A scanner-based rhizobox system enabling the quantification of root system development and response of Brassica rapa seedlings to external P availability

Adu, Michael Osei, Yawson, David O., Bennett, Malcolm J., Broadley, Martin R., Dupuy, Lionel X. and White, Philip J. (2017) A scanner-based rhizobox system enabling the quantification of root system development and response of Brassica rapa seedlings to external P availability. Plant Root, 11 . pp. 16-32. ISSN 1881-6754

Full text not available from this repository.

Abstract

Rhizoboxes are soil-root compartments that may well provide the closest naturalistic conditions for studying root systems architectures (RSAs) in controlled environments. Rhizobox-based studies can however lead to mis-estimation of root traits due to poor recovery of roots and loss of fine root features during washing of roots. We used a novel scanner-based rhizobox system to evaluate: (i) RSA traits of Brassica rapa genotypes; (ii) the relationship between root traits recorded from rhizoboxes and those of harvested roots and (iii) genotypic variation of seedlings in response to external P ([P] ext) availability. Brassica rapa genotypes were grown in soil-filled rhizoboxes abutting flatbed scanners and were watered once with either deionised water or a solution of 600 μM KH2PO4 to approximately 80% field capacity on a weight basis. Shoot and root P concentrations ([P]shoot and [P]root) of the B. rapa lines grown on different [P]ext were quantified. Visible root length at the surface of rhizoboxes constituted 85% of the total root length recovered from harvested root samples. High P supply induced a strong increase in [P]shoot in all genotypes (P < 0.001) whereas low P supply generally led to greater partitioning to roots. Seed P concentration and tissue P concentration were correlated only at low [P]ext. Total root length was strongly correlated with tissue P content under both low [P]ext (r = 0.81, P < 0.05) and high [P]ext (r = 0.82, P < 0.05) conditions. The novel scanner-based rhizobox system used addresses the substantial limitations associated with current use of rhizoboxes to study root growth dynamics.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/860466
Keywords: Brassica rapa L., nutrient acquisition, phosphorus, rhizobox, root system architecture, scanner-based phenotyping
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Biosciences > Division of Plant and Crop Sciences
Identification Number: https://doi.org/10.3117/plantroot.11.16
Depositing User: Eprints, Support
Date Deposited: 21 Jul 2017 11:05
Last Modified: 04 May 2020 18:45
URI: https://eprints.nottingham.ac.uk/id/eprint/44350

Actions (Archive Staff Only)

Edit View Edit View