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Abstract

Pulsed laser ablation is a non-conventional machining technique that is used to
machine complex parts in ultra-hard materials and for minute part geometry,
which are otherwise not readily accessible with conventional tooling. The
constant development of new materials with enhanced properties, as well as
the demand for products with improved functionality have led to a renewed
interest for alternative machining. Pulsed laser ablation is regarded as a
promising technology with potential to machine a wide range of materials
and shapes. The use of non-mechanical methods is advantageous due to the
reduced tool-wear for ultra-hard materials and minute geometry. However,
these advantages pose significant challenges since the removal rate of the
material in term of shape and amount is controlled through a set of operating
parameters. It is therefore necessary to have a comprehensive understanding
of the process and the relation between such parameters and the effect of the
laser on the surface. Furthermore, the process itself is hard to monitor online
due to the short temporal and small spatial space it occurs within, and this
makes it more complex to establish a detailed understanding of the process,
and the optimum parameters to control the machining.

The main objective of this thesis is to develop mathematical frameworks
that have the capability to predict the removal rate of pulsed laser ablation
for the main operating parameters (feed speed, power, position, etc.) and
the physical processes occurring during pulsed laser ablation of diamond
and related materials for nanosecond laser pulses at 1064 nm and 248 nm.
This is addressed using two modelling approaches: a physical model that
simulates the mass and heat conservation in the system coupled with a
collisional radiative model for the plasma, and a simplified approach based
on geometrical aspect built on the idea that trenches represent the simplest
element of the machining method enabling quantification of the relation
between the control parameters and the removal rate.

In the physical approach, the system is modelled using the conservation
of mass and energy with the capability to accurately predict the position of
the interfaces (graphitisation front and surface), and the amount of material
removed. The model is validated against boron doped diamond and is used
to estimate the activation energy and rate of graphitisation for tetrahedral
amorphous carbon. The framework developed provides accurate results for
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two different carbon allotropes with a high content of sp3 bounds for a range
of fluence.

A geometrical approach for the prediction of the material removal dur-
ing large pulsed laser ablation machining task has been developed. Since,
the objective of this model is for it to be integrated into Computer-Aided
Design/Computer-Aided Manufacturing (CAD/CAM) packages, the model
needs to be computationally efficient and should require as little empiri-
cal data as possible to be accurately calibrated. This framework has been
validated against three materials, graphite POCO AF-5, a mechanical poly-
crystalline diamond CVD Mechanical, and a metal-matrix poly-crystalline
diamond CMX850. The model enables the prediction of material removal for
large machining tasks and is being used with an optimisation procedure for
the machining parameters (power, feed speed, etc.) for CAD/CAM packages.

Finally, the physical model is coupled with a collisional radiative model
for the plasma, and it enables the prediction of the pressure over the crater.
Experimental investigations have confirmed that melting of the graphite only
occurs for a fluence over 30 J.cm−2. TEM analysis and Raman spectroscopy
also show an increase in the disorder of the graphite lattice with an increase
of fluence which is coherent with thermal damage and constraint growth of
the graphite crystal at the graphitisation front. The fluence threshold for
the melting of the graphite lattice is in agreement with the prediction of the
model.

The work developed in this thesis contributes to the understanding of the
ablation process and graphitisation process during pulsed laser ablation of
diamond and related material, and demonstrates how a simplified modelling
approach can be used to improve current capabilities of this technology for
large micro-machining tasks.
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Chapter 1

Introduction

1.1 Motivation

High demand for materials with superior wear resistance, high hardness, low

thermal conductivity, high thermal resistance and chemical stability dictates

research in material science. However, their properties make them difficult to

machine. Development of new materials requires the use of new machining

techniques such as Abrasive Water Jet (AWJ), Electrical Discharge Machining

(EDM) and Pulsed Laser Ablation (PLA). They enable efficient machining of

materials such as diamond, Diamond Like Carbon (DLC) and super-alloys of

Titanium, Aluminium and Nickel. Conventional techniques such as milling,

drilling and turning are not effective for machining of complex geometry

components in ultra-hard material such as diamond composites. These

processes usually lead to extensive tool wear [10] (limited cost effectiveness)

or damage to the surface of the material during the manufacturing process

[11–13] (quality of the resulting workpiece).

The research contained in this thesis has been carried out within the

context of the STEEP ITN [14] project, a Marie Curie Initial Training

Network focused on the machining by energy beams (AWJ, PLA and Focused

Ion Beam (FIB)) modelling, control and characterization of the surface

and subsurface after material processing. The main objective of the STEEP

project is to develop a model-based path optimization capability to detach the

machining from the “soft” tool issues for PLA, AWJ and FIB. For conventional

1
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machining, a hard tool is pushed against the processed materials. This strains

the material and leads to elastic deformation, plastic deformation and fracture.

The strain created by the tool is the direct cause of the material removal. The

strain does not extend far away from the contact area therefore the removal

of the material is precisely located around the shape of the tool. For “soft”

tools, the removal rate does not have a finite shape hence the rate of removal

have not an intrinsic shape. Within the STEEP modelling framework, the

removal rate can be estimated using a empirically calibrated model. The

development of a numerically efficient model in a CAD/CAM is the first step

towards a wider use for these technologies as advanced machining processes.

Pulsed Laser Machining (PLM) is one of the most investigated non-

conventional machining techniques. Laser machining is an eco-friendly and

contact-free manufacturing technique. Industrial lasers have a very long life-

time compared to conventional tools and the development of laser technology

during the last three decades has resulted in lasers with shorter pulses and

higher power. It is now affordable for most companies to have high power

pulsed lasers for manufacturing processes. With pulsed laser ablation, it is

now possible to concentrate a large amount of energy on a very small volume.

This enables the development of a collection of new technologies [15]. Pulsed

laser machining is also the focus of a lot of attention from the public body for

advanced research in laser processing technologies. Several projects focused

on laser machining have been founded during the FP7 framework. Some

of these projects reinforce the laser capability in terms of new wavelength,

increased power or in-line beam shaping capability for industrial uses [16–18].

Some of the projects focus on improving the machining process for free-form

shaping [14, 19, 20]. There are also projects supporting the development

of new machining technologies and improving PLA applicability [21]. For

the last 20 years, there has been a colossal effort in the development of
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beam delivery systems and in-line beam shaping capabilities. All of these

innovations have generated an extensive industrial sector relying on laser

technologies [22]. The growing laser market represents $9.33B globally, 25%

of which is for material processing. Research and Development (R&D) and

military represent 7% of this market.

Thus, PLA is one of the most promising techniques for the processing of

high hardness and superior wear resistance as the material removal mecha-

nisms are not based on the generation of stress in the material. The deposition

of a large amount of energy in a localised space generates a huge increase of

temperature (for high energy pulses the temperature can reach the critical

temperature Tc [23, 24]), which vaporises the material. PLA is also an

interesting tool for micro-nano manufacturing [25–28]. The size of the tool is

only limited by the diffraction limit. In practice the beam spot, defined at

1/e2 of the diameter, can be as small as 15µm. This gives great accuracy for

the removal of material in a specific area and the production of microns size

features and nano-scale texturing. The processing rate of PLA is also very

high compared to FIB for the same tasks. PLA also offers new possibilities of

machining that are not possible with traditional techniques. PLA enables the

manufacturing of innovative 3D shapes which it is not possible to manufac-

ture using traditional machining such as EDM, AWJ, etc. due to the small

scale and mechanical properties of the final workpiece. It is now possible to

pattern the surface of ultra-hard materials with a specific density and shape

of abrasive element to produce the desired removal rate [29]. The advanced

manufacturing technology research group at University of Nottingham has

a strong experience processing diamond and related materials for industrial

applications and is member of DIPLAT [20], a European project consortium

demonstrating the capabilities of the laser for advanced functionalities on

ultra-hard materials.
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Nevertheless, there are still significant challenges to address in order to

deliver the full potential of PLA, and its promising capabilities are still

under investigation for research and industrial purposes. These challenges

are presented in the following sections.

1.2 Research problem

Pulsed laser ablation is already used to produce free-forms based an extensive

empirical analysis of a number of iterations for the beam path strategy (in

term of the beam path, feed speed, power, etc.). The machining process

relies on a large amount of experimental trials so it is an expensive and

unreliable process for industries. Mathematical modelling is key for the

development of pulsed laser ablation machines for free-form milling. It

enables the generation of micro-features in a predictable and repeatable

manner. This is challenging because the removal process is highly non-linear,

highly dependent on the material’s optical and thermal properties and on

the properties of the laser. The amount of material removal depends on

many parameters and interdependency of these parameters is not yet fully

understood. The phenomena during PLA are still a research subject; the

relation between the power of the laser, the feed speed, the polarization

of the laser and the material have not been entirely explored. PLA is

a particularly difficult phenomenon to model because it involves several

physical domains such as atomic physics, plasma physics, thermodynamics,

fluid mechanics and electromagnetisms. A full description of the physics

during laser ablation is a complicated matter that has never been fully

attempted. Additionally, PLA causes the material to reach a temperature

close to critical temperature and a pressure of up to 2 GPa [30]. In this

domain, the properties of the materials have been poorly studied and a major
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lack of thermodynamics and optical data hamper the attempts to produce

an accurate model for high energy ablation [30]. Physical studies have shown

a far-reaching association of different physical domains (thermodynamics,

plasma physics, fluid mechanics, etc.) [30–35]. Diamond and related material

have been relatively well experimentally studied [28, 29, 36–38]. However, the

physics behind the ablation rates of diamond and related material might not

well understood, mainly due to the lack of models for the ablation of diamond

considering the dynamics position of the interfaces (graphite to diamond and

the surface) and the change of density during the transition between diamond

to graphite. Compared to most materials, diamond and related materials

transform into graphite during laser ablation therefore particular questions

need to be addressed in the modelling that have not yet been fully addressed

in the literature. An improved understanding of diamond ablation will enable

the determination of an appropriate machining parameters reducing thermal

damages and optimising machining time to generate free-forms.

In order to improve the applicability of PLA, a numerical model for

CAD/CAM must be developed. Significant work has already been published

to address this issue [39–43]. The model is currently able to predict the

footprint as a function of the power and the surface texture. Particular

attention has been given to overlapping of pulses and provides relatively

accurate results for low overlapping pulses [40]. The future model must

fully address the question of the overlapping for a range of materials. The

development of new mathematical models for PLA is challenging due to the

following reasons:

1. PLA is a soft tool because is does not have mechanical contact with

the workpiece. The amount of material removed is dependent on the

machining energy-dependent parameters (power, beam shape), the

surface texture of the processed materials of the workpiece and the
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kinematic parameters of the beam such as feed speed and angle of

interaction. It is difficult to separate the influence of each parameter.

The determination of the influence of each parameter is key to the

development of a CAD/CAM model.

2. The influence of the material is important. The ablation rate is highly

dependent on the material characteristics. Different workpiece materials

are ablated very differently, for example graphite does not exhibit any

redeposition and melting whereas materials such as Aluminium and

Silicon present large melted areas and redeposition. The study needs to

be done on several materials to verify the universality of the modelling

proposed approach.

3. PLA is by definition multi-physical. The interaction between the

physics is complicated and deeply rooted. The physical modelling of

PLA is complex and requires experience in multiple physical domains.

The physical simulation of diamond and related material requires the

development of a new modelling framework for the density jump at the

transition between the graphite and the diamond.

4. The physical description of PLA requires large quantities of experimen-

tal data up to extremely high temperatures. The thermal and optical

data available are scarce, especially for DLC [8], due to experimental

limitation for the measurement of properties of thin film materials.

The complete simulation of carbon material requires the availability

of Equation Of State (EOS) [23] for all the allotropes of carbon over

the range of temperature and pressure [32, 44] occurring during the

ablation which are currently unavailable to the public. Furthermore,

the graphitisation process is a metastable process thus it cannot be

predicted using only the EOS of carbon. Therefore, it is necessary to
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investigate the material properties for the allotropes of carbon used in

the literature.

5. Another significant challenge is that online control systems for PLA

are still in a developmental stage due to the difficulty in observing

the process during machining. This makes it difficult to monitor the

instantaneous relation between the process parameters (feed speed,

power, etc.) and process footprint on the target surface. It is therefore

necessary to relate the parameters of the system to measurements

(surface measurements, SEM, Transmission Electron Microscope (TEM),

Raman spectroscopy, etc.).

1.3 Objectives of the study

The main goal of the study is to improve the understanding of diamond and

related materials PLA and to provide a reliable geometrical model for large

machining tasks. This goal is divided into several objectives in an attempt

to establish a detailed knowledge of the ablation processes and determine

the relevant parameters for the machining of diamond and related materials.

The specific objectives of the study are:

1. The construction of a model for the understanding of the phenomena

occurring during pulsed laser ablation of carbon allotropes with high

content of sp3 bounds. The model should be based on a new framework

including the jump of density at the diamond-graphite interface. Ap-

propriate research of experimental data should be completed to ensure

good results for high fluence tests. This study with a physical model

gives an insight to the process on a fundamental level.

2. Investigation of the physical processes leading to swelling of the surface
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and the ablation of the surface for the interaction between the diamond

and nanosecond laser pulse which allows high removal rates. Since the

model will predict graphitisation for any carbon allotropes with high

content of sp3 bounds, it should be validated for at least two different

types of carbon allotrope to provide evidence of versatility. A particular

focus will be given to the position of the interfaces.

3. The development of a new continuous modelling framework for PLA. It

will specifically take into account the overlapping of pulses and enable

the accurate prediction of large machining tasks. Similarly, a calibration

procedure for the continuous model will be developed such that an

operator is able to calibrate in a reasonable amount of time. Since the

new framework is embedded as part of a CAD/CAM package, it should

be simple enough to be calibrated using a minimal amount of empirical

data and the computational cost of the model should be as small as

possible to enable the simulation of topography changes for several tens

of thousand of pulses.

4. In addition to the development of the new methodology for the modelling

framework and associated calibration procedure, the model will be

validated for several materials to provide evidence of the versatility of

the model. The model will be validated for three carbon allotropes

such as graphite, a pure mechanical diamond grade and a metal-matrix

polycrystalline diamond such as CMX850.

5. In addition to the new mathematical framework for PLA, a detailed

study of the thermal load effect on the target micro-structure for

diamond is required to enhance the current understanding of the phe-

nomena. The study of a single pulse laser ablation will provide a

fundamental understanding of the ablation mechanisms. This will
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be carried through the investigation of the crater using Raman spec-

troscopy or TEM analysis to investigate the micro-nano crystalline

structure of the graphitic material after the ablation.

1.3: Objectives of the study 9



Chapter 2

Literature review

Given the growing demand and use of pulsed laser systems in research and

industry, there has been extensive research into the improvement of pulsed laser

system capabilities, understanding, and range of applications. In this chapter,

a comprehensive review of the available literature is presented for the physical

phenomena occurring during pulsed laser ablation and the mathematical tools

used to support the development and understanding of the technology. First,

a comprehensive description of the removal mechanisms during nanosecond

pulse laser ablation is presented including the material ejection, evaporation,

and volumetric removal with the modelling strategy employed. Then, a detailed

review of the different modelling approaches for the nanosecond ablation of high

sp3 bonds carbon allotrope is given, including models using the conservation

of momentum, mass and energy to calculate the evolution of the physical

system. Simplified approaches focussing on the geometrical description of

the material removal are also presented for pulsed laser ablation. Finally, a

summary is given of the current gaps in knowledge that have motivated the

development of this work.

2.1 Ablation mechanisms during pulsed laser

ablation

As explained previously, laser radiation is focused on the target, causing a

temperature increase in the material. In this section, the mechanisms leading

10
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to the removal/ablation of the target are explained.

2.1.1 Reflection mechanisms

Laser radiation is essentially an Electro-Magnetic (EM) wave, which is

associated by an electric (E) and a magnetic (B) field vector. During contact

with the interface, the change of refractive index induces a reflection of a

part of the incident energy. Using Snell’s law,

sin θt =
n1

n2

sin θi, (2.1)

with θt, n1, n2 and θi respectively the complex angle of transmittance, the

complex refractive index of the incident material, the complex refractive

index of the transmitted material, and the complex angle of incidence, and

using the Fresnel formulae,

r‖ =
n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

a‖ (2.2)

r⊥ =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

a⊥ (2.3)

t‖ =
2n1 cos θi

n2 cos θi + n1 cos θt
a‖ (2.4)

t⊥ =
2n1 cos θi

n1 cos θi + n2 cos θt
a⊥ (2.5)

the amount of light that is reflected and transmitted can be computed [45].

The equations show that the proportion of light reflected/transmitted also

depends on the direction of the field oscillation in the plane formed by the

propagation vector of the light and the normal to the plane of the reflecting

surface. The part of the field that oscillates in the plane, called p-polarised

(r‖ and t‖), is less reflected than the part that oscillates perpendicularly to

the plane, called s-polarised (r⊥ and t⊥). For a low incidence angle, θi, the
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Figure 2.1 : The absolute ratio of the amplitude of the reflected and
transmitted wave compared to the incident wave in the case of a reflection
between air (n1 = 1) and glass (n2 = 1.5) as a function of the incident angle
and for the two polarisations.

reflection coefficient, R, weakly depends on the polarisation, see Figure 2.1.

Moreover, the reflection coefficient is almost constant for a low incidence

angle. For modelling of the interaction between a single pulse of laser with

the target, the ablation depth is rarely greater than 6 µm and the maximum

incidence angle between the normal of the surface and the propagation vector

of the EM fields is less than 20°. Therefore, the reflection coefficient can

usually be considered as a constant [46, 47].

For the case of the interaction between a transparent medium (such as

air or vacuum) and an opaque medium (metal) at perpendicular incidences,

it is found that the reflectivity is equal to:

R =
(n2 − n1)2 + κ2

2

(n2 + n1)2 + κ2
2

. (2.6)

Interestingly, the reflectivity depends on the imaginary part of the complex
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refractive index which is related to the absorption coefficient,

δp =
1

α
=

λ

4πκ
, (2.7)

The reflection is therefore important for materials with high absorption, such

as metals. Usually, Equation 2.6 is used to calculate the amount of reflected

energy during pulsed laser ablation [48]. All the theoretical calculations done

in previous studies have assumed that the transition between the two media

is along a straight line.

However it must be noted that this assumption is, for certain cases,

inappropriate to correctly model the absorption of laser by the target. The

fundamental work done by Bergström [49] during his doctoral thesis is

particularly interesting with regards to the understanding of the scattering

and total absorption of the light by rough metal surfaces. The study of

light scattering as a function of the surface roughness using Fresnel-equations

and 3D ray-tracing shows that the total absorption is highly dependent on

the surface roughness and can increase by up to five times the value of the

smooth surface [49, p.181–209]. It must be noted that the increase in the

total absorption is due to the increase in the average number of scattering

events. With εl a finite amount of energy transported by a beam of light, the

energy remaining after n interactions is equal to

εl(n) = εl

n∏
k=1

R(θi(k)), (2.8)

with R(θi(k)) the value of the reflectivity coefficient during the kth scattering

event. This equation shows that if the reflectivity coefficient is low (e.g.

semi-conductor/insulator), the increased number of scattering events does

not significantly enhance the amount of energy absorbed by the target, since

the first scattering event transfers most of the beam energy to the target, see
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Figure 2.2 : Ratio of the maximum absorbed energy for a beam over the
energy absorbed after the first scattering event as a function of the number
of scattering events for a non polarised beam.

Figure 2.2. In contrast, multiple scattering is efficient for materials with a

high reflectivity coefficient such as Aluminium, see Figure 2.2. Although the

maximum energy deposited increases with the number of scattering events,

the spatial distribution of the energy transmitted cannot easily be retrieved.

A full 2D/3D ray-tracing method must therefore be applied to extract the real

distribution. There are a few examples in the literature that have considered

the variation of the distribution with the surface topography for PLA [35, 50].

These studies found that the spatial distribution is affected by the aspect

ratio of the crater. For a low aspect ratio (when the crater depth divided by

the crater width is inferior to 0.5) the spatial distribution is homogeneous over

the whole crater, whereas for high aspect ratios (> 2) the energy deposited

is concentrated in the centre of the crater due to multiple scattering. The

ray-tracing method is efficient to compute the refracted ray but requires a lot

of precomputing [51] or simplification of the surface profile [35], which can be

2.1: Ablation mechanisms during pulsed laser ablation 14



Chapter 2 Literature review

complicated or computationally expensive to execute for a changing surface.

Another method for determining the spatial distribution of the beam into

the target is to solve the full Maxwell systems [52, 53]. The main advantage of

this method compared to a ray-tracing model is that the profile of the surface

is implicitly taken into account and does not require special treatment of the

interface between materials. However, the system needs to be solved for the

whole set of elements in the simulation and can require a large amount of

computational time especially for small wavelengths. In effect, the minimum

size of the element needs to be at least 5 elements per wave length to correctly

resolve the electric field [52].

The optical properties of the material only change during phase transition

[31] (Al(s) → All) and are usually considered as independent of temperature.

This approach is limited and more recent studies offer a more comprehensive

approach for the variation of the optical properties with temperature. For

metal, it is possible to obtain the optical properties from the electrical

resistivity using an adapted Drude model for the particular material [54,

55]. The variation of the optical properties over the material is commonly

applied only at the surface. This is usually a good approximation for the

evaluation of the absorption and reflection of the energy in the material since

the variation of optical properties with temperature is often lower than 1 order

of magnitude. However the approximation is not valid if the variation is large

on a small length scale, as presented by Lutey [54]. Using the conservation

of electrical and magnetic fields at the interface between the elements, it is

possible to calculate the transmission and reflection of the electro-magnetic

flux in the backward and forward direction for a 1D model. The precise

evaluation of the difference between the approach used by Lutey [54] and

variation of the properties only with the surface temperature is not presented.

Therefore, quantitative evaluation of the new methods is not possible. It
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must be noted that determination of the electromagnetic field in the material

might only be achieved using the Maxwell equations due to the characteristic

size of the temperature variation. In effect, the geometrical optics cannot be

applied if the variation of refractive index occurs in a distance smaller than

the wavelength.

Once the material passes the interface between the vacuum/air and the

material, the photon will directly interact with the bulk of the material. The

interaction between the light and bulk occurs mainly through the response of

the electron to the oscillating electro-magnetic field. In the next section, this

complex interaction between the photon and the lattice through the electron

will be described in detail. The well known categorisation of material between

metal, semiconductor and insulator is primordial in the description of the

interaction between the photon and the lattice.

2.1.2 Laser absorption mechanisms

The initial mechanisms that convert the light from the laser beam into

heat involve excitation of the electrons to states of higher energy. The

discontinuous electronic energy levels of a single atom interacting with the

rest of the atoms in the lattice generate an energy band for which the fine

energy structure is not distinguishable. The electrons in the crystal fill the

lowest energy band available until no electrons are left. The energy state of

the highest energy electron at absolute zero is called the Fermi level, and

is the level for which no electron will have enough energy to rise above.

Using the band structure diagram and the Fermi level it is possible to gain

information about the optical properties of the solid. The absorption of the

light by the electron in the lattice requires the existence of an attainable

energy state.

In the case of metal, as it is for gold in Figure 2.3, the electrons can move
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Figure 2.3 : The energy band structure of gold from Rangel et al. [56]. The
red line shows the topmost occupied band for the 5d level while the blue line
indicates the 6sp-like bottommost empty band. The energy level is referenced
to the Fermi level.

freely within energy bands, therefore electrons absorb low energy photons.

For gold, the Fermi level crosses the 6sp band allowing the electrons to

continuously move to a higher energy state in the fine structure of the band.

This generates a high absorption of photons for low energy since the transition

is allowed and only requires the interaction between one photon and one

electron. This response is characteristic from metals for which the free

electrons mainly interact with the photons via mechanisms such as inverse

Bremsstrahlung [57]. For high energy photons the interband transitions can

also participate in the optical response of the material, however they have a

high energy threshold corresponding to the energy separation between the

conduction and the valence band. The interaction between the oscillating

electrical field and an electron can be understood using a semi-classical

approach with Newton’s second law. It is found that the dielectric function
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Figure 2.4 : The energy band structure of silicon from Chelikowsky and
Cohen [58] and Tull [59]. Direct and indirect electron transition across the
band represented by arrows.

for the free electron for a wavelength ω is

εr = 1 +
ω2
p

ω2
0 − ω2 − ıγω with ωp =

√
ne2

meε0
(2.9)

with γ, ωp, n, e, me, ε0 and ω0 respectively the dumping factor, the plasma

frequency, the density of free-carriers, the electron charge, the electron

mass and the vacuum dielectric permittivity and the natural frequency of

the oscillator [60]. For low frequency of the laser pulse, the free electron

contribution dominates the optical response. However, for high frequency

the free electron does not have the time to respond to the oscillating field

and the material behaves like an insulator or semiconductor.

For a semiconductor and insulator, the Fermi level is between two energy

bands. Therefore, electrons cannot freely flow in the valence band and

the promotion of electrons from the valence to the conduction bands due

to interaction with the light requires a specific amount of energy. Figure
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Figure 2.5 : Absorption coefficient for Aluminium[61], silver[61], diamond
(Phillip and Taft [62] for short wavelength and Dore et al. [63] for long
wavelength) and Silicon (Green and Keevers [64] for short wavelength and
Chandler-Horowitz and Amirtharaj [65] for long wavelength) at 300 K.

2.4 shows the energy band structure for silicon, giving an example of the

phenomena occuring between the laser and a semiconductor/insulator. At

absolute zero only direct transitions are allowed, therefore the minimum band

gap is around 3.43 eV and requires photons with a wavelength inferior to 362

nm. The threshold of absorption only occurs at low temperature. At a non-

zero temperature, additional mechanisms allow the laser absorption of one

photon by the solid. The rise in temperature induces a rise in the energy in

the lattice of the material. Energy is partially stocked through the generation

of vibration in the lattice, the phonons. The photons travelling through the

lattice can interact with the phonons and this leads to an indirect transition

between the valence and the conduction band. In effect, the three-body

interaction allows the exchange of energy and momentum that is required

for a transition at another wave vector. However, the probability of the

2.1: Ablation mechanisms during pulsed laser ablation 19



Chapter 2 Literature review

three-body interaction is much lower than the two-body interaction, resulting

in a lower absorption coefficient. The minimum band gap is around 1.1 eV

which corresponds to 1100 nm and a sharp rise of the absorption coefficient.

For lower wavelengths, the probability of interaction increases due to higher

availability of phonons with the appropriate momentum.

The absorption coefficient presented in Figure 2.5 shows the optical

response for four different materials, of which two are metal (Silver and Alu-

minium), one is a semiconductor (Silicon) and one is an insulator (Cdiamond).

The absorption coefficients of the metals are similar and weakly depend

on wavelength, whereas for insulators and semiconductors the absorption

coefficient exhibits a dramatic increase from the indirect band gap (1.1 µm

for Silicon [58] and 0.229 µm for diamond [66]) and a stabilisation after the

direct band gap (0.362 µm for Silicon [58] and 0.169 µm for diamond [66]).

Interestingly, diamond also exhibits a higher order of interactions between

several phonons and a photon between 2 µm and 8 µm, see Figure 2.5 [67].

This is another mode for the absorption of photons during the interaction

and is mainly present in the Infra-Red (IR) absorption spectrum of the solid.

The absorption mechanisms described above correctly explain the optical

response of the solid for low intensity of the laser pulse (the linear part of the

interaction), however additional mechanisms occur for high intensity laser

pulse, and these are presented below.

The multiphoton band-to-band transition also participates in the ab-

sorption however due to the multi-body interaction (several photons and

an electron) its yield is extremely low. In effect, for semiconductors and

insulators the direct band gap energy may be overcome by the interaction of

multiple photons with one electron, leading to promotion to the conduction

band. This phenomenon occurs mainly during the interaction with ultrashort

pulses and is commonly used for two-photon polymerisation [25]. Due to
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the low yield, it only occurs for ultrashort pulses such as the two-photon

absorption for 100 fs pulses at 620 nm on a Silicon target [68]. It must be

noted that the change of absorption mechanisms is highly dependent on the

wavelength. For a Silicon target and an 80 fs pulse at 800 nm, theoretical

and experimental investigations have shown that the direct interaction with

the electron in the conduction band and the laser light can be the dominant

absorption mechanisms [69]. In effect, for a temperature above absolute zero

the amount of electrons in the conduction band due to fluctuation of the

energy state can be sufficiently great for absorption of the laser light for

ultra-short pulses. Energetic electrons in the conduction band interact with

the valence electrons and promote them to the bottom of the conduction

band via collisions. The yield is highly dependent on the amount of electrons

in the conduction band and the process leads to an “avalanche” of electrons

promoted to the conduction band. This process is called avalanche ionisation.

It must be noted that multi-photon absorption can be highly enhanced by

defects in the target surface. This has been widely studied for materials used

in optics such as BaF2. Experimental studies have shown that defects on

the surface (which perturb the electronic states) can initiate the ablation

process by promoting surface damage that later enhances absorption [70].

The promotion of electrons from the valence to the conduction band drives

the creation of electron-hole plasmas that can form early in the absorption

of the pulse [71]. The high density of free electrons in the target causes the

material to behave like a metal and dramatically increases the reflection and

the absorption coefficient [72].

2.1.3 Laser heating mechanisms

Complex mechanisms for the absorption of the laser light have been presented

and it is clear that the absorption mechanisms can greatly vary depending
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on the electronic states, the wavelength of the photon, the instantaneous

intensity and defects on the surface. However, for all the processes presented

above, the photons interact only with electrons thus leading to a temperature

increase in the electron population. The target has an electron population

with high energy and a cold lattice [73]. In the solid, the population of

electrons is in Local Thermal Equilibrium (LTE) and can be described by

one temperature (experimental investigation for Aluminium estimated the

thermalisation time at around 100 fs [74]) and the population of heavy

particles in the lattice is also in LTE after 39 fs [75, p.103]. However, the

electrons and the lattice between each other are not in LTE [24]. In effect, the

electron-phonon interaction time for the energy is in the order of 5–10 ps [75,

p.105-109]. For ultra-short pulses, the lattice heating is delayed compared to

the electronic heating. Due to the low heat capacity of the electron cloud,

the temperature of the electrons increases to well above critical temperature

[76] and generates a large amount of electron emission at the surface. After

several hundred picoseconds, the electron and lattice temperatures converge

to the same value. For short pulses (> 1 ns), the coupling between the

electron temperature and the lattice temperature is strong due to the long

interaction time between the two populations. Therefore, the temperatures of

the electrons and the lattice are the same during the heating process by the

laser pulses. At this point, the following mechanisms are highly dependant on

the intensity of the pulse. For ultrashort pulses, if the lattice does not have

time to heat sufficiently, the ablation mechanisms are called “non-thermal”.

Whereas, for short pulses, the lattice has enough time to heat sufficiently and

the removal mechanisms are called “thermal”. In the following subsection,

the phenomena leading to material removal will be described in detail.
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2.1.4 Laser removal/ablation mechanisms

In this subsection, the thermal mechanisms will be presented. It must be

noted that the removal mechanisms for thermal ablation are functions of

local heating and can be determined from the solution of the heat equation,

∂tHg = ∂x [D∂xH] + S, (2.10)

with H, D and S respectively being enthalpy of the material, thermal diffu-

sivity and the heat source induced by the laser. The enthalpy is generically

calculated as

H(T ) =

∫ T

T0

ρ(T )cp(T ) dT, (2.11)

with cp and T being the specific heat and temperature, respectively. The

heating rate can be as high as 109 K.s−1 [77, p. 98] and the temperature

gradient can be as high as 104 K.µm−1, leading to melting, evaporation,

volumetric ablation, plasma breakdown and material ejection.

2.1.4.1 Surface melting

The temperature increase in the material can lead to the formation of a

transient pool of molten material [78, 79]. This transient pool has different

material properties but, more importantly, the material can move depending

on the force governing its motions. For a large melting pool and large gradient,

a large convection area can be created in the crater [52]. This increase in

fluid motion increases the heat flow to the colder area surrounding the crater.

Moreover, due to the size of the crater, the heat flow to the cold area is strong

and can freeze the deformation that occurs during the laser-target interaction

[80, 81]. In most cases, due to the size of the melting pool, gravity is not a

driving force for fluid motion. The driving forces for surface deformation for

thin melting pools are the pressure above the crater and the surface tension,
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which both depend on temperature [82]. The deformation of borosilicate

glass by a CO2 laser creates protrusion and depression in the melted area, see

Figure 2.6. The formation of specific structures is observed for a wide variety

of materials and is due to gradient variation in the surface tension, leading to

the creation of protrusion when the gradient is positive and depression when

it is negative [83]. The variation in the surface tension can be used to create

a variety of shapes such as sombrero shaped crater [84] or the formation of

nanotips [80].

Surface melting is the first to step towards ablation of the material.

Surface melting alone cannot explain the removal of material from the target,

however it is possible to explain the surface deformation just above the

threshold of melting. It is also an important phenomenon to consider if

one is interested in the final shape of the crater and in the creation of rims

around craters which are observable from short pulses for a wide range of

materials (ceramics [47], metal [85]). It has also been found that the creation

of a strong temperature gradient in the crater causes high speed of material

flow (≈ 10 m.s−1) due to the Marangoni effect [86]. This flow can lead to

Rayleigh-Taylor instability development and creates a wavy pattern on the

surface of the molten pool [86]. If the flow is strong enough, inertia forces

at the edge of the crater are stronger than the surface tension and droplet

ejection occurs [86]. In the next sections, the surface melting will play a

direct role in the material removal with the increase of the laser power.

2.1.4.2 Thermal Evaporation

One of the effects of material melting is to delay further increase of tempera-

ture, since the enthalpy of melting is consumed during temperature elevation

[87]. However, for high power pulses, the elevation of temperature is not

stopped by the melting and the temperature increases to even higher values.
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Figure 2.6 : Deformation for a borosilicate glass target induced by mi-
croseconds pulsed CO2 laser after 1 hour annealing from Wlodarczyk et al.
[81].

Unlike the melting process, this can be considered as an instantaneous transi-

tion from the solid-phase to the melted-phase using a temperature threshold.

Vaporisation is not an instantaneous process [88] and its rate for a material is

related to the temperature at the surface and the pressure vapour such that

ṁ =

√
M

2πRTs
Pv (2.12)
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with ṁ, M , R, Ts and Pv respectively the rate of evaporation, the molar

mass, the gas constant, the surface temperature and the pressure vapour.

Miotello and Kelly [34] investigated the material removal due to the thermal

process and it has been shown that the amount of materials removed by direct

vaporisation during nanosecond ablation can be low (less than 100 atomic

layers for the materials presented) for a temperature just above boiling

point. Equilibrium evaporation of material during pulsed laser ablation

reaches temperatures well above boiling point due to low efficiency of direct

evaporation for a short time [89]. It must be noted that the enthalpy of

vaporisation is usually higher than the total amount of energy necessary

to increase the temperature to the critical point. Therefore, vaporisation

is a highly penalised process as it requires a large amount of energy. One

way to increase the amount of material ablated would be to increase the

contact surface between the gas and liquid. This occurs during boiling with

heterogeneous nucleation of vapour in the bulk of the liquid. However, it has

been found that this process is also not effective during nanosecond pulsed

laser ablation since the time necessary to grow and diffuse the bubble to the

surface is too long [34]. Furthermore, experimental results support the idea

that the temporal length of the pulses has a strong influence on the amount

of material ablated by vaporisation [78]. In effect, it has been found that

for graphite, longer pulses lead to a higher yield [78] for the same amount of

energy deposited.

During fast evaporation and condensation a thin layer (a few mean free

paths) known as the Knudsen Layer (KL) is used to describe the transition

from a thermal and kinetic non-equilibrium to a Maxwell-Boltzmann equi-

librium distribution for the vapour particles. Thus, the connection between

the target and the plume is consistently modelled under high thermal load

of the target. A variety of models are used to describe the KL for different

2.1: Ablation mechanisms during pulsed laser ablation 26



Chapter 2 Literature review

conditions (atmospheric ablation, vacuum ablation, etc.) [90–93]. In the case

of ablation in an ambient environment, the approach developed by Knight et

al. [90] is well adapted [23, 30]. The KL is treated as a gas dynamic disconti-

nuity [90] for which analytical expressions are derived that link temperature,

pressure, density and velocity along both sides of the KL.

Thermal vaporisation is often the main ablation process for short pulses

at low energy [89] or long pulses (> 1 µs) [47]. In effect, for low energy and

temporally long pulses the temperature in the material does not exceed the

critical temperature and does not progress to the development of metastable

phases [30, 34]. The target is in equilibrium with the vapour phase and

follows the binodal in the thermodynamics coordinates, as shown in Figure

2.7. Thermal evaporation has been successfully applied to predict numerous

experimental results (Nb [94], YBCO [94], graphite [95], TiC [46], Alumina

[47], etc.). However, it has been found that vaporisation alone cannot explain

the high amount of ablated material observed for high energy short pulses

for graphite [32], Silicon [96, 97] and Aluminium [98, 99]. In effect, the

evaporation process is not an efficient mechanism to relax material that is

heated at a high rate (> 109 K.s−1) [100, p.90] and the increase in energy

density is inexorable for high power laser pulses. In the next section, the

relaxation mechanism for superheated material will be presented in detail.

2.1.4.3 Explosive boiling or homogeneous nucleation

Only thermodynamics quasi-equilibrium states have been discussed so far. In

effect, the transition from solid into liquid into vapour by vaporisation can

be described using a continuum model assuming quasi-equilibrium processes

for the transition between phases. The early work of van der Waals [101] on

the continuity of gaseous and liquid states has provided useful insight into

the transition of the liquid to the vapour states. Phenomenologically, the van

2.1: Ablation mechanisms during pulsed laser ablation 27



Chapter 2 Literature review

Figure 2.7 : Typical p–T diagram of a metal close to the critical point from
Miotello and Kelly [34].

der Waals gas laws are derived from the ideal gas law and assume that the

total volume available is reduced by the space taken by the particle (atom

or molecule) and the real pressure is reduced due to the internal cohesive

force. The correction of the ideal gas law gives the following gas law of van

der Waals, (
P +

a

V 2
m

)
(Vm − b) = RT, (2.13)

with P , Vm, R, T , a and b respectively pressure, molar volume, gas constant,

temperature, the coefficient for average attraction between particles, and

the coefficient for the volume excluded by the particles. The van der Waals

gas laws are a relatively simple EOS that describe the thermodynamic state

of a gas and liquid using the same law. This is the first law that could be

used to predict the transition between liquid and gas as a continuous state.

The formulation has issues with the representation of the compressibility
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of a real fluid and has since been replaced by other formulations [102–106].

However, the law presents a simple way to discuss qualitatively the different

states of matter and the transition from one to another. In effect, the law

presents several characteristics that are close to reality for the transition

of states where a critical point (Tc, Pc and ρc) exists and where several

phases (different densities) are present for the same pressure and temperature.

The thermodynamic diagrams (P–ρ and T–ρ) presented in Figure 2.8 are

qualitatively similar (for the position of the different phases) to the “real”

(state-of-art) EOS as can be seen for Silicon [23], Copper [30] and silica [107].

It must be noted that the van der Waals equation cannot be applied to the

transition from solid to liquid and solid to gas, therefore no discussion will

be given regarding melting or sublimation.

The main applicability of the van der Waals EOS is the description of

the gas. However, the EOS presents several areas for which it provides

additional information about the phase state for the liquid and gas phase.

The isotherms present an anomaly for which the derivative of pressure with

respect to density at constant temperature is negative,

(
∂P

∂ρ

)
T,n

< 0. (2.14)

The state described by the van der Waals equation for which a decreasing

pressure induces an increasing density is not mechanically stable [108] and

should not be observable. This region in the thermodynamic diagram is the

Spinodal region. In Figure 2.8, it is the dark red region. Experimentally, a

state of the fluids for which the density reduces for an increase of pressure

has never been observed and one of the van der Waals EOS predictions is

that certain regions in the thermodynamics diagram are not attainable under

quasi-equilibrium conditions.
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Figure 2.8 : P–ρ and T–ρ diagrams for a van der Waals gas with the
pressure, temperature and density normalised to the critical values. The blue
dot is the critical point. The lines in the two diagrams are isothermal for the
P–ρ diagram and isobar for the T–ρ diagram.

Furthermore, the van der Waals EOS predicts that the transition from

liquid to gas occurs within a range of pressure on an isotherm, whereas

experiments have found that the transition occurs at constant pressure, the

pressure vapour, for a specific temperature. The constant pressure for the

phase transition is not present in the original work of van der Waals [101].

However, the pressure vapour can be indirectly calculated with the van der

Waals EOS using the Maxwell construction. It has been found experimentally

that the pressure vapour is equal to the pressure for which three solutions

of density can be found and that the area between the isotherm and the

constant pressure is equidistant from the two loops connecting the three
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intersections. This is expressed by,

∫ Vl

Vg

pvdW(V )|T=cstdV − Psat(Vg − Vl) = 0, (2.15)

with pvdW(V, T ) Vg, Vl, and Psat respectively the pressure using the van

der Waals EOS, the molar volume of the gas, the molar volume of the

liquid and the pressure vapour. Using Equation 2.15, the position of two

stable densities for a constant pressure and temperature are found. The

binodal (coexistence of the two phases) curve is presented in Figure 2.8. The

experimental correction found by Maxwell can be understood theoretically

using the free energy of Gibbs definition,

dG = −SdT + V dP. (2.16)

Calculating the difference of Gibbs energy in the fictitious cycle from the gas

to the liquid shows that its Gibbs energy is null, supporting the experimental

correction done by Maxwell and the coexistence of the two phases [109]. The

binodal is not confounded with the spinodal therefore a region exists for a

stable phase that is not thermodynamically favoured. These regions, shown

in light red in Figure 2.8, are called metastable [110] since any perturbation

could induce a dramatic and homogeneous phase transition.

In effect, the creation of an interface between the two phases has an energy

cost due to the surface tension and results in metastability of the phase over

the thermodynamic criteria. Any defects, impurities, walls or radiation could

reduce the potential for the creation of the interface and allow nucleation

of the thermodynamically favoured phase. The absence of defects allows

persistence of the current phase to much higher temperatures until the phase

reaches conditions close to the spinodal [111, 112]. It should however be

noted that the presence of defects might not be enough to generate phase
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transition before superheating occurs if the heat rate is sufficiently high [100,

p. 90]. Early work on the stability of metastable liquid and nucleation kinetics

presented in the book written by Skripov [100] is particularly interesting

for the comprehension of phenomena occurring during transition inside the

metastable phase. This work is still relevant to current research of explosive

boiling/volumetric ablation for PLA [23, 30, 107].

Homogeneous bubble nucleation in superheated liquid has been widely

studied, leading to several formulations for the frequency of spontaneous

nucleation rate [107]. However, the formulations only offer slight corrections

to one another for the different phenomena considered and offer similar

predictions [107]. The theory is based on the spontaneous creation of vapour

bubbles of different radii in the superheated liquid. The critical radius (rc)

of the bubbles is defined such that mechanical and chemical equilibrium is

achieved,

pbubble = pliquid +
2σ

rc
, and (2.17)

µbubble(pbubble, T ) = µliquid(pliquid, T ), (2.18)

with σ, and µ respectively the surface tension of the liquid and the chemical

potential. For a given pressure and temperature of the liquid, the intersection

of these two conditions provides the critical pressure and radius of the bubble

[100, p. 24]. Bubbles with a radius larger than the critical value participate

to the phase transition, whereas bubbles with a radius smaller than the

critical value collapse due to surface tension and do not participate to the

phase transition. Thus, the dynamics of phase transition are governed by

the frequency of spontaneous nucleation of the bubbles with critical radius

rc. Bubbles below the critical radius do not participate to the global phase

transition however due to the random vaporisation/condensation processes

some of them can grow up to the critical radius. The solution of Dömer and
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Figure 2.9 : Temperature of maximum superheating of n-hexane (a) and
hexafluorobenzene (b) at different pressures [100, p. 76]

Volmer is obtained by considering the bubbles as spherical, behaving like a

perfect gas, and in mechanical equilibrium with the liquid without being in

chemical equilibrium. It is found that the spontaneous nucleation rate for

bubbles at the critical radius is,

J1 = N1

√
6σ

(3− b)πm exp

[
−∆Hliq→gas

kT

]
exp

[
−Wc

kT

]
with b = 1− pliquid

pbubble
,

(2.19)

with N1, m, ∆Hliq→gas, k and Wc respectively the number of molecules

per unit volume of the metastable phase, the mass of the molecule, the

heat of vaporisation per molecule, the Boltzmann constant and the work

done by bubbles reaching the critical size. Equation 2.19 can be used to

calculate the maximum temperature of the liquid for a specific nucleation
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Figure 2.10 : Theoritical dependence of the frequency of spontaneous
nucleation on the Gibbs number; a) diethyl etherp at 1 (1), 5 (2), 10 (3) and
15 (4) bar; b) results for atmospheric pressure for diethyl ether (1), n-hexane
(2), n-pentane (3) and benzene (4) [100, p. 123]

frequency (J1 = cst). Experimental measurements of the maximum liquid

superheat (Tsu) in bubble chambers or with droplets have shown that the

model provides good agreement with reality, see Figure 2.9. The discrepancy

between predicted and experimental values is usually less than 1-2 K.

The theory has been derived approximately using several significant

assumptions but it nonetheless provides accurate results for a wide range

of conditions and liquids. Figure 2.10 shows the theoretical dependence of

the frequency of spontaneous nucleation on the Gibbs number (G = Wc/kT ).

It is clear that for practical applications the nucleation frequency can be

correctly estimated using a much simpler formulation,

ln J1 ' 71−G, (2.20)

for a wide range of pressures and liquids. The inverse of the frequency
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of spontaneous nucleation is equivalent to the mean time for an expected

embryo to form in the liquid. Applying the approximations above for a droplet

of 1 cm3, it is possible to obtain the typical order for the stability of the

superheated liquid in the metastable state. For example when G = 100, the

typical time is around 1013 seconds. However, for G = 40, the typical time is

around 10−13 seconds. This is shorter than the time of formation of the embryo

using molecular dynamics [100, p. 124], therefore the typical time cannot be

less than 10−11 seconds. This example seems to provide extreme values for

the stability of the superheated liquid, however using ether at atmospheric

pressure, for which T (G → ∞) = Ts = 34.5 °C, T (G = 100) = 140 °C and

T (G = 40) = 148 °C, the extreme values of stability correspond to similar

thermodynamic states [100]. Therefore, the transition between stable and

extremely unstable superheated liquid can be seen as a threshold process as

described for PLA [34, 113]. The theory proposed for homogeneous bubble

nucleation has been mainly derived from non-local experiments for which the

global state of a small droplet (∼ 10-50 mm3) is studied [114]. Furthermore

experimental results are the average of numerous experiments due to the

stochastic nature of the process, therefore the local process (in time and

space) of homogeneous nucleation has not been studied in detail.

The work presented in the manuscript of Faik et al. [107] is particularly

interesting for the development of a local criterion for homogeneous boiling

during a transition in the metastable zone. In effect, it has been found that

the transition of a single phase liquid crossing the binodal is not accompa-

nied by any peculiarity. The liquid follows the EOS without “noticing” the

thermodynamically predicted equilibrium with the other phase (at least as

long as this phase is absent) [114]. Therefore, for a liquid element following a

thermodynamic path across the binodal, the Maxwell construction does not

represent the thermodynamic states and the phase transition occurs due to
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Figure 2.11 : Schematic representation of the evolution of the thermody-
namic state of heated matter on the (v,p) phase plane. O(origin)→ (fast
heating in the stable zone) B0 → (fast heating in the metastable zone) B1

→ (transition from the metastable state to the stable state on the Maxwell
construction) B2 → (hydrodynamic motion) B3.

homogeneous nucleation of critical bubbles. It is argued that during ultrafast

heating ( q ' 1011 J.g−1.s−1), the target will enter the metastable zone

without notable increase of pressure. As the element penetrates deeper into

the metastable phase, the thermodynamic barrier between the metastable

EOS and the equilibrium EOS is reduced. Once the element reaches a certain

thermodynamic point B1, it transits to the equilibrium EOS on the point

B2, see Figure 2.11. As the thermodynamic barrier decreases, the time scale

for the transition also decreases by several orders (as for the frequency of

homogeneous nucleation). For example, the transition time between the

metastable EOS and the equilibrium EOS near the spinodal is approximately

equal to 10−12 seconds, which is practically instantaneous for the time scale
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Figure 2.12 : Path of the surface cell during the nanosecond ablation of
Cu projected on the phase diagram [30].

of the ablation process [107]. Thus, due to the time scale of the phase

transformation, the internal energy and the density of the liquid element in

the metastable EOS must be equal after transition in the equilibrium EOS.

According to the second law of thermodynamics, the transition leads to an

increase of entropy due to the instantaneous transition which isolates the

system from outside influence.

The phase transition occurs due to homogeneous nucleation of critical

bubbles in the liquid until the fractional volume of all vapour bubbles in

the superheated liquid is equal to that following the EOS with the Maxwell

construction. The internal energy and the density are constant during the

transition for the metastable state to the equilibrium state, see Figure 2.11.

It is then argued that the instantaneous transition is accompanied by a jump

in pressure, temperature and entropy. The delay in surface expansion due to

entrance in the metastable EOS leads to an explosive jump of pressure that
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creates a dynamic jet of droplet-vapour mixture [30].

For a laser/target interaction, this phenomenon occurs only if the external

pressure is not dynamically adjusted to the pressure vapour at the surface.

This only happens if the heating rate is large enough, surpassing the charac-

teristic time of the plasma/ambient pressure at the surface. Therefore, the

ejection of high speed droplet-vapour mixture during heating mainly occurs

during the leading part of the pulse. However, it only offers temporary relief

to the heating of the target, see Figure 2.12, and does not account for a large

part of the ablated material [30].

2.1.4.4 Supercritical state

Heating of the target is not stopped due to homogeneous vaporisation and

the ejection of vapour-droplet mixture [30]. The trajectories in the thermo-

dynamics diagram present a “saw pattern” along the binodal leading to the

critical state [30]. At this point, the distinction between the liquid and the

vapour no longer exists. Further investigations close to the critical point have

shown that fluctuations of density are important, leading to large scattering

at all wavelengths, see Figure 2.13. This is also supported by experimental

investigations of thermodynamic anomalies (i.e. jump of specific heat at con-

stant pressure and sound speed) near the critical point [115, 116]. The critical

fluid is therefore added to the hydrodynamic domain since it transforms like

a weakly ionised plasma which is semitransparent to incoming radiation [23].

The critical fluid experiences large density fluctuation on a micro-scale size

which leads to the generation of a jet of degenerate mixture of supercritical

fluids with large density fluctuation [117].

The generation of a high pressure/temperature gas over the crater due to

equilibrium vaporisation, superheating homogeneous boiling or supercritical

phase leads to a shielding of the laser light. In the next section, the interaction
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Figure 2.13 : Lines of equal light scattering in SF6 projected onto the T , p
plane [100, p. 249]

between this high temperature gas and the laser are detailed and the related

shield/heating phenomena are presented.

2.1.4.5 Plasma generation, interaction with the laser field and the

vapour plume

The generation of a plasma from the vapour is a common event during

nanosecond pulsed laser ablation. The generation of a strong plasma, which

can affect the amount of absorbed laser intensity by the target, occurs

for pulses with an energy above the breakdown threshold. Shadowgraphy

imaging shows that the laser beam can be the main driver of the vapour

plume dynamics, see Figure 2.14. Shadowgraphy is based on light deflection
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Figure 2.14 : Copper laser produced vapour plume on an aluminium target
at laser intensities of (a) 0.93 GW.cm−2 and (b) 7.3 GW.cm−2 during the
end of the 40-ns laser pulse [118].

due to change in refractive index, therefore jumps in density and temperature

(shock wave) are easily captured. The shadowgraph presented in Figure

2.14(a) clearly shows the shock wave due to strong ablation at the surface.

However, the shock wave geometry is not influenced by the direction of the

laser. For higher energy, shown in Figure 2.14(b), the shadowgraph clearly

shows a protuberance in the direction of the laser. This strongly suggests

that the laser interacts significantly with the vapour plume, changing the

energy distribution on the plume. Interestingly, measurement of the speed

of the laser-induced detonation front shows that the apparition of the laser-

induced detonation saturates the speed of the primary vapour front [118].

The vapour front position is related to the amount of energy stored in the

gas [119] therefore a saturation of the front speed is related to a saturation

of the amount of energy deposited into the target. This suggests that vapour
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Figure 2.15 : Spatially average absorption coefficient in the plasma over a
target of copper with a peak irradiance of 1013 W.m−2 for (a) UV light (266
nm) and (b) VIS (532 nm) [121].

plume interaction with the laser shields the target from part of the energy

available in the laser pulse. Further experimental investigations have shown

that the plume has a significant role in the energy balance, absorbing most

of the energy that the laser pulse carries during nanosecond ablation [23,

120]. The vapour temperature is high enough to create a consequent amount

of excitation of the atomic species in the plume. The vapour then starts to

absorb the incident radiation, leading to breakdown and the plasma formation

above the crater. The properties of the laser ablation process in this case are

strongly influenced by the coupling between the plasma and the laser. The

specific kinetics of the plasma will also play a dominant role in the ablation

process.

The different mechanisms that lead to absorption of the laser light by the

vapour plume are:

i) Inverse Bremsstrahlung: a process involving the absorption of photons

by free electrons moving through the electric field induced by neutrals
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and ions,

Ck
j + e−(εe−) + hνlaser ⇀ Ck

j + e−(εe− + hνlaser). (2.21)

The inverse Bremsstrahlung neutral-electron can be the dominant ab-

sorption process at the beginning of the interaction with the laser.

However, the ion-electron interaction is usually dominant once the ion

concentration in the plasma is large [122]. The inverse Bremsstrahlung

is mainly dependent on the density of electrons, the wavelength of

the laser, and the temperature. The cross section formulation for the

neutral-electron inverse Bremsstrahlung is,

ςn,eIB =
[C0]

3 me−cπhν
3
laser

e2

4πε0

√
2(hνlaser + ε)

me−

[(εe− + hνlaser) ςC(εe−) + εe−ςC(εe−) (εe− + hνlaser)]

(2.22)

and the ion-electron inverse Bremsstrahlung is,

ςn,iIB =
4

3

√
2π

3 me−kBTe−

∑k=kmax
k=0 Zk+

[
Ck]

hcν3
laser me−

G
e6

(4πε0)
3 (2.23)

Therefore, the inverse Bremsstrahlung is the dominant process for laser

within an IR light. For VIS and UV lasers, the inverse Bremsstrahlung

is only significant at high temperature and high density of electrons

[123], see Figure 2.15.

ii) Photoionisation: an atom or ion absorbs a photon which becomes ionised

[124],

Ck
i + k × hνlaser 
 Ck+1

j + e−(khνlaser −∆Ek,k+1
i,j ). (2.24)

The interaction is highly dependent on the amount of energy that the
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photon carries due to the number of electronic levels available for the

interaction. In effect, if the energy between the two levels is greater

than the energy given by the photon, the interaction cannot occur from

these levels. Therefore, interaction is only possible in the thermally

(collisional) populated excited electronic levels of the atom or ion for

which the energy difference between the initial level and the final level

is lower than for the photon energy. Excess energy from the absorption

is transferred to the kinetic energy of the free electrons. The absorption

coefficient therefore requires consideration of the discrete electronic

levels of an atom/ion to accurately simulate the photo-ionisation. Thus,

proper understanding of the dynamics of the electronic level requires

comprehension of the collisional (excitation, ionisation) and radiative

transition (ionisation, spontaneous emission, etc.). The cross section

for the interaction between one photon and heavy (ions and neutrals)

species is

ςPI =
64π4e10me−

3
√

3 (4πε0)
5
h6c

1

ν3
laser

(
∆Ek,k+1

i,j

)5/2

√
Ek+1

0

(
E
H
ion

)2 (2.25)

where E
H
ion and Ek+1

0 are the ionisation energy of the Hydrogen atom

and the ionisation energy of the species at the current level of ionisation,

respectively. The cross section for the interaction between k-photon and

heavy species is

ςMPI =
ςPI

(k − 1)!νk−1
laser(hνlaser)

k
. (2.26)

The photo-ionisation process is effective for UV and VIS lasers since a

larger number of electronic states can participate to the interaction [125],

whereas IR light does not participate effectively to the photoionisation

process due to the low number of electronic states allowed for the

transition [121], see Figure 2.15.
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Plasma ignition of the plume is a complex phenomenon since it depends

on the wavelength of the laser, the temporal profile, target properties, etc.

However, several trends are possible to extract from the discussion above:

i) UV plasma absorption is dominated by photoionisation absorption.

ii) VIS plasma absorption is firstly dominated by photoionisation, then

after the ignition the neutral/ionic inverse Bremsstrahlung absorption

could represent a significant part of the absorption.

iii) IR plasma absorption is dominated by inverse neutral/ionic Bremsstrahlung

absorption.

iv) LTE cannot be used if correct ignition start is required, and might

underestimate the total absorption by the plasma. Collisional-Radiative

(CR) models are used to improve the description of the thermo-optical

properties of the plasma. The Boltzmann-Saha is usually used to

estimate the plasma properties. However, it has been found that during

LIP the electron density is usually higher than the equilibrium value

[126], and so caution must be taken when using the Boltzmann-Saha

equilibrium to calculate the density of the electrons and electronic levels.

The plasma ignition threshold for UV and VIS lasers should be close

to the ablation threshold since absorption occurs mainly through direct

photoionisation. However, plasma ignition for IR can present a delay [31]

due to low density of electron energy levels that can participate to the direct

photionisation. Absorption then occurs through the neutral/ionic inverse

Bremsstrahlung, which is dependent on the temperature of the plume before

plasma ignition [122].

Plasma ignition has two main effects. Firstly, the laser is partially absorbed

by the plasma, potentially shielding the target of a large part of the laser
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Figure 2.16 : SEM images of an ablation crater using a nanosecond laser
with 30 ns (FWHM) at 1061 nm with a fluence of 110 J.cm−2. Within the
green rectangle are signs of fast ejection around the crater. The blue rectangle
shows an area of large material ejection.

energy. Secondly, the combination of vaporisation at the surface and plasma

ignition creates a high pressure field over the crater [127, 128] leading to

ejection of matter. In the next section, the material ejection due to the

pressure field over the crater is discussed.

2.1.4.6 Material ejection due to recoil and plasma pressure

One explanation for the discrepancy between theoretical and experimental

results is the presence of high pressure above the crater due to recoil of the

material from the crater [91]. This pressure produces a piston effect on the

pool of molten material, pushing the material away from the centre of the

crater [129]. In the next section, the interaction between the pool of molten

material and the recoil pressure is described in detail.

The increase in temperature due to a poor evaporation process leads to

a pressure on the crater surface of up to several Megapascals [127] for low
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irradiance levels (∼ 1010 W.m−2 for Titanium) and up to several hundred

Gigapascals for high irradiance levels ( 1015 W.m−2 for Silicon) [128]. Exper-

imental results show the presence of small and large droplets on the surface

after laser ablation of aluminium using a nanosecond laser with high power,

see Figure 2.16. A rim around the crater is also observable. The ejection

and the rim can be explained by the presence of high pressure above the

crater. Unfortunately, modelling of the melt ejection or the rim formation is

not usually studied. Appropriate simulation of the system requires considera-

tion of the 2D/3D phenomena which considerably increases the associated

computational costs. The study of Leitz et al. [130] is one example of a

simulation of the ablation process using a 3D framework. The ejection of

material is predicted by the model and is due to the formation of a high

pressure gas over the crater. Experimental work presented in Leitz et al. [130]

also confirms that larger amounts of melted material present during longer

pulses increase the amount of material ejected during ablation. Another

interesting work about melt displacement produced by recoil pressure is the

study by Harimkar et al. [131], where the infiltration of the melt into porous

alumina grains is studied. Three-dimensional modelling gives acceptable

results for the depth of melting of porous ceramics. Both works show that

the recoil pressure due to evaporation leads to displacement of the material

in the crater and also to ejection of the melt around the crater, as can be

seen from the experimentation on Aluminium shown in Figure 2.16.

Furthermore, numerical prediction shows that melt ejection can be the

dominant removal mechanism for fluence close to the melting threshold, such

as for iron and aluminium [129]. However, it must be noted that this model

might not appropriately predict the amount of material ablated because it

cannot differentiate between the displaced material inside the crater and the

material ejected from the crater. In effect, the model cannot consider surface
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Figure 2.17 : SEM images of the crater using a femtosecond laser with
a 100 fs (FWHM) at 800 nm with an average fluence of 34 J.cm−2 from
the work of Ben-Yakar et al. [82]. Image (b) is a magnification of the area
indicated by a black rectangle in image (a).

tension and does not differentiate between the displacement of material from

the centre to the edge and pure ejection of material due to high pressure.

The simulation of the evolution of melt-air/plasma by Ben-Yakar et al. [82]

for an axi-symmetric system provides insight into the ejection of molten

material during femtosecond glass ablation. In this study, the pressure is due

to plasma excitation above the crater and not the recoil pressure. However,

some insights provided about material displacement during ablation are still

applicable for longer pulses. The simulation shows that the rim around the

crater is due to displacement of the molten material toward the edge of

the crater. Furthermore, the pressure at the centre of the crater creates a

high speed flow (≈ 2000 m.s−1 [116]) that flattens the rims and leads to

the ejection of molten material around the crater, see Figure 2.17. The

same behaviour is observed during the ablation of an aluminium crater by

a nanosecond laser, see Figure 2.16. Consideration of the displacement of

material during pulsed laser ablation due to the recoil pressure is important

for understanding the crater shape after solidification. However, displacement

of the material does not always lead to ejection (and removal) from the target.

Therefore, depending on the methods used to measure the amount of material
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ablated from the target, it is important to take into account the displacement

of material for modelling. In effect, the displacement of material affects the

position of the interface but does not always affect weight loss. Therefore, if

the change in topography is used to calculate the amount of ablated material,

as in the study of Stafe [31], the piston effect must be taken into account.

However if the weight loss is used, the amount of material displaced would not

change the weight and consideration of the piston effect would overestimate

the amount of ablated material. Therefore, the piston effect should not be

taken into account as done in the study of Bulgakova and Bulgakov [89]. The

amount of ejected material follows:

vej = 4vmhm/d, (2.27)

where vej, vm, hm and d denote the speed of recession into the material due

to ejection, the radial speed of the melt in the crater due to pressure over

the crater, the thickness of the melted layer and the diameter of the crater

respectively. The radial speed of the melt is equal to

vm =
√

2 ∗ Pplume/ρ (2.28)

where Pplume and ρ are the pressure of the plume over the crater and the

density of the melt respectively. The amount of ejected material is directly

proportional to the thickness of the melted layer, thus this effect is more

pronounced for longer pulses than for shorter pulses.

The pressure over the crater leads to displacement of the material around

the crater and pushes the material from areas of high pressure to areas of

low pressure. The material is pushed at the edge of the crater and creates a

rim. The material in the rim is then ejected away due to the high speed flow

of evaporated material from the centre. This explanation is supported by
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experimental investigations on metal thin-film [132]. It has also been found

that when the system relaxes (after the main evaporation) and the pressure

above the crater is reduced, the flow is driven by the surface tension [132], as

occurs for pulsed laser melting [86].

The above phenomena occur only during the leading part of the pulse,

however further experimental studies show that the exit part of the pulse

can be as important with regards to the amount of material removed [44,

133–136]. In the next section, the removal processes during the exit part of

the pulse are discussed.

2.1.4.7 Ejection of material during the exit part of the pulse and

after the pulse

It has been found in nanosecond pulsed laser ablation experiments that there

exists a jump of material removal for a particular threshold for a wide variety

of materials such as Aluminium [134], porous graphite [32], YBaCuO [89],

Silicon [133] and fused silica [136], see Figure 2.18. The experiments by Yoo

et al. [133] and the following work of Lu et al. [113] demonstrate a good

example for the investigation of material ejection. These experimental results,

presented in Figure 2.18, show the variation in phenomena that occurs with

an increase in deposited energy. The ratio of volume clearly shows two phases:

(i) The first phase is a melting phase and a light ablation. The volume

ratio shows that the real amount of vaporised material is low compared

to the volume that is displaced by the recoil pressure and the surface

tension.

(ii) The second phase for high irradiance, characterised by a dramatic

increase in the amount of ablated material. Interestingly, the ratio
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Figure 2.18 : (a) Crater volume and depth, (b) Ratio of the volume over
the horizon to the volume under the horizon as a function of laser irradiance
for Silicon ablated with pulsed laser ablation (FWHM =3 ns) at 266 nm,
[133].

of volume over and under the horizon shows a jump from 0.75 to

0.25. The jump cannot be explained by the evaporation model alone.

Furthermore, shadowgraphs show that this threshold correlates with

the apparition of a large amount of ejected material after a delay of

around 400 ns. It must be noted that the ratio also shows larger

variance in the experimental results, suggesting a more chaotic and

stochastic process.

In the study by Yoo et al. [133], the final amount of ejected material represents

the main removal mechanisms for high irradiance and this occurs largely after

the end of the laser pulses (3 ns FWHM), suggesting that relaxation of the

target after the heating could be an important part of the process.

Modelling of the ablation of Silicon shows that the plasma over the

crater is already fully developed, leading to a high pressure field [97, 113].

Experimental measurements of the explosive boiling for Aluminium also

display a high pressure field (0.12 GPa) over the crater [98]. Finally, the plume

pressure over the crater drops dramatically due to sonic plume expansion

[23, 31]. The characteristic time for the pressure drop is usually lower than

the characteristic time for the temperature drop inside the material. It is
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Figure 2.19 : Speed and kinetic energy density of ejected particles as a
function of the estimated ejection time delay from the breakdown on the exit
surface for the ablation of fused silica with nanosecond pulses (8 ns FWHM)
at 355 nm for fluence on the order of 40-60 J.cm−2 [136].

therefore likely that the target enters the metastable phase leading to the

ejection of a droplet-vapour mixture jet [136]. Existence of a delayed jet

of a droplet-vapour mixture was observed decades ago, however there are

few studies that systematically study the dynamics of the jet as a function

of time. The work of Demos et al. [136] offers particular insight into the

processes that lead to the formation of the jet and also their dynamics. The

speed of the ejected particles as a function of the delay compared to the start

of the breakdown is presented in Figure 2.19. The following equation is used,

K = c0 + c1 exp

[
t− t0
τ1

]
+ c2 exp

[
t− t0
τ2

]
(2.29)

where K is the kinetic energy of the particles, t is the time, t0 is the delay

for the onset of the particle ejection, τ1 and τ2 are the decay times for the

process and c0, c1 and c2 are fitted constants. The best fit for Equation 2.29)
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is plotted in red in Figure 2.19 with the parameters

c0 = 4× 105 J.m−3, c1 = 3.8× 109 J.m−3, c2 = 9× 107 J.m−3,

t0 = 30 ns, τ1 = 15 ns, τ2 = 170 ns.
(2.30)

The values of the fitting parameters suggest that the ejection starts with a

30 ns delay compared to the main evaporation. Furthermore, it is suggested

that there are two mechanisms for particle ejection with a large difference of

intensity and decay time. It must be noted that the speed of ejection arises

directly from the pressure work of the ejected material volume, therefore it is

possible to estimate the pressure of the heated material during the particle

ejection. The results presented in Figure 2.19 suggest that the pressure

at the start of the ejection reaches ≈ 3.8 GPa. At the end of the first

relaxation process, the pressure drops dramatically to 90 MPa in around

15 ns. Finally, at the end of the second relaxation, the pressure is only

four times the atmospheric pressure, around 0.4 MPa. The dramatic fall in

pressure is coherent with the entrance of the material in the thermodynamic

metastable phase and the onset of explosive boiling. Further experimental

results presented in the work of Demos et al. [136] suggest that the ablation

and particle ejection for high power nanosecond laser arise in the following

manner:

a) The first phase is the supercritical vaporisation of the surface due to the

action of the laser. This is supported by shadowgraphy of the shape of the

shock wave presenting an elongated shape, which indicates a piston-like

action in the direction perpendicular to the surface. It is also confirmed

by the experimental and numerical investigations of Galasso et al. [23]

and [120].

b) Following the first explosive evaporation, a swelling of the surface appears
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[137]. The swelling process is followed by an explosive fragmentation of

the surface around 30 ns after the explosive evaporation. This suggests

that the second phase of response is due to the superheating of sub-surface

material leading to the fragmentation of the liquid surface. This is also

confirmed by the shape of the ejecta showing small fragmented particles

that were completely melted during ejection, see Figure 2.20(a). The

value of 15 ns provided from the fitting of the speed of ejection can be

interpreted as the relaxation time for the superheated material. This is

the first ejecta visible with shadowgraphy imaging.

c) The material still has a large amount of heat and previous numerical

experiments have shown that the matter should be in a metastable state

[120], leading to partial ejection of melt until the thermodynamic stable

state is reached. This is supported by the shape of the ejecta showing

long filaments, see Figure 2.20(d)-(e), suggesting that the temperature of

molten glass was low during ejection.

d) Finally, the low speed ejection of particles (over 1 µs) is due to mechanical

recoil of the fractured surface. It has previously been reported that large

bulks of material are ejected during pulsed laser ablation of glass [137].

This is supported by numerical modelling for graphite [44] which suggests

that the pressure due to recoil/plasma could exceed the tensile strength of

the material, leading to crack formation. This is confirmed by the shape

of the ejecta, see Figure 2.20(b)-(c), that do not present any melted part.

The phenomena occurring at the exit part of the pulse is complex to under-

stand and model due to the interaction between the target and the plasma. In

effect, it seems that the material removal passes through several phases with

different thermodynamic paths involving metastable state, crack formation

and ejection.
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Figure 2.20 : SEM images of particles ejected during pulsed laser ablation
of fused silica with nanosecond pulses (8 ns FWHM) at 355 nm for fluence
on the order of 40-60 J.cm−2 [136]. There are three main types of particles,
(i) small and completely melted (a), (ii) melted with small filaments between
globular melt (d)-(e) and (iii) presenting fractured material (b)-(c).

2.1.4.8 Discussion of the removal mecanisms

The discussions presented so far have shown that removal mechanisms during

pulsed laser ablation are varied (melt ejection, equilibrium vaporisation,

superheated explosive boiling, supercritical explosive vaporisation, ejection

of mechanically damaged material). Furthermore, a complete description

of the phenomena requires understanding of the material interaction with

the laser, the plasma generation and properties (optical, collisional and

thermodynamic), the thermodynamic properties of the target and mechanical

properties. In effect, the evolution of the material along the metastable state

that might be the dominant ablation process during high power nanosecond

ablation requires a complete description of the pressure field above the crater

(plasma) and inside the material.

Finally, two main modes of removal during nanosecond pulsed laser
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ablation can be isolated:

(i) For low power, the material is removed following equilibrium evapora-

tion until the critical temperature is reached, leading to an explosive

evaporation at the surface. Description of the plasma properties might

be necessary should the plasma ignition threshold be crossed. The

ejection of melted material could happen if the pressure over the crater

is high and the depth of melted material is significant. The model

developed by Galasso et al. [23] is a good example for the modelling of

low power events without the generation of metastable phase.

(ii) For high power, the material follows the thermodynamic process path

during the leading part of the pulse. However, the plasma absorbs

most of the pulse energy leading to an interaction between the plasma

and the target via the Bremsstrahlung emission [32]. The explosive

vaporisation at the surface does not release enough energy, therefore

the material moves toward the metastable phase during the pressure

drop and this leads to the ejection of a droplet-vapour jet [136]. Finally,

mechanically damaged materials are ejected at low speed a long time

(≈ 1 µs) after the pulse.

Distinguishing between the two modes is important for reliable modelling.

The ablation for low power is mostly related to the equilibrium evaporation

with explosive vaporisation of the material reaching Tc that is transferred to

the plume domain. The surface cell will then follow a trajectory along the

binodal, which simplifies the requirement for the thermodynamic properties.

The plume domains can usually be modelled using a perfect gas EOS using a

CR model to understand the optical properties.

However, the second model of ablation requires understanding of the

metastability of the phase and the production critical nucleus during the
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interaction. A complete description of the material properties of the T-ρ

plane is required, therefore it is necessary to use an EOS for a complete

simulation of the process [30, 107].

2.1.5 Modification of the material properties during pulsed

laser ablation

The large variation of temperature from ambient temperature to the critical

temperature (and above if the plasma is considered), and of pressure from

atmospheric pressure to several GPa, during pulsed laser ablation generates

large variation in the material properties [55]. For modelling of PLA, the lack

of experimental data on material properties at high temperatures necessitates

the extrapolation of data at lower temperatures for high temperatures. In this

regard, some studies have attempted to estimate the variation in material

properties with temperature using certain general and empirical theories

along with available experimental data. The work published by Marla et al.

[55] evaluated properties of Aluminium at high temperature and showed

a significant variation with temperature. It was found that temperature

variation between ambient temperature and near-critical temperature for

surface reflectivity varies from 92% to 45%, absorption coefficient reduces by

a factor of seven, thermal conductivity becomes fives time smaller, density

decreases by a factor of four, and specific heat reduces by a factor two. The

use of temperature-dependent material properties for modelling pulsed laser

ablation shows a large variation (up to four times the surface temperature)

in the response of the target to the incoming laser beam compared to using

constant material properties, see Figure 2.21. This suggests that consideration

of the temperature variation of material properties is essential to correctly

simulate the target response to the laser beam. Despite the large variation of

material properties, a number of models published on pulsed laser ablation
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are based on constant properties for each phase of the material [31, 32, 54, 73,

138]. In recent years, the increased availability of experimental data at high

temperature [139–141] and the derivation of EOS for a wide range of materials

[104–107] has facilitated the use of temperature and pressure-dependent

material properties. Consequently, several models for nanosecond pulsed

laser ablation have been published using temperature-dependent material

properties [23, 30, 55]. These studies have shown that the thermodynamic

path of the material is along the binodal during heating. In this study, the

material properties used are provided by experimental results.

Figure 2.21 : A comparison of the surface temperature using constant
properties and temperature-dependent properties of Aluminium [55].
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2.2 Study of diamond and related material laser

ablation

The unique properties of diamond and related materials compared to conven-

tional materials allow the development of numerous potential applications

such as wear resistant coating [142], cutting tools for ceramic materials in

oil and gas exploration [143], two-dimensional pixel and strip detectors for

UV and X-ray sources [144, 145], charged particle detection systems for high-

energy physics experiments [146], heat sinks for power electronics [147], and

optical windows [148]. However, “as-synthesised” bulk diamond often requires

post-machining of a specific shape to enable functionalities of the product.

The shaping of diamond by conventional methods (e.g. grinding, EDM) is

complex due to the limited access of the tools to minute part geometries,

whilst also being regarded as economically inefficient. The use of laser for

through cutting of diamond is already well documented [149] but recently the

use of pulsed laser for the shaping of diamond and related materials has been

viewed as the next step for the efficient generation of complex 3D shapes

[150] with application in the manufacture of cutting and drilling tools [151],

grinding pads [36], diamond diffractive optics [28], etc. The use of various

laser sources from microsecond to femtosecond (nano [26, 152], pico [138]

to femto [153] second) and from infra-red to UV has been reported for the

processing of diamond and related materials [28], generating different levels

of thermal and mechanical damage to the piece. The employment of shorter

pulses (pico-second and femto-second range) shows a tremendous improve-

ment in the cut-quality and reduction of thermal damages [28]. Despite these

advantages, ultra-short pulsed lasers are less used industrially due to the

advantages of widely used nano-second lasers with their robustness, reliability

and increased power per price unit. Nevertheless, the many physical mecha-
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nisms involved during nano-second pulsed laser ablation and the generation

of defects in the piece remain unclear [23, 136].

2.2.1 Experimental investigations

A profound understanding of the physical phenomena occurring during the

pulsed laser ablation of diamond is necessary to predict possible defects or

subsurface damage to the target. Thus, thermal and mechanical damages

have been investigated for a wide range of laser machining conditions and

for a variety of diamond and related materials [29, 36, 37, 154]. Although

time consuming and difficult, these studies have shown that there is extensive

graphitisation of the laser-irradiated area with the presence of a variety of

carbon micro-structures (highly oriented micro-crystalline graphite, nano-

crystalline graphite, corrugated graphite, amorphous graphite) on the target

surface. These findings are in good agreement with previous studies on

annealing of diamond in furnaces showing similar graphitisation [155]. In

the annealing studies, the speed of the phase transition is proportional to

the furnace temperature [156, 157]; this demonstrates the prevalence of the

thermally driven phase transition of diamond. The graphitisation of diamond

during pulsed laser ablation is produced along an abrupt transition interface

between the diamond and the graphitic or carbon structure which, as ex-

pected, suggests that the thermal load is the main driver of the graphitisation

of diamond. Thermal phase transition has also been highlighted as a charac-

teristic of pulsed laser ablation in tetrahedral amorphous carbon (ta-C) [138],

a form of incomplete diamond for which the amount of carbon-carbon bound

sp3 (diamond like bound) is between 70% and 90%, and CVD diamond [28,

p. 394]. In effect, these studies have shown that the thickness of the graphite

layer as a function of the temporal length of the pulse follows the same trend

as the characteristic length of the heat penetration. Thus, thermally activated
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phase transition of diamond is an important mechanism for the growth of

a graphite layer near the surface during pulsed laser ablation. Although

experimental investigations help to understand the main drivers of diamond

graphitisation, there are few studies investigating the thickness of this layer

as a function of the pulse fluence. Furthermore, the kinetics of the growth

of the graphite layer (as material swelling) and the ablation (as material

removal) of diamond structure have never been studied. The graphite layer

formed in the initial stages of the ablation process plays a dominant role

in the laser absorption due to its high absorption coefficient compared to

diamond and related material [28]. Previous experimental investigations

have studied the phase transformation when pulsed laser ablation has been

performed by overlapping pulses. They therefore provide detailed information

about the processes, without separating physical phenomena (melting, vapor-

isation, plasma creation, condensation, etc.) occurring from different pulses

and at levels of energy along the spatial profile of the pulse. Furthermore,

the experimental studies of crystalline structure change during pulsed laser

ablation using TEM analysis use a constant energy per pulse to create the

“trench”, hence they cannot investigate the effect of the pulse energy on the

micro-structure [29, 36, 37]. Although adequate for quantifying damage of

large machining tasks, the observations from these studies might not provide

sufficient detail (energetically and due to the overlapping of pulses) to study

the fundamental generation of thermal defects during a single pulse laser

ablation.

The ablation of diamond by nanosecond laser pulses is of particular

interest due to the wide usage of nanosecond laser to machine diamond.

It must be noted that the previous discussion about the physical processes

leading to the ablation of the target apply also to diamond ablation. However,

the carbon allotropes with high sp3 bound present a specific solid transition
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between the thermodynamic metastable diamond form to the stable form,

graphite. Hence, the addition of the solid transition occurring during the

thermal ablation dramatically changes the material properties at the surface

of the target [28]. It is therefore necessary to address the particular challenges

of graphitisation during interaction with the laser pulse. A few models about

pulsed laser ablation of diamond have been published [138, 158–160].

2.2.2 Modelling and numerical investigations

2.2.2.1 Formulation of direct graphitisation by laser pulses

The work of Strekalov et al. [159] concerns the interaction between pure

diamond and nanosecond laser pulses. The study focuses on the estimation

of the probability of graphitisation at the surface of the diamond. The study

also shows that for the graphitisation energy of pure diamond, the probability

of optical transition between graphite to diamond for 30 ns FWHM pulses

is extremely low (< 10−26 for a given carbon atom) for the early stage of

graphitisation. Although this study is interesting for its estimation of the

threshold of graphitisation at the beginning of the interaction between the

diamond and the laser, it does not address the propagation of a graphitisation

front inside the diamond. Thus, the study cannot be used to understand the

dynamic propagation of the interface between the diamond and the graphite.

Furthermore, the study estimates the reduction in activation energy due

to the interaction of the diamond lattice with the photon from the laser.

Once the thickness of the graphite layer reaches 140 nm, the laser light is

completely absorbed by the graphite. The study is useful for understanding

the initial interaction between the laser and the diamond target, however it

shows that the probability of transition from a undisturbed pure diamond

by optical transition is not likely to occur during nanosecond pulse laser
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ablation. It is therefore possible that the main initiation mechanism for

the graphitisation of diamond is the presence of surface defects that further

reduce the activation energy necessary.

2.2.2.2 Thermal graphitisation estimation at the end of the pulse

Similarly, a model for the graphitisation of diamond like carbon is proposed by

Kononenko et al. [138]. The model uses the material properties of tetrahedral

amorphous carbon to estimate the maximum extension of a graphitisation

temperature during the interaction between the diamond like carbon and the

laser. Although the model is in reasonable agreement with experiments, it

does not address the transition between the diamond like carbon to graphite

in a self-consistent way. The position of the interface is calculated after the

end of the simulation, thus the graphitisation does not have an impact on the

result of the simulation and the model supposes that the material properties

of graphite are the same as the diamond like carbon. Furthermore, the model

is calibrated using the graphitisation temperature as a free parameter. The

value for the graphitisation temperature from the model is 500 °C. Although

this value seems to be correct for the thermodynamic stability of the film, it

does not address the dynamic transition from diamond to graphite. Previous

studies have shown that the thermal graphitisation of bulk diamond also has

an important temporal component [155], and a temperature threshold is not

sufficient to describe the transition between graphite and diamond. Hence,

this approach is not self-consistent and should be discarded for a deeper

understanding of the mechanisms of graphitisation and ablation.

2.2.2.3 Optical graphitisation of diamond

The work of Lin et al. [160] provides a self-consistent formulation for the rate

of graphitisation using the formula proposed by Strekalov et al. [159]. The
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diamond is considered as transformed into graphite when the total probability

of transition is equal or superior to one. However, the model estimates the

temperature using a semi-analytical formulation that does not consider the

temperature-dependent parameters and the vaporisation at the surface of

the target. Furthermore, the pulse shape is a simple rectangular shape which

cannot account for the real temporal shape of pulses. The lack of consistent

description of the ablation mechanism means that the model depends on

an ablation temperature for which the material is considered ablated. The

ablation temperature is not a fundamental property of the material, thus

the authors estimate the temperature as 3700 K. This is in contradiction

with numerical and experimental results for graphite ablation [44, 89], for

which an ablation temperature cannot be defined during nanosecond ablation.

Although the model is in good agreement with experimental results for the

thickness of the graphite layer, the position of the surface is not calculated in

a consistent manner, thereby invalidating the results from the simulation. It

must be noted that although the model considers the optical graphitisation

of diamond, it does not consider the thermal graphitisation occurring during

the heating of the diamond target. Thus, the graphitisation in the model

cannot extend over the absorption length of graphite for the laser. This is not

in agreement with experimental investigations of thermal damage induced

by laser during diamond machining that observe graphite layer extending

20 times the absorption length. Therefore, the optical graphitisation alone

cannot explain the observed thickness of the graphite layer.

2.2.2.4 Conclusion

Finally, previous models for the nanosecond ablation of diamond do not ad-

dress essential phenomena occurring during pulsed laser ablation of diamond

such as the variation of material properties with the diamond transition and
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the temperature-dependent material properties. The models are mostly not

self-consistent for the graphitisation threshold or the ablation threshold. Ac-

curate description of the processes leading to the graphitisation and ablation

of diamond during nanosecond laser pulse requires the development of a

novel model for diamond ablation using the modelling tools developed for

the ablation of pure materials. The study by Strekalov et al. [159] shows that

optical graphitisation is unlikely to occur during nanosecond ablation, hence

thermal graphitisation is the main graphitisation mechanism.

2.3 Kinetic methods for pulsed laser ablation

modelling

With its capability to generate small features, pulsed laser ablation (PLA)

offers new possibilities for microprocessing/structuring of a large variety

of difficult-to-cut materials such as high strength Ti/Ni based superalloys

(e.g. Ti6Al4V [39], Inconel 718 [161]), ceramics (e.g. SiC [162], Al2O3

[163]) and super-hard materials (e.g. diamond [164], cubic boron nitride

[43]). This, in conjunction with the decrease in capital cost for high power

lasers, makes pulsed laser ablation a viable machining method for high value-

added industries (e.g. medical, aerospace, defence, microelectromechanical

systems). PLA has the capability to machine parts with complex geometries

(e.g. cutting insets [165], dressing/truing tools [166], micro-grinding wheels

[27], ink-jet holes [167], etc.) for which conventional (turning, grinding

and milling) and other non-conventional (e.g. abrasive water jet, electrical

discharge) machining processes might not be appropriate due to the small size

of the feature to be generated or limitations caused by the hardness/strength

of the workpiece material or other part quality related issues (e.g. heat

affected zones).
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Although PLA has some significant advantages in micro-machining, it also

faces some major challenges: (i) apart from the beam characteristics (pulse

energy, temporal profile of the pulse and spatial profile of the pulse) and

kinematic parameters (vector of propagation of the beam and feed velocity),

it is a time dependent process; the accelerations and decelerations caused by

the machine stages/optics (i.e. galvanometric mirrors) dynamics result in

non-uniformity of the ablation process, thus leading to inherent variation of

the machining quality; (ii) because PLA occurs in a small area (spot size <

50 µm) [36] and a short time (<200 ns) [168] while generating molten debris

and noise (e.g. plasma emission, electron generation etc.) [135, 169], the

process is difficult to monitor online; (iii) the material removal mechanisms

are diverse and complex as they depend on the wavelength and temporal

profile of the laser pulse; furthermore some removal mechanisms (i.e. explosive

boiling, homogeneous vaporisation, etc.) are not entirely understood [23,

44]. Thus, not surprisingly, PLA has been a significant research subject for

micro-machining in the last two decades.

Despite the ever-increasing use of lasers for micro-machining, lengthy and

costly experimental studies are often required to estimate the optimum beam

path and process parameters for the generation of specific micro-features

[170]. The development of a beam path strategy is not a trivial task for

free-form structures and normally involves a number of iterations, with

measurements being done on the resulting part at each iteration to enable

the optimisation of the process parameters and beam path. This can be a

barrier for some potential users of laser machining, especially those who need

to create innovative free-form structures.

The development of physical models to describe the conservation of heat,

mass and momentum, using the finite difference/element/volume methods to

solve the system of equations, requires HPC computational power to calculate
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the three dimensional solution in a realistic time period [85]. Therefore, most

of the models presented in the literature are one [23] or two [47] dimensional

systems of equations, hence not covering the full 3D information needed for the

simulation of free-forms to be generated by PLA. These models have mainly

been developed to provide useful insight into the phenomena occurring during

pulsed laser ablation for the interaction of a single or low number of pulses with

the target surface. However, following this approach, the simulation of one

laser pulse interacting with the target requires several minutes with a standard

computer. Since the simulation of a surface generated by PLA can require tens

of thousands of pulses, this would last at least several days. Thus, physical

modelling of PLA cannot be applied for optimisation of the beam path and

process parameters for micro-machining of complex geometry surfaces. In this

context, the avoidance of a “trial and error” experimental approach requires

the development of a computationally inexpensive mathematical model for

PLA, which will enable a step-change in the process control. However, little

attention has been given to this issue and there are few examples in the

literature on modelling of PLA for large scale machining tests.

2.3.1 Modelling based on simplified assumptions

A modelling approach based on simplified assumptions leads to a simple

model with low computational cost [171, 172], enabling rapid calculation of

the amount of material removed by an individual pulse. This approach has

been widely used to reduce the computational cost for the study of drilling

using several thousands of pulses [172]. This modelling approach provides

predictions with reasonable agreement with experimental results, however

it is often impractical or impossible to consider temperature dependent

material properties such as the thermal conductivity, reflectivity, specific

heat, etc. Although these methods can be useful to understand the main

2.3: Kinetic methods for pulsed laser ablation modelling 66



Chapter 2 Literature review

factors influencing the accuracy of numerical predictions, they cannot be used

to provide accurate predictions for pulsed laser ablation since temperature-

dependent parameters are essential [33].

2.3.2 Modelling based on learning/genetic algorithms

Another kind of modelling approach is based on the generation of machine

learning algorithms [41, 42, 171]. These methods rely on the availability of

a large dataset of experimental results from which the model is trained to

reproduce the experimental results for a given condition. The use of machine

learning can be advantageous if experimental results do not show a clear cor-

relation with experimental conditions (fluence, pulse length, laser wavelength,

etc.). However, since the models are simply reproducing experimental results,

they are not able to reveal the physical processes occurring during pulsed

laser ablation. Furthermore, these models work only within the range of con-

ditions for which they have been trained and cannot be modified to capture

experimental observations made during the process. Finally, this method

is ill-formulated for the physical understanding of pulsed laser ablation due

to (i) the cost of producing large datasets of experimental data; (ii) the

experimental conditions usually being well controlled, producing relatively

well reproducible experimental results; (iii) the lack of physical meaning.

Although the method provides accurate results for single pulses [171], it

cannot be modified to predict overlapping pulses and cannot be applied to

the machining of large surfaces by pulsed laser ablation.
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2.3.3 Modelling based on the calibration of parameters

with a pulse-by-pulse evaluation of the resulting

surface

The calibration of models that is informed by experimental results has

produced fast and accurate prediction of single pulses [39, 40, 173]. The

method is similar to models based on learning or genetic algorithms, however

relations between the conditions (fluence, feed speed, pulse length) and

the predictions are derived from experimental data and hence the physical

meaning is preserved. Modification of the model to consider new physical

phenomena is then facilitated, such as the method presented by Holmes

et al. [173]. The model is computationally inexpensive and can simulate

large machining works (above 104 pulses) in around 10 seconds. Interestingly,

Figure 2.22 : Cross section for a machined trench using a nanosecond
pulsed laser in SU8 [173]. Curve 1 is the experimental profile, curve 2 is
the simulated profile using the single crater for the calibration of the model,
and curve 3 is the simulated profile using single craters and trenches for
calibration of the model with a delay in the ablation term.
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the model does not usually require material properties such as specific heat,

absorption coefficient, etc., therefore the model is applicable for a wide range

of materials and conditions. The main drawback of this method is the loss of

accuracy during the machining of large surfaces by overlapping pulses [39,

40, 173], see Figure 2.23.

These models are usually based on the Beer’s law to characterise the

influence of the local fluence on the amount of material removed. The

model is then calibrated using the maximum depth at the centre of the

crater, neglecting any interaction inside a single crater. Finally, the model

considers that the target is instantaneously ablated. The model is proven

to be accurate for single crater and relatively low overlapped pulses [39, 40],

however an increase in the overlapping of pulses leads to poor prediction

of the average profile, see Figure 2.22. This might be due to the change

of material properties after the first few pulses, which is commonly found

in pulsed laser ablation [173]. One might add a delay in the ablation term

until the material reaches “maturity” with constant properties. The work of

Holmes et al. [173] shows that this approach proves effective for improving

the agreement between experimental results and the model, see Figure 2.22,

however it seems that the method is inextensible to free-form topography

such as the example presented in Figure 2.23. Modification of the modelling

framework is therefore hardly justifiable since the machining of the free-form

surface is only a direct extension of the trench machining. The modelling

framework for the simulation of free-form surfaces thus requires a step change

in the consideration of the impact of the overlapping of pulses on the material

removal that the single pulse models cannot take into account.
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Figure 2.23 : Cross section for a machined pyramid structure using a
nanosecond pulsed laser in SU8 [173]. Curve 1 is the experimental profile,
curve 2 is the simulated profile using the single crater for calibration of the
model, and curve 3 is the simulated profile using single craters and trenches
for calibration of the model with a delay in the ablation term.

2.3.4 Example of the abrasive water jet machining with

a continuous modelling of the abrasive wear by

multiple grid impacts

The use of calibrated continuous models for apparently discrete processes

has proven to be a successful avenue for accurate prediction of material

removal for AWJ [174–176]. The erosion process during AWJ is mainly due

to the impact of the grit onto the surface, generating plastic deformation

and cracks. These two mechanisms are due to the high frequency impact of

abrasive particles randomly distributed in the water jet [177]. Although the

model does not compare the erosion process due to individual grit, continuous

models have proven to be valuable due to their wide applicability and good

agreement with experimental results, see Figure 2.24. Continuous modelling
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to predict the material removal from discontinuous and stochastic processes

has been shown to be particularly effective at improving the model to consider

an increasing number of experimental conditions such as feed speed variation,

stand off distance [178], angle of incidence, forward/backward milling [175]

and overlapping of trenches [174]. Recent work on the continuous modelling

of AWJ considers the stochastic variation of the trench profiles [176].

Finally, the main advantages of the simplified model for AWJ are the

use of a reduced amount of experimental results to calculate the model

parameters and the possibility of modification of the framework to account

for new experimental conditions.

2.4 Summary of the literature

A detailed literature review on previous research into PLA processes and

phenomena has been presented. A large group of researchers have focused

on improving understanding of the physical phenomena occurring during

pulse laser ablation by experimentally studying the ablation mechanisms and

Figure 2.24 : Examples of model-predicted footprint profiles (red dotted
lines) against experimental profiles (blue solid lines) for abrasive water-jet.
[Note: the unit for x and z is millimetres and the “eight-spoked asterisk”(*) in
the middle represents milled trenches (blue arrows) at different jet trajectory
angles and their directions of scanning (red arrows)].
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resulting damage to the surface. The difficulty in experimentally capturing

the ablation mechanisms during the short space and time frame of the ablation

has led to the development of numerous models to simulate the physical

phenomena occurring during nanosecond pulse laser ablation. These models

have shown that the thermodynamic path of the material is highly dependent

on the energy input of the laser, however several other conclusions can also

be drawn:

• Temperature dependent parameters are critical for accurate prediction

of the amount of ablated material, the heat distribution and the plume

break down into a plasma.

• Entrance of the material in the thermodynamic metastable area during

heating does not significantly affect the amount of material ablated

during pulsed laser ablation. Experimental results exist which suggest

that it might be significant for the ejection of particles during the

cooling phase of the ablation.

• Plasma absorption, which occurs only after the break down of the plume

into a fully ionised plasma, can play a major role in the saturation of

the amount of ablated material.

• Volumetric evaporation due to heating of the material above the critical

temperature can be a major ablation mechanism, especially for short

nanosecond laser pulses.

The development of physical models is the main area of research for the

study of the ablation mechanisms during nanosecond PLA. However due

to the high computational cost of physical simulation, they cannot be used

to predict the amount of material removed during the machining of large

workpieces. Some researchers have therefore developed models that rely on
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simplified modelling or are built on empirical modelling using experimental

data. The advantages and limitations of each approach have been discussed.

An improved physical model for diamond associated with a fast semi-

analytical model would be highly beneficial for computing the optimum

tool-path with a CAD/CAM system and providing information about the

thermal damage associated with the machining. The development of such

models is critical, since this would enable the development of new machining

strategies without costly and lengthy experimental trials.

2.5 Research challenges emerging from the lit-

erature review

Extensive review of previous research has shown that new frameworks to

investigate the ablation of diamond using physical and simplified models are

key to the development of controlled machining of diamond by laser. This

work addresses several difficulties that arise when studying this issue.

2.5.1 Research challenges – Physical model for the graphi-

tisation of diamond

• Although there has been previous research on physical modelling for

nanosecond pulsed laser machining, the ablation of diamond is not well

understood due to the thermal graphitisation of the target when exposed

to laser pulses. It is therefore necessary to construct a new model

specifically adapted to the study of the dynamic of the graphitisation

front.

• When building a physical model, the change in density of the material is

usually not taken into account for the spatial position of the interfaces.
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However, if such phenomena is discarded during the simulation of pulsed

laser ablation, it is possible to overestimate the amount of material

removed by breaking the conservation of mass at the transition between

the two materials.

• Consistency of the model is particularly important to accurately pre-

dict the amount of material removed. Since the temperature varies

over a large range, it is necessary to consider temperature dependent

parameters.

• Graphitisation occurs during the laser ablation of diamond and diamond

like carbon. For the model to be widely applicable to graphitisation

occurring during PLA of diamond and related material, it is necessary

to validate the modelling framework for at least two different types of

high sp3 content carbon allotropes.

2.5.2 Research challenges – Simplified model

• There are no previous attempts at constructing a simplified model

that addresses the PLA in a continuous framework. Therefore, a new

methodology for the model and its calibration must be developed and

tested based on existing models currently applied for other energetic

beams.

• Previous simplified models have used a reduced amount of experimental

data to estimate model parameters. The new framework must be

developed such that experimental tests for calibration of the model are

kept to a reasonable amount of experimental data.

• Previous simplified models have usually used only one type of target

material. The scope of this work is to provide a general framework for
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which the model can be applied for a wide range of materials, hence

the model framework must be tested for several materials.

• The aim of the simplified model is to be integrated into a CAD/CAM

system to design tool-path strategies using optimisation algorithms. A

computationally inexpensive model is therefore required and simplicity

of the framework is key for wide acceptance and usability.

• The model will be applied for the simulation and path optimisation

of large surfaces. It is therefore necessary to test the model for the

machining of large surfaces, including several tens of thousands of pulses

as well as simple tests to quantitatively calculate the model accuracy.

• The novel approach presented in this work for the prediction of target

ablation is the first step toward the generation of a simplified model

aimed at CAD/CAM integration. However, since the model will be

tested on a relatively small number of materials, it is necessary for the

new modelling framework to be capable of accounting for more complex

phenomena that might occur for a wider range of materials.

2.5.3 Research challenges – Ablation mechanisms dur-

ing PLA

• The literature review has shown that there is a need for further under-

standing of the processes leading to the ablation of material from the

target. To address this point, it is necessary to develop a model for

which the plume break down into a plasma is connected to the target

domain. This provides a comprehensive model which is consistent from

the heating of the target to the plume break down into a plasma.

• The thermal damage occurring during PLA can be investigated to
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provide additional information about the processes leading to graphi-

tisation and ablation of the target. It is necessary to use advanced

characterisation methods to observe the material below the surface

of the crater. It must be noted that previous works have focused on

the amount of material ablated or the amount of energy absorbed by

the plasma. Deeper understanding of the thermodynamic path the

material follows has not been investigated due to the laborious work

necessary. The transformation of carbon allotropes from diamond to

nano-crystalline carbon is not well understood at a fundamental level

for a single pulse.

• Allotropes of carbon have been widely studied using Raman spectra,

and this work presents an interesting opportunity to use the literature

on Raman spectra of carbon material to understand the effect of thermal

ablation of the microstructure.

The work presented in this thesis addresses the limitations observed in

the literature, with the aim to enhance current understanding of PLA and

in particular the ablation of diamond, and to develop a simplified approach

with wide usability in CAD/CAM packages.

2.5: Research challenges emerging from the literature review 76



Chapter 3

Methodology

The experimental equipment used for this work is described in this chapter.

This includes the detailed explanation of the experimental set-up, the different

techniques that have been used to analyse the samples and the methodology

used to extract the experimental results from the empirical measurements. In

addition, the limitations and disadvantages of the imaging and measurement

methods are also detailed.

3.1 Pulsed laser ablation apparatus

This section describes the lasers and optical setups used in this study.

3.1.1 Laser used in this study

The laser used is the SPI G3 20W-ST. The active medium is a Yb-doped

fibre, and GTWave™ technology [179] is used, see Figure 3.1, producing a

pulse centred at 1061 nm ± 3 nm. The active medium is pumped by a series

of diodes producing a continuous laser light around 900-1000 nm. Laser

seeds are generated by a laser diode. The seed is amplified and transmitted

through a optic fibre. At the end of the fibre, the pulse is collimated and

expanded. It is possible to change the temporal profile of the pulse ad hoc.

The waveform can be chosen between 32 pre-programmed “states”. From the

data shown in Figure 3.2(a), the profiles of the pulses may be expressed as a

function of the “states” or waveforms. The temporal profile of the pulse can
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Figure 3.1 : A scheme of optical configuration for the generation of pulses
with the SPI G3 [180]

be varied from 250 ns (Waveform 0) to 9 ns (Waveform 5). Energy per pulse

decreases with shorter temporal profile. The maximum power for all the

waveforms is 20 W, and the reduction of energy is therefore counterbalanced

by increasing the switching frequency. In Figure 3.2(b), the variation of

power and energy per pulse is given as a function of the pulse repetition

frequency. The energetic and temporal characterisation of the pulses are

highly dependent on the waveform and the pulse repetition frequency. It

must be noted that the pulses’ temporal profile and energy are constant over

the range of 1 kHz to PRF0.

Proper understanding of the pulse properties dependent on laser parame-

ters is essential for consistency of experimental data and reliable interpretation

of experimental results. The use of a laser system may span several years,

therefore its optical properties can change over time due to slow deterioration

of optical and electronic components. Moreover, the temperature variation

can induce small, but not negligible, variation of the optical properties. The

laser energetic response must therefore be carefully characterised before each

experimental session. Due to the limitation of the optical design of the laser,

the first few pulses will have significantly less energy than the typical pulse

energy over a time interval. The simmer current of the power amplifier can

be modified to reduce this effect but it cannot be completely eliminated.

The laser is controlled through RS232 DE-9 communication standard. It
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is possible to control the pulse repetition frequency, simmer current of the

power amplifier, the level of the power amplifier, and the pulse waveform. It

must be noted that the level of the power amplifier can be changed inline,

whereas the pulse waveform and pulse repetition frequency require the laser

(a)

(b)

Figure 3.2 : (a) Temporal profile of the pulses for 5 Waveforms produced
by the SPI G3 [180]. (b) Variation of power and energy per pulse with pulse
repetition frequency.
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state to be “READY”. In the next section, the equipment used to measure

the power and spatial profile is presented.

3.1.2 Measurement techniques for pulse characteristics

3.1.2.1 Optical power meter

The optical power meter used during the experiments is a S350C from

Thorlabs, and is designed for high-peak-power pulsed laser sources around

1064 nm. This power meter is based on the conversion of the laser light to

heat and utilises the generation of a voltage when a conductor is subject to a

thermal gradient [181] (also known as the Seebeck Effect). The difference

in temperature between the absorber (a Schott Glass) and the mount is

measured using a thermopile and converted into a power measurement.

Such instruments are useful for average measurement of the power and are

relatively slow (1 second response time to a power variation). At 1064 nm, the

measurement uncertainty is around ± 5% of the real power. The instrument

is fairly independent of the wavelength and should give the real total power in

the spectrum range of the pulses. The system is fairly robust but cannot be

used if the laser is tightly focused, as damage may be caused to the absorber.

Since the sensor can be used anywhere along the beam path, it is possible

to monitor loss due to the mirror and the accumulation of dust on the mirror.

Unless otherwise specified, experimental power measurements are taken at

the end of the beam path just after the last optical element (usually the f-θ

lens of the 2D galvanometer scanner head). The total power is equal to

P = Epfl (3.1)

with P, Ep and fl being the power of the laser, the energy per pulse and the

repetition frequency of the laser pulse respectively. Considering that the pulse
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repetition frequency is accurately set by the laser, the power measurement

is used to retrieve the energy per pulse. From the temporal profile of the

pulse (taken from the literature, the constructor manual, or experimental

measurement), it is possible to extract the peak power and therefore obtain

all the energetic parameters of the pulses and laser. The peak power can be

calculated using the relation below,

Pp =
Ep∫ tend

tstart
i(µ)dµ

, (3.2)

with Pp and i(t) being the peak power and the instantaneous intensity

respectively. Measurement of the temporal energetic parameters is not

sufficient to fully characterise the pulse, therefore the spatial profile is as

important as the pulse energy.

3.1.2.2 Beam profiler

In effect, assuming a Gaussian profile at a wavelength of 1061 nm, it is found

that a pulse focused by a lens of 100 mm focal length has a beam diameter,

ω0, at the focal plan equal to,

ω0 =
67.545

D
, (3.3)

with D and ω0 respectively in millimetres and microns. This simple equation

explains one of the most interesting properties of a Gaussian beam. The

beam can be focused to a very small size. Using Equation (3.3), a 6.5 mm

width Gaussian beam will produce a beam radius at a focus of 10.4 µm.

This is a reduction of the beam size by 312 times and an increase of energy

by area of almost 5 orders of magnitude. Thus, the beam radius at the

focus plan is critical for accurate determination of the energy balance during

the interaction between the laser and the material. The beam size at the
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Figure 3.3 : Measurement of the laser beam profile out of the laser head
of the SPI-G3, the size of the laser beam measured using the 1/e2 Gaussian
width definition in solid blue and the D4σ definition in solid green. The
spatial distribution of the power is plotted in normed logarithm.

focal plan can be retrieved by calculation, such as the one presented above,

but due to the non-perfect Gaussian beam (M2 >1) and optical aberrations

the real beam size is not equal to the calculated value. A camera based

beam profiler is used to accurately measure the beam size. The system

is a CMOS-1203 from Cinogy Technologies. It uses a CMOS based light

sensor with a pixel size of 4.5 µm, assuring accurate measurement of the

beam width as low as 30 µm. Each pixel has an 8-bit bit depth for the

measurement of the power at the pixel. The sensor is calibrated before each

measurement in the range of the dynamics of the camera to take account of

the external light sources (lighting, computer screen, etc.). An attenuator is

used to attenuate the laser light and protect the sensor from overexposure.

The measurement of the spatial profile is taken over at least 100 frames,

or 10 seconds. Various definitions of the beam width can be found in the

literature such as D4σ, knife-edge, 1/e2, FWHM, D86, etc. The D4σ and 1/e2

definitions have been used in this study, see Figure 3.3. For the D4σ definition,

the calculation of the beam is based on the first and second moment of the
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power density distribution for stigmatic beam [182] and astigmatic beam

[183]. This definition is sensitive to the baseline value of the measurement

since the baseline value is subtracted from the image before calculation of

the moment using proprietary algorithms from Cinogy Technologies. This

definition is the ISO 11146 international standard for beam width. The

second definition consists of fitting an elliptical Gaussian to the measurement

of the laser beam. The beam width is equal to the distance between the two

points on one axis of the ellipse that are 1/e2 times the maximum value of the

Gaussian. For an arbitrary stigmatic Gaussian beam, the width measurement

using the two definitions gives the same result. However if the beam diverges

from a perfect Gaussian distribution, the two methods give different values.

The D4σ definition gives more importance to the “wing” of the distribution

whereas the 1/e2 definition gives more importance to the centre of the beam.

The 1/e2 definition cannot be used for multi-mode laser beam or beams with

a spatial profile too dissimilar to an elliptical Gaussian distribution, for which

only the D4σ definition is suitable. In practice, the spatial profile of the laser

beam is similar to an astigmatic Gaussian beam, therefore the 1/e2 definition

is used to measure the beam width along the axis of propagation. In this way

the focal plan of the optical system is determined. The beam size is fitted to

ω(z) = ω0

√
1 +

(
z − z0

zR

)2

, (3.4)

where z0, ω and zR are the position of focal plan, the radius of the laser beam

and the Rayleigh length of the laser beam. The Rayleigh length is equal to

zR =
πω0

2

4νlaser
. (3.5)

with zR and νlaser being the Rayleigh length and the laser frequency re-

spectively. It is possible to extract the position of the focal plan and the
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Figure 3.4 : Beam width of the laser as a function of the distance along the
propagation axis. The origin of the propagation axis is arbitrarily chosen. The
beam width has been measured using an f-θ lens of 100 mm focal lens with
the SPI G3 laser. The width of the beam at the entrance of the galvanometer
head is around 6.5 mm. The beam is astigmatic, the two beam axes are
shown in green and blue.

divergence of the beam. The exact position of the focal plan of the optical

system is crucial for determining the correct placement of the workpiece for

the machining test, see Figure 3.4. For the system used in this study, the

Rayleigh length is around 0.64 mm. This means that 1 mm away from the

focal plan, the fluence is reduced by 3.44 times.

The attenuator placed in the beam path to reduce the incident of the

beam is not neutral. In the configuration chosen for the camera, an attenuator

is always placed in front of the CMOS. The refractive index of the attenuator

is different to that of air, which induces an error in the position of the focal

plan. The same effect can be observed for pulsed laser ablation in water and

laser assisted plain water jet machining [184]. This effect can be quantified

and corrected for any attenuator used, for example the attenuator provided

with the camera introduced a 0.7 mm offset of the focal plan. If other

attenuators are placed in front of the camera in the focusing area, the offset is
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Figure 3.5 : Interferogram of (a) Beam profile with little dust, (b) Beam
profile with high level of dust, (c) Beam profile with a wall clipping the beam
from the right with the Atlantic-HE of Ekspla.

the sum of all attenuator offsets. When the beam is collimated, the placement

of an attenuator in the beam path does not induce an offset of the focal

plan. Another defect to consider is the presence of dust on the optics which

creates interference patterns in the power of the beam, see Figure 3.5(b).

The beam can be clipped if the beam is not correctly aligned or wider than

the optical/optomechanical component’s aperture, an example of clipping

by a vertical wall is given in Figure 3.5(c). Clipping induces a loss of energy

and interference pattern that reduces the beam quality. In Figure 3.6, the
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Figure 3.6 : The energy loss due to the clipping of a beam with radius ω0

passing through a circular aperture of diameter a. The red line represents
the iso-loss, solid line 10%, the dashed-dotted line 1% and the dotted line
0.1%.

loss due to the clipping of a circular aperture is calculated. Usually, the loss

due to the clipping of the beam must be lower than 1% of the total energy

of the beam to avoid degradation of the beam quality. In this study, the

galvanometers used have an aperture of 10 mm diameter therefore the beam

radius cannot exceed 3.25 mm.

3.1.3 Optical setup

The optical setup has been designed and implemented to satisfy the specific

needs of the experimental study. The laser beam must be correctly aligned

between the consequent optical elements. This is challenging for several

reasons: (i) the laser beam (1061 nm) used is invisible to the human eye, thus

requiring specific fluorescent card and imaging equipment, (ii) the position of

the beam is highly sensitive to an error in beam pointing, a misalignment of
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Figure 3.7 : Experimental set-up for the PLA system [185].

1 mrad creates a displacement of the beam of 1 mm after 1 m of propagation,

(iii) requires a simultaneous change in angle with the kinematic mirror mount

and position of the mirror on the table to reach good alignment. A model of

the optomechanical/optical setup is made using a CAD software. The CAD

model enables the verification that the equipment will fit on the table and

ease the alignment task by placing the element and the clamp to the best

position. The alignment of the laser beam is done using the beam profiler,

the measurement of the beam position has an error lower than 10 µm.

For the beam expander made directly from 2 lenses in the Galilean

telescope design, the relative distance between the two lens needs to be

adjusted to collimate the beam. Afterwards, the collimation of the beam is

checked by measuring the width of the beam along the path. The beam is

then fed into a galvanometers scanner head and focused through a f-θ lens,

see Figure 3.7.
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3.1.4 Motion control during machining test

The motion of the stages and the galvanometers is controlled by a custom

Aerotech System. The system is a compound of a stage for the positioning of

the parts/samples and a 2D galvanometer head AGV-10HP (axes C and D).

The positioning stage has four axes: three of translation and one of rotation.

The translation axes are two ALS130H-025 for the planar translation normal

to the axis stage–galvanometer head (axes X and Y) and one AVS125 for the

translation of the sample in the direction of the axis stage–galvanometers

(axis Z). The rotation axis assured by an ACS-150-135 (denoted by A) has

the direction of the axis X. The system is controlled by the software-based

machine controller A3200 connected to a Npaq Drive Rack. The amplifiers

used for the Npaq are DP32010E. The axes X, Y, Z and A have respectively

an accuracy of ± 1 µm, 1 µm, 1.5 µm and 72.7 µrad. The axes C and

D provide an accuracy of ± 1.2 µm. A minimal working example of the

programming language for the Aerotech system is presented in the Listing

A.1. Initialisation of the variable and mode for the control of the stages

is set at the beginning of the program, lines 1–22. Subsequently, the laser

parameters are set, lines 24–31. Afterwards, the commands for the position

of the C axis are executed, lines 33–51. The position of each axis and the

laser activation are measured by the system. The command and feedback

position for each axis can be saved.

It is possible to control up to two positions and two speeds in synchro-

nisation. The command for a synchronous movement to a specific position

is,

G41

Master Axis

C 1.︸︷︷︸
Next position

Secondary Axis

D 2.5︸︷︷︸
Next position

Global speed

F 355.︸︷︷︸
Global Speed

,

This defines the next position for the two axes and the global speed to reach the

position. The control always pre-computes the path to generate an achievable
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Figure 3.8 : The controller response to the program presented in the Listing
A.1. The top, second, third and bottom plots are respectively the position,
position error, speed, speed error as a function of the time.

command. The process can be tuned using software parameters, therefore the

command and the resulting movement can be improved. However, the tuning

of the parameters is challenging since it is done iteratively and the results

are difficult to predict due to the complex control system of the Aerotech

system. Tuning therefore cannot be done for large scale machining for which

a program consists of tens of thousands of lines.

A review of the feedback compared to the command position is done, thus

improving the reliability of the system for experimentation. In Figure 3.8,

the axis movement resulting from Listing A.1 is presented. The controller

accurately reproduces the position command, with an error below 4 µm.

From Figure 3.8, it is apparent that the feedback position is always delayed

compared to the command position. This is coherent with a closed-loop

control and the reaction of a non-infinitely stiff system (jerk limitation).
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Clearly visible at the deceleration after 25 ms in Figure 3.8, the inertia of

the axis is higher than expected by the controller, and the last position

is overshot by around 4 µm for 2 ms. The quality of the control directly

affects the quality of the resulting piece. The feedback speed of axis C is in

good agreement with the command speed. It must be noted that oscillations

appear after high acceleration of the system. It seems that the system does

not succeed to dampen these oscillations even after hundreds of microns

of travel. Oscillations affect the machining quality and are inherent to the

control system.

The system is limited by the processing power of the computer and the

internal memory of the controller. In effect, a synchronous movement cannot

exceed a certain number of positions, typically 300, that can be extended

but at a cost to the memory available. The test presented in Figure 3.8 is

typical of the speed and size of real machining tests. The total time of the

machining is in the order of tens of milliseconds, therefore the number of

control points to compute per timestep can outstrip the computer capacity

and limit precision of the movement for high speed.

The laser is controlled via a positive 5V gate with a BNC cable. During

the machining of pockets, it has been found that the start and stop of the

laser is not perfectly synchronised with the position of the laser on the surface.

The error in position (around 5–10 µm) cannot be explained by an inaccuracy

in the control of the axis. This effect can only be explained by the absence

of synchronisation between the clock of the SPI G3 laser and the Aerotech

system, introducing a delay in the start/stop time of the laser that can result

in poor machining quality. A delay of several 10 µs creates a displacement of

several µm. This effect is particularly visible during large machining tests of

pockets or trenches.
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3.2 Surface characterisation and measurement

techniques

Surface characterisation and measurement is key to the validation of the model.

They offer a means to evaluate the results of the tests and to investigate the

physical processes occurring during PLA. In this section, several instruments

for the measurement and the characterisation of the surface and subsurface

are presented. For each instrument, the operation principle is presented and

the limitations of the technique are explained.

3.2.1 Surface Imaging techniques - Scanning Electron

Microscopy

Optical microscopy is limited by the size of the observable features by the

Abbe diffraction limit [186]. The minimum size of observable feature is around

250 nm, which is not sufficient for accurate imaging of the features that are

produced by PLA (crack, micro-droplet, etc.). Scanning electron microscopy

offers a resolution lower than 1 nm (using De Broglie wavelength for the

(a) (b)

Figure 3.9 : (a) the energy distribution of the electron population as
measured by an electron detector in a SEM. (b) the typical interaction
volume of an electron beam with the sample.
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electron) that decreases with an increase in acceleration voltage. SEM uses a

beam of accelerated electrons that is tightly focused on a sample to produce

signals [9] (particles emission, X-Rays emission, cathode-luminescence). An

image of the signals is reconstructed from the strength of the signal over

the scanning range of the electron beam. The beam of electrons, called

Primary Electrons (PE), interacts with the sample and produces a series of

emissions that can be used to obtain information about the topological surface,

material composition and density of the sample. SEM signals are often the

super-imposition of several effects that cannot be separated, therefore proper

understanding of the signal generation is essential for interpretation of the

images produced by SEM. The PE meet the sample surface and penetrate

the sample, see Figure 3.9. The PE are scattered due to elastic and inelastic

collision with the electrons and nuclei of the sample. The PE do not lose

much energy during these interactions, and after one or several collisions

the electrons can be scattered outside of the sample again. This family of

electrons is called BSE. The inelastic collisions occur during the interaction

between the PE and the electron shells. The PE lose part of their energy

to the sample (ionisation of the atom, generation of phonons, plasmons or

inter band transition). Consequently, the PE penetrate the sample by only

a specific range (between 10 nm until 10 mm depending on the sample and

the acceleration voltage). The resulting low energy PE no longer interact

with the sample (due to a dramatic reduction of the cross section with a

decrease of the electron kinetic energy) and the electrons close to the surface

(5–50 nm) can escape. These electrons are called SE. Afterwards, they are

accelerated towards the detector due to the suction current between the

sample and the detector. The inelastic collisions produce X-rays due to

the interaction with the nuclei Coulomb field. The inelastic collisions can

also ionise the inner layer of an electron shell and produce an X-ray or an
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(c)

Figure 3.10 : (a) the angular dependency of the BSE for a normal interaction
for Au and Al and (b) the angular dependency of the BSE for a 10° interaction
for Au and Al [9].(c) the shadowing effect due to the specific path of the BSE
to the detector [187]

Auger-electron. The emission of photons in the visible and infra-red range

due to the recombination with a hole and a SE is also observable in certain

materials. In Figure 3.9(a), the energetic distribution of the electron from

the surface shows a broad range of energy, with two orders of magnitude

between the SEs and the PE. This is key in the determination of the surface

characteristic because the two populations of electrons (SE and BSE) are

emitted following very different processes and retain distinct information

about the sample, see Appendix B for additional information.

At University of Nottingham, the SEM used is a Philips XL30 system.

The electron source is a tungsten filament which is heated to provide a supply

of electrons. The SE signals are measured by a standard Everhart-Thornley

SE detector and a solid-state BSE detector. The microscope operates at a

beam acceleration voltage of 0.2-30 kV. The X-Ray detector signal is measured

using an Oxford instrument Link ISIS EDX microanalysis system with a

Si(Li) detector.

3.2: Surface characterisation and measurement techniques 93



Chapter 3 Methodology

From objective To detect

Sample

Raman substrate

FluorescenceStok
es

 Ram
an

 sc
att

eri
ng

An
ti-

St
ok

es
 R

am
an

 s
ca

tte
rin

g

R
ay

le
ig

h 
sc

at
te

rin
g

Incident light
Figure 3.11 : Schematic representing the different types of light emitted/s-
cattered from the sample. There are 4 types of signal produced: Rayleigh
scattering, Stokes, anti-Stokes scattering, and fluorescence. Rayleigh scat-
tering (green emitted light on the schematic) is when photons are elastically
scattered to the detector without losing energy. Stokes (red emitted light)
and anti-Stokes (blue emitted light) scattering is when photons are emitted
with lower and higher energy respectively due to inelastic interaction with the
phonons in the material and is usually called Raman scattering. Fluorescence
can occur when exited electrons fall to the ground states by emitting a photon
at a longer wavelength than the incident light. The image is from the work
of Butler et al. [188]

3.2.2 Raman Spectroscopy

Raman spectroscopy is a non-invasive, local and fast diagnostic tool for

the determination of the chemical and structural composition of the sample

surface. It is commonly used to analyse biological samples [189], carbon

materials [190, 191], etc. Raman spectroscopy relies on inelastic scattering of

the stimulating light (usually a monochromatic laser source) that interacts

with the molecular vibrations (phonons, or system excitation) of the material,

see Figure 3.11. Thus, the spectrum obtained (from the scattered light)

gives information about the specific vibrational modes occurring inside the

materials. The spectrum is equivalent to a fingerprint of the materials, and
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depends on several factors such as temperature[192], strain[193], doping rates

[194], impurities [195], micro-structures [196], etc. These characteristics

mean that Raman spectroscopy is widely used for the analysis of carbon

composites such as diamond like carbon [196], doped diamond [191] and

graphite [197]. Raman spectra are usually complex to interpret and require

an understanding of the electronic band structure and phonon dispersion.

Thus, practical interpretation of the Raman spectrum is usually done using

a database of spectra acquired from the literature [188]. For the studies

presented in this thesis, the Raman spectra analysis will be limited to the

interpretation of the spectra in relation to the microstructural composition

and doping of the carbon composites produced during pulsed laser ablation.

The material used is a spectroscope measuring a Raman shift between 200

cm−1 and 2560 cm−1. The excitation laser is a -type- at 562 nm.

Raman spectra usually present several defects that overlay the Raman

fingerprint such as fluorescence background, cosmic spikes, Gaussian noise,

etc [189]. These defects must be removed in order to produce reliable and

stable results for the analysis of the isolated Raman spectra, see Figure 3.12.

3.2.2.1 Pre-processing of Raman spectra

In this section, the pre-processing of Raman spectra for each defect will be

discussed. The removal of defects from the spectra is done step by step:

1. Fluorescence background and Charge-coupled device (CCD) Baseline,

see Figure 3.12(a)–(b): the fluorescence background is due to the

stimulated excitation of electrons in material by the laser source. The

emission is produced during the fall from an electronic excited state

to the ground state. It must be noted that VIS lasers are particularly

susceptible to background fluorescence, whereas UV and Near-IR are

free from it. In this study, the estimation of the background is done using
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a polynomial fit of a spectra that does not present Raman scattering

[198].

2. Cosmic spikes, see Figure 3.12(b): Raman instrumentations using CCD

for the recording of the spectra suffer from occasional spikes caused by

cosmic rays [199]. The removal of cosmic ray is problematic as some

Raman features present similar characteristics. The cosmic rays are

manually removed for analysis.

3. Gaussian Noise, see Figure 3.12(b): the Raman spectra presents uncor-

related noise that is removed using Savitzky-Golay methods.

4. Scaling: the intensity can vary considerably from one measurement to

another due to variation of the focal volume or the intensity of the

laser source. Thus, the extractable information is carried by the shape

and the relative intensity of the peaks in the Raman spectra. All the

spectra are normalised using the min-max-normalisation method [189].

The resulting spectra after pre-processing are clean from any apparent defects.

Raman spectra analysis is firstly done qualitatively using the shape of the

Raman spectra. It is possible to obtain information about the variation of

the Raman spectra for a range of conditions. Then, a quantitative analysis

of Raman spectra is performed using multivariate calibration of a generic

model for the spectra of carbon material.

3.2.2.2 Analysis of Raman spectra

The Raman spectrum is a vibrational density of states modified by various

resonances thus there is no a priori function to fit the spectra [196]. Experi-

mentally, it has been found that carbon materials exhibit specific features

that occur across a various micro-structural and doping rate/type carbon

materials, see Figure 3.13. The range of Raman shift used in the study is
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Figure 3.12 : (a) Raman induced fluorescence spectral range from Butler
et al. [188]. (b) Diagram showing the main different side effects of Raman
spectra measurement such as fluorescence background, cosmic spikes and
white noise from the work of Bocklitz et al. [189].
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Figure 3.13 : Raman spectra of graphite, metallic and semiconducting
carbon nanotubes, low and high sp3 amorphous carbons [200].

between 200 cm−1 and 2560 cm−1. In the literature, the 1000 cm−1 – 1800

cm−1 range has been widely studied for carbon materials [196, 201, 202]. In

this range, there are one or two prominent features (' 1350 cm−1 and ' 1590

cm−1) with possibly some minor modulations (at ∼ 1100 cm−1 and ∼ 1400

cm−1). It is common for Raman spectra to present background peaks that
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could influence the intensity in the range studied (between 1000 cm1 and

1800 cm−1), therefore the Raman spectrum outside this range is fitted to the

series of background peaks presented in [201], to remove their influences from

the region studied. The two main features of the Raman spectra between

1000 cm−1 and 1700 cm−1 are commonly called G-band, for the peak at 1590

cm−1, and D-band, for the peak at 1350 cm−1. The G-band arises from the

breathing mode E2g of sp2 bound between pairs of C atoms [196, 200], see

Figure 3.14(a). The D-band arises from the A1g breathing mode. The mode

is forbidden in perfect graphite, see Figure 3.13 graphite, but is active in the

presence of disorder in the graphite lattice [196, 200], see Figure 3.14(d-f).

The fitting of the Raman spectra in the 1000 cm−1 to 1700 cm−1 region

is done using different types of peaks:

1. Gaussian model: the Gaussian model is widely used to fit a scattering

peak. This shape is expected for a random distribution of phonon

lifetimes occurring in disordered materials [196]. The formula used for

the Gaussian model is

I(ω) = I0 exp

[
−(ω − ω0)2

2σ2

]
(3.6)

where I0 is the peak intensity, ω0 is the peak position and σ is the peak

dispersion.

2. Lorentzian model: the Lorentzian model is also widely used to fit a

scattering peak. This shape is expected for a distribution of phonons

with a finite lifetime broadening that arises crystalline materials. The

formula used for the Lorentzian model is

I(ω) = I0
σ

(ω − ω0)2 + σ2
. (3.7)
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Figure 3.14 : Photon-Phonon processes for a variety of Raman scattering
peaks (G, D’, D, 2D’, 2D and second order combinations) occurring in carbon
material. Electron dispersion (solid black lines), occupied states (red shaded
area), inter-band transitions neglecting the photon momentum, accompanied
by photon absorption (blue arrows) and the emission of a photon (red arrows),
intra-band transitions accompanied by phonon emission (dashed arrows) and
electron scattering on a defect (horizontal dotted arrows).

3. Breit-Wigner-Fano (BWF) model: the BWF model is used for a non-

symmetric peak that arises from the coupling of a discrete mode to a

continuum cite. The BWF line shape is given by

I(ω) = I0

[
1 + (ω−ω0)

(Qσ)

]2

1 + (ω−ω0)2

σ2

(3.8)

where Q is the BWF coupling coefficient. The Lorentzian line shape is

recovered from the BWF line in the limit Q→∞.

Modelling of the region of interest depends on the visual examination of the

Raman spectra (qualitative information). In effect, the Lorentzian and BWF

model both correspond to spectra with “sharp” peaks whereas the Gaussian

line is more suited to “round” peaks. For example, the graphite spectrum

presented in 3.13 will be fitted with the Lorentzian or BWF model and the

low sp3 amorphous carbon with the Gaussian model.
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The quantitative interpretation of the spectra is done using the peak fitting.

There are several features (FWHM, peak position, ratio of maximum intensity

or total intensity of two different peaks) that can be used to quantitatively

analyse the spectra.

It must be noted that Raman scattering is usually dependent on the

excitation wavelength [203]. The influence of the excitation wavelength has

been characterised by Ferrari and Robertson [203] for amorphous carbon and

related materials. It shows that the main features (D and G band) occur for

all wavelengths tested. However, their shapes and positions change noticeably

with the wavelength. It is also possible that certain bands appear for specific

wavelengths such as the T-band (∼ 1060 cm−1) present during UV excitation

[192].

Micro-Raman spectra were acquired using a confocal setup (NT-MDT,

Russia) with a 532 nm laser excitation source and an integration time of 60 s.

The laser power at the sample surface was maintained at approximately 80

µW through the use of neutral density filters. The use of a 100ÃŮ objective

(NA 0.95, Olympus) allowed for a focused spot size of approximately 1

micron. The collected micro-Raman spectra were post-processed by removing

the background signal and cosmic radiation events using the methodology

proposed by Bocklitz et al. [189]. The main features of the Raman spectra

followed here are: diamond band at 1332 cm−1, D-band for microcrystalline

graphite at 1350 cm−1 and G-band for graphite at 1580 cm−1 [196, 200, 201].

The Raman spectra were recorded in the range of 300–2590 cm−1 in order to

allow reliable fitting of the full spectral bans. The Raman feature used to

study the micro-structural state of carbon allotropes are in the range between

1150 and 1700 cm−1. The bands outside the range of 1150–1700 cm−1

(background bands) are fitted to Gaussian peaks using the peak described by

Schawn et al. [201] (at 1950 cm−1 and 2420 cm−1) and Szirmai et al. [191].
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The Raman feature in the range between 1150-1700 cm−1 after the removal

of the background bands are fitted using a combination of Breit-Wigner-Fano

(BWF) and Gaussian peaks for the diamond band, D-band and G-band [203].

The fitting parameters such as FWHMs, positions and intensity are allowed

to vary to obtain a good fit. It must be noted that the G-band can present a

secondary feature corresponding to the C=O functional groups at 1760 cm−1

that is fitted to a Gaussian peak.

3.2.3 X-Ray Diffraction

X-ray diffraction is a non-invasive, local and fast diagnostic tool for the

determination of the phase of a crystalline material. It is also possible

to extract the local stress of the material, the crystal orientation and the

purity [204]. The high degree of periodicity and order in the lattice is a

series of parallel planes for which each has a specific direction in space, see

Figure 3.15(a). The incident x-ray beam causes each atom to re-emit a

small portion of its intensity as a spherical wave. The high periodicity of the

crystal creates constructive interferences for specific angles that depend on the

distance between the planes and the common direction. The Bragg equation

determines the specific angle for which the intensity is maximum (when

2d sin θ is equal to a multiple of the wavelength of the incident beam). The

XRD diffraction pattern is a fingerprint of the material crystalline structure.

Usually, the diffraction pattern is compared to available databases. For the

studies presented, XRD diffraction was used to analyse the proportion of

crystal in a specific orientation. The database usually provides the position of

the peak and the ratio of the peak in the case of a random distribution of the

crystal orientation. Thus, it is possible to obtain a preferential orientation of

the crystalline structure in the material.

The crystal orientations of the Boron doped diamond are investigated
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(a) (b)

Figure 3.15 : (a) Example of the lattice planes in a simple cubic lattice
[204, p. 8]. (b) Schematic of the interaction between the X-ray and the plane
of the lattice with the Bragg equation below [204, p. 9].

using a D8 Discover diffractometer with a Cu Kα radiation source over a 2θ

range from 40°to 95°and scanning velocity of 0.0625°/min for a beam size of

1 mm at the target interaction. The step size for the XRD measurement is

0.020°and the dwell time is around 0.4 seconds per data points.

3.3 Subsurface Characterisation - Transmission

Electron Microscope

The methods presented previously only characterise the sample on the surface

or a thin layer. Although these methods carry information about the material

characteristics in a layer from a few hundred nanometres to several microns,

it is not usually possible to extract information at a specific depth. The

signal is usually encompassed informations about the whole volume that

interacts with the source (electron, X-ray, laser source), thus cannot be

directly attributed to a specific depth. Thus, subsurface characterisation

is done using other techniques such as FIB pocket milling and lamellae

preparation with TEM imaging. The use of FIB pocket milling has been

investigated for the characterisation of the subsurface carbon microstructural

composition, however the image does not resolve the microstructure well
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Figure 3.16 : SEM of a crater with Platinum deposited on the area used
for the lamella.

enough for analysis. In effect, the FIB pocket milling is particularly useful to

study a change of elemental composition in the depth of the material or the

grain size and orientation via the channelling effect. These effects are not

dominant in carbon material in this study. Thus, the lamellae preparation

with TEM imaging has been used to study the microstructural composition

in the depth of the crater. It must be noted that lamellae preparation is a

destructive process and a part of the sample will be removed for analysis. The

appropriate lamellae preparation is critically important for TEM imaging. In

the following paragraph, the steps used to prepare the lamellae are described.

Then, a discussion about TEM imaging is presented.

3.3.1 Lamellae preparation

The preparation of a TEM lamella requires many steps to achieve the quality

necessary to obtain accurate TEM imaging. In this section, the methodology

used in this work for the preparation of lamellae is detailed.
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3.3.1.1 Deposition of Pt on the area of interest

The first step is the deposition of a layer of Platinum to protect the area of

interest. The deposition is done in two steps:

1. The electron beam is used to deposit a layer (' 100 nm) of Platinum

carried by a gas in the region surrounding the area of interest. The area

of interest is thus not damaged by the electron beam. Furthermore,

the Platinum is heavier than the Carbon and Boron so the protective

layer is clearly distinguishable compared to the sample. The electron

beam deposition is slow and cannot provide a thick layer to protect the

sample during rough milling.

2. FIB with a low current and low acceleration voltage is used to deposit a

thick layer (' several microns) of Platinum. The sample is appropriately

protected for the next steps and should not be damaged. An example

of a crater at the end of the Platinum deposition is presented in Figure

3.16.

3.3.1.2 Milling and rough polishing of lamellae

After the deposition of the protective coating, the lamella undergoes rough

milling and polishing. The first step produces two pockets along the lamella,

see Figure 3.17(a). There are two important parameters for the milling to be

successful:

1. The milling around the lamella must be of the required depth. This

is not straightforward as the milling rate depends on the material and

the redeposition rate. Thus, SEM imaging (with a 33° compared to the

FIB imaging) is used to control the depth of the milling.

2. The milling pockets must be wide enough for the bottom of the lamella
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(a) (b)

Figure 3.17 : (a) SEM image of milling of the side of a lamella. (b) FIB
imaging of the rough polishing of a lamella.

to be reached on the side by FIB for the undercut in the following

stages.

After the pocket milling, three sides of the lamella are roughly polished,

see Figure 3.17(b). In this study, the width of the lamella after the rough

polishing is around 4 µm.

3.3.1.3 Undercut and in situ lift-out of lamellae

The sample is rotated such that the side of the lamella is visible with the

FIB. Afterwards, a thin layer of material is removed under the lamella, see

Figure 3.18(a) at the bottom of the lamella, at one side of the lamella, see

Figure 3.18(a) on the left of the lamella, and almost removed at the other

side, see Figure 3.18(a) on the right of the lamella. The lamella is held by a

small amount of material (on the right side for the example given) and should

not be connected to the sample by any other parts. The undercut milling is

critical due to the possible redeposition of material inside the undercut that

is impossible to detect before lift-out.
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(a) (b)

Figure 3.18 : (a) SEM image Undercut of a lamella. (b) SEM image of the
in situ lift-out of a lamella.

After the undercut milling, the needle is carefully positioned close to the

lamella. The lamella is welded to the needle using Platinum deposition with

the FIB deposition. The needle is welded to the part of the lamella that is

not connected to the sample (the right side in the example, see Figure 3.18).

Then, the other side of the lamella is disconnected from the rest of the sample

using the FIB. Finally, the lamella is carefully lifted out of the site. The

whole procedure needs to be done swiftly to avoid any shift of the sample or

needle that might knock out the lamella from the site or the needle.

3.3.1.4 Attachment to the TEM grid and further polishing of

lamellae

Finally, the lamella is welded to a copper TEM grid, see Figure 3.19. Then,

the lamellae are thinned to around 100 nm.
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Figure 3.19 : Extracted lamella of a TEM grid.

3.3.2 Imaging principles

The system used in TEM imaging is similar to SEM imaging, however whereas

the SEM imaging system uses the electron interaction with the sample to

retrieve information, TEM imaging measures the transmitted electron through

the sample without using the BSE or SE used in SEM imaging. The image

that is formed at the back of the sample by the transmitted electron is

focused on a CCD by electromagnetic lenses. It is also possible to image the

diffraction pattern from the sample by shifting the focal length. There are

two apertures to control the signal from the sample. The objective aperture

is used to improve contrast, decrease lens aberration, depth of field and

allow for signal selection (between bright field and dark field imaging) from

the imaging mode. The selected area diffraction (SAD) aperture is used

in diffraction mode to control the portion of the sample from which the

diffraction pattern arises. The TEM imaging mode is separated into three

modes:

1. Bright-field mode: the bright field mode is the imaging mode for which
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the transmitted beam and low angle scattered electrons are used for

the imaging of the sample, see 3.20(a). Thus, the image presents a high

contrast between the higher density and thicker materials such as the

difference of intensity between the Platinum and graphite areas.

2. Dark-field mode: the dark field mode is the reverse of the bright-field

model. The high angle scattered electrons are used for the imaging, see

3.20(b), therefore the image is bright for high density areas and thicker

materials.

3. Phase-contrast imaging: the phase contrast mode is the imaging mode

for which the transmitted beam and high angle scattered electrons are

used for the imaging of the sample, see 3.20(c). Although phase-contrast

mode offers higher resolution imaging compared to bright and dark field

imaging, the contrast arises from the interferences due to the shift in

phase between the scattered and unscattered electrons rays in different

parts of the image. The signal is therefore more complex to interpret and

is not a direct representation of the sample crystallographic structure

[206], however it carries qualitative information about the order of the

Figure 3.20 : (a) Bright-field, (b) Dark-field and (c) corresponding diffrac-
tion mode [205].
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crystallographic structure in the sample [206].

A dual-beam FIB-SEM Tescan Vela is used to make the TEM cross

section of the two samples. The area of interest is protected with a Platinum

layer deposited using a gas injection system. The FIB is used to cut out

cross sections from the area of interest and to thin the cut out down to the

electron transparency. The lamellae used in the TEM are protected by a

layer of Platinum. The lamellae are investigated using a JEOL LEM-2200FS

operating at 200 kV for the bright-field TEM (BFTEM) and High Resolution

TEM (HRTEM). The HRTEM micrographs includes a 2D Fourier spectra on

the bright-field images to highlight the local orientation of the lattice.

3.4 Surface topography measurement systems

3.4.1 White light interferometers for surface topogra-

phy measurements

A WLI consists of a Michelson illuminated by a broadband light source. The

measured object is placed in one arm of the Michelson and the other arm

is a reference mirror. The object is moved in the direction of the Michelson

as indicated in Figure 3.21(a). The surface of the sample is imaged onto

a CCD using a telecentric optical system. A series of images is acquired

during the movement of the object in the longitudinal direction. The optical

system produces interference fringes in the surface such as a Michelson. For

each pixel, the interference fringes are localised close to the sample focus

due to the low temporal coherence of the source or the high numerical

aperture of the microscope objective. A correlogram is produced, see Figure

3.21(b), and the pixel height is unambiguously retrieved at the peak of the

fringe envelope. Although simple in principle, determination of the surface
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(a)

(b) (c)

Figure 3.21 : (a) Scheme of a WLI [209] (b) Typical white-light inter-
ferogram (c) Distorted interferogram due to the surface roughness and the
spectral width of the light [207]

topography is hindered due to the generation of systematic errors which

decrease measurement accuracy. Nevertheless, these systematic errors are

usually corrected but correction artefacts can still be present on the surface. It

has been shown that the surface roughness introduces a systematic uncertainty

of the position of the peak of the fringe envelope [207]. Furthermore, an

evaluation of several WLI has shown that the system is still sensitive to a 2π

phase jump in the measurement of the fringe order [208] which introduces a

“ghost step” in the measured topography.
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Improvement of the correction algorithms is still the subject of ongoing

research [210]. It has been found experimentally and proved numerically

that the surface slope influences the generation of errors in the surface

measurement [211, 212]. Several conclusions can be drawn from the literature

regarding the accuracy of the topography measurement using white light

interferometers, (i) interpretation of the measured surface must be done with

caution, where there is doubt the surface topography should be verified using

imaging techniques such as SEM, Atomic Force Microscope (AFM), etc.; (ii)

although the general shape is likely to be correct the measurement of highly

sloped surfaces is prone to inaccuracies; (iii) the centre of the field of view is

resilient to errors due to chromatic aberration. Finally, WLI offers a fast and

globally accurate measurement technique. If doubt exists about the surface

topography, SEM, AFM or a stylus profilometer is used to validate WLI

measurements.

3.4.2 Profilometer for surface topography measurements

A surface profilometer consists of a stylus in contact with the sample connected

to a beam, see Figure 3.22(a). The angle of the beam is measured using

an electronic system and converted into a height measurement. Unlike the

WLI, the profilometer can only measure along a straight line, so the surface

is reconstructed by measuring a series of profiles using a raster path over the

area of interest. The profilometer is particularly useful for measuring samples

with low surface reflectivity for which the WLI is not suitable. Furthermore,

the topography measurement is almost free of errors (white noise).

However, the size and shape of the stylus limits the range of surfaces that

may be measured, see Figure 3.22(c). The stylus used in this study has a

radius of 5 µm, thus providing accurate measurement for large craters (>

50 µm) or large surfaces. It must be noted that the stylus cannot be used

3.4: Surface topography measurement systems 111



Chapter 3 Methodology

Figure 3.22 : Talysurf CLI 1000 system and scheme of the inductive gauge
[213, 214].

for the measurement of trenches due to the high aspect ratio. The system

must be used with caution as it produces a measurement for surfaces that it

cannot measure accurately. Furthermore, the minimum lateral accuracy is

0.5 µm.
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Chapter 4

A study of surface swelling caused

by graphitisation during pulsed

laser ablation of carbon allotrope

with high content of sp3 bounds

This chapter provides a description of the development of a modelling frame-

work capable of predicting the surface swelling occurring during nanosecond

pulse laser ablation of diamond and related material. The model is constructed

using the conservation of mass and heat in the target. Then, an overview of

the methodology to process the experimental results and compare them with

experimental data is given. It must be noted that the model is validated for

boron doped diamond then the model is used to estimate the activation energy

of Tetrahedral amorphous carbon (ta-C). The calculation of the activation

energy for ta-C using the model offers an improve accuracy over previously

published results. The description of this work is accompanied by a discussion

of the insight obtained with the model and how those results can provide

further understanding of the ablation processes in general.

113



Chapter 4 Laser induced surface swelling of high sp3 bounds carbon allotrope

4.1 Introduction

In most advanced applications, “as-synthesised” bulk diamond requires post-

processing to generate 3D (micro) features that add specific functionalities

to the product. However, the generation of 21/2D or 3D functional features

in diamond structures by mechanical methods (e.g. grinding) is difficult

due to the limited access of the cutting tools to minute part geometries

while generally not being regarded as economically efficient. With this in

mind, a material removal method that is not based on mechanical interaction

between the tool and the workpiece would be much more appropriate for the

shaping of diamond and related materials at a high level of geometrical detail

while resulting in less mechanical damage to the diamond based structure

[36]. The use of lasers for diamond through cutting is well documented [149]

but recently Pulsed Laser Ablation (PLA), i.e. controlled depth material

removal, has been recognized as one of the most efficient and suitable methods

for the 3D shaping of diamond [150] with unique capabilities to generate

micro-features/textures to support the development of advanced products

made of this unique material.

Considering the above, it seems that for industrial applications, machining

with nanosecond lasers offers a good compromise between the removal rate

and the quality of the detail achieved through ablation [215]. In most

cases, the generation of features using PLA is done based on experimental

knowledge of the material removal, i.e. beam footprint against a particular

target material. Some attempts at using geometrical modelling (convolution

of a known footprint along the laser beam path) of PLA to predict the

surface micro-geometry have been reported [1]; although these can predict

the ablated surface and incorporate various laser characteristics (e.g. power,

repetition rate), these geometrical models suffer from not taking into account
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the physical phenomena that lead to material removal [30]. Therefore, they

are not suitable for understanding thermal damage or possible phase change

during the laser-workpiece interaction that is critical to assess the possible

uses of processed diamond.

To address the research gaps presented in the Chapter 2, a new model is

developed to study the kinematics of the graphitisation of diamond during

nanosecond PLA. The proposed model and investigation methods aim at

providing better insight into the kinematics of the graphite layer formation in

the diamond structure thereby predicting the thickness of the graphite layer

as a function of the fluence. The model is one-dimensional, and consists of

the conservation of heat and mass during the interaction; radial heat diffusion

can be neglected because the thermal penetration depth is at least one order

of magnitude smaller than the diameter of the laser spot. This provides a

flexible framework within which to study the influence of the optical and

thermal properties of the diamond on graphitisation. The dynamic positions

of the interfaces (graphite/diamond and graphite/vacuum) are simulated,

but cannot be measured experimentally, so the final position of the surface

(graphite /vacuum) is used to validate the model for two types of diamond:

boron-doped diamond and tetrahedral amorphous carbon.

4.2 Graphitisation model for nanosecond laser

pulse ablation

The ablation process for diamond and related material can be separated into

three phases:

1. Diamond heating: the laser interacts with the pristine diamond phase.

The heat distribution is governed by the thermal diffusivity and the

laser penetration depth inside the diamond [89]. The saturated vapour
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pressure is negligible due to the low surface temperature, so vaporisation

does not occur during the diamond heating. This phase ends when the

total thickness of graphite calculated using the Arrhenius law at the

surface of the diamond is equal to two layers of graphene (∼ 0.7 nm).

The surface temperature is used to calculate the graphitisation rate of

the diamond.

2. Graphitisation and ablation: the total thickness of the layer of graphite

reaches 2 layers of graphene and the laser interacts with the graphite

and diamond layer. A thin-layer (a few Ångström) of diamond is

numerically transformed into graphite at the surface of the diamond

[216]. At first, this layer does not have a strong influence on the

temperature distribution as its thickness is too small to absorb a

significant part of the laser energy. However, the graphite layer quickly

grows and, due to its high absorption coefficient, the heat distribution is

dramatically changed. The dynamic position of the interfaces is critical

for the determination of the heat distribution during this phase. A new

modelling framework has therefore been used to correctly describe it,

which represents the key element of this chapter and is described in

this section.

3. Relaxation of the system: graphitisation stalls due to a lack of heat

propagation inside the target. However, the surface temperature can

still be above the ablation threshold resulting in the vaporisation of a

part of the graphite layer. The new modelling framework can also be

used to simulate this phase.

The model for the diamond heating phase has already been described

elsewhere [89]. The physical phenomena are modelled to improve under-

standing of the ablation process during the graphitisation and ablation phase.
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Diamond

Atmosphere

Laser Beam

Sw
el

lin
gSwelling

Graphite

Graphitisation limit Surface

Heated Diamond

x2

x1

x

x2: interface diamond/graphite
x1: interface graphite/vacuum

(a)

Diamond

Atmosphere

Laser Beam
AblationAb

la
tio

n

Graphite

Graphitisation limit Surface

Heated diamond

x2

x1

x

x2: interface diamond/graphite
x1: interface graphite/vacuum

(b)

Figure 4.1 : a) Scheme of diamond ablation at low fluences. b) Scheme of
diamond ablation for high fluences.

Nanosecond laser ablation, that is to be considered in this chapter, is a

thermal process that is induced by the absorption of the laser pulse by the

electrons in the target followed by a rapid (< 10 ps) thermalisation between

the electrons and the lattice. The resulting heat then diffuses within the

target. The thermal penetration depth, defined as dThermal =
√

2Dτpulse

(where D is the diffusivity and τpulse is the temporal length of the laser pulse),

is at least one order of magnitude smaller than the diameter of the laser spot

on the target. Thus, the heat distribution within the target workpiece can

be determined using a 1D model. In this approach, the two layer (graphite

and diamond) system is modelled (based on mass and energy conservation)

to take into account graphitisation during the irradiation. In the following

equations the subscripts d and g are used for the thermo-physical and optical

properties of diamond and graphite respectively. The vacuum/graphite and

graphite/diamond interfaces are at z = z1 and z = z2 respectively.

The density difference between graphite and diamond leads to an outward

displacement of the graphite, or swelling, of the graphitised surface as shown
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in Figure 4.1. Mass conservation at the diamond-graphite interface leads to

vswelling =
ρg − ρd
ρg

∂t {z2} , (4.1)

where ρ is the density of the material and vswelling is the speed induced in the

graphite due to the graphitisation. The heat equation for the graphite is,

using Equation (4.1),

dt {Hg} = ∂x {[vswellingHg + Dg∂x {Hg}]}+ Sg, (4.2)

with H, D and S being enthalpy of the material, thermal diffusivity and the

heat source induced by the laser respectively. The enthalpy is generically

calculated as

H(T) =

∫ T

T0

ρ(T)cp(T) dT, (4.3)

with cp and T being the specific heat and temperature respectively. The

source term S from the laser beam is

Sg = (1−Rg(Tsurface)αg exp [−αg(z − z1)] i(t), (4.4)

with R, α, Tsurface and i(t) being reflectivity, absorption coefficient for the

laser wavelength, surface temperature, and the temporal profile of the laser

pulse respectively. It has been shown that the absorption of a significant

fraction of the laser energy by the plasma that is created above the surface

is an important phenomenon during nanosecond laser ablation [89], [217].

Including plasma absorption can lead to significant improvement of model

predictions [46, 54, 113, 218]. In this context, using the method developed

for graphite ablation by Bulgakova et al. [219], the plasma absorption is
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estimated using the total optical thickness of the ablation plume Λ such that

Λ(t) = aza(t) + bEa(t), (4.5)

with Ea(t) and za(t) being the energy in the plasma and the depth ablated

respectively. Here a and b are free parameters usually determined by fitting

the model to experimental data. This simple model for the optical thickness

is based on the hypothesis than an increase in the plasma energy, Ea(t), or

the plasma density increases the absorption. Thus, the plasma shielded heat

source is

Sg = (1−Rg(Tsurface))αg exp [−αg(z − z1))] exp[−Λ(t)]i(t). (4.6)

The heat equation for the diamond is

dt {Hd} = ∂z {Dd∂z {Hd}}+ Sd, (4.7)

where the source term Sd is

Sd =(1−Rg(Tsurface))αd exp [−αd(z − z2)− αg(z2 − z1)]

exp[−Λ(t)]i(t).

(4.8)

The system is completed by the Stefan condition,

Dg∂z {Hg|z=z2} −Dd∂z {Hd|z=z2} = ∂t {z2} ρd∆hd−g, (4.9)

with ∆hd−g the heat of graphitisation and the jump of enthalpy at the
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graphite-diamond interface

hg|z=z2 − hd|z=z2 = hg(Tinterface)− hd(Tinterface), (4.10)

where Tinterface is the temperature at the interface between diamond and

graphite. Note that the Stefan condition has been modified to take into

account the fact that graphitisation is irreversible and follows Arrhenius law,

(unlike melting or solidification phase changes) thus the speed of the interface

between the graphite and the diamond cannot be negative and is calculated

using the following equation,

∂t {z2} = Cr exp

[ −Ea
RTinterface

]
, (4.11)

with Cr and Ea being respectively a constant representing the rate of trans-

formation between graphite and diamond, and the activation energy for the

transition between diamond and graphite. The domain of the solution is

finite, and an adiabatic boundary condition is applied at the bottom, zmax,

so that

Dd∂z {Hd} |z=zmax = 0. (4.12)

We always choose zmax large enough that the temperature there does not

change significantly during the simulation. At the top of the domain, the

boundary condition is controlled by evaporation. Thus, the energy balance

at the irradiated surface is

Dg∂z {Hg} |z=z1 = va∆Hvap, (4.13)

with va and ∆Hvap being the speed of ablation and the enthalpy of vapor-

ization [220] respectively. The relation between the rate of evaporation and
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vapour pressure is [88],

m =

√
M

2πRTsurface
Pv, (4.14)

with M, R, Tsurface and Pv being molar weight, the gas constant, surface

temperature and the saturated vapour pressure respectively. The saturated

vapour pressure is estimated using the Clausius-Clapeyron equation,

dT {Pv} =
∆Hvap

T∆v
, (4.15)

with ∆v the change in specific volume during the evaporation. The vapour

is considered to behave like an ideal gas and the latent heat of vaporization

is regarded as a constant over the range of temperatures encountered [221].

Since it has been shown that a certain proportion of the atoms from the

vapour are reflected to the surface [95], a sticking coefficient β is included in

(4.16) to account for this phenomenon. Using (4.14) and (4.15), it is possible

to obtain the ablation velocity of the graphite,

va = (1− β)

√
M

2πRTs

P0

ρg
exp

[
Hvap

R

(
1

T0

− 1

Ts

)]
, (4.16)

where T0 is the reference temperature under the reference pressure P0. The

saturated pressure for carbon is tabulated for a range of temperatures [222]

with reference pressure and temperature P0 = 100 kPa and T0 = 3908K. The

position of the interface between graphite and vacuum is determined by

∂t {z1} = vswelling + va. (4.17)

Finally, a front fixing method [223] is used to map the domain of solution to

a field domain which is more convenient for numerical solution.
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At the start of the simulation, the temperature of the diamond is set

at 300 K. Initially, the laser interacts directly with the diamond, so just

the equation for the flow of heat in the diamond is solved. The surface

temperature in the diamond increases until the total thickness of the graphite

layer calculated using the Arrhenius relation reaches twice the thickness of

graphene layer. Once this thickness of the graphite layer is attained, the

diamond is numerically transformed into graphite. Numerically, graphiti-

sation is initialized by instantaneously replacing a small layer of diamond

(two layer of graphene thickness) with graphite. Afterwards, the two heat

equations are solved simultaneously and the interfaces (graphite/diamond

and graphite/vacuum) evolve according to (4.17) and (4.9).

The system of equations is discretised using Taylor series and finite volume

methods. Temporal discretisation is achieved using the implicit Euler method.

The solver uses an adaptive time step dependent on the value of the ablation

speed. A high ablation speed means a small time step. The matrix resulting

from the discretisation is inverted using the library SUPERLU [224]. The

solver is second order in space and first order in time. At each time step,

the material properties are evaluated using the enthalpy from the previous

time step. The simulation is carried out until the system is not subject to

vaporisation and graphitisation, usually about 2µs. The size of the simulated

sample is around 2 µm for tetrahedral amorphous carbon and 20 µm for

boron doped diamond. The temperature of the sample at the end of the

simulation typically is around 20 K over the initial value.
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4.3 Methodology for material properties used

in the simulation

In this study, the model has been tested against two types of diamond: boron

doped diamond (BDD) and tetrahedral amorphous carbon (ta-C). These

materials are chosen because they present dissimilar optical and thermal

properties, as well as a notable difference in microstructure. BDD is a

microcrystalline diamond exhibiting a high diffusivity and low absorption co-

efficient at the wavelength of the laser used in the experimental investigations

(1061 nm). In contrast, ta-C is an amorphous diamond like carbon having a

low diffusivity and high absorption coefficient at the laser wavelength used

during the experimental tests (248 nm) [28]. Previous studies show that the

temperature dependence of the material properties (thermal and optical)

has a strong influence on the predictions of models for nanosecond pulsed

laser ablation [55]. Thus, it is critical for the accuracy of the model results

to employ material properties as close as possible to the real ones. The

methodology for the determination of the material properties (optical and

thermal) for the two target materials and graphite will be presented below.

The thermal properties used in the model are the specific heat capacity, the

density, the thermal diffusivity, the specific enthalpy of graphitisation and

the temperature of graphitisation for the diamond material. The optical

properties used in the model are the reflectivity and the absorption coefficient.

4.3.1 Optical and thermal properties for boron doped

diamond (BDD)

The optical [194, 229–231] and thermal [232, 233] properties of boron doped

diamond have been widely reported in the literature. However, there is little

data for the sample used in this study (a micro-crystalline diamond with a
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Table 4.1: Thermal and optical data for boron doped diamond produced by
Element Six
Density [225], g.cm−3 3.5
Absorption coefficient @1061 nm [226], m−1 4.3 × 105

Reflectivity @1061 nm [227], 0.16
Specific enthalpy of graphitisation [228], J.g−1 -158.2
Rate of graphitisation [157], m.s−1 9.00 × 1019

Activation Energy [157], J.mol−1 / eV 1.06 × 106 / 11.0
Specific heat, Manufacturer’s data sheet See Figure 4.3(a)
Thermal diffusivity, Manufacturer’s data sheet See Figure 4.3(b)

boron doping rate of ∼ 3 ×1020 cm−3), due to the wide range of microstruc-

tural composition (single crystal, micro-crystalline and nano-crystalline) and

doping rate (1016 to 1021 cm−3) available. Furthermore, previous studies

have shown that boron doping rate influences the optical properties and

some thermal properties. The thermal and optical properties used in the

simulation are:

• Specific heat: previous studies show that the specific heat of boron

doped diamond is not dependent on the boron doping rate [146][p.

476]. Furthermore, the specific heat of diamond does not depend on its

microstructure (single-crystalline, micro-crystalline, nano-crystalline)

[234]. Thus, the specific heat of single crystal diamond is used in the

model for the specific heat of boron doped diamond [225].

• Thermal conductivity: the boron doping rate in diamond affects the

thermal conductivity [235, 236] by up to one order of magnitude. This

is due to the increase of point defects and boron concentration in the

grain boundaries which increases the phonon dispersion. The thermal

conductivity reported in the manufacturer data sheet[225] is used in

the model. Although, the thermal conductivity should decrease with

an increase of temperature, the reported data only includes the value

at 300 K. Thus, the thermal conductivity is considered as constant over
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the range of temperature studied.

• Density: the density of boron doped diamond is considered to be equal

to the density of pure diamond [236].

• Specific enthalpy of graphitisation: the specific heat of graphitisation

has been experimentally measured in the work of Rossini et al. [228].

• Activation energy and rate of graphitisation: the graphitisation rate

as a function of temperature for pure diamond has been previously

reported [156, 157].

• Reflectivity: the complex part of the refractive index is relatively small

compared to its real part [231]. Thus, the real part of the refractive

index alone is meaningful for the calculation of the refractive index.

Experimental studies show that the refractive index has a negligible

dependence on the boron doping rate [231]. Furthermore, the reflectivity

of a micro-crystalline boron doped diamond with a doping rate at 1.3

× 1020 cm−3 has been reported in the literature [237] and is used in

the model.

• Absorption coefficient: the absorption coefficient at 1061 nm (the laser

wavelength used in the experimental tests) is highly dependent on the

boron doping rate [229, 230], and is approximately 6 × 105 m−1 at 300 K

for the BDD sample used in this study. Furthermore, Hall mobility and

carrier concentration measurements show that the absorption coefficient

should decrease with an increase of temperature [229].

The thermal and optical properties for the boron doped diamond used in the

model are summarised in Table 4.1.
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Table 4.2: Thermal and optical data for ta-C DLC
Density [238], g.cm−3 3.0
Ratio sp3/sp2 [239], % 80
Absorption coefficient 1024x768 [240], m−1 3× 107

Reflectivity @248 nm [240] 0.22
Specific enthalpy of graphitisation [228], J.g−1 -126.6
Rate of graphitisation, optimized see 4.13, m.s−1 1.99 × 108

Activation Energy, optimized see 4.13, J.mol−1 / eV 3.04 × 105 / 3.15
Specific Heat [241], See Figure 4.3a)
Thermal diffusivity [242], See Figure 4.3b)
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4.3.2 Optical and thermal properties for tetrahedral

amorphous carbon

The thermal and optical properties of tetrahedral amorphous carbon are not

commonly reported in the literature since their measurement is difficult in

the thin films that are typically deposited [8, p. 158–162]. However, it has

been established that the fraction of sp3/sp2 carbon-carbon bond is linked to

the density [238], the thermal conductivity [242], the specific heat [241] and

the optical properties [243]. The thermal and optical properties are usually

measured at 300 K [28, 239]:

• Specific heat: the work of Hakovirta et al. [241] suggests that the

specific heat of diamond like carbon films can be calculated using the

specific heat of the graphite and diamond, the ratio of sp3/sp2 and the

hydrogen concentration in atomic percentage. Thus, the specific heat

used for this study is

cptaC(T) = rsp3/sp2cpd(T) + (1− rsp3/sp2)cpg(T), (4.18)

with rsp3/sp2 the ratio of sp3/sp2 bond, cpd(T) the specific heat of

diamond and cpg(T) the specific heat of graphite.

• Thermal conductivity: a previous study demonstrates that the thermal

conductivity is linearly dependent on the ratio of the sp3/sp2 bond

and weakly dependent on the temperature around 300 K [242]. Thus,

the thermal conductivity is considered as constant over the range of

temperature used.

• Density: the film density is linearly dependent on the ratio of the

sp3/sp2 bond [238].

• Specific enthalpy of graphitisation: since the change of enthalpy between
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graphite and diamond is the energy released from the sp3 carbon-carbon

bond, the specific enthalpy of graphitisation depends linearly on the

ratio of sp3/sp2 bond [228].

• Activation energy and rate of graphitisation: the activation energy for ta-

C has been previously reported [244, 245] however due to the thickness

of ta-C the most accurate value available is 3.5± 0.9 eV. Furthermore,

the rate of graphitisation has not been measured. Thus, the activation

energy and the rate of graphitisation are free parameters that are

determined by fitting the experimental results and the calculated data

on the surface position. In this work, the model is validated for boron

doped diamond, then the same model is applied for ta-C. It is then

possible to obtain accurate values for the activation energy and rate of

graphitisation for ta-C.

• Reflectivity: Tay et al. [243] have measured the optical properties of

ta-C film for a ratio of sp3/sp2 bond around 80-85% and found a weak

dependence of refractive index at 250 nm on the ratio of sp3/sp2 bond.

The reflectivity measured by Larruquert et al. [240] is used in the

model for the reflectivity of the ta-C film at 248 nm.

• Absorption coefficient: the absorption coefficient at 248 nm for ta-

C is highly dependent of the ratio of sp3/sp2 bond[243]. Numerical

experiments has been performed showing that the model predictions

are not noticeably influenced by the absorption coefficient of ta-C, see

Figure 4.2. Thus, a good accuracy for the absorption coefficient is not

necessary to provide accurate numerical results.

The thermal and optical properties for the ta-C used in the model are

summarised in the Table 4.2.
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Figure 4.3 : Material properties as a function of the temperature for
the three materials used in the model for (a) the specific heat and (b) the
diffusivity.

4.3.3 Optical and thermal properties for graphite

The optical and thermal properties of graphite are commonly reported in the

literature. In this study, the graphite is considered to be non-porous during

the ablation process [154] and polycrystalline [Butler-smith2013].

• Specific heat: the specific heat of graphite has been reported in nu-

merous works for many varieties of graphite (pyrolytic, porous, etc.)

[89, 140, 250]. The specific heat reported in the different studies are in

fairly good agreement from 300 K to 4800 K. Thus, the value of the

Table 4.3: Thermal and optical properties of graphite
Density [246], g.cm−3 2.2
Temperature of reference [222], K 3635
Latent heat of vaporization [89], kJ.mol−1 713
Absorption coefficient [247] @1061, m−1 2.4 × 107

Absorption coefficient [247] @248, m−1 1.12 × 108

Reflection coefficient [89] @1061 nm
0.21 -2.83×10−5(T -300) for T ≤ 7000 K

0.02 for T > 7000 K
Reflection coefficient [247, 248] @248 nm

0.45 -5.22×10−5(T -300) for T ≤ 7000 K
0.10 for T > 7000 K

Specific Heat, [140] See Figure 4.3a)
Thermal diffusivity, [89, 249] See Figure 4.3b)
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specific heat used in the model for graphite is the one reported in [140].

For a temperature over 4800 K, experimental measurements suggest

that the specific heat of graphite is constant, [251].

• Thermal conductivity: the thermal conductivity of porous graphite

(16%) was reported in [89]. For non-porous material, the thermal

conductivity is calculated using the Maxwell Garnett model [252]. The

thermal conductivity used in the model for graphite is 25% higher than

thermal conductivity reported by Bulgakova et al. [89].

• Density: the density of non-porous graphite has been reported to be

2.2 g.cm−3, [246].

• Reflectivity at 1061 nm: the reflectivity of graphite at 1061 nm has

been previously reported [89], see Table 4.3.

• Reflectivity at 248 nm: the reflectivity of graphite at 248 nm has been

measured at 300 K [247]. Furthermore, pump and probe experiments

show that the reflectivity of graphite for three different wavelengths

decreases with temperature [248]. It is likely that the reflectivity at

248 nm follows the same trend, so it is assumed that the reflectivity

decreases with temperature down to 0.10 at 7000 K. It is believed that

a reduction of the reflectivity with temperature represents a closer

approximation to reality than a constant reflectivity. The value of

the reflectivity taken for graphite at 248 nm is given in Table 4.3.

Furthermore, numerical experiments are presented in the Subsection

5.4.5.2 to understand the relationship between the reflectivity and the

position of the interfaces (graphite/vacuum and graphite/diamond).

• Absorption coefficient at 248 nm and 1061 nm: Djurišić et al. have

measured the absorption coefficient of graphite at 248 nm and 1061 nm
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at 300 K [247]. It must be noted that pump and probe experiments

demonstrate a decrease of the absorption coefficient with temperature.

For the sake of simplicity, the absorption coefficient is considered to be

constant.

The optical and thermal properties used in the model for graphite are given

in Table 4.3.

4.4 Experimental Methodology

The model developed in this study is used to simulate the phase transition

between diamond and graphite under high thermal load. This effect is

particularly important during the first interaction between the laser and the

diamond target (single pulse ablation). In effect, the creation of a graphitic

layer over the diamond leads to a large variation of material properties, which

dramatically changes the heat distribution inside the target. Subsequent

interactions between the laser and the diamond target (multi-pulse ablation)

do not create such a dramatic change in the heat distribution since a graphite

layer is already present on top of the diamond. Single pulse ablation tests

are the most stringent, and are therefore used to investigate the capabilities

of the model for the two dissimilar diamond and related materials.

The methodology and experimental results for tetrahedral amorphous

carbon have been reported previously [28, 253]. Therefore, the experimental

setup is briefly described in the following paragraph and the reader is referred

to the previously published studies for further information. However, the

results for boron doped diamond have not been previously published, and

the experimental methodology used in this study is detailed below.
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4.4.1 Tetrahedral amorphous carbon (ta-C)

A KrF excimer laser producing 20 ns (FWHM) pulses at 248 nm is used to

study the ablation of 2 µm thick ta-C. The height and depth of the crater is

measured for a range of fluence between 0.1 and 600 J.cm−2. The 2µm ta-C

film is produced by pulsed arc deposition, using a technique described in the

study by Schulz et al. [239].

4.4.2 Boron doped diamond (BDD)

The experimental tests for the model validation are conducted with a fibre

laser at constant pulse repetition rate of 35 kHz. The temporal profile is

characterised by a full-width at half-maximum of 30 ns with a long trail after

the maximum that lasts approximately 200 ns. The exact temporal profile of

the laser pulse is obtained from the manufacturer data sheet and an example

is provided in Figure 4.5. Laser pulses are fed into a galvanometers head

mounted with a 100 mm focal length f-θ. The resulting spatial profile is

Gaussian with a diameter around 38 µm (using the 1/e2 definition). The

maximum power achievable at the focal plane is 18.48 W and the maximum

energy per pulse is 0.53 mJ. Thus, it is possible to obtain fluences between 0.2

and 93.5 J.cm−2. The boron doped samples are produced by Element Six Ltd.

The samples are polished on both sides (Ra < 30 nm) and have a thickness

around 0.5 mm. The beam moves on the target surface with a high speed (>

4000 m.s−1) so that two consecutive pulses do not overlap and at least ten

craters are produced and averaged in order to reduce the error arising from

variability of the laser parameters. Each crater is measured using a white

light interferometer, Br uter GT-i, that provides accurate measurement (error

< 10 nm) of the surface after the ablation. Afterwards, the radial profile and

depth at the centre of the crater is extracted, see Figure 4.9.
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4.5 Results and discussions

The model is tested for two dissimilar diamond and related materials, a

tetrahedral amorphous carbon and a boron doped diamond. For tetrahedral

amorphous carbon, the influence of the graphite reflectivity on the position

of the interfaces is discussed. The numerical predictions are then compared

to the experimental results. Finally, the discrepancies between predictions

and experimental results are discussed. For boron doped diamond, the

experimental results are presented and reviewed. Then, the influence of

the absorption coefficient of boron doped diamond for the position of the

interfaces is presented. Finally, the discrepancy between the numerical and

experimental results is investigated.

4.5.1 Boron doped diamond

In the case of boron doped diamond at low fluence, the swelling is clearly

visible in Figure 4.4(a). SEM imaging (Figure 4.4(a)) suggests that the

swelling occurs following the preferential direction and that the microstructure

has a small influence on the final topography. Previous investigation shows

that a variation in the doping rate over the surface exists [254]. This creates

local variability in the amount of absorbed energy during pulsed laser ablation,

leading to variation in the amount of swelling. Thus, this explains the higher

variability observed for the depth/height of the crater for low fluence. SEM

imaging for high fluence does not show such variability in the shape of the

crater, see Figure 4.4(b). For high fluence, the graphitisation occurs earlier,

see Figure 4.5, thus a larger part of the laser pulse interacts directly with the

graphite for which boron doping rate does not affect the absorption coefficient

of the graphite. This leads to a lower variation of ablation/swelling over the

surface at high fluence.
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(a)

(b)

Figure 4.4 : SEM collage imaging of crater for a fluence of (a) 12.48 J.cm−2

and (b) 65.9 J.cm−2 with an angle of 75°.

As mentioned previously, the absorption coefficient of boron doped dia-

mond has a strong influence on the results of the simulation. The influence

of the absorption coefficient on the simulation cannot be estimated easily

because the moment the graphitisation starts the properties of the surface

material change dramatically, see Figure 4.5. The absorption coefficient

for square diamond is two orders of magnitude lower than the coefficient

for graphite, which leads to a steep increase of temperature after the start

of the graphitisation at the surface, see Figure 4.5. Therefore, numerical

experiments have been performed to quantify the influence of the absorption

coefficient on the simulation, see Figure 4.6.

The numerical results show a marked influence of the absorption coefficient

on the position of the interfaces for the whole range of fluence studied, see
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Figure 4.6. First of all, the time at which graphitisation begins is highly

dependent on the absorption coefficient of square diamond, and the final

position of the interfaces is highly dependent on this time. The jump of

absorption coefficient of the surface material leads to a dramatic change

in the heat distribution, with a significant fraction absorbed in the first

42 nm of the graphite layer. The large amount of heat generated at the

surface quickly diffuses inside the graphite, leading to a rapid swelling of

the surface by tens or hundreds of nanometres. Furthermore, the diamond

graphitisation is accompanied by a strong vaporisation at the surface of the

graphite. Thus, the start of graphitisation will affect greatly the distribution

of the heat. Interestingly, the position of the interface between the graphite

and the diamond converges to one curve for high fluence, which suggests that

the BDD absorption coefficient mostly affects the amount of energy used to
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Figure 4.6 : Interfaces position as a function of the fluence for 3 differ-
ent values of the boron-doped diamond absorption coefficient. The blue,
red and green line are the position of the graphite/vacuum interface, the
depth of ablated graphite and the position of the graphite/diamond interface
respectively.

evaporate the graphite.

In the results presented in Figure 6.21, the absorption coefficient is

determined by fitting the experimental results and the calculated position

of the interface graphite/vacuum. It has been found that an absorption

coefficient for the boron doped diamond of 5.18 × 105 m−1 gives good results,

see Figure 6.21. It is close to the value measured at 300 K (approximately

7 × 105 m−1, [229]). Furthermore, it has been shown that the absorption

coefficient should decrease with an increase of temperature[230], so the value

found is consistent with the available experimental data. The experimental

results show that the amount of ablated material increases linearly up to a
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fluence of 50 J.cm−2, which suggests that the energy of the laser beam is

totally coupled to the target and that the amount of energy absorbed by the

plasma over the crater is small, see Figure 6.21. This is substantiated by

the good agreement between the model without plasma absorption and the

experimental results.
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Figure 4.7 : Position of the interfaces for the model and the experiments
for BDD. The red, blue and green lines are the ablated depth, the interface
position of graphite/vacuum and interface position of diamond/graphite
respectively. The inset show a subset of the data in a logarithm scale for the
fluence.

At higher powers, when plasma absorption is neglected the amount of

ablated material is lower than the model prediction. This suggests that a

part of the energy is shielded from the target by the plasma. However, when

the method presented above was used to estimate the plasma absorption,

(4.5), no values of the parameters a and b could be found to reproduce the
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experimental results. The failure of the plasma model to correctly predict the

amount of energy absorbed is due to several factors. The main absorption

mechanism during infrared pulsed laser ablation is via inverse Bremsstrahlung,

which is highly dependent on the temperature and density of electrons [125].

Thus, the plasma absorption will present an ignition threshold for which

the amount of energy absorbed offers positive feedback, leading to a large

increase in the amount of energy absorbed [125]. For the same pulse energy,

the shorter pulses have a high intensity overcoming losses due to the three

body recombination, de-excitation, photon recombination, Bremsstrahlung

emission and plasma expansion [120, 125] and reach the ignition threshold.

However, longer pulses requires more pulse energy to reach the same intensity

and overcome the ignition threshold. The model for the plasma absorption

implicitly considers that the plasma absorption occurs at the same time as the

start of the ablation. The experimental results presented in Figure 6.21 show

that it is not the case for the present experimental setup as the linear coupling

between the fluence and the amount of ablated material stops around 50

J.cm−1. Furthermore, previous modelling work has found similar behaviour

for the plasma ignition [31]. Thus, it is likely that a better description of the

plasma will improve the prediction of the model for a fluence over 50 J.cm−2.

Finally, the good agreement between the experimental results and the

model for boron doped diamond validates the methodology for the prediction

of the thermal stability of diamond during pulsed laser ablation. In the

following section, the same methodology is applied for tetrahedral amorphous

carbon thus providing further information about the thermal stability for

diamond-like carbon thin films that cannot be directly obtained [245, 255].
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4.5.2 Tetrahedral amorphous carbon

As mentioned previously, the value of the reflectivity for graphite at 248 nm

is not precisely known as a function of the temperature. However, previous

pump and probe experiments show that the reflectivity decreases at higher

temperature [248]. The error in the model prediction due to the uncertainty

of the reflectivity value cannot be estimated analytically and therefore, several

values for the reflectivity have been tested numerically. For this investigation,

plasma absorption is not taken into account to simplify the discussion. The

free parameters used in the implementation of the plasma model are calculated

using the experimental results, see (4.5), which could counterbalance the

influence of the reflectivity on the amount of energy reaching the target (by

changing the free parameter values) and biasing the discussion about the

reflectivity. The position of the interfaces for four cases is shown in Figure

4.8. It is clear that the reflectivity has a significant influence on the position

of the interfaces (graphite/diamond and graphite/vacuum) over the whole

range of fluence. For fluence lower than 2.5 J.cm−2 (fluence for the maximum

swelling), the influence of the reflectivity is not strong; an error of 50% in the

value of the reflectivity only introduces around 50 nm error in the position of

the interface between the graphite and vacuum and around 100 nm for the

position of the interface between graphite and diamond. However, for fluence

over 10 J.cm−2, the error increases proportionally with the fluence. Several

points explain these results. For low fluence, a large part of the energy is

absorbed when ta-C is the top material, so changes in the reflectivity of

the graphite phase will not change the amount of energy absorbed. As the

fluence increases, the start of graphitisation occurs earlier, which means that

a large part of the pulse is absorbed when graphite is the surface material.

For fluence over 10 J.cm−2, most of the energy is absorbed when the graphite

is the surface material, which leads to a large variation in the position of the
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Figure 4.8 : Position of the interfaces and the amount of ablated material
for different value of the reflectivity for the graphite phase and for the
function given in Table 4.3. The red, blue and green lines are the ablated
depth, the interface position of graphite/vacuum and interface position of
diamond/graphite respectively.

interfaces, see Figure 4.8.

The value of the graphite reflectivity has a notable influence on the value

of the position of the interfaces especially for high fluence. However, it

does not change the trend presented by the numerical experiments. The

graphitisation starts at 0.2 J.cm−3 and increases until the surface reaches

0.2 µm at approximately 2.1 J.cm−3. For higher fluence, ablation overcomes

the swelling and the surface recedes. However, the model results for high

fluence cannot be used to estimate the variation of the reflectivity due to the

ignition of the plasma, which decreases the amount of absorbed energy. It

must be noted that the numerical results using these four reflectivity values
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position of graphite/vacuum and interface position of diamond/graphite
respectively calculated using the model.

are all in fairly good agreement with the available numerical results for low

fluence. Thus, it does not give us enough information to distinguish between

the different cases. In the following simulations, the reflectivity is dependent

on the temperature (see Table 4.3) [248], which leads to better agreement

with the experiments.

The experimental and numerical position of the surface for ta-C ablated as

well as the numerical results for the position of the interface between diamond

and graphite and the amount of ablated material by 20 ns pulsed laser at

248 nm are presented in Figure 4.9. It must be noted that the experimental

position of the interfaces between graphite and diamond, presented in Figure
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4.9, has been calculated using the mass conservation, Equation (6.1), until

the start of the material ablation at around 2.1 J.cm−2.

Without considering the plasma shielding, the model is in excellent agree-

ment with the experiments for fluence lower than 3 J.cm−3. The model

is used to simulate the interaction between the diamond and the graphite

during pulsed laser ablation. Therefore, it is particularly interesting that

the predictions are accurate for low fluence and shows that the modelling

framework chosen can correctly predict the surface graphitisation of diamond

during pulsed laser ablation. Using the simple description of the plasma

absorption, (4.5), it is possible to estimate the amount of energy absorbed by

the plasma and extend the range of validity of the model. The parameters a

and b have been evaluated using the experimental data and are respectively

equal to 5 × 108 m−1 and 0 J−1.cm2. These values are consistent with the

literature for the ablation of graphite previously done with laser pulses at 532

nm with a FWHM of 7 ns [32] and at 1064 nm with a FWHM of 13 ns [89].

The value of a increases with a decrease of the wavelength (3× 105 m−1 at

1064 nm and 2× 106 m−1 at 532 nm) suggesting that plasma ignition occurs

with a lower amount of material ablated. Furthermore, it has been shown

that at 532 nm, the free parameter b is equal to zero, suggesting that the

plasma absorption is almost independent of the amount of energy inside it.

These observations are consistent with the main absorption mechanisms of

laser pulses at 1064 nm and 248 nm. For infrared lasers, plasma absorption

occurs mainly through inverse Bremsstrahlung with the ion and neutral [120,

125], which requires a large electron density and temperature to ignite, so

that the parameter b should not be zero. In contrast. for UV lasers, plasma

absorption is dominated by photo-ionisation processes that does not require a

large electron population generated by an increase of temperature [120, 124]

so the parameter b should be small. It must be noted that the variation of the
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Figure 4.10 : Maximum surface temperature and maximum temperature
during the simulation of the interaction between the laser and ta-C as a
function of fluence. The red solid line represents the maximum depth such
as the temperature is equal to 6500 K.

parameter a is also consistent with the absorption mechanisms at VIS and

UV wavelength. In effect, a decrease of laser wavelength increases the number

of atomic electronic levels (especially so that those levels are generally more

densely populated) that participate in photo-ionisation, which leads to a step

increase in the plasma absorption coefficient [256]. The plasma absorption

increases the range for which the model is in good agreement with the ex-

periments and suggests that the inclusion of the plasma in a more detailed

manner could provide additional insight into the ablation mechanisms.

[b] The plasma absorption increases the range for which the model is

in good agreement with the experiments and suggests that the inclusion of

the plasma in a more detailed manner could provide additional insight into
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Figure 4.11 : Instantaneous intensity for several fluence of the laser pulses.
The solid curve (–) is the instantaneous intensity reaching the target and the
dashed curves (- -) is the instantaneous intensity that is emitted by the laser.

the ablation mechanisms. The instantaneous intensity reaching the target is

greatly reduced by the plasma absorption reaching 1 order of magnitude for

700 J.cm−2, see Figure 4.11.

For fluence higher than 150 J.cm−2, the experimental data shows a steep

increase in the amount of ablated material that the model presented here

cannot explain. This discrepancy for high values of fluence is often found in

the literature for pulsed laser ablation modelling [31] and can be explained

by explosive boiling/volumetric mass removal, as presented in the work of

Demos et al. [136]. The numerical experiments show that the maximum

temperature reaches around 6500 K for fluence over 150 J.cm−2. This is close

to the widely accepted critical temperature of graphite [140] and is consistent
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Figure 4.12 : The ratio of energy reaching the target over the amount of
energy coming from the laser pulse.

with the beginning of explosive/volumetric mass removal. It has been found

that the thickness of material in a thermodynamic state close to the critical is

less than 100 nm, see Figure 4.10. Therefore, the model might not be able to

explain the 250 nm difference between the model and the experiments for a

fluence of 622 J.cm−2. However, the amount of energy reaching the target is

around 1% of the total energy expenditure from the laser source, see Figure

4.12. Thus, it is likely that the amount of energy emitted by the plasma

via bremsstrahlung or photo-recombination processes should be of the same

order than the transited amount of energy that reaches the target. It has

been found in a previous study that the emission of energy by the heated

plasma over the crater causes deeper heating without affecting the amount

of ablated material [32]. This effect has not been taken into account for this
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Figure 4.13 : Affine Invariant Markov chain Monte Carlo (MCMC) Ensem-
ble sampler [255] for the the fitting of the surface position predicted from
the model to the experimental results using activation energy and the rate of
graphitisation as free parameters [257]. The blue line represents the result
for the activation energy and the rate of graphitisation from the optimisation
using the maximum likelihood method.

study but it would suggest that the plasma absorption is overestimated or

that the amount of energy emitted by the plasma reaches level comparable to

the energy coming directly from the laser. In effect, deeper heat absorption

should lead to a larger swelling that should be counterbalanced by an increase

of ablation at the surface. It should also lead to a larger layer of material

heated over the critical temperature and explain the difference between the

experiment and the model for high fluence. Further investigation of the
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interaction between the plasma and the laser needs to be carrier out to

understand the discrepancy at high level of fluence.

The estimation of the parameters used in Arrhenius law for the graphi-

tisation of ta-C provides further information about the thermal stability

of diamond-like carbon films, see Figure 4.13. The activation energy for

ta-C has previously been determined experimentally at 3.5 ± 0.9 eV [196,

244]. The present study provides improved accuracy for the activation energy

(3.15+1.0
−0.22 eV) and also provides an estimation for the rate of graphitisation

(exp
[
log[10]× 8.3+1.72

−1.8

]
m.s−1), see Figure 4.13.

4.6 Conclusion

Theoretical and experimental results have been used to investigate the ab-

lation of diamond and related materials with nanosecond laser pulses. The

dependence of the ablation rate on laser fluence has been analysed for a wide

range of values of laser fluence and two dissimilar types of diamond and

related material. The experimental data shows a swelling of the surface for

low fluence and an ablation of the surface for high fluence, see Figure 4.4.

Furthermore, the behaviour of the diamond during laser ablation has been

addressed theoretically within a one dimensional modelling framework. The

model takes into account the transition between graphite and diamond/ta-

C, the jump of density, the plasma absorption and the evaporation of the

material during nanosecond pulse ablation. By solving the system of equations

numerically, the space-time distribution of temperature is obtained from the

model within the diamond/graphite target. The positions of the interfaces

are also obtained from the model. The model shows excellent agreement

with the experimental data until the onset of the explosive/volumetric mass

removal for ta-C and plasma absorption for boron doped diamond. Model
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presented in this study is the first one to address the particularity (phase

change with change of density) of the interaction between the diamond and

related materials with a pulsed laser beam. In effect, previous studies only

reported the thickness and the position of the surface without providing

a complete modelling framework taking into account the transition of the

optical and thermal properties and the dynamic position of the interfaces

(diamond/graphite and graphite/vacuum). Interestingly, the model provides

insights into the ablation process. It shows that using the quasi-stationary

annealing threshold for the graphitisation of diamond and related material

does not give accurate results. This work shows that the Arrhenius law

provides accurate predictions for the rate of graphitisation during pulsed

laser ablation for two allotropes of carbon with a large amount of sp3 bonds.

The present study provides a new method to obtain the activation energy

and the graphitisation rate for diamond-like carbon, and provides numerical

estimations for a ta-C with around 80% sp3 bonds with an improved accuracy.

In recent years, the interaction between the material ablated from the

surface and the laser has been investigated in detail, which demonstrates

the importance of accurately modelling the temperature dependence of key

physical properties, [23, 30, 55], an aspect that has been strongly emphasised

in this chapter. The behaviour of the subsurface during ablation has not

been heavily studied due to the difficulty of measuring the microstructure

inside the material and relating it to the processes that created it. Diamond

ablation presents an interesting case for which the maximum position for the

graphitisation temperature can be measured after the removal of the graphite

layer (using acidic solutions [138] or a furnace in an oxidising atmosphere

[28]) putting further constraint on the results of the model. Future studies

should provide additional information about the phenomena occurring inside

the material during pulsed laser ablation.
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This study is encouraging for the development of an alternative approach

that could address the main issue of this framework for the modelling of large

machining task, such as the long computation time required and the lack of

flexibility for the capture of 3D removal rate. The prediction of the footprint

profile in very short times in order to embed these models into CAD/CAM

systems enabling tool-path generation in real time for PLA machining.

4.6: Conclusion 149



Chapter 5

Modelling of pulsed laser ablation

by continuous trench

A novel approach to predict the surface topography change during PLA

machining of large surface is describe in this chapter. The framework is a

geometrical model that enables the fast prediction of the resulting surface

topography that use a relatively small amount of experimental data for its

calibration. The new model is accompanied by a detailed methodology for the

accurate calibration of the model using empirical data. This new methodology

provides a fast method to implement optimisation methods into CAD/CAM

system to support the generation of tool-path strategies to manufacture inno-

vative 3D geometry using PLA.

5.1 Introduction

The development of mathematical framework for PLA machining is essential

for the development of this technology as a feasible manufacturing process, and

recently more consideration has been given to computationally inexpensive

approaches [39, 40, 42, 43, 173] as discussed in the section 2.3. Those methods,

unlike the physical models as the model presented in Chapter 4, focus on the

estimation of the footprint of PLA as a function of the variable parameters

during the machining process, see Figure 5.1.

In order to address the drawbacks presented in the section 2.3, this chapter
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Figure 5.1 : Variable and fixed parameters used in the model for PLA
machining.

presents an innovative model in which the ablation of the surface by the

pulsed laser is treated as a continuous process, so that the interaction between

two pulses is implicitly taken into account in the values of the calibrated

parameters. Unlike, previous modelling approach, the framework enables the

modelling non-linear interaction between pulses, it also requires the little

experimental data for an accurate calibration of the model and opens the

way for continuous optimisation of the machining parameters to generate

specific topography. The model does not have any inherent restriction on the

material or lasers used and can easily be calibrated with a few experimental

tests. This model for micro-machining takes into consideration the following

aspects:

• Beam feed speed: the variation of the trench depth with the degree

of overlapping of the pulses. This takes implicitly into account heat

conservation between pulses, material ejection and surface property
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modification.

• Position of the beam on the surface: allowing the prediction of the 3D

surface resulting from the machining process.

• Beam Power: the variation of the width and depth of the trench with

the power.

The modelling approach is validated for three materials (POCO graphite

AF-5, metal-matrix diamond CMX850 and a polycrystalline diamond, PCD)

as an example of its accuracy, for both single and overlapped trenches, thus

making the first step towards controlled and predictable micro-machining by

PLA of truly complex geometries.

5.2 Modelling of continuous trench PLA for an

arbitrary moving beam

This section provides the mathematical framework used to model the interac-

tion between the laser beam and the workpiece.

5.2.1 Model of a single footprint of an arbitrary moving

beam

The variation in the depth, Zs , at the point x = (x, y), due to the impact of

the laser beam moving on the tool path, xpath = (xpath, ypath), is expressed

by a general relation,

∂t {Zs} = A
(
P,vfeed,

√
(x − xpath)2 + (y − ypath)2

)
. (5.1)

The ablation rate, A, is calculated from experimental data. The following

calculation shows that the ablation rate can be expressed using the profile
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of a trench, p(y,P, vfeed). From experiments presented in the chapter, it has

been found that the profile of a trench at constant feed speed, vfeed, and

power, P, can be expressed as

p(y,P, vfeed) =

[
Υ(P)

vfeed
+ χ(P)

]
p̄

(
y

r∗(P)

)
, (5.2)

with Υ(P) the factor for the variation of the depth with the inverse of the

feed speed, χ(P) the factor for the effect of the pulse interaction on the profile

depth, r∗(P) the width of the trench profile (that is not directly related to

the spot size), y the position along the profile of the trench and p̄ the generic

profile of the trench. Using (5.1) and changing the integration with respect

to the time to an integration with respect to the beam path arc length, spath,

so that

dt {spath} = vfeed. (5.3)

with spath is the equivalent arc length between the start (tstart) and the end

(tend) of the machining time defined by the path of the beam, xpath, such as

spath =

∫ tend

tstart

√
(∂t {xpath})2 + (∂t {ypath})2dt. (5.4)

Using the notation r as the distance between the centre of the beam, xpath,

and a point on the surface, x

r =
√

(x − xpath)2 + (y − ypath)2. (5.5)
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It is possible to express the depth, Zs , as a function of the ablation rate

assuming that Zs(x, y, t) = 0 when t = 0, as

Zs(x, y,P, vfeed) =

∫
send

sstart

A (P, vfeed, r)
vfeed

dspath, (5.6)

where spath is the beam path arc length. Remarking that the position of

the centre of the beam in the y direction is constant, the path dspath can be

expressed as,

dspath =

√
1 +

(
dypath
dxpath

)2

dxpath = dxpath, (5.7)

and since the ablation rate, A, has a compact support and the beam is

moving with a constant feed speed in the x direction, it is possible to simplify

this equation as the depth does not depend on x to give,

vfeed Zs(x,P, vfeed) =

∫ ∞
−∞
A (P, vfeed, r) dxpath. (5.8)

Assuming that the beam path is centred on the y axis thus ypath = 0. It

gives,

dxpath =
rdr√

r2 − (y − ypath)2
, (5.9)

and using the Abel transform [258], the ablation rate is,

A(P, vfeed, r) = −vfeed
2π

∫
∞

r

∂y {p(y,P, vfeed)}√
y2 − r2

dy. (5.10)
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Using Equation (5.2), the ablation rate, A, is equal to,

A(P, vfeed, r) =

[
Υ(P) + χ(P)vfeed

r∗(P)

]− 1

2π

∫
∞

r̄

∂ȳ p̄ (ȳ)√
ȳ2 − r̄2

dȳ

 , (5.11)

with,

ȳ =
y

r∗(P)
and r̄ =

r

r∗(P)
, (5.12)

with r̄ the normed radiation distance with respect to the width of the

trench. Equation (5.11) can be rewritten as:

A(P, vfeed, r) =

[
Υ(P) + χ(P)vfeed

r∗(P)

]
Ā(r̄), (5.13)

with the generic ablation rate, Ā, only dependent on the generic profile, p̄,

Ā(r̄) = − 1

2π

∫
∞

r̄

∂ȳ p̄ (ȳ)√
ȳ2 − r̄2

dȳ. (5.14)

Equation (5.13) is particularly interesting. It shows that the ablation rate

can be expressed using two factors showing that the power and feed speed

can be separated to the influence of the beam size and material properties.

The first factor represents the variation of the ablation rate with the power

and feed speed of the beam. The second factor, Ā(r̄), represents the constant

shape of the material removal rate. This separation makes it possible to

isolate the influence of each parameter and therefore, calibrate each part of

the ablation rate separately.

5.2.2 Calibration of the model

The ablation rate presented above, (5.13), needs to be calibrated. A simple

method to calibrate the ablation rate is to produce a series of trenches over
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a range of feed speed (i.e. overlapped pulses) and power; this requires a

large data set of profiles to calibrate each function accurately. To ease the

constraint on the amount of experimental data required to correctly calibrate

the model, a new calibration method has been developed that greatly reduces

the amount of experimental data necessary.

Using the formulation of the ablation rate, (5.13), and the standard

formulation for the calculation of the surface after the ablation from the laser,

(5.1), it is possible to calculate the effect of the laser on the surface for a

given power and a beam path as

Zs(x, y) =
1

r∗

∫
tstop

tstart

[

Term I︷ ︸︸ ︷
Υ(P) +

Term II︷ ︸︸ ︷
χ(P)vfeed(t)]Ā

( r
r∗

)
dt. (5.15)

The term II is equal to,

II =
1

r∗

∫
tstop

tstart

χ(P)vfeed(t)Ā
( r
r∗

)
dt. (5.16)

The value of the term II can be easily simplified, using Equations (5.3), (5.7),

(5.9) and (5.14), as,

II = χp̄(ȳ) (5.17)

If the variation of the feed speed along the path is chosen such that

vfeed(t) =
a

b− xpath(t)
. (5.18)

since the ablation rate is symmetric with respect to the y axis and defined

over a compact domain,

I = Υr∗
(b− x)

a
p̄(ȳ), (5.19)
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for x in the support of the ablation rate. Finally, the surface after the test is

equal to

Zs(x, y) =

[
Υ

(b− x)

a
+ χ

]
p̄(ȳ) =

[
Υ

vfeed(x)
+ χ

]
p̄(ȳ), (5.20)

This shows that by using the feed speed variation, (5.18), along a straight

path, the feature produced on the surface can be used to calibrate the whole

model for a chosen power. In effect, the surface presents the exact same

profile and depth that a trench machined at a constant feed speed and power

should generate for a given feed speed. Thus, the profile of the trench for a

particular x and y is directly related to Υ, χ and the feed speed of the beam

through

p(x, y) =

[
Υ

vfeed(x)
+ χ

]
p̄(ȳ). (5.21)

Therefore, it greatly reduces the number of trenches needed for an accurate

calibration of the model.

5.3 Methodology

The model described above ultimately needs to be integrated into laser

machining CAD/CAM systems. Consequently, the agreement of the model

only with single trenches is not a full test for its use in machining environments,

for which a feed speed variation and the overlapping of trenches is fundamental

to the manufacturing of 2.5D/3D free-form parts. Thus, additional tests have

been conducted to characterise the performance of the model in the following

distinct conditions: (i) arbitrary moving beam, (ii) overlapped trenches. The

two sets of tests are not real-life machining tests but are arguably closer to

real machining conditions for generating free-forms They have been chosen

for the simplicity of their implementation but mostly because it is possible to
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precisely monitor the process, accurately calculate the error and find possible

deficiencies from the modelling perspective. In this chapter, many conditions

for constant feed speed single trenches are tested for the three materials.

Afterwards, tests for a reduced number of cases with a feed speed variation

and overlapping trenches are performed to demonstrate that the model is

accurate for a large set of kinematic conditions. Thus, the combination of

the two sets of tests offers a comprehensive view of the model’s capabilities.

The methodology for the calibration and the validation of the model

consists of the following steps.

Step 1, Calibration: generate a series of trenches for a range of feed

speeds and powers. The resulting trenches are measured using a white

light interferometer (WLI); then, the depth at the centre of the trench and

profiles of the trench are extracted and used to calibrate the model as per

the work-flow presented in Figure 5.2.

Step 2, Validation and error quantification for the proposed model for

constant feed speed single trench. A series of trenches with constant feed

speed and power are produced and then measured. Afterwards, the cross-

section (2D) of the surface (3D) is calculated by averaging the profile along

the beam path over at least 150 µm. Then, the cross-sections are compared

with simulations and the errors are evaluated.

Step 3, Evaluation of the model error for a single trench with a continuous

feed speed variation. A series of trenches for a range of powers and varied

feed speed is produced for each material. The depth at the centre of the

trench is extracted from the experimental set and compared to the numerical

one.

Step 4, Evaluation of the model for overlapped trenches. The feed speed

and power are kept constant for both trenches and the distance between the

centres of the two trenches (i.e. step-over) is varied. The cross-sections (by
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Figure 5.2 : Diagram of the calibration work-flow, the plot presented are
an example of the calibration process for CMX850 at 8.07 W.

averaging the profile over 150 µm) extracted from the surfaces are analysed,

compared with the simulations and the errors are calculated.

The errors have been evaluated as the relative error of the area of the
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simulated cross section compared to the experimental value. One should bear

in mind that, even if the feed speed is kept constant, there is variability in

the material removal process along the trenches due to several factors: (i)

variation of the pulse to pulse energy (ca. 5%); (ii) the feed speed variation

along the path (ca. 3%); (iii) distribution of side-effect/surface defects (e.g.

graphitic material for mechanical PCD, tungsten and cobalt for CMX850

and void distribution for graphite); (iv) errors in the flatness of the initial

surface and roughness variation. Thus, the evaluation of the errors must be

interpreted with caution because it is believed that a significant part of the

error could be associated with the above-mentioned variabilities.

5.4 Experimental setup and measurement meth-

ods

The experimental setup used in the calibration and following tests for the

model is the one presented in the Chapter 3.

For the purpose of validating the modelling framework, the model is

calibrated and tested on three materials. The first material is an isotropic

graphite, POCO AF-5, exhibiting small grain size of 1 µm and a void quantity

of 20%. This material presents low recast material at the rim of the trench

making it a good candidate for the validation of the modelling approach.

The second material is a metal-diamond composite CMX850, with high wear

resistance and strength due to the small diamond grain size and is widely

used in micro-tooling [36]. CMX850 has a diamond grain (<10 µm) in a metal

matrix of tungsten and cobalt. The last material is a CVD mechanical grade

polycrystalline diamond (referred as mechanical PCD) used for manufacturing

insets for turning [259] or for micro-tooling [29]. This material has a large

grain size with graphitic phase present at the grain boundaries.
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In order to avoid noise in the PLA trenches to enable accurate validation

of the model, a smooth initial target surface is needed, so the roughness of

the samples have been reduced by polishing if possible. For the graphite

POCO AF-5, the samples have been manually polished; an Ra value of 50

nm has been achieved. In the case of CMX850 and mechanical PCD, the

samples could not be manually polished due to the hardness of the materials;

an Ra of 200 nm has been observed for these samples.

5.5 Results and discussion

The first subsection presents the calibration process step by step using the

graphite POCO AF-5 as an example. Each step of the calibration is critically

evaluated and the possible errors are discussed. Then, the model errors

for each test are evaluated for the three materials and discussed in detail.

Several examples of the machined surface are presented. The error tables

offer a comprehensive view of the ability of the model to predict the resulting

topography of PLA micro-machining.

5.5.1 The calibration method: example of graphite POCO

AF-5

Calibration of the model requires a series of trenches with a specific feed speed

variation along the trench at different levels of powers. The resulting trenches

are scanned and then the depth at the centre of the trench is extracted, see

Figure 5.3(a). As demonstrated, the depth measured at a certain position

along the axis x, see Figure 5.1, is equal to the depth that a single trench

at a constant feed speed will produce for a given power. The parameters

Υ and χ of the linear fit are extracted by matching the depth and the feed

speed using Equation 5.21, see Figure 5.3(b). This process is challenging
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because the depth at the centre of the trench exhibits variation due to the

errors of the process (as discussed in subsection 5.3); this is especially visible

at constant feed speed when the depth at the centre of the trench has a

near constant depth, see Figure 5.3(a). It should be noted that an error of

10-20µm in the positioning of the feed speed profile compared to the depth

profile can introduce uncertainties of up to 5% in the value of linear fit. Once

the positions of the two profiles are correctly aligned, it is possible to extract

the values of Υ and χ at a particular power level, see Figure 5.3(b).

The calibration process can be repeated for as many power levels as

necessary over the range studied; for graphite POCO AF-5, 8 different powers

were used to calibrate Υ, χ and r∗. The values of Υ and χ as a function of

the power are shown in Figure 5.4(b), 5.4(c). The next parameter to calibrate

is the variation of the width of the profile, r∗, with respect to the power,

see Equation 5.13. It is possible to extract the generic profile, p̄(y), of the

trench once Υ and χ have been calibrated. The surface, shown in Figure

5.5, is obtained by normalising the depth of the trench along the path by

Υ/vfeed(x) + χ using Equation (5.21). It is apparent from Figure 5.5 that

the calibration has been done correctly since the value at the bottom of the
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Figure 5.3 : Calibration for graphite POCO AF-5 at 10.24 W; (a) Extracted
profile along the trench, (b) fit of the depth as a function of the inverse of
the feed speed by a linear function.
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Figure 5.4 : (a), extracted profile along the trench for a range of power
used in the calibration; (b), fit for Υ (the inset is the relative error of the
fit in percentage); (c), fit for χ (the inset is the relative error of the fit in
percentage).
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Figure 5.5 : Normalised surface using Υ and χ, see Figure 5.4 at 14.47 W
on Graphite POCO AF-5.

profile along the trench is close to 1. The generic profile of the trench for this

power is extracted by averaging the profiles along the path. This process is

repeated for each power level.

The characteristic width of the profile, r∗, is obtained by measuring the

distance from the centre of the profile to the position such that the value of

the depth is less than 20% of the maximum depth. This threshold is chosen

as a good trade-off between the noise caused by the initial surface roughness

of the part and the acceptable measurement accuracy of the generic profile

width.

In Figure 5.6, the width of the profile as a function of the power is

presented. The profile extracted from the normalised surface, Figure 5.5,

is presented in 5.7. It is clear that the shape of the generic profiles of the

trenches for all powers and feed speeds are close and justifies the assumptions

made in Equation 5.2 for the modelling of the PLA. The most striking

observation to emerge from the Figure 5.7 is that, with the ranges of the

tested parameters, the ablation rate does not depend on the slope of the

profile. One might expect that the slope highly affects the ablation on the
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Figure 5.6 : Fit for r∗ as a function of the power (the inset is the relative
error of the fit in percentage)

side of the profile due to the increased surface of interaction leading to a

reduction of the fluence. It is not the case for the ablation of trenches of the

materials studied (graphite POCO AF-5, CMX850 and mechanical PCD), at

least for a slope of the side of the trench lower than 75 °.

The simulation of the machining process for a laser beam requires the

calculation of the generic ablation rate; this relates to Equation (5.1) and

Equation (5.13). Knowing the generic profile, it is possible to obtain the

generic ablation rate using Equation (5.14). A numerical inverse Abel trans-

form [260] is used to calculate the generic ablation rate from the mean of

the generic profile presented in Figure 5.7. The generic ablation rate, for

graphite POCO AF-5, is presented in the Figure 5.8.

For graphite POCO-AF5, the model has been calibrated for a range of
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Figure 5.7 : Generic profiles of the trench for all the powers used in the
calibration.

powers [4, 18.8] W and a range of beam feed speeds [100, 600] mm.s−1. The

model has also been calibrated for CMX850 and mechanical PCD for the

power in a range of respectively [6, 18.8] W and [8, 18.8] W, for the beam feed

speed in a range of respectively [100, 400] mm.s−1 and [100, 300] mm.s−1.

The maximum range of calibration depends on the material properties and

is determined by two criteria: (i) the feed speed cannot exceed a critical value

for which separate pulses are observable; hence, not obtaining a trench (such

that the bottom of the trench has a constant depth); (ii) a low feed speed

generates a large amount of debris and thermal damage to the surface/target

and should be avoided furthermore the slope of the trench (> 70°) and depth

are too large for the measurement system used thus prone to measurement

errors; (iii) the lower limit of the power is the ablation threshold of the
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material. Thus, the model is aimed at the generation of acceptable micro-

machining surfaces.

5.5.2 Single trenches with constant direction and beam

feed speed

The error calculations are made using the method described in section 5.3.

For graphite, CMX850 and mechanical PCD, the error tables are respectively

presented in Table 5.1, 5.2 and 5.3. The maximum (∆Max) and average

(∆Avg) errors are: ∆Max=10% and ∆Avg=4.11% for graphite, ∆Max=8% and

∆Avg=3.69% for CMX850 and ∆Max=7% and ∆Avg=4.81% for mechanical

PCD. For the three target materials studied, the error values are scattered

from 10% to less than 1% without revealing any evident pattern which

Figure 5.8 : The normalised ablation rate Ā for the Graphite POCO AF-5.
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suggests that their origin is variability in the process such as power variation,

speed variation and porosity. Average error values for each material are lower

than 5% giving a good indication that the model is in good agreement with

the experimental results. Studying in detail the performance of the model for

single trenches is key to ensuring the consistency of the following tests that

show the performance of the modelling framework for real machining tests.
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Table 5.2: Relative error in the area of the trench cross section for CMX850
for singles trenches with a constant direction and value of the beam feed
speed

Power [W]
5.95 8.07 10.12 12.22 14.47 16.76 18.79

Relative Error [%]

100 4.70 5.46 7.81 5.91 3.62 3.00 2.18

150 3.82 2.98 1.27 1.49 3.45 3.02 1.79

200 7.28 1.97 1.04 3.64 1.22 1.38 7.37

300 2.28 1.23 2.37 5.18 2.64 1.69 8.69

Fe
ed

Sp
ee
d
[m

m
.s
−

1
]

400 4.60 1.92 6.5 2.82 5.32 2.21 3.54

Table 5.3: Relative error in the area of the trench cross section for Mechanical
PCD for single trenches with a constant direction and value of the beam feed
speed

Power [W]
8.07 10.12 12.22 14.47 16.76 18.79

Relative Error [%]

100 3.21 1.93 3.8 5.02 4.30 3.23

128 5.89 5.60 5.49 6.07 3.39 4.13

200 4.85 3.58 3.02 4.94 4.37 3.39

Fe
ed

Sp
ee
d
[m

m
.s
−

1
]

300 — 3.5 2.71 2.46 1.87 1.55
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5.5.3 Single trenches with constant direction and vari-

able beam feed speed

The feed speed variation during laser machining affects the removal rate,

therefore controlling the depth of the profile. To compare the model and

experimental results, the depth at the centres of the profiles along the path

are shown in Figure 5.9 and 5.10.

It is apparent from Figure 5.9 and 5.10 that the model is in excellent

agreement with experimental tests for the three workpiece materials. The

model does not take into account the variability of the process and therefore

it predicts the local average depth that will be found without the roughness.

Figure 5.9 : Feed speed variation tests for CMX850. Solid line (-) ex-
perimental depth, dashed line (- -) simulation and red (-◦-) measured feed
speed.
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(a)

(b)

Figure 5.10 : Feed speed variation tests for (a) Mechanical PCD and (b)
graphite POCO AF-5. Solid line (-) experimental depth, dashed line (- -)
simulation and red (-◦-) measured feed speed.
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Interestingly, the experimental depths present some larger scale (depth ≥

500 nm and length ≥ 100 µm) fluctuations along the trench. This suggests

that the error variations, presented in Tables 5.1, 5.2 and 5.3, might come

from intrinsic variability of from the process parameters and macro-micro

geometry of the initial workpiece surfaces.

5.5.4 Overlapped trenches with constant direction and

beam feed speed

Experiments to validate the model for overlapped trenches at normal beam

incidence were carried out for several powers and feed speeds by varying the

distance between the centre of the two trenches from 0 µm to a maximum

of 60 µm while keeping feed speed and power constant. In Figure 5.11, four

tests on CMX850 are presented at 14.47 W and 300 mm.s−1.

The relative errors between the model and the experimental results

are presented in Table 5.4. The model accurately predicts the results of

overlapping trenches for graphite POCO AF-5, CMX850 and mechanical

PCD. The results are particularly good for graphite POCO AF-5 and CMX850,

with an error usually less than 5%.
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Figure 5.11 : Overlapping cross sections for CMX850 for trenches at 14.47W
and 300 mm.s−1 feed speed.
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In the case of the mechanical PCD, the errors increase for high level

overlapping (overstep ≤ 30 µm). This might be caused by variability of the

laser operating parameters or inaccuracies in the measurement of the surfaces,

but it is likely that a great part of them is related to non-linear effects that

are not presently taken into account by the model. In this respect, it could be

noted that for mechanical PCD, the absorption of the laser relies mainly on

the presence of impurities, such as amorphous carbon, which exists between

the diamond grains [261]. In effect, the absorption coefficient of pure diamond

is lower than 1 m−1 whereas the graphite absorption coefficient is around

108 m−1. Previous studies of pulsed laser ablation of diamond [28, 138] have

shown that diamond ablation is always accompanied by the transformation

of a diamond layer into graphite. Hence, diamond is metastable at ambient

pressure and temperature; above 2000 °C diamond is transformed into graphite

[155]. The creation of a thin graphite layer, after the first trench is machined,

dramatically changes the optical properties of the superficial layer. Thus,

the graphitised layer absorbs the energy of the laser much more efficiently

and therefore, it reduces the fluence necessary to ablate the surface, see

Table 5.4: Relative error in the area of the trench cross section for overlapped
trenches for the three materials

Overstep distance [µm]
0 10 20 30 40 50 60

Relative Error [%]
18.97 W

A
F
-5

200 mm.s−1 3.78 4.15 2.77 1.58 4.56 5.89 4.73

14.47 W
300 mm.s−1 4.38 4.03 3.16 5.18 2.52 5.78 —

18.79 W

C
M
X
85

0

200 mm.s−1 2.68 4.83 4.91 7.87 3.02 5.14 —

18.79 W
150 mm.s−1 — 3.92 9.8 6.79 7.74 4.83 —

14.47 W

M
ec
h.

P
C
D

300 mm.s−1 9.4 9.8 7.11 6.36 5.87 1.36 —
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Figure 5.12. After the first few pulses, a thin graphite layer is created and

maintained by the subsequent ablation.

The model takes into account the low absorption of the first pulses

and does not exhibit significant errors for single trenches. However, when

mechanical PCD is the workpiece material, if the beam passes over an area

already ablated, the first few pulses will be much more effective than a surface

free of graphite, see Figure 5.13. Currently, the model does not take into

account changing material properties after the first pass and consequently,

it under-predicts the removal of material. However, the side of the trench

is accurately predicted and proves that the model is still behaving correctly

outside of the affected area, see Figure 5.13. This phenomenon will only

occurs at the start of the machining process; once the laser has passed over

the whole workpiece the ablation should be homogeneous. Therefore, it

is possible to develop a two steps machining (i) ablate lightly the whole

workpiece with the near infra-red laser and (ii) carry out the machining task

After First pass After Second pass

Legend:
Mechanical PCD
Graphite
Profile without considering the graphite over absorption
Trench Span
Centre of the first trench
Centre of the second trench

Overlapping area
Over Ablated Volume

Figure 5.12 : Scheme of the ablation pattern (creation of a small graphite
layer) in the case of mechanical PCD during the overlapping of two trenches.
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Figure 5.13 : Overlapping test for mechanical PCD:(a) cross section at
14.47 W and 300 mm.s−1 with 20 µm between the centre of the two trenches.
(b) cross section at 18.79 W and 150 mm.s−1 with 20 µm between the centre
of the two trenches.

on the uniformly ablated surface. The model will have to be recalibrated

for the lightly ablated surface but should give good results. This method is

currently being investigated.

5.6 Free-form surface with constant overlapped

between two trenches

Finally, the model is tested against three free-form shapes. The three different

free-form shapes have been chosen to test different aspect of the model. The

first free-form surface is a “simple” pattern consisting of several pillars with

different gradient for each direction, see Figure 5.14. The second tests is a

free-form surface with continuous slope variation. Furthermore, the results

does not present any specific pattern that can be average, thus representing

a closer results of the real machining result for free-form surfaces, see Figure
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5.16. The last tests is designed to test the model against step variation of

the depth in the direction of the laser machining and perpendicular to the

laser machining, see Figure 5.18. The choice of beam path for the generation

of the free-form surface use the classical raster paths technique is parallel

straight line paths in the x-direction with constant overlap in the y-direction

with a variation of the speed along the x-direction to vary the amount of

material removed. The generation of complex surfaces with an optimization

algorithm is a hard optimization problem. For the examples provided in this

section, the speed used for the machining is directly interpolate from the

maximum depth of the trench for a chosen power. The power of the laser is

kept constant during the whole machining.

5.6.1 Simple 3D shapes

The “simple” free-form surface is made of several pillars next to each other.

The result of the simulation and the experimental result for the “simple” 3D

shape is presented in Figure 5.14 (a) and Figure 5.14(b) respectively. The

numerical model is closely following the experimental results, see Figure 5.15.

Similarly to the error from the previous tests, the error is mainly generating

do to variation of the material removal or material internal variation. Inter-

estingly, the model and the experimental results present errors around high

variation of depth in the x-direction suggesting that the error is coming from

a poor control of the speed.
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Figure 5.14 : The simulated depth (a), the experimental depth (b) and the
absolute error between the experimental and simulated results (c).
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Figure 5.15 : The depth from the simulation and the average of experiments
over different sections of the surface presented in the Figure 5.14 (c)
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5.6.2 Freeform with smooth transition

The following test is made from a picture converted to depth using the

intensity value, see Figure 5.16. The comparison between the model results

and the experimental result shows that the model predicts correctly the

depth, see Figure 5.17. The error for each profile is mainly coming from the

roughness generated in the ablation process.For the free-form tests, the error is

mainly due to the presence of dust or uncontrolled variation of the machining

parameters (e.g. pulse-to-pulse energy, feed speed) and the presence of dust.

Without considering the area affected by previously described defects, the

model shows good agreement with the experimental results. The variation in

the surface depth are properly predicted, see Figure 5.17.
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Figure 5.16 : The simulated depth (a), the experimental depth (b) and the
absolute error between the experimental and simulated results (c).
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Figure 5.17 : The depth from the simulation and the experiments for
different sections presented in the Figure 5.16
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5.6.3 Freeform with discontinuous transition

The following test is made from a picture converted to depth using the

intensity value, see Figure 5.18. The same conclusion for the previous test

can be drawn. It must be noted that error is also present around high slope

areas, suggesting that the error is due to reliability of the galvanometers to

control the speed correctly during high accelerations. It is also interesting

that the profile can follow pattern that have a similar size or lower than the

size of the laser spot, see Figure 5.19 for the profile Zs1 .
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Figure 5.18 : The simulated depth (a), the experimental depth (b) and the
absolute error between the experimental and simulated results (c).
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Figure 5.19 : The depth from the simulation and the experiments for
different sections presented in the Figure 5.18
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5.6.4 Discussion on the source of errors

There are multiple sources of error associated with the experimental data

and modelling results. Experimental results show high frequency variation

compared to the modelling results, see Figure 5.17. The high frequency

variation might be due to the porosity of the material used in the tests

(graphite POCO AF-5) which is not taken into account in the model. This

also presents large positive errors that span several laser passes, see Figure

5.16(c), Figure 5.14(c) and Figure 5.18(c). It is likely that errors are due

to the redeposition of ablated material and dust over the already ablated

material. Finally, errors are also present in areas of large depth variation. In

this case, the error is due to failure of the galvanoscanner to follow the speed

profile accurately, leading to a delay in the depth jump.

5.7 Conclusion

This chapter has proposed and validated a new modelling framework for

pulsed laser ablation. The comprehensive and innovative research approach

used in this study allows the characterisation of the material removal (i.e.

prediction of the single/overlapped trenches) for the pulsed laser ablation

process, a crucial first step on the path to support the generation of free-form

surfaces. In this respect, the main contributions of the chapter are as follows:

• The model distinguishes itself by being able to be calibrated using

trenches thus, contrasts with previous modelling approaches use single

craters and the calibration is therefore prone to error for a few pulses,

due to variability in the crater shape and depth. Furthermore, the

interaction between consecutive pulses is implicitly taken into account

as the proposed model uses continuous trenches for its calibration. The

depth variation of the trenches with feed speed shows that consecutive
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pulses interact with each other and slightly enhance the ablation. This

work presents conclusive evidence of the model capability to predict

the shape of overlapped trenches and large scale machining of several

millimetres, with average error lower than 5% for a wide range of ma-

chining conditions. Finally, the use of trenches for the model calibration

leads to a simpler and more accurate calibration procedure compared

to previous approaches.

• The modelling framework also highlights interesting ablation mecha-

nisms. The evaluation of the spreading of the pulse (and a reduction

of the fluence) due to the slope of the surface is a common feature

added to pulse-by-pulse previously developed models. Experimental

results presented in this work show that the profile of all the trenches

has the same shape for the same power (they are related by a linear

function that is proportional to the amount of dwell time at the local

position). Therefore, the local slope does not seem to be important

(up to a certain angle) during the ablation process. A quick calculation

shows that for an angle higher than 40°, the spot spreading reduces the

amount of fluence received at the local surface by around 40%. If the

local angle during the ablation process is important, the trench should

present a clear variation in the profile, especially for the high power

and low speed. However this is not the case, therefore one can rule out

a simple direct relation between the local fluence and the amount of

ablated material for the tested materials. It must also be noted that the

amount of ablated material during the ablation throughout the trench is

not perfectly linear due to the interaction between pulses (χ 6= 0). The

amount of material ablated during the overlapping of trenches is linear

and the local angle (up to a certain angle) does not seem to affect the

amount of ablated material. It is possible to understand these results
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by taking into account that the evaporation of the material is a purely

superficial phenomenon. Therefore, an increase in the surface area

facilitates the evaporation of the material. The previous approaches

(pulse-by-pulse evaluation) failed to take into account the increased

surface area available for evaporation and underestimated the depth

after the ablation especially for steep slope.

• The model enables the generation of free-form features in a controlled

and repetitive manner without lengthy and costly experimental trials.

The model is computationally inexpensive, less than 10 seconds to

simulate the processing of one mm2 surface, and accurate, less than 5%

error on average; it can be used as a tool to pre-compute and optimise

the beam path and also as an online prediction tool in association with

inline measurement systems. It represents a significant development

in pulsed laser machining and allows the development of specialised

CAD/CAM software for the automatic planning and optimisation of

the beam path and processing parameters such as presented for abrasive

water-jet machining [262].

• This modelling framework is the first step towards a numerically in-

expensive generic model for pulsed laser ablation because it requires

only a limited number of experimental trials to calibrate the model for

any material and machining system. Furthermore, the modification of

the ablation rate by various correction factors driven by experimental

observations could further enhance the accuracy of the prediction and

introduce the variability of the machining process [176].

The findings reported in this chapter suggest that the framework can be

applied to a wide range of materials. Further experimental investigations

are needed to establish the capability of the model for a broader range of
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materials such as metals or ceramics.

5.7: Conclusion 189



Chapter 6

Experimental investigation of

crystalline structure due to phase

transition

This chapter provides a detailed description of the work carried out to

investigate the effect of the pulse laser on the crystalline structure of the

target. For this purpose, Raman spectroscopy and TEM analysis are used to

experimentally characterise the micro-structure of the diamond transformed

into graphite. Furthermore, a plasma model is developed to improve the

understanding of the melting process during the ablation with an extensive

discussion of the implications of the observed finding with the modelling results.

The chapter provides an understanding of the material response to the laser

informing the material damage induced by the graphitisation.
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6.1 Introduction

The study of pulsed laser ablation using single pulses would be able to provide

an insight into the graphitisation and the growth of the graphitic layer with

the possible melting or disorder generation of the material at the surface.

However, studies focussing on the crystalline structure of the carbon for a

wide range of laser fluence seem to be scarce, see Chapter 2.2. Although the

investigation of the micro-structure resulting from the ablation could provide

insights into the phase transition and the thermal balance during pulsed

laser ablation of diamond, it does not provide enough information about

the temporal behaviour of the material to the pulsed laser. The profound

understanding of the physical phenomena during nanosecond pulse laser

ablation is usually done using model due to the complex and intertwined

phenomena that are difficult to observe experimentally.

Thus, in this chapter micro-structure investigations are used to further

constrain the model that is used to simulate the behaviour of the material

to the thermal load. There are few studies modelling the graphitisation of

diamond. Previous studies of pulsed laser ablation of diamond demonstrate

that graphitisation is mainly a thermal process for nanosecond pulsed laser

ablation [28, 138]. The Chapter 4 presents the dynamics of the interfaces

(graphite and diamond and graphite and air) have been taken into account

in the pulsed laser ablation of boron doped diamond. This study provides

particular insight into the generation of the graphite layer for low fluence.

Although accurate for the position of the surface for a wide range of fluence,

the study does not provide experimental information about the position of the

interface between graphite and diamond. Furthermore, the plasma absorption

is not taken into account and the model has limitation to accurately predict

the position of the surface for fluence higher than 60 J.cm−2.
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The work described in this chapter is focused on the investigation of

the carbon crystalline structure resulting from the nanosecond ablation of

Boron doped diamond. To support the understanding of the observed phase

transformation phenomena, a model for the laser ablation of diamond is

developed considering the heating of the diamond, the graphitisation and the

vaporisation at the surface coupled with collisional-radiative model for the

plasma absorption of the laser pulse. The predictions are validated against the

position of the interfaces (vacuum/graphite, graphite/diamond and position

of the melting line) and the allotropes of carbon observed experimentally.

6.2 Theoretical Background

During the pulsed laser ablation, the target material is heated from a solid

at ambient temperature to a plasma with a temperature above the critical

temperature. Thus, the full system requires the consideration of the conser-

vation laws of mass, momentum and energy within one single computational

domain for all phases involved. This can be accomplished using an equa-

tion of state (EOS) to properly close the system of equations describing the

conservation laws which connects the thermodynamic state functions of the

material such as the pressure, temperature, density or internal energy. How-

ever, this method is often cumbersome due to a lack of appropriate equations

of state covering the whole range of density and temperature [23] occurring

during the ablation of material using nano-second pulsed laser ablation [30].

Therefore, the plume part (the vapour and plasma phase) of the model is

usually split from the solid and liquid phases due to the plasma ionisation

and non-local thermal equilibrium of the plasma. The plasma is commonly

considered to follow an ideal gas-like law EOS [23, 30, 125]. Typically, the

plasma is assumed to Boltzmann-Saha equilibrium and making use of the
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local thermodynamics equilibrium (LTE) hypothesis [30, 263] which assumes

that locally the species possesses the same temperature and the electronic

level distribution is dominated by the collisional processes. It has been shown

that this assumption does not properly describe the initial non-equilibrium

plasma formation, for which the radiative processes dominate [23, 120]. In

this study, the plasma processes are described using a Collisional-Radiative

model that considers the elemental interactions between electrons and heavy

species [23], thus the collision radiative model enables a detailed description

of the atomic processes. In this work, the solid (diamond and graphite) and

liquid (liquid carbon) phases are considered as a one dimensional target while

the plume is treated as an expanding cell using spatial average properties.

The solid and liquid phases are well approximated by a one dimensional

target since the thermal penetration depth is at least one order of magnitude

smaller than the laser spot size on the target [2]. The temporal evolution of

the target can be separated into distinct phases. The first phase is governed

by the heat diffusivity of the diamond and the heat input from the laser. The

diamond surface is heated over the graphitisation threshold, thus a thin layer

of graphite is transformed into graphite. This layer greatly reduces the light

absorption coefficient of the target, thus most of the energy is deposited at

the surface. The surface layer is quickly heated above the ablation threshold,

and evaporation starts once the vapour pressure reaches ambient pressure. A

plume of hot carbon gas is formed over the crater and, if the laser intensity

is large enough, the plume breaks down into an ionised plasma leading to the

total absorption of the laser energy into the plasma. The target is shielded

from the laser intensity, however the large energy input into the plasma

generates a highly ionised, hot plasma that emits energy back to the target

via radiative recombination and thermal Bremsstrahlung. Finally, the plasma

expands rapidly, losing the capability to emit via radiative recombination
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significantly. The target also cools down due to internal heat diffusivity.

6.2.1 Target modelling

The target is modelled as a two layer system based on the conservation of

mass an energy to take into account graphitisation during laser irradiation.

The subscripts d and g are respectively used for the material properties

belonging to the graphite and the diamond, while the position of the surface

is denoted as z1 and the position of the graphitisation front is denoted as z2.

The density jump at the graphitisation front interface induces an outward

displacement, or swelling, of the graphitised surface. Mass conservation at

the graphitisation front interface leads to:

vswelling =
ρg − ρd
ρg

∂t {z2} , (6.1)

where ρ is the density of the material and vfeed is the speed induced in the

graphite due to the density jump at the graphitisation front. The conservation

of energy in the graphite leads to, using (6.1),

ρgcpg (∂t {Tg} − vfeed∂z {Tg}) = ∂z {κg∂z {Tg}}+ Sg, (6.2)

with cp , κ, T, and S being specific heat of the material, thermal conductivity,

temperature and the heat source induced by the laser respectively. Similarly,

the energy conservation for the diamond leads to

ρdcpd∂t {Td} = ∂z {κd∂z {Td}}+ Sd. (6.3)

The system is closed by the Stefan condition at the graphitisation front,

κg∂z {Tg} |z=z2 − κd∂z {Td} |z=z2 = ∂t {z2} ρd∆hd−g, (6.4)
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with ∆hd−g the creation of enthalpy at the graphite-diamond interface

Tg|z=z2 − Td|z=z2 = 0 (6.5)

where Tinterface is the temperature at the interface between diamond and

graphite. The graphitisation front unlike phase change is not reversible with

a decrease of temperature thus it has been modified to account for this

fact and follows Arrhenius law [157], hence the speed of graphitisation front

cannot be negative and is calculated using the Arrhenius law,

∂t {z2} = Cr exp

[ −Ea
RTinterface

]
, (6.6)

with Cr and Ea being respectively a constant representing the rate of trans-

formation between graphite and diamond, and the activation energy for the

transition between diamond and graphite. The domain used to calculate the

solution is finite, and an adiabatic boundary condition is applied at the end

of the domain, xmax, so that

[κd∂z {Td}] |z=zmax = 0. (6.7)

The value of zmax is chosen such that the temperature at the end of the

simulation does not exceed 350 K. At the surface, the boundary condition is

controlled by evaporation coupled with the plasma model. Thus, the energy

balance at the irradiated surface is

κg∂z {Tg} |z=z1 = Fρe,surface, (6.8)

where Fρe,surface is the flux of energy at the interface between the target and

the plume. The relation between the rate of evaporation and vapour pressure
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is calculated using the Knudsen-Knight jump relation [90]. The position of

the interface between graphite and vacuum is determined by

∂t {z1} = vfeed + va. (6.9)

with va being the speed of ablation. Finally, a front fixing method [223] is

used to map the domain of solution to a field domain which is more convenient

for numerical solution.

with va being the speed of ablation.

The initial temperature for the target domain is 300 K. At the start of the

interaction, the laser deposits energy directly into the diamond, so only the

equations for the diamond is solved. Then, the surface temperature in the

diamond increases until the total thickness of the graphite layer calculated

using the Arrhenius law reaches the thickness of two graphene layer and a thin

layer of diamond is numerically transformed into graphite [2]. Afterwards, the

system of equations for the target is solved and the surface and graphitisation

front position evolve according to Equation (6.4) and Equation (6.9). The

material properties used to simulate the response of the target to the incoming

laser pulse are as in Chapter 4.

6.2.2 Boundary conditions at the surface and Knudsen

layer

The rapid evaporation or condensation during the nanosecond pulsed laser

ablation leads to a strong vapour motion that is not in equilibrium. The phase

transformation at the interface between the liquid and vapour depends on sur-

face temperature and ambient pressure. It occurs in a thin layer (a few mean

free paths) known as the Knudsen layer that describes the transition from a

thermal and kinetic non-equilibrium to a Maxwell-Boltzmann equilibrium
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distribution for the vapour particles. Thus, a consistent connection between

the target surface under high thermal load (vaporisation/condensation) and

the plume domain is ensured. The Knudsen layer can be described using a

variety of models [90–93]. The approach developed by Knight et al. [90] is

particularly adapted to the present study since it treats the evaporation in

an ambient environment. The Knudsen layer is treated as a gas dynamic

discontinuity [90] for which analytical expressions are derived that link the

temperature, pressure, density and velocity along both sides of the Knudsen

layer. The equations governing evaporation are:

TK
Tsurface

=

√1 +
πm2

4

(
γ − 1

γ + 1

)2

− m
√
π

2

γ − 1

γ + 1

2

(6.10)

with TK , m, γ being the temperature outside of the Knudsen layer, the

reduced Mach number and the ratio of specific heats (for a mono-atomic gas

γ = 5/3). The ratio of density at the Knudsen discontinuity is equal to,

ρK
ρS

=

√
Tsurface
TK

[
(m2 + 1/2) exp

[
m2
]

erfc [m]− m√
π

]
+

1

2

Tsurface
TK

[
1−m

√
π exp

[
m2
]

erfc [m]
]
.

(6.11)

The speed of the gas outside of the Knudsen layer is equal to

vk = m

√
2RTK
M

(6.12)

with R and M being the gas constant and the molar mass of the carbon gas

respectively. The pressure at the entrance of the Knudsen layer is equal to the

vapour pressure for carbon that is calculated using the Clausius-Clapeyron
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equation considering the gas to behave like an ideal gas,

∂Tsurface {Psurface} =
∆HvapPsurface

RT 2
surface

, (6.13)

with ∆Hvap and Psurface being the enthalpy of the vaporisation and the vapour

pressure respectively. The gas at the surface behaves like an ideal gas, thus

the density is equal to,

ρS =
PsurfaceM

RTsurface
(6.14)

with ρS and M being the density of the gas at the surface and the molar

mass of the gas respectively. It must be noted that the ratio of the pressure

at the surface and the pressure outside of the Knudsen layer governs the

process evaporation or condensation. The pressure at the surface Psurface is

equal to the vapour pressure at the surface temperature Tsurface whereas the

pressure outside the Knudsen layer, PK , is equal to the ambient pressure of

the plume. As soon as the vapour pressure exceeds the plume pressure PK ,

evaporation starts and the speed at the exit of the Knudsen layer follows the

following relation, [263, 264]:

MK =
1− [PK/Psurface]

−0.275

1− P−0.275
0

, (6.15)

with P0 being the sonic pressure ratio. The Knight relations are developed

for subsonic evaporation, thus the supersonic evaporation, for which no

disturbance propagates from the Knudsen to the gaseous phase, is not possible

[90, 265]. The Mach number is equal to

m =


√

γ
2
MK if MK < 1,√

γ
2

if MK ≥ 1,

(6.16)
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During the interaction between the laser and the plasma, the plume pressure

over the Knudsen layer can exceed the vapour pressure. As a result, the

evaporation of the target stops. Thus, it is possible to properly close the

system of equations (6.11)–(6.16) that governs the Knudsen discontinuity.

The recession velocity of the target due to the evaporation or condensation

is derived,

va =
vkρK
ρg

. (6.17)

The boundary conditions for the plume domain from Knudsen layer are

defined as:

Fρ,K = vkρK (6.18)

Fρe,K = (ρKeK + PK)vk (6.19)

with eK is the specific energy density, which is composed of the specific

kinetic and internal energy density [23],

eK =
1

2
v2
k + einternal. (6.20)

The vapour exiting the Knudsen layer is considered to be in local thermal

equilibrium with the distribution of the energy level density respecting the

Saha and Boltzmann distributions. The density in the j-th level and k-th

charge state is calculated via the Boltzmann equation,

[
Ck
j

]
=
[
Ck] gkj

Z−k (TK)
exp

[
−Ekj − Ek0

kBTK

]
, (6.21)

and the Saha equation,

[
Ck+1] [e−][

Ck] =
2

Λ3

Z−k+1 (TK)

Z−k (T )
exp

[
−Ek+1

0 − Ek0
kBTK

]
,

with Λ =

√
h2

2πme−kBTK

(6.22)
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with
[
Ck
j

]
,
[
Ck], [e−], gkj , Z−

k (T ), Ekj , kB, me− and kB being the density for

the j-th electronic level of the k-th charge state, the total density for the k-th

charge state, the electronic density, the statistic weight for the j-th electronic

level of the k-th charge state, the partition function of the k-th charge state,

the energy level for the j-th electronic level of the k-th charge state, the

Boltzmann constant, the electron mass and the Plank constant respectively.

The partition function is calculated using the following expression [124],

Z−k (T ) =

jmax∑
0

gkj exp

[
−Ekj − Ek0

kBTK

]
. (6.23)

with jmax being the energy level for the k-th charge state. Finally, the energy

flux exiting the target is the sum of the energy flux leaving the Knudsen layer

and the energy flux due to the jump of enthalpy during the vaporisation such

as,

Fρe,surface = Fρe,K + Fρ,K∆Hvap. (6.24)

The mass and energy transfer between the target and the plume is calculated

using equations (6.17)–(6.24), enforcing the mass and energy conservation

across the Knudsen layer.

6.2.3 Plasma formation: collisional-radiative model

The plume or plasma evolution above the Knudsen layer is usually described

assuming local thermal equilibrium and the Boltzmann-Saha distribution [31,

124]. The Boltzmann-Saha distribution holds true only for dense plasma for

which the collisional processes (electrons-heavies collisions) dominate over the

radiative processes (photo-ionisation, radiative recombination, spontaneous

emission) [266]. This assumption should be true inside the Knudsen layer,

however it has been shown that it does not hold during the initial plasma

formation that should be regarded as an highly non-equilibrium process [23,
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120, 267]. The Boltzmann-Saha equilibrium approach should therefore be

avoided in the description of the plasma during nanosecond pulsed laser

ablation and instead a collisional-radiative approach is employed [125]. The

collisional-radiative model consists of a set of equations describing the atomic

processes occurring between the electrons and the various electronic levels

in the atomic species. It allows the description of particular collisional and

radiative processes on the population of electrons and electronic levels. The

complete description of the electronic processes leads to an unpractical model

since the computational cost increases dramatically with the description

of the full set of electronic levels. Instead, the number of electronic levels

considered within each charge state has been reduced into a smaller amount

of fictitious electronic levels. The full set of electronic levels are retrieved from

the NIST database [268], then the levels are lumped together such that the

azimuthal quantum number and the total angular momentum are preserved

and the energy separation between the high level and the lowest level is not

more than 0.31 eV. It must be noted that the energy criteria correspond to

the kinetic energy for a gas at ≈ 3000 K thus the lumped level should be

close to equilibrium from the initial plasma formation [266]. The present

lumping procedure allows detailed description of the most populated levels

as well as considering the optically allowed and (parity or spin) forbidden

electronic excitation transitions [256]. It is then possible to observe the

low-lying metastable states which might delay the plasma breakdown [126].

The fictitious level parameters are calculated as for the equivalent weight

gkeq,j =

i=n(j)∑
i=0

gki , (6.25)
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the equivalent level energy,

Ekeq,j =

i=n(j)∑
i=0

gki E
k
i

gkeq,j
. (6.26)

Finally, the lumping procedure results in the ground charge state being

described using 54 levels and the first ionised state is described using 62 levels.

The numerical tests presented in this study and previously published works

[122, 125] show that the doubled ionised state is not excited to a significant

density thus only the ground level is used. The following collisional and

radiative processes are considered in this study: inverse Bremsstrahlung,

thermal Bremsstrahlung, electron impact excitation/de-excitation, electron

impact ionisation/three body recombination, photo-ionisation, spontaneous

emission and the radiative recombination, see Table 6.1.
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The effective cross section for the inverse Bremsstrahlung has been ob-

tained by Weyl et al. [269]. for the absorption of photons by neutral,

ςn,eIB =
[C0]

3 me−cπhν
3
laser

e2

4πε0

√
2(hνlaser + εe−)

me−

[(εe− + hνlaser) ςC(εe−) + εe−ςC(εe−) (εe− + hνlaser)] .

(6.27)

with me− , e, c, h, ε0, εme−
, ςC being the electron mass, the electron charge,

the speed of light, the Planck constant, the vacuum permittivity, the kinetic

energy of the electrons, and the cross section of elastic collision between

electrons and neutrals. The absorption of photon by ionised species is taken

from the work of Zel’dovich and Raizer [270],

ςn,iIB =
4

3

√
2π

3 me−kBTe−

∑k=kmax
k=1 Zk+

[
Ck]

hcν3
laser me−

G
e6

(4πε0)
3 . (6.28)

with Zk+ and G being the charge of the heavy species and the Gaunt factor,

which is equal to 1.2 for collision similar to this study, respectively. The cross

section for the electron impact ionisation and excitation (optically allowed

and forbidden) are calculated using the hydrogen-like cross section proposed

by Drawin [271] using the coefficient proposed by Morel et al. [272]. The

effective cross section for the electron impact ionisation and excitation of

optically allowed excitation is

ςEI = ςEE,oa = 4πa2
0

(
E
H
ion

∆E
k,{k,k+1}
i,j

)2

αi
ε̄ − 1

ε̄2
ln

(
5

4
βiε̄

)
. (6.29)

with a0, E
H
ion, ε̄, αi and βi being the Bohr radius, the energy of hydrogen

ionisation, the kinetic energy normalised to the energy for the transition

considered (ε̄ = ε̄/∆E
k,{k,l}
i,j ) and two parameters for the electronic ionisation

and electronic excitation cross section respectively. The two parameters, αi

and βi, are equal to 0.05 and 4 respectively in this model [266]. The effective
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cross section for the electron impact excitation of spin forbidden transition (

such that ∆J 6= 0, ±1 and J = 0→ J = 0) is

ςEE,sf = 4πa2
0α

S
e

ε̄2 − 1

ε̄5
(6.30)

with αSe = 0.05 chosen for the carbon plasma [266]. The effective cross section

for the electron impact excitation of parity forbidden transition (such that

∆l 6= ±1) is

ςEE,pf = 4πa2
0α

P
e

ε̄ − 1

ε̄2
, (6.31)

with αPe = 0.05 chosen for the carbon plasma [266]. The effective cross section

for the one photon ionisation is taken from the work of Zel’dovich and Raizer

[270],

ςPI =
64π4e10me−

3
√

3 (4πε0)
5
h6c

1

ν3
laser

(
∆Ek,k+1

i,j

)5/2

√
Ek+1

0

(
E
H
ion

)2 (6.32)

with E
H
ion and Ek+1

0 are the ionisation energy of the Hydrogen atom and the

ionisation energy of the specie at the current level of ionisation respectively.

The formula used to calculated the effective cross section from multi-photon

ionisation is given by Müsing et al. [273]. The cross section for the interaction

between k-photon and heavy species is

ςMPI =
ςPI

(k − 1)!νk−1
laser(hνlaser)

k
. (6.33)

The model only considers the single and two photo-absorption since the cross

sections for three and over photo-ionisation are too small for an IR pulse. The

effective loss due to thermal Bremsstrahlung is calculated using the formula

proposed by Morel et al. [125]. The energy loss by the electrons with the
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neutral carbon atoms via Bremsstrahlung is

Θn,e− (TB) =
16

3 me−hc3
¯ve−

e2

πε0

[
C0ςC(ε)kBT

2
e−

]
, (6.34)

The energy loss by the electrons with the ionised carbon species via Bremsstrahlung

is

Θi,e− (TB) =
32

3 me−hc3
¯ve−

(
π

3
√

3kB
G

e6

(4πε0)
3

k=kmax∑
k=1

Zk+
[
Ck] ) . (6.35)

The spontaneous emission oscillator strength has been obtained using the

NIST database for spectroscopic line [268]. It must be noted that the Stark-

broadening is not considered in this work [274] thus the plasma is considered

optically-thin. The effective transfer rate for the spontaneous emission is

equal to

Ξ[Ck
i ]

(SE) = −A∗Ck
i→Cl

j
with A∗Ck

i→Cl
j

=

m=nmax∑
m=0

gkm

n=nmax∑
n=0

A∗Ck
m→Ck

n

gkeq,i
. (6.36)

The radiative recombination cross section is calculated according to the

Kramer formula [270, 275] using the correction for the effective charge pro-

posed by Kim and Pratt [276, 277]. The cross section of the radiative

recombination

ςRR = πa2
0

32Z+
eff

4
Ry2

3
√

3n3 (137)3 (∆Ek,k+1
i,j + εe−)εe−

(6.37)

with Z+
eff and n being the effective charge and the principal quantum number

of the level in the which the electron recombines. The effective charge is

Z+
eff =

√
Z+
CZ

k+ (6.38)
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where Z+
C is the nuclear core charge and Zk+ is the ionic charge before the

electron capture [277]. The principal quantum number is estimated for species

for which the hydrogen-like approximation is not suitable,

n =

√
Ek+1

0

Ek+1
0 − Eki

. (6.39)

The rate equation for each fictitious level is trivial [23], thus the term arising

from the atomic processes is noted as Rk

[Ck
j ],j

for the j-th fictitious level on

the k-th charge state. The rate equation for the j-th fictitious level on the

k-th charge state is

∂t
{[

Ck
j

]}
= Rk

[C],j +
Fρ,Kx

k
j,K

mCzp
+
vp
zp

[
Ck
j

]
, (6.40)

with xkj,K , mC , vp and zp being the fraction of particle exiting the Knudsen

layer belonging to the j-th fictitious level and the k-th charge state, the

atomic mass of carbon atom, the plasma front speed and the plasma front

position respectively. The electron density is obtained by enforcing the charge

conservation principle. The rate equations for all the fictitious levels (6.40)

are closed by the energy balance for the heavy [23, 266],

∂t {Eheavy} =

j,k=max∑
j,k=0

Rk
ε,j +

3vk
2zp

kB

j,k=max∑
j,k=0

[
Ck
j,K

]
TK

− vp
zp
Eheavy + 3

me−

mC

[
e−
]
νelastic (Te− − Theavy) ,

(6.41)

and for the electrons

∂t {Ee−} = −
j,k=max∑
j,k=0

Rk
ε,j +

3vk
2zp

kB
[
e−
]
K
TK + SIB

+ SB +
vp
zp
Ee− − 3

me−

mC

[
e−
]
νelastic (Te− − Theavy) ,

(6.42)
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with Eheavy, Theavy, Ee− , [e−], Te− , me− , Rk
ε,j and νelastic being the energy

stored in the heavy, the energy stored in the electrons, the electron density,

the electron temperature, the electron mass, the reaction rate energy transfer

between the electrons and the heavies for all the considered atomic reactions,

see Table 6.1, and the elastic collisional frequency between the electrons

and the heavies. The elastic collision between the electrons and heavies is

composed of two terms; the term for the ionic collision is given by Huba

[278] and the term for the neutral collision is derived by Cooper and Martin

[279, 280]. The electrons and heavies behave like an ideal-gas [97, 123] so the

temperature of the electrons is calculated using,

Te− =
Ee−

3
2

[e−] kB
, (6.43)

The temperature of the heavies is obtained using the following equation [122],

Theavy =
Eheavy −

∑j,k=max
j,k=0 Ekj

[
Ck
j

]
3
2

[C] kB
, (6.44)

with nheavy being the total density of heavies in the plasma ([C] =
∑j,k=max

j,k=0

[
Ck
j

]
).

The plume pressure PK is given by

PK = kB
(
[C]Theavy +

[
e−
]
Te−
)

(6.45)

and the plume expands at sonic speed. Its velocity is calculated as,

vp =

√
γPK
ρp

(6.46)

with ρp being the plume density. The value of intensity absorbed by the
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plasma is given by

ip(t) =
i(t)(

1 +
αp,II i(t)

αp,I

)(
eαp,Izp +

αp,II i(t)

αp,I+αp,II i(t)

) (6.47)

where i(t), αp,I and αp,II are the intensity of the laser, the absorption co-

efficient for the linear absorption (inverse Bremsstrahlung and one photon

ionisation) and the absorption coefficient for the second order absorption

(two photon ionisation) respectively. The plasma absorption is inserted back

into for the source term of the target heat equations, Equations (6.2) and

(6.3).

The radiative recombination and thermal Bremsstrahlung have previously

shown to be of importance for the coupling of the plasma radiation to the

target during graphite nanosecond ablation with plasma breakdown [32].

A significant fraction of the plasma energy is re-emitted in the UV range

(around 950 Å) [32] during the main laser-plasma interaction and coupled

back to the irradiated target. Hence, a new source term is constructed and

added to the source term [32].

The source term Sg from the laser beam is

Sg = (1−Rl(Tsurface))αg,l exp [−αg,l(z − z1)] Ip(t)

+ (1−Rp(Tsurface))αg,p exp [−αg,p(z − z1)] iem(t)

(6.48)

with Rl, Rp, αg,l, αg,p, Tsurface and iem(t) being the reflectivity at the laser

wavelength, the reflectivity at 950 Å , absorption coefficient at the laser

wavelength for graphite, absorption at 950 Å for graphite, surface temperature,

and the re-emitted intensity from the plasma. The source term Sd is

Sd = (1−Rl(Tsurface))αd,l exp [−αd,l(z − z2)− αg,l(z2 − z1)] ip(t)

+ (1−Rp(Tsurface))αd,p exp [−αd,p(z − z2)− αg,p(z2 − z1)] iem(t)

(6.49)
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with αd,l and αd,p being absorption coefficient at the laser wavelength for

diamond and absorption at 950 Å for diamond. The re-emitted intensity

from the plasma is calculated using the effective cross section of the thermal

Bremsstrahlung and radiative recombination integrated over the plasma size.

The re-emitted intensity reaching the target is only half of the total intensity

re-emitted [264]. The initial values for the plume parameters are taken at

the Knudsen layer boundary values [23].

6.2.4 Numerical implementation

For the target domain, a front fixing method [223] is used to map the domain

of solution to a field domain which is more convenient for numerical solution.

The spatial discretisation of the target is achieved using Taylor series and

finite volume methods. Temporal discretisation is achieved using an implicit

Euler method. Furthermore, it must be noted that the stiffness of the system

of equation for the plasma requires a smaller time step, thus the time step

for the target and the plasma are different to enable computational efficiency.

The matrix representing the linearised system of equations are inverted

inverted using the library SUPERLU [224]. The simulation is carried out

until the evaporation stops and the position of the interfaces are stabilised.

6.3 Methodology

The methodology for the ablation experiments have been previously described

in detail elsewhere, see Chapter 4 and Chapter 3. In brief, a Boron doped

diamond samples of 0.5 thickness (produced by Element Six Ltd.) with

polished surfaces (Ra < 30 nm) are exposed to nanosecond pulses (using

SPI-G3 SM laser) with a fluence between 0.2 and 93.5 J.cm−2. The Gaussian

spot diameter is 38 µm using the 1/e2 definition. The micro-structure
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investigations are being carried out using XRD, Raman spectroscopy and

TEM analysis.

The surface topography after the ablation is investigated using a white

light interferometer (WLI) with a 247 nm pixel size and 1 nm accuracy for

the depth position. The position of the surface at the centre of the crater

is measured for 10 craters providing an improved accuracy of the surface

position. The position of the interface between the graphite and diamond is

measured using the same methodology. The graphitic layer is etched using a

hot acidic bath of K2Cr2O7:H2SO4 during 10 h at 100 °C [138]. This method

has been previously used to etch graphitic material without affecting the

diamond [138] thus enabling the measurement of thickness of the graphite

layer.

Thus, these experimental investigations provide detailed information

about the phase transformations and the positing of the interfaces occurring

during the laser-target interaction enabling validation of the proposed model.

6.4 Results and Discussion

6.4.1 XRD analysis

For polycrystalline boron doped diamond, the boron concentration is depen-

dent on the orientation of the crystal during its crystal growth; the (111)

crystallographic orientation has the highest boron uptake [281]. The variation

in boron concentration greatly affects the light absorption coefficient of this

doped diamond [229, 230], thus it affects the initial interaction between the

target and the laser. However, the experimental results have shown small

variation of the ablation threshold that is influenced by the variation of the

absorption coefficient, suggesting that the sample possesses a preferential

directional growth.
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Figure 6.1 : 2-θ XRD measurement of the boron doped diamond sample.

For this, the XRD patterns of the sample is measured to confirm the

preferential crystallographic direction of the Boron doped diamond, see Figure

6.1. The XRD spectrum is dominated by three intense peaks located at 2θ ∼

43.92°, 75.27°and 91.44°that are identified with the reflections from (111),

(220) and (311) plane of pure diamond respectively [282]. There is also XRD

peaks for boron carbide (B4C) at 61.8°, 65°, 67.5°, 70.8°, 71.8°and 73°from

the plane (303), (108), (220), (131), (223) and (321) respectively [283]. The

expected peak intensities for these three diamond peaks are presented in

Figure 6.1 for equal repartition of the plane from which a strong preferential

crystallographic direction (220) for the crystal growth can be observed, thus

confirming the mainly homogeneous boron doping of the sample.
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6.4.2 Raman Analysis

The intense heat from the laser pulse transforms the diamond into a variety of

carbon allotropes [28, 138] that can be identified using Raman spectroscopy.

This is a tool widely used to identify different carbon allotropes such as

graphite [190, 197], diamond [191, 284] and amorphous carbon [196, 203] as

well as the amount of disorder in a graphite based system [285]. Thus, it

is possible to understand the micro-structural and crystalline state of the

carbon allotrope at the surface for a range of conditions.

6.4.2.1 D-band and G-band at the centre of the crater for a range

of fluence

The Raman spectra at the centre of the crater over a range of fluences is

presented in Figure 6.2. The spectra present two distinct peaks around 1380

cm−1 and 1580 cm−1.

For low power, the Raman spectra presents two distinct peaks suggesting

that the graphite is composed of large clusters with limited disturbance of

the crystalline structure. This is confirmed by the low FWHM of the D-band

and G-band, see Figure 6.3. The increase of the FWHM for the D-band and

G-band from 10 J.cm−2 to 30 J.cm−2 suggests that the number of defects in

the crystal lattice increases with an increase of fluence [192].

With a further increase of fluence, the shapes of the Raman spectrum

change dramatically at around 30 J.cm−2, with a widening of the D-band

suggesting a substantial increase of the disorder in the graphite lattice. The

ratio of the integrated intensity of the G-band over the D-band is used to the

estimate the size of carbon cluster La interacting with the laser [190, 286]

(as discussed later relative to see Figure 6.10). The ratio of the maximum

intensity for the band-D and band-G suggests cluster size around 100 nm for

low power. Similarly, the ratio of the integral of the D-band and G-band,
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Figure 6.2 : Raman spectra at the centre of the crater for several fluences.
The dotted lines are to guide the eye.

see Figure 6.5, jumps from ∼0.6 to ∼ 1 further confirming the increase in

disorder with an increase of fluence. The sudden increases in disorder in the

graphite lattice at 30 J.cm−2 suggests that the material is following different

thermodynamic path than for a lower fluence. The loss of order could be due

to the sudden melting of the upper layer of the graphite previously shown to

occur during the interaction with the laser beam using controlled atmospheric

pressure [141]. These experiments show that the melting occurs only for

pressure above ∼ 107 Pa, which suggests the plume pressure over the crater

is this threshold. The peak position the D-band and G-band does not move

to lower shift whereas the FWHM widen suggesting that the surface layer

does not become fully amorphous, see Figure 6.4 [192].

Indeed, the widening of the G-band after 30 J.cm−2 suggests an increase
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Figure 6.3 : Band Dispersion for the characteristic band of carbon D and
G. The dotted lines are guide to the eye.

of the disorder with an increase in fluence, see Figure 6.3. However, the

peak position for the G-band is broadly constant over 30 J.cm−2 around

1580 cm−1, see Figure 6.4. This is in contradiction with the trajectories for

the amorphisation of graphite [192] that should present a decrease of the

position of the G-band accompanied by an increase in the FWHM. It suggests

that the Raman spectra is composed of spectra from several allotropes of

carbon. Previous experiments have shown that the ablation of diamond is

accompanied by the deposition of a thin layer (< 100 nm) of the amorphous

layer from the condensation of the carbon vapour [36, 37, 154]. The spectra

observed after 30 J.cm−2 are then a superposition of the spectra coming from

a solidified carbon layer that presents a nano-metric cluster size and a thin

layer of amorphous layer above it. It is possible to estimate the thickness
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Figure 6.4 : Position of the band D, G and the diamond peak. The dotted
lines are guide to the eye.

of the amorphous layer using the the absorption length of the incident light,

and this provides a maximum thickness of 145 nm (5× α−1
g,532 nm). Otherwise,

the nano-metric carbon under the amorphous layer will not be excited by

the incident light, hence could not be detectable in the Raman spectra. The

increase of FWHM for the G-band can be interpreted as an increase of the

thickness of the amorphous layer leading to a partial blockage of the light

from the Raman laser to the underlying layer. It must be noted that the

D-band should disappear for highly amorphous carbon [190] due to the lack

of carbon rings that generate the D-band scattering. Thus, the D-band is

only generated by the layer below the amorphous carbon and can be used

to understand changes in the crystalline structure of the base material. The

FWHM of the D-band is constant above 30 J.cm−2, suggesting that the
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Figure 6.5 : Ratio of the maximum of the peak intensity for the band D
and G in green and the Ratio of the integral of the peak intensity for the
band D and G in blue. The dotted lines are guide to the eye.

crystalline structure of the base material is similar in the range of fluence

investigated.

6.4.2.2 D-band and G-band variation along the profile of the

crater for a fluence of 93 J.cm−2

The Raman spectra along the radial profile of a crater for a fluence of 93

J.cm−2 is presented in Figure 6.7. The spectra present three distinct peaks

around 1335 cm−1, 1380 cm−1 and 1580 cm−1.

The position of the D-band and G-band and the width of the bands along

the profile of the crater are plotted in Figures 6.8 and Figure 6.9. At the

centre of the crater, the diamond band is not present, suggesting the existence
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of a thick layer of graphite obstructing the laser/Raman emission from the

based material. The Raman band for diamond is present for radial distance

larger than 20 µm, suggesting that the diamond is not damaged faraway from

the interaction area.

The FWHM and the peak position of the G-band are usually used to

describe the micro-structural disorder of the system [190, 196, 203]. At

the centre of the crater, the peak position of the G-band is equal to 1590

cm−1 and its FWHM is around 150 cm−1. In accordance with the previous

measurements of the Raman spectra as a function of the fluence, the spectra

Figure 6.6 : Image of the crater used to perform Raman spectroscopy. The
red line highlight the profile used for the Raman measurement.
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is composed of a nano-crystalline diamond with a thin layer of amorphous

carbon. Interestingly, the peak position of the G-band decreases to around

1550 cm−1 with a gradual increases of the FWHM 300 cm−1 with an increase

of the radial distance between 20 µm and 30 µm, see Figure 6.9 and Figure 6.8.

This is showing that the carbon crystalline structure is becoming amorphous

for a radial distance over 30 µm. The gradual increases in disorder in the

redeposited layer suggests that the diamond around the crater is slightly

hotter than the ambient temperature compared to the diamond over 30 µ.

The higher temperature of the diamond is due to the “wing” of the Gaussian

pulse and the high diffusivity of diamond around the crater. The appearance

of the diamond band at 20 µm radial distance shows that the thickness of the

graphite layer and amorphous carbon is becoming thinner with an increase

Figure 6.7 : Raman spectra along a radial profile of a crater for a fluence
of 93 J.cm−2 [190]. The dotted lines are to guide the eye.
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Figure 6.8 : Band Dispersion for the characteristic band of carbon D, G
and diamond peak. The dotted lines are guide to the eye.

of radial distance.

Furthermore, the increase influence of the amorphous layer on the Raman

spectra is coherent with the deposition/condensation of carbon vapour on

the crater and around the crater (> 30 µm) at which nano-crystalline carbon

features are not observed on the Raman spectra. The value of the ratio

outside the crater zone (∼ 0.3) indicates a 5–10 nm graphitic cluster size [190,

286], providing further evidence of the deposition of carbon vapour at the

surface of a cold and highly thermally conductive material such as diamond.

It must be noted that larger G-band is also associated with higher stress

levels in amorphous carbon, suggesting a highly stressed (∼ several GPa) thin

layer of carbon [201]. The investigation of the G-band shows that the surface

material at the centre of the crater is a highly disturbed nano-crystalline
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Figure 6.9 : Position of the band D, G and the diamond peak. The dotted
lines are guide to the eye.

graphite with a thin layer of amorphous carbon. This is coherent with the

melting and solidification of the graphite during nanosecond pulsed laser

ablation creating highly disturbed carbon. For radial distance over 30 µm,

the Raman spectra shows that the surface material is composed a thin (< 145

nm) layer of amorphous carbon on top of the undamaged diamond [190]. The

presence of the G-band far away from the interaction zone strongly suggests

that the amorphous carbon is not created by the direct interaction of the

laser with the target but has been transported and deposited by the carbon

vapour.

As previously noted, the D-band is not appearing for amorphous carbon,

thus the D-band characteristic can be used to investigate the micro-structural

state of the underlying nano-crystalline graphite. The FWHM of the D-band
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Figure 6.10 : Ratio of the maximum of the peak intensity for the band D
and G in green and the Ratio of the integral of the peak intensity for the
band D and G in blue. The dotted lines are guide to the eye.

is equal to 200 cm−1 at the centre and increases moderately to 250 cm−1

with an increase of the radial distance until reaching 24 µm. The moderate

increase is suggesting a relative increase of the disorder in the nano-crystalline

graphite. Then, the FWHM of the D-band decreases dramatically to around

50 cm−1. The D-band peak also presents a shift from 1400 cm−1 to 1350 cm−1.

This is in accordance with previously published results that have shown a

correlation between the G-band position and the the D-band position [201]

further confirming the increase in the disorder for the underlying carbon layer

and the amorphous characteristic of the carbon for radial distance over 30

µm. Furthermore, the ratio of the integral of the D-band over the G-band

shows that the D-band contribution on the Raman spectra is dramatically
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reduced compared to the G-band contribution, which is coherent with a

gradual disappearance of the carbon rings that generate the D-band due to

the amorphisation of the layer.

6.4.3 TEM analysis

The Raman analysis enables fast analysis of the micro-structure for a wide

range of conditions. It has shown that the surface of the crater is composed

of nano-crystalline graphite and amorphous carbon. It also suggests that the

graphite layer melts for a fluence above 30 J.cm−2. TEM analysis is used to

validate the findings of the Raman spectroscopy. Furthermore, TEM enables

access to the crystal orientation and understanding of the graphite structure

deeper inside the crater [36]. Two lamellae have been prepared to investigate

the crystalline structure of the crater for a fluence below and above 30 J.cm−2

to investigate the change in crystalline structure. The lamellae are extracted

along a radial profile from the centre of the crater. It must be noted that the

energy deposited along the profile follows a Gaussian distribution, thus the

energy deposited at the centre is higher than at the edge of the crater. The

graphite layer has been protected by a Platinum layer during the lamellae

preparation, thus the surface layer does not show amorphisation due to the

FIB milling.

6.4.3.1 Lamella for a crater exposed to 15 J.cm−2

The area of interest before the lamella extraction at 15 J.cm−2 is presented

in Figure 6.13.

The lamella for low fluence for a half of the crater is presented in Figure

6.12(a–f). The transition zone between the diamond and the graphite has

been highlighted using a blue dashed line and the position of the surface

before the ablation (referred to as horizon) is highlighted using a red dotted
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line, see Figure 6.12(a). The overview is accompanied by Figure 6.12(b–f)

that are HRTEM with the diffraction pattern presented in the inset for

each images providing a visual confirmation of the main direction of the

c-axis. The transition line between the graphite layer and the diamond

is not homogeneous along the crater. This suggests that the mechanism

that induces graphitisation at the surface of the diamond is initiated by the

nucleation of tiny graphite clusters at the surface assisted by the presence of

defects that reduces the graphitisation activation energy [159]. The graphite

clusters at the surface defects are used as centres for the propagation of the

graphite thus producing a bulging structure along the profile of the crater,

see the Figure 6.12(a&b). This effect is especially visible at the edge of

the crater for which the energy deposited is low. The propagation of the

graphitisation front is also assisted by pre-existing defects in the bulk such

as grain boundary that can be observed at the position of the HRTEM in

the Figure 6.12(f).

(a) (b)

Figure 6.11 : Overview of the area of interest used to extract the lamella
for 15 J.cm−2. The Figure (a) is an overview of the crater before the lamella
extraction at an angle of 55°. The red rectangle represents the area of interest
for the extraction. The Figure (b) shows the lamella position before lifting.
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At the centre of the crater, the surface is below the horizon, see Figure

6.12(a). The removal of material at the centre of the crater is likely due to the

direct sublimation of the graphite without melting. The Raman spectroscopy

of craters for fluence below 30 J.cm−2 supports this conclusion and shows

that the material is composed of nano-crystalline graphite which does not

indicate melting. This also suggests that the surface graphite is reaching a

temperature above 4000 K and that the pressure above the crater is below

107 Pa. At the edge of the crater, the surface is above the horizon, indicating

a swelling due to the graphitisation of the diamond, see Figure 6.12(b).

The HRTEM images reveal the formation of orientated graphite layers

always in contact with the intact diamond structures. The graphite structures

are characterised by a high degree of crystallinity and c-axis alignment toward

the surface that is induced by large temperature gradients are generated from

the surface towards the interior of the target. In addition, there is no epitaxial

(or coaxial) relation between the graphite orientation and the substrate since

the graphite c-axis orientation in the same bulge is not directed toward the

same direction, see Figure 6.12(b–e). The high degree of c-axis alignment

seems also directed toward the centre of each bulge, providing further evidence

that the thermal gradient drives the c-axis orientation. The influence of the

temperature gradient orientation on the c-axis orientation has been previously

observed during pulsed laser machining of trenches [154]. It has previously

been discussed that the main driver for the reorientation of the graphite

layer is following the same process used to make highly orientated pyrolytic

graphite [287]. However, the c-axis orientation in the present experiment is

also oriented toward the heat gradient and in the present experiments the

graphite is heated above 2000 K for no more than 1 µs that suggests that

the graphite directly grows with the observed orientation.

6.4: Results and Discussion 226



Chapter 6 Experimental investigation of crystalline structure due to phase transition

6.4.3.2 Lamella for a crater exposed to 66 J.cm−2

The lamella at high fluence is presented in Figure 6.14, 6.15 and 6.16. The

lamella presents three areas, (i) the centre of the crater (at the left side),

(ii) the edge of the crater area (in the middle of the lamella) and (iii) buck-

ling/redeposition area outside of the crater.

The first area presents a large recession of the surface due to the laser

induced vaporisation of graphite. The thickness of the graphite layer along

the profile of the crater is around 450 nm, see Figure 6.14. Interestingly,

the graphitisation front between the diamond and the graphite is sharp and

presents some variation in the depth of the graphitisation front similar to that

present in the TEM from the low fluence lamella showing that the initiation

mechanisms for the graphitisation are the same for fluence below and above

30 J.cm−2.

(a) (b)

Figure 6.13 : Overview of the area of interest used to extract the lamella
for 66 J.cm−1. The Figure (a) is an overview of the crater before the lamella
extraction at an angle of 0°. The red rectangle represents the area of interest
for the extraction. The Figure (b) shows the lamella position before lifting.
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(a)

(c)

(b)

(d) (e)

Figure 6.15 : Detailed view of the external part of the crater represented
by a green square on Figure 6.14.

The transition area shows a clear swelling with graphite above the horizon

(> 200 nm) suggesting that the transition area is largely not affected by

material vaporisation, see Figure 6.15. The fluence at the edge of the crater

is equivalent to the fluence at the graphitisation threshold, thus one might

expect to find similar crystalline structures to the TEM for low fluence.

However, the crystalline structure of graphite at the graphitisation interface

presents a complex pattern of corrugated graphite for which the c-axis of

the graphite layers do not show a preferential direction, see Figure 6.15(c-e).

The fringes present in the diamond phase along the interface, see Figure

6.15, indicates a strain of the bulk diamond due to constrained growth of

graphite and thermal process. The destruction of crystalline graphite and the

formation of nano-crystalline graphite should be a consequence of the strain-

induced defects, as reported in HPT results in disordering and amorphisation

of materials with covalent bounding [288]. The strain induced defects at the
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(a)

(b)

Figure 6.16 : Detailed view of the buckling area represented by a purple
square on Figure 6.14.

graphitisation interface suggests that there are two sources of disorder, i.e.

the melting at the surface and the strain related to amorphisation inside the

bulk of the graphite. Thus, the final crystalline structure alone is not a good

indicator of the thermodynamics path that the material undergoes during

the laser induced processes and care should be taken when interpreting such

results.

Finally, the area outside of the crater presents a thin (∼ 100 nm) and

homogeneous layer of redeposited material, see Figure6.16(a). It must be

noted that the layer is composed of highly amorphous carbon that correlates

well with the Raman spectroscopy measurement, see Figure 6.8 and 6.9.

Furthermore, the amorphous carbon thickness is also in agreement with

the maximum thickness expected from the absorption length at the Raman

excitation wavelength. Interestingly, the amorphous layer presents a buckling

around some of the craters in a circular pattern, see Figure 6.16(b). The

buckling of amorphous carbon films has already been observed for various de-

position techniques [289] and is usually associated with high stress and strain

in the film. The circular buckling occurring in these ablation experiments
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exhibits the presence of a radial stress originating from the radial variation

in the condensation of carbon on the diamond substrate. It must be noted

that the crack propagation occurs inside the amorphous carbon and not at

the interface between the diamond and amorphous carbon, see Figure 6.16,

showing that the fracture surface energy between diamond and amorphous

carbon is higher than the energy of crack propagation in carbon.

6.4.3.3 Key findings of the crystalline structure investigations

Finally, the Raman spectroscopy and the TEM analysis show that the level

of disorder in the graphite layer dramatically increases for fluence over 30

J.cm−2 suggesting graphite melting. The graphite melting is accompanied

with evaporation at the surface and re-deposition of carbon during the cooling

stage. The redeposited carbon is in amorphous states and its thickness is lower

than 145 nm justifying the assumption made in the model for the material

condensation. The layer of graphite is composed of a thin layer of amorphous

carbon (< 145 nm) with an underlying nano-crystalline layer. The underlying

graphite layer increases in disorder when the laser fluence increases. The

disorder increase could be due to the growth of the graphite from the bulk

diamond that generates high levels of strain leading to defects and refinement

of the graphite cluster at the graphitisation front. Furthermore, the crater

is surrounded by an highly stressed amorphous layer of carbon due to the

redeposition from the carbon vapour.

The developed model (see Section 6.2) was aimed to improve the under-

standing of the phenomena occurring during pulsed laser ablation of diamond.

The model is able to predict certain aspects of the experimental findings

such as the thickness of the graphite layer after the interaction, the amount

of material ablated, the position of the surface, the pressure of the carbon

vapour over the crater. Furthermore, the model for the temperature and the
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pressure over the crater are used to estimate if melting will occur during the

interaction between the laser and the target in correlation with the graphite

melting line in the P-T diagram [141].

6.4.4 Numerical prediction and discussion in relation

to the experimental results

Experimental and numerical studies of the graphitisation and plasma shielding

effects have been carried out for a range of fluence levels using a single pulse

with 30 ns FWHM pulse at 1064 nm. The heat deposited into the material

induces graphitisation, evaporation, and plasma breakdown. These effects

are studied using the model previously presented. The results from the

model are then discussed and compared to the results from the experimental

investigations.

The initial interaction between the laser and the target is dominated by

a large absorption length of several µm and high thermal diffusivity that

characterises the boron doped diamond. Hence, the temperature at the

surface of the target is slowly increasing until the heat deposited in the

material causes the target to decompose into graphite. The graphitisation

of the surface leads to a dramatic increase of the graphite layer thickness

due to the change in the absorption coefficient. The growth of the graphite

layer is assisted by the positive feedback loop in the energy deposited at the

surface, with an increase of the thickness of the graphitisation layer is further

increasing the amount of energy absorbed in the thin graphite layer leading

to a further increase in the graphitisation layer, see Figure 6.17.

The large increase in the graphite layer speed is counterbalanced by the

time necessary for the heat to transmit to the graphitisation front and the

speed induced by the swelling leading to a reduction in the graphitisation

speed. Similarly, the large increase in the heat deposited at the surface
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Figure 6.17 : The speed of the graphitisation front, the speed of ablation,
the speed of the surface position and the swelling speed due to the density
jump at the graphitisation front for a fluence of 63 J.cm−2.

induces the sublimation of the graphite at around 4000 K followed by a

melting at 4800 K. The vaporisation of the target leads to a large increase in

the pressure of the plume, see Figure 6.19. Then, the position of the interfaces

reaches a “steady” state for which the speed of surface position is equal to

the speed of the graphitisation front leading to a constant thickness for the

graphite layer. It must be noted that the interaction between the target and

the plume is crucial in the determination of the amount of material ablated,

the amount of energy absorbed by the plasma and the pressure over the

plasma. At the initial stage of the plume formation, the plume is characterised

by a low temperature for the heavy species (∼ 3000–4000 K) with a high

temperature for the electrons. The large difference of temperature is due to
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Figure 6.18 : The Boltzmann and Saha equilibrium parameters as a function
of the time for a fluence of 66 J.cm−2. The BLTE curves for the heavies
species are the minimum ratio of the Boltzmann equilibrium density over the
calculated density for all the electronic levels for each degree of ionisation.
The Saha curves are calculated using the ratio of the electrons’ density and
heavies’ density with the Saha equilibrium formula [126]. If the Boltzmann-
Saha equilibrium is verified the parameters should be equal to 1. If the
parameter is greater than 1 then the plasma has a recombination character,
while if the parameter is less than 1 the plasma has an ionising character.
The red dashed line is represent the breakdown of the plasma for which the
plasma reach the Boltzmann equilibrium.

the reduction in temperature predicted by the Knudsen-Knight formulation,

see Equation (6.12)–(6.46), with a small population (∼ 1017 m−3) of electrons

that is heated by the inverse Bremsstrahlung. The temperature of the heavy

species is not affected by the increase in the electrons’ temperature due to the

large difference in the population density (between 5-6 orders of magnitudes).

The local thermal equilibrium is not achieved until after the breakdown of the

plasma. The increase electron population and temperature is the dominant

driver for the breakdown of the plasma that occurs for electron temperature

around 10000 K. Interestingly, the electronic levels for the heavies do not
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Figure 6.19 : The thermodynamics process path for the surface of the
target for several fluences.

present a Boltzmann-Saha equilibrium at the initiation of the plume due to

the low amount of collisions with the electrons. The Boltzmann equilibrium

for the single ionised carbon is reached after the plasma breakdown marked by

the dashed line in the Figure 6.18. It must be noted that the neutral carbon

reaches Boltzmann equilibrium after the single ionised carbon, see Figure 6.18.

One might expect the neutral carbon to reach Boltzmann equilibrium level

first due to the lower energy separation between the electronic levels [126]

however the neutral carbon presents low lying levels that are not connected

by optically allowed transition to the ground level. This induces a delay in

the population levels that rely on the higher density level and the spin/parity

forbidden transition to be populated.

The Boltzmann and Saha equilibrium is usually used after the plasma
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breakdown [23, 120]. However in the present model, the Saha equilibrium

is not established during the duration of the laser pulse, see Figure 6.18.

The plasma never reaches the Saha-Boltzmann equilibrium although the

Boltzmann and the local temperature equilibrium between the heavy and

electrons is reached. The model predicts an electron density higher than the

Saha formula [126], see Figure 6.18. For nanosecond plasma during LIP, the

density of electrons measured is usually higher than the prediction from the

Saha formula [126] suggesting the present model is correctly predicting the

plasma evolution occurring during the initial stages of the plasma breakdown

and expansion. Usually, models that consider the interaction between a

target and nanosecond laser coupled with a collisional radiative model for the

plasma consider a relatively small number of fictitious electronic levels [23,

120]. These models have shown that the plasma reaches a Boltzmann-Saha

equilibrium after the breakdown that it is in contradiction with experimental

results [126] and the present study. This suggests previous studies might not

be described correctly the plasma evolution for the electronic levels density

if the number of fictitious electronic levels used in the model is too low.

Furthermore, electronic levels with different parities and spins for previous

model are mixed thus losing the description of the allowed and forbidden

transition that might also affect the final distribution of the density in the

plasma.

The increase of the temperature and density of the electrons is providing

a positive feedback loop for the amount of intensity absorbed by the plasma

[269]. The fast and dramatic absorption of energy from the laser generates a

large increase in the plasma pressure over the crater, Figure 6.19. The plasma

then reaches the maximum pressure and this is followed by an irreversible

expansion and decrease of pressure, temperature, density and absorption

coefficient. The Raman spectroscopy at the centre of the crater shows
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Figure 6.20 : Intensity for the laser intensity, the absorbed intensity,
the emitted intensity by the radiative recombination and the thermal
Bremsstrahlung and the intensity reaching the target at 66 J.cm−2.

that the crystalline structure of the graphite is altered for fluence over 30

J.cm−2. Interestingly, the plume pressure reaches 107 Pa over 30 J.cm−2

which corresponds to the experimental melting pressure for graphite [141]. It

must be noted that the temperature during the main interaction with the

laser pulse (between 50-300 ns) is above 5000 K. Hence, melting should not

occur for pressure below several 109 Pa [141]. However, the temperature

at the end of the pulse reduces dramatically until reaching the triple point

temperature (∼ 4800 K). Thus, melting does not occur during the heating

phase of the graphite layer but during the cooling phase for which the pressure

is above 107 Pa, see Figure 6.19. This confirms that the sudden crystalline

structure degradation is due to the melting and freezing of graphite during

6.4: Results and Discussion 237



Chapter 6 Experimental investigation of crystalline structure due to phase transition

10 20 30 40 50 60 70 80 90 100
Fluence [J.cm−2]

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
ep

th
[µ

m
]

Model
Experiments

101

0.0

0.5

1.0

1.5

2.0

Surface

Ablated
depth

Interface
Graphite/ Diamond

Figure 6.21 : Position of the interfaces for the model and the experiments
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the single pulsed ablation of diamond.

The fluences leading to the breakdown of the plasma are also characterised

by strong re-emission of UV light due to the radiative recombination of the

electrons with the ionised species, see Figure 6.20. The radiative recom-

bination is usually not taken into account for pulsed laser ablation model

considering the plasma absorption using a Collisional-Radiative model [23,

120, 125]. In this study, the inclusion of the radiative recombination into the

model leads to a reduction of the total amount of energy absorbed by the

plasma due to the reduction of the plasma temperature and by the re-emission

of energy toward the target. Numerical experiments have shown that the
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radiative recombination is essential to the correct prediction of the amount

of material removed. The removal of the radiative contribution in the plasma

evolution leads to a reduction of the amount of material ablated for higher

fluence due to the dramatic increase of energy absorbed after the breakdown.

It must be noted that the inclusion of the radiative recombination does not

significantly change the amount of energy absorbed from the laser pulse (at

the laser wavelength) by the plasma. Thus, this explains the good results

provided by previous models when tested only against the intensity measured

through the plasma at the laser wavelength [23, 120].

Finally, the positions of the interfaces predicted using the model are in

good agreement with the experiment results for the position of the graphi-

tisation front and the surface, see Figure 6.21. It must be noted that the

thickness of the graphite layer is almost constant over the range of fluence

tested. This is in accordance with the experimental results from the TEM

for which the thickness of the graphite layer is constant over the profile of

the crater. This confirms that the disorder present deep inside the graphite

layer is not due to the melting and recrystallisation, see Figure 6.15.

6.5 Conclusion

Theoretical and experimental results have been used to investigate the abla-

tion of boron doped diamond with nanosecond laser pluses. The simulation

shows that the plasma formed by the ablation of diamond is not in Boltzmann

and Saha equilibrium during the temporal length of the laser pulse. This

suggests that the lumping procedure for the fictitious electronic levels needs

to conserve the parity and spin of the electronic levels as well as grouping

electronic levels with an energy separation lower than the thermal energy of

the plasma during the initial formation. Furthermore, the simulation shows
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that the radiative recombination is essential to model the plasma evolution

and the amount of energy deposited in the target correctly. For a fluence

above 30 J.cm−2, numerical simulations show that the pressure of the plume

is above 107 Pa. This confirms that melting is the root cause of the change

in crystalline structure observed in the graphite layer after 30 J.cm−2. It

must be noted that the melting does not occur during the heating phase

of the target but during the cooling phase. The analysis of the graphite

layer after the laser ablation by Raman spectra and TEM analysis shows

a nano-crystalline graphite for low fluence. For fluence over 30 J.cm−2, an

thin layer (< 145 nm) of amorphous carbon is redeposited at the surface in

association with a large increase in disorder in the nano-crystalline graphite.

The simulation and the experimental results suggest that the graphite layer is

melting for fluence over 30 J.cm−2. The graphite nuclei are initiated on defect

at the surface although the initial position of the nuclei has an influence in

the final shape of the graphite layer, the Arrhenius law used in the model

correctly predicts the total thickness of the graphite layer suggesting that

graphitisation of diamond is thermally driven.
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Conclusion

The main goal of the work done in this thesis was to develop new mathematical

frameworks to predict the amount of material ablation and the damage done

during nanosecond laser pulse ablation. The main findings of this thesis

are that graphitisation is mainly a thermal process, radiative recombination

is not negligible during nanosecond pulsed laser ablation once the plasma

ignite, graphitisation melting due not occurs during nanosecond pulsed laser

ablation of diamond target for low fluence, and the influence of the power and

feed speed can be separated to the influence of the material characteristics

using a continuous framework. The literature review, see Chapter 2, presents

the current state-of-the-art in PLA machining with a particular attention to

the specific of diamond target. The development of pulsed laser ablation for

diamond workpieces is identified as a promising process for the development

of innovative geometry with minute details. However, it has been shown

that current approaches lack accurate estimations of the amount of material

removed as well as consistency in the understanding of the processes leading

to material ablation. Since, PLA cannot be easily observed due to the short

time and small space in which the phenomena occur, as well as the large

amount of noise produced during the ablation, the development of the models

has been focused on the prediction of the thermal damages caused by PLA

and the prediction of the resulting topography for large areas machined

by PLA. This aim has been pursued in this thesis by developing two new

modelling frameworks, validating them, and experimentally investigating
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the change in crystalline structure during PLA. First, a physical model in

which the mass conservation during the graphitisation of the diamond is

taken into account. This work focuses on validating the model approach for

two types of carbon allotropes with high sp3 bounds. Secondly, a simplified

model that uses the geometrical properties of the ablation rate to provide

accurate and fast predictions on the resulting topography change during PLA

machining. Finally, the physical model has been coupled with a collisional

radiative model to predict the evolution of the plume over the crater and

the shielding provided by the plasma. The change in crystalline structure

has been identified as graphitisation due to the thermal transformation and

melting during the cooling part of the ablation cycle. It has been proven

that both frameworks can predict the amount of ablated material accurately,

and the advantages and limitations of each model have previously been

discussed in Chapters 4 and 5. Furthermore, the development of the physical

model and the understanding of the thermal damage produced by PLA for

diamond target is presented in Chapter 6. These developments are therefore

a significant contribution to the field, since they address the fundamental

understanding of the processes as well as the practical limitation with regards

to use of PLA for machining. As a result, the modelling tools presented in

this work might enable the development of new practical applications for

diamond and related materials. A summary of the major contributions of

the thesis are given in the sections below.

7.1 Laser induced surface swelling of high con-

tent sp3 carbon allotrope

In previous work on the simulation of ablation of diamond and related

material, the graphitisation of diamond has been treated with a temperature
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threshold or by considering only the photo-graphitisation that is negligible for

laser in the VIS or IR. Furthermore, the dynamic positions of each interface

is not dynamically described, thus the large variation for thermo-optical

properties between graphite and diamond cannot be taken into account

during the interaction. The new modelling framework discussed in Chapter

4 regards the graphitisation of diamond as a dynamics system for which

the graphitisation induces a change in the thermo-optical properties and

a swelling of the surface. The new modelling framework allows consistent

simulation of the physical processes leading to the swelling of the surface

and the vaporisation of the target at the surface. Finally, the model is

tested on two carbon materials with high content of sp3 bounds. The main

contributions are summarised below:

• Previous studies rely on constant material properties, and the mod-

elling frameworks used consider the diamond to have similar properties

compared to the underlying high content sp3 bounds carbon allotropes.

The study presented in Chapter 4 considers the temperature dependent

material properties enabling accurate predictions of the target response

to the incoming laser.

• The dynamic position of the interfaces is consistently taken into account,

allowing investigations of the target response to the incoming laser.

Accurate simulation of the swelling induced by the graphitisation at

the surface is essential for correct prediction of the surface position and

the graphite layer thickness. Previous modelling approaches usually

convert the diamond material to graphite material without changing

the position of the interfaces. This means that the system does not

conserve the mass of the target during graphitisation. Therefore these

approaches overestimate the amount of material ablated at the surface
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by using the graphite density for the target evaporation without the

corresponding spatial swelling at the surface.

• The model presented in this study has shown good agreement with

experimental results from Boron doped diamond, validating the novel

approach. Agreement is particularly good for low fluence. This work

also shows that the thermal Arrhenius law for graphitisation provides

good agreement with experimental results showing that graphitisation

during nanosecond pulsed ablation is a thermally induced process.

• Finally, the model is used to predict the positions of the interfaces

for tetrahedral amorphous carbon. The model accurately predicts the

surface position. Furthermore, the framework is used to estimate the

activation energy and rate of graphitisation for ta-C and provides values

with an improved accuracy compared to the previously published values.

7.2 Simplified modelling of PLA using contin-

uous trench

In contrast with the physical model, a simplified approach has been developed

to enable fast prediction of PLA machining footprints. This is accomplished

by focusing on the geometry of the problem and modelling the PLA as an

ablation profile which accounts for detailed physical aspects of the system. As

discussed in Chapter 2, previous works have focused on modelling the footprint

for a single pulse, however they have shown to provide poor agreement with

experimental results. A new framework has been developed to accurately

predict the topography changes due to laser machining by using trenches

to calibrate the model. The model has been developed for generic PLA

machining and so does not require material properties, highlighting the
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potential of this approach to be extended to a wide range of materials. The

model is then calibrated for three targets, a graphite target POCO AF-5, a

metal-matrix polycrystalline diamond, and a mechanical CVD diamond. The

main developments provided from the study are given below:

• Previous modelling approaches focused on estimating the footprint for

a single pulse. These methods are mostly based on the instantaneous

removal of material from the target using geometrical methods. The

interaction between multiple pulses and trenches is not directly taken

into account in the modelling framework, leading to poor agreement

with experimental results. The novel methodology presented in this

work provides a framework for which the interaction between multiple

consecutive pulses is implicatively taken into account during the cali-

bration process. This improvement not only provides more accurate

predictions, but also enables the development of novel research lines

for PLA machining since the model could be improved to account for a

wider number of phenomena occurring during PLA.

• In Chapter 5, the modelling framework is tested against a wide variety of

quantifiable tests such as the prediction of the cross-section of trenches

for a single trench at constant speed, the depth at the centre of a trench

machined using a variable feed speed, and the overlapping of trenches.

The model shows good agreement with experimental results and gives

on average error lower than 5% for the amount of material removed for

a single trench and overlapped trenches at constant speed. The model

shows excellent agreement for the depth at the centre of the trench

using a variable feed speed with the error between the model and the

experimental data lower than the experimental variance of the depth

observed.
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• The modelling framework also enables understanding of the influence

of the surface slope on the amount of ablated material. Previous

modelling frameworks have used the surface slope to empirically correct

the amount of material ablated at the surface in correlation with the

reduction of local fluence on the surface due to the slope. Experimental

results have shown that this is not the case. The use of the local fluence

to calculate the amount of ablated material is due to a misunderstanding

of the ablation process impediment at the surface. The reduction of

heat deposited at the surface is partially compensated by an increase in

surface area which occurs until the reflectivity at the surface increases

due to the incidence angle of the light. The maximum angle for which a

constant ablation has been observed for graphite POCO AF-5 is around

70° which is close to Brewster’s angle for graphite (θB = 75.365 °at

1061 nm). This suggests that the increase of reflectivity with angle of

incidence is the main mechanism for the reduction of the ablation with

non-flat surface during the machining of trenches.

• One of the main challenges in developing a simplified model which uses

empirical results for its calibration is the development of a methodology

which provides accurate model parameters. The calibration method

associated with the model detailed in Chapter 5 enables accurate calcu-

lation of the model parameters from a reduced amount of experimental

trials. This is a major advantage with regards to wide acceptance of the

model for a variety of experimental conditions which would otherwise

hinder usability of the model in a real-world environment.

• The study presented in Chapter 5 shows that the model accurately

predicts the topography change for a large area machined using PLA,

providing further support for the development of a simplified model
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using trenches as a basis for calibration. It must be noted that the

tests enable development of a CAD/CAM system which will lead to

automation of the tool-path strategy creation for PLA. This will then

allow the use of new optimisation methods for PLA machining and the

wider use of PLA machining in industries in the same way traditional

machining methods (milling, drilling, cutting) are currently used. The

validation of a model using trenches-based calibration is therefore a

major finding resulting from this work.

7.3 Investigation of crystalline structure due to

phase transition

As explained previously in Chapter 6, a new experimental results are presented

about the influence of the fluence on the crystalline structure of the target

material after the interaction between laser and diamond. This is performed by

comparing the PLA specimens for different fluences using Raman spectroscopy

and TEM analysis. Experimental results, presented in Chapter 6, illustrate

the change in crystalline structure in the graphitised layer with the change

of thermodynamic process path leading to a melting of graphite and strain-

induced amorphisation at the graphitisation front. Since the experimental

results highlight the importance of the pressure applied by the plasma over

the crater, the model presented in Chapter 4 is updated to consider the

coupled evolution of the target and the carbon plume over the crater. The

main contributions of this work are discussed below:

• The aim of this thesis was to develop mathematical frameworks for ac-

curate prediction of PLA surface topography changes and laser induced

damages on the target for a wide range of experimental conditions (laser

fluence, laser pulse temporal profile, laser wavelength, high sp3 bounds
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carbon allotrope type, etc.). In Chapter 4, a new modelling tool has

been presented for the surface graphitisation of diamond during pulsed

laser ablation of carbon allotrope with high content sp3 bounds. The

results show that the activation energy for two different types of high

content sp3 bounds carbon target are distinct (3.15 eV for ta-C and

11.0 eV for diamond) suggesting different graphitisation mechanisms.

Study of the crystalline structure after the laser-target interaction is a

new way to study the fast thermal graphitisation for high content sp3

bounds, since it enables the description of the thermodynamics process

path that the target is going through.

• The use of advanced material characterisation has enable insight into

the phenomena occurring during PLA. The use of Raman spectroscopy

has resulting in the observation of the graphite melting for an increase of

fluence linked to the pressure over the crater. This is the first time that

such study has been documented linking directly the thermodynamics

process path to the resulting micro-structure in diamond and related

material. Moreover, the formation of an amorphous layer from the

deposition of the carbon vapour at the surface has also been observed at

the centre of the crater as well as outside of the area directly affected by

the laser. Furthermore, Raman spectroscopy have shown that there is

an increase in the disorder of the graphite lattice for higher fluence. This

is likely due to an increase in strain during the growth of the graphite

layer from the diamond, which is due to the mechanical constraint of

the expanding graphite and the thermal strain induced during ablation.

• TEM analysis has shown that the graphite lattice c-axis for low fluence

is oriented toward the surface, suggesting that the temperature gradient

is the main driver for crystal orientation. The short time of interaction
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between the laser and diamond (< 100 ns) indicates that the graphite

directly grows with the c-axis orientated toward the temperature gradi-

ent. Investigation of the crystalline structure for high fluence suggest

high strain at the interfaces leading to strain-induced amorphisation at

the graphitisation front. It also shows that redeposited carbon at the

surface is a highly strained amorphous layer leading to buckling of the

thin-layer around the crater. It must be noted that the TEM analysis

corroborates with the Raman spectroscopy interpretations.

• Modelling results have shown for the first time that the particular

melting curve of graphite in the P-T diagrams leads to graphite melting

at the cooling stage of the laser ablation. The material therefore

reaches a metastable state after crossing the sublimation line, leading to

volumetric ablation of the crystal. Numerical experiments have shown

that the ablation of diamond, and by extension of graphite cannot

be simulated using a traditional description of evaporation without

considering influence of the plasma pressure on the thermodynamic

process path.

• Previous models that coupled a CR model and heat equations mostly

used a relatively small number of fictitious levels. This leads to in-

consistent result compared to the literature on Laser Induced Plasma

(LIP). Modelling of the carbon plume evolution into a fully ionised

plasma requires the consideration of a reasonable number of fictitious

electronic levels. Furthermore, the lumping procedure must conserve

the azimuthal quantum number and the total angular momentum to en-

able accurate description of the density of the fictitious electronic levels.

Numerical investigations have shown that evolution of the plasma from

the initial breakdown cannot be done using the equilibrium relations of
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Saha-Boltzmann for PLA. The results presented in Chapter 6 shows

that the plasma reaches a Boltzmann equilibrium for a short instant at

the peak of pressure and temperature and the Saha equilibrium is never

reached during the simulation. The simulation leads to a plasma with

an ionising character that is in accordance with experimental results of

LIP.

7.4 Future works

The significant contribution of this work to the understanding of PLA opens

new opportunities for further research. The limitations and drawbacks of the

current approaches will drive further development of improved models that

will enhance the current understanding and capability of PLA to manufacture

complex 3D parts.

• The development of the 1D finite volume methods can be improved

significantly by introducing an EOS for the carbon. Thus, it is enabling

future work to provide an improved accuracy for the prediction of the

crystalline structure as well as the validation of the state of the carbon

during high temperature and high pressure state.

• The validation and integration of stability criteria for liquid metastable

phase near the vaporisation curve is already available for coupled

plasma-target model for PLA. However, the current work shows the

need for a stability criteria in the case of metastable crystal phase near

the sublimation curve for PLA of graphite. There is currently, to the

knowledge of the author, no stability criteria for metastable crystal

near the sublimation curve that have been developed. The ablation of

graphite presents an interesting case for which the sublimation of the

crystal and the metastability of the crystal phase during the leading
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part of the pulse is likely to occurs for nanosecond pulses. Thus,

it is providing an experimental validation for an stability criteria of

metastable crystal near the sublimation curve.

• The study of the interaction of multiple pulses with diamond target

can accelerate understanding of the final thermal damage to the piece

during PLA as well as understanding of the formation of highly ori-

ented graphite during the machining of trenches. Study of multiple

interactions should be done using a 2D or 3D framework enabling

understanding of the amount of material removed during the machining

of trenches and the variation of material properties produced by the

crystalline structure change.

• The novel simplified model, which can predict the change of topogra-

phy during PLA machining accurately and at low computational cost,

could be extended to other range of materials such as ceramic and

metal. Consideration of new materials would be challenging due to the

displacement of melted material that might be complex to account for

in a simplified manner.

• The final aim for the development of a simplified model is its integration

into a CAD/CAM package, thus enabling prediction of the topography

change for full 3D workpieces. Furthermore, the simplified model can be

used for numerical optimisation of the tool-path, however further works

need to be carried out to develop a complete optimisation routine.

• Experimental and numerical results have shown that accurate simulation

of the cooling part of the pulse is essential in the description of the

crystalline structure. Improvement of the plasma description using the

conservation of mass and momentum with a 1D framework will provide

further understanding of the plasma evolution and interaction with the
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target. Shadowgraphy and measurement of the intensity absorbed by

the plasma should provide further constraints on the model, enabling

deeper understanding of the material properties and plasma interaction.
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Appendix A

Example of the RS274 GCode

used for the control of the

Aerotech system

A.1 G-code for control of the set-up

Listing A.1: An example of the RS274 G-Code/AeroBasic used for the control

of the Aerotech system.

1

2 DVAR $hFi l e

3

4 #inc lude " De f i n i t i o n s . pgm"

5

6 $ComPort=4 // COM used f o r l a s e r c on t r o l

7

8 RAMP MODE RATE

9 RAMP RATE 1000000

10 RAMP TYPE SCURVE

11

12 WAIT MODEL AUTO

13

14 #de f i n e LASER_ON GALVO LASEROVERRIDE C ON

15 #de f i n e LASER_OFF GALVO LASEROVERRIDE C OFF

16

17 GALVO LASERMODE C 4
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18

19 LASER_OFF

20

21 VELOCITY ON // Continuous con t r o l o f the speed

22 LOOKAHEAD FAST // Fast lookahead f o r optimum con t r o l

23 ABSOLUTE // Absolute coord inate f o r cont inuous c on t r o l

24

25 $STRGLOB0 = "SH 100" // Set power−amp l i f i e r Simmer Current

26 CALL s e r i a l w r i t e

27 $STRGLOB0 = "SW 0" // Set Waveforms number

28 CALL s e r i a l w r i t e

29 $STRGLOB0 = "SR 35000" // Set Pulse Repet i t i on Frequency

30 CALL s e r i a l w r i t e

31 $STRGLOB0 = "SI 950" // Set power−amp l i f i e r Act ive State

32 CALL s e r i a l w r i t e

33

34 G1 X0 . Y0 . A0 . Z11 .18 F0 . 5 // Po s i t i on i ng o f the sample

35 G1 C−1. F10 // Po s i t i on i ng o f the Axis C

36 DWELL 1 . // Pause to s t a b i l i s e the Axis C

37 SCOPETRIG // Turn on the Scope

38

39 // Star t o f the cont inuous move

40 G41 C−1. F100 .

41 G41 C0.000 F100 .

42 LASER_ON // Star t l a s e r

43 G41 C0 . 2 F100 .

44 G41 C0 . 4 F200 .

45 G41 C0 . 7 F400 .

46 G41 C1 . F400 .

47 LASER_OFF // End l a s e r

48 G41 C1 . 5 F300 .

49 // End o f the cont inuous move

50 DWELL 0.03

51 SCOPETRIG STOP // Turn o f f the Scope
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52 G1 C0 . // Reset the po s i t i o n o f the Axis C

53

54 $STRGLOB0 = "SH 45" // Turn down the Simmer Current

55 CALL s e r i a l w r i t e

56

57 end program // End o f the main program
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Appendix B

Additional information for

electron microscopy

B.1 SEM investigation for surface characteri-

sation

The BSE carry a considerable amount of energy. The electric field or gas of

the chamber has little influence on the direction of the electrons in the vacuum

therefore they will have a straight path from the surface into the detector. To

maximise the signal/noise ratio the BSE detector is placed close to the sample

and in most designs it is placed just above the sample. The emission of the

BSE is strongly influenced by the angle of the beam to the surface. In Figure

3.10(a–b), the angular dependency of the backscattered emission is plotted for

two cases. The topography contrast is strong for BSE signal, a relative change

of angle dramatically reduces the amount of electrons reaching the detector.

Furthermore the BSE move in a straight path toward the detector leading to a

strong shadowing, see Figure 3.10(c). The BSE signal is highly dependent on

the topography of the surface and topographical information can be extracted.

However, the accuracy of the topography contrast is counterbalanced by the

penetration depth of the PE. In effect, the PE are tightly focused to a

spot size around 2–20 nm [9] but due to multiple scattering the volume of

interaction is rather large, see Table B.1 and Figure 3.10. Therefore, the

BSE signal is not useful for topographical information. Nevertheless, the
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Table B.1: The penetration depth of the primary electron for some chemical
elements at two acceleration voltages.

Acceleration Voltage [kV]
5 30

C (6) 0.33 5.27

Al (13) 0.12 1.95

Cu (29) 0.04 0.59

E
le
m
en
t
(Z
)

Ag (47) 0.03 0.5 P
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h
[µ
m
]

Penetration depth [µm]

BSE signal is highly dependent on the atomic number of the element, see

Figure B.1, and can be used to differentiate between phases with different

elemental compositions. It must be noted that the signal is entangled with

the topography contrast, complicating the interpretion of the signal in the

case of a rough surface. For polycrystalline material with a specific lattice

orientation, a change in contrast can be observed by sample tilting. This

is due to the specific arrangement of the atoms in the lattice and different

grains can be separated using this phenomenon. In general, BSE signals are

useful to image the chemical composition for flat surfaces but are not used

to extract topographical information of the surface.

The SE signal is usually used to extract information about the topography.

It has many advantages compared to the BSE signal, (i) the proportion of SE

is important that facilitate a high signal/noise ratio, see Figure 3.9, (ii) the

SE arise from a thin layer of material at the surface of the sample, the signal

generation is closely located near the impact of the PE, (iii) the shadowing

effect is low because the electrons are attracted by the bias voltage to the

detector and do not follow a straight path to the detector, (iv) the yield
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Figure B.1 : The dependency on the atomic number of the yield for BSE
and SE.

Figure B.2 : The SE image from a Si PLA crater. The edges of the crater
are darkened due to oxidation of the silicon occurring during the heating
process.

is relatively constant for atomic number over twenty. The topographical

information is extracted with the signal dependency of the angle of the surface

in relation to the PE beam. The higher the angle, the larger the surface of

interaction and the higher the emission of SE. The topography can therefore

be deduced from this information. However, the SE signal is not free of
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defects. The main SE signal is produced by the interaction of the PE with the

sample but it is also likely that the BSE interact with the surface in the same

manner as the PE. The BSE are not scattered in the vacuum chamber and

thus can travel long distances whilst conserving their energy. The BSE finish

their path towards one of the elements in the chamber, creating SE signals

from all over the chamber that are attracted to the detector. This creates a

background signal that reduces the signal/noise ratio and deteriorates the

signal quality. The atomic dependency is negligible for atomic number higher

than twenty but the yield is variable for elements with a small atomic number

(such as carbon, oxygen or silicon). Furthermore, oxide and impurity lead to

strong contrast on the surface (usually appear dark in SE images), see Figure

B.2. Moreover, the signal is also dependent on the density of the sample. It

is possible to identify the diamond and graphite phase with accuracy due to

the change in material properties that changes the yield of SE, see Figure B.5.

The edge effect can be problematic for accurate interpretation of the image to

extract the topographical information. The beam of PE hits the sample next

to the “cliff” because the volume of interaction can be large compared to the

radius of curvature of the surface, the SE produced in the volume can escape

from the side of the wall and the top. This artificially increases the surface

available for the emission of low energy electrons and increases the signal

received by the detector. In Figure B.3, the SE signal and its distortion are

presented for a typical surface. The simple description of the signal strength

presented above need to be commented. The signal is also affected by a

shading effect due to the position of the SE detector. If the surface is “hidden”

behind another material the signal coming from it will be reduced. Therefore

a dip of the signal can be observed after stepped features and this could

cause misinterpretation of the surface topography. Furthermore, more SE

are excited near edges by the BSE leaving the side wall and BSE can also
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Figure B.3 : The SE signal corrected for the surface tilt contrast, shadowing
contrast and the SE diffusion contrast [9].

Figure B.4 : The imaging of the SE signal for different acceleration voltages
[9].
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excite SE when they hit the sample again, see Figure B.3. The SE signal

increasing at the edge can be reduced by choosing the right acceleration

voltage. In effect, the volume of interaction is greatly dependent on the

kinetic energy of the PE, see Table B.1. The reduction of the acceleration

voltage can greatly reduce the edge effect and facilitate image interpretation

of the topography, see Figure B.4. The image for 1 kV acceleration voltage is

clear and the topography contrast can be interpreted accurately. There is

little edge effect on the image, only the shadowing contrast can be observed.

For 5 kV, the edge are bright and the surface topography is occulted by the

brightness of the edge. For higher voltage the edge effect is clearly visible,

this is due to the high BSE coefficient of the material imaged. For 30 kV, the

topographical information is lost and cannot be interpreted accurately. The

acceleration voltage is not neutral on the imaging of the sample topography

and must be taken into account for interpretation of the image. Finally,

the SE signal is mostly used to extract topographical information about the

surface but caution must be taken if the material is not homogeneous or if a

high acceleration is used.

The last diagnostic commonly used with SEM is the analysis of the X-Ray

signal produced during inelastic collisions. The transition of an electron of

(a) (b)

Figure B.5 : The imaging of the SE signal for a single ablation crater on
boron doped diamond for a fluence of 20 J.cm−2 at an angle of -10° (a) and
15°(b).

B.1: SEM investigation for surface characterisation 261



Chapter B Additional information for electron microscopy

the upper layer to a lower layer of the electron shell produces characteristic

energetic X-Ray photons, it is therefore possible to image the qualitative

elemental distribution of the sample by measuring the energy distribution in

the wavelength space. The volume of interaction is approximately twice the

volume for BSE, see Figure 3.9(b). The spatial accuracy of the method is low

and is dependent on the acceleration voltage. Furthermore, the cross sections

for inelastic collisions are highly dependent on the electron kinetic energy. It

is therefore necessary to reach a certain energy before the X-Ray generation is

sufficient to be measured by the detector, see Figure B.6. The deconvolution

of the peak is done using specialist software. Knowing the peak intensity

for pure material, the relative chemical composition can be extracted. The

creation of artefacts (doubling energy or re-emission of an X-Ray photon

by the detector) generates secondary peaks that worsen the deconvolution

of the peak. The technique is reliable but sensitive to impurities on the

surface due to the dangling links that attach oxygen or carbon atoms from

the atmosphere. Usually, oxygen is neglected in the relative composition of

the material. It is also possible to extract information about the subsurface

composition of the sample. The volume change with the increase of kinetic

energy can be used to extract information about the subsurface chemical

composition, however quantitative interpretation of the data is complex and

only gives qualitative information about the sample composition.

Finally, the SEM and associate diagnostics offer a fast and reliable way

to investigate the surface topography, composition and microstructure, but

the signal measurement system and related disadvantages need to be taken

into account to correctly interpret the image of the signal. The information

presented in this section has shown that signal interpretation can be more

complicated and errors can arise from a number of factors that bias the

results if not taken into account.
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Figure B.6 : The spectral distribution of the X-Ray for Molybdenum for
several acceleration voltages. The Kα and Kβ are only distinct from the
background (due to the Bremsstrahlung radiation) at 25 kV.
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