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In the Name of God, Most Gracious, Most Merciful



“The crux of the problem, really, is the excessively wide gap between the precision of

classical logic and the imprecision of the real work.“

Lotfi A. Zadah,

Coping with the Imprecision of the Real World: An Interview, 1984



Abstract

Cloud Computing (CC), as defined by national Institute of Standards and Technology

(NIST), is a new technology model for enabling convenient, on-demand network access

to a shared pool of configurable computing resources such as networks, servers, storage,

applications, and services that can be rapidly provisioned and released with minimal

management effort or service-provider interaction. CC is a fast growing field; yet, there

are major concerns regarding the detection of security threats, which in turn have urged

experts to explore solutions to improve its security performance through conventional

approaches, such as, Intrusion Detection System (IDS). In the literature, there are two

most successful current IDS tools that are used worldwide: Snort and Suricata; however,

these tools are not flexible to the uncertainty of intrusions. The aim of this study is to

explore novel approaches to uplift the CC security performance using Type-1 fuzzy logic

(T1FL) technique with IDS when compared to IDS alone. All experiments in this thesis

were performed within a virtual cloud that was built within an experimental environ-

ment. By combining fuzzy logic technique (FL System) with IDSs, namely SnortIDS

and SuricataIDS, SnortIDS and SuricataIDS for detection systems were used twice (with

and without FL) to create four detection systems (FL-SnortIDS, FL-SuricataIDS, Snor-

tIDS, and SuricataIDS) using Intrusion Detection Evaluation Dataset (namely ISCX).

ISCX comprised two types of traffic (normal and threats); the latter was classified into

four classes including Denial of Service, User-to-Root, Root-to-Local, and Probing. Sen-

sitivity, specificity, accuracy, false alarms and detection rate were compared among the

four detection systems. Then, Fuzzy Intrusion Detection System model was designed

(namely FIDSCC) in CC based on the results of the aforementioned four detection sys-

tems. The FIDSCC model comprised of two individual systems pre-and-post threat

detecting systems (pre-TDS and post-TDS). The pre-TDS was designed based on the

number of threats in the aforementioned classes to assess the detection rate (DR). Based

on the output of this DR and false positives of the four detection systems, the post-TDS

was designed in order to assess CC security performance. To assure the validity of

the results, classifier algorithms (CAs) were introduced to each of the four detection

systems and four threat classes for further comparison. The classifier algorithms were

OneR, Naive Bayes, Decision Tree (DT), and K-nearest neighbour. The comparison

was made based on specific measures including accuracy, incorrect classified instances,

mean absolute error, false positive rate, precision, recall, and ROC area. The empirical

results showed that FL-SnortIDS was superior to FL-SuricataIDS, SnortIDS, and Suri-

cataIDS in terms of sensitivity. However, insignificant difference was found in specificity,



false alarms and accuracy among the four detection systems. Furthermore, among the

four CAs, the combination of FL-SnortIDS and DT was shown to be the best detection

method. The results of these studies showed that FIDSCC model can provide a better

alternative to detecting threats and reducing the false positive rates more than the other

conventional approaches.
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Chapter 1

Introduction

1.1 Background

The use of the Internet has been increasing day by day and Internet traffic is exponen-

tially increasing. The service providers (SPs) such as web SPs, email SPs, cloud SPs

have to deal with millions of users per second; yet the level of threats to these services is

also very high. To deal with this much number of users is a big challenge but, detection

and prevention of such kinds of threats is even more challenging and also vital due to

the fact that those threats might cause a severe loss to the SPs in terms of privacy

leakage or unavailability of the services to the users. Therefore, IT industry attempts

to provide very safe services to the users. For example, since the technology of cloud

computing (CC) has been become the most demanding service to consumers, IT indus-

try incorporated the cloud security issues by providing the technology of CC alongside

Intrusion Detections Systems (IDS) or Intrusion Prevention Systems (IPS) [Mell and

Grance, 2009].

CC has been described by Iyoub et al. (2013) as a commodity where it is similar to

electricity once connected to the devices [Iyoob et al., 2013]. This is due to the fact that

CC is not only a specific technology; but also it is a step in making IT a commodity

which is enabled by technological advances. This description shows the value of CC

from the following facts;

1. There is a huge prospect for savings in the CC market as it has recently grown to

about a billion U.S. dollars a year [Marston et al., 2011, Nair, 2014].

1
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2. The usage of data in CC is often automatically and constantly collected in order

to make better decisions [Leavitt, 2009, Nair, 2014].

3. The migration to CC technology has been so active and fast[Jacobson, 2010, Nair,

2014].

As a consequence, there is no doubt that the use of CC has a huge impact on business

strategy towards information sharing but some issues regarding its detection perfor-

mance still remained such as false alarms. Thus, such issues have urged experts to

discover solutions in order to improve security performance. One of these solutions

is IDS; yet, such a technique is no longer sufficient to specify and assign the threats

within CC accurately; and therefore, Nair [2014] has recommended to incorporate these

techniques with some intelligent approaches such as embedded programming approach,

agent based approach, software engineering approach, artificial intelligence system and

soft computing (SC)1. In this research, Fuzzy Logic (FL) has been used as it is flexible

to the uncertainties of intrusions. In this research, Fuzzy Logic (FL) has been used as a

SC technique alone.

FL is an effective approach to tackle real-life problems and vagueness in human thinking

with the uncertainty in real life [Hosmer, 1993, Zadeh, 2008, 1984, Zimmermann, 1987].

This thesis explored new novel approaches that may uplift CC security performance

using Type-1 fuzzy logic (T1FL) technique with IDS when compared to IDS alone. This

is because of the fact that T1FL provides a better alternative to detecting threats and

reducing false positive ratios than other conventional approaches. All experiments in

this thesis were performed within a virtual cloud that was built within an experimen-

tal environment. By combining fuzzy logic technique with IDSs, namely SnortIDS and

SuricataIDS, SnortIDS and SuricataIDS for detection systems were used twice (with and

without FL) to create four detection systems (FL-SnortIDS, FL-SuricataIDS, SnortIDS,

and SuricataIDS) using Intrusion Detection Evaluation Dataset (namely ISCX)2. ISCX

comprised two types of traffic (normal and threats); the latter was classified into four

classes including Denial of Service, User-to-Root, Root-to-Local, and Probing. Sensitiv-

ity, specificity, accuracy, false alarms and detection rate were compared among the four

detection systems. Then, Fuzzy Intrusion Detection System model was designed (namely

FIDSCC) in CC based on the results of the aforementioned four detection systems. The

1Soft computing techniques are Fuzzy Logic (FL), Neural Network (NN), and Genetic Algorithms
(GAs).

2This dataset is found under the website of university of New Brunswick
(http://www.unb.ca/cic/research/datasets/index.html)
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FIDSCC model comprised two individual systems pre-and-post threat detecting systems

(pre-TDS and post-TDS). The pre-TDS was designed based on the number of threats

in the aforementioned threat classes to assess the detection rate (DR). Based on the

output of this DR and the false positive of the four detection systems, the post-TDS

was designed in order to assess CC security performance. To assure the validity of the

results, classifier algorithms (CAs) were introduced to each of the four detection sys-

tems and the four threat classes for further comparison. The classifier algorithms were

OneR, Naive Bayes, Decision Tree (DT), and K-nearest neighbour. The comparison was

made based on specific measures including accuracy, incorrect classified instances, mean

absolute error, false positive rate, precision, recall, and ROC area.

1.2 Research Motivation and Hypothesis

The motivation behind this study was the fact that there has been a lack of extensive

research in the field of cloud security. For example, based on the literature review, the

research in the area of the techniques of cloud security such as IDS/IPS, has not tackled

the uncertainties in CC. This is because of the following reasons;

1. majority of the scholars in the industry and publications focused on the short

descriptive and practical guidance presented by the perspectives of decision-making

[Foster et al., 2009, Jacobson, 2010, Menascé and Ngo, 2009, Truong, 2014, Yinglei

and Lei, 2011].

2. majority of the studies have been directed towards analysing if the IDS/IPS models

should be adopted by the organisation or not, and if yes, then which model would

be viable for the organisation?.

3. majority of studies have been focused on the following areas;

(a) Cloud security definition [Iyoob et al., 2013, Lindner et al., 2010, Paulitsch,

2009].

(b) analysing and presenting the challenges and benefits of business solutions in

CC [Demirkan et al., 2010, Durowoju et al., 2011, Li et al., 2012a, Singh,

2010, Tsao et al., 2010, YiPeng, 2011].

(c) the adoption of IDS/IPS models into CC [Casey G., 2012, Wu et al., 2013].

(d) cloud environment’s application and architecture [Ferguson and Hadar, 2011,

Yinglei and Lei, 2011].
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Consequently, there is a need to focus on cloud security concerns regarding its detection

performance. In this thesis, there are three main aspects: CC, IDS, and FL. In order

to connect each aspect to others, all experiments were performed within a virtual cloud

that was built in an experimental environment. Then we used the combination of FL and

IDS as detection systems in order to maximise the accuracy, specificity, detection rate

and minimise the sensitivity and false alarms ratios. To assure the validity of the results,

some classifier algorithms (CAs), such as Decision Tree (DT), Naive Bayes (NB), OneR

and K-Nearest Neighbour (KNN) as stated in [Chauhan et al., 2013], were introduced

to each of the four detection systems and the four threat classes: DoS, U2R, R2L, and

Probe for further comparison. Therefore, we hypothesised that a better alternative in

detecting threats and reducing false positive ratios may be provided by a model of Fuzzy

IDS within CC more than conventional approaches.

1.3 Aim and Objectives

The main aim is to explore new novel approaches that can uplift the CC security per-

formance using Type-1 fuzzy logic with IDS when compared to IDS alone. In order to

achieve that target, the objectives of this study including the following:

1. to propose a Fuzzy-Logic engine based on IDSs (FL-SnortIDS and FL-SuricataIDS)

in order to define the uncertainties of intrusions in CC and evaluate the security

performance.

2. to compare the four detection systems (SnortIDS, SuricataIDS, FL-SnortIDS, and

FL-SuricataIDS) and investigate which of these four detection systems outperforms

others.

3. to assure the validity of the results through four classifier algorithms (CAs) so-

called OneR, NB, DT, and KNN.

4. to compare these four CAs to each of the four detection systems and the four

threat classes (DoS,U2l, R2L and Probe).

1.4 Research Question

The research question for this study was that ”does T1FL system uplift CC security

performance compared to the IDS alone?”.

The criteria to answer such a question were done on the basis of the following metrics:



Chapter 1. Introduction 5

1. Accuracy: The numbers of threats detected

2. False Alarms Ratio: The false positives and false negatives ratio per each de-

tection system.

3. Sensitivity Ratio: The true positives and false negatives ratio per each detection

system.

4. Specificity Ratio: The false positives and true negatives ratio per each detection

system.

5. Threat Detection Rate: The threat categories for a scanning attack of each

detection systems

1.5 Research Contributions

This thesis provides the following three contributions;

1. A Comparative Analysis for The Alerts of IDS Fuzzy Classifiers Ap-

proaches within Cloud Computing. This contribution was is reported in

chapter 4 in order to enhance the security that IDS provides using ISCX dataset.

Two IDSs: SnortIDS and SuricataIDS have been developed in which they differ in

their detection capabilities, performance and accuracy. SnortIDS and SuricataIDS

detection systems were used twice (with/without FL) to create four detection sys-

tems (FL-SnortIDS, FL-SuricataIDS, SnortIDS, and SuricataIDS) using Intrusion

Detection Evaluation Dataset (namely ISCX).

2. A Comparative Analysis of Different ClassificationTechniques for Cloud

Intrusion Detection Systems’ Alerts and Fuzzy Classifiers. This contribu-

tion is reported in chapter 5, WEKA was used as a data miner to analyse the data

of each detection system from chapter 4. In chapter 5, the most common clas-

sification algorithms are utilised: Decision Tree (DT), Naive Bayes, OneR, and

K-Nearest Neighbour (K-NN). These algorithms were chosen after investigating

the most effective classification algorithms that are widely used. The aim of this

study was to present a comparative study for the performance of each detection

system: SnortIDS, SuricataIDS, FL-SnortIDS, and FL-SuricataIDS in order to

test which classifier algorithm is the best and presents significant results.

3. Security Performance Evaluation Using Type-1 Fuzzy Logic Approach

(FIDSCC System). This contribution was conducted in chapter 6 that produces
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a model using fuzzy inference engine based IDS to evaluate the security perfor-

mance by tracing intruders on CC. This model called FIDSCC system. There were

two fuzzy inference systems were created: first is to evaluate the attack classes of

ISCX within CC and another is to assess security performance. Certain tests

have been made for the comparison purposes amongst IDSs’ systems and Fuzzy

classifiers. These were satisfactory tests where the combining results of detection

performances of all type of threats based on detection rate and false positive ratio

showed that fuzzy classifiers do better than IDSs’ systems within CC.

1.6 Academic Publications Produced

The following publications were produced as a direct result of the work undertaken

during the course of conducting this research:

• Alqahtani, S.M., Balushi, M.A., John, R., 2014a. An intelligent intrusion de-

tection system for cloud computing (SIDSCC), in: Computational Science and

Computational Intelligence (CSCI), 2014 International Conference on, IEEE. pp.

135-141.

• Alqahtani, S.M., Balushi, M.A., John, R., 2014b. An intelligent intrusion pre-

vention system for cloud computing (SIPSCC), in: Computational Science and

Computational Intelligence (CSCI), 2014 International Conference on, IEEE. pp.

152-158.

• Saeed M. Alqahtani and Robert John, A Comparative Study of Different Fuzzy

Classifiers for Cloud Intrusion Detection Systems’ Alerts. published in The 2016

IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2016).

• Saeed M. Alqahtani and Robert John, A Comparative Analysis of Different Clas-

sification Techniques for Cloud Intrusion Detection Systems’ Alerts and Fuzzy

Classifiers. accepted by Computing Conference 2017 (IEEE SAI2017).

1.7 Thesis Structure

The first chapter introduces the thesis topic and relevant concepts. It also provides a list

of the aims of the thesis, as well as the scientific contributions and papers published dur-

ing the study. The literature review in the second chapter was presented, highlighting
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the recent developments in IDSs’ systems and fuzzy logic based on IDS systems in CC.

The third chapter describes the research problem and all the experimental design ma-

terials and proposed methods. In the fourth chapter, a comparative analysis of ranking

IDS based on fuzzy classifiers’ approaches was conducted to analytically compare the

functionality, working and the capability of the four detection systems (FL-SnortIDS,

FL-SuricataIDS, SnortIDS, and SuricataIDS in order to boost the security performance.

Then, a comparative study was conducted in the fifth chapter against the results of

aforementioned detection systems through classifier algorithms (CAs) that were intro-

duced to each of the four detection systems and the four threat classes (DoS, U2L, R2L,

Probe) for further comparison. In the sixth chapter, FIDSCC model was designed in

order to compare the detection rate and false positive ratio through the results of the

aforementioned four detection systems. Finally, the last chapter presents a summary of

the work undertaken in this research along with recommendations for future work.



Chapter 2

Literature Review

In this modern age, digital communication is no more a big task and thus every sin-

gle internet user can have an access to on-line information pool or can interact with

anyone without worrying about the distance between them. According to the statistics

reported in [Stats, 2016], the total estimated internet users in the year of 2016 are almost

3,424,971,237, which is 46.1% of the world population. Thus, it cloud be concluded that

internet has now become a part of modern age human.

Computer networks are attacks prone, unreliable and unsafe, which means that the

users may experience malicious activities and lose their privacy, personal data or any

other important information that is available on-line, depending on the nature of attacks.

Although, domestic users may ignore this insecurity issue, yet it would be a vital problem

for most of the people who have privacy issues or who may not be able to recover from any

kind of personal data loss. Similarly, corporate offices, banks, hospitals, law enforcement

organisations, emails services providers and millions of other organisations take extreme

care of their privacy and availability of their services on-line [Talwar, 2015].

This chapter provides an overview of intrusion detection system, fuzzy logic, cloud com-

puting and its security techniques such as anomaly detection and signature detection.

This chapter also covers some approaches for evaluating cloud security performance,

together with related scientific literature review. Moreover, related work on IDS tech-

niques, IDS based fuzzy logic, IDS based on data mining , and data mining and classi-

fication are given.

8
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2.1 Background

Cyber-attacks have become very crucial and it is now considered that the cyber war

has now over taken the nuclear war in this modern age [Shackelford, 2009]. Thus, many

international rules have been created by the law enforcement agencies including USA’s

[Burkadze, 2016, Graham, 2010, O. A. Hathaway and Spiegel, 2012]. It has also attracted

the attentions of many researchers and a great deal of work has been done in literature

to protect the systems from cyber-attacks such as, inventory of authorised and unau-

thorised software and devices, to make configurations of hardware and software secure,

to install intelligent firewalls, to install anti-malware software, to develop intrusion de-

tection systems and to develop malware defensive systems. The most followed strategy

to prevent such kind of cyber-attacks is the development of intrusion detection system

(IDS) [Google Patents, 2009].

IDS systems are basically hardware or software systems that are deployed along with the

main systems to monitor all the digital activities and the incoming as well as outgoing

network traffic. These systems are made intelligent enough to detect the malware or

suspicious activities by monitoring the whole system; and therefore, they produce alarms

or reports against such activities. IDS system acts as a firewall and keeps the main

system safe from the malwares. Hence, it is deployed along with almost every critical

system that is exposed to threats, making the organisation reliable and trustworthy.

The capability of IDS systems to detect the suspicious activities depends on how they

have been developed. Stronger the IDS system would be, safer the main system would

be, leading the organisation to win the trust of its clients. Moreover, IDS systems

are consistently upgraded due to the fact that the cyber-attacks are becoming crucial

and stronger day by day. A great deal of work has been done in literature in making

intelligent and strong IDS systems. For example, Reputation Services have been added

in the IDS systems. These services gather information about the suspicious protocols,

IP addresses, domains and finally make a decision that either the traffic is malicious or

not [Hwang et al., 2009]. Transforming the wired IDS systems to wireless systems has

also increased the safety level of the critical systems [Brutch and Ko, 2013]. With the

fast growing HTTPS traffic, the SSL traffic inspection feature has also been added in

the IDS systems to stay up to date [Augustin and Baláž, 2011].

There is a big challenge to detect and prevent attacks with a huge number of users. This

is due to the fact that the threats might cause a severe loss to the service providers in

terms of privacy leakage or unavailability of the services to the users. To incorporate this
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issue, several Intrusion Detections Systems (IDSs) such as Snort and Suricata have been

developed that differ in their detection capabilities, performance and accuracy along

in order to enhances the performance and accuracy of these developed IDSs in terms

of increased accuracy, specificity, sensitivity and reduced false alarms. Other different

tools are also available that performs Intrusion Detection. For instance, Security Onion

system has the capability to monitor vLANs and virtualised networks but it cannot

be used as an intrusion prevention system [Burks, 2012]. OSSEC system can generate

real-time alarms and has the capability of monitoring the files integrity [Bray et al.,

2009]. OpenWIPS-NG system is dependent on network interfaces, devices, servers and

other infrastructures [Bezborodov et al., 2016]. BRO system is an alternative to Security

Onion but has more defined rules to detect the malicious activities [Paxson et al., 2013].

Among all IDS systems, Snort and Suricata are considered to be the most efficient tool

that performs real-time protection, real-time traffic analysis, protocol analysis, content

matching, packets logging on IP networks and possesses many kinds of attacks detection

capability [Roesch et al., 2009].

Although there are a number of advantages of intrusion prevention systems (IPS), but

there is a need for the leak of alarm, the false rate of alarm and delivery in real time [Xin

and Yun-jie, 2010]. The IPS classification system depends on the platform of technology

and detection system. The operation platform has the general classification of IPS into

Network based IPS (NIPS) and Host based IPS (HIPS). Salah et al. [2010] claimed that

the NIPS helps the detection of traffic by use of barriers and also deals with issues in

detection although there is a relativity of HIPS on the installation of the network hosts

and protection against the malwares [Salah et al., 2010].

The role of IDS and IPS is to detect and prevent the network topology against ab-

normal activities. IDS can detect abnormal activities, which are inadequate, erroneous

or irregular in a network, and report them to the administrator. In addition to that,

IDS also can work in a way that detects an unauthorised intrusion if a network or a

server is experienced to do so. IPS is an extension of IDS system where IPS can also

block connections or drop abnormal packets if they consist of unauthorised data. The

categories of IDS/IPS can be classified in two levels; Network-Based Intrusion Detec-

tion/Prevention System (NIDS/NIPS) and Host-Based Intrusion/Prevention Detection

System (HIDS/HIPS) [Alqahtani et al., 2014a,b].

NIDS verifies from the network traffic and then observing multiple hosts to identify

intrusions. Also, NIDS works on sensors where they capture and analyse each packet

of the network traffic and then identify abnormal content. HIDS is circulated in host
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machines or a server where its role is to analyse data and identify unusual behaviour.

Also, HIDS works as a machine that compares the usual profile of the host with the

captured activities to identify potential anomalies [Alqahtani et al., 2014a,b]. NIPS

is a system that observes the whole network traffic in order to capture the malicious

activities. HIPS is a system that monitors the installed software package of a single

host. There are others levels such as NBA1 and WIPS2 but they can be considered

under the main categories of IPS [Alqahtani et al., 2014a] and [Alqahtani et al., 2014b].

2.2 Fuzzy Logic

2.2.1 Fuzzy Systems and Uncertainty

in 1965, fuzzy set theory was first introduced by Zadeh [1965]. The field of FSs has

evolved over the last 50 years and FSs have been accepted as an adequate methodology

for developing systems that are able to deliver adequate performance in the face of

uncertainty and imprecision [Feng, 2006, Hagras and Wagner, 2012, Lee, 1990, Sugeno,

1985]. Hence, FLSs have been successfully implemented in many real world applications

and are used in many areas. In addition, FS theory provides a simple and efficient

method of designing FLSs that is close to human thinking and perception [Zadeh, 1994].

In particular, fuzzy logic control (FLC), as one of the earliest applications of FLSs, has

become one of the most successful applications. The first FLC was developed in 1975 by

Mamdani and Assilian to control a steam engine in a laboratory [Mamdani and Assilian,

1975]. The first industrial application of fuzzy logic was developed in 1976 by Blue Circle

Cement and SIRA in Denmark for a cement kiln controller that went into operation

in 1982 [Holmblad, 1982]. In 1987, the Sendai subway system in Japan operated an

automatic train controller based on fuzzy logic systems. Since then, FLSs have been

applied with great success to many applications. Recently, FLSs have been used in

many real-world applications used in people’s daily lives such as washing machines, air

conditioners, video cameras, medical diagnosis systems, car braking systems, etc. [Wang,

1999],[Lee, 1990],[Karray and De Silva, 2004].

FLSs are widely accepted for their ability to model and handle uncertainty. Several

efforts have been made to define the uncertainties in FLSs and their underlying sets. A

1NBA is a Network Behaviour Analysis system that tests the flow of network traffic and then detects
and prevents the malicious traffic

2WIPS is a Wireless Intrusion Prevention System that monitors and analyses the abnormal traffic in
wireless networks
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general discussion about uncertainty was presented by Klir and Wierman [1999] showing

three types of uncertainty: fuzziness, strife and non-specificity. Fuzziness (vagueness)

results from the imprecise boundaries of FSs [Mendel, 2001]. Non-specificity (impre-

cision) is linked to information-based imprecision. Strife (discord) expresses conflicts

among the various sets of alternatives [Mendel, 2001].

The T1 FLS is the most common and widely used FLS. T1 FLSs are based on T1

FSs and have been successfully applied in many applications, such as control systems

(especially for the control of complex non-linear systems that are difficult to model

analytically [Zadeh, 1973],[King and Mamdani, 1977]), decision making, classification

problems, system modelling and others [Ross, 2009]. However, it has been shown that

there are limitations in the ability of T1 FSs to directly model and minimise the effects

of uncertainty [Hagras, 2004], [Hagras, 2007], [Mendel, 2001]. This is because T1 MFs

are precise, as stated by Mendel [2001] and their membership grade is a crisp value (see

Figure 2.1(a)).

Recently, a significant increase in research has been devoted to more complex forms of

fuzzy logic such as IT2 FLSs and, more recently, GT2 FLSs. This advancement is due

to the realisation that T1 FSs can only handle a limited range of uncertainty whereas

T2 FSs allow for better modelling of uncertainty as they encompass an Footprint of

uncertainty (FOU), which, associated with their third dimension, gives more degrees

of freedom to the use of T2 FSs in comparison to T1 FSs (i.e., T2 FSs are described

by MFs that are characterized by more parameters than are MFs for T1 FSs [Mendel,

2007a]).

In 1975, T2 FSs was introduced by Zadeh as an extension of the concept of T1 FSs

[Zadeh, 1975], characterised by MFs that are themselves fuzzy for which the membership

degrees are expressed as FSs on [0,1], have been widely accepted as more capable of

modelling higher orders of uncertainty than T1 FSs [John and Coupland, 2007],[John,

1998, Mendel, 2007a,b,c, Wu and Mendel, 2009]. Mendel Mendel [2001] argued that

T1 FSs are inadequate to model many types of uncertainty that can be present in an

FLS, whereas T2 FSs are able to handle them including the three types of uncertainty

: fuzziness, strife, and non-specificity. IT2 FSs Mendel [2001] are a special case of GT2

FSs and currently the most widely used due to their great reduction in computational

cost. It has been shown in the literature many types of FSs such as interval-valued FSs,

gray set, intuitionistic FSs, etc. [Sebastian and John, 2016],[Yang et al., 2014]. Bustince

et al. [2016] presents more details about the definitions and the relationships between

different FSs.



Chapter 2. Literature Review 13

(a) Type-1 fuzzy set

(b) Interval type-2 fuzzy set

(c) General type-2 fuzzy set

Figure 2.1: An example of the three types of FSs with view of the secondary MFs
with same input x′ (a) type-1 fuzzy set, (b) interval type-2 fuzzy set and (c) general

type-2 fuzzy set.

Figure 2.1 shows the three different types of fuzzy sets. A T1 FS shown in Figure 2.1(a),

an IT2 FS shown in Figure 2.1(b) and a GT2 FS shown in Figure 2.1(c). These figures

also show the secondary MFs (third dimension) of the three fuzzy sets using the same

input x = x′. It is important to consider the uncertainty models provided by these three

types of FSs. In the T1 FS, the degrees of membership are specified as crisp numbers

taking values within the interval [0,1]. In the GT2 FS, the degrees of membership are
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themselves fuzzy and each is specified as a T1 FS (a secondary membership function).

In a case when the secondary MF is equal to 1, then GT2 FS will reduce to an IT2

FS. The T1 FS is depicted in Figure 2.1(a), showing the value of the primary domain

(membership) at x = x′ that takes only one value, a, at which the secondary grade equals

1. So, in the case of the T1 FS, there is no uncertainty associated with the primary

membership value at each x value [Mendel, 2001]. For an IT2 FS (as shown in Figure

2.1(b)), the primary domain (membership) at x = x′ takes values within the interval

[a,b] and each point in this interval has a secondary membership equal to 1. Hence,

an IT2 FS contains a maximum amount of uncertainty that is equally distributed over

the interval [a,b] [Mendel et al., 2014]. For a GT2 FS (as shown in Figure 2.1(c)), the

primary (domain) membership at x = x′ also takes values within the interval [a,b], but

is different from the IT2 FS since each point in this interval has a different secondary

membership. Overall, it can be observed that the uncertainty that is associated with a

GT2 FS is located between the uncertainty of a T1 FS and an IT2 FS [Mendel et al.,

2014].

2.2.2 Basic Concepts of Type-1 Fuzzy Sets

A fuzzy set was defined originally by Zadeh [1965] as an extension of a (classical) crisp

set. In crisp sets, the membership of elements is a binary value, which allows an element

to either belong (full membership) or not belong to the set (no membership at all). In

contrast, FSs permit partial membership so that an element may partially belong to a

set. In a crisp set, the membership or non-membership of an element x in the crisp set

A is described by the membership function (MF) (also called characteristic function) µA

of A, where [Mendel, 2001],[Zimmermann, 2011],[Klir and Yuan, 1995]

µA(x) =

{
1, if x ∈ A
0, if x /∈ A

(2.1)

Fuzzy set theory extends this concept by defining partial memberships, which can take

values in the interval [0,1]. In a T1 FS (see Figure 2.1(a)) also called simply a FS, A is

defined on a universe of discourse X and the MF for A is µA : X → [0,1] [Mendel, 2001].

For each element in the set, x ∈ X, the value of µA(x) is the degree of membership of x

in A between zero and one. A fuzzy set A in universe of discourse X can be represented
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in pairs of x and the value of its MF, µA(x) as [Mendel, 2001]:

A = {(x, µA(x)) | ∀x ∈ X} (2.2)

If the fuzzy set A has a continuous universe of discourse X, it can be written as [Zadeh,

1965],

A =

∫
X
µA(x)/x, (2.3)

where the integral sign denotes union, and the division sign represents association (the

collection of all points x ∈ X with associated MF µA(x)). If the fuzzy set A has a

discrete universe of discourse X, it can be written as [Zadeh, 1965],

A =
∑
X

µA(x)/x, (2.4)

where the summation sign denotes the set-theoretic operation of union and the division

(slash) sign represents association (the collection of all points x ∈ X with associated

MF µA(x)).

2.2.2.1 Properties of Type-1 Fuzzy Sets

To describe T1 FSs more specifically, we will define some of their properties [Zadeh,

1975],[Jang et al., 1997],[Klir, 2005].

The ‘support’ of a T1 FS A defined on X is a crisp set that contains all the elements of

X (x ∈ X) that have non-zero membership grades in A (i.e., µA(x) > 0) and is defined

as:

support(A) = {x ∈ X | µA(x) > 0} (2.5)

A T1 FS that has a single point in X as the support with µA(x) = 1 is called a ‘singleton’

T1 fuzzy set (see Figure 2.3(a)).

The ‘core’ of a fuzzy set A is the set of all points x ∈ X such that µA(x) = 1:
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Figure 2.2: An example of a trapezoidal membership function and some of its prop-
erties

core(A) = {x ∈ X | µA(x) = 1} (2.6)

The ‘height’ of T1 FS A is the largest membership value, and it is defined as follows:

height(A) = suppx∈X(µA(x)) (2.7)

A fuzzy set A is called ‘normal’ when height(A) = 1 and it is called ‘subnormal’ when

height(A) ¡ 1.

One of the most important concepts of fuzzy sets is the concept of an α-cut. The α-cut

of an FS A is the ‘crisp’ set of all elements that have a membership value greater than

or equal to α. A T1 FS A is defined on X and α is a number in [0,1], an α-cut, Aα is

defined by [Klir, 2005]:

Aα = {x ∈ X | µA(x) ≥ α} (2.8)

These properties are illustrated by the trapezoidal membership function A in Figure 2.2

The membership functions commonly used in practice are singleton, triangular, trape-

zoidal, Gaussian, and bell-shaped [Mendel, 2001]. Generally, MFs can either be chosen

by experts (users) or they can be created using optimisation methods [Jang, 1992],[Wang

and Mendel, 1992b],[Wang and Mendel, 1992a]. Examples of singleton, triangle, trape-

zoidal and Gaussian MFs are depicted in Figure 2.3.
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(a) Singleton MF (b) Triangular MF (c) Trapezoidal MF

(d) Gaussian MF

Figure 2.3: Examples of four T1 MFs (a) Singleton MF, (b) triangular MF, (c)
trapezoidal MF and (d) Gaussian MF.

2.2.2.2 Type-1 Fuzzy Set Operations

Corresponding to the crisp set operations of union, intersection and complement, fuzzy

sets have the same operations and are called Zadeh’s operations as they were initially

defined in Zadeh’s paper [Zadeh, 1965].

Assume T1 FSs A and B are two subsets of X and are defined by their MFs µA(x) and

µB (x). The union of A and B is defined by µA∪B (x):

µA∪B (x) = max[µA(x), µB (x)], ∀x ∈ X (2.9)

The intersection of A and B is defined by µA∩B (x):

µA∩B (x) = min[µA(x), µB (x)], ∀x ∈ X (2.10)

The product of A and B is defined by µA∗B (x):

µA∗B (x) = prod[µA(x), µB (x)], ∀x ∈ X (2.11)
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(a) Intersection of two fuzzy sets (b) Union of two fuzzy sets (c) Product of two fuzzy sets

(d) Complement of a fuzzy set

Figure 2.4: Examples of fuzzy operations using two T1 FSs A and B. (a) Intersection
of two FSs, (b) union of two FSs,(c) product of two FSs and (d) complement of an FS.

The complement of A is defined by µ
A′ (x):

µ
A′ (x) = 1− µA(x), ∀x ∈ X (2.12)

Thus the intersection, product and union operations are used to combine T1 FSs. They

are equivalent to the operators ‘AND’ and ‘OR’ used in classical logic. Examples of

the union, intersection, product and complement of the two T1 FSs A and B using

(2.9), (2.10), (2.11) and (2.12) are depicted in Figure 2.4. While, different t-norms and

t-conorms have appeared in the literature and were developed to generally define the

operations, µA∪B (x) and µA∩B (x), in this thesis only product t-norm (2.11) that is used

by the inference engine to combine the firing strengths from multiple antecedents and

the maximum t-conorm (2.9) that is used to combined output fuzzy subset by taking

the maximum (union) over all of the fuzzy subsets.

2.2.3 Brief Review of Type-1 Fuzzy Logic Systems

T1 FLSs are also known as fuzzy rule-based systems that can be considered as systems

that map crisp inputs into outputs by utilising fuzzy sets theory [Negnevitsky, 2005].
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Figure 2.5: A type-1 fuzzy logic system.

The main types of FLSs are Mamdani ? and Takagi & Sugeno [Mamdani, 1974, Takagi

and Sugeno, 1985]. In this thesis, the Mamdani method is used because the core part of

our investigations has been trying to capture the linguistic uncertainty, thus, using FSs

in the whole FLS (including in the output modelling) is intuitive and valuable. In the

also popular Takagi & Sugeno FLSs, the output is characterised by a function, rather

than a FS, thus it is not couched in the context of using linguistic terms. The well-known

Mamdani fuzzy model contains four components: fuzzifier, rule base, inference engine

and defuzzifier [Mendel, 2001]. Figure 2.5 shows these components. As shown, crisp

inputs are first fuzzified into type-1 fuzzy input sets. These activate the inference engine

and the rule base to produce output T1 FSs, which are then combined to produce an

aggregated T1 output FS. Finally, a defuzzifier produces a crisp output from the fuzzy

output set(s) resulting from the inference engine. Further details on T1 FLSs can be

found in [Mendel, 2001],[Cox, 1992]. The background and description of each of these

components in the context of T1 FLSs are summarised below.

2.2.3.1 Fuzzifier

The fuzzifier maps crisp inputs into a membership grade of one or more T1 FSs, based

on the given membership functions. This is achieved by evaluating the crisp inputs and

assigning each input a membership degree µA(x) in its input FS. According to the type of

fuzzification in [Mendel, 2001], T1 FLSs can be divided into singleton fuzzy logic systems

(SFLSs) and non-singleton fuzzy logic systems (NSFLSs). A non-singleton T1 FLS has

the same structure as a singleton T1 FLS, and they share the same type of rules; the

only difference is the type of fuzzification. The majority of FLSs are using SFLS because

singleton fuzzification is simpler and faster to compute. In singleton fuzzification, inputs

are considered to be singleton FSs (see Figure 2.3), while non-singleton fuzzification

models the FLS inputs as FSs. Non-singleton fuzzification allows better modelling of

input uncertainties by modelling inputs as fuzzy sets and modelling linguistic uncertainty
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(a) Singleton fuzzification (b) Non-singleton fuzzification

Figure 2.6: Examples of the fuzzification of a crisp input using (a) singleton and (b)
non-singleton fuzzification.

using antecedent FSs in two steps [Wagner and Hagras, 2010]. To better cope with

noisy and imprecise input measurements, the non-singleton fuzzifier is an efficient choice

[Wang, 1994]. Figure 2.6 shows singleton and non-singleton fuzzification. More details

on non-singleton fuzzification can be found in [Mendel, 2001],[Mouzouris and Mendel,

1994, 1997, Sahab and Hagras, 2011]. A rich discussion on fuzzification, membership

function creation and desired output can be found in [Sinha and Dougherty, 1993].

2.2.3.2 Rule Base

Fuzzy rule base (set of fuzzy rules) is the core part of an FLS that is used in the inference

process. The most commonly used are: Mamdani [Mamdani, 1974], where the rule

consequents are FSs, and Takagi & Sugeno [Sugeno, 1985], where the rule consequents

are crisp functions of the inputs. The rules can be expressed as a collection of conditional

statements in the form IF–THEN statements. Without a loss of generality, the multiple

inputs single output (MISO) system with the output variable y is considered here. In

Mamdani-type fuzzy rules (first used by Mamdani in 1977), each rule is in the form of

(2.13) with n inputs x1 ∈ X1, . . . , xn ∈ Xn and one output y ∈ Y .

IF x1 is A1 and x2 is A2 . . . and xn is An THEN y is B, (2.13)

where x1, x2, . . . , xn are the input variables to the FLSs and A1, A2, . . . , An are the input

FSs in the antecedent part and y is the output variable and B is the output FSs.

A fuzzy rule contains two parts, the IF part called the antecedent part and the THEN

part called the consequent part. To generate these rules, many methods can be used such

as deriving them from experts or from given numerical data sets as shown by [Wang and
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Mendel, 1992c],[Nozaki et al., 1997],[Hong and Lee, 1996] where they generated fuzzy

rules from training data. FSs are associated with the terms shown in the antecedent or

consequent parts of rules and MFs are used to describe these FSs [Mendel, 2001].

2.2.3.3 Inference Engine

The inference engine in the Mamdani type (Equation (2.14)) provides a mapping of input

FSs to output FSs using the rules (see (2.13)) from the rule base and the connecting

operators such as the union (OR in classical logic) or the intersection (AND in classical

logic). The result is an output fuzzy set by using (2.14), then the defuzzifier converts

them to a crisp output. In this thesis, the inference system uses the AND operator for

connecting inputs. The Mamdani implication (inference) [Mendel, 2001]:

µ
A∗→B

(x∗∗, y) ≡ µ
A∗ (x

∗∗)FµB (y), (2.14)

where F is product or minimum operation, A∗ ∈ A1, A2, . . . , An, x∗∗ ∈ x1, x2, . . . , xn,

µ
A∗ (x

∗∗) is the input MF and µB (y) is the consequent MF.

2.2.3.4 Defuzzifier

Once the inference system has produced output fuzzy sets, the defuzzifier in the Mam-

dani model converts them into crisp values. In general, there are many methods (defuzzi-

fiers) that have been proposed in the literature for the defuzzification of type-1 fuzzy

sets such as centroid (also known as centre of gravity (COG)), centre of sets (COS),

height and centre of sums [Mendel, 2001]. The centroid method is one of the most com-

monly used defuzzification strategies. It returns the COG value and it is the one used in

this thesis. The process to find the crisp output using yCOG(X) is defined using (2.15)

[Mendel, 2001]:

yCOG(X) =

∑N
i=1 yiµB (yi)∑N
i=1 µB (yi)

, (2.15)

where µB (yi) is the aggregated value of µB (y), N is the number of discretized points

that are used to find the COG of B and yi is the output variable. For more complete

details, sources such as [Mendel, 2001],[Hellendoorn and Thomas, 1993],[Van Leekwijck

and Kerre, 1999] have provided comparisons of different methods of defuzzification.
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2.3 Cloud Computing

In recent years, the investment demand in the IT sector has increased and become

necessary in an organisation’s daily work. In such a manner, networks have expanded

and become responsible for (1) the decrement of distance in the organisations, and (2)

the requesting response time. Hence, the IT sector considers these two points to provide

a very safe network management for their customers. For example, the IT industry

invests a great deal of money to tackle the major concerns in cloud computing (CC), e.g

easiness of breach, through Intrusion Detections Systems (IDS) or Intrusion Prevention

Systems (IPS) [Mell and Grance, 2009]

According to the National Institute of Standards and Technology (NIST),

they stated that the definition of network management is to involve the de-

ployment, integration and coordination of all the hardware, software and hu-

man elements to monitor, test, poll, configure, analyse, evaluate, and control

the network and element resources to meet the real-time, operational perfor-

mance and quality-of-service (QoS) requirements at reasonable cost [Cloud,

2011].

In the 20th century, the idea of cloud computing was taken by J.C.R Licklider and John

McCarthy in 1960 [Sumter, 2010]. They stated that CC is not a new idea as the the

types of CC services have been taken off from the past and the internet was able to

support high bandwidth transmissions [Anonymous, 2012, Mohamed, 2009]. At present,

the technology of CC has begun to get the attention of organisation as CC plays an

important role to minimise costs and to increase an organisation operational efficiency

[Anonymous, 2012, Chen and Deng, 2009]. Nunez et al. [2011] claimed that CC is

a technological solution that can be used to increase computer services in the age of

different networks, information, and communication revolution [Nunez et al., 2011]. See

fig. 2.7.

However, Cai-dong et al. [2009] argues that CC has not been standardised yet, though

many researchers have conducted a number of studies in most of CC’s fields [Cai-dong

et al., 2009]. Although there is no doubt that CC can provide significant advantages

for computers, some of these services are inconsistent with each other as this has been

defined by [Popovic and Hocenski, 2010]. Also, CC is still a relatively new and emerging

technology for organisations which may not help reduce the cost effectively.



Chapter 2. Literature Review 23

Figure 2.7: How Cloud Computing Works

CC has three main services that are divided into three models. These models are

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a

Service (SaaS). As it can be seen in fig. 2.8, Hwang et al. [2009]) presented a map of

CC models to different levels of CC’s operations [Hwang et al., 2009].

Figure 2.8: Cloud Computing Models

Hwang et al. [2009].

1. Infrastructure-as-a-Service (IaaS):

IaaS is considered as fundamental services provided through CC model. IaaS is the

ability which provides the fundamental computing resources such as processing,
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storage, network to the customers where they eligible to deploy and run applica-

tions and operating systems [Dawoud et al., 2010].

2. Platform-as-a-Service (PaaS):

PaaS is the ability which deploys fundamental computing resources onto the infras-

tructure of CC to the customers, where the provider supports the customer-created

or acquired applications created using programming languages, libraries, services,

and tools. Rake-Revelant et al. [2010] said that the typical example of PaaS is

Microsoft Azure and Google App as they proposed a common model of PaaS from

multiple analysis companies which were based on specific business environmental

elements [Rake-Revelant et al., 2010].

3. Software-as-a-Service (SaaS):

SaaS is the ability that utilises the applications of provider, which are running

on the infrastructure of CC and supplied to the customer. This service is located

on servers, and it is supplied as a service. According to Gagnon et al. [2011],

SaaS service is provided through the Internet which allows customer to access via

any device without having unparalleled software installed and supplies a device-

independent web applications with the extensions of web services [Gagnon et al.,

2011].

2.3.1 Decision Making in Cloud Computing

Decision making is an important matter in the management of CC as there are current

decisions that come by every now and then. For example, there are various reasons to

help motivate people, enterprises and organisations to use CC. One of the most attractive

factors for enterprises is elasticity which permits enterprises to scale its IT resources up,

and down in a short interval of time. A number of options can be obtained once CC is

used by the users, yet some key decisions may be encountered. IT outsourcing level is

the 1st key decision for any user. The options are;

1. CC Infrastructure Outsourcing which is known as IaaS from Rackspace, GoGrid,

Amazon etc.

2. Development platform and Infrastructure Outsourcing known as PaaS from Google

App Engine, Force.com and Microsoft Azure.

3. Entire Software Outsourcing including the Infrastructure and Platform known as

SaaS.
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On the basis of the above options of service delivery, the consumer has various choices for

practicality, preparation, information and infrastructure location as shown in table 2.1.

There might be a task to optimise models to specify the simple combination of choices

which can run better for the user under budget and satisfying the user. There is a set

of services which are compatible to users with respect to their business. These types are

Public, Private and Hybrid Cloud. The aim of offering these cloud’s ownership is that

the user should have some choices according to their business.

1. Public Cloud: As shown in fig. 2.9, public cloud literally means exchange of in-

formation publicly, yet its ownership is limited and it does not permit the users to

interact with other consumers. This type of CC might be owned, managed, and op-

erated by a business, academic, organisation or government, or some combination

of them.

Figure 2.9: Public Cloud

2. Private Cloud: As it can be seen in fig. 2.10, private cloud is operated by

the users but it is created for big firms for resource-sharing between departments

of their industry. This type of CC might be owned, managed, operated by the

organisation or may be run by a third party.

3. Hybrid Cloud: As it can be seen in fig. 2.11, hybrid cloud needs a capital expen-

diture as it is a combination of two or more CC types, which sustain unparalleled

entities; however, they are restricted together by united or proprietary technology

which enables data and possible applications.

On the basis of scale and applications operation, users can take either of the following:

1. Commodity Cloud: It means that if they get charged by hour, their servers will

be accessed by the public.
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Figure 2.10: Private Cloud

Figure 2.11: Hybrid Cloud

2. Enterprise Cloud: It means that if they are charged in a month having non-

public access of servers that might not be accessible to public in general. This is

chosen by the users who need high levels of service from CC.

On the basis of Infrastructure Location Operation (ILO), three choices are available to

users out of which they can choose any one. These choices are:

1. On-site which means hardware is placed in the users information centre.

2. Off-site which means hardware is placed in the information centre of the provider.

3. Co-location which means hardware is placed in a location which is neutrally

secured.

The Data Location option (DLO) and ILO are almost the same; but the DLOs decisions

are highly interdependent. If a user choses private deployment of cloud, there will be no
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scale/ or operation options because these are applicable to public cloud only. In addition

to this, their data and infrastructure can be located only on-site or off-site. If the user

chooses public deployment of cloud, then he can either choose an enterprise cloud or a

commodity but data and infrastructure may get limited only for off-site locations.

Table 2.1: Cloud Computing Options

Service Development Functionality ILO DLO

1 IaaS Public Cloud Commodity Cloud On-Site On-Site

2 PaaS Private Cloud Enterprise Cloud Off-Site Off-Site

3 SaaS Public-Private Hybrid None Co-Location Co-Location

2.3.2 Benefits and Challenges in Cloud Computing

New technologies affect the economy of the world in many positive ways, yet its negative

factors should not be ignored. Moving the process of traditional computing into CC has

a great impact on security, increase in efficiency, saving of energy, visibility, flexibility

as well as community. However, the challenges that might be faced are privacy issues,

cultural issues, reliability, availability and controllability. See table 2.2.

To start with CC advantages, security problems generally come when user does not

have back-up and the system crashes resulting in data loss if it is not stored in some

other location. CC solves these kind of issues by providing back-up. Sometimes the user

may forget to take storage media to store data from home to his office. CC provides

access to this data with security to store data in a data centre [Barnatt, 2010]. CC

running is independent of location, and hence, another benefit of security is that CC

makes the personal computing much safer. CC corporate data centres cannot securely

be compromised whereas individual PC always can be [Barnatt, 2010, Catteddu, 2010].

The CC capital investment is minimal as users have multiple organisations available

ensuring that competition services for customers are comparatively inexpensive. such

an advantage motivates the users to only pay for what they use. Customers also do

not need to worry about the updating of software, changing code or hardware capacity

that are frequent issues for firms operating their own software. CC permits flexibility for

users in other environment; for example, customers can access the files by using different

types of devices such as smart-phones, tablets, etc [Catteddu, 2010].

Energy saving means capability of direct instrumental cooling affects the stability and

speed of computers, and it is recognised well that computers take a lot of energy for

this cooling if hardware has higher temperature. At this stage, vendors of CC keep their
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Table 2.2: Benefits and Challenges in Cloud Computing

Benefits Challenges

1 Security In terms of Backup Information Data Security, Privacy, and Trust Issues

2 Capital Investment Saving Cultural Issues

3 Energy Saving Availability

4 Increased Efficiency Reliability

5 Flexibility Controllability

servers in cold environment so that they can perform well. If they use liquid nitrogen

method for this process, this can save the energy under some circumstances to run

computers [Krutz and Vines, 2010].

Furthermore, efficiency increment in CC environment, people and organisations will

likely become greater and therefore, CC provides a reliable and comprehensive set of

resources for its users. CC may impose all analysis, development, deployment and mon-

itoring to provide the opportunity to increase productivity and reduce risks in business

[Catteddu, 2010, Krutz and Vines, 2010].

In the context of flexibility, CC provides the services where the customers can apply the

cost-effective applications, hardware, and software. Hence, they do not have to interact

with outdated hardware or software. If they still require, it can scale their software and

hardware on a regular basis, thereby adding the provided flexibility [Catteddu, 2010].

As it can be see in table 2.2, there are five concerns in CC environment but they are not

fixed or limited. The 1st concern is privacy, security and trust issues. Sometimes, CC

does not offer certain safety mechanisms that help in tracking the servers of CC. Network

and user access inside private cloud is specific and restricted; hence, the processes are

handled in the organisations without any restriction of security, bandwidth and legal

requirements that using the public cloud services could be needed [Catteddu, 2010,

Zhang et al., 2010].

Unfortunately the public cloud is not able to constantly protect the confidentiality of

data for all the users because the trust relations have temporary efficiency in cloud;

and thus, the users cannot prevent the risk of receiving dangerous actions or malicious

data. Additionally, the users may get the illegal data from the cloud. More dangerous is

that this technology cannot completely prevent fraud, phishing, exploitation and service-

hijacking as generally occurs in IT systems [Krutz and Vines, 2010].
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Therefore, government have already taken action against hackers and made a legal ju-

risdiction where organisation takes an action to ensure the privacy rights of the users

and give permission to appeal against the cloud merchants if required. Researchers have

shown the method to handle these problems. They found that some firms in CC should

comprehensively provide different levels of protection per degree of trust. Then these

firms can manage change in trust with context to time and adjust, to monitor and to

reflect properly the trust relation to become dynamic with the time [Zhang et al., 2010].

On the other end, possible protection issues with cloud return within the system. There

is multi-instance in multi-tenancy virtual environments where all instances are assumed

as completely isolated with one another. This can escape the limits of sandboxed en-

vironment, and provide complete access to the hosting system [Catteddu, 2010, Zhang

et al., 2010].

As far as the disadvantages of cloud computing is concerned, traditional problems can

also be taken as a drawback as the organisation and information need to be shared

or manipulated their conventional methods of working, it might be a huge traditional

challenge to adopt the CC technology [Catteddu, 2010].

2.3.3 Deploying IDS/IPS into Cloud Computing

CC is limited in terms of control the data and resources where the administrator can see

IDS details. Roschke et al. [2009] proposed a solution for an IDS central management

within CC. Such a solution focused on integration of sensor outputs on any single type

of interface [Roschke et al., 2009].

Karen and Mell [2010] proposed a system consistency of CC application layer in different

platform layers such as the system layer, the application layer and the platform layer

[Karen and Mell, 2010]. IDS, in this system, generates alerts sent to the event of CC

and then stores the data in the repository of the sender, receiver and helper types

of plugs. Kozushko [2013] proposed a method of deployment through an analysis of

complex components that are monitored by the help of a user [Kozushko, 2013].

Singh and Roy [2012] claimed that the issue of deploying IDS/IPS cloud computing lies

on information confidentiality, which is received by the help of SaaS [Singh and Roy,

2012]. They said that all the various information types have to pass through the network

with considering the lake of confidential information that need to be monitored. The

encryption within the deployment may be considered as an effective method to tackle
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the information confidentiality issue; however, packet analysis could be the best solution

tackle the information confidentiality issue through the use of CC.

In recent years, there is a remarkable rise of the amount of vulnerabilities that impact

the process of CC. One of the main reasons that influences the adoption process of cloud

services is the distributed nature of CC service [Michael Armbrust, 2009] . Chen and
Deng [2009] said that a large number of organisations deployed SaaS for IT management

resources although there is a great deal of inherent issues in CC such as the security

of data, the management of vulnerability, the system of disaster recovery, the process

of business continuity and identity management [Chen and Deng, 2009]. Two years

later, Murugan and Kuppusamy [2011] supported the say of Chen and Deng [2009]

and said that a number of firms are not in a position to adopt IDS/IPS due to a

plethora of ambiguities in the process of CC [Murugan and Kuppusamy, 2011]. The

main challenges for deploying IDS in CC lies on security and data management, e.g.

confidentiality, auditability, control over data lifecycle, privileged user Access, lack of

standards and interoperability, and multi tenancy [Brodkin, 2009, Hall and Liedtka,

2011, Michael Armbrust, 2009, ?]. In the event of virtual cloud, there are other common

issues encountered in deploying CC which are as follows;

1. Difficulties in analysing huge logs in a virtual environment as IDS tools cannot dif-

ferentiate between normal and threats effectively when scanning traffic [Kandukuri

et al., 2009].

2. Generation of false alarms because of riggering unjustified alerts, whereby it di-

minishes the value and urgency of real alerts [Kretzschmar et al., 2011].

3. Low Detection Efficiency where the current IDS tools have very low efficiency in

detection of all attacks in each attack class (e.g. DoS, U2L, R2L, and probe) and

hence these attacks are successful in thwarting legitimate users from accessing the

network resources [Lombardi and Di Pietro, 2011].

4. Finding correlation between attacks where it is hard to classify them in their

classes: DoS, U2L, R2L or Probe [Ristenpart et al., 2009].

5. Difficulties in reassembling IP packets such as TCP, UDP and ICMP [Kaufman,

2010].
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2.3.4 Virtual Cloud Computing (vCloud)

Cloud Computing basically means the utilisation of organised infrastructure software

that is networked and the ability to professional provides assets to clients in an on-

request condition. With Cloud Computing, data is for all time put away in servers on

the Internet and reserved temporarily on desktop computers, note pads, handhelds, or

other customer gadgets. In this design, vCloud regularly known as utility registering

where clients can get to basic business applications virtually on-line from any end-client

gadget , on a pay-per-use basis.

Businesses that are little and medium-sized or workgroups can utilise Cloud Comput-

ing to completely out-source their framework; however, numerous solutions today have

significant issues in (1) proprietary application where stages require broad time to rede-

velop to function o -premise, (2) if Service-level agreement (SLAs) are not met, clients

are regularly not able to move to another supplier (3) long lead times are needed to move

or set up new. By outlining vCloud, they found that vCloud is adaptable and flexible,

giving IT divisions an approach to expand limit or include abilities request without

putting resources into new framework, and also preparing new faculty, or licensing new

programs. In order to expand on-premise infrastructure and increase the capacity on

demand, the present enterprises are starting to leverage the cloud computing model.

2.3.4.1 What is VMware vCloud?

VMware software promotes vCloud that has many services on the web; yet it is still

similar to the meaning of Cloud Computing. To define this term precisely, vCloud

is a brand and a part of a family of VMware products, with the most popular tools

being on the vCloud Suite and vCloud IaaS offerings. vCloud providers are third-

party companies (TPC) that offer IaaS solutions. These providers run the VMware

vCloud Suite and allows thier consumers to move existing vSphere3 virtual machines

to their infrastructure clouds although TPC can use the vCloud Connector to connect

the internal vSphere infrastructure with their vCloud datacenters4. vCloud Director

also gives customers two advantages: (1) the ability to build secure private clouds that

dramatically increase metacentre efficiency and business agility, and (2) it delivers CC

for existing carpenters by pooling virtual infrastructure resources and delivering them

to users as catalogue based services.

3it refers to Data Centre Server
4VMware houses a director of service providers at vCloud.VMware.com
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2.3.4.2 The Components of vCloud

The major components are as follows:

1. vSphere / ESXi 5.5: The hypervisor was loaded on our physical servers.

2. vCenter 5.5: The centralised management console for all the vSphere hosts and

virtual machines.

3. vCloud Director: The private cloud self-service portal.

4. vCloud Networking and Security (vCNS): Previously called vSphere, vCNS

is where it keeps the cloud infrastructure secure.

2.3.4.3 Why vCloud?

vCloud assists enterprises get the opportunity to showcase quickly by virtualising and

streamlining infrastructure, computerizing delivery of services, and giving high accessi-

bility to both customary and new types of applications, for example, Big Data. This

implies a business running vCloud reacts faster to client requests, invests more time on

innovation, and is prepared for the up and coming era of applications. Three fundamen-

tal key advantages have been considered to apply vCloud which is called (M yCloud).

These benefits are as per the following;

1. Productivity: vCloud Standardize and unite server firms with wise and policy

based IT operations to considerably lessen CapEx by up to 49% and OpEx by up

to 56% [Chaplot, 2015].

2. Agility: vCloud empowers IT to quickly arrangement framework, applications,

and finish IT services, which abbreviates the marketing hours of new IT services

from weeks to minutes. The outcome is increased efficiency that makes it possible

for both IT and the business to concentrate on development and activities of high

value [Singh, 2014].

3. Control: vCloud gives high accessibility to arranged relocations and business

congruity/calamity recuperation through application, server, group and server

firm disappointments that decreases downtime of all applications. Policy based

governance and consistence observing guarantee that business standards are im-

plemented and applications have the correct level of security. Usage metering and
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costing of services of private cloud framework that is virtualised assist IT and

line of entrepreneurs settle on critical cost benefit choices. The outcome is up to

30% more uptime for level 1 applications and up to 50% reserve funds of fiasco

recuperation management costs [Singh, 2014].

Also, one of the reasons to create vCloud was to give an IaaS service on the highest point

of vSphere. Therefore, the framework uses the protected separation of virtual machines

and virtual systems given by vSphere. Moreover, vCloud Director exploits vShield to

give extra networking controls that are not available in vSphere. Moreover, the vCloud

Director design makes it possible for the multi-tenant detachment at the administration

and conveyance layer required in a cloud domain.

2.4 Approaches for Evaluating Cloud Performance

Different methods have been developed recently in order to evaluate CC performance.

These methods emphasise on different features of CC and attempt to design a paradigm

to access the cloud performance. The research timeline goes back to 2009, when the

CC performance was considered. For this new computing approach to be commercially

successful, the capability to provide quality of service (QoS) assured services is crucial.

Xiong and Perros [2009] proposed an approach to assure the QoS and analyse the CC

performance in finding the relation between the following;

1. The maximum number of customers,

2. The minimum service resources, and

3. The maximum services level in an attempt to provide guaranteed services of QoS.

Stantchev [2009] also proposed an approach that emphasises on non-functional properties

of individual services which may give more granulated and straightforward information

[Stantchev, 2009]. QoS factors are part of non-functional run time related features of

service and give one of the important research challenges in service-based computing.

Lee et al. [2009] conducted a practical evaluation on Amazon Elastic Cloud Compute

(EC2) in order to to study the advantages of cloud service to its users. Such a study

considered essential SaaS features such as availability, reusability, scalability, availability,

customisability, pay-per-use and provider’s data management. The results shows that
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these SaaS features were affected by the latency sensitive processes as CC output [Lee

et al., 2009].

Barker and Shenoy [2010] said that different virtual machines run different applications

from independent customers which may share a physical CC server. In this study, a

number of experiments were carried out in Amazon’s EC2 system to measure the disk,

system and network movement, and throughput fluctuations.

Iosup et al. [2011] proposed a cloud based component that was integrated with the

traditional benchmark system to do an experimental evaluation of the services of CC.

Three evaluation metrics in their study were set [Iosup et al., 2011];

1. Specific evaluation of cloud where multiple resource instances are acquired and

released repeatedly to check whether huge clouds can avoid this problem.

2. Infrastructure agnostic evaluation where certain typical benchmarks are used with

two types of workloads (Single Instance and Multiple Instance).

3. Performance metrics that use various benchmarks like Bonnie, LMBench, HPCC,

Cache Bench etc.

Yang et al. [2013] proposed a fault recovery paradigm in order to calculate a CC service’s

performance. Such a paradigm contains two most important issues: service reliability

and the service performance. To enhance the reliability of cloud service, a powerful fault

tolerant technology has to be considered. Reliability of CC service was explained as how

often the CC responded successfully to the request by the user. Then, service perfor-

mance of CC was defined as how fast the response of CC from the request issued from

the user. With the help of these methods and models, quantity of service performance

can easily be evaluated and to make correct decisions on the CC such as determining

the appropriate number of schedulers, and appropriate nodes choice for processing the

sub-tasks, etc.

Li et al. [2012b] have made taxonomy of performance measures to evaluate the perfor-

mance of commercial services of CC. The purpose of conducting such a study was that

authors said that wrong and confused evaluation implementations could badly interfere

and spoil the evaluation-related inclusion and interaction in context of commercial CC

computing. The taxonomy was made across two dimensions: (1) performance feature

that was further divided into physical property and capacity parts, and (2) experiment

dimension that was divided into operational and environmental part. Fuzzy logic was
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then used to evaluate the CC performance through various factors such as process, files

and volumes. Such a study summarised that fuzzy logic helps the user in understanding

the cloud quality easily on the desired.

Supriya et al. [2012] created a cloud trust management system through fuzzy logic. Such

a model was built on three inputs: (1) performance, (2) agility and (3) financial which

were given to Mamdani Fuzzy Inference system in order to generate set of values that are

fed into Sugeno Fuzzy Inference system. Such a system gives the trust rating of the cloud

service provider. Sugeno FIS output is the crisp value: very poor, poor, good, excellent

or outstanding which helps the user to guess that how cloud is much trustworthy.

Alhamad et al. [2011] proposed e-learning application in order to evaluate the overall

cloud provider trust values with the help of fuzzy logic. The proposed method of fuzzy

logic in the study was using four inputs. These inputs are (1) availability, (2) scalability,

(3) usability and (4) security factors for trust evaluation. This technology also includes

neural network to minimise the number of generated rules of fuzzy logic.

Sethi et al. [2012] proposed a load balancing algorithm incorporated with Fuzzy logic.

The purpose of this study was to address the load balancing issue of CC. This was

based on the Round Robin technique of load balancing to get measurable enhancements

in utilisation of resources and cloud environment availability. Factors such as speed of

processor and load assigned to virtual machines were entered as an input to fuzzifier that

performs the process of fuzzification and an output such as balanced load is generated.

In this thesis, author proposes Fuzzy Intrusion System in Cloud Computing (FIDSCC)

model works on a virtual cloud. This model was built in an experimental lab in order to

evaluate security performance concerning the uncertainties of intrusions. Such a model

works on maximising the accuracy, specificity, detection rate and reducing the sensitivity

and false alarms.

2.5 Related Work

Chiba et al. [2016] have listed and analysed several approaches existed for intrusion

detection system in Cloud Computing such as Anomaly based IDS, Signature based

IDS, Fuzzy based IDS,and Data Mining based IDS. [Chiba et al., 2016]. This section

provides some studies that used the aforementioned approaches.
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2.5.1 IDS Techniques in Cloud Computing

The vulnerability of Cloud Computing from a security and privacy perspective cannot

work effectively and securely without using protection techniques such as IDS and IPS.

[Vieira et al., 2010]. IDS/IPS in Cloud Computing can have a production of alerts which

is based on the true alarms; however, false alarms are still existed in case of detection

by IDS/IPS [Bakshi and Yogesh, 2010]. This is due to the fact that IDS/IPS can be

judged by the degree of the identity and the lesser number of false alarms There can

be a detection of intrusion patterns in Cloud Computing by the inspection of network

packets through the use of signatures (pre-defined rules) and generation of alarms for

system administrators [Lo et al., 2010].

There are two approaches for IDS and IPS: Anomaly Detection (AD) and Signature

Detection (SD). AD is a system that detects misuse and those detectors look for any

differences in activity on the network. It is based on the assumption that all of these

attacks are different from any normal attack and if there is a need for identification of

all the differences. These kinds of detectors are helpful in the detection of profiles that

have a representation of the users, host and the other kinds of systems [Bosin et al.,

2009]. These profiles are seen to be collected from the normal data over a certain period

of time. This can be helpful in understanding the deviation from the criterion. There

are various measures that are useful in the detection of anomalies such as threshold

detection, statistical measures, rule-based measures and other kinds of measures [Karen

and Mell, 2010].

Foster et al. [2009] proposed a system named Grid and Cloud Computing Intrusion

Detection Systems (GCCIDS). This system was designed to cover the attacks for the

host based IDS systems (HIDS) which cannot monitor intrusions. This method analyse

knowledge and behaviour of intrusions that take place [Foster et al., 2009]. However,

this system cannot detect any new kinds of attack nor have the creation of a database

that needs to be taken into the consideration while creating the IDS.

Xin and Yun-jie [2010] argued that with the increasing popularity of a network, issues

with security have become increasingly severe; and therefore,the traditional kind of

intrusion and firewall systems has generally been sufficient to deal with the technology;

yet there is a need to develop a new type of IPS. Such an opinion was supported by Jansen

and Grance [2011] who claimed that the IPS is deemed to be an advanced combination

of ID, personal firewalls and anti-viruses. The function of IPS is not only to detect the

interruption of the services by an attacker, but also to take preventative action. This
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should include the features such as logging off the user, the initiation of system shut-

down, the process of halting the system and disabling of connections. Xin and Yun-jie

[2010] also mentioned that the rational types of ID have a functioning style not unlike

anti-virus software. This is an example of passive mode of data testing. Hence, if there

is a detection of an attack, the prevention of attacks takes place in the traffic of data.

Waxman [2011] stated that computer network attack, also known as Cyber-Attack, refers

to any unwanted or unethical activity that is intended to disturb, alter or hit someone’s

privacy or to steal others’ important data either secretly or publically. These types of

attacks are usually performed by anonymous hackers and it is very difficult to recognise

the hackers or to catch them [Levy, 2010]. Cyber-attacks are performed using multi-

ple ways such as, secretly installing spy software in the targeted systems [Runthala,

2010], secretly attempting to log in the targeted system successfully [Puzmanova and

Mikhailovsky, 2014] or secretly monitoring the internet traffic of the targeted system

[Garber, 2010]. Cyber-attacks include, but are not limited to Malware, Phishing, Pass-

word Attack, Denial-of-Service (DoS) Attack, Man in the Middle (MITM) Attack, Drive

by Downloads, Malvertising, Rogue Software and many more [Pipyros et al., 2014].

Alqahtani et al. [2014a,b] proposed two models based on IDS/IPS called SIDSCC5 and

SIPSCC6 in order to evaluate IDS/IPS detection and prevention once they detect/pre-

vent the attacks within cloud computing (namely SaaSCloud). Theses two models were

investigated separately depending on different methods of protection, levels, techniques,

scenarios, and attacks. The main motivation to conduct these studies was to evaluate

the efficiency of IDS/IPS within SaaSCloud based on three perspectives; the vulnera-

bility detection, average time, and false negative. However, these two models need to be

validated further against IDS/IPS dataset such as (DARPA, KDD, or ISCX) in order to

re-evaluate and validate the functionality, working and the capability of IDS/IPS within

cloud computing. These datasets generally have various known and unknown attacks

with different protocols scenarios. The main deference between these mechanisms is

that IDS is unlike IPS whereby IPS is considered as an extension of IDS and blocks

connections or drop abnormal packets if they consist of unauthorised data.

v

5This Service is an Intelligent Service of Intrusion Detection System for Cloud Computing (SIDSCC)
6This Service is an Intelligent Service of Intrusion Prevention System for Cloud Computing (SIDSCC)
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2.5.2 IDS Based On Fuzzy Logic

Klir and Yuan [1995] said that fuzzy logic has been widely used in the IDS systems

that helps increase the intrusion detection rates and thus significantly strengthens the

IDS systems. Fries [2009] presents a new Fuzzy-Genetics based hybrid approach that

is considered to be superior then previously developed Genetic-Algorithm (GA) based

approaches which do not have high capability of intrusion detection. The proposed

approach adds in the GA based system, an ability to change according to the networking

environment, to handle the noise and to detect intrusions in the system with significant

accuracy. It is based on two major steps, including GA algorithm as an initial step to

produce subset of the communication features by using traditional dimensional reduction

technique and the next step as defining a set of fuzzy logic rules i.e., trapezoidal fuzzy

sets that allow complete membership over all ranges. This approach has been tested by

KDD Cup 1999 Dataset, and results show that the intrusion detection rate accuracy is

above 90% whereas the false positive rate is below 1%.

Singh [2011] discusses a very major and most common security challenge i.e., blackhole

attack, in Mobile Ad hoc Networks (MANETs) and also presents the corresponding

solution by utilising the strengths of fuzzy logics. The proposed approach is comprised

of four stages including, fuzzy parameter extraction where the initial parameters are

extracted based on the incoming network traffic, fuzzy computation which calculates

the fidelity level on the bases of extracted parameters where the fidelity level defines the

intrusion level of the packet, fuzzy verification module where a decision is made that

either the blackhole attack exists or not, finally an alarm module generates an alarm

in case of blackhole identification. The approach has been applied on routing protocol

and is simulated by varying the input parameters such as, mobility of nodes and traffic

speed. It has been found that the blackhole attack detection is considerably accurate

and the false detection ratio is also very low.

Tan et al. [2014] addressed the attack of Denial of Service (DoS) and proposed a fuzzy

logic based intrusion detection approach to cater this attack [Tan et al., 2014]. The

proposed approach leverages the fuzzy logic by applying it over an already developed

IDS System with an aim to improve the detection rate of such attack whereas the

IDS system is based on MCA-based DoS attack detection system. The MCA-based

system works on triangle based MCA-based technique that involves the extraction of

geometrical correlation of the mutually exclusive features. The proposed approach is
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tested by exposing it to KDD CUP’99 data set and results indicate that the DoS attack

detection rate has been considerably improved after applying fuzzy logic.

Kumar and Ramesh [2016] introduces different kinds of attacks on internet including,

Probe Assaults, DoS Attacks, R2L Attacks, U2R Attacks, Checking Attacks, Dissent of

Service Attack, Infiltration Attack and describes the kinds intrusion detection systems

that are, grouping, example mining, information mining procedures, computerised rea-

soning systems and delicate registering methods. The paper also presents a fuzzy logic

enabled, oddity based intrusion detection system that is developed using information

mining procedures to increase the intrusion detection rate as well as accuracy. The

proposed approach has been divided into four steps including, classification of preparing

information where the interested information is gathered, strategy for era of fuzzy guide-

lines where all the fuzzy sets are generated, fuzzy choice module, where a decision is

taken about the nature of incoming traffic and the last step is to find the suitable order

for a test information where the final decision is taken that either the incoming packet

is assaulted or not. The approach is applied in a network and tested by introducing

different kinds of attacks and results shows that the assaults detection rate is very high

as well as accurate.

This study discusses the SnortIDS system, its strengths and capabilities, a demonstration

of Snort system using ISCX datasets [ISCX, 2012] and finally proposes a new technique

to increase the SnortIDS malicious activities detection rate by utilising the strengths of

fuzzy logics. ISCX datasets are basically sets of malicious activities that are offered to

the IDS systems to analyse the capability of IDS systems to detect them [Shiravi et al.,

2012]. If the detection rate is high and accurate, we can conclude that the IDS system

is stronger enough to be used for live traffic. Several other datasets are also available

for testing IDS systems such as, KDD CUP-1999, but they are not realistic [Chauhan

et al., 2013].

Similarly, the statistical parameters that are used to describe the overall performance as

well as the capability of the underlying IDS system are: (1) specificity and (2) Sensitivity.

Specificity, commonly termed as true negative rate, is a parameter whose value represents

the proportion of negatives that have been correctly identified as true. On the contrary,

sensitivity, commonly termed as true positive rate, is a parameter whose value represents

the proportion of positives that has been correctly identified as true. The proposed

fuzzy logic based Snort system is better than previously developed Snort systems as it

significantly increases the specificity and accuracy of the Snort system, and significantly

decreases false alarm ratio.
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2.5.3 IDS Based on Data Mining

The concept of IDS began with Anderson’s seminal paper [Anderson, 1980] in which

he explained a threat classification model. This model builds a protection monitoring

surveillance system on the basis of AD under user behaviour. Lee et al. [2010] introduced

a systematic framework that implements techniques of data mining for detecting intru-

sion Ėxperiments in their study, which were tested on tcpdump data and email system

data, concluded that the detection models accuracy relies on ample training data and

accurate feature set. Schultz et al. [2011] introduced an alternative framework in which

data mining algorithms were used to train various classifiers on the group of abnormal

and normal executables traffic to detect new examples.

Nadiammai and Hemalatha [2012] proposed a comparative analysis of some function-

based and rule-based classifiers in predicting their efficiency on the basis of sensitivity,

accuracy, time, specificity and error. Hwang et al. [2010] presented a three-tier archi-

tecture of IDS that contains black and white lists. The black list separates the known

attacks from traffic and white list helps in identifying rest traffics including normal traf-

fics, and detected anomalies. The anomalies were further analysed and classified using

a SVM multi-class classifier.

Tavallaee et al. [2009] conducted a study that proposed the relevance of every attribute

in KDD ’99 dataset of IDS to detect every class. Subramanian et al. [2012] focused

on classifying the NSL-KDD [NSL-KDD, 2012] dataset with the help of decision tree

algorithms to build a model with respect to metric data and performance analysis of

decision tree algorithms. Lippmann et al. [2000] also proposed a comparison between

various data mining classification methods for IDS. Srinivasulu et al. [2009] suggested

various data mining classification methods such Naive Bayes, CART and model of ar-

tificial neural network and assessing the performance of every classifier by means of

confusion matrix.

Kalyani and Lakshmi [2012] also proposed the comparison of classification methods such

as Descison Tree, Naive Bayes, PART, OneR and RBF network algorithm with the help

of NSL-KDD dataset. Such a comparison mentioned the advantages that were taken

by utilising NSL-KDD dataset instead of KDDCUP’99 dataset [KDDCUP99]. In this

regard, Reddy et al. [2011] proposed a study of different data mining methods given for

IDSs enhancement in order to support the previous comparison. Some of the machine

learning algorithms such as principal component analysis for dimensionality reduction
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helps reduce the memory requirements and increases the speed performance. Naive

Bayes for attack classification were intensely investigated [Neethu, 2012].

2.5.4 Data Mining and Classification

Data mining which is known knowledge Discovery in Databases (KDD) is the process

of extracting descriptive models from large quantity of data. Frawley et al. described

data mining as “non-trivial extraction of implicit, previously unknown and potentially

useful information from the large data” [Frawley et al., 1992]. Data mining generally

includes five divisions of tasks known as regression, clustering, association rule learning,

classification and visualisation to help perform better through prediction. Thus the

prediction is the main difference and goal of data mining whereas IDS based on data

mining needs less expert knowledge to label the traffic data to specify cyber-attacks

instead of hand-coding rules.

Classification is a supervised data mining technique which is commonly applied on

datasets. Its goal is to construct a classifier or model from classified objects to cat-

egorise unseen items as perfectly as possible. The classifier output can be shown in

different forms depending on the type of classification and available information such as

the form of Decision Trees or Rules. The accuracy of classification of most of the data

mining algorithms is enhanced because it is tough to detect some new attacks as the

changing of attack patterns from attackers.

In order to analyse the classification of cyber-attacks in our study, four different types of

classification attacks were adopted. These classifiers are Decison Tree (J48), Naive Bayes

(NB), OneR, and K-nearest neighbour (K-NN). Decision Tree, which is called as J48

in WEKA [environment for knowledge analysis , WEKA], is a statistical classifier that

makes a decision tree from training datasets using information entropy concept. Such a

classifier breaks down a dataset into smaller and smaller subsets while at the same time

an associated decision tree is gradually developed [Kalyani and Lakshmi, 2012]. The

classifier of Naive Bayes depends on Bayes’ theorem with independence assumptions

between predictors [Langley et al., 2012]. Such a classifier is easy to implement with no

complex iteration on parameter estimations, which makes it very beneficial for very large

datasets. Despite its simplicity, such a classifier does well; and therefore, it is widely

utilised and preferred due to it outperforms frequently more sophisticated classification

methods.
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OneR, short for One Rule, is a simple, yet accurate classification algorithm that generates

one rule for each predictor in the data, then selects the rule with the smallest total error

as its one rule. To create a rule for a predictor, WEKA constructs a frequency table

for each predictor against the target [Subramanian et al., 2012]. Finally, K-NN is called

Instance Based Knowledge (IBK) in WEKA where it represents what is learned rather

than rule set inferring or decision tree by using instances. The process of instance-based

learning in K-NN works once the training instance set is stored, and then the memory

will be searched for the training instances [MeeraGandhi, 2010].

2.6 Summary

This chapter presents the security techniques including IDS/IPS that may improve the

security performance of cloud computing. Some approaches includes anomly detection,

signature detection, fuzzy based on IDS, data mining based on IDS and some classifier

algorithms that are run against some public datasets such as DARPA, KDD-99 and

ISCX. These methods were reviewed. Based on literature, it could be said that IDS

is powerful to detect the abnormal traffic but it is limited in terms of differentiating

between the wanted and unwanted alerts whereas fuzzy logic based IDS has the ability

to differentiate the alerts and classify them. This is because fuzzy application based IDS

is flexible and elastic to the uncertainties of intrusions in cloud computing. Although

such a method is limited as it does need a human interaction to determine fuzzy sets,

rules as well as the high resources consumption, this paves the way for studying a fuzzy

approach based on IDS to deal with different levels, scenarios, and different attack classes

in virtual cloud. Chapter 3 presents the environment and experimental design for this

study as well as the investigative approach and performance metrics.
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Environment and Experimental

Design

This chapter describes the problem and draws the experimental design of the study.

It also covers the differentiation between the traditional cloud computing and virtual

cloud computing that known as vCloud. In particular, a formal definition of vCloud

is provided, along with a related literature review including vCloud types. Moreover,

experimental settings of designing CC including configuring IDS/IPS and deploying

IDS/IPS into CC are provided, together with the fundamental applications. Finally, an

extensive explanations to set an experimental lab in Cloud Computing environment is

given.

3.1 Experimental Lab Components

An experimental lab was set up to assure full control for resources required in all exper-

iments. The experimental lab has the following main Components:

1. vCloud as an IaaS service called MyCloud

2. Four detection systems with/without FL (FL-SnortIDS, FL-SuricataIDS, Snor-

tIDS, and SuricataIDS).

3. The Information Security Centre of Excellence Dataset (namely ISCX dataset) in

order to evaluate the performance of four detection systems within MyCloud.

43
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4. Fuzzy Intrusion Detection System in Cloud Computing model called FIDSCC sys-

tem.

Therefore, the experimental lab had certain requirements with specified specifications.

These requirements are ESXi5.5 Servers, vCentre Server, Active Directory, vShield and

vCloud. These servers was run within VMwware Workstations because of the limitation

in the lab resources. See table 3.1.

Table 3.1: Environment Lab Specifications

Requirement Specifications

PC1 ESXi Server

Process Intel(R) Core (TM) i7 CPU

RAM 16 GB

System Type 64-bit Operation System

Hard Disk 1 TB

IP Address (192.168.1.48)

PC2 ESXi Server

Process Intel(R) Core (TM) i7 CPU

RAM 16 GB

System Type 64-bit Operation System

Hard Disk 1 TB

IP Address (192.168.1.49)

PC3 vCentre Server

Process Intel(R) Core (TM) i5 CPU

RAM 8 GB

System Type 64-bit Operation System

Hard Disk 1 TB

IP Address (192.168.1.50)

PC4 Active Directory, vShield, and vCloud

Process Intel(R) Core (TM) i5 CPU

RAM 16 GB

System Type 64-bit Operation System

Hard Disk 1 TB

ESXi Server IP Address (192.168.1.48)

Active Directory (192.168.1.51)

vShield (192.168.1.54)

vCloud (192.168.1.66)

In the experiments, we needed a piece of computer software called hypervisor. Such a

software is a virtual machine monitor (VMM) that creates and runs virtual machines

within MyCloud. A computer on which a hypervisor is running one or more virtual

machines is defined as a host machine. Each virtual machine is called a guest machine

as shown in fig. 3.1. There are two methods of hypervisors design: (1) Type-1: Native

or Bare-Metal Hypervisors, and (2) Type-2: Hosted Hypervisors

1. Type-1: Native or Bare-Metal Hypervisors: These hypervisors run directly

on the host’s hardware to control the hardware and to manage guest operating
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systems. For this reason, they are sometimes called bare metal hypervisors. A

guest operating system runs as a process on the host.

2. Type-2: Hosted Hypervisors: These hypervisors run on a conventional oper-

ating system just as other computer programs do. Type-2 hypervisors abstract

guest operating systems from the host operating system. VMware Workstation

and VirtualBox are examples of type-2 hypervisors.

The experimental lab environment had the following configured servers as an infrastruc-

ture:

1. 2-ESXi Servers 5.5: There were ESXi 5.5 servers, which were built upon

VMware’s ESXi 5.5 virtual server software. They are a bare metal hypervisors

that include support for a variety of hardware combinations and include manage-

ment via the VMware vSphere Client application, which can be installed on most

any Windows-based system.

2. 1-vCenter Server 5.5: There was a virtual data centre that assesses the status

and overall health of VMware vCenter Server.

3. 1-vCloud Director 5.5: There was a vCloud Director, which is VMware Inc.’s

cloud computing management tool, that manages Infrastructure as a Service (IaaS)

architectures by monitoring and controlling various cloud-computing components,

such as security, virtual machine (VM) provisioning, billing and self-service access.

4. 1-vShield Manager 5.5: There was a vShield Data Security server that protects

sensitive data in the virtual and cloud infrastructure, tracking any violations.

Figure 3.1: Approaches of Designing Hypervisors [Nunez et al., 2011]
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5. Active Directory on Win Server 2008 R2: There was a directory service that

Microsoft developed for Windows domain networks.

Then IDS/IPS Servers were deployed, Syslog Server and Attacker machine into

MyCloud. Overall, the experimental lab had 10 virtual machines (VMs) as it is shown

in table 3.2.

Figure 3.2: vCloud Lab Environment

The below information guides show how an administrator/user can connect to experi-

mental lab environment. As shown in fig. 3.2, user can login into the lab environment

remotely through RDP protocol using Remote Desktop Connection. Then Router will

allow port 3389 i.e. Nating which is for RDP to do using TCP to Control Centre system

(CCS). CCS is the physical system such as Laptop or Desktop with Windows 7 OS at

the lab premises. From CCS, administrator was access to all the infrastructure virtual

machines which is shown in the lab diagram. See fig. 3.2.
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Table 3.2: Virtual Cloud Login Credentials

Requirement Specifications Login Credentials

PC1 ESXi Server

Process Intel(R) Core (TM) i7 CPU
User Name root

RAM 16 GB

System Type 64-bit Operation System

Password SaeeD1983Hard Disk 1 TB

IP Address (192.168.1.48)

PC2 ESXi Server

Process Intel(R) Core (TM) i7 CPU
User Name root

RAM 16 GB

System Type 64-bit Operation System

Password SaeeD1983Hard Disk 1 TB

IP Address (192.168.1.49)

PC3
vCentre Server

Process Intel(R) Core (TM) i5 CPU
User Name root

RAM 8 GB

System Type 64-bit Operation System

Password vmwareHard Disk 1 TB

IP Address (192.168.1.50)

SSO User Name administrator@vsphere.local Password vmware

PC4

Active Directory (AD)

Process Intel(R) Core (TM) i5 CPU
User Name administrator

RAM 16 GB

System Type 64-bit Operation System

Password VMware1!Hard Disk 1 TB

IP Address (192.168.1.51)

vShield Manager (VCINS)

Process Intel(R) Core (TM) i5 CPU
User Name admin

RAM 16 GB

System Type 64-bit Operation System

Password defaultHard Disk 1 TB

IP Address (192.168.1.54)

vCloud Director Appliance (VCD)

Process Intel(R) Core (TM) i5 CPU
User Name administrator

RAM 16 GB

System Type 64-bit Operation System

Password VmwareHard Disk 1 TB

IP Address (192.168.1.66)

IDS Server

Process Intel(R) Core (TM) i5 CPU

User Name sxaRAM 16 GB

OS Type 64-bit Operation System

System Type Windows

Password rootHard Disk 1 TB

IP Address (192.168.1.75)

IPS Server

Process Intel(R) Core (TM) i5 CPU

User Name sxaSystem Type 16 GB

OS Type 64-bit Operation System

System Type Windows

Password rootHard Disk 1 TB

IP Address (192.168.1.76)

Syslog Server

Process Intel(R) Core (TM) i5 CPU

User Name sxaRAM 16 GB

System Type 64-bit Operation System

OS Type Windows

Password Sa1983Hard Disk 1 TB

IP Address (192.168.1.77)

Attacker

Process Intel(R) Core (TM) i5 CPU

User Name rootRAM 16 GB

System Type 64-bit Operation System

OS Type IinuxBackTrack 5

Password toorHard Disk 1 TB

IP Address (192.168.1.78)
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3.1.1 The Information Security Centre of Excellence Dataset (ISCX)

Intrusion Detector Learning (IDL) is a software that detects network intrusions and

protects a computer network from unauthorised users, or intruders. The role of IDL is

to create a predictive model through public datasets such as DARPA1998, KDD1999

and ISCX2012 through classifier algorithms (CAs). CAs are capable to differentiate be-

tween normal connections and abnormal connections, e.g. intrusions or attacks [Shan-

mugavadivu and Nagarajan, 2012]. The 1998 DARPA Intrusion Detection Evaluation

Program is a group of data which was not used because the aim of our study was to sur-

vey and evaluate the intrusion detection within Cloud Computing in a research. DARPA

1998 dataset was a benchmark that is consist of a set of data to be audited, which in-

cludes a wide types of intrusions simulated in a military network environment. The 1999

KDD1 is a competition of intrusion detection that implements a version of this dataset

[Shanmugavadivu and Nagarajan, 2012]. However, these aforementioned datasets have

unrealistic data and lack of scenarios. ISCX is an Intrusion Detection Evaluation dataset

that provides a set of complete traffic of real-time network, carefully acquired for the

applications which include web browsing (HTTP, HTTPS) mails (SMTP, POP, IMAP),

file sharing (FTP), and SSH protocols. This dataset was simulated to provide real time

network traffic for IDS from which IDS can detect different anomalies in the patterns of

traffic, and generate different alerts. ISCX dataset is traffic of 7 days of activity of an

agent that contains these five types of traffic, that needs to be analysed,

1. Normal Traffic

2. Infiltrating Network from Inside

3. HTTP Denial of Service

4. Distributed Denial of Service

5. Brute Force SSH

This traffic is divided into 7 days of real-time traffic, each day file ranging from 4 GBs to

23.4 GBs. Now to analyse this traffic, SnortIDS was run in offline mode, which has its

limits as SnortIDS cannot read a trace file greater than 200MBs which varies depending

on the system. Therefore, the only option was to split the per day files into different

1it was published in the third International Knowledge Discovery and Data Mining Tools Competition,
which was held in conjunction with KDD-99 The Fifth International Conference on Knowledge Discovery
and Data Mining
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small files, which then read by SnortIDS that can provide us alerts. An important

feature of SnortIDS is, in a single run, can read multiple files provided in the folder

while maintaining states of previous connections. This will be discussed later but up to

now, ISCX Dataset was categorised with respect to dates in folder, and is split, ranging

50+files/day -450+files/day.

3.1.2 Attack Classes for Evaluation of IDSs

All IDS datasets were designed to evaluate IDS through four attack classes whereby each

class has several types of attacks. These classes are as a follows;

1. Denial of Service Attacks (DOS): DOS is the first class of attack where an

intruder makes memory or computing resources fully occupied and hard to deal

with legitimate request; therefore, preventing legitimate user access to a machine

[Raiyn, 2014].

2. Remote to Local (User) Attacks (R2L): R2L2 attack is the second class of

attack where an intruder dispatches malicious packets to a target machine through

a network. Then, the vulnerability of the target machine will be exploited in order

to illegally gain local access to that target machine [Raiyn, 2014].

3. User to Root Attacks (U2R): U2R attacks is the third class of attacks where an

intruder initiates with access to a normal user account on the system and being able

to take advantage of the vulnerability in order to gain root access to the system.

In this case, the attacker will start up with access to a normal user account on the

system through possible hacking methods such as gaining information by sniffing

passwords, a dictionary attack, or social engineering, which will let the attackers

to exploit several vulnerabilities to get root access to the system [Raiyn, 2014].

4. Probing: Probing is the fourth class of attacks where an intruder inspects the

network in order to gather information or find known vulnerabilities. The attacker

with a map of target machine and services can utilise the information which are

available on a network in order to be noticed for exploitation [Raiyn, 2014].

2This attack happens when an intruder has the ability to dispatches malicious packets to a target
machine over a network but does not have an account on that machine that exploits some vulnerability
to gain local access as a user of that machine.
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3.2 Intrusion Detection Systems (IDSs)

There is a great deal of open source IDS tools available. The use of these tools depends

on the user or administrator. Some of them are for monitoring hosts and others are for

the networks connecting them to identify the latest threats. The IDS systems: Snort

and Suricata so-called (SnortIDS and SuricataIDS) were utilised twice (with/without

FL) to create four detection systems (FL-SnortIDS, FL-SuricataIDS, SnortIDS, and

SuricataIDS) suing ISCX dataset.

SnortIDS is an open source, rule based Intrusion Detection System provided by Cisco. It

is now also being used as IIDS/IPS. SuricataIDS is also another open source IDS system

that has been developed by a foundation i.e., Information Security Foundation (OISF).

Both aforementioned IDSs are widely used around the globe making any network in-

frastructure safe and reliable by detecting and resisting the well-known cyber-attacks or

malwares and evaluating the incoming network traffic. These IDSs makes decisions about

the activities either to be regular or malicious, on the bases of some predefined rules.

These rules were set by the respective community and are applied for the evaluation of

incoming network traffic. With the ever growing on-line communication technologies,

the network traffic has been become more and more complex day by day; hence the

results obtained by applying such predefined rules and keeping track of the changes is a

very tiresome effort and might become outdated up to some extent. Appendix A shows

the basic working of both IDSs.

3.2.1 IDS Fuzzy Classifiers

Once SnortIDS and SuricataIDS demonstrated the experimental results against ISCX

dataset, it concludes that the false detection rate is high enough that it cannot be ig-

nored; and thus, it requires a serious attention. In order to cater this issue, IDS fuzzy

classifiers were built for these IDS called FL-SnortIDS and FL-SuricataIDS. These fuzzy

Logic are based IDS approaches have been presented in this section which refurnishes

the alerts generated by the SnortIDS and SuricataIDS systems; and then it takes extra-

cautious decisions that either the incoming traffic is actually a regular traffic or malicious.

These approaches enhance the performance and accuracy of these two systems consider-

ably. In terms of increased accuracy, specificity and sensitivity and reduced false alarms,

some experiments have been presented to analyse the performance of these systems by
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using ISCX dataset. The results indicate that FL-SnortIDS system outperforms FL-

SuricataIDS system. Upcoming sections will focus on different processes of these fuzzy

classifier systems.

3.2.1.1 Understanding Alerts of IDS Fuzzy Classifiers

The alerts generated by SnortIDS are not categorised in any manner, which may help

us identify the real threats vs. alerts generated by bad network or sometimes a simple

mistake in credentials that can cause an alert. Thus, these alerts need to be categorised

by the types of attack they represent. The alerts generated by SuricataIDS is much like

SnortIDS that is a list of long unsorted lines, which is very difficult for any network

administrator to understand. Two samples are shown below, which essentially is very

much like SnortIDS but formatting and attack names may vary.

Figure 3.3: A Log of SnortIDS System

It is very important to learn to read the log provided by SnortIDS or SuricataIDS so

we can classify and arrange them as desired. To give a typical example, the fig. 3.3 and

fig. 3.4 are log samples of ISCX Dataset that guide to understand the alert.

Figure 3.4: A Log of SuricataIDS System

3.2.1.2 Alerts Classification of IDS Fuzzy Classifiers

After extensive analysis of the alert files which were generated by SnortIDS and Suri-

cataIDS, these alerts were programmatically categorised on the basis of alert classifi-

cation. This gives a very clear picture of the alerts generated by the IDSs. The alert
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classified for SnortIDS and SuricataIDS are displayed in table B.1.

The table B.1 shows the meaning of IDS systems’ alerts for SnortIDS and SuricataIDS.

The Unknown Traffic alert in SnortIDS contains 46% of alerts where such an alert was

being generated against HTTP INSPECT rules, and its size of the transferred data

was not the same as already communicated. For SuricataIDS system, the figure below

shows that GENERIC Protocol Command Decode alert contains 97% of alerts.

These alerts were being generated against HTTP INSPECT and TCP INSPECT

rules, where size of transferred data was not the same as already communicated or the

window size was different. There are many reasons for these alerts to be generated.

It may be due to a bad network, or wrong configuration of HTTP server, but as the

communication between server and client is established legitimately, so these are the

alerts we can remove from the alert files of SnortIDS or SuricataIDS, as these are not

the work of any intruder. It is just some server error. The table 3.3 and table 3.4 show

the alerts before removing any unwanted and false alerts.

Table 3.3: Corrected Alerts Classified for SnortIDS System

Alert Types Count Percentage

Network Trojan 2075 0.82

Access to a Potentially Vulnerable Web Application 10 0.0039

Attempted Administrator Privilege 44887 17.87

Attempted Denial of Service 28 0.011

Attempted Information Leak 16208 6.45

Attempted User Privilege Gain 5 0.0019

Detection of a Network Activity 1 0.00039

Detection of a Network Scan 5 0.0019

Executable Code was Detected 115 0.045

Generic Protocol Command Decode 11661 4.64

Information Leak 3 0.001

Misc Activity 2011 0.80

Misc Attack 3 0.001

Not Suspicious Traffic 215 0.085

Potential Corporate Privacy Violation 9838 3.91

Potential Bad Traffic 45610 18.16

Unknown Traffic 116665 46.46

Unsuccessful User Privilege Gain 4 0.0015

Web Application Attack 1730 0.68

Potentially Bad Traffic alert generated by SnortIDS is 18% of the alerts. This alert

was being generated by an FTP server that used to generate an extra reset flag to make

sure the connection was terminated, a services hosted on servers such as AKAMI and
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Table 3.4: Corrected Alerts Classified for SuricataIDS System

Alert Types Count Percentage

Network Trojan 2119 0.61

Access to a Potentially Vulnerable Web Application 2 0.00058

Attempted Administrator Privilege 336 0.098

Attempted Denial of Service 27 0.0078

Attempted Information Leak 220 0.064

Attempted User Privilege Gain 3 0.0008

Generic Protocol Command Decode 335570 97.93

Misc Activity 445 0.12

Misc Attack 4 0.0011

Not Suspicious Traffic 215 0.062

Potential Corporate Privacy Violation 2755 0.80

Potentially Bad Traffic 45610 18.16

Unknown Traffic 596 0.17

Unsuccessful User Privilege Gain 2 0.00058

Web Application Attack 34 0.0099

(Null) 321 0.093

such servers generate extra resets making sure that connection is terminated, where

SnortIDS deals it as an unknown connection packet as SnortIDS has already removed

that connection from its memory. Hence, SnortIDS classifies this alert as Potentially

Bad Traffic.

One more reason for the alert to be generated for SuricataIDS is an ill configure FTP

server, which was generating an extra reset flag to make sure the connection was ter-

minated, a services hosted on servers such as AKAMI will cause these issues, where

SuricataIDS deals it as application error packet as SuricataIDS has already removed

that connection from its memory. Hence, SuricataIDS will generate per packet threat.

The table 3.3 and table 3.4 show the alerts before removing any unwanted and false

alerts.

Similarly working on the alert files for both systems: SnortIDS and SuricataIDS, the

following types of alerts were discarded by carefully analysis of the traffic of ISCX

Dataset. This exercise is always done by network administrators when installing new

IDS. The rules of IDSs was configured with respect to the traffic but SnortIDS and

SuricataIDS were not a network aware IDS, hence the administrators cannot remove

some rules randomly. For this reason, we used a fuzzy logic controller to carefully

remove the rules. The unwanted alerts types for SnortIDS and SuricataIDS are shown

in table 3.5.

These alerts for both systems: SnortIDS and SuricataIDS were generated mostly due to

ill-configured services. Some alerts were being generated due to network congestion and
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Table 3.5: Corrected Alerts Classified for IDS Systems Including Unwanted Alerts

Number of Alerts Percentage
No Alert Types

SnortIDS SuricataIDS SnortIDS SuricataIDS

1 Network Trojan 2075 2119 0.82 0.61

2 Access to a Potentially Vulnerable Web Application 10 2 0.0039 0.00058

3 Attempted Administrator Privilege 44887 336 17.87 0.0098

4 Attempted Denial of Service 28 27 0.011 0.0078

5 Attempted Information Leak 16208 220 6.45 0.064

6 Attempted User Privilege Gain 5 3 0.0019 0.00087

7 Detection of a Network Activity 1 None 0.00039 None

8 Detection of a Network Scan 5 None 0.0019 None

9 Executable Code was Detected 115 None 0.045 None

10 Generic Protocol Command Decode 11661 335570 6.64 97.93

11 Information Leak 3 None 0.001195 None

12 Misc Activity 2011 445 0.80 0.12

13 Misc Attack 3 4 0.0011 0.0011

14 Not Suspicious Traffic 215 215 0.085 0.085

15 Potential Corporate Privacy Violation 9838 2755 3.91 0.80

16 Potentially Bad Traffic 45610 596 18.16 0.17

17 Unknown Traffic 116665 None 46.46 None

18 Unsuccessful User Privilege Gain 4 2 0.0015 0.00058

19 Web Application Attack 1730 34 0.68 0.0099

20 Detection of a Non-Standard Protocol or Event 1 None 0.00039 None

21 (Null) None 321 None 0.093

drop packets. Besides these alerts, all other alerts posed a real threat to network and

devices by injecting some kind of malware, or trying to access password protected files.

3.2.2 How IDS Fuzzy Classifier Works

First of all, we have a fuzzy classifier that makes the alerts generated by SnortIDS or

SuricataIDS into understandable alerts. The fig. 3.5 illustrates that fuzzifier classifies

the alerts into different categories. These categorised alerts are the inputs of the FL

controller where on the basis of alert types; these alerts are further categorised as threat

or false alerts. We have a basic minimum amount of 3 alerts per generated alert, to

call it an illegal activity e.g. Network policy dictates, a user gets 3 passwords attempts

per day over domain. Thus, if in case, a user mistakenly put the password wrong, an

alarm is generated but it is not a threat because he is a legitimate user. If the retries

count increased to 3, then the user gets blocked for that day. This means that if the

total numbers of attempts to log in by a user are greater than allocated retries, it will

be considered as a potential threat and will be presented on the threat screen; due to

the fact that an authorised user can never miss hit the password thrice and still be

unblocked. The whole process of accurate threat detection has been divided into three

major stages, which are presented below:
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1. Alert Classification

2. Threat Detection

3. Threat Severity

Figure 3.5: How FL-SnortIDS/FL-SuricataIDS Works within MyCloud

The initial stages regenerates the already generate alerts, as generated by the typical

SnortIDS or SuricataIDS systems. This stage helps increase the accuracy of true threat

detection and mitigates the inaccuracy of false threat detection. Afterwards, these clas-

sified alerts are passed through the threat detection engine which detects the potential

threats. Finally, we checked the total number of potential threats generated against sin-

gle activity such as, login. It helps us differentiate from alert and threat. For instance,

if this number exceeds three, which is the predefined threshold, the potential threat is

marked as a genuine threat; otherwise it is considered as a mistake and thus ignored.
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3.3 Experimental Approaches

3.3.1 Methodology for The First Study

To evaluate the performance of the four systems, the author created the following met-

rics:

1. Numbers of threats detected (Accuracy)

2. False positives and false negatives ratio per system (False Alarms Ratio)

3. Sensitivity Ratio

4. Specificity Ratio

5. Threat Detection Rate (DR)

Accuracy of any system is determined by the ratio of true positives and true negatives

detected vs. all connections; this provides us with a matrix that how accurate threats

and non-threats are differentiated. It can be calculated by:

AccuracyRatio = (Numberofcorrectassessment)
(Numberofallassessments)

False Alarm ratio tells us how many connections are falsely categorised as threats or

legitimate connections. False Alarm Ratio can be measured by the following equation:

FalseAlarmRatio = (Numberoffalsepositiveassessment)
(Numberofallnegativeassessment)

Sensitivity ratio tells us that our IDS detected how many threats vs. actual threats,

while specificity ratio tells us our IDS treated legitimate connections as threats vs. all

clean traffic. Sensitivity and specificity of a system can be measured using the following

equations:

SensitivityRatio = (Numberoftruepositiveassessment)
(Numberofallpositiveassessment)
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SpecificityRatio = (Numberoftruenegativeassessment)
(Numberofallnegativeassessment)

Threat detection rate is the rate of detection of threats per system, classified as low,

medium, and high. In this study, our aim was to identify the performance of which

of these systems: SnortIDS, SuricataIDS, FL-SnortIDS/FL-SuricataIDS is better than

others. In order to do this, we set two hypotheses based on the comparison matrices

above. The first hypothesis was designed for sensitivity, specificity, and accuracy while

the other one was for the false alarm ratio. The first hypothesis was as a follows;

• Null Hypothesis : Performance of two methods are identical (i.e. µ1 = µ2).

• Alternative Hypothesis : Performance for one method significantly improves over

other methods (i.e. µ1 > µ2).

For false alarm ratio, we set the following hypothesis;

• Null Hypothesis : False Alarm ratio of two methods are identical (i.e. µ1 = µ2).

• Alternative Hypothesis : False Alarm ratio for one method significantly lesser than

the other methods (i.e. µ1 < µ2).

Our approach for testing the ISCX dataset against 4 systems was to compare the two

independent results of each sensitivity, specificity, false alarm ratio and accuracy for

SnortIDS vs FL-SnortIDS, SuricataIDS vs FL-SuricataIDS, SnortIDS vs SuricataIDS,

SnortIDS vs FL-SuricataIDS respectively. As an essential criteria, we checked for the

normality assumption with Shapiro Test for each of the category above and figure out

that none of our sample data does satisfy the normality assumption, so we applied

then the non-parametric test for two sample comparison for each category above against

Mann-Whitney one tailed test. Mann-Whitney one tailed test has used the pairwise

comparison in order to compare two population means that come from same population

by using this equation.

U = n1n2 + n2(n2+1)
(2)

n2∑
i=n1+1

Ri
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where,

n1 : sample size of sample 1

n2 : sample size of sample 2

Ri : Rank of sample (whose rank is greater)

For detection rate, our approach was to calculate the detection rate number of threats

detected vs total stream and then get them categorised in high, medium, low priority

classes. In order to calculate the overall of each detection system, we then normalised

the 3 steps of detection rate from 0-1. The cut-offs have been identified by Snorby3

software. After getting these values for each detection system, we obtained a final result

for each detection system. We defined the threshold for low, medium, and high as a

follows;

0.2 6 high

0.01 < medium < 0.2

0 6 low 6 0.01

3.3.2 Methodology for The Second Study

We used three metrics of the first study (Accuracy, Sensitivity and Specificity) plus

Precision and F-measure. Initially, experiments have been conducted based on several

classifiers available in WEKA. Then we decided to select the top four classifiers among

these classifiers, which outperformed better based on our performance metrics. Our

ultimate goal was to evaluate the performance of classification algorithms for attack

classification within Cloud Computing. In order for the detection algorithm to map

the incoming events to attacks and normal activities, several performance metrics have

been set for all results obtained from ISCX datasets. The Precision and F-measure are

described as a follows;

1. Precision: It is defined as the ratio of elements correctly classified as positive

out all the elements of algorithms classified as positive. In other word, it is the

proportion of instances that are correctly classified as a positive class divided by

3Snorby is a modern web interface for Network Security Monitoring which also provides software
based intrusion prevention system: Required packages Snort.
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the total instances classified to positive class.

Precision = (TP )
(TP+FN)

2. F-measure=F-Score: The F-measure can be used as a single measure of perfor-

mance of the test for the positive class. The F-measure is the harmonic mean of

precision and recall:

F −measure = 2 ∗ (Precision∗Sensitivity)
(Precision+Sensitivity)

Once the results were compiled, they were compared on the basis of the following fac-

tors; accuracy, incorrect classification, mean absolute error, false positive rate, precision,

sensitivity, specificity and ROC Area4. The classifier algorithms that were applied on

the results for SnortIDS, FL-SnortIDS, SuricataIDS, and FL-SuricataIDS systems are

Decision Tree, Naive Bayes, OneR, and K-NN. Then, the final results for all the attack

classes of these four results were compared further on the basis of these final matrices:

1. Accuracy

2. Precision

3. Sensitivity

4. Specificity

5. F-measure

In this study, our aim was to identify the performance of which of these systems: Snor-

tIDS, SuricataIDS, FL-SnortIDS and FL-SuricataIDS is better than others and which

classifier algorithm outperforms others and presents better results. Our approach for

testing the ISCX dataset against four results obtained from Cloud Computing systems

was to compare the four independent results of each factor of our performance metrics

in two stages. The first stage was to rank each class of attack in each result and compare

based on our performance metrics. The second stage was a comparison for the following

systems respectively:

4ROC Area is the weighted average classes under the ROC Area that have False Positive in the
x− axis and True Positive in the y − axis (the weighted average classes under the Roc Area that have
False Positive in the x− axis and True Positive in the y − axis).
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1. SnortIDS vs FL-SnortIDS

2. SuricataIDS vs FL-SuricataIDS

3. SnortIDS vs SuricataIDS

4. SnortIDS vs FL-SuricataIDS

3.3.3 Methodology for The Third Study

Final results for all these systems were compiled and the comparison of these systems

was done on the basis of these matrices:

1. Threat Detection Rate (DR)

2. False Positive Ratio (FPR)

Threat detection rate is the rate of detection of threats per system, classified as

(low,medium, and high). In this study, our aim was to identify which threat is best

determined by which method and overall which method is best to identify the threat.

In order to do this, we set two hypotheses based on the comparison matrices above. In

order to achieve the goal of this study, we set the following hypothesis;

• Null Hypothesis: Threat detected by both the methods are same (i.e. p1 = p2

or p1 − p2 = 0).

• Alternative Hypothesis: Threat detected by method 1 is significantly better

than the method 2 i.e. False positive ratio for method 1 is significantly lesser than

the False positive ratio of method 2 (i.e. p1 < p2 or p1 − p2 < 0).

Our approach for testing the ISCX dataset against 4 systems within MyCloud is to

compare the two independent results for SnortIDS vs FL-SnortIDS, SuricataIDS vs FL-

SuricataIDS, SnortIDS vs SuricataIDS, SnortIDS vs FL-SuricataIDS respectively. As

an essential criteria, we have used one tailed test of proportion for two samples to figure

out the threat detected by which of the two methods are significantly better based on

false positive ratio. The one tailed test for two proportions was used to compare the

proportion of two independent samples.
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Z =
p1 − p2√

p(1− p)
(

1
n1

1
n2

)

where,

p1 : proportion for sample 1

p2 : proportion for sample 2

n1 : size of sample 1

n2 : size of sample 2

p : pooled proportion

p =

(
p1n1 + p2n2

n1 + n2

)
(3.1)

For detection rate, our approach was to calculate the detection rate number of threats

detected vs total stream and then get them categorised in (high,medium, low) priority

classes. This will be calculated overall of each system. We then normalised the 3 steps

of detection rate from 0-1. After getting these values for each system, we obtained a

final result for each system. We defined the threshold for (law,medium, and high) as a

follows;

0.2 6 high

0.01 < medium < 0.2

0 6 low 6 0.01

3.4 Summary

This chapter explains the lab settings, configuration, and deployment of IDS into Cloud

Computing. This chapter also provides details of the configuration of ISCX daatset and

how fuzzy logic based IDS works into virtual Cloud. ISCX benchmark were used with

IDS but ut was not used with two IDSs (SnortIDS and SuricataIDS) and fuzzy classifiers

(FL-SnortIDS and SuricataIDS) [Shiravi et al., 2012]. This leads the author to propose

a model called FIDSCC system that relies on fuzzy logic based on IDS. This dataset

was classified into four classes: DoS, U2L, R2L, and Probe. This way may boost the
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security within Cloud Computing and could be a solution to secure Cloud Computing

and reduce the false alarms and sensitivity before implementing it on an actual Cloud

Computing. Chapter 4 illustrates a compartive copmarison between these four detection

systems (SnortIDS, SuricataIDS, FL-SnortIDS, and FL-SuricataIDS).



Chapter 4

A Comparative Analysis for The

Alerts of IDS Fuzzy Classifiers

Approaches within Cloud

Computing

In this chapter, a comparative analysis for IDS fuzzy classifiers within MyCloud against

the alerts of IDS is done. This chapter also covers the specific metrics for this study

together with related work created and proposed by the author. The investigative ap-

proach in this chapter includes IDS fuzzy classifier, and how IDS fuzzy classifier studies.

This chapter provides experimental results that includes the methodology, and statistics

for all compared systems. Finally, the comparative analysis is done based on the results

of four systems: SnortIDS, SuricataIDS, FL-SnortIDS, and FL-SuricataIDS.

63
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4.1 Experimental Results and Analysis

4.1.1 Descriptive Statistics

4.1.1.1 Intrusion Detection Systems

As it can be seen in fig. 4.1 for the overall results of both IDS Systems: SnortIDS

and SuricataIDS, it shows that IDS systems analysed the total of 1,268,735 connection

streams of the ISCX Dataset, out of which IDS system generated 251,074 alerts con-

nections for SnortIDS and 342,649 alerts connections for SuricataIDS. These alerts for

both systems contain malicious or anomaly alerts. The numbers show that SnortIDS

classifies 19.78% of traffic as malicious while SuricataIDS classifies 27.01% of traffic as

malicious.

Figure 4.1: IDS Systems’ Analysis on MyCloud
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The total generated alert types for these IDS systems were 19 alert types for SnortIDS

and 15 alert types of SuricataIDS. The alerts then were classified into 203 attack clas-

sifications for SnortIDS and 152 attack classifications for SuricataIDS. Based on these

classifications, attacks were prioritised based on its priority. This priority shows how

dangerous this attack can be for the network 1 being highest and 3 being the lowest. We

went a step further to categories these alerts for each system into four attack classes that

are DoS, Probe, U2R and R2L. The fig. 4.2 shows the number of these attack classes

for Snort-IDS and SuricataIDS.

In the event of SuricataIDS system, the attack classes were not much alert classifications

of DoS, R2L and U2R comparing to the class of probe. This is because of the fact

that Probe class focuses on any network anomalies meaning at network layer level and

transmission layer, while the other three are application level classifications. This means

any alert generated by network may it be at IP (network) layer or TCP and UDP

(Transmission) layer is classified as network probing.

Figure 4.2: Classification of Alerts for IDS Systems on MyCloud
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The table 4.3 shows the ratio analysis for these IDS systems in terms of sensitivity,

specificity, accuracy and false alarms. The detection rate tells the network administrator

that at what rate the alerts are generated greater. The detection rate means the higher

numbers of alerts are generated. In both the cases on average more than 20% of traffic

is marked malicious, and generating a high detection rate.

4.1.1.2 IDS Fuzzy Classifiers

As it can be shown in fig. 4.3, we removed, after classifying the alerts, any unwanted

alerts caused by network health, unwanted privacy rules and server issues. We then

set a threshold of 3 alerts per day for any alert to be classified as threat, to avoid any

legitimate used in password entry.

Figure 4.3: Total Alerts’ Types for IDS Fuzzy Classifiers

As it can be seen in fig. 4.4, it illustrates the overall results for all systems: SnortIDS,

SuricataIDS, FL-SnortIDS and FL-SuricataIDS. Noting that fig. 4.1 shows that IDS

systems analysed the total of 1,268,735 connection streams of the ISCX Dataset, out

of which Snort generated 65,066 alerts connections for FL-SnortIDS and 2,743 alerts

connections for FL-SuricataIDS. These alerts for both systems contain malicious or

anomaly alerts. The numbers show that SnortIDS classifies 19.78% of traffic as malicious
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while SuricataIDS classifies 27.01% of traffic as malicious, while in case of FL-SnortIDS

these numbers reduces to 5% and when FL is applied on SuricataIDS this number is less

than 1%.

Figure 4.4: MyCloud Corrected Alerts Generated by IDS vs IDS Fuzzy Classifiers

The fig. 4.5 illustrates the total generated alert types for these fuzzy classifiers. They

were 5 alert types for FL-SnortIDS and 4 alert types of FL-SuricataIDS. The alerts then

were classified into 77 attack classifications for FL-SnortIDS and 46 attack classifications

for FL-SuricataIDS. Based on these classifications, attacks were prioritised based on its

severity 1 as a high, 2 as a medium and 3 as a low. We then categorised these alerts

classifications for each system into four attack classes that are DoS, Probe, U2R and

R2L. The figure below shows the number of these attack classes for FL-SnortIDS. More

alerts of FL-SuricataIDS attack classes originally were generated by Probe classifier

where they were reduced to only 34 application level threats.
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The table 4.2. shows the ratio analysis for these IDS systems in terms of sensitivity,

specificity, accuracy and false alarms. The detection rate varies for both systems as in

FL-SuricataIDS system was less than 1% of rate was recorded on average and in case of

FL-SnortIDS on average less than 15% threat detection rate was detected.

4.1.2 Overall Approaches’ Descriptive Statistics

The fig. 4.6 shows the ratio analysis for these four systems in terms of sensitivity, speci-

ficity, accuracy and false alarm. The detection rate tells the network administrator that

at what rate the alerts are generated the greater the detection rate means the higher

Figure 4.5: Classification of Alerts for IDS Fuzzy Classifiers within MyCloud
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numbers of alerts are generated. In both the cases on average more than 20% of traffic

is marked malicious, generating a high detection rate.

Figure 4.6: Overall Ratio Analysis on MyCloud

The table 4.3 is the overall descriptive statistics for all generated alerts of each system

implemented: SnortIDS, SuricataIDS, FL-SnortIDS and FL-SuricataIDS.

4.2 Comparative Analysis

Based on the experimental MyCloud datasets, we have conducted 5 comparisons:

SnortIDS vs FL-SnortIDS, SuricataIDS vs FL-SuricataIDS, SnortIDS vs SuricataIDS,

SnortIDS vs FL-SuricataIDS, and SnortIDS vs SuricataIDS vs FL-SnortIDs vs FL-

SuricataIDS respectively.
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Table 4.3: Overall Statistical Analysis for All Approaches within MyCloud

Systems criteria Minimum Maximum Median Mean Standard Deviation

SnortIDS

Sensitivity 0.9804 0.9952 0.9874 0.9870 0.0053

Specificity 0.7252 0.8721 0.8193 0.8117 0.05

False Alarm 0.1279 0.2748 0.1807 0.1883 0.0499

Accuracy 0.7368 0.8770 0.8271 0.8258 0.0475

Detection Rate High

FL-SnortIDS

Sensitivity 0.9718 0.9942 0.9816 0.9827 0.0073

Specificity 0.9997 0.9999 0.9999 0.9999 0.0001

False Alarm 0.0001 0.0003 0.0001 0.0001 0.0001

Accuracy 0.9974 0.9988 0.9988 0.9985 0.0005

Detection Rate Medium

Systems criteria Minimum Maximum Median Mean Standard Deviation

Suricata-IDS

Sensitivity 0.5284 0.9077 0.7053 0.711 0.1327

Specificity 0.4534 0.95 0.8813 0.8204 0.1768

False Alarm 0.0499 0.5466 0.1187 0.1796 0.1768

Accuracy 0.4547 0.9493 0.8816 0.8202 0.1761

Detection Rate High

FL-SuricataIDS

Sensitivity 0.5284 0.9077 0.7053 0.7110 0.1327

Specificity 1 1 1 1 0.0000

False Alarm 0.0000 0.0000 0.0000 0.0000 0.0000

Accuracy 0.999 0.999 0.999 0.999 0.0000

Detection Rate Medium

4.2.1 SnortIDS vs FL-SnortIDS

The fig. 4.7 states the alternative hypothesis as the true location shift was greater than

0. In sensitivity, the level of significance was greater than 0.5 (p − value > 0.05).

Hence, we do not have sufficient evidence to reject our null hypothesis i.e. sensitivity

performances on both methods are the same. This is can be clearly seen from the box-

plot visualisation as well as Mann-Whitney test that there is no difference in performance

of sensitivity between two methods. For specificity and accuracy, the level of confidence

was p − value < 0.05, and therefore, we have sufficient evidence to reject our null

hypothesis i.e. specificity and accuracy performances for SnortIDS is better than FL-

SnortIDS. For false alarm performance, the true location shift is less than 0 and the

level of confidence was p− value < 0.05. Therefore, we have sufficient evidence to reject

our null hypothesis i.e. false alarm ratio for FL-SnortIDS is lesser than the SnortIDS.
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4.2.2 SuricataIDS vs FL-SuircataIDS

The fig. 4.8 states the alternative hypothesis as the true location shift was greater than 0.

In sensitivity, p−value > 0.05, hence we do not have sufficient evidence to reject our null

hypothesis i.e. sensitivity performances on both methods are identical. The box-plot

visualisation and Mann-Whitney test show that there is no difference in performance of

sensitivity between two methods. For specificity and accuracy, the level of confidence was

p− value < 0.05, and therefore, we have sufficient evidence to reject our null hypothesis

i.e. specificity and accuracy performances for FL-SnortIDS is better than SnortIDS. For

false alarm performance, the true location shift is less than 0 and the level of confidence

was p−value < 0.05. Therefore, we have sufficient evidence to reject our null hypothesis

i.e. false alarm ratio for FL-SuricataIDS is lesser than the SuricataIDS.

4.2.3 SnortIDS vs SuircataIDS

The fig. 4.9 states the alternative hypothesis as the true location shift was greater than

0. In sensitivity, p − value < 0.05, hence we have sufficient evidence to reject our null

hypothesis i.e. sensitivity performance for SnortIDS is better than the SuricataIDS.

Figure 4.7: SnortIDS vs FL-SnortIDS
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The box-plot visualisation and Mann-Whitney test show that sensitivity performance

is better for SnortIDS is better than the SuricataIDS. For specificity and accuracy, the

level of confidence was p−value > 0.05, and therefore, we do not have sufficient evidence

to reject our null hypothesis i.e. specificity and accuracy performances for SnortIDS are

similar to SuricataIDS. For false alarm performance, the true location shift is less than

0 and the level of confidence was p− value > 0.05. Therefore, we do not have sufficient

evidence to reject our null hypothesis i.e. false alarm ratio for SnortIDS is same as of

SuricataIDS.

4.2.4 FL-SnortIDS vs FL-SuircataIDS

The fig. 4.10 states the alternative hypothesis as the true location shift was greater than

0. In sensitivity, specificity and accuracy, p− value < 0.05, hence we have sufficient evi-

dence to reject our null hypothesis i.e. sensitivity, specificity and accuracy performances

for FL-SnortIDS are better than FL-SuricataIDS. The box-plot visualisation and Mann-

Whitney test show that sensitivity, specificity and accuracy performances are better for

FL-SnortIDS than FL-SuricataIDS. For false alarm performance, the true location shift

is greater than 0 and the level of confidence was p − value < 0.05. Therefore, we have

Figure 4.8: SuricataIDS vs FL-SuricataIDS
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sufficient evidence to reject our null hypothesis i.e. false alarm ratio for FL-SuricataIDS

is less than FL-SnortIDS.4.3 Discussion

4.3.1 Intrusion Detection Systems

After a successful run, SnortIDS and SuricataIDS produce an alert file with a generic

template, starting from time of alert generation, what type of alert was generated and

what is the threat level for the system. It also provides the basic log of the packet

generating alert.

This whole alert file is a simple text file; each alert is separated by a newline identifier

but it is not easy to analyse. This is because of the fact that both detectors SnortIDS

and SuricataIDS were not programmed as network-aware IDS, so that is why a huge

rule based is added to prevent any threats going unnoticed; however, it can generate

many false negatives, and careful analysis of the alert files is very difficult, in a network

which is relatively large it is very difficult to read SnortIDS and SuricataIDS log files.

The results obtained by performing the above experiment detect the malicious traffic

and generate alerts that do not readily provide any useful information. In particular,

Figure 4.9: SnortIDS vs SuricataIDS
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the alerts generated by the SnortIDS or SuricataIDS were not classified on the basis of

types of the cyber-attacks, which means that we cannot find what kind of attack has

been generated by the intruder such as, unauthorized login attempts, DoS attack, and

privacy compromising attack. Similarly, the obtained results were not easily readable

and required a high level of user interaction. In the next experiments, we proposed a

new approach of detecting such malicious activities by leveraging the strengths of Fuzzy

Logic with the aim to produce more detailed results as well as more accuracy.

4.3.2 IDS Fuzzy Classifiers

The alerts generated by typical FL-SnortIDS and FL-SuricataIDS systems also include

a large number of false positives such as, the generation of an alert due to a single unsuc-

cessful administration privilege gain attempt where it might be a mistake committed by

an authorized user. Similarly, several other common mistakes might also result in alerts

generation by FL-SnortIDS system. Besides that, the root cause of such false alerts

generation is considered to be mostly because of packets drop or network congestion.

An IDS system that is not network aware will generate alerts that are of useful and thus

mark that legitimate network traffic as potential alert. Therefore, the total generated

Figure 4.10: FL-SnortIDS vs FL-SuricataIDS
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alerts may contain a large number of of false alerts that it is highly undesirable for

the administration authorities. Fuzzy Logic based SnortIDS and SuricataIDS systems

exhibit the tendency to detect the false alerts and ignore them. Moreover, it also clas-

sifies the alerts on the basis of cyber-attacks and allows the users to know the type of

attacks generated and also produce the results that are easily understandable. It is very

effective and greatly enhances the performance as well as accuracy of the SnortIDS and

SuricataIDS systems.

As an initial step, towards the development of an enhanced IDS system, the deployed

IDS systems on the underlying network infrastructure are made intelligent and aware of

the incoming complex traffic. This step helps IDS system to easily distinguish between

the real threats from network anomalies and network behavior. By carefully examining

each generated alert of the ISCX data set, we were successfully able to separate the

real threats against false alerts. This readily decreased the number of alerts generated,

which made the alerts easier to be analyzed. As a network administrator, every alert

generated by the IDS must be responded. With a lower number of alerts generated, it

will be easier to analyse the presence of any malicious or irregular behavior of traffic

and respond accordingly.

With respect to the number of alerts generate by SnortIDS, which were reported to be

250174 against ISCX data set, our Fuzzy Logic based SnortIDS reduced these alerts to

the total of 64821 threats. It is approximately 25% of initially generated alerts. This

means that the alerts generation has been reduced by approximately 75% compare to

SnortIDS.

One of the most important factors to consider here is that none of the real threats

reported by SnortIDS were removed from FL based IDS alerts. Only the alerts generated

due to the high sensitivity of the rules of the Snort community and network congestion

were removed to avoid any false positive generated by FL based SnortIDS.

Moving forward to analysis, we needed some basic matrices of the alerts generated by

system and the level of accuracy these alerts provided, the given chart shows the number

of alerts per system, and the number of true positives and false positives of the system.

If an alert is analysed to be authorised traffic then that alert is called a false positive

as a rightful stream is marked as warning. If this is not the case then the threat is

rightly detected, classifying it as true positive. The graph also shows the number of

true negatives and false negatives. A false negative is a stream which IDS have marked

as safe for network but it is harmful for the system. With SnortIDS, which has a
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large database of rules which is being updated continuously, it’s very unlikely that any

dangerous stream of packets passes. But for analysis purposes we marked 0.1% of total

streams not classified as threats to be called false negatives for analysis. Any genuine

traffic not being classified as risk is known as true negative. The graph shows complete

detail of both of the IDS.

Table 4.4: Mann Whitney Test Result (Based on 95% Confidence Level)

Metrics Method 1
Method 2

SnortIDS FL-SnortIDS SuricataIDS FL-SuricataIDS

Sensitivity

SnortIDS - 0.0825 0.0002914* 0.0002914*

FL-SnortIDS 0.9175 - 0.0002914* 0.0002914*

SuricataIDS 0.999709 0.999709 - 0.5

FL-SuricataIDS 0.999709 0.999709 0.5 -

Specificity

SnortIDS - 0.999709 0.9359 0.999709

FL-SnortIDS 0.0002914* - 0.0002914* 0.999709

SuricataIDS 0.0641 0.999709 - 0.999709

FL-SuricataIDS 0.0002914* 0.0002914* 0.0002914* -

False Alarm

SnortIDS - 0.999709 0.9359 0.999709

FL-SnortIDS 0.0002914* - 0.0002914* 0.999709

SuricataIDS 0.0641 0.999709 - 0.999709

FL-SuricataIDS 0.0002914* 0.0002914* 0.0002914* -

Accuracy

SnortIDS - 0.999709 0.9175 0.999709

FL-SnortIDS 0.0002914* - 0.0002914* 0.999709

SuricataIDS 0.0825 0.999709 - 0.999709

FL-SuricataIDS 0.0002914* 0.0002914* 0.0002914* -

4.4 Summary

This chapter proposes a fuzzy logic engine that enhances the security performance by

combining fuzzy logic to IDS when compared to IDS alone. We did pair-wise comparison

as it can be seen in the graphical representation of all four methods in fig. 4.11. On

analysing the below result, we can see for the first three comparisons we have clear

results:

• FL-SnortIDS is better than SnortIDS

• FL-SuricataIDS is better than SuricataIDS

• SnortIDS is better than SuricataIDS
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For the fourth comparison between FL-SnortIDS vs FL-SuricataIDS, we found FL-

SnortIDS is better in terms of sensitivity while the other criteria are other way round.

So to come up with the conclusion, the graph of specificity, false alarm ratio and accu-

racy and also the descriptive statistics show that there was a difference in these criteria;

yet it is not too much comparing to the criterion of sensitivity. Therefore, based on

the sensitivity performance, the FL-SnortIDS is better than FL-SuricataIDS to get false

alarm rather than not getting the alarm when actually it should .

• FL-SnortIDS is better than FL-SuricataIDS

• SnortIDS is better than FL-SuricataIDS

Figure 4.11: Final Results for All Systems

Combining results of all five category viz. sensitivity, specificity, False Alarm ratio,

accuracy and detection rate, we have the following result ranked according to their

performance:

1. FL-SnortIDS which detects the threat with Medium detection rate.



Chapter 4. A Comparative Analysis for The Alerts of IDS Fuzzy Classifiers
Approaches within Cloud Computing 80

2. SnortIDS which detects the threat with High detection rate.

3. FL-SuricataIDS which detects the threat with Low detection rate.

4. SuricatIDS which detects the threat with High detection rate.



Chapter 5

A Comparative Analysis of

Different Classification

Techniques for Cloud Intrusion

Detection Systems’ Alerts and

Fuzzy Classifiers

Intrusion detection is a crucial problem in network security. It is a method of parsing

network traffic data to detect security abuses and data mining can play a very significant

role in evolving an IDS. The dataset of IDSs or soft computing based IDS techniques

can be classified into four main classes, which are DoS, U2L, R2L, and Probe, of ab-

normal traffic. In this chapter, we used each separate data of each detection system,

which are SnortIDS, SuricataIDS, FL-SnortIDS, FL-SuricataIDS, against the the most

common classification algorithms (CAs). These CAs are Decision Tree (J48), Naive

Bayes, OneR, and K-Nearest Neighbour (K-NN). These algorithms were chosen after

investigating the most effective classification algorithms that are widely used [Chauhan

et al., 2013]. The aim of this study was to present a comparative study for the security

performance of each detection system that was gained from our previous experiments:

SnortIDS, SuricataIDS, FL-SnortIDS, and FL-SuricataIDS in order to test which classi-

fier algorithm is the best for our systems’ results, and investigate which system presents

81



Chapter 5. An Analysis of Classifications for MyCloud IDS and Fuzzy Classifiers 82

significant results. The performance of these CAs was evaluated using 10-fold cross vali-

dation and experiments and assessments of these methods were performed in the WEKA

environment using the ISCX dataset.

5.1 Experimental Results and Analysis

5.1.1 Snort Results (SnortIDS)

Different algorithm classifiers were applied to the SnortIDS system’s result which has 203

observations. As shown in table 5.1, various measures of different classifiers have been

observed. It is clear that the Decision Tree classifier is the highest performing among

others, with an accuracy, weighted average precision, recall, specificity, and F-measure

at 99.5%, and an ROC of 1. It also recorded the lowest number of incorrectly classified

traffic, Mean Absolute Error, the number of errors to analysis algorithm classification

accuracy, and FP Rate. Based on the presented tables, the Decision Tree classifier is

the best algorithm for SnortIDS result among all systems in this case. As shown in

table 5.1, Naive Bayes is the lowest performing classifier, being outperformed by all

other algorithms in all metrics.

Table 5.1: Performance Comparison of Different Classifiers Based on Different Metrics
with 10 Cross Validation for SnortIDS System

Measurements Näıve Bayes OneR K-NN Decision Tree

Accuracy 95.56% 97.53% 98.52% 99.50%

Incorrect classified 4.43% 2.46% 1.47% 0.49%

Mean Absolute Error 0.567 0.0123 0.0076 0.0073

FP Rate 0.021 0.002 0.01 0.005

Precision 95.60% 98.10% 98.50% 99.50%

Recall (Sensitivity) 95.60% 97.50% 98.50% 99.50%

Specificity 95.10% 97.53% 98.50% 99.50%

F-Measure 95.60% 97.70% 98.50% 99.50%

ROC Area 0.991 0.986 1 1

As it can be seen in table 5.2, the accuracy value of Naive Bayes were the lowest value,

so the default cross-validation of Naive Bayes was modified from 10 to 15 in order to

optimise its accuracy that was the lowest value in table 5.1. For example, the accuracy

in the 10 cross validation was 95.56%. In the 15 cross validation, accuracy slightly
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increased to 96.55%, which is a 1.04% increase. There was a similar increase in precision,

recall, specificity and F-measure. There was also an improvement in the lowest number

of incorrectly classified traffic and FP Rate, which decreased by an average of 23%.

Lastly, the mean absolute error had the largest improvement, from 0.567 in the 10 cross

validation to 0.0564 in the 15 cross validation, which is a 90% decrease. This means

that the predictive ability of this algorithm has been improved but still it is way behind

Decision Tree in every performance metric.

Table 5.2: Optimising Näıve Bayes Classifier

Parameters Näıve Bayes with 15 Cross Validation

Accuracy 96.55%

Incorrect classified 3.44%

Mean Absolute Error 0.0564

FP Rate 0.016

Precision 96.8%

Recall (Sensitivity) 96.6%

Specificity 96.6%

F-Measure 96.5%

ROC Area 99.1%

Furthermore, in order to precisely identify the best algorithm for SnortIDS result, all

techniques for each performance measures (viz. accuracy, precision, sensitivity, speci-

ficity and F-measure) were ranked according to the attack classes (viz. Probe, DoS,

R2L, and U2R) for each classifier. For accuracy, As shown in table 5.3, the Decision

Tree had the highest overall ranking in all metrics compared to the other classifiers.

Although it was outranked by the Naive Bayes in the Probe class in terms of precision

and specificity, in fact it was outranked by the other classifiers in the latter. Addition-

ally, it tied with the K-NN and the OneR classifier in the DoS and the R2L classes,

respectively, in terms of precision. The four classifiers had the same consistent overall

rankings in all metrics, with the Decision Tree as the highest overall ranking, followed

by the K-NN classifier, and then it is followed by the OneR classifier. The Naive Bayes

had the lowest overall rank in all metrics. The ranking results concluded that Decision

Tree was more convenient for SnortIDS more than other classifiers’ algorithms in terms

of predicting the new income for this system.
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Table 5.3: Results and Ranking for SnortIDS Dataset

Accuracy

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 99.50% 1 100% 1 100% 1 100% 1 99.51% 1
NB 95.56% 4 97.47% 4 98.47% 3 95.54% 4 98.47% 4

OneR 97.53% 3 98.2% 3 97.54% 4 99.99% 2 99.49% 3
K-NN 98.52% 2 98.52% 2 99.99% 2 99.01% 3 99.5% 2

Precision

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 99.50% 1 99.01% 2 100% 1 100% 1 100% 1
NB 95.90% 4 100% 1 94.12% 2 88.46% 3 99.98% 3

OneR 98.10% 3 98.99% 3 78.26% 3 100% 1 99.96% 4
K-NN 98.50% 2 98.52% 4 100% 1 97.18% 2 99.99% 2

Sensitivity

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 99.50% 1 100% 1 100% 1 100% 1 93.75% 1
NB 95.60% 4 96.00% 4 88.90% 4 99.93% 4 81.25% 4

OneR 97.50% 3 96.01% 3 99.97% 3 99.97% 3 93.70% 3
K-NN 98.50% 2 98.00% 2 99.99% 2 99.98% 2 93.74% 2

Specificity

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 99.50% 1 99.02% 4 100% 1 100% 1 100% 1
NB 95.10% 4 100% 1 99.44% 3 93.23% 4 99.00% 4

OneR 97.50% 3 99.97% 2 97.30% 4 99.79% 2 99.91% 3
K-NN 98.50% 2 99.03% 3 99.67% 2 98.50% 3 99.94% 2

F-Measure

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 99.50% 1 99.50% 1 100% 1 100% 1 96.77% 1
NB 95.10% 4 97.44% 4 91.43% 3 93.88% 4 86.99% 4

OneR 97.50% 3 97.96% 3 87.80% 4 98.75% 3 96.73% 3
K-NN 98.50% 2 98.49% 2 99.9% 2 99.92% 2 96.74% 2

5.1.2 Snort Fuzzy Logic Results (FL-SnortIDS)

The FL-SnortIDS result has 76 observations, which has were classified using the four

algorithms in order to obtain the best performance metrics based on this system. As

shown in table 5.4, the K-NN and the Decision Tree classifiers have the highest accuracy

of 97.36% and the highest F-measure of 97.4%. They also recorded the lowest number

of incorrectly classified traffic at 2.63%. Just as same as the result of SnortIDS, it

outperformed all the other algorithms in terms of the weighted average precision, recall,

specificity, and the ROC Area. It also recorded the lowest mean absolute error. However,

it had the highest FP Rate at 0.017, whereas the K-NN had the lowest FP Rate at 0.011.

Based on the numbers in table 5.4, the Decision Tree classifier can be considered to be
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the best algorithm for the FL-SnortIDS result; however, one should take note that it has

a higher chance of producing a false positive compared to the other algorithms. With

that in mind, one can also consider the K-NN as a suitable alternative to the Decision

Tree since both methods have the same accuracy. As shown in table 5.4, the Naive

Bayes was the lowest performing classifier, being outperformed by all other algorithms

in all metrics. Hence, we optimised its results in order to improve its overall accuracy.

As it can be shown in table 5.5, the result of Naive Bayes was not changed much although

we modified the number of folds cross validation several times; and therefore, there was

not any optimisation on its overall accuracy. As shown in table 5.4, it was concluded

that Naive Bayes with 10 folds cross validation has the optimum values of accuracy. It

can be suggested that, with this particular result, Naive Bayes could have been suitable

when it is used with 10 folds cross validation.

Table 5.4: Performance Comparison of Different Classifiers Based on Different Metrics
with 10 Cross Validation for FL-SnortIDS System

Measurements Näıve Bayes OneR K-NN Decision Tree

Accuracy 93.42% 96.05% 97.36% 97.36%

Incorrect classified 6.57% 3.94% 2.63% 2.63%

Mean Absolute Error 0.0953 0.0197 0.0165 0.0147

FP Rate 0.012 0.012 0.011 0.017

Precision 95.40% 96.60% 97% 97.50%

Recall (Sensitivity) 93.40% 96.10% 97.40% 97.45%

Specificity 93.40% 96.10% 97.40% 97.45%

F-Measure 93.80% 96.10% 97.40% 97.40%

ROC Area 97% 97.4% 98.90% 99.90%

Table 5.5: Optimising Näıve Bayes Classifier with Different Number of Fold Cross
Validation for FL-SnortIDS System

Parameters
8, 9 Fold Cross

Validation
10 Fold Cross

Validation
11 Cross

Validation

Accuracy 92.10% 93.42% 92.10%

Incorrect Classified 7.89% 6.57% 7.89%

Mean Absolute Error 0.0961 0.0953 0.0943

FP Rate 0.021 0.012 0.016

Precision 94% 95.40% 94%

Recall (Sensitivity) 92.10% 93.40% 92.10%

Specificity 92.10% 93.40% 92.10%

F-Measure 92.40% 93.80% 92.40%

Roc Area 97.30% 97% 97.15%
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By using depth analysis, all measures have been conducted for FL-SnortIDS result in

order to find out the most excellent classifier algorithm to predict unseen item in this

system evidently. As it can be seen in table 5.6, it shows that the Decision Tree had

the highest overall ranking in all metrics compared to the other classifiers. However, it

was outranked by the Naive Bayes in the Probe class in all metrics except Sensitivity.

Furthermore, it was outranked by the Naive Bayes and the K-NN in the R2L class, in

terms of sensitivity and the F-measure, respectively. The four classifiers had the same

consistent overall rankings in all metrics, with the Decision Tree as the highest overall

ranking, followed by the K-NN classifier, and then it was followed by the OneR classifier.

The Naive Bayes had the lowest overall rank in all metrics. Hence, the results show that

the Decision Tree outperforms all the other algorithms for the FL-SnortIDS result in

terms of predicting the new income in this system.

5.1.3 Suricata Results (SuricataIDS)

The SuricataIDS dataset has 152 observations where such a dataset was classified us-

ing the four algorithms in order to obtain the best performance metrics. As shown in

table 5.7, it shows that the K-NN and the Decision Tree classifiers have the highest

accuracy of 98.68%. The K-NN, OneR, and Decision Tree reported the same F-measure

of 98.7% and also recorded the lowest number of incorrectly classified traffic at 1.31%.

While the Decision Tree outperforms all the other algorithms in terms of recall, speci-

ficity, and the ROC Area, it is outperformed by the OneR in terms of the weighted

average precision. It also had less errors as it recorded the lowest mean absolute error

and FP Rate among all the other algorithms.

The Decision Tree classifier can be considered to be the best algorithm for the Suri-

cataIDS result because of its high accuracy, sensitivity, and specificity; however, one

should take note that it has a higher chance of producing a false positive compared to

the other algorithms. With that in mind, the OneR algorithm can be a suitable al-

ternative to the decision tree since while it has slightly lower accuracy, it has a higher

precision and is less likely to produce a false positive. Table IX also shows that the Naive

Bayes is the lowest performing classifier, being outperformed by all other algorithms in

all metrics.
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Table 5.6: Results and Ranking for FL-SnortIDS Dataset

Accuracy

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 97.36% 1 97.36% 3 100% 1 98.86% 1 98.86% 1
NB 93.42% 4 98.61 2 97.26% 3 93.42% 4 98.83% 3

OneR 96.05% 3 98.64% 1 96.05% 4 98.64% 2 98.85% 2
K-NN 97.36% 2 97.36% 4 99.99% 2 97.36% 3 98.64% 4

Precision

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 97.50% 1 93.80% 4 100% 1 100% 1 100% 1
NB 95.40% 4 100% 1 99.90% 3 70.60% 4 99% 4

OneR 96.60% 3 99.90% 2 85.70% 4 99.98% 2 99.60% 3
K-NN 97% 2 96.70% 3 99.98% 2 92.30% 3 99.98% 2

Sensitivity

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 100% 1 100% 1 100% 1 98.70% 3 98.70% 1
NB 93.40% 4 99.90% 4 9.90% 4 100% 1 87.50% 4

OneR 96.60% 3 96.72% 3 99.99% 2 91% 4 93.80% 2
K-NN 97.40% 2 96.75% 2 99.98% 3 99.99% 2 93% 3

Specificity

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 97.30% 1 99.02% 4 100% 1 100% 1 100% 1
NB 93.40% 4 100% 1 99.40% 3 92% 4 99% 4

OneR 96% 3 99.97% 2 97.30% 4 99% 2 99.91% 3
K-NN 97.20% 2 99.03% 3 97.80% 2 98.40% 3 99.99% 2

F-Measure

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 97.40% 1 96.80% 3 100% 1 95.80% 2 96.90% 1
NB 93.80% 4 98.40% 1 94.10% 3 82.80% 4 93.30% 4

OneR 96.10% 3 98.30% 2 92.30% 4 95.70% 3 96% 3
K-NN 97.30% 2 96.70% 4 99.90% 2 96% 1 96.80% 2

Table 5.7: Performance Comparison of Different Classifiers Based on Different Metrics
with 10 Cross Validation for SuricataIDS System

Measurements Näıve Bayes OneR K-NN Decision Tree

Accuracy 97.36% 98.6% 98.68% 98.68%

Incorrect classified 2.63% 1.31% 1.31% 1.31%

Mean Absolute Error 0.0678 0.0066 0.007 0.0072

FP Rate 0.005 0.001 0.012 0.022

Precision 97.60% 98.80% 98.70% 98.70%

Recall (Sensitivity) 97.40% 98.60% 98.70% 98.80%

Specificity 97.40% 98.60% 98.70% 98.80%

F-Measure 97.30% 98.70% 98.70% 98.70%

ROC Area 0.991 0.993 0.995 1
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Different number of fold cross validations were amended to optimise the accuracy of

Naive Bayes. The table 5.8 shows that the accuracy of Naive Bayes has been slightly

optimised from default 10 folds cross validation to 3 folds cross validation. Thus, it can

be said that 3 fold cross validation is the best fold cross validation for such a result of

system.

Table 5.8: Optimising Näıve Bayes Classifier with Different Number of Fold Cross
Validation for SuricataIDS System

Parameters
3 Folds Cross

Validation
9 Folds Cross

Validation
10 Folds Cross

Validation
11 Folds Cross

Validation

Accuracy 98.02% 97.36% 97.36% 97.36%

Incorrect classified 1.97% 2.63% 2.63% 2.63%

Mean Absolute Error 0.0746 0.0675 0.0678 0.0683

FP Rate 0.004 0.005 0.005 0.005

Precision 98.20% 97.60% 97.60% 97.60%

Recall (Sensitivity) 98% 97.40% 97.40% 97.40%

Specificity 98% 97.40% 97.40% 97.40%

F-Measure 98% 97.30% 97.30% 97.30%

ROC Area 0.992 0.991 0.991 0.991

In this system, all measures have been ranked according to the attack classes in order

to certainly offer the most appropriate algorithm to classify the SuricataIDS result. As

shown in table 5.9, the Decision Tree had the highest overall ranking in all metrics

compared to the other classifiers. However, it had the highest rank in the Probe class

in terms of sensitivity only. In addition to that, it was outranked in sensitivity by the

OneR and the Naive Bayes classifiers in the DoS class and the R2L class, respectively.

Lastly, it was outranked by the K-NN classifier in the U2R class in terms of specificity.

The four classifiers had the same consistent overall rankings in all metrics, with the

Decision Tree as the highest overall ranking, followed by the K-NN classifier, and then

it is followed by the OneR classifier. The Naive Bayes had the lowest overall rank in all

metrics. Based on the outcomes of overall metrics, it could have been said that Decision

Tree was the best classifier comparing to other algorithms for SuricataIDS result.

5.1.4 Suricata Fuzzy Logic Results (FL-SuricataIDS)

The FL-SuricataIDS result has 45 observations. The result of this system was classified

implementing different algorithms in order to gain the best performance metrics. As
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Table 5.9: Results and Ranking for SuricataIDS Dataset

Accuracy

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 98.68% 1 98.68% 4 99.33% 1 100% 1 99.34% 1
NB 97.36% 4 100% 2 98% 3 98% 4 98% 4

OneR 98.60% 3 99.30% 1 94.80% 4 99.90 2 99.30% 3
K-NN 98.64% 2 99% 3 99% 2 99% 3 99.33% 2

Precision

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 98.70% 1 97.90% 4 100% 1 100% 1 100% 1
NB 97.60% 4 100% 1 93.30% 3 89.70% 4 99.70% 3

OneR 98.80% 3 99.90 2 88.20% 4 99.90% 2 99% 4
K-NN 98.60% 2 99% 3 99.90% 2 96.30% 3 99.90 2

Sensitivity

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 98.80% 1 100% 1 93.50% 2 100% 3 96.90% 1
NB 97.40% 4 99.70% 3 93% 4 99.70% 1 89.70 4

OneR 98.50% 3 98.90 4 100% 1 99.90% 4 89.90 3
K-NN 98.70% 2 99.90% 2 93.30% 3 99.80% 2 96.80 2

Specificity

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 98.68% 1 96.49% 4 100% 1 100% 1 99.34% 3
NB 97.36% 4 100% 1 99.30 3 97.60% 4 99.30% 4

OneR 98.60% 3 99.33% 2 94.82% 4 99.90% 2 99.90% 2
K-NN 98.60% 2 98.20% 3 99.34% 2 99.20% 3 100% 1

F-Measure

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 98.75% 1 99% 3 96.60% 1 100% 1 96.85% 1
NB 97.30% 4 100% 1 93.30% 4 94.50 4 89.70% 4

OneR 98.70% 3 99.40% 2 93.80% 3 99.90% 2 96.81% 3
K-NN 98.73% 2 99.50% 4 96.40% 2 98.10 3 96.84% 2

shown in table 5.10, it shows that the OneR has the highest accuracy of 97. 77%. It

outperformed all the other algorithms in all metrics except the ROC Area, where it was

outperformed by the Decision Tree with its ROC value of 0.999.

Based on the numbers in table 5.10, the OneR classifier can be considered to be the

best algorithm for the FL-SuricataIDS result because of its high accuracy, precision,

sensitivity, and specificity compared to all the other algorithms. It is also less likely

to produce a false positive. As shown in table 5.10, the Näıve Bayes shows the lowest

performing classifier, being outperformed by all other algorithms in all metrics.

Due to the low accuracy of Decision Tree, K-NN and Näıve Bayes, their values were

optimised to the best value from 10 to 4 fold cross validations as shown in table 5.11.



Chapter 5. An Analysis of Classifications for MyCloud IDS and Fuzzy Classifiers 90

Table 5.10: Performance Comparison of Different Classifiers Based on Different Met-
rics with 10 Cross Validation for FL-SuricataIDS System

Measurements Näıve Bayes OneR K-NN Decision Tree

Accuracy 91.11% 97.77% 95.55% 95.55%

Incorrect classified 8.88% 2.22% 4.44% 4.44%

Mean Absolute Error 0.1124 0.0111 0.0246 0.0148

FP Rate 0.019 0.011 0.014 0.023%

Precision 0.936 0.979 0.959 0.956%

Recall (Sensitivity) 91.10% 97.80% 95.60% 95.6%

Specificity 91.10% 97.80% 95.60% 95.60%

F-Measure 91.50% 97.80% 95.50% 95.60%

ROC Area 0.976 0.983 0.992 0.999

Table 5.11: Optimising Näıve Bayes Classifier with Different Number of Fold Cross
Validation for FL-SuricataIDS System

Measurements Näıve Bayes K-NN Decision Tree

Accuracy 93.33% 97.77% 97.77%

Incorrect classified 6.66% 2.22% 2.22%

Mean Absolute Error 0.1211 0.0263 0.0147

FP Rate 0.008 0.003 0.012

Precision 95.80% 98.10% 97.90%

Recall (Sensitivity) 93.30% 97.80% 97.80%

Specificity 93.30% 97.80% 97.80%

F-Measure 93.90% 97.80% 97.80%

ROC Area 0.977 0.999 0.999

For example, the accuracy of the Decision Tree in the 10 folds cross validation was

95.55%. In the 4 folds cross validation, accuracy slightly increased to 97.77%, which is a

2.32% increase, it should be noted that its accuracy is now equal to the accuracy of the

OneR in the 10 folds cross validation. The accuracy, precision, sensitivity, specificity,

and F-measure of the 4 folds cross validation of the Naive Bayes, K-NN, and Decision

Tree classifiers increased by an average of 2.37%. There was also a decrease in the

lowest number of incorrectly classified traffic and FP Rate. However, the 4 folds cross

validation of the mean absolute error of the Naive Bayes and K-NN, increased by an

average of 7.3%. But this was not the case with the Decision Tree classifier, whose mean
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absolute error decreased by 0.7%. This shows that the predictive ability of the three

algorithms have been improved.

One thing to take note of is that the values of the measures of the 4 folds cross valida-

tion of the Decision Tree now resembles the values of the measures of the 10 folds cross

validation of the OneR. The difference between the two is that the 10 folds cross vali-

dation of the OneR has a lower mean absolute error and FP Rate than the 4 folds cross

validation of the Decision Tree. Therefore, while the 4 folds cross validation Decision

Tree can be a good algorithm to apply to the FL-SuricataIDS result, the 10 folds cross

validation of the OneR can be considered to be the better algorithm for the FL-Suricata

result because it will have fewer errors and is less likely to come up with a false positive.

Based on our performance metrics, the table 5.12 clearly indicates that OneR could be

the most suitable algorithm for FL-SuricataIDS result as it has the first rank in overall

the attack classes. Additionally, OneR has also achieved the first rank in each class

of attack in terms of accuracy, precision and sensitivity. Regarding specificity, OneR

attained the first rank in all attack classes except DoS, where it was outranked by the

Decision Tree. Regarding the F-measure, OneR was outranked by the Decision Tree

and the Naive Bayes in the Probe and U2R classes, respectively. Exceptionally for R2L

class, OneR has achieved the first rank in all the metrics. The outcomes of classifiers in

this system regarding all the metrics indicates that OneR has considerably outperformed

Decision Tree that achieved the first rank in the rest of systems’ results.

5.2 Discussion

5.2.1 Classifier Algorithms vs MyCloud Systems’ Results

In this section, the performance metrics of each classification algorithm was compared

in order to find the best algorithm for each detection system systems with 10 folds

cross validation. This comparison was done after pre-processing the systems’ results

and cleaning them properly based on statical test. This aim of doing this is to remove

the noise in any result. Such a process was reflected in the prediction results through

using the mentioned algorithms.

Based on the results of performance metrics against detection systems’ dataset, the ta-

ble 5.13 shows that the Decision Tree has the highest accuracy and specificity over other

algorithms for SnortIDS, FL-SnortIDS and SuricataIDS systems. The K-NN has the
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Table 5.12: Results and Ranking for FL-SuricataIDS Dataset

Accuracy

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 95.60% 2 99.90% 2 95.50% 4 99.90% 2 95.55% 3
NB 91.11% 4 99.80% 3 99.90% 1 93.18% 4 93.18% 4

OneR 97.77% 1 100% 1 97.77% 2 100% 1 99.33% 1
K-NN 95.56% 3 95.55% 4 100% 1 97.72% 3 97.72% 2

Precision

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 95.60% 3 99.50% 3 93.35 2 99.90% 2 93.80% 4
NB 93.60% 4 99.40% 4 93.30% 4 62.50% 4 99.50% 3

OneR 97.90% 1 100% 1 93.80% 1 100% 1 100% 1
K-NN 95.90% 2 99.90% 2 93.33% 3 83.3% 3 99.9% 2

Sensitivity

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 95.70 2 99.70% 2 93.33% 3 99.90% 2 93.80% 3
NB 91.10 4 99.50% 4 93.35% 2 99.70% 4 81.30% 4

OneR 97.80 1 100% 1 100% 1 100% 1 97.80% 1
K-NN 95.60 3 99.60% 3 93.30% 4 99.80% 3 95.60% 2

Specificity

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 95.60% 2 99.90% 2 96.70% 1 99.90% 2 95.60% 4
NB 91.11% 4 99.40% 4 96.42 3 92.30% 4 99.60% 3

OneR 97.77% 1 100% 1 94.82% 4 100% 1 100% 1
K-NN 95.55% 3 99.70% 3 96.66% 2 97.43% 3 99.70% 2

F-Measure

Overall Rank Probe Rank DoS Rank R2L Rank U2R Rank

Tree 95.60% 2 100% 1 93.35% 2 99.90% 2 93.80% 4
NB 91.50% 4 99% 4 93% 4 76.90% 4 99.60% 1

OneR 97.80% 1 99.40% 3 96.80% 1 100% 1 96.80% 2
K-NN 95.50% 3 99.90% 2 93.30% 3 90.90% 3 96.70% 3

highest precision and sensitivity for the SnortIDS and the FL-SnortIDS systems; it also

has the highest sensitivity for the SuricataIDS system. The OneR has the highest preci-

sion for the SuricataIDS system; it also has the highest accuracy, precision, sensitivity,

and specificity for the FL-SuricataIDS system. Hence it can be said that Decision Tree

is the best algorithm for these three systems for prediction; however, for FL-SuricataIDS

system as shown in table XV, OneR was the best classifier.

In terms of detection systems’ results, SnortIDS system provides better accuracy value

comparing to FL-SnortIDS system, whereas SuricataIDS system provides better accu-

racy comparing to FL-SuricataIDS system. Besides accuracy, other metrics such as

precision, sensitivity, specificity, and F-measure of the classifiers have been conducted

against detection systems’ datasets. The result of these metrics concluded that Decision
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Tree is matchless for SnortIDS, FL-SnortIDS and SuricataIDS systems and OneR is the

best for FL-SuricataIDS system. In addition to these results, SnortIDS and SuricataIDS

systems perform within the mentioned algorithms better outcomes than FL-SnortIDS

and FL-SuricataIDS systems’ results.

Table 5.13: Classifiers’ Algorithms vs detection systems’ Results

Performance Metrics
Classifiers

Accuracy
Decision Tree OneR Näıve Bayes K-NN

SnortIDS 99.50% 97.53% 95.56% 98.52%
SuricataIDS 98.68% 98.68% 97.36% 98.68%
FL-SnortIDS 97.36% 96.05% 93.42% 97.36%

FL-SuricataIDS 95.55% 97.77% 91.11% 95.55%

Precision
Classifiers

Decision Tree OneR Näıve Bayes K-NN

SnortIDS 95.60% 98.10% 98.50% 99.50%
SuricataIDS 97.60% 98.80% 98.70% 98.70%
FL-SnortIDS 95.40% 96.60% 97% 97.50%

FL-SuricataIDS 93.60% 97.90% 95.90% 95.60%

Sensitivity
Classifiers

Decision Tree OneR Näıve Bayes K-NN

SnortIDS 95.60% 97.50% 98.50% 99.50%
SuricataIDS 97.40% 98.60% 98.70% 98.80%
FL-SnortIDS 93.40% 96.10% 97.40% 97.40%

FL-SuricataIDS 91.10% 97.80% 95.60% 95.60%

Specificity
Classifiers

Decision Tree OneR Näıve Bayes K-NN

SnortIDS 99.50% 97.50% 95.10% 98.50%
SuricataIDS 98.68% 98.60% 97.36% 98.6%
FL-SnortIDS 97.30% 96% 93.40% 97.20%

FL-SuricataIDS 95.60% 97.77% 91.11% 95.55%

F-Measure
Classifiers

Decision Tree OneR Näıve Bayes K-NN

SnortIDS 99.50% 97.50% 95.10% 98.50%
SuricataIDS 98.75% 98.70% 97.30% 98.73%
FL-SnortIDS 97.40% 96.10% 93.80% 97.30%

FL-SuricataIDS 95.60% 97.80% 91.50% 95.50%
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5.2.2 Performance Metrics vs detection Systems’ Results

Based on the experimental results shown in table 5.13 and table 5.14, there are clear

observations:

• SnortIDS is better than FL-SnortIDS.

• SuricataIDS is better than FL-SuricataIDS.

• SuricataIDS is better than FL-SnortIDS.

However, for the fourth comparison between SnortIDS vs SuricataIDS, It is found that

SnortIDS is better SuricataIDS in terms of precision while the other criteria preform

based on the chosen algorithm. Thus, to come up with the conclusion, the accuracy and

F-measure of SuricataIDS are better than SnortIDS on behalf of OneR, Naive Bayes

and K-NN while in sensitivity and specificity of SuricataIDS are better than SnortIDS

in Decision Tree, OneR and K-NN. Therefore, based on the performance metrics upon

these results, SuricataIDS shows more promising detections than SnortIDS.

• SuricataIDS is better than SnortIDS.

For the fifth and sixth comparisons between FL-SnortIDS vs FL-SuricataIDS and Snor-

tIDS and FL-SuricataIDS, it is found FL-SnortIDS outweigh FL-SuricataIDS and Snor-

tIDS outweigh FL-SuricataIDS in three algorithms except OneR. Hence, it can be said

that FL-SnortIDS and SnortIDS show more promising detections than FL-SuricataIDS

respectively.

• FL-SnortIDS is better than FL-SuricataIDS.

• SnortIDS is better than FL-SuricataIDS.

5.3 Summary

According to the comparison of classifiers’ algorithms and performance metrics against

detection systems’ dataset, we found that the Decision Tree is the best for Snor-

tIDS, FL-SnortIDS and SuricataIDS systems whereby OneR is the best algorithm for
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Table 5.14: Performance Metrics vs Detection Systems’ Results

Classifiers’ Algorithms
Performance Metrics

Descison Tree Algorithm
Accuracy Precision Sensitivity Specificity F-Measure

SnortIDS vs FL-SnortIDS SnortIDS SnortIDS SnortIDS SnortIDS SnortIDS
SuricataIDS vs FL-SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS

SnortIDS vs SuricataIDS SnortIDS SuricataIDS SuricataIDS SnortIDS SnortIDS
FL-SnortIDS vs FL-SuricataIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS

Näıve Bayes Algorithm
Performance Metrics

Accuracy Precision Sensitivity Specificity F-Measure

SnortIDS vs FL-SnortIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS
SuricataIDS vs FL-SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS

SnortIDS vs SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS
FL-SnortIDS vs FL-SuricataIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS

OneR Algorithm
Performance Metrics

Accuracy Precision Sensitivity Specificity F-Measure

SnortIDS vs FL-SnortIDS SnortIDS SnortIDS SnortIDS SnortIDS SnortIDS
SuricataIDS vs FL-SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS

SnortIDS vs SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS
FL-SnortIDS vs FL-SuricataIDS FL-SuricataIDS FL-SuricataIDS FL-SuricataIDS FL-SuricataIDS FL-SuricataIDS

K-NN Algorithm
Performance Metrics

Accuracy Precision Sensitivity Specificity F-Measure

SnortIDS vs FL-SnortIDS SnortIDS SnortIDS SnortIDS SnortIDS SnortIDS
SuricataIDS vs FL-SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS SuricataIDS

SnortIDS vs SuricataIDS SuricataIDS SnortIDS SnortIDS SuricataIDS SuricataIDS
FL-SnortIDS vs FL-SuricataIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS FL-SnortIDS

FL-SuricataIDS system. In addition to these results, SnortIDS and SuricataIDS sys-

tems within the chosen algorithms show better outcomes than FL-SnortIDS and FL-

SuricataIDS systems. The reason why that IDS systems’ results are better than IDS

fuzzy classifiers is because of the fact that IDS based fuzzy logic removed all unwanted

alerts and have lower number of observations that IDS systems.

According to the comparison of performance metrics against detection systems’ datasets

as shown in table 5.14, it shows that detection systems’ datasets were ranked. The

conclusion was as a follows;

1. SuricataIDS outperforms other datasets in all given algorithms.

2. SnortIDS is the second best result to predict in given algorithms.

3. FL-SnortIDS is the third result to predict in given algorithms.

4. FL-SuricataIDS has the last ranking in predicting alarms in given algorithms.



Chapter 6

Security Performance Evaluation

Using Type-1 Fuzzy Logic

Approach (FIDSCC System)

On the 26th of November, 2012, few of the Google services got disconnected approx-

imately for twenty minutes; sufficient time to affect everyone. Companies who were

using Google Apps were failed to manage e-mail tasks and this phenomenon showed

the dependency of different countries on Google services. Therefore, fragility became

apparent; a question comes in mind as to what level can people depend on the cloud

services. The purpose of this chapter is to analyse how to minimise vulnerability in the

network and security issues in the cloud after employing fuzzy logic technique as a pro-

posal to improve the cloud performance through threat detection rate and reducing the

false positive alarms. Data integrity is a primary thing whereas information systems are

related to physical as well as human failure and form a possible objective for malicious

assault for acquisition of data.

6.1 How Does FIDSCC System Work within Cloud Com-

puting

As explained in chapter 4, the techniques used in fuzzy classification of the alerts gen-

erated by both the IDSs can be categorised in two main categories.

96
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Figure 6.1: How Fuzzy IDS Reads IDSs’ Alerts

1. An intelligent program to understand the alerts generated by the two IDS.

2. Removal of any unwanted or false alerts for better understanding of the problem.

For both steps we needed a unified mechanism and criteria for the alerts generated by

any of the IDS, irrespective of the IDS output format. In order to solve this task, a

system was developed, which when given the log file of the above mentioned IDSs that

will generate a unified output which will be understandable by the system, and easy to

manipulate by network administrator or forensic analysis. The first task is to read the

alerts for both IDS systems and generate an output which can be fed to the next system

for analysis purposes. See fig. 6.1.

The fig. 6.1 suggests that once given a path for a folder where the alerts file are placed

it will parse all the files using function parsestart() with respect to the IDS and at the

end will generate a unified alert log file. This file can be opened using excel and user

can apply different filters on the data if required. Now, to see what happens in the

parsestart() function, the next flow chart will be helpful to understand, this flow is for

SnortIDS/SuricataIDS log files.

This piece of code will read the file each line, and will read till the end of file is received.

After the first line of the alert is read, the program will iterate through the file to find

the end of each alert. The alerts component can be seen in fig. 6.2 log provided by
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Figure 6.2: How Fuzzy Classifier Generates Log Files for IDSs’ Systems

SnortIDS system. Such a log is explained in table 6.1 that explains the log of SnortIDS

system. After the basic classification, the information extracted from this log along with

the complete log itself is then dumped into a datatable which is used to create the alert

log file later. The fig. 6.2 shows how fuzzy classifier generates the alert files for IDSs’

systems.

This detailed and formatted log file can help any forensic team to understand what is

wrong with the network or what went wrong in the network. After this basic classification

of the data, the next task is to engineer some intelligence out of the data and remove

any unrelated or unwanted alerts or threats. This however cannot be achieved without
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Table 6.2: ISCX Dataset Attack Classes

Type Attacks

DoS
A Network Trojan was detected

Attempted Denial of Service

R2L
Attempted Information Leak

Potentially Bad Traffic
Information Leak

U2R

Access to a Potentially Vulnerable Web Application
Attempted Administrator Privilege Gain

Attempted User Privilege Gain
Unsuccessful User Privilege Gain

Probe

(null)
Detection of a Network Scan

Detection of a Non-Standard Protocol or Event
Executable Code was Detected

Generic Protocol Command Decode
Misc activity
Misc Attack

Not Suspicious Traffic
Potential Corporate Privacy Violation

Unknown Traffic
Web Application Attack

understanding the network where IDS is deployed and its company policy. In this

chapter, we removed any alerts generated by network congestion or ill configured services.

Furthermore, we focused on application level attacks which helped us remove a lot of

network related alerts. for this reason, we firstly categorised the alerts on the basis of

the type of the attacks as DoS, Probe, R2L and U2R. This categorisation is shown in

table 6.2.

This data is available in a file which can be changed any time by Network Administrator

to help classify the attacks in future. For classification and better analysis of the alerts,

we created a program called Fuzzy Classifier. The basic flow of this code is provided in

fig. 6.3.

After basic system initialisation, which will populate the data tables and the unwanted

alerts as in table 6.3. We then generated a classified output of each attack with the total

number of alerts and the type it belongs to. This file is generated in classifer() and

dumped into the memory later, this file is again an excel file and looks like the output

shown in table 6.3.
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Figure 6.3: Fuzzy Classifier Flowchart

Table 6.3: IDS Systems’ Outputs

Alert Type Alert Classification Count Priority Classifier

A Network Trojan was
detected

ET TROJAN DustySky Checkin 1,655 1 DoS

Attempted Administrator
Privilege Gain

ET SCAN LibSSH Based
Frequent SSH Connections
Likely BruteForce Attack

313 1 U2R

A Network Trojan was
detected

ET TROJAN Blue Bot DDoS
Blog Request

273 1 DoS

Attempted Information
Leak

ET SCAN Potential SSH Scan 204 2 R2L

A Network Trojan was
detected

ET TROJAN Win32.Sality.3
Checkin

113 1 DoS

A Network Trojan was
detected

ET MALWARE Regnow.com
Access

41 1 DoS

Attempted Denial of
Service

ET DOS Microsoft Remote
Desktop (RDP) Syn then Reset

30 Second DoS Attempt
27 2 DoS

Web Application Attack
ET WEB SERVER HTTP 414

Request URI Too Large
21 1 Probe

A Network Trojan was
detected

ET POLICY Microsoft
user-agent automated process
response to automated request

20 1 DoS
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Figure 6.4: How Fuzzy IDS Removes Unwanted Alerts

After this classification, we used the fuzzy classifier using the information of unwanted

alerts and the alert count, and then we generated a new alert log file which essentially

looks the same as the first alert log file; yet the contents are very specific and the attacks

specified are threat to the network and sensitive information. This task is achieved

follows the steps as illustrated in fig. 6.4.

The program removes any unwanted alerts and keeps the real threats in the alert file.

The results are discussed and analysed in the next section where it shows the efficiency

and effectiveness of this system.
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Figure 6.5: Simulation Modeling FIDSCC System within MyCloud

6.2 Modeling FIDSCC System

FIDSCC system basically works in two ways of operations: evaluating the process of

detection ISCX attacks and generating rules. When FIDSCC is being operated in the

rule-generation mode, it processes MyCloud data and uses a fuzzy application to gener-

ate rules. The detection mode uses this rule subset for intrusion detection. The following

subsections of modelling the system describe the different components of FIDSCC ar-

chitecture. The fig. 6.5 shows how FIDSCC system works.

In this experiment, FIDSCC system was modelled in order to assess the possibility of

implementing a large system after creating and developing models for cloud computing

issues. As it can be seen in table 6.4 and table 6.5, FIDSCC system has two systems

in order to assess the overall MyCloud performance. The first system is to assess the

effectiveness of the IDS performance through which the number of threat detected within

MyCloud in each dataset.

Table 6.4: First System: MyCloud Detection Rate

System 1: IDS Evaluation
(Number of Threat Detected)

Input Output

DoS Alerts

IDS PerformanceProbe Alerts

R2L Alerts

U2R Alerts
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Table 6.5: Second System: Evaluating MyCloud Performance

System 2: Overall IDS Evaluation

Input Output

Number of Threat Detected
MyCloud Evaluation

False Positive Rate

The second system is to assess MyCloud Performance through which the consequence of

the number of threat detected within MyCloud in the first system and the false positive

rate.

6.2.1 Features

The FIDSCC’s values and its inputs as shown in table 6.4 and table 6.5 are represented

as names and will be utilised as linguistic terms by the fuzzy inference engine. FIDSCC’s

features are stored as follows;

V = α1, α2, and, α6

where

V = αDoS, αProbe, αR2L, and, αU2R

is an example of FIDSCC’s values

As shown in fig. 6.6, there are four inputs with their specified ranges. Its membership

functions were simulated based on expertise and the consequences for each datasets.

The output of these inputs illustrate the IDS performance through which the number

of threat detected within MyCloud. Then the output of such a system would be used

as an input for the second system along with the false positive ratio in order to assess

MyCloud performance. (See fig. 6.6).

6.2.2 Data Analyser

Packets of ISCX dataset are placed in fixed size group (f − group) or in groups of

packets captured in a certain period of time (t− group). Each (f − group) contains the

same number packets covering a variable time range where each (t− group) contains a

variable number of packets captured over a certain period of time. The module analyses

data contained in each packet as a group in order to obtain domain information for
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Figure 6.6: The First System’s Membership Functions

Figure 6.7: The Second System’s Membership Functions

each features, e.g., (low;medium;high). This information was used to help define a

normalisation scheme for each features which will have a term set. Such feature is

defined to help express rules using fuzzy variables. For instance, in order to fuzzify

ISCX packets, it should be described as follows;

TERM(DoS) = Low,Medium,High

TERM(Probe) = Low,Medium,High

TERM(R2L) = Low,Medium,High

TERM(U2R) = Low,Medium,High

6.2.3 Configuration Parameters

Based on analysing data and features, the data analyser produces a file where all con-

figuration parameters are stored in MyCloud. Parameter values then stored in this file

regulate operation of the pre-processor and Fuzzy Inference Engine as shown in fig. 6.5.

The configuration file specifies how features values are normalised, associates feature

with a term set, and fuzzy membership functions associated with each term.
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6.2.4 Pre-Processor

The Pre-processor is responsible for accepting raw packet data and producing records

for each group as specified by the configuration file. This component is used in both rule

generation mode and evaluating detection mode. The output produced by this compo-

nent consists of records, each containing aggregate information for each packet group.

Using records and concentrating only on features of interest greatly help in reducing the

amount of information to be used by more computationally intensive components of the

architecture. Records are only used to evaluate fuzzy logic rules with the exception of

the case where one packet maps to one record.

6.2.5 Rules

With the fuzzy input sets defined, the next step is to write the rules for detecting

ISCX attacks. A collection of fuzzy rules with the same input and output variables as

shown in table 6.4 and table 6.5. The rules were created using JuzzyOnLine1. This tool

contains a graphical user interface that allows the rule designer to create the membership

functions for each input or output variable. Create the inference relationships between

the various member functions, and to examine the control surface for the resulting fuzzy

system. Based on the expertise, 31 rules have been generated for the first system in

order to evaluate the performance of IDS and 9 rules for the second system to assess the

performance of MyCloud. These rules were relevant to given data in FIDSCC system.

See fig. 6.8 and fig. 6.9.

6.2.6 Fuzzy Inference Engine

With using JuzzyOnLine, an inference determines which rules are relevant to the given

data in FIDSCC system where the engine uses six inputs in total as explained in the in

table 6.4 and table 6.5. Additionally, the engine also presents the firing strength of each

rule applied to each fact. FIDSCC system has been configured the inference engine to

use Mamdani inference mechanism. See fig. 6.5.

1it is a website that uses the Juzzy toolkit, a Java-based library for type-1, interval and general
type-2 fuzzy systems provided by Christian Wagner. It is open-source and free for non-commercial use
http://ritweb.cloudapp.net:8080/JuzzyOnline/
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Figure 6.8: The First System’s Rules

Figure 6.9: The Second System’s Rules
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6.3 Comparative Analysis

6.3.1 DoS Attacks within Detection Systems

Since number of true positive and false positive are almost same for all the method,

also with 99% confidence level the test result as shown in table 6.7 does not show any

significant difference in performance by different method for detecting the Dos threat.

Hence, DoS threat is detected by all the system similarly i.e. all are equivalently good

to detect DoS.

Table 6.6: DoS Attacks within MyCloud

True Positive False Positive

SnortIDS 2,083 20

FL-SnortIDS 2,083 20

SuricataIDS 2,125 21

FL-SuricataIDS 2,125 21

Table 6.7: Sample Proportion Test Result (DoS)

SnortIDS FL-SnortIDS SuricataIDS FL-SuricataIDS

SnortIDS - 0.50 0.46 0.46

FL-SnortIDS 0.50 - 0.46 0.46

SuricataIDS 0.54 0.54 - 0.50

FL-SuricataIDS 0.54 0.54 0.50 -
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6.3.2 Probe Attacks within Detection Systems

Table 6.8: Probe Attacks within MyCloud

True Positive False Positive

SnortIDS 1,836 140,411

FL-SnortIDS 1,836 18

SuricataIDS 30 339,314

FL-SuricataIDS 30 4

Table 6.9: Sample Proportion Test Result (Probe)

SnortIDS FL-SnortIDS SuricataIDS FL-SuricataIDS

SnortIDS - 1 0* 1

FL-SnortIDS 0* - 0* 0.001*

SuricataIDS 1 1 - 1

FL-SuricataIDS 0* 0.999 0* -

Based on test result in table 6.9, with 99% confidence level:

1. SnortIDS is better than SuricataIDS to detect Probe.

2. FL-SnortIDS is better than SnortIDS, SuricataIDS, FL-SuricataIDS to detect

Probe.

3. FL-SuricataIDS is better than SnortIDS and SuricataIDS to detect probe.
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6.3.3 R2L Attacks within Detection Systems

Table 6.10: R2L Attacks within MyCloud

True Positive False Positive

SnortIDS 44,458 448

FL-SnortIDS 44,458 448

SuricataIDS 340 3

FL-SuricataIDS 340 3

Table 6.11: Sample Proportion Test Result (R2L)

SnortIDS FL-SnortIDS SuricataIDS FL-SuricataIDS

SnortIDS - 0.50 0.59 0.59

FL-SnortIDS 0.50 - 0.59 0.59

SuricataIDS 0.40 0.40 - 0.50

FL-SuricataIDS 0.40 0.40 0.50 -

With 99% confidence level, the test result in table 6.11 does not show any significant

difference in performance by different method for detecting the R2L threat. Hence, R2L

threat is detected by all the system similarly i.e. all are equivalently good to detect R2L.

6.3.4 U2R Attacks within Detection Systems

Table 6.12: U2R Attacks within MyCloud

True Positive False Positive

SnortIDS 16,046 45,772

FL-SnortIDS 16,046 162

SuricataIDS 218 598

FL-SuricataIDS 218 2

Based on test result in table 6.13, with 99% confidence level:
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Table 6.13: Sample Proportion Test Result (U2R)
SnortIDS FL-SnortIDS SuricataIDS FL-SuricataIDS

SnortIDS - 1 0.68 1

FL-SnortIDS 0* - 0* 0.55

SuricataIDS 0.31 1 - 1

FL-SuricataIDS 0* 0.44 0* -

1. FL-SnortIDS is better than SnortIDS and SuricataIDS to detect the U2R threat.

2. FL-SuricataIDS is better than SnortIDS and SuricataIDS to detect the U2R threat.

3. SnortIDS and SuricataIDS have same performance to detect the U2R threat.

4. FL-SnortIDS and FL-SuricataIDS have same performance to detect the U2R

threat.

6.4 Experimental Results

6.4.1 Rules

As aforementioned, FIDSCC deals with outputs by specifying the inputs such as

V = αDoS, αProbe, αR2L, and αU2R as low,medium, and high where all of these

are fuzzy sets on the domain of inputs values. To give a typical example for the output

of MyCloud, if the DoS and Probe specified as (Low;Medium,High), then, FIDSCC

system has to determine whether there is an attack goes to MyCloud or not. After

performing this, rules based on membership functions combinations will be setup in an

IF THEN form. The fig. 6.10 shows the fuzzification process in particular the firing

strengths of FIDSCC system where the Fuzzy Inference Engine compares each received

record against all of the rules and then outputs a listing of the firing strengths of each

rule for each record. These firing strengths are used to determine the likelihood that an

attack is in process.

Therefore, it can be said that FIDSCC system has four phases for performing fuzzy

IF THEN rules. The first step is to compare the input variables with the membership

functions on the antecedent part to obtain the membership values of each linguistic label.

Secondly, combining the membership values using min operator on the premise part to

get the degree of fulfilment or the firing strength of each rule. Thirdly, generating the

qualified consequents or each rule depending on the firing strength. Lastly, defuzzifying

the crisp output by aggregating the qualified consequents.
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Figure 6.10: Firing Strength for FIDSCC System
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6.4.2 FIDSCC Performance

Performance issues in MyCloud fundamentally relies on overall traffic patterns and

peaks in the system [Brunette and Mogull, 2009]. The abnormal traffic plays an impor-

tant role to affect the security performance of MyCloud.

6.4.2.1 Membership Functions

To simulate and measure the traffic of ISCX dataset within MyCloud, we built two

systems;

1. IDS-Evaluation Through Number of Threats Detected.

2. Overall IDS-Evaluation within MyCloud

These first system was based on attacks types: DoS, Probe, U2L, and U2R. The output

of this system was prioritised 3 as High, 1.5 as medium , and 0 as low. We then took

the consonances of this system as an input of the second system along with another

input of false positive ratio (FPR). See this first system2 and the second system 3 in

JuzzyOnline.

2http://goo.gl/tjsrtl
3http://goo.gl/BsXATF
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6.4.2.2 First System: IDS-Evaluation Through Number of Threats De-

tected

Table 6.14: First System Inputs: IDS-Evaluation Through Number of Threats De-
tected

1st System of FIDSCC

System’s Inputs Type

Range of 1st System of

FIDSCC System’s Inputs

Alerts Scale A B C D

DoS

High Trapezoidal 1,075 1,612 2,150 2,150

Medium Trapezoidal 537 1,075 1,075 1,612

Low Trapezoidal 0 0 537 1,075

Probe

High Trapezoidal 170,000 255,000 340,000 340,000

Medium Trapezoidal 85,000 170,000 170,000 255,000

Low Trapezoidal 0 0 85,000 170,000

R2L

High Trapezoidal 31,000 46,500 62,000 62,000

Medium Trapezoidal 15,500 31,000 31,000 46,500

Low Trapezoidal 0 0 15,500 31,000

U2R

High Trapezoidal 22,500 33,750 45,000 45,000

Medium Trapezoidal 11,250 22,500 22,500 33,750

Low Trapezoidal 0 0 11,250 22,500
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6.4.2.3 Second System: Overall IDS-Evaluation within MyCloud

Table 6.15: Second System Outputs: IDS-Evaluation Through Number of Threats
Detected

2nd System of FIDSCC

System’s Inputs Type

Range of 1st System of

FIDSCC System’s Inputs

Alerts Scale A B C D

Number of Alerts

Detected (NoT)

High Trapezoidal 1.5 2.25 3 3

Medium Trapezoidal 0.75 1.5 1.5 2.25

Low Trapezoidal 0 0 0.75 1.5

False Positive

Ratio (FPR)

High Trapezoidal 50 75 100 100

Medium Trapezoidal 25 50 50 75

Low Trapezoidal 0 0 25 50
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6.4.3 FIDSCC Output

Table 6.16: True and False Positives within MyCloud

System Attacks Types
True and False Positives False Positive

Ratio (FPR)True Threats False Alarms

SnortIDS

DOS 2,083 20 0.95

Probe 1,836 140,411 98.70

R2L 44,458 448 0.99

U2R 16,046 45,772 74.04

Overall 43.67

FL-SnortIDS

DOS 2,083 20 0.95

Probe 1,836 18 0.97

R2L 44,458 448 0.99

U2R 16,046 162 0.99

Overall 0.97

SuricataIDS

DOS 2,125 21 0.97

Probe 30 33,9314 99.99

R2L 340 3 0.87

U2R 218 598 73.28

Overall 43.78

FL-SuricataIDS

DOS 2,125 21 0.97

Probe 30 4 11.76

R2L 340 3 0.87

U2R 218 2 0.90

Overall 3.63
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Table 6.17: First System Outputs: IDS-Evaluation Through Number of Threats
Detected

Detection

System

Inputs for 1st System of

FIDSCC System Crisp
Centroid Type-

Reduction

MyCloud Performance

Number of Alerts Detected

Inputs Inputs Value Scale Consequent

SnortIDS

DoS 2,103

[50,70] 79.88 High 3Probe 142,247

R2L 61,818

U2R 44,906

FL-SnortIDS

DoS 2,103

[20,80] 49.99 Medium 1.5Probe 1,846

R2L 16,211

U2R 44,906

SuricataIDS

DoS 2,146

[20,80] 49.99 Medium 1.5Probe 339,344

R2L 816

U2R 343

FL-SuricataIDS

DoS 2,146

[50,70] 79.88 Medium 1.5Probe 34

R2L 220

U2R 343

Table 6.18: Second System Outputs: Overall IDS-Evaluation within MyCloud

Detection

System

Inputs for 2nd System of

FIDSCC System Crisp
Centroid Type-

Reduction

MyCloud Performance

Number of Alerts Detected

Inputs Inputs Value Scale Consequent

SnortIDS
NoT 3

[25,78] 58.54 High 3

FPR 43.67

FL-SnortIDS
NoT 1.5

[50,75] 80.81 Medium 1.5

FPR 0.97

SuricataIDS
NoT 1.5

[20,80] 58.41 Medium 1.5

FPR 43.78

FL-SuricataIDS
NoT 1.5

[50,75] 80.81 Medium 1.5

FPR 3.63
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6.5 Discussion

As it can be seen in fig. 6.11, we have found the following results of the threat detection

on MyCloud, which are

1. SnortIDS detects the main part of the data as Probe threat.

2. FL-SnortIDS detects the main part of the data as U2R threat.

3. SuricataIDS almost detects all the data as Probe threat.

4. FL-SuricataIDS detects the main part of the data as DoS threat.

Figure 6.11: Detection Rate for MyCloud Through All Approaches
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Table 6.19: Sample Proportion Test Result (Overall) which represents Method 1 is
better than Method 2

Threat Classes
Method 2

Method 1 SnortIDS FL-SnortIDS SuricataIDS FL-SuricataIDS

DoS

SnortIDS - 0.50 0.46 0.46
FL-SnortIDS 0.50 - 0.46 0.46
SuricataIDS 0.54 0.54 - 0.50

FL-SuricataIDS 0.54 0.54 0.50 -

Probe

SnortIDS - 1 0* 1
FL-SnortIDS 0* - 0* 0.001*
SuricataIDS 1 1 - 1

FL-SuricataIDS 0* 0.99 0* -

R2L

SnortIDS - 0.50 0.59 0.59
FL-SnortIDS 0.50 - 0.59 0.59
SuricataIDS 0.40 0.40 -

FL-SuricataIDS 0.40 0.40 0.50 -

U2R

SnortIDS - 0.50 0.68 1
FL-SnortIDS 0* - 0* 0.55
SuricataIDS 0.31 1 - 1

FL-SuricataIDS 0* 0.44 0* -

Based on table 6.19, we have found the following results as it is shown in table 7.1;

Table 6.20: False Positive Ratio for MyCloud Through All Approaches

DoS Probe R2L U2R

SnortIDS vs FL-SnortIDS Same FL SnortIDS Same FL-SnortIDS

SuricataIDS vs FL-SuricataIDS Same FL-SuricataIDs Same FL-SuricataIDS

SnortIDS vs SuricataIDS Same SnortIDS Same Same

FL-SnortIDS vs FL-SuricataIDS Same FL-SnortIDS Same Same

Combining results of detection performances of all type of threat based on false positive

ratio, we come up with following conclusion ranked according to their performance within

MyCloud:

1. FL-SnortIDS

2. FL-SuricataIDS

3. SnortIDS

4. SuricataIDS
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6.6 Summary

The objective of this study was to produce a model using fuzzy inference systems to trace

intruders on Cloud Computing through four detection systems. To create such a model,

there were two fuzzy inference systems were created: first is to evaluate the attack classes

of ISCX datasets against four detection systems and another one is to assess the security

performance. Combining the results of detection systems for all types of threats, based

on detection rate and false positive ratio, showed that fuzzy classifiers perform better

than IDS systems alone within Cloud Computing.



Chapter 7

Conclusion

7.1 Context

The focus of this research was to understand and find the best approach towards cloud

security and its availability. We initially found the best rated open source intrusion

detection systems on which we could run a simulated dataset and find where these

systems lack or supersede others. The Information Security Centre of Excellence (ISCX)

dataset was required. First step was to discuss the capability of IDS systems: SnortIDS

and SuricataIDS systems to detect different kinds of attacks by exposing it to ISCX

datasets and also highlight its strengths and weaknesses of both IDSs. After a successful

configuration of both systems, ISCX dataset was ran on a virtual cloud called MyCloud.

The alerts generated by both detection systems, then were standardised and formatted

for better understanding of these systems. The comparison of these two IDS systems

has also been presented and it has been concluded that SnortIDS system outperforms

SuricataIDS system.

Table 7.1: Final Comparisons

Systems Sensitivity Specificity False Alarm Ratio Accuracy

SnortIDS vs FL-SnortIDS Same FL-SnortIDS FL-SnortIDS FL-SnortIDS

SuricataIDS vs FL-SuricataIDS Same FL-SuricataIDS FL-SuricataIDS FL-SuricataIDS

SnortIDS vs SuricataIDS SnortIDS Same Same Same

FL-SnortIDS vs FL-SuricataIDS FL-SnortIDS FL-SuricataIDS FL-SuricataIDS FL-SuricataIDS

121
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After that, we proposed a fuzzy logic based IDSs in order to understand and enhance

the security performance of these IDSs within MyCloud for both systems: SnortIDS

and SuricataIDS, and minimise the alerts to threats. The proposed approach was sim-

ulated to demonstrate the higher level of accuracy, sensitivity and specificity achieved.

The substantial decrease in false alarms was also achieved. By using fuzzy technique,

unwanted alerts were removed while the others were categorised into 4 types of cyber-

attacks; DoS, R2L, U2R and Probe. This improvement on SnortIDS and SuricataIDS

were named to be FL-SnortIDS and FL-SuricataIDS respectively.

Results showed that the capabilities of IDSs were considerably increased after applying

fuzzy logic over the alerts generated by any of the IDS systems. In particular, the main

focus of this work was on the comparison between alerts generated by typical SnortIDS

and SuricataIDS and similarly the alerts generate by Fuzzy Logic based SnortIDS and

fuzzy logic based on SuricataIDS system. Experimental results showed the attainment

of satisfactory detection rates based on the recent and most evaluated benchmark ISCX

dataset on intrusions. The statistical values of accuracy, sensitivity, specificity and false

alarm ratios justified that fuzzy logic based IDS works the best than any other IDS

system. These results were further analysed using tools such as Mann-Whitney Test.

These analyses showed these results:

• FL-SnortIDS is better than FL-SuricataIDS

• FL-SnortIDS is better than SnortIDS

• FL-SuricataIDS is better than SuricataIDS

• SnortIDS is better than SuricataIDS

Furthermore, we validated the results through four classifier algorithms such as OneR,

Naive Base, Decsion Tree, and KNN. The purpose of using data mining and conduct-

ing a comparative study was to find out the best available classification technique ap-

plied to MyCloud systems’ results. This study, which was performed by analysing the

ISCX dataset, observes the performance of classification algorithms and shows that De-

cision Trees classifier was the best at classifying the intrusions in SnortIDS, SuricataIDS,

and FL-SnortIDS systems. Out of which OneR has outperformed with respect to FL-

SuricataIDS system, whereas Naive Bayes consumes least time in all results compared

to others. The main objective was to get a better rate of intrusion detection for the

classifier to reduce the rate of false negatives. In terms of the performance metrics upon
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MyCloud systems’ results, all the metrics for the first three comparisons were clear where

SnortIDS does better than FL-SnortIDS, SuricataIDS was better than FL-SuricataIDS,

and SuricataIDS was better than FL-SnortIDS. However, for the fourth comparison be-

tween SnortIDS vs SuricataIDS, the comparison was not clear where we found SnortIDS

was better than SuricataIDS in terms of precision while other criteria perform better

in any algorithm chosen. This means that the accuracy and F-measure of SuricataIDS

were better than SnortIDS on behalf of OneR, Naive Bayes and K-NN while in sensi-

tivity and specificity of SuricataIDS were better than SnortIDS in Decision Tree, OneR

and K-NN. Therefore, based on the performance metrics upon these systems, we found

that SuricataIDS system shows more promising detections than SnortIDS. For the fifth

and sixth comparisons between FL-SnortIDS vs FL-SuricataIDS and SnortIDS and FL-

SuricataIDS, we found FL-SnortIDS outweigh FL-SuricataIDS and SnortIDS outweigh

FL-SuricataIDS in three algorithms except OneR. Hence, we sum up that FL-SnortIDS

and SnortIDS show more promising detections than FL-SuricataIDS respectively.

Overall, we conclude that Cloud Computing has some concerns regarding the detection

of security threats such as false positive and false negative, and hence, enhancing cloud

security is very important for providers, users and organisations to improve the security

performance and maximise the detection rate through novel approaches. In this thesis,

conventional approaches such as IDS (SnortIDS or SuricataIDS) showed that they are

not flexible to the uncertainty of intrusions. By proposing FIDSCC model that comprises

of Type-1 fuzzy logic (T1FL) technique with IDS when compared to IDS alone, we found

that this approach within Cloud Computing is more secure than the other IDS tools:

Snort and Suricate. The effectiveness of this model is that FIDSCC can provide a better

alternative to detecting threats and reducing the false positive rates more than the other

conventional approaches.

However, a possible alternative option that can be adopted using the comparative work

in this thesis is to implement Type-2 fuzzy logic based IDS using ISCX dataset. Indeed,

this will reduce the generality of the whole approach by defining new fuzzy sets and

rules. This technique would be fast and robust Cloud Computing by identifying new

and unusual attacks but it requires a deeper understanding of the nature and the common

features of FIDSCC model. Also, a deeper understanding of different emerging attacks

and techniques used by network or forensic analyst is required in order to determine and

restrict the intrusion in Cloud Computing.
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7.2 Summary of Contributions

In chapter 4, we conducted a comparative study for IDS fuzzy classifiers in order to

enhance the security that IDS provides. This is due to the level of threats that has been

noticeably grown and become a serious danger t towards the services’ providers, e.g.,

web services providers, email services providers, cloud service providers etc., whom have

to deal with millions of users per second. Thus, in order to deal with this much number

of users is a big challenge but, detection and prevention of such kinds of threats is even

more challenging and also vital due to the fact that those threats might cause a severe

loss to the service providers in terms of privacy leakage or unavailability of the services to

the users. The chapter 4 was conducted in order to incorporate this issue, several IDSs:

SnortIDS and SuricataIDS have been developed in which they differ in their detection

capabilities, performance and accuracy. SnortIDS and SuricataIDS are well-known IDS

systems that are used worldwide. The chapter 4 discusses the functionality, working

and the capability of these two IDS systems to detect the intrusions within MyCloud

network and also presents a comparison analysis of these two systems for the detection of

different kinds of cyber-attacks. Furthermore, it also proposes a Fuzzy-Logic engine that

enhances the performance and accuracy of these two systems considerably, in terms of

increased accuracy, specificity, sensitivity and reduced false alarms. Some experiments

in this chapter have also been conducted to analyse the performance of these systems

by using ISCX dataset and results indicate that FL based SnortIDS system outperforms

FL based SuricataIDS.

In chapter 5, we used WEKA as a data miner to analyse the results of IDSs’ systems and

fuzzy classifiers that were done in In chapter 4. WEKA played a very significant role in

evolving the IDSs and fuzzy classifiers. The dataset of IDSs were classified into normal

and abnormal traffic in order for generated alerts to detect threats. In this crefChap-

ter5, we utilised the most common classification algorithms: Decision Tree (J48), Naive

Bayes, OneR, and K-Nearest Neighbour (K-NN). These algorithms were chosen after

investigating the most effective classification algorithms that are widely used. The aim

of this study was to present a comparative study for the performance of each system that

was gained from our previous experiments: SnortIDS, SuricataIDS, FL-SnortIDS, and

FL-SuricataIDS in order to test which classifier algorithm is the best for our systems’

results, and investigate which system presents significant results. The performance of

these classification algorithms was evaluated using 10-fold cross validation and exper-

iments and assessments of these methods were performed in the WEKA environment

using the ISCX dataset.



Chapter 7. Conclusion 125

In chapter 6, the rise of traffic in MyCloud was notable, and all the recorded information

was not useful to analyse; thus, existing network forensics approaches were simple and

disadvantageous to differentiate the detection rate within MyCloud and reduce the

false positives ratio. We, as administrators, would have faced difficulty in managing the

damaged state of system without knowledge expert. Therefore, this chapter 6 produced

an approach using fuzzy inference systems to trace intruders on MyCloud. There were

two fuzzy inference systems were created: first is to evaluate the attack classes of ISCX

within MyCloud and another is to assess MyCloud performance. Certain tests have

been made for the comparison purposes amongst IDSs’ systems and Fuzzy classifiers.

These were satisfactory tests where the combining results of detection performances of

all type of threats based on detection rate and false positive ratio showed that fuzzy

classifiers do better than IDSs’ systems within MyCloud.

7.3 Extensions and Future Work

This work is by no means perfect and a number of possible improvements and extensions

can be made to further enhance the emerging attacks. This is because of the fact that

this work goes a long way in understanding different emerging attacks and techniques

used by network or forensic analyst to try to determine and restrict the intrusion in their

networks or cloud computing. It can be noticed that such a study shows that fuzzy logic

along with the legacy intrusion detection systems yields better results and facilitates the

network administrators to mitigate the issues. This technique in future can be used for

other open source intrusion detection systems to yield better results for that system.

Furthermore, the tool developed to format and removal of unwanted alerts generated

by IDS which are of no use can be used by cyber response teams. Different logs from

different sources are required to analyse and respond to any cyber emergency e.g. when

a datacenter is being attacked by distributed denial of service attacks, the response

team collects different types of logs including system logs, network logs, firewall logs,

IDS logs, and router logs. These are all in different format and have many unwanted

alerts and logs which are not required. Utilising the technique in the above mentioned

studies, these logs could be unified and unwanted alerts or logs may be discarded. This

approach makes it very easy for response team to collect relevant information for the

incident and focus their effort on solving the problem rather than finding it.

Furthermore, a new genetic algorithm (GA) are being developed and extensive researches

are being carried out to analyse the huge amount of data being transported over the
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networks. This is because GA shall help in finding appropriate fuzzy rules; therefore,

fuzzy logic along with genetic based approach might give more powerful performance to

increase incidents of attacks of network to secure data [Cerli and Ramamoorthy, 2015].

In the future, fuzzy logic based IDS incorporated with GA will be designed and imple-

mented to help understand the changing networks and complex attacks. This method

might open a way for researchers to improve the IDS performance in any environment.
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Experimental Settings

Figure A.1: Snort and Suricata Alert Logs

A.0.1 Snort (SnortIDS)

First of all, packages for SnortIDS was downloaded, using these two commands in the

source that were downloaded:

127
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1. wget https://www.snort.org/downloads/snort/daq-2.0.6.tar.gz

2. wget https://www.snort.org/downloads/snort/snort-2.9.8.2.tar.gz

Wget is a utility to download files from web; it supports HTTP, FTP and HTTPS.

After this command ran successfully, we got ready to configure packages.

1. Configuring Data Acquisition (DAQ)

DAQ is Data Acquisition library used by SnortIDS replacing the basic data acqui-

sition library such as libpcap. Previous versions of data acquisition used interrupt

based packet capturing, meaning that for every incoming packet, an interrupt was

generated by hardware. This interrupt was captured by kernel and forwarded

to application layer, where the interrupt was handled. With the increase in link

speed, such interrupt based data acquisitions were not suitable any-more, so poll

mode drivers were introduced. After a certain period of time, these drivers poll the

NICs for any incoming packet, increasing the overall efficiency of system and ap-

plication by reducing OS level interrupts. Before configuring DAQ, we made sure

that all the necessary packages were installed. The DAQ library was configured

using these steps.

(a) tar xvfz daq-2.0.6.tar.gz

(b) cd daq-2.0.6

(c) ./configure && make && sudo make install

2. Configuring SnortIDS

Once DAQ was configured, we installed SnortIDS on the system; the steps were

as it is shown in the commands below.

(a) tar xvfz snort-2.9.8.2.tar.gz

(b) cd snort-2.9.8.2

(c) ./configure –enable-sourcefire && make && sudo make install

When SnortIDS was installed, basic directories was created, where rules and logs

are to be maintained. This may change depends upon the user preference. The

commands are provided below:
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(a) mkdir /usr/local/etc/snort

(b) mkdir /usr/local/etc/snort/rules

(c) mkdir /var/log/snort

(d) mkdir /usr/local/lib/snort dynamicrules

After these directories were made, from Snort community, all rules available for

IDS were downloaded. These rules help SnortIDS determine either the connection

is malicious or not. This completes the basic installation of SnortIDS. SnortIDS

has 3 basic modes which are,

(a) sniffer mode to read and display the packets

(b) packet logger mode dumps these packets on disc

(c) Network Intrusion Detection System (NIDS) Mode performs analysis on the

network and detects any anomalies.

3. Running SnortIDS

After a successful configuration of SnortIDS system, and incorporating the com-

munity rules, ISCX dataset was run against SnortIDS using this command:

snort –pcap-dir=”/IscxDataset/11Jun” –c /usr/local/etc/snort.conf

This command runs SnortIDS on a directory full of pcaps, which we have splitted,

with the rules present in snort.conf

A.0.2 Suricata (SuricataIDS)

First of all, packages for SuricataIDS was downloaded, using these commands as the

latest version of SuricataIDS was downloaded using these commands:

1. apt-get -y install libpcre3 libpcre3-dbg libpcre3-dev

2. build-essential autoconf automake libtool libpcap-dev libnet1-dev

3. libyaml-0-2 libyaml-dev zlib1g zlib1g-dev libcap-ng-dev libcap-ng0

4. make libmagic-dev libjansson-dev libjansson4 pkg-config

5. sudo apt-get -y install libnetfilter-queue-dev libnetfilter-queue1 libnfnetlink-dev lib-

nfnetlink0
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6. VER=3.0.1

7. wget”http://www.openinfosecfoundation.org/download/suricata-$VER.tar.gz”

8. tar -xvzf ”suricata-$VER.tar.gz”

9. cd ”suricata-$VER”

10. sudo apt-get update

11. sudo apt-get install suricata

12. ./configure –enable-nfqueue –prefix=/usr –sysconfdir=/etc –localstatedir=/var

After using these commands successfully, the latest stable version of SuricataIDS system

was downloaded on Ubuntu.

1. Basic Setup

After SuricataIDS was successfully installed, some basic steps were followed to get

the working environment such as, to create a new directory for SuricataIDS and

its configuration files. In order to do this, these commands were applied:

(a) sudo mkdir /var/log/suricata

(b) sudo mkdir /etc/suricata

(c) sudo cp classification.config /etc/suricata

(d) sudo cp reference.config /etc/suricata

(e) sudo cp suricata.yaml /etc/suricata

(f) set the environmental variable

Finally, to start SuricataIDS, the below command was applied;

(g) sudo suricata -c /etc/suricata/suricata.yaml -i wlan0 –init-errors-fatal

2. Applying Rules on SuricataIDS

The detection rules were applied on the basis of which, the malicious activities

were detected. These rules have been defined by the development team that was

downloaded automatically using some automatic software such as, Pulled Pork and

Oinkmaster. The following commands were used to setup the rules for SuricataIDS

by using Oinkmaster mainly

(a) sudo apt-get install oinkmaster
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(b) sudo mkdir /etc/suricata/rules

(c) cd /etc

(d) sudo oinkmaster -C /etc/oinkmaster.conf -o /etc/suricata/rules

(e) sudo nano /etc/suricata/suricata.yaml

(f) suricata -c /etc/suricata/suricata.yaml -i wlan0 (or eth0)

3. Running SuricataIDS

After the successful configuration of SuricataIDS on the system, and incorporat-

ing the community rules, ISCX dataset was run against SuricataIDS using this

command:

suricata –r /IscxDataset/11Jun.pcap –c /usr/local/etc/suricata.conf

This command ran SuricataIDS on a single pcap file, with the rules present in

suricata.conf

A.1 Creating MyCloud

MyCloud is vCloud infrastructure that includes the hardware and software components

such as servers, storage, virtualisation software and operating systems. These compo-

nents were used to build MyCloud. The below headings are some of snapshots of the

MyCloud Infrastructure.

A.1.1 vCloud Director:

This is a management tool specified for all types of vCloud Infrastructure. fig. A.2 shows

the main interface of the vCloud management tool.

A.1.2 vApps in Organisation:

A vApp is a virtual application comprised of virtual machines, their networks and their

policies. While vApps were concepts that were present previously in VMware Desktop,

vCloud Express and Lab Manager, they never truly represented isolated, independent

virtual applications. A vApp can be connected to a vApp specific network or to an

Organisation Network. See fig. A.3.
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Figure A.2: vCloud Management Tool

Figure A.3: vApp in Organisation within Cloud Environment



Appendix A. Experimental Design Settings 133

A.1.3 IDS Systems Deployment:

As shown in fig. A.4, vApp provides a graphical view of the virtual machines and net-

works within MyCloud environment. IDS/IPS systems were deployed and converted

into MyCloud using VMware vCentre Converter.

Figure A.4: The Lab Deployment in MyCloud

A.1.4 Network Pools Between Two ESXis:

In order to create organisation Networks or vApp Networks, a pool of network resources

had to be available. These network pools were created in advance of the creation of

Org and vApp networks in MyCloud. This is because of the fact that if they do not

exist, the only network option available to an organisation is the direct connect to the

provider network. See fig. A.5.

A.1.5 VMware vCenter Server:

vCenter Server provides a centralised platform for managing the vSphere environments

in order to automate and deliver a virtual infrastructure with confidence. See fig. A.6.
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Figure A.5: vCloud Network Pools

Figure A.6: vCenter Server Environment

A.1.6 The Storage Profiles:

The storage profiles feature was first introduced in vSphere. This is because it enables

users to map the capabilities of a storage system to a profile. This was done although I

was able to (1) create a user defined storage capability, (2) assign a storage capability,

(3) create a virtual machine storage profile, and (4) enable the storage profile on the

host/cluster at the vSphere layer only. The storage profiles were added to the provider

virtual datacenter (VDC). Then subset of storage profiles was added to an organisation

VDC. The storage profile was selected to match the users’ requirements, and ensure
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users that the created virtual machines were utilised the appropriate datastore. See

fig. A.7.

Figure A.7: vCenter Storage Profile

A.1.7 vCloud Networking and Security appliance (vShield):

The vShield is a group of networking and security products for virtualised IT infrastruc-

tures, comprising vShield Manager, vShield Edge, vShield Zones, vShield App, vShield

Data Security and vShield Endpoint. Nowadays, vShield is known as vCloud Network

and Security. See fig. A.8.

A.2 Installation and Configuration of MyCloud

A.2.1 ISP Router

Name of the router was TalkTalk. As this was configured with LAN IP: 192.168.1.254,

so it is HomeLab gateway. Also, Native was configured to CCS IP: 192.168.1.251
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Figure A.8: VMware vShield

A.2.2 Active Directory

Initially, Windows Server 2008 R2 with Roles, e.g. Active Directory and DNS for Lab

Authentication, was installed. Also, such a server we configured this as time server

through. The following were used by Registry Editor command “regedit”,

1. a command was written as shown in fig. A.9, then modified the configuration;

Enable dword=1

Figure A.9: The First Command in regedit

2. a command was written as shown in fig. A.10, then modified the configuration;

Announceflags dword = 1

Figure A.10: The Second Command in regedit
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3. Then these commands were run net stop w32time & net start w32time in

order to stop and start NTP.

A.2.3 Service DNS

DNS as part of the domain set-up procedure allows Windows to configure DNS auto-

matically. Once the domain configured, the following reverse lookup zone were added:

192.168.1.x. including vcloud.local forward lookup zone, and then allowing the reverse

entries to be created automatically.

• Name: ad with IP: 192.168.1.51 (Active Directory)

• Name: esxi01 with IP: 192.168.1.48 (ESXi Server)

• Name: esxi02 with IP: 192.168.1.49 (ESXi Server)

• Name: vcva with IP: 192.168.1.50 (vCenter)

• Name: vcns with IP: 192.168.1.54 (vShield)

• Name: vcd with IP: 192.168.1.66 (vCloud)

A.2.4 vSphere ESXi 5.5

As explained earlier ESXi01 and ESXi02 were installed on bare metal hardware with

local storage.

• the DNS and Routing Information for an ESXi Host were configured .

• the ESXi Host was configured to use directory services.

A.2.5 vCenter Server Appliance 5.5

This is an appliance Open Virtual Format (OVF) that allows to deploy vCentre Server

in the PC on top of VMware Workstations. The following vCentre Server software

components were installed:

1. vCenter Single Sign On
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2. VMware vCenter Inventory Service

3. VMware vCenter Server

4. VMware vSphere Web Client

5. VMware vSphere Syslog Collector

For the configuration details: a Data Centre Object was created, then, both ESXi

Hosts were added to the vCentre Server Inventory. After that, both ESXi Hosts were

configured as an NTP Client. A Cluster named “Cloud-Cluster” was then created and

added both ESXi into this cluster. After that, Cluster was configured noticing that

vCloud Director requires DRS to be enabled. DRS Automation was set in order to be

fully automated. The Resource Pool was created and configured with default settings.

Then vDistributed Switch was established with default name “dvswitch” and Number

of uplink ports = 2. Both ESXi physical adaptors were added to dvswitch. Finally,

Portgroup name “Gateway” was created by creating Storage Profile. This was done by

creating Tags to both ESXi local datastore and adding it in to Category.

A.2.6 vCloud Networking and Security appliance (vShield)

This is also an appliance OVF in order to deploy vShield on the top of vData Centre

Server. This was done by doing the following;

1. vCentre Server: I added require credentials to link it to vShield Manager.

2. Lookup Server: I added require credentials

3. DNS Server was enabled.

4. NTP Server was enabled.

5. Syslog Server was enabled.

A.2.7 vCloud Director Appliance 5.5

vCloud Director was applied on the top of vData Centre Server as an appliance OVF.

See table 3.2.



Appendix B

The Meaning of IDS Systems’

Alerts

As explained in section 3.2, The table B.1 illustrates the meaning of the content of each

output for the alerts of IDS systems that are shown in fig. 3.3 and fig. 3.4.

Table B.1: The Meaning of IDS Systems’ Alerts
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