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ABSTRACT 

RCE (Resource Constrained Environment) is known for its stringent hardware design 

requirements. With the rise of Internet of Things (IoT), low-complexity and low-area 

designs are becoming prominent in the face of complex security threats. Two low-

complexity, low-area cryptographic processors based on the ultimate reduced instruction 

set computer (URISC) are created to provide security features for wireless visual sensor 

networks (WVSN) by using field-programmable gate array (FPGA) based visual 

processors typically used in RCEs. The first processor is the Two Instruction Set 

Computer (TISC) running the Skipjack cipher. To improve security, a Compact 

Instruction Set Architecture (CISA) processor running the full AES with modified S-Box 

was created. The modified S-Box achieved a gate count reduction of 23% with no 

functional compromise compared to Boyar’s. Using the Spartan-3L XC3S1500L-4-FG320 

FPGA, the implementation of the TISC occupies 71 slices and 1 block RAM. The TISC 

achieved a throughput of 46.38 kbps at a stable 24MHz clock. The CISA which occupies 

157 slices and 1 block RAM, achieved a throughput of 119.3 kbps at a stable 24MHz clock. 

The CISA processor is demonstrated in two main applications, the first in a multilevel, 

multi cipher architecture (MMA) with two modes of operation, (1) by selecting cipher 

programs (primitives) and sharing crypto-blocks, (2) by using simple authentication, key 

renewal schemes, and showing perceptual improvements over direct AES on images. The 

second application demonstrates the use of the CISA processor as part of a selective 

encryption architecture (SEA) in combination with the millions instructions per second 

set partitioning in hierarchical trees (MIPS SPIHT) visual processor. The SEA is 

implemented on a Celoxica RC203 Vertex XC2V3000 FPGA occupying 6251 slices and a 

visual sensor is used to capture real world images. Four images frames were captured 

from a camera sensor, compressed, selectively encrypted, and sent over to a PC 

environment for decryption. The final design emulates a working visual sensor, from on 

node processing and encryption to back-end data processing on a server computer.  
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CHAPTER 1  

INTRODUCTION 

__________________________________________________________________________________ 

Small, low-cost devices with very little design space and computing resources are termed 

“Resource Constrained Environment” (RCE). One of the most notable RCEs is the 

Wireless Sensor Network (WSN). A WSN sensor node is usually tiny (size ranges from a 

shoebox down to a grain of sand), and resource constrained. Figure 1.1 (left) shows a 

sensor node can be as tiny as a coin and (right) a Crossbow MICAz sensor mote serving 

as a base station.  

 

Figure 1.1: (Left) Illustration of a comparison between a Malaysian 50 cents coin and a 

MICAZ sensor node and (Right) the illustration of a MICAz mote. 

 

Other platforms such as Radio Frequency Identification (RFID) [1], Radio Sensor 

Networks (RSN) [2], Wireless Identification and Sensing Platforms (WISP) [3, 4], 

handheld devices, tiny portable devices, and Internet of Things (IOT) [5] are also 

considered RCEs. These platforms are usually low-cost, employing general-purpose 

microcontrollers and tiny sensors [5-8]. RCEs are tailored towards multi-disciplinary 
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applications such as real-time surveillance systems, environmental and health care 

monitoring systems, asset tracking and even advanced military applications that deals 

with various data such as general plaintexts, imagery and videos. RCE platforms that 

are equiped with visual sensors such as the Wireless Visual Sensor Network (WVSN) 

adopt Field Programmable Gate Array (FPGA) for the advantage in terms of flexibility 

and field re-programmability [9]. Ultimately, the visual sensor field-reconfigurable RCE 

[10-12] is the most popular and useful platform for the wide range of applications it 

offers to the users [13-15]. 

Every RCE requires hardware that is tailored to a specific application to minimize cost, 

power requirements and size and to maximize reliability as they are often left in the field 

and not intended to be maintained for extended periods of time [16]. While typical RCEs 

collect environmental data, visual sensor RCEs require more on-node processing such as 

applying computer vision techniques and compression. For efficiency, availability and 

cost reasons, FPGAs are typically used as the processing unit for the RCE node [12, 17, 

18]. The change in the data type collected from scalar to visual data creates a security 

and privacy issue as the data is transmitted over unsecured wireless channels. To 

address this problem, cryptography can be used to encrypt the information before being 

sent. While complex data processors and crypto-processors (CP) working side-by-side are 

the best combination for robust and secured system, this may not be feasible in RCE 

systems due to size, power and cost constraints. One of the main aims of this research is 

to create a low-area, low-complexity CP that can be integrated into RCE devices with 

FPGAs such as in visual RCEs. This is a challenge as each RCE hardware will have 

varying amounts of un-utilized logic leading to the need for a design and implementation 

of low-complexity, low-area crypto-processors for RCEs. [5, 6, 19-22]. 

A crypto-processor, is a processor that carries out cryptographic operations [23]. A 

dedicated CP for RCE, constrained by RCE restrictions [24], has to provide sufficient 

cryptographic functions and flexibility in terms of handling diverse RCE security 

requirements [25, 26]. A CP uses hardware-accelerated cryptographic functions to 
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provide and formulate security features and protocols such as double or multiple 

encryption [27, 28], multi-cipher [29], support for cipher mode of operation [30], multi-

level security [31], key management [32], authentication [33], and digital signature are 

preferable in facing multiple RCE security threats [31]. However, crypto-processors with 

accelerated crypto-cores requires additional hardware [34]. The cost is greater when 

multiple un-rolled ciphers cores are added to support multiple cryptographic functions 

[35]. An alternative solution is to design a crypto-processor that utilizes the same crypto-

blocks for various ciphers without additional logic components, at a cost of cipher 

program memory. 

Low-complexity computer models are considered in the course of designing a low-area 

crypto-processor. The Ultimate Reduced Instruction Set Computer (URISC) fits the 

profile by having a low-complexity but yet completely functional computing architecture, 

suitable for low-complexity applications. The prominent feature of URISC is that it uses 

only a single instruction set. Through minimalistic modifications and adding resource-

justified application-specific crypto-components, low-area, low-complexity cryptographic 

applications can be designed. Hence URISC-based modified minimalist reconfigurable 

cryptographic processors for low-area, low complexity cryptographic applications in RCE 

are proposed in this thesis. 

While cryptographic solutions are widely used, certain primitives, schemes, and protocols 

are applicable to visual sensor RCE due to the type of the data involved (video, image 

and plaintext), the worth (value) of the data, the computation, resource overhead and 

security requirements [5, 19, 21, 25, 36-38]. These factors will shape and determine the 

type of crypto-processors designed and the choice of ciphers. Visual sensor RCE requires 

visual processing techniques such as data compression to reduce the amount of data 

transmitted [39]. Security can be introduce using techniques such as partial and 

selective encryption [40-42], taking advantage of the characteristics of compressed data. 

The combination of compression and selective encryption results to a robust system that 
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decreases the amount of data to encrypt and transmit, allowing more memory to be use 

for cipher programs. 

This thesis presents low-area modified URISC reconfigurable processor architecture for 

visual sensor RCE cryptographic applications. The proposed modified URISC enables 

security in power and cost contrained RCE applications. A lower-area, low-complexity 

cryptographic processor using the proposed modified URISC as cores, results to flexible 

and versatile configurations, aiding the need for multiple security solutions. Lastly, the 

proposed architecture is presented and integrated into a selective encryption system, to 

emulate on-node encryption, using real world FPGA as a low-power and low-cost RCE 

device. 
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1.1. Problem Statement 

RCEs operate under very restrictive conditions. Power and computation is always the main issue 

while designing the application framework using these devices [43, 44]. In extreme cases, trade-

offs in security have to be made for a functional system and a longer operational lifespan [45]. On 

top of that, RCE devices possess some form of communication ability for them to communicate 

with nearby devices, forming a network of data. With existence of communication between 

different devices, security risks increase. The risks are even higher when the payload data is 

valuable to any party of interest. Hence security plays an important part when the system is 

designed and the already scarce resources in the system [46].  

RCE is broad by definition but the typical resource constrained design issues remain regardless 

of the platforms it takes. Low-complexity, low-memory, low-area, and low-power are the critical 

factors to be considered. And by extension, a smaller area utilized on the same reconfigurable 

hardware will result in reduced power requirement [47, 48].  

When designing for RCE systems, although often holistic, there are a few important design 

issues to be addressed: 

1) Limited or non-renewable on-board power. 

2) Finite capacity of storage memory. 

3) Small physical design space. 

4) Limited communication bandwidth. 

5) Limited computing power. 

6) Low-upgradability. 

In the context of a reconfigurable RCE, the points 1), 2) and 3) above implied that the amount of 

logic and memory resources is limited. Within this context, the constrained resource or the 

hardware costs taken into consideration when designing a cryptographic processor is the area 

utilized and memory resources used within the reconfigurable hardware. 
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Going into the topic of low-area,  low-complexity security designs, there is a distinction between 

the term “low-area” and “low-complexity”. “Low-area” refers to physical (logic or memory) 

resources utilized within the FPGA context and “low-complexity” refers to the computing and 

algorithmic context that describes the ability to solve problems using less complicated means, 

steps or components. In regards to this topic, the area is a form of hardware cost for hardware 

designers. However, the relationship between the hardware cost and the security is unclear. 

Gong stated that a relationship between the three qualities: security, performance and cost of a 

cryptographic hardware system [49]. An illustration of the relationships between the three 

qualities in RCE hardware design is shown in Figure 1.2. 
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Figure 1.2: An illustration of the relationships between the three qualities in RCE security 

hardware design based on Gong [49]. 

 

From Figure 1.2, there are two properties to RCE security hardware architectures: 1) low bit-

length and 2) a serial architecture. The factor of low key bit-length is connected to the choice of 

cipher or any other cryptographic protocols. However, the key length is not a factor of 
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performance because the length of a key is attributed to cipher’s strength and mode of operations 

chosen. The key length barely affects the performance and the effects only applies to asymmetric 

ciphers [50, 51]. In short, the resource cost in relation to the cryptographic protocol is subject to 

the protocol’s designer and the protocol’s specification, to a certain key-length in order for the 

cipher to be consider secured [52]. 

On the other hand, a serial architecture suggests a sequential von-Neumann model. URISC 

fulfills the requirement for a basic serial computing architecture because it is claimed to be the 

simplest form of functional computer architecture [53, 54]. This serial computer with only a 

single instruction set poses very obvious weaknesses in terms of complex functionality and high-

level operations. By using techniques like assembly code re-use, program-loops, instruction 

sequencing, parameterization, self-modifying codes, and sub-routines [55, 56], the limitations of 

URISC can be overcome. Initially, the URISC was proposed in [56] as an educational model to 

better understand the concept of computer organization and there are other numerous 

applications which can be found in [57-60]. But the simplicity of its fundamental building blocks 

and data processing components are very attractive features to be explored for complicated 

computing tasks. Hence URISC fulfills the requirement of a low-complexity, sequential 

architecture without the need to design an architecture from scratch. The real problem is what 

and how modifications can be done onto URISC fulfill the requirements of low-area, low-

complexity cryptographic applications. The URISC, like any other instruction set computer 

architecture, has a fundamental data path and a memory unit. Alteration, addition and 

customization of low-complexity cryptopgrahic components on URISC yields a custom-designed 

architecture to suit any target application. 

RCE devices vary in terms of form factor and hardware. To allow adequate level of security, 

complex security algorithms and protocols are considered. Visual sensor RCE has the broader 

context in terms of applications, from simple data relaying to complex video surveilance. Visual 

RCEs can be used as the target application, which inherits the model of common security and 

privacy problems within general RCEs. By using visual sensor RCE as point of reference to the 

generalization of RCE cryptographic problems, the six known security goals are [20, 61]: 
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1) Confidentiality: protecting secret information from unauthorized entities. 

2) Integrity: ensuring message has not been altered by malicious parties. 

3) Data Origin Authentication: authenticating the source of message. 

4) Entity Authentication: authenticating the user, node and sink is indeed whom it claims 

to be. 

5) Access control: restricting access of resource to privileged parties. 

6) Availability: ensuring desired services available when required. 

Goal 1), 2), 3), and 4) can be fulfilled using a combination of cryptographic algorithms, key 

management, and authentication, which are considered as cryptographic solutions. Goal 5) and 6) 

can be solved using attack detection, prevention and routing techniques [20, 61]. One common 

form of cryptographic solution is the direct use of cryptographic primitives, which are referred to 

as ‘ciphers’. Ciphers are generally divided into two types: symmetric and asymmetric. For low-

area, low-complexity applications, symmetric ciphers are preferred due to their nature of being 

hardware implementation-friendly [61, 62]. Law et al [19] concluded that the Skipjack cipher [63] 

is the best lightweight cipher in terms of code memory, data memory, encryption efficiency and 

key setup efficiency and it is also used in Tinysec for WSN RCEs [64]. However, the Skipjack 

cipher is not the best and strongest cipher but would suffice for a lightweight security application 

[19]. 

On the contrary, Rijndael [65] also known as the Advanced Encryption Standard (AES) [66] is 

one of the most popular, strongest and resilient cipher to most known attacks. On top of that, [67] 

concluded that an AES hardware out-performs any software implementation, which further 

validates the cipher choice. However, the AES is known to be resource demanding due to the 

complex encryption operations and the non-linear component named the S-box [68-71]. 

Minimizing the S-box [70-72] is one method towards low-area designs. 

Futhermore, AES and Skipjack are just two out of the long list of ciphers available to choose from 

depending on applications and level of security required [73]. In a real world scenario where 

RCEs are deployed into a hostile environment, secure frameworks [74, 75] utilizes crypto-

processors to ensure critical data do not fall into the wrong hands [76]. Dedicated CP with 



9 

Chapter 1 

multiple cryptographic functions and primitives provides variable degree of security for RCE 

secure frameworks. To achieve this, multiple ciphers accelerators within a scalable CP are 

introduced [77, 78]. Multi-cipher and multi-mode systems on the hardware level offer multiple 

cipher algorithms concurrently in a communication session [77, 78], variation of security strength 

and application [29]. These primitives can be replaced when they are outdated or obselete, via 

techniques such as partial or dynamic reconfiguration [9] using FPGA reconfigurable hardware. 

Nonetheless, having multiple cipher accelerators will logically require additional memory and 

logic resources which is already scarce in RCE. A low-complexity multi-cipher [29, 35, 77] 

architecture would be the solution to accommodate multiple cryptographic primitives. By re-

using the same crypto-blocks, multi-ciphers exists with only program memory costs rather than 

using both the logic and memory resources. Hence multiple cipher switching is made available 

and by extension reducing the resources used compared to having the cipher cores in separate 

entities. 

Other cryptographic protocols and techniques for visual data such as the perceptual encryption, 

selective multimedia encryption and watermarking [42, 79, 80] are commonly used in high-level 

visual sensor RCE [15, 81-85]. Unlike normal data, pixel data is very information rich and highly 

correlated. There are a few examples in the literature showing that modifying AES can be a 

potential candidate to play the role of symmetric cipher for image encryption [86-88]. Symmetric 

block encryption will be weaker for the image perceptually due to the nature of the visual data 

[89]. And also, encrypting the whole image would take a large amount of memory overhead, 

draining both memory and power. To solve this, pre-processes or post-processes techniques such 

as the compression algorithms are used to break the pixel correlation, minimizing the amount of 

data to be transmitted [90] and yet, enabling a smaller amount of data to be selected and 

encrypted for adequate security [91]. A selective encryption system would reduce the 

computational complexity and reflects the real visual sensor RCE with visual processing 

components and crypto-processor co-existing in the same FPGA, utilizing the same available 

resources.  
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To form a cryptographic solution, algorithmic understanding and translation to hardware form is 

key. However, the vast option of cryptographic techniques and goals leads to the problem of 

cryptographic versatility and selection. A well-designed cryptographic processor for RCE has to 

possess the necessary security functions and primitives, making it adequate for formulating 

secure protocols. Using modified URISC as a fundamental model, and the generalized RCE 

security goals, custom-designed processor are presented for low-area, low-complexity for 

cryptographic applications suitable for RCEs.  Figure 1.3 illustrates the ubiquitous and pervasive 

nature of RCE devices, forming unique RCE networks. RSN is a network formed by RCE devices 

integrating with RFID (termed eRCE) and VSN RCE is formed by devices equipped with camera 

sensors. Larger heterogenous modern RCEs can be collectively formed by these types of networks 

and devices thus, leading to various security challenges that requires a flexible crypto-processor. 

The red dots depicted in Figure 1.3 shows the points where data security is required for a robust 

and secured RCE. 

1.2. Research Aims and Objectives 

The aim of the research presented in this thesis is to design and develop low-area, low-complexity 

security architectures with modified URISC, using FPGA. The main objectives of this research 

are as follow: 

1) Modifying the URISC low-complexity processor for RCE cryptographic application. 

2) Develop a low-area, lightweight cipher processor architecture suitable for lightweight 

specific applications using Skipjack cipher. 

3) Develop a low-area, modern cipher processor architecture for modern cryptographic 

application using AES cipher 

4) Develop a low-complexity architecture that allows multiple ciphers that will work 

towards providing additional cryptographic primitives in a single architecture. 

5) Design and develop a selective encryption system that reflects real-world practicality, 

employing one of the proposed architecture and an image compression technique to form 

a joint encryption system.  
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Figure 1.3: An overview of a heterogeneous modern RCE formed with RSN and VSN, 

further increasing security challenges. 
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1.3. Author’s Contributions 

1.3.1. Low-complexity Two Instruction Set Computer using Skipjack 

(TISC Skipjack) for Lightweight Cryptographic Implementation 

For the area of lightweight security, the design of a low-complexity architecture using 

only two instruction sets, capable of completely execute full 32 rounds of Skipjack cipher 

is proposed. Skipjack has been introduced as the most suitable candidate for lightweight 

cipher.. selection in the area of WSN RCE [19]. The proposed architecture (found in 

Chapter 3) is extremely compact and is designed by modifying URISC to accommodate 

an additional ALU, which is the XOR. 

 

1.3.2. Low-complexity Compact Instruction Set Architecture using 

Advanced Encryption Standard (CISA AES) for Modern 

Cryptographic Implementation 

For the area of modern security solutions, the design of a low-complexity architecture 

using only four instruction sets, capable of completely execute full ten rounds of AES 

cipher is proposed. The proposed compact architecture is designed by modifying the TISC 

Skipjack architecture (found in Chapter 3) due to the overlapping components used for 

both architectures. The new architecture (found in Chapter 4) accommodates two 

additional ALUs, XTIME and S-BOX. This newly modified URISC results in a four 

instruction set, low-complexity, low logic area, compact architecture specifically for AES. 

 

1.3.3. Bi-directional S-BOX gate count improvement 

The AES S-BOX is a large combinational circuit and has always been one of the most 

resource demanding component for AES hardware implementation [92, 93]. 
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Improvement on the current bi-directional S-box suggests the application of linear 

matrix mapping optimization on the inverse affine transformation block. The improved 

configuration of a forward direction S-box together with a minimized inverse affine 

transformation block (found in Chapter 4) shows results to a smaller, low-complexity bi-

direction S-box, in which would be reflected in the hardware implementation results. 

 

1.3.4. Multi-Cipher Architecture (MCA) featuring Arithmetic Logic Unit 

(ALU) Sharing 

The MCA uses AES and Skipjack ciphers in single processor. The previous work (1.3.1, 

1.3.2) was extended to find low-complexity multi-cipher configurations, a single modified 

URISC is used to process two different ciphers by sharing the same set of ALUs. This 

design opens up a new area to RCE multi-cipher systems in sharing the same processing 

blocks. This would provide solutions to having multiple cryptographic primitives at the 

costs of program code memory, while retaining the same amount of logic resources used. 

 

1.3.5. Real-world Hardware Implementation of Selective Encryption 

Architecture (SEA) 

A real-world design and hardware implementation of a SEA for joint security and 

compression application is realized. A complete working system is presented in this 

thesis demonstrating the functionality and feasibility of the proposed CISA AES. The 

proposed design integrates an MIPS-SPIHT compression module with a CISA AES 

module for real-world selective encryption application. 
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1.4. Thesis Organization 

The thesis structure is as follows. Chapter 2 provides the literature review and 

background knowledge of related works in the area of RCEs, symmetric cipher primitives, 

multi-ciphers and selective encryption. Chapter 3 presents a low-area low-complexity 

FPGA TISC for lightweight cipher using Skipjack using a modified URISC. Chapter 4 

presents a low-complexity FPGA CISA, customized specifically for AES, with minimized 

S-box in terms of gate count. Chapter 5 describes a low-complexity multi-cipher 

architecture symmetric ciphers switching. Chapter 6 presents a low-complexity selective 

encryption architecture as a practical example of the real-world application of the CISA 

AES architecture. Lastly, Chapter 7 presents the conclusion of this thesis with potential 

future work and directions discussed. 
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CHAPTER 2  

LITERATURE REVIEW 

__________________________________________________________________________________ 

2.1. Resource Constrained Environments (RCE) 

RCEs are generally referred to as small hardware systems or devices with very low 

amount of resources in terms of power supply, memory, communication bandwidth, and 

storage memory1. There are currently four known resource constrained environments 

identified: 

1) Wireless Sensor Network (WSN) [19, 25, 94, 95] 

2) Radio Frequency Identification (RFID) [2, 96-98] 

3) Wireless Identification and Sensing Platform (WISP) [3, 4] 

4) Internet of Things (IOT) [5, 99] 

All the generalized RCEs share similar problems when it comes to hardware design due 

to the scarce resources on the RCE devices. However, there are differences between 

environments in terms of hardware form factors, specifications, communication 

standards and target applications. To understand the need for low-complexity, low-area 

cryptographic processors, each of the four RCEs are briefly discussed. 

 

2.1.1. Wireless Sensor Networks (WSNs) 

A wireless sensor network is usually made up of tiny sensors that are programmed to 

communicate via wireless medium [100]. The limitation of their physical size results in 

sensor motes that usually have limited amount of on-board resources such as energy, 

                                                      
1 Review of all 4 environments published in “J. H. Kong, L.-M. Ang, and K. P. Seng, "A 

comprehensive survey of modern symmetric cryptographic solutions for resource constrained 

environments," Journal of Network and Computer Applications, vol. 49, pp. 15-50, 2015”. 
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storage, computation power, and communications bandwidth. Figure 2.1 illustrates WSN 

with the collection of sensor nodes (network type is application dependent) and their 

roles in acquiring and relaying data to the base station. WSN can be divided into two 

sub-groups with variation of applications [101]. 

Routing Node

Sensor Node

Sink / 

Base Station

Sensor 

Node

Image,

Noise,

Humidity,

Temperature,

Seismic,

Localization,

Oceanic and etc.

 

Figure 2.1: A general illustration a WSN with routing and sensor nodes. 

 

i. Wireless Sensor Network (WSN) 

The WSN is a generic term for a network of motes with embedded sensors. WSNs 

normally have tiny sensors to monitor environmental variables such as the temperature, 

humidity, noise, pressure. The choices of security used in a WSN environmental 

application is influenced by the amount of energy the security architecture consumes. 

Law et al  state that lightweight and energy efficient algorithms are preferred [19].  

 

ii. Wireless Multimedia Sensor Network (WMSN) 

The WMSN highlights the use of low-cost cameras in health care monitoring systems, 

incorporating applications that transmit data such as high-resolution still images and 

multimedia video and audio streaming. This is a kind of network is composed of 
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embedded audio and visual collection modules that require the balancing of the energy 

costs, application purposes, and security strength considerations [102]. 

 

iii. Wireless Visual Sensor Network (WVSN) 

This type of network features the use of visual sensors or low-cost cameras for 

environmental surveillance purposes. The crucial area of consideration for WVSN is low 

latency of communication and image processing modules. The real-time systems are 

extremely resource constrained, making designers find extreme measures without 

compromising significant costs [13]. 

According to Roman et al [6], microcontrollers are used in the WSN because of their cost-

effectiveness. Microcontrollers are grouped into weak, normal and heavy-duty for their 

computing capabilities, clock speed, and RAM size. Figure 2.2 illustrates an overview of 

the architecture within a WSN node, including the connections of the microcontroller to 

other input/output components. Roman et al questioned the suitability of some of the 

symmetric cryptographic primitives for some low-end microcontrollers. The 

cryptographic primitive in question are the AES cipher and Twofish cipher, which both 

are known to be optimized for 32-bit processors. However, some of the operations can be 

done using native 8-bit registers [6]. Heavy-duty controllers, such as the PXA271 or the 

ARM920T with a word size of 32-bits, are compatible with these ciphers. The Skipjack 

cipher fits perfectly into the MSP430 family because the operations and the key schedule 

use 16-bit words [103]. The instruction memory and the RAM memory of the RCE have 

to suffice for the storage of: program code, private key, intermediate values, and other 

temporary data. This shows that choosing a cipher to match a microcontroller’s resources 

is an important consideration. 
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Figure 2.2: An illustration of the generic architecture within a WSN node (image 

extracted from [6]). 

 

Johnson et al reviewed the most recent specifications of sensor motes [104].  

Table 2.1 shows the hardware specifications of known motes. Mark Hempstead [95] 

provided a detailed analysis of hardware systems for sensor nodes, focusing on the 

architectural level of the processors used. Hempstead concluded that it would be difficult 

to judge the programmability, energy efficiency, and performance fairly without running 

the same benchmarking application on all these different systems. Hempstead stated 

that the intelligent combination of: circuit techniques, hardware architecture and 

application support can yield ultra-low power systems.  

Table 2.2 shows a summarized version of the table presented in [95]. 
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Table 2.1: The specifications of various sensor motes [104]. 

Mote 

Platform 
µProcessor 

Bus 

(bit) 

Clock 

(MHz) 

RAM 

(K) 
Flash (K) 

EEPROM 

(K) 

Cost / 

node 

(USD) 

TelosB 

(sensor) 

TI 

MSP430F1611 
16 4-8 10 48 1000 99  

TelosB  

(w/o 

sensor) 

TI 

MSP430F1611 
16 4-8 10 48 1000 139 

MicaZ 
Atmel Atmega 

128L 
8 8 4 128 512 99 

Mica2 
Atmel Atmega 

128L 
8 8 4 128 512 99 

SHIMMER 
TI 

MSP430F1611 
16 4-8 10 

48 + 

microSD 

expansion 

None 199 

IRIS 
Atmel Atmega 

1281 
8 8 8 640 4 115 

Sun SPOT 
Atmel 

AT91RM9200 
32 180 512 4000 None 750 

EZ-

RF2480 

TI 

MSP430F227432 
16 16 1 1 None 99 

EZ-

RF2500 

TI 

MSP430F227432 
16 16 1 1 None 49 
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Table 2.2: The specifications of various controller architectures [95]. 

System Architecture Data path Width Memory (KB) 

Atmel  

ATmega 128L 

General Purpose 

Off-the-shelf 
8 132 

TI 

MSP430 

General Purpose 

Off-the-shelf 
16 10 

SNAP / LE 
General Purpose 

Reduced Instruction Set Computer 
16 8 

BitSNAP 

General Purpose 

Reduced Instruction Set Computer 

(Bit-serial data path) 

16 8 

Smart Dust 
General Purpose 

Reduced Instruction Set Computer 
8 3.125 

Charm Protocol Processor N/A 68 

Michigan 1 General Purpose 8 0.25 

Michigan 2 General Purpose 8 0.3125 

Harvard Event-driven Accelerator 8 4 

 

 

2.1.2. Radio Frequency Identification (RFID) 

The RFID system is often referred to as the Extreme Resource Constrained Environment 

due to the nature of its application and devices. The modern RFID system 

infrastructures are seen to be made up of three primary components RFID transponders 

(also known as tags or labels), RFID readers or transceivers, and back-end electronic 

databases. RFID transponders are distinguished based on their operating frequency: low 

frequency (LF), high frequency (HF), ultra-high frequency (UHF) and microwave. 

Transponders categorized by their powering techniques such as passive, semi-passive 

and active. The most common devices are passive RFID tags, where a battery-less IC 

device harvests power from a nearby RFID reader (deriving their transmission power 

from the signal of an interrogating reader) and uses it to respond to the reader with an 

identification number. RFID is deemed resource constrained because of its limited power 

and memory. 
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There are three types of RFID tags: LF, HF, and UHF. Table 2.3 shows a comparison in 

terms of specifications on LF, HF, and UHF tags. Ranasinghe et al  stated that the 

current fabrication of Class I tags consists around 1000 to 4000 logic gates while Class II 

labels may consist several thousand more gates [105]. Ranasinghe et al further 

elaborated the three important components within the RFID: RF front-end, memory 

circuitry and the FSM (Finite State Machine) logic circuitry. Class 1 Transponders have 

only read-only memory while Class 2 Transponders may have some read-write memory 

using Electrically Erasable Programmable Read-Only Memory (EEPROM) [105]. The 

memory circuitry within RFID has memory capacity in the order of hundreds of bits. An 

EPC tag normally has an EEPROM that stores the Tag ID. The rest of the memory (in 

the order of a few kilobytes) within the EEPROM is made available to the users. 

Ranasinghe et al proposed a PUF circuit (Physical Unclonable Function) which costs less 

than 1000 gates to tackle privacy and authentication issues. Figure 2.3 illustrates the 

architecture within a UHF/HF tag is extracted from [105]. 

Table 2.3: Comparison between, LF, HF and UHF RFID tags [106]. 

Operating Frequency 

Low frequency 

(LF) 

125 ~ 135 (kHz) 

High frequency 

(HF) 

13.56 (MHz) 

Ultra-high frequency 

(UHF) 

850 ~ 960 (MHz) 

Read range ~10cm ~1m 1~2m 

Penetration of 

material 
Excellent Good Poor 

Water resistance No Some extent Yes 

Power Source 
Passive 

(inductive) 

Passive 

(inductive) 
Passive (propagation) 

Data-rate Slow Fast Very Fast 

Multiple reading of 

tags 
Poor Good Very Good 
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Figure 2.3: An illustration of the architecture within an HF/UHF RFID Tag (image 

extracted from [105]). 

 

Various resource specifications on RFID transponders [107-110] and the compiled Table 

2.4 shows the list of known RFID tags (LF, HF, and UHF) and their respective memory 

resource specifications. Some of the latest RFID specifications can be found here: [111-

114] 

Table 2.4: A compilation of specifications for various known LF, HF and UHF RFID 

transponders [107-110]. 

Operating Frequency Transponder Storage User Memory 

LF 

125 kHz Hitag1 256 bytes 192 bytes 

125 kHz Hitag S256/2048 256 bytes 248 bytes 

125 kHz Hitag2 32 bytes 16 bytes 

125 kHz EM4001/4102 8 bytes 5 bytes 

125 kHz MCRF200/123 16 bytes 14 bytes 

HF 

13.56 MHz Mifare 1k 1024 bytes 768 bytes 

13.56 MHz Mifare ProX 1024 bytes 768 bytes 

13.56 MHz SmartMX 1024 bytes 768 bytes 

13.56 MHz Mifare 4K 4096 bytes 3456 bytes 

13.56 MHz Ultralight 64 bytes 48 bytes 

13.56 MHz 
ICODE SLI/TagIT 

(ISO15693) 
128 bytes 112 bytes 
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Operating Frequency Transponder Storage User Memory 

13.56 MHz Mu-chip 128 bits - 

UHF 

902 – 928 MHz 
Alien I2 

(ALL-9250) 
64 bits - 

902 – 928 MHz 
Alien M 

(ALL-9254) 
64 bits - 

902 – 928 MHz 
Alien Squiggle 

(ALL-9238) 
64 bits - 

860 – 960 MHz 
IT36 Low Profile 

Durable Asset Tag 

TID = 64 bits 

EPC = 128 

bits 

512 bits 

902 – 928 MHz 
IT75 Low Profile 

Durable Asset Tag 

TID = 64 bits 

EPC = 128 

bits 

512 bits 

865 – 868 MHz 
IT76 Low Profile 

Durable Asset Tag 

TID = 64 bits 

EPC = 128 

bits 

512 bits 

860 – 960 MHz 

IT67 Enterprise 

Lateral Transmitting  

(LT) Tag 

TID = 64 bits 

EPC = 240 

bits 

512 bits 

860 – 960 MHz 
IT65 Large Rigid Tag, 

Gen2 

TID = 32 bits 

EPC = 96 bits 
0 bits 

869 / 915 MHz Tire Tag Insert - - 

915 MHz Container Tag - - 

902 – 928 MHz 
Matrics / Symbol 

Dual Dipole 

TID = 112 

bits 

EPC = 128 

bits 

- 

902 – 928 MHz 
Matrics / Symbol 

Single Dipole 

TID = 112 

bits 

EPC = 128 

bits 

- 

 

An enhanced version of RFID device called the Computational RFID (CRFID) has 

emerged in the recent years [115], bridging the gap between WSN and RFID with added 

sensing and computation abilities.  
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2.1.3. Wireless Identification and Sensing Platform (WISP) 

RFID tags lack re-programmability and computation power. To solve this problem, the 

WISP (Wireless Identification and Sensing Platform) technology is introduced [4]. WISP 

[7] supports sensing and computing  was first developed under the project of Intel 

Research Seattle. WISPs are programmable because of the on board on-board 16-bit 

MCU. Unlike a RFID transponder, the WISP has a more powerful controller and 

spacious memory unit, providing application design spaces. Similar to passive RFID tags, 

WISP is powered and can be read by a standard RFID reader, harvesting the power from 

the reader's emitted radio signals. Most of the work on WISP to date is about single 

WISPs performing sensing or computing functions on data such as light, temperature, 

acceleration, strain, liquid level, and even to investigate embedded security. The next 

phase of WISP’s development probably involves the interaction of multiple WISPs, Thus 

allowing an exciting exploration of a new battery-free form of wireless sensor networking. 

Like any RFID or WSN devices, the sensor hardware and controllers operate under a 

limited amount of power and computation capability. Figure 2.4 shows an example of 

WISP and according to Sample et al [8], WISPs have the following features: 

 Up to 10ft range with harvested RF power, 

 Ultra-low power MSP430 microcontroller, 

 32K of program space, 8K of storage, 

 Light, temperature, and 3D-accelerometers, 

 Backscatter communication to the reader, 

 Reader to WISP communication (ASK), 

 Real-time clock, 

 Storage capacitor (to sense without reader), 

 Voltage sensor (measures stored charge), 

 Extensible hardware (to add new sensors), 

 HW UART & GPIO for external connections, 
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 Works with select EPC Class 1 Gen 2 readers, 

 WISP software to sense and upload data, 

 Reader application to drive WISP, 

 Industry standard development tools, 

 Access to hardware design and source code. 

  

Figure 2.4: An illustration of WISP compared to a coin (Image extracted from [7]). 

 

WISPs are programmable because of the on-board 16-bit MCU. Unlike a RFID 

transponder, the WISP has a more powerful controller and larger memory unit, 

providing application design spaces. Currently, there are three versions of WISP [4, 116] 

shown in Table 2.5. 

Table 2.5: A table stating WISPs’ version and their current state of development. 

WISP Name MCU Status 

WISP 4.1DL (Blue) MSP-430F-2132 Ramping Production 

WISP 4.0DL (Purple) MSP-430F-2274 Deprecated 

WISP 3.0 MSP-430F-2272 - 

WISP G2.0 (Red) MSP-430F-2012 Limited use 

 

The most recent development is the WISP 5.0 but the information released is limited. 

The price for WISP devices is also currently unknown as the project is open to academic 

collaborators and the WISPs are only given if the project proposal is accepted. The WISP 

proposal is still very recent and the publications and literatures related to WISP are 

limited.  
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Sample et al [8] has written a complete description of the WISP, breaking down the 

WISP with detailed explanations from the analog front-end, the modulation and 

demodulation, the digital section and power conditioning, packet coding and decoding to 

the power requirements and duty cycle. Figure 2.5 shows an illustration of the hardware 

architecture and components within the WISP. 

 

Figure 2.5: An illustration of the WISP platform and its components [7, 8]. 

 

2.1.4. Internet of Things (IoT) 

IoT [117] refers to the interconnectivity of embedded computers. IOT also extends its 

definition of the connectivity between devices and computers beyond the traditional 

machine-to-machine communication, offering advanced services, systems and 

functionality. IOT devices are mostly embedded computing systems that have the nature 

of low-power radios and low-computing power. Applications that researchers have 

identified for the IOT includes: environmental monitoring, energy management, 

industrial and asset management, home automation, healthcare monitoring systems, etc. 

However, integration with the Internet implies that the IoT devices will have an IP 

address as a unique identifier which inherits the security threats of a generic computer. 

This connection of physical devices to the Internet allows the control of the devices 

remotely, very similar to a WSN. IoT building blocks are generally termed Smart Objects 

[117] are also identified as embedded systems connected to the Internet. Current IoT 

market examples include smart thermostat systems, home electrical appliances that use 
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Wi-Fi for remote monitoring, smart home systems, and any systems that generally 

connected to other devices or systems via wireless protocols such as 3G, Wi-Fi, Bluetooth 

and Near Field Communication (NFC). 

Hardware specification and form factors of IoT smart devices vary but generally has the 

following characteristics: 

1) Six known forms: Tabs, Boards, Pads, Dust, Skin, and Clay [118, 119]. 

2) Commonly act as personalized smart mobile devices. 

3) Have ubiquitous computing properties, similar to Sensor Networks. 

 

2.1.5. Radio Sensor Network (RSN, Integration of RFID and WSN) 

In general, WSN is usually used in an environment for sensing and monitoring 

geographical, chemical, visual and even physical environment through various sources 

such as geo-thermal, sound waves or even image. As for the RFID environment, any 

object 'tagged' with an RFID tag is track-able and sense-able in digital form. By 

deploying both tags and sensors, smart nodes are able to make use of the RFIDs for 

intelligent monitoring for unusual events.  Zhang et al [120] stated that the integration 

of these two promising technologies would bring extended capabilities, scalability, and 

portability as well as reduced unnecessary costs.  

Lei et al and Xin et al suggest that the new integrated system will consist of three 

classes of devices. The first class is that of wireless devices known as smart stations, 

containing RF readers, network connectivity and an MCU and its primary task is to 

monitor the tags. The second and third class devices are the tags and sensor nodes [98, 

121]. Lei et al and Xin et al also presents several modes of application such as the smart 

warehouse for asset theft detection, and another example is the smart forklift for 

efficient asset storing. Besides the applications, practically there is a design for the 

smart node proposed by Mason et al [2]. Mason et al presented a design using a Mica2 

mote, interfaced with a TTL converter to allow communication to RF reader, and also 
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demonstrated tag detection. HaiLiu et al [122] suggested 'medical nodes' for medicine 

inventory management and patient monitoring systems. All the above examples show 

the important of such a system in improving our daily lives and the significance of such 

integration of two systems would bring. In many sensor network applications such as: 

home sensing and factory automation can be solved where the readers can be installed 

and carried easily. Figure 2.6 shows one of the proposed integrated RFID readers with 

sensor nodes in the WSN network [120]. 

Wetherall et al [3] introduced RFID sensor networks (RSNs), which consist of small, 

RFID-based sensing and computing devices (WISPs), and RFID readers that are part of 

the infrastructure and provide operating power. They claim that the RSNs bring the 

advantages of RFID technology to wireless sensor networks but they do not expect them 

to replace WSNs for all applications. On the other hand, WISP is very similar to RFID 

devices. Therefore, the potential of WISP replacing RFID is greater in applications that 

require more complex computing and self-sustaining energy harvesting functions.  

Sink Server

Sensor 

Node

Sensor 

Node with 

RF Reader

WISP / 

RFID tags

 

Figure 2.6: The illustration of an integrated RFID and WSN network. 
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2.1.6. Distinction between RCE and eRCE 

Section 2.1.1 to Section 2.1.5 showed that there are two classes of RCE: the typical RCEs 

and the Extreme Resource Constrained Environment (eRCE or XRCE). Typical RCEs are 

systems designed for complex applications and further defined by the sensory hardware 

utilized. A typical example of visual sensor RCEs is the WVSN. eRCEs, such as RFID 

tags, do not possess sensors [123].  

Every RCE requires hardware that is tailored to a specific application to minimize cost, 

power requirements and size and to maximize reliability because RCE devices are often 

left in the field and not intended to be maintained for extended periods of time [16]. For 

WSN and WISP RCEs, general purpose or RISC-like architecture is used as the 

processing unit. Extreme RCEs such as the RFID UHF / HF transponder, application-

specific logic circuits is used to execute read-write commands. While typical RCEs collect 

environmental data, visual sensor RCEs require more on-node processing such as 

applying computer vision techniques and compression [124]. For efficiency, availability 

and cost reasons, FPGAs are typically used as the processing unit for the visual sensor 

RCE nodes [12, 17, 18].  

The hardware property of RCE and eRCE affects the types of data processing algorithms 

used. eRCE is extremely constrained compared to RCE. The extreme constrained nature 

of eRCE led to the introduction and the adoption of lightweight algorithms [125, 126]. 

Many authors suggest that full cryptographic primitives (public key and private key) can 

be used in RCE [127-131], the conservative estimation is that both RCE and eRCE will 

employ algorithms that suit their resource budget. Thus, the algorithms used by both 

systems will vary. Lightweight algorithms are more popular for eRCEs [49, 125, 132, 

133]. The nature of both RCE and eRCE suggests that RCE has the slight flexiblity in 

terms of utilizing modern cryptographic primitives. In contrast, the eRCE has a very 

limited cipher-pool2 to choose from. 

                                                      
2 The findings of the cipher-pool is published in: Kong Jia Hao, Ang Li Minn, Seng Kah Phooi, “A 

Comprehensive Survey of Modern Cryptographic Solutions for Resource Constrained 
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2.1.7. IoT and RSN – Implications for Security 

IoT RCE systems are becoming more prevalent and the devices within the network 

ranges from small sensors to large televisions [5]. Like any other RCEs, IoT has the 

underlying problem of a large spectrum of security problems and constrained resources 

[125]. The options for security are public key or private key encryption but resource 

required for public key primitives is much greater than the private key primitives [125]. 

Similar issues are found in other RCEs [128, 129]. Demand for key management using 

private key cryptography [134, 135] is on the rise as an alternative to the Public Key 

Cryptography. Key management protocols in IoT RCE are in high demand, leading to the 

search for ‘lightweight’ public key primitives. 

RSN [136] is a new type of network that incorperates both the RCE and eRCE [121]. 

Problem arises when secured data communication between RCE and eRCE has to be 

established. Difference in security protocol, device manufacturer, and hardware 

properties lead to the difference in cryptographic primitives employed. Encrypted data 

from eRCE cannot be authenticated or decrypted unless both parties uses the same 

protocol and the same key. A multi-cipher [78] crypto-system is able to solve the 

disparity of cryptographic primitives by adopting the primitives used by the eRCE 

counterpart. Key-predistribution with pair-wise keys [137]  is able to solve the keying 

issue. Alternatively, a pair of session key  generated from a master key [138] can also be 

used with the assumption that the RCE nodes only has to keep a single session key for a 

single eRCE device connected. However, the number of session keys will grow at the rate 

of N − 1 keys (N is the number of neighboring devices) and thus consuming memory 

resources to store the large amount of keys [139].  

                                                                                                                                                       
Environments”, Journal of Network and Computer Applications, Vol. 49, No. 0, pp 15-50, 

Elsevier 2014. 
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2.2. Security in Visual Sensor RCE 

Visual Sensor RCE security is a significant concern because the memory and 

computational resources, required to store keys and run encryption programs, are 

additional to the primary application.  

There are two identified challenges regarding RCE security designs [5, 140]: 

1) What are the security requirements for a specific RCE application? 

2) What is the choice of cryptographic algorithms / primitives? 

 

2.2.1. The Security Requirements for Visual Sensor RCE 

The justification for security requirements is highly dependent on the value of the data 

and the type of RCE [5, 19, 21, 25, 36-38]. The security requirements can be attributed to 

these three elements: 

a) eRCE or RCE. 

b) Lightweight security or strong security. 

c) Generic data or multimedia data. 

Extreme RCEs are normally associated with lightweight security because the target 

applications involve extremely constrained devices, low-value scalar data, and low-level 

threat model [133, 141]. Strong security is preferred in Visual Sensor RCEs that 

processes multimedia data [44, 142, 143].  

Visual Sensor RCE generally requires higher level of security when it comes to the data 

value and the potential threat level [144]. Section 1.1 stated that there are six 

generalized security goals for RCE. Image and video encryption [42, 145-147] is one way 

to protect the confidentiality and privacy of sensitive image data. However, image or 

video encryption techniques usually involves encrypting the full multimedia content, 

which is computationally exhaustive and memory consuming [148]. Processing 
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multimedia data is known to consume large amount of memory that RCE devices 

normally do not possess [94, 149]. Coding methods such as Data compression [150, 151] 

are used to reduce the amount of data payload being stored, sent and processed. Partial 

or selective encryption [40-42] takes advantage of the characteristics of compressed or 

processed data and uses these characteristics to achieve sufficient security protection. 

Partial or selective encryption exploits the characteristics of the coded data using media 

coding algorithms, to provide secrecy while reducing computational complexity [152]. 

This ultimately reduces the amount data to be encrypted, the amount of data to be stored, 

the computation cycles required, the amount of time required for encryption and by 

extension, decreasing the amount of energy consumed via transmission of the system 

[153]. Figure 2.7 illustrates the cryptography paradigm between a traditional encryption 

and selective encryption. 

Input

Data Coding

Encryption

Communication 
Channel

Input

Data Coding

Encryption
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Channel

Important Part
Unimportant 
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a) b)

 

Figure 2.7: The Cryptography Paradigm: (a) Traditional Encryption; (b) Selective 

Encryption (Image extracted and redrawn from [148]) 
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2.2.2. The Choice of Cryptographic Algorithms / Primitives 

Various types of ciphers needed to be considered. Private Key Cryptography (PKC) is 

considered the commonly used cryptographic primitive for WSN RCE as opposed to 

Public Key Cryptography [19, 83]. There are two general types of ciphers: Symmetric and 

Asymmetric ciphers. To find out the choice of cipher algorithms suitable for WSN RCE, 

Law et al [19] reviews the Private Key Symmetric Block ciphers used in WSN RCE and 

provided insights for security options in different resource and security requirement 

scenarios. Besides the Symmetric Block ciphers, ciphers such as the Lightweight, 

Involution and Stream ciphers were investigated on the suitability for RCE applications 

in [6, 96, 140, 154-159]. For low-area, low-complexity applications, symmetric ciphers are 

preferred due to their nature of being hardware implementation-friendly [61, 62]. Law et 

al [19] concluded that the AES cipher is best suited for higher security but worst 

performing in terms of memory and power consumption. On the other hand, Skipjack is a 

viable option for low-security applications. Law et al [19] has also made a specification 

comparison of sensors nodes, claiming that the rate of improvement is conservatively at a 

lower rate than Moore's law prediction. This further confirms the need for cheaper 

security designs and the conclusion reached is founded on MCU-based WSN nodes.  
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2.3. Security in Multimedia Data Processing 

Security for multimedia can be achieved on multimedia content using encryption 

techniques. Multimedia compression [160] is often used to save cost in memory and 

bandwidth. Compression is a way to discard redundant information by searching for a 

less-correlated representation of an image or a video data. Compression techniques often 

revolve around two concepts: spatial redundancy and temporal redundancy. Temporal 

compression techniques take advantage of areas of the image that remained unchanged, 

from the previous frame to the current frame. Temporal techniques focus on storing the 

‘changes’ between subsequent frames rather than the entire image frame. Sequential 

image or video without many changes take the best advantage of temporal compression. 

Spatial compression is a technique of information reduction on a single image or frame 

independent of other frames and thus, suitable for still images.  

There are two type image compression algorithms: lossless and lossy compression. 

Lossless, decorrelation compression technique is preferred for image application because 

it removes redundancy and allows important data to be perfectly reconstructed, 

especially for classified images [161]. Chew et al concluded that the Set Partitioning in 

Hierarchical Tree (SPIHT) compression algorithm has the highest compression ratio and 

reasonably low computation complexity, which is very suitable for WMSN or WVSN RCE 

applications [162]. 

 

2.3.1. Set Partitioning in Hierarchical Trees (SPIHT) – A Lossless 

Compression Technique 

The set partitioning in hierarchical trees (SPIHT) algorithm by A. Said and W. A. 

Pearlman [163] is a lossless-compression algorithm. SPIHT is a powerful compression 

algorithm as it allows progressive reconstruction. To acquire higher quality image, more 

refinement bits are required and decoding can stop at any point in the bit-stream. Ritter 

et al [164] stated that Discrete Wavelet Transform (DWT) followed by Embedded 
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Zerotree Wavelet (EZW) is a very efficient combination for image compression. The 

SPIHT is a highly refined version of the EZW and has higher compression ration than 

EZW.  

The EZW coding uses the DWT to decompose an image into multi-resolution sub-bands, 

creating low-frequency and high-frequency component of an image. In the wavelet sub-

bands, every coefficient at a given scale is related a set of coefficients at the next lower 

scale. This relationship is often referred as the parent-children relationship in the 

literatures. Each node will contain 2 by 2 children at a lower scale. At the highest scale, 

the sub-band is called the LL sub-band (low-low). This LL band will have 3 children 

nodes: the HL band, LH band and the HH band. Due to the nature of the wavelet 

decomposition, the higher scale sub-bands will contain more energy than the lower scale 

sub-bands. Thus, the embedded coding starts with the highest LL sub-band followed by 

HL, LH and HH sub-bands. Figure 2.8 depicts the parent-children dependencies in EZW 

coding, which is also used in the SPIHT. 

HL2

HH2LH2 HL1

HH1LH1

LL

 

Figure 2.8: The parent-children dependencies in EZW and SPIHT (Image extracted and 

redrawn from [151]). 
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Ang et al [11] and Jyotheswar and Mahapatra [165] provided a comprehensive 

description of the SPIHT algorithm. According to Ang et al [11], the SPIHT defines and 

partitions sets using a special data structure called spatial orientation tree (SOT). A 

spatial orientation tree is a group of wavelet coefficients organized into a tree, rooted in 

the lowest frequency (coarsest scale LL) sub-band, with offspring in several generations 

along the same spatial orientation in the higher frequency sub-bands. The pixels in the 

coarsest level of the pyramid are the tree roots. They are grouped into blocks of 2 by 2 

adjacent pixels with one of them in each block. The grouping of the pixel coordinates are 

shown in Table 2.6. 

Table 2.6: The groupings of coordinates in SPIHT SOT. 

O(i, j) Holds the set of coordinates of 2 by 2 off-springs of node (i, j). 

D(i, j) Holds the set of coordinates of all descendants of node (i, j). 

L(i, j) 

Holds the set of coordinates of all grand descendants of node (i, j), 

i.e.: L(i, j) = D(i, j) - O(i, j). 

H Holds the set of coordinates of all spatial orientation tree roots. 

 

Jyotheswar and Mahapatra [165] explains that SPIHT maintains three list of 

coordinates: the LIP (List of Insignificant Pixels), LSP (List of Significant Pixels) and the 

LIS (List of Insignificant Sets). A coefficient is considered to be significant is its 

magnitude is equal or larger to the threshold. By using the notion of significance, the LIP, 

LIS and LSP are explained as follows: 

1. The LIP contains the coordinates of coefficient that are insignificant at the 

current threshold. 

2. The LSP contains the coordinates of coefficient that are significant at the current 

threshold. 

3. The LIS contains coordinates of the roots of the spatial parent-children 

representing a set D (i, j) (marked as an entry of type A) or a set of L (i, j) 

(marked as an entry of type B). 
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The SPIHT algorithm can be divided into three stages: initialization, sorting and 

refinement [165]. During the initialization stage, SPIHT first calculates the maximum 

bit-plane level required for the coding due to maximum value in the wavelet coefficient 

pyramid, and sets the start threshold for the maximum bit-plane level coding. It then 

sets the LSP (significant) to an empty list and puts the coordinates of all coefficients in 

the coarsest level of the wavelet pyramid into the LIP (insignificant), and those which 

have descendants also, into the LIS. In the sorting pass, the algorithm first sorts the 

elements of the LIP (insignificant) and then the sets with roots in the LIS. 

For each pixel in the LIP (insignificant), the SPIHT performs a significance test against 

the current threshold and outputs the test result to the output bit stream. The entire test 

results are encoded as either 0 or 1. If a coefficient is significant, its sign is coded and 

then its coordinate is moved to the LSP (significant). During the sorting pass of LIS 

(insignificant), the SPIHT encoder carries out the significance test for each set in the LIS 

(insignificant) and outputs the significance information. If a set is significant, it is 

partitioned to its subsets according to the set-partitioning rules mentioned in the 

previous subsection. 

The sorting and partitioning are carried out until all significant coefficients have been 

found and sorted in the LSP (significant). After the sorting pass for all elements in the 

LIP (insignificant) and LIS, the SPIHT performs a refinement pass with the current 

threshold for all entries in the LSP (significant), except those which have been moved to 

the LSP (significant) during the last sorting pass. And lastly, the current threshold is 

divided by two and the sorting and refinement stages are continued until a predefined 

bit-budget is exhausted. 

Ang et al [11] proposed a modified version of SPIHT using zero-tree coding (which is 

termed the SPIHT-ZTR). The SPIHT-ZTR exploits the relationship among the wavelet 

coefficients. The Zero-tree condition is mentioned previously that this type of SOT is 

encoded with a single symbol which indicates that all the nodes in this particular SOT 

are insignificant. This modified version of SPIHT provides a better implementation 
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advantage for low-memory applications [11]. In the proposed SPIHT-ZTR algorithm, 

significance tests performed on an individual tree node, descendant of a tree node and 

grand descendant of a tree node are referred to as SIG, DESC and GDESC. Three 

significant maps known as SIG_PREV, DESC_PREV and GDESC_PREV are used to 

store the significance of the coefficient. During the stage for upward scanning 

significance data collection (stage 2, after DWT is performed), a significance table is 

generated and stored in STRIP_BUFFER, which is then used for the final stage of 

SPIHT coding. 

Singh et al [166] briefly describes a direct implementation of the SPIHT software 

algorithm. Ritter et al [164] implemented SPIHT on a Xilinx FPGA XC4085XLA, 

consuming 743 logic blocks for the design without arithmetic coding running at 40MHz 

and 1425 logic blocks with arithmetic coding. Jyotheswar and Mahapatra [165] presented 

an efficient FPGA implementation of DWT and modified SPIHT. Jyotheswar and 

Mahapatra’s implementation results show that a total of 7021 slices used, 1439 slice flip-

flop used and a total of 13356 4 input LUTs used. The paper serves as a reference to 

SPIHT hardware implementations. Vipin et al [167] presented their work on SPIHT 

FPGA implementation using a SPARTAN 3E FPGA without model details. The results 

were 1850 / 1920 slices, 2315 / 3840 slices Flip Flop, 2961 / 3840 4 input LUT and 4 / 12 

BRAM utilized.  
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2.3.2. Selective Image Encryption on Compressed Image Data 

When a two dimensional image is transformed into one dimensional data representation 

using scanning patterns, the image data exhibits certain repetitions due to correlation 

with neighboring pixels [168, 169]. Traditional symmetric encryption algorithms are 

ineffective, especially in a grayscale image or an image that has large areas of pixels with 

high redundancy. A direct symmetric encryption on such images results in blocks of 

identical cipher text because of the correlated pixels with the same values in a cipher 

block [89]. Shiguo Lian showed a comparison between an original image and an 

encrypted image using the AES [89]. The encrypted image (right) in Figure 2.9 is still 

perceptually intelligible. The AES encryption yields the same encrypted cipher text if the 

given plain text and key remains the same. 

 

Figure 2.9: Comparison between original image (left) and AES encrypted image 

(right) (Image extracted from [89]). 

 

To solve the image encryption problem, Norcen and Uhl [79] have provided a 

methodology to selectively encrypt around 20% of the compressed bit stream for 

JPEG2000. By using the JPEG2000 codec, images are transformed into different 

frequency bands that represent different fidelity or resolution. Each of the sub-bands is 

partitioned into a number of code blocks. Each of the code blocks is encoded bit-plane by 

bit-plane, from the most significant bit to the least significant bit. In each of the bit-
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planes, there are mapping and refinement bits. By encrypting the mapping bits, an 

image reconstructed from the cipher text is unintelligible. Lian et al [80] suggested that 

only the significant bits are selected for AES encryption.  Figure 2.10 shows the original 

‘Peppers’ JPEG2000 image (a) and the encrypted image (b). And (c) is the JPEG2000 

‘Plane’ image coupled with its encrypted image (d). The encrypted images are 

perceptually unintelligible and therefore secured, showing that the AES symmetric 

cipher is able to work in combination with compression schemes. Figure 2.11 shows the 

general idea of a working selective encryption system, which comprises of encryption and 

decryption processes. 

 

Figure 2.10: The results of encrypting JPEG2000 coded images using AES (Image 

extracted from [89]). 
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Figure 2.11: The illustration of a partial / selective encryption and decryption system. 

a) the encryption process, b) the decryption process. (Image modified from [89]) 

 

Cheng and Li [42] introduced a selective encryption methodology using quad-tree 

compression algorithm. Quad-tree compression is known to be more efficient a lower bit-

rates [41]. Cheng and Li stated that only 14% of the information is encrypted for typical 

low-resolution image with low information. For high bit-rate images, the encryption ratio 

can reach up to 50%. There are currently no known selective encryption systems that 

incorporate the SPIHT technique. 
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2.4. Crypto-processor for RCE Application 

The ideal crypto-processor to face multiple RCE security threats [31], must be capable of 

double or multiple encryption [27, 28], multi-cipher [29], support for cipher mode of 

operation [30], multi-level security [31], key management [32], authentication [33], and 

digital signature. Such a crypto-processor has to have diverse security features and 

functions. 

 

2.4.1. Crypto-processors for Multi-cipher Application 

Multiple security protocols requires multiple cryptographic primitives, leading to the 

need of multiple cryptographic primitive cores [34]. Multiple primitive cores increase the 

hardware area memory requirement due to cipher programs and crypto-specific 

instruction sets. A unified crypto-processor [170] is able to operate and perform multiple 

ciphers, removing the need for separate cryptographic cores and the hardware logic 

needed for those cores. The only cost for this configuration would be the cipher’s program 

that occupies the memory. More cipher programs require more memory. 

‘Multi-level security’ (MLS) or ‘Multi Security Levels’ (MSL) [171] refers to a security 

environment in which there are different communication access and clearance levels, 

which are dependent on the strength of cryptographic algorithm used. Jongdeog et al 

[171] stated that having more powerful algorithms for higher security domains would be 

reasonable as security levels correspond to sensitivity and clearance. Due to the resource 

limitations of RCE sensor nodes, strong cipher algorithms may consume more memory 

and energy. A low level security domain may opt to use a light encryption algorithm 

rather than a heavy one provided that there are multi cryptographic primitives to choose 

from [171]. A stronger crypto-solution would provide a higher clearance (for decryption 

and access) [76, 172]. A multi-level secure framework is able to support secure 

communication between nodes in a network instead of using a static solution to a wide 

spectrum of threats [172]. Afzal et al [172] stated that WSN RCE security protocols 
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achieve secure communication by using digital signatures, authentication schemes, 

symmetric keying and asymmetric keying. To ensure data non-repudiation, timestamps, 

random number generators and initialization vector are used in conjunction with 

security schemes. However, Afzal et al also stated that WSN RCE security schemes are 

static and coarse, that are unable to impose multiple level of clearances to limit access to 

parts or components of the node device. The other proposals on multi-level solutions are 

predominantly on the node cluster level [76, 172, 173], forming frameworks models and 

security topology by enforcing or manipulating information flow. One way to impose 

security and access control is the use of authentication using Cipher Block Chaining 

(CBC) and Cipher Block Chaining - Message Authentication Code (CBC-MAC), which 

requires symmetric key cryptographic functions. The underlying basis for a well-

designed crypto-processor is the ability to provide sufficient cryptographic functions to 

formulate robust protocols and schemes. Regardless of the requirements of a multi-cipher 

or a multi-level system, the apparent solution to a well–designed, flexible crypto-

processor is having multiple cryptographic functions. 

The CryptoManiac [78] processor is a flexible crypto-coprocessor which supports multiple 

cipher algorithms and also multi-mode operations. Lavos et al [174] has stated that the 

ECB (Electronic Cook Book) mode for symmetric ciphers are the most common mode of 

operation used. Lavos et al also states that the more ‘mode of operations’ that one crypto-

system can support, the more robust and more flexible it is to suit the current needs and 

applications. There are a few modes of operations other than the ECB worth mentioning 

and they are: cipher block chaining (CBC), cipher feedback (CFB), counter (CTR), and 

output feedback (OFB). Lavos et al also proposed a reconfigurable crypto processor 

design to accommodate various encryption algorithms and their respective mode of 

operation with the ultimate aim to provide a unified platform with a design that houses 

the configuration for multi-mode applications. Lavos et al presented an inner-

architecture that focuses on the Cipher Block Unit, using loop-rolling architecture for 

smaller code size. Five ciphers were presented by the Lavos et al: AES, IDEA, DES, RC5, 

and SAFER+, showing a great selection of cipher implementations. Figure 2.12 shows 
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Lavos et al’s design that includes three cipher block units. Figure 2.13 shows that within 

each of the cipher block unit, a common full rolling architecture is used. 
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Figure 2.12: The proposed multi-mode architecture by Lavos et al (Image extracted and 

redrawn from [174]). 
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Figure 2.13: Architecture for cipher core (Image extracted and redrawn from Lavos et al  

[174]). 

 

Lisa et al [78] affirmed that a hardware-software mixed approach is preferred. Young et 

al [29, 77] proposed the multi-cipher cryptosystem (MCC) using multiple cipher cores. 

The proposed MCC is able to perform encryption and different modes of operation. A 

total of 3475 slices is required for the proposed FMCT (Fast Multi-Cipher 

Transformation) using AES 128-bits, DES and 3-DES [29]. Chung et al [29] stated that 

the FMCT has reduced number of processors, suitable for applications in wireless sensor 

network (WSN), online communications, hardware network firewall and etc. Both Chung 

et al and Lisa et al concluded that a hardware platform for multi-cipher application is 

viable to provide multi-cipher and multi-operations. Figure 2.14 shows a crypto-processor 

consisting of co-processor blocks (also known as crypto-blocks). Kim and Lee [175] 
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implemented both private and public key primitives with a VLSI chip using 0.5µm 

CMOS and their AES implementation utilizes 1689 logic slices operating at 58 MHz. 

 

Figure 2.14: Architecture of a multiple cryptographic primitives / processors forming a 

robust crypto-processor (Image extracted from [175]) 

 

In a multi-core environment, besides having multiple cipher cores, one advantage having 

identical cipher cores is to improve a system’s throughput [35, 176-178]. Identical cipher 

cores can exist if design is configured to do so with the help of reconfigurable hardware. 

Feng et al [179] concluded that using identical cryptographic functions with different key 

(based on the survey on security FPGA crypto-design by Drimer [180]), the noise 

contributed by the concurrent processes can be removed. Noise from concurrent processes 

enables attackers to obtain a correlation model hence risking the system. The 

architecture proposed by Feng et al [179] uses a NEW key pairing algorithm to create 

new key-pairings (2 sets of keys) instead of injecting 2 different keys directly. Feng et al 

proposed a tweaked version of AES hardware implementation that uses two sets of keys 

(namely the duo key AES). In an encryption process, if a plaintext is encrypted using 2 
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sets of keys with 2 concurrent processes, it implies the encryption is done via 2 keys. As a 

result, the decryption will only be successful if the 2 keys are correct. Having 2 keys in 

the encryption process effectively strengthens the data privacy because the attacker has 

to acquire 2 keys for a successful decryption. 

Figure 2.15 shows the proposed duo-key-dependent AES (DKD-AES). Feng et al utilized 

a total of 32,900 logic elements (LE), using an Altera Cyclone II FPGA.  

 

Figure 2.15: Architecture for block ciphers by Feng e al (Image extracted from [179]). 

 

2.4.2. Hardware Implementation of AES Crypto-Processor 

i. Field-Programmable Gate Array (FPGA) for RCE 

Microcontrollers are used in WSN, WISP, and IoT devices. For RFID devices, an IC or 

normally ASIC is used. The major limitation of these devices are when an operational 

needs changes or new functionality has to be introduced, reconfiguration of individual, 

partial or even the entire network is not feasible. The current trend and solution is the 

employment of field-reconfigurable devices [11, 181, 182], in which the RCE device is 

able to be re-programmed and re-configured in situations such as: replacing a 
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compromised cryptographic primitive, upgrading system’s performance, reconfiguration 

for a new purposes, hardware bug fixes, and updates. Ultimately, RCE devices employing 

field-programmable hardware is the new platform [9, 12, 183, 184]. Complex image, 

video and multimedia processing is feasible using FPGA [185-187]. Thus, allowing visual 

processing and security to co-exists, forming a robust and secure visual sensor network. 

A typical Xilinx FPGA chip contains a fixed amount of resource elements referred to as a 

slice. A slice is made up of look-up tables (LUTs) and D-type flip-flops (FDs). Thus, the 

area utilization of a design using Xilinx FPGA technology is quoted in terms of the 

amount of slices used.  

 

ii. Low-area Architecture for AES Processors 

The AES has four basic steps in each round of encryption. The four steps, in order, are 

called SubBytes (also known as the byte substitution), ShiftRows, MixColumns, and 

AddRoundKey. The description of the four basic steps in AES rounds are: 

 AddRoundKey: A simple transformation performs XOR with the sub key to the 

round state. 

 ShiftRow: Shifts the byte location with the offset from zero to three depending on 

the row location. 

 MixColumns: Column vector is multiplied with a fixed matrix where bytes are 

treated as polynomials. 

 SubBytes: Non-linear byte substitution which is composed of multiplicative 

inverse, affine transformation and inverse affine transformation. 

In terms of hardware design, there are typically three types of AES hardware 

architecture [188]: 

1) Looping Architecture. 

2) Fully unrolled pipelined architecture. 

3) Deep sub-pipelined fully unrolled architecture. 
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Among the three types above, Looping Architecture is known to be efficient on hardware 

area utilization [189-191]. For high throughput applications, the architectural design 

usually inclines towards unrolling the loops within AES with the help of a deeply 

pipelined 128-bit data path [93]. This technique however would require excessive 

hardware area and power which RCE devices unable to afford. Hence, low-area, low-

power designs are preferred in RCE. 

There are numerous AES designs aiming for low-area architectures for constrained 

FPGA environment [189, 191-193]. Among the low-area designs, Rouvroy et al [191] and 

Chodiwiec et al [189] has the best low-area results. Rouvroy et al [191] reported a total of 

146 slices utilized on a XC2S40-6 FPGA and Chodiwiec et al [189] reported a total of 522 

equivalent slices utilized on a Xilinx XC2S30-6 FPGA. Both Rouvroy et al and Chodiwiec 

et al use a fixed-width 32-bit data-path, which leads to a significant drop in terms of 

throughput as compared to a fully-unrolled 128-bit data path. Feldhofer et al [192] was 

the first to propose a design using an 8-bit data-path, claiming to have the smallest area 

to date. Goodman et al [190] proposed using a customized application-specific 8-bit data-

path architecture to further lower the design area and is currently known to have the 

smallest design on FPGA (122 slices using Spartan-II XC2S15-6). 

Goodman et al [190] stated three key design aspects of an AES processor that 

contributed to most of the logic area: 

1) The S-box computation. 

2) The definition of a suitable primitive operation. 

3) Cipher’s programs size. 

From the architectural point of view, Goodman et al ‘s low-area AES has the following 

key features to reduce area: 

a) Generate expanded keys (forward and inverse keys) on the fly using forward 

expansion and a proposed inverse expansion without saving all the expanded 

keys. 
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b) The calculation of the S-box is done via 5 clock cycles (multiplicative inverse 

requires 3 clock cycles, sharing the same multiplier) to reduce hardware area. 

c) A very basic processing architecture that performs primitive operations such as 

moving 8-bit data, finite-field multiply by 2 (ffm2), finite-field division by 2 (ffd2) 

and XOR are used. 

d) Instruction decoder is minimized by including only the required instruction sets 

(15 instructions). 

e) Programming techniques such as sub-routines and iterations are used (two 

levels). 

Goodman et al ‘s design is highly tailored and specific to AES. The use of the most 

fundamental or primitive arithmetic operations is effective in reducing the complexity of 

the processor’s core at the cost of throughput. Hence the term application specific 

integrated processor (ASIP) is used to describe the design. 

However, Goodman et al ‘s design has a few drawbacks when RCE application is consider. 

An ASIP design of AES is rigid and lacks flexibility. The ASIP hardware data-path and 

finite-state machine (FSM) cannot be reused or repurposed because it is designed to 

perform only a single task. Resources in RCE are extremely scarce, forcing system 

designers to reuse or repurpose processors to facilitate adaptation to observed 

environmental changes or to cater to changing priorities [194]. Hence, general-purpose 

processors are more popular in the RCE. Some may argue that RCE devices do not need 

flexibility but the very nature of RCE devices being pervasive and ubiquitous, requires 

flexibility and scalability to face increasing communication and security demands [195]. 

ASIP is a good design for hardware acceleration by doing a single, specific task efficiently. 

RCE application requires improvisation in the face of changing environments where RCE 

devices usually make do with the limited resources given. 

The primitive operations used in ASIP AES are great in reducing computation 

complexity considering that ASIP AES only runs AES. These primitive finite-field 

operations are highly specific to AES. Hardware implementation of ffm2 and ffd2 are 
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static logic, which defines the instruction set architecture. However, the use of 15 

instruction set is a problem because it requires an additional 4 bits of memory address 

and a relatively large instruction decoder. An alternative solution to this problem is to 

use Turing-Complete instruction set [196] to simplify the instruction decoder and also for 

general arithmetic computation. 

 

2.5. Low-Complexity Processor Architecture for RCE 

2.5.1. Comparison of RISC and CISC 

RISC processors use simple low-level instructions that can be executed within one clock 

cycle while CISC processors uses single instructions that are able to execute several low-

level operations. CISC’s complex instructions require instruction decoding circuitry, 

meaning more hardware is needed than RISC. In contrast, RISC processors require less 

hardware because they have reduced instructions but at higher memory cost to replicate 

complex instructions using simple instructions [197]. A side by side summarized 

comparison of RISC and CISC can be found in Table 2.7. 

Table 2.7: Comparison of RISC and CISC [198]. 

 CISC RISC 

Platform 

Emphasis 

Emphasis on hardware Emphasis on software 

Clocks Includes multi-clock Single-clock 

Instructions Type Complex instructions Reduced instructions 

Data Transport Memory-to-memory: 

“LOAD” and “STORE” 

incorporated in instructions 

Register to register: 

 “LOAD” and “STORE” are 

independent instructions 

Cycle rate and 

Code size 

High cycles per second, small 

code sizes 

Low cycles per second, large code 

sizes 

 

Both CISC and RISC are abstraction of two contrasting models for different applications. 

For RCE purposes, compact processors are designed to compute data using adequate 
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components. Adapting a CISC or RISC model for a crypto-processor has some trade-offs. 

CISC is not a suitable model for RCE because of the instruction decoder and RISC is not 

suitable for RCE due to larger code size. Both models are relatively complex machines 

that serve general computing purposes. 

 

2.5.2. One Instruction Set Computer (OISC), also known as the Ultimate 

Reduced Instruction Set Computer (URISC) 

A one instruction set computer (OISC), also known as the ultimate reduced instruction 

set computer (URISC) in [196], is an abstract machine that uses only a single instruction. 

Given infinite resources, an URISC is said to be capable of being a universal computer in 

the same manner as traditional computers that have multiple instructions [54]. The 

URISC is also consider Turing-Complete because of its ability to perform all 

computations using a single instruction [55, 59]. 

Currently, there three known URISC categories [199]: 

1) Transport Triggered Architecture Machines 

2) Bit Manipulating Machines 

3) Arithmetic based Turing-Complete Machines 

Arithmetic based Turing-Complete Machines are universal and Turing-Complete [199]. 

They are considered most practical because they consist of a conditional jump operation. 

Tsoutsos et al [60] stated that common Turing-Complete variants such as ‘add and 

branch unless positive’ (ADDLEQ), ‘subtract and branch if negative’ (SUBLEQ) and ‘plus 

one and branch if equal’ (P1EQ) have a common pattern of a simple mathematical 

operation followed by a conditional jump. The SUBLEQ is the oldest and also the most 

efficient and popular arithmetic operation [200]. 

The URISC has two models: ‘Subtract and Branch if Negative’ (SBN) and MOVE [54]. 

The comparison of the URISC SBN and URISC MOVE models can be found in Table 2.8. 

http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/Abstract_machine
http://en.wikipedia.org/wiki/Universal_computer
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Chatterjee et al [59] has also concluded that the SBN model is more efficient in terms of 

number of instructions and time required for the execution of a program [59]. 

Table 2.8: The feature comparison of OISC MOVE and SBN models. 

 MOVE SBN 

Orientation Data movement Data processing 

Instruction Format 2-tuple 3-tuple 

Example of Processor RISC CISC 

 

The ‘Subtract and Branch if Negative’ (SBN) processor was first proposed by Van der 

Poel. With this primitive SBN instruction set, a URISC can be built. An SBN instruction 

allows URISC to move operands to and from memory locations, which is the basic 

element of a computer. Arithmetic computations can be performed on data from one 

memory location and the results stored in a second memory location. Similarly, to 

execute URISC instructions, the Arithmetic Logic Unit (ALU) core subtracts the 1st 

operand from the 2nd operand, storing the results in the 2nd operand’s memory location. 

If the subtraction results a negative value, it will ‘jump’ to the target address, Otherwise, 

it proceeds to execute the next instruction in the sequence. For the SBN model, the 

URISC consists of an adder circuit as its sole ALU. Detailed operation of the URISC SBN 

can be found in [54]. Figure 2.16 shows the schematic illustration extracted from [200] of 

the URISC SBN architecture. 
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Figure 2.16: The URISC SBN architecture with Adder (Image extracted from [200]). 

 

In terms of real-world application, URISC was recommended as the material for teaching 

computer architecture to students, giving them the basic understandings of hardware 

and software co-design abstraction [54, 196]. Despite URISC’s sheer simplicity with no 

implication of complex applications, the URISC has been used in ‘homomorphic 

encryption’ systems for cloud computing, namely the Fully Homomorphic Ultimate RISC 

(FURISC) [59]. The justification for security application is that cloud computing requires 

direct computation on encrypted data and also the need to develop secured encrypted 

processors in which both data and instructions are also encrypted. It is logical to assume 

that with only a single instruction, complex processing overhead is high. This is further 

validated by [201, 202]. The Homomorphically Encrypted One Instruction Computer 

(HEROIC) [60] is also a similar processor with the FURISC, showing that URISC is 

gaining popularity because a single instruction architecture is able to offer security for 

the program and data within the system. Both of these designs are rooted on the fact 
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that URISC lacks multiple instructions and opcodes, which is the biggest advantage in 

maintaining the confidentiality of the instruction and algorithm [60]. In the area of 

security, FURISC [59] and HEROIC [60] shows that URISC is feasible thus showing 

potential. 

 

2.5.3. Minimal Instruction Set Computer (MISC) 

Minimal Instruction Set Computer (MISC), differs from URISC, in having multiple 

instructions sets within an Instruction Set Architecture (ISA). A MISC is a computer 

having a minimal amount of instruction sets, sufficient for its purpose. The concept of 

such a computer is to have only the essential computing blocks to form a functional 

computer, without any unnecessary parts or blocks. Hence the term “minimal” is used for 

the basic behavior of such a processor. 

Although URISC with a single instruction is Turing-Complete, the number of 

instructions required for a meaningful operation is staggering, leading to a very high 

overhead as mentioned in the section 2.5.2. A URISC can be configured to become a 

MISC with additional opcodes and ALUs. 

The work by Ting and Moore [203] states that reducing the size of the instruction set is 

effective in reducing the complexity of the process thus improving its performance. Ting 

and Moore understand that there are three important issues when designing a MISC for 

a particular application: 

1) What is the minimum set of instructions required for a processor to be practical 

in solving specific problems? 

2) What will be the performance of the said MISC? 

3) What facilities within a processor are necessary to reduce the complexity and the 

system costs of the said MISC? 
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Understand these three issues will help in producing a minimalist computer. However, 

compared to URISC, the MISC has added complexity. The additional ALUs and 

instructions lead to additional hardware costs hence illustrating point 2) and 3). The 

trade-off between complexity and hardware cost has to be made. 
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2.6. The AES Cipher and the Non-linear S-Box (Sub-bytes) 

In general, the S-Box (also known as Sub-bytes within AES transformations) is unique 

because it is the only non-linear step in the AES encryption. The S-Box functions as 

replacing or substituting an input with another byte. Traditionally, implementation 

approach is preferred to storing the values of the S-Box into a ROM and uses it as a 

Look-up Table. Earlier versions of the S-box circuit are in 8-by-8 Look-up tables and can 

be found in these proposals: [204, 205]. Table 2.9 shows an illustration of the S-box Look-

up Table with 256 values. 

Table 2.9: The lookup table of the 256 substitution values for S-box. 
 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75 

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84 

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF 

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73 

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB 

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79 

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A 

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E 

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 

 

From a crypto-processor’s point-of-view, the AddRoundKey, ShiftRow, and MixColumns 

transformations are seen as data movement and logical XORs operations. Other than S-

Box, the other three transformations are considered modulo 2 bit-wise calculations, 

which can be easily implemented. However, while implementing the AES, there are a 

variety of approaches to satisfy certain design criteria. For high throughput applications, 

Satoh et al [206] presented 10 Gbps AES design. On the other hand, [207] proposed low-
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power AES design with energy efficient S-box circuitry. Lastly, for area-constrained 

hardware applications (such as the re-configurable RCE), [68, 189, 208] presented their 

findings in small S-Box circuits. To design a smaller representation of the S-Box, Rijmen 

et al [65, 209, 210] suggested using sub-field arithmetic in computing the inverse in the 

Galois Field of 256 elements of the S-Box. This leads to the reduction of 8-bit calculations 

to several 4-bits ones, which results to smaller circuitry. Therefore, minimizing the S-Box 

circuitry leads low-area hardware implementations [69].  

In [68], the proposed S-Box is derived from the multiplicative inverse over Galois Field 

(28). To avoid attacks based on simple algebraic properties, the S-box is constructed by 

combining the inverse function with an invertible affine transformation (a matching 

inverse affine is included in the decryption). Satoh et al [68] further extended this idea, 

using the tower-field approach of Paar’s [211] by suggesting that breaking up the 4-bit 

calculations into 2-bit variable will result to even smaller circuit blocks. Being derived 

from the multiplicative inverse over Galois Field (28), the S-Box projects good non-

linearity and may have high hardware complexities. This S-Box representation gives a 

higher impact since the implementation is small enough to allow unrolling or parallel 

designs, for higher throughput if necessary. In the next sections, various models and 

implementations of small AES S-box are reviewed. 

 

2.6.1. The Minimized S-box by Boyar et al 

In practice, circuit designs are built using numerous heuristics which potential led to 

exponential time complexity which can only be applied onto small-sized circuits. The 

heuristic approach naturally works fine on circuit function that can be broken down into 

sub-functions, i.e. matrix multiplication, which decomposes into smaller sub-matrix 

multiplications. The initial work from Boyar et al [212] is to propose a new logic 

minimization technique, which can be applied to any arbitrary combinational logic 

problems and even circuits that has been optimized by standard methodologies. Boyar et 

al described their techniques as a two-step process: non-linear gate reduction and linear 

http://en.wikipedia.org/wiki/Multiplicative_inverse
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Multiplicative_inverse
http://en.wikipedia.org/wiki/Finite_field
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gate reduction. It is by far the smallest S-box combinational circuit that they have come 

up with. In this section, the Boyar’s first approach in logic minimization is reviewed and 

more details can be found in [212] and his improved work for an even smaller 

bidirectional S-box circuit in [71]. 

Boyar et al explained the circuit produced for the inverse in GF (2m) suggested in [213], 

has a tower fields architecture. Since there is multiple representation of Galois Fields, 

there would be multiple versions of efficient circuits. Boyar’s approach is to focus on the 

technique for GF (24) inversion computation and then further perform linear-circuit’s 

reduction with the inversion circuit placed in a suitable position within the S-box. The 

first step consists identifying the non-linear components and reducing the AND gates. 

Boyar et al choses to focus on reducing only the GF (24) circuit since it would be 

significantly beneficial. At the end, an inversion in GF (24) with only five AND gates 

poses as a highly plausible improvement than Paar’s [211].  

The second part would be focusing on minimizing linear components with their newly 

proposed heuristics. Hence, Boyar et al presented two matrices U and B for linear-

minimization. The AES's S-box is S(x) = B * F(U * x) + [11000110]T, where * is matrix 

multiplication and x is the 8-bit S-box input. Note that the initial linear expansion and 

the linear contraction (matrix U and B) were defined to contain as much of the circuit as 

possible while still maintaining linearity. Thus, Boyar et al explained that the portion of 

the circuit defined by U, overlaps with the GF (28) inversion. So, the true aim in the 

second part is to minimize the circuits for computing U and B. The matrix U and B is 

shown in Equation [6.1] and Equation [6.2]. 
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 𝑈 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 0 0 1 1 0 1 1
0 1 0 0 1 1 1 1
1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0
1 1 1 1 1 0 1 0
0 1 0 0 1 1 1 0
1 0 0 1 0 1 1 0
1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0
1 0 0 1 1 0 1 0
0 0 1 0 1 1 1 0
1 0 1 1 0 1 0 0
1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 0
1 1 0 1 1 1 1 0
1 0 1 0 1 1 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 [6.1] 

 

 

 𝐵 =

[
 
 
 
 
 
 
 
0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0
1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0
0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0
1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0]

 
 
 
 
 
 
 

 [6.2] 

 

The Boyar’s technique has yielded a circuit for the AES S-box composed of three primary 

parts: the top-linear transformation, the middle non-linear block and the bottom-linear 

transformation [212]. The top-linear transformation is a result of the minimized matrix 

U, a total of 23 XOR gates used and at depth 7, consisting 8 inputs and 22 outputs. The 

middle non-linear block is block with 22 inputs and 18 outputs, having a total of 30 XOR 

and 32 AND gates. And lastly the bottom-linear block converts the 18 inputs from the 

middle non-linear block to become 8-bits output, having 26 XOR and 4 XNOR gates. All 
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these 3 blocks together forms the final circuit of the S-box. Boyar et al [212] presented 

the forward version of the S-box, with a total gate count of 115 gates. The Figure 2.17 

illustrates of the proposed S-box by Boyar et al [212]. 

δ (matrix U) δ-1
(matrix B) GF-1 

The Original Proposed SBOX (forward)

 (115 gates)

Middle non-linear block
Bottom Linear 

BlockTop Linear Block

23 gates 62 gates 30 gates

 

Figure 2.17: The illustration of Boyar’s minimized S-box. 

 

To further improve the work, the Boyar et al have presented their extensively improved 

work in [71]. The Boyar’s work has proposed a more complete S-box example, by 

incorporating the reversed version of the S-box. This time, Boyar attempts to apply a 

greedy heuristic approach for linear-minimization and several depth reduction 

techniques.  

The largest circuit component is the top and bottom linear-circuits. As explained 

previously, the top and linear components contain more than just the linear operations in 

the definition of the complete AES S-box. The reason is that the matrices include some of 

the field inversion operations. This shows that there would be some amount of AND 

gates within the U and B matrices. In addition, Boyar et al stated that circuits with 

fewer AND gates will have larger linear components. This part of the work is optimized 

on top of the previously minimized circuit (115 gates). 

Boyar et al ‘s technique is to modify a greedy heuristic approach by Paar’s [211]. Paar’s 

technique keeps a list of XOR computed variable. Then the steps are repeated to search 

for the XOR pair of the input which results to the most occurrences in the output. This 

result is added as a new set of variable to the next stage and repeated until all the most 

occurred pairs are found. Hence, the Low_Depth_Greedy algorithm only allows the 
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Paar’s greediness as long as the circuit’s depth is not increased unnecessarily. Boyar et al 

performed the three types of depth-reduction optimizations: 1) applying a greedy 

heuristics to re-synthesize linear components into lower-depth construction of circuits, 2) 

using techniques from automatic theorem proving to re-synthesize non-linear 

components and 3) doing simple depth-reduction along critical paths. 

The optimization results have yielded a forward S-box with 128 gates and an inverse S-

box with 127 gates. This is considered a significant improvement since the total gate 

count for a complete bi-directional S-box is amounted to 192 gates, which is less than the 

total gate count of the two circuits combined. From our understandings, the only tradeoff 

is; to combine both circuits, a multiplexer would be required to switch between 

encryption and decryption since there is a middle-shared component. Figure 2.18 shows 

the illustration of the bi-directional S-box in block diagram form [71]. 

δ δ-1 

GF-1 

The Latest Proposed SBOX (bi-direction)

 (192 gates)

Middle non-

linear block 

(shared)

Bottom Linear 

Block

Top Linear 

Block

δ 

MUX

MUX

27 gates

27 gates

38 gates

37 gates

63 gates

forward forward

inverse inverseδ-1 

 

Figure 2.18: The illustration of Boyar’s recent minimized S-box (both forward and 

inverse S-box). 

 

2.6.2. The Optimized S-Box by Satoh and the Model Implementation by 

Edwin 

The Rijndael architecture presented by Satoh et al [68] has been a benchmark for 

compact AES design for quite a period. Satoh et al proposed further optimization of the 
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S-box by introducing a new composite field. Satoh et al adopted the three stage 

methodology: extension field – composite field – extension field. Satoh et al suggested 

that the composite field can be constructed without applying a single degree-of-8 

extension to GF (2), but by applying multiple extensions of smaller degrees. Satoh et al 

built the composite field by repeating the degree-of-2 extensions under the polynomial 

basis with the irreducible polynomials shown in Equation [6.3] and hence, proposed a 

compact architecture with the introduction of a new composite field of GF (((22)2)2) and 

has shown improvement over proposals using the GF ((24)2) field approach. 

  
 

 {

GF(22)               ∶ x2 + x + 1

GF((22)2)         ∶ x2 + x + ∅

GF(((22)2)2)   ∶ x2 + x + λ

 [6.3] 

 

Figure 2.19 shows the overview of the composite field S-box. Satoh et al stated that the 

isomorphism functions are located at both ends of the S-box function (both encryption 

and decryption). Satoh et al [68] have shown the 8-by-8 matrix for the isomorphic 

mapping into the composite field in Figure 2.20 and the inverse isomorphic mapping in 

Figure 2.21. 
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Figure 2.19: The illustration of the composite field S-box transformation. 
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Figure 2.20: Illustration of isomorphic mapping. 
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Figure 2.21: Illustration of inverse isomorphic mapping. 

 

 

Edwin [92] has presented the complete break down the S-box and the multiplicative 

inverse GF (28). The individual blocks within the composite field S-box are shown in 

Figure 2.22. A circuit excluding the isomorphic transformations and only the circuit 

layout of the multiplicative inverse in the GF (28) is shown in Figure 2.23. Figure 2.23 

shows five GF (24) multiplier used and Figure 2.22 shows that each of the GF (24) 

multiplier blocks uses three GF (2) multipliers. The total gate count for the bi-directional 

circuit (excluding the MUX and including the inverse isomorphism circuit) is a total of 

261 gates, with inverse isomorphism 23 gates (Figure 2.24).  
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Figure 2.22: Individual blocks within the composite field S-box. 
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Bytes. 

 



66 

Chapter 2 

8
 b

it in
p

u
t 

(1
 b

y
te

)

4

2222

4
2

2 2
4

22

2

4

2222

4
2

2 2
4

22

2

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

4

2222

4
2

2 2
4

22

2

4

2222

4
2

2 2
4

22

2

4
4

4 4

8

4

2222

4
2

2 2
4

22

2

4
4

4
44

8

8

b
0

b
1

b
2

b
3

b
4

b
5

b
6

b
7

01

8
 b

it o
u

tp
u

t 

(1
 b

y
te

)

c
c

x
λ
 

δ
 

δ
-1 

A
T

X
-1

X
 

X
 

X
 

X
2

 

Figure 2.24: The complete schematic circuit for the forward SubBytes with a total gate 

count of 238. 
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2.6.3. The Very Compact S-Box by D.Canright 

D. Canright [69] proposed a method to compute the S-box function by comparing and 

investigating the normal basis and the polynomial basis inverter. Table 2.10 shows the 

known S-box’s implementation comparison table. 

Table 2.10: The comparison of S-boxes (table extracted from [69]). 

Basis Type XOR NAND NOT MUX Total Gates 

Canright [69] 

Merged 107 36 2 16 253 

S-box 91 36 0 0 195 

Inv S-box 91 36 0 0 195 

Mentens [214] 

Merged 118 36 0 16 271 

S-box 96 36 0 0 204 

Inv S-box 97 36 0 0 206 

Satoh [68] 

Merged 119 36 3 16 275 

S-box 100 36 0 0 211 

Inv S-box 99 36 0 0 209 

Worst 

Merged 131 36 0 16 293 

S-box 107 36 0 0 223 

Inv S-box 106 36 0 0 222 

 

 

2.6.4. Other Small S-Boxes 

Xinmiao et al [93] used the composite field arithmetic approach for small S-boxes. 

Xinmiao et al also applied the sub-pipelining architecture on the top-level AES design. 

This dramatically improves the throughput with a trade-off of larger design size. In 

Rouvroy’s design [191] SubBytes was combined with MixColumns to form a 32-bit “T-box” 

LUT (18 kbit). This has produced superior throughput however still occupied a relatively 
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large area when the size of the LUT was taken into account. For many applications, 

throughputs in hundreds of megabits per second would be considered excessive and 

therefore, not suitable for resource constrained environment. And another S-box worth 

mentioning, is the work proposed by Renfei et al [215]. Renfei et al presented various 

critical path delays within the composite field S-box and attempts to minimize the design. 

Renfei et al concluded their findings with improved critical path at the expense of a 

larger design. 
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CHAPTER 3  

LOW-COMPLEXITY, LOW-AREA FPGA ENCRYPTION 

ARCHITECTURE USING A LIGHTWEIGHT CIPHER, THE 

SKIPJACK CIPHER 

__________________________________________________________________________________ 

3.1. The Proposed Two Instruction Set Computer (TISC) for 

Skipjack Cipher 

3.1.1. The Design of the Proposed TISC Architecture 

The new proposed architecture aims to create a low-complexity Skipjack cipher processor 

using the URISC architecture. The proposed TISC architecture modifies the original 

URISC for cryptographic applications. The modifications are: an additional operation 

code (opcode) decoder, an XOR block, and a new data path. The original URISC [196] has 

a single Adder ALU and processes a single fixed-length instruction. This feature does not 

require an opcode field. To define new instruction sets, an opcode decoder circuitry has to 

be designed for the architecture.  

Skipjack cipher involves the use of bit-wise XOR [63]. Processors in extreme RCEs are 

able to compute simple operations such as the XOR [216]. The information given above 

and the suitability of Skipjack for low-resource environment [19], the existence of a 

dedicated XOR block within the processor is justified. Additionally, with the XOR 

operation, the architecture is able to process data movement operations (MOV) with one 

less instruction comparing to the URISC’s primitive SBN instruction. The URISC’s SBN 

instruction is retained for the conditional instruction branching while the XOR is used 

for data memory movement and Skipjack operations. Figure 3.1 depicts the proposed 
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TISC architecture with the dashed brackets depicting the components added to the 

modified URISC. 
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Figure 3.1: The illustration of the TISC data-path architecture3. 

 

3.1.2. Developing the Modified SBN URISC for the Proposed TISC 

Architecture 

A processor has to have basic operations in order to perform computing tasks. Basic 

operations such as data movement, copying, deletion, instruction jumping and No 

Operation (NOP) are required. Gilreath and Laplante [54], stated and proved that the 

                                                      
3 Published in: Kong Jia Hao, Ang Li-Minn, Seng Kah Phooi, Ong Fong Tien, “Low-complexity Two 

Instruction Set Computer architecture for sensor network using Skipjack encryption”, 

Proceedings of the 25th of the International Conference on Information Networking (ICOIN 

2011), pp. 472-477, ISBN: 978-1-61284-661-3, 2011, Figure 3. 
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SBN instruction set that can implement LOAD, STORE, INC and GOTO, is therefore 

functional and equivalent to a realization of a Turing-Complete machine.  

 The instruction format and pseudo-code for SBN is shown in Figure 3.2. The Operand A 

is subtracted from the Operand B. If the result is a negative value, the execution 

proceeds to the Jump-Address. If the result of the subtraction is a non-negative, the next 

instruction is executed.  

SBN (Operand A), (Operand B), (Jump-Address Y)

B = B + (- A)

If B < 0 GOTO (Program Counter + Y)

Else GOTO (Program Counter + 1)

 

Figure 3.2: The SBN instruction format and pseudo-code. 

 

To achieve Turing-Complete, the SBN is used to construct more complex macro-

instructions by either “instruction parameterization” or “instruction sequencing”. 

Instruction parameterization is a method of choosing the parameters of the instruction so 

that the instruction behaves as another instruction. Two instructions that can be created 

by the parameterization method are shown in Figure 3.3. 
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B = B – 0; (No Operation : NOP)

NOP: SBN 0, B, Y;

0 = B – B; (Memory Wipe : CLR)

CLR: SBN B, B, Y;

; 

Figure 3.3: Two examples of instruction parameterization creating the NOP and CLR 

instruction. 

 

Mathematically, to make a variable retain its value, a subtraction or an addition of zero 

would suffice. Figure 3.3 shows by setting the Operand A to a value of zero, the SBN of 

Operand A and B yields a value of B, which is equivalent to a NOP. Similarly, to clear a 

memory, the SBN of Operand B with itself creates a CLR operation. Jump-Address Y can 

be changed to other addresses if a branch is desired or a specific part of the program has 

to be reused. To achieve this, an instruction can be parameterized to do ‘conditional 

branching’ branching towards the targeted program counter. In programming terms, a 

‘conditional branching’ or a “JUMP”, is akin to a finite loop within a program. A “JUMP” 

is essentially a “GOTO” in this context. An SBN instruction takes in two parameters and 

subtracts them both. The resultant of this computation has to yield a negative number 

for a fixed number of times, in order to achieve a fixed number of loops. For example, if 

the Operand B has a value of ‘-7’, then Operand B has to be subtracted with ‘-1’ for 7 

times to reach a non-negative value, which is a zero. If the resultant is no longer a 

negative number, the program automatically exits the loop. If the resultant remains a 

negative number, the ‘conditional jump” will be triggered and the targeted program 

counter is being executed again. Figure 3.4 shows two examples of parameterizing the 

Operand A to a value of L3 or L8 to create a program finite loop. 
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Loop = L3 – (-1); (GOTO to Y, 3 times : LOOP3)

LOOP3: SBN (-1), L3, Y;

Loop = L8 – (-1); (GOTO to Y, 8 times : LOOP8)

LOOP8: SBN (-1), L8, Y;

 

Figure 3.4: Two examples of instruction parameterization creating the conditional 

branching instruction, with finite loops of 3 and 8. 

 

On the other hand, instruction sequencing is a method of choosing an instruction 

sequence to create or emulate the behaviour of a macro-instruction. As an example, to 

create two variations of the CLR instruction, the SBNs shown in Figure 3.5 can be 

sequenced as such: 

CLR X:

SBN 0x00, X, Y;

SBN X, X, Y;

SBN 0x00, X, Y;

CLR Y:

SBN 0x00, Y, Z;

SBN 0x00, Y, Z;

SBN Y, Y, Z;

 

Figure 3.5: The illustration of two variations of CLR instruction via instruction 

sequencing. 

 

With the NOP, CLR, and LOOP operation, in addition to the LOAD, STORE, INC and 

GOTO operation, this shows that URISC is truly capable of the essential computing 

operations. Despite being Turing-Complete, the memory overhead for URISC macro-

instructions is very high and requires a large number of SBN instructions [201, 202]. In 
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the area of cryptography, the XOR operation is very common for key and cipher text 

intermediate value addition because it allows easy encryption and decryption on a 

plaintext [217]. On the other hand, extreme RCEs such as the RFID has the ability to 

compute simple bit-wise operations such as OR and XOR [216]. Low-complexity means 

less instructions sets. In this case however, Skipjack cipher requires XOR operations, 

which means that a processor has to support the XOR operation. XOR operation can be 

synthesized from SBN according to Gilreath et al [54] but it requires two SBN 

instructions to synthesize an XOR.  This means that twice as much memory is required 

without an XOR ALU for computing Skipjack cipher. An additional XOR ALU has to be 

added for crypto-purposes and therefore, a set of op-codes and op-code decoder are 

required. With ADD and XOR operations, an Op-code decoder is required and the new 

processor is no longer a URISC, but a Two Instruction Set Computer (TISC).  

According to Laplante [53], a simple Half Adder digital logic circuit can be used to 

implement the SBN URISC and any arithmetic or data movement instruction processors. 

However, problem arises when a conditional jump occurs after the Negative flag is 

triggered. During this event, it is either the incremented PC value or the new JUMP 

address from the memory has to be written into the PC register. Mavaddat’s URISC [196] 

only has a RESET function but not a Specific Address JUMP. A slight modification of the 

original URISC is able to allow Specific Address JUMP operation. Without a specific 

address JUMP, macro-instructions cannot be reused, which ultimately costs more 

memory for programming. While keeping the processor complexity to a minimal (two 

instruction sets), memory overhead required for Skipjack can be reduced. Hence 

complying to the criteria of a compact design like a MISC processor [203]. 

The new modified URISC (Figure 3.6) consists of five registers, three multiplexers (MUX), 

an Adder and a single memory. The PC register stores the program counter (PC), which 

indicates the next location of program code in the memory that will be read. The R 

register will store the first read data ‘A’ from the memory. Memory Address Register 

(MAR) will provide the address for reading or writing data to the memory. The Memory 
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Data Register (MDR) will store the result produced from the arithmetic subtraction (‘B’ - 

‘A’). The result will then be written back to the memory, replacing the value of B. 

Whereas Z and N registers, both holds the output of the zero and negative flags from the 

Adder. The size of architecture is determined by the size of the words used.  

ADDER

PC

Z N

R

MDR

MAR

PC out PC in

R in

Z in

N 
in

MDR out MDR in

MAR in

C in

MEMORY

READ

WRITE

COM
P

A) B)
PC

MODIFIED URISC

ADDER

PC_WRITE

0

MEMORY
MEM_READ

MEM_WRITE

INV

R R_WRITE

N

Z_WRITE

MDR MAR MAR_WRITEMDR_WRITE

MUX0 1 MAR_SEL

MUX0 1ALU_B
ALU_A

Z

CIN

N_WRITE

MUX00 01 10 11

 

Figure 3.6: The illustration of the modification from A) URISC to B) Modified URISC, to 

suit RCE applications.  

 

Besides having both Adder and XOR instruction sets, the TISC architecture has the 

following URISC modification: 

1) MDR is no longer used for storing memory addresses. MAR is used instead. This 

allows self-modifying codes for better macro-instruction re-usage. 

2) The data or memory addresses are directly read instead of written into MDR. 

MDR is used only when a new data is produced.  

3) Three multiplexers (MUXs) are added at data path intersection points of multiple 

inputs and outputs for micro-operation flexibility and variable jump address 

execution. 
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4) Op-code decoder and an output multiplexer are included to enable the 

architecture to produce the appropriate output with respect to the op-codes. 

 

3.1.3. Developing the New TISC Skipjack Instruction Set and Opcodes 

To develop the TISC for Skipjack, the two instructions sets used are the SBN and XOR.  

Figure 3.7 shows the two instruction sets in pseudo-code form. 

SBN

Mem_B = Mem_B + (- Mem_A)

If Mem_B < 0 Goto (PC + C)

Else Goto (PC + 1)

XOR

Mem_B = Mem_B XOR Mem_A

 

Figure 3.7: Pseudo-codes for the two TISC Skipjack instruction sets4. 

 

The instruction set format shown in Table 3.1 shows that an Op-code occupies one bit 

space as the MSB (Most Significant Bit) of the memory address. The SBN is used for 

branching and XOR is used for Skipjack processes. There are no unused instruction sets 

or ALUs. The MUX in Figure 3.8 is used to select which output of the ALU should be 

taken. 

 

 

                                                      
4 Kong Jia Hao, “Low-complexity Two Instruction Set Computer architecture for sensor network 

using Skipjack encryption”, Figure 2. 
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Table 3.1: The TISC Skipjack instruction sets. 

Operation 
Function Code / Op-code 

(1-bit MSB) 
Instruction Set Format 

SBN 0 (0 @ address A), address B, Target 

XOR 1 (1 @ address A), address B, Target 

 

N

Z_WRITE Z

N_WRITE
XOR

[8:0] [8:0]

0 @ [8:0]

Mem_B Mem_A

XOR_Out

Adder

[9:0] [9:0]

[9:0]

Mem_B Mem_A

Adder_Out

OP 

Code ALU Output Mux

ALU_Out

TISC Skipjack ALU

 

Figure 3.8: TISC Skipjack ALU components5. 

 

The Adder block performs a 10-bit addition, taking in two 8-bit data item and 

concatenating two zeros to become the MSBs. By inverting the second data, a subtraction 

can be performed by the addition of both data and a carry in (2’s complement). In order to 

branch to a certain memory location, the target address may hold a value that provides a 

summation value to the Program Counter (PC) The value of PC is able to reach to an 

address that is located anywhere within the memory block which can go from 0 up to 

1023. As for XOR block, the circuit performs a 9-bit two input XOR operation on the two 

data items. Due to the addressing value of 9-bits (10 – 1 bit op-code), the effective 

addressable memory location is a total of 512 bytes. Figure 3.9 shows the schematic of 

the 10-bit Adder and Figure 3.10 show the schematic of the 10-bit XOR. 

                                                      
5 Kong Jia Hao, “Low-complexity Two Instruction Set Computer architecture for sensor network 

using Skipjack encryption”, Figure 5. 
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Figure 3.9: TISC Skipjack ALU Adder (10 bit). 

 

 

 

Figure 3.10: TISC Skipjack ALU XOR (10 bit). 

 

3.1.4. Skipjack Program Structure and Memory Mappings 

The Skipjack’s F-box is implemented in the Look-up Table form, which is 256 bytes in 

total. There is no known combinational logic representation for the Skipjack F-box. To 

determine the size of the architecture (i.e.: size of the data-path registers), the Skipjack 

program was written beforehand to find the suitable memory width size. The F-box Look-

up Table occupies 256 bytes and the data section is reserved to 64 bytes. The program 
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codes written occupied a total of 707 bytes. Therefore, the memory size for TISC Skipjack 

architecture is a 1024 x 10-bit single memory. The program and data memory break 

down can be seen in Figure 3.11.  

 

Figure 3.11: The illustration of the TISC Skipjack’s code and memory mapping 

organization6. 

 

 

Figure 3.12 shows a section of the written program codes for the stepping rule A and B. A 

total of 129 instructions were used in the complete 32 rounds of Skipjack encryption 

(including the SBN JUMP instructions). 

 

                                                      
6 Kong Jia Hao, “Low-complexity Two Instruction Set Computer architecture for sensor network 

using Skipjack encryption”, Figure 8. 
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//Rule A

Address Instruction

524 XOR 0x312, 0x124, 0x000 // mov w2.1 to ctemp 3.1

527 XOR 0x313, 0x125, 0x000 // mov w2.2 to ctemp 3.2

530 XOR 0x314, 0x126, 0x000 // mov w3.1 to ctemp 4.1

533 XOR 0x315, 0x127, 0x000 // mov w3.2 to ctemp 4.2

536 XOR 0x329, 0x122, 0x000 // mov g1 to ctemp 2.1

539 XOR 0x32A, 0x123, 0x000 // mov g2 to ctemp 2.2

542 XOR 0x316, 0x129, 0x000 // xor w4.1 to g1 

545 XOR 0x317, 0x12A, 0x000 // xor w4.2 to g2

548 XOR 0x33E, 0x12A, 0x000 // xor master round counter to g2

551 XOR 0x329, 0x120, 0x000 // mov g1 to ctemp 1.1

554 XOR 0x32A, 0x121, 0x000 // mov g2 to ctemp 1.2

557 SBN 0x131, 0x136, 0x021 // goto reset

//Rule B

Address Instruction

560 XOR 0x316, 0x120, 0x000 // mov w4.1 to ctemp 1.1

563 XOR 0x317, 0x121, 0x000 // mov w4.2 to ctemp 1.2

566 XOR 0x314, 0x126, 0x000 // mov w3.1 to ctemp 4.1

569 XOR 0x315, 0x127, 0x000 // mov w3.2 to ctemp 4.2

572 XOR 0x329, 0x122, 0x000 // mov g1 to ctemp 2.1

575 XOR 0x32A, 0x123, 0x000 // mov g2 to ctemp 2.2

578 XOR 0x310, 0x112, 0x000 // xor w1.1 to w2.1 

581 XOR 0x311, 0x113, 0x000 // xor w1.2 to w2.2

584 XOR 0x33E, 0x113, 0x000 // xor master round counter to w2.2

587 XOR 0x312, 0x124, 0x000 // mov w2.1 to ctemp 3.1

590 XOR 0x313, 0x125, 0x000 // mov w2.1 to ctemp 3.2

 

Figure 3.12: Example instructions of Rule A and B within the Skipjack Program7. 

 

By using SBN JUMP instructions, macro-instruction program codes can be reused and 

reiterated. By reusing codes, the program size reduced instead of duplicating the same 

codes that performs the same operations. Figure 3.13 shows the program flow of the 

TISC Skipjack. In order to execute the complete 32 rounds Skipjack encryption program, 

the program flow has to be suited to the location of the instructions in the memory due to 

the continuous increment of the PC. 

                                                      
7 Kong Jia Hao, “Low-complexity Two Instruction Set Computer architecture for sensor network 

using Skipjack encryption”, Figure 6. 
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Figure 3.13: Skipjack program flow8. 

 

3.1.5. The Finite State Machine (FSM) 

An FSM with control signals is required to control the registers, multiplexers, and 

memory within the data-path during each clock cycles. Figure 3.14 shows the Boolean 

expressions that generates the required control signals. A total of 9 clock cycles are 

required to execute one instruction within the program. The control signals are produced 

by a combinational logic circuit. The combinational logic circuit is driven by a counter 

that will count from 0 to 8. 

During each clock cycles, the control signals for a particular control inputs are different. 

During clock cycle 0, the program counter (PC) is set to a fixed address initially and 

                                                      
8 Kong Jia Hao, “Low-complexity Two Instruction Set Computer architecture for sensor network 

using Skipjack encryption”, Figure 7. 
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loaded into the memory address register (MAR). The zero register (Z) will be set by the 

adder’s output to determine whether the PC has restarted to 0x00. Using this initial PC 

value, a set of memory value is read and written to the MAR. Now, the current MAR 

value holds the memory location of the first operand (A). Next, the PC value is then 

increased by 1 in order to access the address of the second operand (B). At clock cycle 2, 

the value of A is then read and then store to R register temporary. 

During clock cycle 3, the current PC+1 value is loaded into MAR. During clock cycle 4, 

the memory location of the second operand B is then read and store back to MAR again. 

The PC value is also increased by 1 during the same clock cycle. At the clock cycle 6, the 

value of B, which will be used in arithmetic operation, is read. The adder perform the 

arithmetic operation (B-A). The N register is used to determine whether the result or the 

arithmetic calculation is negative via a negative flag to. During the same clock cycle, the 

PC value is again increased by 1 (which is now PC+2) which will locate the jump 

program memory address for the next clock cycle. 

After the TISC arithmetic operations are performed, clock cycle 7 will load the jump 

address from memory. The jump address will then be added into the PC value during the 

same clock cycle. The jump address value will only be added to the PC value, provided 

that the arithmetic (B-A) produced negative result (subtract and branch if negative). The 

last clock cycle 8 will have the PC value increased by 1 again and thus, a single TISC 

instruction (regardless of which instructions) completed.  

Equations (1) to (14) shown in Figure 3.15 are the Boolean expressions for each control 

signals generated via a 4-bit counter. As for the PC_WRITE control signal, the N 

register’s value affects to whether the architecture decides to branch or not. During the 

7th clock cycle, PC_WRITE will be 1 if the arithmetic summation of the adder, (B-A), 

produced negative result. This enables the jump address for that instruction to be added 

into the PC register and thus, resulting to a branch. If the N register is 0, there would 

not be any branching off to another program location. The PC register would continue to 

increase by 1. Then, the following instruction in the written program code will be 
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executed normally. The summary of the data movement with respect to each clock cycles 

is shown in Table 3.2. Data_A and Data_B shown are the first operand (A) and second 

operand (B) respectively. The OP_reg mentioned is referring to the OP register in Figure 

3.1. The TISC is derived from the proposed modified URISC and therefore Figure 3.1 and 

Figure 3.6 B is the TISC and modified URISC respectively. Figure 3.14 also shows that 

there are some FSM signals are only applicable to TISC due to the two instruction set 

architecture. 
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Figure 3.14: The Boolean expression of the FSM controller used in TISC. 

 



84 

Chapter 3 

C3 C2 C1 C0

Counter

ALU_A

ALU_B1

ALU_B0

CIN

MAR_SEL

Clk

PC_WRITE

NClk

R_WRITE

Z_WRITE

N_WRITE

MAR_WRITE

MDR_WRITE

MEM_WRITE

MEM_READ

 

Figure 3.15: The FSM combinational logic circuit. 
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Table 3.2: The summary of the data movement with respect to each clock cycles of the 

TISC architecture. 

Clock 

Cycle 

Data_A Data_B Additional Remarks FSM Signals 

0 Address of 

Data_A is 

loaded into 

MAR. 

- (PC) to MAR. Z_WRITE, 

MAR_WRITE 

1 Data_A is 

loaded to 

R_reg 

- Opcode (if available) from the 

instruction to OP code 

register. 

PC_OUT_SEL, 

MAR_WRITE, 

MEM_READ, 

OP_WRITE, 

MAR_SEL 

2 - Address of 

Data_B is 

loaded into 

MAR. 

(PC + 1) to MAR R_WRITE, 

C_IN, 

PC_OUT_SEL, 

MEM_READ 

3 - Data_B is 

loaded out 

- C_IN, 

PC_WRITE, 

MAR_WRITE  

4 Data_A is 

read from 

R_reg 

Data_B is 

read from 

memory 

directly 

The output of the arithmetic 

calculation for both Data_A 

and Data_B is selected via 

MUX 

PC_OUT_SEL, 

MAR_WRITE, 

MEM_READ, 

MAR_SEL 

5 - - The computed data is stored 

in MDR 

C_IN, 

N_WRITE, 

PC_OUT_SEL, 

MDR_WRITE, 

MEM_READ 

6 - - PC + 2 to MAR C_IN, 

PC_WRITE, 

MAR_WRITE, 

MEM_WRITE  

7 - - Branch code loaded. If -ve 

branch occurs, PC + 2 + 

'branch_address' is the new 

PC value. 

PC_OUT_SEL, 

PC_WRITE, 

MEM_READ 

 

8 - - PC + 3 (instruction cycles 

reset) 

C_IN, 

PC_WRITE 

 

3.1.6. The Memory Readdressing Modes (Programmable Addresses and 

Self-Modifying Codes) 

In URISC programming, there is a unique way of coding that allows the code itself to 

‘self-modify’. This is a very unique feature in instruction set programming and is used 

very frequently in the proposed architecture and therefore, the intricate details of the 

applied self-modifying code techniques have to be explained. Self-modifying code is code 
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that alters its own instruction in the process of execution. This method is usually used to 

improve the codes’ performance or to simply reduce repetitively similar code and helps 

reducing memory usage. Reducing memory usage is crucial towards designing a 

minimalistic TISC. This term is usually applied to code where the self-modification is 

intentional, not in situations where the code accidentally modifies itself due to 

programming error.  

In URISC programming, if the architecture is in 8-bits, then the self-modifying addresses 

are a total of 256 addresses, provided that there is no op-code to be filtered via the MAR. 

Presumably is an op-code is forced upon the URISC. This would make the 8-bit 

architecture to be a 7-bit architecture because 1 MSB would have to be occupied for op-

code. On top of that, an op-code decoder would have to present. This would the effective 

word width to 7-bit. A 7-bit architecture will provide 2 ^ 7 addressing spaces. For 

example, 27 = 128 addresses. This would mean that there will be only 128 memory 

addresses available for programming. Note that each SBN instructions consist of 3 words, 

meaning 3 memory locations will be occupied for a single SBN instruction. To identify 

the programmable memory section, the 1-bit op-code has to be accounted for. So, the 

programmable address for an 8-bit architecture and a 1-bit op-code is 7-bits address, 

meaning there are 128 addresses that are capable of ‘self-modifying’. The addressable 

memories and the self-modifying code are mentioned here because they play an 

important role in making URISC programming capable of complex operations which is 

used in this work presented in the latter chapters. 

Figure 3.16 illustrates the visual explanation of the self-modifying addresses. The 

question may arise that, why a ‘0’ is concatenated as an MSB? This is because when a 

single bit op-code exists, that op-code that to be taken out and decoded via op-code 

decoder circuitry.  Once the op-code is taken out of the 8-bit address, the 1-bit space has 

to be filled. So, a ‘0’ is concatenated and this indirectly alters the value of the address. In 

other words, this ‘new’ address is still the same address if it were to be view as a 7-bit 

address, no change to that. If the address were viewed as an 8-bit address, the address is 
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incorrect and may cause erroneous self-modifying codes. This technique is used to 

program loops and counters within the programs for the proposed architectures. 

Programmable Addresses (capable of 

self-modifying)

Common Memory Addresses

0 (MSB) @ 7-bits

127

128

255

0

7-bit 

addresses

8-bit 

addresses

0 (MSB) @ 7-bits

The concatenation of 

an 8th bit at MAR 

rendered the original 

8-bit addresses useless. 

Hence, 8-bit addresses 

are not capable of self-

modifying.

The concatenation of 

an 8th bit at MAR has 

not alter the addresses 

since the address value 

is still within the 7-bit 

window.

  

Figure 3.16: The illustration of the memory section capable of ‘self-modifying’. 

 

3.2. Results and Discussions 

The design and simulation of the TISC Skipjack is done using the Xilinx ISE 11.1 ISIM 

and the target FPGA is set to Xilinx Spartan-3L [218]. Xilinx Spartan-3 is marketed for 

applications that require high logic density for data processing applications. Xilinx 

Spartan-3L offers identical functions, timing, and features  of the original Spartan-3 

family with power-saving benefit. The Spartan-3L power-saving feature lowers the 

device power consumption to very low levels, which is suitable for RCE applications. 

Additionally, the Spartan-3 FPGA was released around the year 2008 during the time of 

the TISC’s development. The Behavioral and Post-Route simulation were performed onto 

the TISC and waveforms of the FSM control signals are presented in this section. The 

Behavioral and Post-Route simulation were also performed on the SBN and XOR 

instructions. The TISC design’s behavioral simulation were verified using standard 

Skipjack test vector provided by NIST [63]. 
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3.2.1. Behavioral Simulation Waveforms 

This section presents the behavioral waveforms of the FSM, the SBN instruction and the 

XOR instruction. Figure 3.17 depicts the behavioral simulation of the FSM to ensure that 

the FSM functions accordingly. The logical behavior of the FSM is presented in section 

3.1.5. A small change onto the MUXes is made to the modified URISC model (comparing 

Figure 3.1 and Figure 3.6 B) because the TISC only requires 2 instructions: SBN and 

XOR. Both SBN and XOR instructions are differentiated using the function code. The 

function code for SBN is ‘0’ and XOR is ‘1’. Figure 3.17 also highlights the tb_pc_write, 

tb_mdr_write, tb_mar_write, tb_mem_read, and tb_mem_write signals (labels 1 to 5). 

Labels 1 to 5 are used to indicate the crucial FSM signal outputs creating the correct 

data flow which can be verified via comparison to Table 3.2. In Figure 3.17, the 

highlighted signals are respectively the FSM signals: PC_WRITE, MDR_WRITE, 

MAR_WRITE, MEM_READ, and MEM_WRITE. During clock cycle 0, tb_mar_write 

triggers the MAR register to save the current PC value. During clock cycle 1, 

tb_mem_read triggers the block RAM to read the address of the DATA_A while during 

the same cycle, that address is saved again with the signal tb_mar_write at 1. During 

cycle 2, tb_mem_read triggers the block RAM once again to read the actual DATA_A and 

tb_r_write secures the data within the R register. Clock cycle 3 is similar to cycle 0 and 

tb_pc_write ensures the newly incremented PC value is loaded into the PC register. 

Clock cycle 4 is similar to cycle 1 but the address of DATA_B is loaded instead. During 

cycle 5, tb_mdr_write ensures that the calculated data is saved into the MDR register. 

Cycle 6 writes a new PC value into the PC register, tb_mem_write triggers the block 

RAM to save the newly computed data. Cycle 7 writes into the PC with a new PC value if 

a jump occurs. And lastly, cycle 8 increments the new PC value and the whole instruction 

is therefore completed.  
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Figure 3.17: TISC FSM Control Signals Behavioral Waveforms. 
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Figure 3.18 shows the behavioral waveform for SBN and Figure 3.19 shows the 

waveform for XOR. Both Figure 3.18 and Figure 3.19 show distinctive difference in the 

function codes (via signal tb_function_code). As mentioned previously, a function code of 

0 is an SBN instruction and a 1 means it is an XOR instruction. Figure 3.18 in particular, 

shows how an SBN instruction works. In clock cycle 0, the initially PC value is 0x80 and 

tb_mar_input shows the same 0x80 value. During clock cycle 1, tb_mar_output shows the 

updated 0x80 value, meaning that the block RAM will use 0x80 as the address and thus 

the output is 0x7C. During clock cycle 2, 0x7C is the new MAR value and the block RAM 

output is 0x01 and which 0x01 is the real DATA_A. During clock cycle 3 and 4, the 

similar steps are taken to retrieve DATA_B. But during clock cycle 5, the calculation and 

the data calculated is loaded into the MDR register. Now that we have DATA_A = 1, 

DATA_B = 0, SBN = DATA_A + (inverse of DATA_B) = 0x01 + 0x7F = 0. A negative 

value in SBN will trigger a jump however; a ZERO output will not trigger the jump. In 

the subsequent clock cycles, the jump address is read but is not added into the PC value 

because the jump condition was not fulfilled. Both Figure 3.18 and Figure 3.19 are very 

similar in nature and the only difference is still the function code (0 for SBN and 1 for 

XOR). In an XOR instruction, there is not jump condition and it is basically a very 

straight forward XOR calculation on two variables. Figure 3.19 also shows an XOR of 

0x11 and 0x01 resulting to a value of 0x10. The DATA_A was initially 0x101. The MSB is 

a 1 and it indicates that it is an XOR instruction. During calculation and computation of 

the XOR, the MSB is ignored. 

 



91 

Chapter 3 

 

Figure 3.18: Behavioral Simulation Waveforms of the SBN instruction for TISC Skipjack.  

0
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

D
a

ta
_
A

 =
 0

x
0
1

 
D

a
ta

_
B

 =
 0

x
0
0
 

S
B

N
 o

u
tp

u
t =

0
x
0
0
  

J
U

M
P

 a
d

d
re

s
s =

 0
   



92 

Chapter 3 

 

Figure 3.19: Behavioral Simulation Waveforms of the XOR instruction for TISC Skipjack
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3.2.2. TISC Instruction Post-Route Simulation Waveforms 

The Post-Route simulations for TISC Skipjack were performed to determine the 

maximum time delay for each of the instructions executed. TISC consists of low-

complexity components such as registers and multiplexers thus the largest delay would 

originate from the computation blocks and block memories. Figure 3.20 shows the 

outcome of the Post-Route simulation for the SBN instruction and Figure 3.21 shows the 

Post-Route simulation for the XOR instruction. Figure 3.20 shows that the longest delay 

for the SBN instruction occurred at clock cycle 5, requiring 39373 ps delay (2212873 – 

2173500 = 39373) for a stable output. Figure 3.21 shows that the longest delay for the 

XOR instruction occurred at clock cycle 5, requiring 38283 ps delay (699783 – 661500 

=38283) for a stable output. Table 3.3 and Table 3.4 present the TISC SBN and XOR 

instruction delays. The int_clk is the clock cycle generated from the system clock. The 

mem_out is the time taken to read a data from the block RAM. alu_out (SBN or XOR) is 

the time delay for the instruction to produce the desired result. alu_out (SBN or XOR) 

takes consideration of the time taken from a clock triggers the Adder or XOR circuit, to 

the correct output at the end of the Adder or XOR circuit. To calculate the circuit delay, 

the time marker at point 1 is subtracted from the time marker at point 2 at cycle 5, 

which can be found in Figure 3.20 and Figure 3.21. 

The Celoxica RC10 development board houses the Spartan-3L FPGA (XC3S1500L-4-

FG320). RC10 fits the requirement of the research of having a Spartan-3 FPGA. The 

system clock the fixed clock of the Celoxica RC10 development board (48MHz). Hence the 

system clock was set to a period of 21000 ps, which is approximately 48MHz. The longest 

delay of 39316 ps suggests that a clock with a period larger than 39316 ps or 39.316 ns 

has to be used. A divided clock, running at 24 MHz and has a period of 42000 ps or 42 ns, 

is suitable for the TISC architecture’s timing requirements. Both SBN and XOR 

instruction delays justifies the operating frequency of 24 MHz.  
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Figure 3.20: Post-Route Simulation Waveforms of the SBN instruction for TISC Skipjack.
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Figure 3.21: Post-Route Simulation Waveforms of the XOR instruction for TISC Skipjack. 
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Table 3.3: TISC Skipjack SBN instruction delay at clock cycle 5. 

Clock 
Delay (ps) 

int_clk alu_out (SBN) mem_out 

0 9317 - - 

1 9317 39316 32371 

2 9317 39373 34103 

3 9317 - - 

4 9317 39373 34103 

5 9317 39373 34103 

6 9317 - - 

7 9317 39373 34103 

8 9317 - - 

 

 

Table 3.4: TISC Skipjack XOR instruction delay at clock cycle 5. 

Clock 
Delay (ps) 

int_clk alu_out (XOR) mem_out 

0 9317 - - 

1 9317 - 33767 

2 9317 - 33909 

3 9317 - - 

4 9317 - 34103 

5 9317 38283 34103 

6 9317 - - 

7 9317 - 34103 

8 9317 - - 
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3.2.3. Design Behavioral Verification 

The TISC Skipjack’s behavioral simulation is done using a test bench running at 24 MHz 

(Period = 42 ns). The output of the encryption is compared to the output of the standard 

Skipjack test vector. The test vector used was “33221100DDCCBBAA” as the input 

plaintext in hexadecimal and a key value (also known as the crypto-variable [63]) of 

“00998877665544332211” in hexadecimal. The TISC Skipjack produces the correct cipher 

text at 1363855500 ps with a value of “2587CAE27A12D300” in hexadecimal. Figure 3.22 

shows the waveform of the encrypted cipher text and Figure 3.23 shows the correct 

ciphertext at 1363971794 ps in a Post-Route Simulation. The standard test vector used 

in Figure 3.24 is provided by NIST, showing the cipher states with the corresponding key 

and plaintext. 
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Figure 3.22: Waveform output for the TISC encrypted cipher text starting at 1363855500 

ps 
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Figure 3.23: Post-Route waveform of the TISC encrypted cipher text starting at 

1363971794 ps
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Figure 3.24: Test vector provided by NIST for Skipjack ECB [63]. 

 

3.2.4. Hardware Utilization and Comparison 

Hardware utilization simulation for the TISC Skipjack is done using Xilinx Spartan-3L 

XC3S1500L-4-FG3203L as the target device. Table 3.5 show the device utilization report.  
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Table 3.5: Hardware utilization of TISC Skipjack using Spartan-3L XC3S1500L-4-FG320. 

FPGA Components (Spartan-3L (XC3S1500L-4-

FG320)) 
Quantity 

Utilization 

Percentage 
Total 

Logic 

Utilization 

No. of Slice Flip Flops 70 1% 26,624 

No. of 4 Input LUTs 94 1% 26,624 

Logic 

Distribution 

No. of Occupied Slices 71 1% 13,312 

No. of Slices containing only 

related logic 
71 100% 71 

Total  No. of 4 Input LUTs 104 1% 26,624 

No. of  LUTs used a logic 94 ~90% 104 

No. of  LUTs used a route-

thru 
10 ~10% 104 

No. of  LUTs used a Shift 

Registers 
0 0% 0 

No. of Bonded IOBs 99 44% 221 

No. of LOCed IOBs 0 0% 28 

No. of  RAMB16s 1 3% 32 

No. of BUFGMUXs 2 25% 8 

 

Eryilmaz et al [219] presented an implementation of Skipjack using Xilinx Spartan-3 

XC3S500E with the result of 780 slices utilized. Huang et al [220] present a design using 

Xilinx Virtex-4 XC4VLX200 with a total of 56822 slices occupied. Table 3.6 shows the 

comparison with other reported Skipjack processors. 

Table 3.6: Hardware utilization comparison with other Skipjack processors. 

 

TISC 

Skipjack 

 

Eryilmaz et 

al [219] 

TISC 

Skipjack 

 

Huang et 

al [220] 

FPGA  
Xilinx Spartan-3 

XC3S500E 

Xilinx Virtex-4 

XC4VLX200 

Logic 

Utilization 

No. of Slice 

Flip Flops 
71 / 9312 271 / 9312 

71 / 

178176 
- 

No. of 4 Input 

LUTs 
99 / 9312 1399 / 9312 

110 / 

178176 
- 

Logic No. of 58 / 4656 780 / 4656 61 / 89088 56822 / 
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TISC 

Skipjack 

 

Eryilmaz et 

al [219] 

TISC 

Skipjack 

 

Huang et 

al [220] 

FPGA  
Xilinx Spartan-3 

XC3S500E 

Xilinx Virtex-4 

XC4VLX200 

Distribution Occupied 

Slices 

89088 

 
No. of 

RAMB16s 
1 / 20 - 1 / 336 - 

 

3.2.5. Throughput Calculation 

TISC Skipjack implementation is based on the Skipjack ECB mode. Equation [3.4] 

describes the throughput calculation. 

 

Throughput

= [
(total amount of bits encrypted)

(𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)
] [3.4] 

 

The total clock cycles required for the data to be encrypted have to be calculated 

according to the number of instructions executed for the complete Skipjack operation. 

Each TISC instructions take nine clock cycles to complete.  The total instructions 

executed are: 

For the throughput of TISC Skipjack, the calculations are: 

 G Permutation: (192 bytes / 3) = 64 instructions 

 Rule A: [(153 bytes / 3) + G Permutation] * 16 rounds = 1840 

 Rule B: [(153 bytes / 3) + G Permutation] * 16 rounds = 1840 

 Total clock cycles = (1840 +1840) * 9 = 33120 

 Throughput: (64-bit / 33120 clocks) x 24MHz = 46.38 kbps 

The completion time for encrypting 64bits of data is 1363971794 ps or approximately 

1.364 ms (Figure 3.23). The throughput of the simulated system is 46.92 kbps. This 
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calculation shows that the expected throughput and the calculated throughput of the 

TISC Skipjack is correct with both results indicating a throughput of approximately 46 

kbps. Table 3.7 show the comparison of TISC throughput with other Skipjack processors. 

Table 3.7: Throughput comparison with other Skipjack processors. 

 TISC Skipjack Eryilmaz et al [219] Huang et al [220] 

Throughput (kbps) 46.92 19393.9 1136000 

 

 

3.3. Summary 

A low-complexity, low-area TISC for Skipjack is designed and presented in this chapter.  

To summarize, this chapter presents the following: 

1) Modified URISC is used as a simplistic processor for lightweight cipher Skipjack. 

2) TISC Skipjack occupies 71 slices using a Spartan3 XCS1500L-4 FPGA. 

3) The TISC achieved a throughput of 46.92 kbps. 

4) The TISC Skipjack is the smallest known design with a trade-off in terms of 

throughput. 
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CHAPTER 4  

LOW-COMPLEXITY, LOW-AREA FPGA ENCRYPTION 

ARCHITECTURE USING A MODERN CIPHER, THE 

ADVANCED ENCRYPTION STANDARD (AES) 

__________________________________________________________________________________ 

4.1. Method of the Proposed Improvement on the current S-Box 

4.1.1. The Design of the Proposed Minimized S-Box 

This proposed method aims to produce a bi-directional S-box with a gate count less than 

the total of 192 gates from Boyar’s work [71, 212], which is the smallest know bi-

directional S-box. Figure 4.1 shows the proposed method uses Boyar’s forward S-box [212] 

with additional identical circuit added before the input and after the output. This 

modification makes a bi-directional S-box (similar to a composite field representation). A 

forward S-Box in the composite field has the affine transformation in the process while 

the Boyar’s three stage S-Box [71] represent the affine transformation embedded within 

as a part of the circuit derived from matrix B (Chapter 2, figure 2.17). An inverse affine 

circuit is the only circuit that determines the character of the inverse S-Box. Adding an 

inverse affine transform at the end of the composite field S-box effectively cancels out the 

transformation done by the affine transform in the forward S-Box. To complete the 

Boyar’s Forward S-box circuit [212], another inverse affine transform has to be present 

at the front-end as the completing component for the inverse S-box. This results to a 

complete bi-directional S-Box. MUXs are required to choose the path of the data from 

encryption and decryption mode selection. 
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Figure 4.1: The illustration of the placement of the proposed inverse-affine circuit in the 

Boyar’s Forward S-box9. 

 

4.1.2. The Minimization of Inverse Affine Circuit for a Complete Straight-

line Bidirectional S-box 

In the composite field forward S-box, an affine and inverse affine transformation are 

placed at the input and output of the circuit respectively. Figure 4.2 shows the inverse 

affine transform matrix. The number of XOR points amounts to a total of 24 XORs. 

Equation [4.5] shows the expanded equations. 
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Figure 4.2: The matrix for inverse affine transform. 

                                                      
9 Published in: Jia Hao Kong, Li-Minn Ang, and Kah Phooi Seng, “A Very Compact AES-SPIHT 

Selective Encryption Computer Architecture Design with Improved S-Box,” Journal of 

Engineering, vol. 2013, Article ID 785126, 26 pages, 2013, DOI: 10.1155/2013/785126, Page 11, 

Figure 11. 



106 

Chapter 4 

 

 

1

0

1

0

0

0

0

0

2570

0361

1472

0253

1364

2475

0356

1467

















aaaA

aaaA

aaaA

aaaA

aaaA

aaaA

aaaA

aaaA

 
[4.5] 

 

Bernstein’s [221] work addresses the computation redundancy in two-dimensional linear 

XOR functions. Given a linear matrix, To reduce the computation redundancy, Bernstein 

proposed a method to optimizing linear matrix mapping. Similarly, the Affine 

Transformation Matrix is a linear matrix. Using Bernstein’s method will able to 

minimize the initial gate counts of the Affine Transform Matrix. A .cpp file [222] on 

Bernstein’s website, which is a direct implementation of his algorithm is to used evaluate 

a given matrix for a p-bit-to-q-bit linear function and computes the matrix output. 

Running the Bernstein’s optimization algorithm [221], a linear map of modulo 2 can be 

optimized to give an output with lesser number of XOR steps to produce the same output. 

For instance, the total number of XORs required for a complete inverse affine transform 

is 24 XORs and each output ‘A’ has a minimum of 3 XOR chains. By breaking down the 

chains to low two-operand complexity form, intermediate values for the output ‘A’ 

(namely ‘a’) are formed with an XOR chain of 1. 

By putting in the linear matrix value of the inverse affine transform into the algorithm 

designed by [221], the results obtained using Bernstein’s optimization onto the inverse 

affine matrix are shown in a straight-line layout, yielding a minimized number of XORs 

less than the manual hand-calculation of the inverse affine matrix (24 XORs). Equation 

[4.6] shows the straight-line XOR calculations obtained from the optimization algorithm 

by [221]. The gate count at this stage (by counting the XOR signs) is 18 XOR gates. Note 

that the variable ‘a’ in Equation [4.6] can be considered ‘intermediate’ values are 

depending on its position in the circuit branches. 
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[4.6] 

 

This initial form of the minimized circuit uses a total of 18 XOR gates (which is less than 

the initial count of 24 gates). By sorting out the variables, Equation [4.6] can be 

minimized by expanding the equations shown in Equation [4.7]. The equations mapped 

out show that there are only eight outputs at the end. Points shown below explain the 

Equation [4.6] and Equation [4.7]. 

1.  The variables: 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7  are the inputs to the inverse affine 

matrix.  

2. The final variables identified (the tip end of the circuit branches) are: 

𝑎9, 𝑎10, 𝑎12, 𝑎13, 𝑎14, 𝑎15, 𝑎16, 𝑎17. 
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[4.7] 

 

Equation [4.8] shows the alternate representation of Equation [4.7]. The current gate 

count is 16 XOR gates. Note that from this point onwards, the minimization is done by 

factor grouping since the circuit is small. 
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[4.8] 

 

From here, minimization is done via factor grouping. In Equation [4.9] shows the 

common bases that are first acquired from the expanded equations into their respective 

outputs and Equation [4.10] shows the ‘intermediate’ XORs using ‘y’ representations, 

which is eventually represented by ‘A’ as the final output. 
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The new reduced gate circuit was designed for the lower-gate count S-box following this 

minimization process (Figure 4.3). There are two constant additions at the end of the 

inverse affine transform, and this requires two extra XOR gates (refer to Figure 4.2). The 

final circuit in Figure 4.3 amounts to a total of 14 gates. 
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Figure 4.3: The minimized inverse affine circuit (14 XOR gates)10. 

                                                      
10 Published in: Jia Hao Kong, “A Very Compact AES-SPIHT Selective Encryption Computer 

Architecture Design with Improved S-Box”, Page 12, Figure 13 
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By using the new circuit shown in Figure 4.3 and the original Boyar’s S-Box (Chapter 2 

Literature Review, section 2.6.2, Figure 2.17), the final standalone S-Box is illustrated in 

Figure 4.4, with built-in multiplexers (MUXs) with a total of 143 gates (Boyar (115 gates) 

+ 2 * inverse affine circuit (which is 2*14 gates) excluding MUX 16 gates). Boyar [71] did 

not include the MUX circuits. The final circuit is a straight line straight line circuit (with 

one inverse affine circuit at both ends each). 
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Figure 4.4: The complete gate layout of the proposed S-box configuration for bi-

directional setting11

                                                      
11 Published in: Jia Hao Kong, “A Very Compact AES-SPIHT Selective Encryption Computer 

Architecture Design with Improved S-Box”, Page 10, Figure 10.  
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4.2. Development of the Compact Instruction Set Architecture for 

the AES 

To design a low-area, low-complexity system, mixed software-hardware architecture has 

to be adopted and configured to a most desirable combination of compact code and 

compact hardware. For this, the URISC is used to create a customized architecture called 

the compact instruction set architecture (CISA). The reason it is called a CISA is due to 

the minimized, and compacted instruction sets that the architecture accommodates. 

There is no need for any additional instruction sets in order to complete all the AES 

transformations, and, therefore, the computer architecture is ‘compact’. The latter part of 

this section further explains and dissects the CISA AES architecture into the following 

sub-sections: architecture, function codes and instruction sets, memory, FSM control 

signals and cipher algorithm program code. 

 

4.2.1. The New Data-path Architecture and Arithmetic –Logic Unit (ALU) 

In the AES transformations, there are two specific circuits required: a circuit for 

SubBytes and MixColumns. As for the ShiftRow and AddRoundKey, a simple XOR and 

memory readdressing would suffice. As for the SubBytes, a combinational circuit has to 

be present. In this part of the work, the proposed S-box in Section 4.1 is used as a one of 

the computation blocks. As for MixColumns, kindly refer to [65] for the xTime dedicated 

four XOR hardware because of the simplistic nature and compatibility . Unlike URISC, 

which uses only one instruction, the proposed CISA AES uses four minimized 

instructions (including SBN) to perform the complete AES encryption process. The CISA 

ALU includes: Adder, XOR, xTime, and S-box.  

The novel CISA data-path is shown in Figure 4.5. It has a single memory unit to store 

both program and data for the AES algorithm. With the SBN instruction (similar to 

URISC), the CISA can branch to any PC values within the memory unit and execute any 
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instructions in any location of the memory unit. With seven registers, five multiplexers, 

one memory unit and four ALU blocks, the CISA is complete and functional. Similar to 

the structure of URISC, the CISA data-path loads in the first memory address and 

subsequently loads in the first data item. This operation is repeated for the second data 

item. Once both data are loaded into the CISA, they are sent to the ALU for computation 

and the outputs will be chosen regarding the function code embedded in the first address 

loaded. The function code is a 2-bit value, concatenated to the first data address in the 

memory unit. With the 2-bit MSB value, the architecture can determine which 

instruction is used for the current processor cycle and what data are stored back to the 

memory. 
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The Compact Reconfigurable ALU Design Space 

M
D

R

M
A

R

MAR_SEL

[9:8]

FUNC_WRITE

M
U

X
1

0

R
R’

0

MEMORY

UNIT

READ WRITE

N

CIN

FC

AES Processor

Adder

Z_IN

Z

N_IN

M
U

X
0

0
0

1
1

0
1

1

MUX1 0

PC_IN MDR_IN

MAR_IN

COMP_SEL

P
C

0

MUX0 1

MUX
0 1 PC_OUT_SEL

PC_OUT

MEM_OUT

MDR_OUT
INPUT_B

INPUT_A

R_WRITE

MEM_OUT

ALU_OUT

ALU_SEL

A

B

C

xTime

xTime_Out

N

Z_WRITE Z

N_WRITE
XOR

XOR_Out

Sub 

Bytes

Sub Bytes_Out

Adder

Adder_Out

FUNC 

Code ALU Output Mux

ALU_Out

FSM4-bit Counter

CISA AES

(Data-path)

Control 

Signals

 

Figure 4.5: The novel CISA architecture, data-path and the ALU121314. 

 

                                                      
12 Published in: Jia Hao Kong, “A Very Compact AES-SPIHT Selective Encryption Computer 

Architecture Design with Improved S-Box”, Page 16, Figure 17. 
13 Published in: Jia Hao Kong, Li-Minn Ang, Kah Phooi Seng, Achonu Oluwole Adejo, “Minimal 

Instruction Set FPGA AES Processor using Handel-C”, Proceedings of the 2010 International 

Conference on Computer Applications and Industrial Electronics (ICCAIE 2010), CD-ROM: pp. 

337-341, ISBN: 978-1-4244-9053-0, 2010. 
14 Published in: J. H. Kong, L. -M. Ang, K. P. Seng, "MISC Processor for AES Encryption and 

Decryption", Proceedings of 2011 International Conference on Embedded Systems & Intelligent 

Technology (ICESIT 2011), pp.46-51, CD paper no: 00017, 2011. 



115 

Chapter 4 

The architecture has two input parameters into the CISA: Input_A and Input_B. Like a 

URISC, the architecture is also controlled by an FSM, the data movement and processing 

are fixed within nine clock cycles. The Adder and XOR block takes in two data items and 

perform bit-wise addition and XOR onto their respective inputs. The xTime block is a 

part of the MixColumns transformation. In [93], by using the sub-structure computation 

of a byte and between the computations of four bytes in an array of bytes, the derivation 

of the MixColumns transformation can be defined. In [191], the implementation of an 

‘xTime’ function is used to complete the multiplication of with ‘02’, modulo the irreducible 

polynomial m(x) = x8 + x4 + x3 + x + 1. It is known that the MixColumns transformation 

is a process involving several XOR processes and xTime processes. The xTime is a bit-

wise XOR operation that yields the constant multiplication by (02). By concatenating two 

xTime blocks in serial, constant multiplication by (04) can be achieved. The MixColumns 

circuit in [93] can be used for both MixColumns and Inverse MixColumns. In Figure 4.7, 

part 1 of the circuit is the Mix Columns Transformation. Part 1 together with part 2 of 

the circuit yields the Inverse MixColumns Transformation. The xTime circuit is shown in 

Figure 4.6. The circuit in Figure 4.7 is translated to soft-codes, using the xTime circuit to 

reproduce the exact output of the complete MixColumns operation.  

To standardize the width of the register and data-path for the best design at the 

architecture level, a unified and shared bit-wise XOR block will be used to perform a 

XOR MOVE operations instead of the SBN MOVE to improve program memory efficiency 

(XOR MOVE requires one less instruction less than SBN MOVE). The xTime circuit uses 

three independent XORs. 
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Figure 4.6: The xTime circuit (Image redrawn from [223]). 
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Figure 4.7: The MixColumns Transformation Process using the xTime Circuit (Image 

redrawn from [223]). 

 

4.2.2. Application Specific Function Codes and Instruction Sets 

To perform AES computations onto the plaintext, byte-oriented operations are adopted 

from the AES algorithm. To perform tasks such as SubBytes and MixColumns, a new set 

of instructions is developed. The CISA instruction sets shown in Table 4.1 are 

differentiated using the two MSB of each of the instructions. The four instruction sets 

used to perform different operations are showed in the Figure 4.8. These pseudo-codes 
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represent the characteristic of the instructions set used in CISA. From the Table 4.1, 

each of the instruction formats uses 3 bytes in the program memory. The first byte holds 

the Op Code and the address of Mem_A, the second byte holds the address of Mem_B and 

the last byte holds the target address. With four different op codes embedded in the first 

byte of the instruction, the CISA selects the appropriate output from the corresponding 

processor block.  

Table 4.1: The CISA AES (specifically for AES application) instruction sets. 

Operation 
Function Code / Op-code 

(2-bit MSB) 
Instruction Set Format 

SBN 00 (0 @ address A), address B, Target 

XOR 01 (1 @ address A), address B, Target 

xTime 10 10 @ 0[n:0], address B, Target 

Sub Bytes 11 11 @ 0[n:0], address B, Target 

 

SBN

Mem_B = Mem_B + (- Mem_A)

If Mem_B < 0 Goto (PC + C)

Else Goto (PC + 1)

XOR

Mem_B = Mem_B XOR Mem_A

xTime

Mem_B = xTime(Mem_B)

Sub Bytes

Mem_B = Sub_Bytes(Mem_B)

 

Figure 4.8: The pseudo-codes (algorithm) for CISA instruction sets. 
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4.2.3. Memory Mapping and Program Structure 

The CISA AES architecture includes a 1024 x 10-bit memory unit. The size of the 

memory is determined by the size of the AES program and the data. The total available 

memory is 1024 x 8-bit (512 bytes), which accommodates both the data and program 

codes. The data section is located at the address location of 0 to 127, whereas the 

program section takes the location of 128 to 1024. In the program section, instructions 

are sorted in a sequence as the CISA executes in accordance. In the data section, the 

breakdown of the memory allocation the plain text, master key and other temporary 

variables are shown in Figure 4.9. 

Data Section

Plain Text

Temporary Data Locations

Original Cipher Key

Temporary Data Locations

Rcon[i]

Cipher Text

Temporary Mix Column Data

Temporary Variables

Sub Keys (Expanded Keys)

Program Section

Shift Row

Add Round Key (Enc / Dec)

Key Expansion

Sub Bytes (Enc / Dec)

Mix Columns (Part 1)

Mix Columns (Part 2)

Loop

END

Inverse Shift Row

 

Figure 4.9: The Memory Mapping for CISA AES15. 

 

For the program design of the CISA AES, functions and modules of a set of the written 

instructions can be reused for code efficiency. During the decryption round, the Key 

Expansion algorithm has to be executed, and the sub keys are stored inside the memory 

unit. During encryption mode, the program sequence has to start by producing all the 

sub keys and then proceed to the AddRoundKey function. Loop1 and Loop2 are used to 

branch to any designated memory locations in the memory unit if the resultant value is 

less than zero of negative. In loop1 and loop2, the addressed memory stores a number 

                                                      
15Published in:  Jia Hao Kong, “A Very Compact AES-SPIHT Selective Encryption Computer 

Architecture Design with Improved S-Box”, Page 19, Figure 20.  
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that enables the SBN instruction to be executed and hence, the results will be check by 

the CISA FSM controller in order to decide whether a branch instruction has to occur 

depending on the output of the Adder and the function code of the instruction. The 

function code tells the data-path that the current instruction performed is an SBN 

instruction. With the two SBN loops for branching, the AES encrypt mode can be 

completed.  

Figure 4.10 illustrates the encryption and decryption program flow for the CISA AES. In 

decrypt mode, similar to the AES encrypt mode, the decryption process involves an initial 

pre-whitening transformation of AddRoundKey. The sub keys are stored in the memory 

unit after encrypt were done previously. A one-time loop is implemented in order for the 

CISA to execute the ‘AddRoundKey’ once at the start of the decrypt sequence. This is due 

to the reason that the initial pre-whitening step does not have a flow pattern to the 

programming sequence. In decrypt mode, the data transformation after AddRoundKey is 

the Inverse MixColumns. The initial Add Round Key is a one-time process, so the one-

time loop is applied. With another SBN loop applied, the decrypt mode can execute the 

four inverse transformations with ten iterations.  
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Figure 4.10: The CISA AES encryption and decryption program flowchart and structure16. 

                                                      
16Published in:  Jia Hao Kong, “A Very Compact AES-SPIHT Selective Encryption Computer 

Architecture Design with Improved S-Box”, Page 20, Figure 21.  
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4.3. Results and Discussions 

The design and simulation of the CISA AES is done using the Xilinx ISE 11.1 ISIM and 

the target FPGA is set to Xilinx Spartan-3L [218]. The CISA AES has the same 

architecture as TISC but with additional xTime and S-box components. The Behavioral 

and Post-Route simulation for the FSM, SBN instruction and XOR instruction can be 

found in Chapter 3 (Results and Discussions). The Behavioral and Post-Route simulation 

were performed on the xTime and S-Box instructions. The CISA design’s behavioral 

simulation were verified using standard AES test vector provided by NIST [63]. 

 

4.3.1. Behavioral Simulation Waveforms 

This section presents the behavioral waveforms of the AES specific xTime instruction 

and the S-box instruction. Both xTime and S-box instructions are differentiated using the 

function code. The function code for xTime is ‘2’ and S-box is ‘3’. Figure 4.11 shows the 

behavioral waveform for xTime and Figure 4.12 shows the waveform for S-box. 

Figure 4.11 shows the xTime instruction set with same instruction format where 

DATA_A, DATA_B, and the jump address are read from the block RAM. However, 

DATA_A is not used for the xTime calculation because DATA_B is the real target data 

for processing.  Address jumping is irrelevant in this instruction because the purpose of 

xTime is a logical calculation of a single byte without negative values. Figure 4.6 shows 

the xTime circuit with the following calculation: b7 = a6 (MSB), b1 = a0 XOR a7, b6 = a5, b0 

= a7, b5 = a4, b4 = a3 XOR a7, b3 = a2 XOR a7, b2 = a1 (LSB). Figure 4.11 shows DATA_B 

with the value of 0xC7, which is a value of 11000111 in binary. Using the value 

11000111, the xTime result is 10010101, which is 0x95 in hexadecimal. Thus, the correct 

calculation is completed and is saved into the block RAM. 

Figure 4.12 shows the S-box instruction set with same instruction format where DATA_A, 

DATA_B, and the jump address are read from the block RAM. However, DATA_A is not 



121 

Chapter 4 

used for the S-box calculation because DATA_B is the real target data for processing. 

Address jumping is irrelevant in this instruction because the purpose of S-box is a byte 

substitution of a single byte without negative values. Figure 4.12 shows DATA_B with 

the value of 0x60. Using the value 0x60 to refer to the S-box table shown in Table 2.9, the 

S-box substitution result is 0xD0. Thus, the correct calculation is completed and is saved 

into the block RAM. 
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Figure 4.11: Behavioral Simulation Waveforms of the xTime instruction for CISA AES.
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Figure 4.12: Behavioral Simulation Waveforms of the S-Box instruction for CISA AES. 
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4.3.2. CISA Instruction Post-Route Simulation Waveforms 

The Post-Route simulations for CISA AES were performed to determine the maximum 

time delay for each of the instructions executed. The SBN and XOR instruction was 

simulated in the Chapter 3. This section focuses on the AES specific instructions, which 

are the xTime and S-box. Figure 4.13 shows the outcome of the Post-Route simulation for 

the xTime instruction. Figure 4.14 shows the Post-Route simulation for the CISA using 

Boyar’s S-box and Figure 4.15 shows the Post-Route simulation for the CISA using the 

proposed S-box. Figure 4.13 shows that the signal delay for the xTime instruction 

occurred at clock cycle 5, with 24195 ps delay (409303695 – 409279500 = 24195) for a 

stable output. Figure 4.14 shows that the signal delay for the Boyar’s S-box instruction 

occurred at clock cycle 5, with 21769 ps delay (32813269 – 32791500 = 21769) for a stable 

output. Figure 4.15 shows that the signal delay for the proposed S-box’s instruction 

occurred at clock cycle 5, with 20901 ps delay (32812401 – 32791500 = 20901). 
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Figure 4.13: Post-Route Simulation Waveforms of the xTime instruction for CISA AES. 
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Figure 4.14: Post-Route Simulation Waveforms using Boyar’s S-box. 

C
y
cle

 5
 

8
 

0
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 



127 

Chapter 4 

 

Figure 4.15: Post-Route Simulation Waveforms using the proposed S-box. 
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Table 4.2 present the CISA xTime delays. Table 4.3 and Table 4.4 and S-box instruction 

delays using Boyar’s S-box and the proposed S-box respectively. The int_clk is the clock 

cycle generated from the system clock. The mem_out is the time taken to read a data 

from the block RAM. alu_out (xTime or S-box) is the time delay for the instruction to 

produce the desired result. alu_out (xTime or S-box) takes consideration of the time 

taken from a clock triggers the xTime or S-box circuit, to the correct output at the end of 

the xTime or S-box circuit. To calculate the circuit delay, the time marker at point 1 is 

subtracted from the time marker at point 2 at cycle 5, which can be found in Figure 4.13, 

Figure 4.14, and Figure 4.15. 
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Table 4.2: CISA AES xTime instruction delays. 

Clock 
Delay (ps) 

int_clk alu_out (xTime) mem_out 

0 9700 - - 

1 9700 - 31778 

2 9700 - 35667 

3 9700 - - 

4 9700 - 37417 

5 9700 24195 35667 

6 9700 - - 

7 9700 - 37417 

8 9700 - - 

 

 

Table 4.3: CISA AES Boyar’s S-box (forward) instruction delays. 

Clock 
Delay (ps) 

int_clk alu_out (S-box) mem_out 

0 9588 - - 

1 9588 - 32163 

2 9588 - 37339 

3 9588 - - 

4 9588 - 37339 

5 9588 21769 35369 

6 9588 - - 

7 9588 - 35919 

8 9588 - - 
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Table 4.4: CISA AES proposed S-box (bidirectional – set to decrypt mode) instruction 

delays. 

Clock 
Delay (ps) 

int_clk alu_out (S-box) mem_out 

0 9677 - - 

1 9677 - 36903 

2 9677 - 37463 

3 9677 - - 

4 9677 - 37463 

5 9677 20901 37463 

6 9677 - - 

7 9677 - 37463 

8 9677 - - 

 

The system clock was set to a period of 21000 ps, which is approximately 48 MHz. The 

longest delay of 37417 ps (reading block memory) suggests that a clock with a period 

larger than 37417 ps or 37.417 ns. Similar to the TISC, a 24MHz clock has a period of 

42000 ps or 42 ns is suitable for the CISA architecture’s timing requirements. Both 

xTime and S-box instruction delays justifies the operating frequency of 24 MHz.  

 

4.3.3. Design Behavioral Verification 

The CISA AES behavioral simulation is done using a test bench running at 24MHz 

(Period = 42 ns). The output of the encryption is compared to the output of the standard 

AES test vector. The test vector used was “00112233445566778899AABBCCDDEEFF” as 

the input plaintext in hexadecimal and a key value of 

“0102030405060708090A0B0C0D0E0F” in hexadecimal. The CISA AES produces the 

correct cipher text at 1034911500 ps with a value of 

“69C4E0D86A7B0430D8CDB78070B4C55A” in hexadecimal. Figure 4.16 shows the 

waveform of the encrypted cipher text and Figure 4.17 shows the correct ciphertext at 

1034676642 ps in a Post-Route Simulation. The standard test vector used in Figure 3.24 

is provided by NIST, showing the cipher states with the corresponding key and plaintext. 
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Figure 4.16: Waveform output for the CISA encrypted cipher text starting at 1034911500 

ps. 
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Figure 4.17: Post-Route waveform of the CISA encrypted cipher text starting at 

1034676642 ps 
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Figure 4.18: Test vector provided by NIST for AES ECB [224]. 
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4.3.4. Hardware Utilization and Comparison 

a) Using Boyar’s (Forward Direction) S-box 

Table 4.5 shows the CISA AES using Boyar’s forward S-box is implemented and the 

utilization results on a Spartan-3L XC3S1500L-4-FG320. For a single CISA AES 

architecture, only a total of 1024 kilobytes memory used for the AES program and the 

data and temp variables. This design only supports the forward encryption (the 

decryption can be done within the sink of an RCE application).  

Table 4.5: Hardware utilization of CISA AES using Spartan-3L XC3S1500L-4-FG320. 

FPGA Components (Spartan-3L (XC3S1500L-4-

FG320)) 
Quantity 

Utilization 

Percentage 
Total 

Logic 

Utilization 

No. of Slice Flip Flops 69 1% 26,624 

No. of 4 Input LUTs 187 1% 26,624 

Logic 

Distribution 

No. of Occupied Slices 116 1% 13,312 

No. of Slices containing only 

related logic 
116 100% 116 

Total  No. of 4 Input LUTs 197 1% 26,624 

No. of  LUTs used a logic 187 ~95% 197 

No. of  LUTs used a route-

thru 
10 ~5% 197 

No. of  LUTs used a Shift 

Registers 
0 0% 0 

No. of Bonded IOBs 115 52% 221 

No. of LOCed IOBs 0 0% 28 

No. of  RAMB16s 1 3% 32 

No. of BUFGMUXs 2 25% 8 

 

b) Using The Proposed S-box (Bi-directional, Boyar’s forward S-box + 

dual-inverse affine) 

Table 4.6 shows the utilization results using the proposed S-box. The results show higher 

utilization of 4 Input LUTS which is expected for the added function for decryption, 

which the Boyar’s forward S-box lacks. 
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Table 4.6: Implementation Results of CISA AES using the proposed S-box. 

FPGA Components (Spartan-3L (XC3S1500L-4-

FG320)) 
Quantity 

Utilization 

Percentage 
Total 

Logic 

Utilization 

No. of Slice Flip Flops 69 1% 26,624 

No. of 4 Input LUTs 265 1% 26,624 

Logic 

Distribution 

No. of Occupied Slices 157 1% 13,312 

No. of Slices containing only 

related logic 
157 100% 157 

Total  No. of 4 Input LUTs 275 1% 26,624 

No. of  LUTs used a logic 265 ~96% 265 

No. of  LUTs used a route-

thru 
10 ~4% 265 

No. of  LUTs used a Shift 

Registers 
0 0% 0 

No. of Bonded IOBs 116 52% 221 

No. of LOCed IOBs 0 0% 28 

No. of  RAMB16s 1 3% 32 

No. of BUFGMUXs 2 25% 8 

 

4.3.5. Throughput Calculation and Comparison 

CISA AES implementation is based on the AES ECB mode. The total clock cycles 

required for the data to be encrypted have to be calculated according to the number of 

instructions executed for the complete AES operation. Each CISA instructions take nine 

clock cycles to complete.  The total instructions executed (including the key expansion for 

AES) are: 

 Key expansion: (90 bytes / 3) * 10 rounds = 300 instructions 

 Shift Rows: (48 bytes / 3) * 10 rounds = 160 instructions 

 Sub Bytes: (48 bytes / 3) * 10 rounds = 160 instructions 

 Add Key: [((48 bytes / 3) * 10 rounds) + 16 ] + 1 ins = 176 instructions 

 Mix Column: (288 bytes / 3) * 9 rounds+ = 864 instructions 
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 Total AES instructions used for a 128-bit / 16-byte encryption = (300 + 160 + 160 

+ 176 + 864) = 1660 instructions 

 Total bytes used in programming: (1012-128+1) = 884 bytes 

 Total bytes used for AES operations = 525 bytes 

 Total bytes used for other operations =  360 bytes 

 Total instructions used for other operations in complete 10 rounds of AES: (360 / 

3) * 10 rounds = 1200 instructions 

 Grand total amount of instructions used for a complete 128-bit encryption: 1660 

+ 1200 = 2860 instructions 

 The total amount of time period for the complete AES encryption is: 2860 x 9 

cycles = 25740 clock cycles.  

 The total amount of time taken to complete the AES 128-bit encryption = 25740 x 

(1/24MHz) = 25740  x 0.0416µs = 1073 µs 

 CISA AES’s throughput is 128 bits / 1073 µs = 119.3 kbps (@ 24 MHz) 

 The total amount of time taken to complete the AES 128-bit encryption = 25740 x 

(1/20MHz) = 25740  x 0.05µs = 1287 µs 

 CISA AES’s throughput is 128 bits / 1287 µs = 99.45 kbps (@ 20 MHz) 

The completion time for encrypting 128bits of data is 1034676642 ps or approximately 

1.035 ms (Figure 4.17). The throughput of the simulated system is 132.7 kbps. 

 

4.3.6. Comparison with Other Small AES Processors 

Rouvroy et al [191] and Chodowiec et al [189] opted to use a reduced fixed-width 32-bit 

data-path, trading-off throughput to yield smaller circuits. Rouvroy et al ‘s [191] AES 

design uses Spartan-III XC3S50-4 as the target device. Good and Benaissa’s [190, 225] 

and Chodowiec & Gaj [189] uses Spartan-II FPGA for their development. Despite 

Spartan-II being obsolete at the time of writing this thesis, comparisons are made using 

the same platform to justify and compare the work. Table 4.7 shows the comparison of 

CISA AES to Rouvroy et al ‘s [191] AES design. Table 4.7 shows that CISA is smaller in 
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terms of slices utilized at the cost of throughput. This is due to the 10 bit architecture 

used and the 9 clock cycle instruction set used. 

Table 4.7: Comparison with Rouvroy et al ’s [191] AES processors using Spartan-III 

XC3S50-4. 

Design & FPGA (Device) 

Rouvroy et al [191] Spartan-III 

(XC3S50-4) 

CISA AES 

Spartan-III (XC3S50-

4) 

CISA AES 

Spartan-III (XC3S50-

4) 

Encryption Algorithm AES AES (Boyar Forward) AES (Proposed S-box) 

Datapath Bits 32 10 10 

Max. Clock Freq. (MHz) 71.5 24 24 

Data-path Bits 32 10 10 

Slices Used 163 116 157 

Registers Used 126 69 69 

LUT Used 293 197 275 

No. of Block RAMs used 3 1 1 

Throughput (Mbps) 208 0.133 0.133 

Summary Fastest Smallest Smallest 

 

Good and Benaissa’s [190, 225] work on AES ASIP was claimed to be the smallest AES 

processor design on a Spartan-II XC2S15-6 FPGA. In terms of instruction set 

architecture complexity, CISA AES uses 4 instruction sets and Good and Benaissa [190] 

(including two unused instructions) uses 16 instruction sets. Table 4.8 shows the 

comparison between the CISA and ASIP on instruction count. 

Table 4.8: Instruction count with other small AES processors. 

Designs CISA AES Good and Benaissa [190] 

Instruction Set Count 4 16 

 

Good and Benaissa [190] suggested a way to calculate equivalent slices for their ASIP 

design. The total number of bits Good and Benaissa used for the AES program were 4480 

bits. One slice of the Spartan-II FPGA consists of 2 LUTs and each LUT can provide 16 x 

1 bit synchronous RAM. Thus, one slice of Spartan-II FPGA can store 32 bits of memory. 
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Good and Benaissa [190] stated that their program uses 12 bit instructions, resulting to 

an equivalent calculation of 1 single LUT storing 2 instructions. A total of 4480 bits were 

used in the form of BRAM can be converted to equivalent slices via: (4480 / 16) / 2 = 140 

equivalent slices. The total area in terms of slices for Good and Benaissa’s design is 140 + 

122 = 262 slices, with 0 BRAM. Table 4.9 shows Good and Benaissa’s design in 

comparison to CISA AES using Spartan-II FPGA simulated using Xilinx 8.2i. 

Table 4.9: Comparison with Tim et al ‘s [190] AES processors using Spartan-II XC2S15-6. 

Design & FPGA 

(Device) 

Chodowiec & 

Gaj [189] 

Spartan-II 

(XC2S30-6) 

Good and 

Benaissa 

[190] Picoblaze 

Good and 

Benaissa 

[190] AES ASIP 

CISA AES 

Spartan-II 

 

CISA AES 

Spartan-II 

 

FPGA 
Spartan-II 

(XC2S30-6) 
Spartan-II (XC2S15-6) 

Encryption 

Algorithm 
AES AES AES 

AES (Boyar’s S-

box) 

AES (Proposed 

S-box) 

Datapath Bits 32 8 8 10 10 

Max. Clock Freq. 

(MHz) 
60 90 72.3 24 24 

Data-path Bits 32 8 8 10 10 

Slices 222 119 122 145 175 

No. of Block 

RAMs used 
3 2 2 3 3 

Block RAM size 

(kbits) 
4 4 4 4 4 

Bits of block 

RAM used 
9600 10666 4480 9910 9910 

Equiv. slices for 

Memory 
300 333 140 310 310 

Total Equiv. 

Slices (Est.) 
522 452 262 455 485 

No. of 4 input 

LUT used 
- - - 247 307 

Ave. Throughput 

(Mbps) 

Average 

encryption-

decryption 

including key 

expansion 

166 0.71 2.18 0.13 0.13 

Performance, 

Typical 

throughput per 

slice (kbps/slice) 

- 1.6 8.3 0.3 0.27 
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Design & FPGA 

(Device) 

Chodowiec & 

Gaj [189] 

Spartan-II 

(XC2S30-6) 

Good and 

Benaissa 

[190] Picoblaze 

Good and 

Benaissa 

[190] AES ASIP 

CISA AES 

Spartan-II 

 

CISA AES 

Spartan-II 

 

FPGA 
Spartan-II 

(XC2S30-6) 
Spartan-II (XC2S15-6) 

Summary 
Large area, 

high speed 
Software based 

Smallest 8 bit 

architecture 

Smallest 10 bit 

architecture 

Smallest 10 bit 

architecture 

 

The CISA AES is not the smaller design compared the Good and Benaissa’s [190] ASIP. 

Good and Benaissa’s ASIP has an advantage of using a very simple processing core that 

performs primitive operations such as moving 8-bit data, finite-field multiply by 2 (ffm2), 

finite-field division by 2 (ffd2) and XOR. The primitive operations used in ASIP AES are 

great in reducing computation complexity considering that ASIP AES only runs AES. 

The ASIP primitive finite-field operations are highly specific to AES. Hardware 

implementation of ffm2 and ffd2 are static logic, which defines the instruction set 

architecture. The CISA is expected to be smaller than 32 bit architectures because of the 

register size. Good and Benaissa’s ASIP has the better results in terms of area but CISA 

has the flexibility to operate other programs due to its Turing-Complete nature and not 

highly specific to only a single cipher. The CISA is also expected to utilize more memory 

for the program because of the URISC’s nature for larger program memory. 

 

4.3.7. Comparison with Other Small S-boxes 

To compare S-box implementations, the S-box by Boyar et al [212] is chosen to be a 

benchmark as it is the smallest known S-box. The total gate count for the Boyar et al ‘s 

S-box is 115 gates. The comparisons with different S-boxes and the comparison of gate 

counts are shown in Table 4.10.  

Table 4.10: The comparison of different S-boxes. 
Basis Type XOR XNOR NAND / AND NOT MUX Total Gates 

Proposed CISA AES S-Box 

(bi-directional) 

 

Merged 107 4 32 - 16 159 

- - - - - - - 

- - - - - - - 
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Basis Type XOR XNOR NAND / AND NOT MUX Total Gates 

- - - - - - - 

- - - - - - - 

Boyar [212] (Forward S-box) 

- - - - - - - 

S-box 79 4 32 - - 115 

- - - - - - - 

Boyar [71] 

(Complete, bi-directional) 

Merged 144 14 34 - 16 208 

S-box 90 4 34 - - 128 

Inv S-box 83 10 34 - - 127 

Edwin [92] 

(schematic gate count) 

Merged 217 - 45 - 16 279 

S-box 193 - 45 - - 238 

Inv S-box 177 - 45 - - 222 

Canright [69] 

Merged 107 0 36 2 16 253 

S-box 91 0 36 0 0 195 

Inv S-box 91 0 36 0 0 195 

Mentens [214] 

Merged 118 0 36 0 16 271 

S-box 96 0 36 0 0 204 

Inv S-box 97 0 36 0 0 206 

Satoh [68] 

Merged 119 0 36 3 16 275 

S-box 100 0 36 0 0 211 

Inv S-box 99 0 36 0 0 209 

Worst 

Merged 131 0 36 0 16 293 

S-box 107 0 36 0 0 223 

Inv S-box 106 0 36 0 0 222 

 

Assuming a multiplexer cost eight gates, the proposed S-box configuration uses 2 MUXes, 

which costs 16 gates total. Canright [69] assumes an 8-bit MUX is equivalent to 8 gates 

hence 16 gates is used in the calculations for the total gate count [69]. The proposed S-

box configurations had shown gate count improvement in the merge category. Merged S-

box is more popular in designing an RCE system that performs both on-node encryption 

and decryption. A forward S-box has smaller gate count and an encryption-only program 

can reduce the amount of logic and memory required when only encryption is required 

on-node.  
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4.4. Summary 

In this chapter, an improved S-box with lower gate count, implemented together with a 

low-complexity CISA AES processor is presented.  

To summarize, this chapter presents the following: 

1) TISC is used as the basic platform for CISA AES application. 

2) Novel S-Box improvement (smaller gate-count than existing work is presented). 

3) Minimization of the inverse affine circuit, from 24 gates to 14 gates. 

4) CISA AES using Boyar’s forward S-box utilizing 116 slices using Spartan3 

XCS1500L-4 FPGA. 

5) CISA AES using the proposed bi-directional S-box utilizing 157 slices using 

Spartan3 XCS1500L-4 FPGA. 

. 
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CHAPTER 5  

LOW-COMPLEXITY MULTI-CIPHER CRYPTO-PROCESSOR 

ARCHITECTURE FOR VISUAL SENSOR RESOURCE 

CONSTRAINED ENVIRONMENTS – A NOVEL SOLUTION 

__________________________________________________________________________________ 

5.1. The Proposed Multi-level, Multi-cipher Architecture (MMA) 

The proposed MMA is a global architecture that utilizes the features of TISC Skipjack 

and CISA AES, creating a system that allows multiple ciphers to co-exist within the 

same crypto-system. The instruction sets for TISC Skipjack are sub-set of the CISA AES 

instruction sets. Therefore, the TISC Skipjack and CISA AES share the same ALU (or 

crypto-blocks). A single CISA AES processor can operate both Skipjack and AES because 

both ciphers can be operated within the same CISA framework. In the context of a 

crypto-processor, hardware accelerated ciphers are treated as ‘crypto-cores’. Hence TISC 

Skipjack, CISA AES, or CISA in general are treated as ‘crypto-cores’ within the same 

context. 

Figure 5.1 shows the MMA dual crypto-processor block design with reconfigurable data 

path around the cores. Two models of MMA are proposed. The first model is a multi-

cipher configuration with the coupling of a CISA Skipjack core and a CISA AES core, 

forming the multi cipher architecture (MCA). The second model consists of two 

independent AES processors and is referred to as the NAES in this thesis.  
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Figure 5.1: The overview of the generic MMA model. 

 

The pairings of the AES and Skipjack crypto-processors are presented in Table 5.1. The 

implementation of the crypto-processors can be referred to the TISC Skipjack (Chapter 3) 

and CISA AES (Chapter 4). Within the CISA AES ALU, there are 4 logic circuits: Adder, 

XOR, xTime and Sub Bytes. The TISC Skipjack ALU only has Adder and XOR. 

Comparing the two ALUs shows that the Adder and XOR are common to both. Therefore 

these two blocks can be shared between the processors. This sharing between the AES 

and Skipjack can be referred to as ‘ALU Sharing’ or ‘Crypto-block Sharing’ of the CISA. 

The MMA dual crypto-processor design allows the AES cipher can be substituted with 

Skipjack cipher and vice versa since both share common ALUs.  Figure 5.2 illustrates 

idea of MMA models being able to interchange since ALUs can be shared. 

Table 5.1: The illustration of configuration settings for MMA model 1 and 2, by pairing 

AES and Skipjack. 

MMA Crypto-processor 1 Crypto-processor 2 

Model 1 (MCA) CISA AES CISA Skipjack 

Model 2 (NAES) CISA AES CISA AES 
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Figure 5.2: The selection of ALU with in the cores in determination of the core behaviour. 

 

 

5.2. The Proposed MMA Models 

5.2.1. The MCA (MMA model 1) 

The MCA is a design that consists of two independent CISA processors: the CISA AES 

and the CISA Skipjack. Using a cipher switch, the plaintext data is sent to the selected 

crypto-core for encryption. The MCA setting fits nicely in a reconfigurable MMA dual 

crypto block design as the crypto-cores can be simple redefined by changing the memory 

unit. Figure 5.3 show the CISA Skipjack and CISA AES within a same configuration of 

the CISA architecture.  

The MCA crypto-cores run on ECB (Electronic Cook Book) mode. Figure 5.3 illustrates 

example scenarios and factors for the cipher switching. For instance, the stronger AES is 

used when system battery is sufficient and switches to the Skipjack when the battery is 

low, sustaining the system’s operation by coping to the power factors. Other factors such 

as the threat detection, bandwidth traffic and security clearance can be used as a 

‘decision factors’ for the cipher switching. Figure 5.4 shows the switch is programmed to 

be triggered by 1 or 0. In a scalable crypto-system, the bit-length for the switch is 

increased in proportion to the number of crypto-cores within the system. In this chapter, 

only the pairing of the AES and Skipjack is introduced. Figure 5.5 shows the overview of 
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the multi-cipher global architecture, to choose between using a TISC Skipjack or CISA 

AES or any other cipher processors via a cipher switch. 

Memory Unit

(forward encrypt)

CISA Skipjack 

Processor

(Core 1)

Memory Unit

(forward encrypt)

CISA AES 

Processor

(Core 2)

Cipher Switch

Cipher 

Output

Data
Switch 

Control

0 1

 

Figure 5.3: The overview of MCA with AES and Skipjack. 
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Figure 5.4: An illustration of example ‘decision factors’ to determine a cipher switch. 
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Figure 5.5: The overview of a multi-cipher architecture (MCA) by coupling AES and 

Skipjack algorithm. 

 

5.2.2. The NAES (MMA model 2)  

The second model termed the NAES, consists of two individual CISA AES processors. 

Figure 5.6 depicts the NAES global data path in comparison with a typical Feistel 

structure. The construction of the global Feistel structure [226] states that the exchange 

of intermediate values, also known as a permutation,  takes place at the end of each 

encryption round to inject diffusion property [227]. Figure 5.6 (a) illustrates the Feistal 

structure [228, 229]. The proposed NAES comprises two AES processors running 

standard AES ECB mode encryption with a 128-bit key size. The cross-swapping 

exchanges the results of the current cipher state at the end of each encryption round. To 

complete the NAES, the swap is executed the end of each Mix-Column operation.  

Each CISA AES round has its own key and key schedule. The keys can be identical or not 

depending on the application. During NAES decryption, the normal AES decryption 

applies with the original key schedule used in the reverse order. Figure 5.6 (b) illustrates 

the idea of a global symmetric structure for NAES and Figure 5.7 illustrates the 
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proposed NAES global rounds. A small box with a ‘plus’ sign is used to illustrate the key 

addition in Feistal-like ciphers. 

 

Block1 Block2

Block1 Block2

+

a)
AES Block1 AES Block2

AES Block1 AES Block2

+ +

b)

Key 2Key 1

 

Figure 5.6: The difference between a typical Feistal structure (left, (a)) and the global 

symmetric structure for NAES (right, (b)). A small box with a ‘plus’ sign is used to illustrate 

the key addition in Feistal-like ciphers. 
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Figure 5.7: The illustration of a NAES using two separate AES processors, cross-

swapping the ciphers at the end of each round17. 

 

                                                      
17 Figure published in: Kong, J. H., L.-M. Ang, et al. (2013). "Minimalist security and privacy 

schemes based on enhanced AES for integrated WISP sensor networks." Int. J. Commun. Netw. 

Distrib. Syst. 11(2): 214-232, Figure 4. 
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In a standard AES round function, Sub-Bytes, Shift Rows and Mix Column are applied to 

the cipher. While designing NAES, the involvement of two keys occurs when the 

intermediate values are swapped at the end of a round. When two keys are involved in 

the encryption, a single wrong key added will result to the failure to decrypt the cipher. 

The cipher cross-swapping has to be symmetrical and both AES processors have to be 

run concurrently. Parallel AES execution will ensure that both cipher states are in the 

same round. 

The Shift Rows, Sub-Bytes and Mix Column are byte oriented operations, there are no 

limitations as when and where the cross-swapping should occurs. The only issue 

regarding the cipher’s complete round functions is that the cross-swapping has to either 

occur before or after a key is XOR into the cipher concurrently. This is to ensure that the 

cipher is in the correct state. A wrong round key added will result to a total decryption 

failure. Figure 5.7 shows two AES round functions executed in parallel and the ciphers 

are exchanged at the end of every round functions. 

Within the NAES, the independent cores are the made up of two CISA AES processors. 

Both CISA AES processors are driven by independent controllers and have their own 

memory units. The illustration of the NAES is shown in Figure 5.8. The Global PC acts 

as the reset mechanism to drive the CISA AES processors to start to program at a 

specific memory location, in order to run the AES to a complete 10 rounds. Figure 5.9 

shows the overview of the global architecture with two AES processors as cores in a 

system. 
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Figure 5.8: The overview of NAES supported by two CISA AES processors18. 
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Figure 5.9: The overview of NAES dual-key architecture supported by two CISA AES 

processors. 

                                                      
18 Figure published in: Kong, J. H., L.-M. Ang, et al. (2013). "Minimalist security and privacy 

schemes based on enhanced AES for integrated WISP sensor networks." Int. J. Commun. Netw. 

Distrib. Syst. 11(2): 214-232, Figure 5. 
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5.3. Minimalist Security and Privacy Schemes 

A cryptographic processor for RCE has to possess the necessary security functions and 

primitives, making it adequate for formulating secure protocols. Using MMA, simple, 

minimalist security schemes can be formulated. This section presents a simple 

authentication method and key exchange scheme for tag-node networks based on the 

MMA model 2 designed to solve the communication issue of newly injected eRCE devices. 

Section 5.3.1 introduces an authentication method that incorporates a level of encryption 

to the target payload thus offering the function to identify the original sender of the data. 

Section 5.3.2 introduces a minimalist approach for a tag-node network to securely 

exchange secret keys. 

In MMA model 1, several pre-existing conditions have to be established for the security 

keys to be used. Figure 5.10 illustrates the keying conditions. 

Security key conditions for use: 

1) The Tag has its own secret private key19 for encryption.  

2) The Nodes have two set of secret private keys (as NAES requires two private 

keys with 2 key schedules.). 

3) The Sink holds all the keys (node keys and the tag keys). 

4) The security depends on the secrecy of these private keys. 

                                                      
19 The ‘private key’ terminology used in this thesis is to describe the nature of the keys. A private 

key is the key which is kept privately to within the system and the key holder is the sole owner 

of such key. 
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Figure 5.10: The illustration of a WSN with the stored keys in the system. 

 

Two schemes to be presented are: 

1. A tag authentication scheme using the NAES model. 

2. A secure key exchange and renewal for non-synchronized platforms 

1`1 

5.3.1. Tag Authentication using NAES 

The proposed authentication methodology involves encrypting and authenticating the 

data from the tags, effectively using the tag ID as a ‘public key’20. In a WSN, the sensor 

nodes hold the responsibility to gather and route the sensor data all the way back to the 

server sink for post-processing. The important data extracted from the tags are prone to 

theft and tampering and there is no way of securing the data if the encrypting cipher is 

weak. The tags have a unique identification number like any other eRCE tags. With a 

standard compliant RF reader, the ID info can be extracted out of the tags. Here are 

some of the assumptions made before realizing the privacy scheme. 

                                                      
20 In the context of PKC, a ‘public key’ is a key made publicly available and not a secret. The tag ID 

can be read with any compliant reader and therefore the tag ID is considered public knowledge. 

Using the tag ID as a key is akin to using the ‘public key’ in the PKC context. 
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Assumptions: 

 The tag ID is not a secret and can be extracted.  

 The tag is not clone-able, not forge-able and tags IDs are unique. 

 The tag has a pre-deployed encryption (block cipher) for secrecy. 

 The data transfer from tag to sensor node is assumed secured (no man-in-the-

middle attack). 

In an environment where the sensor node has to monitor tens and hundreds of tags, 

source identification is required to verify that from which source the data originated. 

Since the data transferred from the tag to the node is assumed secured, then the next 

step would be to digitally 'sign' the extracted data with the tag's ID. By using NAES, the 

data encryption process takes in two key inputs: the node's private secret key and the 

tag's ID. Figure 5.11 illustrates the proposed authentication process. 
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Data
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- as Key 1

Tag ID

- as Key 2

Cipher-text 

(signed and 

encrypted with 

Tag ID)
NAES
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- as Key 1

Tag ID

- as Key 2

Encryption

(Sensor Node)

Decryption

Sink (Server)

Data

(from 
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Figure 5.11: The overview of the authentication process using NAES. 

 

Figure 5.11 shows the authentication the encrypted data by decrypting it with the tag ID 

as one of the keys. For a successful NAES decryption, both keys have to be correct. A 

single wrong key will not result to the data decryption hence, the data is ‘signed’ with the 

tag ID and protected with encryption. Even if the Tag ID can be easily extracted, the 

decryption of the data is not possible because the NAES involves two keys.  Verification 
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of the data can be deduced from the correctness of the decrypted data. The preliminary 

security analysis of the proposed authentication scheme will be discussed in the section 

5.4.2. 

 

5.3.2. Secure Key Exchange and Renewal  

One of the biggest problems in symmetric encryption is key management. In order to 

securely exchange secret keys, the system has to adopt the public key cryptography for 

public key generation using the private key with complex computation. For secure 

communication to take place, each party has to have the same encryption or decryption 

key. Keys are usually transferred to the other party in a secure manner via some public 

key encryption. But since the existing system is using a symmetric cipher primitive, the 

PKC and block ciphers are not practical to coexist in the same system, weighing down 

the system’s resources [228]. Shamir et al devised a protocol called the Three-Pass Key 

Exchange Protocol [228, 230, 231]. The protocol is highly dependent on a commutative 

cipher. A simple XOR is such a commutative cipher. 

An XOR cipher is one in which the order of encryption and decryption is interchangeable, 

just as the order of multiplication is interchangeable, for example: A * B * C = A * C * B 

= C * B * A. In order to use this commutative cipher, an XOR block function has to be 

provided by the computing engine. The ALUs in the CISA architecture consists of an 

XOR block which is perfectly fine for the implementation. By using this XOR block, the 

architecture is able to perform the XOR cryptography. Lightweight tags are capable of 

executing XOR operations [141], so this is practically feasible for both RCE and eRCE. 

For the key exchange to work, the key setup and the secure padlocking phase has to be 

laid out. The proposed steps are shown below. 

Key exchange steps: 

1) The sink is to issue a new private key for the tag, namely Key X. 
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2) The sensor node treats the Tag ID as a plaintext and encrypts it using the NAES, 

with its 2 original secret private keys. The output of the encrypted Tag ID is 

named the ‘session key 1’. (Key A) 

3) On the tag’s side, the tag will use its private key to encrypt its own ID, resulting 

‘session key 2’. (Key B) 

4) By using XOR, the node XOR the key A with key X.  (A * X) 

5) The node sends it over to the tag, and the tag ‘XORs’ its key B to the product. (A * 

X * B) 

6) After sending it back to node will apply the XOR with Key A onto the product 

again. (A * X * B) * A = X * B 

7) And finally at the tag side, the tag XOR its Key B onto the product. (X * B) * B = 

X 

8) Therefore, X is securely transferred to the tag’s side. 

With the steps above, the Key X is transferred to the tag’s side, the tag is able to update 

its private key to this Key X, and therefore, key exchange is complete. Figure 5.12 

illustrates the overall process of this padlocking. 
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Figure 5.12: The overviews of the key exchange scheme using the Three-Pass method 

and NAES21. 

  

                                                      
21 Figure published in: Kong, J. H., L.-M. Ang, et al. (2013). "Minimalist security and privacy 

schemes based on enhanced AES for integrated WISP sensor networks." Int. J. Commun. Netw. 

Distrib. Syst. 11(2): 214-232, Figure 7. 
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5.4. Study and Analysis of NAES 

5.4.1. Simulation Results for MMA model 1 (Effects on Images)   

The effects of the proposed NAES direct encryption onto image data is simulated and 

discussed in this section. JPEG images are encrypted directly as it is without additional 

image processing in order to observe the perceptual degradation effect of NAES. The 

dual-key dual channel NAES is simulated using the Matlab 2012a. An ideal cipher-image 

histogram has to approximate the uniformly balanced distribution of cipher text values. 

Each two adjacent encrypted pixels should be statistically non-correlated [232]. To test if 

the NAES is able to encrypt highly-correlated images to produce uniform distributed 

cipher texts, a sample image with dimensions of 512 by 512 pixels and in grayscale is 

used. The data path scanning for both images are set to ‘ROW’ as in the encryption is 

done row by row and via forward encryption ECB mode. Figure 5.13 shows the 

comparison between NAES and AES encrypting an image directly using an image with a 

fair amount of highly-correlated pixels. The effect of the encryption shows that both AES 

and NAES perform similarly with an output of uniform distribution of cipher text. The 

AES and NAES encrypted image shows acceptable perceptual confusion. Figure 5.14 

shows the same experiment but with another scanning method. The effect of the 

encryption with 4 by 4 block scanning shows both AES and NAES perform similarly with 

an output of uniform distribution of cipher text. 
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Figure 5.13: The comparison of AES and NAES (row input) on pixel distribution of 

encrypted images and histogram. 

 

 

Figure 5.14: The comparison of AES and NAES (4 x 4 pixels per block input) on pixel 

distribution of encrypted images and histogram. 
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A portrait image with a simple and uniform background is used for the next experiment. 

AES is known to perform poorly when encrypting image directly with highly correlated 

neighbouring pixels. The results in Figure 5.15 showed improvement over the AES with 

uniform distributed cipher text using NAES and also shows that the AES performs 

poorly when encrypting an image that has a large amount of strong-correlated pixels. 

Figure 5.16 shows the 4 x 4 block scanning encryption and the NAES shows slight 

improvement over the AES.  Figure 5.15 and Figure 5.16 shows that the AES encrypted 

image has subtle imagery of certain pattern portraying a shape. The NAES shows that 

improves in for both row and 4 by 4 scanning path. 

 

Figure 5.15: The comparison of AES and NAES (row input) on pixel distribution of 

encrypted images and histogram. 
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Figure 5.16: The comparison of AES and NAES (4 x 4 pixels per block input) on pixel 

distribution of encrypted images and histogram. 

 

Figure 5.17 shows the 4 by 4 ‘even and odd’ block path scanning methodology is used for 

the experiment. The 4 by 4 ‘even and odd’ block path scanning method is method to sort 

the image blocks into a 4 by 4 pixel blocks and labelling them with ‘1’, ‘2’, ‘3’ and etc. 

subsequently and encrypt the block-pairs (even-odd pairing input to the NAES). This 

method of scanning showed slight improvement over the normal 4 x 4 block scanning. 

Figure 5.18 shows the comparison of AES, NAES and AES in cipher-block-chaining (CBC) 

mode, which is a stream cipher mode. It is observed that the AES-CBC performs the best 

for direct image encryption. The simulation results presented in the section shows that 

the NAES is capable of performing perceptual image encryption and showed 

improvements of direct AES encryption on image with high pixel correlation.  
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Figure 5.17: The comparison of NAES using even and odd block input. 

 

 

 

Figure 5.18: The comparison of AES, NAES and AES-CBC. 
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5.4.2. Discussions on NAES Security Issues 

The NAES key schedule involves 2 different keys. If a set of NAES encrypted data is 

divided into two for transmission via different route paths, the adversary will not be able 

to decrypt the data with only half of the data set and 1 stolen key unless both the 2 keys 

and 2 data parts are compromised. This further increases the complexity for the attacks. 

The proposed authentication scheme is a technique that takes the advantage of providing 

encryption and signing the data with the origin tag ID. By assuming that the private 

keys are secured and secret, the adversary known the tag’s ID will not benefit the 

attacks as the NAES architecture requires 2 keys for a complete decryption. The 

proposed authentication scheme only benefits the sink server for verifying the origins of 

this data set. 

Menezes et al [228] stated the XOR cipher is vulnerable to the known-plaintext-attack. 

The ‘plaintext’ in the context of NAES key exchange, is the new key distributed from the 

sink server. The key is only known to the involved parties and there is no way that the 

key will be known by any other parties prior to the successful key exchange. Hence, the 

XOR cipher is secured. 

For systems that require a Random Number Generator (RNG), the tag ID can be used. 

Tag ID encrypted using both NAES private keys resulting to a random number 

(encrypted ID) provided that the NAES private keys are replaced as this session. 

Encrypting the Tag ID using the same private key pairs will result to the same value and 

the random number will no longer be random after first generation. On the tag reader’s 

side, the tag’s own ID can also be encrypted using its own private key, resulting to 

another new random number (encrypted ID). This two sets of encrypted ID can be used a 

“session” or “partner” keys, without the need for key assignment from network sink. This 

is an alternative solution to creating random numbers without the need for dedicated 

RNG. The partner keys from both sides are secured using their own respective private 

keys unless the private keys of both sides are compromised. Vernam Cipher [228] stated 

that a key used for encryption is safe if it is used for only once. In the case of renewing 
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keys using NAES, the tag’s private key is only used for once in the events of key renewal 

(XOR operation), after the new key is received, the old private key will be discarded. This 

is a good solution for a quick key exchange when threat is suspected and the thus 

providing difficulty for adversaries to access sensitive data as the data value drops over 

time. To formulate meaningful schemes using NAES, the strength and secrecy of the 

system relies heavily on the secrecy of the secret keys used, not the publicly-know Tag ID. 

In a deployed RCE, a single compromised sensor device would lead to the whole 

communication network exposed to adversaries. The simplest method of key distribution 

is to pre-load a single common key or hard-code pre-defined keys to all the nodes before 

they are deployed. This method does not require after-deployment key distribution 

because they are capable of exchanging messages with that existing key but the major 

drawback for this method is that, even a single compromised node would compromise the 

security of the whole system. Another obvious method for a shared-key distribution 

scheme is to pre-load distinct pair-wise key pairs in every node. This method poses 

another major problem as it lacks scalability which RCE requires. The number of keys 

that must be stored in each node is proportional to the total number of nodes in the 

network. Since sensor nodes are resource constrained, this brings overhead which limits 

the scheme’s applicability except for it can An alternative solution is to use key 

management schemes. But a key management scheme would further increase the 

systems’ processing load and communication delay. The proposed NAES is to use two 

encryption blocks with two keys method and the keys are presumed to be pre-loaded into 

the system without key distribution operations overhead. When a visual RCE device 

processes an input image and attempts to send the vital information back to the sink, it 

has to relay the information from node to node until it reaches the sink. When the data 

reaches to a compromised node, the secrecy of the data would be revealed and hence the 

security mechanism fails. Data re-routing is usually used to solve the issue [61] but with 

the proposed method, compromised nodes will not hinder the transmission and 

jeopardize the secured data. When an image is traditionally encrypted, blocks of bit 

streams are usually the input for the cipher. When there are two ciphers used, two blocks 
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have to be fed into the cipher. Figure 5.19 illustrates the sample selection of even and 

odds blocks to be encrypted. 

1

Image captured from 

sensor node

4

4

Alternate 4x4 byte 

blocks are chosen to be 

encrypted

1 2 1 2 1 2

Key 2

Key 1

 

Figure 5.19: The illustration of the selection of even and odd blocks in an image to be 

encrypted together using two separate keys. 

 

There are three ways NAES can secure information: 

 Encrypt a single data block using two separate keys (replicating data, doubling 

its size to fit the length of two keys). 

 Encrypt two data blocks (even and odds tagged blocks) using the same identical 

key. 

 Encrypt the data two blocks using two separate keys. 

To complete the NAES decryption, the two same keys have to be present. The only 

weakness, like any other key-based security, is the dependence on the secrecy of the two 

keys. For instance, when a node using NAES, together with the secret keys are captured 

by adversaries, the NAES will be broken. But if one of the encrypted data blocks are 

captured via routing nodes, there is no way to decrypt it because during the encryption 

process, each cipher round has two alternate keys involved, effective doubling the key 
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length (key length doubled due to the total length of two keys). Unlike the direct 

encryption of using even and odd data block illustrated in Figure 5.19, NAES uses cipher 

state swapping, having 2 key and schedules involved in the encryption. There is no way 

for the correct NAES decryption when only 1 block and 1 key is captured. Both data 

blocks and keys have to be acquired for full decryption. 

Another advantage of the proposed method is that the decryption is not only key 

dependent, but also data / plaintext dependent. For maximum security, the two 

encrypted blocks can be sent separately thru the unsecured medium to the sink. Figure 

5.20 shows that by sending the two encrypted blocks via different routes hence, further 

increasing the difficulty to decipher the data because both data has to be present and 

treated as a single big block of data. 
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Figure 5.20: The illustration of one block of data and secret key being compromised and 

the encrypted data is being sent separately via 2 different routes. 
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5.5. Summary 

A novel unified architecture for multi-level security application, based on CISA 

processors is presented. Two models: MCA and NAES are proposed as a solution to the 

increasing security challenges of RCE application. These are the following features: 

1) MMA model 1 can be used encrypt with variable security levels by choosing 

crypto-primitives, depending on the application. 

2) MMA model 1 is aimed to be scalable and only ALUs and program memories are 

required for additional primitives. 

3) MMA model 2 is a dual-channel cipher configuration that has shown direct image 

encryption has improved perceptual degradation against normal AES. 

4) The mirrored CISA cores in MMA have shown configurability to become model 2 

with the help of instruction set programming and ALU sharing. 

5) The proposed simple authentication and key exchange and renewal scheme is 

based on the usage of CISA and uses the re-configurability of FPGA to offer these 

simple schemes. 

6) The proposed authentication method uses the Tag ID as a form of ‘public key’ and 

the Tag ID is not a secret. 

7) The proposed key exchange and renewal scheme, based on the Three-Pass 

method, requires only XOR. 
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CHAPTER 6  

HARDWARE IMPLEMENTATION OF SELECTIVE 

ENCRYPTION ARCHITECTURE USING CISA AES AND 

SPIHT 

__________________________________________________________________________________ 

6.1. The Proposed Selective Encryption Architecture (SEA) - using 

SPIHT coder and CISA AES 

The newly proposed selective encryption architecture (SEA) aims to provide both image 

processing and security features to RCE devices. SPIHT reduces the spatial redundancy 

of input images, decreasing the amount of data stored and low-complexity CISA utilizes a 

smaller logic area, adding security to the processed data. The SEA demonstrates the 

practicality and feasibility of the CISA AES, SPIHT and SEA in real-world applications, 

using the Celoxica RC203 board which houses the Vertex XC2V3000 FPGA. Figure 6.1 

illustrates the overview of selective encryption concept, encrypting important bit-streams 

before transmission over an unsecured communication channel. 
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Figure 6.1: The overview of selective encryption architecture, securing important bit-

streams before transmission over an unsecured communication channel. 
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A typical visual sensor RCE device is equipped with a camera sensor as an input to the 

system. Image is captured via camera sensor and sent to the proposed SEA for visual 

processing and encryption. Figure 6.2 shows the overview of a SEA design for visual 

sensor RCE device. 
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MIPS 
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Memory

Selective Encryption Architecture

Visual Sensor Device

 

Figure 6.2: The overview of a selective encryption design for a visual sensor RCE device. 

 

There are two data processing components within the SEA: SPIHT coder and CISA AES. 

The SPIHT coder decomposes input images and creates two separate bit streams: the 

refinement bits and the mapping bits. Figure 6.3 depicts the mapping bits being sent to 

the CISA AES core for encryption whereas the refinement bits are passed through the 

system without additional processes. The result of the selective encryption process yields 

an encrypted mapping stream and an un-encrypted refinement stream. Both encrypted 

mapping stream and un-encrypted refinement stream pose no security threats because 

image reconstruction will hampered by the unusable encrypted mapping stream. The 

refinements bit stream alone has no meaning without the tree structures within the 

encrypted mapping bits. The CISA AES is used as the crypto-core for SEA. Figure 6.3 

illustrates both the SPIHT and CISA AES in both ends of RCE: node and sink. The 
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compression and encryption is done on-node and the decompression and decryption is 

done within the network sink. 
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Figure 6.3: The illustration of the SEA system using SPIHT and the CISA AES in both 

ends of RCE22. 

 

The SPIHT coder is realized using Million Instruction per Second (MIPS) processor. 

Together with CISA AES, both the encryption and compression module is designed using 

                                                      
22 Figure published in: Kong, J. H., L.-M. Ang, et al. (2013). "A Very Compact AES-SPIHT Selective 

Encryption Computer Architecture Design with Improved S-Box." Journal of Engineering 2013: 

26, figure 32. 
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FPGA environment to emulate an RCE device. The SPIHT decoder and CISA AES 

decryption module is realized in PC software environment to emulate an RCE sink.  

 

6.2.1. RCE Device Component - SPIHT Encoder and AES Encryption  

The Celoxica RC203 board (APPENDIX II) which houses the Vertex XC2V3000 FPGA is 

used for the implementation of the SEA. The codes are compiled using the Agility Design 

Suite 5.0 software environment and Handel-C hardware description language. The 

Celoxica RC203 board is equipped with a 330 Line CCD camera, connected via the on-

board camera port. FPGA programming is done via parallel port and communication to 

the FPGA can be establish and accessed via serial port. The results of the data 

processing are received via USB port on a personal computer. Figure 6.4 shows the 

overview of the SEA design. Encrypted and refinement data are transferred to the PC 

environment via wired connection of RS232 to USB standard.  
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Figure 6.4: The illustration of the internal SEA components and workflow. 
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a) MIPS SPIHT 

MIPS SPIHT processor is made up of three code blocks: Discreet Wavelet Transform 

(DWT) module, SPIHT-ZTR encoder, and lastly the MIPS. Figure 6.5 shows the core 

DWT and SPIHT-ZTR functions embedded within the main loop. Line 1380 shows the 

CaptureFrame function called to read the image from the camera. Line 1390 runs the 

DWT Spatial Module and line 1393 runs the DWT Temporal Module. And lastly, line 

1400 runs the SPIHT-ZTR algorithm. In each of the DWT and SPIHT-ZTR function calls, 

the RunCustomMIPS is executed. 

 

Figure 6.5: The MAIN function within the MIPS SPIHT. 
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After the DWT and SPIHT-ZTR coding are complete, mapping and refinement bits are 

generated. The mapping bit stream generated is a long stream of data that can be 

grouped into ‘blocks’ of data. The AES is block cipher and mapping data stream is 

encrypted in ‘blocks’. A ‘block counter’ is used to count the amount of refinement bits 

passed through the AES block cipher. The number of counted blocks is required in order 

to correctly decrypt the stream. Bit-filling (concatenating the last block with either ‘1’s or 

‘0’s) is used to fill the remaining bits of the mapping-stream to a full 128-bit block, with 

‘0’s or ‘1’ as LSBs. Figure 6.6 shows the code part for counting bit blocks and filling up 

mapping bits for a full 128-bit block. Concatenating most significant bits (MSBs) will 

alter the meaning of the mapping bits in the last data block. LSBs are concatenated 

instead. 

 

Figure 6.6: Handel C-code for bit-filling to create a complete block. 
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After the blocks are counted and grouped, the encryption can therefore begin. Figure 6.8 

line 1503 shows the Run_AES_CISA pseudo-code, which is the function call for 128-bit / 

16 byte block encryption. Mapping bit blocks are read and encrypted within the CISA 

processor and saved in RAM before transmission to the sink for decoding and decryption. 

 

Figure 6.7: Handel C-code for bit-filling to create a complete block. 

 

b) CISA AES 

To design a CISA AES, encryption variables, architectural and data-path description 

have to be defined and initialized The CISA AES code can be found in APPENDIX I. 

Figure 6.8 depicts a section of the block RAM initialized with the initial key value and 

plaintext. The first line of the memory is reserved for the actually data block for 

encryption. The second line is loaded with the secret key value of “00 11 22 33 44 55 66 

77 88 99 AA BB CC DD EE FF”. The same secret key value has to be used in the 

decryption counterpart to ensure a correct data reconstruction. The RAM address in 

hexadecimal value 0x070 to 0x07F stores the intermediate values, constants and loop 
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numbers. Figure 6.9 shows the code part for CISA FSM. Figure 6.10 shows the definition 

of the four ALU components within the CISA AES. 

 

 

Figure 6.8: An illustration of the Handel-C code for CISA AES encryption secret key 

values and variables. 

 

 

Figure 6.9: An illustration of the Handel-C code for CISA AES FSM definitions. 
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Figure 6.10: An illustration of the Handel-C code for CISA AES ALU components. 

 

Figure 6.11 shows the data-path register for the CISA AES. All the registers are driven 

by the FSM states. The description of the CISA AES architecture can be found in 

Chapter 4. 
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Figure 6.11: An illustration of the Handel-C code for CISA AES data-path registers. 
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c) RS232 to USB Connctivity 

The RC203 board provides an RS232 interface to computer connectivity. To properly 

interface with a PC, the RC203 has to be programmed to initialize the port. Within the 

SEA design, the function “SendGroupBitsDigi” is defined and the partial codes are shown 

in Figure 6.12 shows the configuration for the RS232 port and the baud-rate is set to 

115200. Figure 6.13 shows the physical RS232 to USB converter used to connect the 

RC203 board to the PC. A header is used to help the receiver to differentiate the mapping 

stream and the refinement stream.  

 

Figure 6.12: An illustration of the RS232 module initialization on RC203. 

 

 

Figure 6.13: A picture of the RS232 to USB converter. 
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6.2.2. RCE Sink Component - SPIHT MATLAB Decoder and AES 

Decryption 

When the encrypted mapping stream and the unencrypted refinement stream are sent to 

the sink for decoding and decryption, the MATLAB environment is used emulate the 

RCE sink component. To achieve the target behavior, three components has to be defined 

within the MATLAB environment: the data receiver, the decoder, and the decryption 

module. To receive the incoming bits sent from the SEA, a virtual serial port has to be 

initialized and the baud-rate has to set to the same value with the transmitting module. 

Figure 6.14 shows the configuration of the virtual serial port and RS232 interfacing via 

the MATLAB environment. 

 

Figure 6.14: An illustration of the Matlab-code for virtual serial port initialization. 

 

The headers of each stream are read and identified to differentiate mapping and 

refinement stream. Figure 6.15 shows the headers used to identify the received bit 

stream. If the header read is a value of 12, the receiver halts the data reading from the 

RS232 port and the data reception is complete. If the header value of 10 is received, the 

bit stream is identified as a mapping stream. And finally, if the header read is a value of 

11, the stream is identified as a refinement stream. Once all these data is received, they 

are stored in four separate .mat files. This procedure is repeated for four times to receive 

a total of four frames through a single transmission. 
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Figure 6.15: An illustration of the Matlab-code for virtual serial port initialization. 

 

After the bit streams are received, the next step is to perform decryption. Figure 6.16 

shows the decryption function  “inv_cipher” in line 76. The AES MATLAB code used was 

acquired from Jörg J. Buchholz’s website [233]. After the mapping streams are decrypted, 

the SPIHT-ZTR is executed to decompress and reconstruct the data streams into the 

original images. 

 

Figure 6.16: An illustration of the MATLAB-code for bit-stream AES decryption. 
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6.2. Hardware Implementation 

This section presents the hardware implementation results using real FPGA hardware. 

Crypto-processors TISC Skipjack and CISA AES are implemented using Celoxica RC10 

development board, housing Spartan-3L (XC3S1500L-4-FG320). The codes are compiled 

using Handel-C and Agility Design Suite 4.0 software environment. 

 

6.2.1. The Hardware Implementation of TISC Skipjack (Forward 

Encryption) 

Table 6.1 shows the hardware utilization of TISC Skipjack. The verification of the 

encryption is done using the test vector provided by NIST and the correct output of the 

cipher was displayed onto the 7-segment display. 

Test Vector: 

- Plaintext: 33221100ddccbbaa 

- Key:  00998877665544332211 

- Cipher text: 2587a1d300 

Table 6.1: Hardware implementation results for TISC Skipjack using RC10. 

FPGA Components (Spartan-3L (XC3S1500L-4-FG320)) Quantity Total Usage 

Logic Utilization 

No. of Slice Flip Flops 76 26,624 1% 

No. of 4 Input LUTs 177 26,624 1% 

Logic 

Distribution 

No. of Occupied Slices 116 13,312 1% 

No. of Slices containing only related 

logic 

116 116 100% 

Total  No. of 4 Input LUTs 195 26,624 1% 

No. of  LUTs used a logic 176 195 ~90% 

No. of  LUTs used a route-thru 18 195 ~9% 
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FPGA Components (Spartan-3L (XC3S1500L-4-FG320)) Quantity Total Usage 

No. of  LUTs used a Shift Registers 1 195 ~1% 

No. of External IOBs 21 221 9% 

No. of LOCed IOBs 21 21 100% 

No. of  RAMB16s 1 32 3% 

No. of BUFGMUXs 3 8 37% 

No. of DCMs 1 4 25% 

 

 

6.2.2. The Hardware Implementation of CISA AES (Forward Encryption) 

Table 6.2 shows the hardware utilization of CISA AES. The verification of the encryption 

is done using the test vector provided by NIST and the output of the cipher was 

displayed onto the 7-segment display.  

Test Vector: 

- Plaintext: 00112233445566778899AABBCCDDEEFF 

- Key:  000102030405060708090A0B0C0D0E0F 

- Cipher text: 69C4E0D86A7B0430D8CDB78070B4C55A 

 

Table 6.2: Hardware implementation results for CISA AES using Boyar’s Forward S-box. 

FPGA Components (Spartan-3L (XC3S1500L-4-FG320)) Quantity Total Usage 

Logic Utilization 

No. of Slice Flip Flops 100 1% 26,624 

No. of 4 Input LUTs 342 1% 26,624 

Logic 

Distribution 

No. of Occupied Slices 201 1% 13,312 

No. of Slices containing only related 

logic 

201 100% 201 

Total  No. of 4 Input LUTs 361 1% 26,624 
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FPGA Components (Spartan-3L (XC3S1500L-4-FG320)) Quantity Total Usage 

No. of  LUTs used a logic 341 ~94% 361 

No. of  LUTs used a route-thru 19 ~6% 361 

No. of  LUTs used a Shift Registers 1 ~0% 361 

No. of Bonded IOBs 28 12% 221 

No. of LOCed IOBs 28 100% 28 

No. of  RAMB16s 1 3% 32 

No. of BUFGMUXs 4 50% 8 

No. of DCMs 1 25% 4 

 

To validate the robustness of the CISA, 10 test vectors were used to test the design for 

potential encryption errors. Table 6.3 shows the 10 test vectors used and the encrypted 

texts are verified using “AES – Symmetric Cipher Online” [234]. 

Table 6.3: The 10 test vectors used to test the CISA AES and their respective cipher texts. 

Plaintext Cipher text 

Key = 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 

00 11 22 33 44 55 66 77 88 99 AA BB CC 

DD EE FF 

30 34 AD CB A1 67 ED  C3 87 16 4F 44 F0 

95 50 F2 

12 23 34 45 56 67 78 89 9A AB BC CD DE 

EF F1 00 

56 DA 6E 2B 62 FF D0 5E 1B 45 C7 8E FB 

95 A7 77 

00 11 99 22 88 33 77 44 66 55 AA FF BB 

EE CC DD 

D8 24 E7 D1 9C C7 13 AB 3F C1 24 B1 8B 

81 76 D2 

FF EE DD CC BB AA 99 88 77 66 55 44 33 

22 11 00 

2D 47 D1 48 4A 79 25 FE 2A D2 1A 42 3F 

21 E5 0C 

22 99 33 88 44 77 55 66 11 00 EE FF DD 

CC AA BB 

2D D9 C3 E3 BA 7D CF 0F B8 5C 4D B9 96 

70 91 FB 

66 77 88 99 22 33 44 55 11 00 AA EE FF 

DD BB CC 

40 0D F1 83 23 7C 8A 8B B7 FA 13 03  5E 

84 D0 0B 

12 21 34 43 56 65 78 87 90 09 AB BA CD 

DC EF FE 

29 C1 3F B0 C9 19 5F 06 D0 1A 09 D9 0A 

58 AD C0 

12 34 65 78 90 AB CD EF 12 34 65 78 90 

AB CD EF 

56 D6 F8 F0 F6 E2 5A EF 80 0E B1 59 CD 

6F 07 E3 
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Plaintext Cipher text 

Key = 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 

FE DC BA 98 76 54 32 10 FE DC BA 98 76 

54 32 10 

16 87 C5 28 12 76 04 3D AD F7 0B 7F 94 

91 C6 F4 

AF BD EA 46 81 68 41 88 12 34 89 75 24 

90 88 99 

15 67 DA 8E 48 F0 0E DC 08 A8 2B B8 F7 

09 8C 9F 

 

 

6.2.3. The Hardware Implementation of SEA 

The Celoxica RC203 board which houses the Vertex XC2V3000 FPGA is used for the 

implementation of the SEA. The codes are compiled using the Agility Design Suite 5.0 

software environment and Handel-C hardware description language. A complete system 

of selective encryption with a CISA AES processor working side-by-side with a MIPS 

SPIHT coder is implemented. A still-portrait image is displayed on a HP 17 inches LCD 

monitor is used as an image input to the video camera to the SPIHT AES setup. The SEA 

design was powered up for 24 hours to capture live images and the images were 

encrypted and decrypted without errors. Figure 6.17 depicts the experimental setup for 

the proposed SEA. 

 

Figure 6.17: The experimental setup for the development of SEA. 
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Four 128 x 128 image frames are captured, encrypted on-board, and sent to another 

computer for decryption. The CISA AES is programmed to encrypt only the mapping bits 

and both mapping and refinement bits are sent out to the host computer once the 

encryption has completed. The received bits are then processed in MATLAB environment 

and the last 2 frames are chosen for decryption to verify the correct encryption and 

decryption. Figure 6.18 shows the four images capture from the SEA. Note Figure 6.19 

shows an example of the selective-encrypted on the Lena image, capture via the 330 line 

CCD camera. From perceptual observation, the encrypted frames are unintelligible. 

 

Figure 6.18: The four selectively encrypted frames with the last two frames decrypted. 

 

 

Figure 6.19: Selective encryption on Lena image. 

 

The logic utilization results for the complete SEA can be found in Table 6.4. The number 

of slice flip-flops occupied is 3692 at 12% utilization. The number of 4 input LUTs 

occupied are 8793 at 30% utilization. As for the logic distribution results, Table 6.5 shows 

a total of 6251 slices occupied. As for the LUT utilization report, Table 6.6 shows a total 

of 10176 4 input LUTs were used, at 35% utilization. Table 6.7 shows other FPGA 

components utilized by the FPGA implementation of SEA. 
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Table 6.4: Logic utilization of SEA. 

Logic Utilization Quantity Total Usage 

No. of  Slice Flip Flops 3692 28672 12% 

No. of 4 Input LUTs 8793 28672 30% 

 

Table 6.5: Logic distribution of SEA. 

Logic Distribution Quantity Total Usage 

No. of  occupied Slices 6251 14336 43% 

No. of  Slice containing only related logic 6251 6251 100% 

No. of  Slice containing  unrelated logic 0 6251 0% 

 

Table 6.6: LUT utilization of SEA. 

Components Quantity Total Usage 

Total No. 4 input LUTs 10176 28672 35% 

No. used as logic 8793 8793 86% 

No. used as a route-thru 1257 1257 12% 

No. used for dual-port RAMs 64 64 ~1% 

No. used as 16x1 ROMs 30 30 ~0.5% 

No. used as Shift Registers 32 32 ~0.5% 

 

Table 6.7: Other components utilized by SEA 

Components Quantity Total Usage 

No. BUFGMUXs 4 16 25% 

No. DCMs 1 12 8% 

No. External IOBs 199 484 41% 

No. LOCed IOBs 199 199 100% 

No. of RAMB16s 66 96 68% 
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CHAPTER 7  

CONCLUSION 

__________________________________________________________________________________ 

This thesis presents low-complexity, low-area cryptographic processors based on URISC. 

RCE systems security requirements can be fulfilled using cryptographic primitives. 

Cryptographic primitives suitable for RCE are concluded to be the AES and Skipjack. To 

implement a low-complexity, low-area cryptographic processor for AES and Skipjack, the 

Turing-Complete URISC is used as a foundation of the processor. By modifying the 

URISC for cryptographic application, the low-complexity two instruction set computer 

operating the full 64-bit Skipjack lightweight cipher is designed. The logic utilization for 

TISC Skipjack on a Spartan-3L XC3S1500L-4-FG320 FPGA shows a total of 71 slices 

occupied, 70 slice flip-flops and 94 4-input LUTs utilized. Using the TISC as a foundation, 

the second design, CISA, operating the full 128-bit AES cipher is designed. The logic 

utilization for TISC Skipjack on a Spartan-3L XC3S1500L-4-FG320 FPGA shows 157 

slices occupied, 69 slice flip-flops and 275 4-input. The proposed AES S-box’s gate count 

is decreased from Boyar’s [71] count of 208 to 159. The CISA AES is the smallest known 

design FPGA compared to other designs on a Spartan-3 family FPGA.  

The proposed TISC and CISA are rooted on a Turing-Complete architecture, which 

allows them to be able to compute other arithmetic operations with additional 

computation blocks. This feature enables the architecture to be scalable in a 

reconfigurable environment. The behavior of the CISA depends on the program memory 

loaded into the architecture. With multiple cipher programs loaded in CISA, the same 

architecture is able to perform multiple ciphers. Unlike an ASIP which can only perform 

a single specific task, a CISA can perform multiple ciphers in a single architecture with 

the help of additional crypto-blocks. This feature is suitable for RCE applications to face 

increasing security challenges by providing multiple security solutions in the form of 
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cryptographic primitives while utilizing the same processor with just additional program 

memories. 

Other RCE security applications of the CISA were investigated for multi-cipher 

cryptosystems, simple security schemes and direct encryption on images. By using CISA, 

two models of multi-level, multi-cipher architecture (MMA) was proposed to provide 

flexibility between resource overhead and encryption level required by the application. 

MMA model 1 enables choice between cipher primitives deployed by switching between 

cipher programs and sharing crypto-blocks. MMA model 2 enables simple authentication 

and key exchange schemes. Direct image encryption using MMA model 2 shown 

improvements compared to a direct AES encryption.  

The final phase of the development is to implement a selective encryption architecture 

(SEA) using MIPS SPIHT visual processor and CISA AES. A real hardware 

implementation of the SEA is realized to emulate a working RCE, from on-node 

processing and encryption to back-end data processing on a server computer. The Turing-

Complete nature tends to increase the memory utilization by large program sizes. An 

SEA complements the CISA perfectly by reducing the memory storage by compressing 

input image. Memory overhead is further decreased by selectively encrypting parts of the 

compressed data. Four image-frames are captured, compressed, and selectively 

encrypted on the FPGA and sent to a personal computer for decompression and 

decryption. The design of SEA embodies the concept a secured RCE device of using CISA 

as the security solution for visual sensor RCE. The subsequent sections present some of 

the diverging areas of research to further improve the work presented in this thesis. 
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7.1. Future Work 

7.2.1. Design a complete TISC Suffix-Sort BWCA Security Architecture  

Having a data compressor and encryption within extreme RCE has been a challenge. 

Menezes et al [235] proposed a tweak on the block-sorting lossless data compression 

algorithm (also known as the Burrow Wheeler Compression Algorithm –BWCA), to 

provide a simple form image security. This proposal is beneficial for RCE because image 

data can be compressed and encrypted at the same time. Heng et al [236] suggests that 

the LZSS lossless compression can be used in RFID tags. Heng et al ‘s motivation is to 

explore the possibility of RFID tags storing more data in future and using compression to 

save memory in the tags. Kankonsae et al [237] mentioned that the tag’s cost and size 

are related to the amount of data and information being carried, which would lead to the 

need for low-complexity and high compression rate data compression implementation in 

extreme RCEs. 

Implementing the BWCA component, Burrow-Wheeler Transform (BWT), is memory 

demanding because it endorses the lexicographic sort (also known as the suffix sort) 

[238]. Sorting algorithm requires a Comparator. Therefore, a Compare and Branch if 

Larger (CBL) instruction set has to be introduced. Together with the Turing-Complete 

SBN, Figure 7.1 presents the pseudo-code of the CBL and SBN instructions. Similar to 

the TISC Skipjack, the ALU configuration for TISC Suffix-Sort uses the SBN for 

branching and CBL for comparison and no other unused instruction set or ALUs are 

required. As for the conditional data swapping in sorting, SBN MOV is used to move data 

from one location to another. 
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SBN

Mem_B = Mem_B + (- Mem_A)

If Mem_B < 0 Goto (PC + C)

Else Goto (PC + 1)

CBL

Mem_A COMPARE Mem_B

If Mem_A > Mem_B Goto (PC + C)

Else Goto (PC + 1)

 

Figure 7.1: Pseudo-codes for TISC Suffix Sort instruction sets. 

 

Martinez et al ‘s [239] parallel sorting scheme uses seven ‘compare and swap’ blocks and 

a total of 4 levels are used. Based on the worst case of number of sorts that will occur, 

using the parallel sorting strategy for 8 data requires 4 rounds of even and odd adjacent 

comparators. To perform the same operations, instruction sets can be synthesized to 

create a macro-instruction, to mimic Martinez et al ‘s parallel sorting scheme. The Figure 

7.2 and Figure 7.3 show the pseudo-code of the sorting program. 

 

Figure 7.2: The program codes written to execute the seven ‘compare and swap’ operation. 
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Figure 7.3: The program code performs the data swapping from one memory to another 

in the event of branching. 

 

The notion of ‘compare and swap’ is divided into two separate actions: ‘compare’ and 

‘swap’. With the first condition met, only then a ‘swap’ would occur. The pseudo-code in 

Figure 7.2 represents the 7 comparisons made within the parallel sorting strategy (even 

and odd adjacency comparison). The CBL instructions are used to point to the respective 

memory locations for data comparisons. Firstly, the CBL instruction is called to compare 

the first and second data (out of the 8). If data A is larger than data B, a branch will 

occur hence, the comparison operation is completed. The second step would be the data 

swapping. After JUMP operation is done, the new PC value will be starting point of the 

architecture thus the data swapping operation begins. The program written covers all 7 

comparisons. Once all the comparisons are made, a loop is injected to fulfill the N = 4 

worst case iteration. The flowchart of the BWT lexicographical sort program is described 

in the Figure 7.4. 
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SWAP_1 
(A1, A2)

SWAP_2 
(A3, A4)

SWAP_3 
(A5, A6)

SWAP_4 
(A7, A8)

SWAP_5 
(A2, A3)

SWAP_6 
(A4, A5)

SWAP_7 
(A6, A7)

A1 > A2 ?

A3 > A4 ?

A5 > A6 ?
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A6 > A7 ?

Compare 
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Compare 
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Compare 
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(A2, A3)

Compare 
(A4, A5)

Compare 
(A6, A7)

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

LOOP = 4 
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END

START

YES
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Figure 7.4: The flowchart of the 8 bytes sorting program. 

 

 

7.2.2. Improvement on MixColumn and Power, Area and Delay Analysis 

for CISA AES 

The MixColumn is the largest code block in CISA AES. One improvement that can be 

identified is the breakdown of MixColumn to smaller building blocks. The work by 

Fischer et al [240] and Chitu et al [241] has given great insight in terms of suggesting a 

MixColumn independent ALU. Within that ALU, a switch can be used to choose either 

MixColumn or InvMixColumn. This is very similar to a bidirectional S-box, triggered by 

a switch. This method will reduce the code size at the expense of a slightly larger ALU, 
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dedicated for MixColumn. On the other hand, proper power, area and delay analysis 

against other similar designs are considered vital to further validate the CISA AES 

simulation results and to provide in depth analysis of the proposed methods. 

 

7.2.3. Improvement on MMA Models   

Figure 7.5 illustrates the possibility to mix with other symmetric ciphers within the 

NAES architecture. In this thesis, the work based on mirrored AES cores is presented. 

The next level of work would be to identify more suitable ciphers for this configuration. 

As shown in Figure 7.5 a) and b), the MMA model 1 is depicted to use paired-cipher X 

and Y. As for Figure 7.5 c), the diagram shows non-matching cipher’s matchup.  

CIPHER

X

CIPHER

X

Global PC

CIPHER

Y

CIPHER

Y

Global PC

CIPHER

X

CIPHER

Y

Global PC
a) b) c)

 

Figure 7.5: a) Mirrored cipher X pairing, b) Mirrored cipher Y pairing, c) Cipher X and Y 

paired in MMA model 1. 

 

As for the MMA model 2, the future work would be to investigate the possible 

configurations for other ciphers, other than the AES and Skipjack. This would greatly 

increase the choice of ciphers and provide more flexibility, making the MMA scalable. 

The proposed idea is illustrated in Figure 7.6. The feasibility of combining MMA with 

mode 1 and 2 can be further investigated, creating a hybrid system with multiple levels 

of cipher strength. Figure 7.7 depicts the pairings of NAES, AES and possibly the Anubis 

cipher, which is a variant of the AES cipher. 
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Figure 7.6: The overview of MMA model 2 with various ciphers. 
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Figure 7.7: The overview of a complete multi-level architecture with NAES, AES and 

Anubis. 

 

7.2.4. Compact Crypto- processor - ANUBIS (Extension of MMA model 1) 

Following the MMA model 2, a good addition would be to include an AES-similar cipher 

as a line-up since the adder and XOR block can be re-used. Hence, the ANUBIS cipher is 
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implemented. The MISC ANUBIS is presented in this section because it is considered as 

unfinished work. Figure 7.7 shows a complete system includes 3 different ciphers. The 

hardware implemented MISC ANUBIS is presented in this section as an additional 

component and supplementary work.  

The MISC ANUBIS processor together with 4 customized ALU consists of 4 basic 

hardware blocks as the ALU: Adder, XOR, xTimeAnu and Non-linear block (similar to 

the S-Box in AES, and in this case it is the tweaked s-box with P and Q boxes). The 

implemented MISC ANUBIS data-path is shown in Figure 7.8. 
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Figure 7.8: The illustration of the MISC Anubis architecture. 

.  

In the Anubis cipher, the linear diffusion and non-linear layer is very similar to the Mix 

column and sub-bytes in the AES. The only difference is that the linear diffusion is an 

involution operation and the values of the matrix are different comparing with the mix 

column. The s-box in AES has the same size as the non-linear component in Anubis (8 

bits in, 8 bits out). Since the Anubis is an involution cipher, the non-linear component for 
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decryption is non-existent. The Anubis ALU consists of the 4 main logic circuits: the 

Adder, XOR, xTimeAnu, and the non-linear block. 

Goodman et al [190] stated that the Xtime block used and designed was a reference to 

the GF(28) reduction polynomial in AES. When designing this similar block for Anubis, 

the XOR points for the bit locations have to be re-routed. Figure 7.9 shows the 

redesigned xtime block specifically for ANUBIS namely the xTimeAnu. 
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Figure 7.9: The xTimeAnu circuit for the polynomial of  x8 + x4 + x3 + x2 + 1 (0x11D) 

 

The implementation results for MISC ANUBIS are shown below: 

Table 7.1: Implementation results for MISC ANUBIS. 

Components Quantity Total Usage 

No. of  Slice Flip Flops 132 26,624 ~1% 

Total  No. of 4 Input LUTs 192 26,624 ~1% 

No. of  LUTs used a logic 159 192 ~83% 

No. of  LUTs used a route-thru 32 192 ~17% 

No. of  LUTs used a Shift Registers 0 192 0% 

No. of Bonded IOBs 44 221 19% 

No. of  BRAMs 1 32 3% 

No. of DCMs 1 4 25% 

No. BUFGMUX 4 8 50% 
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7.2.5. Hardware implementation and benchmark of MMA (Model 1 and 2) 

The hardware implementation of MMA is important to provide a model of comparison 

with other multi-cipher, multi-level systems. However, in a multi-cipher environment, 

not all systems or applications use the exact same cryptographic primitives and ciphers. 

The choice of cryptographic primitives is dependent on the design purpose and area of 

application. There are no identical crypto-systems with the proposed MMA that employ 

the exact same set of cryptographic primitives and therefore meaningful comparisons 

cannot be made. Comparison of cryptosystems can only be made when the exact same 

framework and architecture is used OR the exact same primitive combinations are used. 

The MMA model 1 (MCA) and model 2 (NAES) are implemented on Spartan-3L as a 

benchmark. Future work involves implementing the 2 proposed models into other FPGAs 

OR using the exact same cryptographic primitive combinations for meaningful 

comparison, justifying the resource utilization against other similar small crypto-systems.  

Table 7.2 and Table 7.3 show the hardware implementation results of MCA and NAES 

respectively. 
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Table 7.2: Implementation results for multi-cipher architecture MMA mode 1 (MCA - 

AES and Skipjack coupling) on Spartan-3L. 

Components Quantity Total Usage 

No. of  Slice Flip Flops 196 26,624 ~1% 

No. of Occupied Slices 315 13,312 2% 

Total  No. of 4 Input LUTs 588 26,624 2% 

No. of  LUTs used a logic 519 588 88% 

No. of  LUTs used a route-thru 68 588 12% 

No. of  LUTs used a Shift Registers 1 588 ~0% 

No. of Bonded IOBs 44 221 19% 

No. of  BRAMs 3 32 9% 

No. of  GCLKs 4 8 50% 

No. of DCMs 1 4 25% 

 

Table 7.3: Implementation results for multi-cipher architecture MMA mode 2 (NAES - 

AES and AES coupling) on Spartan-3L. 

Components Quantity Total Usage 

No. of  Slice Flip Flops 706 26,624 2.65% 

No. of Occupied Slices 1117 13,312 8% 

Total  No. of 4 Input LUTs 1270 26,624 4% 

No. of  LUTs used a logic 1161 1270 ~91% 

No. of  LUTs used a route-thru 106 1270 9% 

No. of  LUTs used a Shift Registers 3 1270 ~0% 

No. of Bonded IOBs 36 221 16% 

No. of  BRAMs 6 32 18% 

No. of  GCLKs 4 8 50% 

No. of DCMs 1 4 25% 
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Chapter 7 

 

7.2.6. The Proper Hardware Validation and Verification of the Proposed 

SEA 

The final objective of the research development presented in this thesis is the 

implementation of selective encryption architecture (SEA). The objective is achieved 

through the combination a MIPS SPIHT visual processor and the proposed CISA AES. 

The proposed SEA is intended to demonstrate real-world practicality by employing one of 

the proposed architecture and an image processor to form a joint encryption system. The 

hardware implementation of SEA and the implementation results are presented in 

Chapter 6. The whole system is able to demonstrate a four-frame image capture, on-

board image processing and compression, encryption, and transmission to a local 

connected computer. The transmitted data is then received, decrypted, decompressed on 

the connected computer and displayed onto a display monitor. 

Despite having the main objective achieved by designing low-area, low-complexity 

crypto-processors, the final product of the joint encryption system is yet to be 

benchmarked. The SEA is difficult to be benchmarked with other works mainly because 

there are no known other works to compare the design with as a whole. To achieve fair 

comparison, the point of comparison has to be a single system with both a crypto-

processor and an image processor. The SEA can be a benchmark of its own by setting an 

example of any other SEA related future works and thus, the proposed SEA also has to 

be properly validated through behavioural and post-route simulations in the future. 
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APPENDIX I: CELOXICA 

HANDLE-C CODES 

CISA AES 

// AES processor (12bit arch) part ENC 

 5 

#define RC10_TARGET_CLOCK_RATE 

 20000000 

//#define RC10_TARGET_CLOCK_RATE 

 25175000 

//#define PAL_TARGET_CLOCK_RATE  10 

 20000000 

 

#define ENCRYPT 1 

#define DECRYPT 0 

 15 

#include "stdlib.hch" 

//#include "pal_master.hch" 

//#include "pal_console.hch" 

#include "rc10.hch" 

 20 

#define RegWidth 8  // 8 bit long 

#define RegWidth_10b 10  // 

10 bit long 

#define RegWidth_12b 12  // 

11 bit long 25 

 

 

macro expr ClockRate = 

RC10_ACTUAL_CLOCK_RATE; 

//macro expr ClockRate = 30 

PAL_ACTUAL_CLOCK_RATE; 

 

 

 

static ram unsigned RegWidth_12b Memory[4096] 35 

= { 

 

//example of XOR instruction 

//0x301, 0x112, 0x000, // 99 xor 11 = 88 

 40 

//example of SBN instruction 

//0x101, 0x112, 0x000, // 99 + 11 = AA 

 

 

//---------------AES ENCRYPTION / DECRYPTION 45 

PROGRAM-----------------// 

 

//PC starts at xxx 

0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 

0x007, 0x008, 0x009, 0x00A, 0x00B, 0x00C, 50 
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0x00D, 0x00E, 0x00F, //000 - 00F //Original Key (0 

- 15) 

0x000, 0x011, 0x022, 0x033, 0x044, 0x055, 0x066, 

0x077, 0x088, 0x099, 0x0AA, 0x0BB, 0x0CC, 

0x0DD, 0x0EE, 0x0FF, //010 - 01F //Plain text (16 5 

- 31) 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //020 - 02F //Data for shift row 

round 1(32 - 47) and for mix column 10 

0x000, 0x001, 0x002, 0x004, 0x008, 0x010, 0x020, 

0x040, 0x080, 0x01B, 0x036, 0x000, 0x000, 0x000, 

0x000, 0x009, //030 - 03F //Data for constants (48 - 

63) 

//0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 15 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //040 - 04F //Cipher (64 - 79) 

0x069, 0x0C4, 0x0E0, 0x0D8, 0x06A, 0x07B, 

0x004, 0x030, 0x0D8, 0x0CD, 0x0B7, 0x080, 

0x070, 0x0B4, 0x0C5, 0x05A, //040 - 04F //Cipher 20 

(64 - 79) 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //050 - 05F //temp Data for 

Mixcolumn (80 - 95) 25 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //060 - 06F //temp Data for 

Mixcolumn (95 - 111) 

0x000, 0x001, 0xFFF, 0xFF5, 0x009, 0xFF6, 30 

0x008, 0xFF0, 0xFF5, 0x800, 0x010, 0xFFE, 

0x000, 0x000, 0x000, 0x000, //070 - 07F //temp 

Data and temp key (112 - 127) 

 

/* 35 

//expanded keys 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //080 - 08F //Original Key (128 - 143) 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 40 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //090 - 09F //Key round 1 (144 - 159 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //0A0 - 0AF //Key round 2 (160 - 175 45 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //0B0 - 0BF //Key round 3 (176 - 191)  

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 50 

0x000, 0x000, //0C0 - 0CF //Key round 4 (192 - 207) 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //0D0 - 0DF //Key round 5 (208 - 223) 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 55 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //0E0 - 0EF //Key round 6 (224 - 239) 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //0F0 - 0FF //Key round 7 (240 - 255) 60 
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0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //100 - 10F //Key round 8 (256 - 271) 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 5 

0x000, 0x000, //110 - 11F //Key round 9 (272 - 287) 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 

0x000, 0x000, //120 - 12F //Key round 10 (288 - 

303) 10 

*/ 

 

 

//Reference Keys for all 10 rounds// 

 15 

0x000, 0x001, 0x002, 0x003,  

0x004, 0x005, 0x006, 0x007,  

0x008, 0x009, 0x00A, 0x00B,  

0x00C, 0x00D, 0x00E, 0x00F, //080 - 08F 

//Original Key (128 - 143) 20 

 

0x0d6, 0x0aa, 0x074, 0x0fd,  

0x0d2, 0x0af, 0x072, 0x0fa,  

0x0da, 0x0a6, 0x078, 0x0f1,  

0x0d6, 0x0ab, 0x076, 0x0fe, //090 - 09F //Key 25 

round 1 (144 - 159) 

 

0x0b6, 0x092, 0x0cf, 0x00b,  

0x064, 0x03d, 0x0bd, 0x0f1,  

0x0be, 0x09b, 0x0c5, 0x000,  30 

0x068, 0x030, 0x0b3, 0x0fe, //0A0 - 0AF //Key 

round 2 (160 - 175) 

 

0x0b6, 0x0ff, 0x074, 0x04e,  

0x0d2, 0x0c2, 0x0c9, 0x0bf,  35 

0x06c, 0x059, 0x00c, 0x0bf,  

0x004, 0x069, 0x0bf, 0x041, //0B0 - 0BF //Key 

round 3 (176 - 191)  

 

0x047, 0x0f7, 0x0f7, 0x0bc,  40 

0x095, 0x035, 0x03e, 0x003,  

0x0f9, 0x06c, 0x032, 0x0bc,  

0x0fd, 0x005, 0x08d, 0x0fd, //0C0 - 0CF //Key 

round 4 (192 - 207) 

 45 

0x03c, 0x0aa, 0x0a3, 0x0e8,  

0x0a9, 0x09f, 0x09d, 0x0eb,  

0x050, 0x0f3, 0x0af, 0x057,  

0x0ad, 0x0f6, 0x022, 0x0aa, //0D0 - 0DF //Key 

round 5 (208 - 223) 50 

 

0x05e, 0x039, 0x00f, 0x07d,  
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0x0f7, 0x0a6, 0x092, 0x096,  

0x0a7, 0x055, 0x03d, 0x0c1,  

0x00a, 0x0a3, 0x01f, 0x06b, //0E0 - 0EF //Key 

round 6 (224 - 239) 

 5 

0x014, 0x0f9, 0x070, 0x01a,  

0x0e3, 0x05f, 0x0e2, 0x08c,  

0x044, 0x00a, 0x0df, 0x04d,  

0x04e, 0x0a9, 0x0c0, 0x026, //0F0 - 0FF //Key 

round 7 (240 - 255) 10 

 

0x047, 0x043, 0x087, 0x035,  

0x0a4, 0x01c, 0x065, 0x0b9,  

0x0e0, 0x016, 0x0ba, 0x0f4,  

0x0ae, 0x0bf, 0x07a, 0x0d2, //100 - 10F //Key 15 

round 8 (256 - 271) 

 

0x054, 0x099, 0x032, 0x0d1,  

0x0f0, 0x085, 0x057, 0x068,  

0x010, 0x093, 0x0ed, 0x09c,  20 

0x0be, 0x02c, 0x097, 0x04e, //110 - 11F //Key 

round 9 (272 - 287) 

 

0x013, 0x011, 0x01d, 0x07f,  

0x0e3, 0x094, 0x04a, 0x017,  25 

0x0f3, 0x007, 0x0a7, 0x08b,  

0x04d, 0x02b, 0x030, 0x0c5, //120 - 12F //Key 

round 10 (288 - 303) 

 

 30 

//Original Key 

//000 - 000 

//001 - 001 

//002 - 002 

//003 - 003 35 

//004 - 004 

//005 - 005 

//006 - 006 

//007 - 007 

//008 - 008 40 

//009 - 009 

//00A - 00A 

//00B - 00B 

//00C - 00C 

//00D - 00D 45 

//00E - 00E 

//00F - 00F 

 

//Plain text 
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//010 - 000 

//011 - 011 

//012 - 022 

//013 - 033 

//014 - 044 5 

//015 - 055 

//016 - 066 

//017 - 077 

//018 - 088 

//019 - 099 10 

//01A - 0AA 

//01B - 0BB 

//01C - 0CC 

//01D - 0DD 

//01E - 0EE 15 

//01F - 0FF 

 

//Data for constants 

//030 - 000 

//031 - 001 20 

//032 - 002 

//033 - 004 

//034 - 008 

//035 - 010 

//036 - 020 25 

//037 - 040 

//038 - 080 

//039 - 01B 

//03A - 036 

//03B - 000 30 

//03C - 000 

//03D - 000 

//03E - 000 

//03F - 00A //loop for decrypt 2 (10) 

 35 

//070 - 000 

//071 - 001 

//072 - FFF (-1) 

//073 - FF5 (-11) Nr2 

//074 - 009 (9) Nr1 40 

//075 - FF6 (-10) test Nr 1 (R=9) 

//076 - 008 (8) test Nr2 (R=9) 

//077 - FF0 (-16) 

//078 - FF5 (key.ex loop = 11 -> 1 last time to write 

last key ) 45 

//079 - 800 (extreme neg for braching) 

//07A - 010 (+16) 

//07B - FFE (-2) DECRYPT loop 1 (bypass) 
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//---------------KEY EXPANSION----------------// 

//run 10 rounds of key expansion algorithm 

0x000, 0x000, //304, 305 5 

 

//move current key to key mem 

0x400, 0x080, 0x000, //306 

0x401, 0x081, 0x000,  

0x402, 0x082, 0x000, 10 

0x403, 0x083, 0x000,  

0x404, 0x084, 0x000, 

0x405, 0x085, 0x000,  

0x406, 0x086, 0x000, 

0x407, 0x087, 0x000,  15 

0x408, 0x088, 0x000, 

0x409, 0x089, 0x000,  

0x40A, 0x08A, 0x000, 

0x40B, 0x08B, 0x000,  

0x40C, 0x08C, 0x000, 20 

0x40D, 0x08D, 0x000,  

0x40E, 0x08E, 0x000, 

0x40F, 0x08F, 0x000, //353 

 

//clear temp key var and ROT word 25 

0x07C, 0x07C, 0x000, //354 

0x07D, 0x07D, 0x000,  

0x07E, 0x07E, 0x000, 

0x07F, 0x07F, 0x000, //365 

 30 

//Rot Word 

0x40D, 0x07C, 0x000, //366 

0x40E, 0x07D, 0x000, 

0x40F, 0x07E, 0x000,  

0x40C, 0x07F, 0x000, //377 35 

 

//Sub word 

0xC00, 0x07C, 0x000, //378 

0xC00, 0x07D, 0x000, 

0xC00, 0x07E, 0x000,  40 

0xC00, 0x07F, 0x000, //389 

  

//XOR RCon 

//increment program + load RCON 

0x072, 0x189, 0x000, // 390 - 392 45 

 

//load Rcon (XOR to MSB key) 

0x430, 0x07C, 0x000, // 393 - 395 
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   30 

//key gen  

0x47C, 0x000, 0x000, //396 

0x47D, 0x001, 0x000,  

0x47E, 0x002, 0x000, 

0x47F, 0x003, 0x000,  35 

 

0x400, 0x004, 0x000, 

0x401, 0x005, 0x000,  

0x402, 0x006, 0x000, 

0x403, 0x007, 0x000,  40 

 

0x404, 0x008, 0x000, 

0x405, 0x009, 0x000,  

0x406, 0x00A, 0x000, 

0x407, 0x00B, 0x000,  45 

 

0x408, 0x00C, 0x000, 

0x409, 0x00D, 0x000,  

0x40A, 0x00E, 0x000, 

0x40B, 0x00F, 0x000, // 443 50 

 

//increment round key memory locations by 16 

0x077, 0x133, 0x000, //444 

0x077, 0x136, 0x000,  

0x077, 0x139, 0x000, 55 

0x077, 0x13C, 0x000,  

0x077, 0x13F, 0x000, 

0x077, 0x142, 0x000,  
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0x077, 0x145, 0x000, 

0x077, 0x148, 0x000,  

0x077, 0x14B, 0x000, 

0x077, 0x14E, 0x000,  

0x077, 0x151, 0x000, 5 

0x077, 0x154, 0x000,  

0x077, 0x157, 0x000, 

0x077, 0x15A, 0x000,  

0x077, 0x15D, 0x000, 

0x077, 0x160, 0x000, //491 10 

 

0x072, 0x078, 0x131, //492 - 494 (go to 305 + 1) 

//-------end key expansion------// 

 

//continue to jump to add key (ENCRYPT) 15 

0x072, 0x079, 0x251, //495 - 497 (go to 593 + 1) 

 

0x000, 0x000, 0x000, //498 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  20 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  25 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  30 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, //545 

 

0x000, 0x000, 0x000, //546 35 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  40 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 

0x000, 0x000, 0x000,  45 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  
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0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, //593 

 

//Add roundkey (re-addressing + add round key) -> 

ENCRYPT 5 

0x480, 0x010, 0x000, //594 

0x481, 0x011, 0x000, 

0x482, 0x012, 0x000, 

0x483, 0x013, 0x000, 

0x484, 0x014, 0x000, 10 

0x485, 0x015, 0x000, 

0x486, 0x016, 0x000, 

0x487, 0x017, 0x000, 

0x488, 0x018, 0x000, 

0x489, 0x019, 0x000, 15 

0x48A, 0x01A, 0x000, 

0x48B, 0x01B, 0x000, 

0x48C, 0x01C, 0x000, 

0x48D, 0x01D, 0x000, 

0x48E, 0x01E, 0x000, 20 

0x48F, 0x01F, 0x000, //641 

 

0x077, 0x252, 0x000, //642 

0x077, 0x255, 0x000,  

0x077, 0x258, 0x000,  25 

0x077, 0x25B, 0x000,  

0x077, 0x25E, 0x000,  

0x077, 0x261, 0x000,  

0x077, 0x264, 0x000,  

0x077, 0x267, 0x000,  30 

0x077, 0x26A, 0x000,  

0x077, 0x26D, 0x000, 

0x077, 0x270, 0x000,  

0x077, 0x273, 0x000,  

0x077, 0x276, 0x000,  35 

0x077, 0x279, 0x000,  

0x077, 0x27C, 0x000,  

0x077, 0x27F, 0x000, //689 

 

//0x072, 0x073, 0x07F, //690 - 692 NEW Nr2, 40 

check if all 10rounds is done 

0x072, 0x073, 0x3FF, //continue to jump to shift 

row (ENCRYPT) 

 

//continue to end 45 

0x072, 0x079, 0x6D5, //693 - 695 (go to 1749 + 1) 

 

0x000, 0x000, 0x000, //696 

0x000, 0x000, 0x000,  
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0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  5 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  10 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, //743 

 15 

//Add roundkey (re-addressing + add round key) -> 

DECRYPT 

0x520, 0x040, 0x000, //744 

0x521, 0x041, 0x000, 

0x522, 0x042, 0x000, 20 

0x523, 0x043, 0x000, 

0x524, 0x044, 0x000, 

0x525, 0x045, 0x000, 

0x526, 0x046, 0x000, 

0x527, 0x047, 0x000, 25 

0x528, 0x048, 0x000, 

0x529, 0x049, 0x000, 

0x52A, 0x04A, 0x000, 

0x52B, 0x04B, 0x000, 

0x52C, 0x04C, 0x000, 30 

0x52D, 0x04D, 0x000, 

0x52E, 0x04E, 0x000, 

0x52F, 0x04F, 0x000, //791 

 

0x07A, 0x2E8, 0x000, //792 35 

0x07A, 0x2EB, 0x000,  

0x07A, 0x2EE, 0x000,  

0x07A, 0x2F1, 0x000,  

0x07A, 0x2F4, 0x000,  

0x07A, 0x2F7, 0x000,  40 

0x07A, 0x2FA, 0x000,  

0x07A, 0x2FD, 0x000,  

0x07A, 0x300, 0x000, 

0x07A, 0x303, 0x000,  

0x07A, 0x306, 0x000,  45 

0x07A, 0x309, 0x000,  

0x07A, 0x30C, 0x000,  

0x07A, 0x30F, 0x000,  
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0x07A, 0x312, 0x000,  

0x07A, 0x315, 0x000,//839 

 

//continue to jump to inv shift row (DECRYPT) 

(one time loop) 5 

0x072, 0x07B, 0x7FF, //840 - 842 (go to 2047 + 1) 

 

0x071, 0x03F, 0xFFE, // jump to end is R=10 

//0x000, 0x000, 0x000, 

 10 

0x072, 0x079, 0x8F2,//jump to 2289 if -ve (jump to 

inv mix column) 

 

0x000, 0x000, 0x000, //843 

0x000, 0x000, 0x000,  15 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  20 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  25 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, //890 

 30 

0x000, 0x000, 0x000, //891 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  35 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 40 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  45 

0x000, 0x000, 0x000, //938 

 

0x000, 0x000, 0x000, //939 

0x000, 0x000, 0x000,  
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0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  5 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  10 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, //986 

 15 

0x000, 0x000, 0x000, //987 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  20 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 25 

0x000,  //1023 

//----------programmable addresses end--------// 

 

 

 30 

//----------AES ENCRYPTION SEQUENCE----------// 

//PC starts at 1024 

 

//9 rounds of permute - sub 

//clear data(32 - 47) and shift rows of plaintext to 35 

data(32 - 47) 

0x020, 0x020, 0x000, //1024 

0x021, 0x021, 0x000,  

0x022, 0x022, 0x000,  

0x023, 0x023, 0x000,  40 

0x024, 0x024, 0x000,  

0x025, 0x025, 0x000,  

0x026, 0x026, 0x000,  

0x027, 0x027, 0x000,  

0x028, 0x028, 0x000, 45 

0x029, 0x029, 0x000,  

0x02A, 0x02A, 0x000,  

0x02B, 0x02B, 0x000,  
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0x02C, 0x02C, 0x000, 

0x02D, 0x02D, 0x000,  

0x02E, 0x02E, 0x000, 

0x02F, 0x02F, 0x000, // (96) 

 5 

0x410, 0x020, 0x000,  

0x415, 0x021, 0x000, 

0x41A, 0x022, 0x000, 

0x41F, 0x023, 0x000, 

0x414, 0x024, 0x000, 10 

0x419, 0x025, 0x000, 

0x41E, 0x026, 0x000, 

0x413, 0x027, 0x000, 

0x418, 0x028, 0x000, 

0x41D, 0x029, 0x000, 15 

0x412, 0x02A, 0x000, 

0x417, 0x02B, 0x000, 

0x41C, 0x02C, 0x000, 

0x411, 0x02D, 0x000, 

0x416, 0x02E, 0x000, 20 

0x41B, 0x02F, 0x000, // 1119 

 

//sub bytes (stored in 010 - 01F) 

0xC00, 0x020, 0x000, //1120 

0xC00, 0x021, 0x000,  25 

0xC00, 0x022, 0x000,  

0xC00, 0x023, 0x000,  

0xC00, 0x024, 0x000,  

0xC00, 0x025, 0x000,  

0xC00, 0x026, 0x000,  30 

0xC00, 0x027, 0x000,  

0xC00, 0x028, 0x000,  

0xC00, 0x029, 0x000, 

0xC00, 0x02A, 0x000,  

0xC00, 0x02B, 0x000,  35 

0xC00, 0x02C, 0x000,  

0xC00, 0x02D, 0x000,  

0xC00, 0x02E, 0x000,  

0xC00, 0x02F, 0x000, // 1167 

 40 

 

//check that all 9 round completed 

0x071, 0x074, 0x672, // 1168 - 1170 (go to end of 

mix column for last round of add key) 

 45 

//mix column of data(32 - 47) and stored in 

data(32 - 47)  

//clear location(080 - 08F & 090 - 09F) and move 

data to location(080 - 08F & 090 - 09F) 
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0x050, 0x050, 0x000, //1171 

0x051, 0x051, 0x000,  

0x052, 0x052, 0x000,  

0x053, 0x053, 0x000,  

0x054, 0x054, 0x000,  5 

0x055, 0x055, 0x000,  

0x056, 0x056, 0x000,  

0x057, 0x057, 0x000,  

0x058, 0x058, 0x000, //(48) 

0x059, 0x059, 0x000,  10 

0x05A, 0x05A, 0x000,  

0x05B, 0x05B, 0x000,  

0x05C, 0x05C, 0x000, 

0x05D, 0x05D, 0x000,  

0x05E, 0x05E, 0x000, 15 

0x05F, 0x05F, 0x000, //1218 

 

0x060, 0x060, 0x000, //1219 

0x061, 0x061, 0x000,  

0x062, 0x062, 0x000,  20 

0x063, 0x063, 0x000,  

0x064, 0x064, 0x000,  

0x065, 0x065, 0x000,  

0x066, 0x066, 0x000,  

0x067, 0x067, 0x000, //(48) 25 

0x068, 0x068, 0x000, 

0x069, 0x069, 0x000,  

0x06A, 0x06A, 0x000,  

0x06B, 0x06B, 0x000,  

0x06C, 0x06C, 0x000, 30 

0x06D, 0x06D, 0x000,  

0x06E, 0x06E, 0x000, 

0x06F, 0x06F, 0x000, //1266 

 

0x420, 0x050, 0x000, //1267 35 

0x421, 0x051, 0x000,  

0x422, 0x052, 0x000,  

0x423, 0x053, 0x000,  

0x424, 0x054, 0x000,  

0x425, 0x055, 0x000,  40 

0x426, 0x056, 0x000,  

0x427, 0x057, 0x000,  

0x428, 0x058, 0x000, //(48) 

0x429, 0x059, 0x000, 

0x42A, 0x05A, 0x000,  45 

0x42B, 0x05B, 0x000,  

0x42C, 0x05C, 0x000,  

0x42D, 0x05D, 0x000, 



238 

 

 

0x42E, 0x05E, 0x000,  

0x42F, 0x05F, 0x000, //1314 

 

0x420, 0x060, 0x000, //1315 

0x421, 0x061, 0x000,  5 

0x422, 0x062, 0x000,  

0x423, 0x063, 0x000,  

0x424, 0x064, 0x000,  

0x425, 0x065, 0x000,  

0x426, 0x066, 0x000, //(48) 10 

0x427, 0x067, 0x000,  

0x428, 0x068, 0x000,  

0x429, 0x069, 0x000, 

0x42A, 0x06A, 0x000,  

0x42B, 0x06B, 0x000,  15 

0x42C, 0x06C, 0x000,  

0x42D, 0x06D, 0x000, 

0x42E, 0x06E, 0x000,  

0x42F, 0x06F, 0x000, //1362 

 20 

//column0 

0x423, 0x050, 0x000, // 1363 

0x420, 0x051, 0x000, // 

0x421, 0x052, 0x000, //  

0x422, 0x053, 0x000, //  25 

 

0x452, 0x060, 0x000, //  

0x453, 0x061, 0x000, //  

0x450, 0x062, 0x000, //  

0x451, 0x063, 0x000, //  30 

 

0x800, 0x050, 0x000,  

0x800, 0x051, 0x000, 

0x800, 0x052, 0x000,  

0x800, 0x053, 0x000, // 35 

 

0x450, 0x060, 0x000,  

0x451, 0x061, 0x000, 

0x452, 0x062, 0x000,  

0x453, 0x063, 0x000, // (72) 40 

 

0x020, 0x020, 0x000,  

0x021, 0x021, 0x000,  

0x022, 0x022, 0x000,  

0x023, 0x023, 0x000, //  45 

 

0x461, 0x020, 0x000,  

0x462, 0x021, 0x000, 
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0x463, 0x022, 0x000,  

0x460, 0x023, 0x000, // 1434 

 

//column1 

0x427, 0x054, 0x000, //1435 5 

0x424, 0x055, 0x000,  

0x425, 0x056, 0x000,  

0x426, 0x057, 0x000, // 

 

0x456, 0x064, 0x000,  10 

0x457, 0x065, 0x000,  

0x454, 0x066, 0x000,  

0x455, 0x067, 0x000, // 

 

0x800, 0x054, 0x000,  15 

0x800, 0x055, 0x000, 

0x800, 0x056, 0x000,  

0x800, 0x057, 0x000, // 

 

0x454, 0x064, 0x000,  20 

0x455, 0x065, 0x000, 

0x456, 0x066, 0x000,  

0x457, 0x067, 0x000, // 

 

0x024, 0x024, 0x000,  25 

0x025, 0x025, 0x000,  

0x026, 0x026, 0x000,  

0x027, 0x027, 0x000, //  

 

0x465, 0x024, 0x000,  30 

0x466, 0x025, 0x000, 

0x467, 0x026, 0x000,  

0x464, 0x027, 0x000, // 1506 

 

 35 

//column2 

0x42B, 0x058, 0x000, //1507 

0x428, 0x059, 0x000,  

0x429, 0x05A, 0x000,  

0x42A, 0x05B, 0x000,  40 

 

0x45A, 0x068, 0x000,  

0x45B, 0x069, 0x000,  

0x458, 0x06A, 0x000,  

0x459, 0x06B, 0x000,  45 

 

0x800, 0x058, 0x000,  

0x800, 0x059, 0x000, 
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0x800, 0x05A, 0x000,  

0x800, 0x05B, 0x000,  

 

0x458, 0x068, 0x000,  

0x459, 0x069, 0x000, 5 

0x45A, 0x06A, 0x000,  

0x45B, 0x06B, 0x000, 

 

0x028, 0x028, 0x000, 

0x029, 0x029, 0x000,  10 

0x02A, 0x02A, 0x000,  

0x02B, 0x02B, 0x000, 

 

0x469, 0x028, 0x000,  

0x46A, 0x029, 0x000, 15 

0x46B, 0x02A, 0x000,  

0x468, 0x02B, 0x000, //1578 

 

 

//column3 20 

0x42F, 0x05C, 0x000, //1579 

0x42C, 0x05D, 0x000,  

0x42D, 0x05E, 0x000,  

0x42E, 0x05F, 0x000,  

 25 

0x45E, 0x06C, 0x000,  

0x45F, 0x06D, 0x000,  

0x45C, 0x06E, 0x000,  

0x45D, 0x06F, 0x000,  

 30 

0x800, 0x05C, 0x000,  

0x800, 0x05D, 0x000, 

0x800, 0x05E, 0x000,  

0x800, 0x05F, 0x000,  

 35 

0x45C, 0x06C, 0x000,  

0x45D, 0x06D, 0x000, 

0x45E, 0x06E, 0x000,  

0x45F, 0x06F, 0x000, 

 40 

0x02C, 0x02C, 0x000, 

0x02D, 0x02D, 0x000,  

0x02E, 0x02E, 0x000,  

0x02F, 0x02F, 0x000, 

 45 

0x46D, 0x02C, 0x000,  

0x46E, 0x02D, 0x000, 

0x46F, 0x02E, 0x000,  
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0x46C, 0x02F, 0x000, // 1650 

 

//clear 010 = 01F 

0x010, 0x010, 0x000, //1651 

0x011, 0x011, 0x000,  5 

0x012, 0x012, 0x000,  

0x013, 0x013, 0x000,  

0x014, 0x014, 0x000,  

0x015, 0x015, 0x000,  

0x016, 0x016, 0x000,  10 

0x017, 0x017, 0x000, //(48) 

0x018, 0x018, 0x000, 

0x019, 0x019, 0x000,  

0x01A, 0x01A, 0x000,  

0x01B, 0x01B, 0x000,  15 

0x01C, 0x01C, 0x000, 

0x01D, 0x01D, 0x000,  

0x01E, 0x01E, 0x000, 

0x01F, 0x01F, 0x000, //1698 

 20 

//move the mixcolumn result from 020 - 02f to 010 

- 01f 

0x420, 0x010, 0x000, //1699 

0x421, 0x011, 0x000,  

0x422, 0x012, 0x000,  25 

0x423, 0x013, 0x000,  

0x424, 0x014, 0x000,  

0x425, 0x015, 0x000,  

0x426, 0x016, 0x000,  

0x427, 0x017, 0x000,  30 

0x428, 0x018, 0x000, 

0x429, 0x019, 0x000,  

0x42A, 0x01A, 0x000,  

0x42B, 0x01B, 0x000,  

0x42C, 0x01C, 0x000, 35 

0x42D, 0x01D, 0x000,  

0x42E, 0x01E, 0x000, 

0x42F, 0x01F, 0x000, //1746 

 

0x072, 0x079, 0x251, //1747 - 1749 (back to add 40 

key ENCRYPT) 

 

//move the encrypted result to 040 - 04f for 

decryption 

0x410, 0x040, 0x000, //1750 45 

0x411, 0x041, 0x000,  

0x412, 0x042, 0x000,  

0x413, 0x043, 0x000,  

0x414, 0x044, 0x000,  
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0x415, 0x045, 0x000,  

0x416, 0x046, 0x000,  

0x417, 0x047, 0x000,  

0x418, 0x048, 0x000, 

0x419, 0x049, 0x000,  5 

0x41A, 0x04A, 0x000,  

0x41B, 0x04B, 0x000,  

0x41C, 0x04C, 0x000, 

0x41D, 0x04D, 0x000,  

0x41E, 0x04E, 0x000, 10 

0x41F, 0x04F, 0x000, //1797 

 

0x072, 0x079, 0xFFE, //1798 - 1800 (END OF 

ENCRYPT) 

//0x000, 0x000, 0x000, //1798 - 1800 (END OF 15 

ENCRYPT) 

 

0x000, 0x000, 0x000, //1801 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  20 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  25 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  30 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, //1848 

 

0x000, 0x000, 0x000, //1849 35 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  40 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 

0x000, 0x000, 0x000,  45 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  
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0x000, 0x000, 0x000, //1896 

 

0x000, 0x000, 0x000, //1897 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  5 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  10 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  15 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, //1944 

 

0x000, 0x000, 0x000, //1945 20 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  25 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, 

0x000, 0x000, 0x000,  30 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, //1992 35 

 

0x000, 0x000, 0x000, //1993 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  40 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  45 

0x000, 0x000, 0x000, 

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  
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0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000,  

0x000, 0x000, 0x000, //2040 

 5 

0x000, 0x000, 0x000, //2041 

0x000, 0x000, 0x000,  

0x000, //2047 

 

 10 

//----------AES DECRYPTION SEQUENCE----------// 

//PC starts at 2048 

 

//9 rounds of inv permute - inv sub 

//clear data(32 - 47) and inv shift rows of 15 

ciphertext to data(32 - 47) 

0x020, 0x020, 0x000, //2048 

0x021, 0x021, 0x000,  

0x022, 0x022, 0x000,  

0x023, 0x023, 0x000,  20 

0x024, 0x024, 0x000,  

0x025, 0x025, 0x000,  

0x026, 0x026, 0x000,  

0x027, 0x027, 0x000,  

0x028, 0x028, 0x000, 25 

0x029, 0x029, 0x000,  

0x02A, 0x02A, 0x000,  

0x02B, 0x02B, 0x000,  

0x02C, 0x02C, 0x000, 

0x02D, 0x02D, 0x000,  30 

0x02E, 0x02E, 0x000, 

0x02F, 0x02F, 0x000, // (96) 

 

0x440, 0x020, 0x000,  

0x44D, 0x021, 0x000, 35 

0x44A, 0x022, 0x000, 

0x447, 0x023, 0x000, 

0x444, 0x024, 0x000, 

0x441, 0x025, 0x000, 

0x44E, 0x026, 0x000, 40 

0x44B, 0x027, 0x000, 

0x448, 0x028, 0x000, 

0x445, 0x029, 0x000, 

0x442, 0x02A, 0x000, 

0x44F, 0x02B, 0x000, 45 

0x44C, 0x02C, 0x000, 

0x449, 0x02D, 0x000, 

0x446, 0x02E, 0x000, 
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0x443, 0x02F, 0x000, // 2143 

 

//sub bytes (stored in 010 - 01F) 

0xC00, 0x020, 0x000, //2144 

0xC00, 0x021, 0x000,  5 

0xC00, 0x022, 0x000,  

0xC00, 0x023, 0x000,  

0xC00, 0x024, 0x000,  

0xC00, 0x025, 0x000,  

0xC00, 0x026, 0x000,  10 

0xC00, 0x027, 0x000,  

0xC00, 0x028, 0x000,  

0xC00, 0x029, 0x000, 

0xC00, 0x02A, 0x000,  

0xC00, 0x02B, 0x000,  15 

0xC00, 0x02C, 0x000,  

0xC00, 0x02D, 0x000,  

0xC00, 0x02E, 0x000,  

0xC00, 0x02F, 0x000, // 2191 

 20 

0x040, 0x040, 0x000, //2192 

0x041, 0x041, 0x000,  

0x042, 0x042, 0x000,  

0x043, 0x043, 0x000,  

0x044, 0x044, 0x000,  25 

0x045, 0x045, 0x000,  

0x046, 0x046, 0x000,  

0x047, 0x047, 0x000,  

0x048, 0x048, 0x000, 

0x049, 0x049, 0x000,  30 

0x04A, 0x04A, 0x000,  

0x04B, 0x04B, 0x000,  

0x04C, 0x04C, 0x000, 

0x04D, 0x04D, 0x000,  

0x04E, 0x04E, 0x000, 35 

0x04F, 0x04F, 0x000, // (96) 

 

0x420, 0x040, 0x000,  

0x421, 0x041, 0x000, 

0x422, 0x042, 0x000, 40 

0x423, 0x043, 0x000, 

0x424, 0x044, 0x000, 

0x425, 0x045, 0x000, 

0x426, 0x046, 0x000, 

0x427, 0x047, 0x000, 45 

0x428, 0x048, 0x000, 

0x429, 0x049, 0x000, 

0x42A, 0x04A, 0x000, 
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0x42B, 0x04B, 0x000, 

0x42C, 0x04C, 0x000, 

0x42D, 0x04D, 0x000, 

0x42E, 0x04E, 0x000, 

0x42F, 0x04F, 0x000, // 2287 5 

 

/* 

//TEST! 

0x510, 0x040, 0x000, //744 

0x511, 0x041, 0x000, 10 

0x512, 0x042, 0x000, 

0x513, 0x043, 0x000, 

0x514, 0x044, 0x000, 

0x515, 0x045, 0x000, 

0x516, 0x046, 0x000, 15 

0x517, 0x047, 0x000, 

0x518, 0x048, 0x000,//dummy add key 

0x519, 0x049, 0x000, 

0x51A, 0x04A, 0x000, 

0x51B, 0x04B, 0x000, 20 

0x51C, 0x04C, 0x000, 

0x51D, 0x04D, 0x000, 

0x51E, 0x04E, 0x000, 

0x51F, 0x04F, 0x000, //791 

*/ 25 

 

//check that all 9 round completed 

0x072, 0x079, 0x2E7, // 2288 - 2290 (go to inv add 

key) 

 30 

//inv mix column 

0x050, 0x050, 0x000, //2291 

0x051, 0x051, 0x000,  

0x052, 0x052, 0x000,  

0x053, 0x053, 0x000,  35 

0x054, 0x054, 0x000,  

0x055, 0x055, 0x000,  

0x056, 0x056, 0x000,  

0x057, 0x057, 0x000,  

0x058, 0x058, 0x000, //(48) 40 

0x059, 0x059, 0x000,  

0x05A, 0x05A, 0x000,  

0x05B, 0x05B, 0x000,  

0x05C, 0x05C, 0x000, 

0x05D, 0x05D, 0x000,  45 

0x05E, 0x05E, 0x000, 

0x05F, 0x05F, 0x000, //2238 

 



247 

 

 

0x060, 0x060, 0x000, //2239 

0x061, 0x061, 0x000,  

0x062, 0x062, 0x000,  

0x063, 0x063, 0x000,  

0x064, 0x064, 0x000,  5 

0x065, 0x065, 0x000,  

0x066, 0x066, 0x000,  

0x067, 0x067, 0x000, //(48) 

0x068, 0x068, 0x000, 

0x069, 0x069, 0x000,  10 

0x06A, 0x06A, 0x000,  

0x06B, 0x06B, 0x000,  

0x06C, 0x06C, 0x000, 

0x06D, 0x06D, 0x000,  

0x06E, 0x06E, 0x000, 15 

0x06F, 0x06F, 0x000, //2385 

 

0x440, 0x050, 0x000, //2386 

0x441, 0x051, 0x000,  

0x442, 0x052, 0x000,  20 

0x443, 0x053, 0x000,  

0x444, 0x054, 0x000,  

0x445, 0x055, 0x000,  

0x446, 0x056, 0x000,  

0x447, 0x057, 0x000,  25 

0x448, 0x058, 0x000, //(48) 

0x449, 0x059, 0x000, 

0x44A, 0x05A, 0x000,  

0x44B, 0x05B, 0x000,  

0x44C, 0x05C, 0x000,  30 

0x44D, 0x05D, 0x000, 

0x44E, 0x05E, 0x000,  

0x44F, 0x05F, 0x000, //1314 

 

0x440, 0x060, 0x000, //1315 35 

0x441, 0x061, 0x000,  

0x442, 0x062, 0x000,  

0x443, 0x063, 0x000,  

0x444, 0x064, 0x000,  

0x445, 0x065, 0x000,  40 

0x446, 0x066, 0x000, //(48) 

0x447, 0x067, 0x000,  

0x448, 0x068, 0x000,  

0x449, 0x069, 0x000, 

0x44A, 0x06A, 0x000,  45 

0x44B, 0x06B, 0x000,  

0x44C, 0x06C, 0x000,  

0x44D, 0x06D, 0x000, 
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0x44E, 0x06E, 0x000,  

0x44F, 0x06F, 0x000, //1362 

 

//column0 

0x443, 0x050, 0x000, // 1363 5 

0x440, 0x051, 0x000, // 

0x441, 0x052, 0x000, //  

0x442, 0x053, 0x000, //  

 

0x452, 0x060, 0x000, //  10 

0x453, 0x061, 0x000, //  

0x450, 0x062, 0x000, //  

0x451, 0x063, 0x000, //  

 

0x800, 0x050, 0x000,  15 

0x800, 0x051, 0x000, 

0x800, 0x052, 0x000,  

0x800, 0x053, 0x000, // 

 

0x450, 0x060, 0x000,  20 

0x451, 0x061, 0x000, 

0x452, 0x062, 0x000,  

0x453, 0x063, 0x000, // (72) 

 

0x440, 0x042, 0x000,  25 

0x441, 0x043, 0x000,  

 

0x800, 0x042, 0x000,  

0x800, 0x042, 0x000,  

0x800, 0x043, 0x000,  30 

0x800, 0x043, 0x000, // x4time 

 

0x040, 0x040, 0x000,  

0x041, 0x041, 0x000,  

 35 

0x442, 0x040, 0x000,  

0x443, 0x041, 0x000, //  

 

0x442, 0x043, 0x000,  

0x800, 0x043, 0x000, //last xtime 40 

 

0x443, 0x040, 0x000,  

0x443, 0x041, 0x000, //  

 

0x441, 0x060, 0x000,  45 

0x440, 0x061, 0x000, 

0x441, 0x062, 0x000,  

0x440, 0x063, 0x000, // 
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0x040, 0x040, 0x000,  

0x041, 0x041, 0x000,  

0x042, 0x042, 0x000,  

0x043, 0x043, 0x000, //  5 

 

0x461, 0x040, 0x000,  

0x462, 0x041, 0x000, 

0x463, 0x042, 0x000,  

0x460, 0x043, 0x000, // 1434 10 

 

//column1 

0x447, 0x054, 0x000, //1435 

0x444, 0x055, 0x000,  

0x445, 0x056, 0x000,  15 

0x446, 0x057, 0x000, // 

 

0x456, 0x064, 0x000,  

0x457, 0x065, 0x000,  

0x454, 0x066, 0x000,  20 

0x455, 0x067, 0x000, // 

 

0x800, 0x054, 0x000,  

0x800, 0x055, 0x000, 

0x800, 0x056, 0x000,  25 

0x800, 0x057, 0x000, // 

 

0x454, 0x064, 0x000,  

0x455, 0x065, 0x000, 

0x456, 0x066, 0x000,  30 

0x457, 0x067, 0x000, // 

 

0x444, 0x046, 0x000,  

0x445, 0x047, 0x000,  

 35 

0x800, 0x046, 0x000,  

0x800, 0x046, 0x000,  

0x800, 0x047, 0x000,  

0x800, 0x047, 0x000, // x4time 

 40 

0x044, 0x044, 0x000,  

0x045, 0x045, 0x000,  

 

0x446, 0x044, 0x000,  

0x447, 0x045, 0x000, //  45 

 

0x446, 0x047, 0x000,  

0x800, 0x047, 0x000, //last xtime 
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0x447, 0x044, 0x000,  

0x447, 0x045, 0x000, //  

 

0x445, 0x064, 0x000,  5 

0x444, 0x065, 0x000, 

0x445, 0x066, 0x000,  

0x444, 0x067, 0x000, // 

 

0x044, 0x044, 0x000,  10 

0x045, 0x045, 0x000,  

0x046, 0x046, 0x000,  

0x047, 0x047, 0x000, //  

 

0x465, 0x044, 0x000,  15 

0x466, 0x045, 0x000, 

0x467, 0x046, 0x000,  

0x464, 0x047, 0x000, // 1506 

 

 20 

//column2 

0x44B, 0x058, 0x000, //1507 

0x448, 0x059, 0x000,  

0x449, 0x05A, 0x000,  

0x44A, 0x05B, 0x000,  25 

 

0x45A, 0x068, 0x000,  

0x45B, 0x069, 0x000,  

0x458, 0x06A, 0x000,  

0x459, 0x06B, 0x000,  30 

 

0x800, 0x058, 0x000,  

0x800, 0x059, 0x000, 

0x800, 0x05A, 0x000,  

0x800, 0x05B, 0x000,  35 

 

0x458, 0x068, 0x000,  

0x459, 0x069, 0x000, 

0x45A, 0x06A, 0x000,  

0x45B, 0x06B, 0x000, 40 

 

0x448, 0x04A, 0x000,  

0x449, 0x04B, 0x000,  

 

0x800, 0x04A, 0x000,  45 

0x800, 0x04A, 0x000,  

0x800, 0x04B, 0x000,  

0x800, 0x04B, 0x000, // x4time 
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0x048, 0x048, 0x000,  

0x049, 0x049, 0x000,  

 

0x44A, 0x048, 0x000,  5 

0x44B, 0x049, 0x000, //  

 

0x44A, 0x04B, 0x000,  

0x800, 0x04B, 0x000, //last xtime 

 10 

0x44B, 0x048, 0x000,  

0x44B, 0x049, 0x000, //  

 

0x449, 0x068, 0x000,  

0x448, 0x069, 0x000, 15 

0x449, 0x06A, 0x000,  

0x448, 0x06B, 0x000, // 

 

0x048, 0x048, 0x000, 

0x049, 0x049, 0x000,  20 

0x04A, 0x04A, 0x000,  

0x04B, 0x04B, 0x000, 

 

0x469, 0x048, 0x000,  

0x46A, 0x049, 0x000, 25 

0x46B, 0x04A, 0x000,  

0x468, 0x04B, 0x000, //1578 

 

 

//column3 30 

0x44F, 0x05C, 0x000, //1507 

0x44C, 0x05D, 0x000,  

0x44D, 0x05E, 0x000,  

0x44E, 0x05F, 0x000,  

 35 

0x45E, 0x06C, 0x000,  

0x45F, 0x06D, 0x000,  

0x45C, 0x06E, 0x000,  

0x45D, 0x06F, 0x000,  

 40 

0x800, 0x05C, 0x000,  

0x800, 0x05D, 0x000, 

0x800, 0x05E, 0x000,  

0x800, 0x05F, 0x000,  

 45 

0x45C, 0x06C, 0x000,  

0x45D, 0x06D, 0x000, 

0x45E, 0x06E, 0x000,  
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0x45F, 0x06F, 0x000, 

 

0x44C, 0x04E, 0x000,  

0x44D, 0x04F, 0x000,  

 5 

0x800, 0x04E, 0x000,  

0x800, 0x04E, 0x000,  

0x800, 0x04F, 0x000,  

0x800, 0x04F, 0x000, // x4time 

 10 

0x04C, 0x04C, 0x000,  

0x04D, 0x04D, 0x000,  

 

0x44E, 0x04C, 0x000,  

0x44F, 0x04D, 0x000, //  15 

 

0x44E, 0x04F, 0x000,  

0x800, 0x04F, 0x000, //last xtime 

 

0x44F, 0x04C, 0x000,  20 

0x44F, 0x04D, 0x000, //  

 

0x44D, 0x06C, 0x000,  

0x44C, 0x06D, 0x000, 

0x44D, 0x06E, 0x000,  25 

0x44C, 0x06F, 0x000, // 

 

0x04C, 0x04C, 0x000, 

0x04D, 0x04D, 0x000,  

0x04E, 0x04E, 0x000,  30 

0x04F, 0x04F, 0x000, 

 

0x46D, 0x04C, 0x000,  

0x46E, 0x04D, 0x000, 

0x46F, 0x04E, 0x000,  35 

0x46C, 0x04F, 0x000, // 1650 

 

 

//back to inv shift row 

0x072, 0x079, 0x7FF, //1709 - 1711 40 

 

//goto end 

//0x132, 0x133, 0xFFF, //707 - 709 

 

} with block = 1; 45 
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static macro proc 

Run_AES_ENC_DEC_URISC(enc_dec_ctrl_input); 

static macro proc Sleep (Milliseconds); 

 

static macro proc Run_xTime(data_in, data_out); 5 

static macro proc Run_Sub_Bytes(data_in, 

data_out, enc_dec_ctrl); 

 

 

 10 

 

void main(void) 

{ 

 

 //Run_AES_ENC_DEC_URISC(ENCRY15 

PT); 

 Run_AES_ENC_DEC_URISC(DECRYP

T); 

 

 while(1) 20 

 { 

   par 

   { 

 

   25 

 RC10LEDWriteMask(Memory[79][7:0]); 

   } 

   

 } 

} 30 

 

 

 

 

 35 

/* 

void main(void) 

{ 

 unsigned int 12 count; 

 //unsigned int 4 count_4b; 40 

 unsigned int 8 SevenSeg; 

 

 //PalVersionRequire (1, 2); 

    //PalSevenSegRequire (2);  

 45 

 //PalSevenSegEnable (PalSevenSegCT 

(0)); 

    //PalSevenSegEnable (PalSevenSegCT (1)); 

 

 //Run_AES_ENC_DEC_URISC(ENCRY50 

PT); 
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 Run_AES_ENC_DEC_URISC(DECRYP

T); 

 

  

 while(1) 5 

 { 

  for(count=64; count<=79; 

count++) //aes cipher data (ENC_DEC) 

  //for(count=16; count<=31; 

count++) //aes cipher data 10 

  //for(count=32; count<=47; 

count++) //aes cipher data 

   

  { 

   par 15 

   { 

    SevenSeg = 

Memory[count][7:0]; 

   

 RC10SevenSeg0WriteDigit(SevenSeg[7:20 

4],0); 

   

 RC10SevenSeg1WriteDigit(SevenSeg[3:

0],0); 

   25 

 //PalSevenSegWriteDigit(PalSevenSegC

T(0),SevenSeg[7:4],0); 

   

 //PalSevenSegWriteDigit(PalSevenSegC

T(1),SevenSeg[3:0],0); 30 

   

 RC10LEDWriteMask(count[7:0]); 

   } 

   Sleep(1000); 

  } 35 

 

 } 

 

 

  40 

  

// while(1) 

// { 

    

 45 

//   

 RC10LEDWriteMask(Memory[272][7:0]); 

//   

 Sleep(1000); 

 50 
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// } 

  

  

} 

*/ 5 

 

 

static macro proc Sleep (Milliseconds) 

{ 

    macro expr Cycles = 10 

(RC10_ACTUAL_CLOCK_RATE * Milliseconds) / 

1000; 

 //macro expr Cycles = 

(PAL_ACTUAL_CLOCK_RATE * Milliseconds) / 

1000; 15 

    unsigned (log2ceil (Cycles)) Count; 

 

    Count = 0; 

    do 

    { 20 

        Count++; 

    } 

    while (Count != Cycles - 1); 

} 

 25 

 

static macro proc 

Run_AES_ENC_DEC_URISC(ENC_DEC_CTRL_I

N) 

{ 30 

 // registers 

 unsigned int RegWidth_12b PC; 

 unsigned int RegWidth_12b R; 

 unsigned int RegWidth_12b MDR; 

 unsigned int RegWidth_12b MAR; 35 

 unsigned int RegWidth_12b Mem_Out; 

 

 unsigned int 4 counter; 

 unsigned int 8 SevenSeg; 

 unsigned int 1 Z; 40 

 unsigned int 1 N; 

 unsigned int 1 RUN; 

 unsigned int 2 Op_Code; 

 

 //registers signal 45 

 signal unsigned int RegWidth_12b 

Sig_Mem_Out; 

 signal unsigned int RegWidth_12b 

Sig_MAR_In; 

 50 
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 signal unsigned int RegWidth_12b 

Sig_Input_A; 

 signal unsigned int RegWidth_12b 

Sig_Input_B; 

 5 

 signal unsigned int RegWidth_12b 

Sig_Adder_Out; 

 signal unsigned int RegWidth_12b 

Sig_XOR_Out; 

 signal unsigned int RegWidth_12b 10 

Sig_xTime_Out; 

 signal unsigned int RegWidth_12b 

Sig_SubBytes_Out; 

 

 signal unsigned int RegWidth_12b 15 

Sig_ALU_Out; 

 signal unsigned int RegWidth_12b 

Sig_PC_Out; 

 signal unsigned int RegWidth_12b 

Sig_MDR_Out; 20 

 signal unsigned int RegWidth_12b 

Sig_MAR_Out; 

 signal unsigned int RegWidth_12b 

Sig_INV_R; 

 25 

 signal unsigned int 2 Sig_Op_Code; 

 signal unsigned int 2 Sig_ALU_MUX; 

 

 signal unsigned int 1 Sig_Z; 

 signal unsigned int 1 Sig_N; 30 

  

 //control signal 

 signal unsigned int 1 Sig_Mem_Read; 

 signal unsigned int 1 Sig_Mem_Write; 

 signal unsigned int 1 Sig_MDR_Write; 35 

 signal unsigned int 1 Sig_MAR_Write; 

 signal unsigned int 1 Sig_MAR_SEL; 

 

 signal unsigned int 1 Sig_Z_Write; 

 signal unsigned int 1 Sig_N_Write; 40 

 signal unsigned int 1 Sig_CIN; 

 

 signal unsigned int 1 Sig_R_Write; 

 signal unsigned int 1 Sig_PC_Write; 

 45 

 signal unsigned int 1 Sig_PCOUT_SEL; 

 signal unsigned int 1 Sig_COMP_SEL; 

 

 signal unsigned int 1 Sig_Op_Write; 

 signal unsigned int 1 Sig_Op_SEL; 50 

 

 //external switch for enc/dec 
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 signal unsigned int 1 

Sig_enc_dec_ctrl_input; 

 

 //xtime var 

 signal unsigned 1 5 

xoutput0,xoutput1,xoutput2,xoutput3,xoutput4,xo

utput5,xoutput6,xoutput7; 

 signal unsigned 8 out; 

 

/* 10 

 //intermediate signals value 

 Sig_MAR_Out = MAR; 

 Sig_MDR_Out = MDR; 

 Sig_INV_R = ~R; 

 Sig_PC_Out = PC; 15 

 Sig_Op_Code = Op_Code; 

*/ 

 

 // set initial stages 

 par 20 

 { 

 

 //Sig_Crypto_SW_sensor_input = 0; //low 

power mode - Skipjack 

 25 

 Sig_enc_dec_ctrl_input = 

ENC_DEC_CTRL_IN; //full power mode - AES 

 

 // PC Crypto Switch 

  par 30 

  {   

  

   // Controls 

  

 if(Sig_enc_dec_ctrl_input == ENCRYPT) 35 

   { 

 

    PC = 306; 

//AES encrypt 

     40 

   } 

     

   else 

   { 

    PC = 744; 45 

//AES decrypt 

   } 

  } 

 

  R = 0; 50 

  MDR = 0; 
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  MAR = 0; 

  Mem_Out = 0; 

  counter = 0; 

  Op_Code = 0; 

  RUN = 1; 5 

     

 } 

 

 while(RUN!=0) 

 { 10 

   

  par 

  { 

   par 

   { 15 

   

 Sig_MAR_Out = MAR; 

   

 Sig_MDR_Out = MDR; 

    Sig_INV_R 20 

= ~R; 

   

 Sig_PC_Out = PC; 

   

 Sig_Op_Code = Op_Code; 25 

   } 

    

 

   // Memory 

   par 30 

   {  

   

    // Controls 

   

 if(Sig_Mem_Read == 1) 35 

    { 

    

 par 

     { 

     40 

 Sig_Mem_Out = 

Memory[Sig_MAR_Out]; 

     

 Mem_Out = Sig_Mem_Out; 

     } 45 

    } 

    else 

if(Sig_Mem_Write == 1) 

    { 

    50 

 Memory[Sig_MAR_Out] = 

Sig_MDR_Out; 

    } 
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    else 

    { 

    

 Sig_Mem_Out = Mem_Out; 

    } 5 

   } 

    

   //OP MUX 

   if(Sig_Op_SEL == 1) 

   10 

 Sig_ALU_MUX = Sig_Op_Code; 

   else 

   

 Sig_ALU_MUX = 0; 

 15 

   //OP Code Register 

   if(Sig_Op_Write == 1) 

    Op_Code = 

Sig_Input_B[11:10]; 

   else 20 

    delay; 

 

   // Negative Flag 

   

 if(Sig_ALU_Out[11:11]==1) 25 

    { 

    

 Sig_N = 1; 

    } 

    else 30 

    { 

    

 Sig_N = 0; 

    } 

     35 

    // Zero Flag 

   

 if(Sig_ALU_Out==0) 

    { 

    40 

 Sig_Z = 1; 

    } 

    else 

    { 

    45 

 Sig_Z = 0; 

    } 

    

 

   //R Register 50 

   if(Sig_R_Write == 1) 
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    R = 

Sig_Input_B; 

   else 

    delay; 

    5 

   //Z Register 

   if(Sig_Z_Write == 1) 

    Z = Sig_Z; 

   else 

    delay; 10 

 

   //N Register 

   if(Sig_N_Write == 1) 

    N = Sig_N; 

   else 15 

    delay; 

 

   //MDR Register 

   if(Sig_MDR_Write 

== 1) 20 

    MDR = 

Sig_ALU_Out; 

   else 

    delay; 

    25 

   //MAR Register 

   if(Sig_MAR_Write 

== 1) 

    MAR = 

Sig_MAR_In; 30 

   else 

    delay; 

 

   //MAR SEL MUX 

   if(Sig_MAR_SEL == 35 

1) 

   

 Sig_MAR_In = 0[1:0] @ 

Sig_Mem_Out[9:0]; 

   else 40 

   

 Sig_MAR_In = Sig_ALU_Out; 

    

   //PC_OUT MUX 

   if(Sig_PCOUT_SEL 45 

== 1) 

   

 Sig_Input_B = Sig_Mem_Out; 

   else 

   50 

 Sig_Input_B = Sig_PC_Out; 
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   //COMP MUX 

   if(Sig_COMP_SEL 

== 1) 

   

 Sig_Input_A = Sig_INV_R; 5 

   else 

   

 Sig_Input_A = 0; 

    

   //PC Register 10 

   if(Sig_PC_Write == 1) 

    PC = 

Sig_ALU_Out; 

   else 

    delay; 15 

 

    

   // Adder  

   par 

   { 20 

   

 Sig_Adder_Out = Sig_Input_A + 

Sig_Input_B + (0[10:0] @ Sig_CIN); 

   } 

 25 

   //XOR 

   par 

   { 

   

 Sig_XOR_Out = 0[1:0] @ 30 

(Sig_Input_B[9:0] ^ ~Sig_Input_A[9:0]); 

   } 

 

   //xTime 

   par 35 

   { 

    xoutput0 = 

Sig_Input_B[7]; 

    xoutput1 = 

Sig_Input_B[7] ^ Sig_Input_B[0]; 40 

    xoutput2 = 

Sig_Input_B[1]; 

    xoutput3 = 

Sig_Input_B[7] ^ Sig_Input_B[2]; 

    xoutput4 = 45 

Sig_Input_B[7] ^ Sig_Input_B[3]; 

    xoutput5 = 

Sig_Input_B[4]; 

    xoutput6 = 

Sig_Input_B[5]; 50 

    xoutput7 = 

Sig_Input_B[6]; 
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    out = 

xoutput7 @ xoutput6 @ xoutput5 @ xoutput4 @ 

xoutput3 @ xoutput2 @ xoutput1 @ xoutput0; 

   

 Sig_xTime_Out = 0[3:0] @ out; 5 

   } 

 

   //Sub Bytes 

   par 

   { 10 

   

 Run_Sub_Bytes(Sig_Input_B, 

Sig_SubBytes_Out, Sig_enc_dec_ctrl_input); 

   } 

 15 

 

   //ALU MUX 

   par{ 

    

   if(Sig_ALU_MUX == 20 

0) 

   

 Sig_ALU_Out = Sig_Adder_Out; 

 

   else 25 

if(Sig_ALU_MUX == 1) 

   

 Sig_ALU_Out = Sig_XOR_Out; 

 

   else 30 

if(Sig_ALU_MUX == 2) 

 

   

 Sig_ALU_Out = Sig_xTime_Out; 

 35 

   else 

if(Sig_ALU_MUX == 3) 

   

 Sig_ALU_Out = Sig_SubBytes_Out; 

   else 40 

   delay; 

   } 

    

   //controller 

   par 45 

   { 

/* 

Entered by truthtable: 

COMP_SEL = A' B C' D; 

R_Write = A' B' C D'; 50 

Cin = A' B' C D + A' B C' D + A' B C D' + A B' C' D'; 

N_Write = A' B C' D; 
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Z_Write = A' B' C' D'; 

PCOUTsel = A' B' C' D + A' B' C D' + A' B C' D' + 

A' B C' D + A' B C D; 

PC_write = A' B' C D + A' B C D' + A' B C D + A B' 

C' D'; 5 

MDRWrite = A' B C' D; 

MARWrite = A' B' C' D' + A' B' C' D + A' B' C D + 

A' B C' D' + A' B C D'; 

Mem_read = A' B' C' D + A' B' C D' + A' B C' D' + 

A' B C' D + A' B C D; 10 

Mem_wrt = A' B C D'; 

OP_write = A' B' C' D; 

OP_sel = A' B C' D; 

MARSEL = A' B' C' D + A' B C' D'; 

*/ 15 

 

 

   

 Sig_COMP_SEL = (~counter[3] & 

counter[2] & ~counter[1] & counter[0]);// 20 

 

   

 Sig_R_Write = (~counter[3] & 

~counter[2] & counter[1] & ~counter[0]);// 

 25 

    Sig_CIN = 

(counter[3] & ~counter[2] & ~counter[1] & 

~counter[0]) | (~counter[3]  & counter[1] & 

~counter[0]) | 

     30 

   (~counter[3] & counter[2] & ~counter[1] 

& counter[0]) | (~counter[3] & ~counter[2] & 

counter[1]);// 

 

   35 

 Sig_N_Write = (~counter[3] & counter[2] 

& ~counter[1] & counter[0]);// 

 

   

 Sig_Z_Write = (~counter[3] & 40 

~counter[2] & ~counter[1] & ~counter[0]);// 

 

   

 Sig_PCOUT_SEL = (~counter[3] & 

counter[2] & counter[1] & counter[0] & N) |  45 

     

   (~counter[3] & 

~counter[2] & counter[1] & ~counter[0]) | 

(~counter[3]  & counter[2] & ~counter[1]) | 

     50 

   (~counter[3] & 

~counter[1] & counter[0]);// 

 

   

 Sig_PC_Write = (counter[3] & 55 

~counter[2] & ~counter[1] & ~counter[0]) | 
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   (~counter[3] & 

counter[2] & counter[1]) | 

     

   (~counter[3] & 5 

counter[1] & counter[0]);// 

     

   

 Sig_MDR_Write = (~counter[3] & 

counter[2] & ~counter[1] & counter[0]);// 10 

     

 

   

 Sig_MAR_Write = (~counter[3] & 

~counter[1] & ~counter[0]) | 15 

     

   (~counter[3] & 

counter[2] & ~counter[0]) | 

     

   (~counter[3] & 20 

~counter[2] & counter[0]);// 

 

   

 Sig_Mem_Read = (~counter[3] & 

~counter[2] & counter[1] & ~counter[0]) |  25 

     

   (~counter[3] & 

counter[2] & ~counter[1]) | 

     

   (~counter[3] & 30 

~counter[1] & counter[0]) | 

     

   (~counter[3] & 

counter[2] & counter[0]); 

 35 

   

 Sig_Mem_Write = (~counter[3] & 

counter[2] & counter[1] & ~counter[0]);// 

 

   40 

 Sig_Op_Write = (~counter[3] & 

~counter[2] & ~counter[1] & counter[0]);// 

 

   

 Sig_Op_SEL = (~counter[3] & counter[2] 45 

& ~counter[1] & counter[0]);// 

 

   

 Sig_MAR_SEL = (~counter[3] & 

counter[2] & ~counter[1]) | 50 

     

   (~counter[3] & 

~counter[1] & counter[0]); 

 

/* 55 

Minimized: 

COMP_SEL = A' B C' D; 
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R_Write = A' B' C D'; 

Cin = A B' C' D' + A' C D' + A' B C' D + A' B' C ; 

N_Write = A' B C' D; 

Z_Write = A' B' C' D'; 

PCOUTsel = A' B' C D' + A' B C'  + A' C' D + A' B 5 

D; 

PC_write = A B' C' D' + A' B C  + A' C D; 

MDRWrite = A' B C' D; 

MARWrite = A' C' D' + A' B D' + A' B' D; 

Mem_read = A' B' C D' + A' B C'  + A' C' D + A' B 10 

D; 

Mem_wrt = A' B C D'; 

OP_write = A' B' C' D; 

OP_sel = A' B C' D; 

MARSEL = A' B C'  + A' C' D; 15 

*/ 

     

   

 if(counter==8) 

    { 20 

    

 counter = 0; 

    } 

    else 

    { 25 

    

 counter = counter + 1; 

    } 

 

   30 

 if(PC==4095) 

    { 

    

 RUN = 0; 

    } 35 

    else 

    

 delay; 

   } 

   40 

 

  } 

 

 } 

 45 

} 

 

 

 

 50 
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//run sub-bytes 

macro proc Run_Sub_Bytes(data_in, data_out, 

enc_dec_ctrl) 

{ 

//variables for sub-bytes 5 

 signal unsigned 8 input, cipher, affout, 

istage9out; 

 

 signal unsigned 1 

output0,output1,output2,output3,output4,output510 

,output6,output7; 

 //signal unsigned 1 

input0,input1,input2,input3,input4,input5,input6,

input7; 

 15 

 signal unsigned 1 

aff0,aff1,aff2,aff3,aff4,aff5,aff6,aff7; 

 

 signal unsigned 1 

iInput0,iInput1,iInput2,iInput3,iInput4,iInput5,iI20 

nput6,iInput7; 

 

 signal unsigned 1 

x0,x1,x2,x3,x4,x5,x6,x7; 

  25 

 signal unsigned 1 

xt10,xt11,xt12,xt13,xt14,xt15,xt16,xt17; 

 signal unsigned 1 

xt20,xt21,xt22,xt23,xt24,xt25,xt26,xt27; 

  30 

 signal unsigned 1 s0,s1,s2,s3,s4,s5,s6,s7; 

  

 signal unsigned 1 

y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y1

5,y16,y17,y18,y19,y20,y21; 35 

 

 signal unsigned 1 t0,t1; 

 signal unsigned 1 

t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14,t15,t16,t1

7,t18,t19,t20,t21,t22,t23,t24; 40 

 signal unsigned 1 

t25,t26,t27,t28,t29,t30,t31,t32,t33,t34,t35,t36,t37,

t38,t39,t40; 

 signal unsigned 1 t41,t42,t43,t44,t45; 

 signal unsigned 1 45 

t46,t47,t48,t49,t50,t51,t52,t53,t54,t55,t56,t57,t58,

t59,t60,t61,t62,t63,t64,t65,t66,t67; 

 

 signal unsigned 1 

z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14,z50 

15,z16,z17; 

  

 signal unsigned 1 

invaff10_out,invaff11_out,invaff12_out,invaff13_o

ut,invaff14_out,invaff15_out,invaff16_out,invaff1755 

_out; 
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 signal unsigned 1 

invaff20_out,invaff21_out,invaff22_out,invaff23_o

ut,invaff24_out,invaff25_out,invaff26_out,invaff27

_out; 

  5 

 signal unsigned 1 u10, u11, u12, u13; 

 signal unsigned 1 u20, u21, u22, u23; 

   

 

 signal unsigned 1 te10, te11, te20, te21; 10 

  

 signal unsigned 1 enc_dec_mux_sw; 

 

par{ 

 15 

 par{ 

 input = data_in[7:0]; 

 enc_dec_mux_sw = enc_dec_ctrl; 

 }  

 20 

 

  

 par 

 { 

 xt17 = input[7]; 25 

 xt16 = input[6]; 

 xt15 = input[5]; 

 xt14 = input[4]; 

 xt13 = input[3]; 

 xt12 = input[2]; 30 

 xt11 = input[1]; 

 xt10 = input[0]; 

 } 

  

  35 

  

 //inv affine 1 

 par 

 { 

 u10 = xt11 ^ xt14; 40 

 u11 = xt13 ^ xt16; 

 u12 = xt10 ^ xt15; 

 u13 = xt12 ^ xt17; 

  

 invaff17_out = xt16 ^ u10; 45 

 invaff16_out = xt13 ^ u12; 

 invaff15_out = xt14 ^ u13; 

 invaff14_out = xt11 ^ u11; 

 invaff13_out = xt12 ^ u12; 
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 invaff12_out = xt17 ^ u10; 

 invaff11_out = xt10 ^ u11; 

 invaff10_out = xt15 ^ u13; 

  

 te10 = invaff12_out ^ 1; 5 

 te11 = invaff10_out ^ 1; 

 } 

  

  

  10 

 par{ 

 //encrypt decrypt MUX 

 if(enc_dec_mux_sw == ENCRYPT)  

//ENCRYPT = 1, DECRYPT = 0 

 { 15 

  par{ 

  x0 = xt17; 

  x1 = xt16; 

  x2 = xt15; 

  x3 = xt14; 20 

  x4 = xt13; 

  x5 = xt12; 

  x6 = xt11; 

  x7 = xt10; 

  } 25 

 } 

 

 else 

 { 

  par{ 30 

  x0 = invaff17_out; 

  x1 = invaff16_out; 

  x2 = invaff15_out; 

  x3 = invaff14_out; 

  x4 = invaff13_out; 35 

  x5 = te10; 

  x6 = invaff11_out; 

  x7 = te11; 

   

  } 40 

 

 } 

 } 

  

  45 
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//top linear transformation 

//input: x0,x1,x2,x3...x7 

//output: x7,y1,y2,y3...y21 

 par{ 

 y14 = x3 ^ x5; 5 

 y13 = x0 ^ x6; 

 y9 = x0 ^ x3; 

 

 y8 = x0 ^ x5; 

 t0 = x1 ^ x2; 10 

 y1 = t0 ^ x7; 

 

 y4 = y1 ^ x3; 

 y12 = y13 ^ y14; 

 y2 = y1 ^ x0; 15 

 

 y5 = y1 ^ x6; 

 y3 = y5 ^ y8; 

 t1 = x4 ^ y12; 

 20 

 y15 = t1 ^ x5; 

 y20 = t1 ^ x1; 

 y6 = y15 ^ x7; 

 

 y10 = y15 ^ t0; 25 

 y11 = y20 ^ y9; 

 y7 = x7 ^ y11; 

 

 y17 = y10 ^ y11; 

 y19 = y10 ^ y8; 30 

 y16 = t0 ^ y11;  

 

 y21 = y13 ^ y16; 

 y18 = x0 ^ y16; 

 } 35 

 

//middle non-linear section 

//input: x7,y1,y2,y3...y21 

//output: z0,z1...z17 

 40 

//t25 -> t40 inversion in GF(2^4) 

 par{ 

 t2 = y12 & y15; 

 t3 = y3 & y6; 

 t4 = t3 ^ t2; 45 

 

 t5 = y4 & x7; 

 t6 = t5 ^ t2; 
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 t7 = y13 & y16; 

 

 t8 = y5 & y1; 

 t9 = t8 ^ t7; 

 t10 = y2 & y7; 5 

 

 t11 = t10 ^ t7; 

 t12 = y9 & y11; 

 t13 = y14 & y17; 

 10 

 t14 = t13 ^ t12; 

 t15 = y8 & y10; 

 t16 = t15 ^ t12; 

 

 t17 = t4 ^ t14; 15 

 t18 = t6 ^ t16; 

 t19 = t9 ^ t14; 

 

 t20 = t11 ^ t16; 

 t21 = t17 ^ y20; 20 

 t22 = t18 ^ y19; 

 

 t23 = t19 ^ y21; 

 t24 = t20 ^ y18; 

  25 

 

 //inversion in GF(2^4) 

 

 t25 = t21 ^ t22; 

 t26 = t21 & t23; 30 

 t27 = t24 ^ t26; 

 

 t28 = t25 & t27; 

 t29 = t28 ^ t22; 

 t30 = t23 ^ t24; 35 

 

 t31 = t22 ^ t26; 

 t32 = t31 & t30; 

 t33 = t32 ^ t24; 

 40 

 t34 = t23 ^ t33; 

 t35 = t27 ^ t33; 

 t36 = t24 & t35; 

 

 t37 = t36 ^ t34; 45 

 t38 = t27 ^ t36; 

 t39 = t29 & t38; 
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 t40 = t25 ^ t39; 

 

 

 t41 = t40 ^ t37; 

 t42 = t29 ^ t33; 5 

 t43 = t29 ^ t40; 

 

 t44 = t33 ^ t37; 

 t45 = t42 ^ t41; 

 10 

 z0 = t44 & y15; 

 z1 = t37 & y6; 

 z2 = t33 & x7; 

 

 z3 = t43 & y16; 15 

 z4 = t40 & y1; 

 z5 = t29 & y7; 

 

 z6 = t42 & y11; 

 z7 = t45 & y17; 20 

 z8 = t41 & y10; 

 

 z9 = t44 & y12; 

 z10 = t37 & y3; 

 z11 = t33 & y4; 25 

 

 z12 = t43 & y13; 

 z13 = t40 & y5; 

 z14 = t29 & y2; 

 30 

 z15 = t42 & y9; 

 z16 = t45 & y14; 

 z17 = t41 & y8; 

 } 

 35 

//bottom linear transformation 

//input:z0,z1...z17 

//output:so,s1...s7 

 par{ 

 t46 = z15 ^ z16; 40 

 t47 = z10 ^ z11; 

 t48 = z5 ^ z13; 

 

 t49 = z9 ^ z10; 

 t50 = z2 ^ z12; 45 

 t51 = z2 ^ z5; 

 

 t52 = z7 ^ z8; 
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 t53 = z0 ^ z3; 

 t54 = z6 ^ z7; 

 

 t55 = z16 ^ z17; 

 t56 = z12 ^ t48; 5 

 t57 = t50 ^ t53; 

 

 t58 = z4 ^ t46; 

 t59 = z3 ^ t54; 

 t60 = t46 ^ t57; 10 

 

 t61 = z14 ^ t57; 

 t62 = t52 ^ t58; 

 t63 = t49 ^ t58; 

 15 

 t64 = z4 ^ t59; 

 t65 = t61 ^ t62; 

 t66 = z1 ^ t63; 

 

 s0 = t59 ^ t63; 20 

 s6 = ~(t56 ^ t62); 

 s7 = ~(t48 ^ t60); 

 

 t67 = t64 ^ t65; 

 s3 = t53 ^ t66; 25 

 s4 = t51 ^ t66; 

 

 s5 = t47 ^ t65; 

 s1 = ~(t64 ^ s3); 

 s2 = ~(t55 ^ t67); 30 

 } 

 

 

 //output inverse 

 par{ 35 

 xt27 = s0; 

 xt26 = s1; 

 xt25 = s2; 

 xt24 = s3; 

 xt23 = s4; 40 

 xt22 = s5; 

 xt21 = s6; 

 xt20 = s7; 

 } 

  45 

 

  

 //inv affine 2 



273 

 

 

 par 

 { 

 u20 = xt21 ^ xt24; 

 u21 = xt23 ^ xt26; 

 u22 = xt20 ^ xt25; 5 

 u23 = xt22 ^ xt27; 

  

 invaff27_out = xt26 ^ u20; 

 invaff26_out = xt23 ^ u22; 

 invaff25_out = xt24 ^ u23; 10 

 invaff24_out = xt21 ^ u21; 

 invaff23_out = xt22 ^ u22; 

 invaff22_out = xt27 ^ u20; 

 invaff21_out = xt20 ^ u21; 

 invaff20_out = xt25 ^ u23; 15 

  

 te20 = invaff22_out ^ 1; 

 te21 = invaff20_out ^ 1; 

 } 

  20 

 

  

 par{ 

 //encrypt decrypt MUX 

 if(enc_dec_mux_sw == ENCRYPT)  25 

//ENCRYPT = 1, DECRYPT = 0 

 { 

 par{ 

 output7 = xt27; 

 output6 = xt26; 30 

 output5 = xt25; 

 output4 = xt24; 

 output3 = xt23; 

 output2 = xt22; 

 output1 = xt21; 35 

 output0 = xt20; 

 } 

 } 

 

 else 40 

 { 

 par{ 

 output7 = invaff27_out; 

 output6 = invaff26_out; 

 output5 = invaff25_out; 45 

 output4 = invaff24_out; 

 output3 = invaff23_out; 

 output2 = te20; 
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 output1 = invaff21_out; 

 output0 = te21; 

 } 

 

 5 

 } 

 } 

  

  

 10 

 par{ 

 cipher = output7 @ output6 @ output5 @ 

output4 @ output3 @ output2 @ output1 @ output0; 

 data_out = 0[3:0] @ cipher; 

 } 15 

   

 }   

 

} 

  20 
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APPENDIX II: PHOTOGRAPHS 

Celoxica RC10 Board 
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Celoxica RC203 Board 

 

 

 


