistent asthma had to be discontinued 24 weeks 

into treatment due to the significantly increased risk of serious infection and cases of 

malignancy seen in the group treated with golimumab. No significant differences were seen 

in the endpoints of pre-bronchodilator FEV1 and number of severe exacerbations between 

the active and placebo groups at the point the trial was stopped. However, post-hoc analysis 

of the data demonstrated a significantly reduced number of severe exacerbations in a sub-

group of patients with significant reversibility (>12% at baseline).  

e) Anti TSLP antibodies 

TSLP is a cytokine derived from epithelial cells which is an important mediator in allergic 

inflammatory responses and acts directly on mast cells and eosinophils (204). The 

expression of TLSP has been demonstrated to be increased in subjects with asthma (205) 

and a genetic variant of the TSLP gene is associated with increased risk of asthma and AHR 

(206).  

An RCT of 31 subjects with mild allergic asthma demonstrated reduced AHR to specific 

allergens and to methacholine as well as reductions in indices of airway inflammation 

following anti TSLP treatment (207). Further evaluation of this intervention in subjects with 

severe poorly controlled asthma is ongoing (208).  

f) Bronchial thermoplasty 

Bronchial thermoplasty is a technique that delivers radiofrequency (RF) energy to airway 

tissue causing heating of the airway tissue. RF energy is delivered via a catheter during 

bronchoscopy to proximal conducting airways with the intention of heating tissue and 

reducing airway smooth muscle mass (209, 210). To date, three RCTs of bronchial 

thermoplasty have been conducted. 

The multicentre AIR1 trial (211) compared bronchial thermoplasty (n=56) against usual care 

(n=56) in asthmatic patients requiring inhaled corticosteroids and long acting β-agonists 

(LABAs) to control asthma. The intervention group experienced significantly fewer asthma 

exacerbations 3 and 12 months post treatment, as well as improved morning peak flows, 

asthma quality of life and asthma control 12 months after treatment. There was no 

significant difference in lung function or, interestingly, in airway responsiveness following 

treatment however, and adverse events requiring hospitalisation (including asthma 

exacerbations and partial left lower lobe collapse in one patient) were more common in the 

intervention group. 

The RISA study (212) evaluated the use of bronchial thermoplasty in severe asthmatics with 

persistent symptoms despite high dose ICS (>750 µg of fluticasone a day plus LABA ± any 

other medicines including oral steroids). Fifteen subjects underwent bronchial thermoplasty 
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in comparison to 17 who had usual care. All subjects were maintained on their usual steroid 

dose for 16 weeks after the procedure and then investigators attempted to wean inhaled 

(or oral) steroids. Following thermoplasty, patients had a transient worsening of asthma 

symptoms and 4 of the 15 patients were hospitalised with 2 having partial collapse of the 

lobe that had been treated. However, 22 weeks after treatment patients from the 

intervention group had significantly reduced use of rescue medication and improved pre-

bronchodilator FEV1 and asthma control questionnaire scores. After 52 weeks, patients from 

the thermoplasty group had significantly reduced their steroid doses in comparison to the 

control group and maintained the improvements in reduced rescue medication use and 

asthma control scores. 

Finally, the AIR2 study (213) compared thermoplasty (n=190) to a sham treatment (n=101) 

in asthmatic patients with symptoms refractory to high dose ICS/LABAs. Patients were 

randomly allocated to the thermoplasty or sham groups and the primary outcome was the 

difference in Asthma Quality of Life Questionnaire (AQLQ) scores from baseline at 6, 9, and 

12 months. The intervention group demonstrated a significantly higher improvement in 

AQLQ scores as well as showing a significant reduction in severe exacerbation rate (32%), 

the number of days lost from work/school/daily activities (66%) and the number of A&E 

visits (84%).  

Follow up studies for the AIR, AIR 2 and RISA trials have suggested that the procedure has a 

good long term safety profile, with no added clinical complications and no significant 

deterioration in the measured benefits in the thermoplasty groups compared to the control 

groups up to 5 years after the procedure (214-216). 

1.4.3.5 Summary 

AHR is a prominent pathological feature of airways disease most commonly found in 

patients with classical asthma syndrome, although it may be present independently or in 

conjunction with other conditions. The pathophysiological processes underlying AHR that 

have been identified to date include abnormalities of airway smooth muscle structure and 

function and smooth muscle infiltration by mast cells. AHR is usually effectively treated with 

β-agonist therapy and ICS, but other options are now available for patients with symptoms 

refractory to β-agonist treatment including anti-muscarinic agents, and in more severe 

cases, bronchial thermoplasty. 

1.4.4 Fixed Airway Obstruction (FAO) 

1.4.4.1 Definition 

Airway obstruction (or “limitation”) is defined in the 2005 European Respiratory Society 

(ERS) guidelines as “a disproportionate reduction of maximal airflow from the lung in 

relation to the maximal volume that can be displaced from the lung” (217). In terms of 

spirometry the ERS guidelines define this as an FEV1/VC ratio “below the 5th percentile of 

the predicted value” (217) whereas GOLD guidelines define this as an FEV1/FVC ratio <70% 

(218). Hence, fixed airway obstruction (FAO) may be defined at its simplest as airway 

obstruction that does not significantly improve in response to bronchodilators – i.e. the FEV1 
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fails to improve by ≥200 mL and ≥12% from baseline (assuming that the baseline FEV1 is 

sufficiently low to allow improvement by these parameters, i.e. <~80%). 

FAO has also previously been defined by a post bronchodilator FEV1/FVC ratio <70% on ≥2 

occasions (31, 219, 220) although this value has not been universally agreed (221). 

1.4.4.2 Affected Phenotypes 

The demonstration of FAO is necessary for the diagnosis of COPD and the fixed nature of 

this obstruction (i.e. non-significant reversibility of the airways to bronchodilators) 

traditionally has been the distinguishing diagnostic feature between COPD and asthma, with 

the airways in the latter condition classically demonstrating bronchodilator reversibility. 

However, as mentioned above, a significant proportion of COPD patients demonstrate AHR 

and some clinical trials have reported up to 50% of subjects with diagnosed COPD had 

significant reversibility as per American Thoracic Society (ATS) guidelines (222, 223).  

FAO also affects a significant proportion of asthmatic patients and seems to be particularly 

prevalent in subjects with severe or difficult to treat asthma. Long term follow up studies of 

asthmatic subjects with reversible airflow limitation suggest that around 16-26% of patients 

eventually develop FAO (220, 224). Studies specifically assessing the characteristics of 

severe or difficult to treat asthmatics by contrast report prevalence rates of FAO of 50-60% 

(219, 221). 

The ‘Asthma-COPD overlap syndrome’ (ACOS) is a term used to describe subjects with 

overlapping diagnoses of asthma and COPD i.e. symptoms relating to increased airflow 

variability and airflow obstruction that is incompletely reversible (10). ACOS is recognised 

not as a single condition but rather a combination of two or more obstructive airways 

syndromes such as “asthma”, “emphysema” or “chronic bronchitis” (225, 226). Analyses of 

the prevalence of separate and combined obstructive airways syndromes in large scale 

population studies estimate 13-19% of subjects with obstructive lung disease in the UK and 

USA have more than one type of obstructive lung disease (154, 227). Marsh et al. (228) 

categorised around 10% of 469 patients in a study to classify the relative proportions of 

phenotypes of COPD with ACOS. Patients labelled as having ACOS may experience an 

increased frequency of more severe exacerbations of airways disease than those who have 

been diagnosed with either of these conditions in isolation (227, 229). 

The presence of FAO in any of the phenotypes described above is a predictor of increased 

morbidity, including increased decline in FEV1 and increased frequency of exacerbations 

(229), as well as mortality (230, 231). 

1.4.4.3 Pathological mechanism 

Fixed airflow obstruction is thought to result from the pathophysiological process known as 

airway remodelling. Airway remodelling refers to structural changes observed in the large 

and small airways of subjects with airway disease including asthma and COPD (232, 233). 

Biopsies from patients diagnosed with COPD have revealed many structural changes in the 

remodelled large and small airways such as increased epithelial thickness and epithelial 

metaplasia. In addition, changes in the extracellular matrix (ECM) of the airway wall 
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including fibrosis and goblet cell hyperplasia, and increased thickness of airway smooth 

muscle (234) are also apparent. Changes of remodelling observed in the small airways and 

lung parenchyma of subjects with COPD include emphysema with loss of alveolar 

attachments and collagen deposition (235) and peribronchial fibrosis (236). 

Similar pathological features have been noted in the remodelled airways of asthmatics 

including airway wall thickening, epithelial cell proliferation with increased epithelial cell 

shedding, subepithelial fibrosis, goblet cell hyperplasia, increased airway smooth muscle 

mass and bronchial neovascularisation (237, 238).  

Despite there being considerable overlap in many of these pathophysiological processes 

between subjects diagnosed with asthma and COPD, there are also some notable 

differences.  

Firstly, although airway remodelling occurs in both conditions throughout the bronchial 

tree, there is a higher burden of structural changes associated with COPD in the small 

airways (236) and lung parenchyma than in asthma. In certain phenotypes of COPD, 

including alpha 1-antitrypsin deficiency, destruction of the alveolar walls (i.e. 

emphysematous change) may develop which is not typically a feature of asthma (239). 

Secondly, airway wall thickening may be less pronounced in COPD (239-241) possibly due to 

a lesser degree of airway smooth muscle thickening (242), although some studies have 

shown no difference (243). Thickening of the basement membrane has been well described 

in asthma and comparative studies assessing basement membrane thickness in bronchial 

biopsies from asthma and COPD patients have concluded this feature is more prominent in 

bronchial cells from asthmatic subjects (244, 245). Finally, bronchial 

neovascularisation/angiogenesis may be a prominent feature of the asthmatic airway (246), 

particularly in those with severe steroid-dependent asthma (247), whereas this is not a 

significant finding in COPD (248).  

1.4.4.4 Treatment 

As the pathogenesis of airway remodelling is not well understood this has understandably 

hindered the development of therapeutic agents specifically targeted against this process. 

Despite this, a number of (mostly in vitro) studies have sought to assess the effects of 

conventional asthma therapies on remodelling. The most promising results so far using ICS 

and bronchial thermoplasty will now be discussed. 

a) Inhaled corticosteroids (ICS) 

ICS are the most well studied asthma treatment with regards to their effects on airway 

remodelling. Asthmatic patients with FAO have been demonstrated to show no 

improvement to LABA monotherapy in terms of lung function and asthma control but may 

still respond to ICS treatment in terms of these measures (249).  

In vitro studies have suggested ICS may reduce airway smooth muscle hyperplasia (250) and 

improve vascular remodelling (251). A number of clinical investigations have also shown 

improvements in various parameters related to remodelling with ICS treatment including a 

reduction in basement membrane thickness (252, 253), epithelial remodelling (254) and 
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vascular remodelling (255) although these improvements have not been observed in all 

studies (256, 257). 

b) Bronchial thermoplasty 

Bronchial thermoplasty (Section 1.4.3.4) has been proposed as a therapy to target airway 

remodelling owing to its purported mechanism of action in reducing airway smooth muscle 

(ASM) mass. The evidence of its effect on ASM comes from canine proof of concept studies 

(209) and a safety study in nine human lung cancer patients (without asthma). Data derived 

from the human safety study where RF energy was applied to lung segments/lobes which 

were later resected, indicated that on average a 50% reduction in ASM mass occurred (258).  

There are suggestions from a limited case series of 3 patients that bronchial thermoplasty 

reduces ASM mass in the asthmatic airways (259), and this may be the mechanism leading 

to an observed clinical benefit. However, this approach requires further evaluation in future 

clinical trials. 

1.4.4.5 Summary 

FAO secondary to airway remodelling is undoubtedly an important pathological mechanism 

in subjects with COPD, severe or difficult to treat asthma and ACOS which leads to increased 

morbidity and mortality in these groups. Certain pathological features of remodelling have 

been observed in the airways but the pathogenesis and natural history of this process are 

not fully understood. This may have led to an under-appreciation of airway remodelling as a 

significant factor in the phenotyping of airways disease and much further work needs to be 

done to characterise this phenomenon and develop effective treatment to prevent FAO. 

1.4.5 Airway Inflammation 
Airway inflammation (bronchitis) is a cardinal feature of airway disease. The importance of 

recognising the heterogeneity of types of airway inflammation and their underlying 

pathophysiological mechanisms has only been established relatively recently, in parallel 

with the introduction and standardisation of investigations that are able to measure and 

classify types of airways inflammation. 

Through the use of one of these techniques, the microscopy and differential cell count of 

induced sputum, four main subtypes of airway inflammation have been recognised and 

these are (1) eosinophilic, (2) neutrophilic, (3) mixed granulocytic and (4) paucigranulocytic 

(260). 

Both eosinophilic and neutrophilic airway inflammation will be discussed in further detail 

below. The mixed granulocytic and paucigranulocytic inflammatory subtypes are of 

uncertain significance, although it has been suggested that subjects with a mixed 

granulocytic pattern may represent a ‘transitional’ phenotype between neutrophilic and 

eosinophilic subtypes or vice versa (261). Patients displaying paucigranulocytic inflammation 

seem to have relatively normal lung function (262) and display similar gene expression at 

the RNA level to healthy controls (261), which may suggest this is consistent with a mild 

inflammatory airways disease phenotype. 
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1.4.6 Eosinophilic Inflammation  

1.4.6.1 Definition 

The eosinophilic inflammatory subtype is the most clearly defined with a standard definition 

of >3% eosinophils/total sputum cell count (263).  

1.4.6.2 Affected Phenotypes 

Ongoing eosinophilic inflammation is a notable feature of airway disease. Eosinophilic 

asthma is the best studied asthma ‘phenotype’ and it is estimated that between 40-50% of 

people with an asthma diagnosis have underlying eosinophilic airways inflammation (264, 

265).  

The stability and/or reproducibility of eosinophilic inflammation over time seems to vary 

with different severities of airways disease. Sputum eosinophilia seems to be persistent in 

certain sub-phenotypes of asthma with reproducible sputum eosinophil counts obtained 

over a 5 year period in a cohort of adult patients with severe asthma despite ICS treatment 

(266). McGrath et al. (267) studied a group of 157 patients with mild to moderate asthma 

and found 35 (22%) to have a persistent eosinophilia whilst not using ICS treatment, whilst 

49 (31%) had an intermittent eosinophilia and 73 (47%) were persistently non-eosinophilic. 

In a comparable group of 167 patients with mild asthma on ICS treatment 12 (7%) were 

persistently eosinophilic, 34 (20%) had an intermittent eosinophilia and 121 (72%) were 

non-eosinophilic. This study demonstrates one of the difficulties of determining the 

underlying type of inflammation, namely that steroid treatment tends to suppress 

eosinophilic inflammation and may prolong neutrophil survival (268). Sputum inflammatory 

phenotypes do not seem to be stable in children with asthma. Fleming et al. (269) found 

that of 59 children (42 with severe asthma and 17 with mild to moderate asthma) who had 

sputum samples processed for differential cell counts every 3 months for a year, 63% 

displayed 2 or more inflammatory subtypes during this period. 

Some investigations have suggested that the degree of eosinophilic inflammation may 

directly correlate with the severity of disease in patients with an asthma diagnosis (221, 

270-273) although others have found no evidence for this (274-276). Other investigators 

have suggested that it is not asthma severity but asthma control that correlates with the 

degree of eosinophilic inflammation, with worse control being associated with higher levels 

of inflammation (277-280). A number of more recent studies in which investigators have 

attempted to identify sub-groups of asthmatic patients with similar phenotypic 

characteristics using statistical methods such as cluster analysis have characterised several 

clusters (groups with shared phenotypic characteristics) of patients exhibiting eosinophilic 

inflammation with varying severities of disease, and this may explain some of the 

discrepancies found in previous investigations (281, 282).  

Eosinophilic inflammation has also been demonstrated in 20-40% of patients with a 

diagnosis of COPD (283). The relationship between lung function and the degree of 

eosinophilic inflammation in COPD is unclear. Lams et al. (284) demonstrated a significant 

negative correlation between FEV1 and the ratio of activated eosinophils to total eosinophils 

in endobronchial biopsy samples taken from COPD patients and Balzano et al. (285) similarly 
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found a negative correlation between FEV1 and sputum eosinophil count/eosinophilic 

cationic protein (ECP) levels. In contrast, Hogg et al. (236) found no significant correlation 

between COPD severity as graded by GOLD score, and level of small airway eosinophilic 

inflammation.  

The diagnostic term ‘eosinophilic bronchitis’ is generally used to describe a disease state in 

which eosinophilic inflammation of the airways is the sole pathological feature, without AHR 

and variable airflow obstruction that might be seen in a classical asthma phenotype (88). EB 

typically presents as a chronic cough, and although the incidence and prevalence of the 

condition are unclear, it is thought to be responsible for between 10-30% of cases of chronic 

cough referred to the specialist respiratory clinic (286). 

1.4.6.3 Pathological mechanism 

Eosinophilic inflammation has been well studied in asthma, and classically associated with 

allergic sensitisation and a Th2 cell-dependent, IgE mediated inflammatory response. 

The current understanding regarding the immunopathology of eosinophilic inflammation is 

summarised diagrammatically in Fig 1.1.  

 

Figure 1.1: Immunopathology of eosinophilic inflammation in 

asthma (adapted from Barnes P. (287))  
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Th2 mediated asthma with eosinophilic inflammation can also be triggered by other non-

allergenic stimuli such as viral infection and air pollution (288). This may be due to cytokines 

released from the bronchial epithelium in response to these insults, such as TSLP release in 

response to viral infections (289) or release of cytokines including IL-8 and GM-CSF in 

response to airway pollutants (290). 

a) Eosinophils 

Eosinophils are a key effector cell in the inflammatory response noted in eosinophilic 

asthma and release a variety of substances including: 

 Pre-stored cytotoxic proteins including eosinophil cationic protein, eosinophil 

peroxidase and major basic protein, all of which may play a role in the epithelial 

damage observed in the airways of asthmatics (291). 

 Th1 and Th2 cytokines and chemokines which contribute to the maintenance of 

ongoing inflammation (292).  

 Fibrogenic cytokines including TGF-β which may contribute to sub-epithelial 
fibrosis/airway remodelling (293). 

Eosinophils can also directly regulate the inflammatory response by influencing Th1 and Th2 

cytokine generation from T cells (294) and the pulmonary dendritic cell response to allergen 

exposure, promoting a Th2 dominated immune response and suppressing Th1/Th17 

responses (295). 

1.4.6.4 Treatment 

a) Corticosteroids 

There is substantial evidence that sputum eosinophilia is a strong predictor of response to 

steroid therapy (268, 296, 297). Various studies have attempted to titrate corticosteroid 

treatment depending on the degree of eosinophilic inflammation present, as assessed by 

induced sputum differential cell count or exhaled nitric oxide assessment. A meta-analysis 

studying the titration of treatment based on sputum eosinophil count based on three 

studies conducted in patients with asthma concluded that this strategy would be an 

effective way of minimising asthma exacerbations without a net increase in the dose of ICS 

(298). A similar study involving patients with COPD (299) found that a sputum based 

strategy significantly reduced the number of severe exacerbations in the sputum group 

compared to the control group. A meta-analysis of 6 RCTs including adults, adolescents and 

children investigating the titration of steroid treatment based on exhaled nitric oxide 

monitoring (298), which has a positive correlation with sputum eosinophilia (300), failed to 

show any significant improvement in the exacerbation rate using this approach.  

A sub-phenotype of patients with severe refractory asthma has been identified with a 

characteristically persistent eosinophilia despite standard high dose inhaled steroid 

treatment (281). This group of patients typically have few daily symptoms, develop features 

of airways disease later in life (281), and may also have problems with rhinosinusitis (301) or 

aspirin sensitivity (302). The persistent eosinophilia is associated with persistent airflow 

limitation (221), an increased rate of asthma exacerbations (303) and a dependence on oral 

corticosteroid therapy (304). It has been hypothesised that this group of patients may have 
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a greater degree of small airway inflammation (305), which would explain their relative 

insensitivity to treatment with standard ICS therapy and need for long courses of systemic 

steroid treatment to improve their asthma control. Small particle inhaled steroids may be of 

some benefit in treating patients in this sub-phenotypic group due to their theorised greater 

penetration into the small airways. Small particle ICS have been shown to reduce the 

number of eosinophils in small airway biopsies (306) and suppress sputum eosinophil counts 

in subjects with refractory asthma (307) as well as reducing the number of asthma 

exacerbations in patients with severe persistent asthma (308). However, many of these 

patients still require long term systemic steroid treatment and are at risk of the significant 

side effects of this treatment (309).  

Attempts have been made to develop more targeted therapies for refractory asthma, which 

is frequently associated with ongoing eosinophilic inflammation. 

b) Anti IgE 

The first biological therapy licensed for asthma treatment in the UK is the recombinant 

humanised monoclonal anti-IgE antibody omalizumab. Omalizumab attenuates the early 

and late phase allergic responses to allergen by inhibiting the binding of IgE to the high-

affinity IgE receptor (FcεRI) on the surface of mast cells and basophils, resulting in down-

regulation of IgE receptors and inhibition of inflammatory mediator release (310). 

Although serum IgE levels do not correlate with levels of tissue eosinophils treatment with 

omalizumab has been shown to reduce airway and blood eosinophil counts (311). This may 

be because the down-regulation of the FcεRI receptor on basophils and mast cells limits 

allergic IgE-mediated responses and prevents Th2 cytokine release and eosinophilic airway 

infiltration (312).  

Meta-analyses of multiple clinical trials have confirmed the therapeutic efficacy of 

omalizumab as an additional treatment to corticosteroids and LABA therapy in patients with 

severe persistent allergic asthma (313). Data from these trials revealed that baseline total 

IgE was the only baseline predictor of treatment efficacy, but that there were treatment 

benefits regardless of IgE levels (314). 

c) Anti IL-5 

Owing to the importance of the cytokine IL-5 in increasing eosinophil production, 

recruitment and survival in eosinophilic asthma this is a rational target for therapy in this 

condition. Animal studies showed significantly reduced levels of airway eosinophils and AHR 

in response to allergen following anti-IL-5 treatment (315). 

Initial clinical trials in humans of anti-IL-5 treatment failed to replicate these findings and 

despite reducing serum eosinophil counts showed no significant effect on AHR or clinical 

benefit (316-318). However, these studies did not specify an asthmatic patient cohort with 

eosinophilic asthma, and the fact that they were undertaken with an unselected asthma 

cohort may have contributed to their failure to demonstrate any obvious clinical 

improvement. Later trials that selected patient cohorts with refractory eosinophilic asthma 

showed improvements in clinical measures with anti-IL-5 treatment (mepolizumab). These 

included a significant reduction in asthma exacerbations, improved symptom scores and 
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quality of life and improved FEV1 (319, 320). Mepolizumab has now been approved by NICE 

as a treatment for subjects with severe refractory eosinophilic asthma in the UK (321). 

Further anti-IL5 therapies including reslizumab (322) and benralizumab (323) have also been 

demonstrated to significantly reduce asthma exacerbation frequency in subjects with severe 

uncontrolled eosinophilic asthma and are likely to be approved in the near future.  

d) Anti IL-13 

Another important cytokine in Th2 mediated asthma with a key role in eosinophil 

recruitment into airways is IL-13 (324). Corren et al. (325) conducted a clinical trial of the 

anti-IL-13 treatment lebrikizumab in 219 adult asthma patients with uncontrolled asthma 

refractory to corticosteroids and LABA therapy. There was a significant improvement in FEV1 

from baseline in the treatment arm compared to placebo, which was more significant in 

subjects with high levels of ongoing Th2 inflammation at baseline (as defined by high serum 

periostin levels). Phase 3 studies however did not consistently show a significant reduction 

in asthma exacerbations in Th2 biomarker-high patients with lebrikizumab (326). 

e) Anti IL-4 

IL-4 is an important mediator of allergic asthma, and is responsible for many of the key 

pathophysiological features of this condition. These include the differentiation of CD4+ T 

cells into effector Th2 cells, isotype class switching of B cells to produce IgE in the allergen 

sensitisation stage (327), and promoting goblet cell hyperplasia and mucus production in 

the early allergic response (328). 

IL-4 and IL-13 signal through different receptors, but both receptors share the α subunit of 

the IL-4 receptor (IL-4Rα) (327). Several anti-IL-4 agents have been investigated in clinical 

trials thus far. The IL-4 monoclonal antibody pascolizumab was well tolerated in Phase I 

trials, but failed to show any significant clinical benefit in a Phase II study and further 

development was discontinued (329). The recombinant human IL-4Rα antagonist 

altrakincept (330) and the IL-4/IL-13 cytokine heterodimeric receptor antagonist pitinkinra 

(331) showed some modest benefit in clinical measures in Phase I/II clinical trials but both 

agents have also been discontinued. 

Wenzel et al. (332) conducted a double blind placebo-controlled trial of dupilumab, a 

humanized monoclonal antibody to the IL-4Rα subunit in 104 patients with moderate to 

severe persistent asthma and eosinophilia. Subjects in the treatment group showed a 

significant improvement in lung function and a reduced number of exacerbations in 

comparison to the placebo group after withdrawal of ICS and LABA therapy. Dupilumab also 

decreased levels of Th2 associated biomarkers from baseline including FENO and IgE levels. A 

further large scale RCT (n=769) in patients with uncontrolled persistent asthma also showed 

significant improvements in lung function and severe exacerbation rate with Dupilumab 

irrespective of baseline eosinophil count (333). Phase 3 trials are ongoing. 

1.4.6.5 Summary 

Eosinophilic inflammation is a well-defined, relatively well-characterised process which is a 

pathological feature of several different airway diseases. It is usually associated with allergic 

asthma but there appear to be different phenotypes of asthma of which eosinophilic 
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inflammation is a feature. Eosinophilic inflammation normally responds well to steroids and 

monitoring sputum eosinophil counts in patients with eosinophilic asthma and COPD has 

proven to be a successful strategy in titrating steroid doses. However there is a sub-group of 

patients with severe asthma who may exhibit persistent eosinophilic inflammation 

refractory to high dose corticosteroid treatment.  Newly developed biological agents 

targeting the chemical mediators of Th2 inflammation are being developed and these may 

prove effective in subjects with corticosteroid resistant asthma and/or corticosteroid 

resistant eosinophilic inflammation as part of other airway conditions. 

1.4.7 Neutrophilic Inflammation  

1.4.7.1 Definition 

Diagnostic criteria for neutrophilic inflammation in sputum is less well defined due to a 

greater variability and an observed increase in differential neutrophil count seen with age 

(334), although this has previously been defined as either >61% neutrophils/total sputum 

cell count based on the 95th percentile value in a healthy population (260) or >77.7% based 

on +2 standard deviations from a healthy population mean (335). 

1.4.7.2 Affected Phenotypes 

Neutrophilic airways inflammation is well recognised in patients diagnosed with COPD. 

Elevated neutrophil counts have been detected in sputum and BAL samples from subjects 

with stable COPD (336) and these have been found to directly correlate with the degree of 

airflow obstruction (337) and air trapping (338). 

Neutrophilic inflammation is also one of the main pathological features of bronchiectasis, in 

which it is thought to be an ongoing response to bacterial colonisation of the airways. 

Sputum neutrophilia in bronchiectasis may be particularly prominent, with a percentage of 

neutrophils of the overall cell count in BAL or sputum of up to 90% (339, 340). Patients with 

the highest bacterial load in the airways tend to have higher proportions of neutrophils in 

sputum cell counts (340). 

A significant sub-group of 20-30% of patients with diagnosed asthma also have underlying 

neutrophilic inflammation (260, 296). This is more frequent in older patients (281), obese 

women (341), smokers (342) and in more severe disease (343, 344), and has also been 

reported as a significant autopsy finding in cases of fatal asthma (345). The degree of 

neutrophilia inversely correlates with lung function (346, 347) and has also been 

demonstrated to relate to the degree of gas trapping (346, 348). The significance of an 

increased sputum neutrophil count in patients with asthma has however been questioned, 

owing to the potential confounding effect of steroid treatment in reducing sputum 

eosinophils and possibly increasing sputum neutrophils (268). However, a neutrophilic 

inflammatory pattern has been observed in steroid naïve asthmatic individuals (267, 296) as 

well as asthmatic individuals who have had steroids withdrawn (268), suggesting this is a 

distinct phenotype.  

The stability of the neutrophilic asthma phenotype seems unclear. Studies including those 

by Green et al. (303) and Simpson et al. (260) suggest that ‘non-eosinophilic asthma’ is a 

stable subtype over a period of 1-5 years. This term however includes any patient not 
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meeting the criteria for eosinophilic asthma (>3% eosinophils in total sputum count) and as 

such incorporates those with mixed granulocytic and paucigranulocytic inflammatory 

subtypes as described above as well as individuals displaying a neutrophilic phenotype. Al-

Samri et al. (349) found a large amount of variability in sputum inflammatory cell types from 

61 patients with moderate and severe asthma on corticosteroid therapy over the course of 

1 year, with stable phenotypes found in only a third of subjects. A more recent investigation 

using cluster analysis profiling techniques to try and delineate different phenotypic asthma 

groups found that sputum inflammatory cell counts are a less stable feature to try and sub-

classify disease than physiological variables including lung function, reversibility and age of 

onset of disease (350). 

1.4.7.3 Pathological Mechanism 

Current evidence seems to suggest that neutrophilic inflammation may initially occur due to 

alterations in the innate immune response. The innate immune response is a rapid reaction 

by elements of the immune system to certain highly conserved structures common to whole 

classes of micro-organisms known as pathogen associated molecular patterns (PAMPs). 

PAMPs are quickly recognised by pattern recognition receptors such as toll-like receptors 

(TLRs) which are expressed by a variety of cells. These include dendritic cells and 

macrophages, and once recognition has occurred these cells are activated immediately to 

respond to the detection of a pathogen, mostly through the release of cytokines (351). 

In patients with neutrophilic asthma and bronchiectasis increased expression of TLR2, the 

pro-inflammatory cytokines IL-8 and IL-1β and increased levels of endotoxins have been 

noted in comparison to patients with eosinophilic inflammation or healthy controls (339). In 

further support of the role of TLR2 in the development of neutrophilic inflammation 

Buckland et al. (352) observed in a murine model of allergic bronchopulmonary aspergillosis 

(ABPA) that TLR2 deficiency resulted in decreased levels of airway inflammation, AHR and 

mucous metaplasia. Increased expression of TLR2 may be secondary to the prolonged 

presence of bacterial products, pro-inflammatory cytokines or the use of corticosteroids 

(353). This suggests that corticosteroid use, which is effective at reducing ongoing 

eosinophilic inflammation, could potentially worsen neutrophilic inflammation (354). 

Work by Simpson et al. (355) proposed that activation of TLR2 by any of these factors could 

lead to activation of what the authors describe as the ‘Neutrophil Activation Cycle’. This 

model comprises of positive feedback interactions between three inflammatory mediators, 

the levels of which are known to be increased in patients with ongoing neutrophilic 

inflammation, namely IL-8 (CXCL8) (339, 356), and the released neutrophil proteases 

neutrophil elastase (NE) and matrix metalloproteinase (MMP) -9 (340, 357, 358). These 

studies suggest that amplification of the original inflammatory response through this cycle 

may contribute to persistence of bacteria in the airways through the mechanisms of mucus 

hypersecretion and impaired bacterial phagocytosis. The continuing colonisation of bacteria 

in the airways only serves to further increase expression of TLR2, resulting in further 

activation of the Neutrophil Activation Cycle.  

Evidence is increasing that Th17 cells, a subset of T helper cells that produce the cytokine IL-

17, are also involved in the development of neutrophilic inflammation in asthma (359, 360) 
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which is resistant to corticosteroid treatment (361). Increased IL-17 levels in sputum from 

asthmatic patients significantly correlate with sputum neutrophil counts (362) and increased 

IL-17 expression has been noted in BAL and bronchial biopsies from patients with asthma 

(363, 364) and COPD (365, 366).  

1.4.7.4 Treatment 

a) Macrolides 

One of the most well studied treatments for neutrophilic inflammation are macrolide 

antibiotics, which have been shown to significantly improve outcomes in conditions with a 

component of neutrophilic inflammation including diffuse panbronchiolitis (DPB), COPD, 

cystic fibrosis (CF) and bronchiectasis (367). Further detail on the trials investigating the use 

of macrolides to date in airways disease and their postulated mechanisms of action can be 

found elsewhere (Section 3.2.2). 

b) Monoclonal antibodies 

Clinical trials of anti CXCL8 and anti CXCR2 (a CXCL8 receptor) therapy have been carried out 

in patients with COPD. Anti-CXCL8 treatment was demonstrated to be safe and also 

improved dyspnoea scores in a group of COPD patients over a 3 month period (368). 

However this made no significant difference to lung function, health scores or 6 minute 

walking distance. Two separate CXCR2 antagonists have been demonstrated in proof of 

principle clinical trials to reduce levels of blood (369) and sputum (370) neutrophils in COPD 

patients, but neither of these resulted in improvement of any clinical measures. 

c) Other medications 

Other potential agents under investigation  for the treatment of neutrophilic inflammation 

include anti-TNFα therapy (371, 372), statins (373), theophylline (374) and anti-IL-17 

monoclonal antibodies (375), but evidence for the significant efficacy of any of these 

interventions is currently lacking.  

1.4.7.5 Summary 

Neutrophilic inflammation is an important pathophysiological process in a number of airway 

diseases. It is less well defined and characterised than eosinophilic inflammation, but 

elements of its pathobiology are becoming better understood, including the importance of 

alterations in innate immune mechanisms, the proposed ‘neutrophil activation cycle’ and 

the role of Th17 cells in its development. Macrolide antibiotics are proving to be an effective 

treatment in many conditions with underlying neutrophilic inflammation, and other 

treatment options are currently being investigated. 

1.4.8 Summary  
Instead of using diagnostic labels airways diseases may instead be described as a 

combination of relatively independent pathophysiological components. Relative levels of 

‘contribution’ of these components in combination with extra-pulmonary pathologies 

reviewed elsewhere (157) may contribute to the broad spectrum of resultant clinical 

phenotypes of airways disease. Information derived from quantitative measurement of 

these pathological components can be used to target treatment specifically against these 

pathological processes and has been demonstrated to improve patient outcomes.  



61 
 

Further clarification of the relationships between these components is required and a 

number of investigators are now attempting to define common phenotypes or ‘clusters’ of 

disease based on the relative contributions of these pathophysiological processes (362). 
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1.5 The utility of exhaled nitric oxide in patients with suspected 

asthma  

1.5.1 Introduction 
As discussed in the previous chapter, asthma is one of the most common chronic diseases in 

the UK. It was shown there that untreated asthma is associated with a high morbidity and 

mortality. There is an appreciation that the majority of asthma exacerbations and deaths 

due to asthma can be avoided with timely recognition. It is therefore essential that the 

condition is recognised early in order to institute treatment promptly (25).  

However, making a diagnosis of “asthma” may be difficult. This arises partly from the 

imprecise meaning of the term asthma itself and also the non-specific nature of respiratory 

symptoms as previously discussed. 

The importance in recognising and treating asthma combined with the difficulties in making 

a diagnosis appear to have led to an “over-diagnosis” of asthma and the evidence for this 

will be discussed below. 

Next, the investigations used in patients with suspected asthma which measure different 

components of the condition such as airflow obstruction, airway inflammation and AHR will 

be reviewed. Particular emphasis is placed on bronchial challenge testing (a measure of 

AHR) and exhaled nitric oxide measurement (a measure of airway inflammation). 

Guidelines for the diagnosis of asthma have been issued by various organisations to attempt 

to guide physicians in this subject and the most recent of these are critically appraised.  

Finally, a proposed alternative use of exhaled nitric oxide measurement allowing the 

prediction of a response to a specific treatment (inhaled steroids), rather than attempting to 

diagnose asthma, will be discussed before outlining the specific aims and objectives of this 

study. 

1.5.2 Over-diagnosis of asthma  
With the realisation that asthma morbidity and mortality rates were unacceptably high 

between the 1980s and early 2000s (376, 377) there were well founded concerns regarding 

the under-diagnosis of asthma (378-380). An increasing awareness of the condition may 

have led to much higher rates of diagnosis (14, 381). However, with the current emphasis 

now being on not ‘missing’ a diagnosis of asthma and with many diagnoses of asthma being 

made on clinical assessment alone, which as demonstrated in the previous chapter is 

unreliable, more recent data suggests that asthma is now over-diagnosed in the community. 

LindenSmith et al. (382) studied a group of 90 adult asthmatics with physician diagnosed 

asthma to determine the proportion of these subjects who met the Canadian Thoracic 

Society (CTS) guidelines for asthma. After subject details were taken and clinical history and 

a symptom questionnaire were carried out, each of these subjects underwent spirometry 

with reversibility. Those who did not demonstrate reversibility were asked to keep a 14 day 

peak flow diary with all subjects undergoing MCT. Asthma was diagnosed in any subject with 

a suggestive clinical history and either significant reversibility, peak flow variability of ≥20% 
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over a 7 day period or AHR with a PC20 of ≤8 mg/mL of methacholine. Of the 90 patients 

who completed the study only 53 patients (59%) met the CTS guidelines for a diagnosis with 

asthma. In the group of subjects who were found not to have objective evidence of asthma 

23 (62%) were taking medications for asthma. Approximately half of the entire study group 

had never had any formal pulmonary function testing.  

McGrath et al. (383) demonstrated in a study of 304 subjects recruited from the community 

with physician diagnosed asthma that 83 of these (27%) had a negative MCT, and hence a 

low likelihood of asthma. The subjects with negative MCTs typically had normal lung 

function, an adult onset of symptoms and no history of exacerbation requiring oral steroids, 

which in combination with their negative MCTs makes it likely that the majority of these 

individuals did not have asthma.  

Aaron et al. (384) conducted a study of 496 individuals (242 obese and 254 non-obese) with 

physician diagnosed asthma to determine how many had objective evidence of asthma. 

After clinical histories and symptom/quality of life questionnaires were carried out, 

spirometry and reversibility tests were performed. Patients with no significant reversibility 

underwent MCT. Any subject with a negative MCT who was taking inhaled steroids had the 

dose of these halved and any anti-leukotriene therapy was stopped. A repeat MCT was 

carried out on the latter subjects 2-3 weeks later. Any of those subjects who had a second 

negative MCT had all ICS and LABA stopped before undergoing a third MCT 2-3 weeks later. 

If this third and last MCT was negative all asthma medications were stopped and the subject 

was followed up 6 months later. Overall asthma was excluded in 77/242 (32%) of obese 

patients and 73/254 (29%) of non-obese patients with no significant difference in over-

diagnosis of asthma between the two groups. Of these 150 patients, 98 (65%) did not 

require the use of asthma medications or require medical care due to asthma symptoms 

over a 6 month period. Despite this study finding no difference in the rate of over-diagnosis 

of asthma between obese and non-obese individuals, epidemiological data suggests that 

obese subjects are around twice as likely to be diagnosed with asthma as non-obese 

individuals (385).  

Van Huisstede et al. (386) attempted to investigate the potential for over- or under-

diagnosis of asthma in a study of 86 morbidly obese patients awaiting bariatric surgery. 

These workers found that of the 32 patients with a physician diagnosis of asthma, 13 (41%) 

had no objective evidence of asthma, whereas in the 54 subjects who had not previously 

been investigated for asthma 17 (31%) were newly diagnosed with asthma. 

Over-diagnosis of asthma leads to unnecessary over-treatment of subjects with ICS. In 

addition to the findings of Aaron et al. discussed above, other studies have also highlighted 

the inappropriate over prescription of ICS. 

Lucas et al. (387) assessed the diagnoses and reasons for using ICS of 2271 patients referred 

to a primary care diagnostic centre over the course of 6 months for pulmonary function 

tests. Of these 1171 used ICS and 354 (30%) had no clear indication for using steroids based 

on their medical history and spirometry results. One-hundred and forty-nine of these 

patients were asked to stop ICS treatment for 3 months and then re-attend for repeat 
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spirometry. Of the 71 that did so, only 5 developed asthma-like symptoms and were 

restarted on ICS, whilst the other 66 had no issues after stopping steroids. After one year 

the remaining 205 (of 354) patients who had an unclear reason for ICS use and the 78 

patients who did not return for repeat spirometry (total of 283) were asked to return for 

spirometry. 49 of these had stopped ICS with no problems, 89 were still taking ICS for no 

clear reason, 79 failed to re-attend and 66 had indications to continue with ICS therapy. In 

all at least 11% of those originally using steroids did not require them and at least 15% of 

those still taking ICS at the end of the study had unclear reasons for doing so. The authors 

estimate that up to 26% of all patients in the study probably did not require ICS treatment. 

1.5.2.1 Summary 

Having previously been under-diagnosed there are compelling data suggesting that asthma 

is now over-diagnosed. This not only leads to unnecessary confusion and anxiety on behalf 

of patients labelled with an incorrect diagnosis but also to overuse of expensive inhaled 

medication with cost implications for the NHS and potentially unnecessary exposure to ICS 

side effects.  

The accuracy of asthma diagnosis may be improved by the use of objective tests that are 

capable of measuring and quantifying the degree of the ongoing pathological processes and 

these will now be reviewed. 

1.5.3 Comparison of investigations for the diagnosis of asthma: 

1.5.3.1 Sensitivity and Specificity 

Before discussion of the various investigations used to support a diagnosis of asthma it is 

important to clarify the terms used to compare the diagnostic usefulness of these 

investigations. These terms include the sensitivity (the percentage of subjects who “have” 

asthma and test “positive”); specificity (the percentage of subjects who “do not have” 

asthma and test “negative”); positive predictive value (percentage of subjects who test 

“positive” and “have” asthma) and negative predictive values (percentage of subjects who 

test “negative” and “do not have” asthma) of these tests. 

In order to determine the usefulness of investigations for diagnosing asthma and “optimal” 

cut-points with maximum sensitivity and specificity for this purpose many studies have used 

Receiver Operator Characteristics (ROC) analysis. This statistical technique uses values 

calculated for the sensitivity and specificity of a test at regular unit intervals to produce a 

ROC curve, the area under which is essentially a measure of the diagnostic utility of that 

test. An area under the curve (AUC) of 1 would be consistent with a perfect test that was 

capable of distinguishing between a subject with the incident condition and one without the 

condition correctly every time. An area under the curve of 0.5 would be consistent with a 

test that is no better at correctly identifying if a subject has the incident condition or not 

than randomly guessing.  

It is worth noting that assessment of the sensitivity and specificity of any of these 

investigations in diagnosing asthma is problematic owing to the lack of an independent 

confirmatory (or ‘gold standard’) test against which a comparison can be made. In subjects 

who have mild symptoms suggestive of asthma investigations are often compared against 
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“physician diagnosis” of asthma, which is based on clinical history, examination and 

pulmonary function testing. However, as it is the difficulty in making a clinical diagnosis of 

asthma that has led to the need for further investigation, it is clear that this is not a reliable 

gold standard test against which all other investigations should be judged.  

1.5.3.2 Tests for variable airflow obstruction 

a) Spirometry 

i) Description of test 

It is generally accepted that spirometry should be the initial investigation in any subject 

above 5 years of age with a suspected diagnosis of asthma.  

The test measures the volume of air that can be exhaled by the subject, allowing the 

measurement of certain parameters including the forced expiratory volume in the 1st 

second (FEV1), the maximum volume of air expelled from the lungs following maximum 

inhalation (vital capacity or VC) and another similar measure, the forced vital capacity (FVC), 

which is the same as the VC but the subject is asked to exhale as forcefully and rapidly as 

possible. 

ii) Significant (”positive”) result 

Airflow obstruction is determined by the presence of a reduced FEV1:VC ratio or a reduced 

FEV1:FVC ratio. The European Respiratory Society (ERS)/ATS spirometry guidelines 

recommend that a subject’s calculated FEV1:VC ratio should be compared to a predicted 

value based on their age, height, gender and race. Values that are below the 5th centile of 

the frequency distribution for the relevant reference population are considered below the 

“normal range” (217). In contrast to this the GOLD guidelines for spirometry consider 

airflow obstruction to be present if the FEV1/FVC ratio is <70% (218). 

A combination of symptoms suspicious of asthma together with a reduced FEV1:VC or 

FEV1:FVC ratio is consistent with a high probability of a diagnosis of asthma. A proviso to this 

is that as asthma is an intermittent condition with variable airflow obstruction, spirometry 

may be normal in asthmatic individuals in between symptomatic episodes. 

iii) Sensitivity/specificity for asthma diagnosis 

Spirometers are superior to peak flow meters for the assessment of airflow obstruction, 

which should not be used for diagnosing asthma as they are less accurate and more effort 

dependent (388-390). 

Spirometry has a good specificity for asthma (90%) but a low sensitivity (29%) making it 

possible to ‘rule in’ asthma but virtually impossible to ‘rule out’ the diagnosis when 

spirometry is normal (391). 

b) Peak flow variability 

i) Description of test 

The peak expiratory flow rate (PEFR) is the maximal exhalation rate of a subject after a full 

inspiration (392). It is most commonly measured using a peak flow meter, which is a small 

portable flow-gauge device. Peak flow measurements are of use in assessing suspected 

variable airflow obstruction, although peak flow is predominantly determined by the calibre 



66 
 

of large airways, as opposed to FEV1 which is determined by the calibre of both large and 

medium sized airways (393). 

Owing to the relative ease of use, portability and inexpensiveness of peak flow meters they 

can be used by patients to obtain self-assessed peak flow measurements in the community. 

Recording peak flow measurements at least twice daily over a specified period of time 

allows the calculation of peak flow variability, which can be used to estimate the degree of 

AHR experienced by a patient on a daily basis under normal work/life conditions. 

ii) Significant (”positive”) result 

There are different strategies for interpreting peak flow values but one of the most common 

of these is to calculate a peak flow variability index. These indices are normally calculated by 

determining the difference between the highest and lowest PEFR readings in a day, then 

dividing this difference by the mean of all the PEFR readings taken in that day (392, 394).  

Significant values for peak flow variability are disputed due to large overlaps in values 

between asthmatic and non-asthmatic subjects (393, 395) but population studies of non-

asthmatic adults suggest that the upper limit of normal PEFR variability (assessed using 4 or 

more peak flow readings per day) is <20% (396, 397). 

iii) Sensitivity/specificity for asthma diagnosis 

Peak flow variability has been shown to have a low diagnostic value for asthma in a primary 

care setting (398-400). A clinical study of 3074 patients using a calculated PEFR variability 

value of ≥20% on ≥2 days in a 3 week period to diagnose asthma found this cut-point to 

have a sensitivity of just 36% with a specificity of 90% and a positive predictive value of 

16.4% (395). Again, this means PEFR variability is useful for diagnosing asthma when 

positive but it is not useful to ‘rule out’ asthma. 

c) Bronchodilator response testing (“Reversibility”) 

i) Description of test 

Patients found to have airway obstruction on spirometry should undergo bronchodilator 

response testing to determine the degree of reversibility of their bronchoconstriction to an 

inhaled β2-agonist. Following baseline readings, 400 µg of salbutamol is administered from 

a pressurised inhaler device via a spacer and after waiting 15 min spirometry is repeated.  

ii) Significant (”positive”) result 

There is no clear consensus on what a significant response to a bronchodilator constitutes 

but this is most often taken as “an increase of 12% and 200 mL in FEV1 or FVC over the 

baseline value as recommended by the ATS (217).  

Results from the Burden of Obstructive Lung Disease (BOLD) study (401) seem to broadly 

support the clinical significance of these criteria with the estimated 95th centile values (with 

95% CI) for change in FEV1 post bronchodilator in a population of 3922 healthy never 

smokers found to be 284 mL (263-305 mL) and 12% (11.2-12.8%) above baseline with a 

corresponding average increase in FVC of 322 mL (271-373 mL) and 10.5% (8.9-12%). 
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iii) Sensitivity/specificity for asthma diagnosis 

Unfortunately the traditional paradigm of separating asthma (classically thought of as a 

disease with ‘reversible’ airway obstruction) and diseases thought to display fixed airway 

obstruction (especially COPD) has been demonstrated to be unreliable with many asthmatic 

subjects displaying a degree of fixed airway obstruction and a large proportion of COPD 

patients demonstrating significant reversibility (402). 

Indeed as a diagnostic test for asthma, bronchodilator response testing suffers from similar 

problems to spirometry in that it has a low sensitivity and hence a low negative predictive 

value, leading to a high false negative rate (400, 403, 404).  

A comparative study by Hunter et al. (403) of different diagnostic tests in a population of 

adults with mild asthma (in comparison to a gold standard of clinical diagnosis based on 

history and presence of airflow obstruction) found reversibility testing (using a much lower 

cut-off of >3% increase in FEV1) to have a sensitivity of 49% with a specificity of 70% for 

asthma diagnosis. Goldstein et al. (400) compared the diagnostic utility of peak flow 

variability, MCT and reversibility in 57 patients with suspected asthma. Only 3 of these 

subjects exhibited post-BD FEV1 responses ≥12%, meaning reversibility had almost 100% 

specificity but only 6% sensitivity for asthma diagnosis.  

 

1.5.3.3 Tests for airways inflammation 

a) Sputum differential cell count 

i) Description of test 

Airway inflammation is a characteristic pathological feature of asthma and can be assessed 

directly through the microscopic examination of induced sputum. 

Sputum induction is a well described technique (405) consisting of the inhalation of 

hypertonic saline of increasing concentrations by the subject in order to encourage the 

expectoration of sputum. The mechanisms for this effect are not entirely clear but are 

thought to be either due to the osmotic effects of hypertonic saline in the airways (406, 

407) or an enhancement of mucociliary clearance (408, 409). Unfortunately, hypertonic 

saline is also known to cause bronchoconstriction in asthmatic subjects (410), and this 

sometimes occurs despite pre-treatment with a β2-agonist (411). This is possibly due to 

mast cell activation (412) or neurogenic reflexes (413).  

Therefore despite the relatively non-invasive nature of this technique in comparison to 

bronchoscopic methods to obtain samples that give a direct measure of airway 

inflammation, it is not suitable for use outside a closely monitored setting (411). Reports of 

the success rate of sputum induction in producing an adequate sputum sample for analysis 

range between ~70-100% in both adults (264, 414) and children (415, 416). Also, special 

expertise is required to process sputum samples in order to perform a cell count and 

processing must take place within hours of obtaining the sample in order to obtain a reliable 

result, further limiting the applicability of this technique outside a specialist centre (417).  
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Microscopy of induced sputum from asthmatics has allowed the identification and study of 

different inflammatory subtypes, based on the inflammatory cells identified in the sputum. 

The four main inflammatory subtypes identified are the eosinophilic, neutrophilic, 

granulocytic and paucigranulocytic types (260), of which, with regards to the diagnosis of 

asthma only the eosinophilic type will be discussed further in this section. 

ii) Significant (”positive”) result 

Different definitions have been used for sputum eosinophilia from 1% to 3% 

eosinophils/total sputum cell count. Studies investigating the mean % eosinophil count in 

the induced sputum of healthy non-smokers found this to be around 0.4% (335, 418) and it 

has been recommended a value of ≥3% be used to identify patients with eosinophilic 

inflammation with optimum reproducibility (263). 

iii) Sensitivity/specificity for asthma diagnosis 

Studies that have used sputum eosinophil count for asthma diagnosis include Hunter et al. 

(403) (as described above) who calculated a sensitivity and specificity using a cut-off value of 

>1% of 72% and 80% respectively when compared to physician diagnosis of asthma. 

Di Lorenzo et al. (419) compared the validity of sputum eosinophil count with MCT, PEF 

variability, FEV1/FVC ratio, serum eosinophil and ECP levels in diagnosing asthma in a 

population of 60 mild asthmatics, 30 patients with GORD and asthma-like symptoms and 25 

healthy volunteers. These workers concluded that a sputum eosinophil count of >1% had a 

sensitivity of 90% and a specificity of 92%  for the diagnosis of asthma, which was superior 

to all the other tests assessed except the MCT which was roughly equivalent with a 

sensitivity of 90% and specificity of 89%. 

In summary, the sputum differential cell count is useful for identifying eosinophilic (and 

neutrophilic) inflammation, although not necessarily asthma per se. However, this test is 

difficult to administer outside a specialist centre due to the safety aspects of sputum 

induction and the expertise required to process sputum samples and produce a valid cell 

count. 

 

1.5.3.4 Tests for airway hyper-responsiveness  

a) Principles of AHR testing 

AHR is one of the pathological hallmarks of the classic asthma syndrome (Section 1.4.3). 

Despite being a vague term, it can be defined as an “exaggerated narrowing of airways 

through airway smooth muscle mediated bronchoconstriction following exposure to a direct 

or indirect stimulus” (161). 

The response of the airway to bronchoconstrictor stimuli is measured clinically by bronchial 

challenge testing, which exposes subjects to a stepwise increase in the dose of the selected 

stimulus whilst measuring their lung function. This allows a dose-response curve to be 

produced from which the different components of AHR can be elucidated. 
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i) Types of bronchoconstrictor stimuli 

The stimuli that cause a bronchoconstriction response can be divided into 2 groups; direct 

and indirect. 

Direct bronchoconstrictor stimuli are those which act directly on receptors present in airway 

smooth muscle causing contraction. These include methacholine which acts on muscarinic 

(M3) receptors and histamine which acts on H1 receptors as well as leukotrienes C4 and D4 

(420) and prostaglandins D2 and F2α (421). 

Indirect stimuli cause bronchoconstriction via the release of constrictor mediators (such as 

histamine and prostaglandins) from inflammatory cells (such as mast cells). These mediators 

then act on receptors in airway smooth muscle. Such stimuli include allergens, exercise 

(422), osmotic agents such as mannitol or hypertonic saline (423) or adenosine 

monophosphate (AMP) (424).  

ii) Dose response curve 

There are 2 relatively independent components of AHR; airway sensitivity and airway 

reactivity. Airway sensitivity refers to the minimum level/dose of a stimulus that causes 

bronchoconstriction, i.e. the greater the airway sensitivity to a substance, the greater the 

left-shift of the dose response curve from ‘normal’. Airway reactivity refers to the 

incremental relationship between the level/dose of stimulus and the degree of bronchial 

constriction i.e. the higher the airway reactivity to a substance, the steeper the gradient of 

the dose response curve (see Fig. 2.1). 
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Figure 1.2: A dose-response curve from bronchial challenge testing 

demonstrating the components of AHR of airways ‘hypersensitivity’ 

and ‘hyperreactivity’  (adapted from Lotvall et al. (425))  

 

As shown in Fig. 2.1, the same degree of hyper-responsiveness may result from either an 

increase in airways hypersensitivity or hyperreactivity, although these two different 

mechanisms may reflect different pathological components that lead to increased 

bronchoconstriction (426, 427). In general however, AHR testing does not tend to consider 

these components differently and is used to determine whether a subject has increased 

AHR in relation to a “normal” cut-off point to certain types of bronchoconstrictor stimuli, as 

discussed below. 

b) Fixed and variable direct AHR 

It is thought there may be two components of the “hyper-response” to direct stimuli: fixed 

and variable.  

The “fixed” component is traditionally considered to reflect chronic persistent structural 

changes in the airway i.e. airway remodelling, and it has been suggested that this may be 

the predominant mechanism for AHR in conditions of fixed airway obstruction (428). A 

number of investigators have demonstrated that the lower the baseline FEV1, the greater 

the magnitude of AHR (429-431), and it was thought that increased airway wall thickness, at 

a given degree of airway smooth muscle contraction, resulted in greater airway narrowing 
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(425). However, the situation may be more complicated than this, and a more recent study 

(427) using HRCT to assess airway thickness in asthmatics found that airway wall thickness 

was inversely correlated with airway reactivity (whereas airway sensitivity correlated with 

eosinophilic airway inflammation). 

The “variable” component of direct AHR is thought to reflect the degree of airway 

inflammation and can therefore change rapidly in response to pro-inflammatory stimuli 

such as allergen inhalation or direct challenge or anti-inflammatory stimuli such as ICS.  

This proposed combination of these two components of the airway response to direct 

stimuli may explain certain clinical observations. These include (1) the short term 

improvement, though incomplete inhibition of AHR, of certain asthmatic patients with ICS to 

direct bronchoconstrictors, presumably due to reversal of variable AHR with some 

persistent degree of fixed AHR (432); (2) the continuing persistence of AHR in some groups 

of asthmatic patients despite long periods of high dose ICS (252, 432) due to fixed AHR and 

(3) the positive AHR response of individuals with airway remodelling but without a clinical 

diagnosis of asthma due to fixed AHR (168).  However, this relationship is yet to be fully 

validated and may prove more complex than outlined here. 

 

c) Direct bronchial provocation tests 

i) Description of test 

The methacholine bronchial provocation test (MCT) is the most widely used bronchial 

challenge test, and there are standardised protocols for its administration through tidal 

breathing using a nebuliser (433) or deep inhalations using a dosimeter (434). 

These techniques differ slightly in their methodology but both basically involve the 

inhalation of saline as a baseline control, followed by doubling concentrations of 

methacholine (from 0.03 mg/mL to 16 mg/mL) with measurement of the FEV1 after each 

inhalation until either the highest dose has been inhaled or the FEV1 has fallen by 20% (PC20) 

(434). The tidal breathing method may be preferable as some evidence suggests the 

dosimeter/deep inhalation method induces bronchodilatation leading to a lower diagnostic 

sensitivity for asthma (435-438).  

Asthmatic subjects are often both more sensitive and more reactive to methacholine than 

those without asthma, and hence have a lower PC20. However, individuals with other airway 

diseases in which permanent airflow obstruction is a feature, such as COPD, may also exhibit 

an increased response to direct stimuli.  

ii) Significant (”positive”) result 

Defining absolute values of PC20 to conclusively rule out or rule in asthma is not possible due 

to the overlap in values observed when comparing results from healthy volunteers and 

subjects diagnosed with asthma.  

Two differing statistical approaches may be used when interpreting the results of a MCT 

with regards to determining the likelihood of a subject having asthma or not. 
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The first of these is through the process of decision analysis, in which a pre-test probability 

of a subject having asthma is calculated, as well as a post-test probability that takes into 

account the pre-test probability and results of the MCT (439). The difference between the 

pre and post-test probabilities reflects the usefulness of the MCT results in helping to 

determine if a subject has asthma or not. The pre-test probability in this situation is 

influenced by the clinical history of the subject. This means that if the subject was chosen at 

random from the general population, the pre-test probability of that subject having asthma 

would be very low (i.e. around 5-10% which is the prevalence of asthma in the general 

population (12)), whereas if the subject had symptoms suggestive of asthma the pre-test 

probability would be much higher (although difficult to provide an exact value) (440). 

Approximate values of post-test probabilities can be estimated from pre-test probability 

values and different values of PC20. For example, a series of curves demonstrating post-test 

probability values for given pre-test probability values at different values of PC20 can be 

used, as shown in Fig. 2.2, adapted from the ATS guidelines for Methacholine and Exercise 

Challenge testing (434).  

The alternative approach for using MCT results to assess a subjects likelihood of having 

asthma can be described as a “categorical” method, which assumes that (1) asthma is 

present or absent (2) that the MCT result is either positive or negative for AHR and (3) that 

there is a gold standard test for asthma (434). This allows definitions for the sensitivity and 

the specificity of the test to be used, and this approach is much more commonly used than 

decision analysis in assessing the utility of MCT in diagnosing asthma. Different PC20 cut-

points have been used by different authors to signify “positive” and “negative” MCTs and 

these are discussed further in the next section.  
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Figure 1.3: Curves illustrating pre-test and post-test probability of 
asthma after a methacholine challenge test with four PC 2O values. 
(adapted from ATS guidelines on methacholine challenge testing 
(434))  

  

iii) Sensitivity and specificity of direct AHR testing/MCT 

Table 1.4 summarises the results of a literature review concerning the determination of the 

diagnostic utility for asthma of direct bronchial challenge testing. Some of these studies are 

discussed in further detail here. 

In one of the first studies to assess the utility of direct bronchial challenge testing for asthma 

diagnosis in a non-selected population Cockcroft et al. defined a PC20 cut-point for the 

histamine challenge of <8 mg/mL (433) (Table 1.4). In a study of 500 randomly selected 

college students to identify those with current symptomatic asthma this cut-point had a 

high sensitivity (100%), specificity (93%) and NPV (100%), although the PPV was poor (29%), 

which may have been due to the low prevalence of asthma in the population (441). By 

lowering the cut-point to <1 mg/mL, the specificity and positive predictive value of the test 

were increased to ~100% (441).  

This often quoted study is frequently used to support the assertion that direct bronchial 

challenge testing is the most accurate diagnostic test for asthma. However, the main 

weakness of this investigation is that a diagnosis of asthma (“current symptomatic asthma”) 

was defined by questionnaire rather than by physician diagnosis or any objective testing. As 

questions on symptoms alone are poor diagnostic indicators of asthma and are unlikely to 
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discriminate well between asthma and conditions leading to similar symptoms (e.g. PNDS or 

respiratory infection both of which may also cause a degree of AHR (168)) the certainty of 

the “diagnoses” of asthma in this study could be questioned.   

Hunter et al. (403) found similarly high levels of both sensitivity (91%) and specificity (90%) 

using MCT with a PC20 cut-point of <8 mg/mL for asthma diagnosis. However, this study 

assessed the diagnostic utility of the same objective tests it used to define asthma (PEF 

variability, reversibility and positive MCT). Virtually all of the subjects classified as having 

asthma exhibited a positive MCT, suggesting that this was the most important criterion in 

classification. Therefore, even though MCT clearly outperformed PEF variability, reversibility 

and other investigations not used to define asthma (including blood and sputum eosinophil 

counts), these results should be assessed with some caution as the sensitivity and specificity 

values are largely based on the ability of a positive MCT to identify subjects with a positive 

MCT. 

More recent studies examining the use of the MCT in certain patient groups have not found 

a similarly high level of diagnostic sensitivity including studies by Hedman et al. (442), 

Anderson et al. (443), Sverrild et al. (444), Sumino et al. (445) and Backer et al. (446) as 

shown in Table 1.4.  

Sumino et al. (445) assessed the influence of factors such as the use of ICS, race and atopic 

status on the sensitivity of methacholine to identify asthma and found that in asthmatics 

taking regular ICS the sensitivity of the test was 77%. These workers also determined that 

the sensitivity using a cut-off (PC20) of 8 mg/mL was significantly lower in Caucasian (69%) in 

comparison to African American subjects (95%) and in non-atopic (52%) in comparison to 

atopic subjects (82%).   

Backer et al. (446) assessed the sensitivity and specificity of the MCT, along with the 

mannitol challenge test, PEFR variability and reversibility, to diagnose asthma in 190 

individuals with ‘suspected asthma’ in comparison to asthma diagnosis made by a panel of 

three independent respiratory physicians (based on symptoms, presence of atopy and 

baseline spirometry). None of the tests provided good combinations of sensitivity and 

specificity for asthma diagnosis, although MCT had the highest sensitivity of 69% (with 

specificity of 57%). Interestingly, the clinical diagnoses of asthma made by respiratory 

physicians generated a low level of agreement, with agreement between all three observers 

occurring in only 42% of cases and poor agreement between different pairs of observers as 

assessed by the kappa statistic (a measure of inter-observer agreement). 

The MCT does not appear to be a particularly sensitive test for asthma in paediatric 

populations with the ‘best’ combinations of sensitivity and specificity for the test in a study 

by Liem et al. (447) for cohorts of atopic boys (67% sensitivity 75% specificity using a PC20 of 

≤2 mg/mL) and girls (71% sensitivity 69% specificity using a PC20 of ≤4 mg/mL) being 

relatively low. These values were even lower for non-atopic individuals. 

In conclusion the MCT, although not as sensitive in diagnosing asthma as originally 

described, is still probably the most sensitive test for asthma diagnosis. Owing to this higher 

sensitivity and hence NPV it is best employed as a test to “rule out” rather than “rule in” 
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asthma, and its sensitivity will be  highest when the pre-test probability of asthma is 

between 30-70% (441, 448).  

iv) Indirect challenge tests 

Indirect challenge testing using stimuli including exercise and inhaled mannitol challenge is 

thought to be less sensitive but more specific for diagnosing asthma (428, 444, 446), 

although some studies have demonstrated comparable values for both measures (443, 444, 

449).  
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Study author Population Type of 

bronchial 

challenge 

testing 

Criteria for asthma 

diagnosis 

Method of analysis Optimal cut-

point for 

diagnosis 

Sensitivity, 

specificity, NPV 

and PPV 

Cockcroft et 

al.  

(441) 

500 randomly 

selected young 

(20-29) students 

Histamine 

challenge test 

 “current symptomatic 

asthma” as defined by 

ATS “Adult 

Questionnaire on 

Respiratory Disease” 

Calculated 

sensitivities/specificities 

for certain cut-points 

Using ≤8 mg/mL 

 

 

 

 

Using ≤1 mg/mL 

Sensitivity 

100%, 

Specificity 93%  

NPV 100% 

PPV 29% 

 

Sensitivity 41% 

Specificity 100% 

NPV 98% 

PPV 86% 

Nieminen et 

al. 

(448) 

791 consecutive 

adult patients 

referred to 

pulmonary clinic 

with symptoms 

of dyspnoea, 

wheezing, 

prolonged cough 

or history of 

asthma 

MCT 

(dosimeter) 

Physician diagnosis with 

objective test. 

 

Objective tests were:  

1) Documented 

variation in FEV1/PEFR 

of ≥15% post BD OR 

2) Repeatedly ≥20% 

spontaneous daily 

variation in PEFR over 2 

week period 

3) IN ADDITION TO (1) 

or (2) ≥15% decrease in 

FEV1 after specific 

Calculated sensitivity etc. 

for MCT cut-point of 

2600 µg.   

 

Test was considered to 

be positive (for bronchial 

hyperreactivity) if PD20 

FEV1 ≤2600 µg  

≤2600 µg Sensitivity 89%, 

Specificity 76%  

NPV 91% 

PPV 71% 
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allergen provocation or 

exercise test 

Hedman et al. 

(442) 

230 consecutive 

adult patients 

referred to 

pulmonary clinic 

with symptoms 

of dyspnoea, 

wheezing or 

cough of 

unknown cause. 

Patients with 

previous asthma 

diagnosis or ICS 

use in last 4 

weeks excluded 

MCT 

(dosimeter) 

As per Nieminen et al. 

(85) 

ROC analysis 

 

Methacholine 

positivity/bronchial 

hyperresponsiveness 

defined as PD20 FEV1 

≤6900 µg 

≤6900 µg Sensitivity 77%, 

Specificity 82%  

NPV 91% 

PPV 60% 

 

Popovic-Grle 

et al.(450) 

 

195 patients 

referred by GP 

with dyspnoea 

MCT 

(details 

unclear) 

Diagnosis based on 

questionnaire 

Calculated 

sensitivity/specificity/PPV 

and NPV 

≤8 mg/mL Sensitivity 97%, 

Specificity 85%  

NPV 92% 

PPV 94% 

Hunter et al. 

(403) 

69 patients 

diagnosed with 

asthma, 20 

subjects referred 

to outpatient 

clinic and found 

to have 

‘pseudoasthma’ 

MCT  

(tidal 

breathing) 

Physician diagnosis with 

symptoms consistent 

with asthma and FEV1 > 

65% predicted with ≥1 

of: 

(1) PC20 FEV1 < 8 mg/mL 

(2) >15% increase in 

post BD FEV1 

Calculated 

sensitivity/specificity/PPV 

and NPV 

≤8 mg/mL Sensitivity 91%, 

Specificity 90%  

NPV 75% 

PPV 97% 
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and 21 healthy 

controls  

(3) > 20% maximum 

within-day variability of 

PEF when measured 

twice daily for > 14 days 

Koskela et al. 

(451) 

37 consecutive 

patients with a 

new diagnosis of 

asthma from 

outpatient clinic  

Mannitol 

challenge 

 

Histamine 

challenge test 

(dosimeter) 

Physician diagnosis 

based on clinical 

assessment plus ≥1 of: 

1) Documented 

variation in FEV1/PEFR 

of ≥15% post BD  

2) Repeatedly ≥20% 

daily variation in PEFR 

over a 2 week period 

3) ≥15% decrease in 

FEV1 after specific 

allergen provocation or 

exercise test 

Calculated sensitivity of 

both challenge tests 

Histamine PD15 

≤0.4 mg 

 

≤1 mg 

 

Mannitol ≤635 

mg 

 

 

 

Sensitivity 49% 

 

Sensitivity 81% 

 

Sensitivity 51% 

Anderson et 

al. 

(443) 

509 subjects (6-

50) with signs 

and symptoms 

of asthma 

according to NIH 

questionnaire 

but without 

previous 

diagnosis of 

asthma 

Mannitol 

challenge 

(commercially 

available test 

kit – Aridol, 

Pharmaxis 

Ltd, Australia) 

 

MCT 

(dosimeter) 

Physician diagnosis 

based on clinical 

assessment, FEV1 

reversibility and 

exercise challenge 

results 

Calculated sensitivity and 

specificity of both 

challenge tests 

MCT  

PC20 ≤16 mg/mL 

 

 

 

 

Mannitol  

PD15 ≤635 mg 

Methacholine 

Sensitivity 51%, 

Specificity 75%  

NPV 46% 

PPV 78% 

 

Mannitol 

Sensitivity 55%, 

Specificity 73%  

NPV 48% 

PPV 79% 
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Sverrild et al. 

(444) 

238 randomly 

selected young 

adults 

Mannitol  

(commercially 

available test 

kit – Aridol, 

Pharmaxis 

Ltd, Australia) 

 

MCT 

Diagnosis based on 

asthma symptoms 

within the last 12 

months in combination 

with either a FENO level 

>30 ppb, a history of 

allergic 

rhinoconjunctivitis, 

dermatitis, a +ve skin 

prick test, a familial 

predisposition to atopic 

disease, nonallergic 

rhinoconjunctivitis, or 

an FEV1/FVC ratio < 75% 

ROC analysis MCT  

PD20 ≤8 µmol 

 

Mannitol  

PD15 ≤635 mg 

Methacholine  

ROC AUC 0.849 

Sensitivity 69%, 

Specificity 80%  

NPV 90% 

PPV 49% 

 

Mannitol 

ROC AUC 0.891 

Sensitivity 59%, 

Specificity 98%  

NPV 91% 

PPV 90% 

Sumino et al. 

(445) 

126 “asthmatic” 

patients 

receiving 

controller 

medications 

MCT 

(dosimeter 

method) 

Physician diagnosed 

stable asthma; current 

treatment for asthma in 

the preceding 12 

months with regular use 

of controller 

medications (ICS, 

leukotriene receptor 

modifiers, or both); no 

asthma exacerbation in 

the prior 4 weeks; and 

pre-bronchodilator 

FEV1 ≥70%  

Calculated sensitivity and 

specificity of MCT 

MCT  

PC20 ≤8 mg/mL 

Sensitivity 77% 

Specificity 96% 

PPV 96% 

NPV 75% 

Kim et al. 50 “asthmatic” MCT “Asthmatic” subjects ROC analysis MCT  Methacholine  
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(449) patients  (Dosimeter 

method) 

 

Mannitol  

(commercially 

available test 

kit – Aridol, 

BL&H Co Ltd, 

Seoul, 

S.Korea) 

 

had received previous 

physician diagnosis of 

asthma, had recurrent 

symptoms of asthma 

(wheezing and 

dyspnoea) and were 

using medication for 

asthma ≥6 months 

before enrolment 

PC20 ≤16 mg/mL 

 

 

 

 

 

Mannitol  

PD15 ≤635 mg 

ROC AUC 0.89 

Sensitivity 44%, 

Specificity 

98.1%  

NPV 65.4% 

PPV 95.7% 

 

Mannitol 

ROC AUC 0.77 

Sensitivity 48%, 

Specificity 

92.6%  

NPV 65.8% 

PPV 85.7% 

Backer et al. 

(446) 

190 patients 

with “suspected 

asthma” 

MCT 

(Dosimeter 

method) 

 

Mannitol  

(commercially 

available test 

kit – Aridol™) 

Physician diagnosis 

based on symptoms, 

presence of atopy and 

baseline spirometry 

Calculated 

sensitivity/specificity/PPV 

and NPV 

Methacholine  

PD20 ≤7.8 µmol 

 

Mannitol  

PD15 ≤635 mg 

Methacholine  

Sensitivity 69%, 

Specificity 57%  

NPV 48% 

PPV 74% 

 

Mannitol 

Sensitivity 38%, 

Specificity 82%  

NPV 42% 

PPV 79% 

Table 1.4: The utility of bronchial challenge testing for the diagnosis of asthma
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v) Airway hyperresponsiveness and airway inflammation  

The relationship between AHR and airway inflammation is a complicated one. Crimi et al. 

(452) found no correlation between AHR to methacholine and airway inflammation (as 

quantified by numbers of inflammatory cells in sputum, BAL or bronchial biopsy) in a cohort 

of 71 mild to moderate atopic asthmatic patients. Rosi et al. (275), using the method of 

factor analysis to determine the relatedness of AHR to histamine, reversible airway 

obstruction and eosinophilic airway inflammation in a cohort of 99 patients with chronic 

stable asthma also concluded there was no correlation between AHR and airway 

inflammation and that these should be considered  as separate dimensions of disease. 

Other investigators have found only a weak correlation between the two parameters (300, 

453, 454). 

Evidence suggests that the correlation is stronger between airway sensitivity to indirect 

agents and the proportion of eosinophils in induced sputum than for sensitivity to direct 

agents (455, 456). Both Scollo et al. (457) and Porsbjerg et al. (458) also identified significant 

relationships between airway sensitivity to indirect agents (exercise and mannitol) and FENO 

values, although a certain proportion of asthmatic subjects responsive to indirect agents 

have normal FENO values (456, 459) and these individuals may have non-eosinophilic asthma 

(458).  

1.5.3.5 Summary: Asthma over-diagnosis and comparison of investigations for the diagnosis 

of asthma 

Recent data suggest asthma, a diagnosis of which is often based on clinical assessment in a 

primary care setting, is now over-diagnosed. A number of objective measures of well 

described pathological features of asthma with cut-points based on the optimal separation 

of ‘asthmatic’ and ‘non-asthmatic’ populations have been proposed to try and objectively 

define the condition. Unfortunately although these investigations may be useful in 

‘confirming’ a label of asthma in subjects with commensurate symptoms if they are positive 

(high specificity), a negative test result is often not helpful (low sensitivity). AHR testing in 

the form of the MCT was thought to be the closest to a ‘gold standard’ test for asthma, but 

more recent studies in unselected populations have revealed this test may have a more 

modest sensitivity value than initially believed. One caveat to this is the sputum eosinophil 

count, which appears to be sensitive at identifying ongoing eosinophilic inflammation, 

rather than asthma per se, and this test has demonstrated utility at guiding management 

decisions in eosinophilic (Th2 high) asthma. Another investigation used to assess airway 

inflammation, exhaled nitric oxide testing, has also been proposed as a diagnostic test for 

asthma, and the utility of this test will now be examined. 

 

1.5.4 Exhaled Nitric Oxide (FENO) in asthma diagnosis 

1.5.4.1 Introduction  

Nitric Oxide (NO) is a gaseous signalling molecule with multiple critical roles in human 

physiology. As well as regulating airway function, NO is a mediator of vasodilation, a 
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neurotransmitter and an important molecule in the immune response, where it is generated 

by phagocytes to kill invading bacteria. 

NO is synthesised by three different isoforms of the NO synthase (NOS) enzyme: the 

neuronal (nNOS/NOS1), inducible (iNOS/NOS2) and endothelial (eNOS/NOS3) isoforms, each 

of which have different physiological functions. 

A brief review of NO production by these NOS isoforms and the physiology and 

pathophysiology of NO in the context of airways disease will now be discussed. 

1.5.4.2 NO in airways disease 

a) Production of NO 

All three NOS isoforms are found in the airways and produce differing amounts of NO. The 

neuronal and endothelial isoforms are usually collectively referred to as the ‘constitutive’ 

NOS isoenzymes, in comparison to the inducible (NOS2) isoenzyme. The significance of this 

is that whereas the constitutive isoenzymes are dependent on the influx of calcium ions and 

produce small amounts of NO, the inducible NOS2 type is “induced” by infectious or 

inflammatory stimuli to produce much larger amounts of NO, independent of calcium influx. 

Neuronal NOS enzymes are found mostly in cholinergic nerves in the airways, where they 

serve to inhibit bronchoconstriction by the production of NO, which inhibits cholinergic 

bronchoconstriction of the airways by acting as a functional antagonist to acetylcholine in 

airway smooth muscle (460). Low concentrations of NOS 1 are also found in airway 

epithelial cells. 

Endothelial NOS enzymes are predominantly found in the endothelial cells of the 

bronchopulmonary circulation and have a role in regulating vascular blood flow (461). 

However, eNOS is also expressed in airway epithelial cells, where it may contribute to the 

regulation of ciliary beating (462).  

Inducible NOS enzymes are mostly found in airway epithelial cells, although they are also 

expressed in alveolar macrophages and nasal endothelial and epithelial cells. Several studies 

have reported increased NOS2 expression in the airway epithelial cells of asthma patients, 

which is reduced by ICS (463-465). Lane et al. (465) also found higher levels of iNOS mRNA in 

the airway epithelial cells of asthmatic children as well as a significant correlation between 

iNOS expression and FENO levels, suggesting that increased expression of the iNOS isotype is 

responsible for the higher FENO levels observed in asthmatic patients. This finding was 

supported by the results of a placebo-controlled double blind RCT by Hansel et al. (466) in 

which the investigators determined that the oral administration of an iNOS selective NOS 

inhibitor to groups of healthy subjects and mild asthmatics reduced exhaled nitric oxide 

levels by >90% from baseline. 

iNOS enzymes are known to be induced by a variety of pro-inflammatory cytokines including 

IL-4 (464, 467, 468) and IL-13 (469, 470), via activation of signal transducer and activator of 

transcription (STAT)-6. Both IL-4 and IL-13 have prominent roles in the Th2 mediated 

inflammation known to occur in allergic airway inflammation. Hence, FENO can be 
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considered a proxy marker for Th2 mediated inflammation, an important finding that will be 

further explored later. 

Other potential sources of excess NO in asthma have been suggested, including the release 

of NO from S-nitrosothiols (471, 472) and the protonation of nitrites in airway lining fluid 

forming nitric acid which releases NO with acidification (473, 474).  

b) Exhaled nitric oxide and eosinophilic inflammation 

Traditionally FENO has been viewed as a marker of eosinophilic airway inflammation. Some 

of the earlier studies investigating the relationship between these two variables found no 

correlation (475, 476) or only a weak correlation (477) between them. However, the 

majority show a good correlation between FENO levels and sputum eosinophils (300, 478-

481), blood eosinophils (482, 483), serum ECP (482, 483), eosinophils in BAL fluid (484) and 

eosinophil count in endobronchial biopsy specimens (89, 278, 485). 

Nevertheless, more recent evidence from clinical trials of monoclonal antibodies in asthma 

have suggested that FENO might be more accurately be described as a marker of Th2 

mediated airway inflammation, of which eosinophilic inflammation is a prominent feature. 

Halder et al. (319) showed that treatment with mepolizumab, an anti-IL-5 monoclonal 

antibody, significantly decreased both sputum and blood eosinophil counts but had no 

effect on FENO levels.  

Conversely, Corren et al. (325) found that treatment with the anti-IL-13 monoclonal 

antibody lebrikizumab significantly increased peripheral blood eosinophils and significantly 

reduced FENO levels, especially in subjects with high levels of ongoing Th2 inflammation at 

baseline (as defined by high serum periostin levels). 

The reason for this disconnect between FENO levels and eosinophilic inflammation may be 

because IL-4 and IL-13 regulate iNOS induction and hence NO production via STAT-6 

dependent mechanisms. In contrast, IL-5 activates eosinophils through mechanisms that do 

not involve STAT-6 (and hence do not induce iNOS) and this activation occurs mostly in the 

systemic circulation (486). 

As FENO levels seem to reflect the degree of ongoing Th2 inflammation, it is not surprising 

that they are a sensitive marker of corticosteroid-responsiveness (487). The synthesis of IL-4 

and IL-13 is inhibited by corticosteroids, and this effect is likely due to steroid inhibition of 

transcription factor GATA-3 (488).  

c) Detection of NO 

Exhaled NO can be detected by several different techniques which can generally be 

categorised as spectroscopic (including chemiluminescence and laser spectroscopy) (489) or 

electrochemical detection (490).  

Spectroscopic detection methods involve the measurement of products of a reaction 

involving NO. These include a chemiluminescence technique which relies on the reaction 

between NO and ozone which produces NO2 in an excited state. A photon is emitted as the 

NO2 molecule returns to its ground state, which is detected by a photon multiplier tube and 
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converted into an electrical current. The output voltage of the detector is therefore 

proportional to the NO concentration (491). Despite the extremely high sensitivity of this 

technique (down to a concentration of 1 ppb) ensuring it is the “gold standard” for NO 

detection, the method requires sophisticated expensive equipment which is too large to be 

portable and therefore only of use in a research setting (492).  

By contrast, electrochemical detection methods directly detect NO, and although the 

sensitivity of these devices is not yet as high as chemiluminescence devices, they show a 

good level of agreement for all ranges of values (493-495). Their use is rapidly increasing in 

clinical studies as they are portable, relatively inexpensive and easy to use and maintain 

(492). 

d) Measurement of NO 

Detailed discussion of the models of NO excretion from the lungs and measurement of NO 

levels from different lung compartments is beyond the scope of this thesis. Briefly FENO 

concentration is inversely proportional to the exhalation flow of air from the lungs (496), 

although this is a complex relationship with NO elimination rates varying throughout 

different phases of exhalation, as certain structures in the lung such as the alveoli are not 

rigid and change volume during exhalation (497).  

Certain models have been formulated to account for the relative contribution of NO from 

the airway and alveolar compartments in exhalation (498-500), and interest in the area of 

NO exchange dynamics remains. This is due to the potential usefulness of being able to 

discriminate between ongoing eosinophilic inflammation in the large airways or small 

airways/alveoli (501).  

Largely however, most ongoing clinical studies measuring FENO levels tend to do so 

according to the ATS/ERS guidelines (502), which recommend a standardised exhaled flow 

rate of 50mL/s and specify the other technical considerations critical in obtaining 

standardised and reproducible FENO measurements.  

1.5.4.3 Reference values for exhaled nitric oxide 

Several investigations have attempted to determine reference values of FENO for 

populations of “healthy” adults. Some of the earlier studies in this field measured the NO 

values of “healthy” populations, without considering potential confounders and it has since 

become clear that there are a number of independent factors (discussed further below) that 

significantly affect NO values which need to be taken into account when trying to estimate 

population reference values. 

Some of the most reliable estimates of “normal” ranges of NO in various selected 

populations therefore come from studies that have measured and adjusted for confounders 

including age, sex, height, atopic status, smoking status and inhaled steroid usage. The 

results of the largest of these studies in adult populations with clearly specified subgroups 

are summarised in Table 1.5 below, whilst the findings from studies of subjects with asthma 

are summarised in Table 1.6: 
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Authors No of 

subjects 
Group studied Mean ± SD 

(ppb)  
FENO device and flow 

rate  
Factors not 

considered 
Olivieri et 

al. (503)  
204  

 
Healthy non-smoking 

male adults (n=102) 
Healthy non-smoking 

female adults (n=102) 

(5th – 95th 

centiles) 
4.5 – 20.6 

 
3.6 – 18.2 

Online 

chemiluminescence 

analyser  
(CLD88, Ecomedics, 

Switzerland) 
250 mL/s 

Atopy 

Olin et al. 

(504)  
1131  

 
By atopic status 
Healthy non-smoking 

non-atopic individuals 

(n=845) 
Non-smoking atopic 

individuals (n=286) 
By gender 
Non-smoking males 

(n=558) 
Non-smoking females 

(n=573) 

Mean and (5th-

95th centiles) 

 
16 (5.9 – 58.8) 
 

 

18.8 (5.9-47.1) 

 
 

18.5 (16.7-57.1) 
 

14.9 (5.4-41.5) 

NiOX online 

chemiluminescence 

analyser 
(Aerocrine, Solna, 

Sweden) 
50 mL/s 

 

Travers 

et al. 

(505)  

528 ‘Healthy’ controls 

(n=193) 
17.9 (7.8 – 41.1) NiOX online 

chemiluminescence 

analyser 
(Aerocrine, Solna, 

Sweden) 
50 mL/s 

Atopy, 

smoking 

Sundy et 

al. (506)  
994 ‘Healthy’ non-smokers 

(n=895) 

 
‘Healthy’ smokers 

(n=99) 

20.5 ± 213 

 

 
13.9 ± 18 

Sievers 280i Nitric 

Oxide Analyzer  
(NOA; GE Analytical 

Instruments, 

Boulder, CO, USA) 
50 mL/s 

Atopy 

Levesque 

et al. 

(507)  

895 ‘Healthy’ non-smoking 

males (n=271) 

 
‘Healthy’ non-smoking 

females (n=587) 

27 ± 26 

 

 
18 ± 18 

 

Sievers 280i Nitric 

Oxide Analyzer  
(NOA; GE Analytical 

Instruments, 

Boulder, CO, USA) 
50 mL/s 

Atopy 

Table 1.5: FENO reference values from the largest studies 
carried out in ‘healthy’ subjects  
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Authors No of 

subjects 
Group studied Mean ± SD 

(ppb) 
FENO device and flow 

rate 
Factors not 

considered 
Olin et al. 

(508) 
1090  

 
Asthmatics (never 

smoked) (n=1038) 
Non-asthmatics (never 

smoked) (n=52) 

Median 

(IQR) 
19.9 (14.6-

31.4) 
17 (12.7-

23.5) 

NiOX online 

chemiluminescence 

analyser 
(Aerocrine, Solna, 

Sweden) 
50 mL/s 

 

Shaw et al. 

(509)  
118 2 groups of non-

smoking asthmatics 
Group 1 (n=58) 

 
Group 2 (n=60) 

Mean  
(68% CI) 
29.2 (14 -

61) 
31.2 (13.3-

73.1) 

NiOX online 

chemiluminescence 

analyser 
(Aerocrine, Solna, 

Sweden) 
50 mL/s 

 

Travers et al. 

(505)  
137 Asthmatics 25 ± 15.2 NiOX online 

chemiluminescence 

analyser 
(Aerocrine, Solna, 

Sweden) 
50 mL/s 

Atopy, 

smoking 

Michils et al. 

(510)  
341 Non-smoking 

asthmatics  
Total (n=341) 
ICS naïve (142) 
ICS dose >500 µg BDP 

equivalent 

 

 
32.9 
49.8 
20.5 

LR 2000 online 

chemiluminescence 

analyser  
(Logan Research Ltd, 

Rochester, UK) 
50 mL/s 

Atopy 

Table 1.6: FENO reference values from the largest studies 
carried out in cohorts of asthma patients 
 

Due to these multiple confounding factors in interpreting NO levels and the significant 

overlap between values for “healthy” subjects and asthmatic subjects, standard reference 

ranges for NO cannot be applied to patients in a clinical setting. Instead, the use of “cut-

points” has been proposed to try and delineate subjects with an abnormally high NO, in 

whom ongoing Th2 airways inflammation is likely, and those with a low NO, in whom active 

Th2 inflammation is unlikely.  

Multiple investigations have attempted to use various FENO cut-points for the diagnosis of 

asthma, as discussed further in the following section. 
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1.5.4.4 Previous studies using FENO for diagnosis of asthma 

Table 1.7 summarises the results of a literature review relating to the diagnostic utility for 

asthma of measuring FENO levels. Some of these studies will be discussed in further detail 

below. 

Dupont et al. (511) assessed the measurement of FENO as a diagnostic tool in asthma in 240 

consecutive non-smoking patients referred to an outpatient clinic with symptoms of 

obstructive airways disease. The cut-off point of FENO >13 ppb was associated with the 

highest combination of specificity (80%) and sensitivity (85%) i.e. the best test accuracy. 

There was a significant overlap in this study in the FENO levels recorded from those patients 

diagnosed as asthmatic and those not thought to have asthma. This was reflected by the 

marked variation in sensitivity and specificity (steep gradient on ROC curve) over the narrow 

range of FENO values from values of 92.5% and 50% respectively using a cut-off of >10 ppb to 

values of 73.8% and 85% when using a cut-off of >15 ppb. Despite the good reproducibility 

of the FENO technique, values measured in healthy individuals may vary by up to 10% (or ~4 

ppb) (512, 513) and the within-subject variation of FENO values in asthmatics may be up to 

20% (512-514). This variation makes it difficult to recommend the use of a single cut-off 

point in trying to rule asthma in or out as a diagnosis. 

Smith et al. (515) compared the diagnostic utility of a range of investigations including 

clinical asthma assessment, FENO measurement, spirometry, reversibility, hypertonic saline 

challenge, induced sputum, peak flow measurements in a group of 47 subjects referred by 

their GPs with symptoms suggestive of asthma for a minimum of 6 weeks. The effect of a 

trial of oral prednisolone on these measurements was also assessed. Subjects were seen on 

three separate occasions at 2 week intervals and underwent a fixed sequence of these 

investigations, and at the final visit were diagnosed with asthma if they had a relevant 

history (as defined by ATS criteria) and a positive test for AHR and/or reversibility to a 

bronchodilator. Seventeen of the 47 patients (36%) were diagnosed with asthma at the end 

of the study (i.e. positive AHR/reversibility) with the other 30 classified as non-asthmatic. 

These 30 patients were given diagnoses including chronic rhinosinusitis (13 patients; 28%), 

extended post-viral respiratory syndrome (8 patients; 17%), GORD (6 patients; 13%), EB (2 

patients; 4%) and COPD (1 patient; 2%). The mean FEV1 and FEV1/FVC ratio were 

significantly lower in the asthmatic group than the non-asthmatic group and FENO and 

sputum eosinophils were significantly higher in the asthmatic group. Sensitivities for FENO > 

20 ppb and sputum eosinophil count > 3% were 88% and 86% respectively with 

corresponding specificities of 79% and 88%. Using ROC curve analysis these two tests were 

significantly more accurate in diagnosing asthma than any of the tests based on lung 

function, including any change in these parameters following a course of an oral steroid. As 

this study used reversibility and airways hyper-responsiveness (to hypertonic saline) as 

diagnostic “gold-standard” tests, these could not be compared to FENO in terms of diagnostic 

utility.  

Berkman et al. (516) compared FENO against methacholine and adenosine 5’-

monophosphate bronchial provocation tests for asthma diagnosis in a group of 85 patients 

with non-specific respiratory symptoms of over 3 months duration. The optimal FENO cut-off 
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point for diagnosis (based on clinical features, spirometry/reversibility or response to 

treatment) was >7 ppb which gave a sensitivity of 82.5% and a specificity of 88.9%. This 

compared favourably to the optimal cut-off values for MCT of ≤3 mg/mL, with a sensitivity 

of 87.5% and specificity of 86.7% for diagnosing asthma and a cut-off value for the 

adenosine 5’-monophosphate bronchial provocation test of ≤150 mg/mL with a sensitivity 

of 89.5% and a specificity of 95.6%. The cut-off point of >7 ppb for diagnosing asthma was 

found to be optimal also when using either of the bronchial challenge tests as the gold 

standard diagnostic test. The value of >7 ppb is low in comparison to other studies, but this 

provides an example of the difficulties in comparability of absolute FENO values determined 

in different studies owing to the different techniques and FENO analysers used, as well as 

possible differences in ambient NO levels (502). In this latter study, an expiratory flow rate 

of 250 mL/s was used, which is much higher than the ATS recommended expiratory flow 

rate of 50 mL/s, and due to the recognised inverse relationship between FENO values and 

exhaled flow rate, lower FENO values would be expected (502). 

Arora et al. (517) measured FENO levels in a population of 172 basic military trainees with 

symptoms suggestive of asthma. These trainees each had FENO levels measured before 

undergoing a clinical history and examination, spirometry and a histamine 

bronchoprovocation test. A diagnosis of asthma was made on the basis of these other 

investigations and FENO levels in all patients were reviewed. The 80% of trainees who were 

diagnosed as having asthma had significantly higher FENO levels than the non-asthmatic 

trainees, with mean values of 30 ppb for diagnosed asthmatics compared to 19 ppb for non-

asthmatics (p<0.001). However, a FENO cut-off with high values for both sensitivity and 

specificity could not be obtained. At the highest value for sensitivity (86%) at a cut-off of 

10.5 ppb the specificity was only 21%, whereas using a higher cut-off point of 46 ppb to give 

100% specificity reduced the sensitivity to 17%. 

Schneider et al. (518) attempted to determine the diagnostic accuracy of FENO as part of the 

routine diagnostic assessment of 393 patients attending respiratory private practice with 

symptoms suggestive of obstructive airway disease. For the whole population the optimal 

single cut-off point for asthma diagnosis was 25 ppb with a sensitivity/specificity of 49% and 

75% respectively. Using a “high” and “low” cut-off point to try and “rule in” and “rule out” 

asthma diagnosis, a “high” cut-off of >71 ppb had a PPV of 80% and the “low” cut-off of <9 

ppb had a NPV of 82%. Subgroup analysis was performed to determine the effect of various 

factors on the diagnostic accuracy of FENO and FENO levels were found to be lower in current 

smokers and also in instances when diagnoses were made solely using whole body 

plethysmography with no clinical assessment of patients. By omitting patients with sputum 

neutrophilia from analysis (although only a third of patients managed to produce sputum), 

the diagnostic accuracy of FENO was much improved with a PPV of 82% at a high cut-off of 31 

ppb and NPV of 81% at 12 ppb. These results demonstrate that the predictive value of FENO 

is low in a general population with a low pre-test probability of asthma. The diagnostic value 

may be improved if the value is interpreted with prior knowledge of a subject’s 

inflammatory subtype. However obtaining a sputum sample to determine inflammatory 

subtype would likely require sputum induction, which as mentioned above, is not a readily 
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available technique and needs careful patient monitoring. This limits the implementation of 

such an approach in many community or clinic settings. 

Cordeiro et al. (519) assessed the utility of FENO to diagnose asthma in a population of 114 

atopic individuals presenting to allergy clinic. Subjects with histories suggestive of asthma 

underwent histamine challenge. 42 subjects were diagnosed with asthma and 72 were 

diagnosed as non-asthmatic and the asthmatic patients were found to have a higher 

average FENO level (44 ppb vs 17 ppb; p <0.001). ROC analysis determined the optimal FENO 

cut-point to distinguish between asthma and “non-asthma” was 27 ppb with a sensitivity of 

78%, specificity of 92%, PPV of 86% and NPV 87%.  

1.5.4.5 Summary 

In summary, it would appear that FENO has greater sensitivity and specificity for the 

diagnosis of asthma than investigations such as spirometry, reversibility and peak flow 

monitoring, although it seems to be less sensitive than AHR testing.  

However, assessing the literature as a whole it is clear that FENO cannot be used to diagnose 

asthma in subjects with symptoms suggestive of asthma based on a single cut-point. When 

comparing different studies using FENO detection devices with a flow rate of 50 mL/s the cut-

points with optimal sensitivity and specificity for asthma diagnosis vary between 20 ppb 

(515) to 64 ppb (520). When this is limited further to studies using the same FENO detection 

device (NiOX MINO), the optimal cut-point still varies between 25 and 46 ppb, even though 

the two studies advocating these values were performed by the same authors (518, 521).  

A meta-analysis of the literature has been performed (522), which included 19 of the studies 

reviewed here and 6 studies assessing the diagnostic utility of FENO in children. The pooled 

results and summary ROC curve (AUC 0.84) produced suggested FENO is insufficiently 

sensitive (sensitivity 78%) and specific (specificity 74%) as a single investigation, but may be 

used in combination with other tests, to diagnose asthma. However, it seems that the 

pooled figures for sensitivity and specificity have been derived by combining studies with a 

significant range in values of FENO cut-points so the practical utility of this advice seems 

limited.  

The difficulties in using FENO for asthma diagnosis include: (1) the heterogeneous nature of 

the asthma syndrome with Th2-high (raised FENO) and Th2-low (low FENO) phenotypes (2) 

the variability of measured FENO levels between FENO detection devices, (3) the significant 

number of confounding factors that affect measured FENO such as smoking and ICS use and 

(4) the overlap in values between asthmatics and non-asthmatics with conditions such as EB 

and atopy. 
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Study author Population FENO device and 

flow rate 

Criteria for asthma 

diagnosis 

Method of 

analysis 

Optimal 

FENO cut-

point for 

diagnosis 

Sensitivity, 

specificity, positive 

and negative 

predictive values 

Chatkin et al. 

(523) 

38 consecutive 

patients referred to 

outpatient clinic with 

cough for ≥ 3 weeks, a 

normal chest 

radiograph and FEV1 > 

80% of predicted 

Online 

chemiluminescence 

analyser  

 

45 mL/s 

Physician diagnosis based 

on significant reversibility 

(≥12% of FEV1) or positive 

MCT (PC20 ≤8 mg/mL) 

Calculated 

sensitivity, 

specificity, PPV 

and NPV at 

10th, 25th, 

50th, 75th, 

and 90th 

percentiles of 

the NO 

distribution 

>30 ppb Sensitivity 75% 

Specificity 87% 

PPV 60% 

NPV 93% 

Dupont et al. 

(511) 

240 consecutive non-

smoking patients 

referred to outpatient 

clinic with symptoms 

of obstructive airways 

disease 

Online 

chemiluminescence 

analyser  

 

200 mL/s 

Physician diagnosis based 

on significant reversibility 

(≥12% of FEV1) and/or 

positive histamine 

challenge (PC20 ≤8 mg/mL)  

ROC analysis >13 ppb Sensitivity 85% 

Specificity 80% 

PPV 89.5% 

NPV 89.5% 

Smith et al. 

(515) 

47 subjects referred 

by GPs to outpatient 

clinic with symptoms 

suggestive of asthma 

Device not listed 

 

50 mL/s 

Significant reversibility 

(≥12% of FEV1) and/or 

provocative dose of 

hypertonic saline resulting 

in a 15% fall in FEV1 (PD15) 

of <20 mL 

ROC analysis  

(AUC 0.864) 

>20 ppb Sensitivity 88% 

Specificity 79% 

PPV 70% 

NPV 92% 

Berkman et 

al.  (516) 

85 subjects with non-

specific respiratory 

Chemiluminescence 

analyser (LR 2000, 

Physician diagnosis based 

on significant reversibility 

ROC analysis 

(AUC 0.896) 

>7 ppb Sensitivity 82.5% 

Specificity 88.9% 
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symptoms >3 months 

duration 

Logan Research, 

Rochester, UK) 

 

250 mL/s 

(≥12% of FEV1) or 

documented variability of 

FEV1 ≥12% at any time 

over follow up period 

 

OR 

Diagnosis based on +ve 

MCT (defined as PC20 ≤3 

mg/mL) 

 

PPV 89.1% 

NPV 85.4% 

 

 

 

Sensitivity 66.7% 

Specificity 72.9% 

PPV 68.3% 

NPV 71.4% 

Arora et al. 

(517) 

 

172 military trainees 

with symptoms 

suggestive of asthma 

Niox-Flex 

 

50 mL/s 

Physician diagnosis based 

on history, examination, 

spirometry and positive 

histamine challenge 

Calculated 

sensitivity/ 

specificity for 

different cut-

points 

Unable to 

determine 

optimal 

cut-point 

 

 

Cut-point 10.5 ppb 

Sensitivity 86%  

Specificity 21% 

 

Cut-point 46 ppb 

Sensitivity 17% 

Specificity 100% 

Heffler et al. 

(524) 

48 consecutive 

patients referred to 

allergy outpatients 

clinic with symptoms 

of rhinitis and lower 

airway symptoms 

NiOX online 

chemiluminescence 

analyser 

(Aerocrine, Solna, 

Sweden) 

 

50 mL/s 

Significant reversibility 

(≥12% of FEV1) and/or 

positive MCT (PD20 ≤800 

µg) 

ROC analysis 

(AUC 0.78) 

>36 ppb Sensitivity 77.8% 

Specificity 60% 

PPV 54% 

NPV 81.8% 

Fortuna et 

al. 

(525) 

50 patients 

respiratory 

outpatients clinic with 

symptoms suggestive 

Chemiluminescence 

analyser 

 

50 mL/s 

Positive MCT  

(PD20 ≤16 mg/mL) 

ROC analysis 

(AUC 0.8) 

>23 ppb Values for 23 ppb 

cut-point not 

stated. 
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of asthma (dry cough, 

wheeze, dyspnoea) 

For ≥20 ppb 

 

Sensitivity 77% 

Specificity 64% 

PPV 62% 

NPV 78% 

Sato et al. 

(526) 

71 consecutive 

patients attending 

respiratory clinic with 

prolonged cough or 

wheeze ≥3 weeks 

Chemiluminescence 

analyser  

 

50 mL/s 

Diagnosed as ‘bronchial 

asthma’ if (1) symptoms of 

cough and wheeze ≥3 

weeks 

(2) sputum eosinophilia 

(3) positive 

MCT/reversibility 

 

Diagnosed as ‘cough 

variant asthma’ if  

(1) cough without wheeze 

≥3 weeks 

(2) sputum eosinophilia 

(3) positive 

MCT/reversibility 

ROC analysis >38.8 ppb 

(to 

distinguish 

bronchial 

asthma or 

cough 

variant 

asthma 

from non-

asthmatics

) 

Sensitivity 79.2% 

Specificity 91.3% 

Bommarito 

et al. (527) 

109 symptomatic 

individuals from 

ECHRS cohort who 

consented to take 

part in study and have 

FENO levels measured 

Offline 

chemiluminescence 

analyser  

 

350 mL/s 

 Subjects with ‘current 

asthma’ were defined as 

those reporting asthma in 

life and ≥1 asthma-like 

symptom in the last 12 

months: wheezing or 

whistling, tightness in 

ROC analysis 

(AUC 0.79) 

>18.7 ppb Sensitivity 69.2% 

Specificity 71% 

PPV 24% 

NPV 95% 
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chest, asthma attacks or 

treatment for medically 

diagnosed asthma 

Kowal et al. 

(528) 

540 young adults with 

chronic cough (≥8 

weeks) referred to 

outpatient clinic 

No details of device  

 

50 mL/s 

All patients had normal 

baseline spirometry. 

Asthma diagnosis based 

on positive histamine 

challenge (PC20 ≤8 

mg/mL)/significant PEF 

variability/significant 

reversibility 

ROC analysis 

(AUC 0.92) 

>40 ppb Sensitivity 88.3% 

Specificity 82.6% 

PPV 72.6% 

NPV 93.1% 

Schneider et 

al. 

(521) 

160 patients 

presenting to GPs 

with symptoms 

suggestive of asthma 

(dyspnoea, cough or 

phlegm) ≥2 months 

duration 

NiOX MINO 

(Aerocrine, Solna, 

Sweden) 

 

50 mL/s 

Physician decision based 

on medical history, 

examination, spirometry, 

whole body 

plethysmography and 

MCT (PC20 ≤16 mg/mL) 

results 

ROC analysis 

(AUC 0.65) 

>46 ppb Sensitivity 32% 

Specificity 93% 

PPV 80% 

NPV 61% 

Pedrosa et 

al. 

(529) 

114 consecutive adult 

subjects with 

symptoms suggestive 

of asthma 

NiOX MINO 

(Aerocrine, Solna, 

Sweden) 

 

50 mL/s 

Positive MCT (PC20 ≤8 

mg/mL) 

ROC analysis 

(AUC 0.76) 

>40 ppb Sensitivity 74.3% 

Specificity 72.5% 

PPV 54.2% 

NPV 86.6% 

Cordeiro et 

al. 

(519) 

 

 

114 atopic individuals 

presenting to allergy 

clinic (symptoms not 

specified) 

Niox-Flex 

 

50 mL/s 

Referred by physician for 

histamine challenge if 

clinical assessment 

consistent with asthma. 

Positive histamine 

ROC analysis >27 ppb Sensitivity 78% 

Specificity 92% 

PPV 86% 

NPV 87% 
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challenge (PC20) cut-off 

not stated 

Fukuhara et 

al. 

(530) 

61 subjects presenting 

to outpatient clinic 

with ≥1 of recurrent 

cough, wheeze or 

dyspnoea 

NA623N, Chest MI, 

Tokyo, Japan 

Online 

chemiluminescence 

 

50 mL/s 

Asthma diagnosis based 

on  

(1) ≥1 of above symptoms 

(2) ≥2 of induced sputum 

eosinophilia, AHR and 

reversible airway 

obstruction 

(3) other diseases ruled 

out using CT and ‘other 

tests’ 

 

Compared diagnosis by 

these criteria against 

diagnosis using “FENO 

based criteria” based on 

(1) symptoms as above 

(2) FENO level ≥40 ppb 

(derived from prior 

studies) 

(3) other diseases ruled 

out 

Comparison of 

“conventional 

criteria” and 

“FENO based 

criteria” 

Pre-

specified 

cut-point 

of 40 ppb 

based on 

previous 

studies 

Sensitivity 78.6% 

Specificity 89.5% 

Concordance rate 

of 0.62 between 

two sets of criteria 

 

9/42 (21%) of 

patients 

‘misdiagnosed’ as 

not having asthma 

according to FENO 

based criteria 

Matsunaga 

et al. (531) 

142 subjects with 

respiratory symptoms 

referred to outpatient 

clinic and 224 subjects 

with no current 

NiOX MINO 

(Aerocrine, Solna, 

Sweden) 

 

50 mL/s 

Based on presence of 

“significant airway 

reversibility and or airway 

hyperresponsiveness” (not 

further specified) during 

ROC analysis 

 

For non-

smokers 

without 

 

 

>22 ppb 

 

 

 

 

Sensitivity 92% 

Specificity 90% 
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respiratory symptoms the follow up period. rhinitis 

(n=126) AUC 

0.92 

 

For non-

smokers with 

rhinitis 

(n=136) AUC 

0.88 

 

For smokers 

without 

rhinitis (n=49) 

AUC 0.94 

 

For smokers 

with rhinitis 

(n=55) AUC 

0.87 

 

 

 

 

>28 ppb 

 

 

 

 

 

>18 ppb 

 

 

 

 

>22 ppb 

 

 

 

 

Sensitivity 90% 

Specificity 77% 

 

 

 

 

Sensitivity 100% 

Specificity 87% 

 

 

 

Sensitivity 80% 

Specificity 86% 

Schleich et 

al. 

(67) 

174 patients referred 

to a pulmonary 

function laboratory 

with suspected 

asthma but normal 

spirometry and 

reversibility 

NiOX 

chemiluminescence 

analyser (Aerocrine, 

Solna, Sweden) 

 

50 mL/s 

Positive MCT  

(PC20 ≤16 mg/mL) 

ROC analysis 

(AUC 0.62) 

>34 ppb Sensitivity 35.4% 

Specificity 95.4% 

PPV 88% 

NPV 62% 

Malinovschi 

et al. (532) 

282 subjects from a 

group of 686 subjects 

NiOX MINO 

(Aerocrine, Solna, 

Physician diagnosis based 

on symptoms plus  ≥1 of 

ROC analysis 

 

For non-

smokers 

Sensitivity 77.8% 

Specificity 63.5% 
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who reported ≥2 

ongoing respiratory 

symptoms on an 

asthma questionnaire 

sent to a random 

population sample of 

10,400 subjects 

Sweden) 

 

50 mL/s 

the following: 

1) Positive MCT  

(PC20 ≤8 mg/mL).  

2) ≥250 mL increase in 

post BD FEV1 

3) Daily use of oral steroid, 

ICS, or inhaled β2-agonist 

4) Asthma symptoms 

during pollen season, 

eventually supported by 

allergic rhinitis, although 

no objective signs of 

asthma outside season  

For all subjects 

AUC 0.72 

 

Excluding 

current ICS 

users AUC 0.73 

 

Subjects 

divided into 

non, ex-

smoking and 

current 

smoking 

groups  

(n=108) 

>15 ppb 

 

For ex- 

smokers    

(n=62)        

>22 ppb 

 

For 

current 

smokers 

(n=112)       

>17 ppb 

PPV 60% 

NPV 80% 

 

Sensitivity 63.2% 

Specificity 86.1% 

PPV 67% 

NPV 84% 

 

Sensitivity 56.3% 

Specificity 82.5% 

PPV 57% 

NPV 82% 

Voutilainen 

et al.  

(533) 

 

Sedentary patients 

referred to outpatient 

clinic with symptoms 

suggestive of asthma 

NiOX 

chemiluminescence 

analyser (Aerocrine, 

Solna, Sweden) 

 

Flow rate not stated 

Positive histamine 

challenge (cut-off not 

stated) 

ROC analysis 

(AUC 0.83) 

Pre-

specified 

cut-point 

of >30 ppb 

as “high 

FENO” 

Not stated 

Katsoulis et 

al. 

(534) 

 

112 subjects with 

asthma-like 

symptoms and 

negative reversibility 

NiOX MINO 

(Aerocrine, Solna, 

Sweden) 

 

50 mL/s 

Positive MCT (PD20 <800 

μg) 

ROC analysis 

(AUC 0.69) 

>32 ppb Sensitivity 47% 

Specificity 85% 

Schneider et 

al. 

(518) 

393 patients 

presenting to GPs 

with 

NiOX MINO 

(Aerocrine, Solna, 

Sweden) 

Physician decision based 

on medical history, 

physical examination, 

ROC analysis 

(AUC 0.66) 

>25 ppb Sensitivity 49% 

Specificity 75% 

PPV 56% 
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symptoms suggestive 

of asthma (dyspnoea, 

cough or phlegm) ≥2 

months duration 

 

50 mL/s 

spirometry, whole body 

plethysmography and 

bronchial provocation 

(PC20 ≤16 mg/mL) results 

NPV 69% 

Wang et al. 

(520) 

923 consecutive 

patients referred to 

outpatient clinic with 

symptoms suggestive 

of asthma (recurrent 

wheezing, dyspnoea, 

chest tightness and/or 

cough, duration over 

6 months),  

Nano Coulomb nitric 

oxide analyser 

 

50 mL/s 

+ve MCT (cut-point not 

listed) 

 

 

OR 

 

+ve reversibility 

(considered +ve if post BD 

FEV1 15% and 200 mL 

higher than pre BD FEV1) 

ROC analysis  

(AUC 0.76) 

 

 

 

 

AUC 0.78 

>64 ppb 

 

 

 

 

 

>41 ppb 

For MCT +ve 

Sensitivity 52% 

Specificity 94.4% 

PPV 80.2% 

NPV 72.8% 

 

For reversibility +ve 

Sensitivity 72.4% 

Specificity 74.9% 

PPV 61.8% 

NPV 82.9% 

Table 1.7: The utility of FENO testing for the diagnosis of asthma
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1.5.5 Guidelines for the Diagnosis of Asthma 

1.5.5.1 British Thoracic Society (BTS) guidelines (2016) 

The BTS/Scottish Intercollegiate Guidelines Network (SIGN) guidelines recommend that a 

person presenting with suspected asthma should be clinically assessed and the probability 

of asthma determined (535).  

The clinical assessment should include careful enquiry regarding the following symptoms 

(Fig. 1.4): 

 

Figure 1.4: Clinical features to be enquired about during clinical 
assessment for asthma. From BTS guidelines (535). 
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This assessment should be used to classify whether the patient has a high, intermediate or 

low probability of asthma. Patients with a high probability should be offered a trial of 

treatment, and those with a low probability investigated for other conditions, with those in 

the intermediate group being assigned to a treatment trial or further investigation 

depending on their FEV1/FVC ratio, reversibility and possibly further investigations as shown 

in Fig. 1.5. 

 

Figure 1.5: Algorithm for further investigation or treatment of 
asthma following initial clinical assessment and spirometry. From 
BTS guidelines (535). 
 

For patients with intermediate probability of asthma the guidelines recommend further 

investigation of patients following spirometry, which may include tests to assess airflow 

variability or tests for eosinophilic inflammation/atopy prior to strategies of either watchful 

waiting or a treatment trial. 
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The formal inclusion of investigations such as challenge tests and FENO for consideration in 

the diagnostic algorithm are a new feature of the 2016 guidelines and were previously not 

included in the last 2014 update. Probably owing to the lack of clear evidence about the 

exact role of the tests in ‘diagnosing’ asthma they are included as ‘options’ that may be 

considered to provide extra evidence to support a diagnosis of asthma.     

1.5.5.2 National Heart, Lung, and Blood Institute (NHLBI) guidelines (2007) 

This guidance states that (536):  

In order to establish a diagnosis of asthma the clinician should determine that: 

— Episodic symptoms of airflow obstruction or airway hyperresponsiveness are present. 
— Airflow obstruction is at least partially reversible. 
— Alternative diagnoses are excluded 

The diagnosis should be made from a medical history, physical examination and spirometry 

with reversibility. If no clear diagnosis can be made, further investigations should be used to 

exclude asthma or consider other alternative diagnoses. 

Some of the “key indicators” from the medical history suggestive of a diagnosis of asthma 

include: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Key indicators from medical history suggestive of a 
diagnosis of asthma. From NHLBI guidelines (536). 

 Wheezing – high pitched whistling sounds when breathing out – especially in 

children. (Lack of wheezing and a normal chest examination do not exclude 

asthma) 

 History of any of the following : 

o Cough, worse particularly at night 

o Recurrent wheeze 

o Recurrent difficulty in breathing 

o Recurrent chest tightness 

 Symptoms occur or worsen in the presence of: 

o Exercise  

o Viral infection 

o Animals with fur or hair 

o House-dust mites (in mattresses, pillows, upholstered furniture, carpets) 

o Mold 

o Smoke (tobacco, wood) 

o Pollen 

o Changes in weather 

o Strong emotional expression (laughing or crying hard) 

o Airborne chemicals or dusts 

o Menstrual cycles 

 Symptoms occur or worsen at night, awakening the patient 
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Features that should be assessed for on physical examination include: 

 Hyperexpansion of the thorax; use of accessory muscles or chest deformity 

 Sounds of wheezing on chest auscultation/prolonged phase of forced expiration 

 Increased nasal secretion, mucosal swelling, and/or nasal polyps 

 Signs of allergic skin condition such as atopic dermatitis/eczema 

The guidelines then recommend that all patients over the age of 5 in whom asthma is being 

considered as a diagnosis should undergo spirometry with reversibility testing. As well as 

measuring FEV1 and FVC these guidelines also recommend measurement of the volume of 

air exhaled after the first 6 seconds of expiration (FEV6). This parameter should be measured 

instead of FVC in patients who might find sustaining maximal expiratory effort until 

complete expiration too arduous, such as patients with severe airflow obstruction.  

Based on the results of spirometry it can be determined if the patient has airways 

obstruction and whether or not this is reversible. Significant reversibility is defined as per 

ATS/ERS guidelines (537) as an increase in FEV1 of >200 mL and ≥12% from the baseline 

measure after inhalation of a short acting beta agonist (SABA).  

These guidelines are not explicit regarding the use of further investigations for the diagnosis 

of asthma and merely state that “additional studies are not routinely necessary but may be 

useful when considering alternative diagnoses” which should be considered “as 

appropriate”.  

1.5.5.3 Canadian Thoracic Society guidelines (2012) 

These guidelines state that “asthma is diagnosed by the combination of a comparable 

clinical history and objective measures of lung function” (538).  

Features of the clinical history should include “paroxysmal or persistent symptoms such as 

dyspnoea, chest tightness, wheezing, sputum production and cough, associated with 

variable airflow limitation and airway hyper-responsiveness to endogenous or exogenous 

stimuli”. 

The recommended measures of lung function are those in Fig. 1.7: 
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Figure 1.7: Recommended measures of lung function when 
considering diagnosis of asthma. From Canadian Thoracic Society 
Guidelines (538) 
 

These guidelines explicitly recommend bronchial challenge testing (with both methacholine 

and exercise) as an alternative objective diagnostic criterion for asthma. There is no further 

guidance on how to proceed if a patient has a clinical history consistent with asthma but 

normal pulmonary function tests and no mention of using measures of airway inflammation 

for asthma diagnosis. 

1.5.5.4 Comparison of guidelines 

a) Similarities 

All of these guidelines include recommendations for the clinical assessment of patients with 

suspected asthma and highlight certain features that make asthma more likely. These 

include symptoms of wheeze, dyspnoea, chest tightness and cough (especially nocturnal 

cough) that worsen in relation to recognised stimuli such as exercise and allergen exposure. 

All guidelines agree on performing spirometry, but after this they vary in the approach to 

further confirmation of a diagnosis of asthma. 

b) Differences 

There are a number of important differences between these sets of guidelines which are 

most apparent following the clinical assessment of patients and spirometry. 

The BTS/SIGN guidelines recommend classifying patients into groups with different 

probabilities of asthma prior to performing further investigations or instigating a treatment 

trial. The use of spirometry/reversibility and further investigations is reserved for those with 

an intermediate probability of asthma. In contrast, the NHLBI guidelines recommend all 

patients should undergo reversibility testing in addition to basic spirometry and then are not 
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explicit regarding the use of further investigations. CTS guidelines state that patients should 

preferably have spirometry and reversibility testing following clinical assessment, but that 

the results of other investigations including variability in serial peak flow measurements or 

positive methacholine/exercise challenge testing may be used instead to make a diagnosis 

of asthma.  

The BTS guidelines are the only one of the three sets of guidelines that endorse a trial of 

treatment in suspected asthma patients before performing further investigations such as 

reversibility testing. This may be a concession to pragmatism with evidence suggesting that 

many patients are started on ICS treatment for presumed asthma without even having 

spirometry performed (382).  

As the BTS guidelines are more extensive and more frequently updated than the other two 

guidelines they contain much more information about the further investigations that may 

be used in asthma. They also provide some comparison of their relative 

sensitivities/specificities. Investigations including challenge tests with methacholine, 

exercise and mannitol and FENO measurement are generally recommended in patients 

where the diagnosis is unclear but there is no guidance on the systematic use of these tests. 

The CTS guidelines also recommend bronchial challenge testing but only as an alternative to 

spirometry with reversibility for asthma diagnosis rather than in addition to this. 

1.5.5.5 Proposed NICE guidelines for asthma diagnosis  

This proposed set of guidelines, originally due for full release in 2015, are an attempt by the 

National Institute for Health and Care Excellence (NICE) to improve the efficiency and 

accuracy of diagnosing asthma (539).  The use of a series of objective tests in the format of a 

diagnostic algorithm is recommended based on review of the literature and an economic 

analysis assessing the likely cost implications of using these tests to diagnose asthma. 

In its current format, the algorithm recommends the use of spirometry followed by 

combinations of peak flow variability testing, FENO measurement and bronchial challenge 

testing to diagnose asthma. FENO measurement is suggested to “rule out” asthma (FENO <25 

ppb) or “rule in” asthma (FENO >40 ppb) with values between these two cut-points being 

labelled as intermediate, and the patient requiring further investigation. However, this 

approach is still likely to suffer from the problems of multiple confounding factors affecting 

FENO levels, including high FENO levels in subjects with other airway diseases and low FENO 

levels in subjects with neutrophilic asthma.  

Release of these guidelines is currently on hold while the “impact and feasibility” of 

measuring “quality-assured spirometry” and FENO in primary care to diagnose asthma in 

primary care is assessed, with an estimated release date of 2017. 

1.5.5.6 Summary  

All of the published guidelines appear to lack detail that may help guide the diagnostic 

process for asthma. Although the clinical assessment and use of spirometry in diagnosing 

asthma is well defined in this guidance, the role of further investigations that are well 

characterised such as reversibility testing and bronchial challenge testing is unclear. Tests of 

airways inflammation do not yet have an explicit role in the diagnosis of asthma in any 
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published guidance to date. The proposed NICE guidelines are an attempt to utilise further 

objective measures including FENO to diagnose asthma, although the feasibility of using 

objective tests for asthma diagnosis in the algorithm described requires validation and 

potential problems with this approach have been described above. Owing to its ease of 

measurement and the fact that results are available almost instantaneously FENO is clearly 

an attractive test to help guide asthma management but there is, as yet, no clear evidence it 

has a role in the diagnosis of asthma. However, an alternative use has been suggested for 

the technique in the assessment of subjects with suspected airways disease. 

1.5.6 The use of FENO to predict steroid response 
As FENO is a biomarker of ongoing Th2 inflammation and Th2 inflammation is usually 

responsive to corticosteroids a small number of studies have investigated the potential of 

FENO to predict subjects’ treatment response to corticosteroids irrespective of their 

underlying diagnosis. 

1.5.6.1 Previous studies assessing FENO to predict steroid response 

Smith et al. (540) aimed to evaluate the role of FENO measurements in predicting treatment 

response to ICS in a cohort of 52 patients with undiagnosed respiratory symptoms. Subjects 

were assessed in a respiratory clinic on 5 separate occasions over a 10 week period. A series 

of sequential diagnostic tests (including spirometry, reversibility, methacholine and 

adenosine monophosphate challenges, symptom diary/peak flow measurements and 

multiple FENO measurements) were carried out whilst subjects were being treated with a 4 

week course of inhaled placebo therapy, followed by a 4 week course of inhaled fluticasone.  

A response to steroid treatment was defined by: 

 an improvement in FEV1 of >12% or 

 an improvement in mean morning peak flow (over 7 day period) by >15% or 

 a reduction in composite symptom score by 1 point or 

 an improvement in PC20 AMP by ≥2 doubling dose shift 

The steroid response also took into account any response to the placebo treatment as any 

“placebo response” for any of these endpoints was subtracted from the steroid treatment 

response. Patients were also diagnosed with asthma if they had a corresponding symptom 

history (which all patients did) and either significant reversibility to short acting β-agonist, 

significant FEV1 or peak flow response to inhaled steroids (using same criteria as above) or a 

positive MCT.  

FENO was compared to the other baseline measurements (FEV1, FEV1 bronchodilator 

response, peak flow variation and methacholine PC20) in its ability to predict a response to 

steroids, based on the 4 defined measures of steroid response. This parameter was 

demonstrated to be significantly more accurate than all of the other baseline measurements 

for at least one of the steroid response measures and inferior in none, as measured by 

greater ROC AUC for comparative ROC curves. The optimum FENO cut-point for predictive 

purposes for all 4 steroid response measures was found to be >47 ppb, although there were 

patients with FENO levels lower than this who responded to treatment. For FENO >47 ppb 
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using ≥2 doubling dose increase in AMP PC20 as a response measure the sensitivity was 82%, 

specificity 91%, PPV 82% and NPV 91%. 

The results of this study were clearly dependent on the measure used to determine a 

“steroid response”. This was illustrated by the range of values for the specificity of FENO 

levels >47 ppb to predict steroid response from 71-91% for different response measures, 

suggesting that up to 30% of subjects in this group did not demonstrate a response to 

steroids. The authors suggested this may be because many of this group had near to normal 

lung function and hence had limited room for improvement in this metric, making the cut-

points used to define steroid response inappropriate for this population. It is possible that 

these patients as well as patients with lower FENO levels may also have demonstrated a 

response to steroid treatment if different measures of response such as change in FENO, long 

term symptom measures or quality of life data had been collected. 

Little et al. (541) assessed FENO levels as a marker of oral steroid response in 37 patients 

with chronic stable asthma. All had a diagnosis of asthma according to ATS criteria for ≥5 

years and all but one of the subjects were using regular ICS. A FENO level of >10 ppb at 

baseline was found to have a high specificity (90%) and positive predictive value (83%) for 

an improvement in FEV1 of >15% but a low sensitivity (59%). Interestingly, all of these values 

had better predictive accuracy than sputum eosinophilia of ≥4% (although 7 patients did not 

produce sputum), but it could be argued that both tests may have performed better if an 

outcome measure more reflective of the activity of Th2 inflammation had been chosen i.e. a 

measure related to number of exacerbations rather than lung function. 

Prieto et al. (542) also assessed the utility of FENO measurement to predict response to ICS in 

43 non-smoking subjects with chronic cough and FEV1 >80%. The cohort in this study had 

chronic cough of at least 8 weeks duration with no evidence of any lung disease on clinical 

or radiological assessment and had not previously received any treatment for pulmonary 

conditions including inhaled or oral corticosteroids. At the three baseline visits 

investigations including a high-resolution CT scan, spirometry with reversibility, FENO and 

bronchial challenge testing with methacholine and AMP were carried out. Subjects were 

then given 4 weeks treatment with inhaled fluticasone. The primary outcome of ICS 

response was defined by a >50% reduction in the mean daily cough symptom scores during 

the treatment period when compared with the baseline period. Interestingly, only 4/43 (9%) 

of these patients had a positive MCT so the frequency of “asthma” in this cohort was likely 

to be low. Nineteen patients (44%) responded well to ICS therapy but FENO was poor at 

predicting ICS response, with low sensitivity (53%), specificity (63%) and positive and 

negative predictive values (53% and 63% respectively) at the ‘optimal’ cut-off point of 20 

ppb. It is likely that due to the low incidence of asthma (or, at least, AHR) in this group that a 

significant proportion of the cohort were less likely to respond to ICS and this may partially 

explain the poor performance of FENO in predicting ICS response in this study. Also, it is 

questionable whether the chosen response variable (mean cough score rated on an 

unvalidated 5 point scale) had the necessary sensitivity to accurately discern a significant 

response. 
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1.5.6.2 ATS guidelines for the interpretation of FENO levels 

The ATS guidelines for the interpretation of FENO levels (543) published in 2011 concluded 

that FENO levels of <25 ppb (20 ppb in children) should be considered low and a strong 

indicator that responsiveness to steroids is unlikely. In addition, FENO levels >50 ppb (35 ppb 

in children) should be considered high and a strong indicator that steroid response is likely. 

The high cut-point of >50 ppb suggesting a likely response to steroids is advocated based on 

the results of only one study (540). In contrast, the lower cut-point of <25 ppb was 

suggested based on data from a variety of studies (458, 509, 511, 515, 517) and has been 

used because a high frequency of normal people are thought to have FENO levels up to 

around 22 ppb. The presence of ongoing Th2 inflammation at such levels is unlikely.  

According to the guidelines FENO levels between 25 and 50 ppb should be interpreted 

cautiously and their significance is unclear. Measured FENO levels in this range should be 

interpreted in the context of the individual patient’s clinical symptoms, concurrent 

medications, smoking status etc. and relative changes in FENO levels in this range, e.g. a 

reduction after the use of ICS, may be more important than absolute values.  

1.5.6.3 Summary 

Using FENO levels to predict steroid response would appear to be a logical approach given 

that FENO is a biomarker of Th2 inflammation and there is good evidence that this type of 

inflammation is responsive to steroid treatment. This approach avoids the complexities 

inherent in attempting to use the technique to classify heterogeneous airways diseases 

according to diagnostic labels. 

The study by Smith et al. provides good evidence that this strategy may be useful, but the 

optimal cut-point derived by these authors to predict ICS response (>47 ppb) may risk 

missing subjects with measured FENO levels in the ‘indeterminate’ range of 25-50 ppb 

identified in the ATS FENO guidelines who would benefit from steroid treatment. It would be 

useful for clinical practice if a ‘minimum’ FENO cut-point below which steroid response is 

unlikely could be determined in order to guide the decision of whether or not to initiate 

steroid treatment in subjects with symptoms suggestive of airways disease. 

 

 

 

 

 

 

 

  



107 
 

1.6 Chronic Productive Cough and the use of Macrolides in Airways 
Disease 
1.6.1 Introduction 
A chronic ‘productive’ or ‘wet’ cough is a common presenting complaint for patients 

attending the adult respiratory clinic. Most reviews and guidelines suggest that the causes 

of a productive cough are the same as those of a non-productive cough and as such the 

same diagnostic pathway should be followed (559).  

A cohort of adult patients presenting to respiratory clinic have been observed with chronic 

productive cough which improves with antibiotic treatment but usually relapses (560). Many 

patients in this cohort have suspected poorly controlled asthma but investigations including 

spirometry, bronchial challenges, chest X-ray, screen for immunodeficiency and HRCT scan 

are normal. Sputum culture is often positive for potentially pathogenic bacteria such as 

Haemophilus influenzae, but may be repeatedly negative. Initial observations suggest 

significant symptomatic improvement with a prolonged course of low dose azithromycin. 

A literature review regarding the causes of chronic productive cough was undertaken to 

ascertain if this cohort had been described previously or if this presentation could be 

adequately explained by one of the recognised causes of chronic productive cough. 

Following this the mechanisms of action and previous uses of macrolides in respiratory 

disease were also reviewed. 

1.6.2 Causes of Chronic Productive Cough 
For the purposes of this review the definition of a “chronic productive cough” was 

considered to be a cough regularly leading to the expectoration of sputum with the same 

duration as the standard definition of chronic cough i.e. more than 8 weeks (57). 

Conditions causing productive cough have been listed in an approximate order of 

prevalence from most to least frequent. 

 

1.6.2.1 Bronchiectasis 

Bronchiectasis is defined in Section 1.2.3.1. 

 

a) Epidemiology 

The epidemiology of bronchiectasis is reviewed in Section 1.2.3.2. 

 

b) Clinical Presentation 

The condition usually presents as a chronic productive cough (561), with daily sputum 

production (42). Other factors that suggest the diagnosis include haemoptysis, systemic 

features of weight loss and fatigue and multiple positive sputum cultures (42, 562). 

 

c) Pathology 

Bronchiectasis may be secondary to a multitude of other conditions (as listed in Table 1.8), 

with the most common predisposing factor thought to be post-respiratory infection (563, 
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564). However, a significant proportion of cases have no obvious discernable cause, 

although the number of these idiopathic cases reported differs markedly between studies 

(563-565). 

 

 
Table 1.8: Causes of bronchiectasis in approximate order of 

frequency from most to least common. Based on data from Pasteur 

et al. (563) and Shoemark et al. (564) 
 

It has been suggested that bronchiectasis is largely a result of dysregulation of the immune 

system, as it is often seen in patients with either immunodeficiencies or ‘hyperimmune’ 

(autoimmune) conditions such as Rheumatoid Arthritis or Inflammatory Bowel Disease (565, 

566). Although the initial step in the pathogenesis of the condition is not yet clear, it is 

broadly accepted that it progresses in a largely similar way, based on the ‘’vicious circle’ 

hypothesis proposed by Cole (567). This describes a cycle of airway inflammation, leading to 

structural airway damage and resultant mucous stasis, with the pooled mucus becoming 

colonised with bacteria, which initiate further inflammation (Fig 1.8).  

 

The most common sputum isolates, using standard microbiological approaches, from 

patients with bronchiectasis are the gram negative bacteria H. influenzae and Pseudomonas 

aeruginosa (568, 569). Colonisation of the sputum by first H. influenzae, and later P. 

aeruginosa, coincide with worsening of the clinical features of bronchiectasis including lung 

function and frequency of exacerbation (568, 569). 

 

d) Treatment 

Guidance on the treatment of bronchiectasis can be found in the BTS guidelines on 

bronchiectasis (570).  

Broad principles in the management of the condition include treatment of the underlying 

cause, monitoring of disease activity using lung function and regular sputum cultures, 
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airway clearance techniques and antibiotic treatment. These principles are further outlined 

in Table 1.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: The ‘vicious circle’ hypothesis of bronchiectasis (after 

Cole (567))  
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Principle of management  Specific management points 

Treatment of underlying cause e.g. allergic bronchopulmonary aspergillosis 

(ABPA) treatment, immunoglobulin 

replacement, treatment of rheumatoid 

arthritis or inflammatory bowel disease 

Monitoring of disease activity  Lung function measured annually (571, 
572) 

 Regular sputum cultures to determine 
colonising organisms and antibiotic 
resistance (568) 

Airway clearance techniques  Active cycle of breathing techniques 
(573) 

 Postural drainage (574) 

 Positive expiratory pressure devices e.g. 
Flutter (575), Acapella (576, 577) devices 

 High frequency chest wall oscillation 
devices (578) 

 Nebulised saline (579, 580) 

Antibiotic treatment Treatment of exacerbations 

 Definition of ‘exacerbation’ not 
universally agreed 

 No randomised controlled trials of 
antibiotic treatment for bronchiectasis 
exacerbations 

 Consensus opinion currently antibiotic 
treatment for 14 days (570) 

 Antibiotic choice based on likely 
causative organisms and sensitivities 

 Sputum culture should be sent prior to 
treatment 

P. aeruginosa eradication 

 If cultured for first time an attempt 
should be made to eradicate P. 
aeruginosa (581) 

Regular prophylactic antibiotic therapy 

 Patients having ≥3 exacerbations per 
year requiring antibiotic therapy or those 
with <3 exacerbations but with 
significant morbidity should be 
considered for long term antibiotics (570) 
such as macrolides (582) 

Table 1.9: Principles of management of bronchiectasis  
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1.6.2.2 Chronic bronchitis 

Chronic bronchitis is defined as “the presence of a chronic productive cough for more than 3 

months in 2 successive years” (583). It is almost invariably described as a feature of COPD 

secondary to smoking (583). 

 

a) Epidemiology 

The prevalence of chronic bronchitis in the general population is unclear, with many 

estimates ranging from 3-7% of adults experiencing symptoms (61, 584-588), although 

higher rates of up to 22% have been reported (589, 590). This uncertainty is probably due to 

different definitions of the condition, variable reporting of symptoms and the inclusion of 

subjects in these estimates with other conditions such as bronchiectasis.  

 

It is clear that individuals who are current or ex-smokers are more likely to have chronic 

bronchitis (61, 584, 587, 588, 590) and patients with COPD have a higher prevalence of 

chronic bronchitis, with up to 74% affected (591, 592). However, there seems to be a 

significant proportion of the general population experiencing these symptoms that do not 

have a formal respiratory diagnosis (587-590) and this group may be at greater risk of 

morbidity and mortality than healthy subjects. Guerra et al. (586) demonstrated that 

subjects under the age of 50 with symptoms of chronic bronchitis were significantly more 

likely to develop airflow limitation with increased risk of mortality than subjects without 

chronic bronchitis.  

 

b) Clinical Presentation 

Patients with chronic bronchitis present with a productive cough, although this symptom is 

often more unpredictable than the classic epidemiological definition of chronic bronchitis 

with much variation in the pattern of sputum production (593). Due to the large crossover 

of chronic bronchitis with COPD, many patients present with other features of COPD 

including dyspnoea and wheeze (594). 

 

Weatherall et al. (595) used cluster analysis to classify 175 patients with airways disease into 

5 separate phenotypes. They identified a ‘chronic bronchitis in non-smokers’ phenotype 

(n=38) with similarities to patients described in Section 3.1. This group tended to have 

relatively preserved lung function compared to the other phenotypic groups described in 

the study. However, these patients did not have HRCT scans to rule out bronchiectasis, so it 

is unclear if this may have been the cause for their symptoms. 

 

c) Pathology 

Productive cough in chronic bronchitis is secondary to excessive mucus secretions in the 

airways. Mucus is present in excessive amounts owing to over-production and 

hypersecretion from mucus-producing goblet cells and decreased airway clearance 

mechanisms. 
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Mucus overproduction is caused by exposure to inflammatory stimuli such as cigarette 

smoke (596, 597) and also viral (598) or bacterial (599) infection which lead to increased 

transcription of mucin genes due to activation of the epidermal growth factor receptor by 

inflammatory cells (597, 599). Unlike in asthma, in which mucous metaplasia is known to be 

a result of Th2 inflammation, the corresponding inflammatory response in COPD causing 

mucus over-production is not entirely clear, although it is thought to be Th17 mediated 

(366, 600). 

 

Continual exposure to inflammatory stimuli leads to increased numbers of goblet cells and 

mucin storage in the airways (598, 599, 601). As the severity of disease, i.e. extent of airway 

obstruction, worsens in COPD, the degree of mucous metaplasia and occlusion of the small 

airways by mucus tends to increase (236, 602). Mucus hypersecretion is caused by increased 

goblet cell degranulation due to neutrophil elastase (603). 

 

In conjunction with the increased amounts of mucus secreted into the airways, clearance of 

this mucus is impaired in patients with established COPD, owing to reduced ciliary function, 

occlusion of distal airways and respiratory muscle weakness leading to ineffective cough 

(236, 604). 

 

d) Treatment 

Treatment of chronic bronchitis is largely based on treatment of the underlying COPD, as 

per NICE COPD guidelines (605). 

 

Certain treatment considerations that may particularly apply to patients with chronic 

bronchitis include the use of mucolytic therapy and judicious use of antibiotic therapy based 

on sputum colour and culture results. Another promising emerging treatment that has 

demonstrated efficacy in this patient group is the phosphodiesterase inhibitor roflumilast. 

 

Mucolytic agents are widely prescribed to patients with chronic bronchitis in an attempt to 

improve their symptoms related to sputum production. The evidence for their use is mixed 

although a 2012 Cochrane review concluded that they may produce a small reduction in the 

exacerbation rate of patients with chronic bronchitis and COPD albeit with no difference in 

quality of life (606).There are some suggestions that chest physiotherapy (607) and 

inhalation of nebulised saline (608) may be beneficial in patients with patients with COPD 

but no RCT data assessing the impact of these interventions. 

 

It is generally accepted that for subjects with chronic bronchitis a change in the amount or 

nature of sputum produced, beyond day-to-day variation, may signify an exacerbation (605, 

609) and the production of green (purulent) sputum has been found to be highly sensitive 

(94.4%) and specific (77%) for the yield of a high bacterial sputum load (610). Guidelines 

therefore recommend antibiotic treatment following change in sputum quantity or quality 

(605, 609).  Sending sputum for culture undoubtedly has a role in the management of 

chronic bronchitis, especially when there is a lack of response to an initial antibiotic 

treatment (609). However, potentially pathogenic bacteria that often permanently colonise 
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the respiratory tract of symptomatically stable patients with COPD are frequently not 

isolated on standard sputum cultures (611). These colonising bacteria, most frequently H. 

influenzae, are associated with increased levels of airway inflammation, higher symptom 

burden and increased risk of exacerbation (612). The lack of sensitivity of standard sputum 

cultures to detect these bacteria has led to increasing interest in DNA-based bacterial 

detection techniques (613, 614). 

 

The long term use of low dose azithromycin has demonstrated efficacy in the treatment of 

patients with COPD with improved quality of life measures and decreased frequency of 

exacerbations (615). Long term macrolides should be used with some caution however 

owing to the recognised potential side effects including QT interval prolongation, 

disturbance of liver function, hearing loss and development of bacterial macrolide 

resistance (616). 

 

Finally, roflumilast which is a phosphodiesterase 4 inhibitor has been employed. This drug 

has anti-inflammatory effects in the airways by preventing the breakdown of intracellular 

cyclic AMP, a substance that when degraded leads to the release of inflammatory mediators 

(617). Two clinical trials assessing the effects of roflumilast (in addition to either salmeterol 

or tiotropium) vs placebo in patients with moderate to severe COPD and symptoms of 

chronic bronchitis both found that roflumilast significantly improved pre-bronchodilator 

FEV1 and exacerbation rate (618).  

 

1.6.2.3 Asthma with productive cough 

a) Epidemiology 

Limited data are available regarding the prevalence of chronic productive cough (or “chronic 

mucus hypersecretion”) in asthmatic patients, but there are reports of a significant 

subgroup of asthmatics in which these symptoms may be prominent. Two large scale 

European epidemiological studies reported the prevalence of chronic productive cough (≥ 3 

months sputum production for 2 successive years) symptoms in populations of asthmatic 

non-smokers of 39% (619) and 42% (620). These proportions were significantly higher for 

smokers with asthma, a finding replicated in a recent cross-sectional study by Thomson et 

al. (621). 

 

b) Clinical Presentation 

The symptom of chronic productive cough seems to be associated with an accelerated 

decline in FEV1 in asthmatic patients regardless of smoking status (619, 622). Thomson et al. 

found that asthmatic smokers with chronic productive cough had worse asthma control 

than those without a cough and asthmatic non-smokers with a productive cough had more 

exacerbations than those without cough (621).  
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c) Pathology 

The cause of chronic productive cough in asthmatic patients is not entirely clear. Possible 

pathologies underlying this symptom include mucus hypersecretion or chronic bacterial 

infection/colonisation. 

 

Mucus hypersecretion has long been recognised as a feature of asthma with mucus plugging 

of the airways acknowledged as a contributing factor in cases of fatal asthma (623). 

Pathophysiological features of mucus hypersecretion in asthma include goblet cell 

hyperplasia (624) and submucosal gland hypertrophy (625), both of which lead to increased 

sputum production. These changes are thought to be driven by Th2 lymphocyte release of 

cytokines IL-9 (626) and IL-13 (627) as well as mast cell infiltration of submucosal glands, 

with subsequent mast cell degranulation leading to increased amounts of luminal mucus 

(628).  

 

Certain groups of asthmatic patients have been identified with stable clinical features of 

disease that have sputum cultures positive for potentially pathogenic organisms. Studies by 

Wood et al. (629) and Green et al. (630) both identified sub-groups of ‘stable’ asthmatic 

patients with significant loads of potentially pathogenic bacteria (including H. influenzae) in 

sputum culture with high sputum neutrophil counts. All of the patients within these groups 

were taking high dose ICS, which have been linked with increased risk of respiratory 

infection. For example, inhaled fluticasone propionate has recently been shown to increase 

the risk of lower respiratory tract infections in patients with COPD (631, 632) and also 

asthma (633). It is possible that ICS lead to chronic bronchitis in some patients by reducing 

host defence mechanisms, contributing to chronic infection. A more recent investigation by 

Zhang et al. (634) found that 29/56 (52%) of a cohort of patients with severe but stable 

asthma (and bronchiectasis excluded by HRCT) produced positive sputum cultures, with H. 

influenzae most commonly cultured. Of the 29 patients with positive sputum cultures 23 

produced repeat sputum cultures and 16 of these were again positive, with 14 having the 

same bacteria isolated on both occasions; suggesting these bacteria were colonising the 

airways. The group with concurrent positive sputum cultures had a significantly longer 

duration of asthma and a greater number of exacerbations in the preceding year. 

 

d) Treatment 

Guidance on the treatment of asthma can be found in the BTS/SIGN asthma guidelines 

(535).  

 

The association between severe neutrophilic asthma and airway colonisation by potentially 

pathogenic bacteria (635) may suggest a mechanism for the reduction in asthma 

exacerbations and lower respiratory tract infections (LRTI) in a sub-group of patients with 

non-eosinophilic asthma treated with a prolonged course of azithromycin in the AZIZAST 

study (636). However, this finding is yet to be verified. The use of antibiotics in asthmatics 

with sputum production as a main symptom should probably be guided by the results of 

sputum culture if possible, although the limitations of identifying micro-organisms from 

sputum cultures as described above (Section 1.6.2.2) should be considered.  
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1.6.2.4 Immunodeficiency 

A small group of patients presenting with recurrent LRTI are shown to have 

immunodeficiencies, including IgG/IgA deficiency or Combined Variable Immunodeficiency 

(CVID). These patients may present with recurrent but discrete episodes of infection 

punctuated by periods of recovery, but over time are at risk of developing bronchiectasis 

(637). 

 

The natural history of the clinical, pathological and radiological features displayed by these 

patients is unclear. Previous studies have reported significant rates of bronchitis symptoms 

in patients with primary immunodeficiencies (638-640), but it is uncertain if these patients 

have symptoms secondary to established bronchiectasis or if they progress through a state 

of ‘pre-bronchiectasis’ with bacterial airway colonisation and persistent cough but no 

significant bronchiectasis on HRCT scan. 

 

1.6.2.5 IgA deficiency 

Diagnosis of IgA deficiency has been defined by international consensus as “an IgA level of 

0.07 g/L after the age of 4 years in the absence of IgG and IgM deficiency” (641). 

 

a) Epidemiology 

Selective IgA deficiency is the most common primary immunodeficiency with a prevalence in 

Caucasians of between 1/300 and 1/1200 (642).  

 

b) Clinical Presentation 

Although the majority of cases (estimated at around 85-90%) are asymptomatic, there are a 

significant number who develop clinical disease as listed in Table 3.3. This mostly consists of 

recurrent respiratory tract and gastrointestinal tract infections and autoimmune conditions 

such as coeliac disease (643). These complications are not unexpected given that IgA is the 

immunoglobulin found at the highest concentrations in secretions at mucosal surfaces, 

especially in the gut and respiratory tract (644). 

 

Respiratory tract infections are usually caused by bacteria including H. influenzae and 

Streptococcus pneumoniae. Some patients go on to develop bronchiectasis presumably 

secondary to recurrent infection causing airway damage and scarring (643, 645). 

 

 

Clinical Manifestation of IgA deficiency Details 

Asymptomatic 85-90% of patients may have no symptoms 

Recurrent sino-pulmonary infections Mostly bacterial e.g. H. influenzae and S. 
pneumoniae. May lead to bronchiectasis 

Gastrointestinal infections/disorders Infections include Giardiasis, other disorders 
linked with IgA deficiency include coeliac 
disease, lactose intolerance, malabsorption 
and ulcerative colitis 

Allergic disorders Increased frequency of asthma, atopy, food 
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and drug allergies reported 

Autoimmunity Including idiopathic thrombocytopaenic 
purpura (ITP), haemolytic anaemia, juvenile 
rheumatoid arthritis and systemic lupus 
erythematosus (SLE) 

Malignancy There may be an association between IgA 
deficiency and malignancies including 
lymphoid and GI malignancies 

Table 1.10: The clinical manifestations of IgA deficiency 
 

c) Treatment 

In general, IgA antibody replacement therapy is not indicated in patients with IgA deficiency, 

and such therapy may in fact be harmful (646). However a sub-group of patients with IgA 

deficiency and recurrent sino-pulmonary infections may benefit from extended courses of 

prophylactic antibiotics or sometimes intravenous gamma globulin (IVGG) therapy if they 

have other associated antibody deficiencies (643, 646). 

 

1.6.2.6 Combined Variable Immunodeficiency 

CVID is a disease defined by the defective production of immunoglobulins (647). Diagnosis 

of CVID can be made using internationally agreed diagnostic criteria, of which 1 of the 3 

parts required for diagnosis states there should be “hypogammaglobulinaemia with IgG 

levels two standard deviations below the mean” (647). 

 

a) Epidemiology 

The epidemiology of the condition is unclear but the prevalence is thought to be around 

1/30000 in Northern European populations (647, 648). 

 

b) Clinical Presentation 

Clinically the disease manifests with recurrent respiratory tract infections/pneumonias, 

progressing later in life to bronchiectasis (638, 649, 650). Patients with CVID may also 

experience repeated infections of other sites of the body including the skin, soft tissues, 

nervous system and gastrointestinal tract (638, 649). There is some evidence that 

asthmatics may be at greater risk of CVID than non-asthmatics, and this has been suggested 

as a potential reason for the increased risk of respiratory infection noted in asthmatic 

patients (651). 

 

Respiratory infections are usually caused by encapsulated bacteria, especially H. influenzae, 

S. pneumoniae and Staphylococcus spp. (638, 652), due to the inability of the immune 

system to produce IgG antibodies against these pathogens. Usually, the cumulative effect of 

these repeated infections leads to complications such as empyema, lung abscesses or, most 

commonly bronchiectasis (638, 650).  
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However, despite the prominent burden of symptoms this condition can cause the sufferer, 

there may often be delays in the diagnosis and treatment of the condition due to either a 

lack of awareness of its existence, or the misperception that the condition only presents in 

childhood, when in fact the average age of presentation is thought to be around 30 years 

(638, 639). 

 

c) Treatment 

The management of pulmonary complications of CVID usually consists of regular 

immunoglobulin replacement and suppressive antimicrobial treatment, although there are 

no RCT data to support these measures (653). Several other interventions to maintain or 

improve lung function in patients with CVID have also shown some efficacy including the 

maintenance of higher IgG trough levels, chest physiotherapy techniques including postural 

drainage, azithromycin and nebulised antibiotics for eradication of P. aeruginosa (653). 

 

1.6.2.7 Protracted Bacterial Bronchitis (PBB) 

The cohort of patients described in Section 1.6 have many similar features in common with 

the paediatric diagnosis of protracted bacterial bronchitis (PBB). 

 

a) Epidemiology 

PBB is a common diagnosis in children and is thought to account for up to 40% of cases of 

paediatric chronic cough (654). 

 

b) Clinical Presentation 

PBB has been clinically defined as the presence of an isolated chronic ‘wet’ cough, in the 

absence of an alternative cause, which resolves with a prolonged course of antibiotic 

treatment (655). Children with the condition do not usually respond to bronchodilator 

therapy, but as with the patients described in Section 1.6 are often misdiagnosed as having 

asthma. 

 

The condition is suspected to be a potential precursor to the development of bronchiectasis 

in adulthood (654) and some authors have suggested it should be renamed ‘pre-

bronchiectasis’ (656). In retrospective studies the majority of adult patients with idiopathic 

bronchiectasis give a history of persistent wet cough from childhood (563, 657). There are 

very few, if any, descriptions of PBB in adults, although one previous study identified 15 

adult subjects with chronic productive cough secondary to ‘unsuspected bacterial 

suppurative disease of the airways’ and grossly normal HRCT scans (658). 

 

c) Pathology 

The pathogenesis of PBB is as yet unclear, but the main finding on investigation of the 

condition is persistent infection of the airways with bacteria including H. influenzae, S. 

pneumoniae and M. catarrhalis and neutrophilic airway inflammation (659-661). It is 

thought that bacteria may colonise the airways from the upper respiratory tract following a 

period of impaired mucociliary clearance, as may occur following a viral respiratory tract 
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infection. Once present in sufficient numbers in the conducting airways, bacteria (especially 

non-typeable H. influenzae) may form biofilms as a means of defence against airway 

clearance mechanisms and antibiotics (662). 

d) Treatment 

Resolution of cough in PBB is typically seen only after a prolonged course of antibiotics 

(663). RCT evidence suggests treatment with at least 2 weeks of an appropriate agent, 

although in some cases a longer duration of treatment (4-6 weeks) may be required (664).  

 

1.6.2.8 Summary: Causes of chronic productive cough 

There are multiple causes for chronic productive cough with distinct pathologies and 

features of disease. Possible causes of productive cough in the cohort described in Section 

1.6 may include early stage bronchiectasis without radiological changes, “chronic bronchitis” 

(i.e. excessive mucus production) with or without other features of underlying airways 

disease in non-smokers, immunodeficiency or an adult version of protracted bacterial 

bronchitis. 

 

Initial observations suggest that the chronic productive cough in the described cohort 

responds well to a prolonged course of low dose azithromycin therapy. Hence the literature 

regarding mechanisms of action and previous use of macrolides in respiratory disease will 

now be discussed. 

 

1.6.3 Macrolides: mechanisms of action and use in respiratory disease 

1.6.3.1 Introduction 

Macrolides are a clinically important group of antibiotics characterised chemically by the 

presence of a macrocyclic lactone ring (665). They exert bacteriostatic effects on a broad 

range of organisms by interfering with bacterial protein synthesis through binding to 

ribosomal RNA (666). 

 

In addition to the well documented anti-microbial effects of macrolides, due to their good 

oral bioavailability, tissue penetration and broad spectrum activity, there is a growing 

recognition that macrolides also have immunomodulatory and anti-inflammatory properties 

(667-669). Although the mechanisms of these effects are not yet entirely clear, macrolides 

have proven efficacy in the treatment of a number of respiratory conditions and have been 

demonstrated to affect a number of pathophysiological processes that are likely to 

contribute to ongoing disease. 

 

In this chapter the likely mechanisms of action of macrolides will be outlined followed by 

the use of macrolides in airways disease to date. 

 

1.6.3.2 Mechanisms of action of macrolides in respiratory disease 

The proven effectiveness of macrolides in reducing morbidity in a variety of respiratory 

diseases has prompted a great deal of research investigating the mechanisms by which they 
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convey their anti-inflammatory and immunomodulatory effects. Some of the main 

mechanisms for these effects recognised to date will now be discussed. 

 

a) Anti-inflammatory effects 

On neutrophils: Macrolide therapy appears to reduce airway neutrophil accumulation 

probably through a reduction in the expression of pro-inflammatory cytokines such as IL-8 

(670-672). Macrolides have also been shown in a mouse model to reduce airway 

neutrophilia (673) with significant reductions in IL-1β, an inducer of neutrophil infiltration of 

the airways (674), and GM-CSF, which is a neutrophil survival factor (675).  

 

On cytokine production: As well as their effect on IL-8, which is a potent chemotactic factor 

for neutrophils, macrolides have also been demonstrated to down regulate a number of 

other pro-inflammatory mediators, many of which serve as chemoattractants, survival 

factors and adhesion molecules for neutrophils. These include TNFα, IL-5 and soluble 

vascular cell adhesion molecule (sVCAM)-1 (676, 677).  

 

On macrophages: Studies have demonstrated that macrolides are able to reduce by the pro-

inflammatory effects of macrophages by switching classically activated M1 macrophage 

phenotypes to alternatively activated M2 phenotypes (678). Whereas the MI “killer” 

phenotype, which is activated by bacterial lipopolysaccharide and interferon-γ produces 

pro-inflammatory cytokines such as IL-6 and IL-12, the M2 “repair” phenotype refers to 

macrophages involved in tissue remodelling and immunosuppressive responses, which 

release anti-inflammatory cytokines such as IL-10 (679).  

 

Azithromycin at ‘sub-bactericidal’ doses has also been shown to enhance clearance of dead 

(apoptotic) material from the airways through phagocytosis following inflammation 

(macrophage efferocytosis) in patients with COPD (680). Impaired efferocytosis and an 

impairment of the ability of alveolar macrophages to phagocytose bacteria has been noted 

in a variety of airways conditions including COPD (681) and non-eosinophilic asthma (682) 

and low dose macrolides may help in these conditions by restoring this function. 

 

b) Effects on airway epithelial cells / mucus production 

The bronchial epithelium plays a key role in host immunity, secreting cytokines and 

antimicrobial factors in response to infection and most importantly providing a mechanical 

barrier to pathogen infiltration (683). The integrity of this barrier is therefore paramount to 

prevent infection of the respiratory tract and a key component in maintaining this integrity 

are the ‘seals’ between intercellular spaces called tight junctions (684).   

 

Several studies have demonstrated how bacteria including P. aeruginosa (685, 686) and 

Vibrio cholerae (687) are capable of producing toxins and compounds that compromise tight 

junction function leading to reduced epithelial integrity and bacterial infiltration. 

Azithromycin appears to be protective against tight junction rearrangement in vitro, which 
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helps to maintain integrity of the respiratory epithelium leading to greater resistance 

against pseudomonal infection (688). 

 

Some of the chronic inflammatory conditions reviewed in Section 1.6.2 have the shared 

pathological characteristic of airway mucus hypersecretion leading to cough productive of 

sputum. This is due to inflammatory stimuli provoking Th2/Th17 mediated inflammation 

leading to increased transcription of mucin genes such as MUC5AC and mucus 

hypersecretion (366, 599, 624, 626). There is some evidence that bacteria including 

Chlamydophila pneumoniae are capable of inducing MUC5AC production in airway epithelial 

cells through the ERK-NF-κB pathway (689, 690). 

 

Macrolides have been demonstrated to inhibit hypersecretion of mucus from rat nasal 

epithelial cells (691) and this may be due to downregulation of MUC5AC transcription 

through reduction of NF-κB activation (689, 690). Azithromycin directly inhibits 

hypersecretion of mucus from airway epithelial cells by inhibiting TNFα induced 

MUC5AC secretion from airway and human nasal epithelial cells (692). 

 

c) Effects on Pathogens  

Most of the work assessing the effects of macrolides on bacteria has focussed on the 

organism P. aeruginosa, one of the most virulent respiratory pathogens which has 

developed a number of methods to evade antibiotic treatment. Although P. aeruginosa 

often possesses a natural resistance to the antibiotic effects of macrolides, several ‘non-

antibiotic’ mechanisms have been demonstrated through which macrolides may disrupt the 

colonisation and establishment of pseudomonal communities in the airways. 

 

The process of P. aeruginosa infection, colonisation and biofilm formation will now be 

outlined in brief, followed by a summary of the mechanisms through which macrolides may 

disrupt this process at various different stages. 

 

d) Pseudomonas infection and colonisation 

Following entry to the lung, pseudomonal infections establish as the organism, which is able 

to mobilise owing to its tail-like flagellae and hair-like fimbriae, adheres to the respiratory 

epithelium via adhesion molecules such as lectins (693). Once adhered, it releases toxins, 

causing tissue damage, loses its flagellae and fimbriae and begins to produce a 

polysaccharide which will eventually form the matrix of a protective structure known as a 

biofilm (693). During biofilm formation and establishment, organisms are able to 

communicate with each other to co-ordinate the expression of certain genes such as tissue-

damaging factors via a process known as quorum sensing (694). 

 

Macrolides can affect this process in the following ways: 

i) Mobility: Sub-inhibitory concentrations of macrolides including azithromycin seem to 

decrease motility of P. aeruginosa due to disruption of flagellae and fimbriae formation 
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(695, 696). This reduced mobility leads to an increased rate of phagocytosis by alveolar 

macrophages. 

 

ii) Bacterial Adherence: Macrolides have been demonstrated to have significant effects on 

the adherence of P. aeruginosa to airway epithelial cells, which is a crucial stage in the 

establishment of bacterial infection. Both an in vitro investigation of pseudomonal 

adherence to collagen before and after erythromycin (697) and a study of the adherence of 

a P. aeruginosa strain to the buccal mucosal cells of patients with CF before and after 

azithromycin treatment (698) showed decreased adherence of the organism following 

macrolide treatment.  

 

iii) Toxin release: The bacterial virulence of P. aeruginosa is determined partly by the 

bacterial toxins these micro-organisms release; these include the cytotoxic enzymes alkaline 

protease, elastase, exotoxin A and phospholipase C. Several macrolides including 

erythromycin and azithromycin suppress the release of these enzymes resulting in 

decreased bacterial virulence and tissue damage (699, 700). 

 

iv) Biofilm construction: The formation of biofilms by P. aeruginosa, as well as other 

organisms such as H. influenzae can be disrupted by macrolides (695, 701). In vitro studies 

suggest that this may be due to the inhibition of production of polysaccharides (702, 703). 

 

v) Quorum sensing: The effect of macrolides on quorum sensing is not yet clear, but it is 

thought that they may suppress transcription of quorum sensing genes resulting in reduced 

production of quorum sensing virulence factors (704, 705). 

 

1.6.3.3 Use of macrolides in respiratory disease 

a) Diffuse Panbronchiolitis  

One of the first and most notably successful uses of macrolides in respiratory disease was in 

the treatment of Diffuse Panbronchiolitis (DPB). DPB is a chronic idiopathic condition which 

almost exclusively affects East Asians characterised by neutrophilic inflammation of the 

respiratory tract. The disease may progress if untreated to destruction of lung parenchyma 

and early mortality (706, 707).   

 

From the late 1980s onwards courses of long term macrolide therapy were used to treat the 

condition with a resultant improvement in 5 year prognosis from around 63% in the 1970s 

to around 90% in the 1990s (708). The macrolide originally chosen for treatment of DPB was 

erythromycin, but similar benefits have been found with other macrolides including 

azithromycin and clarithromycin (709). 

 

Although there are a large number of studies reporting significant improvement of DPB with 

macrolide therapy, a recent Cochrane review (710) in the subject did not find 

comprehensive evidence to substantiate their use for this purpose owing to a lack of large 

RCTs. Only one of the studies assessed in the review was deemed to be of sufficient quality 
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to include, albeit with significant methodological limitations (711). However, despite these 

reservations and the small number of participants in the trial the results of this study were 

compelling. This was because all of the 12 patients randomised to receive low dose 

erythromycin treatment showed improvement on their post-treatment CT scans compared 

to none of the seven patients who received no treatment, 5 of whom actually showed 

progression of DPB on their second CT scan. 

 

b) Bronchiectasis 

Bronchiectasis is a condition that has historically been treated with long courses of 

antibiotics in order to improve the persistent symptoms of cough with production of sputum 

positive for bacteria. Clinical trials of long term antibiotics in patients with bronchiectasis 

were first conducted in the 1950s, with seemingly positive results. These included reduced 

sputum volume and reduced number of days off work in a group of bronchiectatic patients 

taking a year-long course of oxytetracycline compared to the placebo group (712). However, 

no formal statistical analysis on these data was ever performed. 

 

Since this initial study, many investigators have conducted clinical trials in patients with 

bronchiectasis to assess the effect of various antibiotics including oral amoxicillin (713) and 

nebulised tobramycin (714, 715), gentamicin (716) and ciprofloxacin (717). These studies 

produced mixed results, although in general seemed to demonstrate that long term non-

macrolide antibiotics decreased exacerbation frequency and reduced bacterial load in non-

CF bronchiectasis, with no effect on pulmonary function. 

 

Koh et al. (718) performed one of the first trials of macrolides in subjects with 

bronchiectasis in a double-blind placebo-controlled RCT of roxithromycin in 25 children with 

bronchiectasis. The primary outcome for the trial was AHR as measured by MCT, but it 

should be noted that one of the entry requirements for the study subjects was increased 

AHR at baseline. After 12 weeks of roxithromycin treatment (4 mg/kg twice daily), AHR was 

found to be significantly reduced in comparison with the placebo group and there was also 

an improvement in sputum features (sputum purulence and leucocyte scores). Despite the 

positive results of this study, the primary outcome of AHR was a strange endpoint to 

measure in subjects with bronchiectasis, as this is not one of the key pathological features 

of the disease. Also, due to the intentional selection of children with significant AHR prior to 

treatment, the generalisability of these results may be in question. 

 

Tsang et al. (719) conducted a small double-blind RCT of 8 weeks of low dose erythromycin 

(500 mg twice daily) vs placebo in 21 patients. The erythromycin group demonstrated a 

significantly improved FEV1, FVC and 24 h sputum volume compared to the placebo group. 

No significant difference was found following erythromycin in any of the multiple 

measurements taken from sputum including sputum pathogens, leucocyte count, IL-1α, IL-8, 

TNFα or leukotriene B4.   

 

Cymbala et al. (720) carried out a pilot study of 11 patients with bronchiectasis comparing 

exacerbation frequency of patients on their usual medications vs those taking additional 
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azithromycin. Despite the low number of patients in the study, azithromycin was found to 

significantly reduce the incidence of exacerbation and 24 h sputum volume, although there 

was no discernible change in lung function or peak flow recordings. 

 

Yalcin et al. (721) studied the effects of 3 months of low dose clarithromycin treatment (15 

mg/kg once daily) on inflammatory markers in bronchiectasis in a double-blind placebo-

controlled trial of 34 children. The inflammatory markers assessed were IL-8, TNFα, IL-10 

levels and cell profiles in BAL fluid as well as pulmonary function and amount of sputum 

production. Significantly reduced levels of IL-8, total cell count and neutrophil ratios in BAL 

fluid and daily sputum production were found in the clarithromycin group in comparison to 

the placebo group, although there was no difference in pulmonary function. 

 

Diego et al. (722) carried out an open label study of azithromycin treatment in patients with 

bronchiectasis (n=30) to determine its effect on markers of airway oxidative stress in 

exhaled breath condensate (EBC). The selected markers included FENO, 8-isoprostane, pH, 

nitrites and nitrates. Patients were allocated to treatment with azithromycin (250 mg three 

times weekly) for 3 months or to a control group who received no intervention. There was 

no significant difference in the markers of airway oxidative stress between the 2 groups at 

the end of the study, although some of the secondary outcomes such as sputum volume, 

number of exacerbations and St George’s respiratory questionnaire (SGRQ) symptom score 

were significantly improved in patients in the azithromycin group. 

 

The best evidence so far for the use of macrolides in bronchiectasis comes from three large 

scale clinical trials carried out in the last few years.  

 

The first of these by Wong et al. (723) was a multicentre double-blind RCT of 141 patients 

with bronchiectasis (confirmed by HRCT scan) who were assigned to receive 500 mg of 

azithromycin or placebo three times a week for 6 months. The co-primary endpoints of the 

study were exacerbation rate, FEV1 and SGRQ score. After the 6 month treatment period, a 

significantly lower rate of exacerbations occurred in the azithromycin group in comparison 

to the placebo group, although there was no significant difference between the two groups 

in FEV1 and symptom scores. Sputum microbiology at baseline and after treatment was also 

documented, and although bacterial resistance to macrolide was not tested routinely, two 

patients in the azithromycin group developed macrolide resistant S. pneumoniae following 

treatment. 

 

Altenburg et al. (724) also conducted a multicentre double blind RCT of azithromycin vs 

placebo. This trial comprised fewer participants (83) but assessed the effect of azithromycin 

(250 mg once daily) over a longer 12 month period, and the primary endpoint to the study 

was also exacerbation rate. Again, the study demonstrated a reduction in the number of 

exacerbations in the group treated with azithromycin compared to the placebo group. 

However, another significant finding was the increased bacterial macrolide resistance rate in 

the azithromycin group with 88% of cultured organisms from the treatment group 

demonstrating macrolide resistance compared to 26% of those from the control group. 
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Lastly, Serisier et al. (725) have evaluated the use of low dose erythromycin therapy over a 

12 month period in a double-blind placebo-controlled RCT in 117 patients with 

bronchiectasis. The primary outcome measure was exacerbation rate and secondary 

outcome measures included lung function and macrolide resistance rate of oropharyngeal 

bacteria. Erythromycin was found to significantly decrease exacerbation rate as well as 24 h 

sputum production with a borderline significant improvement in lung function compared to 

placebo. This study also provided evidence of increasing bacterial macrolide resistance as a 

result of long term macrolide therapy. The proportion of macrolide-resistant oropharyngeal 

streptococci isolated from patients in the azithromycin group (median change of 27.7%) was 

significantly increased in comparison to those from the placebo group (median change 

0.04%). 

 

c) COPD 

There is an abundance of trial data regarding the use of long term macrolide therapy in 

COPD and only a brief summary of the evidence to date is reported here. A number of 

studies conducted prior to 2001 on this subject are not reviewed owing to the significant 

heterogeneity in patient groups. For example, spirometric criteria were often not used to 

diagnose COPD, antibiotics were taken for short time periods and some of the studies were 

simply of poor quality. 

 

Suzuki et al. (726) conducted an unblinded RCT investigating the effect of erythromycin 

treatment (200-400 mg once daily) over a 12 month period in 109 patients with COPD. 

Outcome measures were the frequency of COPD exacerbations and the frequency of 

episodes of common cold. Patients in the erythromycin group experienced significantly 

fewer COPD exacerbations and episodes of the common cold than the placebo group and 

the rate of hospitalisation was reduced. However, the lack of blinding in this study is a 

potential source of bias in these results. 

 

Banerjee et al. (727) carried out a double-blind placebo-controlled RCT examining the effect 

of 3 months clarithromycin (500 mg once daily) on the health status, sputum bacterial load 

and exacerbation rate of 67 moderate to severe COPD patients. None of these measures 

were improved in comparison to those found in the placebo group. This trial had the 

shortest duration of treatment of those included here, and this may have influenced the 

results. 

 

Seemungal et al. (728) in another double-blind RCT, this time assessing 12 months of 

erythromycin (250 mg twice daily) in 109 patients with moderate COPD, found that there 

was a significant reduction in the exacerbation rate in the erythromycin group in 

comparison to the placebo group. Erythromycin had no effect however on FEV1, serum or 

sputum inflammatory markers or bacterial composition of sputum. A smaller RCT by He et 

al. (729) (n=36) also examining the role of erythromycin treatment (125 mg three times 

daily) over a 6 month period similarly found a lower exacerbation rate in the erythromycin 

group. Another finding from this trial was a decreased sputum neutrophil and neutrophil 

elastase count in the erythromycin group in comparison to the placebo group. 
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A further double-blind RCT by Mygind et al. (730) assessed the use of azithromycin in 575 

COPD patients using an intermittent or ‘pulsed’ dosing regimen over a 3 year time period. 

Azithromycin, at a dose of 500 mg per day, was given for 3 days every month over the 36 

month treatment period and its effect on exacerbation frequency and duration, hospital 

admission, quality of life, pulmonary function and mortality determined. The azithromycin 

group experienced significantly fewer total days of exacerbation and required significantly 

fewer antibiotics and systemic steroids than the placebo group, although there was no 

difference in terms of pulmonary function, quality of life or mortality. 

 

Finally, the most compelling evidence so far for the use of macrolides in COPD comes from a 

large scale clinical trial carried out in 2011 by Albert and co-investigators (615). This multi-

centre double-blind RCT assessed the use of azithromycin (250 mg daily) over a 12 month 

period. The trial included 1142 patients at risk of acute exacerbations of COPD, 570 of which 

received azithromycin whilst the other 572 received placebo in addition to standard care. 

The primary outcome for the study was time to first exacerbation which was significantly 

increased in the azithromycin group compared to the placebo group (226 days vs 174 days). 

Azithromycin also reduced the frequency of exacerbations and significantly improved 

quality of life scores, although there was no effect on hospitalisation or mortality. However, 

unwanted effects of azithromycin were also noted including an increased bacterial 

macrolide resistance rate and increased hearing loss in the azithromycin group. 

 

d) Asthma 

The first reported use of macrolides as an anti-inflammatory agent for use in the 

management of asthma was in the 1960s and was conducted using troleandomycin. This 

drug was investigated for some decades as an additional therapeutic agent for asthma 

owing to its apparent “steroid sparing” effect. Although early trials showed promising 

results (731), recognition of hepatic adverse effects (732) and a systematic review of 

available trial data showing no benefits in terms of steroid dose reduction or lung function 

(733) seem to have limited any potential further use of this agent. 

 

Several studies have investigated the potential of clarithromycin therapy in asthma, with 

mixed results. Gotfried et al. (734) conducted a double-blind RCT of clarithromycin versus 

placebo in 21 oral corticosteroid dependent asthmatics. Although the mean prednisolone 

requirement of the clarithromycin group decreased by 30%, they showed no improvement 

in lung function, asthma quality of life or symptom scores compared to those in the placebo 

group. 

 

Kostadima et al. (735) reported an improvement in AHR with the addition of short term 

clarithromycin treatment (250 mg twice daily or 250 mg three times daily) vs placebo to 

adult asthma patients on moderate doses of inhaled budesonide, although again there was 

no significant improvement of lung function. 
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Simpson et al. (670) studied 45 patients with severe refractory asthma in a double blind 

placebo-controlled RCT evaluating clarithromycin (500 mg twice a day for 8 weeks). The 

primary outcome measure for this study was sputum IL-8 concentration, as IL-8 is a potent 

chemotactic factor which attracts and activates neutrophils, the levels of which are elevated 

in non-eosinophilic asthma (NEA). After 8 weeks of clarithromycin therapy sputum IL-8 

levels, IL-8 gene expression and neutrophil activation (as measured by sputum neutrophil 

elastase levels) were significantly reduced in the clarithromycin group. Levels of these 

mediators were lower in the subgroup of patients with NEA, suggesting an anti-

inflammatory mechanism by which clarithromycin may have effect in this sub-group. The 

clarithromycin group also demonstrated a significant improvement in quality of life scores, 

and this effect was most profound in the NEA sub-group, although there was no significant 

improvement in presence of symptoms or asthma control score. 

 

A number of trials of macrolides in subjects with asthma have been conducted, since there 

is evidence implicating the presence in the airways of the atypical bacteria, such as 

Mycoplasma pneumoniae and C. pneumoniae, in the pathogenesis of asthma. The objective 

was to determine whether subjects with microbiological evidence of these bacteria in the 

airways formed a sub-group of asthmatics whose disease would respond to macrolides 

owing to their antibiotic properties. 

 

Kraft et al. (736) conducted a double-blind RCT of clarithromycin (500 mg twice daily for 6 

weeks) in 55 subjects with chronic stable asthma. Subjects were assessed pre and post 

treatment for the presence of M. and C. pneumoniae in their airways via PCR of BAL 

samples, in conjunction with standard microbiological culture. In all, 55% of patients were 

PCR positive for M. or C. pneumoniae (although interestingly all were culture negative), and 

only these positive subjects responded to clarithromycin with improvement in their lung 

function (as measured by FEV1).  

 

A similar larger double-blind RCT (n=92) by Sutherland et al. (737) which also assessed PCR 

positivity for M. or C. pneumoniae failed to replicate these results and found no 

improvement in lung function or asthma control in the clarithromycin group. Interestingly 

PCR negative patients showed an improvement in AHR which was not seen in PCR positive 

patients alone. 

 

Data from trials using roxithromycin in asthma are also inconclusive. Shoji et al. (738) failed 

to show any difference in lung function or AHR in a small RCT (n=14) of subjects with aspirin-

sensitive asthma receiving roxithromycin (150 mg twice daily), although the roxithromycin 

group showed some improvement in asthma symptom score. 

 

Black et al. (739) in a large multicentre RCT (n=232) of asthma patients with serological 

evidence of C. pneumoniae (Raised serum IgG or IgA titres against C. pneumoniae) receiving 

roxithromycin (150 mg twice daily for 6 weeks) found a significant improvement in evening 

PEFR readings post treatment. However, no improvement in morning PEFR values or asthma 
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symptom scores was found and at 6 months follow-up, the improvement in evening PEFR 

had returned to baseline. 

 

One of the largest studies of macrolides in subjects with asthma carried out to date was the 

‘Telithromycin in Acute Exacerbations of Asthma’ (TELICAST) study (740). The objective of 

this study was different to those discussed above, as it examined the effect of short term 

courses of telithromycin in patients with asthma exacerbations. However, owing to its large 

size (n=278) and findings it merits some further discussion here. The primary endpoints 

determined were asthma symptom scores and morning PEFR values. This study also 

attempted to ascertain subjects’ infection status with M. and C. pneumoniae by culture and 

PCR of sputum or nasopharyngeal samples in conjunction with serological evidence of M. or 

C. pneumoniae infection (i.e. raised serum IgG, IgM or IgA titres against M. and C. 

pneumoniae). In comparison to the placebo group, subjects in the telithromycin group 

reported a significant improvement in asthma symptom scores, although there was no 

difference in morning PEFR. Baseline FEV1 in the telithromycin group appeared significantly 

improved in comparison to the placebo group but this was a secondary outcome. No 

relationship was observed between M. or C. pneumoniae infection status and treatment 

response. 

 

Azithromycin has also been considered as an additional treatment in asthma. Strunk et al. 

(741) investigated its use as a steroid-sparing agent in children with moderate to severe 

asthma. The design of the study included a 6 week run-in period in which the budesonide 

dose needed to achieve stable asthma control was determined before randomisation to 

azithromycin or montelukast. Unfortunately this trial had to be stopped early due to lower 

than expected recruitment and the difficulty pre-randomisation of stabilising the child 

subjects’ asthma control. This was either due to non-adherence with treatment before 

randomisation or an improvement in asthma control under medical supervision suggesting 

non-adherence prior to trial entry and hence less severe disease than previously thought. A 

futility analysis of the subjects recruited suggested that azithromycin was unlikely to have a 

steroid-sparing effect. 

 

Hahn and colleagues (742) carried out a placebo-controlled RCT in stable asthma patients 

(n=45) evaluating the use of azithromycin (600 mg for 3 days, then a further 600 mg weekly 

for 5 weeks). C. pneumoniae serology was also assessed. Patients in the azithromycin group 

with high titres of IgA against C. pneumoniae reported some symptomatic improvement 

using an unvalidated symptom score, but there was no significant difference between 

azithromycin and placebo groups using the AQLQ (743). 

 

Hahn and the ‘Azithromycin Asthma Trial in Community Settings’ (AZMATICS) study group 

performed another RCT using azithromycin in adults with persistent asthma symptoms 

(744). There were three treatment arms in the study of patients randomised to azithromycin 

or placebo with a 3rd group of patients taking azithromycin on an open label basis. The 

group randomised to azithromycin showed no statistically significant improvement in 

asthma outcomes compared to placebo, although the study was underpowered to detect a 
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significant difference in its primary outcome (AQLQ scores). The open label group however, 

who had greater disease severity than subjects randomised to azithromycin which was 

usually treatment refractory, demonstrated improvements in asthma symptoms, asthma 

quality of life scores and control. This improvement appeared to persist after completion of 

azithromycin therapy. 

 

Finally, and perhaps most importantly, the most recent trial data for azithromycin use in 

asthma comes from the AZIZAST study by Brusselle et al. (636). This multicentre double-

blind RCT compared the efficacy of azithromycin vs placebo in prevention of asthma 

exacerbations in severe asthmatics (as an additional treatment to inhaled corticosteroids 

and LABA) over a 6 month period. Although there was no significant difference in the rate of 

exacerbation between the azithromycin and placebo groups, a predefined subgroup analysis 

stratifying patients by inflammatory phenotype determined a significant reduction in 

exacerbation rate in patients with a non-eosinophilic asthma subtype. 

 

1.6.3.4 Macrolides in Chronic Cough 

Two studies have assessed the use of macrolides in chronic cough. An RCT by Yousaf et al. 

(745) evaluated the effect of 12 weeks of low dose erythromycin therapy in 30 subjects with 

chronic cough. Chronic cough was defined as a cough lasting ≥8 weeks in a subject with 

normal spirometry, a PC20 >8 mg/mL, a normal sputum eosinophil count and HRCT scan 

whose symptoms had failed to improve despite trials of treatment for GORD and PNDS. 

There was no significant difference in the primary outcome measure of 24 h cough 

frequency (as assessed by a cough monitor) or any other measures except for sputum 

neutrophil count, which decreased significantly in the erythromycin group compared to the 

placebo group (mean difference 16.8%; 95% CI 1.6 to 32.1; p=0.03). 

 

Hodgson et al. (746) studied the effect of 12 weeks of low dose azithromycin in an RCT of 44 

subjects with chronic cough. Subjects had ongoing cough with normal spirometry and HRCT. 

All subjects underwent a MCT and sputum induction prior to entering the trial and 

underwent a treatment trial of 2 weeks of oral steroid treatment if they had a positive MCT 

or sputum eosinophils >3%. Subjects who did not have sputum eosinophils >3% or a positive 

MCT and those who failed to respond to oral steroids also received treatment trials for 

GORD or PNDS if symptomatic.  If their cough symptoms were refractory to these 

interventions they were entered into the study. There was a clinically important 

improvement in Leicester Cough Questionnaire (LCQ) score in the azithromycin group (mean 

change 2.4; 95% CI 0.5 to 4.2) but the difference between azithromycin and placebo groups 

was not significant. When the characteristics of the responders to azithromycin were 

assessed, a large significant improvement in LCQ score was noted in subjects with a 

concurrent diagnosis of asthma (mean change 6.19; 95% CI 4.06 to 8.32), implying 

azithromycin may be useful in the treatment of chronic cough associated with asthma.   
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1.6.3.5 Summary: Macrolides in Airways Disease 

Macrolide antibiotics are a clinically useful class of antibiotics, which are already used widely 

for their antibacterial properties. Evidence is accumulating of their useful anti-inflammatory 

and immunomodulatory effects which may explain their proven benefit in a growing 

number of chronic inflammatory respiratory conditions including DPB, COPD and 

bronchiectasis. Macrolides also appear to benefit subgroups of asthmatic patients with non-

eosinophilic asthma and chronic cough, for whom there are currently few treatment options 

available.  
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1.7 Microbiota in Asthma  

1.7.1 Introduction 
The human body is host to trillions of resident microbes, which outnumber our own cells 

and have a significant influence on many aspects of human physiology. Collectively, these 

micro-organisms make up what has been termed the human “microbiota”. Recent advances 

in DNA sequencing technology allowing fast and accurate assessment of these complex 

microbial communities have led to a rapidly growing interest in this area, with investigators 

attempting to discover the significance of the “microbiota” in states of health and disease.  

1.7.2 Microbiota in health 
The human microbiota is comprised of vast numbers of micro-organisms that colonise the 

skin and mucosal surfaces of the body. In the human gut alone there are estimated to be as 

many as 100 trillion microbes of over 1000 different species (771). Other body sites with 

distinctive microbial commensal populations include the skin (772, 773), oral cavity (774) 

and nasopharynx (775), urogenital tracts (776) and the lower respiratory tract (777). 

The term “microbiota” encompasses all of the micro-organisms including bacteria, viruses 

and fungi found in a specified location, be that the human body as a whole, or the mucosal 

surface of a particular organ. As yet few studies have attempted characterisation of the viral 

or fungal components of the microbiota owing to their relative scarcity in comparison to the 

bacterial element and also a relative lack of expertise in their detection and classification. 

Therefore further discussion of the microbiota will be based on current knowledge 

regarding the composition of bacterial communities at sites within the human body. 

The composition of the microbiota is usually described using well defined microbial 

ecological terms and an increasing number of statistical measures. Familiarity with some of 

the basic ecological and statistical terms used in this field is therefore essential to 

understand descriptions of the human microbiota to date and a brief glossary of these 

terms is provided in Table 1.11. 

 

Term Definition 

Microbiome The organisms, collective genomes of all 

these organisms and environmental 

conditions in a specified microbiota 

Metagenome The collection of genomes and genes in a 

specified microbiota 

Operational Taxonomic Unit (OTU) A cluster of DNA/RNA sequences that share 

more than a specified level of similarity 

(97%) which would be expected to 

correspond to a particular species 

Richness The number of different types of organisms 

present in a sample 

Abundance  The relative representation of an organism 
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in a sample 

(Relative species abundance = The number 

of organisms in one group/the total 

number of organism in all groups) 

Evenness The distribution of organisms across types  

Diversity A combination of richness and evenness to 

form a summary statistic measuring the 

variety present in a community 

Resilience The rate at which a community recovers to 

its native structure following a perturbation 

Resistance The ability of a community to resist change 

to its structure following an environmental 

challenge 

Table 1.11: A glossary of common microbial ecological terms used in 

discussion of the microbiota 

 

1.7.3 Gastrointestinal (GI) microbiota 
There are an estimated 1014 bacteria in the GI tract (778). Owing to these vast numbers of 

bacteria and their significant role in the development of the immune system, the majority of 

the current knowledge regarding the importance of the microbiota in health and disease 

comes from studies relating to the microbiota of the gut. As such, it is important to 

recognise some of the significant findings from this field and how they might influence and 

impact upon studies involving the airway microbiota. These include observations regarding 

the emergence of a bacterial community, the development of this community over time and 

the effect of perturbations on the community structure.  

Establishment of the human microbiota begins at birth with bacterial colonisation of the 

newborn gut occurring hours after delivery, with the mechanism of delivery immediately 

affecting the initial microbiota composition. Children born by vaginal delivery seem to 

develop a GI microbiota redolent of the vaginal flora of their mother, whereas children 

delivered by Caesarean section develop a gut microbiota consisting of organisms mostly 

found on the skin (779). Diversity of the infant GI microbiota gradually increases over time 

and is influenced by factors including type of feeding (breast vs formula milk feeding), infant 

hospitalisation and antibiotic use (780). 

As the interaction between the gut and the intestinal microbiota plays a critical role in the 

development of the immune system, it has been speculated that differences in the 

microbiota at this time of life may lead to disrupted immunotolerance of certain micro-

organisms and the development of allergic diseases including asthma in later life (781). 

This period of gradually increasing microbial diversity and “training” of the developing 

immune system lasts for around 3 years (782) after which the “core” members of the GI 

microbiota are established, and become less sensitive to perturbation, more closely 

resembling the adult gut microbiota (783). 
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Once established, the adult GI microbiota is thought to be fairly stable, demonstrating high 

levels of resilience to serious perturbations, including high dose antibiotic treatment and 

significant dietary changes (784, 785). However, following recurrent “high-impact” events 

such as repeated courses of high dose antibiotics the bacterial community may become 

permanently disordered (786), leading to the overgrowth of opportunistic strains of 

bacteria. This may lead to the overgrowth of opportunistic bacteria such as Clostridium 

difficile in the intestine following extended periods of antibiotic treatment, which 

aggressively colonises mucosal surfaces at the expense of typical commensal bacteria, and 

causes overt symptoms of colitis (787, 788). 

This disruption in the balance of a bacterial community leading to overgrowth of certain 

species which may in turn cause further disruption of other smaller, more beneficial 

members of that community is known as dysbiosis. Dysbiosis of the GI microbiota has been 

linked to a variety of diseases including inflammatory bowel disease (789), type 2 diabetes 

(790), bowel cancer (791) and obesity (792). 

1.7.4 Airway microbiota 
Although the GI tract microbiota is the largest and most complex in the body there is a 

growing recognition of the potentially significant influence of the composition and 

interactions of the microbiota at other mucosal surfaces, including that extant within the 

airways.  

Classically, except in advanced stages of airways disease such as bronchiectasis or cystic 

fibrosis, the lower respiratory tract was considered to be sterile.  The first study to 

demonstrate this was not the case by Hilty et al. (777) used non-culture bacterial DNA 

detection techniques on samples taken at bronchoscopy to elucidate that the airways of the 

lungs are not sterile even in healthy subjects and that there appears to be a microbiota 

unique to the lower airways. Subsequently it has been determined that the bacterial 

biomass of the lower airways in healthy subjects is comparatively low with studies 

demonstrating a BAL bacterial load of 103-4/ml (793, 794). It is unclear whether or not the 

airway microbiome in healthy subjects is resident and distinct, or whether it simply consists 

of a transient collection of organisms aspirated from the upper airways (795, 796).  

The Hilty study also demonstrated a significant difference in the bacterial communities 

present in the lungs of healthy subjects as compared to those detected in COPD patients 

and asthmatic patients treated with high dose inhaled steroids. A much higher frequency of 

the potentially pathogenic Haemophilus species, including the organism H. influenzae which 

is one of the most common pathogens isolated in respiratory tract infections, was detected 

in samples from the bronchi of asthmatic and COPD patients in comparison to control 

subjects, who were more likely to be colonised with multiple species of Prevotella. 

Following this finding by Hilty and colleagues the number of studies of the lung microbiota 

in different disease states has expanded rapidly. A summary of the results so far based on a 

full literature review of this area will now be presented, followed by a more in depth look at 

the studies to date that have assessed the significance of the microbiota composition in 

asthma. 
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1.7.5 Microbiota in Cystic Fibrosis (CF) 
Owing to the well-recognised role of colonising micro-organisms in morbidity and mortality 

in cystic fibrosis, many different investigators have studied the lung microbiota of CF 

patients in the hope of further understanding the dynamics of the CF lung bacterial 

community and its role in the clinical features and progression of the disease. A table 

detailing the full literature review can be found in Appendix I. The bacterial load in the CF 

lung is many orders of magnitude higher than that of the healthy lung at around 109/ml 

(797). Clearly, therefore, there is a significant difference in the airway microbiota between 

health and disease states but the processes that lead to this great disparity are not yet fully 

understood. It is likely that the physicochemical changes within the airways in individuals 

with CF as the disease progresses serve to create ecological niches that favourably support 

the growth of certain organisms (798). Such changes include the increasing amount and 

tenacity of respiratory secretions, airway wall inflammation and damage with subsequent 

development of bronchiectasis and potentially effects of treatments for the condition 

including antibiotics and steroids (799). However, the extent to which the microbiota 

composition is determined by such processes and to which the selected micro-organisms 

are then able to further alter the characteristics of their environment and actively cause 

disease progression is unclear. 

Some general concepts have emerged from studies of the CF microbiota to date which may 

help to guide further work relating to the airways microbiota. 

Firstly, as recognised previously in studies of the GI microbiota, the CF microbiota seems to 

be fairly stable and resilient to short term perturbation such as antibiotic treatment or 

disease exacerbation (800-803). Over the longer term i.e. ≥5 year periods, the community 

diversity of the CF microbiota in patients with progressive disease may decrease significantly 

but tends to remain relatively stable in patients with a mild lung disease phenotype (801, 

804). It has been suggested that antibiotic use is the primary cause of any decreasing 

diversity over time, rather than age or lung function (801).  

Secondly, also in common with previous GI microbiota studies, multiple investigators have 

found that the variability between the lung bacterial communities of different subjects 

(inter-subject variability) is greater than the variability between longitudinal samples from 

the same subject (intra-subject variability) (800, 801). This indicates that although subjects 

with the same disease process may have similarities in the composition of their lung 

microbiota, such that the bacterial communities in samples from these subjects could 

broadly be distinguished from those from healthy controls or subjects with other disease 

processes, each individual possesses their own unique microbiota.  

Several studies of the CF microbiota have demonstrated that decreased richness of the 

bacterial community of the CF lung is associated with decreased lung function (805-807). 

Zemanick et al. (808) found a significant negative correlation between bacterial diversity 

and relative abundance of Pseudomonas spp., which as expected, was found to be the most 

dominant organism in virtually all patients in CF microbiota studies to date. 
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Finally, several investigators have assessed the composition of the airway microbiota prior 

to and during disease exacerbations and also tried to determine how the microbiota is 

affected by antibiotic treatment. Generally these studies have showed decreased 

abundance of Pseudomonas spp. with antibiotic treatment but no change in the overall 

bacterial community composition (797, 800, 808). 

1.7.6 Microbiota in COPD 
Following the original description by Hilty et al. of the distinct bacterial microbiome of the 

COPD lung in comparison to that of healthy controls a number of further studies have 

attempted to characterise the bacterial COPD microbiota in greater detail. A table detailing 

the full literature review can be found in Appendix J. 

Erb-Downward et al. (809) compared the bacterial microbiota isolated in bronchial lavage 

(BAL) samples from healthy non-smoking controls (n=3), healthy smokers (n=7) and COPD 

patients (n=8) with that detected in lung tissue samples from patients with severe COPD 

(n=6) . They found that the diversity of the bacterial microbiota was similar in the non-

smoking and smoking controls groups to that of patients with mild COPD whereas the 

microbiota in moderate to severe COPD patients was much less diverse and was more 

commonly dominated by Pseudomonas spp. Despite these differences in diversity, the total 

bacterial load in each subject was not significantly different. Another interesting finding 

from this study was the heterogeneity of the bacterial communities between different 

anatomical sites in the same lung from patients with severe COPD. The authors suggested 

this may be due to either local differences in lung airway microarchitecture leading to the 

favourable development of certain bacteria or the anatomical heterogeneity in the 

development of the disease meaning areas with different amounts of inflammation and/or 

tissue damage may favour the growth of particular species. 

Huang et al. (614) attempted to characterise the bacterial composition of endotracheal 

aspirates from mechanically ventilated severe COPD patients using a bacterial 16S 

PhyloChip. Although this study included only 8 patients in total, two distinctly different 

bacterial populations were detected from the samples; a ‘more diverse’ and a ‘less diverse’ 

population. The ‘less diverse’ population identified in samples from 4 of the patients tended 

to contain more members of the Pseudomonadaceae group (containing Pseudomonas spp.) 

and these patients had been intubated for significantly longer than the others. The ‘more 

diverse’ population identified in samples from 3 of the patients intubated for a shorter 

duration demonstrated an increased abundance of the phylum Firmicutes. 

In order to negate the effect of contamination from the upper airways on estimates of the 

lung microbiota, Sze et al. (810) analysed the microbiota present in lung tissue samples from 

patients with severe COPD (n=8), CF (n=8), smokers (n=8) and non-smokers (n=8). This study 

confirmed there were significant differences in the bacterial microbiota found in the COPD 

lung compared to the lungs of healthy controls.  There was also a significant difference in 

the bacterial communities of the COPD and the CF lung, with a higher bacterial density and 

lower diversity of organisms in the CF subjects, although both of these groups had relatively 

high abundance of the Firmicutes phylum in comparison to controls.  Overall the lung tissue 
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samples had lower bacterial densities than those obtained by bronchial lavage or bronchial 

brushing.  

Pragman et al. (811) assessed the microbiota present in BAL samples from 22 patients with 

moderate to severe COPD and 10 healthy controls. This study again demonstrated a distinct 

bacterial community in the lungs of COPD patients compared to healthy controls, but was 

unable to discern any significant difference between COPD patients of different severity. 

There were consistent differences in microbiota composition between patients who used 

inhaled corticosteroids or bronchodilators and those who did not, although causality could 

not be determined due to the cross-sectional nature of the study. 

1.7.7 Microbiota in Asthma 
Bacteria have long been implicated in the pathogenesis of asthma (812) especially atypical 

organisms such as Mycoplasma spp. and C. pneumoniae (813). 

As discussed above Hilty et al. (777) detected a much higher frequency of Haemophilus spp. 

in samples from the bronchi of asthmatic and COPD patients than controls, whereas 

controls were more likely to be colonised with multiple species of Prevotella, which have 

previously been shown to directly inhibit the growth of a number of other bacteria.  

Huang et al. (814) also found differences in bacterial community composition in bronchial 

lavage samples from asthmatic patients compared to those from healthy control subjects. 

The diversity of the microbiota in asthmatic patients was found to be significantly higher 

than that of controls and a significant positive correlation between diversity and bronchial 

hyper-responsiveness was observed. In particular the relative abundance of certain bacterial 

taxa primarily belonging to the Proteobacteria phylum were highly correlated with AHR.  

A further study by Marri et al. (815) investigated the differences between the respiratory 

tract microbiota composition in the induced sputum of mild asthmatics (8 out of 10 of 

whom were not using inhaled corticosteroids) and non-asthmatic adults. This demonstrated 

that even subjects with mild asthma on minimal inhaled therapy exhibit a significantly 

different respiratory tract microbial composition to healthy subjects. Again, the microbiota 

of asthmatic patients were found to have a greater bacterial diversity than those of healthy 

subjects with increased levels of the Proteobacteria phylum. Healthy subjects tended to 

have higher relative abundances of Firmicutes and Actinobacteria, although these 

differences were not statistically significant. 

Recent data assessing the effect of azithromycin treatment on the lung microbiota of 

moderate and severe asthmatics revealed potentially pathogenic organisms, including 

Pseudomonas, Haemophilus and Staphylococcus species were amongst the most abundant 

bacteria detected in pre-treatment bronchoscopy samples. The abundance of each of these 

bacteria was reduced following azithromycin treatment (816). 

Goleva et al. (817) examined the potential contribution of the lung microbiota composition 
to the development of resistance to corticosteroid treatment in asthmatic subjects. Subjects 
were categorised as corticosteroid sensitive or corticosteroid resistant on the basis of their 
response to a treatment trial of oral prednisolone. Subjects were classified as corticosteroid 
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sensitive if their predicted FEV1% value increased by ≥15% or corticosteroid “resistant” if 
their predicted FEV1% improved <10%. BAL samples were obtained from 39 asthmatic 
subjects, 29 of whom were corticosteroid resistant and 10 of whom were corticosteroid 
sensitive, as well as from 12 healthy controls. The microbiota composition of the 
corticosteroid resistant and corticosteroid sensitive subjects did not differ at the phylum 
level. However, at the genus level 14 corticosteroid resistant patients displayed ‘expansions’ 
(i.e. sequences > 5% of the total 16S rRNA gene sequences) of bacteria not present in the 
corticosteroid sensitive group including the potential pathogen Haemophilus 
parainfluenzae. This organism was then demonstrated to inhibit the corticosteroid response 
of asthmatic airway macrophages in vitro. Other in vitro work also suggests H. influenzae 
may induce a steroid resistant inflammatory response by reducing histone deacetylase 
(HDAC) activity (818). 
 
Huang et al. (819) used a 16S rRNA Phylochip to characterise the microbiota in 40 patients 
with severe asthma, specifically to delineate any relationships between microbiota 
composition and disease features. The investigators found significant correlations between 
the presence in the microbiota of certain taxa and certain features of disease, including BMI, 
asthma control, sputum leukocyte values and bronchial biopsy eosinophil values. Poor 
asthma control (i.e. between visit differences in the Asthma Control Questionnaire) and 
increased sputum leucocyte values were associated with a high relative abundance of 
Proteobacteria, whereas high BMI was associated with high relative abundance of 
Bacteroidetes/Firmicutes. The presence of certain families of Proteobacteria was also 
positively associated with increased expression of Th17-related genes. In comparison to 
healthy controls or subjects with mild to moderate asthma, subjects with severe asthma had 
significantly higher levels of Actinobacteria. 
 

Green et al. (635) obtained sputum from 28 stable treatment resistant severe asthmatics 
and assessed the microbiota in these samples using T-RFLP profiling. Seventeen of the 28 
asthmatics were predominantly colonised by a potentially pathogenic bacterium (M. 
catarrhalis, Haemophilus spp. or Streptococcus spp.) and these subjects had significantly 
lower post-bronchodilator percent predicted FEV1 and higher sputum neutrophil differential 
cell counts. This suggests that colonisation of the airways by potentially pathogenic bacteria 
may lead to more severe airway obstruction and neutrophilic inflammation, both of which 
are features of a previously described phenotype of treatment resistant neutrophilic asthma 
(344). 
 

Further support for the association of potentially pathogenic bacteria in the airways with 
neutrophilic asthma comes from an investigation by Simpson et al. (820). In this study 
induced sputum samples from 30 subjects with stable asthma were taken and bacterial DNA 
extracted and profiled to allow comparison of microbiota composition between different 
asthma inflammatory subtypes. Microbiota analysis revealed reduced bacterial diversity and 
species richness in a group of 7 patients with neutrophilic asthma as compared to the 20 
patients with non-neutrophilic asthma. A significantly higher abundance of Proteobacteria 
were found in the sputum samples from subjects with neutrophilic asthma, the majority of 
which were consistent with Haemophilus spp., and these were particularly abundant in 4 of 
the 7 neutrophilic subjects. Other differences noted between subjects with neutrophilic and 
non-neutrophilic airway inflammation included a significantly lower abundance of 
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Actinobacteria and Firmicutes in those with neutrophilic asthma with a particular difference 
noted in the distribution of sequences corresponding to the Tropheryma genus (from the 
phylum Actinobacteria). Five of the 7 subjects in whom Tropheryma sequences were 
detected had eosinophilic inflammation.  
 

Zhang et al. (821) examined the microbiota content of sputum from 26 “severe” and 18 

“non-severe” asthmatics and 12 healthy controls using 16S rRNA gene sequencing.  Severe 

asthmatics were defined as those who required “either continuous or near-continuous oral 

corticosteroids, high-dose inhaled corticosteroids, or both” and non-severe asthmatics 

defined as those with no symptoms and minimal use of rescue medication using ≤2000 μg 

BDP. These study results suggested an increased abundance of Proteobacteria in the non-

severe asthma group in comparison to the severe asthma group and controls and increased 

Firmicutes abundance in the severe asthma group in comparison to the other two groups. 

1.7.8 Sampling the lung microbiota 
One of the key questions in the study of the lung microbiota is the appropriateness of 

different techniques for sampling lung organisms. A literature review of this topic is 

summarised in Appendix K. The initial studies in this area performed sampling by direct 

bronchoscopic methods (777, 814) in order to minimise potential contamination from the 

mouth and upper airways, although this technique is invasive and uncomfortable for 

subjects. Induced sputum using hypertonic saline is far less invasive and very well tolerated, 

making repeat sampling on large numbers of subjects possible. However, the upper 

respiratory tract (URT) has been shown to contain its own unique microbiota, and there are 

concerns that the microbial profile in sputum samples (whether spontaneous or induced) 

from the lower respiratory tract (LRT) may either be contaminated with URT organisms or 

that the LRT ‘microbiota’ as sampled by bronchoscopy merely represents bronchoscopic 

carryover of URT organisms. 

Charlson et al. (794) assessed the microbial populations present at different locations 

throughout the respiratory tract of healthy individuals including the oral cavity, oro and 

naso pharynx and the upper and lower airways. Measures to minimise contamination of 

samples from the airways were taken through the use of a two bronchoscope/protected 

brush technique. The study concluded that in healthy individuals a bacterial community is 

present in the lungs, but this is much less abundant than that of the URT. The composition 

of the bacterial communities from these two sites was very similar, suggesting that the 

bacteria present in the lungs of healthy individuals may arise through aspiration of these 

bacteria in the upper airways.  

A study by the same group comparing the bacterial content of oral wash vs BAL fluid for 6 

subjects with different lung diseases found no significant difference between these samples 

in 3 out of the 6 subjects, whereas the BAL samples from the other 3/6 subjects showed a 

number of sequences that were significantly more abundant in BAL compared to oral wash 

(822). This suggests that contamination of a bronchoscope with upper airway bacteria or 

repeated microaspirations does not fully explain the detection of bacterial communities in 

the lung. 
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Further evidence for the existence of a lung specific bacterial community comes from 

studies that analysed the microbial content of whole-lung tissue samples such as those by 

Sze et al. (810) and Erb-Downward et al. (809) as described above. These both concluded 

that there are detectable bacterial communities in the human lungs (in healthy subjects and 

subjects with COPD), although the total number of bacteria detected in the lungs is small 

compared to that of the airways as a whole. 

Despite the seeming inability to be able to exclude a degree of URT contamination from 

samples ostensibly from the LRT, the most abundant bacteria in the asthma microbiota do 

not seem to be prominent members of the typical microbiota found in saliva, the nostrils or 

the oropharynx (823, 824). This was supported by the results of Marri et al. (815) who used 

the induced sputum method to sample the lower airways.  

1.7.9 Sequencing the microbiota 
The current study will detail the microbiota of the lower airways using state-of-the-art 

massively parallel pyrosequencing (825) of bacterial 16S ribosomal RNA gene region 

amplicons (826).  This non-culture dependent technique provides an unprecedented level of 

detail regarding the bacterial community of the lower airways. Pyrosequencing is an 

increasingly recognised technique for studies of microbial communities due to its ability to 

rapidly and accurately sequence large numbers of bacterial species.  

Several previous investigations have confirmed the applicability of this technique in the 

sequencing of the bacterial microbiota in the gut (827) and the lung (809, 828), but it has 

only been employed once in studies of asthma patients to date (815). It is expected that 

utilising this method will allow a greater depth of sequencing than in similar previous 

investigations (777, 814). 

The steps involved in sequencing the microbiota from sample collection to data processing 

are summarised in Figure 1.9 (829). 
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Figure 1.9: Flow diagram demonstrating the necessary steps in 

studies of the microbiota from sample acquisition to data analysis  
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1.7.10 Summary and rationale for study 
Analysis of the human microbiota is a promising and rapidly expanding field. Studies to date 

of the lung microbiota have led to new insights into the pathogenesis and progression of 

lung disease. Generally, findings so far in most respiratory conditions indicate that reducing 

bacterial diversity and dysbiosis of the microbiota with dominance of certain pathogenic 

species correlate with worsening disease severity and outcomes. Studies of the bacterial 

microbiota in asthma have revealed differences in its composition to that of healthy 

controls, suggesting that an increased abundance of potentially pathogenic species such as 

Proteobacteria are associated with asthma, particularly the neutrophilic asthma subgroup, 

and with certain clinical measures.  

As yet, it has not been possible to establish whether the presence of these organisms is due 

to disease itself, or whether this may represent a treatment effect of high dose inhaled 

steroids. It is hypothesised that the use of high dose ICS could alter the microbiota in 

asthma, acting as a selective pressure that favours the establishment of colonising species of 

potentially pathogenic species such as H. influenzae (Fig 1.10). Possible mechanisms for such 

an effect could include (1) a local immunosuppressive effect of ICS allowing the overgrowth 

of pathogenic species (2) a selective inhibitory effect on the growth of certain organisms to 

the benefit of others (3) the utilisation of ICS by certain organisms capable of steroid 

degradation as a source of energy.  

 

Figure 1.10: Illustrating hypothesised changes in the microbiota with 

increasing ICS dose 

 

It is further speculated that the type of ICS used by an individual may have an effect on the 

composition of the airway microbiota in asthma. Evidence suggests that fluticasone use 

leads to an increased risk of pneumonia (632, 830) and non-tuberculous mycobacterial 

disease (831) in subjects with airways disease compared to budesonide. It is possible this 

increased risk may be due to a selective pressure caused by fluticasone that favours the 

overgrowth of potentially pathogenic species that is not observed with budesonide. 

The proposed study aims to investigate two important questions regarding the microbiota 

composition in patients with a diagnosis of asthma. The first main aim of the study is to 

compare the microbiota composition in sputum samples from subjects with mild (BTS Step 

2) and moderate/severe asthma (BTS Step 4). Although initial studies have suggested 
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subjects with different severities of asthma may have similar lower respiratory tract 

microbiota composition, there is no direct evidence to support this assertion. The second 

main aim is to compare microbiota composition between samples from subjects with 

asthma using the inhaled steroid fluticasone and those using budesonide.  

Other aims of the study include assessment of the reproducibility of the induced sputum 

method for assessing the lung microbiota, assessment of the longitudinal stability of the 

bacterial population and comparison of the bacterial load of two common respiratory 

pathogens (H. influenzae and S. pneumoniae) in the BTS Step 2 and 4 groups. Clinical 

measurements of different components of airways disease; airflow obstruction, AHR and 

airway inflammation will be performed to assess correlation between bacterial community 

composition and these metrics and also to enable subgroup/phenotype analysis based on 

these characteristics.  
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1.8 Hypothesis of Thesis and Aims 

1.8.1 Hypothesis 
Strategies based on the measurement of selected phenotypic and biological characteristics 

of airways disease can help to improve the understanding of their pathogenesis and 

targeting of treatment. 

 

1.8.2 Aims 

1.8.2.1 Aim for Study 1  

To establish whether there is a set of baseline characteristics which can reliably distinguish 

which patients will not benefit from ICS treatment. 

1.8.2.2 Aims for Study 2  

1) To describe the clinical, pathological and radiological features of a cohort of patients with 

unexplained chronic productive cough  

2) To determine the response of this cohort to a 12 week course of low dose azithromycin 

therapy and assess if any of the baseline characteristics measured could predict response to 

azithromycin. 

1.8.2.2 Aims for Study 3  

1) To compare the microbiota composition in sputum samples from subjects with mild (BTS 

Step 2) and moderate/severe asthma (BTS Step 4) 

2) To compare microbiota composition between samples from subjects with asthma using 

the inhaled steroid fluticasone and those using budesonide.  
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Chapter 2: The utility of exhaled nitric 
oxide in patients with suspected asthma 

2.1 Background 

2.1.1 Summary of background (Chapter 1.5) 
Despite the established clinical importance of identifying cases of airways disease and the 

wealth of studies evaluating a range of objective measures for their detection the prospect 

of an accurate diagnostic test for “asthma” is still elusive. Some tests clearly perform better 

in identifying characteristics of the classical asthma syndrome than others. However, 

uncertainties owing to the poor definition of “asthma” and heterogeneity of the condition in 

addition to the often transient nature of the symptoms may always make the attempt to 

define and identify features of disease according to one diagnostic label futile.  

However, with increasing availability of objective tests capable of identifying the 

pathophysiological processes underlying airways disease and a growing range of effective 

treatment agents targeting these processes the need for “diagnosing asthma” per se may 

ultimately be made redundant in favour of a “characteristic-targeted” treatment approach. 

The proposed study will attempt to investigate the value of objectively measured features 

of airways disease (with a particular emphasis on FENO) to predict ICS treatment response in 

a cohort of steroid naïve patients with symptoms of asthma. 

2.1.2 Rationale for study 
Using FENO levels to predict steroid response would appear to be a logical approach given 

that FENO is a biomarker of Th2 inflammation and there is good evidence that this type of 

inflammation is responsive to steroid treatment. This approach avoids the complexities 

inherent in attempting to use the technique to classify heterogeneous airways diseases 

according to diagnostic labels. 

The study by Smith et al. provides good evidence that this strategy may be useful, but the 

optimal cut-point derived by these authors to predict ICS response (>47 ppb) may risk 

missing subjects with measured FENO levels in the ‘indeterminate’ range of 25-50 ppb 

identified in the ATS FENO guidelines who would benefit from steroid treatment. It would be 

useful for clinical practice if a ‘minimum’ FENO cut-point below which steroid response is 

unlikely could be determined in order to guide the decision of whether or not to initiate 

steroid treatment in subjects with symptoms suggestive of airways disease. 
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2.2 Methods 

2.2.1 Purpose and Design 

2.2.1.1 Aim 

To establish whether there is a set of baseline characteristics which can reliably distinguish 

which patients will not benefit from ICS treatment. 

2.2.1.2 Hypothesis 

A minimum FENO cut-point can be determined which reliably excludes a clinical response to 

inhaled corticosteroids in a cohort of steroid naïve patients with symptoms suggestive of 

asthma. 

2.2.1.3 Study Design 

A single centre non-interventional study was designed. 
 

2.2.1.4 Ethical Approval 

This study was approved by the National Research Ethics Committee East Midlands – Derby 

1 (Ref 12/EM/0241) and Nottingham University Hospitals NHS Trust Research and 

Innovation department (Ref 11RM001).  

2.2.2 Study Population: 

2.2.2.1 Eligibility criteria 

Patients were recruited according to the following eligibility criteria: 

Inclusion criteria 

 Male or Female aged between 18 and 80 years old 

 Suspected asthma diagnosis and prescribed a new ICS 
 

Exclusion criteria 

 Subjects already using inhaled or oral corticosteroid 

 Pregnant females  

 Subjects with other significant respiratory diagnosis 
 

2.2.2.2 Study setting and participant recruitment 

This study was conducted at the Nottingham Respiratory Research Unit (Nottingham City 

Hospital UK). Subjects with respiratory symptoms suggestive of asthma who were deemed 

by general practitioner (GP) to require ICS treatment were prospectively identified. 

Interested subjects were provided with full written information about the study and given 

contact information for the study team. Upon contacting the study team they were invited 

to a screening visit to ensure they met the eligibility criteria specified above. 

2.2.3 Outcome measures 

2.2.3.1 Primary endpoint 

 The sensitivity and specificity of low levels of FENO at predicting a lack of clinical 
benefit from ICS after 4 weeks of treatment   
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2.2.3.2 Secondary endpoints 

 To determine the sensitivity and specificity of FENO for diagnosing asthma 

 To determine whether there are other baseline characteristics which if used alone or 

in combination can exclude a response to ICS. 

2.2.3.3 Sample size calculation 

As this was a pilot study a formal power calculation was not possible. An initial target of 100 

participants was set. 

2.2.4 Summary of study protocol 

2.2.4.1 Visit 1 

Subjects attended a baseline study visit (visit 1) as soon as possible after being prescribed an 

ICS by their GP but before the treatment was started. FENO, skin prick testing (SPT), 

spirometry, MCT, asthma control questionnaire (ACQ), asthma control test (ACT), full blood 

count (FBC) and sputum induction were performed, as outlined in Fig. 2.1. Subjects were 

also questioned about their presenting symptoms, i.e. the symptoms that led them to 

consult with their GP. 

2.2.4.2 Visit 1a 

Subjects prepared to make a second visit on the day after visit 1 underwent reversibility 

testing with 400 μg salbutamol via a spacer. 

Subjects were instructed to start their GP prescribed ICS treatment after visit 1 (or visit 1a if 

they also attended this) which was predominantly inhaled beclomethasone (100 μg per puff, 

2 puffs twice daily) via a metered dose inhaler. 

2.2.4.3 Visit 2 

Visit 2 occurred 4 weeks post initiation of ICS treatment. At this visit subjects were asked 

about treatment adherence and FENO, spirometry, MCT, ACQ, ACT and FBC were performed 

(Fig. 2.7). 

2.2.4.4 Visit 3 

Visit 3 was after 12 weeks of ICS treatment. At this visit subjects were again asked about 

treatment adherence and FENO, spirometry, MCT, ACQ, ACT and FBC were performed.  

 

 

Visit 1 (Baseline)

ACQ, ACT, SPT, FENO, 
FEV1, MCT, Blood, 

Sputum

+ Visit 1a (optional)

Reversibility

Visit 2                 
(1 month)

ACQ, ACT, FENO, 
FEV1, MCT, Blood

Visit 3                 
(3 months)

ACQ, ACT, FENO, 
FEV1, MCT, Blood

Figure 2.1: Demonstrating investigations performed at each study visit.    

ACQ = asthma control questionnaire, ACT = asthma control test, SPT = skin prick test, 

FENO = Fractional exhaled nitric oxide level, FEV1 = spirometry, MCT = methacholine 

challenge, Blood = full blood count (including blood eosinophil count), Sputum = 

differential sputum eosinophil count  
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2.2.5 Clinical Measurements 

2.2.5.1 Spirometry and Reversibility 

Spirometry was performed using a Vitalograph™ dry wedge bellows spirometer 

(Vitalograph™ model 2150, Buckinghamshire, England) and the FEV1 and FVC were 

calculated. The best of 3 technically acceptable manoeuvres were recorded where the 

values of the largest and the next largest FEV1 results were ≤150 mL and within 5% of each 

other as per ERS guidelines (537). Percentage predicted values were calculated using 

reference values from the ERS prediction equations (544). Bronchodilator reversibility was 

assessed 15 min after administration of 400 µg of salbutamol inhaled via a Volumatic® 

spacer as per ERS guidelines (537).  

Reversibility was defined as: 

(𝑃𝑜𝑠𝑡 𝑏𝑟𝑜𝑛𝑐ℎ𝑜𝑑𝑖𝑙𝑎𝑡𝑜𝑟 𝐹𝐸𝑉1 − 𝑃𝑟𝑒 𝑏𝑟𝑜𝑛𝑐ℎ𝑜𝑑𝑖𝑙𝑎𝑡𝑜𝑟 𝐹𝐸𝑉1)

𝑃𝑟𝑒 𝑏𝑟𝑜𝑛𝑐ℎ𝑜𝑑𝑖𝑙𝑎𝑡𝑜𝑟 𝐹𝐸𝑉1
× 100 

with a 12% increase considered significant as per ATS guidelines (217). 

2.2.5.2 Skin Prick Tests (SPTs) 

Atopy was assessed by SPTs to a panel of common aeroallergens which included 

Dermatophagoides pteronyssinus (house dust mite), tree and grass pollen, cat and dog fur 

and Aspergillus fumigatus with normal saline and histamine controls (Alk-Abello™, 

Berkshire, UK). A small drop of each solution was placed on the skin of the volar aspect of 

the lower forearm. Disposable sterile lancets (Alk-Abello™, Berkshire, UK) were used to 

puncture the epidermis under each drop in turn and the diameters of any resultant wheals 

were measured in two perpendicular directions after 15 min. A positive response to an 

allergen on the SPTs was recorded in the presence of a wheal >3 mm greater in its longest 

measured dimension than the negative (saline) control. Participants were requested not to 

take any antihistamine medications for a minimum of 48 h prior to the test. 

2.2.5.3 Sputum Induction 

Sputum induction was performed using a protocol based on that described previously by 

Pavord et al. (417) based on the method of Pin et al. (405) using an ultrasonic nebuliser to 

deliver hypertonic saline. Due to the potential for nebulised saline to cause 

bronchoconstriction, subjects were pre-treated with inhaled salbutamol, their FEV1 was 

closely monitored and the test was supervised by a clinical fellow at all times. Briefly, after 

pre-treatment with 400 µg of salbutamol inhaled via Volumatic® spacer (if subjects post-

bronchodilator FEV1 was ≥60% predicted), subjects were asked to inhale nebulized saline via 

a saline nebulizer (NE-U17, Omron Healthcare™, Milton Keynes, UK). Subjects inhaled 10 mL 

of 3% saline for 5 min, were asked to blow their nose and rinse their mouth with drinking 

water and were encouraged to cough to try and aid expectoration of a sputum samples. 

Assuming their FEV1 did not decrease by ≥20% from the baseline measurement they went 

on to inhale 10 mL of 4% saline for 5 min after which they again were asked to blow their 

nose and rinse their mouth with water before a second attempt to try and expectorate a 

sample. If there was no resultant decrease in FEV1 of ≥20% after the second attempt, the 
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process was repeated once more with 10 mL of 5% saline for 5 min followed by a third 

attempt to produce a sputum sample.  

2.2.5.4 Sputum Processing 

Once collected, sputum samples were stored in ice and processed at 40C within 2 hours of 

collection as described previously (417) but with some minor adaptions to produce 

supernatants free of dithiothreitol (DTT) for future work. Sputum plugs were isolated from 

saliva using curved forceps on the lid of a petri dish and then processed as summarised in 

Fig 2.2. 
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Figure 2.2: Protocol for sputum processing and cell count  

 

 

 

1) Sputum plugs selected 

2) Weigh and incubate with 8 volumes (ml) x sputum weight (g) of phosphate 

buffered saline (PBS) 

3) Add 150 volumes (µl) x sputum weight (g) of protein inhibitor complex (PIC) 

4) Vortex sample for 15 s and rock on ice for 10 min 

5) Centrifuge at 600g for 10 minutes at 4°C 

6) Four volumes of the supernatant are then removed into a fresh 15ml falcon 

labelled ‘PBS Supernatant’ and centrifuged at 1500g for 10 minutes at 4°C.  

7) Other four volumes supernatant split between four cryovials labelled ‘PBS 

Supernatant’ and store at -80°C. 

8) Four volumes of 0.2% DTT added to sputum sample, ensuring a final DTT 

concentration of 0.1%. 

9) Vortex sample for 15 s and rock on ice for 10 min 

10) Filter through 48 µm nylon gauze 

11) Reweigh sample and aspirate 10µl, mix well with 10µl Trypan blue. Flood a 

haemocytometer chamber with 10µl of the cell suspension/Trypan blue solution. 

12) Count cells: Live leukocytes, dead leukocytes and squamous cells, calculate: 

1. Total number of cells in sample 
2. Cell concentration 
3. Total number of cells per gram of sputum 
4. Volume required for a concentration of 5x105 cells/ml 

 
13) Centrifuge cell suspension at 600g for 10 minutes at 4°C. 

14) Split the resulting supernatant between four cryovials labelled ‘DTT 

Supernatant’ and store at -80°C. 

15) Re-suspend cell pellet in appropriate volume of d-PBS to give a concentration 

of 5x105 cells/ml. 

16) Centrifuge 75µl on one slide and 150µl on another in Shandon cytospin at 

450rpm for 6 min 

17) Air-dry slides, fix in methanol and stain with RappiDiff II. 

18) Differential cell count of 400 cells 

 



149 
 

2.2.5.5 Methacholine Challenge  

AHR testing was performed using methacholine as a provocative agent and the tidal 

breathing method to determine the concentration of methacholine causing a 20% fall in 

FEV1 (PC20). The protocol was based on that described previously (545) and recommended 

by the ATS guidelines (434). 

In brief, the subject’s baseline FEV1 was measured, followed by the inhalation of normal 

saline and then doubling concentrations of methacholine from 0.03 mg/mL to 16 mg/mL via 

a Wright’s® nebuliser (Roxon, Canada) with a flow rate of 0.13 mL/min driven by dry 

compressed air. Each nebulisation period lasted 2 min, during which time the subject was 

wearing a nose clip and instructed to breathe normally through the nebuliser (which 

contained a two-way valve). After each nebulisation period the FEV1 was measured after 30, 

90 and 180 s. If the FEV1 did not decrease 20% from the baseline measurement the 

procedure was repeated with the next highest concentration. The test ended if the FEV1 fell 

≥20% from baseline or if the highest methacholine concentration of 16 mg/mL had been 

administered. 

Exact values for methacholine PC20 FEV1 concentration were calculated by linear 

interpolation of the log dose response curve. 

2.2.5.6 Phlebotomy 

Samples for FBC were obtained using the 21 gauge BD Vacutainer® Safety-Lok™ blood 

collection set (BD, Plymouth, UK) into 4 mL EDTA tubes. Samples were processed in the 

Nottingham City Hospital biochemistry laboratory by automated cytometers. 

Two extra EDTA and two serum samples (taken into 5 mL BD Vacutainer serum tubes) were 

also taken. EDTA tubes were immediately placed in ice and taken to the laboratory where 

one of these tubes was centrifuged at 1000 g for 15 min at 40C, whilst the other was 

immediately frozen at -80 ̊C. The supernatant from the other EDTA tube was aspirated and 

frozen in 10 aliquots at -80 ̊C for future use. The 2 serum tubes were allowed to clot in an 

upright position at room temperature for 45 min and were then centrifuged at 1300 g for 10 

min at 25 ̊C. Supernatants were aspirated and frozen in 10 aliquots at -80 ̊C for future use. 

2.2.5.7 Exhaled Nitric Oxide 

Exhaled nitric oxide concentration was measured using an offline electrochemical analyser 

(NIOX MINO®; Aerocrine™, Tolna, Sweden). All subjects inhaled NO-free air (via an NO 

scrubber built into the device) to near total lung capacity and exhaled for 10 s at a flow rate 

of 50 mL/s to provide two approved FENO measurements. The NIOX MINO device provides 

visual feedback to ensure an exhalation pressure of between 12-18 cmH2O, with a built in 

flow controller ensuring a resultant flow rate of 50 mL/s. 

2.2.5.8 Juniper Asthma Control Questionnaire 

The ACQ is a validated questionnaire, designed after international consultation with 91 

‘expert’ asthma clinicians, which has been used to assess the adequacy of asthma control 

and any changes in asthma control over time (546). It contains five questions on the five 

symptoms judged to be the most important when assessing asthma control (night time 

symptoms, morning symptoms, limitation of daily activities, shortness of breath and 
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wheeze), one question regarding the dose of daily ‘rescue’ bronchodilator used and one 

question assessing the subjects FEV1 as a percentage of their predicted value. Subjects are 

asked to recall the severity of each of the 5 symptoms and their bronchodilator use in the 

last week and quantify these on a 7 point scale (0=no impairment, 6=maximum 

impairment). The FEV1 % predicted is recorded and also quantified on a 7 point scale. The 

questions all have equal weight so the ACQ is the mean score of the 7 questions ranging 

between 0 (totally controlled) and 6 (severely uncontrolled). The ACQ has been 

demonstrated to give very consistent scores in patients with stable asthma between clinic 

visits as well as being very sensitive in detecting changes in asthma control (546). The 

minimal clinically important difference (smallest change in outcome that a subject would 

see as important) for the ACQ is 0.5 (547). A copy of the ACQ is included in Appendix B. 

2.2.5.9 Asthma Control Test 

The ACT is another validated questionnaire to assess asthma control designed by a working 

group of 4 primary care clinicians and 7 asthma specialists from the USA (548).  It contains 

five questions concerning symptoms of/statements with respect to asthma control (effect of 

asthma on daily activities, number of episodes of shortness of breath, night time or morning 

symptoms, frequency of ‘reliever’ bronchodilator use and self-rated “asthma control”). 

Subjects are asked to recall the severity of each of these 5 symptoms over the last 4 week 

period and quantify these on a 5 point scale (1=maximum impairment, 5=no impairment). 

The ACT test score is calculated by simply adding the scores of all of the questions to 

produce a total ranging between 5 (severely uncontrolled and 25 (totally controlled). The 

ACT has a high level of internal consistency reliability (548) and has a minimal clinically 

important difference of 3 points (549). A copy of the ACT is included in Appendix C. 

2.2.6 Analysis 
After the final visit the results of the investigations at each visit were reviewed in order to 

answer two questions: 

1) Does the patient meet any of the internationally recognised criteria for a diagnosis of 

asthma? 

2) Has there been any significant response to ICS treatment? 

Diagnosis of asthma was based on the following criteria: 

 Reversibility of ≥12% and ≥200 mL of FEV1 from baseline 15 min after inhaled 
salbutamol (217, 550)  

 A positive test for AHR, defined as a provocative concentration of methacholine 
resulting in a 20% reduction in FEV1 (PC20) of ≤8 mg/mL (434) 
 

Response to ICS was based on a combination of 2 of any of the objective criteria or 1 

objective criterion and 1 subjective criterion from the following previously defined response 

criteria: 

Objective: 

 Improvement in FEV1 ≥12% with ICS (217)  
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 Improvement in PC20 ≥1 doubling dose shift (434) 

 FENO: Decrease of ≥20% for baseline values >50 ppb or decrease of ≥10 ppb for 

baseline values ≤50 ppb (502) 

 

Subjective: 

 ACQ score decrease ≥0.5 (551)  

 ACT score increase ≥3 points (549)  
 

Data was entered into Stata (Statacorp, Texas, USA) and a series of logical operators were 

used to classify subjects’ asthma diagnosis and ICS response status based on the criteria 

above. ROC analysis was carried out in Stata and GraphPad Prism (GraphPad Software, 

California, USA) to produce ROC curves, ROC AUC values and values for sensitivity, 

specificity, PPV and NPV at selected cut-points.  

Odds ratios, sensitivity, specificity, PPV and NPV of symptoms for asthma diagnosis and to 

predict ICS response were also calculated in Stata. Stepwise logistic regression was 

performed with symptoms that were significant predictors of asthma diagnosis, high FENO or 

ICS response (p<0.05) in univariate analysis included in a multiple logistic regression model. 

Any symptoms that were not significantly associated with asthma diagnosis, high FENO or ICS 

response but changed the odds ratio for any of these outcomes by 10% or more on addition 

to the analysis were retained in the final model.
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2.3 Results 

2.3.1 Recruitment 
One hundred and ten subjects were referred by their general practitioners between 

November 2012 and November 2014. Of these 15 decided not to participate, and 18 did not 

meet the inclusion criteria (10 were already taking ICS, 6 had a significant respiratory 

comorbidity and 2 displayed acute symptoms not suggestive of asthma). Accordingly a total 

of 77 subjects were enrolled into the study. 

2.3.2 Losses and exclusions 
At visit 1, three subjects were unable to perform the required investigations and were 

withdrawn from the study. Seven patients were lost to follow up before visit 2 (3 of these 

withdrew consent and 4 were unable to be contacted despite repeated attempts) and a 

further 7 patients were lost before visit 3 (2 of these withdrew consent and 5 were unable 

to be contacted despite repeated attempts). 

 

 

 

Assessed for eligibility (n=110) 

Included in study (n=77) 

Figure 2.3: Consort diagram demonstrating losses and 

exclusions from study 

Enrolment 

Follow-Up 

Excluded (n=33) 

   Not meeting inclusion criteria (n=18) 

   Declined to participate (n=15) 

   Other reasons (n=0) 

Visit 2                                                                            

Lost to follow up (n=7) 

 3 withdrew consent                                    

 4 unable to be contacted despite repeat attempts 

Analysed (n=67) 

 

-  

 

Visit 1                                                             

Discontinued intervention as unable to perform study 

procedures (n=3)  

Analysed (n=74) 

Visit 3                                                                            

Lost to follow up (n=7) 

 2 withdrew consent                                    

 5 unable to be contacted despite repeat attempts 

Analysed (n=60) 

 

-  
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2.3.3 Missing data 
AHR could not be measured in all study participants due to low FEV1 at baseline (n=4), 

subjects declining the test (n= 4) or an inability to perform the test consistently (n=1). 

Also, sputum induction was attempted on the first 40 subjects recruited to the study, but 

only 4 of these were able to produce an adequate sample for analysis, therefore this test 

was abandoned and the limited data obtained were not included in the final analysis. 

2.3.4 Baseline demographics 
The baseline demographics and clinical features of all of the 74 participants able to 

complete sufficient investigations to rule in or rule out a diagnosis of asthma are shown in 

Table 2.1. The age distribution of the cohort is shown in Table 2.2. Table 2.3 shows the 

demographic information and clinical features of the subjects diagnosed with asthma and 

those classified as not having asthma. 

There was a slight female preponderance and a large majority of the subjects were 

Caucasian. This was predominantly a young cohort with ~50% of patients below the age of 

25. Around 31% were smokers or ex-smokers although the median pack year history was 0 

(IQR 0.05 pack years, range 0-20 pack years). 

The demographics of the groups categorised as having asthma or not having asthma were 

broadly similar although the median age of the group with asthma tended to be slightly 

higher (borderline significance p=0.06) and the ethnic composition of the groups was 

significantly different (p=0.02). The difference in ethnic composition of the groups is largely 

explained by the observation by that 4/28 subjects with asthma were Black/Black British 

whilst none of the 46 non-asthma subjects were Black/Black British. 

The asthmatic group had on average a lower mean FEV1 (p=0.005), lower mean FEV1/FVC 

ratio (p=0.007), higher mean reversibility (p=0.0001) and higher median blood eosinophil 

count (p=0.004) and higher mean ACQ score (p=0.02) (i.e. symptoms less well controlled) 

(Table 2.7). However, some of these differences would be expected as FEV1 and reversibility 

are included in our definition of asthma. 

2.3.5 Primary outcome: ICS Response 
Response to ICS, as defined by the response criteria described in Section 2.3.6, was seen in 

27 out of 67 (40%) subjects after 4 weeks of ICS and 28/60 (47%) subjects after 12 weeks 

(Table 2.4).  

Eighteen of the 32 (56%) subjects with asthma showed a response to ICS after 4 weeks, with 

14 of these having sustained this response after 12 weeks. Eleven of the non-asthma 

subjects also demonstrated a response to ICS after 4 weeks, with 6 sustaining this response 

after 12 weeks. Figure 2.4 illustrates the response or non-response to ICS of subjects with 

asthma and subjects without asthma after 4 then 12 weeks of ICS treatment, and also lists 

the subjects lost to follow up in this time. 
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A ROC curve calculated for baseline FENO level as a predictor of ICS response after 4 weeks 

had an AUC of 0.89 (p<0.0001) (Fig 2.5).The optimal FENO cut-off point for predicting non-

response to ICS was <27 ppb (NPV 93%) and for predicting response was >33 ppb (PPV 92%).  

Exploratory analysis was conducted using different combinations of objective and subjective 

response variables as ICS response criteria after 4 weeks with baseline FENO level as a 

predictor of response. This produced ROC curves with AUCs between 0.7 (FEV1 or PC20 

response alone) and 0.91 (response in either FEV1 or FENO) as shown in Table 2.5.  

The accuracy of FENO level to predict steroid response after 12 weeks was consistent with 

response at 4 weeks (ROC AUC = 0.86 p<0.0001) although a few individuals who showed a 

response in objective measures after 4 weeks did not sustain this response at 12 weeks and 

vice versa (Fig 2.6).  

2.3.6 Secondary outcomes:  

2.3.6.1 FENO for asthma diagnosis 

The diagnosis of asthma, according to the international consensus criteria outlined in 

Section 2.2.6, was made in 28 out of 74 patients. Of these 28 patients 10 were diagnosed by 

reversibility criteria alone and 12 were diagnosed by PC20 alone, with 6 being positive on 

both investigations. 

A ROC curve was constructed to assess the utility of baseline FENO level as a diagnostic test 

for asthma (as diagnosed by reversibility and PC20) as shown in Figure 2.7. The AUC for the 

curve was 0.62 (p=0.09). 

2.3.6.2 Ability of other baseline characteristics to predict a response to ICS 

When baseline PC20 and FEV1 were used as predictors of response (as defined by different 

combinations of response variables) this produced ROC curves with AUCs between 0.02 and 

0.67, shown in Table 2.6. ROC AUC values of <0.5 are negative predictors of an outcome i.e. 

the lower the value of the predictor variable, the greater the probability of a response. 

Therefore PC20 would appear to be an excellent predictor of response when response is 

defined by PC20 alone (ROC AUC = 0.02); PC20 with subjective response criteria (ROC AUC = 

0.04) or ≤2 objective criteria (ROC AUC = 0.12). However, these results are misleading 

because ‘response’ using these response criteria is based solely (or largely) on a doubling 

dose increase in PC20. These ROC AUC figures therefore simply reflect that of the 58 subjects 

who had MCT performed at V1 and V2, all of the 13/58 subjects who ‘responded’ in terms of 

PC20 had a baseline PC20 of ≤8 mg/mL whereas 40/45 who did not ‘respond’ had a baseline 

PC20 of ≥16 mg/mL (the highest concentration of methacholine used in the test). These 

latter subjects were all classified (correctly or incorrectly) using these response criteria as 

‘non-responders’ as their PC20 could not improve due to a ‘ceiling’ effect, hence artificially 

increasing the AUC values.  

The odds ratios, sensitivity, specificity, PPV and NPV of symptoms to predict ICS response 

and diagnose asthma were also calculated and these are shown in Table 2.8.  

Cough was found to be a significant positive predictive factor for raised FENO (odds ratio 

(OR) 8.7; 95% CI 3.1-24.6; p<0.0001) and symptoms on activity were a negative predictor of 
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raised FENO (OR 0.3; 95% CI 0.1-0.8; p<0.02). The symptom of wheeze was found to be of 

borderline statistical significance as a positive predictor for raised FENO (OR 2.5; 95% CI 1-

6.5; p<0.06). None of the other symptoms altered the OR for cough by >10% on addition to 

a stepwise regression model, suggesting there are no significant associations between these 

symptoms. To predict raised FENO (>27 ppb) the symptom of cough performed best overall 

in terms of sensitivity, specificity, PPV and NPV.  

Cough was also a significant positive predictor of ICS response (OR 10.6; 95% CI 3.0-37.4; 

p<0.0001) with a particularly good sensitivity (0.85) and NPV (0.85) to predict ICS response 

according to the defined criteria used in the study. None of the other symptoms significantly 

predicted ICS response and did not alter the OR for cough by >10% on addition to a stepwise 

regression model. 

2.3.6.3 Ability of other baseline characteristics to diagnose asthma 

The diagnostic value of blood eosinophil count and skin prick test positivity for asthma were 

also assessed. Blood eosinophil count had a ROC AUC of 0.7 (p=0.005) for asthma diagnosis 

(Table 2.6) and a positive skin prick test (weal diameter >3mm in response to any of the 

allergens listed in Section 2.2.5.2) had a moderate sensitivity/NPV but low specificity/PPV 

for asthma diagnosis (Table 2.7) 

None of the recorded symptoms were significantly associated with a diagnosis of asthma 

although cough (OR 2.3; 95% CI 0.9-6.0; p<0.08) and wheeze (OR 2.3; 95% CI 0.9-5.8; 

p<0.09) reached borderline statistical significance. In terms of the predictive value of 

symptoms to diagnose asthma, symptoms on waking had the highest specificity and 

dyspnoea, wheeze and cough produced similar values of sensitivity, specificity, PPV and NPV 

between 0.5 and 0.7 (Table 2.9).  
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 Frequency Percentage   

Total number included for 

analysis 

74   

Mean age (range) 32.3 (18-73)   

Sex: male 33  45  

Ethnic group: 

Asian Or Asian British 

Black Or Black British 

Mixed Ethnicity 

White Or White British 

 

6 

4 

1 

63 

 

8.1      

5.4    

1.4       

85.1      

 

Smoking history:  

Current 

Ex-smokers 

Non smokers 

 

10  

13  

51  

 

13.5  

17.5   

68.9 

 

Positive family history of asthma  34  45.9  

History/symptoms of GORD 15  20.3  

History/symptoms of eczema  9  12.2  

History/symptoms of rhinitis  17  23.0  

History/symptoms of hay fever  31  41.9  

History of NSAID allergy  2  2.7  

Positive skin prick for ≥1 allergen 43 59.7  

 Mean Standard 

deviation 

Range 

FEV1 % predicted  93  15.7 56-141 

FEV1/FVC ratio %  79.8  9.5 52-94 

Reversibility (%) 7.0  9.7 -18-43 

Blood eosinophil count (x109/L)*   0.2*  0.2* 0-0.9 

Baseline ACQ score 1.67 0.89 0-4 

Baseline ACT score 16.6 4.3 7-25 

*Data presented are median and interquartile range as variable not normally distributed 

Table 2.1: Demographics of study population 

 

Age group Frequency Percentage 

<20 16 21.1        

20-25 21 27.6        

25-30 9 11.8       

30-40 8 10.5        

40-50 8 10.5        

50-60 8 10.5       

60+ 6 7.9      

Total 76 100 

Table 2.2: Age distribution of study population 

 



157 
 

 Asthmatics Non asthmatics  

 Frequency 

(%) 

(except a) 

Frequency (%) 

(except a) 

Significance 

(p=) 

Total number included for 

analysis 

28 46  

Median age (range) 29 (18-70)a 22 (18-73)a 0.06 

Sex: male 11 (39) 23 (50) 0.37 

Ethnic group: 

Asian Or Asian British 

Black Or Black British 

Mixed Ethnicity 

White Or White British 

 

1 (3.6) 

4 (14.3) 

1 (3.6) 

22 (78.6) 

 

5 (10.9) 

0 (0) 

0 (0) 

41 (89.1) 

 

 

 

 

0.01* 

Smoking history:  

Current 

Ex-smokers 

Non smokers 

 

5 (17.9) 

4 (14.3) 

19 (67.9) 

 

5 (10.9) 

9 (19.6) 

32 (69.6) 

 

 

 

0.62 

Positive family history of 

asthma  

13 (46.4) 21 (45.7) 0.95 

History/symptoms of GORD 5 (17.9) 9 (19.6) 0.86 

History/symptoms of eczema  4 (14.3) 6 (13.0) 1.0 

History/symptoms of rhinitis  9 (32.1) 8 (17.4) 0.14 

History/symptoms of hay fever  12 (42.9) 20 (43.5) 0.96 

History of NSAID allergy  1 (3.6) 1 (2.2) 1.0 

Positive skin prick for ≥1 

allergen 

17 (60.7) 26 (56.5) 0.86 

    

 Mean (SD) Mean (SD)  

FEV1 % predicted  86.7 (14.0) 96.9 (15.6) 0.005* 

FEV1/FVC ratio %  76 (10) 82.1 (8.4) 0.007* 

Reversibility (mL) 12.6 (11.7) 3.6 (6.3) 0.0001* 

Blood eosinophil count 

(x109/L)b  

0.35 (0.4) 0.2 (0.1) 0.004* 

Baseline ACQ score 1.96 (0.81) 1.42 (0.82) 0.02* 

Baseline ACT score 15.8 (4.4) 17.2 (4.2) 0.09 
bData presented are median and interquartile range as variable not normally distributed 
*Figures highlighted represent statistically significant differences between the two groups 
 

Table 2.3: Demographics and clinical characteristics of subjects with 
and without asthma 
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Responded between V1-

V2: 

Frequency 

FEV1 ↑≥12% 2 

PC20 ↑≥ 1 doubling dose 

shift 

5 

FENO  

↓20% if baseline >50 ppb or 

↓≥10 ppb if baseline ≤50 

ppb 

13 

FEV1+PC20 1 

FEV1+FENO 1 

PC20+FENO 5 

All 3 objective criteria 2 

Any objective criteria 29 

Using study defined 

criteria 

27 

  

Responded between V1-

V3: 

 

FEV1 ↑≥12% 2 

PC20 ↑≥ 1 doubling dose 

shift 

5 

FENO  

↓20% if baseline >50 ppb or 

↓≥10 ppb if baseline ≤50 

ppb 

12 

FEV1+PC20 1 

FEV1+FENO 1 

PC20+FENO 8 

All 3 objective criteria 1 

Any objective criteria 30 

Using study defined 

criteria 

28 

 

Table 2.4: Frequency of subjects responding to ICS treatment 

according to different criteria/combinations of criteria 
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Figure 2.4: Showing pathway of patients through the study  
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Figure 2.5: ROC curve analysis showing the sensitivity (%) and the 

100 – specificity (%) of FENO levels for predicting ICS response after 4 

weeks of ICS treatment 
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Baseline value Response Criteria ROC AUC Optimal cut-off  

FENO Study defined criteria 0.89 

(p<0.0001) 

For non-response: 

<27 ppb 

 Sensitivity 92% 

 Specificity 75% 

 NPV 93% 

 PPV 71% 
For response: 

>33 ppb 

 Sensitivity 85% 

 Specificity 95% 

 NPV 91% 

 PPV 92% 

FENO Any objective criteria 0.85  

FENO ≥2 objective criteria 0.84  

FENO Any subjective response 0.53  

FENO FEV1 alone 0.7  

FENO PC20 alone 0.7  

FENO FENO alone 0.89  

FENO FEV1 or PC20 0.7  

FENO FENO or PC20 0.86  

FENO FEV1 or FENO 0.91  

FENO FEV1 + subjective response 0.7  

FENO PC20 + subjective response 0.74  

FENO FENO+ subjective response 0.88  

Table 2.5: ROC AUCs for FENO to predict ICS response as defined by 

different combinations of response criteria 
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Table 2.6: ROC AUCs for baseline PC20 and FEV1 to predict ICS 

response as defined by different combinations of response criteria  

 

 Sensitivity 

(%) 

Specificity 

(%) 

PPV (%) NPV (%) 

Skin prick positive 

(weal >3mm) 

60.1 41.3 38.6 63.3 

Table 2.7: Sensitivity, specificity, PPV and NPV of skin prick 

positivity (to any allergen) to diagnose asthma 

 

 

Baseline value Response Criteria ROC AUC 

PC20 Study defined criteria 0.32 

PC20 Any objective criteria 0.32 

PC20 ≥2 objective criteria 0.12 

PC20 Any subjective response 0.44 

PC20 FEV1 alone 0.36 

PC20 PC20 alone 0.02 

PC20 FENO alone 0.46 

PC20 FEV1 or PC20 0.09 

PC20 FENO or PC20 0.30 

PC20 FEV1 or FENO 0.43 

PC20 FEV1 + subjective response 0.36 

PC20 PC20 + subjective response 0.04 

PC20 FENO+ subjective response 0.47 

FEV1 Study defined criteria 0.58 

(p=0.25) 

FEV1 Any objective criteria 0.43 

FEV1 ≥2 objective criteria 0.29 

FEV1 Any subjective response 0.39 

FEV1 FEV1 alone 0.29 

FEV1 PC20 alone 0.33 

FEV1 FENO alone 0.49 

FEV1 FEV1 or PC20 0.29 

FEV1 FENO or PC20 0.44 

FEV1 FEV1 or FENO 0.46 

FEV1 FEV1 + subjective response 0.28 

FEV1 PC20 + subjective response 0.31 

FEV1 FENO+ subjective response 0.49 

Blood eosinophils Our defined criteria 0.67 



163 
 

 

Figure 2.6: ROC curve analysis showing the sensitivity (%) and the 

100 – specificity (%) of FENO levels for predicting ICS response after 

12 weeks of ICS treatment 

 

 

Figure 2.7: ROC curve analysis showing the sensitivity (%) and the 

100 – specificity (%) of FENO levels for asthma diagnosis 
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a) For diagnosing asthma 

Symptom Sensitivity Specificity PPV NPV 

Nocturnal Sx 0.25 0.74 0.42 0.56 

Sx on waking 0.22 0.81 0.47 0.58 

Sx on activity 0.53 0.52 0.46 0.59 

Dyspnoea 0.69 0.5 0.51 0.65 

Wheeze 0.53 0.67 0.55 0.65 

Cough 0.66 0.55 0.53 0.68 

 

b)  For predicting ‘high FENO’ (>27 ppb) 

Symptom Sensitivity Specificity PPV NPV 

Nocturnal Sx 0.2 0.69 0.42 0.43 

Sx on waking 0.15 0.78 0.43 0.44 

Sx on activity 0.38 0.34 0.39 0.32 

Dyspnoea 0.55 0.4 0.51 0.44 

Wheeze 0.5 0.71 0.67 0.55 

Cough 0.75 0.74 0.77 0.72 

 

c)  For predicting ‘high FENO’ (>33 ppb) 

Symptom Sensitivity Specificity PPV NPV 

Nocturnal Sx 0.17 0.69 0.26 0.55 

Sx on waking 0.1 0.76 0.21 0.56 

Sx on activity 0.37 0.37 0.37 0.37 

Dyspnoea 0.53 0.4 0.37 0.56 

Wheeze 0.5 0.67 0.5 0.67 

Cough 0.73 0.62 0.56 0.78 

 

d)  For predicting response to ICS 

Symptom Sensitivity Specificity PPV NPV 

Nocturnal Sx 0.18 0.75 0.36 0.54 

Sx on waking 0.25 0.81 0.5 0.58 

Sx on activity 0.5 0.44 0.41 0.53 

Dyspnoea 0.53 0.44 0.43 0.55 

Wheeze 0.5 0.67 0.54 0.63 

Cough 0.85 0.64 0.65 0.85 

 

Table 2.8:  Sensitivity, specificity, positive (PPV) and negative (NPV) 

predictive values for each of the listed symptoms to a) diagnose 

asthma b) predict FENO >27 ppb c) predict FENO >33 ppb and d) 

predict response to ICS 
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Symptoms to predict asthma diagnosis 

 

Odds 
ratio 95% CI p >Z 

Nocturnal Sx 0.94 0.33 - 2.70 0.91 

Sx on waking 1.19 0.38-3.71 0.77 

Sx on activity 1.25 0.50-3.13 0.64 

Dyspnoea 2.2 0.81-5.75 0.11 

Wheeze 2.27 0.88-5.83 0.09 

Cough 2.31 0.89-5.97 0.08 

Increased SABA use 3.64 0.86-15.4 0.08 

   
 

Symptoms to predict high FENO (>27 ppb) 

 

Odds 
ratio 95% CI p >Z 

Nocturnal Sx 0.55 0.19-1.56 0.26 

Sx on waking 0.6 0.18-1.92 0.39 

Sx on activity 0.31* 0.12-0.81 0.02 

Dyspnoea 0.81 0.32-2.04 0.66 

Wheeze 2.5 0.96-6.53 0.06 

Cough 8.67* 3.1-24.6 <0.0001 

Increased SABA use 1.37 0.35-5.30 0.65 

  
  

Symptoms to predict ICS response 

 

Odds 
ratio 95% CI p >Z 

Nocturnal Sx 0.65 0.19-2.22 0.5 

Sx on waking 1.38 0.42-4.53 0.6 

Sx on activity 0.8 0.30-2.15 0.66 

Dyspnoea 0.92 0.34-2.49 0.87 

Wheeze 2 0.73-5.52 0.18 

Cough 10.62* 3.02-37.35 <0.0001 

Increased SABA use 0.74 0.16-3.42 0.7 

 

Table 2.9: Odds ratios of symptoms to predict asthma diagnosis, 

high FENO (>27 ppb) and ICS response. Significant values are 

indicated* 
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2.4 Discussion 
The results of this study indicate that measuring exhaled nitric oxide levels in patients 

presenting to primary care with symptoms suggestive of asthma is useful in predicting a 

response to ICS but not in diagnosing asthma. Another finding was that the symptom of 

cough in this patient cohort is associated with a significantly increased likelihood of 

response to ICS. 

2.4.1 FENO for predicting ICS response 
Our results suggest that FENO is a good predictor of ICS treatment response, with a high NPV 

and PPV for ICS non-response and response using cut-points of <27 and >33 ppb.  

 

This supports previous findings where FENO was reported to be a useful predictor of 

response to ICS treatment in steroid naïve patients with symptoms suggestive of asthma 

(540). Similarly Little et al. (541) demonstrated FENO to have good predictive accuracy for 

oral steroid response in a group of 37 subjects, although these subjects had chronic asthma 

and were already treated with ICS.  

The results obtained in the current study, do however, differ from those found previously 

(540) in terms of the optimal FENO cut-point to signify a likely ‘negative’ response to ICS. 

Smith et al. reported a FENO cut-point of 47 ppb to have a NPV for steroid response of 77-

94% depending on the steroid response endpoint chosen, whereas these data suggest a 

lower value than this of 27 ppb with a NPV of 93%. This may be due to the different criteria 

chosen to designate ICS response as Smith et al. did not include decreased FENO value as a 

response criterion and considered a significant improvement in PC20 to be two or more 

doubling doses. Although the response criteria selected by the earlier study (540) are 

probably more definitive measures of ICS response, the criteria here are likely to be more 

sensitive to the detection of a response, and hence less likely to miss potential responders 

to ICS treatment. A fall in FENO was included as a criterion here which is not used routinely 

but was frequently the only objective change in patients with a subjective improvement in 

cough. This test has the advantage of being easily performed in primary care. Also, it has 

previously been established that a reduction in Th2 inflammation is associated with a 

reduced risk of exacerbations (552, 553), bringing some validity to the inclusion of FENO as a 

response criterion. 

A selected cut-off of 33 ppb for ICS response found by this study is similar to the FENO value 

of 36 ppb previously determined to identify significant eosinophilic inflammation as defined 

by a sputum eosinophil count >3% (481).  

Using investigations to determine the nature of airway inflammation underlying a patient’s 

symptoms is attractive because it allows a prediction of response to treatment that labelling 

individuals with a diagnosis of ‘asthma’ or ‘COPD’ does not (159). Asthma has been shown 

to have eosinophilic and neutrophilic phenotypes (Sections 1.4.6 and 1.4.7) with a 

potentially good response to ICS being limited to the former (303).  Of the 32 patients 

diagnosed with asthma in the current study only 18 (56%) responded to ICS, a finding in 
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keeping with that of Martin et al. (554) who found that only 54% of 72 asthma patients who 

had ICS withheld for 4 weeks responded when ICS were re-introduced. Likewise there is a 

subpopulation of patients with COPD who have eosinophilic inflammation and respond well 

to ICS treatment (555) and patients with cough secondary to EB who also improve with ICS 

(87). Our findings suggest that FENO could be a useful test in primary and secondary care but 

as a tool to target corticosteroid-responsive patients rather than to make or exclude a 

diagnosis of asthma.  

2.4.2 FENO for asthma diagnosis 
The poor sensitivity and specificity of FENO in diagnosing asthma may be due to the 

heterogeneity of the condition with different inflammatory subtypes expressing high or low 

levels of Th2 inflammation (552). Subjects with neutrophilic asthma, who may comprise up 

to 30% of all asthmatics (260, 296), by definition have no active eosinophilic/Th2 airway 

inflammation and therefore are likely to have normal FENO levels. The finding that only 57% 

of subjects with confirmed asthma responded to ICS further highlights the limitations of this 

diagnostic label. 

Previous studies investigating the role of FENO for asthma diagnosis have produced mixed 

results, with widely varying values of sensitivity and specificity for a range of different 

defined optimal cut-points and a recent meta-analysis concluded the sensitivity and 

specificity of FENO was insufficient for accurate diagnosis (556). Some of this variation may 

be explained by differences in study methodology and FENO devices, which even using 

standardised flow rates may produce significantly different FENO readings (557). Measured 

FENO levels can be affected by a number of other factors including coexistent atopy (508) 

and respiratory tract infection (558) which increase FENO levels, whilst decreased FENO levels 

may be caused by smoking (558) and certain medications.  

Owing to the variety of factors that can affect FENO levels, and the significant crossover in 

values between healthy and asthmatic populations the proposed NICE guidelines have 

advocated an approach to using FENO to help ‘rule in’ or ‘rule out’ asthma diagnosis, with 

subjects with ‘intermediate’ FENO levels requiring further investigation (543) (Section 

2.2.4.5). However, the results of this study do not support this strategy. 

2.4.3 Symptoms for predicting asthma diagnosis and ICS response 
None of the symptoms assessed were significant independent predictors of objectively 
defined asthma. This is consistent with the results of the studies presented in Section 1.3.  A 
literature review conducted as part of the draft NICE guidelines for asthma diagnosis (539) 
also concluded that the sensitivities and specificities of individual symptoms for asthma 
diagnosis were moderate or low, and as such the diagnosis of asthma based on 
symptomatology could not be recommended. 
 
The symptom of cough was found to be an independent predictor of a FENO value >27 ppb, 

which was the optimal cut-off point derived for non-response to ICS in the first part of the 

study. The presence of cough made it ~9 times more likely that the subject would have a 

FENO value >27 ppb. It is not surprising then, given the results of the first part of the study, 

that cough was also a significant predictor of ICS response, with the presence of cough 
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signalling a 10 fold increase in likelihood of ICS response. Cough also had a high sensitivity 

and NPV for the prediction of ICS response but only moderate specificity and PPV. 

The ability of symptoms to predict ICS response has not previously been assessed so this is a 

novel finding. The most likely explanation for this result is that Th2 high inflammation is 

more likely to cause the symptom of cough than other typical symptoms of airways disease 

such as dyspnoea and wheeze. A cough, which is usually dry, is described as the 

characteristic symptom of EB (88). Therefore if the sole or main underlying 

pathophysiological feature of a subjects’ airway disease is Th2 high inflammation rather 

than other pathology such as AHR and airway obstruction, the most likely resultant clinical 

picture may be of a subject with a dry cough, rather than predominant dyspnoea or wheeze.  

The value of high FENO and the symptom of cough in predicting ICS response could both be 

used in future to improve targeting of ICS treatment to subjects who are more likely to 

respond.  

2.4.4 Study limitations 
This study had several limitations which need to be addressed.  
 
Firstly, criteria had to be selected on which to base a diagnosis of asthma whilst recognising 

there is no gold standard. The diagnostic criteria selected are standard criteria from 

international consensus guidelines and subject was classified as asthmatic if any one of the 

two chosen criteria were positive. Despite the lack of gold standard these objective tests 

were deemed to be the best on which to classify asthma diagnosis and limiting the criteria 

to positive MCT (considered the best ‘rule-in’ ‘rule-out’ test available) alone did not 

significantly alter the ROC AUC value for asthma diagnosis.   

Secondly there was no formal measure of ICS adherence during the study although patients 

were questioned about their ICS usage at each visit. Therefore failure to respond to ICS may 

have been due to lack of adherence rather than a true negative response to treatment. This 

may also explain why three asthmatic patients who responded to ICS at 4 weeks did not 

show a sustained response at week 12 (Fig. 2.6).  However, it is very unlikely that the degree 

of adherence with ICS would have varied markedly and consistently enough between those 

with higher and lower FENO baseline values to explain these findings, especially as patients 

were blinded to their FENO results. 

Thirdly, this was an open label trial of ICS which did not include a placebo arm meaning at 

least part of the ICS treatment response was likely to be a placebo effect. However, when 

examining an individual’s response to ICS a placebo treatment cannot be included unless a 

crossover study design is used. This was deemed unethical because it would have meant 

delaying patients’ treatment as prescribed by their GPs. Further, several different objective 

measures of airway function were measured before and after treatment and subjects were 

blinded to the results, limiting the likelihood of bias.  

Finally, the selected criteria for ICS response included a reduction in FENO levels which has 

not been used by others.  Although it seems reasonable to assume that a decrease in FENO 

will translate into a clinical benefit this is, as yet, unproven. As with the other selected ICS 
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response criteria, a reduction in FENO alone was not considered significant unless 

accompanied by an improvement in another objective or subjective criterion. The nine 

subjects who had a response to ICS limited to a reduction in FENO with symptomatic 

improvement all presented with cough as their predominant symptom and none of them 

met the diagnostic criteria for asthma. Including a response measure relating to the level of 

eosinophilic airway inflammation was deemed important as suppression of eosinophilic 

inflammation is the main mechanism by which ICS have a beneficial treatment effect (543). 

A direct and therefore superior method of measuring eosinophilic airway inflammation is 

sputum induction to determine sputum eosinophil count. This was also attempted in 40/74 

of our subjects but only 4 of these produced an adequate sample for analysis, making this 

an unsuitable investigation for use in this patient cohort.   

 

2.5 Conclusion 

In conclusion, in this group of patients presenting to primary care with symptoms suggestive 

of asthma, FENO is not a useful test for asthma diagnosis but is accurate at predicting ICS 

treatment response and non-response. The symptom of cough, which was predictive of 

raised FENO levels, also appears to be sensitive at predicting ICS response and could help to 

identify patients more likely to respond to ICS. We propose that FENO measurement in 

patients with symptoms suggestive of airways disease (shortness of breath, chest tightness 

and cough) could be used to identify patients in whom ICS response is highly unlikely. This 

would avoid unnecessary treatment with inhaled steroids and encourage further 

investigation of the cause of the symptoms and more effective treatment. This study has 

provided pilot data for the design of a multicentre placebo-controlled clinical trial to assess 

the value and safety of this approach.
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Chapter 3: Chronic Productive Cough and 
the use of Macrolides in Airways Disease 

3.1 Background 

3.1.1 Summary of background (Chapter 1.6) 
A cohort of adult patients presenting with chronic productive cough which improves with 

antibiotic treatment but quickly relapses has been described (1). A number of conditions 

that result in the symptom of chronic productive cough have been described but this cohort 

cannot be accurately described using any of these diagnostic labels, although  the clinical 

course of the disease and response to antibiotics seems similar to that of the paediatric 

condition ‘protracted bacterial bronchitis’ (PBB). Many subjects in this cohort have been 

given a diagnostic label of asthma and are being treated with inhaled corticosteroids. (1).  

A marked, and often sustained, improvement in symptoms has been observed in these 

patients following a 3 month course of low dose azithromycin. Azithromycin is a macrolide 

antibiotic which has demonstrated efficacy in the treatment of respiratory conditions 

including diffuse panbronchiolitis (DPB) (2), chronic obstructive pulmonary disease (COPD) 

(3) and bronchiectasis (4). In addition to antibiotic effects, azithromycin has demonstrated 

immunomodulatory and anti-inflammatory effects (5) which may be more pronounced in 

subjects with underlying neutrophilic airway inflammation (6).  

3.1.2 Rationale for study 
Although this cohort of patients seems to be recognised by clinicians in the respiratory clinic 

these patients are not described in the scientific literature. Hence the purpose of this study 

is to try and describe the clinical and pathological features of this condition and assess the 

response of these patients to an open label treatment trial of azithromycin. 

3.1.3 Hypothesis and Aims 

3.1.3.1 Hypothesis 

There is a cohort of patients with chronic productive cough whose underlying pathology 

cannot be described by existing labels and who respond to treatment with azithromycin. 

3.1.3.2 Aims 

1) To describe the clinical, pathological and radiological features of this cohort of patients  

2) To determine the response to a 12 week course of low dose azithromycin therapy and 

assess if any of the baseline characteristics measured could predict response to 

azithromycin. 
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3.2 Methods 

3.2.1 Purpose and Design 

3.2.1.1 Purpose 

1) The primary objectives of the study were to describe the clinical and pathological features 

of a cohort of patients who present with chronic productive cough (with no evidence of 

bronchiectasis, smoking-related chronic bronchitis or immunodeficiency) and determine if 

treatment of these patients with 12 weeks of low dose azithromycin is both effective and 

safe. 

2) The secondary objectives of the study were to determine the effect of 12 weeks 

azithromycin treatment on selected clinical measures and biomarkers and to describe the 

features of responders and non-responders to azithromycin  

 

3.2.1.2 Study Design 

This was a single centre open label clinical trial with an in-depth description of baseline 

clinicopathological features. 

 

3.2.1.3 Ethical Approval 

This study was approved by the National Research Ethics Committee Yorkshire & The 

Humber – Leeds West (Ref 13/YH/0245) and Nottingham University Hospitals NHS Trust 

Research and Innovation department (Ref 13RM015).  

 

3.2.2 Study Population: 

3.2.2.1 Eligibility criteria 

Patients were recruited according to the following eligibility criteria: 

 

Inclusion criteria 

 Age 18 or above 

 Male or female 

 Non-smokers for 10 years and <20 pack year equivalents in total 

 Persistent productive cough for >3 months in duration 

 Use of effective contraception: 

o Acceptable contraceptive methods include: established use of oral, injected 

or implanted hormonal methods; placement of an intrauterine device (IUD) 

or intrauterine system (IUS); condom or occlusive cap (diaphragm or 

cervical/vault caps) with spermicide; true abstinence (when this is in line 

with the preferred and usual lifestyle of the participant); or vasectomised 

partner 

 

Exclusion criteria 

 History of obvious inhaled irritant exposure 

 Evidence of primary or secondary immunodeficiency 
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 Clinically important bronchiectasis on HRCT scan 

 Prolonged QT interval on baseline or 1 month electrocardiogram (ECG) or significant 

cardiac pathology prior to commencing azithromycin 

 Pregnancy or intent to become pregnant during course of study 

 Contra-indication to bronchoscopy (as per BTS Guidelines (747)) 

 Abnormal liver function tests (LFTs) (greater than 2x upper limit of normal) 

 Hypersensitivity to azithromycin or any macrolide/ketolide antibiotic 

 

3.2.2.2 Study setting and participant recruitment 

This study was conducted at the Nottingham Respiratory Research Unit (Nottingham City 

Hospital UK). Subjects with symptoms of chronic productive cough without bronchiectasis, 

smoking-related chronic bronchitis or immunodeficiency were prospectively identified from 

outpatient respiratory clinics according to the eligibility criteria. 

 

Interested subjects were provided with full written information from their respiratory 

consultant regarding the study and given the contact information for the study team 

(Appendix D). Upon contacting the study team by telephone they were screened to ensure 

they met the inclusion and exclusion criteria. 

 

3.2.3 Outcome measures 

3.2.3.1 Primary endpoints 

 A description of the baseline clinicopathological features of the cohort including 

FEV1, FENO, LCQ score, sputum differential cell count, 24 hour sputum volume, HRCT 

scan features and histological analysis of bronchial biopsy samples 

 The effect of 12 weeks of azithromycin treatment on LCQ score  

 

3.2.3.2 Secondary endpoints 

 The effect of 12 weeks of azithromycin on sputum colour and 24 h sputum collection 

volume 

 The effect of 12 weeks of azithromycin on sputum cell counts and FENO level 

 The effect of 12 weeks of azithromycin on FEV1  

 The effect of 12 weeks of azithromycin treatment on sputum microbiology 

 The effect of 12 weeks of azithromycin treatment on the levels of IL-8, IL-1β, IL-17A 

and TNFα in pre and post treatment sputum supernatant 

 Comparison of the baseline clinical features of responders and non-responders to 

azithromycin 

 

3.2.3.3 Sample size calculation 

A power calculation was performed using a common standard deviation of 1.2 in LCQ score 

from a previous successful interventional study in patients with chronic cough, using LCQ 

score as a primary outcome (748). This determined that 30 patients would need to complete 
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the trial in order to give a 90% power at a 5% two-sided significance level to detect a drop in 

our primary outcome of the LCQ of at least 1.3 points, which is the minimum clinically 

important difference in LCQ (749). 

 

3.2.4 Summary of study protocol 

3.2.4.1 Visit 1 

All patients meeting the entrance criteria for the study were invited to attend the first study 

visit where eligibility was rechecked and written informed consent obtained prior to any 

study-related interventions. FENO, exhaled carbon monoxide (ECO), spirometry, LCQ, sputum 

induction, electrocardiogram (ECG), liver function tests (LFTs) and pregnancy tests (if 

applicable) were carried out as outlined in Fig. 3.1 below.  

 

The subject was asked to score the colour of their sputum according to a sputum colour 

chart. If an adequate sputum sample was produced by induction sputum colour was also 

visually assessed by the investigator and scored according to the sputum colour chart. 

 

Subjects were given a universal sample container and instructed to collect all of the sputum 

produced by coughing in the 24 h period prior to their next study visit. Any subjects who 

opted out of having a bronchoscopy were instructed to begin the course of azithromycin 

following completion of 24 h sputum collection. 

 

3.2.4.2 Visit 2 

Subjects then attended a bronchoscopy visit as soon as possible after Visit 1, unless they 

had specifically opted out of this procedure. Bronchial biopsies and washes were taken. The 

24 h sputum volume was also measured. Following bronchoscopy subjects were instructed 

to begin the course of azithromycin. 

 

3.2.4.3 Visit 3 

Visit 3 was a safety visit after 6 weeks of azithromycin treatment in which any adverse 

effects of the azithromycin were recorded. An ECG and LFTs were performed and use of 

medication was confirmed. Subjects were again given a universal sample container and 

instructed to collect all of the sputum produced by coughing in the 24 h period prior to their 

next study visit. 

 

3.2.4.4. Visit 4 

Visit 4 was the post-treatment visit (following 12 weeks of treatment) and use of medication 

was confirmed. Exhaled nitric oxide, spirometry and reversibility, LCQ and sputum induction 

were carried out (Fig. 3.1) and the 24 h sputum volume was also measured. Subjects were 

asked to score the colour of their sputum according to the sputum colour chart. If an 

adequate sputum sample was produced by induction this was visually assessed by the 

investigator and scored according to the sputum colour chart. If an adequate sputum 

sample was not produced an objective sputum colour score was determined from the 24 h 

sputum volume sample.  
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3.2.4.5 Visit 5 

Visit 5 was the follow up visit 4 weeks after stopping treatment. The LCQ was performed 

and subjects were asked to score the colour of their sputum according to the sputum colour 

chart. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Investigations performed at each study visit.  

Sputum MC+S = sputum microscopy, culture and sensitivity, ECG = electrocardiogram, 

LFTs = liver function tests, FENO = Fractional exhaled nitric oxide level, ECO = Exhaled 

carbon monoxide, FEV1 = spirometry, Reverse = reversibility, LCQ = Leicester cough 

questionnaire, Sputum % = Sputum differential cell count, Sputum colour = Sputum 

colour chart assessment, 24 h sputum vol = 24 hour sputum collection volume 

Visit 1 (Baseline) 
Routine NHS investigations: 

Sputum MC+S, ECG, LFTs 

Research investigations: 
FENO, ECO, FEV1, Reverse, LCQ, Sputum % 

Sputum colour (objective and subjective) 
24 h sputum vol, Pregnancy test 

Visit 2 (Bronchoscopy) 
Optional 

Endobronchial Biopsies 

Bronchial Wash 

Visit 3 (Safety visit) 
ECG, LFTs 

Visit 4 (Post - treatment) 
FENO, FEV1 , Reverse, LCQ, Sputum % 

Sputum colour (objective and subjective) 
24 h sputum vol 

Visit 5 (Follow up) 
LCQ, Sputum colour (subjective) 
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3.2.5 Clinical Measurements 

3.2.5.1 Leicester Cough Questionnaire 

The LCQ is a validated questionnaire designed to assess the health related quality of life in 

patients with chronic cough (750). A copy is included in Appendix E. 

 

It consists of 19 questions which are divided into 3 different domains: physical, 

psychological and social. Subjects are asked to provide a rated response to each question, all 

of which are designed to assess the impact of cough on the subject’s life over the preceding 

2 weeks. The total score ranges from 3 to 21, with a higher score corresponding to a better 

health related quality of life. 

 

The LCQ has been validated for use in subjects with a number of different conditions leading 

to cough. It has been demonstrated to have a good level of internal consistency and 

reliability (751) and the minimal clinically important difference (MCID) is 1.3 (749).  

 

3.2.5.2 24 hour sputum volume 

The 24 h sputum collection volume is frequently used as an outcome measure in 

interventional studies in patients with chronic productive cough secondary to bronchiectasis 

(752, 753).  

 

Subjects were asked to collect all sputum expectorated over a 24 h period in a universal 

sample container before visit 2 (bronchoscopy). Subjects who did not have bronchoscopy 

were asked to collect all sputum expectorated in a 24 h period at visit 1 and to return this to 

study staff prior to starting azithromycin treatment.  

 

24 h sputum volume was measured by transfer of sputum from the universal sample 

container via a pipette to a measuring cylinder with 0.1 mL graduations. Any obvious 

salivary portion of the sample was discarded before final measurement.  

 

3.2.5.3 Sputum Colour Chart 

Sputum colour was assessed using a commercially available sputum colour chart 

(BronkoTest®, Heredilab Inc., Salt Lake City, UT, USA). This is a 5 point colour chart based on 

a 9 point colour chart demonstrated by Stockley et al. to correlate well with ongoing airway 

inflammation (610, 754). Colours 1 and 2 on the chart are regarded as non-purulent and 

colours 3–5 as purulent. More recently, Simpson et al. (755) found a BronkoTest® score of 

≥3 to be a good predictor of ongoing neutrophilic bronchitis. 

 

Subjects were asked to subjectively score their sputum colour based on the chart and this 

was also assessed objectively by study staff.  

 

3.2.5.4 Exhaled Nitric Oxide 

FENO concentration was measured using the Bedfont NOBreath offline electrochemical 

analyser (Bedfont Scientific Ltd, Harrietsham, UK).  
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All subjects first inhaled ambient air to near total lung capacity and then exhaled for 16 s at 

a constant flow rate through a mouthpiece into the device to provide two approved FENO 

measurements. The NOBreath device provides visual feedback to ensure an exhalation 

pressure of between 10-20 cmH2O, regulated by the device to ensure a resultant flow rate 

of 50 mL/s. 

 

3.2.5.5 Electrocardiogram (ECG) 

12 lead ECGs were obtained according to American Heart Association (AHA) Guidelines 

(756). Patients were positioned in a semi-recumbent position at approximately 45 degrees 

to the horizontal. ECG electrodes were positioned in accordance with AHA guidelines (756) 

and 2 ECGs were recorded for each subject with the best quality of the two used for analysis 

of the QT interval. The QT interval was calculated as per AHA guidelines (757). 

 

3.2.5.6 Liver Function Tests (LFTs) 

Serum samples for LFTs were obtained using the 21 gauge BD Vacutainer® Safety-LokTM 

blood collection set (BD, Plymouth, UK) into 5 mL serum tubes. Samples were processed in 

the Nottingham City Hospital biochemistry laboratory by automated cytometers. 

 

3.2.5.7 Exhaled Carbon Monoxide 

Exhaled carbon monoxide (ECO) was measured using an electrochemical CO monitor (CO 

Monitor, Clement Clarke Intl., Essex UK). An ECO value of <10 ppm was used to confirm 

subjects non-smoking status. 

 

3.2.5.8 Spirometry and Reversibility 

Performed as described in Section 2.2.5.1. 

 

3.2.5.9 Sputum Induction 

Performed as described in Section 2.2.5.3. 

 

3.2.6 Bronchoscopy 

3.2.6.1 Bronchoscopic Technique 

Bronchoscopies were performed in the Nottingham City Hospital Endoscopy Centre by the 

clinical fellow with appropriate supervision by a named consultant and assisted by at least 

two endoscopy nurses. A clinical scientist was also present to aid with the initial sample 

capture in the appropriate storage media (see below). All bronchoscopies were conducted 

in accordance with BTS guidelines (747) and local research protocols. Subjects were nil by 

mouth for 4 h prior to the procedure and patients with a diagnosis of asthma had 

spirometry assessed prior to the procedure and premedication with 400 µg of salbutamol 

inhaled via Volumatic® spacer if necessary.  

 

An intravenous cannula was inserted and all procedures performed under light sedation 

with midazolam (2.5 – 5 mg as necessary) and alfentanyl (250-500 µg as necessary). 
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Subjects’ oxygen saturations were continuously monitored throughout the procedure by 

pulse oximeter and supplemental oxygen was delivered nasally. Local anaesthesia of the 

naso- and oro-pharynx and vocal cords to achieve suppression of gag and cough reflexes 

was achieved using 5-7.5 mL Instillagel® (CliniMed, Bucks, UK) nasally, 4-5 sprays (40-50 mg) 

of 10% lidocaine orally and 10 mL 4% followed by 10 mL 2% lidocaine to the vocal cords. 

Further 10 mL volumes of 2% lidocaine were also administered in the right and left main 

bronchi with further doses given as necessary. 

 

Following a brief systematic inspection of the subjects’ bronchial anatomy, bronchial washes 

were performed in the right upper lobe to provide a minimal wash volume of 20 mL. This 

was divided into four 5 mL volumes, with one volume being sent to the Nottingham City 

Hospital Microbiology laboratory for microscopy, culture and sensitivity and three 5 mL 

volumes being sent to the Nottingham Respiratory Research Unit (NRRU) laboratory for 

processing as described below. Between 4-8 bronchial biopsies were then taken from the 

right bronchus intermedius using 1.8 mm width alligator forceps (Radial Jaw®4, Boston 

Scientific, Costa Rica). At least two of these were placed in universal specimen pots 

containing 5 mL 4% formaldehyde in phosphate buffered saline (PBS) and transported at 

room temperature to the Nottingham City Hospital Histopathology department for 

specimen processing, paraffin embedding and staining. The remaining samples were 

transported to the NRRU laboratory for processing and cell culture. Finally, two bronchial 

brushings were taken at the sub-carina/right bronchus intermedius into a 3 mL Falcon tube 

containing bronchial epithelial cell growth medium with 1% penicillin-streptomycin-

fungizone (BEGM + 1% PSF) and also transported to the NRRU laboratory for cell culture. 

After the procedure subjects were monitored for a 30 min period and asthmatic subjects 

underwent spirometry again, if clinically indicated. 

 

3.2.6.2 Processing of Bronchial Wash samples 

The full protocol describing this process is included in the Appendix F. Briefly: 

 1 x 5 mL sample was sent for differential cell count.  This sample was centrifuged at 
600 g for 10 min at 40C. The resultant pellet was re-suspended at approximately 5 x 
105 cells/mL whilst the supernatant was divided into aliquots and frozen at -800C for 
future work including cytokine profiling. 75 µl of the re-suspended pellet was added 
to a cytospin funnel attached to a glass slide which was centrifuged and stained (See 
Section 2.3.5.4). A differential cell count was performed as in Section 2.3.5.4. 

 1 x 5 mL sample was centrifuged at 200 g for 5 min at 40C. The supernatant was 
transferred to a fresh tube and centrifuged at top speed (4147 g) for 15 min at 40C. 
The pellets from the first and second spins were labelled with the anonymised study 
subject number and stored at -800C for future analysis of bacterial DNA. 
 

3.2.6.3 Processing of Bronchial Biopsy samples 

Biopsies were removed from sample containers with blunt forceps and embedded using a 

standard paraffin wax embedding centre. The resultant embedded sample was cut with a 

microtome into 4-5 μm thick slices ensuring 4-8 biopsy slices per slide. All sections were 
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mounted on poly-L-lysine coated slides (Fisher Scientific UK Ltd.) and stained with 

haematoxylin and eosin (+/- alcian blue).  

 

3.2.6.4 Radiological review of HRCT scans 

The HRCT scans of study subjects were reviewed by a consultant radiologist blinded to 

subjects’ response to azithromycin. After an initial review to look for any commonly 

occurring radiological features a checklist detailing the presence and absence of certain 

features and allowing a semi-quantitative assessment of certain important features was 

developed (See Appendix G). Scans were then reviewed in detail by the same consultant 

radiologist and the checklist completed for each subject’s scan.  

 

3.2.6.5 Cytokine profiling of baseline sputum supernatant/bronchial wash samples 

The induced sputum and bronchial wash supernatant levels of IL-8, IL-1β, IL-17A and TNFα in 

all available samples from the study were quantified using a multiplex suspension 

immunoassay system (Bio-Plex, Bio-Rad, Hemel Hempstead, UK). Briefly, samples were 

added to microplate wells containing beads conjugated with capture antibodies specific to 

the cytokines listed above. Following binding of the capture antibodies to the target protein 

the plates were washed and then incubated with biotinylated detector antibodies. The 

plates were then washed a second time and a reporter streptavidin-phycoerythrin (SA-PE) 

conjugate added. Labelled beads were then passed through an array reader which 

quantified the fluorescence of bound SA-PE. Fluorescence values were compared to a 

standard curve, allowing quantification of the target cytokine levels.  

 

In order to optimise the assay a test run was performed using aliquots of selected samples 

to establish an expected range of values. The assay was then performed again in triplicate 

on all available samples with appropriate dilution of samples where necessary based on the 

results of the test run.  

 

 

3.2.7 Analysis 

3.2.7.1 Statistical software 

Microsoft Excel was used for data cleaning. Data were then imported into Stata v11.0 

(Statacorp, Texas, USA) and GraphPad Prism Version 6 (GraphPad Software, California, USA) 

for statistical analysis. The demographics and baseline clinical measures of the cohort were 

determined. 

 

3.2.7.2 Primary endpoints 

a) Histological review of bronchial biopsy samples 

Following completion of the study bronchial biopsy slides (Section 3.2.6.3) were reviewed by 

a consultant histopathologist under light microscopy with settings for histological colour 

images. This individual was blinded to subjects’ response to azithromycin and was 

specifically asked to determine; (1) if there were any histological features common to this 

cohort of patients and (2) if there were significant differences in the biopsies of responders 
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and non-responders to azithromycin. Following a primary review for any notable features, 

slides were again reviewed and the presence or absence of these features was recorded. 

 

b) Radiological review of HRCT scans 

The sensitivity, specificity, positive and negative predictive values of HRCT scan features to 

predict treatment response to azithromycin were calculated. 

 

c) Effect of azithromycin on LCQ score 

Median LCQ scores pre- and post- 12 weeks of azithromycin treatment were calculated and 

pre- and post-LCQ scores compared using the Wilcoxon signed-rank test as data were not 

normally distributed and could not be transformed to normality.  

 

3.2.7.3 Secondary endpoints 

a) Effect of azithromycin on other clinical measures and sputum supernatant cytokine levels 

The secondary endpoints of sputum volume and FENO were non-normally distributed and 

could not be transformed to normality. Hence median values were calculated for both 

variables pre- and post- azithromycin and the Wilcoxon signed-rank test was used to 

compare pre- and post-values. FEV1 was normally distributed and mean FEV1 values pre- 

and post- treatment were calculated with the paired T-test used to compare pre- and post-

treatment values. Frequency tables for objective and subjective sputum colour score pre- 

and post-treatment were constructed and the Wilcoxon signed-rank test used to compare 

pre- and post-treatment scores.  

 

The median concentration of the cytokines IL-8, IL-1β, IL-17A and TNF-α in pre and post 

treatment sputum samples and bronchial wash samples were compared using the Wilcoxon 

signed-rank test if they could not be transformed to normality. Pre and post treatment IL-1β 

levels were transformed to normality using a logarithmic transformation and pre and post 

geometric means were calculated and compared using a paired T-test. 

 

b) Sub-group assessment: Responders vs non-responders and asthma vs non-asthma 

Subjects were divided into two groups of “responders” or “non-responders”. Responders 

were defined as subjects whose LCQ score had increased by greater than the MCID of the 

LCQ of 1.3 points (749). The analyses for the primary and secondary endpoints stated above 

were repeated in these two groups in order to try and determine any differences between 

these groups. Subjects’ sputum inflammatory type was classified accordingly: 

 eosinophilic subjects had a sputum differential eosinophil count (from V1) or 

bronchial wash differential cell count of ≥3% 

 neutrophilic subjects had a sputum differential neutrophil count (from V1) or 

bronchial wash differential cell count of ≥61% 

 mixed granulocytic subjects had a sputum differential eosinophil count (from V1) or 

bronchial wash differential cell count of ≥3% and a sputum differential neutrophil 

count (from pre- or post-treatment visits) or bronchial wash differential cell count of 

≥61% 
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 paucigranulocytic subjects had a sputum differential eosinophil count (from V1) or 

bronchial wash differential cell count of <3% and a sputum differential neutrophil 

count (from pre- or post-treatment visits) or bronchial wash differential cell count of 

<61% 

 missing sample subjects did not have a differential cell count on any sputum or 

bronchial wash samples due to either poor toleration of sputum induction or failure 

to produce an adequate or viable sample and either declining or being unsuitable for 

the bronchoscopy procedure  

 

Subgroup analyses were also performed on subjects with and without asthma. 
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3.3 Results 
 

3.3.1 Recruitment 
Between January 2014 and January 2016 274 subjects presenting to one of eight different 

outpatient respiratory clinics were identified in screening with symptoms of chronic 

productive cough of unknown cause. Following further investigations, including standard 

workup for this symptom 120 subjects were identified as being in the cohort of interest for 

the study. Of these 120 subjects, 75 were unable to participate in the study for the reasons 

listed in Table 3.1 leaving 45 patients who were eligible and invited to participate in the 

study. Fifteen of these declined to participate, and 30 agreed and were recruited to the 

study. 

 

Reason Number  

Already taking or had previously taken long 

term azithromycin 

52 

Already taking other long term antibiotic 

treatment 

5 

Documented macrolide allergy 2 

Symptoms eventually improved/seasonal 7 

Deranged liver function tests 2 

Did not attend planned appointments 

following investigation 

6 

Declined CT scan 1 

Total 75 

 

Table 3.1: Reasons for non-eligibility for study in subjects identified 

with chronic productive cough of unknown cause 
 

3.3.2 Losses and exclusions 
One subject was withdrawn from the study following an adverse event (periorbital oedema) 

after taking the first dose of azithromycin. All of the other 29 participants completed the full 

12 weeks of azithromycin treatment and contributed data for the primary analysis. Thirteen 

subjects did not have a bronchoscopy at visit 2 as 2 were unsuitable for the procedure, 5 

had already had bronchoscopy procedures as part of their routine work-up and 6 declined 

bronchoscopy. Three participants did not attend the four week follow-up visit (V5). 
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Assessed for eligibility (n=120) 

Included in study (n=30) 

Enrolment 

Follow-Up 

Excluded (n=90) 

   Not meeting inclusion criteria (n=75) 

   Declined to participate (n=15) 

   Other reasons (n=0) 

Visit 2 (Bronchoscopy) 

 17 had procedure  

 2 unsuitable for procedure 

 5 already had procedure as part of standard 

clinical care 

 6 declined procedure  
 

Remaining in study (n=30) 

 

 

Visit 1                                                              

Remaining in study (n=30) 

Visit 3: Safety visit                                                                           

Lost to follow up (n=1) 

 1 withdrawn due to adverse event  

Remaining in study (n=29) 

 

-  

 Visit 4: Post treatment visit                                                                             

Remaining in study (n=29) 

 

Visit 5: Follow up visit   

Lost to follow up (n=3) 

 3 did not attend                                              

Remaining in study (n=26) 

 

Figure 3.2: Consort diagram demonstrating losses and 

exclusions from study 

AZITHROMYCIN STARTED 

AZITHROMYCIN STOPPED 



183 
 

3.3.3 Missing data  
As AZCC03 was withdrawn from the study following the first dose of azithromycin, only 

baseline (V1) data and data from the bronchoscopy visit (V2) were collected from this 

subject. 

  

Thirteen subjects were not suitable for or declined bronchoscopy meaning histological 

review of bronchial biopsy specimens and analysis of bronchial wash samples were not 

undertaken for these subjects. 

 

One of the 30 subjects had an HRCT scan performed in another hospital and although the 

report was available to check the eligibility of this subject for the study the images were not 

accessible for subsequent radiological review on completion of the study.  

 

Three subjects did not attend the final post-treatment visit (V5) and therefore V5 LCQ scores 

were not available for these subjects. 

 

In terms of sputum samples for differential cell count; 7 subjects produced pre-treatment 

samples that were uncountable and 1 subject was unable to tolerate sputum induction. Post 

treatment samples were missing for 13 subjects; 8 of whom did not produce adequate 

samples post treatment; 3 produced samples that were uncountable; 1 could not tolerate 

sputum induction and 1 sputum induction had to be stopped for safety reasons. Three 

values for V4 subjective sputum colour were missing as these subjects were no longer 

producing sputum. Eight values for V4 objective sputum colour were missing as subjects did 

not produce sputum samples. Eight values for V5 subjective sputum colour were missing as 

these subjects were no longer producing sputum.  

 

3.3.4 Primary outcomes 

3.3.4.1 Baseline features of cohort 

The baseline demographics and clinical features of the 30 participants in the study are 

shown in Table 3.2. The age distribution of the cohort is shown in Table 3.3. Overall there 

was a slight female preponderance and a large majority of the subjects were Caucasian. The 

age of the cohort ranged considerably from 25-77 years with a mean age of 57.3 years. Most 

of the cohort were overweight or obese with a median BMI of 29.9. Twelve subjects (40%) 

were ex-smokers (all of whom had not smoked for the preceding 10 years as stated in the 

inclusion criteria) and the mean pack year history was 6.8 pack years (SD 3.7 pack years, 

range 0.15-15 pack years). Seventeen of the 30 subjects had a diagnosis of asthma of whom 

all were taking ICS. 

 

Histopathological examination of bronchial biopsies obtained from 17 of the 30 subjects 

revealed changes of chronic airway inflammation in 15 out of 17 of the subjects (Figs 3.3-

3.6; Table 3.4). Inflammatory infiltrates were lymphocytic or plasmocytic in nature with no 

eosinophils seen and the severity of inflammation ranged from mild to severe. Basement 

membrane thickening was noted in 9/17 subjects but this did not correlate with asthma 
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status. Both subjects with no airway inflammation did not respond to azithromycin and the 

other 4 non-responders had changes consistent with mild airway inflammation only. In 

contrast the severity of airway inflammation in responders (n=10) varied from mild (n=5) to 

moderate (n=3) to severe (n=2), suggesting that the greater the burden of inflammatory 

changes, the more likely the response to azithromycin. The presence of moderate or severe 

airway inflammation had a reasonable sensitivity (0.7) and very high specificity (1.0) to 

predict response to azithromycin (Table 3.5). 

 

The three most frequently identified abnormalities in the HRCT scans of 29 of the study 

subjects were; 1) airway dilatation graded 0=none (n=8), 1=mild dilatation (n=16) and 

2=minor/borderline radiological bronchiectasis (n=5), 2) bronchial wall thickening graded 

0=none (n=16), 1=some (n=11) and 2=prominent (n=2) and 3) atelectasis graded 0=none 

(n=9), 1=< 3 areas (n=11), 2=>3 areas (n=8) and 3=large bands (n=1). Airway dilatation 

(grade 1 or 2) had a good sensitivity (0.86) to predict azithromycin treatment response, but 

only a moderate specificity (0.56) whilst bronchial wall thickening (grade 1 or 2) had a low 

sensitivity and specificity (Table 3.6).  Atelectasis had a reasonable sensitivity (0.62) for 

treatment response but no specificity. The other radiological features assessed (mosaic 

perfusion, lymphadenopathy, pleural thickening, patulous oesophagus, collapsible airways, 

endobronchial mucus, ground glass changes and tree in bud changes) were each present in 

only a few subjects and therefore sensitivity analysis was not performed (See Appendix H 

for data). 

 

3.3.4.2 Effect of 12 weeks azithromycin treatment on LCQ score 

Treatment with 12 weeks of azithromycin resulted in a significant overall improvement in 

the primary outcome measure of LCQ score (pre-treatment median 11.5 vs post-treatment 

median 17.8 p<0.00001) (Table 3.7). Twenty-two out of 29 subjects (76%) demonstrated a 

significant increase in LCQ score above the MCID of 1.3 points. 

 

This improvement was largely sustained at 4 weeks post-treatment, with a follow-up 

median LCQ score of 15.9 (p=0.0006) (Table 3.7). Seventeen out of 26 (65%) subjects still 

reported LCQ scores greater than the MCID above baseline. However, 4 subjects (15%) did 

report worsening of their symptoms following the end of the azithromycin treatment course 

with visit 5 LCQ scores that were within the MCID from baseline or lower than the baseline 

LCQ score. 
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 Frequency Percentage  

Total number included for analysis 30   

Mean age (range) 
57.3  

(25-77) 
  

Sex: male 13 43.3  

Ethnic group: 

Black Or Black British 

White Or White British 

 

1 

29 

 

3.3 

96.7 

 

Smoking history: 

Ex-smokers 

Non smokers 

 

12 

18 

 

40 

60 

 

Diagnosis of asthma 17 56.7  

On inhaled steroid treatment 17 56.7  

History/symptoms of GO reflux 6 20  

History/symptoms of PNDS 6 20  

 Mean 
Standard 

deviation 
Range 

ICS dose (BDP equivalent µg)* 800 1000 0-4000 

FEV1 % predicted 96.4 22.0 49-131 

FEV1/FVC ratio % 76 8.5 60-90 

 Median 
Interquartile 

range 
Range 

Baseline (V1) sputum % neutrophils 65.6 41.3 4.5-99.25 

Baseline (V1) median sputum % 

eosinophils 
0.68 1.5 0-58 

LCQ score 11.5 3.0 7.8-18.2 

FENO (ppb) 19 20.5 0.5-52.5 

Sputum volume (ml) 8.1 5.5 3-31.1 
*Figures shown are median and interquartile range 

Table 3.2: Demographics of all study subjects 
 

Age group Frequency Percentage 

20-30 2 6.7 

30-40 3 10 

40-50 4 13.3 

50-60 7 23.3 

60-70 9 30 

70-80 5 16.7 

Total 30 100 

Table 3.3: Age distribution of study population  
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Figure 3.3: Representative image of bronchial biopsy from study 

patient AZCC06 (non-responder) showing no inflammation 

(Hematoxylin and eosin (H&E) stain, original magnification x200)  
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Figure 3.4: Representative image of bronchial biopsy from study 

patient AZCC21 (non-responder) showing mild inflammation with a 

lymphocytic infiltrate (H&E stain, original magnification x200)  
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Figure 3.5: Representative image of bronchial biopsy from study 

patient AZCC10 (responder) showing moderate inflammation with a 

lymphocytic infiltrate (H&E stain, original magnification x200)  
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Figure 3.6: Representative image of bronchial biopsy from study 

patient AZCC03 showing severe inflammation with a lymphocytic 

infiltrate with prominent neutrophils  and slight thickening of the 

basement membrane (H&E stain, original magnification x200)  
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Table 3.4: Histological features of bronchial biopsy samples  
 

Table 3.5: Predictive values of moderate to severe airway 

inflammation on bronchial biopsy for azithromycin treatment 

response 

 

Table 3.6: Predictive value of HRCT abnormalities for azithromycin 

treatment response 
 

 

Study 

No Inflammation 

Inflammatory 

infiltrate 

Basement 

membrane 

thickening 

Other 

features Asthma Response 

AZCC01 Y Mild chronic  Lymphocytic + N Y Y 

AZCC03 Y Severe chronic 

Plasmocytic/ 

lymphocytic  + N N 

dropped 

out 

AZCC04 Y Severe chronic 

Plasmocytic 

/lymphocytic  Normal 

Squamous 

metaplasia N Y 

AZCC06 N NA + N Y N 

AZCC07 Y Mild chronic  Lymphocytic Normal 

Slightly 

oedematous Y Y 

AZCC10 Y Mod chronic Lymphocytic ++ N Y Y 

AZCC12 Y Mild chronic  Lymphocytic Normal N Y N 

AZCC14 Y Very Mild 

N ?artefact of 

biopsy Normal N Y Y 

AZCC15 Y Mild chronic  Lymphocytic Normal N Y Y 

AZCC16 Y Severe chronic Plasmocytic ++ N N Y 

AZCC18 Y Mild chronic  Lymphocytic + N Y N 

AZCC21 Y Mild chronic  Lymphocytic Normal N N N 

AZCC22 Y Mild chronic  Lymphocytic + N N N 

AZCC23 Y Mod chronic 

Plasmocytic/ 

lymphocytic  + N Y Y 

AZCC24 N NA + N Y N 

AZCC25 Y Mild chronic  N Normal N N Y 

AZCC26 Y Mod chronic Lymphocytic Normal N N Y 

Feature Sensitivity Specificity PPV NPV 

Moderate to severe 

airway inflammation 

0.7 1.0 1.0 0.67 

Feature Sensitivity Specificity PPV NPV 

Airway 

dilatation 

0.86 0.57 0.86 0.57 

Bronchial wall 

thickening 

0.33 0.14 0.54 0.07 
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Figures shown are Median (IQR) except FEV1† which is Mean (SD) 

 

Table 3.7: Changes in primary and secondary outcome measures for 

whole cohort (n=29) with azithromycin treatment 
 

 

 

 V1  

(n=) 

V4  

(n=) 

V1-V4 

difference (p=) 

V5  

(n=) 

V1-V5 

difference (p=) 

V4-V5 

difference 

(p=) 

Subjective sputum colour: 

1  

(non-purulent) 

4 4 0.44 5 0.76 0.33 

2 7 8 3 

3 13 11 9 

4 3 2 3 

5  

(purulent) 

3 4 1 

Objective sputum colour: 

1  

(non-purulent) 

6 9 0.003*  

 

  

2 6 7  

3 9 3  

4 5 2  

5  

(purulent) 

3 0  

Table 3.8: Changes in subjective and objective sputum colour for 

whole cohort (n=29) with azithromycin treatment 

 V1 V4 V1-V4 

difference 

Significance 

(p=) 

V5 V1-V5 

difference 

Significance 

(p=) 

LCQ 

score  

11.5 

(3) 

17.8 

(5.9) 

6.3 <0.00001* 15.9 

(8.3) 

4.4 0.0006* 

24 hour 

sputum 

volume 

(ml) 

7.9 

(5.5) 

2.1 

(7.2) 

-5.8 0.0001*    

FENO 

level 

(ppb) 

19 

(19.5) 

12.5 

(12) 

-6.5 0.14    

FEV1 (l) † 2.77 

(0.99) 

2.75 

(1.0) 

-0.02 0.78    



192 
 

3.3.5 Secondary Outcomes:  

3.3.5.1 Effect of treatment on other outcome measures 

Treatment with 12 weeks of azithromycin also resulted in significant improvements in the 

secondary outcome measures of 24 h sputum volume (pre-treatment median 7.9 mL vs 

post-treatment median 2.1 mL, p=0.0003) (Table 3.7) and objective sputum colour (p=0.003) 

post-treatment (Table 3.8).  

 

There were no statistically significant differences in FEV1, FENO or subjective sputum colour 

score (Tables 3.7 & 3.8). Ten subjects produced paired pre and post treatment sputum 

samples. There was a significant decrease in the sputum differential neutrophil count (pre-

treatment median 86.1% vs post-treatment median 69.4%, p=0.049) but no significant 

change in the sputum differential eosinophil count (Table 3.9). 

 

Adequate sputum samples for cytokine analysis were obtained from 28 subjects at visit 1 

and 15 of these subjects also produced adequate samples for analysis at visit 4. In these 15 

subjects there was no significant difference in the sputum concentration of IL-17, TNF-α or 

IL-8 after azithromycin treatment, although sputum IL-1β concentration decreased 

significantly (p=0.02) following azithromycin treatment (Table 3.10).  

 

Table 3.9: Changes in sputum differential neutrophil and eosinophil 

counts in subjects with pre and post treatment sputum samples 

(n=10) 
 

 

Cytokine Median 

concentration pre – 

treatment pg/ml (IQR) 

Median 

concentration post 

treatment pg/ml (IQR) 

Difference 

in median 

p value 

IL-17 15.2 (6.4) 11.8 (5.7) -3.4 0.82 

TNF-α 52.2 (38.7) 38.3 (18) -13.9 0.33 

IL-8 14146.1 (3904.3) 14324 (5326.3) 177.9 0.46 

IL-1β* 943.8 372.4 -571.4 0.02 

Table 3.10:   Sputum concentrations of measured cytokines pre and 

post azithromycin treatment (v1 n=28, v4 n=15) *Data presented for 

IL-1β are geometric means as variable logarithmically transformed 

to normality 

 V1 V4 V1-V4 difference Significance 

(p=) 

% Sputum differential 

neutrophil count (IQR)  

86.1 

(33.5) 

69.4 

(18.6) 

-16.7 0.049 

% Sputum differential 

eosinophil count (IQR)   

0.75  

(1.5) 

0.5 

(7) 

-0.25 0.64 
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3.3.5.2 Responders vs non-responders 

Table 3.11 shows the demographic information and clinical features of the subjects who 

responded to azithromycin and those who did not. The demographics of the group who 

responded to azithromycin (n=22) and those who did not respond (n=7) were compared. 

There were no significant differences in the composition of these groups in terms of age, 

gender, ethnicity, smoking status or diagnoses of asthma, PNDS or GORD. The majority of 

the responder group had underlying neutrophilic inflammation (63.6%) in sputum or BAL 

whereas most of the non-response group had underlying eosinophilic inflammation (71.4%). 

The responder group also had significantly higher FEV1 values and FEV1/FVC ratios than the 

non-responder group. 

 

When considered separately the difference between the pre and post treatment median 

LCQ score in the response group was 7 (p<0.0001) (Table 3.12). Significant improvements 

were also seen in median 24 h sputum volume (pre-treatment 6.9 mL vs post-treatment 2.0 

mL p<0.0001), subjective sputum colour between V1 and V5 (p=0.01) and objective sputum 

colour (p=0.001) (Tables 3.12 & 3.13). There was also a significant decrease in median FENO 

level (pre-treatment 18 ppb vs post-treatment 12 ppb p=0.009) (Table 3.12). There were no 

significant changes in any of these measures for the non-response group, except for the 

subjective sputum colour becoming more purulent between V1 and V5 (p=0.02) (Tables 3.14 

& 3.15). 

 

3.3.5.3 Sub-group analysis based on asthma diagnosis  

The demographics of the groups categorised as having a diagnosis of asthma or not having 

asthma were also compared (Table 3.16). There were no statistically significant differences 

in the composition of these groups and no significant differences in their average 

spirometric values.  

 

Seventeen subjects (57%) had a diagnosis of asthma. Twelve of these (71%) showed 

improvements in LCQ score above the MCID following 12 weeks of azithromycin treatment 

and the median LCQ score improved from 12 to 16.5 following treatment (p=0.008) (Table 

3.17). The median 24 h sputum volume also significantly decreased from 9.5 mL to 2.1 mL 

(p=0.005) and objective sputum colour improved significantly (p=0.02) (Tables 3.17 & 3.18). 

No significant changes were noted in FEV1, FENO or subjective sputum colour (Tables 3.17 & 

3.18). 

 

Of the 12 subjects without an asthma diagnosis, 10 (83%) had a significant improvement in 

LCQ score and the median LCQ score improved from 11.4 to 18.8 (p=0.002) (Table 3.19). The 

median 24 h sputum volume significantly decreased from 6.8 mL to 0 mL (p=0.02) and there 

were significant changes in subjective sputum colour between visits 1 and 5 (p=0.05), 

although not between visits 1 and 4 (Tables 3.19 & 3.20). Objective sputum colour also 

improved significantly between visits 1 and 4 (p=0.05) (Table 3.20). There were no 

significant changes in FEV1 or FENO (Table 3.19). 
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*Figures shown are median and IQR 
 

Table 3.11: Demographics of azithromycin responders vs non-

responders 
 

 

 

 

 

 

Responders Non 

responders 

 

 Frequency 

(%) 

(except a) 

Frequency (%) 

(except a) 

Significance 

(p=) 

Total number included for 

analysis 

22 7  

Mean age (range) 55.5 (25-77) 63.9 (55-70) 0.20 

Sex: male 7 (31.8) 5 (71.4) 0.09 

Ethnic group: 

Black Or Black British 

White Or White British 

 

1 (4.6) 

21 (95.4) 

 

0 (0) 

7 (100) 

 

 

1.0 

Smoking history:  

Ex-smokers 

Non smokers 

 

7 (31.8) 

15 (68.2) 

 

4 (57.1) 

3 (42.9) 

 

 

0.38 

Diagnosis of asthma  11 (50) 6 (85.7) 0.19 

On inhaled steroid treatment 11 (50) 6 (85.7) 0.19 

History/symptoms of GO 

reflux  

4 (18.2) 1 (14.3) 1.0 

History/symptoms of PNDS  4 (18.2) 2 (28.6) 0.61 

Sputum/bronch 

inflammatory type 

   

Neutrophilic (>61%) 14 (63.6) 1 (14.3)  

 

 

<0.001 

Eosinophilic (>3%) 0 (0) 5 (71.4) 

Paucigranulocytic 5 (22.7) 1 (14.3) 

Missing sample 3 (13.6) 0 (0) 

 Mean (SD) Mean (SD) Range 

ICS dose (BDP equivalent 

µg)* 

800 (800) 900 (800) 0.12 

FEV1 % predicted  103.6 (18.8) 73.6 (17.3) 0.0009 

FEV1/FVC ratio %  78.4 (7) 67.6 (8) 0.0019 

Baseline (V1) sputum % 

neutrophils 

73.2 (21.9) 46.8 (34.2) 0.06 

Baseline (V1) sputum % 

eosinophils 

0.5 (0.75) 13.7 (24.8) 0.03 
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Figures shown are Median (IQR) except FEV1† which is Mean (SD) 

 

Table 3.12: Changes in primary and secondary outcome measures for 

azithromycin responders (n=22) with azithromycin treatment  
 

 

 V1  

(n=) 

V4  

(n=) 

V1-V4 

difference (p=) 

V5  

(n=) 

V1-V5 

difference (p=) 

V4-V5 

difference (p=) 

Subjective sputum colour: 

1  

(non-purulent) 

1 4 0.09 5 0.01* 0.59 

2 6 6 2 

3 10 8 7 

4 3 1 0 

5  

(purulent) 

2 0 0 

Objective sputum colour: 

1  

(non-purulent) 

3 6 0.001*  

 

  

2 6 6  

3 5 2  

4 5 0  

5  

(purulent) 

3 0  

Table 3.13: Changes in subjective and objective sputum colour for 

azithromycin responders (n=22) with azithromycin treatment  
 

 
 

 V1 V4 V1-V4 

difference 

Significance 

(p=) 

V5 V1-V5 

difference 

Significance 

(p=) 

LCQ 

score  

11.5 

(2.9) 

18.5 

(3.2) 

7.0 <0.0001* 19.2 

(6.3) 

7.7 0.0003* 

24 hour 

sputum 

volume 

(ml) 

6.9 

(4.9) 

2.0 

(3.5) 

-4.9 <0.0001*    

FENO 

level 

(ppb) 

18 

(17) 

12 (9) -6 0.009*    

FEV1 (l) † 2.91 

(0.98) 

2.96 

(1.0) 

0.05 0.23    
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Figures shown are Median (IQR) except FEV1† which is Mean (SD) 
 

Table 3.14: Changes in primary and secondary outcome measures for 

azithromycin non-responders (n=7) with azithromycin treatment 
 

 

 

 V1  

(n=) 

V4  

(n=) 

V1-V4 

difference (p=) 

V5  

(n=) 

V1-V5 

difference (p=) 

V4-V5 

difference (p=) 

Subjective sputum colour: 

1  

(non-purulent) 

3 1 0.16 0 0.02 0.03 

2 1 2 1 

3 3 3 2 

4 0 1 3 

5  

(purulent) 

0 0 1 

Objective sputum colour: 

1  

(non-purulent) 

3 3 0.56  

 

  

2 0 1  

3 4 1  

4 0 2  

5  

(purulent) 

0 0  

Table 3.15: Changes in subjective and objective sputum colour for 

azithromycin non-responders (n=7) with azithromycin treatment 
 

 V1 V4 V1-V4 

difference 

Significance 

(p=) 

V5 V1-V5 

difference 

Significance 

(p=) 

LCQ 

score  

12.0 

(4.0) 

10.8 

(4.2) 

-1.2 0.5 11.1 

(2.7) 

-0.9 0.45 

24 hour 

sputum 

volume 

(ml) 

11.5 

(5.9) 

13.5 

(8.3) 

2 0.61    

FENO 

level 

(ppb) 

19 

(37.5) 

35.5 

(70) 

16.5 0.13    

FEV1 (l) † 2.31 

(0.94) 

2.09 

(0.93) 

0.23 0.23    
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Asthma Non asthma  

 Frequency 

(%) 

(except a) 

Frequency (%) 

(except a) 

Significance 

(p=) 

Total number included for 

analysis 

17 13  

Mean age (range) 55 (25-75) 59 (30-77) 0.45 

Sex: male 6 (35.3) 7 (53.9) 0.43 

Ethnic group: 

Black Or Black British 

White Or White British 

 

0 (0) 

17 (100) 

 

1 (7.7) 

12 (92.3) 

 

 

0.41 

Smoking history:  

Ex-smokers 

Non smokers 

 

5 (29.4) 

12 (70.6) 

 

7 (53.9) 

6 (46.1) 

 

 

0.26 

On inhaled steroid treatment 17 (100) 0 (0)  

History/symptoms of GO 

reflux  

2 (11.8) 4 (30.8) 0.62 

History/symptoms of PNDS  3 (17.7) 3 (23.1) 0.67 

Sputum/bronch 

inflammatory type 

   

Neutrophilic (>61%) 9 6  

 

 

0.11 

Eosinophilic (>3%) 5 0 

Paucigranulocytic 2 4 

Missing sample 1 2 

 Median (IQR) Median (IQR)  

ICS dose (BDP equivalent 

µg) 

800 (200) 0 (0)  

FEV1 % predicted  89 (36) 100.5 (24) 0.71 

FEV1/FVC ratio %*  76 (10.1) 76.1 (6.2) 0.86 
*Figures shown are mean and standard deviation 

 

Table 3.16: Demographics of sub-group with asthma diagnosis vs 

those without asthma diagnosis 
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Figures shown are Median (IQR) except FEV1† which is Mean (SD) 

 

Table 3.17: Changes in primary and secondary outcome measures for 

subjects with a diagnosis of asthma (n=17) with azithromycin 

treatment 
 

 

 V1  

(n=) 

V4  

(n=) 

V1-V4 

difference (p=) 

V5  

(n=) 

V1-V5 

difference (p=) 

V4-V5 

difference (p=) 

Subjective sputum colour: 

1  

(non-purulent) 

2 3 0.69 3 0.23 0.12 

2 5 5 0 

3 8 6 6 

4 2 2 3 

5  

(purulent) 

0 0 1 

Objective sputum colour: 

1  

(non-purulent) 

4 8 0.02  

 

  

2 2 3  

3 7 2  

4 2 2  

5  

(purulent) 

2 0  

Table 3.18: Changes in subjective and objective sputum colour for 

subjects with a diagnosis of asthma (n=17) with azithromycin 

treatment 

 V1 V4 V1-V4 

difference 

Significance 

(p=) 

V5 V1-V5 

difference 

Significance 

(p=) 

LCQ 

score  

12 

(3.8) 

16.5 

(4.8) 

4.5 0.008 13.6 

(5.7) 

1.6 0.09 

24 hour 

sputum 

volume 

(ml) 

9.5 

(7.0) 

3.5 

(8.3) 

6.0 0.002    

FENO 

level 

(ppb) 

19 

(17) 

12 

(11.5) 

7 0.36    

FEV1 (l) † 2.67 

(0.96) 

2.59 

(1.02) 

-0.08 0.37    
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Figures shown are Median (IQR) except FEV1† which is Mean (SD) 

 

Table 3.19: Changes in primary and secondary outcome measures for 

subjects without a diagnosis of asthma (n=12) with azithromycin 

treatment 
 

 

 V1  

(n=) 

V4  

(n=) 

V1-V4 

difference (p=) 

V5  

(n=) 

V1-V5 

difference (p=) 

V4-V5 

difference (p=) 

Subjective sputum colour: 

1  

(non-purulent) 

2 2 0.45 2 0.05 0.47 

2 2 3 3 

3 5 5 3 

4 1 0 0 

5  

(purulent) 

2 0 0 

Objective sputum colour: 

1  

(non-purulent) 

2 1 0.05  

 

  

2 4 4  

3 2 1  

4 3 0  

5  

(purulent) 

1 0  

Table 3.20: Changes in subjective and objective sputum colour for 

subjects without a diagnosis of asthma (n=12) with azithromycin 

treatment 

 V1 V4 V1-V4 
difference 

Significance 
(p=) 

V5 V1-V5 
difference 

Significance 
(p=) 

LCQ 
score  

11.4 
(2.2) 

18.8 
(3.0) 

7.4 0.002 19.7 
(4.9) 

8.3 0.005 

24 hour 
sputum 
volume 
(ml) 

6.8 
(4.3) 

1.05 
(5.25) 

-5.75 0.01    

FENO 
level 
(ppb) 

15.25 
(17.25

) 

13.5 
(11.25) 

-1.75 0.48    

FEV1 (l) † 2.90 
(1.06) 

2.98 
(1.07) 

0.08 0.28    
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3.4 Discussion 
 

The results of this study support previous observations that there is a cohort of patients 

with chronic productive cough of unknown cause whose symptoms frequently respond well 

to prolonged low dose azithromycin treatment (560). There was a marked improvement in 

the primary outcome of LCQ score, a subjective measure of cough-related quality of life, as 

well as significant improvements in the objective secondary outcome measures of 24 h 

sputum volume and sputum colour as assessed objectively. 

 

3.4.1 Primary Outcome: Description of cohort 
Although some further work needs to be done to carefully delineate the underlying 

pathophysiology in this cohort of subjects several key features of this previously 

undescribed phenotype of airways disease have been recognised. 

 

Firstly, although the overall number of subjects (n=30) recruited to the study in a 24 month 

period seems relatively few, which would suggest a low incidence of subjects with this 

phenotypic characteristic, the number of subjects screened who met the entrance criteria 

for this study was much higher. The majority of screen positive subjects could not be 

included in the study as they were already being treated with prolonged low-dose 

azithromycin, suggesting recognition of this patient group and the response of their 

symptoms to azithromycin may already be widespread amongst consultant respiratory 

physicians in the respiratory clinic. 

 

Secondly, the symptoms experienced by this cohort do not appear to be related to some of 

the most frequent recognised causes of chronic cough. Only 6 subjects (20%) had a 

diagnosis of GORD and/or were receiving treatment for the condition but none described 

active symptoms. Entirely eliminating clinically silent reflux as a cause of these symptoms 

would be very challenging, but the diagnosis of GORD alone as an explanation of these 

symptoms seems insufficient given the significant symptom burden displayed by most of 

these patients. Similarly, only 6 subjects (20%) had the clinical features or diagnosis of post 

nasal drip syndrome (PNDS), and none of these had responded symptomatically to a lengthy 

period of conventional treatment for this condition. Equally, these subjects’ symptoms are 

unlikely to be due to chronic bronchitis secondary to cigarette smoking or other noxious 

stimuli. None of the patients described in the study had smoked in the last 10 years, and all 

of them had total smoking pack year histories of less than 20 pack years. None of the study 

subjects had a significantly raised ECO on entering the study, which would be consistent 

with a non-smoking population.   

 

The relationship between asthma and this cohort of patients is harder to discern. The 

majority of patients (n=17, 56.7%) had an asthma diagnosis, but this was usually a historic 

diagnosis on the basis of symptoms with little or no supporting objective evidence. Ten 

(33%) patients had evidence of airways obstruction (9 of whom had diagnoses of asthma) 

and 4 of these (40%) had evidence of ongoing eosinophilic inflammation. These 4 patients 
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seemed to fit more suitably into a ‘classical’ eosinophilic asthma phenotype than the rest of 

the cohort, and their productive cough was likely secondary to ongoing airway eosinophilia 

and chronic mucus hypersecretion, which have previously been described as features of 

uncontrolled severe asthma (621).  

 

Unfortunately as the study did not include measures of reversibility or AHR further 

supporting or opposing objective evidence of asthma in this cohort was not available. A 

significant proportion of this cohort did not have an asthma diagnosis and it is clear that the 

prominent symptom in all of these subjects was cough, with very few describing other 

symptoms of airways disease such as significant dyspnoea, wheeze or episodes of asthma 

exacerbation. It is possible therefore that some of the cases in the described cohort may 

represent neutrophilic asthma. It is also possible that some of the subjects may have 

originally had eosinophilic asthma with suppressed eosinophilic inflammation due to ICS 

treatment and these subjects are now displaying neutrophilic inflammation as a result of 

other factors, for example, bacterial airway colonisation. However, this does not explain the 

significant proportion of subjects with no clinical features of asthma who were not taking 

ICS treatment and had ongoing neutrophilic inflammation. 

  

The two most frequent radiological features of disease noted in this cohort were airway 

dilatation and bronchial wall thickening. A small proportion of the cohort (n=5) exhibited a 

minor degree of bronchiectasis on detailed review of their HRCT scans but with a disparity 

between their low burden of disease and prominent symptoms. Airway dilatation was a 

sensitive but non-specific predictor of azithromycin treatment response. Bronchial wall 

thickening is a common radiological feature of airways disease especially recognised in 

subjects with neutrophilic asthma (758) but this was not sensitive or specific at predicting 

treatment response.  

 

The changes of airway dilatation, in combination with histological changes of chronic 

inflammation and cytokine profiling demonstrating high levels of Th1 and Th17 cytokines 

would all be compatible with a diagnosis of bronchiectasis. This cohort may represent 

subjects with “pre” - bronchiectasis, who have sustained an initial airway insult and have 

features of persisting neutrophilic inflammation and excessive airway secretions, but whose 

disease has not yet progressed to macroscopic airway destruction.  

 

3.4.2 Primary Outcome: Effect of 12 weeks azithromycin treatment on LCQ score 
LCQ improved significantly with azithromycin treatment in this group of patients. LCQ was 

selected as the primary outcome measure as this is a well validated quality of life measure 

relating to cough. The LCQ has been validated in separate distinct conditions such as 

bronchiectasis (759), but the symptoms in this cohort would seem to be sufficiently similar 

for this measure to retain validity. This measure was chosen as azithromycin has previously 

been demonstrated to improve symptom or quality of life scores in studies of subjects with 

neutrophilic asthma, COPD and bronchiectasis (615, 722, 760). The outcome of disease 

exacerbation rate, which has also been demonstrated to improve with azithromycin 
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treatment (723-725) was not suitable to use in this study as most subjects reported a 

constant level of symptomatology rather than ‘exacerbations’ of disease activity.  

 

3.4.3 Secondary Outcome: Effect of azithromycin on clinical measures/biomarkers 
Evidence of an objective response to azithromycin treatment was observed with a reduction 

in sputum amount and purulence. As expected, azithromycin treatment did not result in any 

improvement in lung function, a finding consistent with multiple previous RCTs 

demonstrating no significant change in lung function with azithromycin treatment (719, 723, 

725, 728, 730). There was also no significant change in FENO level. 

 

Ten subjects produced paired pre and post treatment sputum samples. There was a 

significant decrease in the sputum differential neutrophil count (pre-treatment median 

86.1% vs post-treatment median 69.4%, p=0.049) but no significant change in the sputum 

differential eosinophil count. This suggests azithromycin treatment may lead to 

symptomatic improvement by decreasing levels of neutrophilic inflammation. This finding is 

consistent with previous studies showing significant decreases in neutrophilic airway 

inflammation with azithromycin treatment (671, 672, 760).  

 

Levels of IL-8, IL-1β, IL-17A and TNFα were assessed in sputum and bronchial wash samples 

as increased levels of these cytokines have previously been noted in neutrophilic airways 

disease (674, 761). In comparison with previous investigations that utilised the same 

multiplex immunoassay system to quantify sputum cytokine levels in patients with asthma 

and COPD, the sputum concentrations of IL-8, IL-1β, IL-17 and TNFα were generally found to 

be much higher in our patients (762, 763). The sputum concentrations of IL-8 and TNFα 

were comparable to those detected in sputa from subjects with bronchiectasis using ELISA 

(764). IL-1β is a potent pro-inflammatory cytokine found at high levels in the sputum and 

lung tissue of COPD patients (765) and sputum in more severe phenotypes of bronchiectasis 

(766). Expression of IL-1β is induced by transcription factor NF-κB which is released by 

innate immune cells after exposure to alarmins (endogenous molecules released by tissue 

damage which cause activation of the immune system) (767) and high IL-1β levels have 

been demonstrated to induce pulmonary neutrophil airway inflammation and airway 

damage in mice (674). Sputum levels of IL-1β decreased significantly with azithromycin 

treatment which is consistent with findings from previous studies (673, 768) and may 

suggest a mechanism for decreased neutrophilic inflammation.  

 

3.4.4 Responders vs non-responders 
The improvement in LCQ was significant across the cohort as a whole, but separate 

consideration of azithromycin responders and non-responders revealed that none of the 

subjects with underlying eosinophilic airway inflammation (n=5) responded symptomatically 

to azithromycin. This is consistent with previous RCT data demonstrating no significant 

treatment response to azithromycin in subjects with asthma, a significant proportion of 

whom would be expected to have underlying eosinophilic airway inflammation (636, 742, 

744). However, one previous study (769) investigating clarithromycin treatment in asthmatic 
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subjects reported an improvement in symptoms, AHR and sputum eosinophilia after 8 

weeks of clarithromycin treatment, although the number of subjects was small (n=17).  

 

The response of subjects with neutrophilic airways inflammation to azithromycin is 

consistent with the clinical improvement seen in other cohorts of patients with proven 

sputum neutrophilia (760, 770) or likely neutrophilic predominant airway disease such as 

bronchiectasis and COPD (615, 723-725). When considered separately from the neutrophilic 

subgroup the improvement seen in the paucigranulocytic group is less marked, with a lesser 

degree of improvement in LCQ score and no improvement in any other variable. The reason 

for this improvement in LCQ score with azithromycin in the paucigranulocytic group is less 

clear. Potential mechanisms for this observed improvement include immunomodulatory or 

antibiotic effects of azithromycin as well as the possibility of a placebo response. 

 

Recognition of the heterogeneity and complexity of airways disease has led to proposals for 

a different system of classifying disease, based not on archetypal disease labels but on the 

recognition of phenotypic or biological markers of disease (so-called ‘treatable traits’) that 

enable targeted treatment (160). The results of this study, irrespective of the exact 

underlying airway pathology in this cohort, indicate that the symptom of chronic productive 

cough, especially when combined with evidence of ongoing neutrophilic airway 

inflammation, may represent a trait which could in future be used to target prolonged 

macrolide therapy.  

 

3.4.5 Study limitations 
The main limitations of this study include its relatively small size and the lack of a placebo 

group.  

 

A significant number of subjects who were eligible according to our criteria were already 

using low dose azithromycin (Figure 3.2) and hence were not suitable for the trial. As 

suggested above this means the prevalence of individuals with this phenotype is much 

higher than the study suggests. Although the final number completing the trial was small 

(n=29) the improvement in the primary outcome measure of LCQ was very highly significant 

owing to a large reported improvement in symptoms by the majority of participants.  

 

The true magnitude of this effect is difficult to discern firstly because of the subjective 

nature of the LCQ as an outcome in comparison to objective measures and secondly 

because of the potential of a placebo response in these subjects. However, placebo 

response alone in these subjects is less likely owing to the concurrent improvement noted in 

more objective measures such as 24 hr sputum collection volume and sputum colour (as 

assessed objectively) as well as the significant decreases in the sputum differential 

neutrophil count and sputum IL-1β concentrations.  

 

A placebo controlled arm was not included in the study as the underlying pathophysiology in 

these subjects was still obscure and may have been attributable to an existing disease label 
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that had already been demonstrated to be responsive to azithromycin treatment such as 

bronchiectasis or asthma. On conclusion of the study there is now further evidence to 

suggest these patients may represent a distinct phenotype, or at least exhibit features that 

are not adequately described by an existing disease label.  

 

3.4.6 Further work 
The findings of this study need confirmation via a placebo controlled trial of azithromycin in 

subjects selected using similar eligibility criteria. Further work that would help to establish 

the nature of disease in this cohort of patients would include a longitudinal cohort study of 

such patients to clarify the natural history of disease progression in these subjects. In view 

of the increasing evidence suggesting that disturbances in the airway microbiota (dysbiosis) 

may be associated with neutrophilic airway inflammation further studies assessing the 

airway microbiota of these subjects are also warranted. 

3.5 Conclusion 
This study describes a cohort of patients with chronic productive cough not adequately 

described by existing disease labels whose symptoms responded well to low dose 

azithromycin. Patients who demonstrated the most significant symptomatic response to 

azithromycin primarily had neutrophilic airway inflammation while those with 

paucigranulocytic airway inflammation also improved albeit less markedly. Good predictors 

of treatment response also included moderate to severe inflammatory changes on bronchial 

biopsy and airway dilatation on HRCT scan. Possible mechanisms of response to 

azithromycin include reduction in airway neutrophilia and IL-1β levels. Further studies, 

especially longitudinal studies of this cohort, are required to validate these initial findings 

and determine the prognosis and progression of disease in this patient group.  
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Chapter 4: Microbiota in Asthma 

4.1 Background 

4.1.1 Summary of background (Chapter 1.7) 
Analysis of the human microbiota is a promising and rapidly expanding field. Studies to date 

of the lung microbiota have led to new insights into the pathogenesis and progression of 

lung disease. Generally, findings so far in most respiratory conditions indicate that reducing 

bacterial diversity and dysbiosis of the microbiota with dominance of certain pathogenic 

species correlate with worsening disease severity and outcomes. Studies of the bacterial 

microbiota in asthma have revealed differences in its composition to that of healthy 

controls, suggesting that an increased abundance of potentially pathogenic species such as 

Proteobacteria are associated with asthma, particularly the neutrophilic asthma subgroup, 

and with certain clinical measures.  

 

4.1.2 Rationale for study  
It has not been possible to establish whether the presence of these organisms in the airways 

of asthmatic subjects is due to disease itself, or whether this may represent a treatment 

effect of high dose inhaled steroids. This study aims to examine, in unprecedented detail, 

the effects of ICS dose and type on the microbiota composition in subjects with asthma. 

 

4.1.3 Hypothesis and Aims 

4.1.3.1 Hypothesis 

It is hypothesised that the use of high dose ICS alters the microbiota in asthma, acting as a 

selective pressure that favours the establishment of colonising species of potentially 

pathogenic species such as H. influenzae (See Fig 1.10).  

It is further speculated that the type of ICS used by an individual may have an effect on the 

composition of the airway microbiota in asthma.  

4.1.3.2 Aims 

1) To compare the microbiota composition in sputum samples from subjects with mild (BTS 

Step 2) and moderate/severe asthma (BTS Step 4) 

2) To compare microbiota composition between samples from subjects with asthma using 

the inhaled steroid fluticasone and those using budesonide.  

Other aims of the study include assessment of the reproducibility of the induced sputum 

method for assessing the lung microbiota, assessment of the longitudinal stability of the 

bacterial population and comparison of the bacterial load of two common respiratory 

pathogens (H. influenzae and S. pneumoniae) in the BTS Step 2 and 4 groups.  
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4.2 Methods 

4.2.1 Purpose and Design 

4.2.1.1 Purpose 

1) To determine if there is any relationship between the diversity of the bacterial microbiota 

of the lung (as sampled by induced sputum) and clinical features of asthma and severity 

2) To determine if there is any difference in lung microbiota diversity between patients 

using inhaled fluticasone and those using inhaled budesonide  

3) To assess the reproducibility and stability of the composition of the microbiota in sputum 

samples induced at multiple time points. 

 

4.2.1.2 Study Design 

This was a single centre non-interventional study. 
 

4.2.1.3 Ethical Approval 

This study was approved by the National Research Ethics Committee East Midlands – Derby 

1 (Ref 14/EM/0091) and Nottingham University Hospitals NHS Trust Research and 

Innovation department (Ref 14RM006).  

 

4.2.2 Study Population 

4.2.2.1 Eligibility criteria 

Patients were recruited according to the following eligibility criteria: 

Inclusion criteria 

 Age 18 or above 

 Male or female 

 Diagnosis of asthma (previous physician diagnosis) 

 Non-smokers for 10 years and <10 pack year equivalents in total 

 BTS Step 2 patients must have been using inhaled steroids at a dose of BDP ≤400 

µg/day, FP ≤200 µg/day or BUD ≤400 µg/day for at least 1 year (535) 

 BTS Step 4 patients must have been using inhaled steroids at a dose of FP ≥500 

µg/day or BUD ≥800 µg/day for at least 1 year as a separate steroid or inhaled 

steroid/long acting beta agonist combination (535) 

Exclusion criteria 

 Respiratory infection or antibiotics within last month 

 Pregnancy or intent to become pregnant during course of study 

 Other respiratory diagnosis 

 Post bronchodilator FEV1 of <60% (417) 
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4.2.2.2 Study setting and participant recruitment 

This study was conducted at the Nottingham Respiratory Research Unit (Nottingham City 

Hospital UK). Subjects with asthma were identified from an existing research subject 

database (Ref 09/H0405/27) or prospectively identified from outpatient respiratory clinics 

according to the eligibility criteria. 

Interested subjects were provided with full written information regarding the study and 

given the contact information for the study team (Appendix L). Upon contacting the study 

team by telephone or e-mail they were screened to ensure they met the inclusion and 

exclusion criteria. 

 

4.2.3 Outcome measures 

4.2.3.1 Primary endpoint 

The difference in sputum microbiota diversity/composition and quantitation between the 

BTS Step 2 and BTS Step 4 groups 

4.2.3.2 Secondary endpoints 

The difference in sputum microbiota diversity/composition and quantitation between: 

 The BTS Step 4 group using inhaled fluticasone and the BTS Step 4 group using 

inhaled budesonide 

 Sputum samples taken at baseline and those taken at 24 hours to assess the 

repeatability of the sampling technique 

 Sputum samples taken at baseline and those taken at 14 days to assess the stability 

of the sampled microbiota 

Other planned analyses included: 

 Sputum microbiota diversity/composition and quantitation vs FEV1 

 Sputum microbiota diversity/composition and quantitation vs FENO level 

 Sputum microbiota diversity/composition and quantitation vs PC20 

 Sputum microbiota diversity/composition and quantitation vs LCQ score 

 Sputum microbiota diversity/composition and quantitation vs ACQ score 

 Sputum microbiota diversity/composition and quantitation vs ICS dose (BDP 
equivalent) 

 Abundance of known respiratory pathogens (H. influenzae and S. pneumoniae) in 
BTS Step 2 and BTS Step 4 BUD/FLU groups 
 

4.2.3.3 Sample size calculation 

As published data in this field is so limited, a formal power calculation to determine the 

necessary sample size was not possible. 

Based on the numbers of patients required in previous studies of the human microbiota to 

determine differences between subject groups we specified a target of 50 subjects divided 

into the following groups (Fig 4.1): 
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Figure 4.1: Demonstrating target patient recruitment numbers for 

each subgroup 

Where FP Rx = Fluticasone therapy 
And    BUD Rx = Budesonide therapy 
 
A sub-group of 20 patients who were available for visits 2 and 3 and successfully produced a 

sputum sample at visit 1 were invited to attend two further research visits. We attempted 

to select a sub-group of patients representative of the whole population, but the 

composition of this sub-group was largely determined by the subject availability for further 

visits. 

 

4.2.4 Summary of study protocol 

4.2.4.1 Visit 1 

All patients meeting the entrance criteria for the study were invited to attend the first study 

visit where eligibility was rechecked and written informed consent obtained prior to any 

study-related interventions. The tests performed at visit 1 are listed in Figure 4.2 below: 

4.2.4.2 Visits 2 and 3 

Patients who were able to attend the two optional follow up visits and who successfully 

produced a sputum sample at Visit 1 also attended Visit 2 (within 24 h of Visit 1) and Visit 3 

(within 2 weeks of Visit 1) for further sputum induction. 

 

 

  50 subjects 

20 BTS Step 2 30 BTS Step 4 

15 FP Rx 15 BUD Rx 
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4.2.5 Clinical Measurements 

4.2.5.1 Spirometry  

Performed as described in Section 2.2.5.1 (537). 

4.2.5.2 Methacholine challenge  

Performed as described in Section 2.2.5.5 (434). 

4.2.5.3 Exhaled Nitric Oxide 

Exhaled nitric oxide concentration was measured using an offline electrochemical analyser 

(Bedfont Scientific Ltd, Harrietsham, UK) as described in Section 3.2.5.4.  

4.2.5.4 Leicester Cough Questionnaire 

Performed as described in Section 3.2.5.1 (750). 

4.2.5.5 Juniper Asthma Control Questionnaire 

Performed as described in Section 2.2.5.8 (546). 

4.2.5.6 Sputum Induction 

Sputum induction was performed largely as described in Section 2.2.5.4 (405). However, 

slight alterations to this protocol were introduced to attempt to minimise oropharyngeal 

and environmental bacterial contamination of the samples.  

These alterations consisted of: 

1) Subjects were asked to rinse their mouths with 10 mL of 0.9% saline solution prior to 

nebulisation of saline to minimise oral contamination 

2) Samples were collected into sterile specimen containers rather than standard universal 

collection containers 

Visit 1

FENO, FEV1, BHR, 
ACQ, LCQ, 

Sputum (for 
1,2,3)

Visit 2

Sputum (for 
1,2,3)

Visit 3

Sputum (for 
1,2,3)

Figure 4.2: Demonstrating investigations performed at each study 

visit    

ACQ = asthma control questionnaire, LCQ=Leicester cough questionnaire,                                                                  

FENO = Fractional exhaled nitric oxide level, FEV1 = spirometry, BHR = methacholine 

challenge, Sputum = sputum samples taken for (1) microbiota analysis then (2) for 

differential sputum cell count if sufficient remaining then (3) for microscopy, 

culture and sensitivity count if sufficient remaining 



210 
 

4.2.6 Protocol for processing induced sputum samples 
All sputum samples were processed within 2 hours of induction. In summary, the steps 

according to the protocol were: 

1) Isolate a 50 mg sputum plug (saliva free). 

2) Add 4 x 0.1% DTT per mg sputum. 

3) Vortex for 30 s to allow thorough mixing. 

4) Transfer homogenate to a pre-labelled cryovial and store at -80oC for future transfer 

to King’s College London 

5) If there is remaining sputum send ≥50 µL Homogenised Sputum/DTT for 

Microbiology.  

6) If there is any remaining sample perform cell count and cytospin as per Sputum 

processing protocol (Section 2.2.5.4) 

7) If any remaining sample divide into 4 x Equal aliquots of Homogenised Sputum/DTT 

≤500 µL. (Extra equal aliquots can be used for large samples). 

Transfer of samples to King’s College London 

Samples were transported by courier in one batch on dry ice to King’s College London and 

were stored again at -80oC prior to DNA extraction. 

 

4.2.7 DNA extraction 
DNA extraction was conducted using the GenElute™ Bacterial Genomic DNA Kit (Sigma-

Aldrich Co. Ltd., Dorset, UK) according to specific instructions for Gram-positive bacteria, 

with the following modifications. Sputum samples (100 µL) were initially mixed with 

lysozyme (200 µL; 45 mg/mL, Sigma-Aldrich Co. Ltd., Dorset, UK) suspended in Gram-

Positive Lysis Solution (included in the kit), prior to incubation at 37 ⁰C for 30 min (832). Cell 

disruption was then achieved by insertion of tungsten carbide and glass beads (Qiagen, 

Crawley, UK), followed by agitation in a Fastprep-24 Instrument (MP Biomedicals Europe, 

Illkirch, France) at 6.5 m/s for 60 sec (833). Further steps remained unchanged, and the DNA 

was resuspended in 50 µL of Elution Solution (included in the kit). DNA concentrations were 

quantified using the Picodrop Microlitre Spectrophotometer (GRI, Braintree, UK). 

 

4.2.8 Quantitative PCR (qPCR) assays 

4.2.8.1 Total Bacterial Load (TBL) qPCR 

Total bacterial load was estimated by using the SYBR Green dye, using the primers EubF 5’-

TCCTACGGGAGGCAGCAGT-3’ and EubR 5’-GGACTACCAGGGTATCTA ATCCTGTT-3’ (Sigma-

Aldrich Co. Ltd., Dorset, UK) which amplified a 466-bp region between positions 331 to 797 

of the Escherichia coli 16S rRNA gene (834). The assay was performed as described in (835). 

All PCR reactions were carried out in a total volume of 20 μl containing primers at a 

concentration of 500 nM each, 1 μl of template and Rotor-Gene SYBR Green PCR Master 

Mix (Qiagen, Crawley, UK) at 1x final concentration. Quantitative PCR assay was performed 
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using Rotor-Gene Q real-time thermocycler (Qiagen, Crawley, UK) with a temperature 

profile of 95 °C for 5 min, followed by 50 cycles at 95 °C for 15 s and 58 °C for 50 s. Gain 

optimisation was set manually at 5.33 on the green channel (Cycling A. Green). Melt-curve 

analysis was then conducted between 58°C to 99°C with 1 °C steps, to detect non-specific 

amplifications. 

4.2.8.2 H. influenzae (HI) qPCR 

H. influenzae densities were estimated by a TaqMan assay, using the primers HelSF 5’-

CCGGGTGCGGTAGAATTTAATAA-3’, HelSR 5’-CTGATTTTTCAGTGCTGTCTTTGC-3’ (Eurofins 

Genomics, Ebersberg, Germany)  and probe HelSPr 5’-FAM-ACAGCCACAACGGTA 

AAGTGTTCTACG-TAMRA-3’ (Eurofins Genomics, Ebersberg, Germany) which amplify a 90-bp 

region between positions 518 to 608 of the H. influenzae hel gene (836). All PCR reactions 

were carried out in a total volume of 20 μl containing primers and probe at a concentration 

of 500:500:250 nM (HelSF: HelSR; HelSPr), 1 μl of template and LightCycler 480 Probes 

Master (Roche Diagnostics GmbH, Mannheim, Germany) at 1x final concentration. 

Quantitative PCR assays were carried out using the Rotor-Gene Q (Qiagen, Crawley, UK) 

with a temperature profile of 95 °C for 5 min, followed by 45 cycles at 95 °C for 15 s and 60 

°C for 60 s. Gain setting on the green channel was optimized manually to 4.00 for each run. 

4.2.8.3 S. pneumoniae (SPN) qPCR 

The assay was performed using a TaqMan based probe, lytA-CDCPr 5′-FAM-

TGCCGAAAACGCTTGATACAGGGAG- BHQ1-3′ (Eurofins Genomics, Ebersberg, Germany) and 

primers lytA-CDCF 5′-ACGCAATCTAGCAGATGAAGCA-3′, lytA-CDCR 5′-

TCGTGCGTTTTAATTCCAGCT-3′ (Eurofins Genomics, Ebersberg, Germany). A 53-bp region 

was amplified between positions 1840961 to 1841014 of the S. pneumoniae genome 

specifically targeting a region of the lytA gene (837). Primers and probe concentrations were 

optimised to produce an assay with a final 25 µL reaction volume as follows: Primers and 

probe at a concentration of 500:500:250 nM (lytA-CDCF: lytA-CDCR: lytA-CDCPr), 1 µL of 

template and LightCycler 480 Probes Master (Roche Diagnostics GmbH, Mannheim, 

Germany) at 1x final concentration. Quantification of DNA copies was performed using the 

Rotor-Gene Q (Qiagen, Crawley, UK) with a temperature profile of 95 °C for 5 min, followed 

by 45 cycles at 95 °C for 15 s and 60 °C for 60 s. Gain setting on the green channel was set 

manually to 4.00 for each run. 

4.2.9 16S rRNA gene sequencing  
The DNA samples were transported to Public Health England for 16S rRNA gene 
sequencing. The V3-V4 region of the 16S rRNA gene was amplified using a 16S Amplicon 
Forward primer (5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN GGC 
WGC AG-3’) and 16S Amplicon Reverse primer (5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA 
GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3’) (838). Library preparation was carried out 
according to the 16S Metagenomic sequencing library preparation manual (Illumina, USA). 
The size of the library was measured using the Agilent High Sensitivity DNA kit (Agilent, 
Germany) and quantified using ABI Viaa7 and KAPA Library Quantification Kit Illumina® 
platforms (KAPABiosystems). The sequencing was then performed on the MiSeq platform 
(Illumina, USA) using the MiSeq reagent kit V2 (500 cycles) according to the manufacturer’s 
instructions. 
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The raw sequence data obtained from the Illumina MiSeq sequencer were then filtered to 
remove any chimeric sequences from the input sequences, which could present at a low 
level due to premature amplicon termination during the library preparation step. The paired 
end reads were rarefied to 9311 reads followed by analysis based on Operational Taxonomic 
Unit (OTU) approach. This was determined using the QIIME version 1.9.1 pipeline to cluster 
the 16S rRNA gene sequences based on their similarity. Within these data, a total of 
5615037 sequencing reads were clustered into a final 167 OTUs, where OTUs less than 
0.01% relative abundance across all samples sets were discarded. One sample was removed 
from the whole OTU analysis due to low sequence reads (4693 reads).  
 

4.2.10 Analysis 

4.2.10.1 Demographic and clinical measurement data 

Data were exported from the electronic study database to Microsoft Excel for data cleaning. 

Data were then imported into Stata v11.0 (Statacorp, Texas, USA) for statistical analysis. The 

demographics and baseline clinical measures of the cohort were determined. qPCR data was 

analysed using SPSS version 21.0 (IBM Corp, 2012). The 16S rRNA gene sequencing data was 

analysed using the R statistical framework version 2.11 with version 2.0–7 of the R package 

“vegan”. 

4.2.10.2 qPCR and 16S rRNA gene sequencing data 

For qPCR data the mean bacterial load in colony forming units (cfu)/ml were calculated for 

each sample along with the mean loads of H. influenzae and S. pneumoniae. The mean 

overall bacterial loads and loads of H. influenzae and S. pneumoniae of the following groups 

were then compared using either an independent T test or Mann-Whitney U test depending 

on whether data were normally or non-normally distributed: 

1. BTS Step 2 vs BTS Step 4 
2. BTS Step 2 : BUD vs FLU 
3. BTS Step 2 : BUD vs BEC 
4. BTS Step 2 : FLU vs BEC 
5. BTS Step 4 : BUD vs FLU 
6. BUD : BTS 2 vs BTS 4 
7. FLU : BTS 2 vs BTS 4 
8. BUD vs FLU 

 
For the 16S rRNA gene sequencing data OTUs were calculated in cfu/ml by multiplying their 

percentage abundance by the bacterial load from 16S qPCR data. Version 2.0–7 of the R 

package “vegan” was used to generate richness, Shannon’s and Simpson’s diversity indices.  

Richness and Simpson’s indices were compared between the BTS 2 vs BTS 4 groups and the 

BTS 4 FLU vs BTS 4 BUD groups by analysis of variance (ANOVA). As Shannon’s index is not a 

scaled vector a Kruskal-Wallis rank sum test was used to compare between the BTS 2 vs BTS 

4 groups and BTS 4 FLU vs BTS 4 BUD groups.  
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For further analysis of similarity between the microbiota composition of the different 

severity and steroid types the analysis of similarity (ANOSIM) test was used. This is a non-

parametric multidimensional scaling (NMDS) technique that assesses for differences 

between graphical representations of community composition. 

 

Differences in OTU abundance between BTS 2 vs 4 and BTS 4 FLU vs BTS 4 BUD were 

assessed for using a Wilcoxon rank sum test.  

 

For comparison of baseline alpha-diversity indices (richness, Shannon’s and Simpson’s) and 
bacterial load with these measures after 24 hours and then 2 weeks later in the subgroup of 
subjects who had multiple samples taken (n=19) repeated measure ANOVA tests were used. 
In order to assess the test-retest reliability of the total bacterial load as determined by qPCR 
from these 19 subjects after 24 hours and then 2 weeks, the intraclass coefficient for this 
measure was calculated using a two-way mixed effects model. The intraclass coefficient 
measure reflects both the degree of correlation and agreement between measurements. 
 
Finally to investigate the correlation of alpha-diversity indices (richness, Shannon’s and 
Simpson’s) and microbiota composition (plotting NMDS axis 1) with clinical measurements 
(FEV1 % predicted, FENO, PC20, LCQ, ACQ or ICS dose) Spearman’s rank correlation 
coefficients were calculated. 
 

4.3 Results 

4.3.1 Recruitment 
One hundred and five subjects were identified on the research database who met the 

eligibility criteria for the study. They were all contacted between May 2014 and May 2015 

by post, e-mail or telephone regarding taking part in the study.  Of these 72 patients agreed 

to participate in the study. 

4.3.2 Losses and exclusions 
Whilst there were no losses or exclusions for this study per se, 18 participants were unable 

to produce an adequate sputum sample for analysis, and hence their demographic and 

clinical data will not be used in the final analysis (See Fig 4.3). 
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Assessed for eligibility (n=110) 

Figure 4.3: Consort diagram demonstrating losses and 

exclusions from study 

Enrolment 

Follow-Up 

Excluded (n=33) 

   Declined to participate (n=15) 

 

Visit 2                                                                             

Produced sample (n=20) 

 

 

 

Visit 1                                                            

Unable to produce sputum sample (n=16).  

Analysed (n=56) 

Agreed to follow-up visits (n=20) 

Visit 3                                                                             

Produced sample (n=20) 
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4.3.3 Missing data 
AHR was not measured in 3 subjects as two declined and one had symptoms of chest pain 

during the test. As stated above, 16 participants failed to produce sputum samples. MIA 048 

attended V1, V2 and V3 and provided sputum samples but a subsequent sputum culture 

was positive for S. pneumoniae. This subject was treated with antibiotics and their 

microbiota results were excluded from analyses. 

4.3.4 Baseline demographics 
The baseline demographics and clinical features of the 72 participants who took part in the 

study (Table 4.1) and the 56 participants who produced sputum samples that were used in 

the study (Table 4.2) are shown. Table 4.4 shows the participants who provided samples 

divided into those who were BTS Step 2 and BTS Step 4. 

In the overall cohort there was a slight female preponderance and a large majority of the 

subjects were Caucasian. The mean age of the cohort was 56, with a range of ages from 21-

80. Around 32% were ex-smokers who all had pack year histories of <10 pack years and had 

not smoked in the previous 10 years as per the inclusion criteria. The group were fairly well 

controlled symptomatically with an average ACQ score of 1.1 and LCQ score of 18.3. The 

median bacterial load was 9.6x106 cfu/mL.  

There were no statistically significant differences in the demographic composition or 

baseline clinical measures of the BTS Step 2 and BTS Step 4 groups (Table 4.3). Also, there 

were no statistically significant differences between the BTS Step 4 fluticasone and 

budesonide groups (Table 4.4).  

Twenty-four subjects produced sufficient sputum to also obtain sputum cell counts (Table 

4.5). The majority of these had ongoing neutrophilic inflammation (n= 14; 58%) with 6 

subjects (25%) displaying paucigranulocytic counts, 3 (12.5%) with mixed granulocytic 

counts and only 1 (4%) with isolated ongoing eosinophilic inflammation. 

4.3.5 Primary Outcomes:  

4.3.5.1 Sputum microbiota diversity/composition and quantitation between the BTS Step 2 

and BTS Step 4 groups 

No significant differences in sputum bacterial load were seen between the BTS 2 and 4 

groups (Tables 4.3 & 4.7, Figs 4.4 & 4.5, Appendix M). There were also no significant 

differences in the relative abundance of the respiratory pathogens H. influenzae or S. 

pneumoniae between the two groups (Tables 4.6 & 4.7). 

 

There was no significant difference in the alpha diversity measures of species richness 

(Table 4.8), Simpson’s (Table 4.9) and Shannon’s (Table 4.10) indices between BTS2 and BTS 

4. The groups also showed no significant difference in community composition when 

compared with ANOSIM (Fig 4.8, Table 4.11).  

 

On comparison of the abundance of individual OTUs in BTS Step 2 and 4 subjects, 39 OTUs 

were found to have significantly different abundances in the two groups (Table 4.16), with 

14 of these belonging to the phylum Firmicutes.  
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4.3.5.2 Sputum microbiota diversity/composition and quantitation between the BTS Step 4 

fluticasone and BTS Step 4 budesonide groups 

No significant differences in sputum bacterial load were seen between the BTS 4 fluticasone 

and BTS 4 budesonide groups (Table 4.6, Figs 4.6 & 4.7). There were also no significant 

differences in the relative abundance of the respiratory pathogens H. influenzae or S. 

pneumoniae between the two groups. H. influenzae was more abundant than S. 

pneumoniae in all groups (Table 4.7). 

 

There was no significant difference in the alpha diversity measures of species richness 

(Table 4.12), Simpson’s (Table 4.13) and Shannon’s (Table 4.14) indices between BTS 4 

fluticasone and BTS 4 budesonide groups. The groups also showed no significant difference 

in community composition when compared with ANOSIM (Table 4.15, Fig 4.9).  

 

The abundance of OTUs in BTS 4 fluticasone and BTS 4 budesonide patients was also 

compared. There were significant differences in the abundance of 13 OTUs between the 

groups (Table 4.17).  

 

4.3.6 Secondary Outcomes 

4.3.6.1 Sputum microbiota diversity/composition at baseline vs 24 h and 14 days 

There was no significant difference in sputum bacterial load or in alpha diversity measures 

(richness, Simpson’s or Shannon’s indices) in baseline samples and those taken at 24 h 

(n=20) or at 14 days (Table 4.22 and Table 4.23). This finding did not alter when these 20 

subjects were divided into BTS 2 (n=8) and BTS 4 (n=12) groups (Table 4.18, Figs 4.10-4.13).   

The test-retest reliability of the qPCR bacterial load measurements appeared to be poor 

with an intraclass coefficient value of 0.17 (Figures 4.13 & 4.14; Table 4.20). However, this 

result was not statistically significant which was likely owing to the relatively low number of 

subjects. 

4.3.6.2 Sputum microbiota diversity/composition at baseline vs clinical features/measures 

No significant correlation was found between alpha diversity measures (richness, Simpson’s 

or Shannon’s indices) or microbiota composition (plotting NMDS axis 1) with any of the 

clinical measurements (FEV1 % predicted, FENO, PC20, LCQ, ACQ or ICS dose) (Table 4.21). 
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Table 4.1: Demographics and clinical characteristics of all subjects 

recruited to study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Frequency Percentage  

Total number included for 

analysis 

72  

Mean age (range) 55.3 (21-80)  

Sex: male 34 47.2 

Ethnic group: 

Asian Or Asian British 

Black Or Black British 

White Or White British 

 

1 

3 

68 

 

1.4 

4.2 

94.4 

Smoking history:  

Ex-smokers 

Non smokers 

 

22 

50 

 

30.6 

69.4 

Current eczema 9 12.5 

Current hay fever 29 40.3 

ACQ score 

Median + IQR 

 

6 (6) 

 

LCQ score 

Median + IQR 

18.3 (3.0)  

FEV1 mean (SD) 92.3 (24.1)  

FEV1/FVC ratio 70.4 (10.9)  

FENO concentration (ppb) 

Geometric mean and 95% CI 

13.6  

(11.0 – 16.9) 
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Table 4.2: Demographics and clinical characteristics of all subjects 

who produced samples in the study 

 

 

 

 

 

 

 

 

 

 

 

 Frequency Percentage  

Total number included for 

analysis 

56  

Mean age (range) 56.0 (21-80)  

Sex: male 26 46.4 

Ethnic group: 

Asian Or Asian British 

Black Or Black British 

White Or White British 

 

1 

2 

53 

 

1.8 

3.6 

94.6 

Smoking history:  

Ex-smokers 

Non smokers 

 

18 

38 

 

32.1 

67.9 

Current eczema 7 12.5 

Current hay fever 23 41.1 

ACQ score 

Mean + SD 

1.10 (0.74)  

LCQ score 

Median + IQR 

18.28 (2.71)  

FEV1 mean (SD) 93.2 (24.6)  

FEV1/FVC ratio 70.3 (10.9)  

FENO concentration (ppb) 

Geometric mean and 95% CI 

14.5  

(11.3-18.5) 

 

Sputum bacterial load 

(cfu/mL) (Median + IQR) 

9.63x106 

(4.28x107) 
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 STEP 2 STEP 4  

 Frequency (%) Frequency (%) Significance 

(p=) 

Total number 

included for analysis 

22 34 (16 BUD / 18 

FLU) 

 

Mean age (range) 58.9 (14.4) (21-72) 54.1 (14.3) (25-80) 0.22 

Sex: male 12 (54.6) 14 (41.2) 0.33 

Ethnic group: 

Asian Or Asian 

British 

Black Or Black 

British 

White Or White 

British 

 

0 

0 

22 (100) 

 

1 (2.9) 

2 (5.9) 

31 (91.2) 

 

 

 

0.70 

Smoking history:  

Ex-smokers 

Non smokers 

 

7 (31.8) 

15 (68.2) 

 

11 (32.4) 

22 (67.7) 

 

 

0.97 

Current eczema 4 (18.2) 3 (8.8) 0.42 

Current hay fever 10 (45.5) 13 (38.2) 0.59 

ICS dose (BDP 

equivalent) (Median 

+ IQR) 

400 (200) 1000 (200)  

ACQ score 

Mean + SD 

0.9 (0.6) 1.2 (0.8) 0.12 

LCQ score 

Median + IQR 

19.0 (2.0) 17.8 (3.5) 0.08 

FEV1 mean (SD) 93.5 (28.0) 93.1 (22.5) 0.95 

FEV1/FVC ratio 68.8 (10.1) 71.2 (11.4) 0.43 

FENO concentration 

(ppb) 

Geometric mean and 

95% CI 

17.2 (12.8-23.1) 13.0 (9.0-18.6) 0.27* 

Sputum bacterial 

load (cfu/mL) 

(Median + IQR) 

1.35x107 (9.89x107) 8.86x106 (2.81x107) 0.27 

*T-test comparing log FENO 

Table 4.3: Demographics and clinical characteristics of BTS Step 2 

and BTS Step 4 groups that produced samples in the study 

 

 

 

 



220 
 

 STEP 4 BUD STEP 4 FLU  

 Frequency (%) Frequency (%) Significance 

(p=) 

Total number 

included for analysis 

16 18  

Mean age (range) 52.9 (25-80) 55.2 (39-71) 0.65 

Sex: male 7 (43.8) 7 (38.9) 0.77 

Ethnic group: 

Asian Or Asian 

British 

Black Or Black 

British 

White Or White 

British 

 

0 

2 (12.5) 

14 (87.5) 

 

1 (5.6) 

0 

15 (94.4) 

 

 

 

0.21 

Smoking history:  

Ex-smokers 

Non smokers 

 

8 (50.0) 

8 (50.0) 

 

3 (16.7) 

15 (83.3) 

 

 

1.0 

Current eczema 1 (6.3) 2 (11.1) 1.0 

Current hay fever 6 (37.5) 7 (38.9) 0.59 

ICS dose (BDP 

equivalent) (Median 

+ IQR) 

800 (0) 

*difficult due to 

common doses for 

each preparation –

“2 medians” for 

each 

1000 (100)  

ACQ score 

Mean + SD 

1.3 (0.9) 1.1 (0.8) 0.41 

LCQ score 

Median + IQR 

19.4 (2.3) 17.6 (6.2) 0.25 

FEV1 mean (SD) 86.5 (22.6) 98.9 (21.3) 0.11 

FEV1/FVC ratio 67.9 (10.6) 74.1 (11.6) 0.12 

FENO concentration 

(ppb) 

Geometric mean and 

95% CI 

16.0 (8.9-28.6) 10.8 (6.7-17.5) 0.28 

Sputum bacterial 

load (cfu/mL) 

(Median + IQR) 

1.08x107 (2.71x107) 8.23x106 (3.80x107) 0.59 

Table 4.4: Demographics and clinical characteristics of BTS Step 4 

budesonide and BTS Step 4 fluticasone groups that produced 

samples in the study 
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Sputum 

inflammatory type 

BTS Step 2 BTS Step 4 

BUD 

BTS Step 4 

FLU 

Totals 

Neutrophilic (>61%) 5 3 6 14 

Eosinophilic (>3%) 0 1 0 1 

Mixed granulocytic 

(N>61% and E>3%) 

1 1 1 3 

Paucigranulocytic 2 2 2 6 

Totals 8 7 8 24 

Table 4.5: Sputum inflammatory types of a subgroup of 24 subjects 

who produced sufficient sputum for cell counts 
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No. 

 

Group 1 

 

Group 2 

Group 1 

Mean total 

bacterial 

load 

(cfu/mL) 

Group 2 

Mean total 

bacterial 

load 

(cfu/mL) 

p-value 

 

Group 1  

Mean H. 

influenzae 

load 

(cfu/mL) 

Group 2  

Mean H. 

influenzae 

load 

(cfu/mL) 

 

p-value 

Group 1  

Mean S. 

pneumoniae 

load    

(cfu/mL) 

Group 2  

Mean S. 

pneumoniae 

load 

(cfu/mL) 

 

p-value 

1 
BTS 2 BTS 4 1.25E+08 

 

4.81E+07 0.272 6.35E+03 

 

1.31E+06 

 

0.705 8.57E+01 

 

7.83E+00 

 

1.00 

2 
BTS 2 / 

BUD 

BTS 2 / 

FLU 

4.26E+07 

 

1.64E+08 

 

0.973 5.35E+02 

 

8.04E+02 

 

0.152 4.64E+01 

 

2.67E+02 

 

1.00 

3 
BTS 2 / 

BUD 

BTS 2 / 

BEC 

4.26E+07 

 

1.62E+08 

 

0.493 5.35E+02 

 

1.32E+04 

 

0.583 4.64E+01 

 

2.28E+01 

 

0.340 

4 
BTS 2 / 

FLU 

BTS 2 / 

BEC 

1.64E+08 

 

1.62E+08 

 

0.563 8.04E+02 

 

1.32E+04 

 

0.407 2.67E+02 

 

2.28E+01 

 

0.535 

5 
BTS 4 / 

BUD 

BTS 4 / 

FLU 

2.73E+07 

 

6.77E+07 

 

0.589 1.79E+04 

 

2.52E+06 

 

0.650 7.13E+00 

 

8.50E+00 

 

0.743 

6 
BTS 2 / 

BUD 

BTS 4 / 

BUD 

4.26E+07 

 

2.73E+07 

 

0.919 5.35E+02 

 

1.79E+04 

 

0.630 4.64E+01 

 

7.13E+00 

 

0.488 

7 
BTS 2 / 

FLU 

BTS 4 / 

FLU 

1.64E+08 

 

6.77E+07 

 

0.784 8.04E+02 

 

2.52E+06 

 

0.218 2.67E+02 

 

8.50E+00 

 

0.957 

8 
BUD FLU 3.19E+07 

 

8.96E+07 

 

0.944 1.26E+04 

 

1.95E+06 

 

0.748 1.91E+01 

 

6.72E+01 

 

0.925 

9 
FLU BUD + 

BEC 

8.96E+07 

 

7.14E+07 

 

0.236 1.95E+06 

 

1.28E+04 

 

0.829 6.72E+01 

 

2.02E+01 

 

0.703 

 

Table 4.6: Comparisons of mean total bacterial load and abundance of H. influenzae and S. pneumoniae in 

groups as stated 
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No. Group Mean H. 

influenzae load 

(cfu/mL) 

Mean S. 

pneumoniae load 

(cfu/mL) 

p-value 

1 BTS 2 6.35E+03 8.57E+01 0.053 

2 BTS 4 1.31E+06 7.83E+00 0.001 

3 BUD 1.26E+04 1.91E+01 0.005 

4 FLU 1.95E+06 6.72E+01 0.028 

5 FLU/BTS 4 2.52E+06 8.50E+00 0.017 

Table 4.7: Demonstrating comparison of abundance of H. influenzae 

and S. pneumoniae in groups as stated.  
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Figure 4.4: Bacterial load (cfu/mL of sputum equivalent) in MIA patients
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Figure 4.5: Bacterial load (log cfu/mL of sputum equiv.) in BTS 2 and 

4 groups 

 
 

Figure 4.6: Bacterial load (log cfu/mL of sputum equiv.) based on 

patient’s inhaled steroid 
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Figure 4.7: Bacterial load (log cfu/mL of sputum equiv.) in BTS 2 and 
4 groups based on patient’s inhaled steroid  
  

 Sum Sq Df Mean Sq F value Pr (>F) 

Factor 

(severity) 

460.7 1 460.67 1.4972 0.2266 

Residuals 16000.1 52 307.70   

Table 4.8: ANOVA table for the effect of severity on bacterial 
richness 

 

 Sum Sq Df Mean Sq F value Pr (>F) 

Factor 

(severity) 

0.00002458 1 2.4578e-05 2.321 0.1337 

Residuals 0.00055065 52 1.0589e-05   

 Table 4.9: ANOVA table for effect of severity on Simpson’s index  

 

 Chi-square Df Pr (>Chi-Square) 

Factor 

(severity) 

1.291 1 0.2559 

Table 4.10: Kruskal-Wallis test for effect of severity on Shannon’s 
index 
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 R p 

BTS 2 vs BTS 4 -0.02035 0.676 

Number of permutations: 999 

Table 4.11: Results from ANOSIM between BTS 2 Group and BTS 4 

Group (Bray-Curtis dissimilarity) 
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Figure 4.8: Non-multidimensional scaling plot of the bacterial 

compositions of each samples, grouped by severity;  

Red = BTS Step 2, Blue = BTS Step 4. Both x and y axes are 

arbitrary scales. The distance between points in the figure 

represents the degree of similarity of the bacterial composition 

between samples. The closer the points are together, the more 

similar the bacterial composition. This figure demonstrates that 

the composition of the BTS Step 2 and 4  groups are similar as 

the clustering of points on the plot for both groups is similar. 
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Table 4.12: ANOVA table for the effect of steroid type on richness  

 

 Sum Sq Df Mean Sq F value Pr (>F) 

Factor 

(steroid) 

0.00000031 1 3.0530e-07 0.0204 0.8873 

Residuals 0.00046327 31 1.4944e-05   

Table 4.13: Steroid effect on Simpsons index 

 

 Chi-square Df Pr (>Chi-Square) 

Factor 

(steroid) 

0.0731 1 0.7868 

Table 4.14: Kruskal-Wallis test for effect of severity on Shannon’s 

index 

 

 R p 

BTS 4 Bud vs   

BTS 4 Flu 

0.008473 0.345 

Number of permutations: 999 

Table 4.15: Results from ANOSIM between BTS 2 Group and BTS 4 

Group (Bray-Curtis dissimilarity) 

 

 

 

 

 

 

 

 

 

 

 

 Sum Sq Df Mean Sq F value Pr (>F) 

Factor 

(steroid) 

6.1 1 6.1 0.016 0.9001 

Residuals 11796.8 31 380.54   
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Figure 4.9: NMDS of steroid effect on composition.  

Red = BUD, Blue = FLUTIC. Both x and y axes are arbitrary scales. This 

figure demonstrates that the composition of the BTS Step 4 Budesonide 

and Step 4 Fluticasone groups are similar as the clustering of points on 

the plot for both groups is similar 
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BTS2 BTS4 

OUT.ID p value 
Mean 

(cfu/mL) 
SD 

(cfu/mL) 
Mean 

(cfu/mL) 
SD 

(cfu/mL) 
Cerasicoccaceae 0.045 0 0 48136.46 242558.4 

Prevotella.tannerae 0.031 567421.5 2166916 37186.51 171202.7 

Weeksellaceae 0.002 57953.84 187283.1 4621.297 17242.01 

Acidocella.spp. 0.011 37739.59 122368.7 3285.693 7715.95 

Actinomyces.spp. 0.020 2402551 4704338 178311.9 681813.9 

Aggregatibacter.segnis 0.043 405902.9 996459.4 23549.74 62863.32 

Atopobium.spp. 0.006 614218.9 957477.6 81613.48 230382.3 

Bacillaceae1 0.047 22683.45 96642.81 261821.9 1010540 

Bacillaceae2 0.031 17273.54 73086.08 181728.9 571889.1 

Campylobacter.spp. 0.048 713264.1 1223965 225809.4 716058 

Capnocytophaga.spp. 0.005 408979.6 1067674 12787.48 35474.43 

Cardiobacterium.spp. 0.019 30024.16 89067.01 649.9432 1367.122 

Catonella.spp. 0.048 145950.7 325845 25571.6 84832.2 

Corynebacterium.durum 0.031 25080.47 65504.5 6904.183 26225.17 

Dialister.spp. 0.016 735403.8 2545526 138994.5 525555.5 

Dysgonomonas.spp. 0.008 572.3388 2577.694 53199.23 189629 

Enterobacteriaceae1 0.032 18.93667 86.77871 6524.605 23041.53 

Granulicatella.spp. 0.015 1227271 3155185 64060.74 140362.6 

Lautropia.spp. 0.039 740902.1 2328397 20944.79 104157.1 

Leptotrichia.spp. 0.003 10814168 28385555 2188100 7752618 

Megasphaera.spp. 0.009 382720.4 795826.2 57274.12 159554.3 

Microbacteriaceae1 0.012 896604.2 2419294 912765.1 4027665 

Moryella.spp. 0.001 801977.1 1531354 60022.51 187047.1 

Neisseriaceae 0.007 242214.6 532659.2 5252.301 9597.861 

Oribacterium.spp. 0.006 787499.9 1707436 160294.7 572340.5 

Parvimonas.spp. 0.005 502481.3 1465182 7597336 44172428 

Prevotella. 
melaninogenica 

0.016 10674788 20711212 1571315 4412534 

Prevotella.nigrescens 0.008 153201.7 310928.7 4767.503 9067.782 

Prevotella.pallens 0.029 737098.2 1449476 177312.4 646154.3 

Rothia.aeria 0.005 616580.9 1447615 19857.93 45271.42 

Rothia.dentocariosa 0.010 844303.4 1743688 63093.43 129531.7 

Rothia.mucilaginosa 0.021 14034074 34188166 609291.8 1428920 

Selenomonas.noxia 0.028 29108.5 82901.73 520.7932 964.6912 

Selenomonas.spp. 0.006 682271.2 1904229 310393.3 1462465 

Streptococcus.anginosus 0.002 95150.47 266841 11707.6 47283.08 

Streptococcus.spp. 0.002 25992589 55531721 1715461 2891616 

TM7 0.002 567835.6 1790638 14413.45 31237.25 

TM_7.Rs_045 0.035 137999.3 363084.4 1342.991 3414.309 

Veillonella.dispar 0.013 8799488 15574777 1091461 3438765 

Table 4.16: OTUs demonstrating significantly different abundance in 

BTS Step 2 and 4 groups 
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FLUTIC BUD 

OUT.ID p value 
Mean 

(cfu/mL) 
SD 

(cfu/mL) 
Mean 

(cfu/mL) 
SD 

(cfu/mL) 
Anaerobacillus.spp. 0.026 99984.27 420897.1 82621.61 194653.4 

Capnocytophaga.ochracea 0.038 10745.07 39826.14 1224.851 3779.901 

Dysgonomonas.spp. 0.035 53319.58 225535.9 53063.83 146497.4 

Exiguobacterium 0.026 312.1798 1324.467 4431.924 11758.82 

Fluviicola.spp. 0.043 13.83541 58.69869 1256.938 2695.984 

Haemophilus. 
parainfluenzae 0.047 963546.1 2920793 144552.9 309026.3 

Lactobacillus.reuteri 0.027 28511.36 91197.13 0 0 

Paracoccus.spp. 0.016 89993.13 380919.2 195139.2 570462.6 

Peptococcus.spp. 0.014 18608.36 75010.17 69.26747 277.0699 

Porphyromonas. 
endodontalis 0.009 64019.62 172897.6 6009.521 21444.89 

Rhodobaca.spp. 0.049 17989.71 75130.93 19048.09 42095.53 

Veillonellaceae2 0.048 11768.51 29602.59 5.81175 23.247 

Xanthomonadaceae1 0.019 71839.09 197731.9 5312.727 11613.61 

Table 4.17: Abundances of OTUs that change significantly in BTS 4 
patients treated with different steroids 
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 A) Mean total bacterial load (cfu/mL) 

Group Baseline After 24 

hours  

(V1 – V2) 

p value After 2 

weeks 

(V1 – V3) 

p value 

BTS 2 1.48E+08 1.45E+08 0.345 3.12E+08 0.679  

BTS 4 9.67E+07 9.35E+06 0.158 2.44E+07 0.651  

BUD / BTS 4 6.97E+06 4.18E+06 0.231 1.09E+07 0.334  

FLU / BTS 4 1.48E+08 1.23E+07 0.284 3.20E+07 0.349  

Combined groups 1.18E+08 6.63E+07 0.085 1.46E+08 0.545 

 

 B) H. influenzae load (cfu/mL) 

Group Baseline After 24 

hours  

(V1 – V2) 

p value After 2 

weeks 

(V1 – V3) 

p value 

BTS 2 3.16E+01 3.73E+00 0.416 8.83E+01 0.269 

BTS 4 1.55E+04 5.07E+02 0.269 1.78E+03 0.845 

BUD / BTS 4 2.70E+03 7.61E+02 0.761 1.59E+02 0.584 

FLU / BTS 4 2.27E+04 3.62E+02 0.072 2.70E+03 0.712 

Combined groups 8.96E+03 2.95E+02 0.153 1.07E+03 0.323 

 

 C) S. pneumoniae load (cfu/mL) 

Group Baseline After 24 

hours  

(V1 – V2) 

p value After 2 

weeks 

(V1 – V3) 

p value 

BTS 2 0.00E+00 4.75E+00 0.351 9.08E+00 0.351 

BTS 4 1.30E+01 3.76E+02 0.770 7.95E+00 0.384 

BUD / BTS 4 1.06E+00 0.00E+00 0.391 0.00E+00 0.391 

FLU / BTS 4 1.99E+01 5.91E+02 0.873 1.25E+01 0.497 

Combined groups 7.55E+00 2.20E+02 0.977 8.43E+00 0.755 

 

Table 4.18: Demonstrating A) Mean total bacterial load B) H. 
influenzae load and C) S. pneumoniae load in groups stated at 
baseline and after 24 hours and 2 weeks (total n=19). Comparisons 
between values made using repeated measure ANOVA tests. 
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 Richness Shannon’s Simpsons 

All subjects  0.131 0.113 0.106 

Table 4.19: Repeated measure ANOVA p-values for alpha-diversity 
measures for subjects that had repeat visits (n=19) after 24 hours 
and 2 weeks 
 

 

Figure 4.10: Bacterial load (log cfu/mL of sputum equiv.) in subjects 
(n=19) after 24 hours and 2 weeks.  
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Figure 4.11: Bacterial load (log cfu/mL of sputum equiv.) in subjects (n=19) based on inhaled steroid groups 

after 24 hours and 2 weeks. 
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Figure 4.12: Bacterial load (log cfu/mL of sputum equiv.) in BTS groups 2 and 4 (total n=19) after 24 hours and 

2 weeks. 
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Figure 4.13: Individual bacterial loads (cfu/mL) of BTS Step 2 subjects (total n=8) after 24 hours and 2 weeks 
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Figure 4.14: Individual bacterial loads (cfu/mL) of BTS Step 4 subjects (total n=12) after 24 hours and 2 weeks 
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 Intraclass coefficient 95% CI p value 

Total bacterial load 0.17 -0.74 – 0.65 0.3 

 
Table 4.20: Intraclass coefficient for repeated qPCR measures of 

total bacterial load from all subjects who made 3 visits (n=20 ) 

 
 
 

Measure Diversity p value Composition p value 

FEV1 
(%predicted) 

-0.122 0.3731 0.118 0.3891 

FENO -0.153 0.2648 -0.113 0.4124 

PC20 -0.051 0.7129 -0.149 0.282 

LCQ -0.218 0.1102 -0.241 0.0769 

ACQ 0.061 0.6568 -0.162 0.2363 

ICS dose -0.067 0.6253 0.208 0.1283 
 

Table 4.21: Spearman’s rank correlation coefficients of clinical 

measures with microbiota diversity (Shannon’s, Simpson’s and 

richness) and composition (composition measure based on non-

multidimensional scaling plot axis 1) 
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4.4 Discussion 
The results of this study indicate that there is no significant difference in bacterial 

community composition or total bacterial load of the airway microbiota between BTS Step 2 

and Step 4 asthma groups or the BTS Step 4 subgroups taking budesonide or fluticasone. 

However, significant differences in the abundance of many bacterial species (OTUs) 

between the groups were noted.  

4.4.1 Sputum microbiota diversity/composition and quantitation between the BTS 

Step 2 and BTS Step 4 groups 
The first point of interest from the study is the average sputum bacterial load of the cohort 

(~1x107 cfu/mL) which is in between that observed in healthy controls (~1x104 cfu/mL) and 

in individuals with CF (~1x109 cfu/mL). Even after accounting for oral/upper airway 

contamination and assuming that a significant number of these bacteria are viable this 

represents a substantial bacterial load which is likely to be biochemically and 

immunologically active and exert various effects upon the airways. It is possible that the 

increased bacterial load observed in this and other cohorts of subjects with airways disease 

could be used as a biomarker to distinguish patients with airways disease from those 

without although this requires further study. 

 

The lack of differences observed in the total bacterial load or the community composition of 

the microbiota between the BTS Step 2 and BTS Step 4 groups imply that the use of higher 

ICS doses in asthma does not lead to fundamental changes in the microbiota. The 

observation that several different species are found in higher abundance in subjects with 

less severe asthma is an interesting finding that requires further investigation.  

 

There are relatively few published studies in this area although two previous studies have 

compared the airway microbiota in asthmatic subjects with different severities of disease.  

 

Zhang et al. (821) compared the airway microbiota from of “severe” and “non-severe” 

asthmatics and found significant differences in bacterial community structure between the 

two groups. The severe group in this study consisted of subjects requiring “either 

continuous or near-continuous oral corticosteroids, high-dose inhaled corticosteroids, or 

both” whilst the non-severe asthmatics were defined as those with no symptoms and 

minimal use of rescue medication using ≤2000 μg BDP. It is clear from these definitions that 

the severe group from Zhang et al. had more severe asthma requiring higher steroid doses 

(equivalent to BTS Step 5) than the BTS Step 4 group from the present study.  In fact, the 

non-severe group from the Zhang et al. also had a higher average ICS dose than the BTS Step 

4 group of the present study (mean 1453 µg; SD 563 µg vs median 1000 µg; IQR 200 µg). A 

significantly increased abundance of Proteobacteria (including Haemophilus) and reduced 

numbers of Firmicutes were detected in the sputum of non-severe asthmatics when 

compared to severe asthmatics.  
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These findings would seem to be in contrast with those of the current study. However, the 

significant differences noted by Zhang et al were determined by comparing the relative 

abundance of bacteria grouped as phyla. The validity of comparing the relative abundances 

of whole phyla of bacteria is unclear due to the massive variation of organisms classified 

within the same phyla. Although such comparisons may allow the detection of a broad 

difference in microbiota community structure between two selected groups they are not 

biologically informative. This is because they allow no further assessment of the 

functionality of the organisms detected within these phyla and hence are unable to advance 

further understanding regarding the roles of particular species in the progression of disease. 

The current study did not make comparisons at phylum level for these reasons, instead 

comparing abundances at an OTU level, i.e. a much higher resolution level of sequencing, in 

order to try and identify specific species that could plausibly be linked to any observed 

differences between the two groups.   

 

Huang et al. (819) compared the microbial content of bronchial brushings from 30 “severe” 
and 41 “mild to moderate” asthmatic subjects. Severe asthmatics were defined as having a 
FEV1 of 40-80% predicted, an ACQ of >1.5 and a daily dose of ≥1000 µg beclomethasone. 
Subjects in the mild to moderate group with “sub-optimal” asthma control were defined by 
an ACQ >1.25 after 4 weeks of standardised treatment with 88 µg of fluticasone twice daily. 
These two groups were taking similar doses of ICS to the BTS Step 2 and 4 groups in the 
current study. However, both of these groups had sub-optimal asthma control whilst the 
groups in the present study had a lower ACQ score/better asthma control (BTS Step 2 0.9 
(0.6), BTS Step 4 1.2 (0.8)). The microbiota from the severe asthmatic group was found to be 
enriched in 53 genera compared to the mild to moderate subjects, the majority of which 
were Actinobacteria (with the remaining 5 all classifying to Gammaproteobacteria). Forty-
two genera were more abundant in the mild to moderate group with 19 of these belonging 
to the taxa Proteobacteria. These results contrast with those of the current study in which 
only 8 genera were enriched in the more severe (BTS 4) group and 31 were enriched in the 
less severe (BTS 2) group.  
 
At the species level there were significant differences in the abundance of a number of 
organisms between Step 2 and Step 4 groups. Upon review of the possible sources of these 
organisms they can be divided into several different groups (Table 4.22). 
 
 

Phylum OUT.ID BTS 2 BTS 4 

Environmental contaminants/uncertain significance 

Actinobacteria Microbacteriaceae1  ↑ 
Bacteroidetes Weeksellaceae ↑  

Frequent members of the oral microbiota (839) 

Actinobacteria Actinomyces.spp. (840) ↑  

Proteobacteria Aggregatibacter.segnis ↑  

Actinobacteria Atopobium.spp. ↑  

Bacteroidetes Capnocytophaga.spp. ↑  

Proteobacteria Cardiobacterium.spp. ↑  

Firmicutes Catonella.spp. ↑  
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Actinobacteria Corynebacterium.durum ↑  

Firmicutes Dialister.spp. ↑  

Firmicutes Granulicatella.spp. ↑  

Proteobacteria Lautropia.spp. ↑  

Fusobacteria Leptotrichia.spp. ↑  

Firmicutes Megasphaera.spp. ↑  

Firmicutes Oribacterium.spp. ↑  

Firmicutes Parvimonas.spp.  ↑ 
Actinobacteria Rothia.aeria ↑  

Actinobacteria Rothia.dentocariosa ↑  

Actinobacteria Rothia.mucilaginosa ↑  

Firmicutes Selenomonas.noxia ↑  

Firmicutes Selenomonas.spp. ↑  

Firmicutes Streptococcus.anginosus 
(841) ↑  

 TM7 (842) ↑  

 TM_7.Rs_045 (842) ↑  

Frequent members of the GI microbiota 

Proteobacteria Acidocella.spp. (843) ↑  

Firmicutes Bacillaceae1 (844)  ↑ 

Firmicutes Bacillaceae2 (844)   ↑ 

Proteobacteria Campylobacter.spp. (844) ↑  

Verrucomicrobia Cerasicoccaceae (845)  ↑ 

Bacteroidetes Dysgonomonas.spp.  ↑ 

Proteobacteria Enterobacteriaceae1  ↑ 

Firmicutes Moryella.spp. (846) ↑  

Organisms previously noted in lung microbiota 

Proteobacteria Neisseriaceae ↑  

Bacteroidetes Prevotella.melaninogenica ↑  

Bacteroidetes Prevotella.nigrescens ↑  

Bacteroidetes Prevotella.pallens ↑  

Bacteroidetes Prevotella.tannerae ↑  

Firmicutes Streptococcus.spp. ↑  

Firmicutes Veillonella.dispar ↑  

Table 4.22 The OTUs that demonstrate significantly different 
abundance between BTS 2 and 4 Groups grouped by most likely 

microbiota origin  
 
 
Broadly, the BTS 2 group were relatively enriched in a variety of organisms abundant in the 
oral microbiota and those previously noted in the lung microbiota whilst the BTS 4 group 
had a higher abundance of several organisms that are frequent members of the GI 
microbiota, although these differences are difficult to quantify.  
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Venkataraman et al. (796) have proposed that the lung microbiome in health is largely 

determined by a constant “neutral distribution” of microbes from the oral cavity via 

breathing and microaspiration, rather than the selective growth of bacteria within the 

airways. A model assuming this ‘neutral distribution’ of microbes from the upper airways in 

subjects with no lung disease found a strong overlap between OTUs detected in the oral 

cavity and those in the lung (goodness-of-fit/R2 of 0.86, where 1 is a perfect fit). By contrast, 

the poor fit of the model between OTUs in the upper airways and bacterial communities 

resident in diseased lungs suggest that the lung microbiota in disease states is shaped by 

processes of active selection. If such a model were to be correct, it may be that the critical 

determinant of lung microbiota composition “switches” at a certain point from dispersal of 

upper airway/oral microbes to establishment of a distinct and selective bacterial community 

during the progression of disease. The point at which this happens would necessarily 

depend on environmental selection pressures within the lung habitat including 

temperature, pH, oxygen tension, perfusion and the degree of inflammation and epithelial 

cell damage (799). The results of the current study would seem to provide some support for 

this model with the microbiota from the subjects with less severe disease (BTS Step 2) 

containing comparatively high abundances of species commonly isolated in the oral cavity 

which could be present in the lungs due to neutral distribution. The higher abundances of 

several organisms normally associated with the GI microbiota in BTS Step 4 subjects could 

represent the establishment of a distinct bacterial community that is either a cause or 

consequence of more severe disease.  

An increased abundance of Prevotella species was found in the BTS Step 2 group and 
reduced abundance of Prevotella species has previously been reported in subjects with 
severe asthma (821) and corticosteroid resistant asthma (817) in previous investigations. 
Hilty et al. (777) found controls were more likely than asthmatic subjects to be colonised 
with multiple species of Prevotella, which have previously been shown to directly inhibit the 
growth of a number of other bacteria. An increased abundance of Streptococcal species 
were identified in the BTS 2 group in comparison to the BTS 4 group which may be an 
interesting and unexpected finding given the obvious role of S. pneumoniae in respiratory 
disease. Unfortunately however the significance of this result is unclear as these 
Streptococcal OTUs lack the specificity to define distinct species. Cox et al. previously 
reported that 16S rRNA gene sequencing was unable to discriminate between S. 
pneumoniae and Streptococcus mitis, the latter being a normal commensal of the 
oropharynx (847). 
 

4.4.2 Sputum microbiota diversity/composition and quantitation between the BTS 

Step 4 Fluticasone and BTS Step 4 Budesonide groups 
No significant differences were found in the total bacterial load or the community 

composition of the microbiota between the BTS Step 4 Fluticasone (n=18) and BTS Step 4 

Budesonide (n=16) groups. This comparison was a specified outcome of the study as 

fluticasone use has been demonstrated to increase the relative risk of pneumonia in 

patients with COPD, with suggestions that this risk may also be increased in asthma and a 

possible cause of this could be alterations in the microbiota. No other studies have 

previously investigated this clinical question for comparative purposes.  
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Although there were no significant differences in the microbiota composition as a whole 

between these two groups, there were significant differences in the abundances of certain 

species. Upon review of the likely sources of these organisms several of them appear to be 

environmental contaminants or of uncertain significance (Anaerobacillus.spp., 

Exiguobacterium, Fluviicola.spp., Paracoccus.spp., Rhodobaca.spp., Xanthomonadaceae1), 

some are common members of the oral microbiota (Capnocytophaga.ochracea, 

Porphyromonas.endodontalis and Veillonellaceae2) and others of the GI microbiota 

(Dysgonomonas.spp., Lactobacillus.reuteri, Peptococcus.spp.).  

 

One potentially interesting difference between the two groups was the differing levels of H. 
parainfluenzae which was more abundant in Step 4 patients on fluticasone compared to 
those taking budesonide. This organism is a potential respiratory pathogen which has 
previously been noted to cause infection in subjects with chronic lung disease (848, 849). 
Goleva et al. (817) previously found an increased abundance of H. parainfluenzae in 
asthmatic subjects “resistant” to a treatment trial of oral prednisolone in comparison to 
those who were steroid “sensitive”. These authors also demonstrated an inhibitory effect of 
H. parainfluenzae on asthmatic airway macrophages in vitro. 
 

4.4.3 Sputum microbiota diversity/composition and quantitation between baseline 

and 24 h samples 

No significant differences were found in the total bacterial load or the community 
composition of the microbiota between baseline sputum samples and those taken at 24 
hours (n=20). This is in contrast to a previous study demonstrating significant differences in 
bacterial composition of sputa samples collected consecutively (850). However, this study 
was conducted using form of sequencing (T-RFLP) with a lower resolution in individuals with 
CF where a higher bacterial load and diversity would be expected and hence each individual 
sample may have been less representative of the overall microbiota. 
 
Another study assessing the day-to-day stability of the sputum microbiota from subjects 
with CF found no significant variability in the bacterial community structure or overall 
bacterial load during periods of clinical stability (851). 
 

4.4.4 Sputum microbiota diversity/composition and quantitation between baseline 

and 2 week samples 
No significant differences were found in the total bacterial load or the community 

composition of the microbiota between baseline sputum samples and those taken at 2 

weeks (n=20). 

 

This comparison was included in order to assess the longitudinal stability of the microbiota 

in stable asthma which has not previously been investigated. Longitudinal studies taking 

multiple sputum samples from individuals with CF over multiple time points have 

demonstrated an inherent stability in the microbiota even after short scale perturbations 

caused by exacerbations of disease or courses of antibiotics (800, 851-854).  
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4.4.5 Sputum microbiota diversity/composition and quantitation vs clinical measures 

No significant correlations were found between the total bacterial load or the community 
composition of the microbiota and the FEV1, sputum differential cell count, FENO level, PC20, 
LCQ score, ACQ score or inhaled steroid dose (BDP). 
 
Previous studies have found significant correlations between bacterial community structure 

and clinical measures in asthma. Huang et al. (814) found that the relative abundance of 

certain bacterial taxa primarily belonging to the Proteobacteria phylum were highly 

correlated with BHR. The cohort in the present study had an unusually low number of 

positive PC20 tests considering each had a physician diagnosis of asthma, the reasons for 

which are unclear. A standard protocol for the methacholine challenge was followed using 

appropriately calibrated equipment and subjects were asked to withhold their inhaled 

medication prior to the test as per the ATS guidelines on methacholine challenge testing 

(855). The fact that all subjects were clinically stable, had been using the same ICS dose for 

the past year and had not had any infections/asthma exacerbations in the last month would 

be expected to lessen the degree of AHR seen in these subjects, but this is unlikely to 

account for such a large number of negative tests. It is possible that some systemic error 

with the equipment or methacholine used for testing occurred, but this again seems unlikely 

given that the two staff who performed the test were experienced in performing the test 

and the methacholine used was replaced several times during the course of the study upon 

expiry.  

Huang et al. (819) found significant associations between poor asthma control (i.e. between 

visit differences in the Asthma Control Questionnaire) and increased sputum leucocyte 

values and a high relative abundance of Proteobacteria, whereas high BMI was associated 

with high relative abundance of Bacteroidetes/Firmicutes. However, no association between 

asthma control and microbiota diversity or composition were found in the present study. 

4.4.6 Study limitations 
The study results suggest there may be no true difference in the bacterial load or microbiota 
diversity between the groups compared. However, there are a number of possible 
confounding factors that could have influenced the lack of overall difference seen in the 
bacterial abundance and composition seen between the groups in this study. The first of 
these relates to a lack of specificity in selection of “asthmatic” patients. As described 
previously, asthma is a disease with a range of different endotypes/phenotypes. Previous 
investigations have found associations between certain disease characteristics and high 
relative abundance of certain organisms including subjects with severe neutrophilic asthma 
and abundant potentially pathogenic micro-organisms (635) and subjects with eosinophilia 
and high levels of Streptococcus (821). The subjects in this study were selected simply on 
the basis of a previous physician diagnosis of asthma but may contain several different 
endotypes/phenotypes with distinct differences in their microbiota. 
 

Another potential confounding factor in this study was the effect of age on the microbiota. 
This cohort was older than those examined in previous asthma microbiota studies with a 
mean age of 56 compared to a mean age in previous studies ranging between 26 and 48 
(777, 814, 815, 819, 821). Although the effect of age on the microbiota in asthmatic subjects 
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has not previously been investigated, studies from subjects with CF suggest that microbiota 
diversity decreases with age (856-858) potentially reducing any difference in microbiota 
composition between two groups of older subjects.  
 
A limitation inherent in all microbiota studies involving sputum is the contamination of 
sputum samples with upper respiratory tract and oral micro-organisms. Although it is likely 
that this contamination would be similar for most subjects some significant differences in 
the relative abundance of organisms commonly found in the oral cavity between BTS 2 and 
BTS 4 groups and BTS 4 fluticasone vs BTS 4 budesonide groups were noted. It is unclear if 
these differences are due to varying levels of oral contamination of sputum samples in 
subjects from different groups or if they represent changes in the lower respiratory tract 
microbiota. A degree of contamination is inevitable in studies of the respiratory microbiota 
as even in studies utilising bronchoscopy to collect samples directly with a protected 
specimen brush there may still be contamination of the bronchoscope when traversing the 
upper airways. Bronchoscopy studies in patients with asthma carry an inherent degree of 
risk and as such collecting sputum for microbiota analysis may represent the only suitable 
sampling method for studies involving significant numbers of subjects with asthma.  
 
Healthy controls were not included in the present study as it has already been quite well 
established that there are significant differences in the microbiota of those with asthma 
compared to those without.  However, the inclusion of controls might have been useful in 
determining likely environmental contaminants.  
 
Another limitation in this study is the lack of information regarding other micro-organisms. 
Whilst 16S rRNA gene sequencing allows detailed profiling of the bacterial content of a 
sample it does not enable identification of viruses and fungi. For a comprehensive 
understanding of the airways microbiota to form, the abundance and community 
composition of these other organisms needs to be quantified. 
 

4.4.7 Further Work 
Due to the relative paucity of knowledge in this area a number of questions are still to be 

answered. Ultimately to answer the question of whether ICS or other inhaled medications 

affect the microbiota a double blind RCT needs to be performed with microbiota sampling 

before and after an intervention. This could consist of either starting ICS in a steroid naïve 

cohort of asthmatic subjects or increasing ICS dose in a cohort of asthmatics already taking 

ICS. This design would minimise the problem of significant intra-subject baseline variability 

in microbiota composition that causes difficulty in the interpretation of cross-sectional 

studies.  

 

Another question that requires answering is the significance of high levels of potentially 

pathogenic bacteria detected using qPCR or 16S rRNA gene sequencing. Some of the 

subjects in the study had high levels of potential pathogens such as H. parainfluenzae 

detected but did not have active features of infection. This individuals could however be at 

risk of more severe features of disease such as more frequent exacerbations due to airway 

colonisation and further studies to investigate this possibility and the potential need for 

antibiotic treatment of these patients should be performed. 
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The findings of this study suggest that single sputum samples are well representative of the 

underlying microbiota and that the composition of the microbiota in asthma is largely stable 

over a short period when subjects are clinically stable. The stability of the microbiota in 

subjects with asthma over longer periods of time now needs to be established with 

longitudinal studies sampling the microbiota over a number of time points, ideally including 

periods of clinical stability and disease.  

 

Owing to the increasing awareness of different phenotypic/endotypic variants of asthma it 

will be necessary in future to specifically recruit subjects for microbiota studies that have 

already been phenotyped or incorporate into studies a planned post-hoc analysis of 

different sub groups or clusters of disease based on measured clinical or biochemical 

parameters. This is to avoid the potential error of failure of detection of significant 

differences in the microbiota between different sub-groups that may be specifically linked 

to certain features of disease. 

 

4.5 Conclusion 
In conclusion, there is no significant difference in the airway microbiota of BTS Step 2 and 

Step 4 asthma groups or BTS Step 4 subgroups taking budesonide or fluticasone in terms of 

overall bacterial load or microbiota diversity. However, certain species are more abundant 

in BTS 2 subjects and vice versa and these findings require further evaluation. The 

microbiota is likely to have an important role in the pathophysiology of airways disease, 

especially in severe disease.             
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Chapter 5: Conclusion 

Review of the existing literature in the field suggests airways diseases are heterogeneous 

phenomena which are currently categorised using ill-defined diagnostic labels that 

artificially separate patients with airways disease into ‘distinct’ groups. This categorisation is 

often based on symptoms and measurement of physiological markers such as airflow 

obstruction which lack specificity for the pathophysiological processes underlying these 

changes and hence are poor predictors of treatment response. This process has improved 

the recognition and outcomes of many patients that display the ‘classical’ features of these 

diagnostic labels, who probably represent frequently occurring phenotypes or ‘clusters’ of 

disease. However, the limitations of this approach for subjects elsewhere on the ‘spectrum’ 

of airways disease, who are often excluded from RCTs (859, 860), are becoming apparent. 

These limitations may account for the lack of further improvement in treatment outcomes 

of airways disease seen in Westernised nations over the last 10 years despite increasing 

expenditure. 

Evidence is accumulating that a number of different cellular and molecular pathways 

(‘endotypes’) underlie the clinical features (‘phenotype’) of airway disease expressed by an 

individual. These endotypes may combine and interact to produce an individual phenotype 

on the “spectrum” of airways disease (861), which may have the physical disease 

characteristics of any of the classically described conditions, either in isolation or 

combination. Therefore, rather than attempting to classify a subject as having a “disease” 

based on the measurement of certain physiological parameters and proceeding to treat 

them for that ‘disease’, outcomes may improve if treatment is specifically targeted at the 

underlying endotype(s) recognised in that individual. Studies demonstrating improved 

outcomes when treatment of airway disease is based on biomarkers appear to justify such 

an approach (299, 303). A new paradigm for the management of airways disease has been 

outlined based on the identification of characteristics (biomarkers or phenotypic 

characteristics) that are good predictors of treatment response (‘treatable traits’) in airways 

disease (160). 

The studies presented in this thesis provide further evidence of the potential benefits of 

such an approach. 

The first study “The utility of exhaled nitric oxide in patients with suspected asthma” 

demonstrated that the measurement of a biomarker of Th2 inflammation (FENO) has the 

potential to allow stratification of a cohort of patients presenting with “asthma-like” 

symptoms into those who are likely to benefit from ICS treatment and those who are not. 

Such an approach might avoid the problems associated with the current system of 

‘treatment trials’ of ICS which are complicated by issues of ‘regression to the mean’ of 

symptoms whilst using ICS and retrospective, often incorrect, diagnoses of “asthma”. This 

approach is currently being tested in a placebo controlled RCT which aims to determine 

whether a low level of exhaled nitric oxide can identify patients who will not benefit from 

inhaled steroid treatment. If this proves to be the case an algorithm that targets treatment 
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based on FENO level could potentially reduce the substantial costs associated with 

unnecessary ICS prescription, adverse effect exposure and incorrect diagnoses of asthma. 

Similar points regarding the identification of treatable characteristics in subjects with 

airways disease also emerge from the second study “An open label trial of azithromycin in 

chronic productive cough”. This cohort of patients with the symptom of chronic productive 

cough of ill-defined cause demonstrated a significant symptomatic improvement to 

azithromycin. These subjects are not easily categorised by any of the existing diagnostic 

labels for airways disease and many had experienced delayed recognition, consultation for 

and treatment of their symptoms, despite in some cases having had symptoms for years. 

The study suggests that using a biomarker (sputum neutrophil count) and/or biopsy 

evidence of inflammation may allow even more effective targeting of azithromycin than the 

CPC symptom alone, although the findings are limited by the lack of a placebo control and 

the small size of the study. Neutrophilic inflammation in airways disease appears to be a 

‘treatable trait’ which has been demonstrated to respond to macrolide therapy across 

groups of subjects with different disease labels. Further work in this area should 

concentrate on attempting to elucidate the pathological basis for this condition. The first 

step in doing this will be investigation of the bacterial content of the airways of these 

patients using the microbiota profiling techniques outlined in Chapter 4. Changes in 

microbiota composition have been noted in bronchiectasis and if this condition is indeed a 

precursor to bronchiectasis early changes to the microbiota such as increased abundance of 

potentially pathogenic organisms may be observed. Samples were taken and stored from 

this study and some initial microbiota analysis on these will be performed. Ultimately now 

this cohort has been identified and described further longitudinal studies need to be 

performed in patients from this cohort to determine the natural history of this condition. 

Such studies should aim to clarify whether these subjects will inexorably progress to 

develop radiological bronchiectasis and if treatment i.e. an RCT of azithromycin can delay or 

even potentially stop such progression.  

Both of these studies suggest that stratifying subjects with certain symptoms using 

biomarkers can allow accurate predictions of treatment response to be made. New studies 

investigating the potential of such an approach are currently underway.   

The third study “Microbiota in Asthma” aimed to characterise the airway bacterial 

microbiota in groups of subjects with diagnoses of asthma using specified dose ranges and 

types of inhaled steroids. The airway microbiota is a poorly described pathological 

component of airways disease, and this study aimed to describe in detail the bacterial 

communities extant within the airways of these different groups to determine whether 

inhaled steroid dose or type affected airway community composition. Broadly no 

differences in the abundance or community structure of bacteria in the airways were found 

between the BTS Step 2 and 4 treatment groups or the BTS Step 4 subgroups taking 

budesonide or fluticasone. This suggests that varying inhaled steroid dose or type does not 

fundamentally alter the airway microbiota, although significant differences in the 

abundance of certain bacterial species between the groups were noted. As the roles of 

particular bacterial species in the microbiota are further elucidated the importance of these 
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findings may become clearer. With the need to further characterise airways disease and 

recognise biomarkers for targeting treatment further studies of the airway microbiota, 

especially those based on answering clinically relevant questions, are required. Further work 

in this area should include the investigation of whether overall bacterial load or relative 

abundance of potentially pathogenic organisms such as H. influenzae or P. aeruginosa could 

serve as an early “biomarker” for airways disease that could be used to guide treatment. A 

future clinical interventional study should be planned in which ICS are introduced to steroid 

naïve subjects with longitudinal microbiota sampling over a prolonged time course. This 

study design would be the best way of answering the question of whether or not ICS affect 

the microbiota as it would allow comparison of intra subject comparison of bacterial airway 

composition pre and post ICS thus eliminating the considerable difficulties caused by 

significant inter subject microbiota variability. Systematic examination of whether 

microbiota composition varies between different airways disease phenotypes and 

interventional studies examining the effects of other therapeutic agents such as 

azithromycin on the microbiota should also be performed. 

In summary, the studies presented in this thesis provide support for the consideration of 

airways disease as a spectrum of disease with a number of underlying pathophysiological 

components, the recognition of which can be used to selectively target treatment 

potentially resulting in improved patient outcomes. As the biochemical and eventually 

fundamental genetic abnormalities that predispose to airways disease are further 

elucidated it is hoped that the continuing use of such an approach will ultimately abolish the 

need for existing archetypal disease labels and eventually lead to a new era of precision 

medicine in which specific treatments can be accurately targeted to an individual subject. 
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APPENDIX A:  

PATIENT INFORMATION SHEET  
(Version 2.0, 06/09/2012) 

 

Title: Reducing Costs in Asthma Management – A Pilot Study  

Chief Investigator: Dr Tim Harrison  

 

Introduction 

You are being invited to take part in a research study. Before you decide, it is important for 

you to understand why this research study is being conducted and what it will involve. 

Please take the time to read the following information carefully and discuss it with others if 

you wish. Please feel free to ask us if there is anything that is not clear or if you require any 

further information. You may keep this information for future reference.  

Purpose of the Study 

Your GP has recommended treatment with an inhaled steroid for suspected asthma. 
Although asthma is very common and you have symptoms which could be caused by 
asthma, we now know that a large number of patients treated for asthma have no firm 
evidence that they either have asthma or need inhaled steroid treatment. This is mainly 
because we have no really good tests to confirm if somebody does or does not have 
asthma.  
 
Researchers at the Respiratory Research Unit at Nottingham City Hospital wish to establish 
whether there are baseline tests which can reliably identify patients who will not benefit from 
inhaled corticosteroid treatment. If successful this will prevent patients taking a treatment, 
sometimes for many years, which they do not really require. 
 
Why have I been chosen? 

You have been chosen because you have been prescribed an inhaled steroid for suspected 

asthma.  

Do I have to take part? 

It is entirely up to you whether or not you decide to take part. If you do decide to take part 

you will be given this information sheet to keep and be asked to sign a consent form (you will 

be given a copy of this as well). If you decide to take part you are still free to withdraw at any 

time and without giving a reason. A decision to withdraw, or a decision not to take part, will 

not affect the standard of care you already receive or your legal rights.  

What will happen to me if I take part? 

If after reading the information sheet, you would like to take part in this study, please get in 

touch with a member of the study research team (their contact details are on the bottom 

page of this information sheet) and we will arrange an appointment for you at Nottingham 

City Hospital to discuss the study further and if agreeable we will ask you to sign a consent 

form.  

In addition to any tests your GP has already arranged, we would like to perform some 

additional tests and then review your response to your inhaled steroid at various time points. 

This will allow us to determine whether there are better ways of deciding who does or does 
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not need this treatment and will help your GP determine whether you need to continue taking 

your inhaled steroid. 

Visit 1 (Respiratory Research Unit, Nottingham City Hospital) 

This visit will ideally take place before you start taking your new inhaled steroid; and your GP 
will advise you whether this will or will not be possible. During this visit (approximately 2 
hours), you will be asked about your past medical history and the following procedures will 
be carried out: 
 

 Respiratory Questionnaires: You will be asked to fill out 2 short questionnaires 
(Juniper Asthma Control Questionnaire & Asthma Control Test) about your asthma 
symptoms and how it affects your daily life. 

 Spirometry Test: This simple blowing test is used to measure your lung function (the 
size of your lungs and how quickly you can empty them). You will be asked to 
breathe in and then blow out very fast into a mouth piece.  

 Blood Sample: We would like to take a small amount of blood (20mls or the 
equivalent of 4 teaspoons) from your arm for further analysis. 

 Bronchial Challenge: This test is performed to measure how irritable your airways 
are. You will be asked to breathe in very small quantities of a drug (Methacholine) 
that is designed to make you wheezy. After each dose we will measure your lung 
function as described previously and we will stop when your blowing test falls by 20% 
or earlier if you feel unwell. 

 Exhaled Nitric Oxide: This simple test measures the amount of inflammation in the 
breathing tubes by measuring the concentration of exhaled nitric oxide. It involves 
breathing into a tube connected to an analyser for a few seconds at various flow 
rates.  

 Allergy Skin Prick Test: This test is performed to determine whether you have a 
specific allergy to something and involves pricking your skin through a solution 
containing an allergen. This is a standard test, which measures your reaction to 6 
allergens; cat, dog, house dust mite, aspergillum, tree pollen & grass pollen. 

 Sputum Induction: We would like to take a sputum/phlegm sample to be analysed 
in our laboratories, to look for inflammatory cells and chemicals that may be 
responsible for causing your chest problem. If you cannot produce a sample 
spontaneously, we would like to ‘induce sputum’. This procedure involves inhaling 
mildly salty water for 5 minutes to produce a sputum sample. 

 
Visit 1a (Optional Visit, 24 hours after Visit 1) 
 
If after Visit 1, we believe you may have airflow obstruction, we would like you to attend for 
an optional visit, up to 24 hours after Visit 1, which will provide further information about your 
airways. However; please be aware that this visit isn’t an essential part of the study should 
this be inconvenient.  
 
During this visit (approximately 30 minutes), we will perform a spirometry test as before, but 
will also repeat this test again after you have taken a drug called salbutamol to look for an 
improvement in your lung function; this is called reversibility testing.  
 
Please be aware that if you are already taking salbutamol, you must stop taking this 
medication up to 6 hours before this test is conducted. However, your study doctor will 
advise you in more detail about this.  
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Visit 2 (Follow-Up – 1 month) 

We will ask you to attend for a follow-up visit at Nottingham City Hospital, 1 month after your 

initial visit, and whilst you are taking your prescribed inhaled steroid. The following tests will 

be repeated:- 

 Respiratory Questionnaires  

 Spirometry  

 Exhaled Nitric Oxide 

 Bronchial Challenge 

 Sputum Induction  

 Blood Sample 
 

Visit 3 (Final Visit – 3 months) 

We will ask you to attend for a final follow-up visit at Nottingham City Hospital, 3 months 

after your initial visit, and after you have finished taking your inhaled steroid where the 

following tests will be repeated:- 

 Respiratory Questionnaires 

 Spirometry  

 Exhaled Nitric Oxide Measurements 

 Bronchial Challenge 

 Sputum Induction  

 Blood Sample 
 

At this visit we will also be able to provide you and your GP with an in-depth review of your 

response to the inhaled steroid you will have been taking for 3 months, allowing your GP to 

make a clear decision on whether or not they feel you should continue with this treatment. 

What do I have to do? 

You should continue to carry on with your normal daily activities and take your usual 

medication. We also ask that you attend the scheduled study visits (although there is some 

flexibility in terms of the days and times when these occur) and complete the study 

paperwork.  

What are the possible benefits of taking part? 

It is hoped that the results of this study will lead to a greater understanding of asthma and 
which patients will and will not benefit from inhaled corticosteroid treatment. By taking part in 
this study you and your doctor will also have very detailed information about whether or not 
you have benefitted from the inhaled steroid you were prescribed and therefore whether or 
not it should be continued.  
 
What are the possible disadvantages/risks of taking part? 

As with all tests/procedures some people experience side effects, some of which are 

detailed below:- 

Sputum Induction: Occasionally the inhalation of salt solution in order to produce a sputum 

sample can make you wheezy. However, we will monitor you closely, and if necessary, this 

can quickly be reversed by using a Salbutomol inhaler (Ventolin) which will be present 
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throughout this procedure. Please be aware that this test will be performed by an 

experienced research nurse/officer. 

Bronchial Challenge: This is a simple and safe test widely used in the assessment of 

asthma. Nevertheless you may experience chest tightness, wheeze and a cough; however 

these symptoms are usually mild and only last for a few minutes. They are easily reversed 

by inhaling a drug for treating asthma (salbutamol).   

Allergy Skin Prick Test: This is a very safe test but can commonly cause itching around the 

site where the allergen has been introduced into the skin. The itching will last for about an 

hour, and can be reduced by taking an antihistamine if necessary.   

Blood Tests: Occasionally, some people feel faint during a blood test. If this occurs, please 

tell the person doing the test, as you should immediately lie down to prevent fainting. 

Sometimes after donating blood, a bruise develops where the needle was inserted.  

If you experience any unwanted side effects during the study you should inform a member of 
the research team. 
 
What will happen if I don’t want to carry on with the study? 

You are free to withdraw from this study at any time and without giving a reason. A decision 

to withdraw, will not affect the standard of care you already receive. However, please be 

aware, that should you wish to withdraw, the information collected so far cannot be erased 

and may still be used in the final project analysis. Any stored tissue samples that can still be 

identified as yours will be destroyed if you wish. 

Will my taking part in the study be kept confidential? 

We will follow ethical and legal practice and all information about you will be handled in 

confidence. 

If you join the study, some parts of your medical records and the data collected for the study 

will be looked at by authorised persons from the University of Nottingham who are 

organising the research. They may also be looked at by authorised people to check that the 

study is being carried out correctly. All will have a duty of confidentiality to you as a research 

participant and we will do our best to meet this duty.  

All information which is collected about you during the course of the research will be kept 

strictly confidential, stored in a secure and locked office, and on a password protected 

database.  Any information about you which leaves the hospital will have your name and 

address removed (anonymised) and a unique code will be used so that you cannot be 

recognised from it.   

Your personal data (address, telephone number) will be kept for up to 12 months after the 

end of the study so that we are able to contact you about the findings of the study. All other 

data (research data) will be kept securely for 7 years.  After this time your data will be 

disposed of securely.  During this time all precautions will be taken by all those involved to 

maintain your confidentiality, only members of the research team will have access to your 

personal data.  

 



  
 

299 
 

Information on the storage and use of tissue samples for research 

Any tissue sample you donate will be stored in a secure research facility at the University of 

Nottingham (Respiratory Research Unit, Clinical Sciences Building, Nottingham City 

Hospital), for as long as is required for the purposes of this study. The study researchers 

wish to measure the small particles (molecules/cells) found in your blood and 

sputum/phlegm in order to better understand asthma.  

Your sample will have your code which is unique to yourself, a barcode and date of study. 

By using these numbers, we can trace which sample belongs to you. The analysis of 

samples will take place within the Respiratory Research Unit at Nottingham City Hospital. 

Please note; your sample will not be sold for profit or used in any animal research.  

With your permission we would like to retain any remaining tissue/blood in a link-anonymised 
form for future laboratory research into respiratory disease (as yet unspecified). If you agree, 
the remaining tissue/blood will be stored on University premises under our Human Tissue 
Authority License. Finally, we often work together with scientists at other universities, as well 
as with commercial companies, and this often involves sharing research samples with them. 
With your consent we may wish to send some of your sample to third parties; including EU 
and Non-EU countries and commercial companies. Please be aware that your personal 
details would be removed in order that you cannot be identified by these third parties. If you 
agree to this, please indicate on the consent form as this is optional. 
 

Will any genetic tests be carried out?  

No 

Will travel expenses be reimbursed?  

Participants will not be paid an inconvenience allowance to participate in the study. 

However, we will cover the cost of travelling to the hospital (maximum £20 allowance per 

visit). 

Involvement of the General Practitioner/Family Doctor (GP) 

With your permission we will write to your GP to notify them that you are going to take part in 

this study and provide him/her with an in-depth review of your response to the inhaled 

steroid you will have been taking for 3 months; allowing your GP to make a clear decision on 

whether or not they feel you should continue with this treatment. 

Who is organising and funding this study? 

The research has been organised by the University of Nottingham and funded by the 

National Institute for Health Research (NIHR). Please be aware that the research team 

involved in this study are not being paid for including you in this study. 

Who has reviewed the study? 

All research in the NHS is looked at by an independent group of people called a Research 

Ethics Committee, to protect your interests. This study has been reviewed and given a 

favourable ethical opinion for conduct in the NHS by the Derby 1 Research Ethics 

Committee and will be subject to the Data Protection Act.   
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What will happen to the results of this study? 

We intend to publish the results of this study in a medical respiratory journal. A summary of 

these results will also be made available on the Nottingham Respiratory Research Unit’s 

website (www.nrbru.org.uk). Furthermore, a copy of any published material regarding the 

study will be made freely available to you. Please be aware that you will not be identified in 

any publications – all data used in the publications will be anonymous. 

 

What if there is a problem? 

If you wish to complain or have any concerns about the way in which you have been treated, 
please get in touch with the research team (see below), who will do their best to answer any 
problems you might have. In addition, the normal NHS complaints procedures are also 
available to you (e.g. Patient Advice and Liaison Service – PALS); please telephone  
0115 92449924 ext 65412 for Nottingham University Hospitals NHS Trust. 
 
In the event that something does go wrong and you are harmed during the research study 
there are no special compensation arrangements.  If you are harmed and this is due to 
someone’s negligence then you may have grounds for a legal action for compensation but 
you may have to pay your legal costs. 
 

Contact for Further Information 

If after reading this information sheet, you would like to take part in this study, please get in 

touch with a member of the research team (see contact details below, or please complete 

the reply slip and return it to us in the pre-paid envelope) and we will arrange an 

appointment for you at Nottingham City Hospital to discuss the study further.  

 

Dr Tim Harrison 
 
Respiratory Research Unit 
Clinical Sciences Building 
Nottingham City Hospital 
Nottingham 
NG5 1PB 
Tel: 0115 8231317 
E-Mail: tim.harrison@nottingham.ac.uk 
 
Or  
 
Emma Wilson (researcher)  
 
Respiratory Research Unit 
Clinical Sciences Building 
Nottingham City Hospital 
Nottingham 
NG5 1PB 
Tel: 0115 8231935 
E-Mail: emma.wilson@nottingham.ac.uk 
 

 

http://www.nrbru.org.uk/
mailto:tim.harrison@nottingham.ac.uk
mailto:emma.wilson@nottingham.ac.uk
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Appendix B: Juniper Asthma Control Questionnaire (ACQ)  
 
Please complete questions 1-6. Circle the number of the response that best describes 
how you have been during the past week.  
 
1. On average, during the past week, how often were you woken by your asthma during 
the night?  
 
0 Never  
1 Hardly ever  
2 A few minutes  
3 Several times  
4 Many times  
5 A great many times  
6 Unable to sleep because of asthma 

2. On average, during the past week, how bad were your asthma symptoms when you 
woke up in the morning?  
 
0 No symptoms  
1 Very mild symptoms  
2 Mild symptoms  
3 Moderate symptoms  
4 Quite severe symptoms  
5 Severe symptoms  
6 Very severe symptoms  
 
3. In general, during the past week, how limited were you in your activities because of 
your asthma?  
 
0 Not limited at all  
1 Very slightly limited  
2 Slightly limited  
3 Moderately limited  
4 Very limited  
5 Extremely limited  
6 Totally limited  
 
4. In general, during the past week, how much shortness of breath did you experience 
because of your asthma?  
 
0 None  
1 A very little  
2 A little  
3 A moderate amount  
4 Quite a lot  
5 A great deal  
6 A very great deal 
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5. In general, during the past week, how much of the time did you wheeze?  
 
0 Not at all  
1 Hardly any of the time  
2 A little of the time  
3 A moderate amount of the time  
4 A lot of the time  
5 Most of the time  
6 All the time  
 
6. On average, during the past week, how many puffs of short-acting bronchodilator (e.g. 
Ventolin) have you used each day?  
 
0 None  
1 1±2 puffs most days  
2 3±4 puffs most days  
3 5±8 puffs most days  
4 9±12 puffs most days  
5 13±16 puffs most days  
6 More than 16 puffs most days  
 
To be completed by a member of the clinic staff:  
 
7. FEV1 pre-bronchodilator: ..................................  
FEV1 predicted: ................................................  
FEV1 % predicted: ............................................  
(Record actual values on the dotted lines and score the FEV1 % predicted in the next 

column) 

0 >95% predicted 
1 95-90%  
2 89-80%  
3 79-70%  
4 69-60%  
5 59-50%  
6 <50% predicted 
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Appendix C: Asthma Control Test 

1) During the past 4 weeks, how often did your asthma prevent you from getting as 

much done at work, school or home? 

1 All of the time  

2 Most of the time  

3 Some of the time  

4 A little of the time  

5 None of the time  

 

2) During the past 4 weeks, how often have you had shortness of breath? 

 

1 More than once a day  

2 Once a day  

3 3-6 times a week  

4 1-2 times a week  

5 Not at all 

 

3) During the past 4 weeks, how often did your asthma symptoms (wheezing, coughing, 

chest tightness, shortness of breath) wake you up at night or earlier than usual in the 

morning?  

 

1 4 or more times a week  

2 2-3 nights a week 

3 Once a week  

4 Once or twice  

5 Not at all 

 

4) During the past 4 weeks, how often have you used your reliever inhaler (usually 

blue)? 

 

1 3 or more times a day  

2 1-2 times a day  

3 2-3 times a week  

4 Once a week or less  

5 Not at all  

 

5) How would you rate your asthma control during the past 4 weeks? 

1 Not controlled 

2 Poorly controlled 

3 Somewhat controlled  

4 Well controlled  

5 Completely controlled 
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APPENDIX D:  

Participant Information Sheet 

Final version 1.0 

 

Title of Study: An open label trial of azithromycin in chronic 

productive cough 

Name of Researcher(s): Dr Tim Harrison, Dr Matthew Martin, Dr Dominick 

Shaw, Dr Helen Roberts 

 

We would like to invite you to take part in our research study. Before you 

decide we would like you to understand why the research is being done 

and what it would involve for you. One of our team will go through the 

information sheet with you and answer any questions you have. Talk to 

others about the study if you wish. Ask us if there is anything that is not 

clear. 

 

 

What is the purpose of the study? 

 

We have noticed a group of patients presenting with a longstanding wet 

cough which has often been treated as asthma. The cough is productive 

of phlegm which frequently contains bacteria, and it does not get better 

with standard antibiotic treatment. 

 

A very similar cough is seen in people who smoke, have exposure to 

airbourne dusts or chemicals or have a condition known as bronchiectasis 

in which there is scarring of the airways in the lung leading to coughing 

up lots of phlegm. In our research study these problems have already 

been ruled out. 

 

We have found that prolonged treatment of people with longstanding wet 

cough with an antibiotic called azithromycin is very effective at improving 

the cough. However, using azithromycin in this way has not yet been 

studied in detail to work out how effective it is. 

 

Our research will try to work out what the cause for your cough is and if it 

is actually caused by a new condition which does not yet have a name. 

We will also try to determine how effective azithromycin is at improving 

the cough. 
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Why have I been invited? 

 

You are being invited to take part because you have a longstanding wet 

cough of unknown cause. We are inviting 50 participants like you to take 

part. 

 

 

Do I have to take part? 

 

It is up to you to decide whether or not to take part.  If you do decide to 

take part you will be given this information sheet to keep and be asked to 

sign a consent form. If you decide to take part you are still free to 

withdraw at any time and without giving a reason. This would not affect 

your legal rights. 

 

What will happen to me if I take part? 

 

Investigations 

 

Participants in this study will first have a series of additional investigations 

aimed at trying to discover the cause of their wet cough. These include:  

 Sputum microbiology and differential cell counts: Taking a 

sputum sample to look for inflammatory cells, bacteria and 

chemicals that may be responsible for causing your chest problem. 

We will take a further sputum sample with your agreement for 

storage and future analysis by a research team. This future analysis 

may involve looking for other inflammatory cells, chemicals or for 

DNA of any bacteria that may be present in the sputum.  

 Exhaled nitric oxide measurement: Measuring the amount of 

exhaled nitric oxide in your breath to measure the amount of 

inflammation in the breathing tubes of your lungs. 

 Exhaled carbon monoxide measurement: Measuring the 

amount of carbon monoxide in your breath to assess any exposure 

you may have had to cigarette smoke. 

 Leicester Cough Questionnaire: Completing a questionnaire 

assessing how your cough affects your life. 

 Blood samples: Blood samples will be taken at a certain point to 

ensure the azithromycin treatment does not affect your liver, which 

is one of its recognised side effects. 
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All of these investigations will take place in our research clinic at the 

Nottingham City Hospital. Further information on these investigations can 

be found on our website: 

(http://www.nrru.org/NRRU_Patient_Information.html). If you do not 

have access to the internet, printed information leaflets describing these 

tests in further detail are available upon contacting the Nottingham 

Respiratory Research Unit on the telephone number given below. 

 

Bronchoscopy 

 

We also intend to perform a procedure called a bronchoscopy on each of 

the participants in the study. Bronchoscopy is a routine diagnostic 

examination which allows us to directly examine the large air passages in 

the lung and retrieve cells from the lining of the airways.  Bronchoscopy is 

a safe procedure and carries little risk. 

 

The test takes about 15 minutes but you will need to be at the hospital for 

about half a day. It involves the following: 

   

You will be asked not to eat or drink anything for at least 6 hours prior to 

the bronchoscopy.  You can take your medication including inhalers as 

normal.  

 

You will be given oxygen to breathe throughout the procedure and the 

amount of oxygen in your blood will be measured throughout the test 

with a monitor around a finger (oximeter).  A small drip (cannula) will be 

placed in a vein in your arm and we will monitor your heart rate, and 

measure your blood pressure.  

 

A local (topical) anaesthetic called lignocaine, or an alternative, is then 

sprayed on to the back of the mouth and into the nose.  This anaesthetic 

numbs the nerves so that the bronchoscope can be easily inserted into 

the wind passage without discomfort.  Lignocaine is the same as the local 

anaesthetic used by dentists (you should let us know if you are allergic to 

any local anaesthetic agents).  Midazolam, or an alternative sedative, 

injected through the drip, is also given at this point to make you more 

relaxed and drowsy.  You may be given an injection of alfentanyl or 

fentanyl which are medicines which will also calm you and will prevent 

you from coughing too much. 

http://www.nrru.org/NRRU_Patient_Information.html
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The bronchoscope, which is a thin flexible instrument, is then passed 

usually through the nose and down the back of the throat.  If it is not 

easy to pass the bronchoscope through the nose, it will be passed through 

the mouth instead. More local anaesthetic is then placed on the vocal 

cords and the bronchoscope passed through the voice box and into the 

lungs. The following samples will be collected: 

 

1) Wash – a small amount of fluid is injected and sucked out. In all, we 

do this four times in succession.  

2) Biopsies – Small tissue samples (maximum of 10) will be taken 

from the airway wall.  

  

The samples obtained will be used to evaluate the structure of the airway, 

the types of inflammatory cells found in the airway wall and to measure 

the presence of proteins which could be involved in inflammation. With 

your consent some of the samples will be stored for future analysis which 

may include detecting the DNA of any micro-organisms present in the 

lung.  

 

After your examination, the lining of your mouth and throat will remain 

numb just in the same way as your mouth would after a dental 

procedure.  You will experience a sore-throat and a cough. These 

discomforts will wear off within the next 2 hours or so.  You should not 

eat or drink for at least 2 - 3 hours.  This precaution is necessary to keep 

food or liquids from accidentally entering the windpipe or lungs.  

 

As you will be given midazolam you will not be able to drive or operate a 

machine for 24 hours after administration. 

 

If clinically relevant information is obtained at the time of the 

bronchoscopy this will be shared with you and the relevant doctors 

involved with your care. The samples obtained will be anonymised and 

the results will not be put in your medical records 

 

Following bronchoscopy, we will invite you to start part 2 of the study, 

which involves treatment with the azithromycin antibiotic for a period of 

12 weeks. 
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Azithromycin (Other names: Zithromax) 

In this study, one tablet of azithromycin (dose 250mg) must be taken by 

mouth 3 times per week, on Monday, Wednesday and Friday. 

 

Timing of study 

Overall, participation in this study will require five visits to the 

Nottingham City Hospital over a period of 17-18 weeks, which is 

summarised here: 

 

PART 1 OF STUDY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clinic appointment visit 
 
You will be identified potential candidate for the study in a respiratory clinic appointment by 
one of the study team or one of our colleagues. You should have already had a number of 
investigations for your cough that have not fully explained the cause. You will be asked if you 
would like to take part in the study and any questions you may have will be answered. You will 
be asked to give written informed consent in order to take part in 
the study. 
 

Duration: 10-15 minutes 

Hospital visit 1 
 
Face to face visit with our research team in the hospital. This visit will take place in the 
Nottingham City Respiratory Research Unit. You will be seen by a doctor who will ask some 
questions relating to your condition to make sure you are eligible for the study. If so, we will 
measure the exhaled gases (nitric oxide and carbon monoxide) in your breath (explained 
above) and take some sputum samples with your permission for future analysis. We will 
perform a set of breathing tests (spirometry), and ask you to collect the sputum you produce 
over a day in a container, also making a note of the colour of this sputum.  
 
You will be asked to complete a questionnaire assessing how your cough affects your life. 
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PART 2 OF STUDY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bronchoscopy visit (week 2) 
 
You will attend the endoscopy unit in the hospital for a bronchoscopy (as described above).  
We will ask you to start taking the azithromycin after your bronchoscopy. 

Duration: 4 hours 

Hospital visit 3 (after 12 weeks of treatment) 
 
Face to face visit with our research team at the Nottingham City Respiratory Research Unit. 
You will be seen by a doctor who will repeat the investigations you had in visit 2, including the 
questionnaire, spirometry, sputum collection and colour, blood tests and ECG to assess the 
effects of the treatment. 
 
Duration: 1 – 1.5 hours 

Hospital visit 2 (4 weeks after starting treatment) 
 
Face to face visit with our research team at the Nottingham City Respiratory Research Unit. 
We will ask you some questions to see if you have experienced any problems with treatment 
and repeat some blood tests. 
 
Duration: 0.5 hours 

Finally, we will also take some blood tests and perform a simple electronic tracing of your 
heart activity (ECG) to ensure azithromycin will be safe for you to take. 
 
After these investigations we will provide you with the full 3 month course of azithromycin, to 
begin taking following bronchoscopy. 
 
Duration: 1.5 -2 hours 
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Expenses and payments 

 

Participants will be paid an inconvenience allowance to participate in the 

study of up to £150 including time and travel expenses. 

 

 

What are the possible disadvantages and risks of taking part?  

 

Investigations 

Providing sputum and blood samples and having the levels of carbon 

monoxide and nitric oxide in your breath measured do not pose any risks 

and are usually well tolerated.  

 

Bronchoscopy 

Bronchoscopy with lung biopsy is usually a very safe procedure but there 

are some very small risks associated with this.  

 

The medication for the bronchoscopy may make you feel lightheaded or 

dizzy. The initial medication, or placement of an IV drip, may cause local 

pain, bleeding and swelling. There is a very small risk (less than 1 in 100) 

of infection at the IV site. 

 

Likely side effects of the bronchoscopy and the related lavage and biopsy 

(occurring in 25 out of 100 procedures) include discomfort (coughing and 

occasionally gagging) and nosebleed (if the bronchoscope was passed 

through your nose). You may cough up small flecks of blood for 24 hours 

after the procedure. 

 

Hospital visit 4 (follow up visit) 
 
Face to face visit with our research team at the Nottingham City Respiratory Research Unit. 
You will be seen by a doctor who will assess your symptoms after treatment. We will again ask 
you to complete a questionnaire assessing how your cough affects your life. 
 
We will also take some final samples of your sputum including, with your permission, samples 
for future analysis. 
 

Duration: 0.5 – 1 hours 
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More serious complications from the bronchoscopy, lavage, and biopsy 

include major bleeding, collapse of the lung, vocal cord and windpipe 

spasms, pneumonia or bronchitis and irregular heartbeats. These have 

been reported but are extremely rare (occurring in less than 1 out of 

1000 procedures). One death has been reported after research 

bronchoscopy in the USA, but not in the UK. Many thousands of research 

bronchoscopies have been performed, so the risk of death is extremely 

remote. 

 

Azithromycin 

Azithromycin is a very safe medication which is commonly used to treat 

infection, and is often used over long courses of 3 months or longer. As 

with all medicines, it has side effects. Common side effects include 

stomach upsets and diarrhoea (which may occur in around 1 in 10 

people) and headaches and dizziness, tiredness or skin rashes (which 

may occur in around 1 in 100 people), but these are usually temporary 

and not serious. In rare cases azithromycin may cause more serious side 

effects relating to the heart or liver (less than 1 in 10,000) which will be 

carefully monitored for as part of the study. If you are allergic to any 

medications including antibiotics please let us know. 

 

It is important to note that in this study, azithromycin is being used “off 

licence” which means that the manufacturers of this drug do not currently 

have enough information to recommend or not recommend using the 

drug in this way. However, the drug has been licensed for use in very 

similar conditions as it has proven to be of benefit, and is already used off 

licence in our respiratory unit for people with your symptoms. 

 

 

What are the possible benefits of taking part? 

 

You may benefit from the 3 months of azithromycin treatment although 

we cannot promise that this study/trial will cure your cough. The 

information we get from this study may help explain what is causing it 

and help us treat patients in the future.  
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What happens when the research study stops? 

 

You will be referred back to your usual respiratory physician or GP and 

have further follow up if necessary in the normal respiratory clinic. 

 

 

What if there is a problem? 

 

If you have a concern about any aspect of this study, you should ask to 

speak to the researchers who will do their best to answer your questions.  

The researchers contact details are given at the end of this information 

sheet. If you remain unhappy and wish to discuss the matter further, you 

can do this by getting in touch with the Nottingham Hospitals Patient 

Advice and Liaison Service (PALS) in person, by telephone or e-mail who 

can try and resolve the situation. Details are provided below. If you still 

wish to make a formal complaint you can do this through the NHS formal 

complaints procedure (further details of which can be provided by the 

PALS service). 

 

Nottingham City Campus PALS service 

By person: PALS is on the South Corridor at Junction S6. Opening times 

9:30 – 4:30 pm Monday - Friday 

Tel: 0800 052 1195 (free from a landline) or 0115 969 1169 ext 59671 

E-mail: pals@nuh.nhs.uk 

Post: NUH NHS Trust, c/o PALS, Freepost, NEA 14614, Nottingham NG7 

1BR 

 

 

Will my taking part in the study be kept confidential? 

 

We will follow ethical and legal practice and all information about you will 

be handled in confidence. 

 

If you join the study, some parts of your medical records and the data 

collected for the study will be looked at by authorised persons from the 

University of Nottingham who are organising the research. They may also 

be looked at by authorised people to check that the study is being carried 

out correctly. All will have a duty of confidentiality to you as a research 

participant and we will do our best to meet this duty.  

 

mailto:pals@nuh.nhs.uk
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All information which is collected about you during the course of the 

research will be kept strictly confidential, stored in a secure and locked 

office, and on a password protected database.  Any information about you 

which leaves the hospital will have your name and address removed 

(anonymised) and a unique code will be used so that you cannot be 

recognised from it.   

 

Your personal data (address, telephone number) will be kept for 12 

months after the end of the study so that we are able to contact you 

about the findings of the study and possible follow-up studies (unless you 

advise us that you do not wish to be contacted).  All other data (research 

data) will be kept securely for 7 years.  After this time your data will be 

disposed of securely.  During this time all precautions will be taken by all 

those involved to maintain your confidentiality, only members of the 

research team will have access to your personal data. 

 

 

What will happen if I don’t want to carry on with the study?  

 

Your participation is voluntary and you are free to withdraw at any time, 

without giving any reason, and without your legal rights being affected. If 

you withdraw then the information collected so far cannot be erased and 

this information may still be used in the project analysis. 

 

 

Involvement of the General Practitioner/Family doctor (GP)  

 

We will inform your GP about your participation in the trial and send 

him/her a copy of this information sheet. 

 

 

What will happen to any samples I give? 

 

We would also like to seek your consent so that any remaining samples 

may be stored and used in possible future research – this is optional 

(please indicate you agree to this on the consent form). The samples will 

be stored with a code unique to you and securely at the University of 

Nottingham under the University’s Human Tissue Research Licence (no 

12265). 
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Some of these future studies may be carried out by researchers other 

than current team of Dr Harrison including researchers working for 

commercial companies. Any samples or data used will be anonymised, 

and you will not be identified in any way. If you do not agree to this any 

remaining samples will be disposed of in accordance with the Human 

Tissue Authority’s codes of practice. 

 

 

Will any genetic tests be done? 

 

No tests will be performed on any of your samples to determine any of 

your genetic information. In future studies, tests may be performed to 

detect the DNA of any micro-organisms (including bacteria) that may be 

present in the samples 

 

 

What will happen to the results of the research study 

 

We will publish the results of the trial in a high-profile respiratory 

medicine journal, present the results at various scientific conferences, and 

this work will form part of a thesis for a higher degree. You will not be 

identified in any report/publication. We will send you a newsletter with a 

summary of the results. 

 

 

Who is organising and funding the research? 

 

This research is being organised by the University of Nottingham and is 

being funded by the Nottingham Respiratory Medicine Department. 

 

 

Who has reviewed the study? 

 

All research in the NHS is looked at by independent group of people, 

called a Research Ethics Committee, to protect your interests. This study 

has been reviewed and given favourable opinion by Yorkshire & The 

Humber – Leeds West Research Ethics Committee. 
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Further information and contact details 

 

Further information can be obtained from our website: 

http://www.nrru.org/ 

 

Or by telephoning us on:  

 

Matthew Martin 

(Study Doctor) 

Tel: 0115 8231935 

 

Denise Barber                        OR           Tina Wilkinson 

(NRRU Secretary)                                  (CTU Receptionist)  

Tel: 0115 86231317                            Tel: 0115 8404844               

Fax: 0115 8231946                             Fax:0115 84026217 

 

Alternatively, you can write to us at the following address: 

 

Nottingham Respiratory Research Unit         

Room B28 

Clinical Sciences Building 

Nottingham City Hospital 

Hucknall Road 

Nottingham 

NG5 1PB 

 

 

http://www.nrru.org/
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Appendix E: Leicester Cough Questionnaire 
 

This questionnaire is designed to assess the impact of cough on various aspects 
of your life.  Read each question carefully and answer by CIRCLING the response 
that best applies to you. Please answer ALL questions, as honestly as you can.  

 

1. In the last 2 weeks, have you had chest or stomach pains as a result of your 
cough? 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
 
2. In the last 2 weeks, have you been bothered by sputum (phlegm) production 

when you cough? 

1 

Every 

time 

2         

Most 

times    

3            

Several 

times 

4     

Some 

times 

5            

Occasionally 

6         

Rarely 

7      

Never 

 
     

3. In the last 2 weeks, have you been tired because of your cough? 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
 

4. In the last 2 weeks, have you felt in control of your cough? 

1 

None of 

the time  

 

2      

Hardly 

any of 

the time  

3            

A little of 

the time         

4     

Some of 

the time 

5            

A good 

bit of the 

time  

6       

Most of 

the time  

7          

All of 

the time    

    
 

5. How often during the last 2 weeks have you felt embarrassed by your 
coughing? 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 
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6. In the last 2 weeks, my cough has made me feel anxious 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
 

7. In the last 2 weeks, my cough has interfered with my job, or other daily tasks 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
 

8. In the last 2 weeks, I felt that my cough interfered with the overall enjoyment 
of my life 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
 

9. In the last 2 weeks, exposure to paints or fumes has made me cough 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    

 
10. In the last 2 weeks, has your cough disturbed your sleep? 
 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
 
11. In the last 2 weeks, how many times have you had coughing bouts? 

1 

All  

the time 

(continuously) 

2       

Most 

times 

during 

the day 

3            

Several 

times 

during 

the day 

4     

Some 

times 

during 

the day 

5            

Occasionally 

throughout 

the day 

6    

Rarely 

7      

None  
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12. In the last 2 weeks, my cough has made me feel frustrated 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
    

13. In the last 2 weeks, my cough has made me feel fed up 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
 

14. In the last 2 weeks, have you suffered from a hoarse voice as a result of 
your cough? 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
 

15. In the last 2 weeks, have you had a lot of energy? 
 

1 

None of 

the time  

 

2      

Hardly 

any of 

the time  

3            

A little of 

the time         

4     

Some of 

the time 

5            

A good 

bit of the 

time  

6       

Most of 

the time  

7          

All of 

the time    

    

 
16. In the last 2 weeks, have you worried that your cough may indicate a 
serious illness? 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
    

 
17. In the last 2 weeks, have you been concerned that other people think 

something is wrong with you, because of your cough? 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 
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18. In the last 2 weeks, my cough has interrupted conversation or telephone 
calls 

1 

All of 

the time 

2       

Most of 

the time 

3            

A good 

bit of the 

time 

4     

Some of 

the time 

5            

A little of 

the time 

6    

Hardly 

any of 

the time 

7      

None of 

the time 

    
 
19. In the last 2 weeks, I feel that my cough has annoyed my partner, family or 

friends 

1 

Every 

time I 

cough 

 

2       

Most 

times 

when I 

cough  

3            

Several 

times 

when I 

cough         

4     

Some 

times 

when I 

cough 

5            

Occasionally 

when I 

cough  

6       

Rarely  

7          

Never    

 
 

 
 

LCQ score:     
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Appendix F: AZCC Bronchoscopy Sample Collection  

Order of collecting samples*: 

*Order can be changed if patient not tolerating procedure/frequently coughing as washing 

first may stimulate increased cough. However, this order is preferable to minimise 

contamination of wash samples with blood* 

 

[1] RUL bronchial wash (15ml total – split into 3) – collected into universal sample 

containers 

 

 

[2] 4-8 bronchial biopsies from R bronchus intermedius: 

 

 

OPTIONAL – depending on specific patient consent and tolerance of 

procedure 

[3] 2 bronchial brushings of sub-carina/right bronchus intermedius 

 

 

 1 x 5ml sample labelled with patient details/NHS no and sent to microbiology 

labelled ‘CLINICAL TRIAL 13RM015’ 

 2 x 5ml samples labelled with patient study number only and sent to CSB lab 

 

 

 2-4 into formalin containing histopathology sample container (Labelled with patient 

details/NHS no) and sent to histopathology labelled ‘Azithromycin in Chronic Cough 

Study FAO Dr Soomro’ 

 

 2-4 into universal sample containers containing PBS (labelled with patient study 

number only) sent to CSB lab 

 into 1x 3ml Falcon tube containing BEGM + 1%PSF (labelled with patient study number 

only) sent to CSB lab 
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AZCC Bronchoscopy Sample Processing 

 

Bronchial Washes (x2) 

1x 5ml sample for cell count/viability/supernatant frozen for cytokine analysis 

 Centrifuge for 10 min at 400g  

o Pellet – For cell count/differential 

o Supernatant – divide into aliquots and freeze at -700C (for later cytokine 

analysis) 

 

1x 5ml sample for storage for microbiota work 

 Centrifuge at 1000 rpm for 5 mins  

 Supernatant transferred to a fresh tube and centrifuged at top speed (4180xg) for 15 

mins.  

 Pellet from the first spin labelled “pellet 1” along with the donor information/date 

 Second pellet labelled as “pellet 2” again with donor information 

 Supernatant stored (backup for cytokine analysis) 

Both cell pellets are stored at -800C for bacterial PCR at a later date 

 

Bronchial Biopsies (x4) 

2 sent to histopathology (FAO Dr Soomro) 

Processed, paraffin blocks made 

Initial report made. Samples saved for later reporting once responders/non responders 

identified 

2 for Biobank 

 

Bronchial Brushes (x2) 

For Biobank 
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Appendix G: Radiology  Scoring  Sheet  for  CTs   

 

Atelectasis 0 
None 

1 
<3 areas 

<3cm bands 

2 
>3 areas 

3 
Large 
bands 

 

 

Characteristic   Areas affected 
Lymphadenopathy 
 

Yes No  

Pleural thickening 
 

Yes No  

Patulous oesophagus 
 

Yes No  

Collapsible airways 
 

Yes No  

Endobronchial mucus 
retention 

Yes No  

Ground glass change 
 

Yes No  

Tree in bud changes Yes 
 

No  

AP diameter  
 

 

Other changes/ 
Relevant clinical info 

 
 
 
 

 

Obesity 0 
Underweight 

1 
Expected  

2 
Overweight 

3 
Obese 

Characteristic    Areas affected 

Bronchial wall 
thickening 

0 
None 

1 
Some  

2 
Prominent 

 

Airway 
dilatation 

0 
None 

1 
Minor 

dilatation 

2 
Minor 

bronchiectasis 

 

Mosaic 
perfusion 

0 
None 

1 
Some  

2 
Prominent 
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Study No Bronchial wall thickening BWT Areas affected Airway Dilatation AD Areas affected

AZCC01 0 0

AZCC02 0 0

AZCC03 1 3,4 1 3,4

AZCC04 0 1 4

AZCC05 1 perihilar 2 3,4

AZCC06 0 1 2,3

AZCC07 0 1 3,4

AZCC08 1 perihilar 1 4

AZCC09 0 0

AZCC10 0 2 3,4

AZCC11 2 2,3,4 2 3,4

AZCC12 1 perihilar 1 2,3,4

AZCC13 1 perihilar 1 4

AZCC14 0 1 2

AZCC15 0 1 2,3,4

AZCC16 0 1 4

AZCC17 0 2 3,4

AZCC18 2 perihilar 0 0

AZCC19 0 0

AZCC20 1 2,3 1 2,3

AZCC21 0 1 4

AZCC22

AZCC23 0 1 2

AZCC24 1 perihilar 1 3

AZCC25 1 3 2 3,4

AZCC26 0 1 4

AZCC27 0 0

AZCC28 1 perihilar 0

AZCC29 1 perihilar 0

AZCC30 1 3,4 1 3,4

APPENDIX H: AZITHROMYCIN STUDY CT FEATURES DATA
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Study No Atelectasis Atel Areas affected Mosaic Perfusion MP Areas affected Lymphadenopathy

AZCC01 0 0 0

AZCC02 1 2 0 0

AZCC03 0 0 0

AZCC04 0 0 0

AZCC05 2 4 1 0

AZCC06 2 4 0 0

AZCC07 0 0 0

AZCC08 2 0 0

AZCC09 1 4 0 0

AZCC10 1 4 0 0

AZCC11 2 3,4 1 0

AZCC12 2 4 1 0

AZCC13 2 4 1 0

AZCC14 0 0 0

AZCC15 0 0 0

AZCC16 1 4 0 0

AZCC17 2 3,4 0 0

AZCC18 1 3 0 0

AZCC19 1 4 0 0

AZCC20 1 3,4 1 0

AZCC21 3 4 0 1

AZCC22

AZCC23 1 4 1 0

AZCC24 2 3,4 1 1

AZCC25 1 4 1 0

AZCC26 0 0 0 0

AZCC27 0 0 0

AZCC28 1 2 0 0

AZCC29 0 0 1

AZCC30 1 4 1 2,3 0
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Study No Pleural changes Patulous oesophagus Collapsible airways Endobronchial mucus 

AZCC01 0 0 0 0

AZCC02 0 0 0 0

AZCC03 0 0 0 0

AZCC04 0 0 0 0

AZCC05 0 1 0 0

AZCC06 0 1 0 0

AZCC07 0 0 0 0

AZCC08 0 0 0 0

AZCC09 0 0 0 0

AZCC10 0 0 0 1

AZCC11 0 0 1 1

AZCC12 0 0 0 1

AZCC13 0 0 0 1

AZCC14 0 0 0 0

AZCC15 0 0 0 0

AZCC16 0 0 0 0

AZCC17 1 0 0 0

AZCC18 0 0 0 0

AZCC19 0 0 0 0

AZCC20 0 0 0 0

AZCC21 1 1 0 1

AZCC22

AZCC23 0 0 0 0

AZCC24 0 0 0 0

AZCC25 0 0 0 0

AZCC26 0 0 0 0

AZCC27 0 0 1 0

AZCC28 0 0 0 0

AZCC29 0 0 0 0

AZCC30 0 0 0 0
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Study No Ground glass change Tree in bud AP Diameter Obesity Other changes

AZCC01 0 0 1 Poor quality scan

AZCC02 1 0 1 Ground glass changes (4)

AZCC03 0 0 2

AZCC04 1 0 1 Ground glass changes patchy, small

AZCC05 0 1 3  breathing artefact on scan

AZCC06 0 0 29.8/16.0 1

AZCC07 0 0 3 Poor quality breath-hold

AZCC08 0 0 1 Longstanding elevated R hemidiaphragm 

AZCC09 0 0 1 Enlarged thyroid. Pulmonary nodule RLL

AZCC10 0 0 24.3/9.1 1 Poor quality breath-hold

AZCC11 0 0 21.6/14.0 2 Slight collapse of trachea

AZCC12 1 0 30.6/16.4 1  ground glass change peribronchial 

AZCC13 0 1 21.2/13.4 1 patchy tree in bud 

AZCC14 0 0 24.4/11.3 1 thymic density ant mediastinum

AZCC15 0 0 2

AZCC16 0 0 23.1/11.5 2 movement artefact

AZCC17 0 0 1 few small areas pleural thickening (3)

AZCC18 0 0 23.5/21.1 3

AZCC19 0 0 28.0/20.0 3 motion artefact

AZCC20 1 0 2 ground glass change lingula

AZCC21 1 0 2 hilar +mediastinal LN

AZCC22

AZCC23 0 0 2 poor breath hold

AZCC24 0 1 2 mediastinal LN >12mm

AZCC25 0 0 2

AZCC26 0 0 1

AZCC27 0 0 2 L+R main bronchi narrowed

AZCC28 0 0 1 thyroid enlargement

AZCC29 0 0 1 small volume mediastinal LN

AZCC30 0 0 1
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Appendix I: Microbiota in CF Literature Review 

YEAR NAME NO OF PTS SAMPLING 

TYPE 

SEQUENCING 

METHOD  

DESCRIPTION/RESULTS 

2008 Bittar et 

al. 

16 children 

9 adults 

Spontaneously 

expectorated 

sputum (SES) 

Sanger 

sequencing 

1) One of the first studies to compare standard microbiological culture 

and DNA sequencing for bacterial detection. 

2) ~58% of isolated bacteria were detected only after cloning and 

sequencing. The pathogenic species were only detected after 

amplification and cloning (7 cases). 

3) New or emerging bacteria not or rarely reported in CF patients 

were detected including Dolosigranulum pigrum, Dialister 

pneumosintes, and Inquilinus limosus. 

2010 Cox et al. 51 patients 

19 children 

32 adults 

SES (from 

adults) 

Deep throat 

swab (from 

paediatric 

patients) 

Phylochip 1) Older CF patients with worse pulmonary function have a less 
diverse lung microbiota consisting of a ‘core’ of phylogenetically 
related colonising pathogenic species in comparison to younger 
patients.  

2) Using longitudinal samples collected from a subset of patients the 
initially diverse bacterial community observed in younger patients 
becomes less rich and diverse over time. 

2011 Tunney et 

al. 

23 patients, before 

and after IV ABx 

treatment for CF 

exacerbation 

SES T-RFLP 

qPCR 

1) One of the first studies examining the respiratory microbiota in CF 
patients before and after antibiotic treatment of CF exacerbations. 

2) Demonstrated significant inter-patient variability in microbiota 
composition but little intra-patient variability (i.e. stability) in 
composition of the bacterial community despite treatment with IV 
antibiotics. 

3) There was a decrease in bacterial abundance following treatment, 
and this effect was more evident for aerobes including 
Pseudomonas spp. than for anaerobes. This may well be because 
antibiotic treatment was targeted at Pseudomonas spp. 
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2011 Van der 

Gast et al. 

14 adult CF patients SES Sanger 

sequencing 

1) Study attempted to partition bacterial community into core and 
satellite taxa. 

2) The ‘Core’ taxa consisted of 15 taxa from 7 genera including 
Pseudomonas (1 taxon), Streptococcus (2), Neisseria (2), Catonella 
(1), Porphyromonas (1), Prevotella (5) and Veillonella. 
Pseudomonas was by far the most dominant organism. 

3) The ‘Satellite’ taxa consisted of 67 bacterial taxa from 33 genera. 
4) The CFTR genotype and antibiotic treatment were significantly 

correlated with the composition of all taxa and the core group 
members. 

5) A significant correlation was found between FEV1 and taxa richness 
(number of different taxa), with a significant positive linear 
relationship between these two variables. 

2011 Sibley et 

al. 

   1) Comparison of DNA based sequencing of microbiota with standard 
culture techniques. 

2) Standard culture detected a fraction (65.1%) of the organisms in 
sputum detected using T-RFLP. However, by using extended culture 
techniques to enhance the growth of organisms which are not 
classic CF pathogens (particularly anaerobes) this proportion was 
increased to 84%. 

3) Organisms detectable with 103 and 104 16S rRNA gene sequences 
recovered by culture in 100% and 86.8% of instances respectively.  

2012 Zhao et al. 6 adult male CF 

patients (3 stable 

disease, 3 

‘progressive’ disease). 

Multiple samples over 

8-9 year period 

totalling 126 

SES Pyrosequencing 1) Demonstrated significant decrease in bacterial community 
diversity (measured by Shannon index) over time in patients with 
typically progressive lung disease but remained relatively stable in 
patients with a mild lung disease phenotype. 

2) Antibiotic treatment was associated with pronounced shifts in 
community structure, but communities showed both short and 
long term resilience after antibiotic perturbation. 

3) Antibiotic use, rather than patient age or lung function, was the 
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primary driver of decreasing diversity. Inter-patient variability in 
community structure exceeded intra-patient variability in serial 
samples. 

4) Despite decreasing community diversity in patients with 
progressive disease, total bacterial density remained relatively 
stable over time.  

2012 Stressman 

et al. 

14 adult patients, 

samples collected 

every month for 12 

months 

SES T-RFLP 1) Subjects’ bacterial communities were found to be stable over the 
course of a year, changing little during this time despite 
intervening respiratory exacerbation periods. 

2) Some changes were observed during antibiotic treatment but 
these did not persist and returned to approximate pre-treatment 
structures within a month. 

3) Concluded that in the CF lung, community richness is inversely 
correlated with lung disease severity. 

4) P. aeruginosa was associated with lower community richness and 
lower lung function. 

2012 Delhaes et 

al. 

4 adult CF patients, 2 

samples each 

SES Pyrosequencing 

(16S rDNA and 

ITS2 locus for 

fungi) 

1) First study in CF patients to sequence both bacterial and fungal 
lung communities. 

2) Discovered diverse and complex bacterial and fungal communities, 
in which more than 60% of the species or genera were not 
detected by standard cultures.  

3) The diversity and species richness of fungal and bacterial 
communities was significantly lower in patients with decreased 
lung function and poor clinical status. 

2012 Fodor et 

al. 

23 adult CF patients. 

Samples collected 

before and after 

antibiotic treatment 

for exacerbation. 

SES 

Mouthwash 

samples 

Pyrosequencing 1) Antibiotic treatment was associated with a small decrease in 
species richness but minimal change in overall microbial 
community structure. 

2) Microbial community composition was highly similar in patients 
during an exacerbation and when clinically stable, suggesting that 
exacerbations may represent intrapulmonary spread of infection 
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Total of 26 matched 

pairs. 

rather than a change in microbial community composition. 
3) Mouthwash samples, obtained from a subset of patients, showed a 

nearly identical distribution of taxa to expectorated sputum, 
indicating that aspiration may contribute to colonization of the 
lower airways.  

4) Strong correlation between low species richness and poor lung 
function. 

2012 Goddard 

et al. 

10 CF subjects 

undergoing lung 

transplantation – 

lung, sputum and 

throat samples taken 

 

5 non-transplant 

subjects with 

FEV1<30% predicted 

provided throat and 

sputum samples. 

  

3 non-transplant 

subjects provided 

multiple day sputum 

samples while 

clinically stable. 

Lung samples, 

SES and throat 

samples 

Pyrosequencing 1) The microbiota of lung explants from patients with advanced CF 
was found to be almost entirely comprised of typical CF pathogens 
(~98%) with Pseudomonas spp. by far the most dominant.  

2) Throat and sputum samples obtained from the same patients 
immediately before surgery gave different results. 

3) The throat specimens were highly discordant with lung samples, 
containing a wide range of non-typical organisms not found in the 
lung explants.  

4) The sputum samples identified the dominant lung pathogen. 
However, in ∼1/2 of the cases, sputum contained diverse mixtures 
of non-typical organisms (comprising ∼25% of microbiota) that 
were either not found or were at very low abundance in the lungs 
of subjects.  

5) Sputum specimens showed day-to-day variation in the abundance 
of non-typical organisms in the absence of clinical changes.  

6) These findings suggest that oropharyngeal contamination may 
confound DNA based measurements on upper airway samples. 

2013 Zemanick 

et al. 

21 CF subjects 

37 sputum samples 

collected 

SES samples Pyrosequencing 1) Comparison of microbial content of sputum taken during early 
treatment (days 0-3) and late treatment (>7 days) of pulmonary 
exacerbation, with concurrent measurement of inflammatory 
markers.  
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2) At early treatment, lower diversity was associated with high 
relative abundance of Pseudomonas spp. (r =-0.67, p<0.001), 
decreased FEV1% predicted (r = 0.49, p = 0.03) and increased CRP  
(r =-0.58, p = 0.01).  

3) Obligate and facultative anaerobes were associated with less 
inflammation and higher FEV1.  

4) P. aeruginosa abundance decreased with treatment (by qPCR), 
while anaerobic genera showed a variable response.  

5) Change in the relative abundance of Prevotella was associated with 
more variability in FEV1 response to treatment than changes in 
Pseudomonas or Staphylococcus abundance. 

2013 Carmody 

et al. 

28 patients 

68 paired 

baseline/exacerbation 

sputa 

SES Pyrosequencing 1) There was no significant difference in bacterial community 
diversity and bacterial density between baseline and exacerbation 
samples.  

2) However, in a subset of patients considerable changes in 
community structures were observed. In these patients, the initial 
level of community diversity and dominant taxa were found to 
significantly predict the magnitude of community structure 
changes at exacerbation. 

3) The diversity of Pseudomonas dominant communities increased at 
exacerbation compared with communities with other or no 
dominant species.  

4) The relative abundance of Gemella increased in 24 (83%) of the 29 
exacerbation samples and this was the genus found to have the 
best discriminatory value between baseline and exacerbation 
samples. 
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Appendix J: Microbiota in COPD Literature Review 

YEAR NAME NO OF PTS SAMPLING 

TYPE 

SEQUENCING 

METHOD  

DESCRIPTION/RESULTS 

2011 Erb-

Downward 

et al. 

3 ‘healthy 

controls’ 

7 ‘healthy 

smokers’ 

4 COPD 

6 explanted 

lungs from 

severe COPD 

BAL 

 

 

 

 

Dissected 

lung 

explants 

Pyrosequencing 1) Subjects had distinct pulmonary microbiome – significantly different from 

oral cavity/nasopharynx 

2) Propose “core” lung microbiome including Pseudomonas, Streptococcus, 

Prevotella, Fusobacterium, Haemophilus, Veillonella, and Porphyromonas 

species 

3) No significant quantitative differences in bacterial numbers between groups 

4) Diversity of microbiome lower in moderate/severe COPD than other groups 

and most commonly dominated by Pseudomonas spp. 

5) Demonstrated significant heterogeneity in bacterial community between 

microanatomic sites in severe COPD lung 

2010 Huang et al. 8 mechanically 

ventilated 

COPD patients 

with ‘COPD 

exacerbation’ 

Endotrache

al aspirates 

Phylochip Suggested ‘core’ pulmonary bacterial community of 75 taxa detected in all 

patients including pathogenic species 

2012 Sze et al. 8 ‘healthy’ 

non-smokers 

8 ‘healthy’ 

smokers 

8 severe COPD 

(GOLD 4) 

8 CF 

Lung tissue 

sections 

T-RFLP 

Pyrosequencing 

1) Lower bacterial densities from lung tissue samples than BAL/PBB samples 
2) No difference in total bacterial number or diversity between non-smokers, 

smokers and COPD 
3) CF lung much higher bacterial density and lower diversity 
4) COPD –increased abundance of Firmicutes phylum 
5) T-RFLP/sequencing demonstrated 3 distinct bacterial community 

compositions: Non-smoker/smoker, COPD and CF 

2012 Pragman et 14 Moderate BAL Pyrosequencing 1) Main phyla in all samples were Actinobacteria, Firmicutes, and 
Proteobacteria 
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al. COPD 

8 Severe COPD 

4 smokers 

6 non-smokers 

2) Moderate and severe COPD samples showed significantly higher diversity 
than control samples but not significantly different to each other (when 
corrected for age) 

3) A few COPD patients by contrast had very low diversity scores 
4) Patients using ICS or inhaled bronchodilators found to have consistent 

differences in microbiota composition compared to those who did not using 
‘principal co-ordinate analysis’  

2012 Cabrera-

Rubio et al. 

6 Moderate 

COPD (3 

surgically 

treated for 

lung ca and 1 

for breast Ca) 

Sputum, 

bronchial 

aspirate, 

BAL and 

bronchial 

mucosa 

from each 

patient 

Pyrosequencing 1) Upper respiratory samples, sputum and bronchial aspirate, showed low 
diversity and the frequent recovery of phyla that are part of the 
oropharyngeal flora of the healthy subject, such as Firmicutes and 
Bacteroidetes 

2) Lower bronchial tree samples (BAL and bronchial biopsy specimens) showed 
a more diverse microbiome with a close community profile in both samples, 
a minor representation of oropharyngeal flora, and the recovery of genera 
that included potentially pathogenic micro-organisms 

2013 Zakharkina 

et al. 

9 Severe COPD 

(GOLD 3-4) 

9 ‘Healthy’ 

controls 

BAL T-RFLP 

Sanger 

sequencing 

1) Suggested ‘core’ microbiome in the lower respiratory tract comprising of 
Prevotella, Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, 
Megasphaera, Veillonella, Staphylococcus, and Streptococcus species 

2) No difference in diversity between COPD/’healthy’ subjects 
3) Two COPD patients were identified with significantly lower diversity 
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Appendix K: Methodology/Sample Collection of Lung Microbiota Literature Review 

YEAR NAME NO OF PTS SAMPLING 

TYPE 

SEQUENCING 

METHOD  

DESCRIPTION/RESULTS 

2006 Rogers et al. 19 adult CF 

patients 

SES 

Oral wash 

T-RFLP profiling 1) Comparison of T-RFLP profiles of sputum and oral wash to 
determine degree of any possible contamination.  

2) T-RFLP profiles significantly different in paired SES and oral wash 
samples. 

3) Suggests that sputum expectorated from the lungs of CF patients 
is not contaminated to a significant degree by bacteria present in 
the oral cavity. 

2010 Rogers et al. 10 adult CF 

patients. SES 

and induced 

sputum (IS) 

samples 

collected on 

days 1,3 and 7 

SES 

IS 

T-RFLP profiling 1) Found no significant difference in the bacterial composition of 
SES and IS samples, regardless of the period for which induction 
was performed. 

2) Showed that analysis of multiple samples is required in order to 
obtain a comprehensive view of the bacteria present in the 
lower CF airways. 

3) Only after analysis of multiple (≥5) samples did the number of 
new species detected from each further sample decrease. 

4) Estimate that one SES sample only contains about 60% of all of 
the species identified in total from 5 samples. 

2011 Charlson et 

al. 

6 healthy 

subjects 

Oral wash 

Oropharyngeal 

swabs 

Nasopharyngeal 

swabs  

Serial BAL 

Lower airway 

protected brush 

Pyrosequencing  

16S qPCR  

1) Compared samples taken from the URT (oral wash and 
oropharyngeal swabs) with those taken from the lung (BAL and 
protected airway brushings). 

2) Found no significant difference between bacterial communities 
in lung and upper airway – but bacteria in lung much less 
abundant (biomass 2 to 4 logs lower). 

3) Some lung specific sequences isolated but these were rare. 
4) Also noted low level contamination (with ‘environmental’ 
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organisms) of lavage saline and pre-bronchoscopy channel 
specimens. 

5) Nasopharyngeal samples showed distinctly different bacterial 
community, with the detection of many species associated with 
the skin microbiota, including Staphylococcaceae and 
Propionbibacteriaceae. NP samples also contained some 
organisms usually found in the oral cavity e.g. Streptococcaceae 
and Prevotellaceae. 

2012 Charlson et 

al. 

6 subjects: 

3 lung 

transplant 

recipients 

1 subject with 

sarcoidosis 

1 subject with 

adenocarcinoma 

1 subject with 

bronchiolitis 

obliterans 

organizing 

pneumonia 

(BOOP)  

Matched oral 

wash and BAL 

samples 

Pyrosequencing 

 

1) Compared BAL and oral wash samples in ‘healthy subjects’. 
2) Found no significant difference in bacterial communities in lung 

and oral cavity for 3/6 subjects. 
3) BAL samples from the other 3/6 subjects showed a number of 

sequences that were significantly more abundant in BAL 
compared to OW, suggesting that contamination of a 
bronchoscope with upper airway bacteria or repeated micro-
aspirations may not fully explain the detection of bacterial 
communities in the lung. 

4) Concluded that oral wash appears to be a reasonable sampling 
method (in conjunction with bronchoscopic sampling) to use to 
exclude URT contamination of lower airway samples obtained by 
bronchoscopy. 
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APPENDIX L:  

Participant Information Sheet 

Version 2.0 

 

Title of Study: Microbiota in Asthma 

Name of Researcher(s): Dr Tim Harrison, Dr Matthew Martin, Dr Dominick 

Shaw 

 

We would like to invite you to take part in our research study. Before you 

decide we need you to understand why the research is being done and 

what it will involve. One of our team will go through the information sheet 

with you and answer any questions you have. Talk to others about the 

study if you wish. Ask us if there is anything that is not clear. 

 

 

What is the purpose of the study? 

 

Previous research has shown that there are differences in the 

communities of bacteria found in the airways of asthmatic patients 

compared to those found in the airways of healthy people. 

 

It is not yet clear if these bacterial communities are similar in all patients 

with asthma or if they are different in people with more severe asthma, or 

those taking different treatment for their asthma.  

 

This is important to know as any differences in the bacteria present 

between groups may help to explain why people with asthma do not all 

have the same symptoms or severity of disease. 

 

This research aims to determine if there are any differences in the 

number and type of bacteria found in the airways of asthmatic patients 

(1) with different severities of asthma and (2) who use different types of 

inhaled steroid treatment for asthma. We will do this by detecting the 

DNA of bacteria present in phlegm (sputum) samples, as well as taking 

routine measurements of different features of asthma (explained further 

below) to see if the bacteria are different in people with different types of 

disease. 

 

As it is not yet known if the bacteria in the airways change over time, we 

will be taking more than one sample from some patients to see if the 

bacteria change over time 
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Why have I been invited? 

 

You are being invited to take part because you have asthma, are taking 

an inhaled steroid. In order to take part you must not have had any chest 

infections or antibiotics within the last month. We are inviting 50 

participants like you to take part. 

 

 

Do I have to take part? 

 

It is up to you to decide whether or not to take part.  If you do decide to 

take part you will be given this information sheet to keep and be asked to 

sign a consent form. If you decide to take part you are still free to 

withdraw at any time and without giving a reason. This would not affect 

your clinical care or legal rights. 

 

 

What will happen to me if I take part? 

 

Investigations 

 

Participants in this study will have a series of investigations to measure 

certain features of asthma. These include:  

 Sputum microbiology and differential cell counts: This 

procedure will involve giving you salty water to breathe in to help 

loosen any mucus in your lungs so you can cough it up. We will try 

and detect the DNA of any bacteria that may be present in the 

sputum. We will also look for any inflammatory cells that may be 

present due to your asthma. If possible we will take a further 

sputum sample with your agreement for storage and future analysis 

by a research team. This future analysis may involve looking for 

other inflammatory cells, chemicals or for further analysis of 

bacterial DNA or proteins.  

 Spirometry test: This is a simple blowing test that is used to 

measure your lung function (the size of your lungs and how quickly 

you can empty them). You will be asked to breathe in and then blow 

out very fast into a mouthpiece. 

 Bronchial challenge: This test is performed to measure how 

irritable your airways are. You will be asked to breathe in small 
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quantities of a drug called Methacholine which may cause slight 

narrowing of your airways. After each dose we will measure your 

lung function as described previously and we will stop when your 

blowing test falls by 20% or earlier if you feel unwell. 

 Exhaled nitric oxide measurement: Measuring the amount of 

exhaled nitric oxide in your breath to measure the amount of 

inflammation in the breathing tubes of your lungs. 

 Leicester Cough Questionnaire: Completing a questionnaire 

assessing how your cough affects your life. 

 Asthma Control Questionnaire: Completing a questionnaire 

assessing how your asthma affects your life 

 

All of these investigations will take place in our research clinic at the 

Nottingham City Hospital. Further information on these investigations can 

be found on our website: (http://www.nrru.org/patients.html). If you do 

not have access to the internet, printed information leaflets describing 

these tests in further detail are available upon contacting the Nottingham 

Respiratory Research Unit on the telephone number given below. 

 

 

Timing of study 

Overall, participation in this study will usually require 1 visit only to the 

Nottingham City Hospital, although we will ask some patients to come 

back for 3 visits over a period of 2 weeks, which is summarised here: 

 

PART 1 OF STUDY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Telephone screening/Clinic appointment visit 
 
You will be identified as a potential candidate for the study in a respiratory clinic appointment 
by one of the study team or from the Respiratory Research Unit Database. You will be asked if 
you would like to take part in the study and any questions you may have will be answered. You 
will be asked to give written informed consent in order to take part in 
the study. 
 
Duration: 10-15 minutes 
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Expenses and payments 

 

Participants will be reimbursed for any travel expenses. 

 

 

 

 

 

 

Hospital visit 1 
 
Face to face visit with our research team in the hospital. This visit will take place in the 
Nottingham City Respiratory Research Unit. You will be seen by a doctor who will ask some 
questions relating to your condition to make sure you are eligible for the study. If so, we will 
perform a set of breathing tests (spirometry) and ask you to complete questionnaires 
assessing how asthma affects your life. We will then measure an exhaled gas (nitric oxide) in 
your breath (explained above) and perform a test to determine 
how irritable your airways are (methacholine challenge) which is also explained above. 
 
Sputum samples will then be taken for analysis including extra samples for storage and future 
analysis with your permission. In order to obtain these sputum samples you will be given salty 
water to breathe in, which will help to loosen any mucus in your lungs so you can cough it up 
(induced sputum). 
 
Duration: 2 hours 
 
At this point we may ask you to attend an optional further 2 appointments described below, 
which will be your decision. 
 
 
 

 

Hospital visit 3 (2 weeks after visit 1) 
 
Face to face visit with our research team at the Nottingham City Respiratory Research Unit. 
This will take place 2 weeks after Visit 1 and will consist of taking 1 further induced sputum 
sample only. 
 
Duration: 15-20 minutes 

Hospital visit 2 (within 24 hours of first appointment) 
 
Face to face visit with our research team at the Nottingham City Respiratory Research Unit. 
This will take place the day after Visit 1 and will consist of taking 1 further induced sputum 
sample only 
 
Duration: 15-20 minutes 
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What are the possible disadvantages and risks of taking part?  

 

Investigations 

Exhaled Nitric Oxide: Having the levels of nitric oxide in your breath 

measured does not pose any risks and is well tolerated.  

 

Sputum Induction: Occasionally, the inhalation of salt solution in order 

to produce a sputum sample can make you wheezy. However, we will give 

you salbutamol (Ventolin) before the test and monitor you closely 

throughout, giving more salbutamol if necessary during the procedure.  

 

Bronchial Challenge: This is a simple and safe test widely used in the 

assessment of asthma. You may experience chest tightness, wheeze or a 

cough during the course of the test, but these symptoms are usually mild 

and are quickly reversed by using a salbutamol inhaler (Ventolin). 

 

 

What are the possible benefits of taking part? 

 

It is hoped that the results of this study will help us to understand any 

possible role that the bacteria in the airways have in causing the 

symptoms of asthma. This may help us to develop better treatment 

strategies for asthma in the future.  

 

 

What happens when the research study stops? 

 

You will be referred back to your usual respiratory physician or GP and 

have further follow up if necessary in the normal respiratory clinic. If any 

of your phlegm samples show evidence of infection, we will contact your 

GP with advice regarding the need for antibiotic treatment. 

 

 

What if there is a problem? 

 

If you have a concern about any aspect of this study, you should ask to 

speak to the researchers who will do their best to answer your questions.  

The researchers contact details are given at the end of this information 

sheet. If you remain unhappy and wish to discuss the matter further, you 

can do this by getting in touch with the Nottingham Hospitals Patient 

Advice and Liaison Service (PALS) in person, by telephone or e-mail who 
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can try and resolve the situation. Details are provided below. If you still 

wish to make a formal complaint you can do this through the NHS formal 

complaints procedure (further details of which can be provided by the 

PALS service). 

 

Nottingham City Campus PALS service 

By person: PALS is on the South Corridor at Junction S6. Opening times 

9:30 – 4:30 pm Monday - Friday 

Tel: 0800 052 1195 (free from a landline) or 0115 969 1169 ext 59671 

E-mail: pals@nuh.nhs.uk 

Post: NUH NHS Trust, c/o PALS, Freepost, NEA 14614, Nottingham NG7 

1BR 

 

 

Will my taking part in the study be kept confidential? 

 

We will follow ethical and legal practice and all information about you will 

be handled in confidence. 

 

If you join the study, some parts of your medical records and the data 

collected for the study will be looked at by authorised persons from the 

University of Nottingham who are organising the research. They may also 

be looked at by authorised people to check that the study is being carried 

out correctly. All will have a duty of confidentiality to you as a research 

participant and we will do our best to meet this duty.  

 

All information which is collected about you during the course of the 

research will be kept strictly confidential, stored in a secure and locked 

office, and on a password protected database.  Any information about you 

which leaves the hospital will have your name and address removed 

(anonymised) and a unique code will be used so that you cannot be 

recognised from it.   

 

Your personal data (address, telephone number) will be kept for 12 

months after the end of the study so that we are able to contact you 

about the findings of the study and possible follow-up studies (unless you 

advise us that you do not wish to be contacted).  All other data (research 

data) will be kept securely for 7 years.  After this time your data will be 

disposed of securely.  During this time all precautions will be taken by all 

those involved to maintain your confidentiality, only members of the 

research team will have access to your personal data. 

mailto:pals@nuh.nhs.uk
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What will happen if I don’t want to carry on with the study?  

 

Your participation is voluntary and you are free to withdraw at any time, 

without giving any reason, and without your legal rights being affected. If 

you withdraw then the information collected so far cannot be erased and 

this information may still be used in the project analysis. 

 

 

Involvement of the General Practitioner/Family doctor (GP)  

 

We will write to your GP about your involvement in this study and if your 

phlegm samples show evidence of infection, we will contact your GP with 

advice regarding the need for antibiotic treatment. 

 

 

What will happen to any samples I give? 

 

The sputum samples will be sent to a research team at King’s College in 

London for processing and will then be sent on to another facility abroad 

for detection of any bacterial DNA. All of these samples will have your 

name and address removed (anonymised) and a unique code will be used 

so that you cannot be recognised from it.   

 

We would also like to seek your consent so that any remaining samples 

may be stored and used in possible future research – this is optional 

(please indicate you agree to this on the consent form). The samples will 

be stored with a code unique to you and securely at the University of 

Nottingham under the University’s Human Tissue Research Licence (no 

12265). 

 

Some of these future studies may be carried out by researchers other 

than current team of Dr Harrison including researchers working for 

commercial companies. Any samples or data used will be anonymised, 

and you will not be identified in any way. If you do not agree to this any 

remaining samples will be disposed of in accordance with the Human 

Tissue Authority’s codes of practice. 
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Will any genetic tests be done? 

 

No tests will be performed on any of your samples to determine any of 

your genetic information. Tests will be performed to detect the DNA of 

any micro-organisms (including bacteria) that may be present in the 

samples. 

 

 

What will happen to the results of the research study 

 

We will publish the results of the trial in a respiratory medicine journal, 

present the results at various scientific conferences, and this work will 

form part of a thesis for a higher degree. You will not be identified in any 

report/publication. We will send you a newsletter with a summary of the 

results. 

 

 

Who is organising and funding the research? 

 

This research is being organised by the University of Nottingham and is 

being funded by Astra Zeneca (UK) 

 

 

Who has reviewed the study? 

 

All research in the NHS is looked at by independent group of people, 

called a Research Ethics Committee, to protect your interests. This study 

has been reviewed and given favourable opinion by East Midlands (Derby) 

Research Ethics Committee. 

 

 

Further information and contact details 

 

Further information can be obtained from our website: 

http://www.nrru.org/ 

 

Or by telephoning us on:  

 

Matthew Martin 

(Study Doctor) 

Tel: 0115 8231935 

http://www.nrru.org/
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Denise Barber                        OR           Tina Wilkinson 

(NRRU Secretary)                                  (CTU Receptionist)  

Tel: 0115 86231317                            Tel: 0115 8404844               

Fax: 0115 8231946                             Fax:0115 84026217 

 

Alternatively, you can write to us at the following address: 

 

Nottingham Respiratory Research Unit         

Room B28 

Clinical Sciences Building 

Nottingham City Hospital 

Hucknall Road 

Nottingham 

NG5 1PB 
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APPENDIX M: Bacterial loads of individual MIA subjects (CFU/mL 

of sputum equiv.) 

 

  
NO. 

 
PATIENT 

BTS 
STEP 

2/4 

 
STEROID 

 
VISIT 

 
TOTAL 

BACTERIA 

 
H. influenzae 

 
S. 

pneumoniae 

1 MIA001 2 BEC 1 8.95E+06 2.12E+01 0.00E+00 

2 MIA001 2 BEC 2 9.94E+05 1.00E+01 0.00E+00 

3 MIA001 2 BEC 3 2.80E+05 0.00E+00 0.00E+00 

4 MIA002 4 FLUTIC 1 7.65E+06 1.62E+04 0.00E+00 

5 MIA003 2 BUD 1 8.47E+06 3.29E+03 0.00E+00 

6 MIA005 2 BEC 1 3.47E+08 2.26E+02 0.00E+00 

7 MIA005 2 BEC 2 6.68E+05 0.00E+00 0.00E+00 

8 MIA005 2 BEC 3 1.25E+07 4.37E+01 0.00E+00 

9 MIA007 2 BEC 1 5.61E+08 1.31E+05 0.00E+00 

10 MIA009 2 BEC 1 5.18E+07 0.00E+00 0.00E+00 

11 MIA009 2 BEC 2 1.80E+08 0.00E+00 0.00E+00 

12 MIA009 2 BEC 3 1.70E+08 0.00E+00 0.00E+00 

13 MIA010 2 FLUTIC 1 4.69E+07 4.02E+03 0.00E+00 

14 MIA013 4 FLUTIC 1 5.10E+07 1.12E+01 0.00E+00 

15 MIA014 4 FLUTIC 1 8.86E+06 0.00E+00 0.00E+00 

16 MIA015 4 BUD 1 1.28E+07 1.19E+02 0.00E+00 

17 MIA017 4 FLUTIC 1 8.68E+06 0.00E+00 0.00E+00 

18 MIA019 4 BUD 1 3.24E+06 0.00E+00 0.00E+00 

19 MIA020 4 BUD 1 1.45E+07 0.00E+00 0.00E+00 

20 MIA020 4 BUD 2 3.16E+06 0.00E+00 0.00E+00 

21 MIA020 4 BUD 3 1.08E+07 3.25E+01 0.00E+00 

22 MIA022 4 BUD 1 1.93E+06 0.00E+00 0.00E+00 

23 MIA022 4 BUD 2 7.88E+05 3.75E+01 0.00E+00 

24 MIA022 4 BUD 3 1.56E+07 2.16E+01 0.00E+00 

25 MIA024 2 BUD 1 2.98E+05 1.08E+02 0.00E+00 

26 MIA025 4 FLUTIC 1 1.09E+08 0.00E+00 0.00E+00 

27 MIA025 4 FLUTIC 2 2.60E+06 0.00E+00 0.00E+00 

28 MIA025 4 FLUTIC 3 1.32E+08 0.00E+00 0.00E+00 

29 MIA026 2 BUD 1 1.06E+08 6.47E+00 0.00E+00 
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30 MIA027 2 BEC 1 2.62E+07 2.96E+02 0.00E+00 

31 MIA029 2 BUD 1 1.53E+07 5.73E+00 0.00E+00 

32 MIA029 2 BUD 2 6.49E+07 1.98E+01 3.80E+01 

33 MIA029 2 BUD 3 3.01E+07 2.99E+02 7.26E+01 

34 MIA031 4 FLUTIC 1 1.01E+08 0.00E+00 8.14E+01 

35 MIA031 4 FLUTIC 2 2.77E+07 0.00E+00 0.00E+00 

36 MIA031 4 FLUTIC 3 1.79E+07 0.00E+00 0.00E+00 

37 MIA032 4 BUD 1 4.76E+07 0.00E+00 0.00E+00 

38 MIA034 4 BUD 1 9.23E+07 2.02E+02 0.00E+00 

39 MIA035 2 BEC 1 6.01E+08 0.00E+00 0.00E+00 

40 MIA035 2 BEC 2 7.29E+07 0.00E+00 0.00E+00 

41 MIA035 2 BEC 3 9.40E+05 0.00E+00 0.00E+00 

42 MIA036 2 BEC 1 3.47E+06 0.00E+00 0.00E+00 

43 MIA036 2 BEC 2 2.19E+06 0.00E+00 0.00E+00 

44 MIA036 2 BEC 3 1.63E+09 3.01E+02 0.00E+00 

45 MIA037 2 BUD 1 1.48E+07 1.59E+01 2.86E+02 

46 MIA038 2 FLUTIC 1 7.62E+08 0.00E+00 0.00E+00 

47 MIA039 2 FLUTIC 1 7.17E+06 0.00E+00 0.00E+00 

48 MIA040 2 BUD 1 9.97E+06 3.19E+02 3.88E+01 

49 MIA041 4 FLUTIC 1 8.23E+06 3.94E+07 0.00E+00 

50 MIA042 2 BEC 1 1.21E+07 0.00E+00 0.00E+00 

51 MIA042 2 BEC 2 4.37E+06 0.00E+00 0.00E+00 

52 MIA042 2 BEC 3 4.38E+06 5.90E+01 0.00E+00 

53 MIA043 4 BUD 1 1.07E+07 0.00E+00 0.00E+00 

54 MIA044 4 FLUTIC 1 2.39E+06 3.50E+00 0.00E+00 

55 MIA044 4 FLUTIC 2 5.35E+06 0.00E+00 0.00E+00 

56 MIA044 4 FLUTIC 3 8.17E+05 0.00E+00 0.00E+00 

57 MIA045 2 BUD 1 1.43E+08 0.00E+00 0.00E+00 

58 MIA045 2 BUD 2 8.30E+08 0.00E+00 0.00E+00 

59 MIA045 2 BUD 3 6.51E+08 3.77E+00 0.00E+00 

60 MIA046 4 BUD 1 3.29E+07 0.00E+00 0.00E+00 

61 MIA049 4 BUD 1 3.76E+06 1.10E+02 4.24E+00 

62 MIA049 4 BUD 2 3.34E+06 4.66E+01 0.00E+00 
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63 MIA049 4 BUD 3 4.05E+06 1.99E+02 0.00E+00 

64 MIA050 4 BUD 1 1.08E+07 0.00E+00 0.00E+00 

65 MIA051 4 FLUTIC 1 1.52E+06 0.00E+00 0.00E+00 

66 MIA052 4 BUD 1 1.50E+08 2.30E+04 0.00E+00 

67 MIA053 4 FLUTIC 1 7.75E+08 0.00E+00 5.14E+01 

68 MIA053 4 FLUTIC 2 6.18E+06 0.00E+00 0.00E+00 

69 MIA053 4 FLUTIC 3 1.65E+07 4.68E+01 0.00E+00 

70 MIA054 4 FLUTIC 1 2.34E+06 1.62E+02 0.00E+00 

71 MIA054 4 FLUTIC 2 1.79E+06 4.67E+01 4.14E+03 

72 MIA054 4 FLUTIC 3 1.23E+06 1.15E+01 8.75E+01 

73 MIA055 2 FLUTIC 1 3.55E+05 0.00E+00 1.33E+03 

74 MIA056 2 FLUTIC 1 4.00E+06 0.00E+00 0.00E+00 

75 MIA057 4 FLUTIC 1 1.99E+06 1.59E+05 0.00E+00 

76 MIA057 4 FLUTIC 2 1.89E+07 2.48E+03 0.00E+00 

77 MIA057 4 FLUTIC 3 1.92E+07 1.88E+04 0.00E+00 

78 MIA058 4 FLUTIC 1 4.37E+07 5.81E+01 6.40E+00 

79 MIA058 4 FLUTIC 2 2.36E+07 6.63E+00 0.00E+00 

80 MIA058 4 FLUTIC 3 3.66E+07 5.86E+01 0.00E+00 

81 MIA059 2 BEC 1 9.10E+06 4.10E+02 2.28E+02 

82 MIA061 4 FLUTIC 1 8.98E+06 3.25E+06 0.00E+00 

83 MIA062 4 FLUTIC 1 5.66E+06 3.92E+04 5.27E+00 

84 MIA063 4 FLUTIC 1 7.88E+06 0.00E+00 0.00E+00 

85 MIA064 4 FLUTIC 1 5.86E+06 5.77E+00 0.00E+00 

86 MIA065 4 BUD 1 4.85E+06 1.24E+01 0.00E+00 

87 MIA066 4 BUD 1 2.99E+07 0.00E+00 0.00E+00 

88 MIA067 4 BUD 1 7.69E+06 1.07E+04 0.00E+00 

89 MIA067 4 BUD 2 9.44E+06 2.96E+03 0.00E+00 

90 MIA067 4 BUD 3 1.32E+07 3.83E+02 0.00E+00 

91 MIA068 4 BUD 1 3.78E+06 2.52E+05 8.53E+01 

92 MIA069 4 BUD 1 9.63E+06 3.59E+02 2.45E+01 

93 MIA070 2 BEC 1 7.31E+05 0.00E+00 0.00E+00 
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