

Low-complexity, Low-area Computer Architectures for

Cryptographic Application in Resource Constrained

Environments

Kong Jia Hao

Department of Engineering

University of Nottingham

A thesis submitted for the degree of

Doctor of Philosophy

April 2016

II

I WOULD LIKE TO DEDICATE THIS THESIS TO MY BELOVED

PARENTS AND THOSE WHO MADE THIS THESIS POSSIBLE.

III

IV

ACKNOWLEDGEMENT

Firstly, I would like to express profound and sincere gratitude to my supervisor, Dr.

Kenneth Ang Li-Minn and co-supervisor Dr. Jasmine Seng Kah Phooi. They have given,

in all ways, invaluable guidance, and unfailing support throughout my post-graduate

studies until the completion of this thesis. For this, I can never thank them enough.

In addition, I would like to thank my beloved family members for their ardent support,

love and faith. I would like to give special thanks to my mother for being the best mother

in the world. She gave me the strength that I needed in the face of many challenges in

research and life.

I would like to give special gratitude to Ms. Chim Yee Hui for supporting me throughout

the whole post-graduate journey. I would also like to give special thanks to my advisor

Dr. Wong Yee Wan and my senior Dr. Yeong Lee Seng. They are great friends and

mentors to have. Words cannot express how grateful I am to them for helping and

guiding me to complete my studies.

I take this opportunity to express gratitude to all members of the University of

Nottingham Malaysia Campus Wellbeing and Learning Support Department for their

help and support. They are truly inspiring in many ways and have made differences in

many lives without asking for anything in return.

In addition, lastly, I would also like to thank all my friends and research colleagues for

whatever timely assistance they have accorded, as well as their companionships that

have made my PhD journey memorable and life-changing.

 Milor Kong Jia Hao

V

ABSTRACT

RCE (Resource Constrained Environment) is known for its stringent hardware design

requirements. With the rise of Internet of Things (IoT), low-complexity and low-area

designs are becoming prominent in the face of complex security threats. Two low-

complexity, low-area cryptographic processors based on the ultimate reduced instruction

set computer (URISC) are created to provide security features for wireless visual sensor

networks (WVSN) by using field-programmable gate array (FPGA) based visual

processors typically used in RCEs. The first processor is the Two Instruction Set

Computer (TISC) running the Skipjack cipher. To improve security, a Compact

Instruction Set Architecture (CISA) processor running the full AES with modified S-Box

was created. The modified S-Box achieved a gate count reduction of 23% with no

functional compromise compared to Boyar’s. Using the Spartan-3L XC3S1500L-4-FG320

FPGA, the implementation of the TISC occupies 71 slices and 1 block RAM. The TISC

achieved a throughput of 46.38 kbps at a stable 24MHz clock. The CISA which occupies

157 slices and 1 block RAM, achieved a throughput of 119.3 kbps at a stable 24MHz clock.

The CISA processor is demonstrated in two main applications, the first in a multilevel,

multi cipher architecture (MMA) with two modes of operation, (1) by selecting cipher

programs (primitives) and sharing crypto-blocks, (2) by using simple authentication, key

renewal schemes, and showing perceptual improvements over direct AES on images. The

second application demonstrates the use of the CISA processor as part of a selective

encryption architecture (SEA) in combination with the millions instructions per second

set partitioning in hierarchical trees (MIPS SPIHT) visual processor. The SEA is

implemented on a Celoxica RC203 Vertex XC2V3000 FPGA occupying 6251 slices and a

visual sensor is used to capture real world images. Four images frames were captured

from a camera sensor, compressed, selectively encrypted, and sent over to a PC

environment for decryption. The final design emulates a working visual sensor, from on

node processing and encryption to back-end data processing on a server computer.

VI

LIST OF PUBLICATIONS AND AWARDS

Journals

1. Kong Jia Hao, Ang Li Minn, Seng Kah Phooi, “Minimalist Security and Privacy

Schemes based on Enhanced AES for Integrated WISP Sensor Networks”,

published as special issue journal article on “Interconnections of Wireless Sensor

Networks” of the International Journal of Communication Networks and

Distributed Systems (IJCNDS), Vol. 11, No. 2, pp 214-232, ISSN online: 1754-

3924, ISSN print: 1754-3916, 2013.

2. Jia Hao Kong, Li-Minn Ang, and Kah Phooi Seng, “A Very Compact AES-SPIHT

Selective Encryption Computer Architecture Design with Improved S-

Box,” Journal of Engineering, vol. 2013, Article ID 785126, 26 pages, 2013.

DOI: 10.1155/2013/785126.

3. Kong Jia Hao, Ang Li Minn, Seng Kah Phooi, “A Comprehensive Survey of

Modern Cryptographic Solutions for Resource Constrained Environments”,

Journal of Network and Computer Applications, Vol. 49, No. 0, pp 15-50, Elsevier

2014.

DOI: 10.1016/j.jnca.2014.09.006. (Impact Factor: 2.29)

Book Chapters

1. Kong Jia Hao, Ong Jia Jan, Ang Li Minn, Seng Kah Phooi, “Low Complexity

Processor Designs for Energy-Efficient Security and Error Correction in Visual

Sensor Network”, published as book chapter in “Wireless Sensor Networks and

VII

Energy Efficiency: Protocols, Routing and Management”, IGI Global, pp 348-366,

ISBN13: 978-1-4666-0101-7, ISBN10: 1466601019, 2011.

2. Kong Jia Hao, Ang Li Minn, Seng Kah Phooi, “Low Complexity Minimal

Instruction Set Computer Design using Anubis Cipher for Wireless Identification

and Sensing Platform”, published as book chapter in “Security and Trends in

Wireless Identification and Sensing Platform Tags: Advancements in RFID”, IGI

Global, pp 144-172, ISBN13: 978-1-4666-1990-6, ISBN10: 1466619902, 2011.

Conferences

1. Jia Hao Kong, Li-Minn Ang, Kah Phooi Seng, Achonu Oluwole Adejo, “Minimal

Instruction Set FPGA AES Processor using Handel-C”, Proceedings of the 2010

International Conference on Computer Applications and Industrial Electronics

(ICCAIE 2010), CD-ROM: pp. 337-341, ISBN: 978-1-4244-9053-0, 2010.

2. Jia Hao Kong, Li-Minn Ang, Kah Phooi Seng, "Minimal Instruction Set AES

Processor Using Harvard Architecture", Proceedings of the 3rd IEEE

International Conference on Computer Science and Information Technology

(IEEE ICCSIT 2010), Vol. 9, pp. 65-69, ISBN: 978-1-4244-5537-9, 2010.

3. Jia Jan Ong, Jia Hao Kong, L.-M. Ang and K. P. Seng, “Implementation of the

One Instruction Set Computer (OISC) on FPGA using Handel-C”, Proceedings of

the International Conference on Embedded Systems and Intelligent Technology

(ICESIT2010), CD-ROM: Paper 13, ISBN: 978-974-672-477-7, 2010.

VIII

4. Kong Jia Hao, Ang Li-Minn, Seng Kah Phooi, Ong Fong Tien, “Low-complexity

Two Instruction Set Computer architecture for sensor network using Skipjack

encryption”, Proceedings of the 25th of the International Conference on

Information Networking (ICOIN 2011), pp. 472-477, ISBN: 978-1-61284-661-3,

2011.

5. J. H. Kong, L. -M. Ang, K. P. Seng, "MISC Processor for AES Encryption and

Decryption", Proceedings of 2011 International Conference on Embedded

Systems & Intelligent Technology (ICESIT 2011), pp.46-51, CD paper no: 00017,

2011.

6. Kong Jia Hao, Ang Li Minn, Seng Kah Phooi, “Image Compression with Short-

Term Visual Encryption using the Burrow Wheeler Transform and Keyed

Transpose”, Proceedings of the IET International Conference on Wireless

Communications and Applications (ICWCA 2012), pp. 103, ISBN: 978-1-84919-

550-8, 2012.

7. Kong Jia Hao, Ang Li Minn, Seng Kah Phooi, “Low-Complexity Two Instructions

Set Computer for Suffix Sort in Burrow Wheeler Transform”, Proceedings of the

International Conference on Advanced Computer Science Applications and

Technologies (ACSAT 2012), pp. 181 – 186, ISBN: 978-1-4673-5832-3, 2012.

IX

TABLE OF CONTENTS

Contents
ACKNOWLEDGEMENT .. IV

ABSTRACT .. V

LIST OF PUBLICATIONS AND AWARDS ... VI

TABLE OF CONTENTS ... IX

LIST OF FIGURES .. XIII

LIST OF TABLES ... XVIII

NOMENCLATURE .. XX

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. Problem Statement .. 5

1.2. Research Aims and Objectives .. 10

1.3. Author’s Contributions .. 12

1.3.1. Low-complexity Two Instruction Set Computer using Skipjack (TISC

Skipjack) for Lightweight Cryptographic Implementation ... 12

1.3.2. Low-complexity Compact Instruction Set Architecture using Advanced

Encryption Standard (CISA AES) for Modern Cryptographic Implementation 12

1.3.3. Bi-directional S-BOX gate count improvement ... 12

1.3.4. Multi-Cipher Architecture (MCA) featuring Arithmetic Logic Unit (ALU)

Sharing 13

1.3.5. Real-world Hardware Implementation of Selective Encryption Architecture

(SEA) 13

1.4. Thesis Organization... 14

CHAPTER 2 ... 15

LITERATURE REVIEW ... 15

2.1. Resource Constrained Environments (RCE) .. 15

2.1.1. Wireless Sensor Networks (WSNs) ... 15

2.1.2. Radio Frequency Identification (RFID) .. 20

2.1.3. Wireless Identification and Sensing Platform (WISP) 24

2.1.4. Internet of Things (IoT) ... 26

2.1.5. Radio Sensor Network (RSN, Integration of RFID and WSN) 27

2.1.6. Distinction between RCE and eRCE .. 29

2.1.7. IoT and RSN – Implications for Security ... 30

2.2. Security in Visual Sensor RCE ... 31

X

2.2.1. The Security Requirements for Visual Sensor RCE 31

2.2.2. The Choice of Cryptographic Algorithms / Primitives 33

2.3. Security in Multimedia Data Processing ... 34

2.3.1. Set Partitioning in Hierarchical Trees (SPIHT) – A Lossless Compression

Technique ... 34

2.3.2. Selective Image Encryption on Compressed Image Data 39

2.4. Crypto-processor for RCE Application ... 42

2.4.1. Crypto-processors for Multi-cipher Application ... 42

2.4.2. Hardware Implementation of AES Crypto-Processor 47

2.5. Low-Complexity Processor Architecture for RCE.. 51

2.5.1. Comparison of RISC and CISC ... 51

2.5.2. One Instruction Set Computer (OISC), also known as the Ultimate

Reduced Instruction Set Computer (URISC) ... 52

2.5.3. Minimal Instruction Set Computer (MISC) ... 55

2.6. The AES Cipher and the Non-linear S-Box (Sub-bytes) 57

2.6.1. The Minimized S-box by Boyar et al ... 58

2.6.2. The Optimized S-Box by Satoh and the Model Implementation by Edwin 62

2.6.3. The Very Compact S-Box by D.Canright.. 67

2.6.4. Other Small S-Boxes.. 67

CHAPTER 3 ... 69

LOW-COMPLEXITY, LOW-AREA FPGA ENCRYPTION ARCHITECTURE USING A

LIGHTWEIGHT CIPHER, THE SKIPJACK CIPHER ... 69

3.1. The Proposed Two Instruction Set Computer (TISC) for Skipjack Cipher 69

3.1.1. The Design of the Proposed TISC Architecture ... 69

3.1.2. Developing the Modified SBN URISC for the Proposed TISC Architecture

 70

3.1.3. Developing the New TISC Skipjack Instruction Set and Opcodes 76

3.1.4. Skipjack Program Structure and Memory Mappings 78

3.1.5. The Finite State Machine (FSM) .. 81

3.1.6. The Memory Readdressing Modes (Programmable Addresses and Self-

Modifying Codes) ... 85

3.2. Results and Discussions .. 87

3.2.1. Behavioral Simulation Waveforms ... 88

3.2.2. TISC Instruction Post-Route Simulation Waveforms 93

3.2.3. Design Behavioral Verification ... 97

3.2.4. Hardware Utilization and Comparison .. 100

3.2.5. Throughput Calculation .. 102

3.3. Summary .. 103

XI

CHAPTER 4 ... 104

LOW-COMPLEXITY, LOW-AREA FPGA ENCRYPTION ARCHITECTURE USING A

MODERN CIPHER, THE ADVANCED ENCRYPTION STANDARD (AES) 104

4.1. Method of the Proposed Improvement on the current S-Box 104

4.1.1. The Design of the Proposed Minimized S-Box ... 104

4.1.2. The Minimization of Inverse Affine Circuit for a Complete Straight-line

Bidirectional S-box... 105

4.2. Development of the Compact Instruction Set Architecture for the AES 112

4.2.1. The New Data-path Architecture and Arithmetic –Logic Unit (ALU) 112

4.2.2. Application Specific Function Codes and Instruction Sets 116

4.2.3. Memory Mapping and Program Structure ... 118

4.3. Results and Discussions .. 120

4.3.1. Behavioral Simulation Waveforms ... 120

4.3.2. CISA Instruction Post-Route Simulation Waveforms 124

4.3.3. Design Behavioral Verification ... 130

4.3.4. Hardware Utilization and Comparison .. 134

4.3.5. Throughput Calculation and Comparison .. 135

4.3.6. Comparison with Other Small AES Processors ... 136

4.3.7. Comparison with Other Small S-boxes .. 139

4.4. Summary .. 141

CHAPTER 5 ... 142

LOW-COMPLEXITY MULTI-CIPHER CRYPTO-PROCESSOR ARCHITECTURE FOR

VISUAL SENSOR RESOURCE CONSTRAINED ENVIRONMENTS – A NOVEL

SOLUTION .. 142

5.1. The Proposed Multi-level, Multi-cipher Architecture (MMA) 142

5.2. The Proposed MMA Models .. 144

5.2.1. The MCA (MMA model 1) ... 144

5.2.2. The NAES (MMA model 2) .. 146

5.3. Minimalist Security and Privacy Schemes .. 151

5.3.1. Tag Authentication using NAES .. 152

5.3.2. Secure Key Exchange and Renewal.. 154

5.4. Study and Analysis of NAES .. 157

5.4.1. Simulation Results for MMA model 1 (Effects on Images) 157

5.4.2. Discussions on NAES Security Issues .. 162

5.5. Summary .. 166

CHAPTER 6 ... 167

HARDWARE IMPLEMENTATION OF SELECTIVE ENCRYPTION ARCHITECTURE

USING CISA AES AND SPIHT ... 167

XII

6.1. The Proposed Selective Encryption Architecture (SEA) - using SPIHT coder and

CISA AES ... 167

6.2.1. RCE Device Component - SPIHT Encoder and AES Encryption 170

6.2.2. RCE Sink Component - SPIHT MATLAB Decoder and AES Decryption 178

6.2. Hardware Implementation .. 180

6.2.1. The Hardware Implementation of TISC Skipjack (Forward Encryption) 180

6.2.2. The Hardware Implementation of CISA AES (Forward Encryption) 181

6.2.3. The Hardware Implementation of SEA .. 183

CHAPTER 7 ... 186

CONCLUSION ... 186

7.1. Future Work ... 188

7.2.1. Design a complete TISC Suffix-Sort BWCA Security Architecture 188

7.2.2. Improvement on MixColumn and Power, Area and Delay Analysis for

CISA AES ... 191

7.2.3. Improvement on MMA Models.. 192

7.2.4. Compact Crypto- processor - ANUBIS (Extension of MMA model 1) 193

7.2.5. Hardware implementation and benchmark of MMA (Model 1 and 2) 196

7.2.6. The Proper Hardware Validation and Verification of the Proposed SEA 198

REFERENCE ... 199

APPENDIX I: CELOXICA HANDLE-C CODES ... 223

CISA AES ... 223

APPENDIX II: PHOTOGRAPHS ... 275

Celoxica RC10 Board ... 275

Celoxica RC203 Board ... 277

XIII

LIST OF FIGURES

Figure 1.1: (Left) Illustration of a comparison between a Malaysian 50 cents coin and a

MICAZ sensor node and (Right) the illustration of a MICAz mote. 1

Figure 1.2: An illustration of the relationships between the three qualities in RCE

security hardware design based on Gong [49]. .. 6

Figure 1.3: An overview of a heterogeneous modern RCE formed with RSN and VSN,

further increasing security challenges. .. 11

Figure 2.1: A general illustration a WSN with routing and sensor nodes. 16

Figure 2.2: An illustration of the generic architecture within a WSN node (image

extracted from [6]). .. 18

Figure 2.3: An illustration of the architecture within an HF/UHF RFID Tag (image

extracted from [105]). .. 22

Figure 2.4: An illustration of WISP compared to a coin (Image extracted from [7]). 25

Figure 2.5: An illustration of the WISP platform and its components [7, 8]. 26

Figure 2.6: The illustration of an integrated RFID and WSN network. 28

Figure 2.7: The Cryptography Paradigm: (a) Traditional Encryption; (b) Selective

Encryption (Image extracted and redrawn from [148]) .. 32

Figure 2.8: The parent-children dependencies in EZW and SPIHT (Image extracted and

redrawn from [151]). .. 35

Figure 2.9: Comparison between original image (left) and AES encrypted image (right)

(Image extracted from [89]). .. 39

Figure 2.10: The results of encrypting JPEG2000 coded images using AES (Image

extracted from [89]). .. 40

Figure 2.11: The illustration of a partial / selective encryption and decryption system. a)

the encryption process, b) the decryption process. (Image modified from [89])................. 41

Figure 2.12: The proposed multi-mode architecture by Lavos et al (Image extracted and

redrawn from [174]). .. 44

Figure 2.13: Architecture for cipher core (Image extracted and redrawn from Lavos et al

[174]). .. 45

Figure 2.14: Architecture of a multiple cryptographic primitives / processors forming a

robust crypto-processor (Image extracted from [175]) .. 46

Figure 2.15: Architecture for block ciphers by Feng e al (Image extracted from [179]). .. 47

Figure 2.16: The URISC SBN architecture with Adder (Image extracted from [200]). 54

Figure 2.17: The illustration of Boyar’s minimized S-box. ... 61

Figure 2.18: The illustration of Boyar’s recent minimized S-box (both forward and inverse

S-box). ... 62

Figure 2.19: The illustration of the composite field S-box transformation. 63

XIV

Figure 2.20: Illustration of isomorphic mapping. .. 64

Figure 2.21: Illustration of inverse isomorphic mapping. ... 64

Figure 2.22: Individual blocks within the composite field S-box. 65

Figure 2.23: The schematic circuit for the Multiplicative Inverse of GF (28) of the Sub-

Bytes. .. 65

Figure 2.24: The complete schematic circuit for the forward SubBytes with a total gate

count of 238. ... 66

Figure 3.1: The illustration of the TISC data-path architecture. 70

Figure 3.2: The SBN instruction format and pseudo-code. ... 71

Figure 3.3: Two examples of instruction parameterization creating the NOP and CLR

instruction. ... 72

Figure 3.4: Two examples of instruction parameterization creating the conditional

branching instruction, with finite loops of 3 and 8. ... 73

Figure 3.5: The illustration of two variations of CLR instruction via instruction

sequencing. ... 73

Figure 3.6: The illustration of the modification from A) URISC to B) Modified URISC, to

suit RCE applications. ... 75

Figure 3.7: Pseudo-codes for the two TISC Skipjack instruction sets. 76

Figure 3.8: TISC Skipjack ALU components. .. 77

Figure 3.9: TISC Skipjack ALU Adder (10 bit). ... 78

Figure 3.10: TISC Skipjack ALU XOR (10 bit). ... 78

Figure 3.11: The illustration of the TISC Skipjack’s code and memory mapping

organization. .. 79

Figure 3.12: Example instructions of Rule A and B within the Skipjack Program. 80

Figure 3.13: Skipjack program flow. .. 81

Figure 3.14: The Boolean expression of the FSM controller used in TISC. 83

Figure 3.15: The FSM combinational logic circuit... 84

Figure 3.16: The illustration of the memory section capable of ‘self-modifying’. 87

Figure 3.17: TISC FSM Control Signals Behavioral Waveforms. 89

Figure 3.18: Behavioral Simulation Waveforms of the SBN instruction for TISC Skipjack.

 .. 91

Figure 3.19: Behavioral Simulation Waveforms of the XOR instruction for TISC Skipjack

 .. 92

Figure 3.20: Post-Route Simulation Waveforms of the SBN instruction for TISC Skipjack.

 .. 94

Figure 3.21: Post-Route Simulation Waveforms of the XOR instruction for TISC Skipjack.

 .. 95

Figure 3.22: Waveform output for the TISC encrypted cipher text starting at 1363855500

ps ... 98

XV

Figure 3.23: Post-Route waveform of the TISC encrypted cipher text starting at

1363971794 ps .. 99

Figure 3.24: Test vector provided by NIST for Skipjack ECB [63]. 100

Figure 4.1: The illustration of the placement of the proposed inverse-affine circuit in the

Boyar’s Forward S-box. ... 105

Figure 4.2: The matrix for inverse affine transform. .. 105

Figure 4.3: The minimized inverse affine circuit (14 XOR gates). 109

Figure 4.4: The complete gate layout of the proposed S-box configuration for bi-

directional setting .. 111

Figure 4.5: The novel CISA architecture, data-path and the ALU. 114

Figure 4.6: The xTime circuit (Image redrawn from [223]). ... 115

Figure 4.7: The MixColumns Transformation Process using the xTime Circuit (Image

redrawn from [223]). .. 116

Figure 4.8: The pseudo-codes (algorithm) for CISA instruction sets. 117

Figure 4.9: The Memory Mapping for CISA AES. ... 118

Figure 4.10: The CISA AES encryption and decryption program flowchart and structure.

 .. 119

Figure 4.11: Behavioral Simulation Waveforms of the xTime instruction for CISA AES.

 .. 122

Figure 4.12: Behavioral Simulation Waveforms of the S-Box instruction for CISA AES.

 .. 123

Figure 4.13: Post-Route Simulation Waveforms of the xTime instruction for CISA AES.

 .. 125

Figure 4.14: Post-Route Simulation Waveforms using Boyar’s S-box.............................. 126

Figure 4.15: Post-Route Simulation Waveforms using the proposed S-box..................... 127

Figure 4.16: Waveform output for the CISA encrypted cipher text starting at 1034911500

ps. .. 131

Figure 4.17: Post-Route waveform of the CISA encrypted cipher text starting at

1034676642 ps .. 132

Figure 4.18: Test vector provided by NIST for AES ECB [224]. 133

Figure 5.1: The overview of the generic MMA model. ... 143

Figure 5.2: The selection of ALU with in the cores in determination of the core behaviour.

 .. 144

Figure 5.3: The overview of MCA with AES and Skipjack. .. 145

Figure 5.4: An illustration of example ‘decision factors’ to determine a cipher switch. . 145

Figure 5.5: The overview of a multi-cipher architecture (MCA) by coupling AES and

Skipjack algorithm. ... 146

XVI

Figure 5.6: The difference between a typical Feistal structure (left, (a)) and the global

symmetric structure for NAES (right, (b)). A small box with a ‘plus’ sign is used to

illustrate the key addition in Feistal-like ciphers. .. 147

Figure 5.7: The illustration of a NAES using two separate AES processors, cross-

swapping the ciphers at the end of each round. .. 148

Figure 5.8: The overview of NAES supported by two CISA AES processors. 150

Figure 5.9: The overview of NAES dual-key architecture supported by two CISA AES

processors. .. 150

Figure 5.10: The illustration of a WSN with the stored keys in the system. 152

Figure 5.11: The overview of the authentication process using NAES. 153

Figure 5.12: The overviews of the key exchange scheme using the Three-Pass method

and NAES. .. 156

Figure 5.13: The comparison of AES and NAES (row input) on pixel distribution of

encrypted images and histogram. ... 158

Figure 5.14: The comparison of AES and NAES (4 x 4 pixels per block input) on pixel

distribution of encrypted images and histogram. .. 158

Figure 5.15: The comparison of AES and NAES (row input) on pixel distribution of

encrypted images and histogram. ... 159

Figure 5.16: The comparison of AES and NAES (4 x 4 pixels per block input) on pixel

distribution of encrypted images and histogram. .. 160

Figure 5.17: The comparison of NAES using even and odd block input. 161

Figure 5.18: The comparison of AES, NAES and AES-CBC. .. 161

Figure 5.19: The illustration of the selection of even and odd blocks in an image to be

encrypted together using two separate keys. ... 164

Figure 5.20: The illustration of one block of data and secret key being compromised and

the encrypted data is being sent separately via 2 different routes. 165

Figure 6.1: The overview of selective encryption architecture, securing important bit-

streams before transmission over an unsecured communication channel. 167

Figure 6.2: The overview of a selective encryption design for a visual sensor RCE device.

 .. 168

Figure 6.3: The illustration of the SEA system using SPIHT and the CISA AES in both

ends of RCE. ... 169

Figure 6.4: The illustration of the internal SEA components and workflow. 170

Figure 6.5: The MAIN function within the MIPS SPIHT. .. 171

Figure 6.6: Handel C-code for bit-filling to create a complete block. 172

Figure 6.7: Handel C-code for bit-filling to create a complete block. 173

Figure 6.8: An illustration of the Handel-C code for CISA AES encryption secret key

values and variables. ... 174

Figure 6.9: An illustration of the Handel-C code for CISA AES FSM definitions. 174

XVII

Figure 6.10: An illustration of the Handel-C code for CISA AES ALU components. 175

Figure 6.11: An illustration of the Handel-C code for CISA AES data-path registers. .. 176

Figure 6.12: An illustration of the RS232 module initialization on RC203. 177

Figure 6.13: A picture of the RS232 to USB converter. .. 177

Figure 6.14: An illustration of the Matlab-code for virtual serial port initialization. 178

Figure 6.15: An illustration of the Matlab-code for virtual serial port initialization. 179

Figure 6.16: An illustration of the MATLAB-code for bit-stream AES decryption. 179

Figure 6.17: The experimental setup for the development of SEA. 183

Figure 6.18: The four selectively encrypted frames with the last two frames decrypted.

 .. 184

Figure 6.19: Selective encryption on Lena image. ... 184

Figure 7.1: Pseudo-codes for TISC Suffix Sort instruction sets. 189

Figure 7.2: The program codes written to execute the seven ‘compare and swap’ operation.

 .. 189

Figure 7.3: The program code performs the data swapping from one memory to another

in the event of branching. ... 190

Figure 7.4: The flowchart of the 8 bytes sorting program... 191

Figure 7.5: a) Mirrored cipher X pairing, b) Mirrored cipher Y pairing, c) Cipher X and Y

paired in MMA model 1. .. 192

Figure 7.6: The overview of MMA model 2 with various ciphers. 193

Figure 7.7: The overview of a complete multi-level architecture with NAES, AES and

Anubis. .. 193

Figure 7.8: The illustration of the MISC Anubis architecture. .. 194

Figure 7.9: The xTimeAnu circuit for the polynomial of x8 + x4 + x3 + x2 + 1 (0x11D) ... 195

XVIII

LIST OF TABLES

Table 2.1: The specifications of various sensor motes [104]. .. 19

Table 2.2: The specifications of various controller architectures [95]. 20

Table 2.3: Comparison between, LF, HF and UHF RFID tags [106]. 21

Table 2.4: A compilation of specifications for various known LF, HF and UHF RFID

transponders [107-110]. ... 22

Table 2.5: A table stating WISPs’ version and their current state of development. 25

Table 2.6: The groupings of coordinates in SPIHT SOT. .. 36

Table 2.7: Comparison of RISC and CISC [198]. ... 51

Table 2.8: The feature comparison of OISC MOVE and SBN models. 53

Table 2.9: The lookup table of the 256 substitution values for S-box. 57

Table 2.10: The comparison of S-boxes (table extracted from [69]). 67

Table 3.1: The TISC Skipjack instruction sets. ... 77

Table 3.2: The summary of the data movement with respect to each clock cycles of the

TISC architecture. ... 85

Table 3.3: TISC Skipjack SBN instruction delay at clock cycle 5....................................... 96

Table 3.4: TISC Skipjack XOR instruction delay at clock cycle 5. 96

Table 3.5: Hardware utilization of TISC Skipjack using Spartan-3L XC3S1500L-4-FG320.

 .. 101

Table 3.6: Hardware utilization comparison with other Skipjack processors. 101

Table 3.7: Throughput comparison with other Skipjack processors. 103

Table 4.1: The CISA AES (specifically for AES application) instruction sets. 117

Table 4.2: CISA AES xTime instruction delays. .. 129

Table 4.3: CISA AES Boyar’s S-box (forward) instruction delays. 129

Table 4.4: CISA AES proposed S-box (bidirectional – set to decrypt mode) instruction

delays. ... 130

Table 4.5: Hardware utilization of CISA AES using Spartan-3L XC3S1500L-4-FG320. 134

Table 4.6: Implementation Results of CISA AES using the proposed S-box. 135

Table 4.7: Comparison with Rouvroy et al ’s [191] AES processors using Spartan-III

XC3S50-4. ... 137

Table 4.8: Instruction count with other small AES processors. 137

Table 4.9: Comparison with Tim et al ‘s [190] AES processors using Spartan-II XC2S15-6.

 .. 138

Table 4.10: The comparison of different S-boxes. .. 139

Table 5.1: The illustration of configuration settings for MMA model 1 and 2, by pairing

AES and Skipjack. ... 143

Table 6.1: Hardware implementation results for TISC Skipjack using RC10. 180

XIX

Table 6.2: Hardware implementation results for CISA AES using Boyar’s Forward S-box.

 .. 181

Table 6.3: The 10 test vectors used to test the CISA AES and their respective cipher texts.

 .. 182

Table 6.4: Logic utilization of SEA. .. 185

Table 6.5: Logic distribution of SEA. .. 185

Table 6.6: LUT utilization of SEA. ... 185

Table 6.7: Other components utilized by SEA ... 185

Table 7.1: Implementation results for MISC ANUBIS. .. 195

Table 7.2: Implementation results for multi-cipher architecture MMA mode 1 (MCA -

AES and Skipjack coupling) on Spartan-3L. ... 197

Table 7.3: Implementation results for multi-cipher architecture MMA mode 2 (NAES -

AES and AES coupling) on Spartan-3L. .. 197

XX

NOMENCLATURE

Abbreviations

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

ASIP Application Specific Integrated Circuit

BWCA Burrow Wheeler Compression Algorithm

BWT Burrow Wheeler Transform

CBC Cipher Block Chaining

CISA Compact Instruction Set Architecture

CISC Complex Instruction Set Computer

CLB Configurable Logic Block

COBRA Cryptographic Optimized for Block Ciphers Reconfigurable

Architecture

CP Cryptographic Processor

DSP Digital Signal Processor

DWT Discrete Wavelet Transform

EEPROM Electrically Erasable Programmable Read-Only Memory

EPC Electronic Product Code

eRCE (XRCE) Extreme Resource Constrained Environment

XXI

FPGA Field Programmable Gate Array

GE Gate Equivalent

IPSEC Internet Protocol Security

LCs Logic Cells

LEs Logic Elements

LIP List of Insignificant Pixels

LIS List of Insignificant Sets

LSB Least Significant Bits

LSP List of Significant Pixels

LUT Look-up Table

MCA Multi Cipher Architecture

MCU Micro-Controller Unit

MIPS Million Instructions per Second

MISC Minimal Instruction Set Computer

MLS Multi-Level Security

MMA Multi-level, Multi-cipher Architecture

MSB Most Significant Bits

MSL Multi Security Levels

MTF Move-To-Front

NAES Enhanced AES

XXII

OISC One Instruction Set Computer

PKC Private Key Cryptography

RAM Random Access Memory

RCEs Resource Constrained Environments

RFID Radio Frequency Identification

RISC Reduced Instruction Set Computer

RLE0 Run-Length-Zero

RNG Random Number Generator

SEA Selective Encryption Architecture

SOT Spatial Orientation Tree

SPIHT Set Partitioning in Hierarchical Trees

TID Tag Identification Number

TISC Two Instruction Set Computer

URISC Ultimate Reduced Instruction Set Computer

VPN Virtual Private Network

WISP Wireless Identification and Sensing Platform

WMSN Wireless Multimedia Sensor Network

WSN Wireless Sensor Network

WVSN Wireless Visual Sensor Network

1

Chapter 1

CHAPTER 1

INTRODUCTION

__

Small, low-cost devices with very little design space and computing resources are termed

“Resource Constrained Environment” (RCE). One of the most notable RCEs is the

Wireless Sensor Network (WSN). A WSN sensor node is usually tiny (size ranges from a

shoebox down to a grain of sand), and resource constrained. Figure 1.1 (left) shows a

sensor node can be as tiny as a coin and (right) a Crossbow MICAz sensor mote serving

as a base station.

Figure 1.1: (Left) Illustration of a comparison between a Malaysian 50 cents coin and a

MICAZ sensor node and (Right) the illustration of a MICAz mote.

Other platforms such as Radio Frequency Identification (RFID) [1], Radio Sensor

Networks (RSN) [2], Wireless Identification and Sensing Platforms (WISP) [3, 4],

handheld devices, tiny portable devices, and Internet of Things (IOT) [5] are also

considered RCEs. These platforms are usually low-cost, employing general-purpose

microcontrollers and tiny sensors [5-8]. RCEs are tailored towards multi-disciplinary

2

Chapter 1

applications such as real-time surveillance systems, environmental and health care

monitoring systems, asset tracking and even advanced military applications that deals

with various data such as general plaintexts, imagery and videos. RCE platforms that

are equiped with visual sensors such as the Wireless Visual Sensor Network (WVSN)

adopt Field Programmable Gate Array (FPGA) for the advantage in terms of flexibility

and field re-programmability [9]. Ultimately, the visual sensor field-reconfigurable RCE

[10-12] is the most popular and useful platform for the wide range of applications it

offers to the users [13-15].

Every RCE requires hardware that is tailored to a specific application to minimize cost,

power requirements and size and to maximize reliability as they are often left in the field

and not intended to be maintained for extended periods of time [16]. While typical RCEs

collect environmental data, visual sensor RCEs require more on-node processing such as

applying computer vision techniques and compression. For efficiency, availability and

cost reasons, FPGAs are typically used as the processing unit for the RCE node [12, 17,

18]. The change in the data type collected from scalar to visual data creates a security

and privacy issue as the data is transmitted over unsecured wireless channels. To

address this problem, cryptography can be used to encrypt the information before being

sent. While complex data processors and crypto-processors (CP) working side-by-side are

the best combination for robust and secured system, this may not be feasible in RCE

systems due to size, power and cost constraints. One of the main aims of this research is

to create a low-area, low-complexity CP that can be integrated into RCE devices with

FPGAs such as in visual RCEs. This is a challenge as each RCE hardware will have

varying amounts of un-utilized logic leading to the need for a design and implementation

of low-complexity, low-area crypto-processors for RCEs. [5, 6, 19-22].

A crypto-processor, is a processor that carries out cryptographic operations [23]. A

dedicated CP for RCE, constrained by RCE restrictions [24], has to provide sufficient

cryptographic functions and flexibility in terms of handling diverse RCE security

requirements [25, 26]. A CP uses hardware-accelerated cryptographic functions to

3

Chapter 1

provide and formulate security features and protocols such as double or multiple

encryption [27, 28], multi-cipher [29], support for cipher mode of operation [30], multi-

level security [31], key management [32], authentication [33], and digital signature are

preferable in facing multiple RCE security threats [31]. However, crypto-processors with

accelerated crypto-cores requires additional hardware [34]. The cost is greater when

multiple un-rolled ciphers cores are added to support multiple cryptographic functions

[35]. An alternative solution is to design a crypto-processor that utilizes the same crypto-

blocks for various ciphers without additional logic components, at a cost of cipher

program memory.

Low-complexity computer models are considered in the course of designing a low-area

crypto-processor. The Ultimate Reduced Instruction Set Computer (URISC) fits the

profile by having a low-complexity but yet completely functional computing architecture,

suitable for low-complexity applications. The prominent feature of URISC is that it uses

only a single instruction set. Through minimalistic modifications and adding resource-

justified application-specific crypto-components, low-area, low-complexity cryptographic

applications can be designed. Hence URISC-based modified minimalist reconfigurable

cryptographic processors for low-area, low complexity cryptographic applications in RCE

are proposed in this thesis.

While cryptographic solutions are widely used, certain primitives, schemes, and protocols

are applicable to visual sensor RCE due to the type of the data involved (video, image

and plaintext), the worth (value) of the data, the computation, resource overhead and

security requirements [5, 19, 21, 25, 36-38]. These factors will shape and determine the

type of crypto-processors designed and the choice of ciphers. Visual sensor RCE requires

visual processing techniques such as data compression to reduce the amount of data

transmitted [39]. Security can be introduce using techniques such as partial and

selective encryption [40-42], taking advantage of the characteristics of compressed data.

The combination of compression and selective encryption results to a robust system that

4

Chapter 1

decreases the amount of data to encrypt and transmit, allowing more memory to be use

for cipher programs.

This thesis presents low-area modified URISC reconfigurable processor architecture for

visual sensor RCE cryptographic applications. The proposed modified URISC enables

security in power and cost contrained RCE applications. A lower-area, low-complexity

cryptographic processor using the proposed modified URISC as cores, results to flexible

and versatile configurations, aiding the need for multiple security solutions. Lastly, the

proposed architecture is presented and integrated into a selective encryption system, to

emulate on-node encryption, using real world FPGA as a low-power and low-cost RCE

device.

5

Chapter 1

1.1. Problem Statement

RCEs operate under very restrictive conditions. Power and computation is always the main issue

while designing the application framework using these devices [43, 44]. In extreme cases, trade-

offs in security have to be made for a functional system and a longer operational lifespan [45]. On

top of that, RCE devices possess some form of communication ability for them to communicate

with nearby devices, forming a network of data. With existence of communication between

different devices, security risks increase. The risks are even higher when the payload data is

valuable to any party of interest. Hence security plays an important part when the system is

designed and the already scarce resources in the system [46].

RCE is broad by definition but the typical resource constrained design issues remain regardless

of the platforms it takes. Low-complexity, low-memory, low-area, and low-power are the critical

factors to be considered. And by extension, a smaller area utilized on the same reconfigurable

hardware will result in reduced power requirement [47, 48].

When designing for RCE systems, although often holistic, there are a few important design

issues to be addressed:

1) Limited or non-renewable on-board power.

2) Finite capacity of storage memory.

3) Small physical design space.

4) Limited communication bandwidth.

5) Limited computing power.

6) Low-upgradability.

In the context of a reconfigurable RCE, the points 1), 2) and 3) above implied that the amount of

logic and memory resources is limited. Within this context, the constrained resource or the

hardware costs taken into consideration when designing a cryptographic processor is the area

utilized and memory resources used within the reconfigurable hardware.

6

Chapter 1

Going into the topic of low-area, low-complexity security designs, there is a distinction between

the term “low-area” and “low-complexity”. “Low-area” refers to physical (logic or memory)

resources utilized within the FPGA context and “low-complexity” refers to the computing and

algorithmic context that describes the ability to solve problems using less complicated means,

steps or components. In regards to this topic, the area is a form of hardware cost for hardware

designers. However, the relationship between the hardware cost and the security is unclear.

Gong stated that a relationship between the three qualities: security, performance and cost of a

cryptographic hardware system [49]. An illustration of the relationships between the three

qualities in RCE hardware design is shown in Figure 1.2.

K
ey

 L
en

gt
h

A
rch

itectu
re

No. of rounds

Cost

Security Performance

The higher the

number of rounds

executed, the safer

the cipher is.

The lower the key

length used means

the smaller the

register size and

memory used.

The lesser the

number of rounds

executed, the lower

the latency is.

The more the

number of

simultaneous

calculations and

processing, the

higher the

performance is.

The longer the key

bits, the longer time

it takes to attack.

320-bits

54-bits Serial

Parallel

255 1

A serial

architecture is the

minimal cost

approach but

greatly degrades

the performance

with added loops.

Figure 1.2: An illustration of the relationships between the three qualities in RCE security

hardware design based on Gong [49].

From Figure 1.2, there are two properties to RCE security hardware architectures: 1) low bit-

length and 2) a serial architecture. The factor of low key bit-length is connected to the choice of

cipher or any other cryptographic protocols. However, the key length is not a factor of

7

Chapter 1

performance because the length of a key is attributed to cipher’s strength and mode of operations

chosen. The key length barely affects the performance and the effects only applies to asymmetric

ciphers [50, 51]. In short, the resource cost in relation to the cryptographic protocol is subject to

the protocol’s designer and the protocol’s specification, to a certain key-length in order for the

cipher to be consider secured [52].

On the other hand, a serial architecture suggests a sequential von-Neumann model. URISC

fulfills the requirement for a basic serial computing architecture because it is claimed to be the

simplest form of functional computer architecture [53, 54]. This serial computer with only a

single instruction set poses very obvious weaknesses in terms of complex functionality and high-

level operations. By using techniques like assembly code re-use, program-loops, instruction

sequencing, parameterization, self-modifying codes, and sub-routines [55, 56], the limitations of

URISC can be overcome. Initially, the URISC was proposed in [56] as an educational model to

better understand the concept of computer organization and there are other numerous

applications which can be found in [57-60]. But the simplicity of its fundamental building blocks

and data processing components are very attractive features to be explored for complicated

computing tasks. Hence URISC fulfills the requirement of a low-complexity, sequential

architecture without the need to design an architecture from scratch. The real problem is what

and how modifications can be done onto URISC fulfill the requirements of low-area, low-

complexity cryptographic applications. The URISC, like any other instruction set computer

architecture, has a fundamental data path and a memory unit. Alteration, addition and

customization of low-complexity cryptopgrahic components on URISC yields a custom-designed

architecture to suit any target application.

RCE devices vary in terms of form factor and hardware. To allow adequate level of security,

complex security algorithms and protocols are considered. Visual sensor RCE has the broader

context in terms of applications, from simple data relaying to complex video surveilance. Visual

RCEs can be used as the target application, which inherits the model of common security and

privacy problems within general RCEs. By using visual sensor RCE as point of reference to the

generalization of RCE cryptographic problems, the six known security goals are [20, 61]:

8

Chapter 1

1) Confidentiality: protecting secret information from unauthorized entities.

2) Integrity: ensuring message has not been altered by malicious parties.

3) Data Origin Authentication: authenticating the source of message.

4) Entity Authentication: authenticating the user, node and sink is indeed whom it claims

to be.

5) Access control: restricting access of resource to privileged parties.

6) Availability: ensuring desired services available when required.

Goal 1), 2), 3), and 4) can be fulfilled using a combination of cryptographic algorithms, key

management, and authentication, which are considered as cryptographic solutions. Goal 5) and 6)

can be solved using attack detection, prevention and routing techniques [20, 61]. One common

form of cryptographic solution is the direct use of cryptographic primitives, which are referred to

as ‘ciphers’. Ciphers are generally divided into two types: symmetric and asymmetric. For low-

area, low-complexity applications, symmetric ciphers are preferred due to their nature of being

hardware implementation-friendly [61, 62]. Law et al [19] concluded that the Skipjack cipher [63]

is the best lightweight cipher in terms of code memory, data memory, encryption efficiency and

key setup efficiency and it is also used in Tinysec for WSN RCEs [64]. However, the Skipjack

cipher is not the best and strongest cipher but would suffice for a lightweight security application

[19].

On the contrary, Rijndael [65] also known as the Advanced Encryption Standard (AES) [66] is

one of the most popular, strongest and resilient cipher to most known attacks. On top of that, [67]

concluded that an AES hardware out-performs any software implementation, which further

validates the cipher choice. However, the AES is known to be resource demanding due to the

complex encryption operations and the non-linear component named the S-box [68-71].

Minimizing the S-box [70-72] is one method towards low-area designs.

Futhermore, AES and Skipjack are just two out of the long list of ciphers available to choose from

depending on applications and level of security required [73]. In a real world scenario where

RCEs are deployed into a hostile environment, secure frameworks [74, 75] utilizes crypto-

processors to ensure critical data do not fall into the wrong hands [76]. Dedicated CP with

9

Chapter 1

multiple cryptographic functions and primitives provides variable degree of security for RCE

secure frameworks. To achieve this, multiple ciphers accelerators within a scalable CP are

introduced [77, 78]. Multi-cipher and multi-mode systems on the hardware level offer multiple

cipher algorithms concurrently in a communication session [77, 78], variation of security strength

and application [29]. These primitives can be replaced when they are outdated or obselete, via

techniques such as partial or dynamic reconfiguration [9] using FPGA reconfigurable hardware.

Nonetheless, having multiple cipher accelerators will logically require additional memory and

logic resources which is already scarce in RCE. A low-complexity multi-cipher [29, 35, 77]

architecture would be the solution to accommodate multiple cryptographic primitives. By re-

using the same crypto-blocks, multi-ciphers exists with only program memory costs rather than

using both the logic and memory resources. Hence multiple cipher switching is made available

and by extension reducing the resources used compared to having the cipher cores in separate

entities.

Other cryptographic protocols and techniques for visual data such as the perceptual encryption,

selective multimedia encryption and watermarking [42, 79, 80] are commonly used in high-level

visual sensor RCE [15, 81-85]. Unlike normal data, pixel data is very information rich and highly

correlated. There are a few examples in the literature showing that modifying AES can be a

potential candidate to play the role of symmetric cipher for image encryption [86-88]. Symmetric

block encryption will be weaker for the image perceptually due to the nature of the visual data

[89]. And also, encrypting the whole image would take a large amount of memory overhead,

draining both memory and power. To solve this, pre-processes or post-processes techniques such

as the compression algorithms are used to break the pixel correlation, minimizing the amount of

data to be transmitted [90] and yet, enabling a smaller amount of data to be selected and

encrypted for adequate security [91]. A selective encryption system would reduce the

computational complexity and reflects the real visual sensor RCE with visual processing

components and crypto-processor co-existing in the same FPGA, utilizing the same available

resources.

10

Chapter 1

To form a cryptographic solution, algorithmic understanding and translation to hardware form is

key. However, the vast option of cryptographic techniques and goals leads to the problem of

cryptographic versatility and selection. A well-designed cryptographic processor for RCE has to

possess the necessary security functions and primitives, making it adequate for formulating

secure protocols. Using modified URISC as a fundamental model, and the generalized RCE

security goals, custom-designed processor are presented for low-area, low-complexity for

cryptographic applications suitable for RCEs. Figure 1.3 illustrates the ubiquitous and pervasive

nature of RCE devices, forming unique RCE networks. RSN is a network formed by RCE devices

integrating with RFID (termed eRCE) and VSN RCE is formed by devices equipped with camera

sensors. Larger heterogenous modern RCEs can be collectively formed by these types of networks

and devices thus, leading to various security challenges that requires a flexible crypto-processor.

The red dots depicted in Figure 1.3 shows the points where data security is required for a robust

and secured RCE.

1.2. Research Aims and Objectives

The aim of the research presented in this thesis is to design and develop low-area, low-complexity

security architectures with modified URISC, using FPGA. The main objectives of this research

are as follow:

1) Modifying the URISC low-complexity processor for RCE cryptographic application.

2) Develop a low-area, lightweight cipher processor architecture suitable for lightweight

specific applications using Skipjack cipher.

3) Develop a low-area, modern cipher processor architecture for modern cryptographic

application using AES cipher

4) Develop a low-complexity architecture that allows multiple ciphers that will work

towards providing additional cryptographic primitives in a single architecture.

5) Design and develop a selective encryption system that reflects real-world practicality,

employing one of the proposed architecture and an image compression technique to form

a joint encryption system.

11

Chapter 1

W
ireless R

C
E N

o
d

e

R
F

Fro
n

t
En

d
M

C
UM

em
o

ry

R
FID

 R
ead

er

R
F

Fro
n

t
En

d
FSM

M
em

o
ry

R
FID

 Tag

C
ryp

to
-

p
ro

ce
sso

r
D

ata
P

ro
ce

sso
r

M
em

o
ry

W
ireless V

isu
al R

C
E N

o
d

e

C
am

e
ra

Se
n

so
r

In
p

u
t Im

age

R
C

E
e

R
C

E

C
ryp

to
-

p
ro

ce
sso

r
D

ata
P

ro
ce

sso
r

M
em

o
ry

P
rim

itive
s

P
rim

itive
s

R
C

E
R

eal w
o

rld
 en

viro
n

m
en

t

M
o

d
e

rn

R
C

E

R
SN

V
SN

D
ata

en
cryp

tio
n

secu

rity
req

u
ired

R
o

u
tin

g
N

o
d

e

V
isu

al
Sen

so
r

N
o

d
e

R
FID

 Tags

R
ad

io

Sen
so

r
N

o
d

e

Sin
k / B

ase
Statio

n

Figure 1.3: An overview of a heterogeneous modern RCE formed with RSN and VSN,

further increasing security challenges.

12

Chapter 1

1.3. Author’s Contributions

1.3.1. Low-complexity Two Instruction Set Computer using Skipjack

(TISC Skipjack) for Lightweight Cryptographic Implementation

For the area of lightweight security, the design of a low-complexity architecture using

only two instruction sets, capable of completely execute full 32 rounds of Skipjack cipher

is proposed. Skipjack has been introduced as the most suitable candidate for lightweight

cipher.. selection in the area of WSN RCE [19]. The proposed architecture (found in

Chapter 3) is extremely compact and is designed by modifying URISC to accommodate

an additional ALU, which is the XOR.

1.3.2. Low-complexity Compact Instruction Set Architecture using

Advanced Encryption Standard (CISA AES) for Modern

Cryptographic Implementation

For the area of modern security solutions, the design of a low-complexity architecture

using only four instruction sets, capable of completely execute full ten rounds of AES

cipher is proposed. The proposed compact architecture is designed by modifying the TISC

Skipjack architecture (found in Chapter 3) due to the overlapping components used for

both architectures. The new architecture (found in Chapter 4) accommodates two

additional ALUs, XTIME and S-BOX. This newly modified URISC results in a four

instruction set, low-complexity, low logic area, compact architecture specifically for AES.

1.3.3. Bi-directional S-BOX gate count improvement

The AES S-BOX is a large combinational circuit and has always been one of the most

resource demanding component for AES hardware implementation [92, 93].

13

Chapter 1

Improvement on the current bi-directional S-box suggests the application of linear

matrix mapping optimization on the inverse affine transformation block. The improved

configuration of a forward direction S-box together with a minimized inverse affine

transformation block (found in Chapter 4) shows results to a smaller, low-complexity bi-

direction S-box, in which would be reflected in the hardware implementation results.

1.3.4. Multi-Cipher Architecture (MCA) featuring Arithmetic Logic Unit

(ALU) Sharing

The MCA uses AES and Skipjack ciphers in single processor. The previous work (1.3.1,

1.3.2) was extended to find low-complexity multi-cipher configurations, a single modified

URISC is used to process two different ciphers by sharing the same set of ALUs. This

design opens up a new area to RCE multi-cipher systems in sharing the same processing

blocks. This would provide solutions to having multiple cryptographic primitives at the

costs of program code memory, while retaining the same amount of logic resources used.

1.3.5. Real-world Hardware Implementation of Selective Encryption

Architecture (SEA)

A real-world design and hardware implementation of a SEA for joint security and

compression application is realized. A complete working system is presented in this

thesis demonstrating the functionality and feasibility of the proposed CISA AES. The

proposed design integrates an MIPS-SPIHT compression module with a CISA AES

module for real-world selective encryption application.

14

Chapter 1

1.4. Thesis Organization

The thesis structure is as follows. Chapter 2 provides the literature review and

background knowledge of related works in the area of RCEs, symmetric cipher primitives,

multi-ciphers and selective encryption. Chapter 3 presents a low-area low-complexity

FPGA TISC for lightweight cipher using Skipjack using a modified URISC. Chapter 4

presents a low-complexity FPGA CISA, customized specifically for AES, with minimized

S-box in terms of gate count. Chapter 5 describes a low-complexity multi-cipher

architecture symmetric ciphers switching. Chapter 6 presents a low-complexity selective

encryption architecture as a practical example of the real-world application of the CISA

AES architecture. Lastly, Chapter 7 presents the conclusion of this thesis with potential

future work and directions discussed.

15

Chapter 2

CHAPTER 2

LITERATURE REVIEW

__

2.1. Resource Constrained Environments (RCE)

RCEs are generally referred to as small hardware systems or devices with very low

amount of resources in terms of power supply, memory, communication bandwidth, and

storage memory1. There are currently four known resource constrained environments

identified:

1) Wireless Sensor Network (WSN) [19, 25, 94, 95]

2) Radio Frequency Identification (RFID) [2, 96-98]

3) Wireless Identification and Sensing Platform (WISP) [3, 4]

4) Internet of Things (IOT) [5, 99]

All the generalized RCEs share similar problems when it comes to hardware design due

to the scarce resources on the RCE devices. However, there are differences between

environments in terms of hardware form factors, specifications, communication

standards and target applications. To understand the need for low-complexity, low-area

cryptographic processors, each of the four RCEs are briefly discussed.

2.1.1. Wireless Sensor Networks (WSNs)

A wireless sensor network is usually made up of tiny sensors that are programmed to

communicate via wireless medium [100]. The limitation of their physical size results in

sensor motes that usually have limited amount of on-board resources such as energy,

1 Review of all 4 environments published in “J. H. Kong, L.-M. Ang, and K. P. Seng, "A

comprehensive survey of modern symmetric cryptographic solutions for resource constrained

environments," Journal of Network and Computer Applications, vol. 49, pp. 15-50, 2015”.

16

Chapter 2

storage, computation power, and communications bandwidth. Figure 2.1 illustrates WSN

with the collection of sensor nodes (network type is application dependent) and their

roles in acquiring and relaying data to the base station. WSN can be divided into two

sub-groups with variation of applications [101].

Routing Node

Sensor Node

Sink /

Base Station

Sensor

Node

Image,

Noise,

Humidity,

Temperature,

Seismic,

Localization,

Oceanic and etc.

Figure 2.1: A general illustration a WSN with routing and sensor nodes.

i. Wireless Sensor Network (WSN)

The WSN is a generic term for a network of motes with embedded sensors. WSNs

normally have tiny sensors to monitor environmental variables such as the temperature,

humidity, noise, pressure. The choices of security used in a WSN environmental

application is influenced by the amount of energy the security architecture consumes.

Law et al state that lightweight and energy efficient algorithms are preferred [19].

ii. Wireless Multimedia Sensor Network (WMSN)

The WMSN highlights the use of low-cost cameras in health care monitoring systems,

incorporating applications that transmit data such as high-resolution still images and

multimedia video and audio streaming. This is a kind of network is composed of

17

Chapter 2

embedded audio and visual collection modules that require the balancing of the energy

costs, application purposes, and security strength considerations [102].

iii. Wireless Visual Sensor Network (WVSN)

This type of network features the use of visual sensors or low-cost cameras for

environmental surveillance purposes. The crucial area of consideration for WVSN is low

latency of communication and image processing modules. The real-time systems are

extremely resource constrained, making designers find extreme measures without

compromising significant costs [13].

According to Roman et al [6], microcontrollers are used in the WSN because of their cost-

effectiveness. Microcontrollers are grouped into weak, normal and heavy-duty for their

computing capabilities, clock speed, and RAM size. Figure 2.2 illustrates an overview of

the architecture within a WSN node, including the connections of the microcontroller to

other input/output components. Roman et al questioned the suitability of some of the

symmetric cryptographic primitives for some low-end microcontrollers. The

cryptographic primitive in question are the AES cipher and Twofish cipher, which both

are known to be optimized for 32-bit processors. However, some of the operations can be

done using native 8-bit registers [6]. Heavy-duty controllers, such as the PXA271 or the

ARM920T with a word size of 32-bits, are compatible with these ciphers. The Skipjack

cipher fits perfectly into the MSP430 family because the operations and the key schedule

use 16-bit words [103]. The instruction memory and the RAM memory of the RCE have

to suffice for the storage of: program code, private key, intermediate values, and other

temporary data. This shows that choosing a cipher to match a microcontroller’s resources

is an important consideration.

18

Chapter 2

Figure 2.2: An illustration of the generic architecture within a WSN node (image

extracted from [6]).

Johnson et al reviewed the most recent specifications of sensor motes [104].

Table 2.1 shows the hardware specifications of known motes. Mark Hempstead [95]

provided a detailed analysis of hardware systems for sensor nodes, focusing on the

architectural level of the processors used. Hempstead concluded that it would be difficult

to judge the programmability, energy efficiency, and performance fairly without running

the same benchmarking application on all these different systems. Hempstead stated

that the intelligent combination of: circuit techniques, hardware architecture and

application support can yield ultra-low power systems.

Table 2.2 shows a summarized version of the table presented in [95].

19

Chapter 2

Table 2.1: The specifications of various sensor motes [104].

Mote

Platform
µProcessor

Bus

(bit)

Clock

(MHz)

RAM

(K)
Flash (K)

EEPROM

(K)

Cost /

node

(USD)

TelosB

(sensor)

TI

MSP430F1611
16 4-8 10 48 1000 99

TelosB

(w/o

sensor)

TI

MSP430F1611
16 4-8 10 48 1000 139

MicaZ
Atmel Atmega

128L
8 8 4 128 512 99

Mica2
Atmel Atmega

128L
8 8 4 128 512 99

SHIMMER
TI

MSP430F1611
16 4-8 10

48 +

microSD

expansion

None 199

IRIS
Atmel Atmega

1281
8 8 8 640 4 115

Sun SPOT
Atmel

AT91RM9200
32 180 512 4000 None 750

EZ-

RF2480

TI

MSP430F227432
16 16 1 1 None 99

EZ-

RF2500

TI

MSP430F227432
16 16 1 1 None 49

20

Chapter 2

Table 2.2: The specifications of various controller architectures [95].

System Architecture Data path Width Memory (KB)

Atmel

ATmega 128L

General Purpose

Off-the-shelf
8 132

TI

MSP430

General Purpose

Off-the-shelf
16 10

SNAP / LE
General Purpose

Reduced Instruction Set Computer
16 8

BitSNAP

General Purpose

Reduced Instruction Set Computer

(Bit-serial data path)

16 8

Smart Dust
General Purpose

Reduced Instruction Set Computer
8 3.125

Charm Protocol Processor N/A 68

Michigan 1 General Purpose 8 0.25

Michigan 2 General Purpose 8 0.3125

Harvard Event-driven Accelerator 8 4

2.1.2. Radio Frequency Identification (RFID)

The RFID system is often referred to as the Extreme Resource Constrained Environment

due to the nature of its application and devices. The modern RFID system

infrastructures are seen to be made up of three primary components RFID transponders

(also known as tags or labels), RFID readers or transceivers, and back-end electronic

databases. RFID transponders are distinguished based on their operating frequency: low

frequency (LF), high frequency (HF), ultra-high frequency (UHF) and microwave.

Transponders categorized by their powering techniques such as passive, semi-passive

and active. The most common devices are passive RFID tags, where a battery-less IC

device harvests power from a nearby RFID reader (deriving their transmission power

from the signal of an interrogating reader) and uses it to respond to the reader with an

identification number. RFID is deemed resource constrained because of its limited power

and memory.

21

Chapter 2

There are three types of RFID tags: LF, HF, and UHF. Table 2.3 shows a comparison in

terms of specifications on LF, HF, and UHF tags. Ranasinghe et al stated that the

current fabrication of Class I tags consists around 1000 to 4000 logic gates while Class II

labels may consist several thousand more gates [105]. Ranasinghe et al further

elaborated the three important components within the RFID: RF front-end, memory

circuitry and the FSM (Finite State Machine) logic circuitry. Class 1 Transponders have

only read-only memory while Class 2 Transponders may have some read-write memory

using Electrically Erasable Programmable Read-Only Memory (EEPROM) [105]. The

memory circuitry within RFID has memory capacity in the order of hundreds of bits. An

EPC tag normally has an EEPROM that stores the Tag ID. The rest of the memory (in

the order of a few kilobytes) within the EEPROM is made available to the users.

Ranasinghe et al proposed a PUF circuit (Physical Unclonable Function) which costs less

than 1000 gates to tackle privacy and authentication issues. Figure 2.3 illustrates the

architecture within a UHF/HF tag is extracted from [105].

Table 2.3: Comparison between, LF, HF and UHF RFID tags [106].

Operating Frequency

Low frequency

(LF)

125 ~ 135 (kHz)

High frequency

(HF)

13.56 (MHz)

Ultra-high frequency

(UHF)

850 ~ 960 (MHz)

Read range ~10cm ~1m 1~2m

Penetration of

material
Excellent Good Poor

Water resistance No Some extent Yes

Power Source
Passive

(inductive)

Passive

(inductive)
Passive (propagation)

Data-rate Slow Fast Very Fast

Multiple reading of

tags
Poor Good Very Good

22

Chapter 2

Figure 2.3: An illustration of the architecture within an HF/UHF RFID Tag (image

extracted from [105]).

Various resource specifications on RFID transponders [107-110] and the compiled Table

2.4 shows the list of known RFID tags (LF, HF, and UHF) and their respective memory

resource specifications. Some of the latest RFID specifications can be found here: [111-

114]

Table 2.4: A compilation of specifications for various known LF, HF and UHF RFID

transponders [107-110].

Operating Frequency Transponder Storage User Memory

LF

125 kHz Hitag1 256 bytes 192 bytes

125 kHz Hitag S256/2048 256 bytes 248 bytes

125 kHz Hitag2 32 bytes 16 bytes

125 kHz EM4001/4102 8 bytes 5 bytes

125 kHz MCRF200/123 16 bytes 14 bytes

HF

13.56 MHz Mifare 1k 1024 bytes 768 bytes

13.56 MHz Mifare ProX 1024 bytes 768 bytes

13.56 MHz SmartMX 1024 bytes 768 bytes

13.56 MHz Mifare 4K 4096 bytes 3456 bytes

13.56 MHz Ultralight 64 bytes 48 bytes

13.56 MHz
ICODE SLI/TagIT

(ISO15693)
128 bytes 112 bytes

23

Chapter 2

Operating Frequency Transponder Storage User Memory

13.56 MHz Mu-chip 128 bits -

UHF

902 – 928 MHz
Alien I2

(ALL-9250)
64 bits -

902 – 928 MHz
Alien M

(ALL-9254)
64 bits -

902 – 928 MHz
Alien Squiggle

(ALL-9238)
64 bits -

860 – 960 MHz
IT36 Low Profile

Durable Asset Tag

TID = 64 bits

EPC = 128

bits

512 bits

902 – 928 MHz
IT75 Low Profile

Durable Asset Tag

TID = 64 bits

EPC = 128

bits

512 bits

865 – 868 MHz
IT76 Low Profile

Durable Asset Tag

TID = 64 bits

EPC = 128

bits

512 bits

860 – 960 MHz

IT67 Enterprise

Lateral Transmitting

(LT) Tag

TID = 64 bits

EPC = 240

bits

512 bits

860 – 960 MHz
IT65 Large Rigid Tag,

Gen2

TID = 32 bits

EPC = 96 bits
0 bits

869 / 915 MHz Tire Tag Insert - -

915 MHz Container Tag - -

902 – 928 MHz
Matrics / Symbol

Dual Dipole

TID = 112

bits

EPC = 128

bits

-

902 – 928 MHz
Matrics / Symbol

Single Dipole

TID = 112

bits

EPC = 128

bits

-

An enhanced version of RFID device called the Computational RFID (CRFID) has

emerged in the recent years [115], bridging the gap between WSN and RFID with added

sensing and computation abilities.

24

Chapter 2

2.1.3. Wireless Identification and Sensing Platform (WISP)

RFID tags lack re-programmability and computation power. To solve this problem, the

WISP (Wireless Identification and Sensing Platform) technology is introduced [4]. WISP

[7] supports sensing and computing was first developed under the project of Intel

Research Seattle. WISPs are programmable because of the on board on-board 16-bit

MCU. Unlike a RFID transponder, the WISP has a more powerful controller and

spacious memory unit, providing application design spaces. Similar to passive RFID tags,

WISP is powered and can be read by a standard RFID reader, harvesting the power from

the reader's emitted radio signals. Most of the work on WISP to date is about single

WISPs performing sensing or computing functions on data such as light, temperature,

acceleration, strain, liquid level, and even to investigate embedded security. The next

phase of WISP’s development probably involves the interaction of multiple WISPs, Thus

allowing an exciting exploration of a new battery-free form of wireless sensor networking.

Like any RFID or WSN devices, the sensor hardware and controllers operate under a

limited amount of power and computation capability. Figure 2.4 shows an example of

WISP and according to Sample et al [8], WISPs have the following features:

 Up to 10ft range with harvested RF power,

 Ultra-low power MSP430 microcontroller,

 32K of program space, 8K of storage,

 Light, temperature, and 3D-accelerometers,

 Backscatter communication to the reader,

 Reader to WISP communication (ASK),

 Real-time clock,

 Storage capacitor (to sense without reader),

 Voltage sensor (measures stored charge),

 Extensible hardware (to add new sensors),

 HW UART & GPIO for external connections,

25

Chapter 2

 Works with select EPC Class 1 Gen 2 readers,

 WISP software to sense and upload data,

 Reader application to drive WISP,

 Industry standard development tools,

 Access to hardware design and source code.

Figure 2.4: An illustration of WISP compared to a coin (Image extracted from [7]).

WISPs are programmable because of the on-board 16-bit MCU. Unlike a RFID

transponder, the WISP has a more powerful controller and larger memory unit,

providing application design spaces. Currently, there are three versions of WISP [4, 116]

shown in Table 2.5.

Table 2.5: A table stating WISPs’ version and their current state of development.

WISP Name MCU Status

WISP 4.1DL (Blue) MSP-430F-2132 Ramping Production

WISP 4.0DL (Purple) MSP-430F-2274 Deprecated

WISP 3.0 MSP-430F-2272 -

WISP G2.0 (Red) MSP-430F-2012 Limited use

The most recent development is the WISP 5.0 but the information released is limited.

The price for WISP devices is also currently unknown as the project is open to academic

collaborators and the WISPs are only given if the project proposal is accepted. The WISP

proposal is still very recent and the publications and literatures related to WISP are

limited.

26

Chapter 2

Sample et al [8] has written a complete description of the WISP, breaking down the

WISP with detailed explanations from the analog front-end, the modulation and

demodulation, the digital section and power conditioning, packet coding and decoding to

the power requirements and duty cycle. Figure 2.5 shows an illustration of the hardware

architecture and components within the WISP.

Figure 2.5: An illustration of the WISP platform and its components [7, 8].

2.1.4. Internet of Things (IoT)

IoT [117] refers to the interconnectivity of embedded computers. IOT also extends its

definition of the connectivity between devices and computers beyond the traditional

machine-to-machine communication, offering advanced services, systems and

functionality. IOT devices are mostly embedded computing systems that have the nature

of low-power radios and low-computing power. Applications that researchers have

identified for the IOT includes: environmental monitoring, energy management,

industrial and asset management, home automation, healthcare monitoring systems, etc.

However, integration with the Internet implies that the IoT devices will have an IP

address as a unique identifier which inherits the security threats of a generic computer.

This connection of physical devices to the Internet allows the control of the devices

remotely, very similar to a WSN. IoT building blocks are generally termed Smart Objects

[117] are also identified as embedded systems connected to the Internet. Current IoT

market examples include smart thermostat systems, home electrical appliances that use

27

Chapter 2

Wi-Fi for remote monitoring, smart home systems, and any systems that generally

connected to other devices or systems via wireless protocols such as 3G, Wi-Fi, Bluetooth

and Near Field Communication (NFC).

Hardware specification and form factors of IoT smart devices vary but generally has the

following characteristics:

1) Six known forms: Tabs, Boards, Pads, Dust, Skin, and Clay [118, 119].

2) Commonly act as personalized smart mobile devices.

3) Have ubiquitous computing properties, similar to Sensor Networks.

2.1.5. Radio Sensor Network (RSN, Integration of RFID and WSN)

In general, WSN is usually used in an environment for sensing and monitoring

geographical, chemical, visual and even physical environment through various sources

such as geo-thermal, sound waves or even image. As for the RFID environment, any

object 'tagged' with an RFID tag is track-able and sense-able in digital form. By

deploying both tags and sensors, smart nodes are able to make use of the RFIDs for

intelligent monitoring for unusual events. Zhang et al [120] stated that the integration

of these two promising technologies would bring extended capabilities, scalability, and

portability as well as reduced unnecessary costs.

Lei et al and Xin et al suggest that the new integrated system will consist of three

classes of devices. The first class is that of wireless devices known as smart stations,

containing RF readers, network connectivity and an MCU and its primary task is to

monitor the tags. The second and third class devices are the tags and sensor nodes [98,

121]. Lei et al and Xin et al also presents several modes of application such as the smart

warehouse for asset theft detection, and another example is the smart forklift for

efficient asset storing. Besides the applications, practically there is a design for the

smart node proposed by Mason et al [2]. Mason et al presented a design using a Mica2

mote, interfaced with a TTL converter to allow communication to RF reader, and also

28

Chapter 2

demonstrated tag detection. HaiLiu et al [122] suggested 'medical nodes' for medicine

inventory management and patient monitoring systems. All the above examples show

the important of such a system in improving our daily lives and the significance of such

integration of two systems would bring. In many sensor network applications such as:

home sensing and factory automation can be solved where the readers can be installed

and carried easily. Figure 2.6 shows one of the proposed integrated RFID readers with

sensor nodes in the WSN network [120].

Wetherall et al [3] introduced RFID sensor networks (RSNs), which consist of small,

RFID-based sensing and computing devices (WISPs), and RFID readers that are part of

the infrastructure and provide operating power. They claim that the RSNs bring the

advantages of RFID technology to wireless sensor networks but they do not expect them

to replace WSNs for all applications. On the other hand, WISP is very similar to RFID

devices. Therefore, the potential of WISP replacing RFID is greater in applications that

require more complex computing and self-sustaining energy harvesting functions.

Sink Server

Sensor

Node

Sensor

Node with

RF Reader

WISP /

RFID tags

Figure 2.6: The illustration of an integrated RFID and WSN network.

29

Chapter 2

2.1.6. Distinction between RCE and eRCE

Section 2.1.1 to Section 2.1.5 showed that there are two classes of RCE: the typical RCEs

and the Extreme Resource Constrained Environment (eRCE or XRCE). Typical RCEs are

systems designed for complex applications and further defined by the sensory hardware

utilized. A typical example of visual sensor RCEs is the WVSN. eRCEs, such as RFID

tags, do not possess sensors [123].

Every RCE requires hardware that is tailored to a specific application to minimize cost,

power requirements and size and to maximize reliability because RCE devices are often

left in the field and not intended to be maintained for extended periods of time [16]. For

WSN and WISP RCEs, general purpose or RISC-like architecture is used as the

processing unit. Extreme RCEs such as the RFID UHF / HF transponder, application-

specific logic circuits is used to execute read-write commands. While typical RCEs collect

environmental data, visual sensor RCEs require more on-node processing such as

applying computer vision techniques and compression [124]. For efficiency, availability

and cost reasons, FPGAs are typically used as the processing unit for the visual sensor

RCE nodes [12, 17, 18].

The hardware property of RCE and eRCE affects the types of data processing algorithms

used. eRCE is extremely constrained compared to RCE. The extreme constrained nature

of eRCE led to the introduction and the adoption of lightweight algorithms [125, 126].

Many authors suggest that full cryptographic primitives (public key and private key) can

be used in RCE [127-131], the conservative estimation is that both RCE and eRCE will

employ algorithms that suit their resource budget. Thus, the algorithms used by both

systems will vary. Lightweight algorithms are more popular for eRCEs [49, 125, 132,

133]. The nature of both RCE and eRCE suggests that RCE has the slight flexiblity in

terms of utilizing modern cryptographic primitives. In contrast, the eRCE has a very

limited cipher-pool2 to choose from.

2 The findings of the cipher-pool is published in: Kong Jia Hao, Ang Li Minn, Seng Kah Phooi, “A

Comprehensive Survey of Modern Cryptographic Solutions for Resource Constrained

30

Chapter 2

2.1.7. IoT and RSN – Implications for Security

IoT RCE systems are becoming more prevalent and the devices within the network

ranges from small sensors to large televisions [5]. Like any other RCEs, IoT has the

underlying problem of a large spectrum of security problems and constrained resources

[125]. The options for security are public key or private key encryption but resource

required for public key primitives is much greater than the private key primitives [125].

Similar issues are found in other RCEs [128, 129]. Demand for key management using

private key cryptography [134, 135] is on the rise as an alternative to the Public Key

Cryptography. Key management protocols in IoT RCE are in high demand, leading to the

search for ‘lightweight’ public key primitives.

RSN [136] is a new type of network that incorperates both the RCE and eRCE [121].

Problem arises when secured data communication between RCE and eRCE has to be

established. Difference in security protocol, device manufacturer, and hardware

properties lead to the difference in cryptographic primitives employed. Encrypted data

from eRCE cannot be authenticated or decrypted unless both parties uses the same

protocol and the same key. A multi-cipher [78] crypto-system is able to solve the

disparity of cryptographic primitives by adopting the primitives used by the eRCE

counterpart. Key-predistribution with pair-wise keys [137] is able to solve the keying

issue. Alternatively, a pair of session key generated from a master key [138] can also be

used with the assumption that the RCE nodes only has to keep a single session key for a

single eRCE device connected. However, the number of session keys will grow at the rate

of N − 1 keys (N is the number of neighboring devices) and thus consuming memory

resources to store the large amount of keys [139].

Environments”, Journal of Network and Computer Applications, Vol. 49, No. 0, pp 15-50,

Elsevier 2014.

31

Chapter 2

2.2. Security in Visual Sensor RCE

Visual Sensor RCE security is a significant concern because the memory and

computational resources, required to store keys and run encryption programs, are

additional to the primary application.

There are two identified challenges regarding RCE security designs [5, 140]:

1) What are the security requirements for a specific RCE application?

2) What is the choice of cryptographic algorithms / primitives?

2.2.1. The Security Requirements for Visual Sensor RCE

The justification for security requirements is highly dependent on the value of the data

and the type of RCE [5, 19, 21, 25, 36-38]. The security requirements can be attributed to

these three elements:

a) eRCE or RCE.

b) Lightweight security or strong security.

c) Generic data or multimedia data.

Extreme RCEs are normally associated with lightweight security because the target

applications involve extremely constrained devices, low-value scalar data, and low-level

threat model [133, 141]. Strong security is preferred in Visual Sensor RCEs that

processes multimedia data [44, 142, 143].

Visual Sensor RCE generally requires higher level of security when it comes to the data

value and the potential threat level [144]. Section 1.1 stated that there are six

generalized security goals for RCE. Image and video encryption [42, 145-147] is one way

to protect the confidentiality and privacy of sensitive image data. However, image or

video encryption techniques usually involves encrypting the full multimedia content,

which is computationally exhaustive and memory consuming [148]. Processing

32

Chapter 2

multimedia data is known to consume large amount of memory that RCE devices

normally do not possess [94, 149]. Coding methods such as Data compression [150, 151]

are used to reduce the amount of data payload being stored, sent and processed. Partial

or selective encryption [40-42] takes advantage of the characteristics of compressed or

processed data and uses these characteristics to achieve sufficient security protection.

Partial or selective encryption exploits the characteristics of the coded data using media

coding algorithms, to provide secrecy while reducing computational complexity [152].

This ultimately reduces the amount data to be encrypted, the amount of data to be stored,

the computation cycles required, the amount of time required for encryption and by

extension, decreasing the amount of energy consumed via transmission of the system

[153]. Figure 2.7 illustrates the cryptography paradigm between a traditional encryption

and selective encryption.

Input

Data Coding

Encryption

Communication
Channel

Input

Data Coding

Encryption

Communication
Channel

Important Part
Unimportant

Part

Encryption

a) b)

Figure 2.7: The Cryptography Paradigm: (a) Traditional Encryption; (b) Selective

Encryption (Image extracted and redrawn from [148])

33

Chapter 2

2.2.2. The Choice of Cryptographic Algorithms / Primitives

Various types of ciphers needed to be considered. Private Key Cryptography (PKC) is

considered the commonly used cryptographic primitive for WSN RCE as opposed to

Public Key Cryptography [19, 83]. There are two general types of ciphers: Symmetric and

Asymmetric ciphers. To find out the choice of cipher algorithms suitable for WSN RCE,

Law et al [19] reviews the Private Key Symmetric Block ciphers used in WSN RCE and

provided insights for security options in different resource and security requirement

scenarios. Besides the Symmetric Block ciphers, ciphers such as the Lightweight,

Involution and Stream ciphers were investigated on the suitability for RCE applications

in [6, 96, 140, 154-159]. For low-area, low-complexity applications, symmetric ciphers are

preferred due to their nature of being hardware implementation-friendly [61, 62]. Law et

al [19] concluded that the AES cipher is best suited for higher security but worst

performing in terms of memory and power consumption. On the other hand, Skipjack is a

viable option for low-security applications. Law et al [19] has also made a specification

comparison of sensors nodes, claiming that the rate of improvement is conservatively at a

lower rate than Moore's law prediction. This further confirms the need for cheaper

security designs and the conclusion reached is founded on MCU-based WSN nodes.

34

Chapter 2

2.3. Security in Multimedia Data Processing

Security for multimedia can be achieved on multimedia content using encryption

techniques. Multimedia compression [160] is often used to save cost in memory and

bandwidth. Compression is a way to discard redundant information by searching for a

less-correlated representation of an image or a video data. Compression techniques often

revolve around two concepts: spatial redundancy and temporal redundancy. Temporal

compression techniques take advantage of areas of the image that remained unchanged,

from the previous frame to the current frame. Temporal techniques focus on storing the

‘changes’ between subsequent frames rather than the entire image frame. Sequential

image or video without many changes take the best advantage of temporal compression.

Spatial compression is a technique of information reduction on a single image or frame

independent of other frames and thus, suitable for still images.

There are two type image compression algorithms: lossless and lossy compression.

Lossless, decorrelation compression technique is preferred for image application because

it removes redundancy and allows important data to be perfectly reconstructed,

especially for classified images [161]. Chew et al concluded that the Set Partitioning in

Hierarchical Tree (SPIHT) compression algorithm has the highest compression ratio and

reasonably low computation complexity, which is very suitable for WMSN or WVSN RCE

applications [162].

2.3.1. Set Partitioning in Hierarchical Trees (SPIHT) – A Lossless

Compression Technique

The set partitioning in hierarchical trees (SPIHT) algorithm by A. Said and W. A.

Pearlman [163] is a lossless-compression algorithm. SPIHT is a powerful compression

algorithm as it allows progressive reconstruction. To acquire higher quality image, more

refinement bits are required and decoding can stop at any point in the bit-stream. Ritter

et al [164] stated that Discrete Wavelet Transform (DWT) followed by Embedded

35

Chapter 2

Zerotree Wavelet (EZW) is a very efficient combination for image compression. The

SPIHT is a highly refined version of the EZW and has higher compression ration than

EZW.

The EZW coding uses the DWT to decompose an image into multi-resolution sub-bands,

creating low-frequency and high-frequency component of an image. In the wavelet sub-

bands, every coefficient at a given scale is related a set of coefficients at the next lower

scale. This relationship is often referred as the parent-children relationship in the

literatures. Each node will contain 2 by 2 children at a lower scale. At the highest scale,

the sub-band is called the LL sub-band (low-low). This LL band will have 3 children

nodes: the HL band, LH band and the HH band. Due to the nature of the wavelet

decomposition, the higher scale sub-bands will contain more energy than the lower scale

sub-bands. Thus, the embedded coding starts with the highest LL sub-band followed by

HL, LH and HH sub-bands. Figure 2.8 depicts the parent-children dependencies in EZW

coding, which is also used in the SPIHT.

HL2

HH2LH2 HL1

HH1LH1

LL

Figure 2.8: The parent-children dependencies in EZW and SPIHT (Image extracted and

redrawn from [151]).

36

Chapter 2

Ang et al [11] and Jyotheswar and Mahapatra [165] provided a comprehensive

description of the SPIHT algorithm. According to Ang et al [11], the SPIHT defines and

partitions sets using a special data structure called spatial orientation tree (SOT). A

spatial orientation tree is a group of wavelet coefficients organized into a tree, rooted in

the lowest frequency (coarsest scale LL) sub-band, with offspring in several generations

along the same spatial orientation in the higher frequency sub-bands. The pixels in the

coarsest level of the pyramid are the tree roots. They are grouped into blocks of 2 by 2

adjacent pixels with one of them in each block. The grouping of the pixel coordinates are

shown in Table 2.6.

Table 2.6: The groupings of coordinates in SPIHT SOT.

O(i, j) Holds the set of coordinates of 2 by 2 off-springs of node (i, j).

D(i, j) Holds the set of coordinates of all descendants of node (i, j).

L(i, j)

Holds the set of coordinates of all grand descendants of node (i, j),

i.e.: L(i, j) = D(i, j) - O(i, j).

H Holds the set of coordinates of all spatial orientation tree roots.

Jyotheswar and Mahapatra [165] explains that SPIHT maintains three list of

coordinates: the LIP (List of Insignificant Pixels), LSP (List of Significant Pixels) and the

LIS (List of Insignificant Sets). A coefficient is considered to be significant is its

magnitude is equal or larger to the threshold. By using the notion of significance, the LIP,

LIS and LSP are explained as follows:

1. The LIP contains the coordinates of coefficient that are insignificant at the

current threshold.

2. The LSP contains the coordinates of coefficient that are significant at the current

threshold.

3. The LIS contains coordinates of the roots of the spatial parent-children

representing a set D (i, j) (marked as an entry of type A) or a set of L (i, j)

(marked as an entry of type B).

37

Chapter 2

The SPIHT algorithm can be divided into three stages: initialization, sorting and

refinement [165]. During the initialization stage, SPIHT first calculates the maximum

bit-plane level required for the coding due to maximum value in the wavelet coefficient

pyramid, and sets the start threshold for the maximum bit-plane level coding. It then

sets the LSP (significant) to an empty list and puts the coordinates of all coefficients in

the coarsest level of the wavelet pyramid into the LIP (insignificant), and those which

have descendants also, into the LIS. In the sorting pass, the algorithm first sorts the

elements of the LIP (insignificant) and then the sets with roots in the LIS.

For each pixel in the LIP (insignificant), the SPIHT performs a significance test against

the current threshold and outputs the test result to the output bit stream. The entire test

results are encoded as either 0 or 1. If a coefficient is significant, its sign is coded and

then its coordinate is moved to the LSP (significant). During the sorting pass of LIS

(insignificant), the SPIHT encoder carries out the significance test for each set in the LIS

(insignificant) and outputs the significance information. If a set is significant, it is

partitioned to its subsets according to the set-partitioning rules mentioned in the

previous subsection.

The sorting and partitioning are carried out until all significant coefficients have been

found and sorted in the LSP (significant). After the sorting pass for all elements in the

LIP (insignificant) and LIS, the SPIHT performs a refinement pass with the current

threshold for all entries in the LSP (significant), except those which have been moved to

the LSP (significant) during the last sorting pass. And lastly, the current threshold is

divided by two and the sorting and refinement stages are continued until a predefined

bit-budget is exhausted.

Ang et al [11] proposed a modified version of SPIHT using zero-tree coding (which is

termed the SPIHT-ZTR). The SPIHT-ZTR exploits the relationship among the wavelet

coefficients. The Zero-tree condition is mentioned previously that this type of SOT is

encoded with a single symbol which indicates that all the nodes in this particular SOT

are insignificant. This modified version of SPIHT provides a better implementation

38

Chapter 2

advantage for low-memory applications [11]. In the proposed SPIHT-ZTR algorithm,

significance tests performed on an individual tree node, descendant of a tree node and

grand descendant of a tree node are referred to as SIG, DESC and GDESC. Three

significant maps known as SIG_PREV, DESC_PREV and GDESC_PREV are used to

store the significance of the coefficient. During the stage for upward scanning

significance data collection (stage 2, after DWT is performed), a significance table is

generated and stored in STRIP_BUFFER, which is then used for the final stage of

SPIHT coding.

Singh et al [166] briefly describes a direct implementation of the SPIHT software

algorithm. Ritter et al [164] implemented SPIHT on a Xilinx FPGA XC4085XLA,

consuming 743 logic blocks for the design without arithmetic coding running at 40MHz

and 1425 logic blocks with arithmetic coding. Jyotheswar and Mahapatra [165] presented

an efficient FPGA implementation of DWT and modified SPIHT. Jyotheswar and

Mahapatra’s implementation results show that a total of 7021 slices used, 1439 slice flip-

flop used and a total of 13356 4 input LUTs used. The paper serves as a reference to

SPIHT hardware implementations. Vipin et al [167] presented their work on SPIHT

FPGA implementation using a SPARTAN 3E FPGA without model details. The results

were 1850 / 1920 slices, 2315 / 3840 slices Flip Flop, 2961 / 3840 4 input LUT and 4 / 12

BRAM utilized.

39

Chapter 2

2.3.2. Selective Image Encryption on Compressed Image Data

When a two dimensional image is transformed into one dimensional data representation

using scanning patterns, the image data exhibits certain repetitions due to correlation

with neighboring pixels [168, 169]. Traditional symmetric encryption algorithms are

ineffective, especially in a grayscale image or an image that has large areas of pixels with

high redundancy. A direct symmetric encryption on such images results in blocks of

identical cipher text because of the correlated pixels with the same values in a cipher

block [89]. Shiguo Lian showed a comparison between an original image and an

encrypted image using the AES [89]. The encrypted image (right) in Figure 2.9 is still

perceptually intelligible. The AES encryption yields the same encrypted cipher text if the

given plain text and key remains the same.

Figure 2.9: Comparison between original image (left) and AES encrypted image

(right) (Image extracted from [89]).

To solve the image encryption problem, Norcen and Uhl [79] have provided a

methodology to selectively encrypt around 20% of the compressed bit stream for

JPEG2000. By using the JPEG2000 codec, images are transformed into different

frequency bands that represent different fidelity or resolution. Each of the sub-bands is

partitioned into a number of code blocks. Each of the code blocks is encoded bit-plane by

bit-plane, from the most significant bit to the least significant bit. In each of the bit-

40

Chapter 2

planes, there are mapping and refinement bits. By encrypting the mapping bits, an

image reconstructed from the cipher text is unintelligible. Lian et al [80] suggested that

only the significant bits are selected for AES encryption. Figure 2.10 shows the original

‘Peppers’ JPEG2000 image (a) and the encrypted image (b). And (c) is the JPEG2000

‘Plane’ image coupled with its encrypted image (d). The encrypted images are

perceptually unintelligible and therefore secured, showing that the AES symmetric

cipher is able to work in combination with compression schemes. Figure 2.11 shows the

general idea of a working selective encryption system, which comprises of encryption and

decryption processes.

Figure 2.10: The results of encrypting JPEG2000 coded images using AES (Image

extracted from [89]).

41

Chapter 2

Figure 2.11: The illustration of a partial / selective encryption and decryption system.

a) the encryption process, b) the decryption process. (Image modified from [89])

Cheng and Li [42] introduced a selective encryption methodology using quad-tree

compression algorithm. Quad-tree compression is known to be more efficient a lower bit-

rates [41]. Cheng and Li stated that only 14% of the information is encrypted for typical

low-resolution image with low information. For high bit-rate images, the encryption ratio

can reach up to 50%. There are currently no known selective encryption systems that

incorporate the SPIHT technique.

42

Chapter 2

2.4. Crypto-processor for RCE Application

The ideal crypto-processor to face multiple RCE security threats [31], must be capable of

double or multiple encryption [27, 28], multi-cipher [29], support for cipher mode of

operation [30], multi-level security [31], key management [32], authentication [33], and

digital signature. Such a crypto-processor has to have diverse security features and

functions.

2.4.1. Crypto-processors for Multi-cipher Application

Multiple security protocols requires multiple cryptographic primitives, leading to the

need of multiple cryptographic primitive cores [34]. Multiple primitive cores increase the

hardware area memory requirement due to cipher programs and crypto-specific

instruction sets. A unified crypto-processor [170] is able to operate and perform multiple

ciphers, removing the need for separate cryptographic cores and the hardware logic

needed for those cores. The only cost for this configuration would be the cipher’s program

that occupies the memory. More cipher programs require more memory.

‘Multi-level security’ (MLS) or ‘Multi Security Levels’ (MSL) [171] refers to a security

environment in which there are different communication access and clearance levels,

which are dependent on the strength of cryptographic algorithm used. Jongdeog et al

[171] stated that having more powerful algorithms for higher security domains would be

reasonable as security levels correspond to sensitivity and clearance. Due to the resource

limitations of RCE sensor nodes, strong cipher algorithms may consume more memory

and energy. A low level security domain may opt to use a light encryption algorithm

rather than a heavy one provided that there are multi cryptographic primitives to choose

from [171]. A stronger crypto-solution would provide a higher clearance (for decryption

and access) [76, 172]. A multi-level secure framework is able to support secure

communication between nodes in a network instead of using a static solution to a wide

spectrum of threats [172]. Afzal et al [172] stated that WSN RCE security protocols

43

Chapter 2

achieve secure communication by using digital signatures, authentication schemes,

symmetric keying and asymmetric keying. To ensure data non-repudiation, timestamps,

random number generators and initialization vector are used in conjunction with

security schemes. However, Afzal et al also stated that WSN RCE security schemes are

static and coarse, that are unable to impose multiple level of clearances to limit access to

parts or components of the node device. The other proposals on multi-level solutions are

predominantly on the node cluster level [76, 172, 173], forming frameworks models and

security topology by enforcing or manipulating information flow. One way to impose

security and access control is the use of authentication using Cipher Block Chaining

(CBC) and Cipher Block Chaining - Message Authentication Code (CBC-MAC), which

requires symmetric key cryptographic functions. The underlying basis for a well-

designed crypto-processor is the ability to provide sufficient cryptographic functions to

formulate robust protocols and schemes. Regardless of the requirements of a multi-cipher

or a multi-level system, the apparent solution to a well–designed, flexible crypto-

processor is having multiple cryptographic functions.

The CryptoManiac [78] processor is a flexible crypto-coprocessor which supports multiple

cipher algorithms and also multi-mode operations. Lavos et al [174] has stated that the

ECB (Electronic Cook Book) mode for symmetric ciphers are the most common mode of

operation used. Lavos et al also states that the more ‘mode of operations’ that one crypto-

system can support, the more robust and more flexible it is to suit the current needs and

applications. There are a few modes of operations other than the ECB worth mentioning

and they are: cipher block chaining (CBC), cipher feedback (CFB), counter (CTR), and

output feedback (OFB). Lavos et al also proposed a reconfigurable crypto processor

design to accommodate various encryption algorithms and their respective mode of

operation with the ultimate aim to provide a unified platform with a design that houses

the configuration for multi-mode applications. Lavos et al presented an inner-

architecture that focuses on the Cipher Block Unit, using loop-rolling architecture for

smaller code size. Five ciphers were presented by the Lavos et al: AES, IDEA, DES, RC5,

and SAFER+, showing a great selection of cipher implementations. Figure 2.12 shows

44

Chapter 2

Lavos et al’s design that includes three cipher block units. Figure 2.13 shows that within

each of the cipher block unit, a common full rolling architecture is used.

COUNTER
UNIT

IV Unit

cb_in

cb_enable

cb_clock
cb_set

cb_reset

cb_out

cb_rd

CIPHER BLOCK
UNIT 2

cb_in

cb_enable

cb_clock
cb_set

cb_reset

cb_out

cb_rd

CIPHER BLOCK
UNIT 3

cb_in

cb_enable

cb_clock
cb_set

cb_reset

cb_out

cb_rd

CIPHER BLOCK
UNIT 1

Register 5

n

DataOut
1

Register 6

n

DataOut
2

Register 7

n

DataOut
3

n

DataIn
1

Register 1 Register 2

n

DataIn
2

n

DataIn
3

Register 3

Figure 2.12: The proposed multi-mode architecture by Lavos et al (Image extracted and

redrawn from [174]).

45

Chapter 2

Key Expansion
Unit

Key Data Bit

Generated
Key

RAM Blocks

Round Key

Transformed
Data Register ‘n’

bit

Data
Transformation

Round Core

Register ‘n’ bit

Ciphertext / Plaintext
‘n’ bit

Plaintext / Ciphertext
‘n’ bit

MUX 2x1

Figure 2.13: Architecture for cipher core (Image extracted and redrawn from Lavos et al

[174]).

Lisa et al [78] affirmed that a hardware-software mixed approach is preferred. Young et

al [29, 77] proposed the multi-cipher cryptosystem (MCC) using multiple cipher cores.

The proposed MCC is able to perform encryption and different modes of operation. A

total of 3475 slices is required for the proposed FMCT (Fast Multi-Cipher

Transformation) using AES 128-bits, DES and 3-DES [29]. Chung et al [29] stated that

the FMCT has reduced number of processors, suitable for applications in wireless sensor

network (WSN), online communications, hardware network firewall and etc. Both Chung

et al and Lisa et al concluded that a hardware platform for multi-cipher application is

viable to provide multi-cipher and multi-operations. Figure 2.14 shows a crypto-processor

consisting of co-processor blocks (also known as crypto-blocks). Kim and Lee [175]

46

Chapter 2

implemented both private and public key primitives with a VLSI chip using 0.5µm

CMOS and their AES implementation utilizes 1689 logic slices operating at 58 MHz.

Figure 2.14: Architecture of a multiple cryptographic primitives / processors forming a

robust crypto-processor (Image extracted from [175])

In a multi-core environment, besides having multiple cipher cores, one advantage having

identical cipher cores is to improve a system’s throughput [35, 176-178]. Identical cipher

cores can exist if design is configured to do so with the help of reconfigurable hardware.

Feng et al [179] concluded that using identical cryptographic functions with different key

(based on the survey on security FPGA crypto-design by Drimer [180]), the noise

contributed by the concurrent processes can be removed. Noise from concurrent processes

enables attackers to obtain a correlation model hence risking the system. The

architecture proposed by Feng et al [179] uses a NEW key pairing algorithm to create

new key-pairings (2 sets of keys) instead of injecting 2 different keys directly. Feng et al

proposed a tweaked version of AES hardware implementation that uses two sets of keys

(namely the duo key AES). In an encryption process, if a plaintext is encrypted using 2

47

Chapter 2

sets of keys with 2 concurrent processes, it implies the encryption is done via 2 keys. As a

result, the decryption will only be successful if the 2 keys are correct. Having 2 keys in

the encryption process effectively strengthens the data privacy because the attacker has

to acquire 2 keys for a successful decryption.

Figure 2.15 shows the proposed duo-key-dependent AES (DKD-AES). Feng et al utilized

a total of 32,900 logic elements (LE), using an Altera Cyclone II FPGA.

Figure 2.15: Architecture for block ciphers by Feng e al (Image extracted from [179]).

2.4.2. Hardware Implementation of AES Crypto-Processor

i. Field-Programmable Gate Array (FPGA) for RCE

Microcontrollers are used in WSN, WISP, and IoT devices. For RFID devices, an IC or

normally ASIC is used. The major limitation of these devices are when an operational

needs changes or new functionality has to be introduced, reconfiguration of individual,

partial or even the entire network is not feasible. The current trend and solution is the

employment of field-reconfigurable devices [11, 181, 182], in which the RCE device is

able to be re-programmed and re-configured in situations such as: replacing a

48

Chapter 2

compromised cryptographic primitive, upgrading system’s performance, reconfiguration

for a new purposes, hardware bug fixes, and updates. Ultimately, RCE devices employing

field-programmable hardware is the new platform [9, 12, 183, 184]. Complex image,

video and multimedia processing is feasible using FPGA [185-187]. Thus, allowing visual

processing and security to co-exists, forming a robust and secure visual sensor network.

A typical Xilinx FPGA chip contains a fixed amount of resource elements referred to as a

slice. A slice is made up of look-up tables (LUTs) and D-type flip-flops (FDs). Thus, the

area utilization of a design using Xilinx FPGA technology is quoted in terms of the

amount of slices used.

ii. Low-area Architecture for AES Processors

The AES has four basic steps in each round of encryption. The four steps, in order, are

called SubBytes (also known as the byte substitution), ShiftRows, MixColumns, and

AddRoundKey. The description of the four basic steps in AES rounds are:

 AddRoundKey: A simple transformation performs XOR with the sub key to the

round state.

 ShiftRow: Shifts the byte location with the offset from zero to three depending on

the row location.

 MixColumns: Column vector is multiplied with a fixed matrix where bytes are

treated as polynomials.

 SubBytes: Non-linear byte substitution which is composed of multiplicative

inverse, affine transformation and inverse affine transformation.

In terms of hardware design, there are typically three types of AES hardware

architecture [188]:

1) Looping Architecture.

2) Fully unrolled pipelined architecture.

3) Deep sub-pipelined fully unrolled architecture.

49

Chapter 2

Among the three types above, Looping Architecture is known to be efficient on hardware

area utilization [189-191]. For high throughput applications, the architectural design

usually inclines towards unrolling the loops within AES with the help of a deeply

pipelined 128-bit data path [93]. This technique however would require excessive

hardware area and power which RCE devices unable to afford. Hence, low-area, low-

power designs are preferred in RCE.

There are numerous AES designs aiming for low-area architectures for constrained

FPGA environment [189, 191-193]. Among the low-area designs, Rouvroy et al [191] and

Chodiwiec et al [189] has the best low-area results. Rouvroy et al [191] reported a total of

146 slices utilized on a XC2S40-6 FPGA and Chodiwiec et al [189] reported a total of 522

equivalent slices utilized on a Xilinx XC2S30-6 FPGA. Both Rouvroy et al and Chodiwiec

et al use a fixed-width 32-bit data-path, which leads to a significant drop in terms of

throughput as compared to a fully-unrolled 128-bit data path. Feldhofer et al [192] was

the first to propose a design using an 8-bit data-path, claiming to have the smallest area

to date. Goodman et al [190] proposed using a customized application-specific 8-bit data-

path architecture to further lower the design area and is currently known to have the

smallest design on FPGA (122 slices using Spartan-II XC2S15-6).

Goodman et al [190] stated three key design aspects of an AES processor that

contributed to most of the logic area:

1) The S-box computation.

2) The definition of a suitable primitive operation.

3) Cipher’s programs size.

From the architectural point of view, Goodman et al ‘s low-area AES has the following

key features to reduce area:

a) Generate expanded keys (forward and inverse keys) on the fly using forward

expansion and a proposed inverse expansion without saving all the expanded

keys.

50

Chapter 2

b) The calculation of the S-box is done via 5 clock cycles (multiplicative inverse

requires 3 clock cycles, sharing the same multiplier) to reduce hardware area.

c) A very basic processing architecture that performs primitive operations such as

moving 8-bit data, finite-field multiply by 2 (ffm2), finite-field division by 2 (ffd2)

and XOR are used.

d) Instruction decoder is minimized by including only the required instruction sets

(15 instructions).

e) Programming techniques such as sub-routines and iterations are used (two

levels).

Goodman et al ‘s design is highly tailored and specific to AES. The use of the most

fundamental or primitive arithmetic operations is effective in reducing the complexity of

the processor’s core at the cost of throughput. Hence the term application specific

integrated processor (ASIP) is used to describe the design.

However, Goodman et al ‘s design has a few drawbacks when RCE application is consider.

An ASIP design of AES is rigid and lacks flexibility. The ASIP hardware data-path and

finite-state machine (FSM) cannot be reused or repurposed because it is designed to

perform only a single task. Resources in RCE are extremely scarce, forcing system

designers to reuse or repurpose processors to facilitate adaptation to observed

environmental changes or to cater to changing priorities [194]. Hence, general-purpose

processors are more popular in the RCE. Some may argue that RCE devices do not need

flexibility but the very nature of RCE devices being pervasive and ubiquitous, requires

flexibility and scalability to face increasing communication and security demands [195].

ASIP is a good design for hardware acceleration by doing a single, specific task efficiently.

RCE application requires improvisation in the face of changing environments where RCE

devices usually make do with the limited resources given.

The primitive operations used in ASIP AES are great in reducing computation

complexity considering that ASIP AES only runs AES. These primitive finite-field

operations are highly specific to AES. Hardware implementation of ffm2 and ffd2 are

51

Chapter 2

static logic, which defines the instruction set architecture. However, the use of 15

instruction set is a problem because it requires an additional 4 bits of memory address

and a relatively large instruction decoder. An alternative solution to this problem is to

use Turing-Complete instruction set [196] to simplify the instruction decoder and also for

general arithmetic computation.

2.5. Low-Complexity Processor Architecture for RCE

2.5.1. Comparison of RISC and CISC

RISC processors use simple low-level instructions that can be executed within one clock

cycle while CISC processors uses single instructions that are able to execute several low-

level operations. CISC’s complex instructions require instruction decoding circuitry,

meaning more hardware is needed than RISC. In contrast, RISC processors require less

hardware because they have reduced instructions but at higher memory cost to replicate

complex instructions using simple instructions [197]. A side by side summarized

comparison of RISC and CISC can be found in Table 2.7.

Table 2.7: Comparison of RISC and CISC [198].

 CISC RISC

Platform

Emphasis

Emphasis on hardware Emphasis on software

Clocks Includes multi-clock Single-clock

Instructions Type Complex instructions Reduced instructions

Data Transport Memory-to-memory:

“LOAD” and “STORE”

incorporated in instructions

Register to register:

 “LOAD” and “STORE” are

independent instructions

Cycle rate and

Code size

High cycles per second, small

code sizes

Low cycles per second, large code

sizes

Both CISC and RISC are abstraction of two contrasting models for different applications.

For RCE purposes, compact processors are designed to compute data using adequate

52

Chapter 2

components. Adapting a CISC or RISC model for a crypto-processor has some trade-offs.

CISC is not a suitable model for RCE because of the instruction decoder and RISC is not

suitable for RCE due to larger code size. Both models are relatively complex machines

that serve general computing purposes.

2.5.2. One Instruction Set Computer (OISC), also known as the Ultimate

Reduced Instruction Set Computer (URISC)

A one instruction set computer (OISC), also known as the ultimate reduced instruction

set computer (URISC) in [196], is an abstract machine that uses only a single instruction.

Given infinite resources, an URISC is said to be capable of being a universal computer in

the same manner as traditional computers that have multiple instructions [54]. The

URISC is also consider Turing-Complete because of its ability to perform all

computations using a single instruction [55, 59].

Currently, there three known URISC categories [199]:

1) Transport Triggered Architecture Machines

2) Bit Manipulating Machines

3) Arithmetic based Turing-Complete Machines

Arithmetic based Turing-Complete Machines are universal and Turing-Complete [199].

They are considered most practical because they consist of a conditional jump operation.

Tsoutsos et al [60] stated that common Turing-Complete variants such as ‘add and

branch unless positive’ (ADDLEQ), ‘subtract and branch if negative’ (SUBLEQ) and ‘plus

one and branch if equal’ (P1EQ) have a common pattern of a simple mathematical

operation followed by a conditional jump. The SUBLEQ is the oldest and also the most

efficient and popular arithmetic operation [200].

The URISC has two models: ‘Subtract and Branch if Negative’ (SBN) and MOVE [54].

The comparison of the URISC SBN and URISC MOVE models can be found in Table 2.8.

http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/Abstract_machine
http://en.wikipedia.org/wiki/Universal_computer

53

Chapter 2

Chatterjee et al [59] has also concluded that the SBN model is more efficient in terms of

number of instructions and time required for the execution of a program [59].

Table 2.8: The feature comparison of OISC MOVE and SBN models.

 MOVE SBN

Orientation Data movement Data processing

Instruction Format 2-tuple 3-tuple

Example of Processor RISC CISC

The ‘Subtract and Branch if Negative’ (SBN) processor was first proposed by Van der

Poel. With this primitive SBN instruction set, a URISC can be built. An SBN instruction

allows URISC to move operands to and from memory locations, which is the basic

element of a computer. Arithmetic computations can be performed on data from one

memory location and the results stored in a second memory location. Similarly, to

execute URISC instructions, the Arithmetic Logic Unit (ALU) core subtracts the 1st

operand from the 2nd operand, storing the results in the 2nd operand’s memory location.

If the subtraction results a negative value, it will ‘jump’ to the target address, Otherwise,

it proceeds to execute the next instruction in the sequence. For the SBN model, the

URISC consists of an adder circuit as its sole ALU. Detailed operation of the URISC SBN

can be found in [54]. Figure 2.16 shows the schematic illustration extracted from [200] of

the URISC SBN architecture.

54

Chapter 2

ADDER

PC

Z N

R

MDR

MAR

PC out PC in

R in

Z in

N in

MDR out MDR in

MAR in

C in

MEMORY

READ

WRITE

COMP

Figure 2.16: The URISC SBN architecture with Adder (Image extracted from [200]).

In terms of real-world application, URISC was recommended as the material for teaching

computer architecture to students, giving them the basic understandings of hardware

and software co-design abstraction [54, 196]. Despite URISC’s sheer simplicity with no

implication of complex applications, the URISC has been used in ‘homomorphic

encryption’ systems for cloud computing, namely the Fully Homomorphic Ultimate RISC

(FURISC) [59]. The justification for security application is that cloud computing requires

direct computation on encrypted data and also the need to develop secured encrypted

processors in which both data and instructions are also encrypted. It is logical to assume

that with only a single instruction, complex processing overhead is high. This is further

validated by [201, 202]. The Homomorphically Encrypted One Instruction Computer

(HEROIC) [60] is also a similar processor with the FURISC, showing that URISC is

gaining popularity because a single instruction architecture is able to offer security for

the program and data within the system. Both of these designs are rooted on the fact

55

Chapter 2

that URISC lacks multiple instructions and opcodes, which is the biggest advantage in

maintaining the confidentiality of the instruction and algorithm [60]. In the area of

security, FURISC [59] and HEROIC [60] shows that URISC is feasible thus showing

potential.

2.5.3. Minimal Instruction Set Computer (MISC)

Minimal Instruction Set Computer (MISC), differs from URISC, in having multiple

instructions sets within an Instruction Set Architecture (ISA). A MISC is a computer

having a minimal amount of instruction sets, sufficient for its purpose. The concept of

such a computer is to have only the essential computing blocks to form a functional

computer, without any unnecessary parts or blocks. Hence the term “minimal” is used for

the basic behavior of such a processor.

Although URISC with a single instruction is Turing-Complete, the number of

instructions required for a meaningful operation is staggering, leading to a very high

overhead as mentioned in the section 2.5.2. A URISC can be configured to become a

MISC with additional opcodes and ALUs.

The work by Ting and Moore [203] states that reducing the size of the instruction set is

effective in reducing the complexity of the process thus improving its performance. Ting

and Moore understand that there are three important issues when designing a MISC for

a particular application:

1) What is the minimum set of instructions required for a processor to be practical

in solving specific problems?

2) What will be the performance of the said MISC?

3) What facilities within a processor are necessary to reduce the complexity and the

system costs of the said MISC?

56

Chapter 2

Understand these three issues will help in producing a minimalist computer. However,

compared to URISC, the MISC has added complexity. The additional ALUs and

instructions lead to additional hardware costs hence illustrating point 2) and 3). The

trade-off between complexity and hardware cost has to be made.

57

Chapter 2

2.6. The AES Cipher and the Non-linear S-Box (Sub-bytes)

In general, the S-Box (also known as Sub-bytes within AES transformations) is unique

because it is the only non-linear step in the AES encryption. The S-Box functions as

replacing or substituting an input with another byte. Traditionally, implementation

approach is preferred to storing the values of the S-Box into a ROM and uses it as a

Look-up Table. Earlier versions of the S-box circuit are in 8-by-8 Look-up tables and can

be found in these proposals: [204, 205]. Table 2.9 shows an illustration of the S-box Look-

up Table with 256 values.

Table 2.9: The lookup table of the 256 substitution values for S-box.
 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

From a crypto-processor’s point-of-view, the AddRoundKey, ShiftRow, and MixColumns

transformations are seen as data movement and logical XORs operations. Other than S-

Box, the other three transformations are considered modulo 2 bit-wise calculations,

which can be easily implemented. However, while implementing the AES, there are a

variety of approaches to satisfy certain design criteria. For high throughput applications,

Satoh et al [206] presented 10 Gbps AES design. On the other hand, [207] proposed low-

58

Chapter 2

power AES design with energy efficient S-box circuitry. Lastly, for area-constrained

hardware applications (such as the re-configurable RCE), [68, 189, 208] presented their

findings in small S-Box circuits. To design a smaller representation of the S-Box, Rijmen

et al [65, 209, 210] suggested using sub-field arithmetic in computing the inverse in the

Galois Field of 256 elements of the S-Box. This leads to the reduction of 8-bit calculations

to several 4-bits ones, which results to smaller circuitry. Therefore, minimizing the S-Box

circuitry leads low-area hardware implementations [69].

In [68], the proposed S-Box is derived from the multiplicative inverse over Galois Field

(28). To avoid attacks based on simple algebraic properties, the S-box is constructed by

combining the inverse function with an invertible affine transformation (a matching

inverse affine is included in the decryption). Satoh et al [68] further extended this idea,

using the tower-field approach of Paar’s [211] by suggesting that breaking up the 4-bit

calculations into 2-bit variable will result to even smaller circuit blocks. Being derived

from the multiplicative inverse over Galois Field (28), the S-Box projects good non-

linearity and may have high hardware complexities. This S-Box representation gives a

higher impact since the implementation is small enough to allow unrolling or parallel

designs, for higher throughput if necessary. In the next sections, various models and

implementations of small AES S-box are reviewed.

2.6.1. The Minimized S-box by Boyar et al

In practice, circuit designs are built using numerous heuristics which potential led to

exponential time complexity which can only be applied onto small-sized circuits. The

heuristic approach naturally works fine on circuit function that can be broken down into

sub-functions, i.e. matrix multiplication, which decomposes into smaller sub-matrix

multiplications. The initial work from Boyar et al [212] is to propose a new logic

minimization technique, which can be applied to any arbitrary combinational logic

problems and even circuits that has been optimized by standard methodologies. Boyar et

al described their techniques as a two-step process: non-linear gate reduction and linear

http://en.wikipedia.org/wiki/Multiplicative_inverse
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Multiplicative_inverse
http://en.wikipedia.org/wiki/Finite_field

59

Chapter 2

gate reduction. It is by far the smallest S-box combinational circuit that they have come

up with. In this section, the Boyar’s first approach in logic minimization is reviewed and

more details can be found in [212] and his improved work for an even smaller

bidirectional S-box circuit in [71].

Boyar et al explained the circuit produced for the inverse in GF (2m) suggested in [213],

has a tower fields architecture. Since there is multiple representation of Galois Fields,

there would be multiple versions of efficient circuits. Boyar’s approach is to focus on the

technique for GF (24) inversion computation and then further perform linear-circuit’s

reduction with the inversion circuit placed in a suitable position within the S-box. The

first step consists identifying the non-linear components and reducing the AND gates.

Boyar et al choses to focus on reducing only the GF (24) circuit since it would be

significantly beneficial. At the end, an inversion in GF (24) with only five AND gates

poses as a highly plausible improvement than Paar’s [211].

The second part would be focusing on minimizing linear components with their newly

proposed heuristics. Hence, Boyar et al presented two matrices U and B for linear-

minimization. The AES's S-box is S(x) = B * F(U * x) + [11000110]T, where * is matrix

multiplication and x is the 8-bit S-box input. Note that the initial linear expansion and

the linear contraction (matrix U and B) were defined to contain as much of the circuit as

possible while still maintaining linearity. Thus, Boyar et al explained that the portion of

the circuit defined by U, overlaps with the GF (28) inversion. So, the true aim in the

second part is to minimize the circuits for computing U and B. The matrix U and B is

shown in Equation [6.1] and Equation [6.2].

60

Chapter 2

 𝑈 =

[

0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 0 0 1 1 0 1 1
0 1 0 0 1 1 1 1
1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0
1 1 1 1 1 0 1 0
0 1 0 0 1 1 1 0
1 0 0 1 0 1 1 0
1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0
1 0 0 1 1 0 1 0
0 0 1 0 1 1 1 0
1 0 1 1 0 1 0 0
1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 0
1 1 0 1 1 1 1 0
1 0 1 0 1 1 0 0]

 [6.1]

 𝐵 =

[

0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0
1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0
0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0
1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0]

 [6.2]

The Boyar’s technique has yielded a circuit for the AES S-box composed of three primary

parts: the top-linear transformation, the middle non-linear block and the bottom-linear

transformation [212]. The top-linear transformation is a result of the minimized matrix

U, a total of 23 XOR gates used and at depth 7, consisting 8 inputs and 22 outputs. The

middle non-linear block is block with 22 inputs and 18 outputs, having a total of 30 XOR

and 32 AND gates. And lastly the bottom-linear block converts the 18 inputs from the

middle non-linear block to become 8-bits output, having 26 XOR and 4 XNOR gates. All

61

Chapter 2

these 3 blocks together forms the final circuit of the S-box. Boyar et al [212] presented

the forward version of the S-box, with a total gate count of 115 gates. The Figure 2.17

illustrates of the proposed S-box by Boyar et al [212].

δ (matrix U) δ-1
(matrix B) GF-1

The Original Proposed SBOX (forward)

 (115 gates)

Middle non-linear block
Bottom Linear

BlockTop Linear Block

23 gates 62 gates 30 gates

Figure 2.17: The illustration of Boyar’s minimized S-box.

To further improve the work, the Boyar et al have presented their extensively improved

work in [71]. The Boyar’s work has proposed a more complete S-box example, by

incorporating the reversed version of the S-box. This time, Boyar attempts to apply a

greedy heuristic approach for linear-minimization and several depth reduction

techniques.

The largest circuit component is the top and bottom linear-circuits. As explained

previously, the top and linear components contain more than just the linear operations in

the definition of the complete AES S-box. The reason is that the matrices include some of

the field inversion operations. This shows that there would be some amount of AND

gates within the U and B matrices. In addition, Boyar et al stated that circuits with

fewer AND gates will have larger linear components. This part of the work is optimized

on top of the previously minimized circuit (115 gates).

Boyar et al ‘s technique is to modify a greedy heuristic approach by Paar’s [211]. Paar’s

technique keeps a list of XOR computed variable. Then the steps are repeated to search

for the XOR pair of the input which results to the most occurrences in the output. This

result is added as a new set of variable to the next stage and repeated until all the most

occurred pairs are found. Hence, the Low_Depth_Greedy algorithm only allows the

62

Chapter 2

Paar’s greediness as long as the circuit’s depth is not increased unnecessarily. Boyar et al

performed the three types of depth-reduction optimizations: 1) applying a greedy

heuristics to re-synthesize linear components into lower-depth construction of circuits, 2)

using techniques from automatic theorem proving to re-synthesize non-linear

components and 3) doing simple depth-reduction along critical paths.

The optimization results have yielded a forward S-box with 128 gates and an inverse S-

box with 127 gates. This is considered a significant improvement since the total gate

count for a complete bi-directional S-box is amounted to 192 gates, which is less than the

total gate count of the two circuits combined. From our understandings, the only tradeoff

is; to combine both circuits, a multiplexer would be required to switch between

encryption and decryption since there is a middle-shared component. Figure 2.18 shows

the illustration of the bi-directional S-box in block diagram form [71].

δ δ-1

GF-1

The Latest Proposed SBOX (bi-direction)

 (192 gates)

Middle non-

linear block

(shared)

Bottom Linear

Block

Top Linear

Block

δ

MUX

MUX

27 gates

27 gates

38 gates

37 gates

63 gates

forward forward

inverse inverseδ-1

Figure 2.18: The illustration of Boyar’s recent minimized S-box (both forward and

inverse S-box).

2.6.2. The Optimized S-Box by Satoh and the Model Implementation by

Edwin

The Rijndael architecture presented by Satoh et al [68] has been a benchmark for

compact AES design for quite a period. Satoh et al proposed further optimization of the

63

Chapter 2

S-box by introducing a new composite field. Satoh et al adopted the three stage

methodology: extension field – composite field – extension field. Satoh et al suggested

that the composite field can be constructed without applying a single degree-of-8

extension to GF (2), but by applying multiple extensions of smaller degrees. Satoh et al

built the composite field by repeating the degree-of-2 extensions under the polynomial

basis with the irreducible polynomials shown in Equation [6.3] and hence, proposed a

compact architecture with the introduction of a new composite field of GF (((22)2)2) and

has shown improvement over proposals using the GF ((24)2) field approach.

 {

GF(22) ∶ x2 + x + 1

GF((22)2) ∶ x2 + x + ∅

GF(((22)2)2) ∶ x2 + x + λ

 [6.3]

Figure 2.19 shows the overview of the composite field S-box. Satoh et al stated that the

isomorphism functions are located at both ends of the S-box function (both encryption

and decryption). Satoh et al [68] have shown the 8-by-8 matrix for the isomorphic

mapping into the composite field in Figure 2.20 and the inverse isomorphic mapping in

Figure 2.21.

GF (2
8
)

Element

Input

X
2

X
-1δ

X λ
Isomorphic

Mapping to

Composite

Fields

Inverse

Isomorphic

Mapping

to GF (2
8
)

4

δ-1

4

8

4

4

8

AT

Affine

Transformation

8
Output

AT
-1

Inverse Affine

Transformation

8

8

8

8

8

8 M

U

X

ENC / DEC

(Switch)

M

U

X

ENC / DEC

(Switch)

Multiplicative Inverse in GF(2
8
)

Figure 2.19: The illustration of the composite field S-box transformation.

64

Chapter 2

GF (2
8
)

Element

Input

δ

Isomorphic

Mapping to

Composite

Fields

8























































































































016

146

12347

1267

12357

2357

123467

57

0

1

2

3

4

5

6

7

11000010

01001010

01111001

01100011

01110101

00110101

01111011

00000101

qqq

qqq

qqqqq

qqqq

qqqqq

qqqq

qqqqqq

qq

q

q

q

q

q

q

q

q

q

Figure 2.20: Illustration of isomorphic mapping.























































































































02456

45

12347

12345

12456

156

26

1567

0

1

2

3

4

5

6

7

1

10101110

00001100

01111001

01111100

01101110

01000110

00100010

01000111

qqqqq

qq

qqqqq

qqqqq

qqqqq

qqq

qq

qqqq

q

q

q

q

q

q

q

q

qInverse

Isomorphic

Mapping

to GF (2
8
)

δ
-18

Figure 2.21: Illustration of inverse isomorphic mapping.

Edwin [92] has presented the complete break down the S-box and the multiplicative

inverse GF (28). The individual blocks within the composite field S-box are shown in

Figure 2.22. A circuit excluding the isomorphic transformations and only the circuit

layout of the multiplicative inverse in the GF (28) is shown in Figure 2.23. Figure 2.23

shows five GF (24) multiplier used and Figure 2.22 shows that each of the GF (24)

multiplier blocks uses three GF (2) multipliers. The total gate count for the bi-directional

circuit (excluding the MUX and including the inverse isomorphism circuit) is a total of

261 gates, with inverse isomorphism 23 gates (Figure 2.24).

65

Chapter 2

4

4

4

X φ

2

2 4

4

2

2

2

2

4

Multiplication in

GF 2
4

2

2

2

2

2
2

Multiplication in

GF 2
2

Multiplication

with Constant,

λ

X λ
4 4

X
2

4 4
Squarer

in GF

(2
4
)

X φ
Multiplication

with constant,

φ

2 2

= =

= = =

Figure 2.22: Individual blocks within the composite field S-box.

8 bit input (1 byte)

from Isomorphic

Mapping to

Composite Fields

4

2

2

2

2

4
2

2

2 42

2

2

4

2

2

2

2

4
2

2

2 42

2

2

4

2

2

2

2

4
2

2

2 42

2

2

4

2

2

2

2

4
2

2

2 42

2

2

4 4

4

4

8

4

2

2

2

2

4
2

2

2 42

2

2

4 4 44

4

8

8 bit output

(1 byte) to

Inverse

Isomorphic

Mapping to

GF (2
8
)

GF (2
8
)

Element

Input

Multiplicative

Inverse in

GF(2
8
)

δ
Isomorphic

Mapping to

Composite Fields

Inverse

Isomorphic

Mapping to

GF (2
8
)

δ
-1

AT

Affine

Transformation

8

Output

AT
-1

Inverse Affine

Transformation

88

8

8 8

8
M U X

ENC / DEC

MUX

ENC / DEC

Figure 2.23: The schematic circuit for the Multiplicative Inverse of GF (28) of the Sub-

Bytes.

66

Chapter 2

8
 b

it in
p

u
t

(1
 b

y
te

)

4

2222

4
2

2 2
4

22

2

4

2222

4
2

2 2
4

22

2

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

4

2222

4
2

2 2
4

22

2

4

2222

4
2

2 2
4

22

2

4
4

4 4

8

4

2222

4
2

2 2
4

22

2

4
4

4
44

8

8

b
0

b
1

b
2

b
3

b
4

b
5

b
6

b
7

01

8
 b

it o
u

tp
u

t

(1
 b

y
te

)

c
c

x
λ

δ

δ
-1

A
T

X
-1

X

X

X

X
2

Figure 2.24: The complete schematic circuit for the forward SubBytes with a total gate

count of 238.

67

Chapter 2

2.6.3. The Very Compact S-Box by D.Canright

D. Canright [69] proposed a method to compute the S-box function by comparing and

investigating the normal basis and the polynomial basis inverter. Table 2.10 shows the

known S-box’s implementation comparison table.

Table 2.10: The comparison of S-boxes (table extracted from [69]).

Basis Type XOR NAND NOT MUX Total Gates

Canright [69]

Merged 107 36 2 16 253

S-box 91 36 0 0 195

Inv S-box 91 36 0 0 195

Mentens [214]

Merged 118 36 0 16 271

S-box 96 36 0 0 204

Inv S-box 97 36 0 0 206

Satoh [68]

Merged 119 36 3 16 275

S-box 100 36 0 0 211

Inv S-box 99 36 0 0 209

Worst

Merged 131 36 0 16 293

S-box 107 36 0 0 223

Inv S-box 106 36 0 0 222

2.6.4. Other Small S-Boxes

Xinmiao et al [93] used the composite field arithmetic approach for small S-boxes.

Xinmiao et al also applied the sub-pipelining architecture on the top-level AES design.

This dramatically improves the throughput with a trade-off of larger design size. In

Rouvroy’s design [191] SubBytes was combined with MixColumns to form a 32-bit “T-box”

LUT (18 kbit). This has produced superior throughput however still occupied a relatively

68

Chapter 2

large area when the size of the LUT was taken into account. For many applications,

throughputs in hundreds of megabits per second would be considered excessive and

therefore, not suitable for resource constrained environment. And another S-box worth

mentioning, is the work proposed by Renfei et al [215]. Renfei et al presented various

critical path delays within the composite field S-box and attempts to minimize the design.

Renfei et al concluded their findings with improved critical path at the expense of a

larger design.

69

Chapter 3

CHAPTER 3

LOW-COMPLEXITY, LOW-AREA FPGA ENCRYPTION

ARCHITECTURE USING A LIGHTWEIGHT CIPHER, THE

SKIPJACK CIPHER

__

3.1. The Proposed Two Instruction Set Computer (TISC) for

Skipjack Cipher

3.1.1. The Design of the Proposed TISC Architecture

The new proposed architecture aims to create a low-complexity Skipjack cipher processor

using the URISC architecture. The proposed TISC architecture modifies the original

URISC for cryptographic applications. The modifications are: an additional operation

code (opcode) decoder, an XOR block, and a new data path. The original URISC [196] has

a single Adder ALU and processes a single fixed-length instruction. This feature does not

require an opcode field. To define new instruction sets, an opcode decoder circuitry has to

be designed for the architecture.

Skipjack cipher involves the use of bit-wise XOR [63]. Processors in extreme RCEs are

able to compute simple operations such as the XOR [216]. The information given above

and the suitability of Skipjack for low-resource environment [19], the existence of a

dedicated XOR block within the processor is justified. Additionally, with the XOR

operation, the architecture is able to process data movement operations (MOV) with one

less instruction comparing to the URISC’s primitive SBN instruction. The URISC’s SBN

instruction is retained for the conditional instruction branching while the XOR is used

for data memory movement and Skipjack operations. Figure 3.1 depicts the proposed

70

Chapter 3

TISC architecture with the dashed brackets depicting the components added to the

modified URISC.

PC

TISC ALU

PC_WRITE

0

MEMORY
MEM_READ

MEM_WRITE

INV

R R_WRITE

N

Z_WRITE

MDR MAR MAR_WRITEMDR_WRITE

MUX0 1 MAR_SEL

MUX0 1PC_OUT_SEL

COMP_SEL

Adder XOR

Z

CIN

N_WRITE[9]
OP

MUX0 1

OP_SEL

0

OP_WRITE

0 1
MUX

MUX0 1

Figure 3.1: The illustration of the TISC data-path architecture3.

3.1.2. Developing the Modified SBN URISC for the Proposed TISC

Architecture

A processor has to have basic operations in order to perform computing tasks. Basic

operations such as data movement, copying, deletion, instruction jumping and No

Operation (NOP) are required. Gilreath and Laplante [54], stated and proved that the

3 Published in: Kong Jia Hao, Ang Li-Minn, Seng Kah Phooi, Ong Fong Tien, “Low-complexity Two

Instruction Set Computer architecture for sensor network using Skipjack encryption”,

Proceedings of the 25th of the International Conference on Information Networking (ICOIN

2011), pp. 472-477, ISBN: 978-1-61284-661-3, 2011, Figure 3.

71

Chapter 3

SBN instruction set that can implement LOAD, STORE, INC and GOTO, is therefore

functional and equivalent to a realization of a Turing-Complete machine.

 The instruction format and pseudo-code for SBN is shown in Figure 3.2. The Operand A

is subtracted from the Operand B. If the result is a negative value, the execution

proceeds to the Jump-Address. If the result of the subtraction is a non-negative, the next

instruction is executed.

SBN (Operand A), (Operand B), (Jump-Address Y)

B = B + (- A)

If B < 0 GOTO (Program Counter + Y)

Else GOTO (Program Counter + 1)

Figure 3.2: The SBN instruction format and pseudo-code.

To achieve Turing-Complete, the SBN is used to construct more complex macro-

instructions by either “instruction parameterization” or “instruction sequencing”.

Instruction parameterization is a method of choosing the parameters of the instruction so

that the instruction behaves as another instruction. Two instructions that can be created

by the parameterization method are shown in Figure 3.3.

72

Chapter 3

B = B – 0; (No Operation : NOP)

NOP: SBN 0, B, Y;

0 = B – B; (Memory Wipe : CLR)

CLR: SBN B, B, Y;

;

Figure 3.3: Two examples of instruction parameterization creating the NOP and CLR

instruction.

Mathematically, to make a variable retain its value, a subtraction or an addition of zero

would suffice. Figure 3.3 shows by setting the Operand A to a value of zero, the SBN of

Operand A and B yields a value of B, which is equivalent to a NOP. Similarly, to clear a

memory, the SBN of Operand B with itself creates a CLR operation. Jump-Address Y can

be changed to other addresses if a branch is desired or a specific part of the program has

to be reused. To achieve this, an instruction can be parameterized to do ‘conditional

branching’ branching towards the targeted program counter. In programming terms, a

‘conditional branching’ or a “JUMP”, is akin to a finite loop within a program. A “JUMP”

is essentially a “GOTO” in this context. An SBN instruction takes in two parameters and

subtracts them both. The resultant of this computation has to yield a negative number

for a fixed number of times, in order to achieve a fixed number of loops. For example, if

the Operand B has a value of ‘-7’, then Operand B has to be subtracted with ‘-1’ for 7

times to reach a non-negative value, which is a zero. If the resultant is no longer a

negative number, the program automatically exits the loop. If the resultant remains a

negative number, the ‘conditional jump” will be triggered and the targeted program

counter is being executed again. Figure 3.4 shows two examples of parameterizing the

Operand A to a value of L3 or L8 to create a program finite loop.

73

Chapter 3

Loop = L3 – (-1); (GOTO to Y, 3 times : LOOP3)

LOOP3: SBN (-1), L3, Y;

Loop = L8 – (-1); (GOTO to Y, 8 times : LOOP8)

LOOP8: SBN (-1), L8, Y;

Figure 3.4: Two examples of instruction parameterization creating the conditional

branching instruction, with finite loops of 3 and 8.

On the other hand, instruction sequencing is a method of choosing an instruction

sequence to create or emulate the behaviour of a macro-instruction. As an example, to

create two variations of the CLR instruction, the SBNs shown in Figure 3.5 can be

sequenced as such:

CLR X:

SBN 0x00, X, Y;

SBN X, X, Y;

SBN 0x00, X, Y;

CLR Y:

SBN 0x00, Y, Z;

SBN 0x00, Y, Z;

SBN Y, Y, Z;

Figure 3.5: The illustration of two variations of CLR instruction via instruction

sequencing.

With the NOP, CLR, and LOOP operation, in addition to the LOAD, STORE, INC and

GOTO operation, this shows that URISC is truly capable of the essential computing

operations. Despite being Turing-Complete, the memory overhead for URISC macro-

instructions is very high and requires a large number of SBN instructions [201, 202]. In

74

Chapter 3

the area of cryptography, the XOR operation is very common for key and cipher text

intermediate value addition because it allows easy encryption and decryption on a

plaintext [217]. On the other hand, extreme RCEs such as the RFID has the ability to

compute simple bit-wise operations such as OR and XOR [216]. Low-complexity means

less instructions sets. In this case however, Skipjack cipher requires XOR operations,

which means that a processor has to support the XOR operation. XOR operation can be

synthesized from SBN according to Gilreath et al [54] but it requires two SBN

instructions to synthesize an XOR. This means that twice as much memory is required

without an XOR ALU for computing Skipjack cipher. An additional XOR ALU has to be

added for crypto-purposes and therefore, a set of op-codes and op-code decoder are

required. With ADD and XOR operations, an Op-code decoder is required and the new

processor is no longer a URISC, but a Two Instruction Set Computer (TISC).

According to Laplante [53], a simple Half Adder digital logic circuit can be used to

implement the SBN URISC and any arithmetic or data movement instruction processors.

However, problem arises when a conditional jump occurs after the Negative flag is

triggered. During this event, it is either the incremented PC value or the new JUMP

address from the memory has to be written into the PC register. Mavaddat’s URISC [196]

only has a RESET function but not a Specific Address JUMP. A slight modification of the

original URISC is able to allow Specific Address JUMP operation. Without a specific

address JUMP, macro-instructions cannot be reused, which ultimately costs more

memory for programming. While keeping the processor complexity to a minimal (two

instruction sets), memory overhead required for Skipjack can be reduced. Hence

complying to the criteria of a compact design like a MISC processor [203].

The new modified URISC (Figure 3.6) consists of five registers, three multiplexers (MUX),

an Adder and a single memory. The PC register stores the program counter (PC), which

indicates the next location of program code in the memory that will be read. The R

register will store the first read data ‘A’ from the memory. Memory Address Register

(MAR) will provide the address for reading or writing data to the memory. The Memory

75

Chapter 3

Data Register (MDR) will store the result produced from the arithmetic subtraction (‘B’ -

‘A’). The result will then be written back to the memory, replacing the value of B.

Whereas Z and N registers, both holds the output of the zero and negative flags from the

Adder. The size of architecture is determined by the size of the words used.

ADDER

PC

Z N

R

MDR

MAR

PC out PC in

R in

Z in

N
in

MDR out MDR in

MAR in

C in

MEMORY

READ

WRITE

COM
P

A) B)
PC

MODIFIED URISC

ADDER

PC_WRITE

0

MEMORY
MEM_READ

MEM_WRITE

INV

R R_WRITE

N

Z_WRITE

MDR MAR MAR_WRITEMDR_WRITE

MUX0 1 MAR_SEL

MUX0 1ALU_B
ALU_A

Z

CIN

N_WRITE

MUX00 01 10 11

Figure 3.6: The illustration of the modification from A) URISC to B) Modified URISC, to

suit RCE applications.

Besides having both Adder and XOR instruction sets, the TISC architecture has the

following URISC modification:

1) MDR is no longer used for storing memory addresses. MAR is used instead. This

allows self-modifying codes for better macro-instruction re-usage.

2) The data or memory addresses are directly read instead of written into MDR.

MDR is used only when a new data is produced.

3) Three multiplexers (MUXs) are added at data path intersection points of multiple

inputs and outputs for micro-operation flexibility and variable jump address

execution.

76

Chapter 3

4) Op-code decoder and an output multiplexer are included to enable the

architecture to produce the appropriate output with respect to the op-codes.

3.1.3. Developing the New TISC Skipjack Instruction Set and Opcodes

To develop the TISC for Skipjack, the two instructions sets used are the SBN and XOR.

Figure 3.7 shows the two instruction sets in pseudo-code form.

SBN

Mem_B = Mem_B + (- Mem_A)

If Mem_B < 0 Goto (PC + C)

Else Goto (PC + 1)

XOR

Mem_B = Mem_B XOR Mem_A

Figure 3.7: Pseudo-codes for the two TISC Skipjack instruction sets4.

The instruction set format shown in Table 3.1 shows that an Op-code occupies one bit

space as the MSB (Most Significant Bit) of the memory address. The SBN is used for

branching and XOR is used for Skipjack processes. There are no unused instruction sets

or ALUs. The MUX in Figure 3.8 is used to select which output of the ALU should be

taken.

4 Kong Jia Hao, “Low-complexity Two Instruction Set Computer architecture for sensor network

using Skipjack encryption”, Figure 2.

77

Chapter 3

Table 3.1: The TISC Skipjack instruction sets.

Operation
Function Code / Op-code

(1-bit MSB)
Instruction Set Format

SBN 0 (0 @ address A), address B, Target

XOR 1 (1 @ address A), address B, Target

N

Z_WRITE Z

N_WRITE
XOR

[8:0] [8:0]

0 @ [8:0]

Mem_B Mem_A

XOR_Out

Adder

[9:0] [9:0]

[9:0]

Mem_B Mem_A

Adder_Out

OP

Code ALU Output Mux

ALU_Out

TISC Skipjack ALU

Figure 3.8: TISC Skipjack ALU components5.

The Adder block performs a 10-bit addition, taking in two 8-bit data item and

concatenating two zeros to become the MSBs. By inverting the second data, a subtraction

can be performed by the addition of both data and a carry in (2’s complement). In order to

branch to a certain memory location, the target address may hold a value that provides a

summation value to the Program Counter (PC) The value of PC is able to reach to an

address that is located anywhere within the memory block which can go from 0 up to

1023. As for XOR block, the circuit performs a 9-bit two input XOR operation on the two

data items. Due to the addressing value of 9-bits (10 – 1 bit op-code), the effective

addressable memory location is a total of 512 bytes. Figure 3.9 shows the schematic of

the 10-bit Adder and Figure 3.10 show the schematic of the 10-bit XOR.

5 Kong Jia Hao, “Low-complexity Two Instruction Set Computer architecture for sensor network

using Skipjack encryption”, Figure 5.

78

Chapter 3

Figure 3.9: TISC Skipjack ALU Adder (10 bit).

Figure 3.10: TISC Skipjack ALU XOR (10 bit).

3.1.4. Skipjack Program Structure and Memory Mappings

The Skipjack’s F-box is implemented in the Look-up Table form, which is 256 bytes in

total. There is no known combinational logic representation for the Skipjack F-box. To

determine the size of the architecture (i.e.: size of the data-path registers), the Skipjack

program was written beforehand to find the suitable memory width size. The F-box Look-

up Table occupies 256 bytes and the data section is reserved to 64 bytes. The program

79

Chapter 3

codes written occupied a total of 707 bytes. Therefore, the memory size for TISC Skipjack

architecture is a 1024 x 10-bit single memory. The program and data memory break

down can be seen in Figure 3.11.

Figure 3.11: The illustration of the TISC Skipjack’s code and memory mapping

organization6.

Figure 3.12 shows a section of the written program codes for the stepping rule A and B. A

total of 129 instructions were used in the complete 32 rounds of Skipjack encryption

(including the SBN JUMP instructions).

6 Kong Jia Hao, “Low-complexity Two Instruction Set Computer architecture for sensor network

using Skipjack encryption”, Figure 8.

Data Section

Program Section

256

319

Plain Text (272 – 287)

Crypto Variable (256 – 271)

Cipher temp, G temp and Fbox

temp (288 – 303)

Counter value and loops (304 –

319)

Go to Rule A1 (512 – 514)

Rule A (524 – 559)

G Permutation (320 – 511)

Go to Rule A1 (515 – 517)

Go to Rule A1 (518 – 520)

Go to Rule A1 (521 – 523)

Rule B (560 – 592)

Reset (593 – 703)

706

320

Loop (704 – 706)

F Box LUT Values

0

255

NOP

707

1023

80

Chapter 3

//Rule A

Address Instruction

524 XOR 0x312, 0x124, 0x000 // mov w2.1 to ctemp 3.1

527 XOR 0x313, 0x125, 0x000 // mov w2.2 to ctemp 3.2

530 XOR 0x314, 0x126, 0x000 // mov w3.1 to ctemp 4.1

533 XOR 0x315, 0x127, 0x000 // mov w3.2 to ctemp 4.2

536 XOR 0x329, 0x122, 0x000 // mov g1 to ctemp 2.1

539 XOR 0x32A, 0x123, 0x000 // mov g2 to ctemp 2.2

542 XOR 0x316, 0x129, 0x000 // xor w4.1 to g1

545 XOR 0x317, 0x12A, 0x000 // xor w4.2 to g2

548 XOR 0x33E, 0x12A, 0x000 // xor master round counter to g2

551 XOR 0x329, 0x120, 0x000 // mov g1 to ctemp 1.1

554 XOR 0x32A, 0x121, 0x000 // mov g2 to ctemp 1.2

557 SBN 0x131, 0x136, 0x021 // goto reset

//Rule B

Address Instruction

560 XOR 0x316, 0x120, 0x000 // mov w4.1 to ctemp 1.1

563 XOR 0x317, 0x121, 0x000 // mov w4.2 to ctemp 1.2

566 XOR 0x314, 0x126, 0x000 // mov w3.1 to ctemp 4.1

569 XOR 0x315, 0x127, 0x000 // mov w3.2 to ctemp 4.2

572 XOR 0x329, 0x122, 0x000 // mov g1 to ctemp 2.1

575 XOR 0x32A, 0x123, 0x000 // mov g2 to ctemp 2.2

578 XOR 0x310, 0x112, 0x000 // xor w1.1 to w2.1

581 XOR 0x311, 0x113, 0x000 // xor w1.2 to w2.2

584 XOR 0x33E, 0x113, 0x000 // xor master round counter to w2.2

587 XOR 0x312, 0x124, 0x000 // mov w2.1 to ctemp 3.1

590 XOR 0x313, 0x125, 0x000 // mov w2.1 to ctemp 3.2

Figure 3.12: Example instructions of Rule A and B within the Skipjack Program7.

By using SBN JUMP instructions, macro-instruction program codes can be reused and

reiterated. By reusing codes, the program size reduced instead of duplicating the same

codes that performs the same operations. Figure 3.13 shows the program flow of the

TISC Skipjack. In order to execute the complete 32 rounds Skipjack encryption program,

the program flow has to be suited to the location of the instructions in the memory due to

the continuous increment of the PC.

7 Kong Jia Hao, “Low-complexity Two Instruction Set Computer architecture for sensor network

using Skipjack encryption”, Figure 6.

81

Chapter 3

Rule A

Rule B

Reset

Loop = 32?

If Loop is

Negative, jump

to End.

Else, G

Permutation.

G Permutation

Go to Rule A1 (8)

END

Program Start

Go to Rule B1 (8)

Go to Rule A2 (8)

Go to Rule B2 (8)

Check Loop (loop

increment)

yes

no

Figure 3.13: Skipjack program flow8.

3.1.5. The Finite State Machine (FSM)

An FSM with control signals is required to control the registers, multiplexers, and

memory within the data-path during each clock cycles. Figure 3.14 shows the Boolean

expressions that generates the required control signals. A total of 9 clock cycles are

required to execute one instruction within the program. The control signals are produced

by a combinational logic circuit. The combinational logic circuit is driven by a counter

that will count from 0 to 8.

During each clock cycles, the control signals for a particular control inputs are different.

During clock cycle 0, the program counter (PC) is set to a fixed address initially and

8 Kong Jia Hao, “Low-complexity Two Instruction Set Computer architecture for sensor network

using Skipjack encryption”, Figure 7.

82

Chapter 3

loaded into the memory address register (MAR). The zero register (Z) will be set by the

adder’s output to determine whether the PC has restarted to 0x00. Using this initial PC

value, a set of memory value is read and written to the MAR. Now, the current MAR

value holds the memory location of the first operand (A). Next, the PC value is then

increased by 1 in order to access the address of the second operand (B). At clock cycle 2,

the value of A is then read and then store to R register temporary.

During clock cycle 3, the current PC+1 value is loaded into MAR. During clock cycle 4,

the memory location of the second operand B is then read and store back to MAR again.

The PC value is also increased by 1 during the same clock cycle. At the clock cycle 6, the

value of B, which will be used in arithmetic operation, is read. The adder perform the

arithmetic operation (B-A). The N register is used to determine whether the result or the

arithmetic calculation is negative via a negative flag to. During the same clock cycle, the

PC value is again increased by 1 (which is now PC+2) which will locate the jump

program memory address for the next clock cycle.

After the TISC arithmetic operations are performed, clock cycle 7 will load the jump

address from memory. The jump address will then be added into the PC value during the

same clock cycle. The jump address value will only be added to the PC value, provided

that the arithmetic (B-A) produced negative result (subtract and branch if negative). The

last clock cycle 8 will have the PC value increased by 1 again and thus, a single TISC

instruction (regardless of which instructions) completed.

Equations (1) to (14) shown in Figure 3.15 are the Boolean expressions for each control

signals generated via a 4-bit counter. As for the PC_WRITE control signal, the N

register’s value affects to whether the architecture decides to branch or not. During the

7th clock cycle, PC_WRITE will be 1 if the arithmetic summation of the adder, (B-A),

produced negative result. This enables the jump address for that instruction to be added

into the PC register and thus, resulting to a branch. If the N register is 0, there would

not be any branching off to another program location. The PC register would continue to

increase by 1. Then, the following instruction in the written program code will be

83

Chapter 3

executed normally. The summary of the data movement with respect to each clock cycles

is shown in Table 3.2. Data_A and Data_B shown are the first operand (A) and second

operand (B) respectively. The OP_reg mentioned is referring to the OP register in Figure

3.1. The TISC is derived from the proposed modified URISC and therefore Figure 3.1 and

Figure 3.6 B is the TISC and modified URISC respectively. Figure 3.14 also shows that

there are some FSM signals are only applicable to TISC due to the two instruction set

architecture.

0123

0123

0123

0123013023123

0123

013023023

0123

0123

0123

0123012301230123

013123

0123013123

0123

0123

0301223

0301223

CCCC = Op_SEL (14)

CCCC = Op_Write (13)

CCCC = Mem_Write (12)

CCCC CCC CCC CCC = Mem_Read (11)

CCCC = MDR_Write (10)

CCC CCC CCC = MAR_Write (9)

CCCC = N_Write (8)

CCCC = Z_Write(7)

CCCC = R_Write (6)

CCCC CCCC CCCC NCCCC = PC_Write (5)

CCC CCC = MAR_SEL (4)

CCCC CCC CCC = CIN (3)

CCCC = COMP_SEL (2b)

CCCC = ALU_A0 (2a)

CCCCCCC = ALU_A1 (2a)

CCCCCCC = ALU_B (1)













 (Also known as PC_OUT_SEL in

TISC)

(2b is used only in TISC)

(2a is used only in the primitive

modified URISC model)

Figure 3.14: The Boolean expression of the FSM controller used in TISC.

84

Chapter 3

C3 C2 C1 C0

Counter

ALU_A

ALU_B1

ALU_B0

CIN

MAR_SEL

Clk

PC_WRITE

NClk

R_WRITE

Z_WRITE

N_WRITE

MAR_WRITE

MDR_WRITE

MEM_WRITE

MEM_READ

Figure 3.15: The FSM combinational logic circuit.

85

Chapter 3

Table 3.2: The summary of the data movement with respect to each clock cycles of the

TISC architecture.

Clock

Cycle

Data_A Data_B Additional Remarks FSM Signals

0 Address of

Data_A is

loaded into

MAR.

- (PC) to MAR. Z_WRITE,

MAR_WRITE

1 Data_A is

loaded to

R_reg

- Opcode (if available) from the

instruction to OP code

register.

PC_OUT_SEL,

MAR_WRITE,

MEM_READ,

OP_WRITE,

MAR_SEL

2 - Address of

Data_B is

loaded into

MAR.

(PC + 1) to MAR R_WRITE,

C_IN,

PC_OUT_SEL,

MEM_READ

3 - Data_B is

loaded out

- C_IN,

PC_WRITE,

MAR_WRITE

4 Data_A is

read from

R_reg

Data_B is

read from

memory

directly

The output of the arithmetic

calculation for both Data_A

and Data_B is selected via

MUX

PC_OUT_SEL,

MAR_WRITE,

MEM_READ,

MAR_SEL

5 - - The computed data is stored

in MDR

C_IN,

N_WRITE,

PC_OUT_SEL,

MDR_WRITE,

MEM_READ

6 - - PC + 2 to MAR C_IN,

PC_WRITE,

MAR_WRITE,

MEM_WRITE

7 - - Branch code loaded. If -ve

branch occurs, PC + 2 +

'branch_address' is the new

PC value.

PC_OUT_SEL,

PC_WRITE,

MEM_READ

8 - - PC + 3 (instruction cycles

reset)

C_IN,

PC_WRITE

3.1.6. The Memory Readdressing Modes (Programmable Addresses and

Self-Modifying Codes)

In URISC programming, there is a unique way of coding that allows the code itself to

‘self-modify’. This is a very unique feature in instruction set programming and is used

very frequently in the proposed architecture and therefore, the intricate details of the

applied self-modifying code techniques have to be explained. Self-modifying code is code

86

Chapter 3

that alters its own instruction in the process of execution. This method is usually used to

improve the codes’ performance or to simply reduce repetitively similar code and helps

reducing memory usage. Reducing memory usage is crucial towards designing a

minimalistic TISC. This term is usually applied to code where the self-modification is

intentional, not in situations where the code accidentally modifies itself due to

programming error.

In URISC programming, if the architecture is in 8-bits, then the self-modifying addresses

are a total of 256 addresses, provided that there is no op-code to be filtered via the MAR.

Presumably is an op-code is forced upon the URISC. This would make the 8-bit

architecture to be a 7-bit architecture because 1 MSB would have to be occupied for op-

code. On top of that, an op-code decoder would have to present. This would the effective

word width to 7-bit. A 7-bit architecture will provide 2 ^ 7 addressing spaces. For

example, 27 = 128 addresses. This would mean that there will be only 128 memory

addresses available for programming. Note that each SBN instructions consist of 3 words,

meaning 3 memory locations will be occupied for a single SBN instruction. To identify

the programmable memory section, the 1-bit op-code has to be accounted for. So, the

programmable address for an 8-bit architecture and a 1-bit op-code is 7-bits address,

meaning there are 128 addresses that are capable of ‘self-modifying’. The addressable

memories and the self-modifying code are mentioned here because they play an

important role in making URISC programming capable of complex operations which is

used in this work presented in the latter chapters.

Figure 3.16 illustrates the visual explanation of the self-modifying addresses. The

question may arise that, why a ‘0’ is concatenated as an MSB? This is because when a

single bit op-code exists, that op-code that to be taken out and decoded via op-code

decoder circuitry. Once the op-code is taken out of the 8-bit address, the 1-bit space has

to be filled. So, a ‘0’ is concatenated and this indirectly alters the value of the address. In

other words, this ‘new’ address is still the same address if it were to be view as a 7-bit

address, no change to that. If the address were viewed as an 8-bit address, the address is

87

Chapter 3

incorrect and may cause erroneous self-modifying codes. This technique is used to

program loops and counters within the programs for the proposed architectures.

Programmable Addresses (capable of

self-modifying)

Common Memory Addresses

0 (MSB) @ 7-bits

127

128

255

0

7-bit

addresses

8-bit

addresses

0 (MSB) @ 7-bits

The concatenation of

an 8th bit at MAR

rendered the original

8-bit addresses useless.

Hence, 8-bit addresses

are not capable of self-

modifying.

The concatenation of

an 8th bit at MAR has

not alter the addresses

since the address value

is still within the 7-bit

window.

Figure 3.16: The illustration of the memory section capable of ‘self-modifying’.

3.2. Results and Discussions

The design and simulation of the TISC Skipjack is done using the Xilinx ISE 11.1 ISIM

and the target FPGA is set to Xilinx Spartan-3L [218]. Xilinx Spartan-3 is marketed for

applications that require high logic density for data processing applications. Xilinx

Spartan-3L offers identical functions, timing, and features of the original Spartan-3

family with power-saving benefit. The Spartan-3L power-saving feature lowers the

device power consumption to very low levels, which is suitable for RCE applications.

Additionally, the Spartan-3 FPGA was released around the year 2008 during the time of

the TISC’s development. The Behavioral and Post-Route simulation were performed onto

the TISC and waveforms of the FSM control signals are presented in this section. The

Behavioral and Post-Route simulation were also performed on the SBN and XOR

instructions. The TISC design’s behavioral simulation were verified using standard

Skipjack test vector provided by NIST [63].

88

Chapter 3

3.2.1. Behavioral Simulation Waveforms

This section presents the behavioral waveforms of the FSM, the SBN instruction and the

XOR instruction. Figure 3.17 depicts the behavioral simulation of the FSM to ensure that

the FSM functions accordingly. The logical behavior of the FSM is presented in section

3.1.5. A small change onto the MUXes is made to the modified URISC model (comparing

Figure 3.1 and Figure 3.6 B) because the TISC only requires 2 instructions: SBN and

XOR. Both SBN and XOR instructions are differentiated using the function code. The

function code for SBN is ‘0’ and XOR is ‘1’. Figure 3.17 also highlights the tb_pc_write,

tb_mdr_write, tb_mar_write, tb_mem_read, and tb_mem_write signals (labels 1 to 5).

Labels 1 to 5 are used to indicate the crucial FSM signal outputs creating the correct

data flow which can be verified via comparison to Table 3.2. In Figure 3.17, the

highlighted signals are respectively the FSM signals: PC_WRITE, MDR_WRITE,

MAR_WRITE, MEM_READ, and MEM_WRITE. During clock cycle 0, tb_mar_write

triggers the MAR register to save the current PC value. During clock cycle 1,

tb_mem_read triggers the block RAM to read the address of the DATA_A while during

the same cycle, that address is saved again with the signal tb_mar_write at 1. During

cycle 2, tb_mem_read triggers the block RAM once again to read the actual DATA_A and

tb_r_write secures the data within the R register. Clock cycle 3 is similar to cycle 0 and

tb_pc_write ensures the newly incremented PC value is loaded into the PC register.

Clock cycle 4 is similar to cycle 1 but the address of DATA_B is loaded instead. During

cycle 5, tb_mdr_write ensures that the calculated data is saved into the MDR register.

Cycle 6 writes a new PC value into the PC register, tb_mem_write triggers the block

RAM to save the newly computed data. Cycle 7 writes into the PC with a new PC value if

a jump occurs. And lastly, cycle 8 increments the new PC value and the whole instruction

is therefore completed.

89

Chapter 3

Figure 3.17: TISC FSM Control Signals Behavioral Waveforms.

C
lo

ck
 C

y
cle

s

1

1

1

1

1

1

1

1

1

1

1

1

2

3

1

1

1

4

5

1

1

90

Chapter 3

Figure 3.18 shows the behavioral waveform for SBN and Figure 3.19 shows the

waveform for XOR. Both Figure 3.18 and Figure 3.19 show distinctive difference in the

function codes (via signal tb_function_code). As mentioned previously, a function code of

0 is an SBN instruction and a 1 means it is an XOR instruction. Figure 3.18 in particular,

shows how an SBN instruction works. In clock cycle 0, the initially PC value is 0x80 and

tb_mar_input shows the same 0x80 value. During clock cycle 1, tb_mar_output shows the

updated 0x80 value, meaning that the block RAM will use 0x80 as the address and thus

the output is 0x7C. During clock cycle 2, 0x7C is the new MAR value and the block RAM

output is 0x01 and which 0x01 is the real DATA_A. During clock cycle 3 and 4, the

similar steps are taken to retrieve DATA_B. But during clock cycle 5, the calculation and

the data calculated is loaded into the MDR register. Now that we have DATA_A = 1,

DATA_B = 0, SBN = DATA_A + (inverse of DATA_B) = 0x01 + 0x7F = 0. A negative

value in SBN will trigger a jump however; a ZERO output will not trigger the jump. In

the subsequent clock cycles, the jump address is read but is not added into the PC value

because the jump condition was not fulfilled. Both Figure 3.18 and Figure 3.19 are very

similar in nature and the only difference is still the function code (0 for SBN and 1 for

XOR). In an XOR instruction, there is not jump condition and it is basically a very

straight forward XOR calculation on two variables. Figure 3.19 also shows an XOR of

0x11 and 0x01 resulting to a value of 0x10. The DATA_A was initially 0x101. The MSB is

a 1 and it indicates that it is an XOR instruction. During calculation and computation of

the XOR, the MSB is ignored.

91

Chapter 3

Figure 3.18: Behavioral Simulation Waveforms of the SBN instruction for TISC Skipjack.

0

1

2

3

4

5

6

7

8

D
a

ta
_
A

 =
 0

x
0
1

D

a
ta

_
B

 =
 0

x
0
0

S
B

N
 o

u
tp

u
t =

0
x
0
0

J
U

M
P

 a
d

d
re

s
s =

 0

92

Chapter 3

Figure 3.19: Behavioral Simulation Waveforms of the XOR instruction for TISC Skipjack

0

1

2

3

4

5

6

7

8

D
a

ta
_
A

 =
 0

x
0
1

D

a
ta

_
B

 =
 0

x
1
1

J
U

M
P

 =
 irre

le
v
a
n

t

X
O

R
 o

u
tp

u
t =

0
x
1
0

93

Chapter 3

3.2.2. TISC Instruction Post-Route Simulation Waveforms

The Post-Route simulations for TISC Skipjack were performed to determine the

maximum time delay for each of the instructions executed. TISC consists of low-

complexity components such as registers and multiplexers thus the largest delay would

originate from the computation blocks and block memories. Figure 3.20 shows the

outcome of the Post-Route simulation for the SBN instruction and Figure 3.21 shows the

Post-Route simulation for the XOR instruction. Figure 3.20 shows that the longest delay

for the SBN instruction occurred at clock cycle 5, requiring 39373 ps delay (2212873 –

2173500 = 39373) for a stable output. Figure 3.21 shows that the longest delay for the

XOR instruction occurred at clock cycle 5, requiring 38283 ps delay (699783 – 661500

=38283) for a stable output. Table 3.3 and Table 3.4 present the TISC SBN and XOR

instruction delays. The int_clk is the clock cycle generated from the system clock. The

mem_out is the time taken to read a data from the block RAM. alu_out (SBN or XOR) is

the time delay for the instruction to produce the desired result. alu_out (SBN or XOR)

takes consideration of the time taken from a clock triggers the Adder or XOR circuit, to

the correct output at the end of the Adder or XOR circuit. To calculate the circuit delay,

the time marker at point 1 is subtracted from the time marker at point 2 at cycle 5,

which can be found in Figure 3.20 and Figure 3.21.

The Celoxica RC10 development board houses the Spartan-3L FPGA (XC3S1500L-4-

FG320). RC10 fits the requirement of the research of having a Spartan-3 FPGA. The

system clock the fixed clock of the Celoxica RC10 development board (48MHz). Hence the

system clock was set to a period of 21000 ps, which is approximately 48MHz. The longest

delay of 39316 ps suggests that a clock with a period larger than 39316 ps or 39.316 ns

has to be used. A divided clock, running at 24 MHz and has a period of 42000 ps or 42 ns,

is suitable for the TISC architecture’s timing requirements. Both SBN and XOR

instruction delays justifies the operating frequency of 24 MHz.

94

Chapter 3

Figure 3.20: Post-Route Simulation Waveforms of the SBN instruction for TISC Skipjack.

C
y
cle

 5

0

1

2

3

4

5

6

7

8

95

Chapter 3

Figure 3.21: Post-Route Simulation Waveforms of the XOR instruction for TISC Skipjack.

C
y
cle

 5

0

1

2

4

5

6

3

7

8

96

Chapter 3

Table 3.3: TISC Skipjack SBN instruction delay at clock cycle 5.

Clock
Delay (ps)

int_clk alu_out (SBN) mem_out

0 9317 - -

1 9317 39316 32371

2 9317 39373 34103

3 9317 - -

4 9317 39373 34103

5 9317 39373 34103

6 9317 - -

7 9317 39373 34103

8 9317 - -

Table 3.4: TISC Skipjack XOR instruction delay at clock cycle 5.

Clock
Delay (ps)

int_clk alu_out (XOR) mem_out

0 9317 - -

1 9317 - 33767

2 9317 - 33909

3 9317 - -

4 9317 - 34103

5 9317 38283 34103

6 9317 - -

7 9317 - 34103

8 9317 - -

97

Chapter 3

3.2.3. Design Behavioral Verification

The TISC Skipjack’s behavioral simulation is done using a test bench running at 24 MHz

(Period = 42 ns). The output of the encryption is compared to the output of the standard

Skipjack test vector. The test vector used was “33221100DDCCBBAA” as the input

plaintext in hexadecimal and a key value (also known as the crypto-variable [63]) of

“00998877665544332211” in hexadecimal. The TISC Skipjack produces the correct cipher

text at 1363855500 ps with a value of “2587CAE27A12D300” in hexadecimal. Figure 3.22

shows the waveform of the encrypted cipher text and Figure 3.23 shows the correct

ciphertext at 1363971794 ps in a Post-Route Simulation. The standard test vector used

in Figure 3.24 is provided by NIST, showing the cipher states with the corresponding key

and plaintext.

98

Chapter 3

Figure 3.22: Waveform output for the TISC encrypted cipher text starting at 1363855500

ps

99

Chapter 3

Figure 3.23: Post-Route waveform of the TISC encrypted cipher text starting at

1363971794 ps

100

Chapter 3

Figure 3.24: Test vector provided by NIST for Skipjack ECB [63].

3.2.4. Hardware Utilization and Comparison

Hardware utilization simulation for the TISC Skipjack is done using Xilinx Spartan-3L

XC3S1500L-4-FG3203L as the target device. Table 3.5 show the device utilization report.

101

Chapter 3

Table 3.5: Hardware utilization of TISC Skipjack using Spartan-3L XC3S1500L-4-FG320.

FPGA Components (Spartan-3L (XC3S1500L-4-

FG320))
Quantity

Utilization

Percentage
Total

Logic

Utilization

No. of Slice Flip Flops 70 1% 26,624

No. of 4 Input LUTs 94 1% 26,624

Logic

Distribution

No. of Occupied Slices 71 1% 13,312

No. of Slices containing only

related logic
71 100% 71

Total No. of 4 Input LUTs 104 1% 26,624

No. of LUTs used a logic 94 ~90% 104

No. of LUTs used a route-

thru
10 ~10% 104

No. of LUTs used a Shift

Registers
0 0% 0

No. of Bonded IOBs 99 44% 221

No. of LOCed IOBs 0 0% 28

No. of RAMB16s 1 3% 32

No. of BUFGMUXs 2 25% 8

Eryilmaz et al [219] presented an implementation of Skipjack using Xilinx Spartan-3

XC3S500E with the result of 780 slices utilized. Huang et al [220] present a design using

Xilinx Virtex-4 XC4VLX200 with a total of 56822 slices occupied. Table 3.6 shows the

comparison with other reported Skipjack processors.

Table 3.6: Hardware utilization comparison with other Skipjack processors.

TISC

Skipjack

Eryilmaz et

al [219]

TISC

Skipjack

Huang et

al [220]

FPGA
Xilinx Spartan-3

XC3S500E

Xilinx Virtex-4

XC4VLX200

Logic

Utilization

No. of Slice

Flip Flops
71 / 9312 271 / 9312

71 /

178176
-

No. of 4 Input

LUTs
99 / 9312 1399 / 9312

110 /

178176
-

Logic No. of 58 / 4656 780 / 4656 61 / 89088 56822 /

102

Chapter 3

TISC

Skipjack

Eryilmaz et

al [219]

TISC

Skipjack

Huang et

al [220]

FPGA
Xilinx Spartan-3

XC3S500E

Xilinx Virtex-4

XC4VLX200

Distribution Occupied

Slices

89088

No. of

RAMB16s
1 / 20 - 1 / 336 -

3.2.5. Throughput Calculation

TISC Skipjack implementation is based on the Skipjack ECB mode. Equation [3.4]

describes the throughput calculation.

Throughput

= [
(total amount of bits encrypted)

(𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)
] [3.4]

The total clock cycles required for the data to be encrypted have to be calculated

according to the number of instructions executed for the complete Skipjack operation.

Each TISC instructions take nine clock cycles to complete. The total instructions

executed are:

For the throughput of TISC Skipjack, the calculations are:

 G Permutation: (192 bytes / 3) = 64 instructions

 Rule A: [(153 bytes / 3) + G Permutation] * 16 rounds = 1840

 Rule B: [(153 bytes / 3) + G Permutation] * 16 rounds = 1840

 Total clock cycles = (1840 +1840) * 9 = 33120

 Throughput: (64-bit / 33120 clocks) x 24MHz = 46.38 kbps

The completion time for encrypting 64bits of data is 1363971794 ps or approximately

1.364 ms (Figure 3.23). The throughput of the simulated system is 46.92 kbps. This

103

Chapter 3

calculation shows that the expected throughput and the calculated throughput of the

TISC Skipjack is correct with both results indicating a throughput of approximately 46

kbps. Table 3.7 show the comparison of TISC throughput with other Skipjack processors.

Table 3.7: Throughput comparison with other Skipjack processors.

 TISC Skipjack Eryilmaz et al [219] Huang et al [220]

Throughput (kbps) 46.92 19393.9 1136000

3.3. Summary

A low-complexity, low-area TISC for Skipjack is designed and presented in this chapter.

To summarize, this chapter presents the following:

1) Modified URISC is used as a simplistic processor for lightweight cipher Skipjack.

2) TISC Skipjack occupies 71 slices using a Spartan3 XCS1500L-4 FPGA.

3) The TISC achieved a throughput of 46.92 kbps.

4) The TISC Skipjack is the smallest known design with a trade-off in terms of

throughput.

104

Chapter 4

CHAPTER 4

LOW-COMPLEXITY, LOW-AREA FPGA ENCRYPTION

ARCHITECTURE USING A MODERN CIPHER, THE

ADVANCED ENCRYPTION STANDARD (AES)

__

4.1. Method of the Proposed Improvement on the current S-Box

4.1.1. The Design of the Proposed Minimized S-Box

This proposed method aims to produce a bi-directional S-box with a gate count less than

the total of 192 gates from Boyar’s work [71, 212], which is the smallest know bi-

directional S-box. Figure 4.1 shows the proposed method uses Boyar’s forward S-box [212]

with additional identical circuit added before the input and after the output. This

modification makes a bi-directional S-box (similar to a composite field representation). A

forward S-Box in the composite field has the affine transformation in the process while

the Boyar’s three stage S-Box [71] represent the affine transformation embedded within

as a part of the circuit derived from matrix B (Chapter 2, figure 2.17). An inverse affine

circuit is the only circuit that determines the character of the inverse S-Box. Adding an

inverse affine transform at the end of the composite field S-box effectively cancels out the

transformation done by the affine transform in the forward S-Box. To complete the

Boyar’s Forward S-box circuit [212], another inverse affine transform has to be present

at the front-end as the completing component for the inverse S-box. This results to a

complete bi-directional S-Box. MUXs are required to choose the path of the data from

encryption and decryption mode selection.

105

Chapter 4

Inverse Affine

Transformation

Input (8-bit)

8
Output

(8-bit)

AT
-1

8

8

8

8

8

8 M

U

X

ENC / DEC

M

U

X

ENC / DEC

2
nd

non-

linear

block

1
st

linear

block

3
rd

linear

block

AT
-1

Overview of the proposed S-box circuit

Boyar’s Forward S-box (115 gates)

Inverse Affine

Transformation

Figure 4.1: The illustration of the placement of the proposed inverse-affine circuit in the

Boyar’s Forward S-box9.

4.1.2. The Minimization of Inverse Affine Circuit for a Complete Straight-

line Bidirectional S-box

In the composite field forward S-box, an affine and inverse affine transformation are

placed at the input and output of the circuit respectively. Figure 4.2 shows the inverse

affine transform matrix. The number of XOR points amounts to a total of 24 XORs.

Equation [4.5] shows the expanded equations.

 









































































































































1

0

1

0

0

0

0

0

00100101

10010010

01001001

10100100

01010010

00101001

10010100

01001010

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

1

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aAT
AT

-1

Inverse Affine

Transformation

8

Figure 4.2: The matrix for inverse affine transform.

9 Published in: Jia Hao Kong, Li-Minn Ang, and Kah Phooi Seng, “A Very Compact AES-SPIHT

Selective Encryption Computer Architecture Design with Improved S-Box,” Journal of

Engineering, vol. 2013, Article ID 785126, 26 pages, 2013, DOI: 10.1155/2013/785126, Page 11,

Figure 11.

106

Chapter 4

1

0

1

0

0

0

0

0

2570

0361

1472

0253

1364

2475

0356

1467

















aaaA

aaaA

aaaA

aaaA

aaaA

aaaA

aaaA

aaaA

[4.5]

Bernstein’s [221] work addresses the computation redundancy in two-dimensional linear

XOR functions. Given a linear matrix, To reduce the computation redundancy, Bernstein

proposed a method to optimizing linear matrix mapping. Similarly, the Affine

Transformation Matrix is a linear matrix. Using Bernstein’s method will able to

minimize the initial gate counts of the Affine Transform Matrix. A .cpp file [222] on

Bernstein’s website, which is a direct implementation of his algorithm is to used evaluate

a given matrix for a p-bit-to-q-bit linear function and computes the matrix output.

Running the Bernstein’s optimization algorithm [221], a linear map of modulo 2 can be

optimized to give an output with lesser number of XOR steps to produce the same output.

For instance, the total number of XORs required for a complete inverse affine transform

is 24 XORs and each output ‘A’ has a minimum of 3 XOR chains. By breaking down the

chains to low two-operand complexity form, intermediate values for the output ‘A’

(namely ‘a’) are formed with an XOR chain of 1.

By putting in the linear matrix value of the inverse affine transform into the algorithm

designed by [221], the results obtained using Bernstein’s optimization onto the inverse

affine matrix are shown in a straight-line layout, yielding a minimized number of XORs

less than the manual hand-calculation of the inverse affine matrix (24 XORs). Equation

[4.6] shows the straight-line XOR calculations obtained from the optimization algorithm

by [221]. The gate count at this stage (by counting the XOR signs) is 18 XOR gates. Note

that the variable ‘a’ in Equation [4.6] can be considered ‘intermediate’ values are

depending on its position in the circuit branches.

107

Chapter 4

13714159304

12013708303

1611173612647102

1521610811416201

67159510425100

aaaaxaaaa

aaaaxaxxa

aaaaxaaaaaaa

aaaaaaxxaxxa

axaaaaaaaxxa











[4.6]

This initial form of the minimized circuit uses a total of 18 XOR gates (which is less than

the initial count of 24 gates). By sorting out the variables, Equation [4.6] can be

minimized by expanding the equations shown in Equation [4.7]. The equations mapped

out show that there are only eight outputs at the end. Points shown below explain the

Equation [4.6] and Equation [4.7].

1. The variables: 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 are the inputs to the inverse affine

matrix.

2. The final variables identified (the tip end of the circuit branches) are:

𝑎9, 𝑎10, 𝑎12, 𝑎13, 𝑎14, 𝑎15, 𝑎16, 𝑎17.

108

Chapter 4

75274254161117

7427412115216

7414176715

6416314313714

6316301012013

6303063612

5453043010811

530205329510

520205159

430430708

434131647

416

323121425

313010304

303

212010102

201

100

)()(

)()(

)(

)()(

)()(

)(

)()(

)()(

)(

)(

)()(

)()(

)()(

)()(

xxxxxxxxaaa

xxxxxxxxaaa

xxxxxxaxa

xxxxxxxxaaa

xxxxxxxxaaa

xxxxxxaxa

xxxxxxxxaaa

xxxxxxxxaaa

xxxxxxaxa

xxxxxxaxa

xxxxxxaaa

xxa

xxxxxxaaa

xxxxxxaaa

xxa

xxxxxxaaa

xxa

xxa





































[4.7]

Equation [4.8] shows the alternate representation of Equation [4.7]. The current gate

count is 16 XOR gates. Note that from this point onwards, the minimization is done by

factor grouping since the circuit is small.

52093

741152

630121

752170

641147

530106

742165

631134

xxxaA

xxxaA

xxxaA

xxxaA

xxxaA

xxxaA

xxxaA

xxxaA

















[4.8]

From here, minimization is done via factor grouping. In Equation [4.9] shows the

common bases that are first acquired from the expanded equations into their respective

outputs and Equation [4.10] shows the ‘intermediate’ XORs using ‘y’ representations,

which is eventually represented by ‘A’ as the final output.

109

Chapter 4

723631

502410

xxuxxu

xxuxxu





[4.9]

3500

1011

0722

2233

1144

3455

2366

0677

uxyA

uxyA

uxyA

uxyA

uxyA

uxyA

uxyA

uxyA

















[4.10]

The new reduced gate circuit was designed for the lower-gate count S-box following this

minimization process (Figure 4.3). There are two constant additions at the end of the

inverse affine transform, and this requires two extra XOR gates (refer to Figure 4.2). The

final circuit in Figure 4.3 amounts to a total of 14 gates.

x0

x1

x2

x3

x4

x5

x6

x7

A0

A1

A2

A3

A4

A5

A6

A7

u1

u3

u2

u0

y7

y6

y5

y4

y3

y1

y2

y0

1

Figure 4.3: The minimized inverse affine circuit (14 XOR gates)10.

10 Published in: Jia Hao Kong, “A Very Compact AES-SPIHT Selective Encryption Computer

Architecture Design with Improved S-Box”, Page 12, Figure 13

110

Chapter 4

By using the new circuit shown in Figure 4.3 and the original Boyar’s S-Box (Chapter 2

Literature Review, section 2.6.2, Figure 2.17), the final standalone S-Box is illustrated in

Figure 4.4, with built-in multiplexers (MUXs) with a total of 143 gates (Boyar (115 gates)

+ 2 * inverse affine circuit (which is 2*14 gates) excluding MUX 16 gates). Boyar [71] did

not include the MUX circuits. The final circuit is a straight line straight line circuit (with

one inverse affine circuit at both ends each).

111

Chapter 4

b
0

b
1

b
2

b
3

b
4

b
5

b
6

b
7

a
1

a
3

a
2

a
0

y
7

y
6

y
5

y
4

y
3

y
1

y
2

y
0

E
N

C
 / D

E
C

In
p

u
t (8

-b
it)

b
0

b
1

b
2

b
3

b
4

b
5

b
6

b
7

a
1

a
3

a
2

a
0

y
7

y
6

y
5

y
4

y
3

y
1

y
2

y
0

E
N

C
 / D

E
C

O
u

tp
u

t (8
-b

it)

y
1

4

y
1

3

y
9

y
8

t0

y
1

y
4

y
1

2

y
7

y
6

y
5

y
4

y
3

y
2

y
1

y
0

y
1

5

y
1

4

y
1

3

y
1

2

y
1

1

y
1

0

y
9

y
8

y
2

0

y
1

9

y
1

8

y
1

7

y
1

6

y
2

1

y
3

y
5

y
1

0

t1

y
2

y
1

5

y
2

0

y
6

y
1

1y
7 y
1

7

y
1

9

x
7

x
6

x
5

x
4

x
3

x
2

x
1

x
0

y
1

6

y
2

1

y
1

8

z
7

z
6

z
5

z
4

z
3

z
2

z
1

z
0

z
1

5

z
1

4

z
1

3

z
1

2

z
1

1

z
1

0

z
9

z
8

z
1

7

z
1

6

t5
3

t5
4

t5
2

t4
9

t4
7

t4
6

t5
5

t4
8

t5
0

t5
6

t5
7

t5
1

t5
9

t5
8

t6
0

t6
1

t6
2

t6
3

t6
4

t6
5

t6
6

s
3

s
4

S
7

S
6

S
5

S
4

S
3

S
2

S
1

S
0

s
1

t6
7

s
2

s
5

s
6

s
7

s
0

t1
5

t1
2

t1
6

t1
3 t5t3t7

t8

t2

t4

t6t9

t1
0

t1
1

t1
4

t1
7

t1
8t1

9

t2
0

t2
1

t2
2

t2
3

t2
4

t2
5

t2
6 t2

7

t2
8

t2
9

t3
0

t3
1

t3
2

t3
3

t3
4 t3
5

t3
6

t3
7

t3
8

t3
9

t4
0

t4
1

In
v
e

rs
io

n
 in

 G
F

(2
4)

t4
2

t4
3

t4
4

t4
5

z
0

z
1

z
2

z
3

z
4

z
5

z
6

z
7

z
8

z
9

z
1

0

z
1

1

z
1

2

z
1

3

z
1

4

z
1

5

z
1

6

z
1

7

In
v
e

rs
e

 A
ffin

e

T
ra

n
s
fo

rm
a

tio
n

In
p

u
t (8

-b
it)

8
O

u
tp

u
t

(8
-b

it)

A
T

-1
88

8

88

8
MUX

E
N

C
 / D

E
C

MUX

E
N

C
 / D

E
C

2
n

d

n
o

n
-

lin
e

a
r

b
lo

c
k

1
s
t

lin
e

a
r

b
lo

c
k

3
rd

lin
e

a
r

b
lo

c
k

A
T

-1

O
v
e

rv
ie

w
 o

f th
e

 m
in

im
iz

e
d

 S
B

O
X

 c
irc

u
it

M
in

im
iz

e
d

 fo
rw

a
rd

 S
B

O
X

 c
o

m
p

o
n

e
n

ts

In
v
e

rs
e

 A
ffin

e

T
ra

n
s
fo

rm
a

tio
n

Figure 4.4: The complete gate layout of the proposed S-box configuration for bi-

directional setting11

11 Published in: Jia Hao Kong, “A Very Compact AES-SPIHT Selective Encryption Computer

Architecture Design with Improved S-Box”, Page 10, Figure 10.

112

Chapter 4

4.2. Development of the Compact Instruction Set Architecture for

the AES

To design a low-area, low-complexity system, mixed software-hardware architecture has

to be adopted and configured to a most desirable combination of compact code and

compact hardware. For this, the URISC is used to create a customized architecture called

the compact instruction set architecture (CISA). The reason it is called a CISA is due to

the minimized, and compacted instruction sets that the architecture accommodates.

There is no need for any additional instruction sets in order to complete all the AES

transformations, and, therefore, the computer architecture is ‘compact’. The latter part of

this section further explains and dissects the CISA AES architecture into the following

sub-sections: architecture, function codes and instruction sets, memory, FSM control

signals and cipher algorithm program code.

4.2.1. The New Data-path Architecture and Arithmetic –Logic Unit (ALU)

In the AES transformations, there are two specific circuits required: a circuit for

SubBytes and MixColumns. As for the ShiftRow and AddRoundKey, a simple XOR and

memory readdressing would suffice. As for the SubBytes, a combinational circuit has to

be present. In this part of the work, the proposed S-box in Section 4.1 is used as a one of

the computation blocks. As for MixColumns, kindly refer to [65] for the xTime dedicated

four XOR hardware because of the simplistic nature and compatibility . Unlike URISC,

which uses only one instruction, the proposed CISA AES uses four minimized

instructions (including SBN) to perform the complete AES encryption process. The CISA

ALU includes: Adder, XOR, xTime, and S-box.

The novel CISA data-path is shown in Figure 4.5. It has a single memory unit to store

both program and data for the AES algorithm. With the SBN instruction (similar to

URISC), the CISA can branch to any PC values within the memory unit and execute any

113

Chapter 4

instructions in any location of the memory unit. With seven registers, five multiplexers,

one memory unit and four ALU blocks, the CISA is complete and functional. Similar to

the structure of URISC, the CISA data-path loads in the first memory address and

subsequently loads in the first data item. This operation is repeated for the second data

item. Once both data are loaded into the CISA, they are sent to the ALU for computation

and the outputs will be chosen regarding the function code embedded in the first address

loaded. The function code is a 2-bit value, concatenated to the first data address in the

memory unit. With the 2-bit MSB value, the architecture can determine which

instruction is used for the current processor cycle and what data are stored back to the

memory.

114

Chapter 4

The Compact Reconfigurable ALU Design Space

M
D

R

M
A

R

MAR_SEL

[9:8]

FUNC_WRITE

M
U

X
1

0

R
R’

0

MEMORY

UNIT

READ WRITE

N

CIN

FC

AES Processor

Adder

Z_IN

Z

N_IN

M
U

X
0

0
0

1
1

0
1

1

MUX1 0

PC_IN MDR_IN

MAR_IN

COMP_SEL

P
C

0

MUX0 1

MUX
0 1 PC_OUT_SEL

PC_OUT

MEM_OUT

MDR_OUT
INPUT_B

INPUT_A

R_WRITE

MEM_OUT

ALU_OUT

ALU_SEL

A

B

C

xTime

xTime_Out

N

Z_WRITE Z

N_WRITE
XOR

XOR_Out

Sub

Bytes

Sub Bytes_Out

Adder

Adder_Out

FUNC

Code ALU Output Mux

ALU_Out

FSM4-bit Counter

CISA AES

(Data-path)

Control

Signals

Figure 4.5: The novel CISA architecture, data-path and the ALU121314.

12 Published in: Jia Hao Kong, “A Very Compact AES-SPIHT Selective Encryption Computer

Architecture Design with Improved S-Box”, Page 16, Figure 17.
13 Published in: Jia Hao Kong, Li-Minn Ang, Kah Phooi Seng, Achonu Oluwole Adejo, “Minimal

Instruction Set FPGA AES Processor using Handel-C”, Proceedings of the 2010 International

Conference on Computer Applications and Industrial Electronics (ICCAIE 2010), CD-ROM: pp.

337-341, ISBN: 978-1-4244-9053-0, 2010.
14 Published in: J. H. Kong, L. -M. Ang, K. P. Seng, "MISC Processor for AES Encryption and

Decryption", Proceedings of 2011 International Conference on Embedded Systems & Intelligent

Technology (ICESIT 2011), pp.46-51, CD paper no: 00017, 2011.

115

Chapter 4

The architecture has two input parameters into the CISA: Input_A and Input_B. Like a

URISC, the architecture is also controlled by an FSM, the data movement and processing

are fixed within nine clock cycles. The Adder and XOR block takes in two data items and

perform bit-wise addition and XOR onto their respective inputs. The xTime block is a

part of the MixColumns transformation. In [93], by using the sub-structure computation

of a byte and between the computations of four bytes in an array of bytes, the derivation

of the MixColumns transformation can be defined. In [191], the implementation of an

‘xTime’ function is used to complete the multiplication of with ‘02’, modulo the irreducible

polynomial m(x) = x8 + x4 + x3 + x + 1. It is known that the MixColumns transformation

is a process involving several XOR processes and xTime processes. The xTime is a bit-

wise XOR operation that yields the constant multiplication by (02). By concatenating two

xTime blocks in serial, constant multiplication by (04) can be achieved. The MixColumns

circuit in [93] can be used for both MixColumns and Inverse MixColumns. In Figure 4.7,

part 1 of the circuit is the Mix Columns Transformation. Part 1 together with part 2 of

the circuit yields the Inverse MixColumns Transformation. The xTime circuit is shown in

Figure 4.6. The circuit in Figure 4.7 is translated to soft-codes, using the xTime circuit to

reproduce the exact output of the complete MixColumns operation.

To standardize the width of the register and data-path for the best design at the

architecture level, a unified and shared bit-wise XOR block will be used to perform a

XOR MOVE operations instead of the SBN MOVE to improve program memory efficiency

(XOR MOVE requires one less instruction less than SBN MOVE). The xTime circuit uses

three independent XORs.

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

a
7

a
6

a
5

a
4

a
3

a
2

a
1

a
0

Figure 4.6: The xTime circuit (Image redrawn from [223]).

116

Chapter 4

S2,cS0,c S1,c S3,c

XTime XTimeXTime XTime

XTime

XTime

XTime

XTime

P
a

rt
 I

P
a

rt
 I
I

XTime

S’2,cS’0,c S’1,cS’3,c

S’2,cS’0,c S’1,cS’3,c

Figure 4.7: The MixColumns Transformation Process using the xTime Circuit (Image

redrawn from [223]).

4.2.2. Application Specific Function Codes and Instruction Sets

To perform AES computations onto the plaintext, byte-oriented operations are adopted

from the AES algorithm. To perform tasks such as SubBytes and MixColumns, a new set

of instructions is developed. The CISA instruction sets shown in Table 4.1 are

differentiated using the two MSB of each of the instructions. The four instruction sets

used to perform different operations are showed in the Figure 4.8. These pseudo-codes

117

Chapter 4

represent the characteristic of the instructions set used in CISA. From the Table 4.1,

each of the instruction formats uses 3 bytes in the program memory. The first byte holds

the Op Code and the address of Mem_A, the second byte holds the address of Mem_B and

the last byte holds the target address. With four different op codes embedded in the first

byte of the instruction, the CISA selects the appropriate output from the corresponding

processor block.

Table 4.1: The CISA AES (specifically for AES application) instruction sets.

Operation
Function Code / Op-code

(2-bit MSB)
Instruction Set Format

SBN 00 (0 @ address A), address B, Target

XOR 01 (1 @ address A), address B, Target

xTime 10 10 @ 0[n:0], address B, Target

Sub Bytes 11 11 @ 0[n:0], address B, Target

SBN

Mem_B = Mem_B + (- Mem_A)

If Mem_B < 0 Goto (PC + C)

Else Goto (PC + 1)

XOR

Mem_B = Mem_B XOR Mem_A

xTime

Mem_B = xTime(Mem_B)

Sub Bytes

Mem_B = Sub_Bytes(Mem_B)

Figure 4.8: The pseudo-codes (algorithm) for CISA instruction sets.

118

Chapter 4

4.2.3. Memory Mapping and Program Structure

The CISA AES architecture includes a 1024 x 10-bit memory unit. The size of the

memory is determined by the size of the AES program and the data. The total available

memory is 1024 x 8-bit (512 bytes), which accommodates both the data and program

codes. The data section is located at the address location of 0 to 127, whereas the

program section takes the location of 128 to 1024. In the program section, instructions

are sorted in a sequence as the CISA executes in accordance. In the data section, the

breakdown of the memory allocation the plain text, master key and other temporary

variables are shown in Figure 4.9.

Data Section

Plain Text

Temporary Data Locations

Original Cipher Key

Temporary Data Locations

Rcon[i]

Cipher Text

Temporary Mix Column Data

Temporary Variables

Sub Keys (Expanded Keys)

Program Section

Shift Row

Add Round Key (Enc / Dec)

Key Expansion

Sub Bytes (Enc / Dec)

Mix Columns (Part 1)

Mix Columns (Part 2)

Loop

END

Inverse Shift Row

Figure 4.9: The Memory Mapping for CISA AES15.

For the program design of the CISA AES, functions and modules of a set of the written

instructions can be reused for code efficiency. During the decryption round, the Key

Expansion algorithm has to be executed, and the sub keys are stored inside the memory

unit. During encryption mode, the program sequence has to start by producing all the

sub keys and then proceed to the AddRoundKey function. Loop1 and Loop2 are used to

branch to any designated memory locations in the memory unit if the resultant value is

less than zero of negative. In loop1 and loop2, the addressed memory stores a number

15Published in: Jia Hao Kong, “A Very Compact AES-SPIHT Selective Encryption Computer

Architecture Design with Improved S-Box”, Page 19, Figure 20.

119

Chapter 4

that enables the SBN instruction to be executed and hence, the results will be check by

the CISA FSM controller in order to decide whether a branch instruction has to occur

depending on the output of the Adder and the function code of the instruction. The

function code tells the data-path that the current instruction performed is an SBN

instruction. With the two SBN loops for branching, the AES encrypt mode can be

completed.

Figure 4.10 illustrates the encryption and decryption program flow for the CISA AES. In

decrypt mode, similar to the AES encrypt mode, the decryption process involves an initial

pre-whitening transformation of AddRoundKey. The sub keys are stored in the memory

unit after encrypt were done previously. A one-time loop is implemented in order for the

CISA to execute the ‘AddRoundKey’ once at the start of the decrypt sequence. This is due

to the reason that the initial pre-whitening step does not have a flow pattern to the

programming sequence. In decrypt mode, the data transformation after AddRoundKey is

the Inverse MixColumns. The initial Add Round Key is a one-time process, so the one-

time loop is applied. With another SBN loop applied, the decrypt mode can execute the

four inverse transformations with ten iterations.

Shift Row

Sub Bytes

Check Loop1

If Loop1 is

Negative, jump

to Add Key.

Else, proceed.

Mix Column

Add Key

If Loop2 is

Negative, jump

to END.

Else, proceed.

END

Program Start

(ENCRYPT)
Key Generation

Check Loop2

Inv Shift Row

Inv Sub Bytes

Check Loop1

If Loop1 is

Negative, jump

to END.

Else, proceed.

Inv Mix Column

Add Key

END

Program Start

(DECRYPT)

One Time Loop
Go to Inv Shift

Row after 1
st

key added

Figure 4.10: The CISA AES encryption and decryption program flowchart and structure16.

16Published in: Jia Hao Kong, “A Very Compact AES-SPIHT Selective Encryption Computer

Architecture Design with Improved S-Box”, Page 20, Figure 21.

120

Chapter 4

4.3. Results and Discussions

The design and simulation of the CISA AES is done using the Xilinx ISE 11.1 ISIM and

the target FPGA is set to Xilinx Spartan-3L [218]. The CISA AES has the same

architecture as TISC but with additional xTime and S-box components. The Behavioral

and Post-Route simulation for the FSM, SBN instruction and XOR instruction can be

found in Chapter 3 (Results and Discussions). The Behavioral and Post-Route simulation

were performed on the xTime and S-Box instructions. The CISA design’s behavioral

simulation were verified using standard AES test vector provided by NIST [63].

4.3.1. Behavioral Simulation Waveforms

This section presents the behavioral waveforms of the AES specific xTime instruction

and the S-box instruction. Both xTime and S-box instructions are differentiated using the

function code. The function code for xTime is ‘2’ and S-box is ‘3’. Figure 4.11 shows the

behavioral waveform for xTime and Figure 4.12 shows the waveform for S-box.

Figure 4.11 shows the xTime instruction set with same instruction format where

DATA_A, DATA_B, and the jump address are read from the block RAM. However,

DATA_A is not used for the xTime calculation because DATA_B is the real target data

for processing. Address jumping is irrelevant in this instruction because the purpose of

xTime is a logical calculation of a single byte without negative values. Figure 4.6 shows

the xTime circuit with the following calculation: b7 = a6 (MSB), b1 = a0 XOR a7, b6 = a5, b0

= a7, b5 = a4, b4 = a3 XOR a7, b3 = a2 XOR a7, b2 = a1 (LSB). Figure 4.11 shows DATA_B

with the value of 0xC7, which is a value of 11000111 in binary. Using the value

11000111, the xTime result is 10010101, which is 0x95 in hexadecimal. Thus, the correct

calculation is completed and is saved into the block RAM.

Figure 4.12 shows the S-box instruction set with same instruction format where DATA_A,

DATA_B, and the jump address are read from the block RAM. However, DATA_A is not

121

Chapter 4

used for the S-box calculation because DATA_B is the real target data for processing.

Address jumping is irrelevant in this instruction because the purpose of S-box is a byte

substitution of a single byte without negative values. Figure 4.12 shows DATA_B with

the value of 0x60. Using the value 0x60 to refer to the S-box table shown in Table 2.9, the

S-box substitution result is 0xD0. Thus, the correct calculation is completed and is saved

into the block RAM.

122

Chapter 4

Figure 4.11: Behavioral Simulation Waveforms of the xTime instruction for CISA AES.

D
a

ta
_
A

 =
 irre

le
v
a
n

t
D

a
ta

_
B

 =
 0

x
C

7

J
U

M
P

 =
 irre

le
v
a
n

t

x
T

im
e
 o

u
tp

u
t =

0
x
9
5

123

Chapter 4

Figure 4.12: Behavioral Simulation Waveforms of the S-Box instruction for CISA AES.

D
a

ta
_
A

 =
 irre

le
v
a
n

t
D

a
ta

_
B

 =
 0

x
6
0

J
U

M
P

 =
 irre

le
v
a
n

t

S
B

O
X

 o
u

tp
u

t =
0
x
D

0

124

Chapter 4

4.3.2. CISA Instruction Post-Route Simulation Waveforms

The Post-Route simulations for CISA AES were performed to determine the maximum

time delay for each of the instructions executed. The SBN and XOR instruction was

simulated in the Chapter 3. This section focuses on the AES specific instructions, which

are the xTime and S-box. Figure 4.13 shows the outcome of the Post-Route simulation for

the xTime instruction. Figure 4.14 shows the Post-Route simulation for the CISA using

Boyar’s S-box and Figure 4.15 shows the Post-Route simulation for the CISA using the

proposed S-box. Figure 4.13 shows that the signal delay for the xTime instruction

occurred at clock cycle 5, with 24195 ps delay (409303695 – 409279500 = 24195) for a

stable output. Figure 4.14 shows that the signal delay for the Boyar’s S-box instruction

occurred at clock cycle 5, with 21769 ps delay (32813269 – 32791500 = 21769) for a stable

output. Figure 4.15 shows that the signal delay for the proposed S-box’s instruction

occurred at clock cycle 5, with 20901 ps delay (32812401 – 32791500 = 20901).

125

Chapter 4

Figure 4.13: Post-Route Simulation Waveforms of the xTime instruction for CISA AES.

C
y
cle

 5

0

1

2

3

4

5

6

7

8

126

Chapter 4

Figure 4.14: Post-Route Simulation Waveforms using Boyar’s S-box.

C
y
cle

 5

8

0

1

2

3

4

5

6

7

127

Chapter 4

Figure 4.15: Post-Route Simulation Waveforms using the proposed S-box.

C
y
cle

 5

0

1

2

3

4

5

6

7

8

128

Chapter 4

Table 4.2 present the CISA xTime delays. Table 4.3 and Table 4.4 and S-box instruction

delays using Boyar’s S-box and the proposed S-box respectively. The int_clk is the clock

cycle generated from the system clock. The mem_out is the time taken to read a data

from the block RAM. alu_out (xTime or S-box) is the time delay for the instruction to

produce the desired result. alu_out (xTime or S-box) takes consideration of the time

taken from a clock triggers the xTime or S-box circuit, to the correct output at the end of

the xTime or S-box circuit. To calculate the circuit delay, the time marker at point 1 is

subtracted from the time marker at point 2 at cycle 5, which can be found in Figure 4.13,

Figure 4.14, and Figure 4.15.

129

Chapter 4

Table 4.2: CISA AES xTime instruction delays.

Clock
Delay (ps)

int_clk alu_out (xTime) mem_out

0 9700 - -

1 9700 - 31778

2 9700 - 35667

3 9700 - -

4 9700 - 37417

5 9700 24195 35667

6 9700 - -

7 9700 - 37417

8 9700 - -

Table 4.3: CISA AES Boyar’s S-box (forward) instruction delays.

Clock
Delay (ps)

int_clk alu_out (S-box) mem_out

0 9588 - -

1 9588 - 32163

2 9588 - 37339

3 9588 - -

4 9588 - 37339

5 9588 21769 35369

6 9588 - -

7 9588 - 35919

8 9588 - -

130

Chapter 4

Table 4.4: CISA AES proposed S-box (bidirectional – set to decrypt mode) instruction

delays.

Clock
Delay (ps)

int_clk alu_out (S-box) mem_out

0 9677 - -

1 9677 - 36903

2 9677 - 37463

3 9677 - -

4 9677 - 37463

5 9677 20901 37463

6 9677 - -

7 9677 - 37463

8 9677 - -

The system clock was set to a period of 21000 ps, which is approximately 48 MHz. The

longest delay of 37417 ps (reading block memory) suggests that a clock with a period

larger than 37417 ps or 37.417 ns. Similar to the TISC, a 24MHz clock has a period of

42000 ps or 42 ns is suitable for the CISA architecture’s timing requirements. Both

xTime and S-box instruction delays justifies the operating frequency of 24 MHz.

4.3.3. Design Behavioral Verification

The CISA AES behavioral simulation is done using a test bench running at 24MHz

(Period = 42 ns). The output of the encryption is compared to the output of the standard

AES test vector. The test vector used was “00112233445566778899AABBCCDDEEFF” as

the input plaintext in hexadecimal and a key value of

“0102030405060708090A0B0C0D0E0F” in hexadecimal. The CISA AES produces the

correct cipher text at 1034911500 ps with a value of

“69C4E0D86A7B0430D8CDB78070B4C55A” in hexadecimal. Figure 4.16 shows the

waveform of the encrypted cipher text and Figure 4.17 shows the correct ciphertext at

1034676642 ps in a Post-Route Simulation. The standard test vector used in Figure 3.24

is provided by NIST, showing the cipher states with the corresponding key and plaintext.

131

Chapter 4

Figure 4.16: Waveform output for the CISA encrypted cipher text starting at 1034911500

ps.

132

Chapter 4

Figure 4.17: Post-Route waveform of the CISA encrypted cipher text starting at

1034676642 ps

 133

Chapter 4

Figure 4.18: Test vector provided by NIST for AES ECB [224].

 134

Chapter 4

4.3.4. Hardware Utilization and Comparison

a) Using Boyar’s (Forward Direction) S-box

Table 4.5 shows the CISA AES using Boyar’s forward S-box is implemented and the

utilization results on a Spartan-3L XC3S1500L-4-FG320. For a single CISA AES

architecture, only a total of 1024 kilobytes memory used for the AES program and the

data and temp variables. This design only supports the forward encryption (the

decryption can be done within the sink of an RCE application).

Table 4.5: Hardware utilization of CISA AES using Spartan-3L XC3S1500L-4-FG320.

FPGA Components (Spartan-3L (XC3S1500L-4-

FG320))
Quantity

Utilization

Percentage
Total

Logic

Utilization

No. of Slice Flip Flops 69 1% 26,624

No. of 4 Input LUTs 187 1% 26,624

Logic

Distribution

No. of Occupied Slices 116 1% 13,312

No. of Slices containing only

related logic
116 100% 116

Total No. of 4 Input LUTs 197 1% 26,624

No. of LUTs used a logic 187 ~95% 197

No. of LUTs used a route-

thru
10 ~5% 197

No. of LUTs used a Shift

Registers
0 0% 0

No. of Bonded IOBs 115 52% 221

No. of LOCed IOBs 0 0% 28

No. of RAMB16s 1 3% 32

No. of BUFGMUXs 2 25% 8

b) Using The Proposed S-box (Bi-directional, Boyar’s forward S-box +

dual-inverse affine)

Table 4.6 shows the utilization results using the proposed S-box. The results show higher

utilization of 4 Input LUTS which is expected for the added function for decryption,

which the Boyar’s forward S-box lacks.

 135

Chapter 4

Table 4.6: Implementation Results of CISA AES using the proposed S-box.

FPGA Components (Spartan-3L (XC3S1500L-4-

FG320))
Quantity

Utilization

Percentage
Total

Logic

Utilization

No. of Slice Flip Flops 69 1% 26,624

No. of 4 Input LUTs 265 1% 26,624

Logic

Distribution

No. of Occupied Slices 157 1% 13,312

No. of Slices containing only

related logic
157 100% 157

Total No. of 4 Input LUTs 275 1% 26,624

No. of LUTs used a logic 265 ~96% 265

No. of LUTs used a route-

thru
10 ~4% 265

No. of LUTs used a Shift

Registers
0 0% 0

No. of Bonded IOBs 116 52% 221

No. of LOCed IOBs 0 0% 28

No. of RAMB16s 1 3% 32

No. of BUFGMUXs 2 25% 8

4.3.5. Throughput Calculation and Comparison

CISA AES implementation is based on the AES ECB mode. The total clock cycles

required for the data to be encrypted have to be calculated according to the number of

instructions executed for the complete AES operation. Each CISA instructions take nine

clock cycles to complete. The total instructions executed (including the key expansion for

AES) are:

 Key expansion: (90 bytes / 3) * 10 rounds = 300 instructions

 Shift Rows: (48 bytes / 3) * 10 rounds = 160 instructions

 Sub Bytes: (48 bytes / 3) * 10 rounds = 160 instructions

 Add Key: [((48 bytes / 3) * 10 rounds) + 16] + 1 ins = 176 instructions

 Mix Column: (288 bytes / 3) * 9 rounds+ = 864 instructions

 136

Chapter 4

 Total AES instructions used for a 128-bit / 16-byte encryption = (300 + 160 + 160

+ 176 + 864) = 1660 instructions

 Total bytes used in programming: (1012-128+1) = 884 bytes

 Total bytes used for AES operations = 525 bytes

 Total bytes used for other operations = 360 bytes

 Total instructions used for other operations in complete 10 rounds of AES: (360 /

3) * 10 rounds = 1200 instructions

 Grand total amount of instructions used for a complete 128-bit encryption: 1660

+ 1200 = 2860 instructions

 The total amount of time period for the complete AES encryption is: 2860 x 9

cycles = 25740 clock cycles.

 The total amount of time taken to complete the AES 128-bit encryption = 25740 x

(1/24MHz) = 25740 x 0.0416µs = 1073 µs

 CISA AES’s throughput is 128 bits / 1073 µs = 119.3 kbps (@ 24 MHz)

 The total amount of time taken to complete the AES 128-bit encryption = 25740 x

(1/20MHz) = 25740 x 0.05µs = 1287 µs

 CISA AES’s throughput is 128 bits / 1287 µs = 99.45 kbps (@ 20 MHz)

The completion time for encrypting 128bits of data is 1034676642 ps or approximately

1.035 ms (Figure 4.17). The throughput of the simulated system is 132.7 kbps.

4.3.6. Comparison with Other Small AES Processors

Rouvroy et al [191] and Chodowiec et al [189] opted to use a reduced fixed-width 32-bit

data-path, trading-off throughput to yield smaller circuits. Rouvroy et al ‘s [191] AES

design uses Spartan-III XC3S50-4 as the target device. Good and Benaissa’s [190, 225]

and Chodowiec & Gaj [189] uses Spartan-II FPGA for their development. Despite

Spartan-II being obsolete at the time of writing this thesis, comparisons are made using

the same platform to justify and compare the work. Table 4.7 shows the comparison of

CISA AES to Rouvroy et al ‘s [191] AES design. Table 4.7 shows that CISA is smaller in

 137

Chapter 4

terms of slices utilized at the cost of throughput. This is due to the 10 bit architecture

used and the 9 clock cycle instruction set used.

Table 4.7: Comparison with Rouvroy et al ’s [191] AES processors using Spartan-III

XC3S50-4.

Design & FPGA (Device)

Rouvroy et al [191] Spartan-III

(XC3S50-4)

CISA AES

Spartan-III (XC3S50-

4)

CISA AES

Spartan-III (XC3S50-

4)

Encryption Algorithm AES AES (Boyar Forward) AES (Proposed S-box)

Datapath Bits 32 10 10

Max. Clock Freq. (MHz) 71.5 24 24

Data-path Bits 32 10 10

Slices Used 163 116 157

Registers Used 126 69 69

LUT Used 293 197 275

No. of Block RAMs used 3 1 1

Throughput (Mbps) 208 0.133 0.133

Summary Fastest Smallest Smallest

Good and Benaissa’s [190, 225] work on AES ASIP was claimed to be the smallest AES

processor design on a Spartan-II XC2S15-6 FPGA. In terms of instruction set

architecture complexity, CISA AES uses 4 instruction sets and Good and Benaissa [190]

(including two unused instructions) uses 16 instruction sets. Table 4.8 shows the

comparison between the CISA and ASIP on instruction count.

Table 4.8: Instruction count with other small AES processors.

Designs CISA AES Good and Benaissa [190]

Instruction Set Count 4 16

Good and Benaissa [190] suggested a way to calculate equivalent slices for their ASIP

design. The total number of bits Good and Benaissa used for the AES program were 4480

bits. One slice of the Spartan-II FPGA consists of 2 LUTs and each LUT can provide 16 x

1 bit synchronous RAM. Thus, one slice of Spartan-II FPGA can store 32 bits of memory.

 138

Chapter 4

Good and Benaissa [190] stated that their program uses 12 bit instructions, resulting to

an equivalent calculation of 1 single LUT storing 2 instructions. A total of 4480 bits were

used in the form of BRAM can be converted to equivalent slices via: (4480 / 16) / 2 = 140

equivalent slices. The total area in terms of slices for Good and Benaissa’s design is 140 +

122 = 262 slices, with 0 BRAM. Table 4.9 shows Good and Benaissa’s design in

comparison to CISA AES using Spartan-II FPGA simulated using Xilinx 8.2i.

Table 4.9: Comparison with Tim et al ‘s [190] AES processors using Spartan-II XC2S15-6.

Design & FPGA

(Device)

Chodowiec &

Gaj [189]

Spartan-II

(XC2S30-6)

Good and

Benaissa

[190] Picoblaze

Good and

Benaissa

[190] AES ASIP

CISA AES

Spartan-II

CISA AES

Spartan-II

FPGA
Spartan-II

(XC2S30-6)
Spartan-II (XC2S15-6)

Encryption

Algorithm
AES AES AES

AES (Boyar’s S-

box)

AES (Proposed

S-box)

Datapath Bits 32 8 8 10 10

Max. Clock Freq.

(MHz)
60 90 72.3 24 24

Data-path Bits 32 8 8 10 10

Slices 222 119 122 145 175

No. of Block

RAMs used
3 2 2 3 3

Block RAM size

(kbits)
4 4 4 4 4

Bits of block

RAM used
9600 10666 4480 9910 9910

Equiv. slices for

Memory
300 333 140 310 310

Total Equiv.

Slices (Est.)
522 452 262 455 485

No. of 4 input

LUT used
- - - 247 307

Ave. Throughput

(Mbps)

Average

encryption-

decryption

including key

expansion

166 0.71 2.18 0.13 0.13

Performance,

Typical

throughput per

slice (kbps/slice)

- 1.6 8.3 0.3 0.27

 139

Chapter 4

Design & FPGA

(Device)

Chodowiec &

Gaj [189]

Spartan-II

(XC2S30-6)

Good and

Benaissa

[190] Picoblaze

Good and

Benaissa

[190] AES ASIP

CISA AES

Spartan-II

CISA AES

Spartan-II

FPGA
Spartan-II

(XC2S30-6)
Spartan-II (XC2S15-6)

Summary
Large area,

high speed
Software based

Smallest 8 bit

architecture

Smallest 10 bit

architecture

Smallest 10 bit

architecture

The CISA AES is not the smaller design compared the Good and Benaissa’s [190] ASIP.

Good and Benaissa’s ASIP has an advantage of using a very simple processing core that

performs primitive operations such as moving 8-bit data, finite-field multiply by 2 (ffm2),

finite-field division by 2 (ffd2) and XOR. The primitive operations used in ASIP AES are

great in reducing computation complexity considering that ASIP AES only runs AES.

The ASIP primitive finite-field operations are highly specific to AES. Hardware

implementation of ffm2 and ffd2 are static logic, which defines the instruction set

architecture. The CISA is expected to be smaller than 32 bit architectures because of the

register size. Good and Benaissa’s ASIP has the better results in terms of area but CISA

has the flexibility to operate other programs due to its Turing-Complete nature and not

highly specific to only a single cipher. The CISA is also expected to utilize more memory

for the program because of the URISC’s nature for larger program memory.

4.3.7. Comparison with Other Small S-boxes

To compare S-box implementations, the S-box by Boyar et al [212] is chosen to be a

benchmark as it is the smallest known S-box. The total gate count for the Boyar et al ‘s

S-box is 115 gates. The comparisons with different S-boxes and the comparison of gate

counts are shown in Table 4.10.

Table 4.10: The comparison of different S-boxes.
Basis Type XOR XNOR NAND / AND NOT MUX Total Gates

Proposed CISA AES S-Box

(bi-directional)

Merged 107 4 32 - 16 159

- - - - - - -

- - - - - - -

 140

Chapter 4

Basis Type XOR XNOR NAND / AND NOT MUX Total Gates

- - - - - - -

- - - - - - -

Boyar [212] (Forward S-box)

- - - - - - -

S-box 79 4 32 - - 115

- - - - - - -

Boyar [71]

(Complete, bi-directional)

Merged 144 14 34 - 16 208

S-box 90 4 34 - - 128

Inv S-box 83 10 34 - - 127

Edwin [92]

(schematic gate count)

Merged 217 - 45 - 16 279

S-box 193 - 45 - - 238

Inv S-box 177 - 45 - - 222

Canright [69]

Merged 107 0 36 2 16 253

S-box 91 0 36 0 0 195

Inv S-box 91 0 36 0 0 195

Mentens [214]

Merged 118 0 36 0 16 271

S-box 96 0 36 0 0 204

Inv S-box 97 0 36 0 0 206

Satoh [68]

Merged 119 0 36 3 16 275

S-box 100 0 36 0 0 211

Inv S-box 99 0 36 0 0 209

Worst

Merged 131 0 36 0 16 293

S-box 107 0 36 0 0 223

Inv S-box 106 0 36 0 0 222

Assuming a multiplexer cost eight gates, the proposed S-box configuration uses 2 MUXes,

which costs 16 gates total. Canright [69] assumes an 8-bit MUX is equivalent to 8 gates

hence 16 gates is used in the calculations for the total gate count [69]. The proposed S-

box configurations had shown gate count improvement in the merge category. Merged S-

box is more popular in designing an RCE system that performs both on-node encryption

and decryption. A forward S-box has smaller gate count and an encryption-only program

can reduce the amount of logic and memory required when only encryption is required

on-node.

 141

Chapter 4

4.4. Summary

In this chapter, an improved S-box with lower gate count, implemented together with a

low-complexity CISA AES processor is presented.

To summarize, this chapter presents the following:

1) TISC is used as the basic platform for CISA AES application.

2) Novel S-Box improvement (smaller gate-count than existing work is presented).

3) Minimization of the inverse affine circuit, from 24 gates to 14 gates.

4) CISA AES using Boyar’s forward S-box utilizing 116 slices using Spartan3

XCS1500L-4 FPGA.

5) CISA AES using the proposed bi-directional S-box utilizing 157 slices using

Spartan3 XCS1500L-4 FPGA.

.

 142

Chapter 5

CHAPTER 5

LOW-COMPLEXITY MULTI-CIPHER CRYPTO-PROCESSOR

ARCHITECTURE FOR VISUAL SENSOR RESOURCE

CONSTRAINED ENVIRONMENTS – A NOVEL SOLUTION

__

5.1. The Proposed Multi-level, Multi-cipher Architecture (MMA)

The proposed MMA is a global architecture that utilizes the features of TISC Skipjack

and CISA AES, creating a system that allows multiple ciphers to co-exist within the

same crypto-system. The instruction sets for TISC Skipjack are sub-set of the CISA AES

instruction sets. Therefore, the TISC Skipjack and CISA AES share the same ALU (or

crypto-blocks). A single CISA AES processor can operate both Skipjack and AES because

both ciphers can be operated within the same CISA framework. In the context of a

crypto-processor, hardware accelerated ciphers are treated as ‘crypto-cores’. Hence TISC

Skipjack, CISA AES, or CISA in general are treated as ‘crypto-cores’ within the same

context.

Figure 5.1 shows the MMA dual crypto-processor block design with reconfigurable data

path around the cores. Two models of MMA are proposed. The first model is a multi-

cipher configuration with the coupling of a CISA Skipjack core and a CISA AES core,

forming the multi cipher architecture (MCA). The second model consists of two

independent AES processors and is referred to as the NAES in this thesis.

 143

Chapter 5

Data input

Global Crypto-processor

Crypto-

processor 1

Crypto-

processor 2

Data output

Reconfigurable

Global Data-path

Memory 1 Memory 2

Data-path 1

Data-path 2

Figure 5.1: The overview of the generic MMA model.

The pairings of the AES and Skipjack crypto-processors are presented in Table 5.1. The

implementation of the crypto-processors can be referred to the TISC Skipjack (Chapter 3)

and CISA AES (Chapter 4). Within the CISA AES ALU, there are 4 logic circuits: Adder,

XOR, xTime and Sub Bytes. The TISC Skipjack ALU only has Adder and XOR.

Comparing the two ALUs shows that the Adder and XOR are common to both. Therefore

these two blocks can be shared between the processors. This sharing between the AES

and Skipjack can be referred to as ‘ALU Sharing’ or ‘Crypto-block Sharing’ of the CISA.

The MMA dual crypto-processor design allows the AES cipher can be substituted with

Skipjack cipher and vice versa since both share common ALUs. Figure 5.2 illustrates

idea of MMA models being able to interchange since ALUs can be shared.

Table 5.1: The illustration of configuration settings for MMA model 1 and 2, by pairing

AES and Skipjack.

MMA Crypto-processor 1 Crypto-processor 2

Model 1 (MCA) CISA AES CISA Skipjack

Model 2 (NAES) CISA AES CISA AES

 144

Chapter 5

xTime

xTime_Out

XOR

XOR_Out

Sub

Bytes

Sub Bytes_Out

Adder

Adder_Out

FUNC

Code ALU Output Mux

ALU_Out

Skipjack ALU

Adder & XOR
AES ALU

Figure 5.2: The selection of ALU with in the cores in determination of the core behaviour.

5.2. The Proposed MMA Models

5.2.1. The MCA (MMA model 1)

The MCA is a design that consists of two independent CISA processors: the CISA AES

and the CISA Skipjack. Using a cipher switch, the plaintext data is sent to the selected

crypto-core for encryption. The MCA setting fits nicely in a reconfigurable MMA dual

crypto block design as the crypto-cores can be simple redefined by changing the memory

unit. Figure 5.3 show the CISA Skipjack and CISA AES within a same configuration of

the CISA architecture.

The MCA crypto-cores run on ECB (Electronic Cook Book) mode. Figure 5.3 illustrates

example scenarios and factors for the cipher switching. For instance, the stronger AES is

used when system battery is sufficient and switches to the Skipjack when the battery is

low, sustaining the system’s operation by coping to the power factors. Other factors such

as the threat detection, bandwidth traffic and security clearance can be used as a

‘decision factors’ for the cipher switching. Figure 5.4 shows the switch is programmed to

be triggered by 1 or 0. In a scalable crypto-system, the bit-length for the switch is

increased in proportion to the number of crypto-cores within the system. In this chapter,

only the pairing of the AES and Skipjack is introduced. Figure 5.5 shows the overview of

 145

Chapter 5

the multi-cipher global architecture, to choose between using a TISC Skipjack or CISA

AES or any other cipher processors via a cipher switch.

Memory Unit

(forward encrypt)

CISA Skipjack

Processor

(Core 1)

Memory Unit

(forward encrypt)

CISA AES

Processor

(Core 2)

Cipher Switch

Cipher

Output

Data
Switch

Control

0 1

Figure 5.3: The overview of MCA with AES and Skipjack.

TISC Skipjack

Program

CISA AES

Program

Cipher

Output

Cipher

Switch

Security

Clearance

Bandwidth

Traffic

Availablity

Remaining

Battery

Life

Figure 5.4: An illustration of example ‘decision factors’ to determine a cipher switch.

 146

Chapter 5

Image

Processing

Input Image

Transmission

to sink / server

Unsecured

Medium

Compromised

routing nodes

Eavesdropping

Unsecured

Environment

Global Architecture

AES

(forward

encrypt

ECB)

Skipjack

(forward

encrypt

ECB)

Cipher Output

Level 2Le
ve

l

1

Cipher

Switch

The proposed Multi-cipher model

Multi-cipher Architecture

Figure 5.5: The overview of a multi-cipher architecture (MCA) by coupling AES and

Skipjack algorithm.

5.2.2. The NAES (MMA model 2)

The second model termed the NAES, consists of two individual CISA AES processors.

Figure 5.6 depicts the NAES global data path in comparison with a typical Feistel

structure. The construction of the global Feistel structure [226] states that the exchange

of intermediate values, also known as a permutation, takes place at the end of each

encryption round to inject diffusion property [227]. Figure 5.6 (a) illustrates the Feistal

structure [228, 229]. The proposed NAES comprises two AES processors running

standard AES ECB mode encryption with a 128-bit key size. The cross-swapping

exchanges the results of the current cipher state at the end of each encryption round. To

complete the NAES, the swap is executed the end of each Mix-Column operation.

Each CISA AES round has its own key and key schedule. The keys can be identical or not

depending on the application. During NAES decryption, the normal AES decryption

applies with the original key schedule used in the reverse order. Figure 5.6 (b) illustrates

the idea of a global symmetric structure for NAES and Figure 5.7 illustrates the

 147

Chapter 5

proposed NAES global rounds. A small box with a ‘plus’ sign is used to illustrate the key

addition in Feistal-like ciphers.

Block1 Block2

Block1 Block2

+

a)
AES Block1 AES Block2

AES Block1 AES Block2

+ +

b)

Key 2Key 1

Figure 5.6: The difference between a typical Feistal structure (left, (a)) and the global

symmetric structure for NAES (right, (b)). A small box with a ‘plus’ sign is used to illustrate

the key addition in Feistal-like ciphers.

 148

Chapter 5

Shift Rows

Sub Bytes

Mix Colums

Plain Text 1

Shift Rows

Sub Bytes

Mix Colums

Plain Text 2

Round Key 2 (0)Round Key 1 (0)

Round Key 2 (i)Round Key 1 (i)

Shift Rows

Sub Bytes

Mix Colums

Shift Rows

Sub Bytes

Mix Colums

Repeat for 9

rounds

Shift Rows

Sub Bytes

Round Key 2 (i)

Round Key 2

(Nr)

Cipher Text

Shift Rows

Sub Bytes

Round Key 1 (i)

Round Key 1

(Nr)

Cipher Text

Figure 5.7: The illustration of a NAES using two separate AES processors, cross-

swapping the ciphers at the end of each round17.

17 Figure published in: Kong, J. H., L.-M. Ang, et al. (2013). "Minimalist security and privacy

schemes based on enhanced AES for integrated WISP sensor networks." Int. J. Commun. Netw.

Distrib. Syst. 11(2): 214-232, Figure 4.

 149

Chapter 5

In a standard AES round function, Sub-Bytes, Shift Rows and Mix Column are applied to

the cipher. While designing NAES, the involvement of two keys occurs when the

intermediate values are swapped at the end of a round. When two keys are involved in

the encryption, a single wrong key added will result to the failure to decrypt the cipher.

The cipher cross-swapping has to be symmetrical and both AES processors have to be

run concurrently. Parallel AES execution will ensure that both cipher states are in the

same round.

The Shift Rows, Sub-Bytes and Mix Column are byte oriented operations, there are no

limitations as when and where the cross-swapping should occurs. The only issue

regarding the cipher’s complete round functions is that the cross-swapping has to either

occur before or after a key is XOR into the cipher concurrently. This is to ensure that the

cipher is in the correct state. A wrong round key added will result to a total decryption

failure. Figure 5.7 shows two AES round functions executed in parallel and the ciphers

are exchanged at the end of every round functions.

Within the NAES, the independent cores are the made up of two CISA AES processors.

Both CISA AES processors are driven by independent controllers and have their own

memory units. The illustration of the NAES is shown in Figure 5.8. The Global PC acts

as the reset mechanism to drive the CISA AES processors to start to program at a

specific memory location, in order to run the AES to a complete 10 rounds. Figure 5.9

shows the overview of the global architecture with two AES processors as cores in a

system.

 150

Chapter 5

Memory Unit

(forward encrypt)

CISA AES

Processor

(Core 1)

Memory Unit

(forward encrypt)

CISA AES

Processor

(Core 2)

Global PC

Cipher 1 Cipher 2

Cipher 1Cipher 2

Figure 5.8: The overview of NAES supported by two CISA AES processors18.

Image

Processing Enhanced AES

AES

(forward

encrypt)

AES

(forward

encrypt)

Input Image

Transmission

to sink / server

Unsecured

Medium

Compromised

routing nodes

Eavesdropping

The proposed dual key input AES

model

Unsecured

Environment

Global Architecture

Figure 5.9: The overview of NAES dual-key architecture supported by two CISA AES

processors.

18 Figure published in: Kong, J. H., L.-M. Ang, et al. (2013). "Minimalist security and privacy

schemes based on enhanced AES for integrated WISP sensor networks." Int. J. Commun. Netw.

Distrib. Syst. 11(2): 214-232, Figure 5.

151

Chapter 5

5.3. Minimalist Security and Privacy Schemes

A cryptographic processor for RCE has to possess the necessary security functions and

primitives, making it adequate for formulating secure protocols. Using MMA, simple,

minimalist security schemes can be formulated. This section presents a simple

authentication method and key exchange scheme for tag-node networks based on the

MMA model 2 designed to solve the communication issue of newly injected eRCE devices.

Section 5.3.1 introduces an authentication method that incorporates a level of encryption

to the target payload thus offering the function to identify the original sender of the data.

Section 5.3.2 introduces a minimalist approach for a tag-node network to securely

exchange secret keys.

In MMA model 1, several pre-existing conditions have to be established for the security

keys to be used. Figure 5.10 illustrates the keying conditions.

Security key conditions for use:

1) The Tag has its own secret private key19 for encryption.

2) The Nodes have two set of secret private keys (as NAES requires two private

keys with 2 key schedules.).

3) The Sink holds all the keys (node keys and the tag keys).

4) The security depends on the secrecy of these private keys.

19 The ‘private key’ terminology used in this thesis is to describe the nature of the keys. A private

key is the key which is kept privately to within the system and the key holder is the sole owner

of such key.

152

Chapter 5

Holds the key

database

Holds 2

private keys

Holds 1

private key

RC5, AES, Anubis, etc
[NAES]

Sensor Node

with RF

Reader

Sink Server
WISP / RFID

tags

Figure 5.10: The illustration of a WSN with the stored keys in the system.

Two schemes to be presented are:

1. A tag authentication scheme using the NAES model.

2. A secure key exchange and renewal for non-synchronized platforms

1`1

5.3.1. Tag Authentication using NAES

The proposed authentication methodology involves encrypting and authenticating the

data from the tags, effectively using the tag ID as a ‘public key’20. In a WSN, the sensor

nodes hold the responsibility to gather and route the sensor data all the way back to the

server sink for post-processing. The important data extracted from the tags are prone to

theft and tampering and there is no way of securing the data if the encrypting cipher is

weak. The tags have a unique identification number like any other eRCE tags. With a

standard compliant RF reader, the ID info can be extracted out of the tags. Here are

some of the assumptions made before realizing the privacy scheme.

20 In the context of PKC, a ‘public key’ is a key made publicly available and not a secret. The tag ID

can be read with any compliant reader and therefore the tag ID is considered public knowledge.

Using the tag ID as a key is akin to using the ‘public key’ in the PKC context.

153

Chapter 5

Assumptions:

 The tag ID is not a secret and can be extracted.

 The tag is not clone-able, not forge-able and tags IDs are unique.

 The tag has a pre-deployed encryption (block cipher) for secrecy.

 The data transfer from tag to sensor node is assumed secured (no man-in-the-

middle attack).

In an environment where the sensor node has to monitor tens and hundreds of tags,

source identification is required to verify that from which source the data originated.

Since the data transferred from the tag to the node is assumed secured, then the next

step would be to digitally 'sign' the extracted data with the tag's ID. By using NAES, the

data encryption process takes in two key inputs: the node's private secret key and the

tag's ID. Figure 5.11 illustrates the proposed authentication process.

NAES
Data

(from

WISP)

Node’s Secret Key

- as Key 1

Tag ID

- as Key 2

Cipher-text

(signed and

encrypted with

Tag ID)
NAES

Node’s Secret Key

- as Key 1

Tag ID

- as Key 2

Encryption

(Sensor Node)

Decryption

Sink (Server)

Data

(from

WISP)

Figure 5.11: The overview of the authentication process using NAES.

Figure 5.11 shows the authentication the encrypted data by decrypting it with the tag ID

as one of the keys. For a successful NAES decryption, both keys have to be correct. A

single wrong key will not result to the data decryption hence, the data is ‘signed’ with the

tag ID and protected with encryption. Even if the Tag ID can be easily extracted, the

decryption of the data is not possible because the NAES involves two keys. Verification

154

Chapter 5

of the data can be deduced from the correctness of the decrypted data. The preliminary

security analysis of the proposed authentication scheme will be discussed in the section

5.4.2.

5.3.2. Secure Key Exchange and Renewal

One of the biggest problems in symmetric encryption is key management. In order to

securely exchange secret keys, the system has to adopt the public key cryptography for

public key generation using the private key with complex computation. For secure

communication to take place, each party has to have the same encryption or decryption

key. Keys are usually transferred to the other party in a secure manner via some public

key encryption. But since the existing system is using a symmetric cipher primitive, the

PKC and block ciphers are not practical to coexist in the same system, weighing down

the system’s resources [228]. Shamir et al devised a protocol called the Three-Pass Key

Exchange Protocol [228, 230, 231]. The protocol is highly dependent on a commutative

cipher. A simple XOR is such a commutative cipher.

An XOR cipher is one in which the order of encryption and decryption is interchangeable,

just as the order of multiplication is interchangeable, for example: A * B * C = A * C * B

= C * B * A. In order to use this commutative cipher, an XOR block function has to be

provided by the computing engine. The ALUs in the CISA architecture consists of an

XOR block which is perfectly fine for the implementation. By using this XOR block, the

architecture is able to perform the XOR cryptography. Lightweight tags are capable of

executing XOR operations [141], so this is practically feasible for both RCE and eRCE.

For the key exchange to work, the key setup and the secure padlocking phase has to be

laid out. The proposed steps are shown below.

Key exchange steps:

1) The sink is to issue a new private key for the tag, namely Key X.

155

Chapter 5

2) The sensor node treats the Tag ID as a plaintext and encrypts it using the NAES,

with its 2 original secret private keys. The output of the encrypted Tag ID is

named the ‘session key 1’. (Key A)

3) On the tag’s side, the tag will use its private key to encrypt its own ID, resulting

‘session key 2’. (Key B)

4) By using XOR, the node XOR the key A with key X. (A * X)

5) The node sends it over to the tag, and the tag ‘XORs’ its key B to the product. (A *

X * B)

6) After sending it back to node will apply the XOR with Key A onto the product

again. (A * X * B) * A = X * B

7) And finally at the tag side, the tag XOR its Key B onto the product. (X * B) * B =

X

8) Therefore, X is securely transferred to the tag’s side.

With the steps above, the Key X is transferred to the tag’s side, the tag is able to update

its private key to this Key X, and therefore, key exchange is complete. Figure 5.12

illustrates the overall process of this padlocking.

156

Chapter 5

Sink Server

Sensor

Node

WISP / RFID Tags

Sends to node

[NAES]

1) The sink issues a

new key (Key X)

intended for the tag.

2) The node encrypts

the tag ID producing

a key (Key A)

3) The node XORs

(encrypt) the Key X

using Key A

A * X = (A * X)

NODE TAG

(A * X) * B =

(A * B * X)
5) The tag XORs

(encrypt) the product

from the node using

Key B

1

2

3

6

5

7

(A * B * X) * A

= B * X
6) The node XORs

(decrypt) the product

from the tag using

Key A

(B * X) * B = X

7) The tag XORs

(decrypt) the product

from the node using

Key B

8 (A * B * X) * A

= B * X
8) The node XORs

(decrypt) the product

from the tag using

Key A

4) The tag generates

a new key (Key B) by

encrypting its own ID,

using its own secret

private key.

4

9

Old Key Key X

9) The tag’s secret

key will be replaced

with Key X, hence

key renewed.

Figure 5.12: The overviews of the key exchange scheme using the Three-Pass method

and NAES21.

21 Figure published in: Kong, J. H., L.-M. Ang, et al. (2013). "Minimalist security and privacy

schemes based on enhanced AES for integrated WISP sensor networks." Int. J. Commun. Netw.

Distrib. Syst. 11(2): 214-232, Figure 7.

157

Chapter 5

5.4. Study and Analysis of NAES

5.4.1. Simulation Results for MMA model 1 (Effects on Images)

The effects of the proposed NAES direct encryption onto image data is simulated and

discussed in this section. JPEG images are encrypted directly as it is without additional

image processing in order to observe the perceptual degradation effect of NAES. The

dual-key dual channel NAES is simulated using the Matlab 2012a. An ideal cipher-image

histogram has to approximate the uniformly balanced distribution of cipher text values.

Each two adjacent encrypted pixels should be statistically non-correlated [232]. To test if

the NAES is able to encrypt highly-correlated images to produce uniform distributed

cipher texts, a sample image with dimensions of 512 by 512 pixels and in grayscale is

used. The data path scanning for both images are set to ‘ROW’ as in the encryption is

done row by row and via forward encryption ECB mode. Figure 5.13 shows the

comparison between NAES and AES encrypting an image directly using an image with a

fair amount of highly-correlated pixels. The effect of the encryption shows that both AES

and NAES perform similarly with an output of uniform distribution of cipher text. The

AES and NAES encrypted image shows acceptable perceptual confusion. Figure 5.14

shows the same experiment but with another scanning method. The effect of the

encryption with 4 by 4 block scanning shows both AES and NAES perform similarly with

an output of uniform distribution of cipher text.

158

Chapter 5

Figure 5.13: The comparison of AES and NAES (row input) on pixel distribution of

encrypted images and histogram.

Figure 5.14: The comparison of AES and NAES (4 x 4 pixels per block input) on pixel

distribution of encrypted images and histogram.

N
u

m
b
e
r

o
f

P
ix

e
ls

N
u

m
b
e
r

o
f

P
ix

e
ls

Pixel Colour Depth in 8-bit Grayscale (Decimal 0 – 255)

Pixel Colour Depth in 8-bit Grayscale (Decimal 0 – 255)

159

Chapter 5

A portrait image with a simple and uniform background is used for the next experiment.

AES is known to perform poorly when encrypting image directly with highly correlated

neighbouring pixels. The results in Figure 5.15 showed improvement over the AES with

uniform distributed cipher text using NAES and also shows that the AES performs

poorly when encrypting an image that has a large amount of strong-correlated pixels.

Figure 5.16 shows the 4 x 4 block scanning encryption and the NAES shows slight

improvement over the AES. Figure 5.15 and Figure 5.16 shows that the AES encrypted

image has subtle imagery of certain pattern portraying a shape. The NAES shows that

improves in for both row and 4 by 4 scanning path.

Figure 5.15: The comparison of AES and NAES (row input) on pixel distribution of

encrypted images and histogram.

N
u

m
b
e
r

o
f

P
ix

e
ls

Pixel Colour Depth in 8-bit Grayscale (Decimal 0 – 255)

160

Chapter 5

Figure 5.16: The comparison of AES and NAES (4 x 4 pixels per block input) on pixel

distribution of encrypted images and histogram.

Figure 5.17 shows the 4 by 4 ‘even and odd’ block path scanning methodology is used for

the experiment. The 4 by 4 ‘even and odd’ block path scanning method is method to sort

the image blocks into a 4 by 4 pixel blocks and labelling them with ‘1’, ‘2’, ‘3’ and etc.

subsequently and encrypt the block-pairs (even-odd pairing input to the NAES). This

method of scanning showed slight improvement over the normal 4 x 4 block scanning.

Figure 5.18 shows the comparison of AES, NAES and AES in cipher-block-chaining (CBC)

mode, which is a stream cipher mode. It is observed that the AES-CBC performs the best

for direct image encryption. The simulation results presented in the section shows that

the NAES is capable of performing perceptual image encryption and showed

improvements of direct AES encryption on image with high pixel correlation.

N
u

m
b
e
r

o
f

P
ix

e
ls

Pixel Colour Depth in 8-bit Grayscale (Decimal 0 – 255)

161

Chapter 5

Figure 5.17: The comparison of NAES using even and odd block input.

Figure 5.18: The comparison of AES, NAES and AES-CBC.

N
u

m
b
e
r

o
f

P
ix

e
ls

N

u
m

b
e
r

o
f

P
ix

e
ls

Pixel Colour Depth in 8-bit Grayscale (Decimal 0 – 255)

Pixel Colour Depth in 8-bit Grayscale (Decimal 0 – 255)

162

Chapter 5

5.4.2. Discussions on NAES Security Issues

The NAES key schedule involves 2 different keys. If a set of NAES encrypted data is

divided into two for transmission via different route paths, the adversary will not be able

to decrypt the data with only half of the data set and 1 stolen key unless both the 2 keys

and 2 data parts are compromised. This further increases the complexity for the attacks.

The proposed authentication scheme is a technique that takes the advantage of providing

encryption and signing the data with the origin tag ID. By assuming that the private

keys are secured and secret, the adversary known the tag’s ID will not benefit the

attacks as the NAES architecture requires 2 keys for a complete decryption. The

proposed authentication scheme only benefits the sink server for verifying the origins of

this data set.

Menezes et al [228] stated the XOR cipher is vulnerable to the known-plaintext-attack.

The ‘plaintext’ in the context of NAES key exchange, is the new key distributed from the

sink server. The key is only known to the involved parties and there is no way that the

key will be known by any other parties prior to the successful key exchange. Hence, the

XOR cipher is secured.

For systems that require a Random Number Generator (RNG), the tag ID can be used.

Tag ID encrypted using both NAES private keys resulting to a random number

(encrypted ID) provided that the NAES private keys are replaced as this session.

Encrypting the Tag ID using the same private key pairs will result to the same value and

the random number will no longer be random after first generation. On the tag reader’s

side, the tag’s own ID can also be encrypted using its own private key, resulting to

another new random number (encrypted ID). This two sets of encrypted ID can be used a

“session” or “partner” keys, without the need for key assignment from network sink. This

is an alternative solution to creating random numbers without the need for dedicated

RNG. The partner keys from both sides are secured using their own respective private

keys unless the private keys of both sides are compromised. Vernam Cipher [228] stated

that a key used for encryption is safe if it is used for only once. In the case of renewing

163

Chapter 5

keys using NAES, the tag’s private key is only used for once in the events of key renewal

(XOR operation), after the new key is received, the old private key will be discarded. This

is a good solution for a quick key exchange when threat is suspected and the thus

providing difficulty for adversaries to access sensitive data as the data value drops over

time. To formulate meaningful schemes using NAES, the strength and secrecy of the

system relies heavily on the secrecy of the secret keys used, not the publicly-know Tag ID.

In a deployed RCE, a single compromised sensor device would lead to the whole

communication network exposed to adversaries. The simplest method of key distribution

is to pre-load a single common key or hard-code pre-defined keys to all the nodes before

they are deployed. This method does not require after-deployment key distribution

because they are capable of exchanging messages with that existing key but the major

drawback for this method is that, even a single compromised node would compromise the

security of the whole system. Another obvious method for a shared-key distribution

scheme is to pre-load distinct pair-wise key pairs in every node. This method poses

another major problem as it lacks scalability which RCE requires. The number of keys

that must be stored in each node is proportional to the total number of nodes in the

network. Since sensor nodes are resource constrained, this brings overhead which limits

the scheme’s applicability except for it can An alternative solution is to use key

management schemes. But a key management scheme would further increase the

systems’ processing load and communication delay. The proposed NAES is to use two

encryption blocks with two keys method and the keys are presumed to be pre-loaded into

the system without key distribution operations overhead. When a visual RCE device

processes an input image and attempts to send the vital information back to the sink, it

has to relay the information from node to node until it reaches the sink. When the data

reaches to a compromised node, the secrecy of the data would be revealed and hence the

security mechanism fails. Data re-routing is usually used to solve the issue [61] but with

the proposed method, compromised nodes will not hinder the transmission and

jeopardize the secured data. When an image is traditionally encrypted, blocks of bit

streams are usually the input for the cipher. When there are two ciphers used, two blocks

164

Chapter 5

have to be fed into the cipher. Figure 5.19 illustrates the sample selection of even and

odds blocks to be encrypted.

1

Image captured from

sensor node

4

4

Alternate 4x4 byte

blocks are chosen to be

encrypted

1 2 1 2 1 2

Key 2

Key 1

Figure 5.19: The illustration of the selection of even and odd blocks in an image to be

encrypted together using two separate keys.

There are three ways NAES can secure information:

 Encrypt a single data block using two separate keys (replicating data, doubling

its size to fit the length of two keys).

 Encrypt two data blocks (even and odds tagged blocks) using the same identical

key.

 Encrypt the data two blocks using two separate keys.

To complete the NAES decryption, the two same keys have to be present. The only

weakness, like any other key-based security, is the dependence on the secrecy of the two

keys. For instance, when a node using NAES, together with the secret keys are captured

by adversaries, the NAES will be broken. But if one of the encrypted data blocks are

captured via routing nodes, there is no way to decrypt it because during the encryption

process, each cipher round has two alternate keys involved, effective doubling the key

165

Chapter 5

length (key length doubled due to the total length of two keys). Unlike the direct

encryption of using even and odd data block illustrated in Figure 5.19, NAES uses cipher

state swapping, having 2 key and schedules involved in the encryption. There is no way

for the correct NAES decryption when only 1 block and 1 key is captured. Both data

blocks and keys have to be acquired for full decryption.

Another advantage of the proposed method is that the decryption is not only key

dependent, but also data / plaintext dependent. For maximum security, the two

encrypted blocks can be sent separately thru the unsecured medium to the sink. Figure

5.20 shows that by sending the two encrypted blocks via different routes hence, further

increasing the difficulty to decipher the data because both data has to be present and

treated as a single big block of data.

Routing Node

Sensor Node

Sink /

Base Station

1

1
1

2

2

2

2

Tampered

Node

Figure 5.20: The illustration of one block of data and secret key being compromised and

the encrypted data is being sent separately via 2 different routes.

166

Chapter 5

5.5. Summary

A novel unified architecture for multi-level security application, based on CISA

processors is presented. Two models: MCA and NAES are proposed as a solution to the

increasing security challenges of RCE application. These are the following features:

1) MMA model 1 can be used encrypt with variable security levels by choosing

crypto-primitives, depending on the application.

2) MMA model 1 is aimed to be scalable and only ALUs and program memories are

required for additional primitives.

3) MMA model 2 is a dual-channel cipher configuration that has shown direct image

encryption has improved perceptual degradation against normal AES.

4) The mirrored CISA cores in MMA have shown configurability to become model 2

with the help of instruction set programming and ALU sharing.

5) The proposed simple authentication and key exchange and renewal scheme is

based on the usage of CISA and uses the re-configurability of FPGA to offer these

simple schemes.

6) The proposed authentication method uses the Tag ID as a form of ‘public key’ and

the Tag ID is not a secret.

7) The proposed key exchange and renewal scheme, based on the Three-Pass

method, requires only XOR.

167

Chapter 6

CHAPTER 6

HARDWARE IMPLEMENTATION OF SELECTIVE

ENCRYPTION ARCHITECTURE USING CISA AES AND

SPIHT

__

6.1. The Proposed Selective Encryption Architecture (SEA) - using

SPIHT coder and CISA AES

The newly proposed selective encryption architecture (SEA) aims to provide both image

processing and security features to RCE devices. SPIHT reduces the spatial redundancy

of input images, decreasing the amount of data stored and low-complexity CISA utilizes a

smaller logic area, adding security to the processed data. The SEA demonstrates the

practicality and feasibility of the CISA AES, SPIHT and SEA in real-world applications,

using the Celoxica RC203 board which houses the Vertex XC2V3000 FPGA. Figure 6.1

illustrates the overview of selective encryption concept, encrypting important bit-streams

before transmission over an unsecured communication channel.

Compression

Parti
al B

it S
tre

am
s

Decompression

Encrypt

Insignificant Bit Streams

Decrypt

Partial Bit Stream
s

Unsecured

Communication

Channel

Input Output

Figure 6.1: The overview of selective encryption architecture, securing important bit-

streams before transmission over an unsecured communication channel.

168

Chapter 6

A typical visual sensor RCE device is equipped with a camera sensor as an input to the

system. Image is captured via camera sensor and sent to the proposed SEA for visual

processing and encryption. Figure 6.2 shows the overview of a SEA design for visual

sensor RCE device.

Camera Sensor

Input Image

CISA

AES
MIPS

SPIHT

Memory

Selective Encryption Architecture

Visual Sensor Device

Figure 6.2: The overview of a selective encryption design for a visual sensor RCE device.

There are two data processing components within the SEA: SPIHT coder and CISA AES.

The SPIHT coder decomposes input images and creates two separate bit streams: the

refinement bits and the mapping bits. Figure 6.3 depicts the mapping bits being sent to

the CISA AES core for encryption whereas the refinement bits are passed through the

system without additional processes. The result of the selective encryption process yields

an encrypted mapping stream and an un-encrypted refinement stream. Both encrypted

mapping stream and un-encrypted refinement stream pose no security threats because

image reconstruction will hampered by the unusable encrypted mapping stream. The

refinements bit stream alone has no meaning without the tree structures within the

encrypted mapping bits. The CISA AES is used as the crypto-core for SEA. Figure 6.3

illustrates both the SPIHT and CISA AES in both ends of RCE: node and sink. The

169

Chapter 6

compression and encryption is done on-node and the decompression and decryption is

done within the network sink.

SPIHT

Coder

CISA

AES

(Encrypt)

Image captured from camera

sensors

Refinement Bit Streams

Mapping Bit Streams

E
n

c
ry

p
te

d
 B

it

S
tre

a
m

s

Unsecured

Communication

Medium

SPIHT

Decoder

CISA

AES

(Decrypt)

Decrypted / Retrieved Refinement

Bit Streams

R
e

fin
e

m
e

n
t B

it

S
tre

a
m

s

E
n

c
ry

p
te

d

M
a

p
p

in
g

 B
it

S
tre

a
m

s

RCE sink

RCE node / device

Original Image

Figure 6.3: The illustration of the SEA system using SPIHT and the CISA AES in both

ends of RCE22.

The SPIHT coder is realized using Million Instruction per Second (MIPS) processor.

Together with CISA AES, both the encryption and compression module is designed using

22 Figure published in: Kong, J. H., L.-M. Ang, et al. (2013). "A Very Compact AES-SPIHT Selective

Encryption Computer Architecture Design with Improved S-Box." Journal of Engineering 2013:

26, figure 32.

170

Chapter 6

FPGA environment to emulate an RCE device. The SPIHT decoder and CISA AES

decryption module is realized in PC software environment to emulate an RCE sink.

6.2.1. RCE Device Component - SPIHT Encoder and AES Encryption

The Celoxica RC203 board (APPENDIX II) which houses the Vertex XC2V3000 FPGA is

used for the implementation of the SEA. The codes are compiled using the Agility Design

Suite 5.0 software environment and Handel-C hardware description language. The

Celoxica RC203 board is equipped with a 330 Line CCD camera, connected via the on-

board camera port. FPGA programming is done via parallel port and communication to

the FPGA can be establish and accessed via serial port. The results of the data

processing are received via USB port on a personal computer. Figure 6.4 shows the

overview of the SEA design. Encrypted and refinement data are transferred to the PC

environment via wired connection of RS232 to USB standard.

MIPS

SPIHT

Coder

CISA

AES
Refinement Bit Streams

Mapping Bit Streams

E
n

c
ry

p
te

d
 B

it

S
tre

a
m

s

RS232 to USB

PC
Decode

(MATLAB)

RCE Sink Environment

(PC)

RCE Node / Device

Environment

(FPGA)

Camera

Input Image

Figure 6.4: The illustration of the internal SEA components and workflow.

171

Chapter 6

a) MIPS SPIHT

MIPS SPIHT processor is made up of three code blocks: Discreet Wavelet Transform

(DWT) module, SPIHT-ZTR encoder, and lastly the MIPS. Figure 6.5 shows the core

DWT and SPIHT-ZTR functions embedded within the main loop. Line 1380 shows the

CaptureFrame function called to read the image from the camera. Line 1390 runs the

DWT Spatial Module and line 1393 runs the DWT Temporal Module. And lastly, line

1400 runs the SPIHT-ZTR algorithm. In each of the DWT and SPIHT-ZTR function calls,

the RunCustomMIPS is executed.

Figure 6.5: The MAIN function within the MIPS SPIHT.

172

Chapter 6

After the DWT and SPIHT-ZTR coding are complete, mapping and refinement bits are

generated. The mapping bit stream generated is a long stream of data that can be

grouped into ‘blocks’ of data. The AES is block cipher and mapping data stream is

encrypted in ‘blocks’. A ‘block counter’ is used to count the amount of refinement bits

passed through the AES block cipher. The number of counted blocks is required in order

to correctly decrypt the stream. Bit-filling (concatenating the last block with either ‘1’s or

‘0’s) is used to fill the remaining bits of the mapping-stream to a full 128-bit block, with

‘0’s or ‘1’ as LSBs. Figure 6.6 shows the code part for counting bit blocks and filling up

mapping bits for a full 128-bit block. Concatenating most significant bits (MSBs) will

alter the meaning of the mapping bits in the last data block. LSBs are concatenated

instead.

Figure 6.6: Handel C-code for bit-filling to create a complete block.

173

Chapter 6

After the blocks are counted and grouped, the encryption can therefore begin. Figure 6.8

line 1503 shows the Run_AES_CISA pseudo-code, which is the function call for 128-bit /

16 byte block encryption. Mapping bit blocks are read and encrypted within the CISA

processor and saved in RAM before transmission to the sink for decoding and decryption.

Figure 6.7: Handel C-code for bit-filling to create a complete block.

b) CISA AES

To design a CISA AES, encryption variables, architectural and data-path description

have to be defined and initialized The CISA AES code can be found in APPENDIX I.

Figure 6.8 depicts a section of the block RAM initialized with the initial key value and

plaintext. The first line of the memory is reserved for the actually data block for

encryption. The second line is loaded with the secret key value of “00 11 22 33 44 55 66

77 88 99 AA BB CC DD EE FF”. The same secret key value has to be used in the

decryption counterpart to ensure a correct data reconstruction. The RAM address in

hexadecimal value 0x070 to 0x07F stores the intermediate values, constants and loop

174

Chapter 6

numbers. Figure 6.9 shows the code part for CISA FSM. Figure 6.10 shows the definition

of the four ALU components within the CISA AES.

Figure 6.8: An illustration of the Handel-C code for CISA AES encryption secret key

values and variables.

Figure 6.9: An illustration of the Handel-C code for CISA AES FSM definitions.

175

Chapter 6

Figure 6.10: An illustration of the Handel-C code for CISA AES ALU components.

Figure 6.11 shows the data-path register for the CISA AES. All the registers are driven

by the FSM states. The description of the CISA AES architecture can be found in

Chapter 4.

176

Chapter 6

Figure 6.11: An illustration of the Handel-C code for CISA AES data-path registers.

177

Chapter 6

c) RS232 to USB Connctivity

The RC203 board provides an RS232 interface to computer connectivity. To properly

interface with a PC, the RC203 has to be programmed to initialize the port. Within the

SEA design, the function “SendGroupBitsDigi” is defined and the partial codes are shown

in Figure 6.12 shows the configuration for the RS232 port and the baud-rate is set to

115200. Figure 6.13 shows the physical RS232 to USB converter used to connect the

RC203 board to the PC. A header is used to help the receiver to differentiate the mapping

stream and the refinement stream.

Figure 6.12: An illustration of the RS232 module initialization on RC203.

Figure 6.13: A picture of the RS232 to USB converter.

178

Chapter 6

6.2.2. RCE Sink Component - SPIHT MATLAB Decoder and AES

Decryption

When the encrypted mapping stream and the unencrypted refinement stream are sent to

the sink for decoding and decryption, the MATLAB environment is used emulate the

RCE sink component. To achieve the target behavior, three components has to be defined

within the MATLAB environment: the data receiver, the decoder, and the decryption

module. To receive the incoming bits sent from the SEA, a virtual serial port has to be

initialized and the baud-rate has to set to the same value with the transmitting module.

Figure 6.14 shows the configuration of the virtual serial port and RS232 interfacing via

the MATLAB environment.

Figure 6.14: An illustration of the Matlab-code for virtual serial port initialization.

The headers of each stream are read and identified to differentiate mapping and

refinement stream. Figure 6.15 shows the headers used to identify the received bit

stream. If the header read is a value of 12, the receiver halts the data reading from the

RS232 port and the data reception is complete. If the header value of 10 is received, the

bit stream is identified as a mapping stream. And finally, if the header read is a value of

11, the stream is identified as a refinement stream. Once all these data is received, they

are stored in four separate .mat files. This procedure is repeated for four times to receive

a total of four frames through a single transmission.

179

Chapter 6

Figure 6.15: An illustration of the Matlab-code for virtual serial port initialization.

After the bit streams are received, the next step is to perform decryption. Figure 6.16

shows the decryption function “inv_cipher” in line 76. The AES MATLAB code used was

acquired from Jörg J. Buchholz’s website [233]. After the mapping streams are decrypted,

the SPIHT-ZTR is executed to decompress and reconstruct the data streams into the

original images.

Figure 6.16: An illustration of the MATLAB-code for bit-stream AES decryption.

180

Chapter 6

6.2. Hardware Implementation

This section presents the hardware implementation results using real FPGA hardware.

Crypto-processors TISC Skipjack and CISA AES are implemented using Celoxica RC10

development board, housing Spartan-3L (XC3S1500L-4-FG320). The codes are compiled

using Handel-C and Agility Design Suite 4.0 software environment.

6.2.1. The Hardware Implementation of TISC Skipjack (Forward

Encryption)

Table 6.1 shows the hardware utilization of TISC Skipjack. The verification of the

encryption is done using the test vector provided by NIST and the correct output of the

cipher was displayed onto the 7-segment display.

Test Vector:

- Plaintext: 33221100ddccbbaa

- Key: 00998877665544332211

- Cipher text: 2587a1d300

Table 6.1: Hardware implementation results for TISC Skipjack using RC10.

FPGA Components (Spartan-3L (XC3S1500L-4-FG320)) Quantity Total Usage

Logic Utilization

No. of Slice Flip Flops 76 26,624 1%

No. of 4 Input LUTs 177 26,624 1%

Logic

Distribution

No. of Occupied Slices 116 13,312 1%

No. of Slices containing only related

logic

116 116 100%

Total No. of 4 Input LUTs 195 26,624 1%

No. of LUTs used a logic 176 195 ~90%

No. of LUTs used a route-thru 18 195 ~9%

181

Chapter 6

FPGA Components (Spartan-3L (XC3S1500L-4-FG320)) Quantity Total Usage

No. of LUTs used a Shift Registers 1 195 ~1%

No. of External IOBs 21 221 9%

No. of LOCed IOBs 21 21 100%

No. of RAMB16s 1 32 3%

No. of BUFGMUXs 3 8 37%

No. of DCMs 1 4 25%

6.2.2. The Hardware Implementation of CISA AES (Forward Encryption)

Table 6.2 shows the hardware utilization of CISA AES. The verification of the encryption

is done using the test vector provided by NIST and the output of the cipher was

displayed onto the 7-segment display.

Test Vector:

- Plaintext: 00112233445566778899AABBCCDDEEFF

- Key: 000102030405060708090A0B0C0D0E0F

- Cipher text: 69C4E0D86A7B0430D8CDB78070B4C55A

Table 6.2: Hardware implementation results for CISA AES using Boyar’s Forward S-box.

FPGA Components (Spartan-3L (XC3S1500L-4-FG320)) Quantity Total Usage

Logic Utilization

No. of Slice Flip Flops 100 1% 26,624

No. of 4 Input LUTs 342 1% 26,624

Logic

Distribution

No. of Occupied Slices 201 1% 13,312

No. of Slices containing only related

logic

201 100% 201

Total No. of 4 Input LUTs 361 1% 26,624

182

Chapter 6

FPGA Components (Spartan-3L (XC3S1500L-4-FG320)) Quantity Total Usage

No. of LUTs used a logic 341 ~94% 361

No. of LUTs used a route-thru 19 ~6% 361

No. of LUTs used a Shift Registers 1 ~0% 361

No. of Bonded IOBs 28 12% 221

No. of LOCed IOBs 28 100% 28

No. of RAMB16s 1 3% 32

No. of BUFGMUXs 4 50% 8

No. of DCMs 1 25% 4

To validate the robustness of the CISA, 10 test vectors were used to test the design for

potential encryption errors. Table 6.3 shows the 10 test vectors used and the encrypted

texts are verified using “AES – Symmetric Cipher Online” [234].

Table 6.3: The 10 test vectors used to test the CISA AES and their respective cipher texts.

Plaintext Cipher text

Key = 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

00 11 22 33 44 55 66 77 88 99 AA BB CC

DD EE FF

30 34 AD CB A1 67 ED C3 87 16 4F 44 F0

95 50 F2

12 23 34 45 56 67 78 89 9A AB BC CD DE

EF F1 00

56 DA 6E 2B 62 FF D0 5E 1B 45 C7 8E FB

95 A7 77

00 11 99 22 88 33 77 44 66 55 AA FF BB

EE CC DD

D8 24 E7 D1 9C C7 13 AB 3F C1 24 B1 8B

81 76 D2

FF EE DD CC BB AA 99 88 77 66 55 44 33

22 11 00

2D 47 D1 48 4A 79 25 FE 2A D2 1A 42 3F

21 E5 0C

22 99 33 88 44 77 55 66 11 00 EE FF DD

CC AA BB

2D D9 C3 E3 BA 7D CF 0F B8 5C 4D B9 96

70 91 FB

66 77 88 99 22 33 44 55 11 00 AA EE FF

DD BB CC

40 0D F1 83 23 7C 8A 8B B7 FA 13 03 5E

84 D0 0B

12 21 34 43 56 65 78 87 90 09 AB BA CD

DC EF FE

29 C1 3F B0 C9 19 5F 06 D0 1A 09 D9 0A

58 AD C0

12 34 65 78 90 AB CD EF 12 34 65 78 90

AB CD EF

56 D6 F8 F0 F6 E2 5A EF 80 0E B1 59 CD

6F 07 E3

183

Chapter 6

Plaintext Cipher text

Key = 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

FE DC BA 98 76 54 32 10 FE DC BA 98 76

54 32 10

16 87 C5 28 12 76 04 3D AD F7 0B 7F 94

91 C6 F4

AF BD EA 46 81 68 41 88 12 34 89 75 24

90 88 99

15 67 DA 8E 48 F0 0E DC 08 A8 2B B8 F7

09 8C 9F

6.2.3. The Hardware Implementation of SEA

The Celoxica RC203 board which houses the Vertex XC2V3000 FPGA is used for the

implementation of the SEA. The codes are compiled using the Agility Design Suite 5.0

software environment and Handel-C hardware description language. A complete system

of selective encryption with a CISA AES processor working side-by-side with a MIPS

SPIHT coder is implemented. A still-portrait image is displayed on a HP 17 inches LCD

monitor is used as an image input to the video camera to the SPIHT AES setup. The SEA

design was powered up for 24 hours to capture live images and the images were

encrypted and decrypted without errors. Figure 6.17 depicts the experimental setup for

the proposed SEA.

Figure 6.17: The experimental setup for the development of SEA.

184

Chapter 6

Four 128 x 128 image frames are captured, encrypted on-board, and sent to another

computer for decryption. The CISA AES is programmed to encrypt only the mapping bits

and both mapping and refinement bits are sent out to the host computer once the

encryption has completed. The received bits are then processed in MATLAB environment

and the last 2 frames are chosen for decryption to verify the correct encryption and

decryption. Figure 6.18 shows the four images capture from the SEA. Note Figure 6.19

shows an example of the selective-encrypted on the Lena image, capture via the 330 line

CCD camera. From perceptual observation, the encrypted frames are unintelligible.

Figure 6.18: The four selectively encrypted frames with the last two frames decrypted.

Figure 6.19: Selective encryption on Lena image.

The logic utilization results for the complete SEA can be found in Table 6.4. The number

of slice flip-flops occupied is 3692 at 12% utilization. The number of 4 input LUTs

occupied are 8793 at 30% utilization. As for the logic distribution results, Table 6.5 shows

a total of 6251 slices occupied. As for the LUT utilization report, Table 6.6 shows a total

of 10176 4 input LUTs were used, at 35% utilization. Table 6.7 shows other FPGA

components utilized by the FPGA implementation of SEA.

185

Chapter 6

Table 6.4: Logic utilization of SEA.

Logic Utilization Quantity Total Usage

No. of Slice Flip Flops 3692 28672 12%

No. of 4 Input LUTs 8793 28672 30%

Table 6.5: Logic distribution of SEA.

Logic Distribution Quantity Total Usage

No. of occupied Slices 6251 14336 43%

No. of Slice containing only related logic 6251 6251 100%

No. of Slice containing unrelated logic 0 6251 0%

Table 6.6: LUT utilization of SEA.

Components Quantity Total Usage

Total No. 4 input LUTs 10176 28672 35%

No. used as logic 8793 8793 86%

No. used as a route-thru 1257 1257 12%

No. used for dual-port RAMs 64 64 ~1%

No. used as 16x1 ROMs 30 30 ~0.5%

No. used as Shift Registers 32 32 ~0.5%

Table 6.7: Other components utilized by SEA

Components Quantity Total Usage

No. BUFGMUXs 4 16 25%

No. DCMs 1 12 8%

No. External IOBs 199 484 41%

No. LOCed IOBs 199 199 100%

No. of RAMB16s 66 96 68%

186

Chapter 7

CHAPTER 7

CONCLUSION

__

This thesis presents low-complexity, low-area cryptographic processors based on URISC.

RCE systems security requirements can be fulfilled using cryptographic primitives.

Cryptographic primitives suitable for RCE are concluded to be the AES and Skipjack. To

implement a low-complexity, low-area cryptographic processor for AES and Skipjack, the

Turing-Complete URISC is used as a foundation of the processor. By modifying the

URISC for cryptographic application, the low-complexity two instruction set computer

operating the full 64-bit Skipjack lightweight cipher is designed. The logic utilization for

TISC Skipjack on a Spartan-3L XC3S1500L-4-FG320 FPGA shows a total of 71 slices

occupied, 70 slice flip-flops and 94 4-input LUTs utilized. Using the TISC as a foundation,

the second design, CISA, operating the full 128-bit AES cipher is designed. The logic

utilization for TISC Skipjack on a Spartan-3L XC3S1500L-4-FG320 FPGA shows 157

slices occupied, 69 slice flip-flops and 275 4-input. The proposed AES S-box’s gate count

is decreased from Boyar’s [71] count of 208 to 159. The CISA AES is the smallest known

design FPGA compared to other designs on a Spartan-3 family FPGA.

The proposed TISC and CISA are rooted on a Turing-Complete architecture, which

allows them to be able to compute other arithmetic operations with additional

computation blocks. This feature enables the architecture to be scalable in a

reconfigurable environment. The behavior of the CISA depends on the program memory

loaded into the architecture. With multiple cipher programs loaded in CISA, the same

architecture is able to perform multiple ciphers. Unlike an ASIP which can only perform

a single specific task, a CISA can perform multiple ciphers in a single architecture with

the help of additional crypto-blocks. This feature is suitable for RCE applications to face

increasing security challenges by providing multiple security solutions in the form of

187

Chapter 7

cryptographic primitives while utilizing the same processor with just additional program

memories.

Other RCE security applications of the CISA were investigated for multi-cipher

cryptosystems, simple security schemes and direct encryption on images. By using CISA,

two models of multi-level, multi-cipher architecture (MMA) was proposed to provide

flexibility between resource overhead and encryption level required by the application.

MMA model 1 enables choice between cipher primitives deployed by switching between

cipher programs and sharing crypto-blocks. MMA model 2 enables simple authentication

and key exchange schemes. Direct image encryption using MMA model 2 shown

improvements compared to a direct AES encryption.

The final phase of the development is to implement a selective encryption architecture

(SEA) using MIPS SPIHT visual processor and CISA AES. A real hardware

implementation of the SEA is realized to emulate a working RCE, from on-node

processing and encryption to back-end data processing on a server computer. The Turing-

Complete nature tends to increase the memory utilization by large program sizes. An

SEA complements the CISA perfectly by reducing the memory storage by compressing

input image. Memory overhead is further decreased by selectively encrypting parts of the

compressed data. Four image-frames are captured, compressed, and selectively

encrypted on the FPGA and sent to a personal computer for decompression and

decryption. The design of SEA embodies the concept a secured RCE device of using CISA

as the security solution for visual sensor RCE. The subsequent sections present some of

the diverging areas of research to further improve the work presented in this thesis.

188

Chapter 7

7.1. Future Work

7.2.1. Design a complete TISC Suffix-Sort BWCA Security Architecture

Having a data compressor and encryption within extreme RCE has been a challenge.

Menezes et al [235] proposed a tweak on the block-sorting lossless data compression

algorithm (also known as the Burrow Wheeler Compression Algorithm –BWCA), to

provide a simple form image security. This proposal is beneficial for RCE because image

data can be compressed and encrypted at the same time. Heng et al [236] suggests that

the LZSS lossless compression can be used in RFID tags. Heng et al ‘s motivation is to

explore the possibility of RFID tags storing more data in future and using compression to

save memory in the tags. Kankonsae et al [237] mentioned that the tag’s cost and size

are related to the amount of data and information being carried, which would lead to the

need for low-complexity and high compression rate data compression implementation in

extreme RCEs.

Implementing the BWCA component, Burrow-Wheeler Transform (BWT), is memory

demanding because it endorses the lexicographic sort (also known as the suffix sort)

[238]. Sorting algorithm requires a Comparator. Therefore, a Compare and Branch if

Larger (CBL) instruction set has to be introduced. Together with the Turing-Complete

SBN, Figure 7.1 presents the pseudo-code of the CBL and SBN instructions. Similar to

the TISC Skipjack, the ALU configuration for TISC Suffix-Sort uses the SBN for

branching and CBL for comparison and no other unused instruction set or ALUs are

required. As for the conditional data swapping in sorting, SBN MOV is used to move data

from one location to another.

189

Chapter 7

SBN

Mem_B = Mem_B + (- Mem_A)

If Mem_B < 0 Goto (PC + C)

Else Goto (PC + 1)

CBL

Mem_A COMPARE Mem_B

If Mem_A > Mem_B Goto (PC + C)

Else Goto (PC + 1)

Figure 7.1: Pseudo-codes for TISC Suffix Sort instruction sets.

Martinez et al ‘s [239] parallel sorting scheme uses seven ‘compare and swap’ blocks and

a total of 4 levels are used. Based on the worst case of number of sorts that will occur,

using the parallel sorting strategy for 8 data requires 4 rounds of even and odd adjacent

comparators. To perform the same operations, instruction sets can be synthesized to

create a macro-instruction, to mimic Martinez et al ‘s parallel sorting scheme. The Figure

7.2 and Figure 7.3 show the pseudo-code of the sorting program.

Figure 7.2: The program codes written to execute the seven ‘compare and swap’ operation.

190

Chapter 7

Figure 7.3: The program code performs the data swapping from one memory to another

in the event of branching.

The notion of ‘compare and swap’ is divided into two separate actions: ‘compare’ and

‘swap’. With the first condition met, only then a ‘swap’ would occur. The pseudo-code in

Figure 7.2 represents the 7 comparisons made within the parallel sorting strategy (even

and odd adjacency comparison). The CBL instructions are used to point to the respective

memory locations for data comparisons. Firstly, the CBL instruction is called to compare

the first and second data (out of the 8). If data A is larger than data B, a branch will

occur hence, the comparison operation is completed. The second step would be the data

swapping. After JUMP operation is done, the new PC value will be starting point of the

architecture thus the data swapping operation begins. The program written covers all 7

comparisons. Once all the comparisons are made, a loop is injected to fulfill the N = 4

worst case iteration. The flowchart of the BWT lexicographical sort program is described

in the Figure 7.4.

191

Chapter 7

SWAP_1
(A1, A2)

SWAP_2
(A3, A4)

SWAP_3
(A5, A6)

SWAP_4
(A7, A8)

SWAP_5
(A2, A3)

SWAP_6
(A4, A5)

SWAP_7
(A6, A7)

A1 > A2 ?

A3 > A4 ?

A5 > A6 ?

A7 > A8 ?

A2 > A3 ?

A4 > A5 ?

A6 > A7 ?

Compare
(A1, A2)

Compare
(A3, A4)

Compare
(A5, A6)

Compare
(A7, A8)

Compare
(A2, A3)

Compare
(A4, A5)

Compare
(A6, A7)

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

LOOP = 4
?

END

START

YES

NO

NO

Figure 7.4: The flowchart of the 8 bytes sorting program.

7.2.2. Improvement on MixColumn and Power, Area and Delay Analysis

for CISA AES

The MixColumn is the largest code block in CISA AES. One improvement that can be

identified is the breakdown of MixColumn to smaller building blocks. The work by

Fischer et al [240] and Chitu et al [241] has given great insight in terms of suggesting a

MixColumn independent ALU. Within that ALU, a switch can be used to choose either

MixColumn or InvMixColumn. This is very similar to a bidirectional S-box, triggered by

a switch. This method will reduce the code size at the expense of a slightly larger ALU,

192

Chapter 7

dedicated for MixColumn. On the other hand, proper power, area and delay analysis

against other similar designs are considered vital to further validate the CISA AES

simulation results and to provide in depth analysis of the proposed methods.

7.2.3. Improvement on MMA Models

Figure 7.5 illustrates the possibility to mix with other symmetric ciphers within the

NAES architecture. In this thesis, the work based on mirrored AES cores is presented.

The next level of work would be to identify more suitable ciphers for this configuration.

As shown in Figure 7.5 a) and b), the MMA model 1 is depicted to use paired-cipher X

and Y. As for Figure 7.5 c), the diagram shows non-matching cipher’s matchup.

CIPHER

X

CIPHER

X

Global PC

CIPHER

Y

CIPHER

Y

Global PC

CIPHER

X

CIPHER

Y

Global PC
a) b) c)

Figure 7.5: a) Mirrored cipher X pairing, b) Mirrored cipher Y pairing, c) Cipher X and Y

paired in MMA model 1.

As for the MMA model 2, the future work would be to investigate the possible

configurations for other ciphers, other than the AES and Skipjack. This would greatly

increase the choice of ciphers and provide more flexibility, making the MMA scalable.

The proposed idea is illustrated in Figure 7.6. The feasibility of combining MMA with

mode 1 and 2 can be further investigated, creating a hybrid system with multiple levels

of cipher strength. Figure 7.7 depicts the pairings of NAES, AES and possibly the Anubis

cipher, which is a variant of the AES cipher.

193

Chapter 7

Cipher

A

Cipher

B

Cipher Switch

Cipher

Output

Data
Switch

Control

Cipher

C

Cipher

D

Figure 7.6: The overview of MMA model 2 with various ciphers.

Image

Processing

ANUBIS

(forward

encrypt)

AES

(forward

encrypt)

Enhanced AES

AES

(forward

encrypt)

AES

(forward

encrypt)

Input Image

Level 1

Mode

Level 2

Mode

Level 3

Mode
Transmission

to sink / server

Unsecured

Medium

Compromised

routing nodes

Eavesdropping

The proposed unified architecture for

multi-level security

Unsecured

Environment

Figure 7.7: The overview of a complete multi-level architecture with NAES, AES and

Anubis.

7.2.4. Compact Crypto- processor - ANUBIS (Extension of MMA model 1)

Following the MMA model 2, a good addition would be to include an AES-similar cipher

as a line-up since the adder and XOR block can be re-used. Hence, the ANUBIS cipher is

194

Chapter 7

implemented. The MISC ANUBIS is presented in this section because it is considered as

unfinished work. Figure 7.7 shows a complete system includes 3 different ciphers. The

hardware implemented MISC ANUBIS is presented in this section as an additional

component and supplementary work.

The MISC ANUBIS processor together with 4 customized ALU consists of 4 basic

hardware blocks as the ALU: Adder, XOR, xTimeAnu and Non-linear block (similar to

the S-Box in AES, and in this case it is the tweaked s-box with P and Q boxes). The

implemented MISC ANUBIS data-path is shown in Figure 7.8.

M
D

R

M
A

R

MAR_SEL

[9:8]

FUNC_WRITE

M
U

X
1

0

R
R’

0

MEMORY

UNIT

READ WRITE

N

CIN

FC

Anubis ALU

Adder

XOR

xTimeAnu

Non-

Linear

Z_IN

Z

N_IN

M
U

X
0

0
0

1
1

0
1

1

MUX1 0

PC_IN MDR_IN

MAR_IN

COMP_SEL

P
C

0

MUX0 1

MUX
0 1 PC_OUT_SEL

PC_OUT

MEM_OUT

MDR_OUT
INPUT_B

INPUT_A

R_WRITE

MEM_OUT

ALU_OUT

ALU_SEL

Figure 7.8: The illustration of the MISC Anubis architecture.

.

In the Anubis cipher, the linear diffusion and non-linear layer is very similar to the Mix

column and sub-bytes in the AES. The only difference is that the linear diffusion is an

involution operation and the values of the matrix are different comparing with the mix

column. The s-box in AES has the same size as the non-linear component in Anubis (8

bits in, 8 bits out). Since the Anubis is an involution cipher, the non-linear component for

195

Chapter 7

decryption is non-existent. The Anubis ALU consists of the 4 main logic circuits: the

Adder, XOR, xTimeAnu, and the non-linear block.

Goodman et al [190] stated that the Xtime block used and designed was a reference to

the GF(28) reduction polynomial in AES. When designing this similar block for Anubis,

the XOR points for the bit locations have to be re-routed. Figure 7.9 shows the

redesigned xtime block specifically for ANUBIS namely the xTimeAnu.

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

a
7

a
6

a
5

a
4

a
3

a
2

a
1

a
0

Figure 7.9: The xTimeAnu circuit for the polynomial of x8 + x4 + x3 + x2 + 1 (0x11D)

The implementation results for MISC ANUBIS are shown below:

Table 7.1: Implementation results for MISC ANUBIS.

Components Quantity Total Usage

No. of Slice Flip Flops 132 26,624 ~1%

Total No. of 4 Input LUTs 192 26,624 ~1%

No. of LUTs used a logic 159 192 ~83%

No. of LUTs used a route-thru 32 192 ~17%

No. of LUTs used a Shift Registers 0 192 0%

No. of Bonded IOBs 44 221 19%

No. of BRAMs 1 32 3%

No. of DCMs 1 4 25%

No. BUFGMUX 4 8 50%

196

Chapter 7

7.2.5. Hardware implementation and benchmark of MMA (Model 1 and 2)

The hardware implementation of MMA is important to provide a model of comparison

with other multi-cipher, multi-level systems. However, in a multi-cipher environment,

not all systems or applications use the exact same cryptographic primitives and ciphers.

The choice of cryptographic primitives is dependent on the design purpose and area of

application. There are no identical crypto-systems with the proposed MMA that employ

the exact same set of cryptographic primitives and therefore meaningful comparisons

cannot be made. Comparison of cryptosystems can only be made when the exact same

framework and architecture is used OR the exact same primitive combinations are used.

The MMA model 1 (MCA) and model 2 (NAES) are implemented on Spartan-3L as a

benchmark. Future work involves implementing the 2 proposed models into other FPGAs

OR using the exact same cryptographic primitive combinations for meaningful

comparison, justifying the resource utilization against other similar small crypto-systems.

Table 7.2 and Table 7.3 show the hardware implementation results of MCA and NAES

respectively.

197

Chapter 7

Table 7.2: Implementation results for multi-cipher architecture MMA mode 1 (MCA -

AES and Skipjack coupling) on Spartan-3L.

Components Quantity Total Usage

No. of Slice Flip Flops 196 26,624 ~1%

No. of Occupied Slices 315 13,312 2%

Total No. of 4 Input LUTs 588 26,624 2%

No. of LUTs used a logic 519 588 88%

No. of LUTs used a route-thru 68 588 12%

No. of LUTs used a Shift Registers 1 588 ~0%

No. of Bonded IOBs 44 221 19%

No. of BRAMs 3 32 9%

No. of GCLKs 4 8 50%

No. of DCMs 1 4 25%

Table 7.3: Implementation results for multi-cipher architecture MMA mode 2 (NAES -

AES and AES coupling) on Spartan-3L.

Components Quantity Total Usage

No. of Slice Flip Flops 706 26,624 2.65%

No. of Occupied Slices 1117 13,312 8%

Total No. of 4 Input LUTs 1270 26,624 4%

No. of LUTs used a logic 1161 1270 ~91%

No. of LUTs used a route-thru 106 1270 9%

No. of LUTs used a Shift Registers 3 1270 ~0%

No. of Bonded IOBs 36 221 16%

No. of BRAMs 6 32 18%

No. of GCLKs 4 8 50%

No. of DCMs 1 4 25%

198

Chapter 7

7.2.6. The Proper Hardware Validation and Verification of the Proposed

SEA

The final objective of the research development presented in this thesis is the

implementation of selective encryption architecture (SEA). The objective is achieved

through the combination a MIPS SPIHT visual processor and the proposed CISA AES.

The proposed SEA is intended to demonstrate real-world practicality by employing one of

the proposed architecture and an image processor to form a joint encryption system. The

hardware implementation of SEA and the implementation results are presented in

Chapter 6. The whole system is able to demonstrate a four-frame image capture, on-

board image processing and compression, encryption, and transmission to a local

connected computer. The transmitted data is then received, decrypted, decompressed on

the connected computer and displayed onto a display monitor.

Despite having the main objective achieved by designing low-area, low-complexity

crypto-processors, the final product of the joint encryption system is yet to be

benchmarked. The SEA is difficult to be benchmarked with other works mainly because

there are no known other works to compare the design with as a whole. To achieve fair

comparison, the point of comparison has to be a single system with both a crypto-

processor and an image processor. The SEA can be a benchmark of its own by setting an

example of any other SEA related future works and thus, the proposed SEA also has to

be properly validated through behavioural and post-route simulations in the future.

199

REFERENCE

[1] M. A. Khan, M. Sharma, and B. P. R, "A Survey of RFID Tags " International

Journal of Recent Trends in Engineering, vol. 1, p. 4, 2009.

[2] A. S. A. Mason, A.I. Al-Shamma, T. Welsby, "RFID and Wireless Sensor Network

Integration for Intelligent Asset Tracking Systems," in 2nd GERI Annual

Research Symposium GARS-2006, June 15 2006 ed. Liverpool, UK, 2006.

[3] M. Buettner, B. Greenstein, A. Sample, J. R. Smith, and D. Wetheral, "Revisiting

Smart Dust with RFID Sensor Networks," in Proc. 7th ACM Workshop on Hot

Topics in Networks (Hotnets-VII), 2008.

[4] M. Buettner, R. Prasad, A. Sample, D. Yeager, B. Greenstein, J. R. Smith, and D.

Wetherall, "RFID sensor networks with the Intel WISP," presented at the

Proceedings of the 6th ACM conference on Embedded network sensor systems,

Raleigh, NC, USA, 2008.

[5] Z. Kai and G. Lina, "A Survey on the Internet of Things Security," in

Computational Intelligence and Security (CIS), 2013 9th International

Conference on, 2013, pp. 663-667.

[6] R. Roman, C. Alcaraz, and J. Lopez, "A survey of cryptographic primitives and

implementations for hardware-constrained sensor network nodes," Mob. Netw.

Appl., vol. 12, pp. 231-244, 2007.

[7] J. Smith, A. Sample, P. Powledge, S. Roy, and A. Mamishev, "A Wirelessly-

Powered Platform for Sensing and Computation," in UbiComp 2006: Ubiquitous

Computing. vol. 4206, P. Dourish and A. Friday, Eds., ed: Springer Berlin

Heidelberg, 2006, pp. 495-506.

[8] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith,

"Design of an RFID-Based Battery-Free Programmable Sensing Platform,"

Instrumentation and Measurement, IEEE Transactions on, vol. 57, pp. 2608-

2615, 2008.

200

[9] A. de la Piedra, A. Braeken, and A. Touhafi, "Sensor Systems Based on FPGAs

and Their Applications: A Survey," Sensors, vol. 12, p. 12235, 2012.

[10] A. K. Jones, R. Hoare, S. Dontharaju, S. Tung, R. Sprang, J. Fazekas, J. T. Cain,

and M. H. Mickle, "An automated, FPGA-based reconfigurable, low-power RFID

tag," Microprocess. Microsyst., vol. 31, pp. 116-134, 2007.

[11] L. Ang, K. P. Seng, L. S. Yeong, L. W. Chew, and W. C. Chia, Wireless

Multimedia Sensor Networks on Reconfigurable Hardware: Information

Reduction Techniques: Springer-Verlag New York Incorporated, 2013.

[12] J. Liao, B. Singh, M. Khalid, and K. Tepe, "FPGA based wireless sensor node

with customizable event-driven architecture," EURASIP Journal on Embedded

Systems, vol. 2013, pp. 1-11, 2013/04/19 2013.

[13] B. Tavli, K. Bicakci, R. Zilan, and J. Barcelo-Ordinas, "A survey of visual sensor

network platforms," Multimedia Tools and Applications, vol. 60, pp. 689-726,

2012/10/01 2012.

[14] S. Soro and W. Heinzelman, "A Survey of Visual Sensor Networks," Advances in

Multimedia, vol. 2009, 2009.

[15] C. Mangesh, S. Claudio, P. Matteo, P. Paolo, L. Giuseppe, and S. Luca,

"Distributed Visual Surveillance with Resource Constrained Embedded

Systems," in Visual Information Processing in Wireless Sensor Networks:

Technology, Trends and Applications, A. Li-Minn and S. Kah Phooi, Eds., ed

Hershey, PA, USA: IGI Global, 2012, pp. 272-292.

[16] M. T. Lazarescu, "Design of a WSN platform for long-term environmental

monitoring for IoT applications," Emerging and Selected Topics in Circuits and

Systems, IEEE Journal on, vol. 3, pp. 45-54, 2013.

[17] M. A. M. Vieira, C. N. Coelho Jr, D. da Silva, and J. M. da Mata, "Survey on

wireless sensor network devices," in Emerging Technologies and Factory

Automation, 2003. Proceedings. ETFA'03. IEEE Conference, 2003, pp. 537-544.

[18] D. G. Bailey, Design for embedded image processing on FPGAs: John Wiley &

Sons, 2011.

201

[19] Y. W. Law, J. Doumen, and P. Hartel, "Survey and benchmark of block ciphers

for wireless sensor networks," ACM Trans. Sen. Netw., vol. 2, pp. 65-93, 2006.

[20] Z. Li and G. Gong, "A Survey on Security in Wireless Sensor Networks,"

University of Waterloo, Waterloo, Ontario, Canada, http://cacr.uwaterloo.ca/ 20,

2008.

[21] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M.

Sichitiu, "Analyzing and modeling encryption overhead for sensor network

nodes," presented at the Proceedings of the 2nd ACM international conference on

Wireless sensor networks and applications, San Diego, CA, USA, 2003.

[22] J. Aragones-vilella, A. Martínez-ballesté, and A. Solanas, "A Brief Survey on

RFID Privacy and Security," presented at the World Congress on Engineering,

2007.

[23] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov, "Cryptographic

processors-a survey," Proceedings of the IEEE, vol. 94, pp. 357-369, 2006.

[24] M. K. Hani, H. Y. Wen, and A. Paniandi, "Design and implementation of a

private and public key crypto processor for next-generation it security

applications," Malaysian Journal of Computer Science, vol. 19, pp. 29-45, 2006.

[25] J. Sen, "A Survey on Wireless Sensor Network Security," International Journal of

Vommunication Networks and Information Security (IJCNIS), vol. 1, p. 24,

August 2010 2009.

[26] D. Westhoff, J. Girao, and A. Sarma, "Security solutions for wireless sensor

networks," NEC Journal of Advanced Technology, vol. 59, 2006.

[27] R. C. Merkle and M. E. Hellman, "On the security of multiple encryption,"

Communications of the ACM, vol. 24, pp. 465-467, 1981.

[28] J. Kushwaha and B. N. Roy, "Secure image data by double encryption,"

International Journal of Computer Applications (0975–8887), vol. 5, pp. 28-32,

2010.

[29] C.-C. C. Chung-Ping Young, Yen-Bor Lin and Liang-Bi Chen, "Fast Multi-cipher

Transformation and its Implementation for Modern Secure Protocols,"

http://cacr.uwaterloo.ca/

202

International Journal of Innovative Computing, Information and Control, vol. 7,

pp. 4941- 4954, August 2011 2011.

[30] Y. Chung-Ping, C. Chung-Chu, C. Liang-Bi, and H. Ing-Jer, "NCPA: A

Scheduling Algorithm for Multi-cipher and Multi-mode Reconfigurable

Cryptosystem," in Intelligent Information Hiding and Multimedia Signal

Processing, 2008. IIHMSP '08 International Conference on, 2008, pp. 1356-1359.

[31] F. Bagci, T. Ungerer, and N. Bagherzadeh, "Multi-level Security in Wireless

Sensor Networks," International Journal on Advances in Software Volume 2,

Number 4, 2009, 2009.

[32] D. Schürmann, "Encryption and Key Exchange in Wireless Sensor Networks,"

2013.

[33] R. Yasmin, E. Ritter, and G. Wang, "An authentication framework for wireless

sensor networks using identity-based signatures," in Computer and Information

Technology (CIT), 2010 IEEE 10th International Conference on, 2010, pp. 882-

889.

[34] G. Panić, T. Basmer, S. Henry, S. Peter, F. Vater, and K. Tittelbach-Helmrich,

"Design of a sensor node crypto processor for ieee 802.15. 4 applications," in SOC

Conference (SOCC), 2012 IEEE International, 2012, pp. 213-217.

[35] M. Grand, L. Bossuet, G. Gogniat, B. L. Gal, J.-P. Delahaye, and D. Dallet, "A

Reconfigurable Multi-core Cryptoprocessor for Multi-channel Communication

Systems," presented at the Proceedings of the 2011 IEEE International

Symposium on Parallel and Distributed Processing Workshops and PhD Forum,

2011.

[36] T. Eisenbarth and S. Kumar, "A Survey of Lightweight-Cryptography

Implementations," Design & Test of Computers, IEEE, vol. 24, pp. 522-533, 2007.

[37] T. Winkler and B. Rinner, "Security and Privacy Protection in Visual Sensor

Networks: A Survey," University of Klagenfurt2012.

[38] J. Lee, K. Kapitanova, and S. H. Son, "The price of security in wireless sensor

networks," Comput. Netw., vol. 54, pp. 2967-2978, 2010.

203

[39] Y.-C. Wang, "Data compression techniques in wireless sensor networks,"

Pervasive Computing, New York: Nova Science Publishers, Inc, 2012.

[40] G. S. Quirino, A. R. Ribeiro, and E. D. Moreno, Asymmetric Encryption in

Wireless Sensor Networks: INTECH Open Access Publisher, 2012.

[41] A. Massoudi, F. Lefebvre, C. D. Vleeschouwer, B. Macq, and J.-J. Quisquater,

"Overview on selective encryption of image and video: challenges and

perspectives," EURASIP J. Inf. Secur., vol. 2008, pp. 1-18, 2008.

[42] H. Cheng and L. Xiaobo, "Partial encryption of compressed images and videos,"

Signal Processing, IEEE Transactions on, vol. 48, pp. 2439-2451, 2000.

[43] R. V. Kulkarni, A. Forster, and G. K. Venayagamoorthy, "Computational

Intelligence in Wireless Sensor Networks: A Survey," IEEE Communications

Surveys & Tutorials, vol. 13, pp. 68-96, 2011.

[44] A. Juels, "Minimalist Cryptography for Low-Cost RFID Tags (Extended

Abstract)," in Security in Communication Networks. vol. 3352, C. Blundo and S.

Cimato, Eds., ed: Springer Berlin Heidelberg, 2005, pp. 149-164.

[45] J. Kůr and V. Matyáš, "An Adaptive Security Architecture for Location Privacy

Sensitive Sensor Network Applications," in Lightweight Cryptography for

Security and Privacy, ed: Springer, 2013, pp. 81-96.

[46] A.-S. K. Pathan, H.-W. Lee, and C. S. Hong, "Security in wireless sensor

networks: issues and challenges," in Advanced Communication Technology, 2006.

ICACT 2006. The 8th International Conference, 2006, pp. 6 pp.-1048.

[47] P. Jamieson, W. Luk, S. J. E. Wilton, and G. A. Constantinides, "An energy and

power consumption analysis of FPGA routing architectures," in Field-

Programmable Technology, 2009. FPT 2009. International Conference on, 2009,

pp. 324-327.

[48] J. Lamoureux and W. Luk, "An Overview of Low-Power Techniques for Field-

Programmable Gate Arrays," in Adaptive Hardware and Systems, 2008. AHS '08.

NASA/ESA Conference on, 2008, pp. 338-345.

204

[49] G. Gong, "Lightweight Cryptography for RFID Systems," in International

Conference on Cryptology in India (Tutorial Talk), Hyderabad, India, 2010.

[50] A. K. Lenstra and E. R. Verheul, "Selecting Cryptographic Key Sizes," J. Cryptol.,

vol. 14, pp. 255-293, 2001.

[51] A. K. Lenstra, "Key lengths," Wiley2006.

[52] E. N. I. S. A. (ENISA), "Algorithms, Key Sizes and Parameters Report - 2014

recommendations," ENISA, http://www.enisa.europa.eu2014.

[53] P. A. Laplante, "A novel single instruction computer architecture," SIGARCH

Comput. Archit. News, vol. 18, pp. 22-26, 1990.

[54] W. F. Gilreath and P. A. Laplante, Computer architecture: a minimalist

perspective: Kluwer Academic Publishers, 2003.

[55] W. F. Gilreath and P. A. Laplante, Computer Architecture: Kluwer Academic

Publishers, 2003.

[56] F. M. a. B. Parhami, "URISC: The ultimate reduced instruction set computer,"

Department of Computer Science, University of WaterlooJune 1987 1987.

[57] P. Laplante and W. Gilreath, "One Instruction Set Computers for Image

Processing," J. VLSI Signal Process. Syst., vol. 38, pp. 45-61, 2004.

[58] N. Tsoutsos and M. Maniatakos, "Investigating the Application of One

Instruction Set Computing for Encrypted Data Computation," in Security,

Privacy, and Applied Cryptography Engineering. vol. 8204, B. Gierlichs, S.

Guilley, and D. Mukhopadhyay, Eds., ed: Springer Berlin Heidelberg, 2013, pp.

21-37.

[59] C. Ayantika and S. Indranil, "FURISC: FHE Encrypted URISC Design," IACR

Cryptology ePrint Archive, p. 11, 2015.

[60] N. G. Tsoutsos and M. Maniatakos, "HEROIC: Homomorphically EncRypted One

Instruction Computer," in Design, Automation and Test in Europe Conference

and Exhibition (DATE), 2014, 2014, pp. 1-6.

[61] C. Xiangqian, M. Kia, Y. Kang, and N. Pissinou, "Sensor network security: a

survey," Communications Surveys & Tutorials, IEEE, vol. 11, pp. 52-73, 2009.

http://www.enisa.europa.eu2014/

205

[62] Z. Xueying, H. M. Heys, and L. Cheng, "Energy efficiency of symmetric key

cryptographic algorithms in wireless sensor networks," in Communications

(QBSC), 2010 25th Biennial Symposium on, 2010, pp. 168-172.

[63] N. National Institute of Standards and Technology, "SKIPJACK and KEA

Algorithm Specifications Version 2.0," National Institute of Standards and

Technology (NIST)Mai 1998.

[64] C. Karlof, N. Sastry, and D. Wagner, "TinySec: a link layer security architecture

for wireless sensor networks," presented at the Proceedings of the 2nd

international conference on Embedded networked sensor systems, Baltimore, MD,

USA, 2004.

[65] J. Daemen and V. Rijmen, "The Block Cipher Rijndael," presented at the

Proceedings of the The International Conference on Smart Card Research and

Applications, 2000.

[66] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, "A Comparative Study of

Performance of AES Final Candidates Using FPGAs," presented at the

Proceedings of the Second International Workshop on Cryptographic Hardware

and Embedded Systems, 2000.

[67] F. Büsching, A. Figur, D. Schürmann, and L. Wolf, "Utilizing Hardware AES

Encryption for WSNs," in The 10th European Conference on Wireless Sensor

Networks, EWSN 2013, Ghent, Belgium, 2013, pp. 33-36.

[68] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, "A Compact Rijndael

Hardware Architecture with S-Box Optimization," presented at the Proceedings

of the 7th International Conference on the Theory and Application of Cryptology

and Information Security: Advances in Cryptology, 2001.

[69] D. Canright, "A very compact s-box for AES," presented at the Proceedings of the

7th international conference on Cryptographic hardware and embedded systems,

Edinburgh, UK, 2005.

206

[70] P. V. S. Shastry, A. Agnihotri, D. Kachhwaha, J. Singh, and M. S. Sutaone, "A

combinational logic implementation of S-box of AES," in Circuits and Systems

(MWSCAS), 2011 IEEE 54th International Midwest Symposium on, 2011, pp. 1-4.

[71] J. Boyar and R. Peralta, "A Small Depth-16 Circuit for the AES S-Box," in

Information Security and Privacy Research. vol. 376, D. Gritzalis, S. Furnell, and

M. Theoharidou, Eds., ed: Springer Berlin Heidelberg, 2012, pp. 287-298.

[72] D. Canright and L. Batina, "A very compact "Perfectly masked" S-box for AES,"

presented at the Proceedings of the 6th international conference on Applied

cryptography and network security, NewYork, NY, USA, 2008.

[73] Y. Lin and Q. Gang, "Design space exploration for energy-efficient secure sensor

network," in Application-Specific Systems, Architectures and Processors, 2002.

Proceedings. The IEEE International Conference on, 2002, pp. 88-97.

[74] G. Sharma, S. Bala, and A. K. Verma, "Security frameworks for wireless sensor

networks-review," Procedia Technology, vol. 6, pp. 978-987, 2012.

[75] K. Sharma;, M. K. Ghose;, and Kuldeep;, "Complete Security Framework for

Wireless Sensor Networks," (IJCSIS) International Journal of Computer Science

and Information Security, vol. 3, 2009.

[76] C. Lee, L. Yin, and Y. Guo, "A Cluster-Based Multilevel Security Model for

Wireless Sensor Networks," in Intelligent Information Processing VI, ed:

Springer, 2012, pp. 320-330.

[77] Y. Chung-Ping, L. Yen-Bor, and C. Chung-Chu, "Software and hardware design

of a multi-cipher cryptosystem," in TENCON 2009 - 2009 IEEE Region 10

Conference, 2009, pp. 1-5.

[78] L. Wu, C. Weaver, and T. Austin, "CryptoManiac: a fast flexible architecture for

secure communication," SIGARCH Comput. Archit. News, vol. 29, pp. 110-119,

2001.

[79] R. Norcen and A. Uhl, "Selective Encryption of the JPEG2000 Bitstream," in

Communications and Multimedia Security. Advanced Techniques for Network

207

and Data Protection. vol. 2828, A. Lioy and D. Mazzocchi, Eds., ed: Springer

Berlin Heidelberg, 2003, pp. 194-204.

[80] S. Lian, J. Sun, D. Zhang, and Z. Wang, "A Selective Image Encryption Scheme

Based on JPEG2000 Codec," in Advances in Multimedia Information Processing -

PCM 2004. vol. 3332, K. Aizawa, Y. Nakamura, and S. i. Satoh, Eds., ed:

Springer Berlin Heidelberg, 2005, pp. 65-72.

[81] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, "Strong Authentication for

RFID Systems Using the AES Algorithm," in Cryptographic Hardware and

Embedded Systems - CHES 2004. vol. 3156, M. Joye and J.-J. Quisquater, Eds.,

ed: Springer Berlin / Heidelberg, 2004, pp. 85-140.

[82] A. Juels and S. Weis, "Authenticating Pervasive Devices with Human Protocols,"

in Advances in Cryptology – CRYPTO 2005. vol. 3621, V. Shoup, Ed., ed:

Springer Berlin Heidelberg, 2005, pp. 293-308.

[83] D. W. Carman, P. S. Kruus, and B. J. Matt, "Constraints and approaches for

distributed sensor network security," Cryptographic Technologies Group Trusted

Information Systems, The Security Research Division of Network Associates, Inc.

2000.

[84] D. Kundur, W. Luh, U. N. Okorafor, and T. Zourntos, "Security and Privacy for

Distributed Multimedia Sensor Networks," Proceedings of the IEEE, vol. 96, pp.

112-130, 2008.

[85] B. Furht and D. Kirovski, Multimedia encryption and authentication techniques

and applications: Auerbach Publications, 2006.

[86] S. H. Kamali, R. Shakerian, M. Hedayati, and M. Rahmani, "A new modified

version of Advanced Encryption Standard based algorithm for image encryption,"

in Electronics and Information Engineering (ICEIE), 2010 International

Conference On, 2010, pp. V1-141-V1-145.

[87] M. M. Z. Medien, K. Lazhar, B. Adel, and T. Rached, "A Modified AES Based

Algorithm for Image Encryption," Int. Journal of Computer Science and

Engineering, vol. 1, pp. 70-75, 2007.

208

[88] F. R. Sumira Hameed, Riaz Moghal, Gulraiz Akhtar, Anil Ahmed, Abdul Ghafoor

Dar, "Modified Advanced Encryption Standard For Text And Images "

Conmputer Science Journal, vol. 1, p. 10, 2011.

[89] S. Lian, Multimedia Content Encryption: Techniques and Applications: CRC

Press, 2008.

[90] S. A. El-said, K. F. Hussein, and M. M. Fouad, "Confidentiality and privacy for

videos storage and transmission," The International Journal of Advances in

Science and Technology, vol. 28, pp. 67-88, 2011.

[91] T. Lookabaugh and D. C. Sicker, "Selective encryption for consumer

applications," Communications Magazine, IEEE, vol. 42, pp. 124-129, 2004.

[92] E. N. Mui. (2007). Practical Implementation of Rijndael S-Box Using

Combinational Logic (2007). Available:

http://www.xess.com/projects/Rijndael_SBox.pdf

[93] Z. Xinmiao and K. K. Parhi, "High-speed VLSI architectures for the AES

algorithm," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 12, pp. 957-967, 2004.

[94] T. Cevik, A. Gunagwera, and N. Cevik, "A survey of multimedia streaming in

wireless sensor networks: progress, issues and design challenges," International

Journal of Computer Networks & Communications (IJCNC), vol. 7, 2015.

[95] M. Hempstead, M. J. Lyons, D. Brooks, and G.-Y. Wei, "Survey of Hardware

Systems for Wireless Sensor Networks," Journal of Low Power Electronics, vol. 4,

pp. 11-20, 2008.

[96] A. Juels, "RFID security and privacy: a research survey," Selected Areas in

Communications, IEEE Journal on, vol. 24, pp. 381-394, 2006.

[97] S. E. Sarma, S. A. Weis, and D. W. Engels, "RFID Systems and Security and

Privacy Implications," presented at the Revised Papers from the 4th

International Workshop on Cryptographic Hardware and Embedded Systems,

2003.

http://www.xess.com/projects/Rijndael_SBox.pdf

209

[98] Z. Lei and W. Zhi, "Integration of RFID into Wireless Sensor Networks:

Architectures, Opportunities and Challenging Problems," in Grid and

Cooperative Computing Workshops, 2006. GCCW '06. Fifth International

Conference on, 2006, pp. 463-469.

[99] M. Sethi, J. Arkko, and A. Keranen, "End-to-end security for sleepy smart object

networks," in Local Computer Networks Workshops (LCN Workshops), 2012

IEEE 37th Conference on, 2012, pp. 964-972.

[100] M. Bhandarkar, Analysis of sLEACH for improvement of network lifetime in

Wireless Sensor Networks: ProQuest, 2008.

[101] H. S. Aghdasi, M. Abbaspour, M. E. Moghadam, and Y. Samei, "An energy-

efficient and high-quality video transmission architecture in wireless video-based

sensor networks," Sensors, vol. 8, pp. 4529-4559, 2008.

[102] M. Guerrero-Zapata, R. Zilan, J. Barceló-Ordinas, K. Bicakci, and B. Tavli, "The

future of security in Wireless Multimedia Sensor Networks," Telecommunication

Systems, vol. 45, pp. 77-91, 2010/09/01 2010.

[103] J. López and J. Zhou, Wireless sensor network security vol. 1: IOS Press, 2008.

[104] M. Johnson, M. Healy, P. van de Ven, M. J. Hayes, J. Nelson, T. Newe, and E.

Lewis, "A comparative review of wireless sensor network mote technologies," in

Sensors, 2009 IEEE, 2009, pp. 1439-1442.

[105] D. C. Ranasinghe, D. Lim, P. H. Cole, and S. Devadas, "A low cost solution to

authentication in passive RFID systems," 2006.

[106] A. Industries, "RFID Selection Guide," in Version 1, ed, 2010.

[107] IBTechnology. (2013, 21 June). List of supported tag types and key features.

Available: http://www.ibtechnology.co.uk/pdf/tag_types.pdf

[108] D. D. Deavours, "UHF EPC Tag Performance Evaluation," University of Kansas,

RFID Alliance Lab2005.

[109] S. Bukkapatnam, J. M. Govardhan, S. Hariharan, V. Rajamani, B. Gardner, and

A. Contreras, "Report of Work Conducted under the AEGIS or CELDi Strategic

http://www.ibtechnology.co.uk/pdf/tag_types.pdf

210

Research Grant 2005 “Experimental Test Bed for Performance Evaluation of

RFID Systems”," Oklahoma State University, Stillwater OK2005.

[110] I. T. Corporation. (2012, 21 June). Intermec RFID Tags & Media - Meeting the

scalable RFID challenge.

[111] N. Corporation. (2008, 21 June). Item Level Tagging Selector Guide

[112] A. D. Inc. (2013, 21 June). HF RFID Inlays.

[113] A. D. Inc. (2013, 21 June). UHF RFID Inlays. Available:

http://nashua.com/Resources/ProductSheets/10049-EPCSelecGuide.pdf

[114] N. Corporation. (2008). EPC RFID Label Selector Guide. Available:

http://nashua.com/Resources/ProductSheets/10049-EPCSelecGuide.pdf

[115] M. Buettner, B. Greenstein, and D. Wetherall, "Dewdrop: an energy-aware

runtime for computational RFID," in Proc. USENIX NSDI, 2011, pp. 197-210.

[116] B. R. Elbal, "Measurement Based Evaluation of the Wireless Identification and

Sensing Platform," Vienna University of Technology, 2015.

[117] H. Kopetz, "Internet of things," in Real-time systems, ed: Springer, 2011, pp. 307-

323.

[118] T. L. Friedman, The world is flat [updated and expanded]: A brief history of the

twenty-first century: Macmillan, 2006.

[119] S. Poslad, "Smart Mobiles, Cards and Device Networks," Ubiquitous Computing:

Smart Devices, Environments and Interactions, pp. 115-133, 2009.

[120] Y. Zhang, L. T. Yang, and J. Chen, RFID and Sensor Networks: Architectures,

Protocols, Security, and Integrations: CRC Press, Inc., 2009.

[121] S. Xin, S. Shijuan, and X. Qingyu, "The integration of Wireless Sensor Networks

and RFID for pervasive computing," in Computer Sciences and Convergence

Information Technology (ICCIT), 2010 5th International Conference on, 2010, pp.

67-72.

[122] M. B. Hai Liu, Amiya Nayak, Ivan Stojmenovic, "Integration of RFID and

Wireless Sensor Networks," presented at the SenseID 2007 Workshop at ACM

SenSys, Sydney, Australia, 2007.

http://nashua.com/Resources/ProductSheets/10049-EPCSelecGuide.pdf
http://nashua.com/Resources/ProductSheets/10049-EPCSelecGuide.pdf

211

[123] U. K. Vishwakarma and R. Shukla, "WSN and RFID: Differences and

Integration," International Journal of Advanced Research in Electronics and

Communication Engineering, vol. 2, pp. 778-780, 2013.

[124] W. C. Chia, W. H. Ngau, L.-M. Ang, K. P. Seng, L. W. Chew, and L. S. Yeong,

"FPGA Technology for Implementation in Visual Sensor Networks," Visual

Information Processing in Wireless Sensor Networks: Technology, Trends and

Applications: Technology, Trends and Applications, p. 293, 2011.

[125] M. Katagi and S. Moriai, "Lightweight cryptography for the internet of things,"

Sony Corporation, pp. 7-10, 2008.

[126] K. Woo Kwon, L. Hwaseong, K. Yong Ho, and L. Dong Hoon, "Implementation

and Analysis of New Lightweight Cryptographic Algorithm Suitable for Wireless

Sensor Networks," in Information Security and Assurance, 2008. ISA 2008.

International Conference on, 2008, pp. 73-76.

[127] S. Vaudenay, "RFID privacy based on public-key cryptography (invited talk)," in

ICISC 2006. LNCS, ed: Springer, 2006, pp. 1--6.

[128] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Verbauwhede,

"Public-Key Cryptography for RFID-Tags," in Pervasive Computing and

Communications Workshops, 2007. PerCom Workshops '07. Fifth Annual IEEE

International Conference on, 2007, pp. 217-222.

[129] G. D. Murphy, E. M. Popovici, and W. P. Marnane, "Area-Efficient Processor for

Public-Key Cryptography in Wireless Sensor Networks," in Sensor Technologies

and Applications, 2008. SENSORCOMM '08. Second International Conference on,

2008, pp. 667-672.

[130] Y. Oren and M. Feldhofer, "A low-resource public-key identification scheme for

RFID tags and sensor nodes," presented at the Proceedings of the second ACM

conference on Wireless network security, Zurich, Switzerland, 2009.

[131] S. V. Kaya, E. Sava, A. Levi, zg, r. Er, and etin, "Public key cryptography based

privacy preserving multi-context RFID infrastructure," Ad Hoc Netw., vol. 7, pp.

136-152, 2009.

212

[132] I. F. T. A. S. Sufyan Salim Mahmood AlDabbagh, "Lightweight Block Ciphers: a

comparative study," Journal of Advanced Computer Science and Technology

Research, vol. 2, p. 7, November 2012 2012.

[133] P. Peris-Lopez, Lightweight Cryptography in Radio Frequency Identification

Systems: VDM Publishing, 2010.

[134] R. S. Reddy, "Key management in wireless sensor networks using a modified

Blom scheme," arXiv preprint arXiv:1103.5712, 2011.

[135] O. Sönmez and I. C. Paar, "Symmetric Key Management: Key Derivation and

Key Wrap," Bochum, Germany, February 2009, 2009.

[136] A. Mitrokotsa and C. Douligeris, "Integrated RFID and sensor networks:

architectures and applications," RFID and sensor networks: Architectures,

protocols, security and integrations, pp. 511-535, 2009.

[137] H. Lee, Y. H. Kim, D. H. Lee, and J. Lim, "Classification of key management

schemes for wireless sensor networks," in Advances in Web and Network

Technologies, and Information Management, ed: Springer, 2007, pp. 664-673.

[138] B. Lai, S. Kim, and I. Verbauwhede, "Scalable session key construction protocol

for wireless sensor networks," in IEEE Workshop on Large Scale RealTime and

Embedded Systems (LARTES), 2002, p. 7.

[139] A. Parakh and S. Kak, "Efficient key management in sensor networks," in

GLOBECOM Workshops (GC Wkshps), 2010 IEEE, 2010, pp. 1539-1544.

[140] D. d. O. Gonçalves and D. G. Costa, "A Survey of Image Security in Wireless

Sensor Networks," Journal of Imaging, vol. 1, pp. 4-30, 2015.

[141] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Tapiador, and A. Ribagorda,

"Advances in Ultralightweight Cryptography for Low-Cost RFID Tags: Gossamer

Protocol," in Information Security Applications, C. Kyo-Il, S. Kiwook, and Y. Moti,

Eds., ed: Springer-Verlag, 2009, pp. 56-68.

[142] M. Y. Malik, "An outline of security in wireless sensor networks: threats,

countermeasures and implementations," arXiv preprint arXiv:1301.3022, 2013.

213

[143] C. Chatmon, T. van Le, and M. Burmester, "Secure anonymous RFID

authentication protocols," Florida State University, Department of Computer

Science, Tech. Rep, 2006.

[144] A. Perrig, J. Stankovic, and D. Wagner, "Security in wireless sensor networks,"

Communications of the ACM, vol. 47, pp. 53-57, 2004.

[145] M. B. I. Reaz, F. Mohd-Yasin, S. L. Tan, H. Y. Tan, and M. I. Ibrahimy, "Partial

encryption of compressed images employing FPGA," in Circuits and Systems,

2005. ISCAS 2005. IEEE International Symposium on, 2005, pp. 2385-2388 Vol.

3.

[146] B. Subramanyan, V. M. Chhabria, and T. G. S. Babu, "Image Encryption Based

on AES Key Expansion," in Emerging Applications of Information Technology

(EAIT), 2011 Second International Conference on, 2011, pp. 217-220.

[147] F. Liu and H. Koenig, "A survey of video encryption algorithms," Computers &

Security, vol. 29, pp. 3-15, 2010.

[148] B. S. PATIL, "Image Security in Wireless Sensor Networks using Quadtree

Coding," in NCRIET-2015 & Indian J.Sci.Res. , 2015, pp. 443 - 447.

[149] J. Molina, C. Leon, J. M. Mora-merchan, and J. Barbancho, Multimedia data

processing and delivery in wireless sensor networks: INTECH Open Access

Publisher, 2010.

[150] M. O. Kulekci, "A Method to Ensure the Confidentiality of the Compressed Data,"

Data Compression, Communications and Processing, International Conference on,

vol. 0, pp. 203-209, 2011.

[151] T. W. Fry and S. A. Hauck, "SPIHT image compression on FPGAs," Circuits and

Systems for Video Technology, IEEE Transactions on, vol. 15, pp. 1138-1147,

2005.

[152] T. Xiang, C. Yu, and F. Chen, "Fast encryption of JPEG 2000 images in wireless

multimedia sensor networks," in Wireless Algorithms, Systems, and Applications,

ed: Springer, 2013, pp. 196-205.

214

[153] A. C. Wu, "Power Efficiency with Data Compression in Wireless Sensor

Networks," ed.

[154] P. H. Cole and D. C. Ranasinghe, Networked RFID systems and lightweight

cryptography: raising barriers to product counterfeiting: Springer, 2008.

[155] A. Poschmann, G. Leander, K. Schramm, and C. Paar, "New Light-Weight Crypto

Algorithms for RFID," in Circuits and Systems, 2007. ISCAS 2007. IEEE

International Symposium on, 2007, pp. 1843-1846.

[156] C. Rolfes, A. Poschmann, G. Leander, and C. Paar, "Ultra-Lightweight

Implementations for Smart Devices --- Security for 1000 Gate Equivalents,"

presented at the Proceedings of the 8th IFIP WG 8.8/11.2 international

conference on Smart Card Research and Advanced Applications, London, UK,

2008.

[157] J. Nechvatal, E. Barker, L. Bassham, W. Burr, and M. Dworkin, "Report on the

development of the Advanced Encryption Standard (AES)," DTIC Document2000.

[158] W. Yong, G. Attebury, and B. Ramamurthy, "A survey of security issues in

wireless sensor networks," Communications Surveys & Tutorials, IEEE, vol. 8,

pp. 2-23, 2006.

[159] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, "A survey on wireless

multimedia sensor networks," Comput. Netw., vol. 51, pp. 921-960, 2007.

[160] K. Rao, Z. Bojkovic, and D. Milovanovic, Introduction to multimedia

communications: applications, middleware, networking: John Wiley & Sons, 2006.

[161] H. ZainEldin, M. A. Elhosseini, and H. A. Ali, "Image compression algorithms in

wireless multimedia sensor networks: A survey," Ain Shams Engineering Journal,

vol. 6, pp. 481-490, 2015.

[162] L. W. Chew, L.-M. Ang, and K. P. Seng, "Survey of image compression algorithms

in wireless sensor networks," in Information Technology, 2008. ITSim 2008.

International Symposium on, 2008, pp. 1-9.

215

[163] A. Said and W. A. Pearlman, "A new, fast, and efficient image codec based on set

partitioning in hierarchical trees," IEEE Trans. Cir. and Sys. for Video Technol.,

vol. 6, pp. 243-250, 1996.

[164] J. Ritter, G. Fey, and P. Molitor, "SPIHT implemented in a XC4000 device," in

Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium

on, 2002, pp. I-239-42 vol.1.

[165] J. Jyotheswar and S. Mahapatra, "Efficient FPGA implementation of DWT and

modified SPIHT for lossless image compression," J. Syst. Archit., vol. 53, pp. 369-

378, 2007.

[166] J. Singh, A. Antoniou, and D. J. Shpak, "Hardware implementation of a wavelet

based image compression coder," in Advances in Digital Filtering and Signal

Processing, 1998 IEEE Symposium on, 1998, pp. 169-173.

[167] M. V. V and M. Mathews, "FPGA Implementation of Image Compression Using

SPIHT Algorithm," International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering, vol. 3, p. 7, January 2014 2014.

[168] P.-Y. Lin, "Basic image compression algorithm and introduction to jpeg

standard," National Taiwan University, Taipei, Taiwan, ROC, 2009.

[169] S. A. Hassan and M. Hussain, "Spatial domain lossless image data compression

method," in Information and Communication Technologies (ICICT), 2011

International Conference on, 2011, pp. 1-4.

[170] H. Wei, Y. Kaidi, Z. Suiyu, J. Han, and X. Zeng, "Unified low cost crypto

architecture accelerating RSA/SHA-1 for security processor," in ASIC, 2009.

ASICON '09. IEEE 8th International Conference on, 2009, pp. 151-154.

[171] L. Jongdeog, S. H. Son, and M. Singhal, "Design of an architecture for multiple

security levels in wireless sensor networks," in Networked Sensing Systems

(INSS), 2010 Seventh International Conference on, 2010, pp. 107-114.

[172] S. R. Afzal, C. Huygens, and W. Joosen, "DiFiSec: An Adaptable Multi-level

Security Framework for Event-Driven Communication in Wireless Sensor

216

Networks," in Network Computing and Applications (NCA), 2012 11th IEEE

International Symposium on, 2012, pp. 263-271.

[173] C. Lee, L.-H. Yin, and Y.-C. Guo, "Poster: A Multilevel Security Model for

Wireless Sensor Networks," ed: IEEE, 2012.

[174] N. Sklavos, A. Priftis, P. Kitsos, and O. Koufopavlou, "Reconfigurable crypto

processor design of encryption algorithms operation modes methods and FPGA

integration," in Circuits and Systems, 2003 IEEE 46th Midwest Symposium on,

2003, pp. 811-814 Vol. 2.

[175] K. HoWon and L. Sunggu, "Design and implementation of a private and public

key crypto processor and its application to a security system," IEEE Transactions

on Consumer Electronics, vol. 50, pp. 214-224, February 2004 2004.

[176] L. Deguang, C. Jinyi, G. Xingdou, Z. Ankang, and L. Conglan, "Parallel AES

algorithm for fast Data Encryption on GPU," in Computer Engineering and

Technology (ICCET), 2010 2nd International Conference on, 2010, pp. V6-1-V6-6.

[177] G. F. Elkabbany, H. K. Aslan, and M. N. Rasslan, "A Design of a Fast Parallel-

Pipelined Implementation of AES: Advanced Encryption Standard," arXiv

preprint arXiv:1501.01427, 2015.

[178] A. Selvi and B. Arunkumar, "Security Enforcement with Cost Assessment for

Cloud Data," International Journal of Innovative Research in Computer and

Communication Engineering, vol. 3, p. 4, February 2015 2015.

[179] F. Y. Y. B.-M. Goi, "FPGA Implementation of Duo - Key Dependent AES,"

International Journal of Cryptology Research, vol. 2, pp. 101 - 109, 2010.

[180] S. Drimer. (2008, March, 2012). Volatile FPGA design security - a survey. 51.

Available: http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf

[181] H. Hinkelmann, A. Reinhardt, S. Varyani, and M. Glesner, "A Reconfigurable

Prototyping Platform for Smart Sensor Networks," in Programmable Logic, 2008

4th Southern Conference on, 2008, pp. 125-130.

[182] S. Misra and E. Eronu, "Implementing Reconfigurable Wireless Sensor Networks:

The Embedded Operating System Approach," Intech, 2012.

http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf

217

[183] L. Xu, L. Sun, and X. Zhang, "A UHF RFID Reader Design Based on FPGA," in

Advances in Future Computer and Control Systems, ed: Springer, 2012, pp. 451-

456.

[184] M. Todd, W. Burleson, and R. Tessier, "The design and assessment of a secure

passive RFID sensor system," in New Circuits and Systems Conference

(NEWCAS), 2011 IEEE 9th International, 2011, pp. 494-497.

[185] C. Johnston, K. Gribbon, and D. Bailey, "Implementing image processing

algorithms on FPGAs," in Proceedings of the Eleventh Electronics New Zealand

Conference, ENZCon’04, 2004, pp. 118-123.

[186] B. A. Draper, J. R. Beveridge, A. W. Bohm, C. Ross, and M. Chawathe,

"Accelerated image processing on FPGAs," Image Processing, IEEE Transactions

on, vol. 12, pp. 1543-1551, 2003.

[187] A. E. Nelson, "Implementation of image processing algorithms on FPGA

hardware," Citeseer, 2000.

[188] P. Abhijith, M. Goswami, S. Tadi, and K. Pandey, "Optimized Architecture for

AES," IACR Cryptology ePrint Archive, vol. 2014, p. 540, 2014.

[189] K. Gaj, "Very compact FPGA implementation of the AES algorithm," in

Proceedings of 5th International Workshop on Cryptographic Hardware and

Embedded Systems (CHES), number 2779 in Lecture Notes in Computer Science,

ed: Springer-Verlag, 2003, pp. 319-333.

[190] T. Good and M. Benaissa, "Very small FPGA application-specific instruction

processor for AES," Circuits and Systems I: Regular Papers, IEEE Transactions

on, vol. 53, pp. 1477-1486, 2006.

[191] G. Rouvroy, F. X. Standaert, J. J. Quisquater, and J. D. Legat, "Compact and

efficient encryption/decryption module for FPGA implementation of the AES

Rijndael very well suited for small embedded applications," in Information

Technology: Coding and Computing, 2004. Proceedings. ITCC 2004. International

Conference on, 2004, pp. 583-587 Vol.2.

218

[192] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, "AES implementation on a grain

of sand," Information Security, IEE Proceedings, vol. 152, pp. 13-20, 2005.

[193] N. Pramstaller and J. Wolkerstorfer, "A universal and efficient AES co-processor

for field programmable logic arrays," in Field Programmable Logic and

Application, ed: Springer, 2004, pp. 565-574.

[194] B. Porter, U. Roedig, and G. Coulson, "Type-safe updating for modular WSN

software," in Distributed Computing in Sensor Systems and Workshops (DCOSS),

2011 International Conference on, 2011, pp. 1-8.

[195] H. Soroush, M. Salajegheh, and T. Dimitriou, "Providing transparent security

services to sensor networks," in Communications, 2007. ICC'07. IEEE

International Conference on, 2007, pp. 3431-3436.

[196] F. Mavadatt and B. Parhami, "URISC: the ultimate reduced instruction set

computer," Int. J. Elect. Enging. Educ., vol. 25, pp. 327-334, 1988.

[197] D. Bhandarkar and D. W. Clark, "Performance from architecture: comparing a

RISC and a CISC with similar hardware organization," in ACM SIGARCH

Computer Architecture News, 1991, pp. 310-319.

[198] C. Chen, G. Novick, and K. Shimano. (2000). RISC architectures. Available:

http://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/about/index.html

[199] O. Mazonka and A. Kolodin, "A simple multi-processor computer based on

subleq," arXiv preprint arXiv:1106.2593, 2011.

[200] F. Mavaddat and B. Parhami, URISC: The Ultimate Reduced Instruction Set

Computer: Fac. of Mathematics, Univ., 1987.

[201] H. Xingze, P. Man-On, and C. C. J. Kuo, "Secure and efficient cryptosystem for

smart grid using homomorphic encryption," in Innovative Smart Grid

Technologies (ISGT), 2012 IEEE PES, 2012, pp. 1-8.

[202] C. Gentry and S. U. C. S. Dept, A fully homomorphic encryption scheme:

Stanford University, 2009.

[203] C. Ting and C. H. Moore, "Mup21 a high performance misc processor," Forth

Dimensions also available at http: www. dnai. com-~ jfox mup21. html, 1995.

http://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/about/index.html

219

[204] W. McLoone and J. V. McCanny, "Rijndael FPGA implementation utilizing look-

up tables," in Signal Processing Systems, 2001 IEEE Workshop on, 2001, pp. 349-

360.

[205] V. Fischer and M. Drutarovsk, "Two Methods of Rijndael Implementation in

Reconfigurable Hardware," presented at the Proceedings of the Third

International Workshop on Cryptographic Hardware and Embedded Systems,

2001.

[206] S. Morioka and A. Satoh, "A 10 Gbps full-AES crypto design with a twisted-BDD

S-Box architecture," in Computer Design: VLSI in Computers and Processors,

2002. Proceedings. 2002 IEEE International Conference on, 2002, pp. 98-103.

[207] S. Morioka and A. Satoh, "An Optimized S-Box Circuit Architecture for Low

Power AES Design," in Cryptographic Hardware and Embedded Systems - CHES

2002. vol. 2523, B. Kaliski, ç. Koç, and C. Paar, Eds., ed: Springer Berlin

Heidelberg, 2003, pp. 172-186.

[208] J. Wolkerstorfer, E. Oswald, and M. Lamberger, "An ASIC implementation of the

AES SBoxes," in Topics in Cryptology—CT-RSA 2002, ed: Springer, 2002, pp. 67-

78.

[209] V. Rijmen, "Efficient Implementation of the Rijndael S-box," Katholieke

Universiteit Leuven, Dept. ESAT. Belgium, 2000.

[210] J. Daemen and V. Rijmen, The Design of Rijndael: Springer-Verlag New York,

Inc., 2002.

[211] C. Paar, "Some remarks on efficient inversion in finite fields," in Information

Theory, 1995. Proceedings., 1995 IEEE International Symposium on, 1995, p. 58.

[212] J. Boyar and R. Peralta, "A New Combinational Logic Minimization Technique

with Applications to Cryptology," in Experimental Algorithms. vol. 6049, P. Festa,

Ed., ed: Springer Berlin / Heidelberg, 2010, pp. 178-189.

[213] T. Itoh and S. Tsujii, "A fast algorithm for computing multiplicative inverses in

GF(2m) using normal bases," Inf. Comput., vol. 78, pp. 171-177, 1988.

220

[214] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, "A systematic evaluation

of compact hardware implementations for the rijndael s-box," presented at the

Proceedings of the 2005 international conference on Topics in Cryptology, San

Francisco, CA, 2005.

[215] R. Liu and K. K. Parhi, "Fast composite field S-box architectures for advanced

encryption standard," presented at the Proceedings of the 18th ACM Great Lakes

symposium on VLSI, Orlando, Florida, USA, 2008.

[216] S. Piramuthu, "Passive Enumeration of Secret Information in LMAP and M 2 AP

RFID Authentication Protocols," Journal of Information Privacy and Security, vol.

8, pp. 4-14, 2012.

[217] J.-W. Han, C.-S. Park, D.-H. Ryu, and E.-S. Kim, "Optical image encryption

based on XOR operations," Optical Engineering, vol. 38, pp. 47-54, 1999.

[218] Xilinx, "Spartan-3L Low Power FPGA Family," April 18, 2008 2008.

[219] E. Eryilmaz, I. Erturk, and S. Atmaca, "Implementation of Skipjack cryptology

algorithm for WSNs using FPGA," in Application of Information and

Communication Technologies, 2009. AICT 2009. International Conference on,

2009, pp. 1-5.

[220] M. Huang, T. El-Ghazawi, B. Larson, and K. Gaj, "Development of block-cipher

library for reconfigurable computers," in Programmable Logic, 2007. SPL'07.

2007 3rd Southern Conference on, 2007, pp. 191-194.

[221] D. J. Bernstein. (2009). Optimizing linear maps modulo 2. Available:

http://binary.cr.yp.to/linearmod2-20091005.pdf

[222] D. J. Bernstein. (2009, 24-12-2015). sort1.cpp (Optimizing Linear Maps Modulo

2). Available: http://binary.cr.yp.to/linearmod2/sort1.cpp

[223] N. E. Abraham and T. Thomas, "FPGA Implementation of Mix and Inverse Mix

Column for AES Algorithm," International Journal for Scientific Research &

Development (IJSRD), vol. 1, p. 4, 2013.

[224] N. National Institute of Standards and Technology, "Advanced Encryption

Standard," in NIST FIPS PUB 197 U. S. D. o. Commerce, Ed., ed, 2001.

221

[225] T. Good and M. Benaissa, "AES on FPGA from the Fastest to the Smallest," in

Cryptographic Hardware and Embedded Systems – CHES 2005. vol. 3659, J. Rao

and B. Sunar, Eds., ed: Springer Berlin Heidelberg, 2005, pp. 427-440.

[226] H. Feistel and IBM, "Block Cipher Cryptographic System," 1971.

[227] J. Katz and Y. Lindell, Introduction to modern cryptography: CRC Press, 2014.

[228] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of applied

cryptography: CRC Press, 1997.

[229] C. Cid and S. Murphy, Algebraic Aspects of the Advanced Encryption Standard.

Springer: Springer Publishing Company, Incorporated, 2006.

[230] A. G. D. Uchoa, M. E. Pellenz, A. O. Santin, and C. A. Maziero, "A Three-Pass

Protocol for Cryptography Based on Padding for Wireless Networks," in 2007 4th

IEEE Consumer Communications and Networking Conference, 2007, pp. 287-291.

[231] Y. Kanamori and S.-M. Yoo, "Quantum three-pass protocol: key distribution

using quantum superposition states," arXiv preprint arXiv:1004.0599, 2010.

[232] A. Jolfaei and A. Mirghadri, "Image Encryption Using Chaos and Block Cipher,"

Computer and Information Science, vol. 4, pp. 172 - 185, January 2011 2011.

[233] J. J. Buchholz. (2001, August 2013). Matlab Implementation of the Advanced

Encryption Standard. Available: http://buchholz.hs-bremen.de/aes/AES.pdf

[234] O. D. Tools. (2016). AES – Symmetric Ciphers Online. Available: http://online-

domain-tools.com/information/about-project

[235] D. P. Menezes and C. M. Dc. Adding Security to Block-Sorting Compression.

[236] H. Li, F. Gao, Y. Xue, and S. Feng, "The Application of LZSS in the RFID Tags,"

in Computer Network and Multimedia Technology, 2009. CNMT 2009.

International Symposium on, 2009, pp. 1-4.

[237] S. Kankonsae, P.Choeysuwan, and S.Choomchuay, "A 2-Stage Compression for

RFID Tags Data," presented at the International Workshop on Information

Communication Technology, KMITL, Bangkok, Thailand, 2010.

222

[238] R. A. Lippert, C. M. Mobarry, and B. P. Walenz, "A space-efficient construction of

the Burrows-Wheeler transform for genomic data," Journal of Computational

Biology, vol. 12, pp. 943-951, 2005.

[239] J. Martinez, R. Cumplido, and C. Feregrino, "An FPGA Parallel Sorting

Architecture for the Burrows Wheeler Transform," presented at the Proceedings

of the 2005 International Conference on Reconfigurable Computing and FPGAs

(ReConFig'05) on Reconfigurable Computing and FPGAs, 2005.

[240] V. Fischer, M. Drutarovsky, P. Chodowiec, and F. Gramain, "InvMixColumn

decomposition and multilevel resource sharing in AES implementations," Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 13, pp. 989-

992, 2005.

[241] C. Chitu and M. Glesner, "An FPGA implementation of the AES-Rijndael in

OCB/ECB modes of operation," Microelectronics Journal, vol. 36, pp. 139-146,

2005.

223

APPENDIX I: CELOXICA

HANDLE-C CODES

CISA AES

// AES processor (12bit arch) part ENC

 5

#define RC10_TARGET_CLOCK_RATE

 20000000

//#define RC10_TARGET_CLOCK_RATE

 25175000

//#define PAL_TARGET_CLOCK_RATE 10

 20000000

#define ENCRYPT 1

#define DECRYPT 0

 15

#include "stdlib.hch"

//#include "pal_master.hch"

//#include "pal_console.hch"

#include "rc10.hch"

 20

#define RegWidth 8 // 8 bit long

#define RegWidth_10b 10 //

10 bit long

#define RegWidth_12b 12 //

11 bit long 25

macro expr ClockRate =

RC10_ACTUAL_CLOCK_RATE;

//macro expr ClockRate = 30

PAL_ACTUAL_CLOCK_RATE;

static ram unsigned RegWidth_12b Memory[4096] 35

= {

//example of XOR instruction

//0x301, 0x112, 0x000, // 99 xor 11 = 88

 40

//example of SBN instruction

//0x101, 0x112, 0x000, // 99 + 11 = AA

//---------------AES ENCRYPTION / DECRYPTION 45

PROGRAM-----------------//

//PC starts at xxx

0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006,

0x007, 0x008, 0x009, 0x00A, 0x00B, 0x00C, 50

224

0x00D, 0x00E, 0x00F, //000 - 00F //Original Key (0

- 15)

0x000, 0x011, 0x022, 0x033, 0x044, 0x055, 0x066,

0x077, 0x088, 0x099, 0x0AA, 0x0BB, 0x0CC,

0x0DD, 0x0EE, 0x0FF, //010 - 01F //Plain text (16 5

- 31)

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //020 - 02F //Data for shift row

round 1(32 - 47) and for mix column 10

0x000, 0x001, 0x002, 0x004, 0x008, 0x010, 0x020,

0x040, 0x080, 0x01B, 0x036, 0x000, 0x000, 0x000,

0x000, 0x009, //030 - 03F //Data for constants (48 -

63)

//0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 15

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //040 - 04F //Cipher (64 - 79)

0x069, 0x0C4, 0x0E0, 0x0D8, 0x06A, 0x07B,

0x004, 0x030, 0x0D8, 0x0CD, 0x0B7, 0x080,

0x070, 0x0B4, 0x0C5, 0x05A, //040 - 04F //Cipher 20

(64 - 79)

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //050 - 05F //temp Data for

Mixcolumn (80 - 95) 25

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //060 - 06F //temp Data for

Mixcolumn (95 - 111)

0x000, 0x001, 0xFFF, 0xFF5, 0x009, 0xFF6, 30

0x008, 0xFF0, 0xFF5, 0x800, 0x010, 0xFFE,

0x000, 0x000, 0x000, 0x000, //070 - 07F //temp

Data and temp key (112 - 127)

/* 35

//expanded keys

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //080 - 08F //Original Key (128 - 143)

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 40

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //090 - 09F //Key round 1 (144 - 159

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //0A0 - 0AF //Key round 2 (160 - 175 45

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //0B0 - 0BF //Key round 3 (176 - 191)

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 50

0x000, 0x000, //0C0 - 0CF //Key round 4 (192 - 207)

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //0D0 - 0DF //Key round 5 (208 - 223)

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 55

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //0E0 - 0EF //Key round 6 (224 - 239)

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //0F0 - 0FF //Key round 7 (240 - 255) 60

225

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //100 - 10F //Key round 8 (256 - 271)

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 5

0x000, 0x000, //110 - 11F //Key round 9 (272 - 287)

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,

0x000, 0x000, //120 - 12F //Key round 10 (288 -

303) 10

*/

//Reference Keys for all 10 rounds//

 15

0x000, 0x001, 0x002, 0x003,

0x004, 0x005, 0x006, 0x007,

0x008, 0x009, 0x00A, 0x00B,

0x00C, 0x00D, 0x00E, 0x00F, //080 - 08F

//Original Key (128 - 143) 20

0x0d6, 0x0aa, 0x074, 0x0fd,

0x0d2, 0x0af, 0x072, 0x0fa,

0x0da, 0x0a6, 0x078, 0x0f1,

0x0d6, 0x0ab, 0x076, 0x0fe, //090 - 09F //Key 25

round 1 (144 - 159)

0x0b6, 0x092, 0x0cf, 0x00b,

0x064, 0x03d, 0x0bd, 0x0f1,

0x0be, 0x09b, 0x0c5, 0x000, 30

0x068, 0x030, 0x0b3, 0x0fe, //0A0 - 0AF //Key

round 2 (160 - 175)

0x0b6, 0x0ff, 0x074, 0x04e,

0x0d2, 0x0c2, 0x0c9, 0x0bf, 35

0x06c, 0x059, 0x00c, 0x0bf,

0x004, 0x069, 0x0bf, 0x041, //0B0 - 0BF //Key

round 3 (176 - 191)

0x047, 0x0f7, 0x0f7, 0x0bc, 40

0x095, 0x035, 0x03e, 0x003,

0x0f9, 0x06c, 0x032, 0x0bc,

0x0fd, 0x005, 0x08d, 0x0fd, //0C0 - 0CF //Key

round 4 (192 - 207)

 45

0x03c, 0x0aa, 0x0a3, 0x0e8,

0x0a9, 0x09f, 0x09d, 0x0eb,

0x050, 0x0f3, 0x0af, 0x057,

0x0ad, 0x0f6, 0x022, 0x0aa, //0D0 - 0DF //Key

round 5 (208 - 223) 50

0x05e, 0x039, 0x00f, 0x07d,

226

0x0f7, 0x0a6, 0x092, 0x096,

0x0a7, 0x055, 0x03d, 0x0c1,

0x00a, 0x0a3, 0x01f, 0x06b, //0E0 - 0EF //Key

round 6 (224 - 239)

 5

0x014, 0x0f9, 0x070, 0x01a,

0x0e3, 0x05f, 0x0e2, 0x08c,

0x044, 0x00a, 0x0df, 0x04d,

0x04e, 0x0a9, 0x0c0, 0x026, //0F0 - 0FF //Key

round 7 (240 - 255) 10

0x047, 0x043, 0x087, 0x035,

0x0a4, 0x01c, 0x065, 0x0b9,

0x0e0, 0x016, 0x0ba, 0x0f4,

0x0ae, 0x0bf, 0x07a, 0x0d2, //100 - 10F //Key 15

round 8 (256 - 271)

0x054, 0x099, 0x032, 0x0d1,

0x0f0, 0x085, 0x057, 0x068,

0x010, 0x093, 0x0ed, 0x09c, 20

0x0be, 0x02c, 0x097, 0x04e, //110 - 11F //Key

round 9 (272 - 287)

0x013, 0x011, 0x01d, 0x07f,

0x0e3, 0x094, 0x04a, 0x017, 25

0x0f3, 0x007, 0x0a7, 0x08b,

0x04d, 0x02b, 0x030, 0x0c5, //120 - 12F //Key

round 10 (288 - 303)

 30

//Original Key

//000 - 000

//001 - 001

//002 - 002

//003 - 003 35

//004 - 004

//005 - 005

//006 - 006

//007 - 007

//008 - 008 40

//009 - 009

//00A - 00A

//00B - 00B

//00C - 00C

//00D - 00D 45

//00E - 00E

//00F - 00F

//Plain text

227

//010 - 000

//011 - 011

//012 - 022

//013 - 033

//014 - 044 5

//015 - 055

//016 - 066

//017 - 077

//018 - 088

//019 - 099 10

//01A - 0AA

//01B - 0BB

//01C - 0CC

//01D - 0DD

//01E - 0EE 15

//01F - 0FF

//Data for constants

//030 - 000

//031 - 001 20

//032 - 002

//033 - 004

//034 - 008

//035 - 010

//036 - 020 25

//037 - 040

//038 - 080

//039 - 01B

//03A - 036

//03B - 000 30

//03C - 000

//03D - 000

//03E - 000

//03F - 00A //loop for decrypt 2 (10)

 35

//070 - 000

//071 - 001

//072 - FFF (-1)

//073 - FF5 (-11) Nr2

//074 - 009 (9) Nr1 40

//075 - FF6 (-10) test Nr 1 (R=9)

//076 - 008 (8) test Nr2 (R=9)

//077 - FF0 (-16)

//078 - FF5 (key.ex loop = 11 -> 1 last time to write

last key) 45

//079 - 800 (extreme neg for braching)

//07A - 010 (+16)

//07B - FFE (-2) DECRYPT loop 1 (bypass)

228

//---------------KEY EXPANSION----------------//

//run 10 rounds of key expansion algorithm

0x000, 0x000, //304, 305 5

//move current key to key mem

0x400, 0x080, 0x000, //306

0x401, 0x081, 0x000,

0x402, 0x082, 0x000, 10

0x403, 0x083, 0x000,

0x404, 0x084, 0x000,

0x405, 0x085, 0x000,

0x406, 0x086, 0x000,

0x407, 0x087, 0x000, 15

0x408, 0x088, 0x000,

0x409, 0x089, 0x000,

0x40A, 0x08A, 0x000,

0x40B, 0x08B, 0x000,

0x40C, 0x08C, 0x000, 20

0x40D, 0x08D, 0x000,

0x40E, 0x08E, 0x000,

0x40F, 0x08F, 0x000, //353

//clear temp key var and ROT word 25

0x07C, 0x07C, 0x000, //354

0x07D, 0x07D, 0x000,

0x07E, 0x07E, 0x000,

0x07F, 0x07F, 0x000, //365

 30

//Rot Word

0x40D, 0x07C, 0x000, //366

0x40E, 0x07D, 0x000,

0x40F, 0x07E, 0x000,

0x40C, 0x07F, 0x000, //377 35

//Sub word

0xC00, 0x07C, 0x000, //378

0xC00, 0x07D, 0x000,

0xC00, 0x07E, 0x000, 40

0xC00, 0x07F, 0x000, //389

//XOR RCon

//increment program + load RCON

0x072, 0x189, 0x000, // 390 - 392 45

//load Rcon (XOR to MSB key)

0x430, 0x07C, 0x000, // 393 - 395

229

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

230

 5

 10

 15

 20

 25

 30

//key gen

0x47C, 0x000, 0x000, //396

0x47D, 0x001, 0x000,

0x47E, 0x002, 0x000,

0x47F, 0x003, 0x000, 35

0x400, 0x004, 0x000,

0x401, 0x005, 0x000,

0x402, 0x006, 0x000,

0x403, 0x007, 0x000, 40

0x404, 0x008, 0x000,

0x405, 0x009, 0x000,

0x406, 0x00A, 0x000,

0x407, 0x00B, 0x000, 45

0x408, 0x00C, 0x000,

0x409, 0x00D, 0x000,

0x40A, 0x00E, 0x000,

0x40B, 0x00F, 0x000, // 443 50

//increment round key memory locations by 16

0x077, 0x133, 0x000, //444

0x077, 0x136, 0x000,

0x077, 0x139, 0x000, 55

0x077, 0x13C, 0x000,

0x077, 0x13F, 0x000,

0x077, 0x142, 0x000,

231

0x077, 0x145, 0x000,

0x077, 0x148, 0x000,

0x077, 0x14B, 0x000,

0x077, 0x14E, 0x000,

0x077, 0x151, 0x000, 5

0x077, 0x154, 0x000,

0x077, 0x157, 0x000,

0x077, 0x15A, 0x000,

0x077, 0x15D, 0x000,

0x077, 0x160, 0x000, //491 10

0x072, 0x078, 0x131, //492 - 494 (go to 305 + 1)

//-------end key expansion------//

//continue to jump to add key (ENCRYPT) 15

0x072, 0x079, 0x251, //495 - 497 (go to 593 + 1)

0x000, 0x000, 0x000, //498

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 20

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 25

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 30

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, //545

0x000, 0x000, 0x000, //546 35

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 40

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 45

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

232

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, //593

//Add roundkey (re-addressing + add round key) ->

ENCRYPT 5

0x480, 0x010, 0x000, //594

0x481, 0x011, 0x000,

0x482, 0x012, 0x000,

0x483, 0x013, 0x000,

0x484, 0x014, 0x000, 10

0x485, 0x015, 0x000,

0x486, 0x016, 0x000,

0x487, 0x017, 0x000,

0x488, 0x018, 0x000,

0x489, 0x019, 0x000, 15

0x48A, 0x01A, 0x000,

0x48B, 0x01B, 0x000,

0x48C, 0x01C, 0x000,

0x48D, 0x01D, 0x000,

0x48E, 0x01E, 0x000, 20

0x48F, 0x01F, 0x000, //641

0x077, 0x252, 0x000, //642

0x077, 0x255, 0x000,

0x077, 0x258, 0x000, 25

0x077, 0x25B, 0x000,

0x077, 0x25E, 0x000,

0x077, 0x261, 0x000,

0x077, 0x264, 0x000,

0x077, 0x267, 0x000, 30

0x077, 0x26A, 0x000,

0x077, 0x26D, 0x000,

0x077, 0x270, 0x000,

0x077, 0x273, 0x000,

0x077, 0x276, 0x000, 35

0x077, 0x279, 0x000,

0x077, 0x27C, 0x000,

0x077, 0x27F, 0x000, //689

//0x072, 0x073, 0x07F, //690 - 692 NEW Nr2, 40

check if all 10rounds is done

0x072, 0x073, 0x3FF, //continue to jump to shift

row (ENCRYPT)

//continue to end 45

0x072, 0x079, 0x6D5, //693 - 695 (go to 1749 + 1)

0x000, 0x000, 0x000, //696

0x000, 0x000, 0x000,

233

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 5

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 10

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, //743

 15

//Add roundkey (re-addressing + add round key) ->

DECRYPT

0x520, 0x040, 0x000, //744

0x521, 0x041, 0x000,

0x522, 0x042, 0x000, 20

0x523, 0x043, 0x000,

0x524, 0x044, 0x000,

0x525, 0x045, 0x000,

0x526, 0x046, 0x000,

0x527, 0x047, 0x000, 25

0x528, 0x048, 0x000,

0x529, 0x049, 0x000,

0x52A, 0x04A, 0x000,

0x52B, 0x04B, 0x000,

0x52C, 0x04C, 0x000, 30

0x52D, 0x04D, 0x000,

0x52E, 0x04E, 0x000,

0x52F, 0x04F, 0x000, //791

0x07A, 0x2E8, 0x000, //792 35

0x07A, 0x2EB, 0x000,

0x07A, 0x2EE, 0x000,

0x07A, 0x2F1, 0x000,

0x07A, 0x2F4, 0x000,

0x07A, 0x2F7, 0x000, 40

0x07A, 0x2FA, 0x000,

0x07A, 0x2FD, 0x000,

0x07A, 0x300, 0x000,

0x07A, 0x303, 0x000,

0x07A, 0x306, 0x000, 45

0x07A, 0x309, 0x000,

0x07A, 0x30C, 0x000,

0x07A, 0x30F, 0x000,

234

0x07A, 0x312, 0x000,

0x07A, 0x315, 0x000,//839

//continue to jump to inv shift row (DECRYPT)

(one time loop) 5

0x072, 0x07B, 0x7FF, //840 - 842 (go to 2047 + 1)

0x071, 0x03F, 0xFFE, // jump to end is R=10

//0x000, 0x000, 0x000,

 10

0x072, 0x079, 0x8F2,//jump to 2289 if -ve (jump to

inv mix column)

0x000, 0x000, 0x000, //843

0x000, 0x000, 0x000, 15

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 20

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 25

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, //890

 30

0x000, 0x000, 0x000, //891

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 35

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 40

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 45

0x000, 0x000, 0x000, //938

0x000, 0x000, 0x000, //939

0x000, 0x000, 0x000,

235

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 5

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 10

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, //986

 15

0x000, 0x000, 0x000, //987

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 20

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 25

0x000, //1023

//----------programmable addresses end--------//

 30

//----------AES ENCRYPTION SEQUENCE----------//

//PC starts at 1024

//9 rounds of permute - sub

//clear data(32 - 47) and shift rows of plaintext to 35

data(32 - 47)

0x020, 0x020, 0x000, //1024

0x021, 0x021, 0x000,

0x022, 0x022, 0x000,

0x023, 0x023, 0x000, 40

0x024, 0x024, 0x000,

0x025, 0x025, 0x000,

0x026, 0x026, 0x000,

0x027, 0x027, 0x000,

0x028, 0x028, 0x000, 45

0x029, 0x029, 0x000,

0x02A, 0x02A, 0x000,

0x02B, 0x02B, 0x000,

236

0x02C, 0x02C, 0x000,

0x02D, 0x02D, 0x000,

0x02E, 0x02E, 0x000,

0x02F, 0x02F, 0x000, // (96)

 5

0x410, 0x020, 0x000,

0x415, 0x021, 0x000,

0x41A, 0x022, 0x000,

0x41F, 0x023, 0x000,

0x414, 0x024, 0x000, 10

0x419, 0x025, 0x000,

0x41E, 0x026, 0x000,

0x413, 0x027, 0x000,

0x418, 0x028, 0x000,

0x41D, 0x029, 0x000, 15

0x412, 0x02A, 0x000,

0x417, 0x02B, 0x000,

0x41C, 0x02C, 0x000,

0x411, 0x02D, 0x000,

0x416, 0x02E, 0x000, 20

0x41B, 0x02F, 0x000, // 1119

//sub bytes (stored in 010 - 01F)

0xC00, 0x020, 0x000, //1120

0xC00, 0x021, 0x000, 25

0xC00, 0x022, 0x000,

0xC00, 0x023, 0x000,

0xC00, 0x024, 0x000,

0xC00, 0x025, 0x000,

0xC00, 0x026, 0x000, 30

0xC00, 0x027, 0x000,

0xC00, 0x028, 0x000,

0xC00, 0x029, 0x000,

0xC00, 0x02A, 0x000,

0xC00, 0x02B, 0x000, 35

0xC00, 0x02C, 0x000,

0xC00, 0x02D, 0x000,

0xC00, 0x02E, 0x000,

0xC00, 0x02F, 0x000, // 1167

 40

//check that all 9 round completed

0x071, 0x074, 0x672, // 1168 - 1170 (go to end of

mix column for last round of add key)

 45

//mix column of data(32 - 47) and stored in

data(32 - 47)

//clear location(080 - 08F & 090 - 09F) and move

data to location(080 - 08F & 090 - 09F)

237

0x050, 0x050, 0x000, //1171

0x051, 0x051, 0x000,

0x052, 0x052, 0x000,

0x053, 0x053, 0x000,

0x054, 0x054, 0x000, 5

0x055, 0x055, 0x000,

0x056, 0x056, 0x000,

0x057, 0x057, 0x000,

0x058, 0x058, 0x000, //(48)

0x059, 0x059, 0x000, 10

0x05A, 0x05A, 0x000,

0x05B, 0x05B, 0x000,

0x05C, 0x05C, 0x000,

0x05D, 0x05D, 0x000,

0x05E, 0x05E, 0x000, 15

0x05F, 0x05F, 0x000, //1218

0x060, 0x060, 0x000, //1219

0x061, 0x061, 0x000,

0x062, 0x062, 0x000, 20

0x063, 0x063, 0x000,

0x064, 0x064, 0x000,

0x065, 0x065, 0x000,

0x066, 0x066, 0x000,

0x067, 0x067, 0x000, //(48) 25

0x068, 0x068, 0x000,

0x069, 0x069, 0x000,

0x06A, 0x06A, 0x000,

0x06B, 0x06B, 0x000,

0x06C, 0x06C, 0x000, 30

0x06D, 0x06D, 0x000,

0x06E, 0x06E, 0x000,

0x06F, 0x06F, 0x000, //1266

0x420, 0x050, 0x000, //1267 35

0x421, 0x051, 0x000,

0x422, 0x052, 0x000,

0x423, 0x053, 0x000,

0x424, 0x054, 0x000,

0x425, 0x055, 0x000, 40

0x426, 0x056, 0x000,

0x427, 0x057, 0x000,

0x428, 0x058, 0x000, //(48)

0x429, 0x059, 0x000,

0x42A, 0x05A, 0x000, 45

0x42B, 0x05B, 0x000,

0x42C, 0x05C, 0x000,

0x42D, 0x05D, 0x000,

238

0x42E, 0x05E, 0x000,

0x42F, 0x05F, 0x000, //1314

0x420, 0x060, 0x000, //1315

0x421, 0x061, 0x000, 5

0x422, 0x062, 0x000,

0x423, 0x063, 0x000,

0x424, 0x064, 0x000,

0x425, 0x065, 0x000,

0x426, 0x066, 0x000, //(48) 10

0x427, 0x067, 0x000,

0x428, 0x068, 0x000,

0x429, 0x069, 0x000,

0x42A, 0x06A, 0x000,

0x42B, 0x06B, 0x000, 15

0x42C, 0x06C, 0x000,

0x42D, 0x06D, 0x000,

0x42E, 0x06E, 0x000,

0x42F, 0x06F, 0x000, //1362

 20

//column0

0x423, 0x050, 0x000, // 1363

0x420, 0x051, 0x000, //

0x421, 0x052, 0x000, //

0x422, 0x053, 0x000, // 25

0x452, 0x060, 0x000, //

0x453, 0x061, 0x000, //

0x450, 0x062, 0x000, //

0x451, 0x063, 0x000, // 30

0x800, 0x050, 0x000,

0x800, 0x051, 0x000,

0x800, 0x052, 0x000,

0x800, 0x053, 0x000, // 35

0x450, 0x060, 0x000,

0x451, 0x061, 0x000,

0x452, 0x062, 0x000,

0x453, 0x063, 0x000, // (72) 40

0x020, 0x020, 0x000,

0x021, 0x021, 0x000,

0x022, 0x022, 0x000,

0x023, 0x023, 0x000, // 45

0x461, 0x020, 0x000,

0x462, 0x021, 0x000,

239

0x463, 0x022, 0x000,

0x460, 0x023, 0x000, // 1434

//column1

0x427, 0x054, 0x000, //1435 5

0x424, 0x055, 0x000,

0x425, 0x056, 0x000,

0x426, 0x057, 0x000, //

0x456, 0x064, 0x000, 10

0x457, 0x065, 0x000,

0x454, 0x066, 0x000,

0x455, 0x067, 0x000, //

0x800, 0x054, 0x000, 15

0x800, 0x055, 0x000,

0x800, 0x056, 0x000,

0x800, 0x057, 0x000, //

0x454, 0x064, 0x000, 20

0x455, 0x065, 0x000,

0x456, 0x066, 0x000,

0x457, 0x067, 0x000, //

0x024, 0x024, 0x000, 25

0x025, 0x025, 0x000,

0x026, 0x026, 0x000,

0x027, 0x027, 0x000, //

0x465, 0x024, 0x000, 30

0x466, 0x025, 0x000,

0x467, 0x026, 0x000,

0x464, 0x027, 0x000, // 1506

 35

//column2

0x42B, 0x058, 0x000, //1507

0x428, 0x059, 0x000,

0x429, 0x05A, 0x000,

0x42A, 0x05B, 0x000, 40

0x45A, 0x068, 0x000,

0x45B, 0x069, 0x000,

0x458, 0x06A, 0x000,

0x459, 0x06B, 0x000, 45

0x800, 0x058, 0x000,

0x800, 0x059, 0x000,

240

0x800, 0x05A, 0x000,

0x800, 0x05B, 0x000,

0x458, 0x068, 0x000,

0x459, 0x069, 0x000, 5

0x45A, 0x06A, 0x000,

0x45B, 0x06B, 0x000,

0x028, 0x028, 0x000,

0x029, 0x029, 0x000, 10

0x02A, 0x02A, 0x000,

0x02B, 0x02B, 0x000,

0x469, 0x028, 0x000,

0x46A, 0x029, 0x000, 15

0x46B, 0x02A, 0x000,

0x468, 0x02B, 0x000, //1578

//column3 20

0x42F, 0x05C, 0x000, //1579

0x42C, 0x05D, 0x000,

0x42D, 0x05E, 0x000,

0x42E, 0x05F, 0x000,

 25

0x45E, 0x06C, 0x000,

0x45F, 0x06D, 0x000,

0x45C, 0x06E, 0x000,

0x45D, 0x06F, 0x000,

 30

0x800, 0x05C, 0x000,

0x800, 0x05D, 0x000,

0x800, 0x05E, 0x000,

0x800, 0x05F, 0x000,

 35

0x45C, 0x06C, 0x000,

0x45D, 0x06D, 0x000,

0x45E, 0x06E, 0x000,

0x45F, 0x06F, 0x000,

 40

0x02C, 0x02C, 0x000,

0x02D, 0x02D, 0x000,

0x02E, 0x02E, 0x000,

0x02F, 0x02F, 0x000,

 45

0x46D, 0x02C, 0x000,

0x46E, 0x02D, 0x000,

0x46F, 0x02E, 0x000,

241

0x46C, 0x02F, 0x000, // 1650

//clear 010 = 01F

0x010, 0x010, 0x000, //1651

0x011, 0x011, 0x000, 5

0x012, 0x012, 0x000,

0x013, 0x013, 0x000,

0x014, 0x014, 0x000,

0x015, 0x015, 0x000,

0x016, 0x016, 0x000, 10

0x017, 0x017, 0x000, //(48)

0x018, 0x018, 0x000,

0x019, 0x019, 0x000,

0x01A, 0x01A, 0x000,

0x01B, 0x01B, 0x000, 15

0x01C, 0x01C, 0x000,

0x01D, 0x01D, 0x000,

0x01E, 0x01E, 0x000,

0x01F, 0x01F, 0x000, //1698

 20

//move the mixcolumn result from 020 - 02f to 010

- 01f

0x420, 0x010, 0x000, //1699

0x421, 0x011, 0x000,

0x422, 0x012, 0x000, 25

0x423, 0x013, 0x000,

0x424, 0x014, 0x000,

0x425, 0x015, 0x000,

0x426, 0x016, 0x000,

0x427, 0x017, 0x000, 30

0x428, 0x018, 0x000,

0x429, 0x019, 0x000,

0x42A, 0x01A, 0x000,

0x42B, 0x01B, 0x000,

0x42C, 0x01C, 0x000, 35

0x42D, 0x01D, 0x000,

0x42E, 0x01E, 0x000,

0x42F, 0x01F, 0x000, //1746

0x072, 0x079, 0x251, //1747 - 1749 (back to add 40

key ENCRYPT)

//move the encrypted result to 040 - 04f for

decryption

0x410, 0x040, 0x000, //1750 45

0x411, 0x041, 0x000,

0x412, 0x042, 0x000,

0x413, 0x043, 0x000,

0x414, 0x044, 0x000,

242

0x415, 0x045, 0x000,

0x416, 0x046, 0x000,

0x417, 0x047, 0x000,

0x418, 0x048, 0x000,

0x419, 0x049, 0x000, 5

0x41A, 0x04A, 0x000,

0x41B, 0x04B, 0x000,

0x41C, 0x04C, 0x000,

0x41D, 0x04D, 0x000,

0x41E, 0x04E, 0x000, 10

0x41F, 0x04F, 0x000, //1797

0x072, 0x079, 0xFFE, //1798 - 1800 (END OF

ENCRYPT)

//0x000, 0x000, 0x000, //1798 - 1800 (END OF 15

ENCRYPT)

0x000, 0x000, 0x000, //1801

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 20

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 25

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 30

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, //1848

0x000, 0x000, 0x000, //1849 35

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 40

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 45

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

243

0x000, 0x000, 0x000, //1896

0x000, 0x000, 0x000, //1897

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 5

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 10

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 15

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, //1944

0x000, 0x000, 0x000, //1945 20

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 25

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 30

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, //1992 35

0x000, 0x000, 0x000, //1993

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 40

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, 45

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

244

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000,

0x000, 0x000, 0x000, //2040

 5

0x000, 0x000, 0x000, //2041

0x000, 0x000, 0x000,

0x000, //2047

 10

//----------AES DECRYPTION SEQUENCE----------//

//PC starts at 2048

//9 rounds of inv permute - inv sub

//clear data(32 - 47) and inv shift rows of 15

ciphertext to data(32 - 47)

0x020, 0x020, 0x000, //2048

0x021, 0x021, 0x000,

0x022, 0x022, 0x000,

0x023, 0x023, 0x000, 20

0x024, 0x024, 0x000,

0x025, 0x025, 0x000,

0x026, 0x026, 0x000,

0x027, 0x027, 0x000,

0x028, 0x028, 0x000, 25

0x029, 0x029, 0x000,

0x02A, 0x02A, 0x000,

0x02B, 0x02B, 0x000,

0x02C, 0x02C, 0x000,

0x02D, 0x02D, 0x000, 30

0x02E, 0x02E, 0x000,

0x02F, 0x02F, 0x000, // (96)

0x440, 0x020, 0x000,

0x44D, 0x021, 0x000, 35

0x44A, 0x022, 0x000,

0x447, 0x023, 0x000,

0x444, 0x024, 0x000,

0x441, 0x025, 0x000,

0x44E, 0x026, 0x000, 40

0x44B, 0x027, 0x000,

0x448, 0x028, 0x000,

0x445, 0x029, 0x000,

0x442, 0x02A, 0x000,

0x44F, 0x02B, 0x000, 45

0x44C, 0x02C, 0x000,

0x449, 0x02D, 0x000,

0x446, 0x02E, 0x000,

245

0x443, 0x02F, 0x000, // 2143

//sub bytes (stored in 010 - 01F)

0xC00, 0x020, 0x000, //2144

0xC00, 0x021, 0x000, 5

0xC00, 0x022, 0x000,

0xC00, 0x023, 0x000,

0xC00, 0x024, 0x000,

0xC00, 0x025, 0x000,

0xC00, 0x026, 0x000, 10

0xC00, 0x027, 0x000,

0xC00, 0x028, 0x000,

0xC00, 0x029, 0x000,

0xC00, 0x02A, 0x000,

0xC00, 0x02B, 0x000, 15

0xC00, 0x02C, 0x000,

0xC00, 0x02D, 0x000,

0xC00, 0x02E, 0x000,

0xC00, 0x02F, 0x000, // 2191

 20

0x040, 0x040, 0x000, //2192

0x041, 0x041, 0x000,

0x042, 0x042, 0x000,

0x043, 0x043, 0x000,

0x044, 0x044, 0x000, 25

0x045, 0x045, 0x000,

0x046, 0x046, 0x000,

0x047, 0x047, 0x000,

0x048, 0x048, 0x000,

0x049, 0x049, 0x000, 30

0x04A, 0x04A, 0x000,

0x04B, 0x04B, 0x000,

0x04C, 0x04C, 0x000,

0x04D, 0x04D, 0x000,

0x04E, 0x04E, 0x000, 35

0x04F, 0x04F, 0x000, // (96)

0x420, 0x040, 0x000,

0x421, 0x041, 0x000,

0x422, 0x042, 0x000, 40

0x423, 0x043, 0x000,

0x424, 0x044, 0x000,

0x425, 0x045, 0x000,

0x426, 0x046, 0x000,

0x427, 0x047, 0x000, 45

0x428, 0x048, 0x000,

0x429, 0x049, 0x000,

0x42A, 0x04A, 0x000,

246

0x42B, 0x04B, 0x000,

0x42C, 0x04C, 0x000,

0x42D, 0x04D, 0x000,

0x42E, 0x04E, 0x000,

0x42F, 0x04F, 0x000, // 2287 5

/*

//TEST!

0x510, 0x040, 0x000, //744

0x511, 0x041, 0x000, 10

0x512, 0x042, 0x000,

0x513, 0x043, 0x000,

0x514, 0x044, 0x000,

0x515, 0x045, 0x000,

0x516, 0x046, 0x000, 15

0x517, 0x047, 0x000,

0x518, 0x048, 0x000,//dummy add key

0x519, 0x049, 0x000,

0x51A, 0x04A, 0x000,

0x51B, 0x04B, 0x000, 20

0x51C, 0x04C, 0x000,

0x51D, 0x04D, 0x000,

0x51E, 0x04E, 0x000,

0x51F, 0x04F, 0x000, //791

*/ 25

//check that all 9 round completed

0x072, 0x079, 0x2E7, // 2288 - 2290 (go to inv add

key)

 30

//inv mix column

0x050, 0x050, 0x000, //2291

0x051, 0x051, 0x000,

0x052, 0x052, 0x000,

0x053, 0x053, 0x000, 35

0x054, 0x054, 0x000,

0x055, 0x055, 0x000,

0x056, 0x056, 0x000,

0x057, 0x057, 0x000,

0x058, 0x058, 0x000, //(48) 40

0x059, 0x059, 0x000,

0x05A, 0x05A, 0x000,

0x05B, 0x05B, 0x000,

0x05C, 0x05C, 0x000,

0x05D, 0x05D, 0x000, 45

0x05E, 0x05E, 0x000,

0x05F, 0x05F, 0x000, //2238

247

0x060, 0x060, 0x000, //2239

0x061, 0x061, 0x000,

0x062, 0x062, 0x000,

0x063, 0x063, 0x000,

0x064, 0x064, 0x000, 5

0x065, 0x065, 0x000,

0x066, 0x066, 0x000,

0x067, 0x067, 0x000, //(48)

0x068, 0x068, 0x000,

0x069, 0x069, 0x000, 10

0x06A, 0x06A, 0x000,

0x06B, 0x06B, 0x000,

0x06C, 0x06C, 0x000,

0x06D, 0x06D, 0x000,

0x06E, 0x06E, 0x000, 15

0x06F, 0x06F, 0x000, //2385

0x440, 0x050, 0x000, //2386

0x441, 0x051, 0x000,

0x442, 0x052, 0x000, 20

0x443, 0x053, 0x000,

0x444, 0x054, 0x000,

0x445, 0x055, 0x000,

0x446, 0x056, 0x000,

0x447, 0x057, 0x000, 25

0x448, 0x058, 0x000, //(48)

0x449, 0x059, 0x000,

0x44A, 0x05A, 0x000,

0x44B, 0x05B, 0x000,

0x44C, 0x05C, 0x000, 30

0x44D, 0x05D, 0x000,

0x44E, 0x05E, 0x000,

0x44F, 0x05F, 0x000, //1314

0x440, 0x060, 0x000, //1315 35

0x441, 0x061, 0x000,

0x442, 0x062, 0x000,

0x443, 0x063, 0x000,

0x444, 0x064, 0x000,

0x445, 0x065, 0x000, 40

0x446, 0x066, 0x000, //(48)

0x447, 0x067, 0x000,

0x448, 0x068, 0x000,

0x449, 0x069, 0x000,

0x44A, 0x06A, 0x000, 45

0x44B, 0x06B, 0x000,

0x44C, 0x06C, 0x000,

0x44D, 0x06D, 0x000,

248

0x44E, 0x06E, 0x000,

0x44F, 0x06F, 0x000, //1362

//column0

0x443, 0x050, 0x000, // 1363 5

0x440, 0x051, 0x000, //

0x441, 0x052, 0x000, //

0x442, 0x053, 0x000, //

0x452, 0x060, 0x000, // 10

0x453, 0x061, 0x000, //

0x450, 0x062, 0x000, //

0x451, 0x063, 0x000, //

0x800, 0x050, 0x000, 15

0x800, 0x051, 0x000,

0x800, 0x052, 0x000,

0x800, 0x053, 0x000, //

0x450, 0x060, 0x000, 20

0x451, 0x061, 0x000,

0x452, 0x062, 0x000,

0x453, 0x063, 0x000, // (72)

0x440, 0x042, 0x000, 25

0x441, 0x043, 0x000,

0x800, 0x042, 0x000,

0x800, 0x042, 0x000,

0x800, 0x043, 0x000, 30

0x800, 0x043, 0x000, // x4time

0x040, 0x040, 0x000,

0x041, 0x041, 0x000,

 35

0x442, 0x040, 0x000,

0x443, 0x041, 0x000, //

0x442, 0x043, 0x000,

0x800, 0x043, 0x000, //last xtime 40

0x443, 0x040, 0x000,

0x443, 0x041, 0x000, //

0x441, 0x060, 0x000, 45

0x440, 0x061, 0x000,

0x441, 0x062, 0x000,

0x440, 0x063, 0x000, //

249

0x040, 0x040, 0x000,

0x041, 0x041, 0x000,

0x042, 0x042, 0x000,

0x043, 0x043, 0x000, // 5

0x461, 0x040, 0x000,

0x462, 0x041, 0x000,

0x463, 0x042, 0x000,

0x460, 0x043, 0x000, // 1434 10

//column1

0x447, 0x054, 0x000, //1435

0x444, 0x055, 0x000,

0x445, 0x056, 0x000, 15

0x446, 0x057, 0x000, //

0x456, 0x064, 0x000,

0x457, 0x065, 0x000,

0x454, 0x066, 0x000, 20

0x455, 0x067, 0x000, //

0x800, 0x054, 0x000,

0x800, 0x055, 0x000,

0x800, 0x056, 0x000, 25

0x800, 0x057, 0x000, //

0x454, 0x064, 0x000,

0x455, 0x065, 0x000,

0x456, 0x066, 0x000, 30

0x457, 0x067, 0x000, //

0x444, 0x046, 0x000,

0x445, 0x047, 0x000,

 35

0x800, 0x046, 0x000,

0x800, 0x046, 0x000,

0x800, 0x047, 0x000,

0x800, 0x047, 0x000, // x4time

 40

0x044, 0x044, 0x000,

0x045, 0x045, 0x000,

0x446, 0x044, 0x000,

0x447, 0x045, 0x000, // 45

0x446, 0x047, 0x000,

0x800, 0x047, 0x000, //last xtime

250

0x447, 0x044, 0x000,

0x447, 0x045, 0x000, //

0x445, 0x064, 0x000, 5

0x444, 0x065, 0x000,

0x445, 0x066, 0x000,

0x444, 0x067, 0x000, //

0x044, 0x044, 0x000, 10

0x045, 0x045, 0x000,

0x046, 0x046, 0x000,

0x047, 0x047, 0x000, //

0x465, 0x044, 0x000, 15

0x466, 0x045, 0x000,

0x467, 0x046, 0x000,

0x464, 0x047, 0x000, // 1506

 20

//column2

0x44B, 0x058, 0x000, //1507

0x448, 0x059, 0x000,

0x449, 0x05A, 0x000,

0x44A, 0x05B, 0x000, 25

0x45A, 0x068, 0x000,

0x45B, 0x069, 0x000,

0x458, 0x06A, 0x000,

0x459, 0x06B, 0x000, 30

0x800, 0x058, 0x000,

0x800, 0x059, 0x000,

0x800, 0x05A, 0x000,

0x800, 0x05B, 0x000, 35

0x458, 0x068, 0x000,

0x459, 0x069, 0x000,

0x45A, 0x06A, 0x000,

0x45B, 0x06B, 0x000, 40

0x448, 0x04A, 0x000,

0x449, 0x04B, 0x000,

0x800, 0x04A, 0x000, 45

0x800, 0x04A, 0x000,

0x800, 0x04B, 0x000,

0x800, 0x04B, 0x000, // x4time

251

0x048, 0x048, 0x000,

0x049, 0x049, 0x000,

0x44A, 0x048, 0x000, 5

0x44B, 0x049, 0x000, //

0x44A, 0x04B, 0x000,

0x800, 0x04B, 0x000, //last xtime

 10

0x44B, 0x048, 0x000,

0x44B, 0x049, 0x000, //

0x449, 0x068, 0x000,

0x448, 0x069, 0x000, 15

0x449, 0x06A, 0x000,

0x448, 0x06B, 0x000, //

0x048, 0x048, 0x000,

0x049, 0x049, 0x000, 20

0x04A, 0x04A, 0x000,

0x04B, 0x04B, 0x000,

0x469, 0x048, 0x000,

0x46A, 0x049, 0x000, 25

0x46B, 0x04A, 0x000,

0x468, 0x04B, 0x000, //1578

//column3 30

0x44F, 0x05C, 0x000, //1507

0x44C, 0x05D, 0x000,

0x44D, 0x05E, 0x000,

0x44E, 0x05F, 0x000,

 35

0x45E, 0x06C, 0x000,

0x45F, 0x06D, 0x000,

0x45C, 0x06E, 0x000,

0x45D, 0x06F, 0x000,

 40

0x800, 0x05C, 0x000,

0x800, 0x05D, 0x000,

0x800, 0x05E, 0x000,

0x800, 0x05F, 0x000,

 45

0x45C, 0x06C, 0x000,

0x45D, 0x06D, 0x000,

0x45E, 0x06E, 0x000,

252

0x45F, 0x06F, 0x000,

0x44C, 0x04E, 0x000,

0x44D, 0x04F, 0x000,

 5

0x800, 0x04E, 0x000,

0x800, 0x04E, 0x000,

0x800, 0x04F, 0x000,

0x800, 0x04F, 0x000, // x4time

 10

0x04C, 0x04C, 0x000,

0x04D, 0x04D, 0x000,

0x44E, 0x04C, 0x000,

0x44F, 0x04D, 0x000, // 15

0x44E, 0x04F, 0x000,

0x800, 0x04F, 0x000, //last xtime

0x44F, 0x04C, 0x000, 20

0x44F, 0x04D, 0x000, //

0x44D, 0x06C, 0x000,

0x44C, 0x06D, 0x000,

0x44D, 0x06E, 0x000, 25

0x44C, 0x06F, 0x000, //

0x04C, 0x04C, 0x000,

0x04D, 0x04D, 0x000,

0x04E, 0x04E, 0x000, 30

0x04F, 0x04F, 0x000,

0x46D, 0x04C, 0x000,

0x46E, 0x04D, 0x000,

0x46F, 0x04E, 0x000, 35

0x46C, 0x04F, 0x000, // 1650

//back to inv shift row

0x072, 0x079, 0x7FF, //1709 - 1711 40

//goto end

//0x132, 0x133, 0xFFF, //707 - 709

} with block = 1; 45

253

static macro proc

Run_AES_ENC_DEC_URISC(enc_dec_ctrl_input);

static macro proc Sleep (Milliseconds);

static macro proc Run_xTime(data_in, data_out); 5

static macro proc Run_Sub_Bytes(data_in,

data_out, enc_dec_ctrl);

 10

void main(void)

{

 //Run_AES_ENC_DEC_URISC(ENCRY15

PT);

 Run_AES_ENC_DEC_URISC(DECRYP

T);

 while(1) 20

 {

 par

 {

 25

 RC10LEDWriteMask(Memory[79][7:0]);

 }

 }

} 30

 35

/*

void main(void)

{

 unsigned int 12 count;

 //unsigned int 4 count_4b; 40

 unsigned int 8 SevenSeg;

 //PalVersionRequire (1, 2);

 //PalSevenSegRequire (2);

 45

 //PalSevenSegEnable (PalSevenSegCT

(0));

 //PalSevenSegEnable (PalSevenSegCT (1));

 //Run_AES_ENC_DEC_URISC(ENCRY50

PT);

254

 Run_AES_ENC_DEC_URISC(DECRYP

T);

 while(1) 5

 {

 for(count=64; count<=79;

count++) //aes cipher data (ENC_DEC)

 //for(count=16; count<=31;

count++) //aes cipher data 10

 //for(count=32; count<=47;

count++) //aes cipher data

 {

 par 15

 {

 SevenSeg =

Memory[count][7:0];

 RC10SevenSeg0WriteDigit(SevenSeg[7:20

4],0);

 RC10SevenSeg1WriteDigit(SevenSeg[3:

0],0);

 25

 //PalSevenSegWriteDigit(PalSevenSegC

T(0),SevenSeg[7:4],0);

 //PalSevenSegWriteDigit(PalSevenSegC

T(1),SevenSeg[3:0],0); 30

 RC10LEDWriteMask(count[7:0]);

 }

 Sleep(1000);

 } 35

 }

 40

// while(1)

// {

 45

//

 RC10LEDWriteMask(Memory[272][7:0]);

//

 Sleep(1000);

 50

255

// }

}

*/ 5

static macro proc Sleep (Milliseconds)

{

 macro expr Cycles = 10

(RC10_ACTUAL_CLOCK_RATE * Milliseconds) /

1000;

 //macro expr Cycles =

(PAL_ACTUAL_CLOCK_RATE * Milliseconds) /

1000; 15

 unsigned (log2ceil (Cycles)) Count;

 Count = 0;

 do

 { 20

 Count++;

 }

 while (Count != Cycles - 1);

}

 25

static macro proc

Run_AES_ENC_DEC_URISC(ENC_DEC_CTRL_I

N)

{ 30

 // registers

 unsigned int RegWidth_12b PC;

 unsigned int RegWidth_12b R;

 unsigned int RegWidth_12b MDR;

 unsigned int RegWidth_12b MAR; 35

 unsigned int RegWidth_12b Mem_Out;

 unsigned int 4 counter;

 unsigned int 8 SevenSeg;

 unsigned int 1 Z; 40

 unsigned int 1 N;

 unsigned int 1 RUN;

 unsigned int 2 Op_Code;

 //registers signal 45

 signal unsigned int RegWidth_12b

Sig_Mem_Out;

 signal unsigned int RegWidth_12b

Sig_MAR_In;

 50

256

 signal unsigned int RegWidth_12b

Sig_Input_A;

 signal unsigned int RegWidth_12b

Sig_Input_B;

 5

 signal unsigned int RegWidth_12b

Sig_Adder_Out;

 signal unsigned int RegWidth_12b

Sig_XOR_Out;

 signal unsigned int RegWidth_12b 10

Sig_xTime_Out;

 signal unsigned int RegWidth_12b

Sig_SubBytes_Out;

 signal unsigned int RegWidth_12b 15

Sig_ALU_Out;

 signal unsigned int RegWidth_12b

Sig_PC_Out;

 signal unsigned int RegWidth_12b

Sig_MDR_Out; 20

 signal unsigned int RegWidth_12b

Sig_MAR_Out;

 signal unsigned int RegWidth_12b

Sig_INV_R;

 25

 signal unsigned int 2 Sig_Op_Code;

 signal unsigned int 2 Sig_ALU_MUX;

 signal unsigned int 1 Sig_Z;

 signal unsigned int 1 Sig_N; 30

 //control signal

 signal unsigned int 1 Sig_Mem_Read;

 signal unsigned int 1 Sig_Mem_Write;

 signal unsigned int 1 Sig_MDR_Write; 35

 signal unsigned int 1 Sig_MAR_Write;

 signal unsigned int 1 Sig_MAR_SEL;

 signal unsigned int 1 Sig_Z_Write;

 signal unsigned int 1 Sig_N_Write; 40

 signal unsigned int 1 Sig_CIN;

 signal unsigned int 1 Sig_R_Write;

 signal unsigned int 1 Sig_PC_Write;

 45

 signal unsigned int 1 Sig_PCOUT_SEL;

 signal unsigned int 1 Sig_COMP_SEL;

 signal unsigned int 1 Sig_Op_Write;

 signal unsigned int 1 Sig_Op_SEL; 50

 //external switch for enc/dec

257

 signal unsigned int 1

Sig_enc_dec_ctrl_input;

 //xtime var

 signal unsigned 1 5

xoutput0,xoutput1,xoutput2,xoutput3,xoutput4,xo

utput5,xoutput6,xoutput7;

 signal unsigned 8 out;

/* 10

 //intermediate signals value

 Sig_MAR_Out = MAR;

 Sig_MDR_Out = MDR;

 Sig_INV_R = ~R;

 Sig_PC_Out = PC; 15

 Sig_Op_Code = Op_Code;

*/

 // set initial stages

 par 20

 {

 //Sig_Crypto_SW_sensor_input = 0; //low

power mode - Skipjack

 25

 Sig_enc_dec_ctrl_input =

ENC_DEC_CTRL_IN; //full power mode - AES

 // PC Crypto Switch

 par 30

 {

 // Controls

 if(Sig_enc_dec_ctrl_input == ENCRYPT) 35

 {

 PC = 306;

//AES encrypt

 40

 }

 else

 {

 PC = 744; 45

//AES decrypt

 }

 }

 R = 0; 50

 MDR = 0;

258

 MAR = 0;

 Mem_Out = 0;

 counter = 0;

 Op_Code = 0;

 RUN = 1; 5

 }

 while(RUN!=0)

 { 10

 par

 {

 par

 { 15

 Sig_MAR_Out = MAR;

 Sig_MDR_Out = MDR;

 Sig_INV_R 20

= ~R;

 Sig_PC_Out = PC;

 Sig_Op_Code = Op_Code; 25

 }

 // Memory

 par 30

 {

 // Controls

 if(Sig_Mem_Read == 1) 35

 {

 par

 {

 40

 Sig_Mem_Out =

Memory[Sig_MAR_Out];

 Mem_Out = Sig_Mem_Out;

 } 45

 }

 else

if(Sig_Mem_Write == 1)

 {

 50

 Memory[Sig_MAR_Out] =

Sig_MDR_Out;

 }

259

 else

 {

 Sig_Mem_Out = Mem_Out;

 } 5

 }

 //OP MUX

 if(Sig_Op_SEL == 1)

 10

 Sig_ALU_MUX = Sig_Op_Code;

 else

 Sig_ALU_MUX = 0;

 15

 //OP Code Register

 if(Sig_Op_Write == 1)

 Op_Code =

Sig_Input_B[11:10];

 else 20

 delay;

 // Negative Flag

 if(Sig_ALU_Out[11:11]==1) 25

 {

 Sig_N = 1;

 }

 else 30

 {

 Sig_N = 0;

 }

 35

 // Zero Flag

 if(Sig_ALU_Out==0)

 {

 40

 Sig_Z = 1;

 }

 else

 {

 45

 Sig_Z = 0;

 }

 //R Register 50

 if(Sig_R_Write == 1)

260

 R =

Sig_Input_B;

 else

 delay;

 5

 //Z Register

 if(Sig_Z_Write == 1)

 Z = Sig_Z;

 else

 delay; 10

 //N Register

 if(Sig_N_Write == 1)

 N = Sig_N;

 else 15

 delay;

 //MDR Register

 if(Sig_MDR_Write

== 1) 20

 MDR =

Sig_ALU_Out;

 else

 delay;

 25

 //MAR Register

 if(Sig_MAR_Write

== 1)

 MAR =

Sig_MAR_In; 30

 else

 delay;

 //MAR SEL MUX

 if(Sig_MAR_SEL == 35

1)

 Sig_MAR_In = 0[1:0] @

Sig_Mem_Out[9:0];

 else 40

 Sig_MAR_In = Sig_ALU_Out;

 //PC_OUT MUX

 if(Sig_PCOUT_SEL 45

== 1)

 Sig_Input_B = Sig_Mem_Out;

 else

 50

 Sig_Input_B = Sig_PC_Out;

261

 //COMP MUX

 if(Sig_COMP_SEL

== 1)

 Sig_Input_A = Sig_INV_R; 5

 else

 Sig_Input_A = 0;

 //PC Register 10

 if(Sig_PC_Write == 1)

 PC =

Sig_ALU_Out;

 else

 delay; 15

 // Adder

 par

 { 20

 Sig_Adder_Out = Sig_Input_A +

Sig_Input_B + (0[10:0] @ Sig_CIN);

 }

 25

 //XOR

 par

 {

 Sig_XOR_Out = 0[1:0] @ 30

(Sig_Input_B[9:0] ^ ~Sig_Input_A[9:0]);

 }

 //xTime

 par 35

 {

 xoutput0 =

Sig_Input_B[7];

 xoutput1 =

Sig_Input_B[7] ^ Sig_Input_B[0]; 40

 xoutput2 =

Sig_Input_B[1];

 xoutput3 =

Sig_Input_B[7] ^ Sig_Input_B[2];

 xoutput4 = 45

Sig_Input_B[7] ^ Sig_Input_B[3];

 xoutput5 =

Sig_Input_B[4];

 xoutput6 =

Sig_Input_B[5]; 50

 xoutput7 =

Sig_Input_B[6];

262

 out =

xoutput7 @ xoutput6 @ xoutput5 @ xoutput4 @

xoutput3 @ xoutput2 @ xoutput1 @ xoutput0;

 Sig_xTime_Out = 0[3:0] @ out; 5

 }

 //Sub Bytes

 par

 { 10

 Run_Sub_Bytes(Sig_Input_B,

Sig_SubBytes_Out, Sig_enc_dec_ctrl_input);

 }

 15

 //ALU MUX

 par{

 if(Sig_ALU_MUX == 20

0)

 Sig_ALU_Out = Sig_Adder_Out;

 else 25

if(Sig_ALU_MUX == 1)

 Sig_ALU_Out = Sig_XOR_Out;

 else 30

if(Sig_ALU_MUX == 2)

 Sig_ALU_Out = Sig_xTime_Out;

 35

 else

if(Sig_ALU_MUX == 3)

 Sig_ALU_Out = Sig_SubBytes_Out;

 else 40

 delay;

 }

 //controller

 par 45

 {

/*

Entered by truthtable:

COMP_SEL = A' B C' D;

R_Write = A' B' C D'; 50

Cin = A' B' C D + A' B C' D + A' B C D' + A B' C' D';

N_Write = A' B C' D;

263

Z_Write = A' B' C' D';

PCOUTsel = A' B' C' D + A' B' C D' + A' B C' D' +

A' B C' D + A' B C D;

PC_write = A' B' C D + A' B C D' + A' B C D + A B'

C' D'; 5

MDRWrite = A' B C' D;

MARWrite = A' B' C' D' + A' B' C' D + A' B' C D +

A' B C' D' + A' B C D';

Mem_read = A' B' C' D + A' B' C D' + A' B C' D' +

A' B C' D + A' B C D; 10

Mem_wrt = A' B C D';

OP_write = A' B' C' D;

OP_sel = A' B C' D;

MARSEL = A' B' C' D + A' B C' D';

*/ 15

 Sig_COMP_SEL = (~counter[3] &

counter[2] & ~counter[1] & counter[0]);// 20

 Sig_R_Write = (~counter[3] &

~counter[2] & counter[1] & ~counter[0]);//

 25

 Sig_CIN =

(counter[3] & ~counter[2] & ~counter[1] &

~counter[0]) | (~counter[3] & counter[1] &

~counter[0]) |

 30

 (~counter[3] & counter[2] & ~counter[1]

& counter[0]) | (~counter[3] & ~counter[2] &

counter[1]);//

 35

 Sig_N_Write = (~counter[3] & counter[2]

& ~counter[1] & counter[0]);//

 Sig_Z_Write = (~counter[3] & 40

~counter[2] & ~counter[1] & ~counter[0]);//

 Sig_PCOUT_SEL = (~counter[3] &

counter[2] & counter[1] & counter[0] & N) | 45

 (~counter[3] &

~counter[2] & counter[1] & ~counter[0]) |

(~counter[3] & counter[2] & ~counter[1]) |

 50

 (~counter[3] &

~counter[1] & counter[0]);//

 Sig_PC_Write = (counter[3] & 55

~counter[2] & ~counter[1] & ~counter[0]) |

264

 (~counter[3] &

counter[2] & counter[1]) |

 (~counter[3] & 5

counter[1] & counter[0]);//

 Sig_MDR_Write = (~counter[3] &

counter[2] & ~counter[1] & counter[0]);// 10

 Sig_MAR_Write = (~counter[3] &

~counter[1] & ~counter[0]) | 15

 (~counter[3] &

counter[2] & ~counter[0]) |

 (~counter[3] & 20

~counter[2] & counter[0]);//

 Sig_Mem_Read = (~counter[3] &

~counter[2] & counter[1] & ~counter[0]) | 25

 (~counter[3] &

counter[2] & ~counter[1]) |

 (~counter[3] & 30

~counter[1] & counter[0]) |

 (~counter[3] &

counter[2] & counter[0]);

 35

 Sig_Mem_Write = (~counter[3] &

counter[2] & counter[1] & ~counter[0]);//

 40

 Sig_Op_Write = (~counter[3] &

~counter[2] & ~counter[1] & counter[0]);//

 Sig_Op_SEL = (~counter[3] & counter[2] 45

& ~counter[1] & counter[0]);//

 Sig_MAR_SEL = (~counter[3] &

counter[2] & ~counter[1]) | 50

 (~counter[3] &

~counter[1] & counter[0]);

/* 55

Minimized:

COMP_SEL = A' B C' D;

265

R_Write = A' B' C D';

Cin = A B' C' D' + A' C D' + A' B C' D + A' B' C ;

N_Write = A' B C' D;

Z_Write = A' B' C' D';

PCOUTsel = A' B' C D' + A' B C' + A' C' D + A' B 5

D;

PC_write = A B' C' D' + A' B C + A' C D;

MDRWrite = A' B C' D;

MARWrite = A' C' D' + A' B D' + A' B' D;

Mem_read = A' B' C D' + A' B C' + A' C' D + A' B 10

D;

Mem_wrt = A' B C D';

OP_write = A' B' C' D;

OP_sel = A' B C' D;

MARSEL = A' B C' + A' C' D; 15

*/

 if(counter==8)

 { 20

 counter = 0;

 }

 else

 { 25

 counter = counter + 1;

 }

 30

 if(PC==4095)

 {

 RUN = 0;

 } 35

 else

 delay;

 }

 40

 }

 }

 45

}

 50

266

//run sub-bytes

macro proc Run_Sub_Bytes(data_in, data_out,

enc_dec_ctrl)

{

//variables for sub-bytes 5

 signal unsigned 8 input, cipher, affout,

istage9out;

 signal unsigned 1

output0,output1,output2,output3,output4,output510

,output6,output7;

 //signal unsigned 1

input0,input1,input2,input3,input4,input5,input6,

input7;

 15

 signal unsigned 1

aff0,aff1,aff2,aff3,aff4,aff5,aff6,aff7;

 signal unsigned 1

iInput0,iInput1,iInput2,iInput3,iInput4,iInput5,iI20

nput6,iInput7;

 signal unsigned 1

x0,x1,x2,x3,x4,x5,x6,x7;

 25

 signal unsigned 1

xt10,xt11,xt12,xt13,xt14,xt15,xt16,xt17;

 signal unsigned 1

xt20,xt21,xt22,xt23,xt24,xt25,xt26,xt27;

 30

 signal unsigned 1 s0,s1,s2,s3,s4,s5,s6,s7;

 signal unsigned 1

y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y1

5,y16,y17,y18,y19,y20,y21; 35

 signal unsigned 1 t0,t1;

 signal unsigned 1

t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14,t15,t16,t1

7,t18,t19,t20,t21,t22,t23,t24; 40

 signal unsigned 1

t25,t26,t27,t28,t29,t30,t31,t32,t33,t34,t35,t36,t37,

t38,t39,t40;

 signal unsigned 1 t41,t42,t43,t44,t45;

 signal unsigned 1 45

t46,t47,t48,t49,t50,t51,t52,t53,t54,t55,t56,t57,t58,

t59,t60,t61,t62,t63,t64,t65,t66,t67;

 signal unsigned 1

z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14,z50

15,z16,z17;

 signal unsigned 1

invaff10_out,invaff11_out,invaff12_out,invaff13_o

ut,invaff14_out,invaff15_out,invaff16_out,invaff1755

_out;

267

 signal unsigned 1

invaff20_out,invaff21_out,invaff22_out,invaff23_o

ut,invaff24_out,invaff25_out,invaff26_out,invaff27

_out;

 5

 signal unsigned 1 u10, u11, u12, u13;

 signal unsigned 1 u20, u21, u22, u23;

 signal unsigned 1 te10, te11, te20, te21; 10

 signal unsigned 1 enc_dec_mux_sw;

par{

 15

 par{

 input = data_in[7:0];

 enc_dec_mux_sw = enc_dec_ctrl;

 }

 20

 par

 {

 xt17 = input[7]; 25

 xt16 = input[6];

 xt15 = input[5];

 xt14 = input[4];

 xt13 = input[3];

 xt12 = input[2]; 30

 xt11 = input[1];

 xt10 = input[0];

 }

 35

 //inv affine 1

 par

 {

 u10 = xt11 ^ xt14; 40

 u11 = xt13 ^ xt16;

 u12 = xt10 ^ xt15;

 u13 = xt12 ^ xt17;

 invaff17_out = xt16 ^ u10; 45

 invaff16_out = xt13 ^ u12;

 invaff15_out = xt14 ^ u13;

 invaff14_out = xt11 ^ u11;

 invaff13_out = xt12 ^ u12;

268

 invaff12_out = xt17 ^ u10;

 invaff11_out = xt10 ^ u11;

 invaff10_out = xt15 ^ u13;

 te10 = invaff12_out ^ 1; 5

 te11 = invaff10_out ^ 1;

 }

 10

 par{

 //encrypt decrypt MUX

 if(enc_dec_mux_sw == ENCRYPT)

//ENCRYPT = 1, DECRYPT = 0

 { 15

 par{

 x0 = xt17;

 x1 = xt16;

 x2 = xt15;

 x3 = xt14; 20

 x4 = xt13;

 x5 = xt12;

 x6 = xt11;

 x7 = xt10;

 } 25

 }

 else

 {

 par{ 30

 x0 = invaff17_out;

 x1 = invaff16_out;

 x2 = invaff15_out;

 x3 = invaff14_out;

 x4 = invaff13_out; 35

 x5 = te10;

 x6 = invaff11_out;

 x7 = te11;

 } 40

 }

 }

 45

269

//top linear transformation

//input: x0,x1,x2,x3...x7

//output: x7,y1,y2,y3...y21

 par{

 y14 = x3 ^ x5; 5

 y13 = x0 ^ x6;

 y9 = x0 ^ x3;

 y8 = x0 ^ x5;

 t0 = x1 ^ x2; 10

 y1 = t0 ^ x7;

 y4 = y1 ^ x3;

 y12 = y13 ^ y14;

 y2 = y1 ^ x0; 15

 y5 = y1 ^ x6;

 y3 = y5 ^ y8;

 t1 = x4 ^ y12;

 20

 y15 = t1 ^ x5;

 y20 = t1 ^ x1;

 y6 = y15 ^ x7;

 y10 = y15 ^ t0; 25

 y11 = y20 ^ y9;

 y7 = x7 ^ y11;

 y17 = y10 ^ y11;

 y19 = y10 ^ y8; 30

 y16 = t0 ^ y11;

 y21 = y13 ^ y16;

 y18 = x0 ^ y16;

 } 35

//middle non-linear section

//input: x7,y1,y2,y3...y21

//output: z0,z1...z17

 40

//t25 -> t40 inversion in GF(2^4)

 par{

 t2 = y12 & y15;

 t3 = y3 & y6;

 t4 = t3 ^ t2; 45

 t5 = y4 & x7;

 t6 = t5 ^ t2;

270

 t7 = y13 & y16;

 t8 = y5 & y1;

 t9 = t8 ^ t7;

 t10 = y2 & y7; 5

 t11 = t10 ^ t7;

 t12 = y9 & y11;

 t13 = y14 & y17;

 10

 t14 = t13 ^ t12;

 t15 = y8 & y10;

 t16 = t15 ^ t12;

 t17 = t4 ^ t14; 15

 t18 = t6 ^ t16;

 t19 = t9 ^ t14;

 t20 = t11 ^ t16;

 t21 = t17 ^ y20; 20

 t22 = t18 ^ y19;

 t23 = t19 ^ y21;

 t24 = t20 ^ y18;

 25

 //inversion in GF(2^4)

 t25 = t21 ^ t22;

 t26 = t21 & t23; 30

 t27 = t24 ^ t26;

 t28 = t25 & t27;

 t29 = t28 ^ t22;

 t30 = t23 ^ t24; 35

 t31 = t22 ^ t26;

 t32 = t31 & t30;

 t33 = t32 ^ t24;

 40

 t34 = t23 ^ t33;

 t35 = t27 ^ t33;

 t36 = t24 & t35;

 t37 = t36 ^ t34; 45

 t38 = t27 ^ t36;

 t39 = t29 & t38;

271

 t40 = t25 ^ t39;

 t41 = t40 ^ t37;

 t42 = t29 ^ t33; 5

 t43 = t29 ^ t40;

 t44 = t33 ^ t37;

 t45 = t42 ^ t41;

 10

 z0 = t44 & y15;

 z1 = t37 & y6;

 z2 = t33 & x7;

 z3 = t43 & y16; 15

 z4 = t40 & y1;

 z5 = t29 & y7;

 z6 = t42 & y11;

 z7 = t45 & y17; 20

 z8 = t41 & y10;

 z9 = t44 & y12;

 z10 = t37 & y3;

 z11 = t33 & y4; 25

 z12 = t43 & y13;

 z13 = t40 & y5;

 z14 = t29 & y2;

 30

 z15 = t42 & y9;

 z16 = t45 & y14;

 z17 = t41 & y8;

 }

 35

//bottom linear transformation

//input:z0,z1...z17

//output:so,s1...s7

 par{

 t46 = z15 ^ z16; 40

 t47 = z10 ^ z11;

 t48 = z5 ^ z13;

 t49 = z9 ^ z10;

 t50 = z2 ^ z12; 45

 t51 = z2 ^ z5;

 t52 = z7 ^ z8;

272

 t53 = z0 ^ z3;

 t54 = z6 ^ z7;

 t55 = z16 ^ z17;

 t56 = z12 ^ t48; 5

 t57 = t50 ^ t53;

 t58 = z4 ^ t46;

 t59 = z3 ^ t54;

 t60 = t46 ^ t57; 10

 t61 = z14 ^ t57;

 t62 = t52 ^ t58;

 t63 = t49 ^ t58;

 15

 t64 = z4 ^ t59;

 t65 = t61 ^ t62;

 t66 = z1 ^ t63;

 s0 = t59 ^ t63; 20

 s6 = ~(t56 ^ t62);

 s7 = ~(t48 ^ t60);

 t67 = t64 ^ t65;

 s3 = t53 ^ t66; 25

 s4 = t51 ^ t66;

 s5 = t47 ^ t65;

 s1 = ~(t64 ^ s3);

 s2 = ~(t55 ^ t67); 30

 }

 //output inverse

 par{ 35

 xt27 = s0;

 xt26 = s1;

 xt25 = s2;

 xt24 = s3;

 xt23 = s4; 40

 xt22 = s5;

 xt21 = s6;

 xt20 = s7;

 }

 45

 //inv affine 2

273

 par

 {

 u20 = xt21 ^ xt24;

 u21 = xt23 ^ xt26;

 u22 = xt20 ^ xt25; 5

 u23 = xt22 ^ xt27;

 invaff27_out = xt26 ^ u20;

 invaff26_out = xt23 ^ u22;

 invaff25_out = xt24 ^ u23; 10

 invaff24_out = xt21 ^ u21;

 invaff23_out = xt22 ^ u22;

 invaff22_out = xt27 ^ u20;

 invaff21_out = xt20 ^ u21;

 invaff20_out = xt25 ^ u23; 15

 te20 = invaff22_out ^ 1;

 te21 = invaff20_out ^ 1;

 }

 20

 par{

 //encrypt decrypt MUX

 if(enc_dec_mux_sw == ENCRYPT) 25

//ENCRYPT = 1, DECRYPT = 0

 {

 par{

 output7 = xt27;

 output6 = xt26; 30

 output5 = xt25;

 output4 = xt24;

 output3 = xt23;

 output2 = xt22;

 output1 = xt21; 35

 output0 = xt20;

 }

 }

 else 40

 {

 par{

 output7 = invaff27_out;

 output6 = invaff26_out;

 output5 = invaff25_out; 45

 output4 = invaff24_out;

 output3 = invaff23_out;

 output2 = te20;

274

 output1 = invaff21_out;

 output0 = te21;

 }

 5

 }

 }

 10

 par{

 cipher = output7 @ output6 @ output5 @

output4 @ output3 @ output2 @ output1 @ output0;

 data_out = 0[3:0] @ cipher;

 } 15

 }

}

 20

275

APPENDIX II: PHOTOGRAPHS

Celoxica RC10 Board

276

277

Celoxica RC203 Board

