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Abstract 

Biofouling of marine surfaces is an age-old problem that affects natural and 
man-made surfaces exposed to the aquatic environment. The tenacious attachment of 
seaweed and invertebrates to man-made surfaces, notably on ship hulls, has incurred 
undesirable economic losses. The initial stage of the biofouling process has been 
attributed to the attachment of marine bacteria and their subsequent formation of 
biofilm which attract the settlement of larger sessile organisms including barnacles 
and seaweed. 

Silver nanostructured materials have a well-documented history as 
antimicrobial agents against pathogenic bacteria due to their ability to penetrate cell 
walls and interfere with crucial cellular processes. However, there is a surprising lack 
of information on their activity against marine biofilm bacteria that have critical roles 
in the initiation of marine fouling processes. This PhD project explores the antifouling 
properties of novel silver nanocomposite materials as potent antifouling agents against 
targeted organisms present in marine environments.  

The study consists of the syntheses of novel silver nanocomposite materials 
using various templates/matrices such as ion-exchange polymeric microspheres, 
zeolites, TiO2 nanotubes and graphene nanosheets. These materials were 
characterized through various instrumentation techniques including scanning electron 
microscopy (SEM), energy dispersive X-ray spectrometry (EDX), X-ray powder 
diffraction (XRD), UV-visible (UV-vis) spectrophotometry, transmission electron 
microscopy (TEM), accelerated surface area porosimetry (ASAP), thermal 
gravimetric analysis (TGA), and Raman spectroscopy to elucidate their physical 
properties. Their antifouling effects were evaluated on Halomonas pacifica, a model 
marine microfouling bacterium, through an established static biofilm assay. In 
addition, the biological effects of these silver nanocomposites were also studied on 
marine microalgae Dunaliella tertiolecta and Isochrysis sp. 

Silver-polymer nanocomposite (Ag-PNC) microspheres were formed through 
a rapid chemical synthesis procedure at room temperature via the reduction of silver 
nitrate by sodium borohydride. The introduction of Ag nanoparticles (AgNPs) 
enhanced the thermal stability of the Dowex microspheres by shifting the glass 
transition temperature to above 300 °C and the material decomposition occurred 
above 460 °C. XRD analysis confirmed the presence of metallic Ag, while UV-vis 
absorption studies showed the characteristic surface plasmon resonance (SPR) for 
AgNPs ranging from 406 – 422 nm maximum absorption wavelengths. SEM imaging 
revealed the uniform distribution of AgNPs with diameters between 20 – 60 nm on 
the surface of the microbeads. The Ag-PNC materials, diluted to a concentration of 1 
mg/mL in marine broth, showed a potent inhibitory effect on H. pacifica biofilm 
formation, with up to 76% decrease of biofilm when contrasted with the polymeric 
microspheres without Ag. Ag-PNCs also caused significant growth inhibition of D. 
tertiolecta and Isochrysis sp. 

Silver-zeolite nanocomposite clusters (AgZ) were formed through a low 
temperature chemical reduction method using the environmentally friendly trisodium 
citrate. The stable and porous inner structure of ZSM-5 zeolites performed a dual role 
as a stable size-control template and a reservoir of antimicrobial nanosilver. SEM 
revealed the globular and cluster-like morphology of the AgZ composites, with a 
homogenous distribution of silver particles on the surface of the clusters. EDX results 
displayed an increasing Ag loading with higher concentrations of Ag precursor, up to 
10 wt% Ag. The UV-visible absorption displayed the characteristic SPR absorption 
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maximum ranging from 408 – 500 nm. The AgZ clusters with metallic silver loading 
of up to 10 wt% Ag, diluted to a concentration of 1 mg/mL, reduced H. pacifica 
biofilm attachment of up to 81% compared to pure zeolite alone. XRD analysis 
clearly indicated the presence of metallic Ag while the ZSM-5 zeolite crystalline 
framework remained largely intact after the Ag crystal growth process. Brunauer-
Emmett-Teller (BET) analysis showed a reduction in surface area of up to 44% with 
the incorporation of AgNPs into the zeolite, indicating the formation and growth of 
Ag within the internal pores and channels of the zeolite. Although the introduction 
and crystal growth of silver nanoparticles within the porous structure of the zeolite 
caused a change from a mesoporous to a largely macroporous structure, the integrity 
of the zeolite template was preserved. 

Silver-titania nanotube (Ag/TNT) composite material was prepared through a 
novel 2-step hydrothermal synthesis method. Titania nanotubes were chosen as a 
support material for the AgNPs as its greater specific surface area on the inner and 
outer surfaces of its tubular structure lead to enhanced properties. The morphology, 
particle size, chemical content, crystal structure, optical properties and surface area 
were systematically characterized. Determination of biofilm inhibitory properties 
revealed that Ag/TNT (concentration of 0.1 mg/mL) with the lowest silver content 
(0.95 wt% Ag) decorated with AgNPs of approximately 3 nm reduced biofilm 
formation of H. pacifica by 98% compared to pure titania nanotubes and bulk silver 
alone. Growth inhibition of D. tertiolecta and Isochrysis sp. were also observed. 
Interestingly, the antifouling properties were improved with a size decrease of 
AgNPs. The work shows that titania nanotubes are a stable and effective support for 
the anchoring and growth of AgNPs. The addition of very low amounts of Ag 
enhanced the antifouling property of pure TiO2 to produce an extremely potent 
antifouling effect on the targeted organisms. 

Graphene-Ag (GAg) nanocomposites were prepared from a novel and mild 
hydrothermal synthesis method which bypasses the formation of graphene oxide.  The 
GAg nanocomposite combines the antimicrobial property of silver nanoparticles and 
the unique structure of graphene as a support material, with potent marine antifouling 
properties. The results show that GAg nanocomposites displayed significant biofilm 
inhibition property on H. pacifica and antiproliferative effects on D. tertiolecta and 
Isochrysis sp. As low as 1.3 wt% of Ag loading on a GAg sample, diluted to a 
concentration of 0.1 mg/mL, inhibited biofilm formation from H. pacifica. The GAg 
sample with 4.9 wt% Ag loading was associated with a biofilm inhibition of 99.6%.   
The marine antifouling properties of GAg nanocomposites were a synergy of the 
biocidal AgNPs anchored on the flexible graphene sheets, thereby providing 
maximum active contact surface areas to the target organisms. The GAg material was 
characterized with SEM, EDX, TEM, XRD and Raman spectroscopy. In addition, the 
GAg material exhibited the surface-enhanced Raman scattering (SERS) effect. The 
AgNPs were estimated to be between 72-86 nm, observed supported on micron-scaled 
graphene flakes. 

These results strongly suggest that the 4 types of silver-based nanocomposite 
materials are promising marine antifouling agents. The addition of very low amounts 
of Ag enhanced the antifouling property of the support structure, and the 
nanocomposites were shown to be more effective on the targeted organisms compared 
to the matrix material or bulk silver alone. In addition, the precursor materials used in 
the syntheses are affordable and easily available, whilst the synthetic methods and 
conditions are facile, environmentally friendly, and capable of producing high yields. 
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Chapter 1: Introduction 

 

 

1.1 Introduction to Marine Fouling 

 

Marine fouling is the accumulation of organisms including bacteria, seaweed 

and barnacles on man-made surfaces which are continuously submerged in seawater 

[1]. Figure 1.1 shows examples of soft and hard fouling on ocean vessels. It is a 

natural phenomenon which has plagued sailors for as long as mankind have been 

sailing the oceans. One of the earliest mentions of marine fouling was by Plutarch (45 

A.D. – 120 A.D.): “it was usual to scrape the weeds, ooze, and filth from the ships’ 

sides to make them go more easily through the water” [2]. A 19th century British 

publication described fouling as a “most expensive and objectionable” phenomenon 

afflicting the hulls of the iron-clad ships of the time, costing “enormous amounts of 

time, ingenuity, and money” to remove [3]. 

 

Figure 1.1: Evidence of advanced biofouling accumulation on marine surfaces. 
(A) Soft fouling macroalgae Enteromorpha covers the hull of a submarine (Image 
credit: Dr. J. Lewis). (b) Hard macrofouling such as barnacles attached onto a ship 
hull. (Image credit: Dr C.D. Anderson) [4]. 
 

A B

1 
 



The biofouling process generally proceeds in incremental stages, with bacteria 

being recognized as playing an important role in the early formation of a fouling 

community [5]. The biofouling process is generally divided into 2 stages: 

 

1) Microfouling: starts with biofilm formation by bacteria and diatoms, 

followed by attachment of algae spores. Biofilms are also known as 

“slime” [6]. 

 

2) Macrofouling: consisting of attachment by soft fouling such as seaweed, 

and hard fouling organisms including crustaceans and molluscs.  

 

Bacteria which manage to attach onto a suitable surface will produce an 

adhesive filmy matrix made of extracellular polymeric substances (EPS), otherwise 

known as a microbial biofilm. In the marine environment, the larvae of invertebrates 

and spores of algae are prompted to search for, and bind to solid surfaces in order to 

further their chances of survival [6]. These larvae and spores identify settlement cues 

from the microbial biofilm surfaces as potential habitats which provide the necessary 

nutrients and shelter [7]. 

 

 

1.2 The Costs of Marine Fouling 

 

Marine fouling is a ubiquitous and undesirable issue which affects shipping 

lines, naval fleets, oil rigs, underwater pipelines, aquaculture nets, marine 

environmental sensor equipment, and marine energy infrastructure. Although such 
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structures are exposed to challenging environmental conditions during their service 

lifetime (including exposure to seawater, temperature fluctuations and ultra-violet 

irradiation), biofouling presents substantial economic and environmental costs to the 

affected industries. 

 

The hydrodynamics of a ship’s hull or turbine blade is negatively affected, due 

to additional weight of the fouling attachments. This causes a substantial reduction of 

speed [8], an increase in fuel usage and higher overall voyage costs [1]. The 

international marine transport industry uses an estimated 50% of their operating costs 

on fuels, with USD18 billion spent in 1999 [9]. The total fuel consumption is 

estimated to grow at an annual rate of 3.1% [10]. 

 

Without effective antifouling protection, it has been estimated worldwide that 

an extra 72 million tonnes of fuel is burned each year. The carbon footprint of ships is 

estimated to contribute to an increase of 210 million tonnes of greenhouse gas 

emissions and 5.6 million tonnes of sulphur dioxide, causing unacceptable impacts on 

the environment [11]. Additional costs are involved in the maintenance of ship hulls, 

including manual removal of hard fouling substances and reapplication of antifouling 

coatings. These dry-docking activities limit the operations of the ship and cause a loss 

of economic opportunity.  

 

The fouled hull of a ship is a major vector in the spread of invasive aquatic 

species. These invasive species are termed Introduced Marine Pests (Australia, New 

Zealand), Aquatic Nuisance Species (United States), and Harmful Aquatic Organisms 

(International Maritime Organization, Ballast Water Convention). As these terms 
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imply, invasive aquatic species are a threat to the survival and wellbeing of native 

species, reducing native biodiversity and can even cause extinction of fragile species. 

They also alter the habitat, degrade sensitive environments and spread disease [12]. 

 

 

1.3 History of Marine Fouling Prevention 

 

The early sailors from Phoenicia and the Carthaginian Empire (1500 – 300 

B.C.) were credited with the first antifouling coatings, consisting of pitch and copper 

sheathing for their wooden ships [2, 6]. Lead sheathing was used by Archimedes (287 

– 212 B.C.), and later on by the Romans and the 15th century Spanish, English and 

French seamen as protection for their oak ships against “ship-eating sea worms”[2]. 

Eighteenth century British Admiralty experiments which used copper sheathing on 

their frigates noted the success of copper’s antifouling properties. However, in the 

19th century, with the introduction of iron-hulled ships, the implementation of copper 

sheathing was eventually abandoned due to its devastating corrosive effects on iron 

[2]. This spurred renewed interest in the development of novel antifouling 

technologies, primarily from various naval authorities with defensive and strategic 

motives. 

 

Apart from using protective metallic sheets, protective paint coatings 

consisting of polymeric matrices laced with toxic substances were introduced to 

combat fouling [13]. In the mid-20th century, intensive research into antifouling paints 

culminated with a breakthrough in the form of self-polishing copolymer (SPC) 

antifouling paints laced with the highly toxic compound called tributyltin (TBT). 
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Patented by Milne and Hails in 1974 [14], these paint coatings have a controlled rate 

of wear (polishing rate ~ 5-20 microns/year) while at the same time releasing toxic 

TBT which kills fouling organisms. SPC-TBT paints are compatible with steel and 

aluminium, allowing the ship hulls to remain smooth and free from fouling for up to 5 

years [13].  

 

 

1.4 Issues with Tributyl Tin (TBT) and Its Substitutes 

  

The toxic effects of TBT was discovered on non-target organisms, including 

causing sterility (imposex condition) and eventual death of female sea snails such as 

Nucella lapillus [15]. It devastated fisheries and aquaculture industries, and showed 

long-term persistence in the environment [16]. Due to such dire threats, a global ban 

on TBT was initiated by the International Maritime Organization (IMO), an agency of 

the United Nations which is responsible for improving maritime safety and the 

prevention of marine pollution from ships. Since 2008, TBT-containing antifouling 

paints have been outlawed according to the IMO’s International Convention on the 

Control of Harmful Anti-fouling Systems on Ships [17]. 

  

The current generation of biocidal antifouling paints rely on toxic metal oxides 

such as copper oxide and zinc compounds. Although effective against certain 

common fouling organisms, these compounds are less toxic than the older generation 

TBT but have not achieved the same level of success as TBT in the prevention of 

marine fouling [18].  
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1.5 Rationale of Study 

 

This thesis proposes to investigate silver nanocomposite materials as potential 

marine antimicrofouling agents. Composite materials are defined as the “combination 

of two or more materials that results in better properties than those of the individual 

components used alone” [19]. Nanocomposite materials contain domains or inclusions 

on the nanometre scale.  

 

Metallic silver and silver ions have a long history as antimicrobial agents [20] 

and is well-tolerated by mammals. Over 2,400 years ago, Hippocrates, the Father of 

Medicine, described the use of silver to facilitate better wound healing and to preserve 

food and water from bacterial infections [21]. Due to their versatile antibacterial 

property, silver-based nanomaterials are becoming an increasingly viable class of 

materials for a wide range of biomedical applications [22-25].  

 

Although most people are familiar with bulk silver, which is lustrous white in 

colour [Figure 1.2(A)], silver nanoparticles (AgNPs) can take on a variety of colours, 

due to a phenomenon known as surface plasmon resonance (SPR) effect [26]. Figure 

1.2 (B) shows AgNPs in stable colloidal dispersions appearing as yellow, whilst 

unstable AgNPs which have undergone aggregation to form micron-sized clusters, 

appear brownish to greyish in colour [27]. In fact, suspensions of AgNPs with sizes 

ranging from 40-100 nm exhibit different colours [28].  
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Figure 1.2: Various appearances of elemental silver. (A) Bulk silver coins appear 
shiny and lustrous [29], and (B) silver nanoparticles as yellow, brown and grey 
colloidal suspensions [30]. 
 

 

A nanoparticle is made up of atomic clusters with at least one dimension 

within the 100 nm size range. As a consequence of their quantum size effects, 

nanoparticles exhibit properties that are distinctly different from the bulk material 

[31]. Although a metallic nanoparticle is much smaller than the bulk metal, it 

possesses a higher surface-to-volume ratio. The extremely large surface area of 

nanomaterials improved the properties of the bulk material, while at the same time, 

reducing the material cost, as less material is needed to obtain similar, or enhanced 

results.  

 

On the other hand, the extremely high surface-to-volume ratio of nanoparticles 

is associated with a higher state of surface energy. Without suitable stabilizers, 

nanoparticles are highly unstable and will coalesce with other nanoparticles to form 

large micron-sized particles, negatively impacting their properties. Thus, AgNPs are 

engineered with suitable stabilizers or supported on suitable substrates to form stable 

silver nanocomposite materials.  
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As the biofouling process usually proceeds from established bacterial colonies, 

silver-based nanomaterials are suitable candidates to investigate for their role in 

deterring the formation of biofilms and the prevention of microfouling. The 

antimicrobial property of silver becomes more potent with a decrease in its particle 

size, as atomic silver is more easily diffused through a suitable medium into bacterial 

cell walls.   

 

One of the most promising routes to resolve fouling is the inhibition of 

bacterial settlement. Bacterial formation of a biofilm has been found to be an 

important link to the development of soft and hard fouling matter [5], which becomes 

increasingly difficult to remove after their settlement.  

 

In terms of research into the antifouling property of silver-based materials, 

there has been a surprising lack of literature. Rana et al. (2011) [32] and Sawada et al. 

(2012) [33] have reported on the use of silver as antifouling agents in water treatment 

and filtration membranes. In paint coating applications incorporating the antimicrobial 

property of silver materials, Kumar (2008) [34] reported on general formulations of 

AgNPs-embedded antimicrobial paints using common household paints, whilst  Holtz 

et al. (2012) [35] have reported on the use of silver vanadate nanowires as an 

antimicrobial agent in water-based paints for household and hospital use. However, to 

date, antifouling applications incorporating silver-based nanomaterials for marine 

environments remain scarce. 
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1.6 Aims of Study 

 

The principal aim of this study is to synthesize novel silver nanocomposite 

materials and investigate their potential as antimicrofouling agents against marine 

fouling organisms. The aim is to produce silver nanocomposite materials with highly 

effective anti-microfouling properties, using relatively low amounts of silver 

precursor materials. In addition, the synthesis methods described in this thesis are 

novel, facile and affordable to produce silver nanocomposite materials for marine 

anti-microfouling applications. The methods are cost-effective, produce high Ag 

loading, employ low amounts of energy, and use easily available and conventional 

precursor materials. The major objectives in this project are: 

 

1) Synthesize novel silver-polymer and silver-zeolite nanocomposite materials 

from low-temperature chemical processes. 

 

2) Synthesize novel silver-titania and graphene-silver nanocomposite materials 

from hydrothermal processes. 

 

3) Elucidate the key characteristics of the novel silver nanocomposite materials 

including their morphology, crystallinity, elemental composition, optical 

properties and other properties related to the specific material through 

scanning electron microscopy, X-ray powder diffraction, energy dispersive X-

ray spectrometry, UV-visible spectrophotometry, transmission electron 

microscopy, thermal gravimetric analysis, accelerated surface area 

porosimetry, and Raman spectroscopy. 
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4) Evaluate the antifouling properties of the novel silver nanocomposite materials 

through their biological effects on marine bacteria and marine microalgae. 

 

 

1.7 Scope and Limits 

 

This thesis is organized into 8 chapters. Chapter 1 gives a background and 

motivation to the study, and outlines the major objectives of this project. Chapter 2 is 

a detailed review and discussion on the major areas covered by this project. It 

includes a survey on silver nanocomposite materials, their synthesis methods and their 

applications, as well as a review of the marine fouling process, marine organisms 

involved in fouling, and current antifouling technologies.  

 

Chapter 3 is related to the materials and methodologies used in the studies, 

along with the instrumentation methods to characterize the silver nanomaterials. The 

characterization methods used are selected based on their suitability with the class of 

material being studied. Biological evaluation methods used to assess antimicrofouling 

activity is also described in this chapter. The antimicrofouling evaluation is limited to 

studies using 1 marine bacterium and 2 types of marine microalgae. 

 

Chapters 4-7 are each devoted to a specific study of each silver nanocomposite 

system; i.e. silver-polymer nanocomposites, silver-zeolite nanocomposites, silver-

titania nanocomposites, and graphene-silver nanocomposites. Each of these chapters 

is based on published scientific papers as a result of the work done in this PhD thesis. 
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Finally, Chapter 8 summarizes the major findings and key contributions of this 

thesis. A list of possible future work is proposed to follow up on the results from this 

project. 
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Chapter 2: Literature Review 

 

 

2.1 Silver Nanoparticles 

 

Nanostructured materials has been intensively investigated since Feynman 

contemplated on the possibility of the enormous range of properties that substances 

can possess “when we have some control of the arrangements of things on a small 

scale” [36]. Nanoparticles are atomic clusters with at least one dimension within the 

100 nm size range. The use of the term “nanostructured materials” is preferred, 

however, “nanophase materials” and “nanocrystalline materials” are also used, 

depending on the context [36]. By the attribute of their nanoscale size, nanoparticles 

display properties that are distinctly different from the bulk material  [31]. 

 

Elemental silver (Ag) is a transition metal located in Group 1b Period 5 of the 

periodic table. It is a noble metal, highly valued for consumer, industrial and medical 

applications. It has the highest known electrical and thermal conductivity of all metals 

and is an important material in the fabrication of electrical circuits. Silver nanowires 

with an electrical resistivity of 1.6 x 10-6 Ω cm are excellent candidates to replace 

indium tin oxide (ITO) electrodes due to better malleability and mechanical 

robustness [37]. 

 

Although bulk silver is lustrous white in colour, AgNPs can take on a variety 

of colours, due to a phenomenon known as surface plasmon resonance (SPR) [26]. 

Small particles absorb most light from the visible wavelengths while larger particles 
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scatter light. Silver nanoparticles in dispersed form appear yellow in solution, while 

aggregated silver in solution appear greyish in colour [38].  

 

Silver has historically been used in medicine for at least 2000 years. 

Hippocrates used it in the treatment of ulcers and to facilitate better wound healing. 

The medical use of silver predates the discovery of bacteria as infectious agents and 

before the use of antibiotics [20]. Table 2.1 shows a summary of the applications of 

silver-containing nanomaterials. Silver materials have been systematically evaluated 

for their effectiveness against at least 650 species of unicellular organisms [20].  

 

Due to their versatile antibacterial property, silver-based nanomaterials are 

becoming an increasingly viable class of materials for a wide range of biomedical 

applications. In Table 2.1, more than half of the surveyed research focused on the 

antimicrobial activity of nanosilver-containing materials, for example in hydrogels 

[39], as polymer composite films [40], dental resins [41] and for biocompatible 

artificial bone growth [42].  

 

Smaller AgNPs of up to 2 nm are photoluminescent. Clusters of these AgNPs 

exposed to excitation wavelengths of 350 – 450 nm result in blue-green 

photoluminescent emissions. Cells which are conjugated to these AgNPs can be 

viewed more clearly using bio-imaging methods compared to traditional methods 

[43]. AgNPs are also important catalyst materials, for example in the synthesis of 

enaminones, the precursor to many pharmaceutical compounds [44].  
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Table 2.1: Applications of silver nanomaterials. 

Application Material Reference 

3D laser writing by multiphoton 
absorption lithography 

Ag nanostructures in 
polymer matrix 

[45] 

Adsorption of volatile organic 
compounds (VOCs), e.g. Butyl acetate 

Ag-zeolite [46] 

Adsorption of ammonia (20 - 37% 
from aqueous solutions). 

Ag-zeolite [47] 

Ag ink or Ag paste for printable 
electronics 

AgNP [48] 

Ag-based solid carbon paste electrode 
for detector in ion chromatography for 
sensitive detection of iodide 

AgNP [49] 

Antibacterial AgNP [22], [23], 
[24], [25], 
[50] 

AgNP and Ag nanochains [51]  
Ag-hydrogel nanocomposite [39] 
Ag-PEI multilayer assembly [52] 
Ag-polymer composite [53] 
Ag-reduced graphene oxide [54] 
Ag-zeolite [47], [55] 
Ag nanocomposite film [40] 
Ag(I) complex with L-
tryptophan (TRP) 

[56] 

AgNP-polysaccharide 
nanocomposites, hydrogels 

[57], [58], 
[59] 

Antibacterial - dental resins Ag-Zn nanocomposite [41] 
Antibacterial - food preservation and 
food safety  

Ag-zeolite in polyethylene 
composite films 

[60] 

Antibacterial food packaging material AgNP-loaded cellulose-
based filter paper 

[61] 

Antibacterial membrane Ag-phospholipid membrane [62] 
Antibacterial membrane - Water 
treatment 

AgNP in polysulfone 
ultrafiltration membranes 

[63] 

Antibacterial paint coating AgNP [34] 
 Ag vanadate nanowires [35] 
Antibacterial coating for concrete 
sewer systems against sulphur 
oxidizing bacteria 

Ag-zeolite [64] 

Antibacterial coatings with amide 
groups adhere effectively to glass 
surfaces 

AgNP [65] 

Antibacterial textile AgNP-filled nylon 6 
nanofibers 

[66] 

Antibacterial, antifungal  AgNP [67] 
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Table 2.1 (continued): Applications of silver nanomaterials. 

Application Material Reference 

Antibacterial, cytocompatible, free-
radical scavenging 

AgNP [68] 

Antifouling agent – preservation of 
underwater archaeological surfaces 
(marble/stone) 

Ag doped-TiO2 [69] 

Antifouling membrane - seawater 
desalination 

Ag salts incorporated in thin 
film composite (TFC) 
membranes 

[32] 

Antifouling membrane - water 
treatment 
 

Ag-polymer membrane [33] 
Ag-TiO2/HAP/Al2O3 
composite membrane 

[70] 

Antifungal AgNP [71] 
Antiproliferative Ag(I) complex with L-

tryptophan (TRP) 
[56] 

AgNP [25] 
Bioactivity. Promote apatite formation. 
Biocompatibility for bone regeneration 

Ag-zeolite [42] 

Biocompatibility. No decrease in 
proliferation of 3T3 fibroblasts and rat 
aortic vascular smooth muscle cells 
(VSMCs) 

AgNP [72] 

Biocompatible implant and prosthetic 
materials 

Ag-Pt alloy NP [73] 

Bio-label for electroanalytical 
immunoassay to measure human 
chorionic gonadotropin (hCG) 

AgNP as bio conjugate 
sensor 

[74] 

Biomedical Ag nanocomposite film [40] 

Biomedical textiles for wound healing 
and wound dressing 

AgNP in hyaluronan fibres [75] 

Catalytic oxidation of butyl acetate Ag-zeolite [76] 

Catalytic oxidation of ethyl acetate Ag-zeolite [77] 

Catalytic reduction of 4-nitrophenol  Ag-mesoporous carbon [78] 

Catalytic reduction of 4-nitrophenol by 
NaBH4 

Ag-polymer nanocomposite [79] 

Conductive polymeric metal NP Ag-functionalized with 
bithiophene 

[80] 

Current cutting-off fuse component for 
microelectronics/micromechanical 
systems 

Ag dendrites in 
thermosetting polymer resin 

[81] 

Electrocatalyst for ethanol oxidation - 
direct ethanol fuel cell applications 

AgNP on self-organized 
TiO2 nanotubes 

[82] 
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Table 2.1 (continued): Applications of silver nanomaterials. 

Application Material Reference 

Electroluminescence (nano laser) AgNP [83] 
Food safety – detection of melamine Ag-graphene nanocomposite [84] 
Gratzel photoelectrochemical cells Ag/TiO2 nanocomposite [85] 
Hydrophilic and antimicrobial coating 
for condensers used within manned 
spacecraft. Microbiocidal to bacteria, 
fungus, marine yeast 

Ag-zeolite coating [86] 

Luminescent in solid state and fluid 
solutions 

Au-Ag mixed metal alkynyl 
complex 

[87] 

Luminescent, Raman enhancement 
effect for bioimaging and sensing 

AgNP [88] 

Photocatalytic degradation of azo dye 
(Acid Red 88) enhanced by suppressing 
detrimental recombination of 
photogenated charge carriers 

Ag-ZnO NP [89] 

Photodegradation of azo dyes 
(methylene blue) and methyl orange 

AgNP [90] 

Photodetector Ag-graphene nanocomposite [91] 

Photoluminescence Ag-zeolite [92] 

Photoluminescence for bio-imaging AgNP [43] 

Photothermal therapy of cancer cell Ag-aptamer conjugated 
nanorods 

[93] 

Precursor for Ag-containing 
semiconductor NP eg. Ag2S, AgI, AgO 

Ag-chitosan nanocomposite [94] 

Real-time naked-eye detection of 
amine 

AgNP [95] 

Recyclable catalyst for synthesis of 
different enaminones 

AgNP [44] 

Reservoir of bactericidal metal ions Ag-based metal-organic 
framework, Ag3(3-
phosphonobenzoate) 

[96] 

Sensor for nitrite Graphene/AgNP/polypyronin 
paper electrode 

[97] 

Superhydrophobic, antifouling, 
antibacterial 

Ag-perfluorodecanethiolate 
complex films 

[98] 

Surface-enhanced Raman scattering 
(SERS) active substrate for single-
walled carbon nanotubes (SWCNTs) 

Ag electrode with Au/Ag NP [99] 

Surface-enhanced Raman spectroscopy 
(SERS) substrates with excellent 
enhancement ability 

Ag- or Au-chitosan films [100] 
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Table 2.1 (continued): Applications of silver nanomaterials. 

Application Material Reference 

Transformation of spherical to 
triangular shape. Nanoprisms coupled 
with quantum dots for high 
performance single-photon source 

Ag nanoprisms [101] 

Water treatment membrane Ag on crumpled-reduced 
graphene oxide – TiO2 
nanocomposite 

[102] 

 

 

2.1.1 Synthesis Routes of Silver Nanoparticles 

 

There are various techniques for the synthesis of AgNPs. Silver nanoparticle 

synthetic routes may be classified into chemical methods and physical / mechanical 

methods. Depending on the specific applications required of the silver nanomaterial, 

the methods, precursor materials and reagents used will determine the final structure 

of the material.  

 

The challenge found in many synthetic routes for formation of silver 

nanostructures, is the ability to control the size and to maintain the stability of the 

product. Such small particles have a natural tendency to undergo agglomeration. 

Agglomeration is the propensity of small sized particles having a large surface area to 

reduce their high surface energy by coalescing with other particles to form larger, 

more stable aggregates. The process by which the particle growth occurs is known as 

Ostwald ripening [103]. In aqueous solutions, silver colloidal suspensions may 

agglomerate very quickly and require a stabilizer or capping agent such as a surface-

active compound [104]. 
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A review of recent published syntheses work of AgNPs is presented in Table 

2.2. A majority of the synthetic methods involves chemical reduction of silver 

precursors, often, aqueous silver nitrate. The data presented in Table 2.2 also includes 

the size of the obtained AgNPs. AgNPs stabilization can be achieved through 

electrostatic or steric approaches. Electrostatic stabilization involves coordinating 

metal particles to anionic species such as halides, carboxylates or polyoxoanions, to 

prevent nanoparticles from agglomeration. To prevent agglomeration or particle 

growth, electrostatic stabilization uses the Coulombic repulsion of similarly charged 

molecules to keep them apart. On the other hand, steric stabilization employs 

polymers with bulky pendant groups or side groups to prevent the metallic 

nanoparticles from clustering [105]. 

 

The most popular chemical synthesis route to produce AgNPs is through the 

reduction of silver nitrate solution by sodium borohydride (a strong reducing agent) 

[106-108] or sodium citrate (a weak reducing agent) [107, 109].  

 

The reduction of silver nitrate solution by sodium borohydride, with the 

reaction occurring in an ice bath [107, 108] will yield a clear yellow solution. The 

chemical reaction is shown in Equation 2.1, where silver nitrate is reduced to metallic 

silver by sodium borohydride. 

 

362243 NaNO  HB
2
1  H

2
1  Ag  NaBH  AgNO +++→+  

…. Equation 2.1 
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However, the conditions of reaction, such as precursor addition rate, stirring 

speed, and ratio of reactants, need to be controlled carefully in order to produce a 

stable colloidal solution. According to Mulfinger [108], an excess of borohydride 

anions are required to reduce the silver ions and stabilize the resultant AgNPs. 

Otherwise, the AgNPs will form agglomerates, and cause the colloidal solution to turn 

into a grey colour over a period of hours or days [108]. According to Zhu & Chen 

[37], the rate of addition of silver nitrate into the reactor influences the morphology of 

the final product. A slowly-controlled rate of silver nitrate addition will preferably 

form silver nanowires instead of AgNPs. 
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Table 2.2: Synthesis methods of silver nanoparticles, precursor material, reducing agent, capping agent 
and the reported particle size range. 

 
Material Method Precursor Reducing Agent Capping Agent Other Size (nm) Reference 

Ag 
nanoprisms 

Chemical 
reduction 

Silver 
nitrate 

Sodium borohydride, 
trisodium citrate 
(Na3C6H5O7) 

PVP (Mw = 40,000) NaBH4 0.1M 
volume 800 - 
1300uL. NaOH, 
HNO3 to adjust pH 

~6 (NP), 
~100 
(triangular 
nanoplates)  

[101] 

Ag 
nanowires 

Polyol process 
and 
solvothermal 
method 

Silver 
nitrate 

PVP (Mw 40K) PVP (Mw = 40,000) Ethylene glycol as 
solvent. CuCl to 
assist formation of 
twinned Ag seeds 

~80 nm 
width 

[37] 

AgNP Autoclave at 
2MPa, 150 °C 

Silver 
nitrate 

Hydrogen Polyvinyl alcohol 
(PVA) 

  Avg 40±10 [44] 

Biosynthesis 
using plant 
extracts 
 

Silver 
nitrate 

Extracts from 
xerophyte Bryophyllum 
sp., mesophyte Cyprus 
sp., hydrophyte 
Hydrilla sp. 

  Equal parts of 
extracts mixed 
with sterile 
distilled water. 
40°C steam bath. 

2-5 [110] 

Allium sativum (garlic) 
extract 

Allium sativum 
(garlic) extract 

  4-6 [72] 

Extract from Solanum 
torvum (S. torvum) 
fruit. 

  4-10 [111] 
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Table 2.2 (continued): Synthesis methods of silver nanoparticles, precursor material, reducing agent, capping agent 
and the reported particle size range. 

 
Material Method Precursor Reducing Agent Capping Agent Other Size (nm) Reference 

AgNP 
 

Biosynthesis 
using plant 
extracts 

Silver 
nitrate 
 

Abelmoschus esculentus 
(L.) pulp extract 

  3-11 nm 
(TEM), 21.29 
nm (DLS) 

[112] 

Cinnamon zeylanicum 
bark extract and powder 
(water soluble organic 
compounds) 

     31-40, >100 [23] 

Extract of Citrus 
sinensis peel 

Soluble starch 2M KOH to 
adjust pH 

3-12 [68] 

Jatropha curcas seed 
extract 

    15-50 [113] 

Biosynthesis 
using bacteria 

Silver 
nitrate 
 

Pseudomonas stutzeri 
AG259 

  A few – 200 
nm, or more 

[114] 

Streptomyces sp. 
BDUKAS10 

  21-48 [115] 

Streptomyces 
hygroscopicus 

  20-30 [116] 

Biosynthesis 
using fungus 
 

Silver 
nitrate 
 

Aspergillus niger - - 3-30 [117] 
Aspergillus fumigatus - - 5-25 [118] 
Cladosporium 
cladosporioides 

- - 10-100 [119] 

Fusarium oxysporum - - 5-15 [120] 
  

21 
 



Table 2.2 (continued): Synthesis methods of silver nanoparticles, precursor material, reducing agent, capping agent 
and the reported particle size range. 

 
Material Method Precursor Reducing Agent Capping Agent Other Size 

(nm) 
Reference 

AgNP 
 

Biosynthesis 
using fungus 

Silver 
nitrate 

Neurospora crassa - - Avg. 11 [121] 
Penicillium fellutanum - - 5-25 [122] 

Chemical 
reduction 

Silver 
nitrate 
 

Chitosan (Mw = 
400,000. DA=70%) 

  1% acetic acid as 
solvent 

10-15 [25] 

Dextran T40 Dextran T40 Sodium hydroxide 
(0.001M) 

10-60 [50] 

Ethanol Linoleic acid Sodium linoleate Avg. 16 [83] 
Hydrazine hydrate, 
sodium citrate 

Sodium dodecyl 
sulphate, sodium citrate 

  8-50 [58] 

Hydroxypropyl cellulose Hydroxypropyl 
cellulose 

  10-15 [123] 

Li(HBEt3) Amidated 
polyethyleneimine 

Toluene as solvent, 
amidating agent is 
palmitic acid or its 
methyl ester 

1-2 [65] 

Preyssler acid 
H14(NaP5W30O110) 

Poly(N-vinyl-2-
pyrolidone) (PVP) 

   2-16 [90] 

Sodium borohydride 
(NaBH4) 

Branched 
polyethyleneimine 
(PEI) (Mw = 25000) 

  3-40 [59] 

Sodium citrate Citrate 0.7mM, 
100ml, NaBH4 
5mg/ml, 4 °C 

Avg. 
9.2 ± 
2.8 

[22] 
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Table 2.2 (continued): Synthesis methods of silver nanoparticles, precursor material, reducing agent, capping agent 
and the reported particle size range. 

 
Material Method Precursor Reducing Agent Capping Agent Other Size 

(nm) 
Reference 

AgNP 
 

Chemical 
reduction 

Silver nitrate 
 

Sodium borohydride 
(NaBH4) 

Polyvinylpyrroli
done (PVP) 

  Avg. 12 
± 2 

[108] 

Trisodium citrate     ~100 [109] 
Decomposition 
of Ag(I) 
carboxylates 

Ag(I) 
carboxylate 
synthesized 
from silver 
nitrate and 
carboxylic 
acid dissolved 
in NaOH 

Ethanol amine derivatives 
(monoethanolamine, 
diethanolamine, 
triethanolamine, myristic 
acid, palmitic acid, stearic 
acid) 

    10-40 [48] 

Free-radical 
mediated 
autoxidation 
during curing 
process of 
drying oils 

Silver 
benzoate 

Free radicals naturally 
generated from drying of 
stearic acid, oleic acid, 
linoleic acid, linolenic acid 

Fatty acids, in 
situ generated 
aldehydes, other 
intermediates.  

  12-16 [34] 

Gamma 
irradiation 

Silver nitrate Chitosan (Mw 400,000. 
DA=70%) 

    50-2000 [104] 

Hydrated electrons (e-
aq), 

hydrogen atoms (H•) 
Chitosan (low 
molecular wt) 

Acetic acid 5-30 [24] 

Chitosan 1% acetic acid as 
solvent 

28-1106 [124] 
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Table 2.2 (continued): Synthesis methods of silver nanoparticles, precursor material, reducing agent, capping agent 
and the reported particle size range. 

 
Material Method Precursor Reducing Agent Capping Agent Other Size 

(nm) 
Reference 

AgNP Chemical 
reduction via 
high-
gravitational 
rotating packed 
bed reactor 

Silver 
nitrate 

Sodium hydroxide Soluble starch   30-72 [125] 

In situ chemical 
reduction 

Silver 
nitrate 

Hyperbranched 
poly(amidoamine) 
(HPAMAM-NH2) 

Hyperbranched 
poly(amidoamine) 
(HPAMAM-NH2) 

  4-15 [126] 

Hyperbranched 
poly(amidoamine) with 
terminal dimethylamine 
groups (HPAMAM-
N(CH3)2) 

Hyperbranched 
poly(amidoamine) with 
terminal 
dimethylamine groups 
(HPAMAM-N(CH3)2) 

  1.0-7.1 [67] 

Tyrosine residues in silk 
fibroin 

Tyrosine residues in 
silk fibroin 

  N.a. [127] 

Microwave 
assisted 

Silver 
nitrate 

Glucose Sucralose Triethylamine 
(TEA) as promoter 
and directing agent 

4-10 [95] 

Thermal 
reduction 

Silver 
nitrate 

Glycine Glycine   2-30 [88] 
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Table 2.2 (continued): Synthesis methods of silver nanoparticles, precursor material, reducing agent, capping agent 
and the reported particle size range. 

 
Material Method Precursor Reducing Agent Capping Agent Other Size (nm) Reference 

AgNP 
 

Thermal 
reduction at 
445K in oil 
bath 

Silver 
nitrate 

Glycine Glycine   0.5 - 17 [43] 

AgNP, Ag 
nanochains 

Chemical 
reduction 

Silver 
nitrate 

Ellagic acid 
(polyphenol) 5-15 µM 

Ellagic acid   <10- 
>500, time 
dependent 

[51] 

AgNP 
microbeads 

Chemical 
reduction 

Silver 
nitrate 

Sodium citrate 4-
mercaptomethylstyrene 

  30-70 [128] 
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Silver nitrate is also reduced to metallic silver by weak reducing agents such 

as sodium citrate. The chemical reaction is shown in Equation 2.2. 

 

2233756237563 O  H
2
1  3NaNO HOHC  3Ag  O2H  NaOHC  3AgNO ++++→++  

 …. Equation 2.2 

 

Other popular chemical routes include polyol synthesis, which involves 

heating polyols such as ethylene glycol with a silver salt precursor. Synthesis of the 

silver nanomaterials is conducted in the presence of polymeric capping agents such as 

poly(vinylpyrrolidone) (PVP) to produce metallic atoms [129]. According to Jiang et 

al. [129], the introduction of certain capping agents provides a powerful means of 

controlling the relative growth rates of different crystallographic facets. As these 

capping agents can interact strongly with specific facets, the relative free energies for 

different facets will change upon the incorporation of various capping ligands. As an 

example, the oxygen atoms from PVP bind most strongly to the {100} facets of Ag to 

facilitate the formation of Ag nanowires or nanocubes. 

 

Lee et al. [59] studied the influence of polyethyleneimine (PEI) concentrations 

on the size of AgNPs. The synthesis was performed at room temperature in the 

presence of sodium borohydride as a reducing agent. PEI performed a dual role as a 

stabilizer and also as reducing agent. A schematic showing the stabilizing role of PEI 

is shown in Figure 2.1.  
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Figure 2.1: Formation of silver nanoparticles through reduction of silver nitrate. 
Polyethyleneimine (PEI) is mixed with AgNO3 and reduced by NaBH4 to produce a 
positively charged PEI-capped AgNPs. The AgNPs are kept stable by electrostatic 
repulsion and steric stabilization due to pendant groups on the PEI polymer chain. 
(Image taken from [59]). 
 

 

According to Lee et al. [59], AgNPs would form only with the presence of 

PEI, as its absence would favour the formation of bulk silver instead. At low 

concentrations (0.001 wt% PEI) and high concentrations (0.04 wt% PEI), larger 

particles (20-40nm) were found to outnumber smaller particles that were less than 

10nm. The authors explained that at low concentration, the PEI was too weak to act as 

stabilizers, whilst at high concentrations, the effect of PEI encouraged faster reduction 

of Ag, and hence induce nucleation and particle growth. An optimum concentration of 

0.01wt% was found to produce a majority of AgNPs in the 10 nm size range. The 

observations here seemed to reinforce the findings by Aroca et al. (2005) who 

reported on the synthesis of AgNPs using only silver salt reduced by sodium 

borohydride, but in ice-cold conditions [107]. 

  

Clearly, apart from the rate of silver nitrate addition, there are many reaction 

parameters which need to be considered and controlled in order to obtain the final 

product with desired properties. These parameters include the temperature and pH of 

the synthesis medium, the ratio of silver salt to reducing agent and to stabilizer, the 
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choice of stabilizer with specific steric influences, all of which contribute to the 

thermodynamics of the synthesis reaction and the kinetics of particle formation and 

growth. 

 

To achieve highly dispersed nanoparticles with a narrow size distribution, Chi 

et al. [78] used a mesoporous carbon structure, functionalized with carboxylate 

groups. The mesoporous structure of CMK-3, prepared from a silica material, SBA-

15, with sucrose as the carbon source, provided a solid template for the confined 

formation of metallic AgNPs whilst the carboxylate groups reduced the precursor 

Ag(NH3)2NO3 in situ. The schematic of the functionalization and reduction process is 

shown in Figure 2.2. Metallic silver presence was confirmed through wide-angle 

XRD studies, with 4 diffraction peaks corresponding to the FCC structure of Ag 

(JCPDS card no. 4-783).  

 

 

Figure 2.2: Preparation of silver nanoparticles using a mesoporous template. 
This schematic representation illustrates the formation of AgNPs in a mesoporous 
carbon material, CMK-3. (Source: Chi et al. (2012) [78]. 
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Apart from chemical reduction, physical methods such as microwave assisted 

method [130], photoreduction [131] and photochemistry [132] methods have been 

reported for the controlled synthesis of silver nanomaterials. The use of seed particles 

to form metallic nanocrystals has been touted as the ultimate approach in obtaining 

high precision and control over sizes, shapes and compositions of the product, with a 

view towards large-scale applications [133]. 

 

Due to limitations of traditional chemical methods, such as the use of toxic 

compounds in the synthesis process, researchers are turning to natural processes and 

green chemical methods such as biomineralization which exploits biomolecular 

templates that interact with inorganic material throughout its formation, resulting in 

the synthesis of particles with defined shapes and sizes [134]. Interestingly, bacteria 

are increasingly being used as biological reactors to synthesize silver nanomaterials. 

The biogenesis of AgNPs occur at very low concentrations of silver ions, as the 

organism undergoes cell death within minutes after the concentration is higher than 

the threshold level [135]. Bacteria such as Pseudomonas stutzeri AG259 [114], 

Streptomyces sp. BDUKAS10 [115], Streptomyces hygroscopicus [116], and diatoms 

such as Coscinodiscus sp. and Cylindrotheca fusiformis have been used for the 

mediated synthesis of various silver-based inorganic materials [136]. Pseudomonas 

stutzeri AG259 have been shown to form AgNPs up to 200 nm in size.  

 

AgNPs have also been reported synthesized through extracellular methods by 

using the fungi Fusarium oxysporum [120], Cladosporium cladosporioides [119], 

Aspergillus fumigatus [118], Neurospora crassa [121], and Penicillium fellutanum 

[122], which reduces the use of extra reducing agents. 
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2.2 Silver Nanocomposite Materials 

 

Nanocomposite materials contain domains or inclusions of nanometer size 

scale. Silver nanocomposite materials are usually fabricated of an organic or inorganic 

matrix or framework into which silver nanostructures are embedded. There are a wide 

variety of hybrid materials which have resulted in an interesting combination of 

properties, which enhances the individual traits of each material.  

 

Among the polymer matrix or inorganic frameworks which have been used in 

assembly with AgNPs include nylon-6 [66, 137], polyurethane [138], polysulfone 

[63], polysaccharides [139, 140], phospholipids [62], zeolites [141-143], mesoporous 

carbon [78], graphene [54, 144], graphene oxide [102] and titanium dioxide [69, 85].  

 

Table 2.3 shows the instrumentation methods commonly used to investigate 

the physical characteristics of Ag nanomaterials. Atomic/elemental composition is 

usually determined using energy dispersive X-ray spectroscopy (EDX) and X-ray 

photoelectron spectroscopy, while phase composition is studied using X-ray powder 

diffraction (XRD). Morphological observations through scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM) are common, while optical 

properties are frequently investigated using UV-visible spectrophotometry (UV-vis). 

The antimicrobial properties of Ag nanomaterial are also frequently evaluated using 

various antibacterial assays including the disk diffusion method and growth inhibition 

assays.  
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Table 2.3: Ag nanomaterials and their characterization methods. 

Characterization 
Functions / 
Objectives 

Instrumentation/ 
Method 

Ag Nanomaterial Reference 

Antibacterial Agar disk 
diffusion method 
/ Halo zone test / 
Kirby-Bauer test / 
Inhibition zone 
test 

Ag(I) complex with L-
tryptophan 

[56] 

Ag-functionalized graphene 
composite 

[84] 

Ag-graphene oxide composite [145] 
Ag-hydrogel nanocomposite [39] 
Ag nanocomposite film [40] 
AgNP-loaded cellulose-based 
filter paper 

[61] 

Ag-PEI multilayer assembly [52] 
Ag-polymer composite [53] 
Ag-thin film composite 
membranes 

[32] 

Ag-TiO2 nanocomposite [69] 
Ag vanadate nanowires [35] 
Ag-zeolite [55] 

Antibacterial 
assessment assay 
/ Bacteria growth 
inhibition / Liquid 
broth 
microdilution 
assay 

Ag-based metal-organic 
framework, Ag3(3-
phosphonobenzoate) 

[96] 

AgNP-filled nylon 6 
nanofibers 

[66] 

AgNP-polysaccharide 
hydrogel nanocomposite 

[57] 

Ag-Zn nanocomposite [41] 
BacLight 
Live/Dead 
bacteria viability 
kit 

Ag-PEI multilayer assembly [52] 
Ag-perfluorodecanethiolate 
complex films 

[98] 

Optical density 
measurement in 
liquid culture 
medium 

Ag-zeolite in polyethylene 
composite film 

[60] 

Atomic/elemental 
composition 

AAS Ag-zeolite [86], [92] 
EDX Ag-polymer composite [53] 

Ag-zeolite [55], [86] 
Ag-zeolite in polyethylene 
composite film 

[60] 

EELS Ag vanadate nanowires [35] 
ICP-AES Ag-zeolite [77] 
ICP-OES AgNPs in hyaluronan fibers [75] 
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Table 2.3 (continued): Ag nanomaterials and their characterization methods. 
 

Characterization 
Functions / 
Objectives 

Instrumentation/ 
Method 

Ag Nanomaterial Reference 

Atomic/elemental 
composition 

ICP-OES Ag-zeolite [76] 
Ag-zeolite in polyethylene 
composite film 

[60] 

XPS Ag-graphene composite [146], 
[147] 

Ag-mesoporous carbon [78] 
Ag-perfluorodecanethiolate 
complex films 

[98] 

Ag-Pt alloy NPs capped with 
bovine serum albumin protein 

[73] 

Ag-TiO2 nanocomposite [69] 
Ag-zeolite [77] 
Ag on self-assembled TiO2 
nanotube arrays 

[82] 

Crystallinity / 
Phase 
composition 

2D SWAXS AgNPs in hyaluronan fibers [75] 
SAED AgNP-loaded cellulose-based 

filter paper 
[61] 

WAXD / WAXS Ag-polymer nanocomposite [79] 
XRD Ag-carbon nanotube-reduced 

graphene oxide composite 
[148] 

Ag-chemically converted 
graphene nanocomposite 

[149] 

Ag-graphene composite [145-147], 
[150]  

Ag-hydrogel nanocomposite [39] 
Ag-mesoporous carbon [78] 
Ag nanocomposite film [40] 
AgNPs in hyaluronan fibers [75] 
Ag on self-assembled TiO2 
nanotube arrays 

[82] 

Ag-perfluorodecanethiolate 
complex films 

[98] 

Ag-Pt alloy NPs capped with 
bovine serum albumin protein 

[73] 

Ag-TiO2 nanocomposite [69] 
Ag vanadate nanowires [35] 
Ag-zeolite [55], [76], 

[77], [92] 
Ag-zeolite in polyethylene 
composite film 

[60] 

Ag-Zn nanocomposite [41] 
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Table 2.3 (continued): Ag nanomaterials and their characterization methods. 
 

Characterization 
Functions / 
Objectives 

Instrumentation/ 
Method 

Ag Nanomaterial Reference 

Electrical 
properties 

Electrocatalytic 
properties using 
cyclic voltametry 

Ag-carbon nanotube-reduced 
graphene oxide composite 

[148] 

Ag on self-assembled TiO2 
nanotube arrays 

[82] 

Morphology and 
particle size 
distribution 

AFM Ag-chemically converted 
graphene nanocomposite 

[149] 

Ag-graphene composite [151] 
Ag-graphene oxide composite [102] 
Ag-PEI multilayer assembly [52] 

FESEM Ag-carbon nanotube-reduced 
graphene oxide composite 

[148] 

Ag-functionalized graphene 
composite 

[84] 

Ag-graphene oxide composite [102] 
Ag-perfluorodecanethiolate 
complex films 

[98] 

SEM Ag-graphene composite [145], 
[150]  

Ag-hydrogel nanocomposite [39] 
Ag nanocomposite film [40] 
AgNPs in hyaluronan fibers [75] 
AgNP-filled nylon 6 
nanofibers 

[66] 

Ag on self-assembled TiO2 
nanotube arrays 

[82] 

Ag-Pt alloy NPs capped with 
bovine serum albumin protein 

[73] 

Ag-TiO2 nanocomposite [69] 
Ag vanadate nanowires [35] 
Ag-zeolite [76], [77], 

[86] 
Ag-zeolite in polyethylene 
composite film 

[60] 

HRTEM Ag-graphene composite [150] 
Ag-mesoporous carbon [78] 
Ag-Zn nanocomposite [41] 

TEM Ag-carbon nanotube-reduced 
graphene oxide composite 

[148] 

Ag-chemically converted 
graphene nanocomposite 

[149] 

Ag-chitosan nanocomposite [94] 
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Table 2.3 (continued): Ag nanomaterials and their characterization methods. 
 

Characterization 
Functions / 
Objectives 

Instrumentation/ 
Method 

Ag Nanomaterial Reference 

Morphology and 
particle size 
distribution 

 TEM Ag-graphene composite [145-147] 
Ag-hydrogel nanocomposite [39] 
Ag-mesoporous carbon [78] 
Ag nanocomposite film [40] 
AgNP-filled nylon 6 
nanofibers 

[66] 

AgNP-loaded cellulose-based 
filter paper 

[61] 

AgNP-polysaccharide 
hydrogel nanocomposite 

[57] 

Ag on self-assembled TiO2 
nanotube arrays 

[82] 

Ag- or Au-chitosan film [100] 
Ag-polymer nanocomposite [79] 
Ag-Pt alloy NPs capped with 
bovine serum albumin protein 

[73] 

Ag vanadate nanowires [35] 
Ag-zeolite [55], [76], 

[77] 
cryo-TEM Ag-polymer nanocomposite [79] 

Optical properties 
  
  

FTIR Ag-carbon nanotube-reduced 
graphene oxide composite 

[148] 

Ag-chitosan nanocomposite [94] 
Ag-graphene composite [150] 
Ag-graphene oxide composite [102] 
Ag-mesoporous carbon [78] 
Ag nanocomposite film [40] 
Ag on self-assembled TiO2 
nanotube arrays 

[82] 

Ag-perfluorodecanethiolate 
complex films 

[98] 

Ag-zeolite [55] 
FT NMR for 
chemical bonding 
analyses 

Ag nanocomposite film [40] 

Photoluminescenc
e spectroscopy 

Ag-chitosan nanocomposite [94] 
Ag nanocomposite film [40] 
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Table 2.3 (continued): Ag nanomaterials and their characterization methods. 
 

Characterization 
Functions / 
Objectives 

Instrumentation/ 
Method 

Ag Nanomaterial Reference 

Optical properties Raman 
spectroscopy for 
determination of 
number of graphene 
layers 

Ag-chemically converted 
graphene nanocomposite 

[149] 

Ag-functionalized graphene 
composite 

[84] 

Ag-graphene composite [145], 
[151]  

Ag-graphene oxide 
composite 

[102] 

Raman 
spectroscopy for 
SERS effect 

Ag-mesoporous carbon [78] 

Raman 
spectroscopy for 
determination of V-
O bond length 

Ag vanadate nanowires [35] 

Reflectance 
spectroscopy 

Ag-TiO2 nanocomposite [69] 
Ag-zeolite [55] 

Spectrofluorimeter Ag-zeolite [92] 
UV-vis Ag(I) complex with L-

tryptophan 
[56] 

Ag-chitosan nanocomposite [94] 
Ag-graphene composite [145], 

[150], 
[151]  

Ag-hydrogel nanocomposite [39] 
Ag nanocomposite film [40] 
AgNPs in hyaluronan fibers [75] 
AgNP-polysaccharide 
hydrogel nanocomposite 

[57] 

Ag- or Au-chitosan film [100] 
Ag-PEI multilayer assembly [52] 
Ag-polymer composite [53] 
Ag-Pt alloy NPs capped with 
bovine serum albumin 
protein 

[73] 

Porosity / textural 
properties 
  

BET Ag-mesoporous carbon [78] 
Ag vanadate nanowires [35] 
Ag-zeolite in polyethylene 
composite film 

[60] 

BJH Ag-mesoporous carbon [78] 
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Table 2.3 (continued): Ag nanomaterials and their characterization methods. 
 

Characterization 
Functions / 
Objectives 

Instrumentation/ 
Method 

Ag Nanomaterial Reference 

Size distribution 
profile 

DLS Ag-polymer nanocomposite [79] 
Ag vanadate nanowires [35] 

Thermal 
properties 

DSC AgNP-filled nylon 6 
nanofibers 

[66] 

Ag-zeolite in polyethylene 
composite film 

[60] 

TGA Ag-hydrogel nanocomposite [39] 
Ag nanocomposite film [40] 
Ag-perfluorodecanethiolate 
complex films 

[98] 

Ag-polymer composite [53] 
Ag-zeolite in polyethylene 
composite film 

[60] 

TGA for Ag 
content analysis 
by combusting 
carbon matrix in 
air flow to 700°C 

Ag-mesoporous carbon [78] 

Wetting 
properties 

Surface 
hydrophilicity 
(water contact 
angle) 

Ag-graphene oxide composite [102] 
Ag-PEI multilayer assembly [52] 
Ag-perfluorodecanethiolate 
complex films 

[98] 

Ag-polymer composite [53] 
Ag-zeolite coating [86] 

Miscellaneous  
Ag ion release Cathodic 

stripping 
voltammetry 

Ag-based metal-organic 
framework, Ag3(3-
phosphonobenzoate) 

[96] 

AAS AgNP-filled nylon 6 
nanofibers 

[66] 

Ag-zeolite in polyethylene 
composite film 

[60] 

ICP-MS AgNP-polysaccharide 
hydrogel nanocomposite 

[57] 

Cytoxicity MTT reduction 
assay 

Ag(I) complex with L-
tryptophan 

[56] 

AgNP-polysaccharide 
hydrogel nanocomposite 

[57] 

Lactate 
dehydrogenase 
(LDH) assay 

AgNP-polysaccharide 
hydrogel nanocomposite 

[57] 
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Table 2.3 (continued): Ag nanomaterials and their characterization methods. 
 

Characterization 
Functions / 
Objectives 

Instrumentation/ 
Method 

Ag Nanomaterial Reference 

Cytocompatibility 
  

Enzyme-linked 
immunosorbent 
assay (ELISA) 

Ag-Pt alloy NPs capped with 
bovine serum albumin protein 

[73] 

Proliferation 
assay 

Ag-Pt alloy NPs capped with 
bovine serum albumin protein 

[73] 

Membrane 
permeabilization 
of bacterial cells 

Flow cytometric 
assays 

AgNP-polysaccharide 
hydrogel nanocomposite 

[57] 

Rheological 
properties 

Viscometer AgNP-filled nylon 6 
nanofibers 

[66] 

Swelling studies Water uptake 
measurements 

Ag nanocomposite film [40] 
AgNP-loaded cellulose-based 
filter paper 

[61] 

 
 

 

2.2.1 Silver-Polymer Nanocomposites 

 

Several methods to prepare polymer/silver nanocomposite microspheres were 

reported previously. These include the suspension polymerization of poly(vinyl 

acetate) in the presence of AgNPs [152], AgNPs crosslinkers coated with 4-

mercaptomethylstyrene [128] and polystyrene-core/polyacrylic acid brush/Ag [79]. 

However, the complex polymerization synthetic procedures of these methods, 

variation in Ag nanoparticle size range, high cost and low yield remained a challenge 

to their production at the industrial scale. Although other supporting matrix material 

such as silica, zeolites and carbon have also been used to formulate AgNPs, the 

purification step which requires high-speed centrifugation or ultrafiltration remained 

the major limitation in industrial production.  
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Ion exchange resins have been shown to allow the immobilization of charged 

metal complexes on ion exchange sites through non-covalent electrostatic interactions 

[153]. In addition, the micron-sized and specific shapes of ion exchange resins can be 

recovered easily by simple filtration or decantation, suitable for industrial scale 

production. Furthermore, the use of ion exchange resins as an insoluble support 

material also possess several advantages over other matrix materials, including their 

ease of handling, ease of recycling, negligible levels of metal leaching, and their 

compatibility with water and other reaction solvents [153].  

 

Several synthetic routes of ion exchange resins have been described previously 

including reaction of styrene and divinylbenzene monomers via a surfactant reverse 

micelles swelling method [154] or by conventional radical suspension polymerization  

method [155]. Dowex is the commercial name for a group of ion exchange resins 

produced by The Dow Chemical Company (Dow). These fine meshed resins can be 

broadly categorized as cation resins and anion resins. They consist of a styrene-

divinylbenzene copolymer backbone formed into whole, spherical resin beads.  

 

The Dowex spherical ion exchange resins are mainly used for fine chemical 

and pharmaceutical column separations, ion exchange applications and bioprocessing 

[156]. The H+ ionic form of Dowex ion exchange resin (Dowex 50WX8) has a mesh 

size of 200-400, water retention capacity of 50-58% and a total exchange capacity of 

1.7 meq/mL. The physical characteristics and antifouling properties of AgNPs 

supported on Dowex resins are discussed in Chapter 4.  
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2.2.2 Silver-Zeolite Nanocomposites 

 

Zeolites are a family of aluminosilicate mesoporous ion exchange materials, 

with a stable network of hollow channels and pores within the size range of most 

monoatomic ions [157]. Due to their thermal stability and unique interconnected 

porous microstructure, natural and synthetic zeolites have been used as templating 

support materials to host a variety of metallic species including Ag [158], Mg [159], 

Ni [160], Zn [161], Fe [162], and Ga [163]. All these studies have shown that zeolites 

are efficient reaction templates to produce composite materials for various 

technological applications. The porous internal network structure of zeolites provides 

an ideal and stable template for the formation and growth of nanoparticles with 

nanometre dimensions. Furthermore, nanoparticles are physically prevented from 

agglomeration to form larger nanoparticles or micron-sized particles, as they are 

individually separated within the discrete pores and channels of the zeolite interior. 

 

Previous studies on Ag-zeolite nanocomposite materials proposed an ion 

exchange process followed by high temperature calcination methods [76, 92, 158] to 

produce metallic Ag-zeolite materials. On the other hand, Shameli et al. [164] used 

sodium borohydride as a room temperature chemical reducing agent to form silver-

doped Y-zeolites.  

 

Silver-zeolite nanocomposites possess great potential for marine antifouling 

applications due to the remarkable antimicrobial property of silver against at least 650 

unicellular organisms [20]. Furthermore, zeolites have no known environmental 
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hazards and are regularly used for environmental remediation [165], such as the 

removal of heavy metals from soils [166] and in the treatment of wastewater [167].  

 

In fact, to the best of our knowledge, there have been very limited studies on 

adopting silver-zeolite nanocomposites for the evaluation of marine antifouling 

property. Previous related works include that of De Muynck et al. [168], which 

studied strategies for the prevention of algal fouling of outdoor terrestrial concrete 

surfaces using a Cu-Ag zeolite and also AgNPs. Krishnani et al. [47] reported on the 

bactericidal activity of silver ion-exchanged zeolite against shrimp pathogenic 

bacteria and its efficiency in the removal of ammonia. However, reports on Ag-zeolite 

composite materials against microfouling marine bacteria are still very scarce and 

difficult to come by. The physical characteristics and antifouling properties of silver-

ZSM-5 zeolite nanocomposites are discussed in Chapter 5. 

 

 

2.2.3 Silver-Titania Nanocomposites 

  

Ever since the discovery of carbon nanotubes (CNTs) by Iijima in 1991 [169], 

interest has remained strong in nanotubular materials for their exceptional electronic 

and mechanical properties [170]. Titanium dioxide nanotubes, first reported by 

Kasuga [171, 172] are composed of single sheets of TiO2 scrolled into a tubular 

structure with an exposed edge. The photocatalytic ability of TiO2 under ultraviolet 

light and the self-cleaning property of TiO2-coated glass when exposed to sunlight has 

been extensively investigated since their initial discovery by the Fujishima group 

[173]. The nanotubular structure of titania nanotubes (TNT) enhances the 
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photocatalytic activity of TiO2 through its higher specific surface area on the inner 

and outer surfaces of the structure. TNT has been found in many diverse applications 

as a functional component in nanocomposite systems including as a photocatalytic 

hydrogen generator [174], as an electrode for sodium storage [175], in wastewater 

treatment [176], as a light-activated anti-bacterial platform [177] and for antifouling 

property against HeLa cells [178]. 

  

While the majority of studies have looked at Ag-TiO2 nanotube composites in 

the areas of catalysis and energy [82], there have been limited studies on their marine 

antifouling property. Ruffolo et al. [69] compared the performance of pure TiO2 

nanoparticles and Ag-doped TiO2 nanoparticles on the marine fouling of marble slabs 

for protection of underwater archaeological sites. Carl et al. [179] found that the use 

of TiO2 as photocatalytic nanofillers in foul-release polydimethylsiloxane (PDMS) 

coatings improved their antifouling performance against the macrofouling mussel 

species Mytilus galloprovincialis, while TiO2/fluorinated acrylic nanocomposite was 

used as a marine antifouling paint [180].  

 

Apart from these scattered antifouling reports, more literature emerged from 

the field of water treatment depicting TiO2 as a photocatalytic component of water 

filtration and microfiltration membrane systems to remove organic fouling matter 

including humic acid [70]. However, Ag-TiO2 nanotubular composite materials have 

not yet been subjected to intensive study in the field of marine antifouling. Therefore, 

more studies remain to uncover the potential of Ag-TiO2 nanotubular composites for 

marine antifouling applications. The physical characteristics and antifouling 

properties of silver-TiO2 nanotube composites are discussed in Chapter 6.  
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2.2.4 Graphene-Silver Nanocomposites 

 

Graphene is a 2D crystalline structure with large specific area, good electrical 

conductivity, and are thermally and chemically stable materials [181]. Since its initial 

discovery by Novoselov & Geim in 2004, various applications have been reported to 

take advantage of its unique properties [182]. Graphene has wide applications 

especially as electrochemical and bio-electrochemical sensors [183, 184], whilst 

graphene-based metallic nanocomposites have expanding applications [147, 148, 

185]. 

 

The literature on graphene-silver nanocomposite materials are filled with 

reports of silver growth on graphene oxide precursors [84, 145, 149-151, 186-188]. 

AgNPs on graphene sheets have been produced with excellent electronic conductivity, 

optical and SERS properties [189, 190]. The inclusion of silver nanoparticles 

(AgNPs) on rGO sheets has yielded composites with antimicrobial properties [54, 

191]. Nanoparticles of silver and other noble metals supported on graphene/GO/rGO 

have promising applications in food safety by detecting prohibited food additives [84, 

151] and the presence of toxins [192]. AgNPs on GO sheets have been reported as 

promising fuel cell applications [146, 193], whereas the addition of noble bimetallic 

nanoparticles on GO/rGO hold promise as electrochemical sensors [194, 195]. 

However, comprehensive studies on antifouling properties of graphene-silver 

nanomaterials remain scarce.  

 

Reduced graphene oxide (rGO) has been used as the substrate for the 

templated growth of metallic nanoparticles [191, 196-198]. Most of these studies 
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utilised graphene nanomaterials synthesized via the modified Hummers method, 

followed by chemical reduction to produce the rGO. These production methods 

employ harsh chemicals such as sulphuric acid and results in graphene surfaces 

decorated with defects, the presence of oxygen and other functional groups compared 

to pristine graphene [199]. 

 

In recent years, more environmentally friendly methods of graphene oxide 

synthesis with minimal toxic by-products have been reported [200]. Large scale 

graphene sheets have been produced through chemical vapour deposition (CVD) on 

various metal substrates, with copper substrate being the most promising for industrial 

applications due to their low affinity to carbon [201]. Lately, the CVD synthesis of 

graphene has been further simplified to single-step growth of both copper substrate 

and graphene sheet through a plasma enhanced process [202]. On the other hand, 

sonochemistry has been employed as an effective one-pot synthesis method for 

graphene oxide [203] and graphene [183].  

 

The physical characteristics and antifouling properties of graphene-silver 

nanocomposites synthesized from a novel 2-step hydrothermal method are discussed 

in Chapter 7. 

 

 

2.2.5 Antimicrobial Properties of Silver Nanomaterials 

 

Silver has been used as a therapeutic and antimicrobial agent in medicine for 

centuries. The germicidal action is thought to be due to the degree of ionization of the 
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silver colloid, with particle size and charge playing important roles in disrupting the 

basic cellular function of the bacteria [204]. However, their use as antimicrobials has 

declined since the introduction of antibiotics in the early 20th century. With the 

proliferation of several strains of pathogenic bacteria which have developed resistance 

against various antibiotics, silver, especially in the form of nanoparticles, have again 

emerged as an interesting and valuable antimicrobial agent in many biomedical 

applications. These applications range from wound dressings to silver-coated medical 

implants and devices, and emerging in various forms including nanogels and 

nanolotions [205]. 

 

The antimicrobial property of AgNPs is of particular interest in the biomedical 

field, owing to their obvious benefits in decreasing the proliferation of disease-

causing bacteria. AgNPs in an aqueous solution release silver ions. The silver ions are 

biologically active with bactericidal effects by combining the interaction effects of the 

three main components of the bacterial cell:  

 

1) the peptidoglycan cell wall and plasma membrane,  

2) the bacterial DNA 

3) and the bacterial proteins, particularly enzymes [59]. 

 

The AgNPs can also interact extensively with bacteria cell walls and cause 

lysis. After penetrating the bacteria, further damage is done as a result of the 

interaction between the AgNPs and the bacterial DNA [59]. 
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In a study on antimicrobial property of stabilized AgNPs with phospholipid 

membrane on Escherichia coli and Staphylococcus aureus bacterial strains, the 

authors found that the antibacterial properties of AgNPs depend on the particle size, 

stabilizer and lecithin concentrations. Only stabilized AgNPs showed a bacterial 

inhibition zone. Unstabilized AgNPs agglomerated quickly, settled on the wells and 

did not diffuse in agar. In addition, high lecithin concentrations reduced the release of 

AgNPs, leading to higher bacterial survival rates [62]. 

 

According to Modrzejewska et al. [104], the antimicrobial property of AgNPs 

depends on the particle dimensions. The mechanism of action for AgNPs 

antimicrobial activity is highly dependent on the type of microorganism. In fungi for 

instance, AgNPs disturb the natural water balance by blocking the ability of the fungi 

to bind water molecules. In viruses, AgNPs eliminates the catalytic decomposition of 

a lipid-protein substance. In bacteria, the high electrical conductivity of AgNPs 

disrupts the natural gradient of electric potential across the bacterial cell membrane to 

which it adheres. AgNPs also penetrate the protoplasm through capillaries in the cell 

membrane, causing disturbances in the mitochondrial and nucleus activities. In 

addition, silver ions which are released from AgNPs also bind with thiol groups (-SH) 

inside the bacteria, causing protein deactivation. Finally, bacterial growth is inhibited 

by atomic oxygen adsorbed on the surface of AgNPs. 

 

Khan et al. (2011) studied the interaction of colloidal AgNPs with five 

different bacterial species (Pseudomonas aeruginosa, Micrococcus luteus, Bacillus 

subtilis, Bacillus barbaricus and Klebsiella pneumonia). The influence of surface 

charge on the adsorption of AgNPs on bacteria surfaces was investigated under acidic, 
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neutral and alkaline pH under varying sodium chloride salt concentrations. In general, 

an increase of adsorbed AgNPs increased the bacterial deaths, with a maximum 

adsorption and toxicity reported at pH 5 and < 0.5 M NaCl concentration [206]. Table 

2.4 summarises the silver nanomaterials which were synthesized and tested for 

positive activity against bacterium. 

 

 

Table 2.4: Antimicrobial silver-containing materials and their target organisms. 
 

Ag-containing 
antimicrobial 
material 

Model Organisms Reference 

Ag NP Aeromonas hydrophila [24] 
Bacillus cereus (MTCC 306) [50] 
Bacillus subtilis [25], [67], [126] 
Bacillus subtilis (MTCC 736) [50], [68] 
Candida albicans [25] 
Escherichia coli [25], [51], [58], 

[65],[67], [126] 
Escherichia coli (MTCC 68) [50] 
Escherichia coli strain BL-21 EC50 = 11± 
1.72 mg/L 

[23] 

Escherichia coli strain K12, silver resistant 
strains J53 (pMG101) and (116AgNO3R) 

[22] 

Klebsiella mobilis [67] 
Klebsiella pneumoniae inhibited at 70ppm [59] 
Lactobacillus fermentum [25] 
Pseudomonas aeruginosa [25], [58] 
Pseudomonas aeruginosa (MTCC 8158) [50] 
Staphylococcus aureus [25], [58], [67], 

[126] 
Staphylococcus aureus (MTCC 96) [50] 
Staphylococcus aureus inhibited at 105ppm [59] 
Staphylococcus aureus strain MRSA [24] 
16 marine biofilm isolates: 
Myroides odoratimimus (MB1); Micrococcus 
luteus (MB2); 
Halomonas aquamarina (MB3) 
Proteus mirabilis (MB4); 
Micrococcus luteus (MB5); 
Exiguobacterium aurantiacum (MB6);  

[207] 
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Table 2.4 (continued): Antimicrobial silver-containing materials and their target 
organisms. 

 
Ag-containing 
antimicrobial 
material 

Model Organisms Reference 

Ag NP Exiguobacterium arabatum (MB7, 
MB8); Jeotgalibacillus alimentarius 
(MB9); Bacillus megaterium (MB10); 
Bacillus pumilus (MB11);  
Bacillus pumilus (MB12);  
Bacillus pumilus (MB13);  
Bacillus megaterium (MB14);  
Halotalea alkalilenta (MB15); 
Arthrobacter mysorens (MB16) 

[207] 

Ag NP and Ag 
nanochains 

Staphylococcus aureus [51] 

Ag vanadate 
nanowires 

Enterococcus faecalis (ATCC21814 and 
29212) 

[35] 

Escherichia coli (ATCC 25922) 
Salmonella enterica Typhimurium strain 
LT2 
Staphylococcus aureus strain BEC9393 
(MRSA), strain Rib1 (MRSA) 
(ATCC29213) 

Ag(I) complex with 
L-tryptophan (TRP) 

Enterococcus faecalis [56] 
Escherichia coli 
Pseudomonas aeruginosa 
Staphylococcus aureus 

Ag-based metal-
organic framework, 
Ag3(3-
phosphonobenzoate) 

Escherichia coli (MG1655) [96] 
Pseudomonas aeruginosa (PA130709, 
PA240709) 
Staphylococcus aureus (strains RN4220, 
Newman and MRSA N315) 

Ag-graphene Escherichia coli [196] 
Ag-graphene oxide Candida albicans,  [145] 

Candida tropical 
Bacillus subtilis  [191] 
Staphylococcus aureus [149], [191] 
Escherichia coli [188] 

Ag-hydrogel 
nanocomposite 

Escherichia coli [39] 

Ag NP in polysulfone 
ultrafiltration 
membranes 

Escherichia coli K12 [63] 
MS2 bacteriophage 
Pseudomonas mendocina KR1 

Ag NP-filled nylon 6 
nanofibers 

Bacillus cereus (B002) [66] 
Escherichia coli O157:H7 (B179) 
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Table 2.4 (continued): Antimicrobial silver-containing materials and their target 
organisms. 

 
Ag-containing 
antimicrobial 
material 

Model Organisms Reference 

Ag NP-loaded 
cellulose-based filter 
paper 

Escherichia coli [61] 

Ag NP-polysaccharide 
nanocomposites, 
hydrogels 

Escherichia coli (ATCC 25922) [57] 

Ag NP-polysaccharide 
nanocomposites, 
hydrogels 

Pseudomonas aeruginosa (ATCC 27853) [57] 
Staphylococcus aureus (ATCC 25923) 
Staphylococcus epidermidis (clinical 
isolate) 

Ag-PEI multilayer 
assembly 

Escherichia coli DH5 (ATCC 53868) [52] 
Staphylococcus aureus (ATCC 25923) 

Ag-
perfluorodecanethiolate 
complex films 

Pseudomonas aeruginosa PAO1 [98] 

Ag-phospholipid 
membrane 

Escherichia coli [62] 
Staphylococcus aureus 

Ag-polymer composite Escherichia coli [53] 
Klebsiella pneumoniae 
Pseudomonas aeruginosa 
Staphylococcus aureus 
Escherichia coli [33] 
Escherichia coli (MTCC 1303) [40] 
Pseudomonas aeruginosa (MTCC 1688) 
Staphyloccus aureus (MTCC 3160) 

Ag-TiO2 Escherichia coli [208] 
Micrococcus sp. BC 654 [69] 
Stenotrophomonas maltophilia BC 652 

Ag-zeolite Escherichia coli (ATCC 25922) [55] 
Escherichia coli (MIC = 40ug/ml) [47] 
Pseudomonas aeruginosa (ATCC 27853) [55] 
Salmonella typhimurium (ATCC 14028) 
Shigella flexneri (ATCC 12022) 
Staphylococcus aureus (ATCC 25923) 
Staphylococcus epidermidis (ATCC 
12228) 
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Table 2.4 (continued): Antimicrobial silver-containing materials and their target 
organisms. 

 
Ag-containing 
antimicrobial 
material 

Model Organisms Reference 

Ag-zeolite Vibrio cholerae (MIC=50 - 60ug/ml) [47] 
Vibrio harveyi (MIC=40ug/ml) 
Vibrio parahaemolyticus (MIC=50 - 
60ug/ml) 
Acidothiobacillus thiooxidans (ATCC 
19703) 

[64] 

Ag-zeolite coating Escherichia coli [86] 
Listeria innocua 
Pseudomonas putida 
Staphylococcus epidermidis 

Ag-zeolite in 
polyethylene 
composite films 

Escherichia coli MIC = 0.5 mg 
zeolite/mL or 25 ug Ag/mL 

[60] 

Ag-Zn nanocomposite Escherichia coli [41] 
Streptococcus faecalis 

 

 

2.3 Fouling 

 

Scientific research on fouling and antifouling technology is a unique example 

of multidisciplinary work which requires the collaboration of materials scientists, 

synthetic chemists, marine biologists, microbiologists and environmental scientists in 

order to produce effective and environmentally-safe products. Intensive research 

efforts at commercial enterprises and academia in the last decade has been conducted, 

to develop systems and solutions which are environmentally benign, yet effective on 

the industrial scale, to ward off and control the fouling phenomenon.  

 

Figure 2.3 shows an upward trend, particularly in the last decade, in the 

publication of papers related to antifouling research. Although the data was obtained 
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from one database (Elsevier’s ScienceDirect), it is not a stretch of the imagination to 

state the emerging importance of enhanced antifouling materials and applications. The 

research areas encompass the discovery and formulation of novel coatings and 

surfaces, as well as simpler and more efficient processing methods, to the exploration 

of natural alternatives to synthetic active molecules. The spike in research in this area 

could be attributed to recent legislations imposed on ship owners to remove TBT-

containing antifouling coatings on ships effective from 2008 [209]. 

 

 

Figure 2.3: Scientific publications related to marine antifouling research. The 
chart shows an upward trend in the number of scientific papers related to marine 
antifouling published by Elsevier from the 1950s to 2017. 
 

 

2.3.1 Definition of Fouling  

 

Fouling is a general term used to describe the attachment of unwanted 

organisms on wetted surfaces [1], such as in food processing and in biomedical 

implants [210], desalination and water treatment plants [211], pipelines for oil/water 
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[212, 213], in shipping [13], as well as in closed systems such as submarines and 

space craft [214]. Biological fouling in the marine environment is a significant subset 

of the general fouling problem. As the biofouling process involves the settlement of 

epibiont organisms on surfaces providing protection and nutrients [215], this process 

is sometimes known as colonization, or simply, fouling. The colonizing organisms use 

an array of biological glues as a means of adhesion [6]. This undesirable phenomenon 

commonly afflicts ship hulls [13], aquaculture cages [216], and other immersed 

marine surfaces. In wastewater treatment, biofouling of separation membranes is a 

serious problem as well [217]. Real-time monitoring of biofilm growth has been 

advocated, especially in water supply engineering systems to identify the site and 

extent of biofilm development [218]. 

 

Although biofouling occurs in nature and on natural surfaces, it presents a 

significant problem to manmade surfaces immersed in seawater. This is because 

natural surfaces, for instance, mollusk shells, have developed a natural defense system 

against fouling, whereas manmade surfaces have not.  

 

 

2.3.2 Stages of Fouling Development 

 

According to Abarzua and Jakubowski [5], the development of the biofouling 

process can generally be divided into 3 progressive stages:  

1) biofilm formation  

2) microfouling 

3) macrofouling 
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Table 2.5 shows the temporal stages in the biofouling process. The process 

begins with the conditioning of a submerged surface, where a conditioning film 

develops within the first minute of wetting. Physical forces initiate the adhesion of 

organic molecules such as proteins, polysaccharides and proteoglycans, as well as 

some inorganic molecules onto the immersed surface. Other molecules which adhere 

to the surface include humic acid, fulvic acid, as well as ions in the marine 

environment. Representative molecules in the conditioning film are shown in Figure 

2.4. These organic molecules cause the surface to become wettable, as well as provide 

biological cues for microorganisms such as bacteria and simple diatoms to attach 

[219].  

 

This is immediately followed by the formation of a microbial biofilm by 

single-celled organisms, such as marine bacteria and diatoms. As shown in Figure 2.4, 

the microfouling stage or the primary colonization is dominated by the attachment of 

bacteria and diatoms. Initially, a reversible adsorption of bacteria takes place. The 

interaction between these primary colonizers and the wetted surface has been 

attributed to physical forces including Brownian motion, electrostatic interaction, and 

Van der Waals forces [13, 220]. The bacteria will then form a nonreversible adhesion 

onto the surface by producing organic anchoring fibrils comprising mostly of glucose 

and fructose [7, 221]. This bacterial adhesion is known as a microbial ‘biofilm’.  

 

Approximately one week after the formation of the biofilm, microfouling 

continues with microalgae spores and protozoans settling over the microbial biofilm. 

This is attributed to the biofilm’s capacity to provide a conducive and nutrient-rich 

environment. Greater protection from predators, toxicants and environmental 
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uncertainties is also provided by the biofilm for the larvae of macro-organisms to 

settle. Callow and Callow (2006) [222] stated that although a biofilmed surface is not 

a pre-requisite for settlement of fouling organisms, in practice, colonization by spores 

and larvae of those organisms almost usually occurs via a biofilmed surface. The 

biofilms exert a host of surface-associated and diffusible signals with the possibility 

of moderating the settling behaviour of cells, spores and larvae. 

 

Macrofouling is the final stage in the fouling process whereby spores of 

macroalgae, protozoa and sessile marine organisms such as barnacles attach to the 

microfouling film. Figure 2.4 shows a representative hard macrofouler, the cyprid 

larvae of the barnacle, searching for settlement sites in the macrofouling stage. 

Railkin [223] described the first stage of the macrofouling process being dominated 

by fast-growing organisms such as hydroids, serpulids, and bryozoans. This is 

followed by slow-growing organisms such as mollusks. The entire fouling settlement 

process has been observed to take place within the span of one month.
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Timeframe First minute First 24 hours First week First month 

Event Conditioning film / 
Adhesion of organic 
molecules;  

Microbial biofilm Microfouling Macrofouling 

Attached 
Organisms 

Proteins, 
proteoglycans, 
polysaccharides 

Primary Colonizers: 
 
• Bacteria  

(e.g. Pseudomonas 
putrefaciens, Vibrio 
alginolyticus) 
 

• Diatoms  
(e.g. Achnantes 
brevipes, Amphiprora 
paludosa, Amphora 
coffeaeformis, 
Licmophora abbreviata, 
Nitzchia pusilla) 

Secondary Colonizers: 
 
• Spores of macroalgae  

(e.g. Enteromorpha 
intestinalis, Ulothrix zonata 
[Chlorophyta]) 
 

• Protozoa 
(e.g. Vaginicola sp., 
Vorticella sp., 
Zoothamnium sp. [Ciliata]) 

Tertiary Colonizers: 
 
Larvae of macrofoulers such as 
• Crustacea  

(e.g. Balanus amphitrite) 
 

• Bryozoa  
(e.g. Electra crustulenta ) 
 

• Coelenterata  
(e.g. Laomedia flexuosa) 
 

• Mollusca  
(e.g. Mytilus edulis) 
 

• Polychaeta  
(e.g. Spirorbis borealis) 
 

• Tunicata 
(e.g. Styela coriacea) 

 

Table 2.5: A schematic of the timeframe for biofouling processes and the typical organisms which are involved. Adapted from Abarzua & 
Jakubowski [5].  

54 
 



 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 2.4: A schematic of the temporal stages of biofouling. It proceeds from the moment a surface is wetted (conditioned), which facilitates 
the biofilm formation by bacteria and diatoms, to the colonization and growth of the soft and hard fouling organisms. Organisms shown are 
representatives of the common classes of fouling organisms. 
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2.3.3 Main Marine Fouling Species 

 

Distinct to each habitat are the abundance and variety of fouling organisms, as 

well as the rate of fouling development by those organisms. In the tropics, Hydroides 

and tube-like polychaetes form the majority of the initial colonizers, while barnacles, 

mollusks and bivalves dominate the fouling community in temperate waters. In the 

polar region, diatoms comprise the main fouling organisms [215].  

 

Figure 2.5 shows the diversity and size scales of a range of fouling organisms. 

They range in size from micrometre (bacteria, spores of macroalgae and diatoms) to 

millimetre (larvae of invertebrates such as barnacles and mussels). These organisms 

have spores and larva with highly specialized attachments with the capability to seek 

out suitable settlement sites by sensing chemical and biological cues secreted by their 

surrounding environment. 

 

Fouling organisms are classified by the type of fouling observed, and are 

divided into the following three major fouling groups:  

1) microfoulers or “slime”,  

2) soft macrofoulers, and 

3) hard macrofoulers.  

 

Microfoulers or biofilm-causing organisms are identified as bacteria, diatoms 

and microscopic unicellular algae spores. Macrofouling organisms may be divided 

into soft macrofoulers, e.g. macroalgae, anemones, and hydroids, while hard 

macrofoulers are typically composed of barnacles, mussels and tubeworms. The most 
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common marine foulers consist of algae and invertebrates such as the hard-shelled 

genera Balanus and Molluscs, grass-like or bush-like Hydroids and Bryozoans, and 

spineless organisms such as Ascidians and sponges. 

 

 

 
 
Figure 2.5: A schematic of the diversity and size scale of representative fouling 
organisms. (a) Bacteria (scanning electron micrograph (SEM)), (b) false-colour SEM 
of motile, quadriflagellate spores of the green alga (seaweed) Ulva, (c) false-colour 
environmental SEM image of settled spore of Ulva showing secreted annulus of 
swollen adhesive, (d) SEM of diatom (Navicula), (e) larva of tube worm, Hydroides 
elegans (image courtesy of B. Nedved), (f) barnacle cypris larva (Amphibalanus 
amphitrite) exploring a surface by its paired antennules (image courtesy of N. 
Aldred), (g) adult barnacles (image courtesy of AS Clare), (h) adult tubeworms (H. 
elegans; image courtesy of M. Hadfield), (i) adult mussels showing byssus threads 
attached to a surface (image courtesy of J. Wilker), (j) individual plants of the green 
alga (seaweed) Ulva. (Reproduced from Callow and Callow, 2011) [4]. 
 

 

As these colonizing organisms possess such variety in size as well as 

complexity in searching for settlement sites, to date, there is no one single solution to 

successfully stop the process of fouling from all classes of organisms. 
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Table 2.6 contains a list of some of the fouling organisms identified in various 

antifouling studies. The most common model organisms used to challenge the 

effectiveness of prospective antifouling agents or coatings include marine bacteria 

Halomonas pacifica and diatoms, green algae Ulva linza, and the barnacle 

Amphibalanus amphitrite.  

 

 

Table 2.6: List of marine fouling organisms identified in literature. 

Fouling 
Organism Classes 

Organism by Species Reference 

Microfouling 
 

Bacteria 
 

Alcaligenes sp. [18] 
Bacillus macroides (strain 
KORDI-13724) 

[224] 

Cobetia marina (Halomonas 
marina) 

[225] 

Escherichia coli [226] 
Halomonas marina 

 
[227] 

Halomonas pacifica [228], 
[229] 

Loktanella hongkongensis 
 

[230] 
Marinobacter 

 
[229] 

Micrococcus luteus 
(UST950701-006) 

[230] 

Micrococcus sp. [18] 
Proteus sp. [18] 
Pseudoaltermonas piscida 

 
[230] 

Pseudoalteromonas sp. [231] 
Pseudomonas aeruginosa (strain 
KORDI 13716) 

[224] 

Pseudomonas aeruginosa PA01 [98] 
Pseudomonas sp. [18] 
Psychrobacter sp. [229] 
Rhodobacter sp. [231] 
Rhodovulum sp. (UST950701-
012) 

[230] 

Ruegeria sp. (UST010723-008) [230] 
Staphylococcus sp. [18] 
Streptococcus sp. [18] 
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Table 2.6 (continued): List of marine fouling organisms identified in literature. 

Fouling Organism 
Classes 

Organism by Species Reference 

Microfouling 
 

Bacteria 
 

Vibrio fisheri [232] 
Vibrio harvayi (UST020129-
010) 

[230] 

Vibrio sp. [18] 
Diatoms Achnanthes sp. [18] 

Amphora sp. [18], [233] 
Amphora coffeaeformis (KMCC 
B027) 

[224] 

Fragiliria sp. [18] 
Haslea sp. [233] 
Navicula sp. [18] 
Navicula incerta (KMCC B001) [224] 
Nitzschia sp. [18] 
Synedra sp. [18] 

Soft macrofoulers Macroalgae Dunaliella tertiolecta [232], 
[234] 

Ulva linza [225], 
[235], 
[236] 

Hydroids Dynamena pumila [237] 
Gonothyraea loveni [237] 

Hard macrofoulers Ascidians Ciona intestinalis [238] 
Pyura praeputialis [238] 

Bryozoans Bugula dentata [233] 
Bugula flabellata [233] 
Bugula neritina [230], 

[233] 
Cirripedia Amphibalanus amphitrite [230], 

[232], 
[239], 
[240], 
[241], 
[242], 
[243] 

Amphibalanus improvisus [244] 
Amphibalanus reticulates [233] 
Amphibalanus variegatus [245] 

Molluscs Mytilus edulis [237] 
Brachidontes pharaonic 
 

[240] 
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2.3.4 Effects of Marine Fouling 

 

The effects of fouling on maritime vessels and infrastructure are a common 

problem which lead to serious negative efficiency, economic and environmental 

issues. The hydrodynamics of a ship’s hull will be affected due to increased roughness 

and wall shear stress, adding to skin friction drag [246]. Although macrofouling of 

maritime surfaces with attachment of barnacles and trailing seaweed will substantially 

reduce the speed and performance of ships, it is surprising that microfouling has also 

been found to contribute considerable negative effects, as described by Cassé and 

Swain [18]. Compared with a clean hull, a hull covered by as little as a 1-mm thick 

layer of slime has been shown to cause an 80% increase in skin friction coefficient, 

along with a 15% loss in ship speed [8]. According to Bohlander [247], biofouling, 

mostly in the form of microfilms, caused an increase of 8-18% in drag in full-scale 

power trials of a frigate. 

 

It has been found that unprotected hull bottoms have accumulated up to 200 

tons of foulant upon docking [248]. To overcome the extra drag force, up to 40% 

increase in fuel consumption, and as much as 77% increase in voyage overall costs of 

oceangoing vessels, have been noted [1]. 

 

The international marine transport industry uses an estimated 50% of their 

operating costs on fuels. In 1999, the annual consumption of bunker fuel (fuel oil used 

for ships) by the world’s fleet was estimated at 180 million tonnes. In 1999, the cost 

of bunker fuel was approximately USD100/tonne, therefore, the total consumption 

cost amounted to USD18 billion [9]. The worldwide use of bunker fuels  jumped to an 
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estimated 278 million tonnes in 2001, while between 2001 and 2020, the total 

consumption averaged at 3.1% growth annually [10]. With such high fuel costs, the 

addition of biofouling to ships would certainly increase operating costs over time, if 

no measures are put in place to control the settlement and growth of fouling matter. 

 

As a direct result of the increased fuel usage, higher carbon footprint will 

accelerate greenhouse emissions and global warming. In addition, ship owners are 

faced with decreased vessel availability due to more frequent dry-docking intervals 

for removal of foulant and maintenance works [13].  

 

As ships travel throughout major shipping routes globally, they have 

unwittingly become the vectors in transmitting invasive species of fouling organisms 

into new marine environments. These alien aquatic species have the potential to 

threaten the survival of native marine populations and their ecosystems [249-251]. 

 

Without adequate protection of the maritime surfaces, most commonly 

attained through the use of antifouling paint systems, the maritime industry will 

continue to spend considerable resources on the removal of biofouling organisms and 

expend precious economic resources to overcome their negative impacts. However, as 

described in the next section, the antifouling paint systems which have been in use for 

the past century and earlier, relied on biocidal effects of toxic compounds. These toxic 

paint compounds kill fouling organisms but also reveal long-lasting effects to non-

target organisms, with high potential for such contaminants to enter the marine food 

chain [252]. They have been found to persist with disastrous effects  on the marine 

environment, especially in areas around dry docks and busy ports [13]. 
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2.4  Marine Antifouling Paint Systems 

  

Ship hulls and its parts that are usually immersed underwater, are exposed to a 

complicated and challenging environment. They require protection from seawater 

corrosion, UV degradation as well as biofouling. Almeida et al. [13] described the 

protective painting systems for ships, which includes an anticorrosive primer and an 

antifouling topcoat, with the addition of a suitable tie coat which is sometimes applied 

between the primer and the topcoat. The antifouling coating usually contains one or 

more biocidal agents to kill off fouling species. Several studies [221, 228, 253, 254] 

have focused on the prevention of biofilm formation through the use of biocides as a 

strategy to halt the progress of fouling.  

 

According to the International Maritime Organization [209], a good biocide 

for use in an anti-fouling system should possess these characteristics: broad spectrum 

activity against targeted fouling organisms, low toxicity to mammals, low solubility in 

water, does not accumulate in the food chain, is not persistent in the environment, is 

compatible with paint raw materials, and finally, has a favourable price-to-

performance ratio. 

 

 

2.4.1 Primitive Antifouling Systems 

 

Interest in overcoming the blight of fouling has existed for as long as human 

civilization used ships to traverse the globe. The early Phoenicians and Carthaginians 

were reported to protect their wooden hulled ships with wax, tar and asphalt as early 
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as 700 B.C. [13]. In 1625, the first patent on antifouling paints was filed by William 

Beale [246].  

 

A 19th century manuscript on this topic described fouling as the “most 

expensive and objectionable” phenomenon on the hulls of the iron-clad ships of the 

time, with up to 300 patents having been filed - attesting to the vigorous attempts by 

the British Royal Navy and commercial shipping fleet owners to battle this significant 

issue [3]. Many of the early antifouling remedies relied on coatings based on heavy 

metals and copper sheathing on wooden boats. However, most of these early coatings, 

which included a mixture of toxic and sometimes bizarre ingredients, were not 

successful in combating fouling, with some vessels reported to have accumulated at 

least 10 tons of foulant in only 10 months of ocean voyage.  

 

One of the most successful methods employed was the use of zinc sheathing 

with the iron-clad ships, introduced by one Mr. Daft C.E., employing the principle of 

galvanic action. Organisms which attached to the zinc layer would be removed 

together with the oxidized zinc layer through ‘exfoliation’, and hence preventing 

further fouling from occurring [3]. 

 

 

2.4.2 Tributyltin (TBT) – Based Paints 

  

Since the 1960s, remarkably successful antifouling coatings with biocidal 

properties have been employed, most notably in the use of tributyltin (TBT) self-

polishing copolymer (SPC) paints. These TBT-based or organotin-based paints have 
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the advantage of keeping the immersed hull surfaces clear of foulants for up to 5 years 

[13]. Thus ships are able to extend their dry-docking intervals for maintenance and 

cleaning purposes.  

 

Antifouling paints based on the biocidal tributyltin (TBT) organic compound 

can be classified under the following three categories [5, 13, 255]: 

1) Free association paints 

2) Ablative paints 

3) Self-polishing copolymer paints 

 

The biocidal properties of these antifouling paint systems kill bacteria and 

prevent other microorganisms from beginning the first stage of colonization, 

therefore, inhibiting the fouling process. However, these organotin-based paints have 

been found to cause severe reproductive damage to a variety of marine life forms, 

most famously the imposex condition of the gastropod Nucella lapillus, causing a 

decline in their population [15].  

 

These toxic compounds also accumulate in mammals and may pose health 

risks to larger organisms further up the food chain. Due to the serious side effects of 

TBT-based paints, the usage of such active antifouling compound have been globally 

banned by the International Maritime Organization (IMO), the United Nations 

Agency concerned with the safety of shipping and the prevention of marine pollution. 

In October 2001, the IMO adopted the International Convention on the Control of 

Harmful Anti-fouling Systems on Ships, which calls for a global prohibition on the 

application of organotin compounds which act as biocides in anti-fouling systems on 
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ships by January 1st 2003, and a complete prohibition by January 1st 2008. Under the 

terms of this Convention, Parties to the Convention are required to prohibit and 

restrict the use of harmful anti-fouling systems on ships which fly their flag, operate 

under their authority, and all ships that enter their port, shipyard or offshore terminals 

[209]. 

 

 

2.4.2.1 Free Association Paints 

 

This type of antifouling paint consists of biocidal molecules dispersed in an 

insoluble resinous matrix. They are also known as contact paint. The biocides are 

leached out in an uncontrolled rate, causing a high initial concentration of biocide in 

the marine environment. The antifouling performance diminishes over time as the 

reserve of biocides is depleted. The surface becomes porous due to the leaching of the 

biocides, leaving behind a honeycomb microstructure in the coating, contributing to 

surface roughness. The structure can also trap pollutants from seawater and is liable to 

block the release of biocides. Their service life is between 12-24 months. Figure 2.6 

illustrates the working mechanism of free association paints. 

 

 

2.4.2.2 Ablative Paints 

 

The biocide is bonded in a less permeable matrix, with binders based on rosins 

and their derivatives. The paint slowly flakes off due to chemical reaction with the 

water and the scouring action of water on the ship hull. Due to the constant erosion of 
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paint from the painted surface, the protective lifetime is between 12-15 months. The 

biocide molecules are dispersed in a resinous matrix, and are able to freely leach from 

the matrix. The initial release rate is high due to large concentrations of biocide 

present. As time passes, the supply of biocides is depleted and the release rate slows 

down. 

 

 

 

Figure 2.6: Schematic diagram of biocidal action of free association paints. (a) 
Biocide molecules are dispersed in a resinous matrix. (b) The biocide leaches freely 
from the matrix. Initial release is rapid. (c) Subsequent release declines so antifouling 
performance of paint diminishes over time. Adapted from International Maritime 
Organization [209]. 
 

 

2.4.2.3 Self-Polishing Copolymer (SPC) Paints 

 

The TBT biocide is chemically bound by ester bonds to a copolymer resin 

(usually acrylic or methyl methacrylate), and is released through a hydrolysis process, 

as shown in Figure 2.7. Due to the weak mechanical strength of the resin, the paint 

wears off to reveal a smooth, new layer. This is referred to as the “polishing action”, 

(a) (b) (c) 

     Biocide dispersed in a resinous matrix 
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as a fresh layer of TBT biocidal action is exposed. The release rate can be controlled 

to a polishing rate of about 5-20 µm a year, ensuring a protection from fouling for up 

to 5 years. These paints are protective at all times, regardless of sailing speed. 

Therefore, it is not a surprise that with its many advantages over free association 

paints and ablative paints, almost 70% of commercial shipping was protected by SPC-

TBT paints in 1999 [13]. 

 

 

 

Figure 2.7: Self-polishing copolymer paints with tributyltin (TBT) biocidal 
compounds. (a) The TBT and copolymer molecules are covalently bound in a 
polymer matrix. (b) Sea water hydrolyses the TBT copolymer bond and the TBT 
biocide and copolymer resin is released. (c) The release rate is controlled through use 
of specific copolymer systems. Uniform anti-fouling performance is achieved 
throughout the lifetime of the paint. (Adapted from International Maritime 
Organization [209]). 
 

 

From 2003, major antifouling paint manufacturers have stopped producing 

products with TBT [1]. In the US, the Office of Naval Research sponsors research 

(a) (b) (c) 

      TBT biocide      Copolymer system 
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into novel fouling-resistant solutions [256], whilst in Europe, regional initiatives such 

as the AMBIO Integrated Project  funded by the European Union bring academic and 

industrial partners to develop novel solutions to control marine biofouling [257]. 

 

 

2.4.3 TBT Substitutes 

 

As a result of legislation banning TBT, alternative antifouling coatings based 

on copper metal oxides and organic biocides were introduced, such as Irgarol 1051 (2-

methylthio-4-tert-butylamine-6-cyclopropylamine-s-triazine), Diuron (3-(3,4-

dichlorophenyl)-1,1-dimethylurea), Sea-nine™ 211 (member of 3(2H)-isothiazolone), 

zinc pyrithione, copper pyrithione, Zineb and dichlofluanid.  

 

Voulvoulis et al. [258] rated zinc pyrithione and Zineb as least harmful to the 

environment while Irgarol and Diuron are considered to be more harmful. A review 

study by Konstantinou and co-workers [259] reports on the global occurrence and 

toxic effects of these TBT-replacement antifouling paint booster biocides on aquatic 

species. Their work revealed that several classes of aquatic vegetation, crustacean and 

fish contained lethal concentrations of the biocides. In addition, the acute toxicities of 

copper, TBT, as well as the booster biocides Irgarol, diuron, zinc pyrithione, copper 

pyrithione and chlorothalonil have also been found to have toxic effects on 

subtropical fish larvae [260].  Thus, it is imperative to seek greener alternatives to 

these current generations of antifouling formulations. 
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The current generation of antifouling paints are grouped under 3 categories: 

1) Controlled depletion paints 

2) Tin-free self-polishing copolymer paints 

3) Biocide-free paints 

 

 

2.4.3.1 Controlled Depletion Paints (CDPs) 

 

Also known as tin-free ablative/erodible paints, this is similar to ablative 

paints (Section 2.4.2.2). However, they contain a large proportion of binder which has 

the following characteristics: physically drying, non-toxic, and sea water-soluble. 

When it comes into contact with sea water, the binder will dissolve together with the 

biocide and are ‘washed’ from the surface. However, they still contain high amounts 

of copper and a co-biocide. 

 

 

2.4.3.2 Tin-Free Self-Polishing Copolymer Paints (TF-SPCs) 

 

Pendent groups, without the presence of tin, are integrated in an acrylic 

matrix, which are then released upon contact with sea water. Almeida et al. [13] have 

asserted that in spite of the large numbers of patents registered in this domain, the 

effectiveness of these TF-SPCs are less impressive than those of TBT-SPCs. They 

cited the impact of the chemical nature of the pendent groups affecting the balance of 

hydrophilicity/hydrophobicity of the matrix, the alteration of the vitreous transition 
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temperature during hydrolysis, the absorption of water, and the possible intumescence 

of the polymer, amongst other reasons [13]. Commercial antifouling paint 

manufacturers such as Hempel Portugal and Chugoku of Japan have interesting 

examples of various technologies in this area. The paints do not contain rosins or their 

derivatives, and they are based on copper acrylates and zinc acrylates which are 

combined with co-biocides [13]. 

 

 

2.4.3.3 Biocide-Free Paints 

 

These paints are designed to repel the adhesion of marine organisms due to 

their ultra-smooth, very low friction and hydrophobic surfaces. Known as ‘fouling 

release’ (FR) coatings, transient fouling is removed by movement of sea water or 

easily cleaned using pressurized water jets. They are based on fluorinated polymers 

and silicones, with many current commercial FR coatings based on non-polar, 

hydrophobic poly(dimethylsiloxane) (PDMS) elastomers. However, they are only 

suitable for high speed vessels with short idle periods. Furthermore, they are relatively 

expensive, have silicon contamination issues and require special applicators and 

cleaning technologies [13]. 

 

Genzer and Efimenko [261] reviewed the topic of superhydrophobic surfaces 

and their implications on biofouling phenomena. While the authors considered the 

importance of surface chemistry, topology and surface dynamics for efficient 

antifouling marine coatings, they stated that it may be impossible to design an 

environmentally benign coating which is universally non-fouling, due to the range of 
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marine organisms, their ability to adapt and the broad range of bioadhesives available. 

However, there has been a measure of success in fouling release coatings employing 

hierarchically wrinkled topographies or the use of multiple roughness length scales 

which are smaller-sized than the settling organisms. This is similar to the “Lotus leaf 

effect” to improve ‘self-cleaning’ surfaces. 

 

 

2.4.4 Natural Bioactive Compounds-Based Antifouling Systems 

 

Innovations in antifouling control technology have gained much inspiration 

from Mother Nature. Many marine mammals such as sharks and dolphins, as well as 

calcareous organisms such as mussels, have a multipronged approach at resisting 

fouling. This includes the existence of a physical defence in the form of micro 

topography on the exposed surfaces of the organism, combined with certain natural 

chemical compounds in their arsenal [262]. 

 

Fascinating reviews have been written on this subject [5, 263, 264]. For 

instance, Abarzua & Jakubowski [5] have summarized a comprehensive list of 

biogenic agents isolated from the microalgae Cyanophyceae, Chrysophyceae, 

Dinophyceae and Chlorophyceae, and the macroalgae Phaeophyceae, Rhodophyceae, 

Conjugatophyceae and Charophyceae, as well as several species of marine 

invertebrates including Porifera, Cnidaria, Tunicata and Mollusca. In many cases, 

extracts of these biogenic agents have been found to have a combination of 

antibacterial, anti-algal, anti-fungal and anti-macrofouling effects. The structures of 

these plant-based bioactive compounds include fatty acids, glycolipids/lipoproteins, 
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terpenes/carbohydrates, goniodomin, chlorophyll c and α-linolenic acid. The biogenic 

compounds from marine invertebrates include chemicals such as lactons, fatty acids, 

bromopyrroles, homarine, herbacin, pukalides, peptides, steroids and saponins. 

 

The cytotoxicity, ichthyotoxicity, inhibition of bacterial growth, and enzyme 

inhibition of 3-alkylpyridinium compounds of the Haplosclerida marine sponges were 

studied, with promising antifouling activities demonstrated by Sepcic and Turk [265]. 

The linear structure 3-octylpyridinium polymers which were isolated from Reniera 

sarai inhibited the settlement of B. amphitrite cypris larvae with an EC50 of 

0.27mg/mL, while having negligible toxicity on B. amphitrite nauplii larvae, 

Tetraselmis suecica microalga and Mytilus galloprovicialis larvae. The natural 

alkylpyridines were also found to prevent the formation of bacterial biofilm, while 

synthetic analogs of these structures also exerted antifouling activity. 

 

Grandison et al. [233] studied the extracts of the periostracum of the marine 

mussel Mytilus sp. with considerable activity against marine diatoms and bryozoans. 

In order to study the structure of the antifouling compound, attempts were made to 

isolate and purify the periostracum compound – however, this was proved to be rather 

challenging. In addition, the authors acknowledged that the compound most likely 

work in tandem with other antifouling defenses, both physical and chemical, at the 

mussel’s disposal. 

 

An extensive review on the natural defenses of marine animals and plants 

against epibionts have been explored in detail by Railkin [223]. The defense system 

may be divided into the physical or mechanical, and the allelochemical action. The 

72 
 



defense mechanisms of many marine animals and plants, including algae, sponges, 

coral, and ascidians are based on an allelochemical action. These marine organisms 

release chemical compounds which naturally deter predators and prevent biofouling 

through inhibiting the settlement of epibionts. These compounds have been classified 

as phenolic derivatives, such as tannin, halogenorganics, terpenoids, acrylic acid and 

acrylates, and heterocyclic compounds. These compounds, known as secondary 

metabolites, have been documented to suppress the development of bacterial cultures 

and stop the movement of macrofouling larvae. These natural defenses were further 

classified by Railkin [223] as biocidal, repellent, antiadhesive, antilocomotory and 

suppressant of metamorphosis and growth. 

 

Table 2.7 summarizes antifouling compounds derived from heavy metals, 

polymeric compounds and natural marine biocidal sources. The list includes the effect 

of these compounds on model organisms. Some researchers have studied commercial 

antifouling agents [18, 232], but most are focused on novel antifouling compounds, 

for example dihydrooroidin, a compound isolated from sponges of the Agelasidae 

family [228], the extracts of the periostracum from Mytilus sp. [233] and various 

extracts from other marine lifeforms [237]. There exists a rich diversity in the 

composition of potent antifouling compounds obtained from biological sources. The 

reality is that there is still much room for advancement in the discovery of new 

compounds and effective formulations which can resolve fouling issues. 
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Table 2.7: Antifouling compounds and their activity against model organisms. 
 

Active Compound / 
Coating 

Manufacturer Commercial 
Name 

Model 
Organisms 

Notes , Qualitative assessment on antifouling 
tests 

Reference 

5-chloro-2-methyl-4-
isothiazolin-3-one and 2-
methyl-4-isothizolin-3-one 
 

NALCO 73532 - 
NALCO®  

Balanus 
pharaonis 

Lowest efficacy on B. pharaonis among 3 
NALCO biocides surveyed with 30% mortality 
at 1000 mg/l. 

[240] 

Benzoic acid - - Dynamena 
pumila 

Repellant agent: Planulae of hydroids turned 
away from capillary containing antifouling agent 
at concentration of 116mM 

[237] 

Macrofouling Percentage of macrofouling progressively 
increase to 29 ± 12 in 10-19 days, 45 ± 7 in 22-
25 days, 48 ± 18 in 45 days, 78 ± 19 in 70 days 

Mytilus 
edulis 

Repellant agent: Foot of mussel turned away 
from capillary containing antifouling agent at 
concentration of 744mM 

Bromotysine-derived 
sponge metabolites and 
synthetic analogues 
including hemibastadin-1, 
debromo-hemibastadin-1, 
and 5,5'-
dibromohemibastadin-1 
 

- - Balanus 
improvisus 

Compounds containing oxime substituents 
inhibit larval settlement at 1-10 µM. 

[244] 

Commercial serine 
endopeptidase Alcalase 
 

- - Barnacle 
cyprid larvae 

Alcalase reduce effectiveness of cyprid 
adhesives 

[242]  
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Table 2.7 (continued): Antifouling compounds and their activity against model organisms. 
 

Active Compound / 
Coating 

Manufacturer Commercial 
Name 

Model Organisms Notes , Qualitative assessment on 
antifouling tests 

Reference 

Cu2+ ions and/or 
phosphonium cations 
incorporated in styrene 
sulfonate, and/or acrylate or 
maleate with vinyl acetate 
or styrene copolymers 
 

- - - Immersion in seawater, visual observation 
after 1.5 months and 6 months. 

[266]  

Cuprous oxide International 
Marine 
Coatings 

Interspeed 
642 

Achnanthes 
Amphora Fragiliria 
Nitzschia Synedra 

Abundant after static immersion (60d), 
dispersed after dynamic immersion (15d). 
All have some resistance to Cu oxide 

[18]  

Alcaligenes 
Proteus 
Staphylococcus 
Streptococcus 
Vibrio 

None after static immersion (60d) and 
remained clear after dynamic immersion 
(15d). 
All killed by Cu oxide. 

Micrococcus  
Navicula  
Pseudomonas 

Appeared after static immersion (60d), 
increased after dynamic immersion (15d). 
Micrococcus has high resistance to Cu 
oxide. 
Although both Navicula and Pseudomonas 
both showed resistance to Cu oxide, 
Pseudomonas was dispersed by shear 
force. 
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Table 2.7 (continued): Antifouling compounds and their activity against model organisms. 
 

Active Compound / Coating Manufact
urer 

Commercial 
Name 

Model 
Organisms 

Notes , Qualitative assessment on 
antifouling tests 

Reference 

Cuprous oxide Jotun Sea Quantum 
Classic 

Achnanthes 
Fragiliria 
Nitzschia 
Proteus 
Vibrio 

None after static immersion (60d) and 
remained clear after dynamic immersion 
(15d). 
All killed by Cu oxide. 

[18] 

Alcaligenes  
Staphylococcus 
Micrococcus  
Pseudomonas  
Streptococcus 

Appeared after static immersion (60d), 
dispersed after dynamic immersion (15d). 
All have resistance to Cu oxide, but 
Alcaligenes, Staphylococcus and 
Pseudomonas are dispersed by shear force. 

Amphora 
Navicula 
Synedra 

Abundant after static immersion (60d), still 
abundant after dynamic immersion (15d). 
All are highly resistant to Cu oxide. 

Didecyl dimethyl ammonium 
chloride and isopropyl alcohol 

NALCO 77531 - 
NALCO® 

Brachidontes 
pharaonis 

No efficacy even at 6 mg/l. Of the 3 NALCO 
biocides surveyed, this is the most toxic on 
Artemia salina (brine shrimp). 

[240] 

Dihydrooroidin (DHO) - - Halomonas 
pacifica 

Antibiofilm activity shown through biofilm 
inhibition assay (H. pacifica). Followed by 
negative cytotoxicity assay results (GH4C1 
rat pituitary cells, N2A mouse neuroblastoma 
cells) 

[228]  

Enzyme Subtilisin A 
immobilized on maleic 
anhydride copolymer thin films 

- - Amphibalanus 
amphitrite 

The active immobilized enzyme inhibited 
settlement, and caused a fraction of settled 
cyprids to detach. 

[239] 
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Table 2.7 (continued): Antifouling compounds and their activity against model organisms. 
 

Active Compound / 
Coating 

Manufacturer Commercia
l Name 

Model 
Organisms 

Notes , Qualitative assessment on 
antifouling tests 

Reference 

Extract from book gills and 
carapace of horseshoe crabs 
(T. gigas and C. 
rotundicauda) 

- - Salmonella 
typhimurium, 
E. coli, 
S. aureus, 
Bacillus cereus 

Attachment test using glass slides and stained 
with crystal violet to view fouling mass. Ethyl 
acetate extract of T. gigas carapace inhibited 
all strains. 

[226] 

Extracts of the periostracum 
of mussel Mytilus sp. 

- - Amphibalanus 
reticulates 
(cyprid larvae), 
Amphora sp., 
Bugula dentate, 
Bugula 
flabellate, 
Bugula neritina, 
Haslea sp. 

Dichloromethane and ethyl acetate extracts 
exhibited considerable activity against marine 
diatoms and bryozoans. 

[233]  

Ferric benzoate-based paints - - Balanus 
amphitrite 
nauplii 

Ferric benzoate hydrolyzes in seawater 
producing a pH decrease. Benzoate anion 
showed intense narcotic effect on B. 
amphitrite nauplii. Ferric benzoate also as 
anticorrosive paint compound. 

[243] 

Intertidal biofilm bacterial 
isolates related to Bacillus 
mojavensis and Bacillus 
firmus 

- - Artemia salina 
Halomonas 
marina 
(CCUG16095) 

Ethyl acetate extracts antifouling effect on H. 
marina (88%) and toxic to A. salina (67%) 
Production of bioactive lipopeptides surfactin 
A, mycosubtilin and bacillomycin D. 

[227] 
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Table 2.7 (continued): Antifouling compounds and their activity against model organisms. 
 

Active Compound / 
Coating 

Manufacturer Commercial 
Name 

Model 
Organisms 

Notes , Qualitative assessment on 
antifouling tests 

Reference 

Isolates from wild bacteria 
Alteromonas sp. 
incorporated in an inert 
matrix (Phytagel™) 

- - Ciona 
intestinalis, 
Pyura 
praeputialis 

Larval settlements of these 2 ascidians are 
inhibited. 

[238] 

Methyl methacrylate 
(MMA) and acrylate 
terminated poly(ethylene 
oxide-coethylene carbonate) 
(PEOC) copolymer  

- - - PEOC side chains exhibits protein resistance. 
Marine field tests show marine biofouling 
inhibited for > 12 wks. 

[267] 

Mixture of commercial 
hydrolytic enzymes alpha-
chymotrypsin, alpha-
amylase and lipase 

- - Pseudoalterom
onas, 
Rhodobacter 

Reduce adhesion of > 90% marine 
microorganisms when used in combination, for 
over 10 days incubation in lab assay which 
mimics marine conditions. When used singly, 
no reduction of biofilm. 

[231] 

N,N,N',N'-
tetramethylethylenediamine 

- - Dynamena 
pumila 

Repellant agent: Planulae of hydroids turned 
away from capillary containing antifouling 
agent at concentration of 172mM. 

[237] 

Gonothyraea 
loveni 

Repellant agent: Planulae of hydroids turned 
away from capillary containing antifouling 
agent at concentration of 43mM. 
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Table 2.7 (continued): Antifouling compounds and their activity against model organisms. 

Active Compound / Coating Manufact
urer 

Commerc
ial Name 

Model 
Organisms 

Notes , Qualitative assessment on 
antifouling tests 

Reference 

N,N,N',N'-
tetramethylethylenediamine 

- - Macrofouling Percentage of macrofouling progressively 
increase to 17 ± 1 in 22-25 days, 32 ± 4 in 45 
days 

[237] 

Mytilus edulis Repellant agent: Foot of mussel turned away 
from capillary containing antifouling agent at 
concentration of 86mM 

p-acryloyloxybenzaldehyde 
(AcBA) polymer coating 

- - Bacillus 
macroides 
(strain KORDI-
13724), 
Pseudomonas 
aeruginosa, 
microalgae 
(Amphora 
coffeaeformis, 
Navicula 
incerta, D. 
tertiolecta) 

High inhibition against B. macrolides, less 
inhibition of P. aeruginosa, inhibited growth 
of D. tertiolecta. 
 
Poly(AcBA) coating 3mg/cm2 effective in 
preventing attachment and biofilm formation 
of diatoms. 

[224] 

Polyhedraloligomeric 
silsesquioxane (POSS) as nano-
reinforcement on diglycidyl ether 
of bisphenol-A type epoxy resin 
and tris (p-isocyanatophenyl) thio 
phosphate (DESMODUR) polymer 
coating 

- - Balanus 
variegatus 

Seawater immersion (1 year), Bay of Bengal, 
Tamil Nadu, India showed very slight fouling. 
Polyhedraloligomeric silsesquioxane (POSS)-
NH2 with polyamidoimidazoline curing agent 

[245]  
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Table 2.7 (continued): Antifouling compounds and their activity against model organisms. 

Active Compound / Coating Manufactur
er 

Commerc
ial Name 

Model 
Organisms 

Notes , Qualitative assessment on 
antifouling tests 

Reference 

Potassium sorbate - - Balanus 
amphitrite 
nauplii and 
cyprid larvae 

Reversible effect on B. amphitrite larvae [241] 

Secondary metabolites from a 
marine-derived fungi 
Cladosporium sp. F14, including 
3-phenyl-2-propenoic acid and 
bis(2-ethylhexyl)phthalate 
 

- - Balanus 
amphitrite 
larvae 
Bugula neritina 
larvae 

3-phenyl-2-propenoic acid and bis(2-
ethylhexyl)phthalate effectively inhibited 
larval settlement of B. neritina and B. 
amphitrite larvae, respectively. 

[230] 

Tetrakis (hydroxymethyl) 
phosphonium sulphate 

NALCO 73503 - 
NALCO® 

Balanus 
pharaonis 

73503 is effective at 1000 mg/l killing 90% of 
B. pharaonis, but is least toxic on Artemia 
salina (brine shrimp). 
 

[240] 

Tributyltin oxide + cuprous 
oxide + tributyltin methacrylate 

Hempel Paint Hempels 
79051 

Achnanthes 
Amphora 
Micrococcus 
Synedra 

Extremely abundant after static immersion 
(60d), still abundant or increased after 
dynamic immersion (15d). 
All have high resistance to Sn oxide and Cu 
oxide. 

[18]  

Alcaligenes 
Navicula 
Pseudomonas 
Proteus 

Appeared after static immersion (60d), 
dispersed after dynamic immersion (15d). 
All have resistance to Sn oxide and Cu oxide, 
but Alcaligenes, Pseudomonas and Proteus are 
dispersed by shear force. 

[18] 
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Table 2.7 (continued): Antifouling compounds and their activity against model organisms. 
 

Active Compound / 
Coating 

Manufacturer Commercial 
Name 

Model 
Organisms 

Notes , Qualitative assessment on 
antifouling tests 

Reference 

Tributyltin oxide + cuprous 
oxide + tributyltin 
methacrylate 

Hempel Paint Hempels 
79051 

Fragiliria 
Nitzschia 
Staphylococcus 
Streptococcus 
Vibrio 

None after static immersion (60d) and 
remained clear after dynamic immersion (15d). 
All killed by Sn oxide and Cu oxide. 

[18] 

Silver-
perfluorodecanethiolate 
complexes 

- - Pseudomonas 
aeruginosa 
PA01 

The wire shaped silver-thiolate complex 
possess superhydrophobic and antifouling 
properties due to highly fluorinated 
hierarchical structure 

[98] 

ω-substituted 
alkanethiolates with methyl 
and hydroxyl-terminated 
and methyl and carboxylic 
acid-terminated self-
assembled monolayers  

- - Cobetia marina 
(Halomonas 
marina) 

Preferential attachment to hydrophobic 
surfaces. 
 
Monolayers are attached on gold-coated glass 
slides 

[225] 

Zinc - - Artemia salina 
nauplius larvae 

Prolonged extraction time of paint in seawater 
resulted in significant increase in mortality. 
LC50,24h = 4000mg/L, LC50,1w = 2000mg/L, 
LC50,3w = 1000mg/L 

[232] 

Balanus 
amphitrite 
cypris larvae 

Ten larvae all died within 24h of exposure to 
paint-coated petri dishes containing 5ml 
seawater. 
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Table 2.7 (continued): Antifouling compounds and their activity against model organisms. 
 

Active Compound / 
Coating 

Manufacturer Commercial 
Name 

Model 
Organisms 

Notes , Qualitative assessment on 
antifouling tests 

Reference 

Zinc - - Balanus 
amphitrite 
nauplius larvae 

LC50 = 1600 mg/L [232] 

Danio rerio 
embryos 

Embryos more susceptible to organic solvent-
based paint (os) than water-solvent paint (ws). 
100% mortality after 48h (os), 0 mortality (ws) 

Dunaliella 
tertiolecta 

ws severely inhibited extinction results 
(similar to blank). Os significantly reduced 
extinction results in 5d with turbidity half of 
control. 

Vibrio fisheri EC50,ws=900 mg/L, EC50,os=1400 mg/L 
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2.4.5 Antifouling Coatings Containing Silver-Based Nanomaterials 

  

Presently, antifouling coatings containing silver-based nanomaterials are not 

commercially available. There have been a few studies on silver-based antifouling 

agents for maritime environments or applications [207, 234]. However, more 

extensive literature in this area is still relatively scarce. 

 

Ren et al. [234] studied the effects of silver nanoparticle modified surfaces 

against the adhesion of a marine microalgae Dunaliella tertiolecta. The 

polydopamine-mediated silver nanoparticle layer was coated on various substrates 

including glass, polystyrene, stainless steel, paint surfaces and cobblestone, with at 

least 85% inhibition of adhesion by the microalgae.  

  

On the other hand, Inbakandan et al. [207] reported a biosynthesis procedure 

via a marine sponge to obtain AgNPs which were found to inhibit biofilm formation 

in a consortium of marine biofilm forming bacteria harvested from the hull of a 

fishing vessel. The biofilm formation was assessed using the crystal violet staining 

method while antimicrobial tests were assessed through microbial inhibition zones 

and bacterial growth curves. 

 

 

2.5 Evaluation of Antifouling Agents 

  

There is extensive interest amongst stakeholders to pursue safer, yet more 

effective antifouling materials. Potential candidate coatings are typically tested by 
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immersion in seawater under a variety of conditions, under standard guidelines 

published by the American Society for Testing and Materials (ASTM). As field 

testing often involves immersion in seawater for periods of 1 year or more, this can be 

time-consuming.  

 

Callow and Callow [4] stated that the specific organisms that develop in a 

fouling community depend on the substratum, geographical location, the season and 

factors such as competition and predation. As fouling is a highly dynamic process, 

testing in one localized region of a harbour may yield results which are remarkably 

different from testing performed at another spot in the same harbour. Therefore, prior 

to undertaking field-testing, compounds with potential antifouling activity are tested 

in the lab, or in vitro, using a variety of biological organisms under carefully 

controlled conditions. The bioassays involve known microorganisms which typically 

induce fouling. This allows for better understanding of the mechanism of antifouling 

activity. In addition, a shorter period is used to shortlist viable candidates with high 

antifouling activity and to fine-tune compounds with average antifouling activity. To 

overcome the inconvenience of sourcing for regular supplies of natural seawater, 

commercial sea salt mixtures such as Tropic-marin® are available to prepare artificial 

seawater. 

 

 

2.5.1 Biological Laboratory Assays 

 

Bioassays are protocols which involve the exposure of target and non-target 

organisms to the antifouling compound in a controlled and micro-environment such as 
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a petri dish or a microarray well plate. As the organisms are being observed and tested 

in artificial surroundings or removed from their natural environments, these studies 

are called in vitro. Organisms such as bacteria and larvae of macrofoulers are placed 

in a medium based on seawater, either natural or artificial. Toxicity tests are run to 

establish the EC50 and LC50 points of potential antifouling candidates.  

 

As the majority of fouling organisms fall into three broad categories (bacteria, 

algae and barnacles), typical screening studies of antifouling compounds use 

bioassays to test the anti-bacterial, anti-algal and anti-barnacle activities. The 

information obtained from biological assays is considered “static”. This includes the 

degree of settlement, adhesion, and percentage removal. 

 

Static biofilm systems, or surface-attached aggregations of bacteria, can be 

studied using the microtiter plate biofilm assay [268]. Commonly, cells are grown in 

96-well microplates for a pre-determined period of time, after which the wells are 

gently washed to remove planktonic bacteria. Cells which remain attached to the 

wells are stained with a crystal violet dye. The solubilized dye allows for a semi-

quantitative assessment of the biofilm formation. Melander et al. [228] describes a 

similar static biofilm inhibition assay protocol using Halomonas pacifica (ATCC 

27122), a species of microbe which has been established as an agent for biofilm-

formation [225, 229].  

 

Löschau and Krätke [232] carried out toxicity tests of commercial paints on 

the nauplius larvae of the crustaceans Balanus amphitrite and Artemia salina, the 

marine algae Dunaliella tertiolecta, the bioluminescent bacteria Vibrio fisheri, and 
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embryos of the freshwater zebra fish Danio rerio after reporting the death of B. 

amphitrite cyprid larvae within 24 hours exposure to the paints. It was interesting to 

note that the commercial paints were being marketed as biocide-free. 

 

In laboratory studies, Railkin [223] describes specially constructed Plexiglas 

chemotactic chambers with dimensions of 36 x 40 x 80 mm used to demonstrate the 

repellant nature of antifouling test agents. The chambers were built with 3 

compartments, each separated by membrane filters. Hydroid larvae placed in the 

middle chamber were observed to swim away from the repellant agent, and towards 

the control solution (sea water).  

 

According to Armstrong et al. [269], although a compound may show 

promising antifouling property when it is tested directly against fouling organisms, it 

is extremely important to incorporate these compounds into a paint formulation as 

part of the antifouling evaluation. This is because a compound that has been tested in 

laboratory assays may not be active when added as an antifouling agent in a paint 

formulation.  

 

 

2.5.2 Attachment Tests 

 

Rittschof et al [270] developed an in vitro assay using the barnacle Balanus 

amphitrite, which was used by  Löschau and Krätke [232] to study the efficacy and 

potential toxicity of commercial, biocide-free, self-polishing antifouling paints. B. 

amphitrite is a common macrofouler found throughout the world’s temperate and 
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tropical waters, having a high reproduction rate, as frequent as once a week. In order 

to show the antifouling efficacy of the paints, attachment tests with cypris larvae of B. 

amphitrite were carried out. All the larvae died within 24 hours of contact with the 

paints and their extracts. 

The antifouling activity of a hybrid dendritic boltorn/star PEG thiol-ene 

polymeric coating was evaluated using the zoospores of the marine algae Ulva linza 

[235]. The coatings were assessed through spore settlement (attachment test) and the 

attachment strength (release test from varying impact pressures of a water jet). 

 

 

2.5.3 Mesocosm Challenge Tanks 

 

A mesocosm is defined as laboratory models of stable, natural ecosystems 

used to simulate short-term and long-term effect studies [271]. For antifouling 

research, a mesocosm would typically involve a tank containing a constant supply of 

pumped-in seawater or artificial seawater, inhabited by one or several representative 

species of fouling and non-fouling organisms. Pumps and rotors are added to simulate 

tidal cycles and wave motions. 

 

Melander et al. [228] designed a mesocosm challenge tank to test the 

antifouling effectiveness of dihydrooroidin (DHO), a small organic molecule with 

amide and bromide groups, which is mixed with commercial marine paint without 

additional antifouling agents. The tank contained seawater collected from Cherry 

Point boat landing on Wadmalaw Island, South Carolina, USA (32°35.876’N, 

080°10.973’W). Intertidal sediment was collected from Leadenwah Creek 
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(32°38.848’N, 080°13.283’W). Organisms added to the tank included Spartina 

alterniflora, grass shrimp (Palaemonetes pugio), sheepshead minnows (Cyprinodon 

variegatus), and hard clams (Mercenaria mercenaria). To simulate a semidiurnal tidal 

cycle, a pump controlled by a multi-event timer was used.  

 

2.5.4 Field Testing  

 

Coatings or compounds which display promising antifouling properties in 

laboratory assessments progress on to field trials. Trials are commonly conducted in 

the protective waters of a harbour, or on specialized structures or rafts in the open sea. 

The American Society for Testing and Materials (ASTM) has published guidelines for 

performing standardized test procedures and evaluation of surfaces for fouling. The 

guidelines cover various parameters including shallow submergence, partial 

immersion, erosion through high velocity water, barnacle adhesion and physical 

performance of marine coating systems. The guidelines are listed in Table 2.8. 
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Table 2.8: ASTM Standards related to antifouling / biofouling. 
 

Standard Description 

D3623 Test Method for Testing Antifouling Panels in Shallow 
Submergence 

D4938 Test Method for Erosion Testing of Antifouling Paints Using High 
Velocity Water 

D4939 Test Method for Subjecting Marine Antifouling Coating to 
Biofouling and Fluid Shear Forces in Natural Seawater 

D5479 Practice for Testing Biofouling Resistance of Marine Coatings 
Partially Immersed 

D5618 Test Method for Measurement of Barnacle Adhesion Strength in 
Shear 

D6990 Standard Practice for Evaluating Biofouling Resistance and 
Physical Performance of Marine Coating Systems 

G141 Guide for Addressing Variability in Exposure Testing of 
Nonmetallic Materials 

 

 

 

2.6 Justification for Selection of Research Approach 

 

Based on the literature review presented in this chapter, this thesis proposes to 

study Ag nanocomposites synthesized with polymeric ion exchange resins, zeolites, 

titanium dioxide nanotubes and graphene nanosheets. These support materials for 

AgNPs were chosen for the following reasons: 

• Polymeric ion exchange resin – ease of handling, wide availability 

• Zeolite ZSM-5 – nanostructured cavities which can serve as physical size 

barriers for nanoparticle growth, large effective surface area 

• TiO2 nanotubes – unique 1D structure, large effective surface area 
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• Graphene nanosheets – novel synthesis method, unique and flexible 2D 

structure, large effective surface area 

 

To evaluate the marine antimicrofouling behaviour of the Ag nanocomposites, 

the target microorganisms were selected based on their natural marine environment 

habitat, identified as being microfouling organisms, with previous studies as model 

organisms in antifouling/biological studies and the availability of well-established and 

reproducible procedures for antifouling studies. The target organisms selected are: 

• Marine bacteria – Halomonas pacifica 

• Marine microalgae – Dunaliella tertiolecta, Isochrysis sp. 

 

Based on the existing literature, wet chemical and solvothermal synthesis 

methods were selected to prepare the Ag nanocomposites due to the low cost and low 

energy associated with such methods. Additionally, the precursor materials are widely 

available.  

 

The combination of preparation methods for Ag nanocomposites, choice of 

support materials, and the area of application in marine antifouling studies provide an 

interesting and novel study into the effects of Ag nanocomposites as marine 

antifouling agents. 
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Chapter 3: Materials and Methods 

 

3.1 Materials for Synthesis 

 

The chemical reagents used in the syntheses of the four different types of 

silver nanocomposite antifouling materials are listed in Table 3.1. All materials were 

used as received. All reagents were prepared with Millipore ultrapure water (18 

MΩ/cm). The laboratory equipment and materials used in the syntheses are listed in 

Table 3.2. 

 

Table 3.1: Chemical reagents used in the synthesis of silver nanocomposite 
antifouling materials. 

 

Chemicals / 
Reagents Manufacturer Remarks 

AgNO3 Sigma-Aldrich, 
USA 

Silver nitrate, analytical grade, 
99.9999% metals basis granules. 
Product number: 204390. CAS No. 
7761-88-8 

C6H5Na3O7 · 2H2O Sigma-Aldrich, 
USA 

Sodium citrate tribasic dihydrate. 
Product number: S4641. CAS No. 
6132-04-3 

Dowex® 50WX8 
hydrogen form 
styrene 
divinylbenzene 
polymer beads. 

Sigma-Aldrich, 
USA 

Diethenyl-benzene polymer with 
ethenylbenzene and 
ethenylethylbenzene, sulfonated. 
Product number: 217514. CAS No. 
69011-20-7 

Ethanol Merck, Germany Ethyl alcohol. EMSURE® grade. 
Catalogue number: 100974. CAS No. 
64-17-5 

Graphite flakes 
(purity ≥ 98% 
carbon) 

Bay Carbon, 
USA 
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Table 3.1 (continued): Chemical reagents used in the synthesis of silver 
nanocomposite antifouling materials. 

 

Chemicals / 
Reagents Manufacturer Remarks 

NaBH4  Sigma-Aldrich, 
USA 

Sodium borohydride 99.99% granules. 
Product number: 480886. CAS No. 
16940-66-2 

TiO2 nanotubes - Kindly provided by Dr. S.S. Lim, 
University of Nottingham Malaysia 
Campus 

Zeolite ammonium 
ZSM-5 powder  

Zeolyst 
International, 
USA 

Product name: CBV3024E. CAS No. 
1318-02-1 

 

 

Table 3.2: Accessories used in the synthesis of silver nanocomposite antifouling 
materials. 

 

Accessories Manufacturer 

Analytical balance, model GR-200 
 

A&D, USA 

Centrifuge, model 2420 
 

Kubota, Japan 

Drying oven, model OV-11 
 

Medline Scientific, UK 

Filter papers Sartorius Stedim, 
France 
 

Furnace, model CWF 12/5 
 

Carbolite, UK 

Magnetic stirrer with hotplate, model Wise 
Stir MSH-A 
 

Wisd/Witeg, Germany 

Stainless steel autoclave (316 SS quarter 
shell. 80mm dia., 74mm height) with Teflon 
inner liner (54mm dia., 54mm height) 
 

Grandtech Precision 
Engineering, Malaysia 

Ultra sonicator, model S40-H 
 

Elma, Germany 
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3.2 Synthesis Methods 

 

3.2.1  Synthesis of Silver-Polymer Nanocomposites (Ag-PNCs) 

 

The Dowex 50WX8 copolymer resin beads were incorporated with silver ions 

through an ion exchange process with silver nitrate solutions of various 

concentrations. The metallic Ag nanomaterials were obtained by chemical reduction 

with sodium borohydride (Table 3.3). In a typical synthesis, 2 g of Dowex 50WX8 

was mixed with 10 ml of AgNO3 aqueous solution (ranging from 1mM to 1M) and 

magnetically stirred at room temperature, in the dark, for 1 h to allow ion exchange to 

occur. 10 ml of 2mM – 2M sodium borohydride was added to the mixture at room 

temperature under continuous stirring. The Ag-PNCs were obtained by centrifugation 

at 4000 rpm and washed 3 times with deionized water followed by drying at 80 °C for 

10 h.  

 

Table 3.3: The concentrations of the AgNO3 and NaBH4 solutions for the 
synthesis of Ag-polymer nanocomposite (Ag-PNC). 

 

Samples Mass of 
polymer 
beads (g) 

AgNO3 
concentration 

(M) 

NaBH4 
concentration 

(M) 

Ag-PNC-1 2.0 0.001 0.002 

Ag-PNC-2 2.0 0.01 0.02 

Ag-PNC-3 2.0 0.1 0.2 

Ag-PNC-4 2.0 1.0 2.0 
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3.2.2 Synthesis of Silver-Zeolite (AgZ) Nanocomposites  

 

Typically, 1 g of ammonium form-ZSM-5 zeolite was mixed with 20 ml of 

silver nitrate solution of varying concentrations from 0.1 M to 1.0 M, to produce 

silver-zeolite (AgZ) nanocomposite material (shown in Table 3.4). The mixture was 

magnetically stirred in the dark at room temperature for 2 h in order to induce ion 

exchange, after which the mixture was separated by centrifugation (4000 rpm, 20 

min). The separated Ag ion-zeolite samples were subsequently redispersed in 20 ml of 

deionised water. 147 ml of 1% trisodium citrate dihydrate solution (concentrations 

ranging from 3.4 × 10-3 M to 0.034 M) were then added to Ag ion-zeolite samples, in 

order to reduce the encapsulated Ag ion into the metallic form.  

 

The mixture was heated to 80°C under constant magnetic stirring for 30 min. 

The AgZ composites were obtained via centrifugation (7000 rpm) and repeatedly 

washed with excessive deionised water (three times), in order to remove impurities 

and unreacted precursor reagents. The metallic Ag-zeolite samples were then dried 

overnight in an oven at 80oC. 
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Table 3.4: The concentrations of the silver nitrate and trisodium citrate solutions 
used for the synthesis of silver-zeolite (AgZ) nanocomposites. 

  

 

 

3.2.3 Synthesis of Silver-TiO2 Nanotube (Ag/TNT) Composites  

 

The synthesis of silver-titanium dioxide nanotube composites involves a 2-

step process, in which titanium dioxide nanotubes (TNT) were synthesized from TiO2 

nanoparticles, before being used as a support template for the synthesis and growth of 

AgNPs. The TiO2 nanotubes for this project were kindly provided by the lab of Dr. 

S.S. Lim (University of Nottingham, Malaysia Campus). 

 

Typically, 0.2 g of TNT powder was dispersed in 40 ml of deionized water 

under magnetic stirring for 5 min. Silver nitrate granules were added to the TNT 

mixture and stirred for 30 min in the dark. 10 ml of 1% trisodium citrate dihydrate 

solution was then added to the TNT-silver nitrate mixture and stirred for 60 min in the 

dark. The mixture was transferred to a stainless steel autoclave with an inner Teflon 

liner and heated in a furnace from room temperature to 140°C (ramping rate of 

10°C/min), and held at 140°C for 6 h. After cooling down to room temperature, the 

Ag/TNT precipitates were isolated from solution by centrifugation, washed 3 times 

Sample Mass of zeolite 
ZSM-5 (g) 

AgNO3 
concentration (M) 

Concentration of 
trisodium citrate 

dihydrate (M) 

AgZ-1 1.0 0.10 0.0034 

AgZ-2 1.0 0.25 0.0085 

AgZ-3 1.0 0.35 0.012 

AgZ-4 1.0 0.50 0.017 

AgZ-5 1.0 1.00 0.034 
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with excess water, and dried overnight at 80 °C in an oven. Table 3.5 shows detailed 

information of the different ratios of TNT to silver nitrate which were used to prepare 

the Ag/TNT nanocomposites. 

 

Table 3.5: Different mass ratios of silver precursor and TiO2 nanotubes used in 
the synthesis of silver-TiO2 nanotube (Ag/TNT) composites. 

 

Sample Mass of 
AgNO3 (g) 

Mass of TiO2 
nanotube (g) 

Mass ratio of AgNO3 
to TiO2 nanotubes 

Ag/TNT-1 0.0121 0.1996 1:16 

Ag/TNT-2 0.0203 0.1979 1:10 

Ag/TNT-3 0.0485 0.2195 1:5 

Ag/TNT-4 0.2070 0.2022 1:1 

Ag/TNT-5 0.4011 0.2015 2:1 

Ag/TNT-6 0.8074 0.2054 4:1 

Ag/TNT-7 2.0030 0.2022 10:1 

 

 

3.2.4 Synthesis of Graphene-Silver (GAg) Nanocomposites  

  

The synthesis of graphene-silver nanocomposites involves a 2-step process, in 

which graphene is first synthesized from graphite flakes, before it is used as a support 

template for the synthesis of AgNPs. 
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3.2.4.1 Preparation of Graphene Flakes 

 

Graphite was used as the precursor for synthesis of graphene via liquid phase 

exfoliation method, as reported in literature [183]. Typically, graphite (50 mg) 

material was dispersed in 100 ml of a mixed solution of ethanol and deionized water 

(2:3 ratio of ethanol to water). Sonication treatment was carried out in a conventional 

ultrasonic bath with working frequency of 50/60 Hz at room temperature for 3 h to 

form a darkish black suspension. The sonicated dispersions were then centrifuged at 

1000 rpm for 30 min to remove unexfoliated graphite flakes. The supernatant is then 

filtered and dried at 80 °C overnight to evaporate any residual ethanol. 

 

 

3.2.4.2 Preparation of Graphene-Silver (GAg) Nanocomposites  

 

Graphene (0.2 g) nanomaterial was re-dispersed in 40 ml of a mixed solution 

of ethanol and deionized water (2:3 ratio of ethanol to water) under sonication for 30 

min. Silver nitrate powder was added to the graphene solution and stirred for 30 min 

in the dark to produce a uniform dispersion (refer to Table 3.6 for sample details). 10 

ml of 1% trisodium citrate dihydrate solution (0.5 M) were then added to the 

graphene-silver nitrate mixture and stirred for 15 min. The mixture was transferred to 

a stainless steel Teflon-lined autoclave chamber and heated in an oven from room 

temperature to 140°C with a ramping rate of 10°C/min. The temperature was then 

held at 140°C for 6 h before it was allowed to cool down to room temperature again. 

The solid precipitation was isolated from the solution by centrifugation, washed 
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alternatingly with excess water and ethanol for three times each, and dried overnight 

at 80 °C in an oven. 

 

Table 3.6: Different mass ratios of graphene to silver precursor used in the 
synthesis of graphene-Ag (GAg) nanocomposites. 

 
Sample Mass of 

graphene (g) 
Mass of 

AgNO3 (g) 
Weight ratio of 

graphene:Ag precursor 

GAg1 0.2 0.063 3:1 

GAg2 0.2 0.200 1:1 

GAg3 0.2 0.800 1:4 

GAg4 0.2 2.000 1:10 

 

 

3.3 Instrumentation for Silver Nanocomposite Materials Characterization 

 

After the silver nanomaterials have been synthesized, as described in Sections 

3.2.1, 3.2.2, 3.2.3 and 3.2.4 above, these samples are characterized using various 

instrumentation techniques which are listed in Table 3.7.  

 

The choice to perform a certain type of analysis is dependent on the type of 

information required of the sample, as well as the material’s suitability for a particular 

analysis method. For instance, porosimetry measurements using gas adsorption-

desorption are conducted on the silver-zeolite materials due to the mesoporous nature 

of zeolites, whereas thermal analysis was conducted on the silver-polymer materials 

to determine the effect of silver inclusions on the thermal stability of the polymer 

matrix. Raman analysis was performed on the graphene-silver nanomaterial to probe 
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the number of layers in the graphene composite, as well as to study the effect of 

surface-enhanced Raman scattering after the inclusion of AgNPs. 

 

The principles behind each instrumentation technique and the sample 

preparation procedures are described in the following sections. 

 

Table 3.7: List of instrumentation used in the physical characterization of the 
silver nanocomposite materials. 

 

Instrumentation Manufacturer 

Accelerated surface area and porosimetry system, model 
Micromeritics ASAP 2020 system 

Micromeritics, USA 

Energy Dispersive Spectroscopy (EDS) Silicon Drift 
Detector, X-Max 20mm2 detector with AZtecEnergy 
EDS Software for SEM 

Oxford Instruments, 
UK 

Raman spectrometer, model Renishaw inVia with CCD 
detector and holographic notch filter using a 514 nm 
diode laser excitation source 

Renishaw, UK 

Scanning electron microscope FEI Quanta-400 FESEM FEI, USA 
TGA/DSC thermal analysis system with alumina crucible Mettler-Toledo, 

Switzerland 
Transmission electron microscope (200 kV), model JEOL 
JEM-2100F 

JEOL, USA 

UV-visible spectrophotometer, model Varian Cary 50, 
with 10mm quartz cell 

Agilent, USA 

X-ray diffractometer, model Bruker D8 Advance 
equipped with a 1-D fast detector (Lynx-Eye) and Cu 
anode (λ = 0.15406 nm) with DIFFRAC.EVA phase 
analysis software 

Bruker, Germany 

X-ray diffractometer, model PANalytical X'Pert PRO, 
equipped with Cu K-alpha radiation 

PANalytical, 
Netherlands 
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3.3.1 UV-Visible Spectrophotometry 

 

3.3.1.1 Principle 

 

UV-visible (UV-vis) spectrophotometry is used as a quick method to confirm 

the formation of silver nanomaterials (AgNM). Due to the nanostructure of the 

metallic Ag particles, energy from an incident light with an electrical field vector will 

polarize the samples. Figure 3.1 illustrates the polarization of the particle by the 

electric field. Free electrons present in the particles will form a dipole across the 

particle and begin to oscillate under the influence of the electric field. The layer of 

electrons on the nanoparticle surface will oscillate with reference to the interior of the 

particle, which remains constant. Upon reaching the condition of resonance, the UV-

visible spectrum of the AgNM will display an intense absorption band. The 

absorption band for AgNM is at approximately 400 nm wavelength, and is called the 

“plasmon resonance band” [26].  

 

 
Figure 3.1: Polarization of a particle by an electric field. (A) Polarization of a 
spherical metal particle by the electrical field vector of the incoming light causes a 
plasmon resonance band in the UV-visible spectrum. (B) A typical UV-visible 
absorption spectrum for a silver nanomaterial with a maximum absorption wavelength 
at approximately 400 nm.  
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3.3.1.2 Sample Preparation 

 

A Varian Cary 50 UV-visible spectrophotometer with a laser from a Xenon 

lamp was used in this analysis to measure the surface plasmon excitation of the 

nanoparticles. Samples were dispersed in a liquid medium and sonicated in an 

ultrasonic water bath for 2 minutes. This step was to ensure good dispersibility in the 

liquid medium and to remove air bubbles. Samples which were highly concentrated 

were diluted with deionized water until the maximum absorbance is approximately 1 

unit (arbitrary). A typical test routine involved transferring 2ml of sample by pipette 

into a 10 mm quartz cell. The sample was illuminated with a laser from a Xe lamp 

from 800 – 200 nm wavelength. Prior to starting a measurement, a cell containing 

only deionized water was used as the blank sample. 

 

 

3.3.2 Scanning Electron Microscopy (SEM)  

 

3.3.2.1 Principle 

 

Microscopy methods are an integral part of materials characterization studies, 

as it allows imaging of the material’s structure by probing and mapping the surface 

and sub-surfaces. The principle behind scanning electron microscopy (SEM) lies in 

the various interactions which occur when an electron beam strikes a solid specimen 

(Figure 3.2). The SEM uses electrons instead of light waves to form an image. As 

electrons have smaller wavelengths, SEM images have higher resolution, up to 

approximately 1 nm [36]. An extremely focused electron beam rapidly moves over 
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(scans) a sample, causing the emission of secondary electrons. These electrons are 

collected by a detector, converted to a voltage, and amplified. The amplified voltage 

is applied to the grid of a cathode ray tube (CRT) and causes the intensity of the light 

spot to change. Variations in the emission of secondary electrons are used to build up 

an image. The image consists of thousands of spots with varying intensities on the 

face of the CRT, which corresponds to the topography of the specimen. 

 

Figure 3.2: Effects of electron – specimen interaction. The SEM uses secondary 
electrons while EDX uses characteristic X-rays emitted from the specimen. 
 

 

3.3.2.2 Sample Preparation 

  

The size and surface morphology of AgNM was observed through an FEI 

Quanta 400F scanning electron microscope. For samples which are in powder form, 
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about 1 g of powder was evenly dusted onto a 1 cm length of a double-sided carbon 

tape, which was attached to the surface of an aluminium specimen stub. For samples 

dispersed in solvent, a drop of sample was carefully placed onto a silicon substrate 

and allowed to air-dry before being fixed onto the SEM sample stub. The prepared 

stub was then placed onto the SEM stage in the microscope chamber for analysis. 

Particle size analysis was conducted through analysis of a minimum of 30 points on 

the image to calculate the mean diameter and standard deviation.  

 

 

3.3.3 Energy Dispersive X-ray Spectrometry (EDX) 

 

3.3.3.1 Principle 

 

Elemental analysis using energy dispersive X-ray spectrometry (EDX) is 

considered a form of X-ray microanalysis as it makes use of the characteristic X-rays 

that are emitted from the sample when it is struck by electrons from an external 

source. Consequently, these X-rays are used to identify and quantify the elements that 

are present in an unknown sample.  

 

Figure 3.3 shows incoming electrons interacting with the electrons in the inner 

shell of an atom. This results in an electron being ejected from its shell, leaving the 

atom in an ionized condition. The instability of the condition is reduced if an electron 

from one of the higher energy outer shells falls to occupy the vacant position in the 

lower energy shell. The reduction in potential energy is released in the form of an X-

ray. The energy of the X-ray produced is determined by the difference in energy 
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between the sharply defined quantum energy levels in the atom. Because each atom 

has unique energy levels, the X-ray produced is thus, characteristic of the atom from 

which it is emitted. The relationship between X-ray frequency ν and atomic number, 

Z, was first proposed by Henry Mosely (Equation 3.1): 

 

( ) 162 101248.0 ×−= Zν  

…. Equation 3.1 

 

The frequency of the X-ray radiation is related to its quantum energy, E, by the 

relationship E = hν, where h is Planck’s constant. 

 

 

3.3.3.2 Sample Preparation 

 

The sample preparation for EDX was similar to the preparation for SEM 

imaging (Section 3.5.2). The elemental analysis was performed on the SEM samples 

after SEM micrographs have been taken. Three separate spots on each image were 

analysed and the average elemental composition was calculated from the obtained 

data.
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Figure 3.3: Production of characteristic X-rays for EDX.
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3.3.4 Transmission Electron Microscopy (TEM) 

 

3.3.4.1 Principle 

 

Transmission electron microscopy is a valuable tool in materials 

characterization as it allows high resolution imaging, on the order of angstrom, down 

to near atomic levels. The image is formed from the interaction of a high energy 

electron beam (up to 300 kV) transmitted through thin specimens. In contrast to SEM, 

which provides a three-dimensional surface image of specimens, TEM provides a 

high-resolution sectional image of the samples. Thus, both SEM and TEM are 

complementary electron imaging techniques, allowing a more complete understanding 

of the material’s morphology.  

As shown in Figure 3.4, the TEM instrument has 3 major sections: 

 

1) The illumination system: Electrons from an electron gun is transferred to the 

specimen. Electromagnetic condenser lenses focus the electron beam onto the 

specimen to illuminate only the area of study.   

 

2) The objective lens and stage: The specimen stage is inserted into the objective 

lens for imaging purpose. The objective lens focus and magnify the image.  

 
3) The TEM imaging system: This includes the intermediate lenses and projector 

lenses. The intermediate lenses magnify the image coming from the objective 

lens. Finally, projector lenses further magnify the image coming from the 

intermediate lens and projects it onto a phosphorescent screen. Images are 

digitally captured on a computer. 
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The TEM images are in grayscale, with the more dense areas appearing darker 

and less dense areas lighter. High resolution TEM (HRTEM) allows the imaging of 

atomic lattices of metallic nanoparticles and can be used to analyse the quality, shape 

and size of nanostructured materials. 

 

 

Figure 3.4: General layout of a transmission electron microscope.  
(Figure modified from [272]). 

 

 

3.3.4.2 Sample Preparation 

  

About 20 ml of deionized water was added to 0.5 g of powder sample and 

dispersed by immersion in an ultrasonic bath until a fine suspension was formed. A 

drop of the dispersion was placed onto a carbon-coated copper grid and left to dry in a 
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drying cabinet. The grid was then inserted into the TEM sample holder and placed on 

the TEM stage for viewing. The samples were viewed under a JEOL JEM-2100F 

transmission electron microscope at an accelerating voltage of 200 kV. 

  

3.3.5 X-ray Powder Diffraction (XRD) 

 

3.3.5.1 Principle 

 

X-ray diffraction works on the principle of X-ray beams being diffracted by 

the planes that exist within a crystalline powder sample (Figure 3.5). When a parallel, 

monochromatic and coherent X-ray beam with wavelength λ, is directed on two 

parallel planes of atoms at an angle of θ, the waves are scattered by atoms on adjacent 

planes. If the path length difference that both waves travel is equal to a whole number 

of wavelengths, n, both waves are in phase after being scattered. The condition for 

constructive interference of the scattered rays, or diffraction, is governed by Bragg’s 

Law, given by: 

 

θλ sin2dn =  

… Equation 3.2 

 

In Equation 3.2, d is the spacing between adjacent crystal planes, θ  is the 

angle of scattering, and n = 1 is used as a standard procedure in the analysis of 

diffraction patterns for powder samples [273].  
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Figure 3.5: Diffraction of X-ray beams by planes of atoms, as governed by 
Bragg’s Law. 
 

Apart from identification of an unknown sample, the crystallite size of a 

sample can also be determined from the diffraction pattern if appreciable peak 

broadening is observed. Diffraction pattern of a nanostructured metal sample has 

broader peaks compared with the bulk metal. The extent of broadening is described by 

β, which is the full width at half maximum intensity of the peak. Smaller crystallite 

sizes contribute to larger peak broadening. Apart from this, peak broadening is also 

attributed to the instrumental profile and microstrain of the sample [274].  

 

After the value of β (in radians) is corrected for the instrumental contribution, 

it can be substituted in Scherrer’s equation, given as: 

 

βθβ
λ

cos
KD =  

…. Equation 3.3 

 

θ
d

d sin θ
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In Equation 3.3, D is the crystallite size, K is the crystallite shape factor, λ is 

the wavelength of the X-ray source, and θβ is the Bragg angle. In the absence of 

detailed information about the shape of the particle, K is approximated as 0.9 in the 

crystallite size calculation [275]. 

 

For AgNPs, the samples are assumed to be spherical with cubic symmetry, 

therefore, K = 0.94 [276]. LaB6 was used as a calibration standard to determine the 

instrumental profile of the Bruker D8 Advance XRD. The FWHM of LaB6 over a 

range from 20-135° 2θ angle is shown in Figure 3.6. The instrumental broadening 

effect for each position can be directly calculated from an empirical formula obtained 

from the polynomial equation of the trend line (Equation 3.4).   

 

0669.00011.0102 25 +−×= − xxy  

…. Equation 3.4 

 

Taking into consideration the instrumental broadening effect, β = FWHM 

(sample) – FWHM (instrument), hence, the Ag crystallite size, DAg, can be expressed 

as 

 

θ
λ

cos)](FWHM)FWHM([
94.0

instrumentsample
DAg −

=  

…. Equation 3.5 

 

Equation 3.5 is used to estimate the crystallite sizes of AgNPs in later 

chapters. Crystallite size broadening, instrumental broadening and microstrain 
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broadening are larger and more pronounced at larger 2θ  angles. If crystallite size 

approximations are performed using a single peak, better approximations are obtained 

from diffraction peaks between 2θ  angles of 30-50° [277].   

 

 

Figure 3.6: The FWHM of the instrumental profile. The instrumental broadening 
effect, FWHM (instrument) at each position can be calculated from the polynomial 
trend line. 
 

 

 

3.3.5.2 Sample Preparation 

 

Approximately 0.5 g of powder sample was placed onto silicon discs and 

flattened with a glass slide, before being loaded into the sampling chamber of the 

diffractometer. 

 

The crystalline properties of the Ag-PNC and AgZ samples were studied using 

a PANalytical X’Pert PRO X-ray diffractometer with scan of 2θ  angle from 5 – 80° 

at a step size of 0.02°/step and a count time of 1.5 s at each step, while the crystalline 
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properties of the Ag/TNT and GAg samples were studied using a Bruker D8 Advance 

X-ray diffractometer equipped with a 1-D fast detector (Lynx-Eye) and Cu anode (λ = 

0.15406 nm), in the 2θ range from 10° to 80°, with measurement parameters of 

0.025°/step and exposure time of 0.1 s/step. A Cu-Kα tube (λ = 0.15406 nm) was used 

for the generation of X-rays in both equipment.  

 

The raw XRD spectrum was analysed using the X’Pert analytical software 

package and the DIFFRAC.EVA phase analysis software package, respectively. 

Generally, the raw spectrum was subjected to a background removal, smoothening 

and peak identification routine. A search and match of the peaks with standard 

patterns from the International Centre for Diffraction Data (ICDD) database was 

performed to identify the phases present. 

 

 

3.3.6 Accelerating Surface Area and Porosimetry (ASAP) 

 

3.3.6.1 Principle 

  

Surface area and porosity are important material properties, especially crucial 

for the study of nanoparticle textural characteristics. Textural attributes are capable of 

influencing the surface reactivity, rate of dissolution, bioavailability, and toxicity 

profile. The physical characteristics revealed by physical adsorption include surface 

area, total pore volume, and pore volume distribution by pore size. This method uses 

adsorbed inert gases, such as nitrogen or argon, whereby each particle of the powder 
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sample is enveloped in an adsorbed film (the adsorbate), to enable investigation of 

surface irregularities and pore interiors of the sample (the adsorbent).  

  

Physical adsorption, compared to chemical adsorption (chemisorption) is 

suitable for surface area determination because of three reasons: 

 

1) it is accompanied by low heats of adsorption, up to 50 kJ/mol, preserving 

the structural integrity of the adsorbent surface, 

2) porous structures within the particle can be filled for volume 

measurements, 

3) the process is fully reversible, enabling studies of both the adsorption and 

desorption processes [278]. 

 

The adsorption of inert gas molecules on samples are recorded in the form of 

an adsorption-desorption isotherm (Figure 3.7), which plots the change in quantity of 

adsorbates with changes in relative pressure. The desorption isotherm may be 

considered as a reverse of the adsorption isotherm as it records the removal of 

adsorbates from the sample. 
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Figure 3.7: Example of an adsorption-desorption isotherm of a silver-zeolite 
nanocomposite material. 
 

 

The Brunauer-Emmett-Teller (BET) method is used to calculate specific 

surface areas of the powdered samples. This method involves the determination of the 

amount of adsorbate required to cover the external and the accessible internal pore 

surfaces of a solid with a complete monolayer of adsorbate. The specific surface area 

can be calculated from the results of BET measurements through the linear form of 

the BET equation (Equation 3.6): 
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p
qa(p0-p)

=
1

qmC
+

C-1
qmC

(
p
p0 ) 

…. Equation 3.6 

 

where p is the absolute pressure, p0 is the saturation pressure, qa is the quantity of gas 

absorbed at a specific pressure, qm is the quantity of gas to produce a monolayer, and 

C is the BET constant. The slope and y-intercept of the linear plot are C-1
qmC

 and 1
qmC

, 

respectively. 

 

 Specific surface area, Sa, defined as the total surface area occupied by the 

molecules in the monolayer per mass of the sample, and can be calculated as: 

 

Sa=
qmσNA

m
 

…. Equation 3.7 

 

where qm= 1
Slope+Intercept

 as determined from the BET plot, σ is the surface area 

occupied by one molecule at the analysis temperature (when nitrogen is used as the 

adsorbate molecule, σ = 0.162 nm2/molecule) , NA is Avogadro’s number, and m is 

the mass of the sample used in the BET measurement [279].  

 

For the determination of porosity and pore size volume, a full adsorption and 

desorption isotherm is measured. In mesoporous materials, capillary condensation 

may occur as mesopores are filled with liquid nitrogen before bulk condensation 

occurs. Pore size is estimated using the Kelvin equation (Equation 3.8):  
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ln �
p
p0�=-

2γvliq cos θ
RTrk

 

…. Equation 3.8 

where γ is the surface tension of liquid nitrogen, θ is the contact angle of the liquid 

nitrogen (θ = 0 for liquid nitrogen), vliq is the molar volume of the liquid nitrogen, and 

R and T are the ideal gas constant and the analysis temperature, respectively. The pore 

radius, r, is determined through the relationship with the Kelvin radius, rk, and the 

thickness of the multilayer adsorbed film, t, as shown in Figure 3.8. 

 

The Barrett, Joyner, and Halenda (BJH) numerical integration method is used 

to calculate pore size distribution. The BJH method takes advantage of Wheeler’s 

theory that condensation occurs in the pores when a critical relative pressure is 

reached which corresponds to rk. The BJH method also assumes a multilayer of 

adsorbed film with a depth of t exists on the pore wall when evaporation or 

condensation occurs, which is of the same depth as the adsorbed film on a nonporous 

surface [278]. 

 

 

Figure 3.8: Determination of pore radius and pore volume. 
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3.3.6.2 Sample Preparation 

 

The surface area and pore size was evaluated using a Micromeritics ASAP 

2020 surface area and porosity analyser. Approximately 0.05 – 0.5 g of sample was 

weighed and inserted into a sample tube. After a degassing procedure at 200 °C for 2 

hours to remove moisture, the sample was weighed again, after which it was inserted 

into the ASAP chamber. A steady flow of nitrogen gas flowed through the sample 

tube, with the maximum adsorption pressure set at 1000 mm Hg for the AgZ 

nanocomposite samples and selected Ag/TNT composite samples. 

 

 

3.3.7 Thermal Analysis 

 

3.3.7.1 Principle 

  

Thermal analysis involves measuring the changes in the material with the 

application of heat. Using a thermal analyser, various analysis techniques are possible, 

including but not limited to thermogravimetric analysis (TGA), differential scanning 

calorimetry (DSC), differential thermal analysis (DTA) and evolved gas analysis 

(EGA). TGA and DSC analysis techniques were used to evaluate the Ag-PNC 

samples. TGA allows the study of the decomposition of the sample and its products, 

enabling conclusions to be drawn about their individual constituents. 
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In TGA, the changes in a sample’s mass are measured as a function of 

temperature. The TGA curve and the first derivative of the TGA curve (known as the 

DTG curve) (refer to Figure 3.9) assists in the determination of the following:  

 

1) Gains or losses in the mass of a sample.  

2) Stepwise changes in mass (calculated as a percentage of the initial sample 

mass). 

3) Temperatures at which the mass loss or mass gain occurs. 

4) A typical TGA curve shows mass loss steps related to the loss of volatile 

components (e.g. moisture, solvents, and monomers), polymer 

decomposition, combustion of carbon black and final residues. When 

polymers undergo decomposition, chemical bonds are broken, resulting in 

the formation of gaseous products including water, carbon dioxide or 

hydrocarbons. 

 

DSC measures the energy absorbed or released (heat flowing into or out of) by 

a sample when compared with a reference material. DSC curves are shown as energy 

of the sample in milliwatts as a function of temperature. The DSC signal can be 

recorded concurrently with the TGA measurement. Analysis of the DSC curves 

enables the determination of: 

 

1) Endothermic or exothermic effects, 

2) Transition and reaction enthalpies (measured from the area under a peak), 

3) Temperatures that characterize endothermic or exothermic effects, 

4) Specific heat capacity of the sample 
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Figure 3.9: Typical thermal analysis results for a polymeric material. Thermal gravimetric analysis (TGA) and differential thermal 
gravimetry (DTG) curves of polyethylene terephthalate recorded from 30 - 1000°C at a heating rate of 20K/min using a TGA/DSC analyser. The 
TGA curve shows the change in mass of the sample while the DSC curve shows the endothermic and exothermic effects. (Figure taken from 
Thermal Analysis of Polymers Applications Handbook © Mettler-Toledo) [280].
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For polymeric samples, the DSC curve may show the occurrence of the glass 

transition, cold crystallization and the melting process. 

 

 

3.3.7.2 Sample Preparation 

 

The thermal properties of Ag-PNC samples were investigated using a 

TGA/DSC thermal system (Mettler-Toledo, Switzerland). 10mg of samples were 

placed in an alumina crucible and heated in a nitrogen atmosphere from 25 – 1000 °C 

at a heating rate of 10 °C/min. 

 

 

3.3.8 Raman Spectroscopy 

 

3.3.8.1 Principle 

  

Raman spectroscopy is a non-destructive, spectroscopic measurement method 

which allows the identification of substances through a characteristic “fingerprint” 

spectrum. The Raman spectra arise from the particular way molecular vibrations in a 

substance causes a shift in the wavelength of an incident light, known as the Raman 

effect [151]. When light from a laser diode is scattered by a substance, most of the 

scattering is elastic, or Rayleigh scattering, in which the energy of a photon absorbed 

by a molecule is the same as the energy of the photon emitted.  
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In Raman scattering, or inelastic scattering, the frequency of the emission is 

shifted lower (Stokes scattering) or shifted higher (anti-Stokes scattering) (Figure 

3.10). The light source gives rise to an electric field which induces a dipole moment 

in the molecule. The photon causes molecular vibrations which are particular to a 

chemical structure, causing a shift in the emitted light. It should be noted that the 

energy of the photon is less than any particular electronic quantum energy; therefore, 

the molecule remains in the ground state.  

 

When an incident electromagnetic wave interacts with a material, a dipole 

moment is induced within the molecular structure of the material. The strength of the 

induced dipole moment, P, is given by Equation 3.9: 

 

P= αE 

.… Equation 3.9 

 

where α is the polarizability and E is the electric field strength of the incident 

electromagnetic wave. The polarizability of the material is dependent on the 

molecular structure and its chemical bonds.  

 

The electric field can be expressed as  

 

E= E0 cos(2πν0t) 

…. Equation 3.10 

 

where ν0 is the frequency of the incident light.  
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Figure 3.10: Representation of the vibrational energy states of a molecule. Raman scattering is the shift in vibrational energy state due to the 
interaction of an incident photon.
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The vibrational energy of a particular mode is given by  

 

Evib= �j+
1
2
� hνvib 

.… Equation 3.11 

where j is the vibrational quantum number (j = 0, 1, 2, …), νvib is the frequency of the 

vibrational mode and h is Planck’s constant. 

 

Raman spectroscopy is an important tool in the characterization of graphene 

and graphene-based materials due to their ability to probe the number of layers 

present in the material [281]. An example of a Raman spectrum is shown in Figure 

3.11. The x-axis (Raman shift) is usually shown in wave numbers in order for the 

frequency shift to be independent of the excitation light source. The Raman spectrum 

for graphene has three prominent characteristic peaks: the D peak at wavenumber ~ 

1350 cm-1, the G peak at ~ 1580 cm-1 and the G’ peak (also known as the 2D peak) at 

~ 2720 cm-1. The D peak arises primarily from the existence of defects and disorder, 

particularly the edge defects in graphene [282]. The G’ band provides information 

about the number of layers present in the graphene. Monolayer graphene has a sharp, 

single Lorentzian G’ peak, in contrast to a broader G’ band of few-layer graphene 

[281]. 
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Figure 3.11: Raman spectrum of a graphene edge. The spectrum shows distinctive 
D, G and G’ bands. (Figure taken from [281]). 

 

 

3.3.8.2 Sample Preparation 

 

About 0.5 – 1 g of GAg powder sample was placed on a glass microscope 

slide and carefully positioned on the viewing stage of a Raman microscope. The 

Raman spectra of the powdered samples were recorded on a Renishaw inVia Raman 

microscope at room temperature. The system was equipped with a CCD detector and 

a holographic notch filter. An excitation source using a 514 nm laser diode was used 

with power setting below 0.5 mW so that the samples were not damaged by the laser 

source. 
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3.4 Biological Evaluation of Marine Antifouling Properties of Silver 

Nanocomposite Materials 

 

The silver nanocomposite materials were used in biological experiments to 

assess their effects on inhibition of biofilm production and effects on microalgae 

growth. There are two main biological experiments for evaluating the antifouling 

properties: 

 

1) General static biofilm inhibition assay using the marine bacterium 

Halomonas pacific.  

- H. pacifica was used as a model biofilm-causing organism as described 

in previous studies [228, 229]. In brief, bacterial cells were grown in 

microtiter dishes for a desired period of time, and then the wells were 

washed to remove planktonic bacteria. Cells remaining adhered to the 

wells were subsequently stained with a dye that allowed visualization 

of the attachment pattern. This surface-associated dye was solubilized 

for a semi-quantitative assessment of the biofilm formed [268]. 

 

2) Evaluation of growth inhibition of marine microalgae using Dunaliella 

tertiolecta and Isochrysis sp.  

- D. tertiolecta is a green marine microalgae that is widely used for 

toxicity testing while Isochrysis sp. is a brown marine microalgae that 

is used as feeds for molluscs and rotifers in aquacultures. They have 

been identified as common marine biofoulers [232, 234].  
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- Briefly, the microalgae cells were grown in 24 well microplates for up 

to 72 hours. Cell viability and proliferation were assessed daily using a 

ready-to-use reagent (PrestoBlue™). The reagent contains resazurin, a 

blue dye, which was quickly reduced by metabolically active cells to a 

highly fluorescent red colour. It provided a fast, quantitative measure 

of viability and cytotoxicity [283]. 

 

 

3.4.1 Materials 

 

The list of organisms, chemical reagents and the instrumentations used for the 

biological evaluations are presented in Table 3.8, Table 3.9 and Table 3.10 

respectively. 

 

Table 3.8: Biological organisms used for antifouling evaluation. 

Organisms / Cells Species Source 

Marine 
Bacterium 

Halomonas pacifica 
(Baumann et al.) Dobson and 
Franzmann (ATCC® 27122) 

American Type Culture 
Collection (ATCC), USA 

Marine 
Microalgae 

Dunaliella tertiolecta 
(LB999) 

Algae Culture Collection of 
University of Texas, Austin, 
USA (UTEX) 

Isochrysis sp. (CS177) Algae Culture Collection of 
Commonwealth Scientific 
and Industrial Research 
Organization (CSIRO), 
Australia 
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Table 3.9: Chemical reagents used for antifouling evaluation. 

Chemical 
Reagents 

Manufacturer Remarks 

Acetic acid Sigma-Aldrich, USA Glacial acetic acid. Product 
number: A6283. CAS No. 64-19-7 

Crystal violet 
solution, 1% 
aqueous 

Sigma-Aldrich, USA Crystal violet solution, 1% 
aqueous. Product number: V5265 

DMSO Sigma-Aldrich, USA Dimethyl sulfoxide 
Ethanol Merck, Germany Ethyl alcohol. EMSURE® grade. 

Catalogue number: 100974. CAS 
No. 64-17-5 

PrestoBlue® cell 
viability reagent 

Life Technologies, USA - 

Provasoli medium - Kindly provided by Dr. Yih-Yih 
Kok, International Medical 
University 

Zobell Marine 
Broth 

HiMedia Laboratories, 
India 

-  

 

 

Table 3.10: Instrumentation used for antifouling evaluation. 

Instruments/Accessories Manufacturer 

24-well flat bottom, cell culture plate Corning, USA 
96-well FluoroNunc™ black plate 
microplate 

Thermo Scientific, USA 

96-well microplate, flat bottom, sterile 
with cover 

Fischer Scientific, USA 

Microplate reader, model Tecan 
Infinite® 200 

Tecan, Switzerland 

Monochromater plate reader, model 
SpectraMax® M3 Multi-mode 
Microplate Reader 

Molecular Devices,  

 

 

3.4.2 General Static Biofilm Inhibition Assay 

 

H. pacifica was cultured in Zobell Marine Broth. An overnight culture of H. 

pacifica in marine broth was seeded into a 96-well plate at an optical density of 600 
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nm (OD600) at a value of 0.01 in the presence or absence of silver nanocomposites of 

predetermined concentrations (0.001 mg/mL – 1.0 mg/mL). The bacteria were 

incubated under stationary conditions at 26 °C for 24 h, after which the medium was 

discarded and the plates were washed with water.  

 

The wells were then stained with a 0.1% aqueous solution of crystal violet and 

allowed to stand at room temperature for 30 min. The stained bacteria on the biofilm 

were washed twice with water and the stain was solubilized with 30% acetic acid. The 

solubilized stain was transferred into a fresh microtiter plate. Biofilm inhibition was 

quantified by using a Tecan Infinite 200 microplate reader to measure the optical 

density at 570 nm (OD570). A higher optical density reading correlated to a greater 

amount of biofilm mass attachment. All data was normalized against the untreated 

culture. Three replicate wells were used for each sample, in order to determine the 

mean and standard deviation values. 

 

 

3.4.3 Evaluation of Growth Inhibition in Marine Microalgae 

 

D. tertiolecta and Isochrysis sp. were cultivated in Provasoli medium and kept 

on illuminated shelves (42 µmol/m2/s, 12:12 h light – dark cycle). For the toxicity 

testing, the algal inoculum was taken from an exponentially growing pre-culture, 

standardized at an optical density of 620 nm at a value of 0.4. Next, 200 µL of 

inoculums was inoculated into 1.8 mL of sterilized Provasoli medium in a 24-well 

plate. The concentration of silver nanocomposites tested was between 0.1-1 mg/mL.  

 

128 
 



The treated cultures were carried out in triplicates and cell viability was 

determined using PrestoBlue® (Life Technologies) within 72 h. At 0, 24, 48 and 72 h 

time points, 90 µL of algal cells were withdrawn and mixed with 10 µL of 

PrestoBlue® in a 96 Well FluoroNuncTM black plate (Nunc) in triplicates. After 30 

minutes of incubation in the dark, the fluorescent intensity was then measured using 

an excitation wavelength of 560 nm and an emission wavelength of 590 nm. All the 

fluorescence data were collected using a monochromater plate reader (Spectramax 

M3, Molecular Devices). Higher fluorescence measurements correlated to greater 

total metabolic activity.  
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Chapter 4: Silver-Polymer Nanocomposite Microspheres Using Ion-Exchange 

Resin as Templating Matrix 

 

 

4.1 Introduction 

 

Ion-exchange is a physical process of interchanging ions between a solid and a 

solution passing through the solid. Ion-exchangers are usually made of polymer resins 

or zeolites. These materials are extremely useful in water treatment, and have also 

been successfully applied in chemical synthesis, pharmaceutical research, food 

processing, mining and agriculture [284-286]. 

 

In this chapter, the discussion focuses on synthetic polymer ion-exchangers 

and its role as a templating matrix for the attachment of silver ions and their 

subsequent formation into AgNPs. The general principles of ion-exchange matrix 

synthesis are based on: 

 

1) The nanoreactor effect. The polymer molecules act as a physical 

confinement for particle nucleation, resulting in a small particle size and 

narrow particle size distribution. 

 

2) The barrier effect. The polymer molecules isolate the formation of each 

nanoparticle by preventing contact between individual nanoparticle 

surfaces and hence prevent aggregation [28].  

130 
 



4.1.1 Ion-Exchange Resins 

 

Ion-exchange resins are porous and insoluble materials, available as a bead or 

gel. The resin used in this work is the strongly acidic cation-exchange resin beads 

Dowex™ 50WX8 (hydrogen form), containing sulphonic acid as the active functional 

group. The beads are specified as 200-400 mesh size in their MSDS, which is between 

37-74 µm in diameter.  

 

The ion-exchange mechanism is achieved as a result of the microstructure of 

the resin. The resin matrix consists of polystyrene main chains and divinylbenzene 

crosslinks, with negatively charged sulphonate (SO3
-) groups distributed evenly, 

acting as fixed ions. To neutralize the charged matrix, a counter-ion of the opposite 

charge (H+) is attached to the fixed ion. The immobilization of charged metal ions or 

complexes on ion-exchange sites occur through non-covalent electrostatic interactions 

[153]. The H+ counter-ion is mobile and leaves the resin in the presence of another ion 

from the solution having a stronger affinity to the SO3
- group.  

 

The sulphonate groups are capable of attracting cations from solution, 

depending on the size and the charge of the cation. Generally, the exchange affinity 

increases with larger ion size and higher valence [153]. The affinity for common 

cations in dilute solutions is in the order:  

 

Hg2+ < K+ ≈ NH4 + < Cd2+ < Cs+ < Ag+ < Mn2+ < Mg2+ < Zn2+ < Cu2+ < Ni2+ < 

Co2+ < Ca2+ < Sr2+ < Pb2+ < Al3+ < Fe3+ [287]. 
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Figure 4.1 schematically shows the microstructure of the cation-exchange 

bead and its associated fixed sulphonate group (SO3
-) and the mobile protonated 

counter-ions (H+). The porous nature of the polymer matrix increases the availability 

of active exchange sites [284].  

 

 

 

Figure 4.1: Expanded representation of the ion-exchange bead. Figure taken from 
[287]. 
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4.1.2 Ion-Exchange Resins for in-situ Silver Nanoparticle Synthesis 

 

The potency of AgNPs as antimicrobials has been discussed in detail in 

Chapter 2. However, AgNPs are prone to agglomeration due to their high ratio of 

surface area-to-volume [288]. Agglomerated AgNPs reduce the availability of active 

surface areas for bacteria, and hence diminish its antimicrobial efficiency. The 

presence of polymeric stabilizers is required to prevent agglomeration of 

nanoparticles through either electrostatic or steric stabilization. Therefore, the 

development of polymer-stabilized metal nanoparticles is one of the most promising 

strategies to prepare stable metallic nanoparticles [28]. 

 

Several strategies involving polymeric materials have been developed to 

synthesize and maintain the nanostructure of AgNPs including their immobilization 

on polymer substrates [33, 52, 63, 139] and dispersion in a colloidal polymeric matrix 

[59, 289, 290]. In addition, several methods to prepare polymer/silver nanocomposite 

microspheres were reported previously. These include the suspension polymerization 

of poly(vinyl acetate) in the presence of AgNPs [152], crosslinkers of AgNPs coated 

with 4-mercaptomethylstyrene [128] and polystyrene-core/polyacrylic acid brush/Ag 

[79]. However, the complex polymerization synthetic procedures of these methods, 

variation in Ag nanoparticle size range, high cost and low yield remain a challenge to 

their production on the industrial scale. 

 

In this respect, ion-exchange resins emerge as a highly-accessible and facile 

template for the in-situ synthesis of metal and metal oxide nanoparticles [288]. 

Several synthetic routes of ion-exchange resins were described previously including 
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reaction of styrene and divinylbenzene monomers via a surfactant reverse micelles 

swelling method [154] or by conventional radical suspension polymerization  method 

[155]. In the present study, we sought to develop a system to synthesize highly 

dispersed AgNPs with narrow size distributions on the surface of commercially 

available Dowex™ ion-exchange resin for anti-microfouling applications.  

 

4.1.3 Rationale of Study  

 

There are 3 important reasons for the use of the Dowex microspheres in the 

preparation of the Ag-polymer nanocomposite (Ag-PNC) materials: 

 

1) As a template to produce nanostructured Ag particles, and to prevent 

agglomeration of AgNPs. Nanostructured Ag has been reported to have 

improved antimicrobial properties compared to bulk Ag [50, 291, 292]. 

 

2) As a supporting matrix to immobilize AgNPs on the surface of the 

nanocomposite in order to provide greater bioavailability for antifouling 

function.  

 

3) To facilitate a high yield and low cost method of producing the Ag-PNC, 

appropriate for industrial scale manufacturing and to fulfil the quantitative 

requirements for antifouling technology applications. 

 

Other advantages of using ion-exchange matrix resins involve their easy 

recovery by simple filtration or decantation, due to their micron-size and specific 

134 
 



shapes. Their size and shape also ensures ease of handling. Furthermore, the resins 

have negligible levels of metal leaching and are compatible with water and other 

reaction solvents [153]. 

 

 

4.1.4 Synthesis Parameters 

  

Solutions of silver nitrate and sodium borohydride in various concentrations 

were used as varying parameters in the synthesis of Ag-PNCs at room temperature. A 

fixed amount of ion exchange microbeads was used in each experiment. The use of 

sodium borohydride as the reducing agent is due to its strong reducing capability 

especially at low to room temperatures to convert silver ions into metallic Ag. This is 

especially important in order to achieve rapid synthesis of the Ag-PNC without 

subjecting it to heat treatment. Further details of the synthesis have been discussed in 

Section 3.2.1. 

 

 

4.2 Synthesis of Silver-Polymer Nanocomposite (Ag-PNC) 

 

The synthesis of silver-polymer nanocomposite (Ag-PNC) beads was carried 

out in two steps as shown in Figure 4.2. In the first step, protonated (H+) ion exchange 

copolymer resin beads were stirred with silver nitrate solution to form an intermediate 

Ag+-copolymer bead. The ion exchange resin bead is composed of multiple 

polystyrene chains bound together by divinylbenzene crosslinks. The fixed, 

negatively-charged SO3
- exchange sites are distributed across the surface of the beads, 
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while mobile, positively-charged H+ are ionically bound to the SO3
- sites. However, 

the SO3
- has a greater affinity for larger cations, such as Ag+ [293]. The affinity series 

of sulphonic acid ion exchange resins for cations varies with the ionic size and charge 

of the cations. For cations with similar charges, the affinity increases with the atomic 

number of the cation [293]. During the ion exchange process, the reaction proceeds to 

the right (Equation 4.1), to generate Ag+-resin, until the exchange capacity of the resin 

nears exhaustion. In the second step, sodium borohydride was used to chemically 

reduce the Ag ions in-situ to form metallic Ag (Equation 4.2). 

 

H+-resin + Ag+ ⇄ Ag+-resin + H+ 

.... Equation 4.1 

 

Ag+-resin + NaBH4→ Ag-resin + ½H2 + ½B2H6 + Na+ 

…. Equation 4.2 

 

Alonso et al. [294] have proposed an alternative pathway for the chemical 

reduction involving the ion-exchanged resin in the formation of AgNPs. The ion 

exchange resin is regenerated to its original form after the reduction process, whilst 

the metallic Ag is produced and physisorbed on the surface of the microbeads, 

according to Equation 4.3 and Equation 4.4. 

 

R-SO3
-H+ + AgNO3⇄R-SO3

-Ag+ + HNO3 

…. Equation 4.3 

R-SO3
-Ag+ + HNO3 + NaBH4+ 3H2O →R-SO3

-H++ 7/2H2 + B(OH)3 + NaNO3+ Ag0 

…. Equation 4.4 
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Equation 4.4 is the sum of the following reactions in Equation 4.5 and 

Equation 4.6: 

 

R-SO3
- Ag+ +  HNO3 +  Na+→ R-SO3

- H+ +  NaNO3 + Ag+  

…. Equation 4.5 

 

Ag+ + BH4
- + 3H2O →7/2 H2 + B(OH)3 + Ag0 

…. Equation 4.6 

 

A deeper look in the second stage reveals that the AgNPs formation (Equation 

4.4) is a combination of an ion-exchange reaction and a reduction reaction. The 

reduction of the Ag+ ion to zero-valent Ag takes place in the solution boundary, close 

to the sulphonate exchange site [28]. 

 

In the synthesis of AgNPs using cation-exchange resins, it should be noted 

that the resin matrix and the reducing agent both bear the same charge. Essentially, an 

electrostatic repulsion exists between the sulphonate groups in the matrix and the 

reducing species BH4
-. This prevents the reducing species from penetrating deeper 

within the polymer matrix. The exclusion of BH4
- species from penetrating deeply 

inside the polymer is due to the Donnan-exclusion effect. Consequently, formation of 

AgNPs is mainly near the surface of the polymer bead.  
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Figure 4.2: Schematic representation of the formation of metallic silver-polymer nanocomposite (Ag-PNC) bead.
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4.3 Morphology and Chemical Content of Ag-PNCs 

 

The ion-exchange resin appeared as microspheres with a smooth surface when 

viewed under scanning electron microscope (SEM) (Figure 4.3). The majority of the 

beads fall within the 50-89 µm diameter size range, with an average diameter of 69.96 

±12.59 µm. This value falls within the expected upper size limit of the resins of 74 

µm according to the material’s MSDS. 

 

To quantitate the amount of Ag loaded on the surface of the Ag-PNC 

materials, the elemental analysis was conducted using the EDX method. As shown in 

Table 4.1, the Ag content of the nanocomposites increases with increasing 

concentration of reactants, consistent with Equation 4.2 and Equation 4.4. The 

maximum loading reached saturation at 66.8 wt% Ag, and further increment in the 

amounts of Ag precursor did not yield further loading on the resins.  
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Figure 4.3: SEM micrograph of the ion-exchange copolymer resin prior to ion exchange, and their size distribution. The average diameter 
of the polymer microspheres was determined by measuring the diameters of 100 individual microspheres under scanning electron microscopy. 
Data represents mean ± standard deviation.
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Table 4.1: Summary of the physical characteristics of Ag-PNC prepared with 
various concentrations of the silver precursor. The ratio of the Ag+:BH4

- is fixed at 
1:2 for optimal reduction stoichiometry. 
 

Samples AgNO3 
concentration 

(M) 

NaBH4 
concentration 

(M) 

Ag 
content 

(wt%) 

 λmax
a 

(nm) 
AgNPs 

diameterb 

(nm) 

Ag-PNC-1 0.001 0.002 0.19 - - 

Ag-PNC-2 0.01 0.02 1.24 - 20.2 ± 6.5 

Ag-PNC-3 0.1 0.2 9.20 406.1 24.5 ± 6.5 

Ag-PNC-4 1.0 2.0 66.8 422.0 60.17 ± 41.1 

Notes:  
a λmax is the maximum absorption wavelength when subjected to ultraviolet-visible 
wavelengths. b The size of AgNPs was determined by measuring the diameters of 100 
nanoparticles under scanning electron microscopy. Data represents mean ± standard 
deviation. 
 

 

Further analysis using SEM revealed a progressive increase of the Ag loaded 

on the surface of the resins with concordant increment in the size of the AgNPs being 

formed (Figure 4.4 and Table 4.1). Importantly, the shape and structure of the 

polymer resin beads were retained after the ion exchange and chemical reduction 

processes, suggesting that the copolymer matrix is suitable for use as a stable template 

for the formation of metallic Ag nanocomposites (Figure 4.4).  

 

In Ag-PNC-1 (Figure 4.4 A), the presence of the AgNPs on the surfaces of the 

beads was hardly observed, mainly due to the low concentration of Ag precursor. The 

appearance of uniformly dispersed, discrete, and spherical AgNPs was detected on the 

surface of Ag-PNC-2 and Ag-PNC-3 (Figure 4.4 B – C). As for Ag-PNC-4, large Ag 

precipitates were found scattered uniformly, overlapping smaller AgNPs covering the 
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surface of the polymer bead (Figure 4.4 D). The fixed amount of SO3
- negatively 

charged surface of the ion-exchange resin limits the Ag ions uptake.  

 

In addition, due to the Donnan exclusion principle, the tetrahydroborate ion 

(BH4
-) has a similar negative charge as the sulphonate functional group in the resin, 

therefore, preventing its incursion deeper into the polymer bead’s centre [28]. Hence, 

metallic Ag is formed mostly on the surface of the bead. The excess amount of Ag 

precursor used in the preparation of Ag-PNC-4 seemed to inundate the available 

surface area on the polymer resin, resulting in the bead surface being covered with a 

thick layer of metallic Ag. Furthermore, excess Ag ions in solution were chemically 

reduced without an anchoring matrix, resulting in excess free metallic Ag (Figure 4.4 

D). 
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Figure 4.4: SEM micrographs and the corresponding EDX spectra of the Ag-PNC samples prepared with various concentrations of 
silver precursor solution. (A) Ag-PNC-1 (0.001 M), (B) Ag-PNC-2 (0.01 M), (C) Ag-PNC-3 (0. 1 M), and (D) Ag-PNC-4 (1.0 M). 
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4.4 Optical Properties of Ag-PNCs 

  

For rapid detection of AgNPs formation, UV-visible spectrophotometry was 

performed. During the chemical synthesis of colloidal Ag, the coalescence of Ag 

atoms to form larger particles gives rise to surface plasmon resonance (SPR) of 

conduction electrons on the surface of AgNPs. For colloidal Ag, a strong absorption 

peak near 400 nm is observed in the UV-visible spectrum [108], while the full width 

at half maximum (FWHM) can be used to determine particle size and shape 

distribution [295].  

 

As shown in Figure 4.5, Ag-PNC-3 displayed the characteristic AgNPs 

maximum absorption peak at 406.1 nm, confirming the formation of AgNPs, while 

the narrow absorption peak has an FWHM of approximately 80 nm. A red-shift of the 

maximum absorption wavelength to 422 nm, accompanied by a broadening of the 

absorption peak was observed for Ag-PNC-4. Red shifting signifies an increase in the 

particle size of the AgNPs [295]. The agglomeration of AgNPs in Ag-PNC-4 was 

clearly seen under scanning electron microscopy, as illustrated in Figure 4.4(d); the 

interaction between the nanoparticles causes a damping of the surface plasmon 

absorption [296]. The FWHM for Ag-PNC-4 of approximately 100 nm indicates the 

production of polydisperse AgNPs [295]. 

 

On the other hand, Ag-PNC-1 and Ag-PNC-2 did not exhibit a similar AgNPs 

absorption peak. As Ag-PNC-1 and Ag-PNC-2 were formed from lower 

concentrations of silver precursor, the absence of plasmon resonance maximum could 

be attributed to the small amount of AgNPs formed and thus the absorption was 
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hindered by the polymer bead. This was confirmed by the very low amounts of Ag 

that were detected by EDX in these two samples, as shown in Table 4.1. 

 

 

 

Figure 4.5: UV-visible absorption spectra of Ag-PNC dispersed in water. 
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4.5 Crystallinity of Ag-PNCs 

 

The crystallinity of the Ag-PNCs was analysed using X-ray diffraction (XRD). 

The XRD patterns of all Ag-PNCs are shown in Figure 4.6. The Ag-PNC-1 and Ag-

PNC-2 with the lowest Ag loading of 0.19 wt% Ag and 1.24 wt% Ag, respectively, 

does not exhibit any crystalline peaks, due to the high polymeric content of the ion 

exchange resin.  

 

The broad humps between angle 2θ of 10° to 35° are attributed to the 

amorphous structure of the styrene divinylbenzene copolymer [288]. With higher Ag 

content in Ag-PNC-3 (9.20 wt%), the XRD pattern shows Bragg reflections with 

maximum at 2θ = 38.1°, 44.3°, 64.4° and 77.4° amidst an amorphous background. 

With Ag content increased to 66.8 wt% in the Ag-PNC-4, the intensity of the four 

diffraction peaks increased, with the first two peaks having particularly large 

increases.  

 

These four peaks correspond to the (111), (002), (022), and (113) reflections 

of the face-centred cubic (FCC) structure of metallic silver (ICDD reference pattern: 

98-005-0882). In addition, the amorphous spectra of the polymer matrix were not 

detected in Ag-PNC-4, indicating that the surface of the composite consists entirely of 

highly crystalline Ag nanomaterial.
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Figure 4.6: XRD spectra of the Ag-PNCs prepared with various concentrations of silver precursor. * represents the metallic silver phase 
(98-005-0882), ICDD reference pattern for Ag.
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4.6  Thermal Properties of Ag-PNCs 

 

The thermogravimetric mass losses of the Ag-PNCs are shown in Figure 

4.7(a). The full TGA and the corresponding DTG curves of the polymeric ion 

exchange resin and the Ag-PNCs are provided in the Appendix. From 50°C onwards, 

the loss of absorbed water molecules (hydration) from the resin is clearly noted up to 

approximately 170°C. A significant mass loss of approximately 17 – 18% was 

observed for Ag-PNC-1 and Ag-PNC-2, similar to pure polymer resin. Nevertheless, a 

smaller weight loss of 12% was observed in Ag-PNC-3, while a mere 5% weight loss 

was noticed for Ag-PNC-4 in the same temperature range. The major degradation for 

the resin occurs around 300 °C, and the degradation process results in char formation 

at around 415 °C with weight loss of approximately 50%. The inclusion of Ag in Ag-

PNCs results in a shifting of the degradation temperature up to 350 °C for Ag-PNC-3. 

Meanwhile, the thermal stability of Ag-PNC-4 sample is improved significantly since 

only a small fraction of the sample (~ 15%) were degraded up to 460°C before the 

resin started to decompose.  

 

The copolymer resins were reported to have glass transition temperatures of 

between 99 – 129°C, depending on the degree of crosslinking of up to 15% with 

divinylbenzene [155]. Although the glass transition temperature is usually determined 

at the midpoint of the endothermic displacement between linear baselines [155],  the 

Tg can also be estimated at the minimum point of the first endothermic displacement 

[128]. Figure 4.7(b) shows the glass transition temperature (Tg) of the pure resin and 

Ag-PNCs, as measured from differential scanning calorimetry (DSC). The resin had a 

Tg of 130°C, while a slight increase in glass transition temperature was observed in 
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Ag-PNC-2 (Tg = 149°C). The Tg of Ag-PNC-4 is further shifted to 323°C, indicating 

the increasingly crystalline nature of the composite microbeads. 

Improved thermal stability is noted for samples with higher Ag content. 

Metallic Ag has higher thermal stability compared to the polymer matrix. In addition, 

the increase of Tg is attributed to the presence of AgNPs between the polymeric 

chains, which act as a barrier to inhibit their thermal rotation and relaxation of the 

polymer chains during TGA/DSC studies. As a result, more energy is required to 

cause the thermal relaxation of the polymer chains, and cold crystallization 

(rearrangement of polymer chains from an amorphous structure to a more crystalline 

structure), leading to an increase in the glass transition temperature and subsequently 

to decompose the samples [128, 297]. 
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Figure 4.7: Thermal properties of the Ag-PNCs. (a) Thermogravimetric mass loss for styrene divinylbenzene resin and Ag-PNC composite 
materials, and (b) DSC thermograms of styrene-divinylbenzene copolymer and Ag-PNC microbeads with various Ag content.
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4.7 Anti-Microfouling Properties of Ag-PNCs 

 

The formation of a bacterial biofilm is an early stage of a multi-step marine 

biofouling process, culminating in the attachment and growth of algae and 

invertebrates on immersed surfaces [231]. It has been shown that invertebrate 

accumulation will not readily occur if a biofilm does not form on a ship’s hull [298]. 

 

To test the anti-microfouling effects of Ag-PNCs, a static biofilm assay was 

carried out using H. pacifica. As shown in Figure 4.8, Ag-PNC materials inhibit the 

attachment of biofilm from H. pacifica after an incubation period of 24 hours. In 

particular, Ag-PNC-3 and Ag-PNC-4 show a potent inhibitory effect on H. pacifica 

biofilm formation, with an average inhibition of 18.59 ± 2.39% and 76.08 ± 3.93%, 

respectively (P < 0.01, Student’s t-test).  

 

In contrast, no such effect was observed in bacteria incubated with Dowex 

resin microbeads alone. Notably, the efficacy of biofilm inhibition correlated directly 

with the amounts of Ag loading, suggesting that the polymeric Dowex template 

promote the anti-microfouling properties of the Ag-PNC material by providing a 

template for nanosized biocidal AgNPs.  

 

Generally, smaller Ag particles are reported to have higher antibacterial 

properties [299], due to higher active surface area. Nevertheless, in this study, the Ag 

content appears to be the more important determining factor for antifouling behaviour. 

As the Ag content within the Ag-PNC is increased, there will be more contact 

between the Ag nanomaterials with H. pacifica, hence leading to more significant 
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inhibition of biofilm formation. Whether or not the anti-biofilm activity of Ag-PNCs 

is due to the bactericidal effect of AgNPs on the surface of the Ag-PNCs remains to 

be investigated further.  

 

Generally, the antibacterial property of nanosilver produces a more adverse 

effect on Gram-negative bacteria such as H. pacifica, by diffusing into the bacterial 

cell through their thinner peptidoglycan cell walls [300]. It is likely that the AgNPs 

might become biologically activated in an aqueous medium and interact with  

structural proteins such as bacteria cell walls to cause lysis [59]. Furthermore, AgNPs 

penetrate the bacterial cell and preferentially bind with DNA bases to inhibit 

replication [301]. Hence, the disruption on the biofilm formation will inhibit the 

subsequent attachment of sessile organisms and distort the progressive fouling process 

[228, 263]. 
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Figure 4.8: Ag-PNC materials inhibit the attachment of biofilm from H. pacifica. (a) Anti-biofilm activity of Ag-PNC at 1mg/ml. †indicates 
the average OD measured at 570 nm, and (b) inhibition of H. pacifica bacteria biofilm attachment by Ag-PNCs. The readings were compared 
with a control (containing bacteria in culture medium, without the presence of nanocomposites) and a blank (containing culture medium only). 
The blank reading was subtracted from the readings from each well. All data were normalized against the untreated culture. Bars represent mean 
± s.d. of 3 independent experiments. * indicates statistical significance compared to control (P < 0.01, Student’s t-test).
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The effect of Ag-PNCs on marine microalgae was also investigated through a 

growth inhibition assay. As shown in Figure 4.9, 1 mg/ml induced significant growth 

inhibition in two different species of microalgae, D. tertiolecta and Isochrysis sp. 

while no such effect was observed in microalgae treated with the resin alone. Upon 

observation under light microscopy, no significant morphological changes was 

observed in D. tertiolecta and Isochrysis sp. exposed to Ag-PNC-4, suggesting that 

the biological effects of Ag-PNC-4 is likely to be cytostatic rather than cytotoxic 

(Figure 4.10).  

 

It is tempting to speculate that contact inhibition might be the predominant 

mechanism of Ag-PNCs’ induced cytostatic effect of the microalgae cells. As such, 

future efforts to prepare environmentally-friendly surfaces through direct deposition 

of Ag-PNC coatings that could persist for long-term usage warrant further 

investigations.
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Figure 4.9: Cytostatic effects of Ag-PNC-4 on marine microalgae. Cells were exposed to 1 mg/ml of resin or Ag-PNC-4 for 72 h. Number of 
cells at 0, 24, 48, and 72 h after treatment were determined using PrestoBlue® staining and fluorescence microscopy (Ex 560 nm/Em 590 nm). 
Points represent mean ± s.d. of at least three independent experiments.
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Figure 4.10: Morphology of D. tertiolecta and Isochrysis sp. following exposure to 
1 mg/mL resin or Ag-PNC-4 for 72 hours. 
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4.8 Summary 

 

Ag-polymer nanocomposite materials were successfully synthesized using an 

ion-exchange and reduction process occurring in-situ on the surface of an ion-

exchange polymer bead. The nanocomposite displayed promising anti-microfouling 

behaviour, as it interferes with the biofilm formation that often precedes macrofouling 

processes. Previous studies using metallic antifouling agents have focussed on zinc 

[232] and Cu2+ cations [266] as antifouling agents in polymeric matrix. The challenge 

organisms included hard macrofoulers and microalgae [232], as well as months’ long 

immersion in seawater [266]. This is the first attempt to synthesize Ag containing 

polymeric materials using a rapid ion exchange process from the microbead resin 

[302]. This technique is attractive due to its relative simplicity in comparison with 

other methods of producing polymer-stabilized metal nanoparticles. The polymer ion-

exchange microspheres act as a supporting matrix for the immobilization as well as a 

template for the formation of nanostructured antimicrofouling Ag particles on the 

polymeric surface.  

 

The amount of metallic Ag loading is relatively high, up to over 60 wt% Ag, 

using the borohydride reduction method. In addition, physical characterization 

methods show that nanosized metallic Ag is successfully precipitated on the surface 

of the polymer microbead, leading to the formation of a stable Ag-polymer 

nanocomposite. The polymeric microbead serves as a physicochemical anchor for Ag 

ions to attach to, and subsequently provides a stable matrix for the formation of 

metallic Ag in nanometre dimensions. This helps to control Ag particle growth and 

agglomeration.  
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The processing method and introduction of Ag to the polymer microbead 

improves the thermal properties of the copolymer by increasing the glass transition 

temperature and thermal stability of the nanocomposite material. The Ag-PNC 

material becomes more crystalline with the incorporation of the metallic Ag phase.  

 

The use of cation-exchange polymers coupled with the Donnan effect results 

in the formation of stabilized AgNPs near the surface of the polymer. The distribution 

of AgNPs on the polymer surface is favourable for anti-microfouling applications by 

increasing the effective contact area with the fouling bacteria. The Ag-PNC material 

is found to be able to effectively inhibit the biofilm formation of H. pacifica by up to 

76%, as well as cause growth inhibition in marine microalgae D. tertiolecta and 

Isochrysis sp., signifying its anti-microfouling property. These results strongly 

suggest that Ag-PNCs are promising anti-microfouling agents which warrant further 

studies in future affordable antifouling technologies. 
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Chapter 5: Silver-Zeolite Nanocomposite Clusters through A Green and Rapid 

Solution Growth 

 

 

5.1 Introduction 

 

Zeolites are a group of mesoporous solids, consisting of hydrated 

aluminosilicate minerals containing alkali and alkaline-earth metals. Mesoporous 

materials are classified as having pore diameters between 2-50 nm [303]. Similar to 

the ion-exchange resins discussed in Chapter 4, zeolites are a class of ion exchangers 

as well. Specifically, they are used as cation exchangers. This is due to the molecular 

dimensions of the stable network of hollow channels and pores within the zeolite 

structure, which are used to selectively sort molecules or cations based on a size 

exclusion process [157, 304]. Although zeolites occur naturally, artificially 

synthesized zeolites are preferred for their consistent purity, and are regularly used in 

industrial applications as catalysts, adsorbents and molecular sieves. 

 

5.1.1 Zeolite ZSM-5 

 

The Zeolite Socony Mobil-5 (ZSM-5) is used in this work. It is a synthetic 

zeolite belonging to the pentasilicate (pentasil) family, with a chemical formula of 

NanAlnSi96-nO192·16H2O (0<n<27). Patented by the Mobil Oil Company in 1975, it is 

widely used as a catalyst in the petroleum industry [305]. The pore and channel 

structures of ZSM-5 are schematically represented in Figure 5.1. 
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Figure 5.1: Schematic representation of the ZSM-5 zeolite. (a) A pentasilicate 
structure consisting of a regular arrangement of a three-dimensional pentagonal 
arrangement of atoms. (b) Skeletal diagram of the (100)-face of the ZSM-5 unit cell. 
Oxygen atoms are not shown. The nearly circular 10-membered ring apertures shown 
are the entrances to the sinusoidal channels which run parallel to [100]. (c) Skeletal 
diagram of the (010)-face of the ZSM-5 unit cell. Oxygen atoms are not shown. The 
10-membered ring apertures shown are the entrances to the straight channels which 
run parallel to [010]. (d) The channel structure in ZSM-5. Images adapted from [305]. 
 

 

5.1.2 Zeolites for in-situ Silver Nanoparticle Synthesis 

 

Due to their thermal stability and unique interconnected porous 

microstructure, natural and synthetic zeolites have been used as templating support 

materials to host a variety of metallic species including Ag [158], Mg [159], Ni [160], 

Zn [161], Fe [162], and Ga [163]. These studies have shown that zeolites are efficient 

reaction templates to produce composite materials for various technological 

applications. The porous internal network structure of zeolites provides an ideal and 

stable template for the formation and growth of nanoparticles with nanometre 

dimensions. Furthermore, nanoparticles are physically prevented from agglomeration 
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to form micron-sized particles, as they are individually separated within the discrete 

pores and channels of the zeolite interior. Previous studies on Ag-zeolite 

nanocomposite materials proposed an ion exchange process followed by high 

temperature calcination methods [76, 92, 158] to produce metallic Ag-zeolite 

materials.  

 

Silver-zeolite nanocomposites possess great potential for marine antifouling 

applications due to the remarkable antimicrobial property of silver against at least 650 

unicellular organisms [20]. Furthermore, zeolites have no known environmental 

hazards and are regularly used for environmental remediation [165], such as the 

removal of heavy metals from soils [166] and in the treatment of wastewater [167].  

 

However, there have been very limited studies on adopting silver-zeolite 

nanocomposites for the evaluation of marine antifouling property. Previous related 

works include that of De Muynck et al. [168], which studied strategies for the 

prevention of algal fouling of outdoor terrestrial concrete surfaces using a Cu-Ag 

zeolite and also AgNPs. Krishnani et al. [47] reported on the bactericidal activity of 

silver ion-exchanged zeolite against shrimp pathogenic bacteria and its efficiency in 

the removal of ammonia. 

 

This study focuses on a rapid and low-temperature method to synthesize 

highly dispersed AgNPs with narrow size distribution on the surface and internal 

structures of commercially available zeolite ZSM-5 for anti-microfouling 

applications. 
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5.1.3 Rationale of Study 

 

Zeolite ZSM-5 were used in the synthesis of silver-zeolite nanocomposite 

materials for the following important reasons: 

 

1) As a support template for the formation of AgNPs. The mesoporous zeolite 

framework allows the preferential ion exchange of Ag cations with the 

ammonium cations, whilst maintaining charge neutrality of the zeolite 

structure. The porous internal structure of zeolites provides an ideal and 

stable template for the formation and growth of nanoparticles. 

 

2) Prevent agglomeration of AgNPs by physical separation within the pores 

and channels of the zeolite interior. 

 

3) Zeolites have no known environmental hazards and are regularly used for 

environmental remediation. Thus, they are safe and suitable for use in a 

marine environment for anti-fouling applications. 

 

In addition, trisodium citrate, a green reducing agent which does not pose an 

immediate catastrophic threat to the environment, was used to form Ag-zeolite 

nanocomposite materials at a low temperature, without the need of high temperature 

calcination to induce the reduction of silver ions. 
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5.1.4 Synthesis Parameters 

  

Solutions of silver nitrate and trisodium citrate of various concentrations were 

used as the varying parameters in the synthesis of AgZ nanocomposites. The amount 

of zeolite used in each experiment was fixed. Instead of employing high temperature 

calcination to induce the reduction of silver ions, trisodium citrate was used as a green 

reducing agent to form Ag-zeolite nanocomposite materials at a low temperature. 

Further details of the synthesis have been discussed in Section 3.2.2. 

 

 

5.2 Synthesis of Silver-Zeolite (AgZ) Nanocomposite 

 

The synthesis of silver-zeolite (AgZ) nanocomposite clusters was carried out 

in two steps as shown in Figure 5.2. In the first step, Ag ions were first introduced 

into the zeolite ZSM-5 pores through an ion exchange procedure. The ammonium 

form of zeolite ZSM-5 was stirred with silver nitrate solution to allow the Ag+ cations 

to substitute out the NH4
+ ions and form an intermediate Ag+/zeolite mixture 

(Equation 5.1). 

 

NH4
+/zeolite + Ag+ ⇄ Ag+/zeolite + NH4

+ 

.... Equation 5.1 

 

The reduction of silver ion-doped ZSM-5 zeolite nanocomposites took place 

via a citrate chemical reduction route according to Equation 5.2: 
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…. Equation 5.2 

 

Prior to the reduction process, the Ag+/zeolite appeared white, but after the 

addition of the reducing agent with heating, the colour started to change to 

brown/grey, indicating the formation of metallic silver in the zeolite sample. The Ag 

ions were then chemically reduced to metallic Ag by the donation of electrons from 

the citrate reducing agent. The atomic silver species rapidly nucleates within the 

zeolite’s porous structure and aggregates into AgNPs. However, the formation of 

large agglomerated particles is physically constrained by the zeolite’s nanometre-

sized template structure. 
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Figure 5.2: The mechanism of Ag NP formation within the internal pores of zeolite ZSM-5.
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5.3 Optical Properties of AgZ 

 

The formation of AgNPs is indicated by strong absorption peaks in the UV-

visible spectrum, around 400 nm, due to the surface plasmon resonance (SPR) of 

conduction electrons on the surface of spherical particles [108]. Aggregation and 

agglomeration of Ag NPs cause the emergence of a secondary absorbance peak or 

broad shoulder in the UV-visible spectrum up to 500 nm [306].  

 

Figure 5.3 shows the UV-visible spectrum of the AgZ composites. All the 

AgZ composites except AgZ-1 and AgZ-5 showed a characteristic maximum 

absorption peak between 408 nm to 449 nm, indicating the formation of Ag NP within 

the AgZ composite material. The absorption maximum for the AgZ-1 was not 

obvious, mainly due to the low concentration of Ag NP in the zeolite structure, 

consistent with the low concentration of Ag precursor used during the synthesis. AgZ-

5 displayed a broad absorption spectra with a maximum peak around 500 nm, 

indicating the presence of aggregated Ag particles [306].  

 

There was a red shift in the maximum absorption peak from 408 nm to 449 

nm, attributed to the greater concentration of Ag NP in the sample, leading to multiple 

particle interactions and causing the red shift of the SPR band [39]. The use of higher 

concentrations of silver precursor, up to 1.0 M, formed a greater concentration of Ag 

NPs, causing the formation of larger aggregated Ag particles, hence, contributing to 

the red shift. These results clearly indicate that, by adopting proper Ag precursor 

concentration, the zeolite material can serve as a stable and effective template or 

nanoreactor for the formation of well-dispersed Ag NP. 
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Figure 5.3: UV-visible absorption spectra of AgZ composites dispersed in water. 
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5.4 Morphology and Chemical Content of AgZ 

 

The silver-zeolite (AgZ) composites appear in an aggregated form consisting 

of globular clusters of particles. The metallic Ag particles appeared on the surface of 

the zeolite clusters as shiny spots under backscattered electron imaging, as shown in 

Figure 5.4. To confirm that the shiny spots were composed mainly of Ag, EDX 

elemental analysis was conducted on AgZ-5 (magnification 80,000x), which showed 

16 wt% Ag in the brighter region (Figure 5.4, Spectrum 1) compared to only 4 wt% 

Ag in the darker grey region (Figure 5.4, Spectrum 2). Therefore, from the 

compositional analysis, it was apparent that the AgNPs were characterised by the 

lighter coloured particle in the SEM micrograph, and were distributed homogeneously 

on the exterior of the darker zeolite clusters. 

 

 

Figure 5.4: EDX analysis of AgZ-5 composite. Bright areas have a higher Ag 
content (16 wt% Ag) compared to darker regions (4 wt% Ag) 

 

  

1 µm

Spectrum 1

Spectrum 2

Spectrum 1

Spectrum 2

168 
 



Figure 5.5 shows the general morphology of the AgZ composites prepared 

with increasing concentrations of silver precursor, with arrows indicating the presence 

of metallic Ag. The Ag particles appeared with increasing regularity with a higher 

loading of silver ions, in the order of AgZ-1 < AgZ-2 < AgZ-3 < AgZ-4< AgZ-5. The 

metallic Ag particles were observed to have a uniform distribution on the surface of 

the zeolite clusters.  

 

The Ag particles appeared to be slightly larger for AgZ-5 (Figure 5.5F), 

confirming the occurrence of Ag particle agglomeration, in accordance with the red 

shift in the SPR band observed in the UV-visible analysis. During the formation of Ag 

crystallites, through the Ostwald ripening process, smaller crystallites will tend to 

dissolve back into solution during the citrate reduction process. The redissolved Ag 

ions will tend to redeposit around larger Ag crystallites. Therefore, on the zeolite 

surface, the formation of larger Ag particles is promoted at the expense of finer 

particles [307].  

 

The pure zeolite and AgZ composites appeared as discrete clusters composed 

of smaller particles. The size analysis of the AgZ clusters was done by measuring 100 

clusters from each sample. From these measurements, the cluster size was generally 

between 1–5 µm in diameter. The use of higher initial concentrations of the silver 

precursor resulted in an increase in the average cluster diameter, as well as a general 

increase in the cluster size distribution, in the order of untreated ZSM-5 < AgZ-1 < 

AgZ-2 < AgZ-3 < AgZ-4< AgZ-5.  
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Figure 5.5: Morphology of the Ag-zeolite composites prepared with increasing 
concentrations of silver precursor. (A) SEM image and cluster size distribution of 
pure ZSM-5 zeolite. Backscattered electron images of Ag-zeolite (AgZ) composites 
showed Ag particles appearing as shiny spots on the surface of composites. The 
corresponding histogram shows the AgZ composite cluster size distributions of (B) 
AgZ-1, (C) AgZ-2, (D) AgZ-3, (E) AgZ-4, and (F) AgZ-5. 
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The size distribution histograms are also shown in Figure 5.5. The average 

diameters of the AgZ composite clusters were concordant with the initial 

concentration of the silver precursor, with AgZ-5 cluster sizes almost double the 

cluster size of the pure zeolite. The enlargement of the composite cluster size was 

likely due to the diffusion of Ag ions into the zeolite internal pores, and their 

subsequent reduction to metallic silver during the chemical reduction process. The 

nucleation and growth of the metallic Ag within the zeolite internal pores was 

expected to contribute to an overall increase in the cluster size of the AgZ composites. 

Furthermore, the cluster size diameter increase was also due to the agglomeration of 

more silver particles on the surface of the Ag-zeolite composites.  

 

Table 5.1 shows a summary of the physical characteristics of the AgZ 

composite materials. The EDX results indicate that the use of the silver precursor 

from 0.1-1.0 M resulted in the incorporation of Ag nanomaterials from 0.8–10.0 wt% 

Ag within the zeolite framework. This agrees with the increase in Ag ion uptake into 

the zeolite pores when using higher concentrations of the silver precursor during the 

ion exchange process [164]. Although a mixing time of 24 h has been regularly 

reported by other researchers in the preparation of Ag-loaded ZSM-5 [46, 76, 308], 

the relatively short ion-exchange time of 2 h adopted in the current study is found 

sufficient to produce optimum Ag ion uptake into the zeolite pores.  

 

In preliminary experiments, there was little difference in Ag ion uptake for ion 

exchange between 3-96 h when using low concentrations of the silver precursor. In 

fact, the chemical reduction of Ag ions helped to increase the Ag content in the Ag-

zeolite composites, when compared with systems which do not undergo a similar 
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process. In addition, the Si:Al molar ratio (SAR) for the Ag-zeolite composite varied 

very slightly (SAR values between 16.3–17.3) in comparison to the pure zeolites 

(SAR = 17.0), indicating that the zeolite aluminosilicate template structure was not 

affected by the inclusion of Ag. This indicates that the ZSM-5 zeolite material can be 

used as an effective templating medium for the fabrication of chemically reduced Ag-

zeolite composites. 

 

 

Table 5.1: The physical properties of the Ag-zeolite nanocomposite prepared 
with various concentrations of the silver precursor. 

 

  

Sample Concentration 
of silver 

nitrate (M) 

Average 
cluster size 

(µm) 

Average 
increase in 
cluster size 

compared to 
pure zeolite 

Ag 
content 
(wt%) 

Si:Al 
atomic 
ratio 

ZSM-5 - 1.766 - 0 17.0 

AgZ-1 0.10 1.835 3.9 0.8 17.3 

AgZ-2 0.25 2.168 22.8 1.3 17.2 

AgZ-3 0.35 2.472 40.0 2.7 16.8 

AgZ-4 0.50 3.215 82.0 6.5 16.7 

AgZ-5 1.00 3.516 99.1 10.0 16.3 
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5.5 Crystallinity of AgZ Nanocomposites 

 

The XRD patterns of all AgZ composite samples are shown in Figure 5.6. For 

the AgZ-1 and AgZ-2 composites with the lowest loading of 0.8 wt% Ag and 1.3 wt% 

Ag, respectively, the presence of the crystalline Ag diffraction pattern was hardly 

detected and thus showed a similar XRD pattern as the pure zeolite, ZSM-5. With 2.7 

wt% Ag content, the AgZ-3 composite XRD spectrum was found to exhibit the four 

main characteristic peaks for metallic silver at 2θ = 38.1°, 44.3°, 64.4°, and 77.4° and 

these corresponded to the (111), (002), (022), and (113) crystallographic planes of the 

face-centred cubic (FCC) silver crystals (ICDD pattern, 98-005-0882).  

 

With an increased Ag content of 6.5 wt% Ag and 10 wt% Ag in the composite 

materials, the intensities of these four diffraction maximums were found to increase 

gradually as well. This agrees with the observations of Shameli et al. (2011) [164], 

who also noted increased intensities of the silver crystallographic planes, 

corresponding to a higher amount of AgNPs detected in the matrix of zeolite-Y. Baek 

et al. (2004) [309] also observed an increase in peak intensity with higher Ag loading 

in zeolites between 5.0 and 22.4 wt% Ag. 

 

On the other hand, the five main peaks for ZSM-5 at 2θ = 7.9°, 8.8°, 23.1°, 

23.3°, and 23.9° were still apparent for all the Ag-Z composite samples, and no 

significant phase shift was observed after the Ag growth process. Nevertheless, there 

was a reduction in the intensities of these ZSM-5 main peaks, especially for the 

composite AgZ-5. The reduction of the zeolite main peaks, along with the evolution 

of higher intensity peaks for metallic Ag, indicate that the incorporation of metallic 
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silver caused a slight reduction in the crystallinity of the zeolite template during the 

formation of the Ag-Z composites.  

 

Although ZSM-5 was used to host up to 10 wt% metallic silver in AgZ-5, the 

integrity of the zeolite internal structure remained largely intact. These results are in 

agreement with Boschetto et al. (2012) [60] who observed similar small decreases in 

the zeolite-Y peak intensities occurring after the incorporation of Ag+. This shows 

that ZSM-5 is a stable inorganic matrix material for the formation of Ag-zeolite 

composites. 
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Figure 5.6: XRD spectra of zeolite ZSM-5 and Ag-zeolite composites. * represents the metallic silver phase (98-005-0882), ICDD 
reference pattern for Ag.+ represents the five main peaks for ZSM-5 zeolite. 
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5.6 Surface Area Analysis and Pore Size Distribution of AgZ 

 

As shown in Table 5.2, the specific surface area using the Brunauer-Emmett-

Teller technique, Sa, of the AgZ samples decreased with increased doping of metallic 

Ag. At the same time, a concordant increase in the BJH desorption average pore width 

was observed. Sa decreased by up to 44% after the introduction of Ag into the zeolite 

framework. The decrease in the specific surface area of AgZ composites with the 

higher loading of Ag was attributed to the blockage of the zeolite pores and channels 

due to the deposition of Ag particles [310], with few significant changes to the zeolite 

channel structures.  

 

Table 5.2: Specific surface area and BJH average pore width for Ag-zeolite 
nanocomposites with various Ag loadings. 

 
Ag wt.% Sa 

(m2/g) 
BJH desorption average 

pore width 
(Å) 

0 397 60.337 

0.8 289 68.087 

1.3 285 73.322 

6.5 264 88.845 

10.0 224 129.339 

 

 

The BJH desorption pore size analysis also showed that there was a marked 

increase in the average pore diameter in the AgZ sample, mainly due to the presence 

of Ag particles in the ZSM-5 framework. The average pore width values using BJH 

desorption measurements showed a remarkable increase from 60 Å to 129 Å, a rise of 

more than 115%. The increase in the average pore size of the AgZ materials 
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compared to the pure zeolite was attributed to the aggregation and growth of AgNPs 

within the zeolite structure. 

 

The textural study using density functional theory (DFT) showed that the 

ZSM-5 zeolites were predominantly microporous and mesoporous, with 69% of pores 

smaller than 50 Å. The inclusion of Ag gradually caused a macroporous structure to 

emerge, particularly with AgZ-5 (Table 5.3). This is mainly due to the presence of 

large Ag nanoclusters within the zeolite cages. The development of porosity in the 

range of 100–500 Å suggests the build-up of porous Ag clusters within the zeolite 

support channels as suggested by David (2006) [159], who observed similar growth of 

Mg nanoclusters in zeolite 4A. Similar increases of porosity in the > 500 Å range 

were observed, which indicates the formation of Ag clusters near the surface of the 

zeolite template. 

 

Table 5.3: Distribution of pore volume as a function of pore width range 
for selected Ag-zeolite nanocomposites. 

 

Pore width 

range 

Distribution of volume pores, Vp 

(cm3/g) 

ZSM-5 AgZ-2 AgZ-5 

≤25 Å 3.85521 0.09981 - 

>25≤50 Å 3.02638 0.01757 - 

>50≤100 Å 3.12581 0.01778 0.00516 

>100≤500 Å - 0.03736 0.03580 

>500 Å - 0.04717 0.10921 
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BJH desorption studies (in Table 5.4) also revealed a similar trend with 

diminishing micropores and an increasingly larger volume of macropores. There were 

similar decreases noted in the distribution of mesopores in the AgZ samples compared 

to the pure zeolite. After the growth of the metallic Ag, it was found that the AgZ 

samples generally encountered a significant decrease (15-20%) for pores measuring 

20-100 Å, whilst a remarkable increase of about 25% for pores > 500 Å was 

noticeable, if compared to the pure zeolite material. The increase in the macroporous 

texture was attributed to the formation of Ag within the zeolite framework. 

 

Table 5.4: Distribution of pore volume using BJH desorption studies. 
 

Pore Width 
Range (Å) 

Distribution of volume of pores, Vp (cm3/g) 

ZSM-5 AgZ-1 AgZ-2 AgZ-3 AgZ-4 AgZ-5 

>15≤25 Å 0.0134 0.0120 0.0130 0.0115 0.0114 0.0087 
>25≤50 Å 0.0255 0.0273 0.0250 0.0243 0.0229 0.0214 
>50≤100 Å 0.0188 0.0238 0.0230 0.0238 0.0234 0.0207 
>100≤500 Å 0.0218 0.0379 0.0340 0.0301 0.0244 0.0269 
>500≤1000 Å 0.0213 0.0352 0.0343 0.0584 0.0522 0.0485 

>1000 Å 0.0059 0.0411 0.0403 0.0200 0.0183 0.0403 

Average 
radius (Å) 60.337 93.043 91.357 93.613 88.845 109.238 

 

 

The significant increase in average pore size and volume, however, did not 

disrupt the crystalline structure of the zeolite material, as evidenced in the XRD 

patterns (Figure 5.6). Therefore, the ZSM-5 structure is an extremely stable and 

durable porous template that is suitable for the formation of distinct and homogeneous 

AgNPs. 
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5.7 Anti-Microfouling Properties of AgZ 

 

To test the antifouling effects of AgZ composite materials, a static biofilm 

assay was carried out using H. pacifica, a common marine fouling organism. As 

shown in Figure 5.7, 1mg/mL concentration of AgZ materials inhibit the attachment 

of biofilm from H. pacifica after an incubation period of 24 h. Particularly, AgZ-4 and 

AgZ-5 had a potent inhibitory effect on H. pacifica biofilm formation with an average 

inhibition of 63.27 ± 2.64% and 81.29 ± 1.53%, respectively (P < 0.01, Student’s t-

test).  

 

In contrast, no such effect was observed in bacteria incubated with the zeolite 

ZSM-5 alone. Notably, the efficacy of biofilm inhibition correlated directly with the 

amounts of Ag loading, suggesting that the zeolite ZSM-5 might promote the 

antifouling properties of the Ag-PNC material by providing a template for nanosized 

biocidal AgNPs. Silver ions have been shown to disrupt multiple bacterial cellular 

processes, leading to increased production of reactive oxygen species and increased 

membrane permeability, eventually causing bacterial cell death [21]. The disruption 

of biofilm formation will hinder the subsequent attachment of larger fouling 

organisms and impede the fouling process [228, 263]. 
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Figure 5.7: AgZ materials inhibit the attachment of biofilm from H. pacifica. (a) Anti-biofilm activity of AgZ materials at 1 mg/ml. 
†Average OD measured at 570 nm, and (b) inhibition of H. pacifica bacteria biofilm attachment by AgZ materials. Bars represent mean ± s.d. of 
three independent experiments. * indicates statistical significance compared to control (P < 0.05, Student’s t-test). ** indicates statistical 
significance compared to control (P < 0.01, Student’s t-test).
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The biological effects of AgZ-5 were also evaluated on 2 commonly used 

marine microalgae, D. tertiolecta and Isochrysis sp. As shown in Figure 5.8 (A), 

1mg/mL of AgZ-5 induced significant growth inhibition in both D. tertiolecta and 

Isochrysis sp. while no such effect was observed in microalgae treated with the ZSM-

5 alone. 

Upon observation under light microscopy [Figure 5.8(B)], no significant 

morphological changes was observed in D. tertiolecta suggesting that the biological 

effects of AgZ-5 is likely to be cytostatic rather than cytotoxic. In contrast, loss of 

membrane integrity and cytoplasm materials were observed in Isochrysis sp., 

indicating that AgZ-5 is cytotoxic to Isochrysis sp.  
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Figure 5.8: Growth inhibition effect of AgZ materials on marine microalgae. (A) 
D. tertiolecta and Isochrysis sp. algal cells were exposed to 1mg/mL of AgZ-5 for 72 
hours and the number of cells was determined by Presto Blue® stain and 
spectroscopy. Points represent mean of ± s.d. of at least 3 independent experiments. 
(B) Morphology of D. tertiolecta and Isochrysis sp. following exposure to 1 mg/mL 
of ZSM-5 (control) or AgZ-5 for 72 hours. Arrows indicate empty shell of the algal 
cell. Magnification at 1000x. 
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5.8 Summary 

 

Ag-zeolite nanocomposite materials were successfully synthesised using an 

ion-exchange and low-temperature reduction process. The nanocomposite displayed 

promising anti-microfouling behaviour as it interferes with the biofilm formation that 

often precedes macrofouling processes. Although the AgZ nanocomposites were 

synthesised using a more rapid ion exchange process compared to conventional 

processing times of 24 h or more, the amount of metallic Ag loading was relatively 

high, up to 10 wt% Ag, due to the use of an environmentally friendly citrate reduction 

method.  

 

In addition, physical characterization methods showed that nanosized metallic 

Ag were successfully precipitated within the confines of the porous structure of the 

ZSM-5 zeolite, leading to the formation of a stable AgZ nanocomposite. The zeolite 

template served as a physical nanoreactor and provided a stable matrix for the 

formation of metallic Ag in nanometre dimensions, which restricted particle 

agglomeration.  

 

The processing method and introduction of Ag into ZSM-5 changed the 

porosity characteristics of the zeolite material, with the AgZ composites possessing 

some degree of macroporous structure in addition to the mesoporous nature of the 

zeolite. However, it did not cause any destruction of the inorganic zeolite structure, 

with its crystallinity well-preserved.  
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Biofilm formation of H. pacifica was reduced by up to 82% by the AgZ 

nanocomposites, demonstrating its anti-microfouling property against a common 

fouling microorganism. AgZ also displayed cytostatic effect on D. tertiolecta and a 

cytotoxic effect on Isochrysis sp., common marine microalgae.  
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Chapter 6: Enhanced Marine Antifouling Performance of Silver-TiO2 Nanotube 

Composites via Hydrothermal Processing 

 

 

6.1 Introduction 

 

The preceding two chapters have dealt with three-dimensional support 

structures for anchoring and growth of AgNPs to form nanocomposite structures. This 

chapter shifts focus to discuss about one-dimensional nanoscale support structures. 

 

Ever since the discovery of carbon nanotubes by Iijima in 1991 [169], one-

dimensional (1D) nanostructures have sparked intense research interest due to their 

combination of unique electronic properties and outstanding mechanical strength. In 

addition, nanotubes are mesoporous in nature, and can be used as adsorbent materials 

[311]. Bulk titanium dioxide (TiO2), or titania, is a ubiquitous and versatile ceramic 

compound found in various consumer goods and products.  Micron-scale titania is 

used primarily as a white pigment in paints, dyes, varnishes, plastics, paper and 

textiles. On the other hand, nanoscale titanium dioxide has photocatalytic properties 

[173], with applications in photovoltaic, electrochromic, and antifogging devices. 

Titania has exceptional biocompatibility, making them suitable for biomedical 

coatings and sensors [312]. 
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6.1.1 TiO2 Nanotubes (TNT) 

 

The hydrothermal synthesis of 1D TiO2 nanostructures was first reported by 

Kasuga [171, 172]. They are composed of single sheets of TiO2 scrolled into a tubular 

structure with an exposed edge, as seen in Figure 6.1. The TiO2 nanotubes (TNT) 

used to produce silver-TiO2 nanotube composites in this work was synthesized by the 

lab of Dr. S.S. Lim from the University of Nottingham Malaysia Campus. 

 

The Fujishima group discovered the photocatalytic ability of TiO2 

nanoparticles under ultraviolet light and the self-cleaning property of TiO2-coated 

glass when exposed to sunlight [173]. On the other hand, layered titanate materials 

have ion exchange properties [311]. TNT possess a combination of both conventional 

TiO2 nanoparticles and layered titanates [311]. TNT has been reported in many 

diverse applications as a functional component in nanocomposite systems including as 

a photocatalytic hydrogen generator [174], as an electrode for sodium storage [175], 

in wastewater treatment [176], as a light-activated anti-bacterial platform [177] and 

for antifouling property against HeLa cells [178].  
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Figure 6.1: The structure of trititanate nanotubes. (a) Schematic drawing of the 
nanotube structure. (b) Three-dimensional drawing of a nanotube illustrating its 
scrolled structure. (Image from Chen et al. [170]). 
 

 

6.1.2 TiO2 Nanotubes for in-situ Silver Nanoparticle Synthesis 

  

TiO2 nanotubes are a better support than TiO2 powder for the preparation of 

TiO2-supported catalysts [313]. This is due to its higher specific surface area on the 

inner and outer surfaces of the nanotube structure. At the same time, the large specific 

surface area and strong hydrophilic tendency facilitate the ion-exchange process 

[314]. Sodium ions introduced during the hydrothermal synthesis of the TiO2 

nanotubes have been demonstrated to be replaced by cations of transition metals and 

proton ions, randomly distributed in the framework of the nanotube structure [314]. 

Monovalent ions, e.g., Ag+, are less likely to interact with the negatively charged, 

anionic titanate sheets, in comparison with bivalent cations (Zn2+, Cu2+, Ni2+, Co2+, 

Cd2+). The higher effective charge density and correspondingly stronger electronic 

interactions between the nanotube lattice and the bivalent cations prevent them from 

being reduced into metals [314].  
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6.1.3 Rationale of Study 

 

The anti-microbial property of both silver and TiO2 led to the consideration to 

combine AgNPs and TiO2 nanotubes as a composite to study its potential as an 

antifouling agent by inhibiting the biofilm production of marine bacteria.  

 

While the majority of studies have looked at Ag-TiO2 nanotube composites in 

the areas of catalysis and energy [82], there have been limited studies on their marine 

antifouling property. Ruffolo et al. [69] compared the performance of pure TiO2 

nanoparticles and Ag-doped TiO2 nanoparticles on the marine fouling of marble slabs 

for protection of underwater archaeological sites. Carl et al. [179] found that the use 

of TiO2 as photocatalytic nanofillers in foul-release polydimethylsiloxane (PDMS) 

coatings improved their antifouling performance against the macrofouling mussel 

species Mytilus galloprovincialis, while TiO2/fluorinated acrylic nanocomposite was 

used as a marine antifouling paint [180].  

 

Apart from these scattered antifouling reports, more literature emerged from 

the field of water treatment depicting TiO2 as a photocatalytic component of water 

filtration and microfiltration membrane systems to remove organic fouling matter 

including humic acid [70]. However, Ag-TiO2 nanotubular composite materials have 

not yet been subjected to intensive study in the field of marine antifouling. Therefore, 

more studies remain to uncover the potential of Ag-TiO2 nanotubular composites for 

marine antifouling applications. 
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Herein, a facile, novel and green method to produce silver-TiO2 nanotubular 

materials is presented, using a hydrothermal reduction of AgNPs involving the citrate 

method, on TiO2 nanotubes.  

 

The surface characteristics, structural and antimicrofouling property of silver-

TiO2 nanotubular composite materials have been evaluated against a commonly found 

marine microfouling bacteria, H. pacifica as well as the microalgae D. tertiolecta and 

Isochrysis sp. 

 

 

6.1.4 Synthesis Parameters 

  

 In order to fabricate composites with high stability and dispersivity, a series 

of experiments under different weight ratios of AgNO3 / TiO2 nanotubes were 

conducted. A fixed concentration of sodium citrate was used as a mild reducing agent 

in the hydrothermal reduction process. Further details of the synthesis have been 

discussed in Section 3.2.3. 

 

 

6.2 Synthesis of Silver-TiO2 Nanotube Composites  

 

Figure 6.2 shows a schematic of the Ag/TNT preparation. The alkaline 

hydrothermal treatment and calcination process to form TiO2 nanotubes (TNT) was 

performed by Dr. S.S. Lim’s group and is briefly discussed here: micron-sized anatase 

TiO2 particles are transformed into TiO2 nanotubes via an alkaline hydrothermal 
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process. This is followed by a calcination treatment at 400 °C for 5 hours. The 

alkaline hydrothermal processing provides a high concentration of sodium cations 

which catalyses the formation of trititanate nanotubes from TiO2 [170].  

 

Anatase TiO2 partially dissolves into single sheets of the trititanate Ti3O7
2-, 

which eventually grows in a two-dimensional plane and simultaneously rolling up 

into nanotubes [170]. The acid wash on the nanotubes renders the structure as 

monoclinic titanate H2Ti3O7 with a layered morphology [315, 316]. During 

calcination up to 400°C, the nanostructured H2Ti3O7 undergoes a topotactic 

transformation into the metastable TiO2 (B) through the intermediate titanate phases 

H2Ti6O13 and H2T12O25 whilst retaining the nanotubular morphology  [317].  The 

TiO2 nanotubes (TNT) appear as a white powder after calcination. 

 

The TNT is subsequently used as a support structure for the growth of AgNPs 

through a second hydrothermal treatment involving silver nitrate and sodium citrate as 

a mild reducing agent. After the chemical reduction of silver ions, the resultant 

Ag/TNT powder is shiny and greyish black in appearance. The reduction of the silver 

nitrate/TNT mixture took place via the citrate reduction route according to Equation 

6.1: 

 

↑++++→++ ++
∆

+
23756

0
23756 O  H  3Na  HOHC  /TNT4Ag O2H  NaOHC  /TNTAg4

 

…. Equation 6.1 
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Figure 6.2: A scheme of the multi-step synthesis process for the formation of Ag/TiO2 nanotubes (Ag/TNT). The alkaline hydrothermal 
treatment and calcination process to form TiO2 nanotubes (TNT) was performed by Dr. S.S. Lim’s group. The synthesis work discussed in this 
chapter covers the hydrothermal treatment to form Ag/TNT.
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Chemical reduction of Ag ions to metallic Ag is achieved through the donation 

of electrons from the citrate reducing agent. Citrate is a well-known reducing agent 

and stabilizer in nanoparticle formation [307], directly influencing the particle size 

and shape of AgNPs [318] and bimetallic nanoparticles [319] through steric isolation 

of individual nanoparticles [320]. The TiO2 nanotubes act as a stable surface to 

support the deposition of AgNPs.  

 

According to Bavykin et al. (2005) [316], TiO2 nanotubes formed from 

alkaline hydrothermal synthesis are negatively charged and interact with cationic 

species, such as Ag+. The cation binding sites are ascribed to the presence of sodium 

ions in the alkaline environment during the initial nanotube formation. 

 

 

6.3 Morphology and Chemical Content of Ag/TNT Composites 

 

The morphology of the Ag/TNT samples was observed through scanning 

electron microscopy. Under high magnification (80,000 X), the TiO2 nanotubes 

appear as a network of filaments with a length to diameter ratio of approximately 15:1 

(Figure 6.3A). For the Ag/TNT samples, equiaxed particles of Ag are observed to be 

uniformly distributed over the TiO2 nanotube mesh. The observable Ag particle size 

increases from 32 nm for Ag/TNT-1 to over 100 nm for Ag/TNT-7 (shown in Table 

6.1), while the Ag distribution density also increases directly with the increase of Ag 

precursor material used in the nanocomposite synthesis (Figures 6.3B – 6.3F).  
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Figure 6.3: High magnification (80,000 X) scanning electron micrographs of 
Ag/TNT. (A) TiO2 nanotubes (TNT), (B) Ag/TNT-1, (C) Ag/TNT-2, (D) Ag/TNT-3, 
(E) Ag/TNT-5, and (F) Ag/TNT-7, showing the tangled morphology of the TNT. (B) 
– (F) shows increased deposition of spheroidal Ag particles with the increase in ratio 
of Ag precursor to the TNT material.  
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Table 6.1: Physical characteristics of Ag/TNT nanocomposites. 
 

Sample Weight 
ratio of 

AgNO3 to 
TiO2 

nanotube 

Ag/TiO2 nanotube composite 

a Ag 
content 
(wt%) 

b Ag particle 
size 
(nm) 

c Ag 
crystallite 

size 
(Å) 

Ag/TNT-1 1:16 0.95 32.39 ± 15.88 2.72 

Ag/TNT-2 1:10 1.15 35.98 ± 12.82 3.02 

Ag/TNT-3 1:5 4.04 54.50 ± 16.10 4.74 

Ag/TNT-4 1:1 9.73 82.23 ± 25.79 11.88 

Ag/TNT-5 2:1 16.38 82.11 ± 25.66 10.64 

Ag/TNT-6 4:1 13.78 82.55 ± 31.60 13.15 

Ag/TNT-7 10:1 15.22 103.55 ± 24.94 12.03 

 
Note:  
a The Ag wt% was determined from EDX analyses of 3 different spots. 
b The average size of the Ag nanoparticle supported on TiO2 nanotubes was 
determined from measurements of at least 30 points. 
 c The crystallite size of the Ag nanoparticle supported on TiO2 nanotubes was 
calculated from Scherrer’s equation after correcting for peak broadening caused by 
instrumentation factor. 
 

 

Elemental spot analyses were performed on Ag/TNT-3 to ascertain the 

location of metallic silver particles on the samples. As shown in Figure 6.4, the 

spheroidal bright white spots show a high density of elemental Ag (~ 16.5 wt% Ag in 

Figure 6.4B). Interestingly, the grey area without any discernible bright spots also 

shows a relatively high amount of Ag (~ 12.4 wt% Ag in Figure 6.4C). This implies 

that the size of the Ag nanoparticle is too small to be observed with SEM and also, 

possibly, Ag is precipitated within the internal structure of the TiO2 nanotube.  
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Figure 6.4: SEM imaging and 
EDX analysis of Ag-TiO2 
nanotubes (Ag/TNT). The 
Ag/TNT suspensions were 
dropped onto a silicon substrate 
for the analysis. (A) EDX 
analysis of Ag/TNT-3. (B) Spot 
analysis of a silver particle on 
the composite. (C) Spot 
analysis of nanocomposite with 
non-visible Ag section. 
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Element Weight% Atomic%

C K 5.59 11.79
O K 30.83 48.81
Na K 0.44 0.49
Si K 25.52 23.01
Ti K 24.05 12.72
Ag L 13.55 3.18

Totals 100.00

Element Weight% Atomic%

C K 6.22 13.07
O K 31.51 49.66
Na K 0.47 0.52
Si K 24.35 21.86
Ti K 20.97 11.04
Ag L 16.48 3.85

Totals 100.00

Element Weight% Atomic%

C K 5.11 10.56
O K 33.62 52.12
Na K 0.70 0.75
Si K 24.01 21.20
Ti K 24.19 12.53
Ag L 12.37 2.84

Totals 100.00

A

B

C



The Ag content of all the Ag/TNT samples is also shown in Table 6.1. The 

amount of Ag in the samples was determined through EDX spot analyses of 3 

different spots in each sample. The elemental Ag content ranging from 0.95 wt% in 

Ag/TNT-1 to 15.22 wt% in Ag/TNT-7, increases concordantly with the higher ratio of 

Ag precursor to the TiO2 nanotubes used during the material syntheses. In addition, 

the low-magnification micrographs in Figure 6.5 show the presence of micron-sized 

free Ag particles (indicated with red arrows) in the Ag/TNT samples when the ratio of 

Ag precursor to the TiO2 nanotubes is ≥ 1.  

 

Low magnification TEM images in Figure 6.6A reveal hollow TiO2 nanotubes 

with lengths ranging from ~ 60 nm to ~160 nm, while the high magnification TEM 

image in Figure 6.6B shows the open-ended nanotube with an inner and outer 

diameter of 4.9 nm and 14.8 nm respectively. In addition, the nanotube walls contain 

4 to 5 layers, with the number of layers on both sides differing by one layer. These 

structural features and dimensions are comparable with trititanate nanotubes reported 

by Chen et al. [170].  

 

The nanocomposite with the lowest Ag content, Ag/TNT-1 is shown in Figure 

6.6C and Figure 6.6D. Spherical AgNPs with diameter of 2.9 ± 0.5 nm were observed 

along the outer walls of the TiO2 nanotubes. The TiO2 nanotubes are formed into 

scrolls by rolling up of single sheets of titanium oxide [315]. This phenomenon 

explains the difference in the number of layers, often by one, observed on both sides 

of the nanotube walls. The precipitation of metallic AgNPs on the surface of the TiO2 

nanotubes do not appear to distort the nanotube structure, indicating that the 
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nanotubes are suitable support structures for the formation of Ag-TiO2 nanotube 

composites. 

 

 

 

 

Figure 6.5: Low magnification scanning electron images of Ag/TNT samples. (A) 
Ag/TNT-3 with silver nitrate:TiO2 nanotubes weight ratio of 1:5, (B) Ag/TNT-4, with 
equal proportions of silver nitrate and TiO2 nanotubes, (C) Ag/TNT-6 with silver 
nitrate:TiO2 nanotubes weight ratio of 4:1, and (D) Ag/TNT-7 with silver nitrate:TiO2 
nanotubes weight ratio of 10:1. The red arrows indicate the presence of micron-sized, 
free Ag particles. 
 
 
 

A

C D
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Figure 6.6: 
Transmission 
electron 
micrographs of 
Ag/TNT. (A) TiO2 
nanotubes, (B) high-
resolution TEM 
image of a nanotube, 
(C) Ag/TNT-1 and 
(D) high-resolution 
TEM of Ag/TNT-1 
showing spherical 
AgNPs on TiO2 
nanotube surfaces.
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6.4 Crystallinity of Ag/TNT Composites 

 

To determine the phase composition of the silver-TiO2 nanotube material, X-

ray diffraction was performed. The XRD spectra of the Ag/TNT materials are shown 

in Figure 6.7. The TiO2 nanotube material exhibited relatively broad peaks at 2θ 

angles of 25.3°, 37.9°, 48.1°, 54.0°, 55.1°, 62.8°, 68.9°, 70.3° and 75.1°, which 

corresponded to TiO2 (ICDD PDF 01-086-1157). In addition, broad humps (indicated 

by * in the spectra of Figure 6.7) are attributed to the phase known as TiO2 (B) at 2θ  

angles of 13°, 30° and 43.7°. In fact, the first peak around 2θ  ≈ 13° is ascribed to the 

(0 0 1) plane in a TiO2 (B) structure [317]. According to Morgado et al., heat 

treatment of trititanate nanotubes causes dehydration and structural changes in the 

intermediate titanate phases which rearrange into the more condensed TiO2 (B) 

structure [317].  

 

After the addition of silver nitrate to the TiO2 nanotubes and the subsequent 

hydrothermal reduction to form Ag/TNT, all the nanocomposite samples, apart from 

retaining the TiO2 peaks, also exhibited the characteristic peaks for face-centred cubic 

(FCC) Ag (ICDD PDF 03-065-2871) at angles 2θ of 38.1°, 44.3°, 64.4° and 77.4°. As 

the ratio of silver nitrate to nanotube material was increased, the peaks assigned to the 

f.c.c. Ag were also observed to increase accordingly in intensity. In fact, the primary 

peak of Ag corresponding to the (1 1 1) f.c.c. Ag plane overlaps with the (0 0 4) plane 

of the TiO2 crystal structure.  
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Figure 6.7: XRD spectra of TiO2 
nanotubes (TNT) and Ag/TNT 
composites. 
■ represents the metallic Ag phase 
(ICDD PDF 03-065-2871).  
+ represents the peaks for TiO2 (ICDD 
PDF 01-086-1157).  
∗ represents the broad peaks attributed 
to the metastable TiO2 (B) phase. 
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The peaks for metallic Ag are enhanced, with greater amounts of Ag 

precursor, as observed by higher intensities, sharper peaks, and less broadening. 

These features indicate the formation of larger crystallites and longer range atomic 

order in the crystalline composite material.  

 

The crystallite size of AgNPs supported on the nanotubes was calculated from 

Scherrer’s equation (Equation 3.5) using the most intense peak for f.c.c Ag at 2θ = 

38.1°. As shown in Table 6.2, the Ag crystallite size tripled from 2.7 Å to 13.15 Å as 

the amount of silver precursor increased more than 60% from Ag/TNT-1 to Ag/TNT-

6. In addition, the average crystallite size details calculated with each of the 4 main 

peaks of f.c.c. Ag are also provided in Table 6.2.    
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Table 6.2: Scherrer calculation of Ag crystallite size of Ag particles 

supported on TiO2 nanotubes. 
 

Sample Position, 
x [°] 

FWHM 
(sample) 

FWHM 
(instrument) 

Peak 
width, β 

Ag 
crystallite 
size, DAg 

(Å) 

Average 
crystallite 

size (Å) 

Ag/TNT-1 

38.051 0.730 0.054001 0.676 2.720 

16.089 44.202 0.551 0.057354 0.496 4.092 
64.639 0.411 0.079361 0.332 10.195 
77.417 0.242 0.101609 0.140 47.349 

Ag/TNT-2 

38.068 0.663 0.054009 0.609 3.020 

13.339 44.255 0.700 0.057390 0.643 3.146 
64.439 0.299 0.079065 0.220 15.261 
77.590 0.313 0.101955 0.211 31.930 

Ag/TNT-3 

38.104 0.442 0.054024 0.388 4.743 

8.762 44.280 0.592 0.057406 0.535 3.784 
64.458 0.468 0.079093 0.389 8.636 
77.344 0.471 0.101463 0.370 17.886 

Ag/TNT-4 

38.105 0.209 0.054024 0.155 11.875 

15.056 44.302 0.270 0.057421 0.213 9.510 
64.427 0.310 0.079047 0.233 14.526 
77.374 0.374 0.101523 0.272 24.315 

Ag/TNT-5 

38.116 0.227 0.054029 0.173 10.641 

15.825 44.305 0.278 0.057423 0.221 9.174 
64.424 0.285 0.079043 0.206 16.287 
77.369 0.345 0.101513 0.243 27.199 

Ag/TNT-6 

38.105 0.194 0.054024 0.140 13.148 

19.662 44.290 0.243 0.057413 0.186 10.901 
64.421 0.295 0.079038 0.216 15.531 
77.367 0.271 0.101509 0.170 39.067 

Ag/TNT-7 

38.100 0.207 0.054022 0.153 12.030 

19.052 44.282 0.245 0.057408 0.188 10.783 
64.414 0.296 0.079028 0.217 15.455 
77.365 0.276 0.101505 0.174 37.941 
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6.5 Surface Area Analysis of Ag/TNT Composites 

 

BET analysis was performed on selected Ag/TNT samples. Results shown in 

Table 6.3 indicate that the specific surface area of TiO2 nanotubes as 161.9 m2/g, 

comparable to values reported by Chen et al. [170], while the Ag/TNT composites 

have progressively lower specific surface areas, reduced to as low as 83.3 m2/g for 

Ag/TNT-7. The reduction of surface area is attributed to the blockage of the nanotube 

ends by the precipitation and subsequent growth and agglomeration of AgNPs, 

especially in Ag/TNT-7 which has the highest concentration of Ag precursor.   

  

Table 6.3: Surface area analysis of the TiO2 nanotubes and the Ag/TNT 

composites. 

Samples BET Surface Area (m²/g) 
TiO2 nanotubes 161.9 

Ag/TNT-1 155.7 
Ag/TNT-3 136.4 
Ag/TNT-7 83.3 

 

 

6.6 Optical Properties of Ag/TNT Composites 

 

UV-visible absorption spectra of the pure TiO2 nanotube and all the Ag/TNT 

samples are shown in Figure 6.8. The enhanced absorption of the Ag/TNT composites 

across the entire visible region is due to the presence of AgNPs. All the samples with 

equal or greater ratios of silver precursor to the titania nanotubes (Ag/TNT-4 to 

Ag/TNT-7) showed a maximum absorption peak between 420 nm to 427 nm, due to 
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the surface plasmon resonance (SPR) of conduction electrons on the surface of the 

AgNPs.  

 

Furthermore, these samples exhibited a secondary absorbance peak in the 

absorption spectra at ~500 nm. This is due to the aggregation and agglomeration of 

AgNPs [306], which is corroborated by SEM images in Figure 6.5. On the other hand, 

when the silver precursor material ratio was lower than the starting amount of titania 

nanotubes (Ag/TNT-1 to Ag/TNT-3), there was no discernible absorption peak at the 

same regions. This is mainly due to the low concentration of AgNPs in the composite. 

The red shifting of the absorption edges of the Ag/TNT composites also suggest that 

the energy levels of TiO2 nanotubes were adjusted [321]. Compared to the pure TiO2 

nanotubes, Ag/TNT composites absorb at longer wavelengths, which suggests that the 

band gap has been reduced through Ag-doping [69]. 
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Figure 6.8: UV-visible absorption spectra of TiO2 nanotubes and Ag/TNT composites.
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6.7 Anti-Microfouling Properties of Ag/TNT Composites 

 

To evaluate the antifouling effects of Ag/TNT composites, a static biofilm 

assay was carried out using H. pacifica, a common marine fouling organism. As 

shown in Figure 6.9, a concentration of at least 0.1 mg/mL of Ag/TNT significantly 

inhibited the biofilm formation of H. pacifica (P < 0.01, Student’s t-test) while no 

such effect was observed in bacteria treated with TiO2 nanotubes or bulk silver alone. 

The Ag/TNT composites with the lowest ratio of silver precursor to TNT (Ag/TNT-1 

and Ag/TNT-2) were particularly potent against H. pacifica biofilm formation with an 

average inhibition of 98.47 ± 0.11% and 89.39 ± 0.45%, respectively. 

 

It is important to note that, the efficacy of biofilm inhibition was inversely 

correlated with the amounts of Ag loading, but rather, correlated well with the size of 

the AgNPs. Ag/TNT materials with smaller Ag nanoparticle sizes were more efficient 

biofilm inhibitors compared with their counterparts with larger AgNPs. The AgNPs 

from Ag/TNT-1 and Ag/TNT-2 were estimated from SEM to be ~ 30 nm in size, 

while TEM observations show that Ag particles as small as 3 nm were present within 

Ag/TNT-1. These observations support literature relating the size effect of AgNPs 

enhancing their antimicrobial properties [59, 322]. These results also show that TiO2 

nanotubes and bulk silver do not possess any antifouling quality. However, with a 

minimal doping of approximately 1 wt% AgNPs on the titania nanotubes, an effective 

biofilm inhibitor was formed which is able to prevent microfouling. This is believed 

to be due to the 1-dimensional nanotube structure carrying sub-3 nm AgNPs which 

are able to penetrate the bacterial cell structure and disrupt cellular activities.  
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Figure 6.9: Effect of Ag/TNT composites on marine bacteria. (A) Biofilm staining with crystal violet. The picture was taken after dissolution 
of crystal violet-stained biofilms with 30% acetic acid. Biofilm formation was assessed at 0.001 mg/mL, 0.01 mg/mL, 0.1 mg/mL, and 1 mg/mL 
Ag/TNT composites. (B) Quantification of biofilm formation following treatment with 0.1 mg/mL of AgTiO2 composites. Bars represent mean ± 
s.d. of at least three independent experiments. * indicates statistical significance compared to control (P < 0.01, Student’s t-test). 
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Finally, the biological effects of Ag/TNT composites on 2 common marine 

microalgae, D. tertiolecta and Isochrysis sp. were also evaluated. As shown in Figure 

6.10, a concentration of 0.1 mg/mL of Ag/TNT-1 and Ag/TNT-2 induced significant 

morphological changes and growth inhibition in both D. tertiolecta and Isochrysis sp. 

while no such effect was observed in microalgae treated with TiO2 nanotubes alone. 

These results suggest that Ag/TNT composites possess antifouling properties on 

fouling microalgae as well as fouling bacteria. 
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Figure 6.10: Effects of Ag/TNT composites on marine microalgae. Ag/TNT 
composites induced (A) morphological changes and (B) growth inhibition of D. 
tertiolecta and Isochrysis sp. Algal cells were exposed to 0.1 mg/mL of Ag/TNT-1 or 
Ag/TNT-2 for 72 h and the number of cells was determined by Presto Blue® stain 
and spectroscopy. Points represent mean of ± s.d. of at least 3 independent 
experiments. 
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6.8 Summary 

 

Ag-TiO2 nanotube composite materials were successfully synthesized using a 

novel 2-step hydrothermal synthetic process. TiO2 nanotubes were directly produced 

from anatase phase through an alkaline hydrothermal process, before it was used as a 

support structure for the hydrothermal reduction of AgNPs to form a nanotubular 

composite for marine antifouling applications.  

 

UV-visible analyses of the composites showed an enhancement of wavelength 

absorption across the entire visible spectrum due to the addition of Ag to the TiO2 

nanotubes, with reduction of the TiO2 band gap. Electron microscopy methods 

revealed the nanocomposites were composed of nanotubular TiO2 structures with 

AgNPs uniformly dispersed throughout the material. The AgNPs were estimated to be 

between 32 – 103 nm in diameter (SEM imaging) whilst TEM images showed AgNPs 

measuring ~3 nm. Crystallite size of the AgNPs was estimated to be between 2.7 – 12 

Angstroms. XRD phase analysis displayed the presence of face-centred cubic Ag and 

TiO2 only, confirming the purity of the samples.  

 

Compared to pure bulk silver and pure TiO2 nanotubes, the Ag/TNT 

composite with the lowest concentration of Ag and having the smallest AgNPs, 

displayed the most promising antimicrofouling behaviour, as it interfered with 

bacterial biofilm formation. The effectiveness of the biofilm inhibition was directly 

related to the Ag nanoparticle size. The Ag/TNT composites also showed increased 

growth inhibitory activity against marine microalgae compared to pure TiO2 

nanotubes. This work shows that TiO2 nanotubes are a stable and effective support for 
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anchoring and growth of the AgNPs. The addition of very low amounts of Ag 

enhanced the antifouling property of pure TiO2 to produce an extremely potent 

antifouling effect on the targeted organisms. 
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Chapter 7: Green Synthesis of Graphene-Silver Nanocomposite and its Potent 

Antifouling Effect on Marine Bacteria and Microalgae 

 

 

7.1 Introduction 

 

After the previous three chapters’ discussion on silver nanocomposites grown 

on three-dimensional and one-dimensional support structures and their potential as 

marine antifouling agents, this chapter centres on graphene, a 2-dimensional carbon 

structure, as a layered support for AgNPs. Graphene is the world’s first two-

dimensional material, first isolated by Novoselov et al. [181] in 2004. In the past 

decade, it has garnered worldwide attention for its intriguing combination of 

electrical, mechanical and chemical properties [182]. It has a high inherent strength of 

0.142 Nm along the direction of π-carbon bonds, an ultimate tensile strength of 130 

GPa, electron mobility up to 2.5 x 105 cm2V-1s-1, thermal conductivity greater than 

3000 WmK-1, Young’s modulus of 1 TPa, and capable of sustaining high current 

densities [323]. 

 

Their potential applications span a far-ranging spectrum, from components of 

flexible electronics [324], energy storage [325] and conductive inks [326], to 

biomedicine [327, 328], corrosion prevention [323] and aerospace technologies [329].  
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7.1.1 Graphene Materials 

 

Graphene is considered as the archetypical nanostructure within the family of 

carbon nanostructures, among them are the fullerenes, carbon nanotubes as well as 

graphene quantum dots. The family of graphene materials encompass pristine 

graphene sheets, few-layer graphene (FLG) flakes, graphene oxide and many other 

graphene derivatives. In fact, graphene can be classified as single-, double- and few- 

(3 to 9) layer graphene, based on their distinctive electronic spectra, whilst thicker 

structures are considered as thin films of graphite [182]. The graphene structure is 

shown in Figure 7.1.  

 

 

Figure 7.1: Two-dimensional graphene is the basis of all forms of carbon 
nanostructures. It can form the zero-dimension fullerenes (Buckyballs), rolled into 
1-D nanotubes or stacked as 3-D graphite. (Figure taken from Geim & Novoselov 
[182]).  
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Such 2-D materials were considered thermodynamically unstable and thus a 

physical impossibility over 80 years ago, until their experimental discovery. These 2-

D crystals become intrinsically stable by gentle warping in the third dimension, 

leading to a gain of elastic energy but a suppression of thermal vibrations [182]. 

  

Graphene was first isolated through mechanical exfoliation using the ‘scotch 

tape method’ of highly oriented pyrolytic graphite, which produced relatively large 

pieces (up to 10 µm) of atomically-thin layers of FLG. This technique is simple and 

low-cost, which sparked an explosive growth in graphene research. However, the 

method is not suitable for scale-up applications. Large scale production of graphene 

and FLG have been obtained through chemical vapour deposition (CVD) on catalytic 

metal surfaces such as Cu [201]. Due to the minimal solubility of C in Cu, monolayer 

graphene is grown on the catalytic Cu surface. However, graphene needs to be 

transferred to an appropriate insulating substrate, a process which negatively impacts 

the integrity, properties and performance of graphene [330]. Graphene has also been 

grown on semiconducting SiC wafers, a method which has managed to produce single 

crystal graphene layers across the wafer, and at the same time, the graphene layer can 

be used in situ without requiring transfer to an insulating substrate [330]. 

  

Researchers have also relied on wet chemistry methods, such as that proposed 

by Hummers & Offeman [331] as a reliable route to produce large quantities of 

graphite oxide. However, these production methods use harsh acids, involve multiple 

processing steps and release toxic gases, posing risks to researchers and the 

environment [332]. In addition, graphene oxide is decorated with various functional 

groups such as hydroxyls and epoxides, which though removable through reduction 
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methods, have a tendency to leave a significant number of residual defects [333]. 

More recently, sonochemistry has been adopted in the preparation of pristine 

graphene flakes through direct exfoliation of natural graphite in organic solvents 

including N-methyl-pyrrolidone [333], or a mild mixture of water and ethanol [183]. 

 

 

7.1.2 Graphene for in-situ Synthesis of Ag Nanoparticles 

  

The literature on graphene-silver nanocomposite materials is crowded with 

reports of AgNPs grown on graphene oxide precursors [84, 145, 149-151, 186-188]. 

The synthesis mostly progressed after a graphene oxide precursor was reduced via 

chemical methods [84, 149-151, 196, 198, 334-336] or physical methods [186, 187, 

337]. Reduced graphene sheets have a strong tendency to agglomerate, due to van der 

Waals interactions. Introduction of inorganic or metallic species onto the graphene 

surfaces inhibits their agglomeration [150, 334].  

 

Reduced-graphene oxide decorated with AgNPs have been used for the 

detection and catalysis of hydrogen peroxide [148, 337], and in food safety for the 

detection of melamine [84] and prohibited colourants [151]. AgNPs on GO sheets 

have been reported as promising fuel cell applications [146, 193]. The retention of 

antimicrobial properties of free AgNPs after their growth on graphene demonstrates 

their potential as biomaterials [149]. 
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7.1.3 Rationale of Study 

 

In the last decade, there has been explosive growth in graphene-related 

research, especially in applications that take advantage of its unique electronic 

properties. However, comprehensive studies on antifouling properties of graphene-

silver nanomaterials remain scarce. Although AgNPs have well-documented 

antimicrobial activity, their effect on biofouling marine bacteria and microalgae, 

especially when incorporated with a 2-dimensional flexible structure as graphene, has 

not been fully explored. This report is an investigation into the marine antifouling 

properties of AgNPs supported on few-layer graphene sheets. 

 

A novel, facile and green method to produce graphene-silver nanomaterials 

using a hydrothermal reduction of AgNPs on pristine few layer graphene is presented. 

Graphene is produced through an optimized ethanol-deionized water, mixed-liquid 

phase exfoliation of graphite [183]. The graphene-silver (GAg) composite synthesis 

method incorporates a low energy exfoliation method with a low temperature 

hydrothermal processing approach. This technique completely bypasses the formation 

of GO. Through a direct exfoliation of graphite, graphene is produced and used as the 

substrate for the templated growth of metallic nanoparticles. This environment-

friendly method is enhanced with the use of sodium citrate as a mild reducing agent 

for the formation of AgNPs on the graphene surface.  
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7.1.4 Synthesis Parameters 

  

Various weight ratios of silver nitrate powder to graphene were used as the 

varying parameter in the synthesis of GAg nanocomposites. A fixed concentration of 

sodium citrate was used as a mild reducing agent in the hydrothermal reduction 

process. Further details of the synthesis have been discussed in Section 3.2.4. 

 

 

7.2 Synthesis of Graphene-Silver Nanocomposites  

 

Figure 7.2 shows a schematic of the two-part procedure to prepare graphene-

silver nanocomposites. First, graphene is prepared using a novel sonochemical-

assisted liquid exfoliation method in an optimized mixture of 2 parts ethanol and 3 

parts deionized water. Exfoliation of bulk graphite into few layer graphene was 

achieved through lowering of the Hansen Solubility Parameters (HSPs) of graphite in 

the optimized ethanol-water mixture [183]. Graphene sheets are produced when the 

magnitude of the shear forces from the 2-hour ultrasonication treatment exceeded the 

binding energy of the bulk graphite layers. 

 

The graphene flakes were redispersed in the ethanol-water mixture to form a 

dark grey suspension. After the addition of silver nitrate and trisodium citrate, no 

physical change was discerned in the suspension. After the completion of the 

hydrothermal treatment and subsequent cooling, dark grey to black solid precipitates 

were sedimented in clear liquid.   
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The reduction of Ag ions-doped graphene nanocomposites took place via a 

citrate chemical reduction route according to Equation 7.1: 

 

↑+++

+→++
++

∆
+

2

3756
0

23756

O  H  3Na                                                                                                       

 HOHC  /graphene4Ag O2H  NaOHC  /grapheneAg4
 

…. Equation 7.1 

 

Chemical reduction of the Ag ions to metallic Ag is achieved through the 

donation of electrons from the citrate reducing agent. Citrate acts as a capping agent 

and influences the particle size and shape of AgNPs and nanoalloys [307, 318-320]. 

The graphene acts as a stable surface to support the deposition of AgNPs and 

increases the active surface area of the composite. At the same time, the presence of 

AgNPs prevents the aggregation of graphene.
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Figure 7.2: A scheme (not to scale) of the synthesis process for few-layer graphene (FLG) flakes and hydrothermal reduction process for 
the formation of graphene-Ag nanocomposite. 
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7.3 Morphology and Chemical Content of GAg Composites 

 

The morphology of the graphene and GAg nanocomposite samples was 

observed under scanning electron microscopy as shown in Figure 7.3. SEM imaging 

reveals that the graphene sample consisted of few-layer graphene (FLG) flakes with 

pristine surfaces. This is due to the sonochemical-assisted exfoliation of graphite 

flakes using the water-ethanol mixture, which gently exfoliates the graphite, resulting 

in the preservation of large pieces of pristine graphene on the micron scale [183].  

 

After the addition of silver nitrate and undergoing hydrothermal reduction 

with citrate, the Ag particles are supported on the surface of the micron-sized FLG 

flakes (Figures 7.3B – 7.3E). The chemical composition of the composites were 

analysed by EDX. The peaks of C and Ag in the EDX spectrum show only the 

presence of carbon and silver elements, confirming the purity of the composite 

(Figure 7.3F). The peak attributed to Si is due to the silicon substrate used to load the 

graphene-silver nanocomposite material for analysis. The amount of Ag loaded on the 

surface of the graphene flakes was quantitated through the EDX method as well. 
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Figure 7.3: Morphology of the graphene and GAg nanocomposite samples observed under scanning electron microscopy. SEM images of 
(A) graphene and the graphene-silver composites. (B) GAg-1 with graphene:silver nitrate weight ratio of 1:3, (C) GAg-2 with graphene:silver 
nitrate weight ratio of 1:1, (D) GAg-3 with graphene:silver nitrate weight ratio of 4:1 and (E) GAg-4 with graphene:silver nitrate weight ratio of 
10:1. (F) Spot analysis of a silver particle on a graphene flake. Graphene-silver dispersions were dropped onto a silicon substrate for SEM 
imaging and EDX analysis.
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The quantity of the precipitated Ag particles supported on the graphene flakes 

are concordant with the starting amounts of silver nitrate used, ranging from 1.3 – 4.9 

wt.% Ag (Table 7.1), indicating that the yield of Ag nanomaterial is consistent with 

the stoichiometry as shown in  Equation 7.1. Additional analysis from SEM images 

showed a gradual increase of AgNPs distributed on the surface of the graphene, with 

the average size of the AgNPs less than 90 nm (Table 7.1). The larger Ag nanoparticle 

size distribution is due to the use of a low concentration of citrate. Although citrate is 

an effective stabilizer, obtaining good quality, discrete nanoparticles with a narrow 

distribution is formed within a small range of citrate concentration of 1 to 5 x 10-4 M 

[318]. Importantly, the integrity and size of the graphene flakes appear to be retained 

after the hydrothermal processing and the incorporation of AgNPs, suggesting that the 

graphene material is suitable as a stable substrate for the formation of graphene-Ag 

nanocomposites. 

 

Table 7.1: Physical characteristics of graphene-Ag (GAg) nanocomposites. 
 

Sample Weight ratio 
of 

graphene:Ag 
precursor 

Graphene-Ag nanocomposite 
aAg content 

(wt%) 
bAverage Ag 
nanoparticle 

diameter (nm) 
GAg-1 3:1 1.3 86.1 ± 20.4 

GAg-2 1:1 1.6 72.1 ± 48.0 

GAg-3 1:4 2.5 76.0 ± 22.9 

GAg-4 1:10 4.9 76.5 ± 24.2 

Note:  
a The Ag wt% was determined from EDX analyses of 3 different spots. 
b The average size of the Ag nanoparticle supported on graphene nanosheets is 
determined from measurements of 100 points. 
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Graphene and GAg-4 nanocomposite samples were observed under 

transmission electron microscopy to further elucidate their morphology and structure. 

Figure 7.4A shows the relatively large micron-sized FLG sheets in pristine condition, 

complementary with the SEM observations. In addition, after hydrothermal 

processing and doping with Ag, the structure of the graphene sheets appears to be 

retained, with some slight curling of the graphene edges (Figure 7.4B). The scrolling 

of graphene nanosheets has been ascribed to a higher thermodynamic stability due to 

the 2-dimensional structure of graphene [338].  

 

The AgNPs appear to have a random distribution across the graphene surface, 

with the appearance of several large aggregates. This is most likely due to the highest 

amount of silver precursor used in conjunction with the high concentration of citrate 

used as both reducing agent and stabilizer. According to Henglein [318], large lumps 

of Ag are formed through the coalescence of destabilized smaller Ag particles. 

However, all Ag particles were observed to be anchored on the graphene substrate, 

with no free Ag particle being detected. This suggests that graphene is a suitable 

substrate material for supporting the growth of AgNPs.  

 

The average particle size of AgNPs in GAg-4 is estimated to be 18.1 ± 1.3 nm. 

At high resolution analysis, the fringe spacing of approximately 0.235 nm 

corresponding to the (1 1 1) lattice plane for FCC Ag crystal was able to be discerned 

(Figure 7.4C). The particles also appeared to have lattice arrangements in different 

orientations, leading to polycrystalline particles. The smaller crystallite size of 

approximately 1 nm is similar to the value estimated through Scherrer’s equation.   
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Figure 7.4: Morphology of the graphene and GAg nanocomposite samples 
observed under transmission electron microscopy. (A) TEM image of graphene 
shows micron-sized pristine few-layer graphene sheets, (B) TEM image of GAg-4 
graphene-silver nanocomposite with AgNPs having an average diameter of 18.1 ± 1.3 
nm supported on the graphene surface, and (C)  HRTEM image of GAg-4 reveals the 
lattice spacing corresponding to the (1 1 1) lattice planes of face-centred cubic Ag.  
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7.4 Crystallinity of GAg Composites 

 

To determine the phase composition of the graphene-Ag nanocomposites, X-

ray diffraction analysis was performed. The XRD spectra of the GAg materials are 

shown in Figure 7.5. The graphene sample exhibited relatively broad diffraction peaks 

at 2 theta angles of 26.5°, 44.5° and 54.6°, which corresponded to the (0 0 2), (1 0 1) 

and (0 0 4) family of planes respectively in graphite 2H (ICDD PDF 00-041-1487), as 

both graphite and graphene possess a similar crystal structure [339].  

 

The GAg samples also exhibited the characteristic peaks for face-centred 

cubic (FCC) metallic Ag (ICDD PDF 03-065-2871) at angles 2 theta of 38.1°, 44.3°, 

64.4° and 77.4°. These peaks corresponded to the (1 1 1), (0 0 2), (0 2 2), and (1 1 3) 

reflection planes of cubic Ag respectively, indicating that metallic silver was 

successfully formed without the production of other compounds.  

 

The presence of the graphene diffraction peaks at 26.5° and 54.7° 2 theta 

angle, corresponding to the (0 0 2) and (0 0 4) family of graphite planes respectively, 

was clearly observed on the diffraction patterns of the GAg samples as well. In 

addition, the diffraction peak at 2 theta angle of 44.3°, corresponding to the (1 0 1) 

family of graphite planes was obscured by the relative prominence of the (0 0 2) 

planes of cubic Ag. These results clearly show that the crystalline structure of the 

graphene substrate was retained during the hydrothermal processing. 

 

The crystallite size of Ag nanocrystalline particles was estimated through 

Scherrer’s equation using the diffraction peaks attributed to the Ag planes. The peak 
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width is inversely proportional to the crystallite size of nanocrystalline samples [276]. 

However, besides crystallite size, peak broadening is also attributed to the 

instrumental profile and microstrain of the sample [274]. Peak broadening due to the 

instrumental contribution at position 2 theta of 38.1° was 0.054. Using the corrected 

peak width and applying Scherrer’s equation (Equation 3.5, discussed in Chapter 3) 

led to estimated crystallite sizes ranging from 1 – 2 nm for the AgNPs. 

 

The estimated crystallite sizes for the GAg samples using a single Ag peak at 

position 2 theta = 38.1° is presented in Table 7.2, with the crystallite sizes increasing 

from about 1 nm to 2 nm, concordant with the increasing amounts of silver precursor. 

The average crystallite size was also estimated using the 4 main peaks of the Ag 

phase. The Ag crystallites are increasing in size from 1.3 nm for GAg-1 to greater 

than 4 nm for GAg-3 and up to 4.85 nm for GAg-4 (Table 7.3), with greater crystallite 

sizes estimated at larger 2 theta angles (Table 7.4) [277].  
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Figure 7.5: XRD spectra of 
graphene and GAg 
nanocomposites.  
 represents the metallic silver phase 
(ICDD PDF 03-065-2871 reference 
file for Ag).  
+ represents the principal peaks for 
graphite phase (ICDD PDF 00-041-
1487).
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Table 7.2: Ag crystallite size calculated from peak broadening of a single peak at 
2θ = 38.1°. 

 

 
 
 
 
 

Table 7.3: Average crystallite size of Ag calculated from peak broadening of 4 
peaks. 

 
Sample Graphene:Ag 

weight ratio 
Ag average 

crystallite size 
(nm) 

GAg-1 3:1 1.248 ± 0.292 

GAg-2 1:1 2.859  ± 1.118 

GAg-3 1:4 4.105  ± 2.877 

GAg-4 1:10 4.850  ± 3.283 

 

 

  

Sample Position, 
x [°] 

FWHM 
(sample) 

FWHM 
(instrument) 

Peak width, 
β 

Ag 
crystallite 
size, DAg 

(nm) 

GAg-1 38.1020 0.1968 0.0540 0.1428 1.0274 

GAg-2 38.1008 0.1476 0.0540 0.0936 1.5676 

GAg-3 38.0947 0.1230 0.0540 0.0690 2.1265 

GAg-4 38.0960 0.1230 0.0540 0.0690 2.1266 
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Table 7.4: Estimation of Ag crystallite size for all GAg samples. 
 

Sample Position, 
x [°] 

FWHM 
(sample) 

FWHM 
(instrument) 

Peak 
width, β 

Ag 
crystallite 
size, DAg 

(nm) 

GAg-1 

38.1020 0.1968 0.0540 0.1428 1.03 
44.2858 0.1476 0.0574 0.0902 1.66 
64.4251 0.2100 0.0790 0.1310 1.25 
77.3912 0.2700 0.1016 0.1684 1.05 

GAg-2 

38.1008 0.1476 0.0540 0.0936 1.57 
44.2821 0.1230 0.0574 0.0656 2.28 
64.4299 0.1230 0.0791 0.0439 3.73 
77.3813 0.1476 0.1015 0.0461 3.86 

GAg-3 

38.0947 0.1230 0.0540 0.0690 2.13 
44.2786 0.1230 0.0574 0.0656 2.28 
64.4282 0.1230 0.0790 0.0440 3.73 
77.3885 0.1230 0.1016 0.0214 8.28 

GAg-4 

38.0960 0.1230 0.0540 0.0690 2.13 
44.2806 0.0984 0.0574 0.0410 3.65 
64.4250 0.1200 0.0790 0.0410 4.00 
77.3797 0.1200 0.1015 0.0185 9.62 

 

 

7.5 Raman Spectroscopy of GAg Nanocomposites 

 

Apart from microscopy techniques which allow surface investigation of the 

graphene nanocomposite material, Raman spectroscopy is an established tool in the 

characterization of graphene and graphene-based materials due to their ability to 

probe the number of layers present in the material [281]. Apart from that, Raman 

spectroscopy allows the identification of a substance through a characteristic 

“fingerprint” spectrum, arising from the particular way the molecular vibration in a 

substance causes a shift in the wavelength of the incident laser light [151].  
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In the Raman analysis of graphene, three characteristic peaks are prominent: 

the D peak at wavenumber ~1350 cm-1, the G peak at ~1580 cm-1 and the G’ peak at 

~2720 cm-1, as shown in Figure 7.6. The D peak arises primarily from the existence of 

defects and disorder, particularly the edge defects in graphene [282]. The G’ peak 

provides information about the number of layers present in the graphene. Specifically, 

the broadness of the G’ peak indicates the presence of few-layer graphene, in contrast 

to monolayer graphene which has a sharp, single Lorentzian G’ peak [281].  

 

The D and G bands of the composite material, with a layer of silver, increased 

by 68-fold and 8-fold, respectively, compared with the graphene which did not 

undergo processing. This is likely due to the surface enhanced Raman scattering 

(SERS) effect of AgNPs on the graphene surface. The SERS effect originates from 

the interaction of the AgNPs and the specific molecular vibrations of graphene, 

enhancing the intensity of Raman scattering of the composite material.  

 

Resonant light excitation cause clusters of AgNPs to generate strong localized 

electric fields at the particle interfaces, an effect of plasmon coupling [340]. Due to 

the magnitude of the signal enhancement observed, the enhancement effect is likely 

due to the short-range chemical interactions between AgNPs and graphene. This 

Raman signal enhancement for GAg nanomaterial is consistent with the SERS effect 

previously reported in graphene-silver nanocomposites [84].  

 

In addition, several weak bands within the 500 – 1000 cm-1 region, which are 

attributed to AgNPs, can be clearly observed in the spectrum (inset of Fig. 7.6). The 

main vibrational bands were at 555, 667, 743, 776, 807, 830, 890 and 913 cm-1. The 
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SERS spectra of bare AgNPs from literature [341] display a group of similar weak 

bands in this region. 

 

Taken together with the TEM results, the Raman spectroscopy results of 

graphene indicate the successful exfoliation of graphite yielding large quantities of 

few-layer graphene. These results also show the interactions of AgNPs with the 

graphene support. 
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Figure 7.6: Raman spectra of graphene and graphene-silver nanocomposite samples.
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7.6 Anti-Microfouling Properties of GAg Nanocomposites 

 

Biofouling in marine environments is a complex process which involves the 

initial development of a microbial slime (biofilm) on exposed surfaces, eventually 

culminating in the attachment of algae and invertebrates [231]. The classical model of 

marine fouling proposed a linear successional progress of fouling species [246], while 

more dynamic and probabilistic fouling mechanisms have also been described [342]. 

Whether the progress of maritime fouling follows the ‘successional model’ or the 

‘dynamic model’, the presence of bacterial biofilms attract the attachment of spores 

and larvae of macrofouling species [4]. Therefore, the disruption of the microbial 

biofilm is an important step in the protection of submerged aquatic surfaces. 

 

To evaluate the antifouling effects of graphene-Ag composites, a static biofilm 

assay was carried out using H. pacifica, a common marine fouling bacterium. As 

shown in Figure 7.7, the GAg materials with a concentration of 0.1 mg/mL inhibit the 

attachment of biofilm from H. pacifica after an incubation period of 24 hours. Figure 

7.7(A) shows a decrease in the optical density of crystal violet dye for GAg samples, 

in contrast to the untreated control and pure graphene sample. The surface-associated 

crystal violet dye attaches to the biofilm mass. A higher optical density reading is 

concomitant with a higher quantity of bacterial biofilm matter.  

 

Figure 7.7(B) revealed that all 4 GAg samples exhibited potent inhibitory 

effect on the production of biofilm by H. pacifica, with an average inhibition of 67.4 

±1.8% for GAg-1, 86.9±1.3% for GAg-2, 95.6±0.1% for GAg-3 and 99.6±0.1% for 

GAg-4 (P < 0.05, Student’s t-test). On the other hand, the graphene material and 
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graphene-free bulk silver exhibited little to no inhibitory effect on the attachment of 

biofilm from H. pacifica.  

 

These results show that graphene and graphene-free bulk silver alone do not 

possess any antifouling quality. However, a minimal doping of AgNPs on graphene 

sheets endowed an effective antifouling effect against bacterial biofilm attachment. 

Notably, the effectiveness of biofilm inhibition correlated directly with the amounts of 

Ag loading, suggesting that the graphene nanosheets may promote the antifouling 

properties of the GAg material by providing a flexible support for nanosized biocidal 

AgNPs.  

 

The graphene nanosheets are capable of wrapping around the contours of the 

bacteria cell, maximizing the contact area between the GAg material and the bacteria. 

In addition, the graphene material and citrate stabilizer promote the formation of 

AgNPs and minimizes nanosilver agglomeration, enhancing the biocidal activity of 

metallic silver. Furthermore, the presence of AgNPs inhibits the agglomeration of 

graphene sheets.
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Figure 7.7: GAg materials inhibit the attachment of biofilm from H. pacifica. (A) Crystal violet assay results for anti-biofilm activity of 
GAg materials at 0.1 mg/ml. † indicates the average OD measured at 570 nm, and (B) H. pacifica bacteria biofilm attachment by GAg materials 
at 0.1 mg/ml. Bars represent mean ± s.d. of three independent experiments. * indicates statistical significance compared to control (P < 0.05, 
Student’s t-test).
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Gram-negative bacteria such as H. pacifica have thin peptidoglycan walls, 

likely making them more susceptible to AgNPs diffusing in to the microbial cells 

[302]. Another viable explanation is the dissolution of the bacterial outer cell wall by 

AgNPs, causing leakage of vital cellular constituents, leading to cell death [191]. 

Similar observations were reported for graphene silver nanocomposites which showed 

maximum inhibition of E.coli, S. aureus and B.subtilis compared to graphene oxide 

which had no activity against the microbe [84, 191]. Graphene oxide-silver 

nanocomposites were also reported as cytotoxic to eukaryotic cells, compared to pure 

GO [145]. 

 

The effects of graphene and GAg on the marine microalgae D. tertiolecta and 

Isochrysis sp. were evaluated using a microalgal growth inhition assay. As shown in 

Figure 7.8(A) and 7.8(B), 0.1 mg/mL of GAg materials inhibited the growth of both 

organisms by more than 70% after 96 h of exposure. On the other hand, graphene 

alone did not show any inhibitory effects on both microalgae. These results are in 

contrast to a previous report that pristine graphene nanoparticles were found to inhibit 

the growth of D. tertiolecta [343].   

 

Interestingly, light microscopy observation showed significant morphological 

changes in both D. tertiolecta and Isochrysis sp. after exposure to the GAg materials. 

The microalgal cells lost membrane integrity and cytoplasm materials [Fig. 7.8(C) 

and 7.8(D)], in contrast to the untreated algal cells [Fig. 7.8(E) and 7.8(F)], suggesting 

that the effect of GAg is likely to be antiproliferative. D. tertiolecta has been 

previously described as a biofouling microalgae, with the induction of oxidative stress 

in the microalgae through direct contact to AgNPs  as a cause of algae toxicity [234].  
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Figure 7.8: Growth inhibition effect of GAg materials on marine microalgae. (A) 
D. tertiolecta and (B) Isochrysis sp. algal cells were exposed to 0.1mg/mL of GAg for 
96 h and the number of cells was determined by Presto Blue® stain. Points represent 
mean of ± s.d. of at least 3 independent experiments. (C) – (F) Light micrograph of 
marine microalgae. (C) D. tertiolecta and (D) Isochrysis sp. algal cells exposed to 0.1 
mg/mL of GAg-3 for 96 h lost its cytoplasmic materials (black arrow pointed) 
compared to (E) and (F) non-treated algal cells. 
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7.7 Summary 

 

Graphene-Ag nanocomposite materials were successfully synthesized using a 

novel 2-step process of sonochemical exfoliation of graphite and a hydrothermal 

reduction process using citrate as a green reducing agent. Graphene is directly 

produced from graphite through the facile and low-energy method, without the need 

of hazardous chemicals or the production of an intermediate graphene oxide. Hence, 

the pristine nature (lattice) of graphene nanomaterial is preserved effectively.  

 

AgNPs were formed on the graphene flakes through a benign hydrothermal 

process using trisodium citrate as a green reducing agent. Electron microscopy 

methods revealed that the nanocomposite was composed of micron-scaled graphene 

flakes with clusters of AgNPs. In addition, TEM imaging showed that the 

hydrothermal processing preserved the quality of the few-layer graphene flakes. The 

AgNPs were estimated to be between 72-86 nm (SEM observations) while estimated 

average particles size through TEM observation was less than 20 nm. On the other 

hand, the crystallite size of the AgNPs was estimated to range between 1-5 nm. XRD 

phase analysis confirms the presence of face-centred cubic Ag and graphene only, 

while EDX analysis also corroborates the purity of the samples, with the detection of 

only carbon and silver elements present in the samples. Raman spectroscopy 

confirmed the interaction of the AgNPs with the graphene substrate with detection of 

the SERS effect.  

 

The GAg nanocomposite displayed promising anti-microfouling behaviour as 

it interferes with the biofilm formation of marine bacteria H. pacifica. Low amounts 
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of AgNPs (1.3 wt% Ag) supported on the graphene flakes were able to inhibit the 

bacteria from forming the fouling biofilms. All the GAg samples displayed 

statistically significant biofilm inhibition property. The highest wt% of Ag loading 

was associated with a biofilm inhibition of 99.6%. The GAg materials also showed 

growth inhibitory activity against marine microalgae D. tertiolecta and Isochrysis sp., 

compared to both pure graphene and bulk silver particles, which did not exhibit any 

significant antifouling properties.  

 

This work shows that the presence of graphene is vital as it provides a stable 

and effective support for the anchoring and growth of Ag NPs. Trisodium citrate as a 

green reducing agent is an effective stabilizer for the formation of AgNPs. In addition, 

the flexible sheets of graphene-Ag nanomaterial are able to improve the contact area 

with fouling organisms and provide an extremely potent antifouling effect on the 

bacterial and algal cells.  
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Chapter 8: Conclusion 

 

 

8.1 Conclusion 

 

This report has examined the issue of marine fouling and has presented 

detailed investigations about silver-based nanocomposite materials and their potential 

as marine antifouling agents. 

 

Chapter 1 has delved into the background of marine fouling and a brief history 

of engineering solutions to the problem. The rationale of this research work and its 

research objectives were presented in this chapter. Chapter 2 is an attempt to cover a 

broad area encompassing silver nanomaterials including their applications and 

syntheses methods, provide a definition of marine fouling and the organisms which 

play important roles in the development of the fouling community and discussed 

various methods of fouling control and prevention. In addition, a survey of methods to 

evaluate antifouling agents was discussed. After thorough review of the current 

literature, four classes of novel silver-based nanocomposite materials were selected to 

be studied as potential antifouling agents. The materials used and the methodology for 

synthesis of the silver-based nanocomposites were presented in Chapter 3. The 

physical characterization techniques and the antifouling evaluation methods were also 

discussed in this chapter. 

 

This was then followed by Chapters 4-7, each focusing on a specific silver-

based nanocomposite system, presented with their key characteristics, and evidence of 
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their antifouling behaviour against targeted marine organisms. Chapter 4 reports on a 

novel silver nanocomposite material synthesized on a polymeric ion-exchange resin 

(Ag-PNC), Chapter 5 is an account of a mesoporous silver-ZSM-5 zeolite 

nanocomposite material (AgZ), Chapter 6 describes a silver-titania nanotubular 

composite material (Ag/TNT), while Chapter 7 is related to the nanocomposite 

composed of AgNPs supported on flexible graphene nanosheets, or GAg.  

 

Ag-PNC and AgZ nanomaterials were prepared using rapid, simple and 

affordable room-temperature or low-temperature chemical processes. Ag/TNT and 

GAg nanocomposites were prepared from novel and environmentally-friendly 

hydrothermal processing. All the synthesis methods employed low-energy methods, 

using easily available materials and achieved high yields with high loading of Ag on 

the composites, using relatively low amounts of precursor materials. 

 

These various forms of silver-based nanocomposite materials were thoroughly 

characterized on their morphology, elemental composition, crystallinity, thermal 

properties, porosity and optical properties where appropriate. Furthermore, these 

silver nanocomposite materials were evaluated on their antifouling property via 

biofilm inhibition against a marine bacterium, as well as their biological effects on 

marine microalgae. Even though all the nanocomposites were prepared using 

relatively low amounts of silver precursor materials, all of them were highly effective 

(from more than 70% - 99.6%) in inhibiting biofilm production by H. pacifica. The 

nanocomposites also displayed growth inhibition effects on D. tertiolecta and 

Isochrysis sp. These marine microorganisms have previously been identified as 

macrofoulers in the marine environment.  

241 
 



 

The results have demonstrated that all four silver-based nanocomposite 

materials have potent antifouling properties and possess potential as marine 

antifouling agents. Ag-PNC, AgZ and GAg each displayed different levels of 

antifouling activity which directly corresponded to the amount of metallic Ag 

nanomaterial loaded on the support matrix, while Ag/TNT displayed increasingly 

effective antifouling properties with a decrease in Ag loading. Instead, the antifouling 

behaviour of Ag/TNT directly correlated with the decreasing size of the AgNPs 

supported on the nanotube surface. Therefore, Ag/TNT is believed to be the best 

candidate in terms of antifouling property as a small addition of Ag loading of less 

than 1 wt% Ag caused almost total inhibition of marine bacteria biofilm formation 

(98.5%) and disrupted the viability of marine microalgae. 

 

Table 8.1 provides a summary of all the research objectives and the key results 

of this dissertation, to show that all the objectives have been fulfilled. The summary 

includes all 4 classes of novel silver nanocomposite materials, their key characteristics 

and their antifouling activity against the targeted marine microorganisms. 

242 
 



 

Table 8.1: Summary of research objectives and key results. 

Research Objectives Key Results 

1. Synthesize novel silver-polymer 

nanocomposite (Ag-PNC) 

materials from low-temperature 

chemical processing and 

elucidate the key physical 

characteristics of the system.  

Ag-PNCs were successfully synthesized using a novel, rapid and simple ion-exchange process via a 

room temperature reduction procedure. 

Key Characteristics: 

• Ag-PNCs are polymeric microspheres with surface decorated by AgNP sizes ranging from 20.2 

± 6.5 – 60.2 ± 41.1 nm (SEM observation). 

• Ag-PNCs possess higher thermal stability and higher glass transition temperatures (Tg ranges 

from 149 °C – 323 °C) compared to the resin alone (Tg resin = 130 °C). 

• Ag-PNCs displayed surface plasmon resonance effect, with maximum optical absorption around 

406 – 422 nm wavelengths. 

• The crystallinity of the composites increases with the addition of higher amounts of Ag. 

2. Evaluate antifouling property of 

Ag-PNCs through: 

(i) biofilm inhibition of marine 

bacteria 

(ii) biological effects on marine 

microalgae 

1 mg/mL of Ag-PNC demonstrated antimicrofouling property, correlating with Ag loading. 

• Ag-PNC-3 and Ag-PNC-4 demonstrated a potent inhibitory effect on H. pacifica biofilm 

formation, with average inhibition of 18.59 ± 2.39% and 76.08 ± 3.93%, respectively (P<0.01, 

Student's t-test).   

• Ag-PNC-4 caused a cytostatic growth inhibition of D. tertiolecta and Isochrysis sp., but did not 

cause any significant morphological changes to the algal cells. 
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Table 8.1 (continued): Summary of research objectives and key results. 

Research Objectives Key Results 

3. Synthesize novel silver-

zeolite (AgZ) 

nanocomposite materials 

from low-temperature 

chemical processes, and 

elucidate the key physical 

characteristics of the 

system. 

AgZs were successfully synthesized from a rapid ion-exchange and green reduction procedure. 

Key Characteristics: 

• Rapid ion exchange, followed by chemical reduction procedure resulted in optimal Ag ion uptake, 

with up to 10 wt% of Ag loading in zeolite, compared to conventional ion exchange processing times 

of 24 h or longer. 

• AgNPs were supported on the surface and within the internal pores of ZSM-5 zeolite 

• AgZ displayed surface plasmon resonance effect, with maximum optical absorption around 408-449 

nm wavelengths. 

• Crystallinity of zeolite structure was preserved, whilst porosity of structure was altered to include 

some degree of macroporosity. 

4. Evaluate antifouling 

property of AgZ through: 

(i) biofilm inhibition of 

marine bacteria 

(ii) biological effects on 

marine microalgae 

1 mg/mL of AgZ demonstrated promising antimicrofouling property, correlated well with Ag loading. 

• AgZ-4 and AgZ-5 had a potent inhibitory effect on H. pacifica biofilm formation with average 

inhibition of 63.27 ± 2.64% and 81.29 ± 1.53% respectively (P<0.01, Student's t-test) 

• AgZ-5 induced significant growth inhibition and demonstrated a cytostatic effect on D. tertiolecta, 

without significant morphological changes, while a cytotoxic effect was observed on Isochrysis sp., 

with loss of membrane integrity and cytoplasm materials. 

  

244 
 



 

Table 8.1 (continued): Summary of research objectives and key results. 

Research Objectives Key Results 

5. Synthesize silver-titania 

nanotubes (Ag/TNT) 

from novel hydrothermal 

processing, and elucidate 

the key physical 

characteristics of the 

system. 

Silver-titania nanotubular (Ag/TNT) composite materials were synthesized from novel hydrothermal 

processing using green reducing agent and stabilizer. 

Key Characteristics: 

• AgNPs of approximately 3 nm (TEM observation) and 32-103 nm (SEM observation) uniformly 

dispersed on nanotubular TiO2 structure. 

• Samples consist of highly crystalline Ag and TiO2 phases. 

• Ag/TNT displayed enhanced optical absorption across entire visible wavelength region and 

demonstrated surface plasmon resonance effect between 420-427 nm. 

6. Evaluate antifouling 

property of Ag/TNTs 

through: 

(i) biofilm inhibition of 

marine bacteria 

(ii) biological effects on 

marine microalgae 

0.1 mg/mL of Ag/TNT demonstrated promising antimicrofouling property. Antifouling activity directly related 

to Ag NP size, smaller-sized AgNPs demonstrated greater antifouling performance. 

• Minimal doping of Ag (approximately 1 wt%) on TiO2 nanotubes produced effective antimicrofouling 

properties compared to no inhibitory effect from bulk silver or TiO2 nanotubes alone.  

• 0.1 mg/mL of Ag/TNT-1 and Ag/TNT-2 had a potent inhibitory effect on H. pacifica biofilm formation 

with average inhibition of 98.47 ± 0.11% and 89.39 ± 0.45%, respectively (P<0.01, Student's t-test). 

• 0.1 mg/mL of Ag/TNT-1 and Ag/TNT-2 induced significant morphological changes and growth 

inhibition on D. tertiolecta and Isochrysis sp., compared to pure TiO2 nanotubes alone. 
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Table 8.1 (continued): Summary of research objectives and key results. 

Research Objectives Key Results 

7. Synthesize novel 

graphene-silver (GAg) 

nanocomposite materials 

from hydrothermal 

processes, and elucidate 

the key physical 

characteristics of the 

system. 

GAg nanocomposites successfully synthesized from a novel 2-step mild hydrothermal processing, completely 

bypassing the formation of graphene oxide. 

Key Characteristics: 

• High purity samples consisting only of micron-scaled few-layer graphene sheets supporting AgNPs 

average sized between 72-86 nm (SEM observation), while TEM observation of GAg-4 showed AgNPs 

with average size of 18.1 ± 1.3 nm. 

• Ag content in composites ranged from 1.3 wt% - 4.9 wt%. 

• GAg exhibited SERS effect, indicating interaction of Ag NPs and graphene. 

8. Evaluate antifouling 

property of GAg through: 

(i) biofilm inhibition of 

marine bacteria 

(ii) biological effects on 

marine microalgae 

0.1 mg/mL of all GAg samples demonstrated promising antimicrofouling activity, correlated directly with the 

amount of Ag loading. 

• Potent inhibitory effect against H. pacifica biofilm formation, with average inhibition of 67.4 ± 1.8% 

(GAg-1), 86.9 ± 1.3% (GAg-2), 95.6 ± 0.1% (GAg-3) and 99.6 ± 0.1% (GAg-4). Statistically significant 

(P<0.05, Student's t-test), compared to no inhibitory effect from pure graphene and bulk silver alone. 

• 0.1 mg/mL of all GAg inhibited the growth of D. tertiolecta and Isochrysis sp. by more than 70% after 

96 hours of exposure, compared to graphene alone. 

• Significant morphological changes occurred in both D. tertiolecta and Isochrysis sp., with loss of 

membrane integrity and cytoplasm materials, compared to untreated algal cells. 
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8.2 Contribution of the Thesis 

 This thesis has resulted in the publication of 4 peer-reviewed journal articles 

and contributed to the literature in the following aspects: 

1) Introduced 4 classes of novel silver-based nanocomposite materials as 

potent antifouling agents. The nanocomposites were prepared from easily 

accessible precursor materials, employing environmentally-friendly and 

low-energy synthesis methods. Whilst comparatively low amounts of Ag 

precursor were used in their preparation, the resultant Ag nanocomposites 

are produced with high yield, with relatively high Ag loading. 

  

2) Explored the application of silver nanocomposite materials in the area of 

marine antifouling technology by demonstrating the highly potent 

antimicrofouling property of Ag-PNCs, AgZs, Ag/TNTs and GAgs against 

biofouling marine bacteria and microalgae. 

 

 

8.3 Future Work 

  

After the success in identifying the 4 classes of silver-based nanocomposite 

antifouling agents detailed in this report, there are several routes which can be 

pursued for further studies. 

 

1) Using the silver nanocomposite as marine paint additives. Combining with 

various paint resins to identify suitable antifouling paint compositions for 

marine vessels. 
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2) Evaluating paint characteristics, e.g. solubility parameters, leaching and 

water absorption of paint, erosion rate of paint, release rate of antifouling 

agent, water contact angle analysis, etc. 

 

3) Evaluating antifouling paint in static and dynamic conditions in mesocosm 

challenge tanks and field testing in ocean/river waters. 

 

4) Screening the antifouling agents on macrofouling organisms including 

barnacles and seaweed. 

 

5) Screening the antifouling agents for ecotoxicological effects. 

 

6) Costing development and industrial synthesis for commercialization. 
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Appendix  

TGA and DTG curves for Ag-PNC samples
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