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ABSTRACT: Dynamically screened scalar field theories form an attractive collection of
models that were introduced to drive the late-time expansion of our universe. A common
consequence of these theories is a screening mechanism which leads to the suppression of
the fifth-forces mediated by the scalar field in sufficiently dense environments. This enables
the models within this class of theories to avoid conflict with the stringent results from
local tests of gravity, without the need for any fine tuning. The prototypical example of a
dynamically screened scalar field is the chameleon model, for which screening arises due to
the mass of the scalar responding to the local density. It has been recently demonstrated that
atom interferometry is a powerful technique for constraining such scalars, with near future
experiments capable of probing a large portion of the model parameter space. The nature
of screening however means that closing in on what remains of the chameleon parameter
space is going to become increasingly more difficult. This work aims to address this issue
by examining the intricacies of how the chameleon field responds to the configuration of
an atom interferometry experiment, where it is found that the non-linearities governing the
theory can ultimately be harnessed in order to improve the prospects of detection.
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Chapter 1

Introduction

Almost two decades ago, observations of type Ia supernovae [1][2] uncovered perhaps one
of the must puzzling features of our universe, the accelerating cosmic expansion. The im-
plications of this were quite clear: there was something missing from the existing theory of
gravity, something pervading space on cosmic scales and capable of driving the repulsion
of our universe. This missing ingredient became to be known as Dark Energy. In fact, the
markers for this unknown contribution to the energy density of the universe had actually
began to appear some years before, through growing tension between the predictions of infla-
tionary cosmology and a series of cosmological observations. The first of these arrived in the
1990s with the influx of new large scale galaxy clustering clustering data [3, 4]. It was found
that fitting this data to the spectrum of density perturbations of the spatially flat universe
predicted by inflation required the inclusion of a new dark energy component to compensate
for the relatively low observed energy density of matter. Shortly to follow, entered the dis-
covery of the temperature anisotropies within the cosmic microwave background [5] which
brought substance to this implication by providing the first observational evidence in support
of a spatially flat universe. The notion of a dark energy component then continued to gain
traction in the build-up to the breakthrough observation of cosmic acceleration, playing a
key part in resolving conflict between the measured expansion age of the universe and that
predicted by the accepted model at the time: a matter-only universe of vanishing spatial
curvature [6, 7]. Since its revolutionary discovery, the studies that provided the the first in-
dications of cosmic acceleration have continued to support the claim as they have advanced
into newer generations of technology. As a result, recent probes of large scale structure
[8, 9] and the cosmic microwave background [10–13] are recognised as powerful techniques
for constraining the accelerating universe in a way that is complementary to supernovae data.

Incorporating the cosmological effect of dark energy into the framework of General Rela-
tivity is remarkably simple, resting only on the inclusion of a small cosmological constant
term Λ. This led to a new paradigm, the standard cosmological model known as Λ-CDM,
which pictures a universe containing a cosmological constant as its dark energy together
with the gravitating yet evasive cold dark matter. The elegance of the Λ-CDM model comes
in part from its ability to harmonise with all known observational data using only a small
number of free parameters [14]. However, despite surviving every observational test within
an era of precision cosmology, Λ-CDM (otherwise known as the Concordance model) is not
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without its problems. In fact, the cosmological constant itself has a history that pre-dates
any thoughts of accelerating expansion. It made its first appearance just two years after
the arrival of General Relativity, where Einstein introduced his first cosmological model of
a static universe [16]. Although this was subsequently revoked following Hubble’s discovery
of an expanding universe [17], it was noted by Zel’dovich [18] some decades later that a
cosmological constant term should be identified as the vacuum energy free space, something
not to be overlooked. Unfortunately any attempts to reconcile the measured value of the
cosmological constant with the calculated energy density of the quantum vacuum fail spec-
tacularly, with the two in conflict by at least sixty orders of magnitude. This disagreement
came to be what is known today as the cosmological constant problem. As a result, any
support gained by embracing the cosmological constant as a vacuum energy density quickly
evaporated, leaving the puzzle of its true physical nature as a problem unsolved.

At the present time, the standard cosmological model divides the energy budget of the
universe into approximately seventy percent dark energy and thirty percent matter, with
an almost negligible radiation contribution of one part in a thousand [19]. Due to the very
different scaling behaviours of their respective energy densities throughout the evolution of
the universe, having both matter and dark energy present at the same order of magnitude
indicates a special point in cosmic time. In fact, it would require highly tuned initial con-
ditions which, in this case, ensured that the accelerated expansion triggered late enough in
the history of the universe to allow for the formation of stars [20]. This presented a second
issue for the theory built invoking a cosmological constant, the “Cosmological Coincidence
Problem”.

In being accompanied by two incredibly alarming flaws, the cosmological constant represents
one of the most severe fine tuning problems in physics. Failing to arrive at a satisfactory
solution over the years has placed emphasis on an alternative way of thinking, which is that
General Relativity in its canonical form falls inadequate at cosmological scales and instead
a more complete theory of gravity is required. In the years to follow there was a huge surge
of interest in the field of dark energy and modified gravity, with a host of new theories aim-
ing to explain the cosmic expansion through the introduction of new dynamical degrees of
freedom, see Reference [21] for a review. One of the most popular candidates is to attribute
expansion to the presence of a scalar field lying within its equilibrium configuration. Generi-
cally, additional scalar degrees of freedom have been found to emerge from string theory and
brane world scenarios [21, 22]. Thus, these theories, known as scalar-tensor theories, have
the potential to link two seemingly detached scales by relieving the tension on GR in both
the infrared and ultraviolet regimes simultaneously. Of course, from a high energy perspec-
tive, searches for a quantum theory of gravity has been long under-way and thus departures
also entering at large distances opens up the possibility of exciting phenomenology bridging
between the two scales [23].

However, the introduction of an extra field coupled to matter entails the existence of a
fifth force which could threaten the compatibility with local tests. The option is therefore to
either design a theory which is inherently weaker than gravity, or to allow for the presence
of some screening mechanism, suppressing the force in our local vicinity thus allowing for
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the model to successfully evade terrestrial constraints. Tuning the force to be weaker than
gravity would require setting the theory at above the Planck scale making it impossible to
be described as a quantum field theory, therefore offering no real resolution to the problem.
On the other hand, a number of attractive scalar theories admitting screening behaviour
have been constructed to date. Amongst the more common of these are the Chameleon,
Dilaton and the Symmetron Models where non-linearities in the interaction potential feed
into an environmental dependence of the field solutions. Accordingly, the forces are sup-
pressed in regions of higher density making them, in principle, compatible with stringent
terrestrial constraints. A benefit of these theories is that they offer testable predictions at
fairly accessible length scales. The environmental suppression unlocks the possibility to test
any departures from General Relativity in the lab vacuum, where densities can be made suf-
ficiently low to circumvent the screening process. In a regime where screening is absent, the
force sourced by an additional scalar degree of freedom could in principle significantly exceed
the gravitational interaction with little consequence at larger length scales. The trademark
non-linearities of these theories suggest that fifth-force interactions could begin to resurface
within the regime of lab based vacuum experiments.

Indeed, means to probe scalar extensions of gravity in the lab have received considerable
focus in recent years. Perhaps due to its relative simplicity, the chameleon model has re-
ceived the most attention, with a wealth of experiments being formulated or appropriated
to its detection. In attempting to explore what remains of the parameter space, the chal-
lenge is going to become increasingly more difficult as the exact screening behaviour that
allows for the evasion of terrestrial constraints begins to resurface at these scales. Thus,
remarkable levels of precision are going to be required to fully map out the model parameter
space. To date, the most powerful experimental technique has been atom interferometry [28]
which exploits the quantum mechanical properties of matter to directly probe the chameleon
force exerted by a source object within a vacuum chamber. Analysis of the chameleon field
around a spherical source demonstrates some interesting phenomenology when moving into
the screened regime: the development of a special internal field structure which acts to mask
any fifth-force contributions arising from the matter deep within the object. As a result, only
a thin-shell near the surface of source contributes to the external forth. This is the primary
mechanism behind chameleon screening and became to be known as the thin-shell effect. An
awareness of the mechanism behind screening raised two important questions: Firstly, how
does this internal field structure respond to the geometry of the source? Secondly, can any
shape dependence be harnessed such as to enhance the chameleon force? If so, it may be
possible to exploit any shape dependence arising to further tighten the bounds placed on the
model parameter space.

The scope of this thesis is to examine whether alternatives to a spherical source object could
be used to heighten the detectability of a fifth force arising from a dynamically screened
scalar field. Although the question has been left quite general, analysis will be restricted
exclusively to the chameleon model. However, previous work has shown that the three
candidate models: the Dilaton, the Symmetron, and the Chameleon, all exhibit similar phe-
nomenologies for a spherical source. Therefore, the idea is that any deductions made for the
chameleon model will, at least at a qualitative level, extend to the other two models.
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The subject will be approached by first outlining the key theoretical developments taking
one from a gravitational theory built to include a cosmological constant, to a dynamically
screened scalar field theory of dark energy. Arriving at the chameleon model, the relevant
groundwork will then be laid out to study the theory within the context of atom interfer-
ometry. This will conclude the introductory chapter. The subsequent chapters will then be
devoted to presenting original research. Chapter 2 will focus on analysis of the chameleon
field profile around an ellipsoidal source. Chapter 3 extends on these results through the
implementation of a numerical finite element scheme, in order to constrain the chameleon
theory using more general sources. Chapter 4 then presents a novel parallel plate configura-
tion to be used within an atom interferometry set-up.

1.1 Conventions

Unless noted otherwise, the material presented in this thesis will adopt a natural unit con-
vention obtained by setting ~ = c = 1. As a result, all dimensionful quantities will be
denominated in either GeV or GeV−1, describing energy and length scales respectively. MPL

will be used to denote the reduced Planck mass MPL = 1/
√

8πG, where G is Newton’s
constant of gravitation. The space-time metric gµν will be assigned the negative signature
(−,+,+,+).

1.2 An Accelerating Universe

Prior to the discovery of the accelerated expansion of the universe, the future of the cosmos
seemed relatively easy to picture. Out of the four fundamental forces of nature, gravity
is the dominant interaction at long distance scales. As a universally attractive force, our
intuition would tell us that the expansion a universe filled by matter and radiation interacting
via gravity would inevitably slow down over time. The theory of General Relativity in its
standard form agrees with this statement: either the universe would initially come to collapse
under its own gravitational attraction, or the rate of expansion would be sufficiently high
to make the universe gravitationally unbound, allowing expansion to continue indefinitely
but gradually slowing down. A state of accelerated expansion can be achieved by slightly
modifying the Einstein-Hilbert action to contain an additional free parameter Λ such that

S =
MPL

2

ˆ
d4x
√
−g (R− 2Λ) + Sm (gµν , ψ) , (1.1)

where gµν is the space-time metric, g is its determinant, R is the Ricci scalar, and Λ is
identified as the cosmological constant. The term Sm (gµν , ψ) corresponds to the action of
the matter sector, with ψ collectively describing the matter fields. The equations of motion
for this system are found following the usual prescription, by solving the Euler-Lagrange
equation for the single dynamical degree of freedom, the metric gµν to give

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (1.2)
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with Tµν corresponding to the stress-energy tensor. The Einstein equations above (Equation
(1.2)) describe the intricate link between geometry of space-time (collected on the left-hand
side) and the distribution of matter (on the right-hand side). In modelling the matter
sources within the universe to form a perfect fluid with energy density ρ and pressure p, the
stress-energy tensor is given by

Tµν = (ρ+ p)UµUν + pgµν , (1.3)

where Uµ is the four-velocity of the fluid. In accordance with the Cosmological Principle,
the expanding universe is assumed to be homogeneous and isotropic which calls for a metric
of the Friedmann-Robertson-Walker (FLRW) form:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2sin2 (θ) dφ2

]
, (1.4)

where a(t) is the scale factor describing an expanding universe and the curvature parameter
k takes the values of 0,+1,−1 for spatially flat, positively curved and negatively curved
geometries respectively. Observations to date [12, 13] are consistent with the universe being
spatially flat, so hereinafter the curvature parameter will be taken to be zero. Incorporating
the FLRW metric (Equation (1.4)) into the field equations of Equation (1.2) then leads to
the Friedmann equations for a spatially flat universe:(

ȧ

a

)2

=
8πG

3
ρ+

Λ

3
, (1.5a)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (1.5b)

where ȧ(t) and ä(t) represent the first and second order time derivatives of the scale factor
respectively. It is useful to then definite an energy density for the cosmological constant
through the relation ρΛ = 8πGΛ/3. The combined matter and radiation components have
an equation of state parameter defined by ρ = wp subject to the bound 0 ≤ w ≤ 1/3
[29], dependent on the the relative contributions from each. This follows from the fact that
non-relativistic matter has an equation of state parameter wm = 0, setting the lower bound,
whereas radiation satisfies an equation of state such that wr = 1/3, which provides the upper
bound. Working now with the vacuum energy density ρΛ and utilising the equation of state
for ρ, the above Equations (1.5a) and (1.5b) can be re-expressed as(

ȧ

a

)2

=
8πG

3
(ρ+ ρΛ) , (1.6a)

ä

a
= −4πG

3
{ρ(1 + 3w)− 2ρΛ} . (1.6b)

Thus, it can be seen from Equation (1.6b) that it is impossible to source an acceleration
for a universe a comprised of cold dark-matter and radiation alone (w ≥ 0), requiring a
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Figure 1.1: Figure displaying the evolution of the scale factor for universes with and without
dark energy. In the model without dark energy, the scale factor evolves according to a matter
dominated universe with a(t) ∼ t2/3 whereas the line inclusive of a cosmological constant
includes a de-Sitter contribution of the form a(t) ∼ eHt, with H as the Hubble parameter
given by ȧ(t)/a(t).

sufficiently large energy contribution from the cosmological constant ρΛ to make the accel-
eration term ä(t) greater than zero. Furthermore, by drawing comparisons between the two
density contributions of Equation (1.6b), it also follows that the cosmological constant can
be modelled as a fluid with an effective equation of state parameter wΛ = −1.

1.2.1 The Cosmological Constant Problem

The cosmological constant problem arises when trying to match the observational inferences
of this model to the values predicted by quantum field theory. One can break down the
various contributions towards an effective cosmological constant into three. The first of these,
can be considered as the bare cosmological constant term, to be included when constructing
a general covariant theory of gravity. The second and third of these contributions relate to
vacuum energies sourced within the matter sector, this can be due to the potential energy
of a scalar field arising after a symmetry breaking phase, or due to the zero-point energies
(associated with vacuum fluctuations) of a free field. A basic argument can be made [30]
that for the standard model of particle physics, the primary source of the vacuum energy of
space comes from the zero-point energy of a free field. This vacuum energy contribution can
be represented by a collection of harmonic oscillators in momentum space, whose energies
extend up to the cut-off energy of the theory, that is, the energy scale up to which the theory
can be trusted. If the ultra-violet cut-off point of a theory is denoted Emax, then it follows
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that the vacuum energy density ρ
(V)
Λ goes as

ρ
(V)
Λ ∼ E4

max , (1.7)

such that the vacuum energy density grows with cut-off energy to the fourth power. There-
fore, the belief that quantum field theory can be trusted all the way up to the Planck scale
implies a vacuum energy of the order

ρ
(V)
Λ ∼ (1018 GeV)4 . (1.8)

Collectively then, the effective cosmological constant energy density will look like

ρΛ = ρ
(0)
Λ + ρ

(V)
Λ , (1.9)

with ρ
(0)
Λ signifying the energy density contribution from the bare cosmological constant

term. Comparing the observed value of ρ
(obs)
Λ ∼ (10−12 GeV)

4
to the vacuum contribution

ρ
(obs)
Λ reveals a discrepancy of over 120 orders of magnitude. Thus, in order to reconcile the

left and right-hand sides of Equation (1.9), the energy density of the bare cosmological con-

stant ρ
(0)
Λ must be incredibly finely tuned to generate the required cancellations. Theories of

super-symmetry (SUSY) can go some way in relieving this tension by bringing the vacuum
energy expectation down to the symmetry breaking scale MSUSY > 103 GeV. However, this
leaves a conflict of at least sixty orders of magnitude so still presents a huge issue of fine
tuning if choosing to accept a model containing a cosmological constant.

The issues surrounding a cosmological constant make it natural to seek an alternative ex-
planation for accelerated expansion. In fact, the literature surrounding such theories is
extensive, falling under the umbrella term of theories of dark energy and modified gravity.
Generally, it is quite difficult to draw a complete distinction between the various options
when constructing an alternative to the Λ-CDM model, as it is possible to switch between
formulations through the appropriate field redefinitions [23, 31, 32]. Either way, they all pos-
sess the common feature of introducing additional dynamical degrees of freedom to source
accelerated cosmological expansion. To follow, I will begin with the simplest alternative, dy-
namical dark energy, which will then lead naturally onto a discussion of screened scalar-field
theories. There are however, other viable options of interest, and for completeness, a brief
account of these will be provided in Section 1.2.4.

1.2.2 Dynamical Dark Energy

Dark energy exists at a very low energy scale Λ ∼ 10−12 GeV which suggests that additional
models can be formulated within the frame work of effective field theory [33]. The simplest
alternative, invokes a single new degree of freedom, a scalar field φ coupled minimally to
the metric, which essentially replicates the behaviour of a cosmological constant through the
potential energy of the field. Then, the theory must come equipped with some mechanism
to drive the energy contribution of the scalar low enough to reproduce the observed cosmic
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acceleration. These models generally fall under the umbrella term ‘quintessence’ models,
being described by the action

S =

ˆ
d4x
√
−g
{
M2

PL

2
R− 1

2
∂µφ∂

µφ− V (φ)

}
. (1.10)

A common choice for the potential is the Ratra-Peebles [34] potential given by

V (φ) =
M4+n

φn
, (1.11)

which allows the quintessence field to track energy density of matter and radiation in earlier
points of cosmic history but come to dominate at late times [35, 36]. This form of quintessence
is popular as it goes some way in alleviating the issues of fine tuning faced by the cosmological
constant. This is a result of the equations of motion exhibiting an attractor-like solution,
allowing the field to converge on the same evolutionary track for a wide-range of initial
conditions [37]. Applying the model to an FLRW background and assuming a homogeneous
profile such that φ ≡ φ(t), it then follows that the scalar field is characterised by the equation
of state parameter wφ:

wφ =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (1.12)

It can be seen therefore that replicating the behaviour of a cosmological constant i.e wφ ' −1
can be achieved by a slowly rolling scalar field φ̇2 � V (φ). The issue with quintessence fields
arises when considering the bounds placed on the field mass in order to influence cosmological
expansion. In particular, assuming an approximately static configuration for the scalar field
at late times implies that the mass of the field mφ is subject to the bound

m2
φ & H2

0 , (1.13)

where H0 corresponds to the present day value of the Hubble parameter. As detailed in
Reference [35], introducing a minimally coupled scalar-field entails a fifth-force between the
matter fields of the standard model with an interaction range going as ∼ m−1

φ . In the absence
of any symmetries protecting the theory from loop corrections, a quintessence field would
inevitably mediate a long range fifth force subject to tight constraints from local tests of
gravity.

The central message of the previous discussion is that, when constructing a dynamical the-
ory of a dark energy by introducing a scalar field, equivalence principle violating interactions
within the matter sector are inevitable. Fortunately, the tantalising prospect of reproducing
the cosmological expansion using a single scalar field does not need to be abandoned just
yet. The salvation comes from introducing a conformal coupling to the system, such that
the matter fields are coupled minimally to a conformally rescaled metric. Making no as-
sumptions about the form of the scalar field, such a construction falls into a class of models
known as scalar-tensor theories of gravity. This class of theories has seen a resurgence in
more recent years, particularly since the discovery of screening mechanisms. Simply put, the
presence of a screening mechanism leads to a suppression of scalar-matter interactions over
short distances, allowing the associated model to comfortably evade terrestrial constraints
whilst having the potential to demonstrate rich phenomenology at large scales.
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1.2.3 Screened Modified Gravity

Generally speaking, screened models of modified gravity follow the basic recipe of a scalar-
tensor theory whilst being purposely designed to avoid any violations of the constraints
placed by local tests of gravity. At the heart of these theories are non-linearities that enter
into a density dependent effective potential. In general, scalar-tensor theories allow for non-
canonical kinetic terms which include derivative self-interactions of the field. As a result,
screening can enter through two channels: the first is through non-linearities in the kinetic
terms of the theory, and the second is through non-linearities within the self-interaction
potential. As will be briefly discussed in Section 1.2.4, the former of these options leads to
what is known as Vainshtein screening. However, the departures from General Relativity in
such theories only enter at very large distances (i.e cosmological scales) [38] and thus are
inconsequential in local fifth-force experiments. Accordingly, the following discussion will
be focused on the latter possibility: screening due to non-linearities in the self-interaction
potential. Restricting the analysis to canonical scalar fields, a scalar-tensor theory can be
written as

S =

ˆ
d4x
√
−g
{
M2

PL

2
R− 1

2
∇µφ∇µφ− V (φ)

}
+

ˆ
d4x Lm

(
ψ(i)
m , g̃µν

)
, (1.14)

where Lm is the Lagrangian density describing the matter fields ψ
(i)
m . In contrast to the

previous model of dark energy, matter now couples minimally to a conformally rescaled
metric through the relation

g̃µν = A2 (φ) gµν . (1.15)

Generally, this coupling can be allowed to vary for different matter species [39] i.e. A→ Ai
but can be taken as universal for ease of calculation [33, 35, 40, 41]. This also ensures that
the weak equivalence principle holds [42]. The conformal coupling to matter feeds directly
into the equation of motion for the scalar through

∇µ∇µφ =
∂V

∂φ
− A3(φ)T̃ µµ

∂A

∂φ
, (1.16)

where T̃ µµ = g̃µνT̃
µν is the trace of the energy momentum tensor defined in the Jordan frame.

For most situations of interest it is sufficient to assume the matter distribution to be that
of a non-relativistic perfect fluid. As a result, the trace of the stress-energy tensor T̃ µµ = −ρ̃
and Equation (1.16) becomes

∇µ∇µφ =
∂V

∂φ
− A3(φ)ρ̃

∂A

∂φ
. (1.17)

Now from the principle of minimal coupling, matter fields coupling minimally to the metric
implies that the Jordan frame stress energy tensor is covariantly conserved ∇̃µT̃

µν = 0. It
can be shown [43] that this implies that on sufficiently small spatial scales ρ̃ satisfies the
equation

∂

∂t

(
A3(φ)ρ̃

)
+∇ ·

(
A3(φ)ρ̃v

)
= 0 , (1.18)
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where v corresponds to the velocity vector of the matter fluid. The above corresponds to the
fluid continuity equation, which implies a conserved density ρ = A3(φ)ρ̃ within the Einstein
frame. This identifies the relevant Einstein frame matter density field, with such the scalar
equation of motion reads

∇µ∇µφ =
∂V

∂φ
− ρ∂A

∂φ
≡ ∂VEFF

∂φ
. (1.19)

It can therefore be seen that introducing a conformal coupling to matter leads to the scalar
field evolving according to a density dependent effective potential. It is the crucial interplay
between the self-interaction potential V (φ) and the matter coupling term ρ∂A/∂φ that then
allows for the emergence of a screening mechanism. The different choices for the potential
and coupling terms generally come in three flavours, corresponding to three different classes
of models: the chameleon, the symmetron and the dilaton.

• The Chameleon:

For the case of the chameleon model [14], the coupling term A is often taken to be
linear in the field φ and the self-interaction potential typically takes the run-away
form.1 This forces the mass of field fluctuations to respond to the ambient matter
density, which by extension controls the interaction range of the field. The nature of
chameleon screening means that in regions of relatively high density such as the Solar
system, the field also acquires a large mass which severely limits the interaction range
allowing it to comfortably bypass local tests of gravity.

• The Symmetron:

The symmetron model [42] utilises a Z2 symmetry breaking potential in conjunction
with a quadratic coupling to matter entering at A ∝ φ2 to preserve the symmetry of the
theory. As the density field increases, the coupling to matter progressively gets weaker
until eventually deactivating entirely. At this point, the density field is sufficiently high
to restore the spontaneously broken symmetry. In contrast to the chameleon model,
screening manifests by diminishing the interaction strength directly as opposed to the
interaction range.

• The Dilaton:

In the low energy limit, string theory returns the classical theory of General Rela-
tivity accompanied by an additional scalar field, known as the Dilaton. It was noted
that in the strong coupling regime, the Dilaton self-interacts through an exponentially
decreasing potential, similar to those of quintessence. However, the Dilaton field also
comes equipped with a coupling to matter fields which would entail strong violations
of the weak-equivalence principle. Later, a mechanism was proposed by Damour and
Polyakov [44] which specified a universal coupling to matter which allowed the Dilaton
to circumvent this issue. However, this also implied that the Dilaton would be rendered
almost entirely invisible throughout the history of the universe, leading to incredibly

1Technically, the coupling term is an exponential function of the field φ which gets expanded to linear
scales in the low energy limit
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small present day deviations from General Relativity. The Damour-Polyakov mecha-
nism was then generalised [45] to trigger an environmentally dependant Dilaton field.
In this case, screening behaviour arises as a result of the coupling function possessing
some minimum:

A(φ) = 1 + A2 (φ− φd)2 , (1.20)

where A2 is some dimensionless constant. As for the Symmetron, the coupling strength
drops in regions of higher density, allowing the model to survive gravitational tests
whilst offering observable consequences at large distance scales [40, 45].

The Force Law

A central component of screened scalar-field theories, or indeed scalar-tensor theories in
general, is the conformal coupling to matter which leads to a fifth-force interaction. As
the matter fields couple minimally to a conformally rescaled metric g̃µν , it follows that the
world-lines of free test particles are determined by the geodesic equation:

ẍα + Γ̃αµν ẋ
µẋν = 0, α = 0, 1, 2, 3 , (1.21)

where xα corresponds to the αth component of the test particles space-time co-ordinate
four-vector and a dot denotes differentiation with respect to proper time τ . The Christoffel
symbols Γ̃ρµν are described by the usual relation to the metric tensor:

Γ̃αµν =
1

2
g̃αγ
(
∂ν g̃γν + ∂µg̃γν − ∂γ g̃µν

)
, (1.22)

with ∂µ signifying a partial derivative with respect to the space-time coordinate xµ. By
incorporating the relation between the Einstein and Jordan frame metrics g̃µν = A2(φ)gµν it
follows that the Christoffel symbols transform as

Γ̃αµν = Γαµν +
∂ lnA(φ)

∂φ

(
∂µφδ

α
ν + ∂νφδ

α
µ − gαβ (∂βφ) gµν

)
, (1.23)

which leads to the following equation for the particle four-acceleration,

ẍα = −
{

Γαµν ẋ
µẋν +

∂ lnA(φ)

∂φ

(
2 (∂µφ) ẋµẋα + gαβ (∂βφ)

)}
. (1.24)

The first piece in the above equation is the usual gravitational terms, with the second term
corresponding to the correction to the test particle four-acceleration due to the coupling to
a scalar field. In the non-relativistic limit relevant to any local fifth-force experiments, a test
particle subject to a Newtonian gravitational Φ therefore experiences an acceleration ~a:

~a = −~∇
[
Φ + φ

∂ lnA(φ)

∂φ

]
. (1.25)

Thus it can be seen that in a scalar-tensor theory of gravity with a conformal coupling such
that g̃µν = A2(φ) gµν , a test particle moves under an additional scalar potential of the form
∂ lnA(φ)/∂φ.
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Figure 1.2: Figure capturing the general features of the screening mechanisms present in the
chameleon, symmetron and dilaton Models. The red and blue lines represent the effective
potentials for low and high densities respectively. The self-interaction potential in each case
is pictured with the dashed green line.
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1.2.4 Alternative Models

Dynamically screened scalar fields are unique modifications to gravity in the sense that they
offer testable predictions across a host of local fifth-force experiments. There are however,
a number of other attractive models aiming to address the tension between observations
and the predictions of General Relativity at large scales. A very informative account of the
various options is presented in Reference [32], I will briefly cover some of the alternative
candidates below:

• Horndeski Theories:

The three screened scalar field theories presented previously in Section 1.2.3 only com-
prise a fraction of the models built within the framework of a scalar-tensor theory.
Many efforts have been made to construct the most general consistent theory of gravity
described by a metric interacting with a scalar field. Consistency in this sense relies on
avoiding the so-called Ostrogradski instabilities [46] which typically arise when dealing
with equations of motion higher than second order in time. As such, much of the focus
within scalar-tensor theories of gravity has been towards those leading to second-order
equations of motion. The most general formulation of such a theory first appeared in
work by Horndeski in 1974 [47], although it was largely overlooked until later appearing
in 2011 [48]. Either way, the Lagrangian describing a system admitting second-order
equations of motion was found to be

L =K(φ,X)−G3(φ,X)�φ + G4(φ,X)R

+G4,X(φ,X)
[
(�φ)2 − (∇µ∇νφ)2] + G5(φ,X)Gµν∇µ∇νφ

− 1

6
G5,X(φ,X)

[
(�φ)3 − 3 (�φ) (∇µ∇ν)

2 + 2∇µ∇αφ∇α∇βφ∇β∇µφ
]
,

(1.26)

where the d’Alembertian � denotes the derivative operator ∇µ∇µ. The theory con-
tains four arbitrary functions K,G3, G4, G5, with X linked to the scalar field via
X ≡ − 1

2Λ4 (∂µφ∂
µφ). Note that in this case, Λ is an energy scale of the theory not

relating to the cosmological constant. In fact, broader generalisations than the above
have been recovered by relaxing the limit to second-order equations of motion whilst
managing to avoid any Ostrogradski instabilities, as demonstrated in Reference [49].
A well established subset of the class of theories contained by Equation (1.26) are the
galileon models, which are arrived at in taking the limit of a flat space-time [50]. The
cubic galileon is the simplest version:

L =
M2

PLR

2
− 1

2
∂µφ∂

µφ− 1

Λ3
�φ∂µφ∂

µφ , (1.27)

which has interesting phenomenological consequences due to the emergence of a Vain-
shtein screening mechanism. In this case, the cubic derivative-interaction term becomes
important near matter sources, acting to suppress the gradient of the galileon field re-
sponsible for a fifth-force. At larger length scales, this interference between the kinetic
non-linearities and the spatial gradient begins to fade, opening up the possibility to
study galileon gravity within the context of large scale structure [51].
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• Massive Gravity and DGP:

A natural launch point into the discussion of massive gravity comes from the Yukawa
potential describing the interactions of massive fields:

V (r) ∼ e−mr

r
, (1.28)

which encapsulates the idea that forces mediated by a particle of non-zero mass suffer
from an exponential suppression of the interaction range. Operating over short length
scales, the exponential component would be sub-dominant leading to the familiar 1/r
potential recovered in the Newtonian limit of General Relativity. At large distances
however (m−1 ∼ H0), the story changes as the decaying exponential comes into play,
severely throttling the interaction strength. This behaviour is remarkably reminiscent
of the current cosmological picture, where the idea could be that the observed cos-
mic acceleration arises due to the weakening of gravity at large scales. The idea of
introducing a graviton mass has been around for sometime, although it has suffered
a turbulent history since its first appearance in work by Fierz and Pauli in 1939 [52]
which described the action of a free graviton. The first interacting model of massive
gravity to arrive considered a linear response to matter sources [53] but struggled to
recover the predictions of GR in the massless limit in something known as the vDVZ
discontinuity. A potential cure for this came with the first non-linear extensions of
an interacting massive graviton, which surfaced in work by Vainshtein in the early
seventies [54]. The key findings were that there is a new characteristic length scale
describing gravity around a massive source, the Vainshetin radius rV , below which the
non-linearities present within the theory come to dominate. This historically marked
the first indication of a Vainshtein screening mechanism. Unfortunately it very quickly
came into fruition that generically, non-linear completions of massive gravity propagate
a ghost-like degree of freedom. This complication was recently resolved in References
[55] and [56] which sparked a renewed interest in massive gravity. At present, dGRT
gravity, a model discussed in Reference [56], appears to be the best hope of realising a
phenomenologically viable theory of massive gravity: capable of harmonising with the
predictions of GR through an efficient local screening of the gravitational interaction
via the Vainshtein mechanism.

Another perspective is to view the effective mass of the graviton as a resonance aris-
ing in extra-dimensional setups, as in a brane-world scenario such as the DGP model
[57]. The idea is that matter fields are confined to a 4-dimensional brane embedded
within an infinite 5-dimensional bulk Minkowski space-time. Locally, gravitational
physics appears the same from the perspective of a 4-dimensional observer. However,
in moving up to infrared distance scales, the signatures of living higher-dimensional
space become apparent as gravitons escape the brane, resulting in a weakening of the
gravitational potential. Unfortunately, stable self-accelerating solutions have yet to
be found within the brane-world paradigm [32], although the benchmark DGP model
continues to inspire further research on the subject [58].
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1.3 The Chameleon Model

In the case of the chameleon model, the desired screening behaviour is achieved through an
appropriate choice in the self-interaction V (φ) such that the expectation value and the mass
of the field respond to the ambient density. The conformal factor A(φ) connecting the matter
fields to the chameleon is chosen to such that g̃µν = exp(2φ/M)gµν , which draws parallels
with the conformal scalar coupling that emerges in the low energy limit of string theory [45].
Operating at the energies relevant to a lab setup (φ � M) allows for the conformal factor
to be linearised to first order as A ' 1 + φ

M
. This leads to the dynamics of a scalar field φ

being governed by an effective potential:

VEFF(φ) = V (φ) +
ρφ

M
, (1.29)

where V (φ) is the scalar field’s self-interaction potential, ρ is the ambient matter density and
M is the coupling strength to matter. First proposed by Koury and Weltman in References
[39] and [60], it was shown that screening behaviour of chameleon type could be realized
generically through using self-interaction potentials of the run-away form. That is, those
satisfying the following conditions:

• V (φ) is monotonically decreasing.

• limφ→0 V(φ),V,φ/V,V,φφ/V,φ →∞.

• limφ→∞ V(φ),V,φ/V,V,φφ/V,φ → 0.

As captured by Figure 1.3, the interplay between the bare-potential and the ambient density
terms triggers a response of the chameleon field to the environment. This behaviour is
general to any self-interaction potentials that conform with the above requirements. As
demonstrated in References [39, 60] and [61], it follows that the characteristic behaviour
of the chameleon field can be revealed without necessarily taking on an explicit form for
the bare potential term. Nonetheless, the prototypical example of a potential satisfying the
above is the Ratra-Peebles potential (Equation (1.11)) which is the most commonly adopted
choice within the literature due to its connection with quintessence models [35, 62, 63] and
is restated below for convenience:

V (φ) =
Λ4+n

φn
. (1.30)

Generally, meeting the three conditions imposed on the form of the potential would imply
that the chameleon field exhibits a screening mechanism for n ≥ 1. However, it is possible
in this case to relax these conditions slightly as screening behaviour can also be realised
for negative even values of n [28], for which the Ratra-Peebles potential simply becomes a
polynomial. In fact, another popular example is the exponential potential which assumes
the form

V (φ) = Λ4exp

(
Λn

φn

)
. (1.31)

The essential difference between the two arises in the limit of limφ→∞ for which the Ratra-
Peebles potential vanishes whereas the exponential potential approaches Λ4. However, at
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length scales relevant to a local fifth force experiment such as atom interferometry, these
two choices are dynamically equivalent. Hereinafter the n = 1 form will be adopted from
the Ratra-Peebles potential. It should be noted that there is nothing particularly special
in taking n = 1, and ultimately the decision was made only to establish consistency with
the previous work on the chameleon field applied to an atom interferometry experiment [64].
For the purposes of lab-based fifth force experiments it is sufficient to search for steady
state solutions of the chameleon field. By incorporating the chosen n = 1 inverse power-law
potential into the non-relativistic form of Equation (1.19), it then follows that the behaviour
of the chameleon field can described by the equation

∇2φ = −Λ5

φ2
+

ρ

M
, (1.32)

which links the chameleon to an effective potential of the form

VEFF =
Λ5

φ
+
ρφ

M
. (1.33)

Two important quantities to consider are then the equilibrium value for the field, and the
mass of fluctuations of the field about this value. The equilibrium value for the chameleon,
denoted φmin, corresponds to the field value minimising the effective potential and is given
by

φmin =

(
MΛ5

ρ

)1/2

. (1.34)

The mass of the field is arrived at in the usual way by evaluating the second derivative of
the effective potential for fluctuations around the expectation state φmin to give

m2
φ = 2

(
ρ3

M3Λ5

)1/2

, (1.35)

where it is evident that in regions of high density, the field is not only suppressed but has a
much shorter interaction range due to a larger mass and thus reduced Compton wavelength.

1.3.1 The Thin-Shell Mechanism

A trademark feature of the screened scalar field theories is the presence of a thin-shell
mechanism which essentially acts to confine fifth-force contributions to a thin-shell lying
at the surface of the source. This is most readily seen by considering solutions around a
spherical source object, with a detailed account of all three models (chameleon, symmetron
and the dilaton) presented in Reference [41]. For the case of the chameleon, the field equation
(Equation (1.32)) around a spherically symmetric source becomes

1

r2

d

dr

(
r2 dφ

dr

)
= −Λ5

φ2
+

ρ

M
, (1.36)

with r being the radial value in spherical polar co-ordinates. The non-linear form of the
above makes finding an exact solution a huge challenge, and as a result the established
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Figure 1.3: Figure depicting how the effective potential (dashed) responds to the ambient
matter density. The linear density contribution corresponding to the orange line, and the
bare potential of run-away form given by the blue line. Moving from left to right corresponds
to an increase in the value of the ambient matter density ρ.

approach in the literature has been to construct the solution in a piecewise manner. The
idea is to picture the effective potential as acting on a test particle rolling outwards from
the source, as depicted Figure 1.4. In this sense, the particle begins within the proximity
of the potential minima of the source before traversing a segment of the effective poten-
tial dominated by the density contribution. Upon escaping, the fictional particle will then
fall into an approximately parabolic region of the effective potential describing the back-
ground. Schematically, this corresponds to compartmentalising field solution into three dis-
tinct regions, each described by a separate field equation: a core, within which the field lies
within the proximity of the potential minima, a shell, where the effective potential grows
linearly, and an exterior, where the field stays near the potential minima of the background.

Lying near the respective equilibrium values of the source and the background, the field
equations pertaining to the core and exterior regions are best described through a parabolic
approximation:

∇2φ ' m2
φ (φ− φmin) , (1.37)

whereas the density driven shell region behaves according to

∇2φ ' ρobj

M
, (1.38)
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Figure 1.4: Visualisation of the ‘rolling potential’ experienced by a test particle. Beginning at
the potential minimum within the source, traversing the linear density dominant contribution
before falling into the proximity of the potential minima of the background. The blue line
signifies the effective potential within the source and the purple line denotes that of the
background. Regions where each effective potential becomes relevant are represented by the
solid line, with the dashed lines simply being continuations of the functions for the purpose
of illustration.
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with ρobj denoting the density of the source. Collectively then, solving around a spherical
source object reduces to the following boundary-value problem

1

r2

d

dr

(
r2 dφ

dr

)
= m2

obj

(
φ− φ(obj)

min

)
, 0 ≤ r ≤ RS , (1.39a)

1

r2

d

dr

(
r2 dφ

dr

)
=
ρobj

M
, RS ≤ r ≤ R , (1.39b)

1

r2

d

dr

(
r2 dφ

dr

)
= m2

bg

(
φ− φ(bg)

min

)
, R ≤ r ≤ ∞ , (1.39c)

where mobj, φ
(obj)
min , mbg, and φ

(bg)
min are the masses and field expectation values of the source and

background respectively. Partitioning the problem in this way introduces a new unknown
constant to the problem RS, corresponding to the position of the interface between the
interior shell and core regions. This quantity is to be later identified when imposing boundary
conditions on the above system of equations. The general solutions to Equations (1.39a)-
(1.39c) are readily found to be

φ(r) =
A

R
sinh (mobjr) +

B

R
cosh (mobjr) + φ

(obj)
min , 0 ≤ r ≤ RS , (1.40a)

φ(r) =
1

6

ρobj

M
r2 + Cr +D, RS ≤ r ≤ R , (1.40b)

φ(r) =
E

r
embgr +

F

r
e−mbgr + φ

(bg)
min , R ≤ r ≤ ∞ . (1.40c)

Several of these constants can be eliminated immediately by considering the limiting forms
of the solution. For example, as the core region is defined perturbatively around φ

(obj)
min , it

follows that φ → φ
(obj)
min as r → 0 which implies that B = 0. Furthermore, requiring the

exterior solution to acquire the background expectation value as r → ∞ dictates that the
constant E must also be set to zero. As noted in Reference [64], the leading anharmonic

correction to the potential within the core region goes as (φ − φ(obj)
min )3/φ

(obj)
min which implies

that (φ − φ
(obj)
min ) � φ

(obj)
min for the harmonic approximation to remain valid. Due to the

hyperbolic nature of the sinh (mobjr) appearing in Equation (1.40a), the field can be thought

to remain mostly frozen at the value φ
(obj)
min . As soon the hyperbolic term begins to activate,

the harmonic approximation essentially immediately breaks down and the field transitions
into the shell regime of the effective potential.2 A similar argument is presented in Reference
[60]. Because of this, it follows that it is sufficient to describe the core region using the

constant piece alone, that is φ = φ
(obj)
min . This leaves four unknown constants RS, C,D,

and F , to be obtained by imposing Dirichlet-Neumann boundary conditions across the two

2A more informal way of saying this would be: As soon as the hyperbolic sine term begins to contribute,
it almost immediately becomes irrelevant.
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interfaces RS and R. Matching the field and its first derivatives across the two boundaries
fully specifies the piecewise solution spanning the core, shell, and exterior to be

φ(r) = φ
(obj)
min , 0 ≤ r ≤ RS , (1.41a)

φ(r) = φ
(obj)
min +

Mobj

M

1

8πR3

(
r3 − 3R2

Sr + 2R3
S

rR2
S

)
, RS ≤ r ≤ R , (1.41b)

φ(r) = φ
(bg)
min −

1

4πR

Mobj

M

{
1−

(
RS

R

)3
}
R

r
e−mbgr, R ≤ r ≤ ∞ , (1.41c)

with Mobj denoting the mass of the source object and the position of the core-shell interface,
RS, is given by the expression

RS = R

√
1− 8π

3

M

Mobj

Rφ
(bg)
min . (1.42)

It is beneficial in a discussion of chameleon screening to introduce the fractional contribution
of the shell region ∆R/R which can be used to demonstrate how the intensity of the screening
effect responds to the various theory and source parameters:

∆R

R
=
R−RS

R
=

4πMR

3Mobj

φ
(bg)
min . (1.43)

As internal field variations are confined to the shell, the interpretation is that it is only the
source mass within this region contributes to an external force. Therefore Equation (1.43)
captures some very important features of the chameleon screening mechanism. Firstly, the
presence of the background solution shows how the force profile will differ for the same source
object immersed in different environments. In particular, the inverse density dependence of
φ

(bg)
min causes a suppression of the force in higher density regions, and vice versa. Secondly,

the explicit appearance of the source radius R shows how varying its size whilst preserving
the mass will still feed into the screening effect. Finally, increasing the mass of the source
will further magnify the screening effect. Ultimately, this is what allows the chameleon field
to circumvent the tight constraints placed by tests of the weak equivalence principle: the
Earth is sufficiently massive to drive the sourced chameleon field into the screened regime
[39].

Equation (1.42) also shows that once a certain threshold is met, the radial position of the
shell falls to zero at which point screening completely de-activates. This naturally divides
the solution of the chameleon field around a spherical source into two regimes: screened and
unscreened, which can be packaged together as seen below:

φ(r) = φ
(bg)
min −κ

Mobj

M

e−mbgr

r
, κ =


1 if Mobj/R ≤ 4πMφ

(bg)
min

4πRφ
(bg)
min

M
Mobj

if Mobj/R > 4πMφ
(bg)
min

. (1.44)

26



 

Δ𝑅 𝑅 

𝑅𝑆 

Figure 1.5: Figure showing an example of the thin-shell mechanism at play for a spherical
source object. The interior structure of the field is decomposed into two distinct regions,
a core, where the field gradient remains zero, and a shell (identified with blue shading) to
which all of the field variations and thus force contributions are confined.

The force law for the chameleon field follows from incorporating the form of the conformal
coupling into the acceleration equation (Equation (1.25)) previously derived, to give

~a = −~∇
{

Φ +
φ

M

}
. (1.45)

The acceleration above was derived for a test particle and thus fails to take into account
any screening effects manifesting due to the finite extent of an object moving through a
chameleon potential. It was shown in Reference [64] through a complete covariant treatment
of the theory, that extending the force law to describe extended bodies brings down an
additional screening factor such that the equation of motion reads

~a = −~∇
{

Φ + κ(E) φ

M

}
, (1.46)

where κ(E) takes the same form as κ previously defined for the source, in this case exchanging
source object parameters for those describing the extended body. It is clear therefore that the
chameleon force between two sufficiently large bodies suffers from a compounded suppression
effect: now two screening parameters κ and κ(E) feed into the interaction strength.

1.3.2 Chameleon Cosmology

In order for chameleon gravity to remain a viable alternative to General Relativity, the
parameters of the theory must be engineered such as allow the chameleon evade the stringent
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local tests of gravity. As discussed in Reference [14], this imposes the condition that the
chameleon interaction is screened within the milky-way, which translates directly to the
mass bound

m−1
cosmo & 10−3H−1

0 ∼ Mpc , (1.47)

where H0 is the Hubble constant. It follows from this that when considering linear per-
turbations, that the cosmological evolution of the density contrast is indistinguishable to
Λ-CDM. Not only this, it is shown in Reference [35] that requirement for the Milky Way to
be screened also implies that the late-time acceleration arising from the value of the scalar
energy density is sourced purely from cosmological constant contribution, as both the kinetic
and potential energies (absent of a constant term) of the scalar must be suppressed. The
mass bound of Equation (1.47) suggests that the observable effects of the chameleon model
will begin to surface at distance scales ≤ Mpc. Because of this, coming years should see a
rise in constraints coming from probes of large scale structure such as EUCLID [65] and the
Dark Energy Survey [66].

The main tension surrounding the cosmological viability of the chameleon comes from con-
siderations of how the effective field theory description fits in the lead up to big bang nucle-
osynthesis (BBN). In particular, the conformal coupling A(φ) influences the masses of the
matter fields ψ in the following way:

mψ = A(φ)m0
ψ , (1.48)

with m0
ψ corresponding to the mass of the matter field in the Jordan Frame. Large varia-

tions in the chameleon field will therefore connected to large variations in particle masses.
It was demonstrated in Reference [62] that in order to satisfy the constraints on the time
variations of the masses since BBN [24, 25], it is required that the chameleon field must
hit the minima of its effective potential prior to the onset of BBN. This follows from the
fact that in the radiation dominated epoch of the early universe, whenever a particle species
becomes non-relativistic, there is a jump in the stress energy tensor, imparting energy to
the chameleon field which acts as to kick it towards the minimum of its effective potential.
Thus, during BBN where species like the electron decouple [33], if not already at its minima,
the chameleon would experience a kick leading to a significant variation of particle masses,
in conflict with observation.

The problem of avoiding variations in particle masses was initially dealt with by demon-
strating that the minimum of the chameleon effective potential acts an attractor solution
prior to the onset of BBN [62]. However, the approach detailed in Reference [62] also relied
on a cascade of kicks arising from the decoupling of heavier particles. It was later shown in
Reference [26] that the behaviour of these kicks is to accelerate the field to very high velocities
which leads to rapid variations of the chameleon effective mass, and in turn, excites very en-
ergetic modes which invalidates any description of the chameleon as an effective field theory.
The only way to circumvent these issues was found to be to drive the chameleon-matter cou-
pling to sufficiently low values [26], which would undermine the purpose of lab based tests of
the chameleon. Thus, for generic initial conditions, the true evolution of the chameleon field
approaching BBN is unknown which casts doubt on the belief that the chameleon reaches
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the minimum of its effective potential prior to the decoupling of the electron.

In light of this, there are a couple of stances one would take. The first is that the effec-
tive field theory describing the evolution of the chameleon is only valid after BBN. This
makes sense, as many of the phenomenological implications of the chameleon arise from
making use of the non-relativistic perfect fluid approximation, which only becomes valid
at energies below the electron mass [33]. In this case, the cut off of the effective theory
would lie around the MeV scale.3 Alternatively, one could operate under the belief that a
viable alternative to General Relativity must remain predictive as far back as BBN. In this
case, recent work [27] has proposed an extension to the classical chameleon model within
which a high energy modification of the theory can be used to dynamically renormalise
the scalar-matter coupling. As a result, the scalar evolution is stabilised in the presence of
kicks whilst at the same time, the classical late-time description of the theory remains intact.

1.4 Fifth Force Experiments

The rich phenomenology surrounding dynamically screened scalar field theories makes them
a target for a wide range of experimental searches, ranging from lab based experiments
through to studies of large scale structure formation. The catalogue of these searches turns
out to be quite extensive, and so I will restrict any attention to the most competitive of
these within the current generation: torsion balance experiments, precision atomic tests,
and atom interferometry. A comprehensive account of the entire collection of experimental
bounds was recently presented in Reference [28]. Moreover, the chameleon field will continue
to be the focal point of discussion, as it remains the the most examined theory within
the literature. The three methods to be outlined directly probe the fifth-force interaction
with matter. However, there has also been a rise of bounds appearing from axion-type
experiments which instead constrain the photon-chameleon coupling. Amongst these, are
inspired generalisations of ‘light shining through walls’ experiments [67], where the signature
of the chameleon field is studied through the hypothetical existence of some afterglow effect
[68, 69]. In a nutshell, the magnetically induced conversion of chameleon particles to photons
could lead to a regeneration of light to be explored by optical experiments. However, as
noted in Reference [28], the photon-chameleon coupling isn’t an integral component of the
chameleon mechanism, with such interactions having to be put in by hand. As the bulk of
this research was performed with an application to an atom interferometry experiment in
mind, a significant portion of the subsequent discussion will be devoted to it. Before this
however, I will provide a brief account of the two competing alternatives:

• Torsion-balance Experiments:

Pre-dating the cosmological motivation for fifth-force searches, torsion-balance experi-
ments were initially introduced in 1964 [70] as a means to test the principle of equiva-

3Introducing a cut off in this way is in some sense favoured when considering the radiative corrections to
the chameleon mass due to matter interactions. As shown in [33], the effect of the neutrons when accounting
for these correction is to shift value of the cosmological constant by a value compatible with observation.
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lence. The weak equivalence principle (WEP) states that all bodies, regardless of their
composition, follow the same trajectories in free fall. When translated into the lan-
guage of Newtonian physics, the weak equivalence principle asserts that inertial mass
and gravitational mass are indistinguishable [71]. Schematically, the torsion-balance
experiment involves the balancing of two test bodies connected by a rigid frame that
is suspended by a flexible fibre. External forces acting on these test bodies entail a
torque about the fibre axis, causing the entire instrument to oscillate. If test bodies are
selected to be of identical mass but different internal structure, torques arising from
different moments of inertia can then be corrected for in the presence of a gravitational
force given by the inverse square law. Accordingly, any subsequent oscillation can then
be tied to departures from the WEP. It was later realized however, that WEP tests
can be appropriated to the search for Yukawa type interactions [72], making the exper-
iment the ideal probe for the chameleon field. The strongest constraints to date come
from the torsion-balance experiment conducted by the Eot-Wash group [73] which was
able to study chameleon physics down to sub-millimetre scales.

• Precision Atomic Tests:

Precision spectroscopic measurements of atomic transition frequencies are paramount
when it comes to testing our fundamental understanding of the laws of physics [74].
Quantum electrodynamics for example, builds a theoretical description of hydrogen
energy levels using four parameters: the fine structure constant α, the electron-proton
mass ratio me/mp, the proton charge radius rp and the Rydberg constant. Each of
these, can be measured to remarkable precision by studying the spectral lines of atomic
hydrogen. It was demonstrated in Reference [75], that a scalar-mediated force will in-
troduce a perturbation in atomic energy levels which could be referenced against the
known transition frequencies determined by high precision spectroscopy. In particular,
it was shown in Reference [28] that electrons orbiting atomic hydrogen in the presence
of a chameleon field will receive a correction term to their Hamiltonian of the form

δH =
me

M
φnuc , (1.49)

where me is the electron mass and φnuc is the chameleon field profile surrounding the
atomic nucleus. It follows that in modelling the hydrogen nucleus as an unscreened
spherical source, the leading three energy levels of atomic hydrogen, 1s, 2s, and 2p,
are shifted according to

δE1s = − mpme

4πM2a0

, (1.50a)

δE2s = δE2p = − mpme

16πM2a0

, (1.50b)

which neglects any contributions arising due to a photon-chameleon coupling, where e
is the electron charge, mp is the proton mass and a0 is the Böhr radius. Note that as
the hydrogen nucleus is unscreened, the energy corrections appearing in the above are
independent of the chameleon self-coupling strength Λ. The strongest spectroscopic
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constraints come from the 1s − 2s transition which constrains the matter coupling
strength M to be

M & 104 GeV . (1.51)

1.4.1 Atom Interferometry

Since its first conception in 1985 [76], with the first experimental realisations appearing in
1991 [77–80], the atomic interferometer has become one of the most powerful instruments in
measuring absolute values of acceleration around today. Atom interferometry relies on the
same principles as the more familiar Michelson interferometer: a coherent beam is divided
into two parts that subsequently traverse different paths before later being recombined. Any
difference in optical path length between these two paths then results in the formation of an
interference pattern to be observed by the detector.
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Figure 1.6: Diagrams capturing the several stages of atom interferometry leading to beam
splitting and recombination. The experimental procedure is broken down into a sequence of
three pulses: the atomic wave function is initially split by the first π/2, followed by a π pulse
acting to reverse their relative motion. The final pulse then acts to overlap the partial wave
packets. The two possible routes are depicted by (a) and (b) which depends on the tuning
of the final π/2 pulse.

The foundation of an atom interferometry experiment is the quantum mechanical phe-
nomenon wave-particle duality, which tells us that the interference phenomena observed
within optical interferometry should arise in an equivalent scenario for atomic beams. Schemat-
ically, atomic wave functions are split and recombined using a sequence of laser pulses tuned
to the hyperfine (angular momentum) transition energies of the atomic ground state. Due
to the conservation of momentum, absorption of laser photons will induce a change in recoil
velocity of allowing control over the spatial separation of atoms.

The initial splitting of the beam is achieved through a “π/2” pulse, which divides the initial
atomic state, labelled |1, p〉 into an superposition of the two states |1, p〉 and |2, p+ ~k〉,
with p the initial particle momentum and k the photon wave-number respectively. Wave
packets pertaining to the |2, p+ ~k〉 state will begin to branch off with a recoil velocity
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Figure 1.7: Figure displaying how the atomic trajectories within an atom interferometry
experiment vary in the presence of a uniform acceleration a. For reference, the dashed line
indicates the trajectory in the absence of any external forces.

of ~k/mA (where mA is the mass of the atom). After some time interval, the states are
inverted and separation is reversed via a “π” pulse. This pulse stimulates the transitions
|2, p+ ~k〉 → |1, p〉 and |1, p〉 → |2, p+ ~k〉, causing the previously divergent states to con-
verge. At the point of recombination, a final “π/2” pulse places the two wave packets into
the same hyperfine state (either |1, p〉 or |2, p+ ~k〉, aligning their motion for detection. The
entire process incorporating each of these transitions is shown in Figure 1.6.

From a mathematical standpoint, the phase shifts associated with traversing a given path
decompose into two parts: the phase shift entailed by the free evolution of the atom, and
that arising from interactions with the optical pulses. The measure of the contribution due
to the free-evolution of the atom comes from the Feynman’s path integral formulation of
quantum mechanics [81] , which states that the atomic wave-functions Ψ evaluated at initial
and final space-time points (ti, xi) and (tf , xf ) are linked through the relation

Ψ(tf , ~xf ) = eiSCLΨ(ti, ~xi) , (1.52)

where the classical action SCL is defined by

SCL =

ˆ tf

ti

L(x, ẋ) dt , L = T − V , (1.53)

where T and V respectively denote the kinetic and potential energies of the atom, with its
dynamics specified by the solutions of the Euler-Lagrange equations. Equation (1.52) holds
true over scales such that SCL is much greater than one, else a full path integral treatment
is required which involves summing over all possible paths connecting the initial and final
points [82]. In treating the atom as a propagating plane wave, Equation (1.52) implies a
phase change at the level of the action, denoted ∆(A), given by

∆(A) = SCL . (1.54)
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For the cases of a uniform gravitational force profile, and by extension that for any scalar
interaction, it can be shown that phases shifts arising from classical path differences exactly
cancel [40, 64, 82] meaning that the phase differenced measure within the experiment is
controlled entirely by the remaining optical contribution. As detailed in Reference [82], the
transition amplitudes describing an atom moving from the |1, p〉 state to the |2, p+ ~k〉 and
vice versa are given by

A12 = A21 =
1√
2
e−i(

~k·~x−ωt) , (1.55)

where ~k is the photon wave-vector and ω its frequency. The pre-factor of 1/
√

2 corresponds
to a transition probability of 0.5 which can be achieved through tuning the duration and
intensity of the laser pulses [83]. This dictates that the propagating photon imparts a phase

change of (~k · ~x − ωt) upon absorption at position ~x and time t. Referring again to Figure
1.6, along each trajectory photon absorption occurs twice: once to transmit momentum to
the atom and then once to subsequently remove it. Dependent on the path, this absorption
takes place at different positions at different times. In addition, it follows from Equation
(1.55) that only motion parallel to that of the photon propagation contributes to the optical
phase difference. Through the aid of Figure 1.7, tracing these phase differences leads to the
to a net photon contribution ∆(P ) of

∆(P ) =
{
k(z2 − z1)− w(t2 − t1)

}
−
{
k(z3 − z2)− w(t3 − t2)

}
, (1.56)

where the two terms separate phase contributions from the two paths. The above assumes
that photons are propagating entirely in the z direction. The indexed co-ordinates ti and
zi correspond to the respective times and positions of the absorbing atom under a given
light pulse i, where i = 1, 2, 3. In taking a uniform time separation T in between the
light pulses, the temporal entries in Equation (1.56) exactly cancel. In the absence of any
external acceleration, atomic trajectories are simply straight lines which leads to a vanishing
contribution ∆(P ) = 0. However, turning on a uniform acceleration field breaks the inherent
symmetry of the experiment, where as a result atoms will fall three times as far during the
second half of the experiment than the first. In this case, the two displacement terms can
be written as

z2 − z1 = ∆z − 1

2
aT 2 , z3 − z2 = ∆z − 3

2
aT 2 , (1.57)

where ∆z corresponds to the displacement of the linear trajectory and a denotes the compo-
nent of the acceleration parallel to the direction of photon propagation. Therefore, it follows
that the contribution to the phase sourced by atom-photon interactions is given by

∆(P ) = kaT 2 . (1.58)

In general, it is sufficient to assume a uniform field profile across the time and length scales
of the experiment. As a result, the action contribution to the phase difference vanishes
which implies that all of the phase difference information is programmed into the outcome
of Equation (1.58).
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Figure 1.8: Illustration of the thin-shell effect present within the walls of a spherical vacuum
chamber. The shaded regions correspond to the shell, with the solid band corresponding to
the core for which the field lies at minima of the effective potential.

1.4.2 The Chameleon in a Spherical Vacuum Chamber

In practice, an atom interferometry experiment involves suspending a source object at the
center of a vacuum chamber. Potentially harmful to the experimental procedure are the
non-linear effects associated with the chamber itself, which can influence the system in a
number of ways. The most immediate of these concerns is whether of not the chamber is
sufficiently large to allow the chameleon field to relax into its equilibrium value. Recall
that solving for the chameleon profile around a spherically symmetric source invoked the
assumption that the exterior field approaching the source could be treated perturbatively
around the background equilibrium value. However, if the specification of the chamber does
not allow for this, then the external solution must be centred around another field value. For
the case of a spherical vacuum chamber, this adjusted value can be calculated analytically,
as detailed in Reference [64]. It turns out that the background field value φ(bg) scales with
chamber parameters as

φ(bg) =


φ

(bg)
min if M3Λ5 ≤ R3

Cρbg

(8Λ5R2
C/π

2)
1/3

if M3Λ5 > R3
Cρ

3
bg

, (1.59)

with RC and ρbg denoting the radius and density of the vacuum chamber respectively. There-
fore, within a vacuum chamber, any solution obtained for the chameleon field profile around
a spherical source object must be modified according to the above. External influences on
the chameleon field can also potentially complicate matters here. If the walls of the chamber
are sufficiently thick, the field has adequate space to respond to the change in the density
field upon approaching from the outside. This acts as to effectively decouple the experimen-
tal system from any external influence, meaning that any environmental screening manifest
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within the Earth’s chameleon field is inconsequential. A calculation to verify this assumption
was presented in Reference [64]. The idea was to prescribe the core-shell decomposition used
when solving for a spherical source to the spherical vacuum chamber. The effective potential
describing the immersing environment can then be built perturbatively around some back-
ground field value φ(E). In light of this, the position of the outer core-shell interface within
the vacuum chamber can be given by

RS = RO

√
1− 2M

ρwallR2
O

φ(E) , (1.60)

with RO here corresponding to the outer radius of the vacuum chamber (incorporating the
walls) and RS is now the position of the outer shell; ρwall is the density of the vacuum
chamber wall. The background field value φ(E) in this case arises from the chameleon scalar
interpolating between some surface value of the Earth, and the equilibrium value of the
surrounding environment. To obtain an order of magnitude bound on the requirement for the
lab to be decoupled from external influence, two approximations can be made. As the Earth
is highly screened, one could argue that the background value satisfies φ(E) ∼ φ

(E)
min proximate

to the Earth’s surface, where φ
(E)
min is the field value minimising the effective potential within

the Earth. Additionally, the assumption can be made that ρwall ∼ ρE. Effective decoupling
requires that the recovered position for the outer core-shell radius falls within the walls of
the vacuum chamber i.e. RS > RC . This way, the field reaches its equilibrium value within
the walls of the chamber and thus external influences can be neglected. In introducing δ(t)

as the thickness of the chamber walls, one finds that

δ(t) &
λ2

bg

RC

, (1.61)

where the compton wavelength of the field λbg has been introduced as the inverse mass m−1
bg .

The above also assumes that δ(t) � RS. This is therefore a consistency requirement of Equa-
tion (1.61). Using this result, it turns out that for an interferometry experiment performed
just below the meter scale, the above bound is comfortably satisfied across the parameter
space. Thus, the screening due to the walls of the vacuum chamber prevents any external
chameleon signals from influencing the interior solutions.

As a final point, it was noted in References [85] and [86] that above certain coupling strengths,
the length scales of the chameleon become short enough that the chameleon field begins to
respond to the molecular structure of the gas contained within the vacuum chamber. As a
result, the chameleon field becomes heterogeneous as it can now resolve across the distance
scales between the individual nuclei. However, these effects were shown [85] to only enter
at very strong couplings M/MPL ≤ 10−8 so they can arguably be dismissed in an atom
interferometry experiment aiming to probe weaker couplings of order M/MPL ≥ 10−5.

The subsequent chapters will now be devoted to the research conducted in an attempt
to increase the constraining power of an atom interferometry experiment on the chameleon
model. The choice to study the chameleon model in particular was partly to follow suit with
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the ongoing research within the field, and in-part to do with the relative simplicity of the
model: the symmetron for example has an additional free parameter, and calculations in-
volving the dilaton field are much more involved from a mathematical standpoint. However
as previously noted, the field profiles of all three models display very similar behaviour when
considering a spherical source object, where all can be seen to exhibit a thin-shell mechanism
[41]. Therefore, the hope is that the implications of this work on the chameleon field can be
extended to the symmetron and dilaton fields, potentially motivating similar analyses to be
performed for these models in the future.

36



Chapter 2

Ellipticity Weakens Chameleon
Screening

In screened scalar field theories governed by the presence of non-linearities, it is natural to
question whether the shape of the source object changes the efficiency of screening. Source
shape dependence has been considered in Reference [93] for theories exhibiting Vainshtein
screening, where the comparison of several sources (spherical, cylindrical and planar) showed
a reduction in the effectiveness of the screening for the non-spherical geometries. In a cosmo-
logical setting, this motivates targeting searches for the Galileon field at matter morphologies
such as walls or filaments.1 The purpose of this chapter is to examine whether deforming the
source object from a sphere to an ellipsoid generates any shape enhancements that heighten
the detectability of a fifth force screened by the chameleon mechanism. Due to the complexity
of the calculations, the analysis presented here will be restricted exclusively to the chameleon
model although, as dilaton and symmetron models have very similar phenomenology to the
chameleon for spherical sources, it is expected that the sensitivity of the chameleon to the
shape of the source object derived in this article will extend to the dilaton and symmetron
models as well. A related study has previously been performed for the chameleon in Ref-
erence [94] which exploits analogies between the chameleon field equations and equations
in electrostatics to analyse the chameleon field around an ellipsoidal source. It should be
noted however, that only the far field solution was presented in Reference [94] and that this
does not hold in the regime of interest in this chapter, where a more complete treatment is
required and presented.

This chapter will begin by recalling the theoretical structure of the chameleon, forming
Section 2.1. This will then be followed by a review of the form of the gravitational field
profile around an ellipsoidal source in Section 2.2. Section 2.3 then contains the derivation
of the chameleon field profile around an ellipsoidal source. The findings of this work will
then be concluded in Section 2.4 with a discussion of the implications of these results for the
possibility of detecting the chameleon in a laboratory experiment. In the appendices, further
details are given justifying various approximations made in the main body of the text.

1In contrast to the models previously mentioned, Vainshtein screening occurs in theories with non-
linearities present in the kinetic terms.
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2.1 The Chameleon Theory

The chameleon field is described by the following action:

S =

ˆ
d4x
√
−g
{
M2

PL

2
R− 1

2
∂µφ∂

µφ− V (φ)

}
+

ˆ
d4x Lm

(
ψm, A

2(φ)gµν
)
, (2.1)

where the chameleon field φ is minimally coupled to gravity and non-minimally coupled to
matter. Here M2

PL = 1/(8πG) is the reduced Planck mass and V (φ) is the scalar poten-
tial. This simplified model assumes a universal minimal coupling between the conformally
rescaled metric g̃µν = A2(φ)gµν and each matter species, ψm. As noted in Section 1.3, we
will always work in the regime φ � M which results in the conformal factor taking the
linear form A(φ) = 1 + φ

M
, where M denotes the coupling strength between the chameleon

and matter. The density dependent behaviour of the chameleon requires that the chameleon
potential V (φ) contains non-trivial self interaction terms. As mentioned in Section 1.3, the
studies of the chameleon model presented here will work with the choice V (φ) = Λ5

φ
for the

self-interaction potential.

When the matter source is static and non-relativistic the chameleon field equation that
results from the action in Equation (2.1) is

∇2φ =
∂V

∂φ
+ ρ

∂A

∂φ
, (2.2)

where ρ is the matter energy density. This indicates that the chameleon can be considered
as a field moving in an effective potential:

VEFF = V (φ) + ρA(φ) , (2.3)

when ρ is assumed to be constant. The mass of the field follows by considering fluctuations
around the vacuum state φmin, such that V ′EFF(φmin) = 0:

m2 =
∂2VEFF

∂φ2
=
∂2V

∂φ2
+ ρ

∂2Ω

∂φ2
. (2.4)

Substituting the choice of potential V (φ) and conformal factor Ω(φ) described above, it
follows that the position of the minimum of the effective potential and the mass of the
chameleon field are

φmin =
(Λ5M

ρ

)1/2

, m2 = 2
( ρ3

Λ5M3

)1/2

, (2.5)

where it is evident that in regions of higher density the field value is smaller and the force
has a shorter interaction range, due to a larger mass of the field and correspondingly reduced
Compton wavelength.

The chameleon theory as introduced here does not solve the cosmological constant prob-
lem, a fine tuned constant term is required in the scalar potential if the chameleon is to drive
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the acceleration of the expansion of the universe. Reconciling the chameleon with cosmolog-
ical observations requires the mass of the field in the cosmological vacuum today to be of the
order of the Hubble scale m ' H0 [96, 97]. The chameleon model relies on the presence of
non-linear terms in its potential, and therefore when considered as a quantum effective field
theory non-renormalisible operators are inevitable. The theory is not protected from quan-
tum corrections, and the scalar potential must be considered fine tuned, and therefore the
theory should only be treated as a low energy effective theory. These quantum corrections
can become important in laboratory searches, and in the early universe [26, 98, 99]. It is
acknowledged that this fine tuning is a potential issue for chameleon theories but to attempt
to solve this problem is beyond the scope of this work. Moreover this work is primarily aimed
at demonstrating the more general point that density dependent couplings of scalar fields
could well be detected within laboratory experiments, and that the strength of the force is
sensitive to the shape of the source.

2.2 Gravity around an Ellipsoidal Source

Before turning to the chameleon, it proves useful to first review the Newtonian gravitational
field profile surrounding an ellipsoidal source. The following analysis of ellipsoidal geome-
tries involves the use of spherical prolate coordinates which are discussed in more detail in
Appendix 2.A. Spherical prolate and Cartesian co-ordinates are related via the following
transformations:

x = a
√

(ξ2 − 1)(1− η2) cos(φ) ,

y = a
√

(ξ2 − 1)(1− η2) sin(φ) ,

z = aξη ,

(2.6)

and are defined such that the major axis of the ellipse lies along the z-direction with foci
at z = ±a. The co-ordinate φ represents the conventional azimuthal angle appearing in
spherical polar co-ordinates whereas ξ and η are analogous to the radial and polar angular
components respectively. The coordinate ranges are +1 < ξ < ∞, −1 < η < +1 and
0 < φ < 2π. The only dimensionful parameter entering the coordinate system is the focal
length a which controls the size of the ellipsoid. The gravitational potential, Φ, is governed
by Poisson’s equation:

∇2Φ = − ρ

2M2
PL

. (2.7)

To determine the gravitational field profile around a compact ellipsoidal source of constant
density, ρobj, contained within 1 ≤ ξ ≤ ξ0, and embedded in a zero density background, the
following system of equations must be solved:

∇2Φ = 0 , for ξ0 ≤ ξ <∞ , (2.8)

∇2Φ = − ρobj

2M2
PL

, for 1 ≤ ξ ≤ ξ0 . (2.9)

The shape parameter describing the source ξ0 may be related to other common ellipsoidal
parametrisations such as the ellipticity e and the compression factor ζ via the following
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relations:

e =
1

ξ0

, ζ =

√
ξ2

0 − 1

ξ0

, (2.10)

where a smaller value of ξ0 reflects a lower compression factor or equivalently a higher
ellipticity. Finding the complete solution to the boundary value problem of Equation (2.8)
involves imposing boundary conditions such that Φ and ∇Φ are continuous at ξ = ξ0, that
Φ decays as ξ →∞ and is regular at ξ = 1. This problem admits a separable homogeneous
solution of the form Φ = Φ̃(φ)

∑∞
l=0Xl(ξ)Hl(η), which pairs the η and ξ dependent factors

as a sum over an orthonormal set of basis functions. As the system under consideration has
azimuthal symmetry, it is possible to make the simplifying assumption that Φ is independent
of φ, and thus Φ̃ is constant. Outside of the source, ξ ≥ ξ0, the Laplace equation

(ξ2 − 1)(1− η2)

(ξ2 − η2)

{
1

Xl(ξ)

∂

∂ξ
(ξ2 − 1)

∂Xl(ξ)

∂ξ
+

1

Hl(η)

∂

∂η
(1− η2)

∂Hl(η)

∂η

}
= 0 , (2.11)

can be separated into two copies of Legendre’s equation:

∂

∂ξ
(ξ2 − 1)

∂Xl(ξ)

∂ξ
− λlXl(ξ) = 0 , (2.12a)

∂

∂η
(1− η2)

∂Hl(η)

∂η
+ λlHl(η) = 0 , (2.12b)

where λl is a separation constant. As is shown in Equation (2.89) of Appendix 2.B, this
leads to the specific relation λl = l(l + 1) for any non-negative integer l. This has the effect
of reducing these equations to Legendre form. The corresponding Legendre functions of
the first kind Pl(x) are defined on the interval (−∞,∞), whereas those of the second kind
Ql(x) are defined on the interval (1,∞]. It means therefore that solutions to the ξ equation
above can be Legendre functions of either the first or second kind, whereas solutions to the
η equation can only be Legendre functions of the first kind. The full solution for Φ in the
exterior of the source is a linear combination of these Legendre functions:

Φ =
∞∑
l=0

AlPl(η)Pl(ξ) +BlPl(η)Ql(ξ) , for ξ ≥ ξ0 , (2.13)

where Al and Bl are l-dependent constants. The first term in this expression diverges as
ξ → ∞, this requires setting Al = 0 in order to ensure that the field decays at infinity. It
remains to determine the form of Φ in the interior of the source. This can be written as
the sum of a homogeneous solution of the form given in Equation (2.13) and a particular
integral, ΦPI that takes the form

ΦPI = −ρobja
2

8M2
Pl

(
ξ2 − 1

)(
1− η2

)
≡ − ρobja

2

12M2
PL

(ξ2 − 1)
[
P0(η)− P2(η)

]
. (2.14)

Imposing that the solution does not diverge at the centre of the source, ξ = 1, the full interior
solution can be written as

Φ =
∞∑
l=0

ClPl(η)Pl(ξ)−
ρobja

2

12M2
PL

(ξ2 − 1)
[
P0(η)− P2(η)

]
, 1 < ξ ≤ ξ0 . (2.15)
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The surviving unknowns Bl and Cl are identified by imposing the remaining boundary con-
ditions that ensure that the field and its first derivatives are continuous across the surface of
the object at ξ0. This leads to the final solution for the form of the gravitational field profile
for an ellipsoidal source:

Φ =
Mobj

8πM2
PLa


Q0(ξ)− P2(η)Q2(ξ) , ξ > ξ0

Q0(ξ0)[1− P2(η)P2(ξ)] 1 < ξ ≤ ξ0

+ 1
ξ0(2P2(ξ0)+1)

{P2(ξ0)− P2(ξ) + 2P2(η)P2(ξ)

+2P2(η)P2(ξ)[1 + P2(ξ0)]}

, (2.16)

where Mobj is the mass of the source.

2.3 The Chameleon Profile Around an Ellipsoidal Source

To find the chameleon field profile around an ellipsoidal source, one follows a very similar
procedure to that taken to solve the gravitational equations in the previous section. The
main differences arise when considering the form of the chameleon field profile in the interior
of the source. As illustrated in Figure 2.1, it is expected that an ellipsoidal source will
give rise to similar chameleon behaviour to that due to a spherical object, meaning that a
sufficiently large source will form a ‘thin-shell’. This occurs when the chameleon field reaches
the field value that minimises the effective potential in the interior of the source. Due to the
large mass of fluctuations around this value, the field is unable to move from this minimum
and remains stuck at this value for almost the whole of the interior of the object, it only
changes its value in a thin-shell near the surface [60]. This same behaviour is expected for an
ellipsoidal source, with the difference that the thin shell is defined by two ellipsoids.2 This
decomposition of the solution is illustrated in Figure 2.1. As for spherical objects, a core
region where the field reaches the minimum of the effective potential may not exist. If it is
absent the object is referred to as ‘thick-shell’ and the field profile just takes the form of a
standard Yukawa force law. If the mass of the field is negligible this is exactly analogous to
the gravitational potential (with the possibility of a different coupling constant) determined
in the previous section, because the field never reaches the non-linear region of the chameleon
potential. As for the case of the sphere, solutions can be constructed by assuming that a core
region exists. The criteria allowing for the formation (or disappearance) of the core region
can then be evaluated once the full solution is obtained. Thus, analogous to the spherical
scenario, the chameleon field equations can be broken down in the following way:

∇2φ = m2
bg(φ− φ(bg)

min ) , ξ0 ≤ξ <∞ ,

∇2φ =
ρobj

M
, ξcore ≤ξ ≤ ξ0 ,

∇2φ = m2
obj(φ− φ

(obj)
min ) , 1 ≤ξ ≤ ξcore ,

(2.17)

2This is to say that the inner and outer surfaces are parametrised with different ellipcities
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Figure 2.1: The chameleon field profile decomposes into core, shell and exterior regions. The
relevant regime within the potential is indicated for each of the three regions.

where φ
(bg)
min and mbg are the field value and mass at the minimum of the effective potential

in the background of the experiment, where the density is assumed to be ρbg, whilst φ
(obj)
min

and mobj are the equivalent values in the interior of the source, which has density ρobj.

In what follows it will be argued that the mass of the chameleon can always be neglected
when studying the behaviour of the field close to the source. At distances far from the source,
the Yukawa suppression becomes important and the mass of the field plays an important
role in determining when this occurs. Closer to the source the important dimensionless (in
natural units) combination of parameters is ma; the mass of the chameleon multiplied by the
focal length of the ellipse. Within the available chameleon parameter space and considering
values for the size and mass of the source object suitable for laboratory experiments the
combination ma is always small, and therefore the mass of the chameleon can be safely ne-
glected in the analysis that follows. In Appendix 2.B this approximation is explored in more
detail which involves computing the first order corrections in ma to the massless solution.
The procedure presented closely follows previous work deriving ellipsoidal solutions to the
Helmholtz equation in [100–103].

Neglecting the masses of the chameleon in Equation (2.17) reduces them to the forms of
the Laplace and Poisson equations, solved for the gravitational case in the previous section.
The chameleon thin-shell solution only differs from the gravitational solution by the exis-
tence of the core region. However, as for the gravitational scenario, it required that the field
must decay at infinity, be regular at the centre of the ellipsoid, ξ = 1, and that the field and
its first derivative are continuous at the surface of the source and at the surface of the core
region, ξcore. The position of the surface of the core will be determined from these boundary
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conditions. Therefore the solution has the form

φ =
∞∑
l=0

VlPl(η)Pl(ξ) + φ
(obj)
min , 1 ≤ ξ ≤ ξcore ,

(2.18a)

φ =
∞∑
l=0

(
ClPl(η)Pl(ξ) +DlPl(η)Ql(ξ)

)
− 1

6

ρobj

M
(ξ2 − 1)

[
P0(η)− P2(η)

]
, ξcore ≤ ξ ≤ ξ0 ,

(2.18b)

φ =
∞∑
l=0

WlPl(η)Ql(ξ) + φ
(bg)
min , ξ0 ≤ ξ ≤ ∞ .

(2.18c)

The determination of the remaining unknowns, Vl, Cl, Dl, Wl and ξcore requires imposing the
continuity of φ, and ∂φ/∂ξ across the two surfaces at ξ0 and ξcore.

3 Importantly, these bound-
ary conditions must apply for all η, thus the boundary conditions are imposed separately for
each Pl. For example continuity of φ at ξcore requires

φ
(obj)
min = C0 +D0Q0(ξcore)−

1

6

ρobj

M
(ξ2

core − 1) , (2.19a)

V2P2(ξcore) = C2P2(ξcore) +D2Q2(ξcore) +
1

6

ρobj

M
(ξ2

core − 1) , (2.19b)

VlPl(ξcore) = ClPl(ξcore) +DlQl(ξcore) , l = 1, 3, 4, 5, ... . (2.19c)

After applying all of the above boundary conditions the final form of the chameleon field (to
all orders in l) in the exterior of an ellipsoidal source is

φ =
1

2

ρobja
2

3M

{
ξ0(ξ2

0 − 1)− ξcore(ξ
2
core − 1)

}(
Q0(ξ)− P2(η)Q2(ξ)

)
+ φ

(bg)
min , (2.20)

for ξ0 ≤ ξ < ∞ and the position of the surface of the core, ξcore, is given implicitly by the
expression

6

ρobja2

(
M3Λ5

ρbg

)1/2

+ (ξ2
core − 1)

{
1 + 2ξcoreQ0(ξcore)

}
= (ξ2

0 − 1)

{
1 + 2ξ0Q0(ξ0)

}
. (2.21)

These results differ from the results presented in Reference [94] due to the appearance of the
quadrupole term P2(η) in Equation (2.20), which is included in the analysis presented here
but was neglected in previous work. As a result, the solutions presented here do not lead
to the enhancement of the field at the ‘tips’ of the ellipsoid that was suggested in Reference

3Note that the values of the constants Cl do not take the same values as the constants found in the
gravitational case in the previous section.
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[94]. The thin shell solution holds whenever there is a solution to Equation (2.21) which
gives a real and strictly positive value for ξcore. This is difficult to determine analytically, but
is straightforward to do numerically. The implications of these solutions will be investigated
in the following section. For a sufficiently thin shell (ξ0 − ξcore � 1), an analytic expression
for the position of the interior surface of the shell can be found by manipulating Equation
(2.21):

ξ0 − ξcore =
6

ρobja2

(
M3Λ5

ρbg

) 1
2 1

(3ξ2
0 − 1)Q0(ξ0)

. (2.22)

As a consistency check of this result, one can verify that this expression recovers the familiar
expression for the thin shell of a sphere upon taking the spherical limit ξ0 → ∞, with a
fixed. For large ξ the Legendre function of the second kind becomes Q0(ξ) = 1/2ξ, to first
order. For objects that retain a thin shell as they are deformed from an ellipsoid to a sphere,
it can be assumed that both ξ0 and the shell position ξcore are large. Equation (2.22) then
becomes

6M

3ρobja2
φ

(obj)
min = ξ2

0 − ξ2
core , (2.23)

where it has been assumed that φ
(obj)
min � φ

(bg)
min , which is valid as long as ρobj � ρbg. At large

ξ the ellipsoidal coordinate ξ can be related to the radial coordinate in spherical polars by
ξ = r/a (this is derived in Appendix 2.C). Hence, identifying ξ2

core = S2/a2 and ξ2
0 = R2/a2

leads to

S2 = R2 − 2M

ρobj

φ
(obj)
min , (2.24)

which is the familiar expression for the thin shell of a sphere first derived in Reference [60].

2.4 Comparisons to Gravity

The intention of this work is to determine whether or not ellipsoidal deformations impact
on the efficiency of chameleon screening, and as a result, the detectability of the chameleon.
The chameleon force on a test particle due to the ellipsoidal source can be found from the
chameleon potential derived in the previous section as ~Fφ = −~∇φ/M . Outside of the source,
ξ > ξ0, the chameleon and gravitational potentials have been identified to obey the same
functional form. Therefore, the ratio of the corresponding forces is a constant independent
of the coordinates:

Fφ
FG

= 2

(
MPL

M

)2{
1− ξcore(ξ

2
core − 1)

ξ0(ξ2
0 − 1)

}
. (2.25)

As expected the chameleon force is maximised when there is no core region in the interior,
ξcore = 1, and in this case if M is chosen to lie at the Planck scale, the chameleon force is
twice the gravitational force. Once a core region develops the chameleon force is suppressed,
this is the essence of chameleon screening, and this behaviour can be clearly seen in Figure
2.2. To determine how changing the shape of a source affects the screening, the mass of the
object will be fixed such that only the effect of deformations are being considered. Assum-
ing a fixed uniform density for the interior across the ellipsoidal and spherical sources, the
size of any given ellipsoid can be referred to in terms of the parameter REFF which is the
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Figure 2.2: The blue line represents the scaling of the relative size of the shell region within
an ellipsoidal source of size REFF. At the far left, a constant value is approached as the shell
solution pervades the entire object and the core region is absent. As the effective radius
is increased, the extent of the shell region begins to diminish due to the emergence of a
core region. The dotted red line shows the corresponding dependence of the magnitude of
the chameleon force sourced by the compact object. The maximum force magnitude occurs
when the radius of the source corresponds to the formation of a core region.

radius of a sphere of the same mass, REFF = a(ξ0(ξ2
0 − 1))1/3, this expression is derived in

Appendix 2.C, Equation (2.116). Unless noted otherwise, any figures quoted have been ob-
tained by taking the source object and background densities to be 1 gcm−3 and 10−17 gcm−3

respectively, which are appropriate values for laboratory experiments. Due to the nature of
prolate spheroidal coordinates, variations in the ellipsoidal structure are most sensitive at
low ξ, whilst the value of ξ0 = 5 is visually almost indistinguishable from a perfect sphere.
Accordingly, we take ξ0 = 5 to represent the spherical limit. Figure 2.3a shows the shape
dependence of both the gravitational force and the chameleon force for a source exhibiting
screening, due to the formation of a core region. It is clear from Figure 2.3 that whilst the
shape of the chameleon profile is the same as the shape of the gravitational profile for each
ellipsoid, the ratio of the chameleon to gravitational force increases as the source becomes
more ellipsoidal. This can be attributed to the ellipsoidal source favouring a comparatively
smaller core component, resulting in less effective screening. Such behaviour is displayed
in Figure 2.4 which shows how the volume of the core scales with the compression of an
object. As the internal chameleon structure responds to deformations by reducing the core
region, there will be some threshold ellipticity where screening is deactivated, as the core
vanishes. It follows that the onset of forming a shell is delayed as the source becomes more
ellipsoidal, as can be seen from Figure 2.5. This figure shows the ratio of the chameleon
and gravitational forces for different sized objects with different ellipticities. For ease of
comparison, the specific choice M = MPL was taken in order to generate this figure, but the
shape dependence of the effect is independent of the choice of M . When Fφ/FG = 2 there is
no thin shell and the chameleon force is unscreened. As the size of the source is increased,
as parameterised by the effective radius REFF, a thin shell develops and the chameleon force
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Variation of the Gravitational Force FG

(a) The shape dependence of the gravitational force. This also represents the shape dependence of
the unscreened chameleon force around objects that do not have a thin shell.

Fϕ/FG =0.3056 Fϕ/FG =0.22795

Variation of the Chameleon Force Fϕ

Fϕ/FG =0.22093

(b) The shape dependence of the chameleon force characteristic of objects for which a shell region
has developed.

Figure 2.3: Comparison of the shape dependence of the gravitational and chameleon force.
The mass of the source, represented by the black region, is the same for all plots. From left
to right the ellipsoids have ξ0 = 1.01, ξ0 = 1.1 and ξ0 = 5 in both subfigures, corresponding
to ellipticities ∼ 0.99, 0.91 and 0.2 respectively. The colours indicate the strength of the
force, with red indicating regions of strongest force and blue indicating regions of weakest
force. The colour spectrum across these images has been normalised to the same limits to
highlight the chameleons relative contribution. Increasing the ellipticity of the source can
be seen to increase the ratio between the chameleon and the gravitational interactions. The
parameter values Λ = 10−12 GeV and M = 0.5MPL were chosen to generate these plots, but
the shape dependence is independent of these choices.
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Figure 2.4: Example of how the size of the core region decays as the ellipticity of the source
object increases (lower ξ0). The line asymptotes to the core volume for the spherical scenario
as ξ0 → ∞, represented by the red dashed line. This figure was generated for an object of
size REFF = 4m as this value captures the whole range of scaling effects. M and Λ were set
as MPL and 10−12 GeV respectively.

is suppressed. Figure 2.5 shows that this occurs for larger REFF when the source is more
ellipsoidal, or equivalently has a smaller ξ0. This figure also demonstrates that the shape
enhancement persists as the size of the source is increased. A closer inspection of the data
used to generate Figure 2.5 approximates that the impact of deforming a sphere to an el-
lipsoid of ξ0 = 1.01 is to enhance the chameleon force by as much as 40%. The difficulty in
determining ξcore analytically, makes it difficult to determine whether there is a maximum
shape enhancement possible, or whether it continues to increase as the source is made more
ellipsoidal. However, as there is a limit to the ellipticity of an object that can be created, the
behaviour of the shape enhancement as the ellipticity is increased much beyond the values
considered here is not relevant for any realistic experimental scenario.

Current experimental constraints on the chameleon from Casimir experiments, atomic spec-
troscopy and torsion balance tests of gravity [75, 104–106] restrict the chameleon parameters
to lie in the ranges Λ ≤ 10−10 GeV and 104 GeV ≤ M ≤ MPL. The values of Λ that were
studied here were confined to the range 10−14 GeV ≤ Λ ≤ 10−10 GeV as chameleon theories
that can be connected to the dark energy scale with Λ ∼ 10−12 GeV are of most interest.
Varying these parameters varies the size of object which forms a thin shell, as shown in
Figure 2.6.

Figure 2.6 also shows how the onset of screening varies with the background density ρbg.
As the density of the environment is decreased the magnitude of the shape enhancement is
seen to increase, as shown by the widths of the coloured bands. Laboratory experiments
searching for the chameleon can be made more sensitive if the background density is de-
creased, this increases the value of φbg and makes the chameleon field harder to screen.
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Figure 2.5: The ratio of the chameleon to gravitational forces as a function of the size of
the source mass, parameterised by the radius of a sphere of equal mass REFF. The different
lines show sources of different ellipticities, with the green line being the most spherical and
the blue line the most ellipsoidal. The right hand plot is a magnification of a region of the
left hand plot to show that the shape enhancement of the chameleon force persists as the
size of the source is increased. To obtain numerical values the parameters were chosen to be
ρobj = 103 kgm−3, ρbg = 10−14 kgm−3, M = MPL, and Λ set at the dark energy scale 10−12

GeV

However creating increasingly more diffuse vacuums is a difficult task. We have shown here
that increasing the ellipticity of the source can increase the chameleon field strength in a
similar manner to decreasing the density of the vacuum within which the experiment is per-
formed. Changing the shape of the source is an easier technical challenge than decreasing
the density of the vacuum chamber and could therefore be used to increase the sensitivity of
current proposals to detect the chameleon field, including that of Reference [64]. Comparison
between the two plots in Figure 2.6 shows how varying Λ changes the size of the source for
which a thin shell first forms. This allows any laboratory experiment to increase the range
of its sensitivity to Λ by searching for the chameleon around both spherical and ellipsoidal
sources. In principle, one could tune the size and shape of the chameleon source as to exploit
this enhancement to maximise the detectability of a given point in the chameleon parameter
space. As the value of Λ is increased the difference between the chameleon field around an
ellipsoidal and a spherical source decreases. The available chameleon parameter space is
shown in Figure 2.7. The left hand plot shows the ratio of the chameleon to gravitational
forces for a sphere in a laboratory scenario chosen to correspond to that of the experiment
proposed in Reference [64]. The right hand plot shows the large region of parameter space
in which the chameleon force can be enhanced by changing from a spherical to an ellipsoidal
source.
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Figure 2.6: The ratio of the chameleon to gravitational force as a function of the size of the
source for different choices of Λ and ρbg. The lower edge of each band, drawn with a solid
line, shows the force ratio for a spherical source. The upper edge of each band, drawn with
a dashed line, shows the force ratio for an ellipsoid with ξ0 = 1.001.

Figure 2.7: Left: The ratio of the chameleon to gravitational forces as a function of the
parameters Λ and M for a spherical source object with REFF = 1 cm. The ambient and source
densities take our reference values, 1 gcm−3 and 10−17 gcm−3. Right: The enhancement of
the chameleon force when an ellipsoid with ξ0 = 1.01 is compared to a sphere.

2.5 Conclusions

The work presented in this chapter has demonstrated that increasing the ellipticity of a
source, whilst keeping the density and mass of the source fixed, increases the ratio of the
screened chameleon to gravitational forces. This is not necessarily because the chameleon

49



force gets stronger but instead the because gravitational force suffers far more from the de-
formation. This behaviour is illustrated in Figure 2.3. Thus when performing an experiment
to search for a chameleon, replacing a spherical source with an ellipsoid of identical mass
enhances the effects of the chameleon when compared to gravity thereby increasing the sen-
sitivity of the experiment. For realistic choices of parameters, moving to an ellipsoidal source
finds enhancements of the chameleon force by up to 40%. It has also been outlined that for
a sufficiently flattened disk, the shape enhancement effects emulate reducing the density of
the lab vacuum by up to an order of magnitude. Thus, to increase chances of detection,
changing the geometry of the source can be used as a cost effective alternative to lowering
the ambient density.

The central message here is that when considering the effects of fifth forces which possess
screening mechanisms, the effects of the force can be underestimated if only spherical sources
are considered, and that the strength of the force can vary significantly with the shape of
the source. Ellipsoidal sources can be studied analytically and so are a useful test bed in
which to study these effects. However, the promising results gathered for the ellipsoid make
the idea of geometric enhancements of the chameleon field an interesting topic to pursue.
This leads naturally on to the work presented in Chapter 3, which studies these effects for a
broader range of source objects.

As a final note, the calculations presented here have neglected the effects arising due to
the finite size of the vacuum chamber, as discussed in Chapter 1. In particular, the sup-
position has been made that the vacuum chamber is sufficiently large such as to allow the
chameleon value to reach its equilibrium value. In practice this condition is not met when
constructing a vacuum chamber following the specification of that in Reference [64]. This
acts to shift the background field to a lower value forces the development a larger core re-
gion thus magnifying the screening effect. This however, is a systematic adjustment which
in principle shouldn’t threaten the implications of this work, as the chameleon interactions
appearing in the spherical scenario are compromised in the same fashion.

2.A Spherical Prolate Coordinates

The appropriate coordinate system to describe ellipsoidal geometries is prolate spheroidal
coordinates. As described in the text, these are defined such that the major axis of the ellipse
lies along z with foci at z = ±a. They relate to Cartesian co-ordinates via the following
transformations:

x = a
√

(ξ2 − 1)(1− η2) cos(ϕ) ,

y = a
√

(ξ2 − 1)(1− η2) sin(ϕ) ,

z = aξη .

(2.26)
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The co-ordinate ϕ represents the conventional azimuthal angle appearing in spherical polar
co-ordinates whereas ξ and η are analogous to the radial and polar angular components
respectively, with +1 < ξ < ∞, −1 < η < +1 and 0 < φ < 2π. This allows for the
calculation of the associated scale factors:

hξ =

√(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

+

(
∂z

∂ξ

)2

= a

√
ξ2 − η2

ξ2 − 1
,

hη =

√(
∂x

∂η

)2

+

(
∂y

∂η

)2

+

(
∂z

∂η

)2

= a

√
ξ2 − η2

1− η2
,

hϕ =

√(
∂x

∂ϕ

)2

+

(
∂y

∂ϕ

)2

+

(
∂z

∂ϕ

)2

= a
√

(ξ2 − 1)(1− η2) ,

(2.27)

which can be used to determine the form of the Laplacian in prolate spheroidal coordinates:

∇2φ =
1

hξhηhϕ

3∑
i=1

∂

∂ξi

hξhηhϕ
h2
i

∂φ

∂ξi
, (2.28)

=
1

a2(ξ2 − η2)

{
∂

∂ξ
(ξ2 − 1)

∂φ

∂ξ
+

∂

∂η
(1− η2)

∂φ

∂η
+

ξ2 − η2

(ξ2 − 1)(1− η2)

∂2φ

∂ϕ2

}
. (2.29)

2.B Computing the Massive Chameleon

The purpose of this appendix is to justify the assumption, made in the main body of the
text, that the chameleon mass can be neglected. Beginning with the equation of motion

∇2φ = m2(φ− φ(bg)
min ) , (2.30)

performing the field redefinition ψ = φ − φ(bg)
min and writing the mass term as m2 = −h2/a2

allows one to recover the Helmholtz equation in its canonical form. Note that h is now
imaginary, so care must be taken. In spherical prolate coordinates the equation of motion
to be solved is now

1

(ξ2 − η2)

{
∂

∂ξ
(ξ2 − 1)

∂ψ

∂ξ
+

∂

∂η
(1− η2)

∂ψ

∂η
+

ξ2 − η2

(ξ2 − 1)(1− η2)

∂2ψ

∂ϕ2

}
= −h2ψ . (2.31)

As for the Poisson equation, has separable solutions of the form ψ = Φ̃(φ)
∑∞

l=0Xl(ξ)Hl(η)
governed by the equations

∂2Φ̃(ϕ)

∂ϕ2
+ κ2Φ̃(ϕ) = 0 , (2.32)

∂

∂ξ
(ξ2 − 1)

∂Xl(ξ)

∂ξ
−
(

κ2

ξ2 − 1
− h2ξ2 + λl

)
Xl(ξ) = 0 , (2.33)

∂

∂η
(1− η2)

∂Hl(η)

∂η
+

(
−κ2

1− η2
− h2η2 + λl

)
Hl(η) = 0 , (2.34)
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where κ and λl are separation constants, which are chosen to be real. Equation (2.32) has
trigonometric solutions of the form Φ̃(ϕ) = cos

sin (κϕ). The equations for Xl(ξ) and Hl(η) are
identical, and only differ in the ranges of the dependent coordinates ξ and η. The equation
for Hl(η) will prove easier to solve, and therefore this will be addressed first. The solution for
Xl(ξ) will then be determined from this by an integral transform. As the system is taken to
possess an azimuthal symmetry, κ = 0 can be set to zero, implying that Φ̃(ϕ) = Φ̃0 = const.
With this choice of κ, Equation (2.12b) resembles the Legendre equation:

(η2 − 1)
∂2fn
∂η2

+ 2η
∂fn
∂η
− n(n+ 1)fn = 0 , (2.35)

that has solutions fn = Pn, Qn, the Legendre functions of the first and second kind respec-
tively. In fact as will be seen shortly, the resemblance becomes exact in the massless case,
when h = 0 and λl = l(l + 1) where the subscript has been introduced to λl as a way
of marking out the particular value of l under consideration. Given the resemblance, one
can attempt to solve the equation of motion for Hl(η) as a linear superposition of Legendre
functions:

Hl(η) =
∞∑
n=0

AlnPn(η) , (2.36)

for constant Aln. Here, only the Legendre polynomials Pn(η) appears in this Equation (2.36)
is that the Legendre functions of the second kind, Qn(η) are only defined in the range η > 1
whereas the angular coordinate η covers the interval [-1,1]. Substituting Equation (2.36) into
Equation (2.34) (with κ = 0) and utilising Equation (2.35) to replace the derivative terms
leads to

∞∑
n=0

(h2η2 + n(n+ 1)− λl)AlnPn = 0 . (2.37)

To determine the coefficients Aln and the separation constants λl, one can make use of the
recursion relation for Legendre Polynomials:

η2Pn =
n(n− 1)

4n2 − 1
Pn−2 +

[
n2

4n2 − 1
+

(n+ 1)2

(2n+ 1)(2n+ 3)

]
Pn +

(n+ 1)(n+ 2)

(2n+ 1)(2n+ 3)
Pn+2 , (2.38)

which when substituted into Equation (2.37) gives the following recursive relationship:
∞∑
n=0

[
h2

{
n2

4n2 − 1
+

(n+ 1)2

(2n+ 1)(2n+ 3)

}
+ (n(n+ 1)− λl)

]
AlnPn+

h2n(n− 1)

4n2 − 1
Pn−2A

l
n + h2 (n+ 1)(n+ 2)

(2n+ 1)(2n+ 3)
AlnPn+2 = 0 .

(2.39)

As Pn<0 = 0, it is possible to set Aln<0 = 0 which allows for the re-arrangement each of the
individual summations in Equation (2.39) to obtain
∞∑
n=0

[
h2 (n+ 2)(n+ 1)

(2n+ 3)(2n+ 5)
Aln+2+

{( n2

4n2 − 1
+

(n+ 1)2

(2n+ 1)(2n+ 3)

)
h2 + n(n+ 1)− λl

}
Aln+

h2 n(n− 1)

(2n− 3)(2n− 1)
Aln−2

]
Pn = 0 .

(2.40)
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As the Legendre polynomials are orthogonal over the interval [-1,1], this equation imposes a
three-term recursion formula relating coefficients for all n ∈ N0

h2 (n+ 2)(n+ 1)

(2n+ 3)(2n+ 5)
Aln+2+

{( n2

4n2 − 1
+

(n+ 1)2

(2n+ 1)(2n+ 3)

)
h2 + n(n+ 1)− λl

}
Aln+

h2 n(n− 1)

(2n− 3)(2n− 1)
Aln−2 = 0 .

(2.41)

Evidently, the above interconnects alternating coefficients and admits the trivial solution
Al = 0 ∀ l which applies for all λl. Non-trivial solutions depend on either even or odd
terms, it will soon be demonstrated that each of these series imposes different conditions on
λl and therefore both cannot exist independently. The method of continued fractions may
be applied to this recursion formula in order to generate a transcendental equation for λl. To
continue it is convenient to present Equation (2.41) in a more compact fashion. Introducing
three additional parameters αn, βn and γn defined by

αn = h2α̃n where α̃n =
(n+ 2)(n+ 1)

(2n+ 3)(2n+ 5)
,

βn = h2β̃n + n(n+ 1) where β̃n =

[
n2

4n2 − 1
+

(n+ 1)2

(2n+ 1)(2n+ 3)

]
,

γn = h2γ̃n where γ̃n =
n(n− 1)

(2n− 3)(2n− 1)
,

(2.42)

Equation (2.41) becomes

αnA
l
n+2 + (βn − λl)Aln + γnA

l
n−2 = 0 . (2.43)

Going further, one can define N l
n = −αn−2

Aln
Aln−2

and δn = γnαn−2 to arrive at the expression

N l
n =

δn
βn − λl −N l

n+2

, n ≥ 2 . (2.44)

This allows for the construction of an infinite continued fraction for the quantity N l
n:

N l
n =

δn

βn − λl −
δn+2

βn+2 − λl −
δn+4

βn+4 − λl − ...

≡ δn
βn − λl

− δn+2

βn+2 − λl
− δn+4

βn+4 − λl
− ... ,

(2.45)
where the second equality employs the standard Pringsheim notation as a more concise
representation. Using the recursion formula of Equation (2.43) to determine the leading
terms in the series (n = 0 and n = 1), one finds that

N l
2 = β0 − λl , N l

3 = β1 − λl , (2.46)
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where

0 = β0 − λl −
δ2

β2 − λl
+

δ4

β4 − λl
+

δ6

β6 − λl
− ... . (2.47)

A similar expression exists for the odd entries:

0 = β1 − λl −
δ3

β3 − λl
+

δ5

β5 − λl
+

δ7

β7 − λl
− ... . (2.48)

The roots of these two transcendental equations correspond to the various eigenvalues λl for
the even and odd expansion of the series solution, and can be solved to any order required.
See for example References [100] and [102] for more details of the general case. Of particular
interest is how the solution behaves in the small mass limit (|h| = ma� 1), so the remaining
part of the calculation will work under this assumption. In this case, solutions for the
coefficients Aln and λl in Equation (2.43) can be built in terms of series expansions in h2:

Aln =
∞∑
i=0

aln,ih
2i, (2.49)

λl =
∞∑
i=0

bl,ih
2i. (2.50)

Substituting Equations (2.49) and (2.50) into Equation (2.43) and using Equation (2.42)
leads to the result

∞∑
i=0

[
α̃na

l
n+2,ih

2i+2 + γ̃na
l
n−2,ih

2i+2 + β̃na
l
n,ih

2i+2 + n(n+ 1)aln,ih
2i − aln,i

∞∑
j=0

bl,jh
2i+2j

]
= 0 .

(2.51)
The above must hold true for all values of h, thus Equation (2.51) can be evaluated order
by order in the small parameter h2 up to O(h4):

h0 : n(n+ 1)aln,0 − aln,0bl,0 = 0 , (2.52)

h2 : α̃na
l
n+2,0 + γ̃na

l
n−2,0 + β̃na

l
n,0 + n(n+ 1)aln,1 − aln,1bl,0 − aln,0bl,1 = 0 , (2.53)

h4 : α̃na
l
n+2,1 + γ̃na

l
n−2,1 + β̃na

l
n,1 + n(n+ 1)aln,2 − aln,2bl,0 − aln,1bl,1 − aln,0bl,2 = 0 . (2.54)

By first solving Equation (2.52), expressions for the entire range of coefficients can be built
up progressively. The solution to Equation (2.52) is

bl,0 = l(l + 1), aln,0 = a0δn,l , (2.55)

where a0 is an unknown constant and δn,l is the Kronecker delta function. Substituting
Equation (2.55) into Equation (2.53) gives

α̃na0δn+2,l + γ̃na0δn−2,l + β̃na0δn,l + n(n+ 1)aln,1 − aln,1l(l + 1)− a0δn,lbl,1 = 0 . (2.56)
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Prompted by the three Kronecker delta functions appearing in Equation (2.56), only the
cases of n = l − 2, n = l, and n = l + 2 are seen to lead to non-zero coefficients:

n = l − 2 : all−2,1 =
α̃l−2a0

2(2l − 1)
, (2.57)

n = l : bl,1 = β̃l, (2.58)

all,1 = al1 an unknown constant , (2.59)

n = l + 2 : all+2,1 = − γ̃l+2a0

4l + 6
, (2.60)

n 6= l − 2, l, l + 2 : aln,1 = 0 . (2.61)

The results of Equation (2.57), in particular for bl,0, a
l
n,0 and bl,1 can be incorporated into

Equation (2.54) to then obtain

α̃na
l
n+2,1 + γ̃na

l
n−2,1 + β̃na

l
n,1 + n(n+ 1)aln,2 − aln,2l(l + 1)− aln,1β̃l − a0δn,lbl,2 = 0 . (2.62)

Equation (2.54) is found to only recover non-zero coefficients for the choices n = l − 4, n =
l− 2, n = l, n = l+ 2 and n = l+ 4. Following the same approach as before by considering
these choices individually, leads to

n = l − 4 : all−4,2 = − α̃l−4α̃l−2a0

8(2l − 1)(3− 2l)
, (2.63)

n = l − 2 : all−2,2 =
α̃l−2a

l
1

2(2l − 1)
+

(β̃l−2 − β̃l)α̃l−2a0

4(2l − 1)2
, (2.64)

n = l : bl,2 = − α̃lγ̃l+2

2(2l + 3)
+

α̃l−2γ̃l
2(2l − 1)

, (2.65)

all,2 = al2 = unknown constant , (2.66)

n = l + 2 : all+2,2 =
γ̃l+2a

l
1

2(2l + 3)
+

(β̃l+2 − β̃l)γ̃l+2a0

4(2l + 3)2
, (2.67)

n = l + 4 : all+4,2 =
γ̃l+4γ̃l+2a0

8(2l + 3)(2l + 5)
, (2.68)

n 6= l − 4, l − 2, l, l + 2, l + 4 : aln,2 = 0 . (2.69)

One this point one can begin to determine some of these coefficients. Considering the case
of l = 0, using Equation (2.42) in Equations (2.55), (2.57)-(2.61) and (2.63)-(2.68) leads to

b0,0 = 0; a0
n,0 = a0δn,0; b0,1 =

1

3
, (2.70)

a0
0,1 = a1 = constant; a0

2,1 = −a0

9
; a0

n,1 = 0 for n 6= 0, 2 , (2.71)

a0
0,2 = a0

2 = constant; b0,2 = − 2

135
; a0

2,2 = −a1

9
+

2a0

567
; a0

4,2 =
a0

525
. (2.72)
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It follows from Equation (2.49) that

A0
0 = a0 + a1h

2 + a0
2h

4 +O(h6) , (2.73)

A0
2 = −a0

9
h2 −

(
a1

9
− 2a0

567

)
h4 +O(h6) , (2.74)

A0
4 =

a0

525
h4 +O(h6), (2.75)

and from Equation (2.50) that

λ0 =
1

3
h2 − 2

135
h4 +O(h6) . (2.76)

What remains is to determine the values of the remaining unknown coefficients a0, a1 and a0
2.

This can be done through normalisation, which involves imposing that the angular solution
Hl(η) given in Equation (2.36) has the same normalisation factor as that of a single spherical
harmonic Pl(η). Recalling that

ˆ 1

−1

Pm(η)Pk(η) dη =
2

(2m+ 1)
δm,k , (2.77)

it follows that normalisation requires

ˆ 1

−1

(Hl(η))2 dη =
2

(2l + 1)
, (2.78)

Substituting Equation (2.49) into Equation (2.36) and expanding to O(h4) recovers the
expression

Hl(η) = a0Pl + (all−2,1Pl−2 + all,1Pl + all+2,1Pl+2)h2

+(all−4,2Pl−4 + all−2,2Pl−2 + all,2Pl + all+2,2Pl+2 + all+4,2Pl+4)h4 +O(h6) .(2.79)

Inserting into the normalisation condition Equation (2.78) and using Equation (2.77) we
obtain

ˆ 1

−1

(Hl(η))2 dη =
2

2l + 1
a2

0 +
4a0a1

2l + 1
h2 +

[
4a0a

l
2

2l + 1
+

2a2
1

2l + 1
+

2(all−2,1)2

2l − 3
+

2(all+2,1)2

2l + 5

]
h4

=
2

(2l + 1)
.

(2.80)

Then, solving Equation (2.80) at each order in h2 gives:

h0 : a2
0 = 1→ a0 = 1 , (2.81)

h2 : a1 = 0 , (2.82)

h4 : al2 = −1

8

(
l2(l − 1)2

(2l − 3)(2l + 1)(2l − 1)4
+

(l + 2)2(l + 1)2

(2l + 5)(2l + 1)(2l + 3)4

)
. (2.83)
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In particular for the case l = 0, Equation (2.83) yields

a0
2 = − 1

810
. (2.84)

Substituting for a0, a1 and a0
2 from Equations (2.81), (2.82) and (2.84) into Equations

(2.73)-(2.75) specifies the series expansion coefficients to be

A0
0 = 1− 1

810
h4 +O(h6) , (2.85)

A0
2 = −1

9
h2 +

2

567
h4 +O(h6) , (2.86)

A0
4 =

1

525
h4 +O(h6) . (2.87)

These may be consolidated with Equation (2.36) to obtain an expression for the angular
solution up to terms of order h4:

H0(η) = A0
0P0(η) + A0

2P2(η) + A0
4P4(η)

=

(
1− 1

810
h4

)
P0(η)−

(
1

9
h2 − 2

567
h4

)
P2(η) +

1

525
h4P4(η) +O(h6) .

(2.88)

It follows that the massless limit h = 0 results in equality H0(η) = P0(η). Moreover by
considering λl defined in Equation (2.50) and using Equation (2.55) we see that

λl = l(l + 1) +O(h2) . (2.89)

which justifies the Legendre form of the equations that have been used in the massless limit.
This technique can of course be generalised to derive Hl(η) for l > 0, but this is left to the
interested reader. The primary aim of this appendix has been to demonstrate how small
mass corrections feed into the chameleon solutions around an ellipsoidal source, where it has
been shown that these corrections enter at order h2 which supports the use of the massless
approximation.

2.B.1 The Radial Solutions

Although as can be seen by comparing Equations (2.33) and (2.34), the radial component
Xl(ξ) of the field obeys the same differential equation as the angular component Hl(η),
it is defined over the coordinate range 1 ≤ ξ ≤ ∞ rather than −1 ≤ η ≤ 1. Since the
angular solution Hl(η) is comprised of Legendre polynomials that are only defined over the
interval [−1, 1] they are not applicable as solutions to the radial equation (Equation (2.33)).
Moreover, the method employed to derive the angular solution utilised a recursion relation
that does not hold for Legendre functions of the second kind and so we cannot repeat this
analysis to determine Xl(ξ). Nonetheless, a solution valid over the appropriate coordinate
range can be found; a result presented in Reference [100] shows that, if a function Hl(η) is
a solution to a problem of the form shown in Equation (2.34), then another solution, say
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χl(hξ) may be obtained by performing an integral transform. The transform of the angular
solution, in its general form Hl(η) =

∑∞
n=0A

l
nPn(η), corresponds to

χl(hξ) =
∞∑
n=0

Aln

ˆ 1

−1

eihξη Pn(η) dη . (2.90)

This can be solved by employing the following relation between the Legendre polynomials
and Bessel functions of the first kind:

Jn+ 1
2
(hξ) = (in

√
2π)−1

(hξ
2

)1/2
ˆ 1

−1

eihξη Pn(η) dη , (2.91)

and a second, linearly independent solution can be found using a related identity for Bessel
functions of the second kind Yn+ 1

2
(hξ) as they have the same derivative properties. Together,

the two independent solutions read

χl1(hξ) =
(2π

hξ

)1/2
∞∑
n=0

Aln i
n Jn+ 1

2
(hξ) ,

χl2(hξ) =
(2π

hξ

)1/2
∞∑
n=0

Aln i
n Yn+ 1

2
(hξ) .

(2.92)

The general solution is therefore constructed by taking a linear superposition of the above:

Xl(ξ) = W lχl1(hξ) + V lχl2(hξ) , (2.93)

with the index l being introduced to allow for the integration parameters W l, V l to vary
with different values of the separation constant, λl. Reintroducing the chameleon mass,
m = −ih/a, the full solution is found to be

ψ(ξ, η) =
∞∑
l=0

∞∑
k=0

AlkPk(η)
∞∑
n=0

( 2π

maξ

)1/2

Alni
(n+3/2)

{
W lJn+ 1

2
(imaξ) + V lYn+ 1

2
(imaξ)

}
.

(2.94)
The constant value introduced by the normalisation of the polar solution Φ̃0 has been ab-
sorbed into the values of W l, V l. In considering to massless limit of the radial solutions
Xl(ξ), one needs to proceed a little more carefully as there are superficial divergences that
arise when taking m→ 0. The best way to handle this seems to be to transform the radial
Bessel functions appearing in Equation (2.93) into modified Bessel functions using

Jσ(ix) = e
σiπ
2 Iσ(x) ,

Yσ(ix) = ie
σiπ
2 Iσ(x)− 2

π
e−

σiπ
2 Kσ(x) ,

(2.95)

where Iσ(x) and Kσ(x) correspond to exponentially growing and decaying functions respec-
tively. The solution presented in Equation (2.93) then becomes

Xl(ξ) = −
(

2π

imaξ

)1/2
∞∑
n=0

Alni
n
(

(W l+iV l)eiπ/4e
inπ
2 In+ 1

2
(maξ)−2V l

π
e−iπ/4e−

inπ
2 Kn+ 1

2
(maξ)

)
.

(2.96)
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Regularity as ξ →∞ implies that W l + iV l = 0 in order to cancel the divergence arising in
the In+ 1

2
(maξ) term. Xl(ξ) then simplifies to

Xl(ξ) =
2

π

(
2π

imaξ

)1/2

e−iπ/4V l

∞∑
n=0

Alni
ne−

inπ
2 Kn+ 1

2
(maξ) . (2.97)

It then proves convenient to express Equation (2.97) in terms of a Hankel Function of the
first kind which is related to the Bessel function Kν(z) via

Kν(z) =
iπ

2
eiπν/2H(1)

ν (zeiπ/2) [−π < argz ≤ π/2] , (2.98)

from which it follows that

Xl(ξ) = −W l

(
2π

imaξ

)1/2
∞∑
n=0

Alni
nH

(1)

n+ 1
2

(imaξ) . (2.99)

Now recalling ψ = φ− φ(bg)
min , it follows from Equation (2.94) using Equation (2.99) that the

complete solution for the massive system is

φ(ξ, η, φ) = −
( 2π

imaξ

)1/2
∞∑
l=0

∞∑
k=0

W lAlkPk(η)
∞∑
n=0

Alni
nH

(1)

n+ 1
2

(imaξ) + φ
(bg)
min . (2.100)

Using the above result makes it much easier to deal with the small mass limit, or more
precisely the limit ma� 1. In this case, taking ma� 1 translates to a small argument for
the Hankel function (of the first kind), which obeys

lim
z→0

H(1)
ν (z) = − i

π
Γ(ν)

(
1

2
z

)−ν
, (2.101)

where Γ(ν) is the Gamma function. It follows that when ma� 1, we have

φ(ξ, η, φ) =
1√
π

∞∑
l=0

∞∑
k=0

W lAlkPk(η)
∞∑
n=0

Aln Γ

(
n+

1

2

) (
2

maξ

)n+1

+ φ
(bg)
min . (2.102)

On the surface there doesn’t appear to be a well defined limit as ma→ 0, as each successive
term in the sum over n appears to diverge more and more rapidly as n increases. However
this isn’t the case as will be demonstrated now. Recall Aln is given as an expansion in ma
through Equation (2.49). Inserting this into Equation (2.102) gives

φ(ξ, η, φ) =
1√
π

∞∑
l=0

∞∑
k=0

W lAlkPk(η)
∞∑
n=0

∞∑
j=0

aln,j(−1)j(ma)2j−n−1 Γ

(
n+

1

2

) (
2

ξ

)n+1

+φ
(bg)
min .

(2.103)
This still doesn’t look particularly good, but there are conditions on the parameter aln,j.
Extending the analysis which led to Equations (2.61) and (2.69), it follows that all of the
coefficients aln,j = 0 unless l−2j ≤ n ≤ l+2j. In particular for the non-zero coefficients aln,j,
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there is the bound 2j−n−1 ≥ −(l+1). This implies that when coefficients are non-zero, the
mass of the field always entails divergent inverse-power terms in Equation (2.103). However,
these divergences can be systematically cancelled by recalling that the coefficients W l are
so far undetermined. Therefore, one is completely free to rewrite W l = W̃ l(ma)(l+1), and
with which guarantees that there are no divergent contributions to the series expansion in
Equation (2.103). Now, in the limit that ma → 0, only the term 2j − n − 1 = −(l + 1)
survives and all the rest go to zero. Incorporating W̃ l into Equation (2.103) leads to the
result

φ(ξ, η, φ) =
1√
π

∞∑
l=0

∞∑
k=0

W̃ lAlkPk(η)
∞∑
n=0

∞∑
j=0

aln,j(−1)j(ma)2j−n+lΓ

(
n+

1

2

) (
2

ξ

)n+1

+ φ
(bg)
min ,

(2.104)
where now the (ma)2j−n+l term does not diverge as m → 0. To close this section, we
demonstrate consistency of this solution by showing that the general l = 0 solution for the
massive case reduces to the solution of the massless problem when setting m = 0. As a
reminder, the (exterior) chameleon field equation (Equation (2.17)) for a massless system
reduces to the Laplace equation, where the solutions to this problem were presented when
discussing the external solutions for gravity. Therefore, the target is to recover the l = 0
entry of

φ(ξ, η, φ) =
∞∑
l=0

ϕl(ξ, η, φ) =
∞∑
l=0

WlPl(η)Ql(ξ) , (2.105)

from the massive l = 0 result:

φ0(ξ, η, φ) =
1√
π

∞∑
k=0

W̃ 0A0
kPk(η)

∞∑
n=0

∞∑
j=0

a0
n,j(−1)j(ma)2j−n Γ

(
n+

1

2

) (
2

ξ

)n+1

+ φ
(bg)
min ,

(2.106)
with the subscript of zero signifying that the above corresponds to the l = 0 component of
the complete solution. Quoting a result from the preceding discussion, in the massless case
the only surviving series coefficient of the form Aln is All i.e when l = n (see Equations (2.49)
and (2.52)). Further, inspection of Equation (2.104) for l = 0 shows that all but one of the
radial terms inherit a mass dependence, with the exception being when 2j = n. Collectively,
these results can be used to eliminate two of the three summations: allowing one to write

φ0(ξ, η, φ) =
1√
π
W̃ 0 P0(η)

∞∑
n=0

a0
n,n/2 (−1)n/2 Γ

(
n+

1

2

) (
2

ξ

)n+1

+ φ
(bg)
min . (2.107)

Previously, in Equations (2.72) and (2.81), the coefficients a0
n,n/2 were determined up to

n = 4 and given by

a0
0,0 = 1 , a0

2,1 = −1

9
, a0

4,2 =
1

525
. (2.108)

Expanding the summation explicitly the first three terms of the Taylor series are identified
to be

φ0(ξ, η, φ) =
W̃ 0

√
πξ
P0(η)

{
Γ
(1

2

)
+

4

9
Γ
(5

2

) 1

ξ2
+

16

525
Γ
(9

2

) 1

ξ4
+ . . .

}
+ φ

(bg)
min , (2.109)
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substituting the numerical values of the gamma functions gives

φ0(ξ, η, φ) = W̃ 0 P0(η)

{
1

ξ
+

1

3

1

ξ3
+

1

5

1

ξ5
+ . . .

}
+ φ

(bg)
min , (2.110)

The terms appearing in brackets correspond to the series expansion of the Legendre function
of second kind Q0(ξ). Therefore, the massless result for l = 0 is described by

ϕ0(ξ, η, φ) = W̃ 0P0(η)Q0(ξ) , (2.111)

as recovered for the l = 0 case when solving the exterior Laplace equation (Equation (2.105)).

2.C Relating Ellipsoidal to Spherical coordinates

In the large distance limit ξ � 1 the relationship between ellipsoidal and spherical coordi-
nates that can be inferred from Equation (2.26) becomes

aξ
√

1− η2 = rsin(θ) ,

aξη = rcos(θ) .
(2.112)

This simplifies to

η = cos(θ) , ξ =
r

a
. (2.113)

We have described the size of the ellipsoids in this work in terms of a reference sphere of the
same volume. Equating the volumes of a sphere of radius R with an ellipsoid of focal length
a and surface position ξ0 gives

4

3
πR3 =

ˆ
dVellipsoid =

ˆ 2π

0

ˆ 1

−1

ˆ ξ0

1

hξhηhϕ dξdηdϕ . (2.114)

Recalling the scale factors

hξ = a

√
ξ2 − η2

ξ2 − 1
, hη = a

√
ξ2 − η2

1− η2
, hφ = a

√
(ξ2 − 1)(1− η2) , (2.115)

we find that
R3 = a3ξ0

(
ξ2

0 − 1
)
. (2.116)

This assigns an effective radius to an ellipsoid defined by ξ0.
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Chapter 3

Solving the Chameleon Field Equation
using Finite Element Analysis

One thing that holds universally true across the various screened scalar fields theories is that
they don’t present particularly user-friendly differential equations. Their highly non-linear
nature means that even solving their boundary value problems around something as routine
as a spherical source object calls for a host of approximations to be made. However, it is
precisely the non-linearities that define these models which makes the consideration of al-
ternative source objects an interesting topic. In moving to the ellipsoid for the case of the
chameleon model, a similar range of approximations lead to a solvable yet complicated sys-
tem of equations that perpetuated the idea that departures from a spherical source geometry
may be the way forward when it comes to constraining the parameter space of the theory.
Ultimately, what is needed is a means of systematically assessing the various possibilities of
source shape that are available, without having to launch into a full, and likely infeasible
analytic study each time. For this reason, a decision was made to shift focus towards a nu-
merical treatment of the problem, which subsequently unlocked much greater possibilities for
consideration. In addition to this, approaching the system numerically makes implementing
the entire experimental configuration much more straightforward.1 This in principle, then
opens up the potential to study, and generate constraints for screened scalar fields across the
host of both ongoing and upcoming fifth-force experiments [86, 108–110].

The various numerical schemes around to deal with partial differential equations generally
fall into three categories: the finite difference method (FDM), the finite element method
(FEM), and the finite volume method (FVM). The oldest and probably most familiar of
these, the FDM, is built around using Taylor expansions as a means to approximate deriva-
tives on a discretised space. Although it is often praised for its simplicity, the method relies
on a topologically structured (often equispaced) grid. This approach can be highly prob-
lematic for non-linear problems, due to their tendency for field variations to occur over very

1Taking the example of solving around a source in a spherical vacuum chamber, dealing with this problem
by hand would prove tricky due to the complexities involved with having to impose boundary conditions
across what would be a spherical surface in a non-spherical coordinate system.
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short distance scales. On a logically square network, this can drive the truncation errors
associated with derivative approximations fatally high unless excessive computational re-
sources are allocated to the problem. For the same reasons, this also makes the FDM the
suboptimal choice for considering complex source geometries due to the possibility of acute
variations in the density field.

Unlike the finite difference method, the two remaining approaches (FEM and FVM) do
not rely on the strong (differential) form of the equations describing the problem. Instead,
they utilise integral forms which avoid the need for a specific discretisation of the target
domain. Accordingly, it is possible to construct a discrete space tailored to meet the de-
mands of the problem. This technique also allows for discontinuities in the density field
(generally arising when implementing a source object) to be handled much more readily as
a result of relaxed conditions on the regularity of the discrete solution (that is, the integral
forms are less sensitive to high values of local derivatives). To add to this, Neumann bound-
ary conditions appear naturally within the formulation meaning that one doesn’t have to
enforce them by hand as is the case for the finite difference method. All of these advan-
tages do come at a cost, as it makes designing and implementing such methods from the
ground up a huge endeavour. Fortunately, the automated solution of differential equations
was the target of the FEniCS Project, launching in 2003, which has led to a state of the
art collection of software libraries built around the finite element framework. The platform,
developed for both C++ and Python, was found to be incredibly suitable for dealing with
non-linear systems and as a result, the work presented in this chapter was obtained, and in
many ways made possible by the numerical machinery provided by the FEniCS Project [111].

To keep things in line with previous work, data will be gathered and presented exclusively for
the case of the chameleon model. However, this was more a consequence of time limitations.
In fact, the program was designed in such a way that it could be easily extended to produce
the corresponding data for the symmetron field. This is discussed briefly in Appendix 3.A.
In principle, the dilaton field could also be incorporated into this work, although the pres-
ence of a non-canonical kinetic term makes the task of reaching the integral statement of
the problem a little more involved. That being said, examples of applying the finite element
method to numerous problems involving non-standard derivative terms are presented within
the FEniCS Project documentation. Therefore, one would not expect to face any additional
complications within the implementation of the solver.

The scope of this work was two-fold. The primary objective was to study a catalogue of
different source geometries in the context of an atom interferometry experiment searching
for the chameleon interaction. In particular, to better understand the various factors at play
when it comes to choosing the optimal geometry for constraining the theory. However, as the
project developed, the viability of the finite element method came incredibly apparent. As a
tool most often found within the remit of computational fluid dynamics, a secondary target
became to demonstrate the utility of the finite element solver when dealing with non-linear
models of dark energy.

To begin, this chapter will include some background material on the finite element method.
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This will be followed by a formal definition of the problem and an on-the-fly discussion of the
mathematical tools required for its implementation into the numerical system. Details of the
simulation procedure will then be covered before moving on to the results of this research.

3.1 Piecewise Linear Approximations and the Finite

Elements

One of the central concepts behind finite element analysis is the piecewise approximation
of functions using polynomials. The idea was initially suggested by Richard Courant in the
early 1940’s [112] before being picked up by structural engineers in search for an improved
technique for numerically dealing with complicated elliptic systems. At the heart of this
idea, was the set of linear functions P1 of two variables such that

φ(x1, x2) = a0 + a1x1 + a2x2 . (3.1)

The unknown coefficients of such functions φ ∈ P1 are uniquely determined by its values
on the vertices of a non-degenerate triangle.2 Suppose that instead of describing a function
on a single triangle, the target is to describe a function over some polygon Ω. The same
logic for a function over a single triangle can be applied by subdividing the domain into a
network of triangles, known as a triangulation. Introducing the space of linear functions
P1 = {a0 + a1x1 + a2x2|a0, a1, a2 ∈ R} within each triangle Pi, a function φ will be uniquely
determined by its values at the vertices of this triangulation. Furthermore, as the values of
φ|Pi ∈ P1 along an edge depend only on the values at the connecting vertices, the piecewise
description of φ is automatically continuous across edges. An example triangulation for the
case of a trapezium is depicted in Figure 3.1. Denoting theN vertices within the triangulation
as pi where i = 1, 2, . . . , N , it is useful to define a linear function ei such that

ei(pj) = δij , (3.2)

which graphically looks like a pyramid, reaching its apex value of 1 for vertex i = j and falls
to zero for all others. It was found that the function φ defined over Ω can be built using ei
as a basis:

φ(x1, x2) =
N∑
i=1

φ (pi) ei(x1, x2) . (3.3)

As the value of ei is only non-zero within triangles containing the vertex pi, this is known as
a local basis. What this has achieved is to break the problem space into finite (triangular)
elements and use a local basis to construct a piecewise linear (linear within each triangle)
yet globally continuous function. This globally continuous function can be the approxima-
tion to the exact solution of a partial differential equation, which is exactly how the finite
element method handles the transition to a discrete space. Here, in contrast to the finite
difference method, the process is not confined to a structured grid. Instead, the user is free

2A degenerate triangle can be described by three collinear points, which would form a line when connected.
There would therefore be a redundant point which doesn’t provide any more information, thus the three
unknowns of the linear function would not be fully specified.
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Figure 3.1: Example triangulation of a trapezium. The polygon is broken into three triangu-
lar subdomains Pi. Common edges are represented by the dashed blue lines to emphasize the
continuity of a piecewise linear function across the boundary. The vertices used to calculate
the unknown coefficients of each linear function are identified using circles.

to define the triangulation, on whichever domain most suits the problem.3 This could be as
straightforward as locally tuning element size in regions of interest, to something as involved
as triangulating an aeroplane wing to study air flow.

3.2 The Chameleon Field within a Spherical Vacuum

Chamber

To keep things simple, the numerical system will be built by embedding a spherical vacuum
chamber within a square domain.4 As depicted by Figure 3.1, the width of the simulation
box will be denoted W and the radius of the vacuum chamber will be given by RC . The
boundary value problem in question, defined over the domain Ω with boundary ∂Ω then
appears as follows:

∇2φ = −Λ5

φ2
+

ρ

M
, in Ω ,

φ = φ
(wall)
min on ∂Ω .

(3.4)

To handle this problem using a finite element solver, the above must be reformulated into its
variational (or weak) form. This involves recalling a well known result from vector calculus
known as Green’s Theorem, which states that for two scalar fields φ, ϕ we haveˆ

Ω

(
∇2φ

)
ϕ+

ˆ
Ω

∇φ · ∇ϕ =

ˆ
∂Ω

(∂nφ)ϕ , (3.5)

where the term appearing on the right hand side ∂nφ denotes the exterior normal derivative
which is otherwise written as ∇φ · n̂. The unit normal vector n̂ is defined for points along the

3In truth, there are some relatively light restrictions on the method of triangulation. However, these more
control how adjacent triangles should meet as opposed to the overall shape of the triangulation.

4Unlike the finite difference method, the FEM accommodates domains of arbitrary construction, meaning
that in principle one could have solved the problem on a circular/spherical domain.
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Figure 3.1: Illustration of the simulation space, denoted ΩD. The boundary of the spherical
vacuum chamber of radius RC is depicted using the dotted line. The total width of the
domain is given by W .

boundary ∂Ω, pointing outwards from the domain Ω. The variational form of this problem
then follows from introducing the field equation of Equation (3.4) into the above through
the ∇2φ term to give

ˆ
Ω

(
−Λ2

φ2
+

ρ

M

)
ϕ+

ˆ
Ω

∇φ · ∇ϕ =

ˆ
∂Ω

(∂nφ)ϕ . (3.6)

The next task is to deal with the boundary term appearing on the right-hand side of Equation
(3.6). The easiest way to do this is to construct the vacuum chamber in such a way that the

thickness of the walls is always greater than the Compton wavelength of the field λ
(wall)
φ . This

ensures that the field falls to its expectation value within the walls, which in turn implies
that the Neumann boundary term ∂nφ can be set to zero. More formally, if we define the
half-width of the simulation mesh as W with the chamber radius as RC , then we have

W −RC >
1√
2

(
Λ5M3

ρwall

)1/4

, ∀M, Λ . (3.7)

Satisfying the above,5 the Neumann boundary term disappears and Equation (3.6) simplifies
to ˆ

Ω

(
−Λ2

φ2
+

ρ

M

)
ϕ+

ˆ
Ω

∇φ · ∇ϕ = 0 , ∀ϕ . (3.8)

5This corresponds to W − RC > 0.1mm for Λ = 10−10 GeV, M = MPL and ρwall = 1 gcm−3. Data was
gathered for a chamber radius of 15cm and a system half-width of 18cm which falls well within this margin
for all parameter choices of interest.
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At this point, φ is now the unknown chameleon field and ϕ is an arbitrary function. This
function, ϕ, is known within the finite element literature as a test function, with its sole use
being to verify the equation satisfied by the unknown φ. Accordingly, ϕ is not an unknown
of the system, but instead something introduced to write down the problem. Generally
speaking, when moving to a discretised system for numerical analysis, the established choice
is to take the test function as the nodal basis function(s)

∑
ei used to build the finite

element space, something known as the Galerkin method. This approach is ideal as the
resulting matrices to be handled by the solver are symmetric in addition to relaxing the
smoothness requirements on the field φ [112, 113]. Further, as this basis is almost orthogonal
(for the most part

´ ´
eiej = 0 as the only time both of the basis entries are non-zero is

if they belong to the same triangle) the matrices handled by the solver are sparse. Note,
this is advantageous from a computational perspective as only non-zero elements alongside
their indices need to be stored. As a result, this significantly reduces computation time by
eliminating the operations performed on the zero elements. The variational form in Equation
(3.8) above corresponds to a semi-linear form, being non-linear in the unknown φ and linear
in the test function ϕ. In order to call the finite element solver for this problem, we need to
arrive at linear and bilinear forms for the fields φ and ϕ. This involves linearising the inverse
power term for φ around some input solution denoted φk. To achieve this, the non-linear
term is expanded around the input function φk as

1

φ2
≈ 1

φ2
k

− 2

φ3
k

(φ− φk) +O((φ− φk)2) =
3

φ2
k

− 2

φ3
k

φ+ . . . . (3.9)

Following this, the chameleon equation to be solved in its integral form becomes
ˆ

Ω

{
∇φ · ∇ϕ+

(
2Λ5

φ2
k

φ

)
ϕ

}
=

ˆ
Ω

{(
3Λ5

φ2
k

− ρ

M

)
ϕ

}
, (3.10)

from which the left-hand side is identified to be the bilinear term a(φ, ϕ) and the linear form
L(ϕ) as the right-hand side. Note that the above describes the full three dimensional system.
Simulations will be performed by utilising the rotational symmetry such as to project the
problem onto a two-dimensional space. Transforming to cylindrical polar coordinates (x, z, θ)
has the effect of introducing a correction to the two-dimensional Laplacian such that the weak
form of Equation (3.10) becomes

ˆ
Ω

{
∇φ · ∇ϕ+

(
2Λ5

φ2
k

φ+
1

x

∂φ

∂x

)
ϕ

}
=

ˆ
Ω

{(
3Λ5

φ2
k

− ρ

M

)
ϕ

}
. (3.11)

In order to avoid numerical instabilities, some manipulation is required to express the prob-
lem in units more applicable to the system. Ideally we want to write the chameleon field
equation at the centimetre scale which is more appropriate to the system size. This rescaling
essentially allows for sensible variations in the field values to be resolved by the grid. As
Equation (3.4) is currently written in [GeV], the move to inverse centimetres [cm−1] can
be achieved by introducing the constant αm, which represents the corresponding conversion
factor

αcm = 5.0667× 1013 GeV−1cm−1 . (3.12)
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As a result, the gradient operator quoted in S.I units ∇̃2 follows from the relation

∇2 =
1

α2
cm

∇̃2 . (3.13)

Furthermore, fields convert to inverse meters via

φ =
φ̃

αcm
. (3.14)

It is sensible to write the two energy scales of the theory M and Λ around the Planck mass
MPL and the dark energy scale ΛDE respectively. This allows for the problematic hierarchy
between these scales to be absorbed into constant coefficients which are easier to handle
numerically. As a result, the non-linear self interaction term in the field equation becomes

Λ5

φ2
=

(
Λ

ΛDE

)5
Λ5

DE α
2
m

φ̃2
. (3.15)

Further, the source term can be quoted [g cm−3] by calling a second conversion factor αg
which links [g] to [GeV]

αg = 5.6095× 1023 g−1 GeV . (3.16)

As a result of the above, one obtains that

ρ

M
=

(
αgα

−3
cm

MPL

)
ρ̃

(
MPL

M

)
. (3.17)

Collecting each of the above terms together, the field equation to be implemented into the
finite element solver appears as

∇̃2φ̃ = −γ1
Λ̃5

φ̃2
+ γ2

ρ̃

M̃
, (3.18)

with

Λ̃ =
Λ

ΛDE

, M̃ =
M

MPL

,

γ1 = (ΛDE αm)5 = 3.3391× 108 , γ2 =
αkg

MPL

= 5.61× 105 .
(3.19)

Calling a linear solver for the above problem involves recursively solving the linearised weak
formulation of the chameleon field equation (Equation (3.11)) over a series of iterations. This
strategy, referred to as Picard iteration or the method of successive substitutions, utilises
a given solution φk to the linear problem from iteration k as the basis to search for an
improved solution for iteration φk+1. The approach towards a converged solution following
this method is shown in Figure 3.2 which displays the outcome of the finite element solver for
a spherical source object within a vacuum chamber after 16 iterations. Initial conditions were
set such that the field took the uniform value of φ

(wall)
min across the domain. Error estimation

is handled for each iteration through the use of the vector norm |φ− φk| which can be shown
to relate to the residual r = L(ϕ)−a(φk, ϕ) where L(ϕ) and a(φk, ϕ) are the semi-linear and
bilinear forms respectively, as appearing in Equation (3.11). Typically objects with stronger
curvatures require a greater number of iterations in order to reach convergence. The upper
bound before terminating the solver was set at 30 iterations, where the convergence criteria
specified residuals at the 10−6 level.
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Figure 3.2: Figure capturing the convergence of the chameleon field for a spherical source
within a vacuum chamber over 16 iterations, six of which have been displayed here with
the iteration number specified at the top of each snapshot. The colour scheme here is
normalised across figures, where the field moves between the source expectation value (black)
and the chamber expectation value (white). The coloring in this case is following a linear
interpolation scheme.
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3.2.1 Finite Difference Integration

As an atom interferometry experiment is sensitive to the differences in atomic phase accu-
mulated due to particles traversing different trajectories around a source, one of the aims
of numerical simulations would be to map out these phase differences across the chameleon
parameter space. For the spherical source, the problem greatly simplifies due to the force
remaining approximately constant within the proximity of the experiment. It was mentioned
in Chapter 1 that because of this, the action contribution to the phase difference vanishes and
one is simply left with the contribution due to interactions with photons. This essentially
reduces the task of calculating the phase difference to identifying the scalar accelerations
within a specified region of the numerical grid. With more complex geometries however,
this may not be sufficient. If the experiment leaves this regime, one is forced to perform a
complete finite difference integration at the level of the action. This is generally calculated
by evolving the two beam trajectories using a leapfrog algorithm. The classical action for a
particle moving through a chameleon potential is given by

S =

ˆ T

0

dt

{
1

2

(
ẋ2 + ż2

)
− φ

M

}
. (3.20)

As previously this equation is built in units [GeV] which must be converted to inverse
centimetres [cm−1] to perform numerical integration. To deal with the conversion of the
time coordinate, a third constant is invoked which has value

αs = 1.51925× 1024 GeV−1 s−1 , (3.21)

which converts GeV back to seconds. Accordingly, the classical action can now be rewritten
as

S =

ˆ T[s]

0

dt[s]

{
δ1

[(
∂x[cm]

∂t[s]

)2

+

(
∂z[cm]

∂t[s]

)2
]

+ δ2

φ[cm−1]

M̃

}
, (3.22)

where the constants δ1 and δ2 are given by

δ1 =
α2
cm

αs
, δ2 =

1

MPL

αs
αcm

. (3.23)

Thus after each time interval δts, the associated contribution to the action δS is given as
follows:

δS =

{
δ1

[(
∂x[cm]

∂t[s]

)2

+

(
∂z[cm]

∂t[s]

)2
]

+ δ2

φ[cm−1]

M̃

}
δt[s] . (3.24)

3.2.2 Leapfrog Algorithm

The traditional leapfrog scheme involves evolving first order differential equations sequen-
tially over each time-step. Firstly, the beam velocity φ̇ = π is moved forward a half-time step,
using this to perform a full time-step iteration of the beam φ before bringing the velocity
forward to a full time-step. Schematically, the algorithm can be described by the following
procedure:

πn+ 1
2

= πn +
1

2
π̇nδt . (3.25)
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The field value is then iterated according to

φn+1 = φn + πn+ 1
2
δt , (3.26)

and the velocity time-step is completed with

πn+1 = πn+ 1
2

+
1

2
π̇n+ 1

2
δt . (3.27)

The chameleon force law can then be invoked to deal with the acceleration term via

π̇ = −∇φ
M

. (3.28)

As previously, implementing this system for seconds and centimetres involves a rescaling of
terms. In this case, the particle acceleration in simulation units is given by

π̇[cms−2] = − γ

M̃

∂φ[cm−1]

∂x[cm]

, γ =
α2

s

α3
cmMPL

. (3.29)

3.3 Force Scaling

The purpose of this section is to explore under what conditions, departures from a spherical
source object would be a favourable choice for experimentation. The finite element solver
was called for a number of source geometries across a range of model parameters M and
Λ. Due to the convergence time associated with each run, mapping out the entire two-
dimensional parameter space was out of reach within the allocated time frame. Instead, a
number of slices were taken which involved fixing Λ and then studying how the chameleon
profile varied across a range of choices for M . For the entirety of what is to follow, data
was gathered for a vacuum chamber of radius RC = 15 cm where the width of the numerical
domain was taken to be W = 36 cm. The volumes of all sources were normalised to that of a
sphere with a radius of 2 cm. The objective here was to identify which source shape, if any,
would lead to the tightest constraints on the chameleon parameter space. Furthermore, there
was a question relating to whether these geometric effects were universal or were confined to
regions of the parameter space where the field is screened, as indicated by the previous an-
alytic study of the ellipsoid discussed in Chapter 2. Source geometries considered here were
the sphere, torus, ellipsoid and cardioid. The torus was of great interest from a practical
point of view due to being able to alleviate issues relating to the surface reflections of the
laser pulses used to manipulate the atomic clouds. Here, pulses can be fired directly through
the central cavity rather than tangential to the surface as would be the case for the simply
connected geometries. In this case however, there is an ambiguity regarding where exactly
along the central axis the interferometry experiment should be conducted. Unlike for the
other sources, the existence of a local saddle point leads to a value of zero for the acceleration
at the centre of the toroid. As depicted in Figure 3.1, scanning across the central axis of the
torus allows one to identify the most ideal distance from the torus to perform an experiment.
Importantly, with the exception of effects due to the finite size of the chamber, this distance
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Figure 3.1: To the left is the variation of the chameleon force exerted by the toroid whilst
moving along the central axis of rotation. The right displays a converged solution around a
toroidal source, where the peak point of maximal acceleration is identified by the white star.

was found to be independent of the model parameters M and Λ. However, these finite size
effects are not present within the window of parameter space of interest considered here. The
inferred universality of the optimal distance from a torus to perform an experiment came
from the fact that the exact scaling present in Figure 3.1 occurred for a very wide sample
of parameter choices. Therefore, this value can be taken to remain constant for both the
purposes of simulation and experiment.

The analytic work previously presented in Chapter 2 that the ellipsoid may be a favourable
choice, especially when moving into the screened regime. However, the analytics only pre-
sented results normalised to the the gravitational force of the source, making it difficult to
extract the important information (scalar accelerations) to make reference with a spherical
source of the same mass. It was therefore sensible to solidify the inferences made in Chapter
2 by including the ellipsoid as part of the numerical study. The final source geometry under
consideration was the cardioid described by work in Reference [114]. This is of particular in-
terest for fifth force experiments due to it having the unique property of being an asymmetric
geometry yet still sourcing a gravitational monopole. This novel feature could potentially
be exploited when approaching Planck strength couplings for the chameleon field, where
one would expect an asymmetric scalar field profile thus in principle making it possible to
disentangle the two attractive forces. The results of this numerical work are displayed in
Figure 3.2. It should be noted that outputs for the spherical case also provided a means to
verify the numerical approach through comparison with the analytic results of Reference [64].

For several values of the self-interaction term Λ, the scaling of the scalar acceleration with
the parameter M was studied for the various source geometries. One thing to notice is that
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Figure 3.2: Figure displaying how the chameleon acceleration, normalised to the Earth’s
gravitational field g scales with model parameter M for three fixed values of Λ. Values of M
lower than 1016 GeV have been omitted from the display as no additional structure is seen
here. The scaling behaviour of the Cardioidal source was only accessible for Λ = 10−10 GeV
as a result of numerical instabilities.
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only the range 1016 ≤ M ≤ 1018 GeV has been presented, as no additional structure was
revealed for lower values of M . Furthermore, only one dissection of the parameter space
was accessible for the cardioidal source (for Λ = 10−10 GeV), which followed from a result
of numerical instabilities. Specifically, the convexity of the object seemed to become an
issue here which was ultimately a limitation of the mesh, a topic which is discussed in more
detail in Section 3.4. For each of the scenarios, the toroid is found to produce the weakest
acceleration across the entire range. One point to make here is that this issue could po-
tentially be mitigated by tuning the inner radius of the torus, such as to reduce the size
of the central cavity which would in turn magnify the attractive force. Data was gathered
taking a conservative value of 0.5 cm for the inner radius, yet without full knowledge of the
systematics at play here it is difficult to justify driving this parameter to a lower value. This
could definitely be the focus of further work, although one would again need to take into
consideration potential limitations of the grid if one were to shrink the inner cavity. One
can see that for the ellipsoid (built with an ellipticity of ξ = 1.01), the story gets a little
more interesting where it is observed to become the dominant source of acceleration when
transitioning to lower values of Λ. Furthermore, if one were to dial the ellipticity ξ down to
a value of 1.001 we would expect to see a greater enhancement of the chameleon acceleration
over the spherical case.

The scaling behaviour observed for the ellipsoid is in full support of the previous analytic
study of Chapter 2, which indicated that geometric enhancements would begin to surface
as the effects of screening comes into play. In this case, the onset of screening becomes ap-
parent when making the transition from Λ = 10−10 GeV → 10−12 GeV, where accelerations
now no longer exhibit differing logarithmic dependencies on M for different geometries. To
bring some clarity to this remark, it is worth discussing how the structure of the scaling
lines of Figure 3.2 relates to the chameleon screening. In essence, increasing M acts as to
counter-act the thin-shell mechanism but at the same time inherently suppresses the force.
For reference, this is most readily screen by examining Equations (1.43) and (1.45) that
were derived to describe the screening of a spherical source in Chapter 1. Unique to each
geometry, there is some critical value of M at which the shell region gets so expansive that
the core region can no longer form, leading to an accelerated fall of in the force. This is
the reason behind the tailing off of the lines as seen within the Λ = 10−10 GeV example of
Figure 3.2. Complementary to this behaviour, decreasing Λ drives the chameleon further
into the screened regime, which is what restores the constant logarithmic scaling with M
when moving from Λ = 10−10 GeV down to the Λ = 10−12 GeV level.

The final source under consideration was the cardioid, for which observations are limited
to the scaling profile at the Λ = 10−10 GeV level. For a sizeable portion of the range, the
cardioid closely tails the spherical and ellipsoidal sources until the acceleration begins to
fall off rapidly as we approach MPL. However, this behaviour is also displayed by the other
sources amongst this stretch of parameters, although considerably less pronounced for the
spherical and ellipsoidal cases. In this regime, the field does not have sufficient space to
relax to the value minimising the effective potential. Thus, it makes sense that geometries
with shorter distance scales begin to tail off sooner as they drive the central field minima to
higher values, having a negative effect on the exerted force. For the case of the cardioid, it
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is difficult to ascertain the viability for experimental application here. One could argue that
any potential means of exploiting the asymmetry of the field profile would likely be negated
by the relative deficit in acceleration when compared to other sources.

3.4 Shape Optimisation

The strategy for identifying the optimal geometry for a source object within an Atom Inter-
ferometry experiment was to construct a series of shapes using the Legendre polynomials as
a basis. A range of series coefficients can be tested as a means to compare different source
geometries. Without computational limitations, the optimal source could be identified by
performing some form of annealing routine on objects defined by an arbitrarily large number
of Legendre terms. However, due to the time and resource limitations, in this work, a sample
space of approximately one hundred randomly generated objects will be used for analysis.
Furthermore, only the first four Legendre polynomials will be used in the expansion.

3.4.1 Setting the Shape Parameters

In order to make direct comparisons, it is important to ensure that the masses of the source
objects forming the test space are pinned to a common value. As the shape generation
procedure is to involve an expansion of Legendre polynomials, this will therefore constrain
the values of the series coefficients available for selection when building the sample pool.
Dealing with sources of a constant density, this translates to normalising the usual volume
integral in spherical polar coordinates:

V =

ˆ
r2sin(θ) drdθdϕ , (3.30)

noting that the limits of the radial coordinate inherit an angular dependence for objects
defined in this way. Performing the simple integrals over r and ϕ the above becomes

V =
2π

3

ˆ π

0

R3(cos(θ))sin(θ) dθ , (3.31)

where the radial component expands as

R(cos(θ)) =
∑
i

aiPi (cos(θ)) . (3.32)

Thus the exact geometry of our source is specified completely by the values of the coefficients
ai. To keep the problem numerically tractable, for optimisation over sensible timescales, only
coefficients a0 to a3 will be considered here. At this point it is sensible to perform a change
of variables x = cos(θ) such that

V =
2π

3

ˆ 1

−1

(∑
aiPi(x)

)3

dx . (3.33)
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Using the trinomial expansion formula on Equation (3.33), set to terminate at i = 3, one
obtains

V =
2π

3

ˆ 1

−1

{
a3

0 + a3
1P1(x)3 + a3

2P2(x)3 + a3
3P3(x)3 + 3a2

0 (a1P1(x) + a2P2(x) + a3P3(x))

+ 3a2
1P1(x)2 (a0 + a2P2(x) + a3P3(x)) + 3a2

2P2(x)2 (a0 + a1P1(x) + a3P3(x))

+ 3a2
3P3(x)2 (a0 + a1P1(x) + a2P2(x)) + 6a0a1a2P1(x)P2(x) + 6a0a2a3P2(x)P3(x)

+ 6a1a2a3P1(x)P2(x)P3(x) + 6a0a1a3P1(x)P3(x)} dx .

(3.34)

Fortunately, half of these terms vanish immediately due to the odd parity of the integrands.
This leaves the following to be calculated:

V =
2π

3

ˆ 1

−1

{
a3

0 + a3
2P2(x)3 + 3a2

0a2P2(x) + 3a0a
2
1P1(x)2 + 3a2

1a2P1(x)2P2(x)

+ 3a0a
2
2P2(x)2 + 3a2

3a0P3(x)2 + 3a2a
2
3P2(x)P3(x)2

+ 6a1a2a3P1(x)P2(x)P3(x) + 6a0a1a3P1(x)P3(x)} dx .

(3.35)

Two useful formulas can be invoked to systematically deal with each term in the above, these
are ˆ 1

−1

Pn(x) dx = 0 (n ≥ 1) ,

ˆ 1

−1

Pm(x)Pn(x) dx =
2

2n+ 1
δnm . (3.36)

The complete result is then

V =
2π

3

[
2a3

0 + 2a0a
2
1 +

6

5
a0a

2
2 +

6

7
a0a

2
3 +

4

35
a3

2 +
4

5
a2

1a2 +
24

105
a2a

2
3 +

36

35
a1a2a3

]
. (3.37)

The mass contained within these volumes will be set equal to that of a sphere of radius rEFF.
This requires the following to be satisfied:

r3
EFF = a3

0 + a0a
2
1 +

3

5
a0a

2
2 +

3

7
a0a

2
3 +

2

35
a3

2 +
2

5
a2

1a2 +
12

105
a2a

2
3 +

18

35
a1a2a3 . (3.38)

The above is cubic in a0 and a2, and quadratic in a1 and a3. Values of a0 → a3 are to be
picked sequentially from a uniform distribution. In this case, the upper limit for a given
choice is obtained by imposing that all subsequent coefficients vanish. The most sensible
picking order seems to be a0 → a1 → a3 → a2, which ensures that the cubic equation is left
until the end. This therefore presents the following ranges when sampling our coefficients:

0 ≤ a0 ≤ rEFF ,

0 ≤ a1 ≤

√
r3

EFF − a3
0

a0

,

0 ≤ a3 ≤

√
7

3

(
r3

EFF

a0

− a2
0 − a2

1

)
.

(3.39)
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Figure 3.1: Example geometries built using a four term Legendre Series.

The remaining unknown a2 can be found by solving the following cubic polynomial:

2

35
a3

2 +
3

5
a0a

2
2 +

(
2

5
a2

1 +
12

35
a2

3 +
36

35
a1a3

)
a2 +

(
a3

0 + a0a
2
1 +

3

7
a0a

2
3 −R3

EFF

)
= 0 . (3.40)

3.4.2 Finding the Optimal Source Geometry

Following the scheme just outlined in Section 3.4.1, it is possible to seed arbitrarily generated
source objects whilst ensuring that their masses remain constant over the sample space. For
each source generated in this way, the finite element solver is then called to solve for the asso-
ciated chameleon field within the vacuum chamber. As one is now dealing with asymmetric
field profiles, an optimisation algorithm was implemented to identify the most favourable
position to perform the experiment. This involves scanning the converged solution at some
pre-set distance from the surface (taken to be 5 millimetres to conform with experimental
targets) in order to identify the location exhibiting the greatest acceleration.

a0 a1 a2 a3 δg/g

0.82 0.02 0.85 3.94 4.82 · 10−11

0.97 0.59 0.03 3.99 4.68 · 10−11

0.97 0.59 0.03 3.99 4.65 · 10−11

1.34 0.18 0.41 2.89 4.52 · 10−11

1.47 0.19 0.27 2.63 4.47 · 10−11

2 0 0 0 1.73 · 10−11

Table 3.1: The correction to the Earth’s gravitational acceleration for a range of sources
built using a Legendre expansion for parameters M = 1018 GeV and Λ = 10−12 GeV. The
first five entries correspond to the greatest accelerations returned from the sample pool. The
final entry corresponds to the spherical result.

Outputs following this routine have been tabulated as shown in Table 3.1. It can be seen

77



Figure 3.2: Three dimensional display of the optimal source object extracted from the sample
pool. To the left is an external view of the source whereas to the right is a view of a cross
section obtained by slicing the object in half. Colours here simply scale with the z coordinate
which aids in visualisation.

that considerable gains over the spherical source can be realised even with a relatively lim-
ited range of test geometries. For the optimal source presented in Figure 3.2, it seems that
performing the experiment near the tail regions seems to be the most beneficial, as seen in
Figure 3.3. One possible reason for this could be the choke-point connecting these lobes to
the main body, this could act to drive the field out of the interior vacuum value, essentially
decoupling the adjacent regions. In a sense this could act to prevent the formation of a ‘core’
region within the source, essentially combating the screening effect. This lends itself to the
idea that outside of the screened regime, where all mass contributes to the chameleon force,
the sphere is the ideal source object, but loses favour when screening comes into play. At
this point, the nature of the internal field structure seems to favour shorter length scales. It
then makes sense why a source which is almost partitioned into three separate regions would
come to source the greatest chameleon acceleration.

Following this logic, outside of the screened regime the sphere is expected to exert the
greatest chameleon force, but as screening comes into effect the existence of internal struc-
ture seemingly favours objects which partition into smaller ones, leading to crossover at
some point within the parameter space. As long as this crossover occurs before entering
the region of the parameter space of interest, it would definitely be beneficial to consider
such sources for experimentation, assuming that systematics could be controlled. It should
be noted that this is only a preliminary comparison to the spherical reference object. One
has to accept that this corresponds to the optimal configuration for a given set of model
parameters M = 1018 GeV and Λ = 10−12 GeV and may not hold true for a practical por-
tion of the unconstrained parameter space. Ideally, a complete scan of the parameter space
would have to be performed. However, for this complex geometry with the current means
of data acquisition, both convergence and numerical stability became problematic so this
would require further treatment.

An attempt of sweeping across a cross section of the parameter space for Λ = 10−10 GeV
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Figure 3.3: Scalar field profiles in the (x, z) plane for three of the source objects generated
by the procedure discussed in Section 3.4.1. The field ranges between the source expectation
value (black) and the vacuum expectation value (white). The central figures corresponds to
that leading to the greatest acceleration. For each of the sources, the optimal location for
the chameleon force is signified by the small white star.

M [GeV]

1016 1017 1018

δ
 g

/g

10-8

10-7

10-6

10-5

Spherical Source

Legendre Source

Figure 3.4: Comparison of how the chameleon acceleration, normalised to the Earth’s grav-
itational field g scales the with value of the parameter M for a spherical source object and
the optimal source achieved using a Legendre basis, as described in Table 3.1. This data was
gathered for Λ = 10−10.
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is displayed in Figure 3.4. There is clearly some peculiar behaviour here for lower values
of M , where the optimal source from Table 3.1 only comes to dominate as one hits Planck
strength coupling. At this point, it is difficult to ascertain whether or not this behaviour is a
result of numerical errors or a deeper level of chameleon phenomenology. For lower values of
M , convergence was not met within the upper limit of iterations, requiring some relaxation
on the convergence criteria. Typically, this only slightly compromises the accuracy of the
data but there may be greater sensitivity for such a complex source. Time considerations
at this point make it difficult to perform simulations at higher resolutions, suggesting that
we have reached the limits of the uniform grid for this work. Fortunately, further gains
in numerical precision and stability can be achieved through an appropriate reallocation of
computational resources, refining the mesh in regions of significant variations in the density
field whilst preserving a coarse grid for regions where the field varies more gradually. This
becomes particularly important when dealing with objects containing pinch points such as
that at the center of the source considered here, as can be seen in Figure 3.2.

Mesh Refinement

The benefits of performing simulations on a refined grid can be two-fold. Not only can we use
refinement to more efficiently utilize computational power (such as to focus resources towards
the areas where the field is expected to vary rapidly) thus reducing net simulation time, it can
be also be used as a means to handle the numerical stabilities that typically arise when deal-
ing with more complex source geometries. Of course, these outcomes are generally coupled;
the areas inciting numerical instabilities tend to be where the field exhibits stronger varia-
tions, making them target spaces for a finer mesh structure. Intuition from previous analytic
calculations tells us that most of the variations of the chameleon field are typically confined to
a shell region of order the fields Compton wavelength λφ, around the discontinuity in the den-
sity field. This is used, as the basis to build a mesh refinement algorithm. Within this shell
region, this field varies approximately linearly. Given that the finite element solver builds the
solution around linear basis functions,6 one can consider the mesh to be adequate once the
size of the cells/elements at the boundary become smaller than the Compton wavelength of
the field. At this point, one should be able to accurately resolve these essential variations of
the scalar field. For higher values of M and lower Λ, this would become hugely problematic
for a non-refined mesh as this value becomes incredibly small. As a result, one would expect
to require an astronomically high uniform resolution before reaching a mesh independent
solution. Below this threshold, numerical instabilities would enter as a result of the uniform
mesh being unable to adequately resolve field variations across the appropriate length scales.

The implementation of the mesh refinement routine is depicted by Figure 3.5, which cap-
tures the first two iterations of the refinement algorithm. In practice, the refinement process
continues for further iterations (parameters M and Λ dependent) but these additional stages
are almost impossible to distinguish visually. Note that the use of the vector norm |φ− φk|
in assessing convergence becomes inadequate here due to the lack of weighting which one
would require for a non-uniform mesh. Instead of dealing with a global sum such as the

6However, higher order polynomial elements can also be specified, resulting in an increase in computational
complexity as a trade-off for greater accuracy.
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Figure 3.5: Figures moving left to right displaying the first two iterations of the mesh
refinement algorithm. At each stage, the cells flagged for refinement have been shaded in
blue.

residual (which was mentioned previously to relate to the vector norm), it was found to be
more effective to monitor values locally. In particular, this meant focusing on the relative
corrections to the solution obtained with each iteration at a given point. This point was cho-
sen to lie within the region of which the experiment would be performed, as ultimately, this
was the point for which results were extracted. This way, although the global vector norm
tended to vary with different source geometries (making it difficult to define a more general
criteria of convergence following this scheme), establishing the convergence at a particular
point was found to yield consistency across all geometries. Similar to the previous criteria,
convergence was met when successive corrections in the target area fell below the 10−5 level.

The outcome of the mesh refinement scheme for a variety of source objects is displayed in
Figure 3.6. It can be seen that this approach allows for a relatively coarse mesh structure in
regions where long wavelength field variations are expected whilst confining the finer resolu-
tions to areas where the converse is true. This essentially allows one to realize a considerable
gain in accuracy for the same number of simulation nodes when compared to the uniform
counterpart. The most tangible way to capture the benefits of local mesh refinement comes
from performing a mesh dependence study for both mesh structures. The study involves sys-
tematically reducing the simulation element size to identify how the accuracy of the solution
responds to the simulation size. In addition to convergence defined within the solver, this
introduces the idea of mesh convergence. As we allocate more computational resources to a
problem, we expect to recover a greater approximation of the continuous solution. However,
beyond a certain point, diminishing returns will begin to enter and the displacement of the so-
lution from successive refinement will fall below some level of precision. Hitting this threshold
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Figure 3.6: Figure demonstrating the scaling behaviour of the uniform and refined meshes
for difference simulation resolutions (tied to the time to convergence). The refined mesh
quickly reaches a mesh independent solution. In comparison, even the larger grid resolutions
studied for the uniform mesh fail to realise mesh independence.

defines a state of mesh independence, the simulation is said to have entirely converged and no
additional features of the solution can be revealed by increasing the complexity of the mesh.
This essentially then allows one to establish the balance between performance and accuracy,
allowing one to run the solver on the optimal mesh and avoiding excessive computation times.

The performance differences between both implementations are captured by Figure 3.7 which
presents the scaling behaviour of relative acceleration with simulation time. For the uniform
mesh, data was gathered from the solver running 1282, 2562, 5122 and 10242 simulation
nodes. Due to the additional nodes generated following the refinement scheme, an addi-
tional base resolution of 642 nodes was included for the refined case. This is because the
time-scale turned out to be comparable to the lowest sample for the uniform grid. The most
important observation here is that the refined problem appears to reach mesh convergence
for as little as 1282 base nodes, which places simulation times at just below one minute.
Above this resolution, it seems that no additional accuracy is to be gained. To contrast,
the uniform mesh fails to realize mesh independence across the sample space, with sizeable
corrections still entering even with the transition from 5122 to 10242 simulation nodes. Fur-
thermore, even extending up to the 10242 case, the result fails to lie within the proximity of
even the more conservative examples for the refined mesh, suggesting even higher resolutions
would be required to reach mesh convergence for this set-up. It should be noted that data
for both scenarios was gathered for a spherical source object within the vacuum chamber.
This avoids any stability issues, allowing one to focus purely on simulation efficiency - tak-
ing only time considerations into account. Unfortunately, time limitations prevented full
implementation of local mesh refinement for the purposes of data acquisition. However, the
performance benefits presented in this section highlight the method of local mesh refinement
as a clear step forward in efforts to map out the entire two-dimensional chameleon parameter
space in manageable simulation times, in addition to unlocking the study of more complex
geometries. Furthermore, in choosing to scan the parameter space perturbatively, it would
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Figure 3.7: Figure demonstrating the scaling behaviour of the Uniform and Refined meshes
for difference simulation resolutions (tied to the time to convergence). The refined mesh
quickly reaches a mesh independent solution. In comparison, even the larger grid resolutions
studied for the uniform mesh fail to realise mesh independence.

be possible to significantly reduce the number of iterations required until convergence by
injecting the solution from the preceding choice of parameters as the initial conditions for
the iterative solver. Coupling this with parallelisation, constraining the chameleon parame-
ter space numerically for arbitrary experimental set-ups using a finite element solver should
become attainable within the near future.

Summary

This chapter has focused on the implementation of a finite element scheme in order to develop
a better understanding of how the chameleon force responds to the geometry of the source.
It has been shown that there are a number of inviting alternatives to the typical spherical
source object, based on their ability to exert a stronger scalar attraction when moving into
the screened regime of the model parameter space. This has promising applications within
an atom interferometry experiment, as the remaining parameter space to be explored cor-
responds to the window for which shape enhancement effects begin to manifest. There was
also treatment of a toroidal source object, which was noted to be preferred from an practical
perspective. This preference came from the fact that systematic errors associated with opti-
cal surface reflections can be avoided by performing an atom interferometry experiment on
the central axis of the toroid. However, it was shown that for the example used, the decrease
in the level of chameleon attraction was too substantial to justify the switch to the toroidal
source.
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As a more general note, the reach of the finite element implementation extends far beyond
the application presented here. It is relatively easy to adapt the program to accommodate
alternative experimental configurations, and it has also been demonstrated that working
on an unstructured grid unlocks vast opportunity for increased computational efficiency
through the local refinement of the simulation mesh. This allows for a targeted allocation
of computational resources which has a huge positive impact on convergence times. As a
result, application of this work to other studies focusing on the numerical treatment of the
chameleon such as in Reference [110] should see considerable improvements in both accuracy
and simulation time. The flexibility of this approach, being able to also incorporate the
symmetron and dilaton fields, across a host of experimental setups, makes it essentially a
universal tool that could be used in future work attempting constrain screened dark energy
models across the current generation of lab based experiments.

3.A Finite Elements and the Symmetron

In principle, repeating the above analysis for the case of the symmetron field should be
as straight-forward as inputting the appropriate linear and bilinear forms used within the
solver. As an advantage over the chameleon, one does not have to worry about divergences
arising from the inverse power law term within the effective potential. However, if the plan is
to avoid the topological defects arising as a result of the spontaneously broken Z2 symmetry,
one would have to take a little more care with the initial conditions to ensure that the solver
converges at the global and not local minima. Nevertheless, the equation of motion for the
symmetron is given by

∇2φ = φ
{( ρ

M2
− µ2

)
+ λφ2

}
. (3.41)

Writing this differential equation in its variational form following the previous prescription
leads to the result

ˆ
Ω

φ
{( ρ

M2
− µ2

)
+ λφ2

}
ϕ+

ˆ
Ω

∇φ · ∇ϕ = 0 , ∀ϕ . (3.42)

As the first entry in the above is already linear in φ, one only has to worry about linearising
the cubic self interaction term. This modifies the variational form into

ˆ
Ω

[
φ
{( ρ

M2
− µ2

)
+ 3λφ3

k

}
ϕ+∇φ · ∇ϕ

]
=

ˆ
Ω

2λφ3
kϕ , ∀ϕ . (3.43)

The Dirichlet boundary conditions again can be set as the expectation value of the field
within the chamber walls. In this case, as the density field is sufficiently high to restore the
Z2 symmetry, this corresponds to imposing a field value of zero at the edges of the simulation
domain.
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3.B Setting up the Torus

A torus can be built by performing a full rotation of a circle of radius a and distance R
from the axis of rotation. The parameters a and R describing the torus are known as the
minor and major radii respectively. Writing the problem in a cylindrical coordinate system
(x, y, θ), the volume integral is set-up as

V = 2π

ˆ xmax

xmin

ˆ ymax

ymin

x dxdy


{x ∈ R| (R− a) ≤ x ≤ (R + a)}{
y ∈ R| −

√
a2 − (x−R)2 ≤ y ≤

√
a2 − (x−R)2

} ,

(3.44)
where the rotational symmetry of the torus has already been incorporated into the above to
deal with the integral over the azimuthal angle θ. The bounds placed on the y-coordinate
follow from the relation (x−R)2 + y2 = a2. Integrating over y leads to

V = 4πa

ˆ xmax

xmin

2x

√
1−

(
x−R
a

)2

dx . (3.45)

Introducing the substitution x̄ = (x−R) /a simplifies the problem as

V = 4πa2

ˆ 1

−1

(ax̄+R)
√

1− x̄2 dx = 4πa2R

ˆ 1

−1

√
1− x̄2 dx , (3.46)

where the final equality follows from eliminating the term containing the odd integrand.
The above is then easily solved through the change of variables x̄ = sin (t) to arrive at an
expression for the volume of the torus. In choosing to normalise this to the volume of a
reference spherical source object, an effective radius REFF is introduced such that

4π

3
R3

EFF = 2π2a2R. (3.47)

Thus for a given effective radius of a source, one must find a sensible pairing of R and a. In
order to maximise the axial acceleration within an atom interferometry experiment, the size
of the interior hole R−a should be kept to smaller values whilst leaving enough space for the
Raman pulses to freely propagate. Using a crude back of the envelope approximation for an
atomic cloud falling at 5 cms−1 over a runtime of T = 30 ms, ensuring that the experiment
remains within the scope of the central cavity places a theoretical lower limit of 1.5 mm on
the value of R− a. However, this calculation neglects effects due to a finite cross section of
the incident laser pulse. Therefore for the purposes of data acquisition, this quantity was
taken with the conservative value of 0.5 cm. Having specified the size of the central cavity,
Equation (3.46) can be used to calculate the required major radius R in order to meet the
volume targets. Let R− a = ∆, then Equation (3.46) leads to a cubic equation to be solved
for the unknown R

R3 − 2∆R2 + ∆2R− 2R2
EFF

3π
= 0 , (3.48)

which is readily dealt with numerically.
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Chapter 4

A Proposed Experimental Search for
Chameleons using Asymmetric
Parallel Plates

The fact that the chameleon theory has been designed to suppress the associated fifth-force
in dense environments, means that it could in principle be detected in a suitably designed
laboratory experiment in high vacuum. Recent years have seen a wealth of experiments
formulated for or appropriated to the detection of light scalar fields, reaching far into pre-
viously unconstrained regions of the theory parameter space utilising atom interferometry
[40, 64, 83], cold neutron experiments [85, 86, 109, 116] and searches for Casimir-like forces
[117, 118]. The remaining parameter space includes the chameleon theories that are most
weakly coupled to matter, making them intrinsically harder to detect. However, moving
into this segment of the parameter space also results in stronger manifestations of the non-
linearities within the theory. Not only this, but even with the coupling strength M several
orders of magnitude below the Planck scale MPL, screening drives the chameleon into becom-
ing sub-dominant with respect to the gravitational force. Therefore, a means to disentangle
the chameleon and gravitational interactions could help to take these limits even further.
This ultimately raises an important question: can the current generation of fifth force experi-
ments be appropriated to take advantage of the features induced by these non-linearities. As
demonstrated for the example of an ellipsoidal source geometry, the answer to this question
is yes: in moving away from the spherical source, not only can the magnitude of the exerted
chameleon force increase, but the gravitational element also diminishes.

A number of the experiments amongst this wave of fifth-force searches make use of a parallel
plate configuration to source the scalar field. Such an example are Casimir force experiments
experiments which aim to measure the attractive force between the two plates. It is natural
to question whether or not the parallel plate configuration can find a place within atom
interferometry experiments. In this case, the scenario would slightly change as the focus
would shift to studying the trajectories of particles moving between the plates rather than
the attraction between them. In the conventional parallel plate setting, the density of the

86



two plates is kept the same and as a result, the gravitational component is removed from the
problem. Accordingly, parallel plates can serve as a means to isolate the fifth-force. However,
this symmetry also means that the chameleon force between finds an equilibrium position
exactly half-way in-between them. In this case, the interaction strengths appearing within
the configuration would be severely limited by the cancellations between the two competing
plates. Fortunately, this is where the non-linear aspects of the theory become useful. In
the screened regime of the parameter space, the chameleon force depends intrinsically on
the plate density, becoming independent of the total mass of the plate. For planar objects,
this is in contrast to the gravitational interaction which is controlled entirely by the mass of
the source. Therefore, by making adjustments to the respective density fields of the parallel
plates whilst maintaining their overall masses, the chameleon field could potentially be op-
timised for detection without having to reintroduce gravity back into the problem. Taking
these ideas into account, this chapter will describe a novel parallel plate set-up,where the
two plates have different densities but the same total mass. As is common in the treatment
of parallel plates, the relevant quantity is actually the mass per unit area when working in
the idealized picture where the plates are of infinite spatial extent. The target of this work
was to study this configuration within the context of an atom interferometry experiment.
Throughout the analysis, the masses of the individual plates were kept equal to ensure the
symmetry of the gravitational field. It was found that introducing a density contrast feeds
directly into an asymmetry for the chameleon field. Importantly, this asymmetry was then
shown to lead to an enhancement of the chameleon presence within the experiment, with
the additional advantage of removing the gravitational background.

The structure of this chapter is as follows: Section 4.1 will recap the key ingredients of
the chameleon theory. The solution of the chameleon field profile between asymmetric plates
will then be discussed, which will be broken down into two components: Section 4.2.1 will
see the acquisition of the solution following a purely analytic approach, and Section 4.2.2
following a method which calls for numerical implementation. The potential of this configu-
ration in the context of atom interferometry will then be covered in Section 4.3, followed by
a brief summary of the findings of this work in Section 4.4.

Prior to the work presented in this chapter, analytic calculations of the chameleon field
between two parallel plates relied on taking the strong coupling limit to fully specify the sys-
tem [85, 116]. This corresponds to the regime of parameter space such that M/MPL ≤ 10−5

which is considerably more restrictive than the results presented to follow. Furthermore, this
is the first calculation allowing the densities of the plates to differ. Therefore, the hope is
that the results presented could be utilized for other similar fifth-force searches which utilise
a parallel plate configuration, such as the bouncing neutron and casimir-force experiments.

4.1 The Chameleon Theory

I will begin by reminding the reader of the important aspects of the chameleon theory.
Namely, when matter can be described as a static, non-relativistic perfect fluid, the behaviour
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of the chameleon field is governed by an effective potential:

VEFF (φ) =
Λ5

φ
+
ρφ

M
, (4.1)

where ρ is the local energy density of matter. The model admits two energy scales M and
Λ controlling the coupling to matter and self-interaction strengths respectively. The energy
scale Λ controls the self interactions of the scalar. The scale M is constrained, by precision
measurements of atomic structure and searches for fifth forces [75, 104, 105] to lie in the
range 104 GeV ≤ M ≤ MP ∼ 1018 GeV. Through the connection to dark energy and the
increasing expansion rate of the universe, Λ is expected to be of order 1 meV [13], while
Casimir force measurements indicate Λ < 100 meV [104–106]. Additional constraints also
arise from astrophysical observations, in particular measurements of the period luminosity
relation of Cephid variable stars [119] and comparing the rotation curves of main sequence
stars with those of diffuse gas [120], however for the chameleon model considered in this work
these observations are less constraining than terrestrial experiments. Given these constraints
we take 10−2 meV < Λ < 10+2 meV as our range of interesting values. Additional constraints
on the parameter space from atom interferometry [83] are presented alongside our key results
in Figures 4.2 and 4.3. This effective potential ties the chameleon to the following non-linear
elliptic partial differential equation:

∇2φ =
−Λ5

φ2
+

ρ

M
. (4.2)

In addition, the minimum of the effective potential (Equation (4.1)) φmin(ρ) , and the mass
of fluctuations around this minimum, mφ(ρ) are given by

φmin(ρ) =
(Λ5M

ρ

)1/2

, m2
φ(ρ) = 2

( ρ3

Λ5M3

)1/2

. (4.3)

4.2 Parallel Plate Solutions

The launch point into the proposed experiment is to consider the chameleon field between two
parallel plates, where the two plates are allowed to be of different densities. The configuration
being imagined is depicted by Figure 4.1. As is usually the case for such problems, the
approximation is made that the plates are infinite in extent reducing the above to a one-
dimensional system. Although this idealised system does make the analysis approachable,
a hidden assumption here is that edge effects due to the finite size of the plates will have a
negligible impact on the calculated result. A brief discussion of the systematics involved here
will be discussed in Section 4.3. If the widths of the two plates R1 and R2 are normalised such
to maintain a constant mass per unit area, then with the help of Gauss’ law of gravitation‹

g · dA = −4πGMobj , (4.4)

where g is the gravitational acceleration and Mobj is the mass of the source object. It is clear
that the superposition of the gravitational attraction of each plate will cause the gravita-
tional force to vanish within the central region. In contrast, it transpires that the chameleon
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Figure 4.1: Parallel plate configuration with contrasting density values, keeping the density
multiplied by the width of the plate the same for both plates. The plate separation is denoted
` with the left and right plate thicknesses as R1 and R2, with corresponding plate densities
ρL and ρR respectively. The regions shaded with lines indicate where the field has reached
the minimum of its effective potential inside the plate. The solid shaded regions are the
shells in which the field rolls away from the minimum of the effective potential.
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has a non-trivial field profile between the plates, as illustrated in Figure 4.1, and that this
form is a function of the density of the two plates. Throughout this chapter, if the densities
of the plates differ, without loss of generality it will be assumed that the left most plate has
the higher density. Further, the width of the left-hand and right-hand plates will be denoted
R1 and R2 respectively, with the plate separation given by `.

The problem can be partitioned by making various approximations about the form of the
effective potential in different regions, visualised in Figure 4.1. Analogous to the thin shell
effect that occurs for the chameleon field profile around a sphere, if the plates are sufficiently
wide they can be divided into core and shell regions. Represented by bands A and E in Fig-
ure 4.1, the core defines the space where the field lies near the potential minima φ ' φmin(ρ),
for which the field profile can be taken to remain constant. For the shell (bands B and D),
the field is interpolating between the value that minimises the effective potential within the
plate and some exterior value, bounded by the expectation value within the chamber. In
doing so the field traverses the segment of the effective potential dominated by the density
contribution. Furthermore, as long as the core region exists, the outer solutions completely
decouple from the system. This means that the chameleon field profile between the plates
becomes effectively independent of the behaviour of the chameleon outside the plates, and
any chameleon perturbation attempting to propagate through the wall becomes exponen-
tially suppressed if the Compton wavelength of the chameleon inside the plates is smaller
than the plate thickness. Taking this as an assumption for now to then be verified at the
end of the calculation, the problem reduces to a total of 4 interfaces across which to impose
boundary conditions. Denoting the thickness of the shell adjacent to the boundary at R1 to
be δL and that adjacent to R1 + ` to be δR, the problem reduces to solving the following set
of equations:

φ = φL , z < R1 − δL , (4.5a)

∇2φ =
ρL
M

, R1 − δL < z < R1 , (4.5b)

∇2φ =
ρbg
M
− Λ5

φ2
, R1 < z < R1 + ` , (4.5c)

∇2φ =
ρL
M

, R1 + ` < z < R1 + `+ δR , (4.5d)

φ = φR, z > R1 + `+ δR, (4.5e)

where δL and δR are unknowns to be determined through boundary conditions. The quanti-
ties φL and φR correspond to the evaluation of Equation (4.3) (φ = φmin (ρ)) for the left and
right-hand plates respectively. The equations of Poisson form can be easily integrated out
and matched at their respective core-shell interfaces. As usual, this involves enforcing the
continuity of the field and its first derivative across the interface. Performing this calculation
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finds that

φ(z) =
ρL
2M

(
x− (R1 − δ(2)

L )
)2

+ φL , R1 − δL < z < R1 ,

∇2φ =
ρbg
M
− Λ5

φ2
, R1 < z < R1 + ` ,

φ(z) =
ρR
2M

(
x−

(
R1 + l + δ

(1)
R

))2

+ φR , R1 + ` < z < R1 + `+ δR .

(4.6)

Arriving at a solution describing the region between the two plates (band C) is a little more
tricky. Initially the hope was to be able to utilise the same parabolic approximation invoked
for the spherical and ellipsoidal analysis. However, with the benefit of hindsight, the validity
of this approach would require significant plate separations to hold true, due to the large
field decay length in the lab vacuum, so had no real practical application. This calculation
has been included in the appendix as the results are still generally useful in building an
intuition for how the density asymmetry influenced the field profile. The remaining option
was to attempt to deal with the non-linear equation directly. At the time this research
was performed, this calculation had been performed for the case of the chameleon field
within a vacuum [85, 116, 117] although without allowing the densities of the plates to vary.
Considering the low density (lab vacuum) region nested between the two parallel plates, it
can be assumed that the behaviour of the chameleon field will primarily be driven by the
its self-interaction term in Equation (4.1). This is because in moving from a high density to
a low density region, the field traverses the segment of the effective potential dominated by
the bare potential. This assumption can be imposed a priori on the system by artificially
setting the density term to be zero within the field equation, leading to a solvable integral.
In one dimension, the problem to be solved is now

∂2φ

∂z2
= −Λ5

φ2
. (4.7)

The above can be multiplied by ∂φ/∂z and integrated with respect to z to give the result

1

2

(
∂φ

∂z

)2

=
Λ5

φ
+ α , (4.8)

where α is a constant of integration. Introducing φ0 as the value of φ at which the field
reaches its maximum value between the two plates, that is ∂φ/∂z = 0, the above can be
written as

1

2

(
∂φ

∂z

)2

=
Λ5

φ (z)

(
1− φ (z)

φ0

)
. (4.9)

Taking the square root, this can be reformulated as the integral

ˆ φ(z)

φ0

ϕ1/2(z)√
1− ϕ(z)

φ0

dϕ = ±
√

2Λ5 (z − z0) , (4.10)
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where the second unknown constant of integration z0 corresponds to the position between the
plates at which the value of the field hits φ0. After a sequence of relatively straightforward
variable substitutions, this integral can be solved to recover an implicit equation of the form

φ
3/2
0

{
arccos

√
φ(z)

φ0

+

√
φ(z)

φ0

(
1− φ(z)

φ0

)1/2
}

= ∓
√

2Λ5 (z − z0) . (4.11)

Collecting everything together, the problem therefore reduces to the following set of equa-
tions:

R1 − δL < z < R1 :

φ(z) =
ρL
2M

(z − (R1 − δL))2 + φL . (4.12)

R1 < z < R1 + ` :

arccos

√
φ(z)

φ0

+

√
φ(z)

φ0

(
1− φ(z)

φ0

)1/2

= ∓

√
2Λ5

φ3
0

(z− z0) . (4.13)

R1 + ` < z < R1 + `+ δR :

φ(z) =
ρR
2M

(z − (R1 + l + δR))2 + φR . (4.14)

Proceeding from this point can be done one of two ways. The first path followed was to
consider the limiting forms of Equation (4.13) at each boundary. This had the benefit of
returning closed form expressions for the four unknowns of integration φ0, z0, δL and δR but
at the expense of not being applicable across the entire chameleon parameter space. The
second route is to impose the boundary conditions across the two interfaces directly onto the
implicit equation for φ. In contrast to the first method, the resulting equations apply across
the full parameter space at the expense of having to be handled numerically. Ultimately
these two approaches are complementary as the full analytic results of the first method can
be used to verify the numerical outcomes of the second. As they both have their merits,
both of these approaches will be discussed in more detail within the sections to follow.

4.2.1 The Limiting Forms of the Central Solution

The goal in this case is to demonstrate the limiting forms of Equation (4.13) that lead to
explicit expressions for the chameleon field φ (z). The natural variable appearing in Equation
(4.13) is the ratio φ(z)/φ0 which varies between 0 and 1. The important thing is to consider
that any limiting cases only need to replicate the behaviour of this quantity approaching
the surfaces of each plate, where the explicit form for φ becomes necessary. The simplest
possibility is where the field maxima is significantly higher than the value at the vacuum-
plate interface. In this case, the approximation φ(z) � φ0 becomes relevant within the
proximity of the boundary. Under this assumption, the field profile becomes

φ(z) = φ0

{
3

2

(
π

2
±

√
2Λ5

φ3
0

(z − z0)

)}2/3

. (4.15)
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As will be made clear shortly, the ambiguity involved due to the ± sign appearing in Equa-
tion (4.15) gets resolved upon imposing boundary conditions.

The other possibility is when the field value across the interface lies close to the vacuum
maxima, which translates to the statement that φ(z)/φ0 ≈ 1. Neglecting sub-leading order
corrections when perturbing φ(z)/φ0 around 1 generates the profile

φ(z) = φ0

(
1− Λ5

2φ3
0

(z − z0)2

)
. (4.16)

These two forms (Equations (4.15) and (4.16)) can be paired in numerous ways to fully
specify the chameleon for a large portion of the parameter space. Hereinafter, the results of
Equations (4.15) and (4.16) will be described as the far and near-maxima solutions respec-
tively.

Turning attention first to the boundary between the higher density left-hand plate, and
the intermediate vacuum region, it is sensible to begin by considering the far-maxima solu-
tion. A simple argument can be made for this: at a higher density, the expectation value
within the left-hand plate will be lower relative to that of the right-hand plate. This will
have the effect of pulling the corresponding surface field value away from φ0, making the
far-maxima approximation the more natural first choice. Beginning with Equation (4.15),
increasing the value of z should push the solution closer towards φ0. In this case, the positive
option from Equation (4.15) is selected to give

φ(z) = φ0

{
3

2

(
π

2
+

√
2Λ5

φ3
0

(z − z0)

)}2/3

, (4.17)

with the field gradient given by

φ′(z) =

√
2Λ5

φ0

(
2

3

)1/3
{
π

2
+

√
2Λ5

φ3
0

(z − z0)

}−1/3

. (4.18)

Interestingly, for an error threshold of 1 percent, this approximate form remains valid up
to φ(z)/φ0 ≤ 0.35, as seen in Figure 4.2. This follows from the ability to perform the
above expansion to second order, due to the first order terms cancelling when expanding the
implicit equation. Equating the fields and their derivatives across the boundary at z = R1

leads to the equations

φ0

{
3

2

(
π

2
+

√
2Λ5

φ3
0

(R1 − z0)

)}2/3

=
ρL
2M

(
δ

(2)
L

)2

+ φL , (4.19a)

√
2Λ5

φ0

{
3

2

(
π

2
+

√
2Λ5

φ3
0

(R1 − z0)

)}−1/3

=
ρLδ

(2)
L

M
. (4.19b)
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By utilising the gradient equation, the fractional power term in the coordinates can be
written as

φ0

{
3

2

(
π

2
+

√
2Λ5

φ3
0

(R1 − z0)

)}2/3

=
2M2Λ5

ρ2
Lδ

2
Lφ0

. (4.20)

Incorporating this result into the field equation leads to a polynomial equation for δL of
the form

ρLδ
4
L

2M
+ φLδ

2
L −

2M2Λ5

ρ2
L

= 0 , (4.21)

which can be realised as a quadratic in δ2
L. The exact solution is quoted below in Equation

(4.23) where the positive sign was taken to allow it to be consistent with ∆’s definition as a
squared real quantity:

∆ =
(√

5− 1
) φLM

ρL
, (4.22)

from which it follows that

δL =

{
MφL
ρL

(√
5− 1

)}1/2

=

{
2

m2
L

(√
5− 1

)}1/2

= λL

(
2
√

5− 2
)1/2

, (4.23)

having made use of the identities φ
(L)
min = (MΛ5/ρL)

1/2
and mL =

√
2 (ρ3

L/Λ
5M3)

1/4
. The

inverse field mass has also been introduced as λL = m−1
L . Equation (4.23) seems to suggest

that the internal field structure of this plate is independent of the other. Returning to
gradient Equation (4.19b), switching in the above relation to eliminate δL gives√

2Λ5

φ0

{
3

2

(
π

2
+

√
2Λ5

φ3
0

(R1 − z0)

)}−1/3

=
(

2
√

5− 2
)1/2 ρLλL

M
. (4.24)

Upon cubing and inverting the above expression, one obtains√
φ3

0

(2Λ5)3

{
3

2

(
π

2
+

√
2Λ5

φ3
0

(R1 − z0)

)}
=
(

2
√

5− 2
)−3/2

(
M

λLρL

)3

, (4.25)

then rearranging to make z0 the subject gives

z0 = R1 +
2

3
λ

(L)
φ

{
3π

4

(
φ0

φL

)3/2

−
(

2√
5− 1

)3/2
}
. (4.26)

The above has been written in a more convenient form by making use of the relation

mL =

√
2Λ5/φ

(L)3
min .

After a little thought, it can be seen from Equation (2.18a) that the lower bound of φ0

is given by φR. This stems from the fact that this analysis relies on the existence on a core
region which allowed for the decoupling of the system. By utilising this in conjunction with

the result that δL = λL
(
2
√

5− 1
)1/2

, the error constraint φ(z)/φ0 ≤ 0.35 can be trans-
lated into a condition on the density ratio between the two plates. In particular, it can be
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Figure 4.2: A figure comparing exact and approximate forms for the left-hand side of equation
(4.11). Left: Variation of the quantity φ/φ0 for the exact result (blue) and approximate result
(red). Right: Relative error as a function of φ/φ0, showing that limiting the error to be below
0.01 corresponds to an upper bound of φ/φ0 ∼ 0.31 for the approximation to remain valid.
The shaded green region is to illustrate the difference between the approximate and exact
solutions.

found that the far-maxima approximation accurately describes the chameleon field profile
approaching the left-hand plate provided that the following density inequality is satisfied:√

ρL
ρR
&

√
5 + 1

2
. (4.27)

Importantly, as this statement follows from considering the limiting case when φ0 = φR,
satisfying the above guarantees validity across the entire chameleon parameter space. It
turns out that the above translates to a minimum density ratio of ρL/ρR ≈ 2 which falls well
within a sensible range. Therefore, the description of the chameleon field across the left-hand
plate-vacuum interface can be fully contained by the results derived under the far-maxima
approximation.

In turning attention to the planar-surface between the vacuum region and the right-hand
plate, there are a number of options. The simplest of these corresponds to a case of mild
asymmetry in the chameleon field, where the surface value is sufficiently lower than the field
maxima φ0 such that the far-maxima approximation can again be called. The remaining two
options demonstrate more severe asymmetry in the field profile. In the limiting case that
the position of the central maxima falls exactly at the surface of the plate, from previous
arguments the value of φ0 is set at φR. Therefore, as the first option, consider as the position
of the central maxima z0 approaches the planar-surface from the left. The behaviour of the
chameleon field nearing this point should be described by perturbing φ0 around its lower
bound, for which the near maxima solution of Equation (4.16) is the perfect candidate. The
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φ0 ≫ φ(R1 + ℓ) φ0 ≈ φ (R1 + ℓ)
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Figure 4.3: Illustration of the chameleon field profile for two limiting examples of asymmetry.
To the left corresponds to a small degree of asymmetry in the chameleon field, whereas that
to the right displays a strong degree of asymmetry.

remaining possibility is that the field maxima falls within the right-hand plate. This is the
case when the field lacks adequate space to rise to the bounding value of φ0 within the vac-
uum region. As a result, the field continues to slide down the self-interaction dominated term
within the effective potential. Under these circumstances, the chameleon field is insensitive
to the boundary approaching the lower-density plate, and as a result the boundary-value
problem greatly simplifies. In this sections to follow, each of these cases will be considered
in turn.

Mild Asymmetry of the Chameleon Field

Considering the presence of a mild asymmetry in the chameleon field profile, the assumption
can be made that the field value across the right-hand boundary falls sufficiently below the
central maxima, such that the far-field approximation of Equation (4.15) can be applied. In
this case, it follows that now the negative sign in Equation (4.15) must be chosen to ensure
the consistency of the associated gradient continuity equation. As a result, the boundary
equations become

φ0

{
3

2

(
π

2
−

√
2Λ5

φ3
0

(R1 + `− z0)

)}2/3

=
ρL
2M

(
δ

(2)
L

)2

+ φL ,√
2Λ5

φ0

{
3

2

(
π

2
−

√
2Λ5

φ3
0

(R1 + `− z0)

)}−1/3

=
ρLδ

(2)
L

M
.

(4.28)

The error scaling for the negative solution is slightly more restrictive, where now limiting
the error at the 1 percent level translates to satisfying the condition φ(z)/φ0 ≤ 0.1 at the
boundary. Following the calculation through in the same way as before unsurprisingly finds
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δR to be

δR = λR

(
2
√

5− 2
)1/2

, (4.29)

leading to an additional expression for z0:

z0 = R1 + `− 2

3
λR

{
3π

4

(
φ0

φR

)3/2

−
(

2√
5− 1

)3/2
}
. (4.30)

This, in conjuction with the former expression for z0 can be combined to solve completely
for the remaining unknowns φ0 and z0 which leads to

φ0 =

(
Λ5

2

)1/3
{

2`

π
+

4

3π

(
2√

5− 1

)3/2

(λR + λL)

}2/3

, (4.31a)

z0 =R1 +
`

2
+

{
λR − λL

2

(
2√

5− 1

)3/2
}
. (4.31b)

The above form for z0 makes it clear how the field asymmetry is sourced by a density contrast,
as this results in different values for the Compton wavelengths pertaining to each plate. The
primary consistency check for this result is to verify that the conditions φ(z)/φ0 ≤ 0.35 and
φ(z)/φ0 ≤ 0.1 are met across the left and right hand boundaries respectively. Incorporating
both of these restrictions for a given set of experimental parameters, is it possible to study
the region of parameter space where this calculation holds.

Strong Asymmetry of the Chameleon Field

Moving on to consider examples of strong asymmetry in the chameleon field profile, it can
be taken that the field value across the right-hand vacuum-plate interface lies within the
proximity of the maxima, which translates to the statement that φ(z)/φ0 ∼ 1. The explicit
field profile in this case is given by the result already presented in Equation (4.16), restated
here for convenience:

φ(z) = φ0

(
1− Λ5

2φ3
0

(z − z0)2

)
. (4.32)

As for the previous example, the consistency of the above should be verified at the end of
the calculation. Equating the field at its derivatives across the boundary at z = R1 + ` gives

φ0

(
1− Λ5

2φ3
0

(R1 + `− z0)2

)
=

ρR
2M

δ2
R + φR ,

Λ5

φ2
0

(R1 + `− z0) =
ρR
M
δR .

(4.33)

The gradient equation can be used to eliminate δR from the field continuity equation:

φ0 = (R1 + `− z0)2 Λ5

2φ2
0

{
1 +

(
φR
φ0

)2
}

+ φR , (4.34)
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at which point the previous expression obtained for z0 in Equation (4.26) can be called upon
which leads to the relation

φ0 =

(`− λL{π
2

(
φ0

φL

)3/2

− 2

3

(
2√

5− 1

)3/2
})2{

1 +

(
φR
φ0

)2
}+ φR . (4.35)

In choosing to proceed under the assumption that φ0 lies close φR, a small parameter γ can
be introduced such that φ0 = (1 + γ)φR. Accordingly, the above can be expanded to leading
order corrections in γ:

√
2λRγ

1/2

(
1 +

3γ

2

)
=

(
`− λL

{
π

2

(
1 +

3γ

2

)(
φR
φL

)3/2

− 2

3

(
2√

5− 1

)3/2
})

, (4.36)

which should be solvable for γ thus leading to a value for φ0. Although reaching the above
relies on taking a square root which would generally lead to the inclusion of a ± in the above
expression, only the positive root is relevant to this problem. In fact, the negative root would
require γ < 0 (making the above equation imaginary) unless the corresponding field maxima
φ0 were to form within the right hand plate, which is outside the validity of this solution.
After some manipulation, the above can be written in a more tangible form:

3

2

(
∆ +

π

2

)
γ +
√

2 γ1/2 −∆ = 0 , (4.37)

where the constant piece ∆ is identified to be

∆ =

{
`

λR
+

2λL
3λR

(
2√

5− 1

)3/2

− π

2

}
. (4.38)

Requiring γ > 0 the positive root to the quadratic is taken to give

γ1/2 =

√
2

3
(
∆ + π

2

) {(1 + 3
(

∆ +
π

2

)
∆
)1/2

− 1

}
. (4.39)

In order for Equation (4.39) above to yield a consistent solution for γ and by extension the
linked unknowns φ0, z0 and δR, it is required that γ � 1 and that it is real. The latter of
these conditions may be imposed by examining the discriminant of the above form.1 The
verification of these above requirements is most easily performed numerically.

As previously mentioned, in the more severe examples of asymmetry, it is possible for the
position of the field maxima to penetrate into the lower density (right-hand) plate. As this
essentially removes the remaining boundary from the problem, this regime can be easily be
solved by substituting the expressions obtained across the left-hand boundary (Equation
(4.26)) and setting φ0 = φR to give

z0 = R1 +
2

3
λL

{
3π

4

(
φR
φL

)3/2

−
(

2√
5− 1

)3/2
}
. (4.40)

1The value γ becoming imaginary indicates the point at which the position of the field maxima crosses
into the (right-hand) plate.
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Figure 4.4: This figure shows the combined regimes of validity of the three limiting solutions
for plate separations of ` = 10−6m and 10−3m (from left to right). The relative position of
the field maxima, spanning from 0.5 (on centre) to 1 (far right) of the intermediate region
is indicated by the shading. The region of the parameter space that remains unmapped is
represented by the white bands appearing in each plot.

For each parameter value, the approach followed was to numerically cycle through the various
scenarios presented in this section until a consistent solution is found. Upon consolidating
the results obtained for each possibility, a picture of the chameleon parameter space can be
built up in a piecewise manner. The results obtained by considering the limiting forms of
the central solution are presented in Figure 4.4 which displays the response of the field asym-
metry to model parameters M and Λ. In moving diagonally upwards from the bottom-right
region of the parameter, the field traverses states of mild asymmetry before the underlying
approximations begin to break down. At this point, signified by the lower black contour,
examples of intermediate asymmetry are realized which remain untouched by this analysis.
Continuing upwards moves the field into a regime of strong asymmetry where the analytic
results once again become applicable for the remainder of the parameter space. It is also
made clear that smaller plate separations would generally be favourable in an experiment
aiming to harness the effects of an asymmetric field profile. The key observation here, is that
for any given value of the chameleon self interaction scale Λ the degree of asymmetry in the
chameleon field profile (following from the value of z0 being offset from the central position
of R1 + `/2 between the plates increases as the value of the chameleon energy scale M is
increased. This indicates that asymmetry effects may allow us to probe the weak coupling
regime, where the associated fifth force will be more difficult to detect.
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4.2.2 A Semi-Analytic Approach

In considering the limiting forms of the central solution it became possible to systematically
map out a large portion of the chameleon parameter space by stitching together the outcomes
of making various assumptions about the field structure approaching each boundary. Unfor-
tunately, the band of model parameters untouched by this approach was too substantial to
comfortably rely on any form of interpolation between the mapped regions in any attempts
to constrain the theory. This lead to the consideration of an alternative route which was to
deal with the implicit equation of Equation (4.13) directly when imposing boundary condi-
tions. The launch point into this calculation is the gradient equation (Equation (4.8)) which
appeared as part of the derivation of the implicit solution. This specifies that the derivative
of the field within the central region satisfies the relation(

∂φ

∂z

)2

=
2Λ5

φ

(
1− φ(z)

φ0

)
. (4.41)

As seen previously, expressions for the unknowns of integration φ0, z0, δL and δR follow from
imposing continuity of the field and its first derivative at the surface of each plate. Beginning
with the matching at z = R, the gradient equation leads to the formula

φ(R)

φ0

=

{
1 +

φ0

φL

(
mLδL

2

)2
}−1

, (4.42)

where mL corresponds to the mass of the chameleon field within the left-hand plate. The
currently undetermined quantity φ(R) can be eliminated by calling the shell solution of
Equation (4.12). In particular, the value of the field at the boundary is given by

φ(R) = φL

(
1 +

(
mLδL

2

)2
)
. (4.43)

After a little bit of algebra, it follows that consolidating these two results leads to the
polynomial equation

φL
φ0

=
1−

(
mLδL

2

)2 −
(
mLδL

2

)4

1 +
(
mLδL

2

)2 . (4.44)

As mentioned as part of the discussion on the limiting forms of the chameleon field, dealing
with the right-hand boundary is an ambiguous problem. Ultimately, the two possible sce-
narios divide according to whether or not the field forms a central maximum in the region
between the two plates. Essentially, this boils down to having to, or not having to account
for the existence of the right-hand boundary when solving for the unknowns of the system.
These two options will be tackled in turn in the sections to follow.

The Chameleon Reaches a Maximum Value in between the Plates

The first possibility is that the chameleon rises to a maximum value within the intermediate
vacuum region. If so, performing the same analysis across the right-hand boundary amounts
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to switching the variables in the above to their right-hand counterparts. That is φL →
φR,mL → mR and δL → δR. Accordingly the two equations can be condensed into a single
representation:

φi
φ0

=
1−

(
miδi

2

)2 −
(
miδi

2

)4

1 +
(
miδi

2

)2 . (4.45)

Having dealt with the continuity of the gradient across each boundary, what is left is to
impose the continuity of the field itself. This can be achieved by calling the implicit solution
of Equation (4.46) in conjunction with the shell solutions at their respective boundaries. In
this case, the shell solutions can be used to eliminate φ(z) from the implicit formula, granting
two additional equations:

arccos

√
1

1 + φ0
φi

(
miδi

2

)2 +

√
φ0
φi

miδi
2

1 + φ0
φi

(
miδi

2

)2

=

(
φi
φ0

)3/2{
mL(z0 −R) if i = L
mR(R + l − z0) if i = R

. (4.46)

Thus Equations (4.45) and (4.46) present four equations for the four unknowns of the problem
φ0, z0, δL and δR. As a consistency check of the method presented in Section 4.2.1, the
system above can be solved by considering the series expansion for small φL/φ0. Specifically,
Equation (4.45) evaluated at surface of the left-hand plate leads to(

mLδL
2

)4

+

(
mLδL

2

)2(
1 +

φL
φ0

)
− 1 +

φL
φ0

= 0, (4.47)

the above can be identified as quadratic in the quantity (mLδL/2)2 which is readily solved
to give (

mLδL
2

)2

= −1

2

{
1 +

φL
φ0

∓

√
5− 2φL

φ0

+
φ2
L

φ2
0

}
, (4.48)

from which it is straightforward to see that taking the limit φL/φ0 � 1 gives a closed form
solution for the shell thickness δL:(

mLδL
2

)2

=
1

2
(
√

5− 1), (4.49)

which is in agreement with the result of Equation (4.23). Furthermore, in combining this
with the expansion of Equation (4.46) for small arguments, an explicit expression for z0 can
be obtained:

z0 = R1 +
2

3mL

{
3π

4

(
φ0

φL

)3/2

−
(

2√
5− 1

)3/2
}
, (4.50)

which matches that found following the previous method. In the the more general case,
Equations (4.45) and (4.46) must be solved numerically. As the expressions contained within
Equations (4.45) and (4.46) specify a completely deterministic system, this can be achieved
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through the implementation of an interval bisection scheme. Broadly speaking, the idea
here is to iteratively scan across a range for some input parameter and identify that which
maximises the consistency between the underlying equations. To present this more formally,
it is beneficial to work with the set of dimensionless variables defined by

xi =
miδi

2
, yi =

φi
φ0

i ∈ (L,R) , (4.51)

where Equation (4.45) specifies these quantities to follow the relation

yi =
1− x2

i − x4
i

1 + x2
i

, i ∈ (L,R) . (4.52)

It can be inferred from Equation (4.45) that the parameters yL and yR are confined to the
range [0, 1]. This in turn places the following bound on the values of xL and xR:

0 ≤ xi ≤
1

2

(√
5− 1

)
i ∈ (L,R) . (4.53)

Furthermore, notice that the form of Equation (4.52) directly connects the values of xL and
xR. That is, selecting a value for one of these terms uniquely determines the other. Suppose
now that some trial value for xL is specified within the allowed range, the implicit formulas
of Equation (4.46) evaluated at each surface can be used to return two distinct values of

z0, which can be denoted z
(L)
0 and z

(R)
0 (pertaining to the left and right-hand boundaries

respectively). In particular

z
(L)
0 = R1 +

λL

y
3/2
L

{
arccos

√
yL

yL + x2
L

+
y

1/2
L xL

yL + x2
L

}
,

z
(R)
0 = R1 + l − λR

y
3/2
R

{
arccos

√
yR

yR + x2
R

+
y

1/2
R xR

yR + x2
R

}
,

(4.54)

when these two outcomes identically match, a consistent solution to the problem has been
found. Therefore, a numerical solution can be obtained by finding a value for some input
parameter xL, xR, yL or yR such as to minimise the discrepancy between the returned values
of z0. The interval bisection method used to solve this system involved introducing a relative
error term ε such that

ε =
z

(L)
0 − z(R)

0

z
(L)
0 + z

(R)
0

, (4.55)

which is found to be a monotonically decreasing function of xL. A test value of xL can then
be input at the half way point of the interval specified by Equation (4.53). If the associated
value of ε is less than zero, this input defines a new upper bound for the range. Conversely, if
the relative error is greater than zero, a new lower bound is introduced. Subsequent iterations
would then continue to sample the input value as the halfway point of the updated interval
until the error parameter ε fell below the 10−7 level. The outcome of this process is displayed
in Figure 4.5 which demonstrates the scaling of the error parameter ε with input value xL.
Furthermore, the example taken fell into the mild asymmetry range which allowed for the
numerical result to be verified against the analytic approximations presented earlier.
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Figure 4.5: The response of the error parameter ε with input parameter xL. The figure
was generated for model parameter values M = 1010 GeV and Λ = 10−10 GeV and a plate
separation of ` = 1µm. The point for which the error passes through zero is identified with
the square red marker. For reference, the associated value of φ0 has been compared to the
analytic result found via considering the limiting forms of the chameleon field.

There is No Central Maximum

If no central maximum exists, the field has insufficient space to reach a maxima within the
vacuum region. In that case the field value continues to rise within the right hand plate, and
its evolution is further described by Equation (4.46). This results in Equation (4.14) being
omitted from the calculation (with the unknown δR being no longer relevant to the problem)
and the upper bound of Equation (4.46) can be set to z0, which now lies inside the plate. As
the existence of a core region is assumed, this dictates the value of the field maxima is given
by φ0 = φR. The system then reduces to solving Equations (4.45) and (4.46) across the single
boundary corresponding to the surface of the left-hand plate. In this case, an exact solution
for z0 exists and no numerical calculation is necessary. To see this, recall the dimensionless
quantities xL and yL introduced in the preceding discussion. In fixing φ0 = φR, these two
now become known quantities following the relations

yL =

(
ρR
ρL

)1/2

,

xL =
1√
2


√√√√(ρ1/2

R

ρ
1/2
L

− 1

)2

+ 4 +
ρ

1/2
R

ρ
1/2
L


1/2

,

(4.56)
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which can be combined with the corresponding expression provided in Equation (4.54) to
determine the remaining unknown z0. The point of transition between the two possibilities
occurs when z0 falls on the surface of the right-hand plate. Under this unique circumstance,
the value of z0 is known which means the result of Equation (4.54) can instead be used to
identify the crossover point between the two regimes in the parameter space:

Λ5M3 =
(
4`4
)1/3

y2
LρL

{
arccos

√
yL

yL + x2
L

+
y

1/2
L xL

yL + x2
L

}−4/3

, (4.57)

with the parameters xL and yL still given by Equation (4.56). In the above, satisfying the
inequality corresponds to the loss of a central field maxima. Furthermore, the right-hand side
is completely determined by the plate densities ρL, ρR and the plate separation `. Therefore,
the above inequality can be used to determine the correct regime for a given set of model
parameters M and Λ.

In working directly with the implicit field equation of Equation (4.13), a set of four determin-
istic equations for the systems unknowns φ0, z0, δL and δR can be recovered without having to
rely on any approximations. As a result, the method discussed here is self-contained meaning
it is applicable across the entire chameleon parameter space. Although requiring an element
of numerical analysis, the approach is considerably more versatile than the alternative. For
this reason, the data presented in the next section which focuses on applying an asymmetric
plate configuration to an atom interferometry experiment, was gathered exclusively using
the semi-analytic method.

4.3 Atom Interferometry

The asymmetric chameleon field profile will produce a force on any particles travelling be-
tween the plates which could be detected in a sufficiently sensitive experiment. One option
could be to perform a classical deflection experiment, firing a beam of particles between
the plates, and measuring the deviation from straight line motion in order to constrain the
chameleon. Recently it has been shown that experiments using atom interferometry are
particularly sensitive probes of the chameleon field [40, 64, 83]. This is due to the fact that
in a laboratory vacuum atoms are not screened from the chameleon field over a broad region
of the chameleon parameter space, in addition the nature of the experiment means that it
can be sensitive to extremely small forces acting on the individual atoms. This motivates
combining our asymmetric plate scenario with an atom interferometry measurement.

Atom interferometry divides the wave function of an atom into a superposition of two states,
which traverse spatially separated paths before later being recombined. The phase of each
state becomes a function of the path that has been traversed, and when the two states are
combined the differing phases of the two possible states of the wave-function result in an
interference pattern. The probability of measuring the atom to be in one of the two states
therefore becomes a function of the forces that have acted on the atom during the evolution.
This section will focus on demonstrating the capability of an experiment adopting an asym-
metric plate configuration. The results are based upon a set-up where one of the two paths
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 φ(z)

Path A Path B

Figure 4.1: The three plate configuration proposed for use in an atom interferometry ex-
periment. The right most (green) plate is less dense than the left and central (blue) plates,
giving rise to the chameleon field profile indicated by the red dashed line.

explored by the wave-function traverses an asymmetric chameleon profile whilst the other
path passes between a symmetric plate configuration, as shown in Figure 4.1. To simplify
the calculation it is assumed that incident atomic beams are taken to enter exactly halfway
between neighbouring plates. This allows for the symmetric path to be used as a reference,
as particles avoid both gravitational and chameleon forces.

The experiment measures the phase difference accumulated along the two paths which
has two parts. The first is proportional to the difference in the classical action evaluated
along each path [81, 121], and the second is imprinted by the interactions with the laser
beams used to manipulate the atoms. In essence, the atoms pick up a phase proportional to
keff for each interaction where keff is the effective wave-number associated with the hyperfine
splitting transition of the atom.

Collecting the Contributions towards the Phase Difference

The first contribution towards the phase difference measured within an atom interferome-
try experiment to consider is that sourced by an atomic path difference between the two
trajectories. In working in natural units, this is given exactly by the difference in the classi-
cal action of test particles traversing these two paths. Writing the Lagrangian for particles
traversing the left and right hand routes as LA and LB respectively, the phase difference at
the level of the action, denoted ∆(A), is therefore given by

∆(A) =

ˆ T

0

dt LA −
ˆ T

0

dt LB , (4.58)

where without loss of generality, the interval of the time coordinate t has been specified to
span between 0 and T , where T is the net exposure time of the experiment. Particles can
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be taken to approach the plates in the y-direction, having the z coordinate reserved for the
position between the two plates. With such, the classical Lagrangian for a particle moving
through a potential sourced by the chameleon field is given by

Li =
1

2

(
ż2
i + ẏ2

i

)
+
φ (zi)

M
, i ∈ (A,B) , (4.59)

the potential term here following from the force law Fφ = −∇φ/M and co-ordinate indices
A and B specifying the associated path. As there is no source of acceleration perpendicular
to the planar-surfaces, action contributions from motion along the y direction exactly cancel
between the two paths. For the symmetric case, entering exactly in between the two plates
also ensures that the z contribution can be omitted. Taking path A as the symmetric and
B the antisymmetric to match with the configuration presented in Figure 4.1 leads to the
result

∆(A) =

ˆ T

0

dt

[
1

2
ż2
B +

φR(zB)

M
− φL(zA)

M

]
. (4.60)

Due to the implicit form of Equation (4.13) describing the chameleon field between the plates,
generally numerical methods are required to evaluate this integral. This can be achieved
with the implementation of a finite difference scheme, where each particle trajectory can
be identified by iteratively evolving in small increments of time. For each time interval δt
corresponding to a given iteration n, the associated contribution toward the action δ

(A)
n is

given by

δ(A)
n = δt

{
1

2
˙zB

2 +
φR(zB)

M
− φL(zA)

M

}
t=nδt

, (4.61)

from which it follows that the net difference emerging between the two paths is

∆(A) =
∑
n

δ(A)
n . (4.62)

Outside of numerical integration, it is possible to obtain an analytic estimate for the integral
of Equation (4.60) if the deviation of the particle path from a straight line is sufficiently
small. In this case it is useful to consider the expansion of the scalar field to linear order
around its central value. As detailed in the appendix, expanding the chameleon potential
to first order around the central position between the two anti-symmetric plates gives an
expression for a constant force per unit mass in the proximate region. This is found to be

Fφ =
1

M

√
2Λ5

φ0

√
φ0

φC
− 1 , (4.63)

with φC corresponding to the central value of the field. To follow, the central values pertain-
ing to paths A and B will be denoted φA and φB respectively. This allows for the scalar field
term appearing in the action to be written as a perturbative expansion around the central
value:

φ(zi)

M
=
φi
M

+
{

(zi − z(i)
C )
}
F

(i)
φ , i ∈ (A,B) , (4.64)
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with z
(A)
C and z

(B)
C corresponding to the z value falling exactly between the plates corre-

sponding to paths A and B respectively. Remembering that the force term vanishes in the
symmetric case, the phase component can be written as

∆(A) =

ˆ T

0

dt
1

2
ż2
B + F

(B)
φ zB +

1

M
(φB − φA) . (4.65)

The above can be simplified by solving the Euler-Lagrange equations for the two paths, the
result of which is easily integrated to find that

∆(A) =
1

3
a2
φT

3 +
1

M
{φB − φA}T , (4.66)

where aφ := F
(R)
φ is the constant chameleon acceleration experienced throughout the asym-

metric path.

In addition to the phase difference sourced at the level of the classical action, the pho-
tons used to manipulate the atomic clouds within the experiment are also found to carry
phase information. Assuming that the atoms are kicked by the lasers just before they enter
the plates, to put them on the correct path, and just after exiting the plates, in order to
recombine them, the net contribution from these interactions ∆(P ) is given by

∆(P ) = keffaφT
2 . (4.67)

Combining Equations (4.66) and (4.67), the net phase difference can be seen to consist of
two competing factors: one that depends on the acceleration (proportional to the gradient of
the chameleon field) and one that depends on the scalar potential. As illustrated in Figure
4.1, the central acceleration can be increased by increasing the density asymmetry but this
is at the expense of decreasing the central field value. Conversely, the phase difference due
to the scalar potential terms can be increased by allowing the separation between the two
sets of plates to vary. In moving to a larger plate separation for path B, the field is able
to reach a higher central value. As a side note, current atom interferometry constraints on
the chameleon field come from considering a spherical source object where the two atomic
beams are subject to a uniform chameleon field. This in turn drives the action contribution
to zero which is not the case for the experiment described in this chapter.

Phase Differences across the Model Parameter Space

Having collected the various contributions towards the measured phase difference, it’s now
possible to study the constraining potential of the proposed asymmetric plate configuration
when introduced to an atom interferometry experiment targeting the chameleon field. Fig-
ures 4.2 and 4.3 demonstrate the power of this experiment for two choices of plate separation,
and time of flight T of the atoms between the plates. Experimental parameters for the vac-
uum chamber are chosen to correspond to those used in Reference [64]. Further, it is assumed
that the atomic beams are composed of Caesium atoms and density values have been set to
be 1 gcm−3 and 20 gcm−3 for the low and high density plates respectively. Moving from left
to right in both of these figures indicates an increase in exposure time from T = 30 ms, to
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Log10(∆) : ℓ = 1µm. T = 30ms.

Log(M)

6 8 10 12 14 16 18

L
o
g

(Λ
)

-14

-13.5

-13

-12.5

-12

-11.5

-11

-10.5

-10

-8

-6

-4

-2

0

2

4

6

8

Λ = 2.4meV

Log10(∆) : ℓ = 1µm. T = 1.05 s.
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Figure 4.2: The phase difference ∆ = ∆(A) + ∆(P ) of the wave-function accumulated along
the two paths indicated in Figure 4.1, for plates separated by ` = 10−6 m. Values for the
interferometry experiment are chosen to be those of the configuration described in Reference
[64]. It is assumed that the experiment is placed centrally in a 10 cm-radius vacuum chamber
containing 10−10 Torr of hydrogen. Moving left to right corresponds to an increase in the
exposure time T from 30 ms to 1.05 s. Regions above the blue dashed line could be excluded
by an experiment sensitive to accelerations down to 10−6 g, at which level systematic errors
can be neglected. Moving to an experiment sensitive to 10−9 g would push the exclusion
limits down to the red dashed line. The region above the solid line has been excluded in
Reference [83].

the more optimistic T = 1.05 s proposed in [122]. As a side note, current constraints from
astrophysical and cosmological experiments [119, 120] fall entirely outside this window of
parameter space, thus are not competitive with an atom interferometry experiment. A first
experiment is anticipated to be able to measure accelerations down to 10−6 g, where g is the
acceleration due to free-fall at the surface of the Earth. If systematics can be controlled it
is possible that a sensitivity of 10−9 g could be achieved.

Systematics

It is worth addressing how sensitive the proposed experiment would be to small departures
from a parallel configuration. This work has considered perfectly parallel plates for ease
of calculation, but there are no special cancellations that rely on this precise geometry.
Small departures from parallel will lead to small corrections to the chameleon field profiles
presented here. These corrections will have the largest effect when the asymmetry in the field
configuration is weak, and the position of the field maxima lies close to the point of injection
of the incident beam. In this case, the calculated phase difference relies closely on maximum
value of the chameleon field, which can be shown to scale as φ0 ∝ L2/3. Thus, as long as
variations in the plate separation along the particle trajectory satisfy δL/L� 1, corrections
due to the imperfect alignment of the plates remain small. In the converse scenario, where
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Log10(∆) : ℓ = 50cm. T = 30ms.
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Log10(∆) : ℓ = 50cm. T = 1.05 s.
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Figure 4.3: As in Figure 4.2 except for the more optimistic plate separation of ` = 0.5 m.
This would require a beam coherence length of approximately 25 cm which falls within the
upper bound proposed in Reference [122]. Current atom interferometry constraints fall on
the solid blue line, which would extend to cover the region above the dashed blue line by
utilising an asymmetric parallel plate configuration. These limits would shift further to the
dashed red line for detectors reaching a precision of 10−9 g.

there is a high degree of asymmetry in the field profile, the phase difference as shown in
Equation (4.66) is dominated by the acceleration contribution rather than the scalar term.
It can be shown that the acceleration remains approximately constant in this limit, thus
we argue that small departures from a perfectly parallel configuration would not influence
the outcome. One final aspect to consider are the edge effects likely to arise due to the
finite length of the plates. As the response to the chameleon to changes in the density field
is closely linked to its mass, an heuristic argument could be made that this factor alone
largely dictates the outcome. Following this trail of thought, edge effects should be kept
to a minimum if the length of the plates is much less than the Compton wavelength of the
field. In defining the incident particle velocity as V , this constraint can be more formally
contained within the following expression:

max(λL, λR)� V T , (4.68)

where the function max(..) returns the maximum value of the arguments supplied. Using
this value guarantees that this criteria is satisfied for both plates. The right hand side of the
inequality follows from writing the plate length as the product of the two terms.

4.4 Summary

The chapter has introduced a twist on the usual parallel plate configuration used in fifth-
force experiments by allowing the densities of the two plates to differ and then considering
the trajectories of test particles fired in between them. Applied to the chameleon model,
it follows that this density asymmetry leads directly to an asymmetry in the respective
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field profile. Having proposed alternate ways to overcome the mathematical complexities
of the problem, the take home message was that the asymmetry of the chameleon field
profile increases when moving into the part of the chameleon parameter space where it is
most weakly coupled. For an experiment conducted for the series of three parallel plates
presented in this work, this helps overcome the difficulties in detecting the force mediated by
such weakly coupled fields. In the context of atom interferometry, it can be seen from Figure
4.2 that the idea could be implemented to cover most of the remaining chameleon parameter
space, and in particular that the the presence of field asymmetry helps push further into the
weakly coupled (high M) region of the parameter space. Additionally, such an experiment
would improve constraints at small M and Λ which are also hard to reach with current
searches. Combining this with the precision of atom interferometry, which uses unscreened
atoms as the test particles moving in the chameleon field, it has been shown that such a
configuration allows us to reach previously unobtainable parts of the chameleon parameter
space.

4.A Parallel Plates and the Parabolic Approximation

The search for the chameleon solution around both spherical and ellipsoidal sources involved
utilising a parabolic approximation to describe the effective potential of the lab vacuum
region. For this reason, the same approach was followed as an initial attempt to deal with
the intermediate region in-between the two parallel plates. As it transpires, the separations
between the two planar surfaces relevant to lab based parallel plate experiments challenge
the validity of the approximation. Nonetheless, the calculation has been included here as it
may still prove useful in the study of large scale structures such as galaxy filaments. The
parabolic approximation operates under the assumption that the field does not deviate too
far from its potential minima in the region of interest. In this case, the focus is on the
space between the two parallel plates, meaning that the assumption is that the field remains
proximate to φB = φmin (ρlab) in this region. This approximation allows for a reduction of
the effective potential such that

∇2φ =
∂VEFF

∂φ
'
(
VEFF

∂φ

)
φ=φB

+

(
∂2VEFF

∂φ2

)
φ=φB

(φ− φB) = m2
B (φ− φB) . (4.69)

The equation above is readily integrated in one dimension to give the composite exponentially
suppressed solution:

φ(z) = AemBz +Be−mBz + φB , (4.70)

where mB is defined as the mass of the background field which follows from evaluating
mφ (ρlab). Collecting the equations describing the three remaining regions of interest, the
problem reduces to imposing Dirichlet-Neumann boundary conditions onto the following set
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of equations:

φ(z) =
ρL
2M

(x− (R1 − δL))2 + φL , R1 − δL < z < R1 ,

φ(z) = AemBz +Be−mBz + φB , R1 < z < R1 + ` ,

φ(z) =
ρR
2M

(x− (R1 + l + δR))2 + φR , R1 + ` < z < R1 + `+ δR .

(4.71)

Beginning first with the boundary at the surface of the left hand plate at z = R1, enforcing
the continuity of the field and its first derivative across the interface leads to

ρL
2M

δ2
L + φL = AemBR1 +Be−mBR1 + φB , (4.72a)

ρLδL
M

= mφ

(
AemBR1 −Be−mBR1

)
. (4.72b)

Dividing Equation (4.72b) through by mB and then adding the result to Equation (4.72a)
leads to an expression for A:

A =
1

2

[
ρL
2M

{
δL

(
δL +

2

mB

)}
+ (φL − φB)

]
e−mBR1 , (4.73)

from which it follows that

B =
1

2

[
ρL
2M

{
δL

(
δL −

2

mB

)}
+ (φL − φB)

]
emBR1 . (4.74)

Moving to the vacuum-plate interface at the right-hand plate, following the same prescription
as above leads to additional expressions for the unknowns A and B:

A =
1

2

[
ρR
2M

{
δ

(1)
R

(
δ

(1)
R +

2

mB

)}
+ (φR − φB)

]
e−mB(R1+l) ,

B =
1

2

[
ρR
2M

{
δ

(2)
R

(
δ

(2)
R −

2

mB

)}
+ (φR − φB)

]
emB(R1+l) .

(4.75)

Equating the two expressions for A and B spanning Equations (4.73), (4.74), and (4.75),
leaves two equations to solve for the remaining unknowns δL and δR:[

ρL
2M

{
δL

(
δL +

2

mB

)}
+ (φL − φB)

]
=

[
ρR
2M

{
δR

(
δR +

2

mB

)}
+ (φR − φB)

]
e−mB l ,

(4.76a)
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[
ρL
2M

{
δL

(
δL −

2

mB

)}
+ (φL − φB)

]
=

[
ρR
2M

{
δR

(
δR −

2

mB

)}
+ (φR − φB)

]
emB l .

(4.76b)

Adding together Equations (4.76a) and (4.76b) leads to the result

ρLδ
2
L

M
+ 2(φL − φB) = 2cosh(mB)

{ ρR
2M

δ2
R + (φR − φB)

}
− 2sinh(mBl)

ρR
M

δR
mB

. (4.77)

At this point it becomes necessary to account for the (very) small value of the mass mB by
Taylor expanding the hyperbolic functions and dropping any sub-leading order terms in mB.
Taking cosh(mBl) ' 1 and sinh(mBl) ' mφl the above reduces to

ρLδ
2
L

M
+ 2(φL − φB) =

ρR
M
δR (δR − 2l) . (4.78)

Further, subtracting Equation (4.76a) from Equation (4.76b) is found to lead to a shell-
density relation:

ρL
M

2δL
mB

= cosh(mBl)
ρR
M

2δR
mB

− 2sinh(mBl)
[ ρR

2M
(δR)2 + (φR − φB)

]
' ρR
M

2δR
mB

,

(4.79)

where the constant coefficients cancel to give

ρLδL = ρRδR . (4.80)

The result stated above (Equation (4.80)) may be incorporated into Equation (4.78) to pro-
duce a quadratic equation for δR (or δL) by eliminating the other. After a little manipulation,
this reads

(ρLρR − ρ2
R)δ2

R − 2ρLρRlδR + 2MρL (φL − φR) , (4.81)

for which the solutions take the form

δR =
ρLρR l ±

√
ρ2
Lρ

2
Rl

2 − 2MρLρR (ρL − ρR) (φL − φR)

ρR (ρL − ρR)
. (4.82)

Making use of the identity for the field minima φmin (ρ) = (Λ5M/ρ)
1/2

the above can be
written entirely in terms of the plate densities in conjunction with the two model parameters
M and Λ:

δR = ρL


l ±
√
l2 − 2M3/2Λ5/2 (ρLρR)−3/2 (ρL − ρR)

(
ρ

1/2
R − ρ

1/2
L

)
(ρL − ρR)

 . (4.83)

this is ensured to generate real solutions as the discriminant of the above is always positive

given that (ρL − ρR)
(
ρ

1/2
R − ρ

1/2
L

)
≤ 0 for all ρL, ρR. Further, to ensure regularity upon

approaching ρR = ρL, the negative root must be taken in the above.
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4.B The Constant Force Approximation

An argument presented in the main body of the text was that for sufficiently small deviations
from the particle’s incident position, the chameleon field profile can be treated as approx-
imately linear resulting in a constant value for the exerted force. Arriving at the results
used involved expanding the implicit field equation for φ(z) around some central value, de-
noted φC . Making small perturbations around this field value, and the corresponding central
position zC , it becomes useful to write

φ = φC (1 + ψ) , z = zC (1 + ζ) , ψ, ζ � 1 . (4.84)

Expanding the implicit field equation to leading order in δφ leads to the result

∓

(√
2Λ5

φ3
0

zC

)
ζ = −

(
φ2
C

φ0 (φCφ0 − φ2
C)

1/2

)
ψ , (4.85)

which can be shown to remain valid as long as

ψ � 4

(
1− φC

φ0

)
. (4.86)

Invoking the chain rule it is then possible to recover an expression for the gradient of the
field through the relation

∂φ

∂z
=

(
∂φ

∂ψ

)(
∂ψ

∂ζ

)(
∂ζ

∂z

)
, (4.87)

from which it follows that

∂φ

∂z
=

√
2Λ5

φ0

(
φ0

φC
− 1

)1/2

. (4.88)

The scalar acceleration is then simply calculated by recalling the identity aφ = −∇φ/M .
To make use of the above result, it is required that the linear approximation remains valid
throughout the duration of the atom interferometry experiment. Taking an incident particle
with motion initially confined to the y direction, the displacement along the z axis after
exposure time T is given by

δz =
T 2

2M

√
2Λ5

φ0

(
φ0

φC
− 1

)1/2

. (4.89)

Further, the consistency condition of Equation (4.86) can be rephrased in terms of the
perturbation around the central position δz = zCζ as follows:

δz � 2

[
2φ3

C

Λ5

(
1− φC

φ0

)]1/2

. (4.90)

Combining the preceding two results, it can be found that the particle remains within the
regime of constant acceleration provided that the following condition is satisfied:

T � 2
M

Λ5
φC . (4.91)
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Performing a scan across the entire chameleon parameter space revealed that this inequality
is easier satisfied when moving to higher values of M and Λ, as to be naively expected
by examining the above. Importantly, it was found to remain completely consistent in the
region of the parameter space of most interest: that yet to be explored and constrained by
fifth-force searches.
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Chapter 5

Closing Remarks

Dynamically screened scalar fields first appeared in the literature in search for alternatives
to the Λ-CDM paradigm. The most extensively studied example is the chameleon model,
which inherits an environmentally dependent field mass as a result of the interplay between
non-linear self interaction terms and a density component within the scalar effective poten-
tial. A direct consequence of this, is a screening mechanism which becomes active in regions
of sufficiently high density, acting to inhibit both the interaction strength and range of the
chameleon fifth force. As a result, the chameleon field, and indeed the other models of dy-
namically screened scalar fields, are able to hide from the tight constraints placed on the
allowed departures from General Relativity within the regime that gravity has been exhaus-
tively tested.

On the other hand, the behaviour of density dependent screening implies that the prop-
agation of the scalar mediated fifth force favours environments of lower density. Ultimately,
this suggests that any signatures of the chameleon force should begin to resurface under the
conditions offered by the current generation of vacuum based experiments. The most pow-
erful experimental technique to date for measuring absolute forces is atom interferometry,
which has enabled us to push far deeper into previously uncharted regions of the chameleon
parameter space. However, what remains to be explored corresponds to a regime of weak
coupling governed by the non-linear effects of the screening process. Because of this, one
has to battle both the inherent weakening of the force due to a weak matter coupling, and
the reduction of the force due to screening. The target of the research presented here was
to understand whether or not the effects of screening could be mitigated, with the hope of
making the challenge of probing the currently unconstrained segment of the model parameter
space a little easier.

At the heart of this work, has been the unique field structure of the chameleon field, which
essentially confines force contributions to a thin-shell at the surface of the matter source. In
moving away from the conventional spherical source object, it was demonstrated in Chapter
2 that the extent of the shell region responds favourably to the deformation of a sphere into
an ellipsoid. In this case, the analyses indicated that the extra structural degree of freedom
associated with the existence of a shell region allows the internal chameleon field to readjust
in such a way to preserve the amount of force contributing matter sources. This is in con-
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trast to the gravitational force which is found to weaken with the deformation. The practical
applications of this conclusion were fairly limited however, as the results presented were pri-
marily concerned with the ratio between the gravitational and chameleon forces, providing no
tangible measure of the change in absolute acceleration relevant to an interferometry experi-
ment. Nonetheless, it was clear that the consideration of alternative source geometries was a
step in the right direction when it comes to controlling the efficiency of the screening process.

The positive results of the fully analytic study of the chameleon field around an ellipsoidal
source object inspired further research into the connection between chameleon screening be-
haviour and the source geometry. In Chapter 3, a more systematic means of comparing
source geometries was presented which involved the implementation of the chameleon model
into a numerical finite element platform. This numerical treatment of the problem was ap-
plicable across a wide range of source geometries. Making reference to the precious analytic
study of the ellipsoid, the results were in support of the conclusion that ellipticity weakens
chameleon screening. The implications had more practical relevance here however, as the
numerical approach was used to extract values of absolute acceleration, where a notable ad-
vantage over the spherical acceleration was observed when moving into the screened regime.
In addition to this, it was possible to introduce procedurally generated source objects which
were then compared across a large sample space in order to identify an optimised geometry.
At the weak coupling limit of M = MPL, this optimal source was able to realise a consid-
erable gain over the chameleon force surrounding a spherical object. Broadly speaking, the
work in Chapter 3 reinforced the notion that departures from a spherically symmetric source
can be used to increase prospects of detection. However, a side effect of this research was
to demonstrate the efficiency and versatility of the finite element method in the study of
dynamically screened scalar field theories. Following this method, the application of these
models to a host of different experiments is very easily accessible, where constraints in prin-
ciple could be generated with a considerably reduced simulation time when compared to the
conventional finite difference approach.

Chapter 4 studied the non-linearities of the chameleon theory in a slightly different light,
where the idea was to change the format of the experiment to exploit the density dependence
of the chameleon screening mechanism. By introducing a twist on the conventional parallel
plate setup by allowing the densities of the individual plates to vary, it was shown that the
resulting asymmetries in the chameleon field profile give rise to additional contributions to
the atomic phase difference sourced by differences in the classical action. The nature of this
setup also manages to bypass the screening effects arising due to the finite size of the vac-
uum chamber, which is known to limit the constraining potential of an atom interferometry
experiment focussing on a single source object at the centre of the chamber. Collectively,
it was demonstrated that an atom interferometry experiment utilising asymmetric parallel
plates could be used to close in on what remains of the chameleon parameter space.

To close, the cosmology of the chameleon has come under increased scrutiny in recently years,
leaving its viability as an alternative to Λ-CDM in question. Nonetheless, the dynamical
properties of the chameleon offer an interesting mechanism for screening long range inter-
actions of light scalar fields, providing an interesting avenue of study independent of ties to
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the late time accelerated expansion of the universe. Thus, if nothing else, the chameleon can
be used as a playground to develop a deeper understanding of the phenomenological effects
tied to a dynamically screened scalar emerging more naturally from high energies theories.
Hopefully, this work has demonstrated to the reader that with a little extra thought going
into the ingredients of an experimental setup, the detrimental effects of screening can in
some sense be harnessed to generate tighter constraints on a model parameter space.
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