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ABSTRACT

This thesis studies non-equilibrium open quantum systems where the
dissipation is crucial to the achievement of novel physical regimes.
We focus on atomic systems which allow for the coupling of a ground
state to a Rydberg state, relying on the strong interactions between
Rydberg atoms to produce the collective behaviour that we aim to
investigate. For atoms in an optical lattice undergoing standard dissi-
pation forms, e.g. loss and dephasing, we find these simple settings
allow for the production of models contained in the non-equilibrium
realm.

We start by looking at a system with engineered pair dissipation on
a one-dimensional lattice. When the dissipation is strong relative to
a tunnelling process it creates a quantum Zeno effect which projects
the system onto a Zeno-subspace. This subspace is found to contain
complexes which experience a binding due to the dissipation. The
properties of these complexes are found to feature spin-orbit coupling
and, in certain instances, a flat band.

We then study what kinetically constrained models (KCMs) can be
reproduced in a lattice system. KCMs are models which typically fea-
ture trivial steady states, but a complex relaxation dynamics. These
models appear in the fields of glasses and soft matter physics. We
find a general framework for the consideration of a quantum Hamil-
tonian and a classical potential with strong dephasing noise. We then
focus on a model mimicking volume excluded KCMs and find char-
acteristic constrained behaviour, such as ergodicity breaking.

We apply this framework to the decay of a many-body localised
state in an open system with interactions in which we find the decay
to be classical in the two interaction limits. For weak interactions, it
follows a stretched exponential form due to pair relaxation, while for
strong interactions the decay follows a compressed exponential, now
being modelled as an Avrami process due to the correlated relaxation.
We also find that on-site loss only affects the strong interacting limit.

We then move on to the study of universal non-equilibrium be-
haviour in the directed percolation (DP) class. We consider on-site
atomic loss and gain as a substitute for the standard decay channel.
We show that this replaces the absorbing state with an enlarged ab-
sorbing space, leading to a loss of the DP transition at lower average
densities. This class of DP-like systems has received little study, and
we present a method of experimentally realising it in current set-ups.

We finish with a look at a quantum DP model, where we consider
its quantum and classical limits. We find that the transition changes
from first to second order as the system becomes more classical, fea-
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turing a bi-critical point. We then numerically demonstrate that the
same transitions are visible in idealised and Rydberg models.
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INTRODUCTION

Traditionally, physicists have asked questions focussed on the micro-
scopic laws, those which govern a single or pair of particles. The be-
lief being that such laws could scale upwards, extending to describing
systems comprised of many-bodies and leading to a full description
of the universe. This is known as the constructionist hypothesis, and
it has brought about great advancement and is of course a continu-
ing line of reasoning within physical study, particularly in particle
physics. In this pursuit however, severe roadblocks are encountered,
the most obvious being the N-body problem. When it came to un-
derstanding beyond two interacting particles, the laws which were
discovered for pairs could not be analytically solved. Instead it was
pertinent to reconsider these problems as many-body from the start.

Many-body physics is the study of emergent collective phenomena,
the resultant effect of the individual interactions of large ensembles
of particles. In the essay "More is different" by P.W. Anderson [1] it is
elegantly put:

”...the whole becomes not only more than but very different
from the sum of its parts.”

This comment is primarily on the topic of symmetries. Physics at
its core is a study of the symmetries of nature. Crucially, the micro-
scopic symmetries can be wholly different to an ensemble’s symme-
tries. This means that when approaching the solution of a many-body
problem the details of the microscopic become irrelevant, and one can
simply focus on the symmetries of the system as a whole.

On a fundamental level, many-body physics is of interest for the
simple fact that all that surrounds us is many-body. Isolated, single
"particle" systems are in-fact rare, and even in situations where the
free-particle approximation works well in order to understand its fi-
nal or equilibrium state its many-body nature must be invoked. Be-
yond that, many of the most fascinating phenomena in physics are
many-body, including superconductivity [2], Bose-Einstein condensa-
tion [3] and the glass transition [4, 5], to name but a few.

New types of phenomena, that cannot be predicted from the par-
ticle level, emerge on the many-body scale, a prototypical example
being that of a phase transition. A phase is a description of the state
of matter, characterised by the value taken by a specific macroscopic
observable, usually referred to as the order parameter. We can illus-
trate this idea with the Ising model. The Ising model consists of a
spin—1/2 square-lattice system, with each site featuring states 1= 1
and |= —1. These sites experience two effects: a nearest neighbour
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interaction, V > 0, and a magnetic field, h. This gives a function for
its energy, a Hamiltonian, for L sites as

L L
H=-— Z Voo — Z hoy (1.1)
(k) k

where oy € {—1,1} and (k, j) runs over all nearest neighbours of each
site k. For the case of h = 0, depending on the temperature, this sys-
tem will either exhibit a ferromagnetic or paramagnetic phase. At low
temperatures, the thermal fluctuations are small, i.e. kg T < V, mean-
ing that the interactions dominate. This means that the lowest energy
state is all the states either aligned all up or down, known as the fer-
romagnetic phase. In the other limit, kg T > V, the fluctuations will
be such that the interaction is sub-leading resulting in neither state
being preferred for any given site. This results in the paramagnetic
phase which is a statistically-independent mixture of up and down
states. For the Ising model the associated order parameter is magneti-
sation, M = ) | oy /L, where M = 0 is paramagnetic and M = £1 is
ferromagnetic at zero temperature.

Between phases lies a phase transition, at which point the system
undergoes a non-analytic change in its properties. In the Ising model
example, in dimensions of two or greater, as the temperature is in-
creased the system changes from the magnetisation having a finite
value to being zero i.e. ferromagnetic to paramagnetic. This transition
is continuous as the "sharp" change occurs in second-order deriva-
tive of the order parameter. At phase transitions the continuity of
the microscopic description appears to be violated as extreme critical
phenomena takes place, leading to singularities. This is in-part due to
the fact that phase transitions, and their non-analytic nature, formally
only exist in the thermodynamic limit, i.e. for infinite sized systems.

Systems can be split into either open or closed. A closed system is
one which only interacts in amongst itself, while an open system has
an interaction with a bath or environment which lies outside the de-
scription of the system of interest. An open system’s interaction with
its environment can be, for example, characterised by an exchange of
particles or energy. Environments are typically considered to be large
in comparison to the system, such that the exchange between the two
influences the system state but does not significantly affect the envi-
ronment. An open system is far more common in physical settings,
and as such will be the main focus of this thesis.

When understanding phases and phase transitions one must also
talk about thermodynamic equilibrium. Systems which can feature a
thermodynamic equilibrium state are composed of large ensembles
of particles and, when closed, are able to explore all configurations at
a specified energy. When open, the energy is not fixed so rather the
system explores the configurations at different energies with proba-
bilities following a Gibbsian distribution [6]. This exploration of the
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state space causes, on average, the systems to display stable macro-
scopic quantities, such as energy and magnetisation. These states are
also referred to as steady states, however not all systems in a steady
state are at equilibrium. The determination through statistics of a sys-
tem’s state at equilibrium gives the framework of statistical mechan-
ics, which has been a vital tool in the understanding and characteri-
sation of equilibrium systems.

All those systems which cannot be categorised as equilibrium are in
the field of non-equilibrium physics. Such systems can either be tran-
sient, as they approach an equilibrium state, or not feature an equi-
librium state at all. These systems have received extensive study in
recent decades as they continue to elude full characterisation. Often,
non-equilibrium systems have to be addressed by tailored approaches
as we still lack an overarching framework, such as statistical mechan-
ics provides for equilibrium. A prototypical example of the field lies
in glasses. Glasses, although appearing stable when in a solid state,
in-fact feature a "frozen" liquid structure. Rather than being in an
equilibrium state, they instead have a very long, temperature depen-
dant, relaxation time causing them to be non-equilibrium systems [5,
7-10].

Non-equilibrium systems can feature so-called dynamical phase
transitions. There are multiple definitions of these phase transitions
that have yet to be agreed upon, particularly in quantum settings [11,
12]. Generally they are a transition that alters the form of the dynam-
ics, featuring a non-analytic change in the properties. They can be
related to changes in the form of the relaxation, or a more fundamen-
tal changes in the dynamics.

A possible explanation for glassy dynamics is found in kinetically
constrained models (KCM). A kinetic constraint is where rules are
placed on a system governed by a simple microscopic dynamics. This
is generally through the suppression or restriction of connections be-
tween certain configurations or states. For example, in a dense fluid
of hard spheres the diffusion of a sphere is limited by its neighbour-
hood, i.e. there must be no other spheres in its way for it to progress.
Typically these systems feature trivial steady states, meaning their
long-time dynamics samples a simple equilibrium distribution. Their
relaxation to the steady state however can be complex and highly
structured at sufficiently high densities and low temperatures due to
the constraint. Key examples of KCMs are the Fredrickson-Anderson
model, the east model and triangular lattice gas models [8, 13-16].

Constrained systems and non-equilibrium physics have been found
in the active field of ultracold atoms. The field of atomic physics has
sky-rocketed since the late 1990’s and become a staple experimen-
tal platform in the exploration of quantum systems and many-body
physics. Ultracold systems provide a highly tunable and accessible
experimental platform for advanced studies of physical systems. The
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field began in the 1920’s when the theory of Bose-Einstein conden-
sation (BEC) was developed [17], predicting a new state of matter. A
BEC is a dilute bosonic gas cooled to very low temperatures such that
a large proportion of the bosons occupy the ground state of the sys-
tem, causing it to act as a macroscopic quantum gas, being described
by a single wavefunction. The transition to a bosonic BEC occurs be-
low a critical temperature, which for a three-dimensional system is
approximately

n 2/3 27h?
Te <as/2)) mks (1.2)

where n is the particle density, m is mass of each boson and ( is the
Riemann zeta function. At the time of its discovery, the technology re-
quirements made a BEC’s realisation impossible and it was not until
the 1970’s when the idea of the laser cooling of atoms [3, 18] was pro-
posed that such low temperatures became possible. Finally the BEC
was achieved [19—21], and this new phase of matter was observed for
the first time earning those involved the Nobel prize. In contrast, at
low temperatures fermions show a state known as Fermi degeneracy
where due to the exclusion of the occupation of the same state they
instead occupy the full set of the lowest energy eigenstates. Fermi de-
generacy in dilute fermionic gases was also achieved shortly after the
BEC [22—24]. These systems have been shown to exhibit such proper-
ties as superfluidity [3], Feshbach resonances [3], and the BEC-BCS
crossover [25].

Ultracold atoms offer an excellent setting for quantum simulation
[26, 27]. Quantum simulation is the idea of using a highly tunable
quantum system to simulate specific quantum models of theoreti-
cal interest, including those which are fundamental to condensed
matter theory, as classical computers are limited in their degree to
simulate complex quantum systems. Typically atomic gases are pro-
duced in environments which are highly tunable; by use of poten-
tials from lasers or magnetic fields the shape of the atomic gas and
its dimensionality may be tuned. The shapes possible range from
quasi-one-dimensional cigar shaped gases to exotic lattices. Optical
lattices are briefly reviewed in App. A. Different atomic or molecu-
lar species may also be used which feature unique properties such
as different cooling wavelengths, different ratios of the elastic to in-
elastic collisions, fermionic vs bosonic behaviour, magnetic properties
and much more. Furthermore, the interactions between the atoms
and molecules can be tuned using Feshbach resonances [28]. Typi-
cally the set-ups also allow for state population and density mea-
surements of the atomic cloud. With these tools the geometry, den-
sity, and interactions of the gas can be set at the desired parame-
ters. This allows for the simulation of many-body systems devised
in fields from soft-condensed matter to cosmology. Some examples
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Figure 1.1: Illustration of blockade and anti-blockade effects. (a) shows a
sketch of the form of the interaction between Rydberg atoms fol-
lowing a ~ 1/R® shape, and has labelled on it an approximation
of the blockade radius, Ry, as a result of this interaction. Ey rep-
resents the energy of the Rydberg state without any interaction
dressing. (b) is a cartoon of the blockade effect with the block-
ade radius shown around Rydberg atoms (red), where none of
the Rydberg atoms exist inside one another radii. (c) is the anti-
blockade effect, where now the unexcited atom (blue) is coupled
to the Rydberg state as it lies on the radius of another. (d) shows
the energy level diagram of the anti-blockade set-up, with the
ground state (||)) being coupled to the Rydberg state (/1)) by a
laser with Rabi frequency Q, represented by the purple arrow,
at detuning A which is equal to the experienced interaction V,
shown as a dashed black arrow, from the neighbouring Rydberg
atom.

include, the Bose-Hubbard model and observation of the superfluid-
Mott-insulator transition [3, 29—33]. Furthermore, atomic ensembles
have applications in detection and metrology with atomic clocks [34],
the observation of gravitational effects [35, 36], and in quantum infor-
mation [37].

A field from atomic physics that is employed frequently in this
thesis is that of Rydberg atoms [38, 39]. A Rydberg atom features a
single valance electron excited to a high principle quantum number,
typically n > 50. Notably, Rydberg atoms were crucial in the 2012
Nobel prize for non-destructive quantum measurement, making use
of their long lifetimes [40]. Due to the high principle quantum num-
ber spontaneous radiative decay is greatly suppressed instead being
dominated by black body radiation [41]. This results in lifetimes on
the order of us’s, being well within the length of experimental stud-
ies. The most striking feature of Rydberg atoms is their strong inter-
actions. High-lying orbitals are very much stretched outwards from
the nucleus, their radius scaling as

n2h?

T = m (13)

where m. is the mass of the electron and k = 1/47mey. Due to the n?
dependence this radius will be large. This allows them to be modelled
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as oversized hydrogen atoms, with the nucleus being the combina-
tion of the atomic nucleus and the non-excited electrons. Their dipole
moment depends only on the outer electron leading to a heavily exag-
gerated polarisability. In turn, very strong van der Waals interactions
occur between Rydberg atoms as

V ~ Cg/RS, (1.4)

with the van der Waals coefficient scaling as C¢ o< n'! [39], and where
R is the distance between Rydberg atoms. The shape of this interaction
is shown in Fig. 1.1(a). The strong interactions lead to two interesting
phenomena: the blockade and anti-blockade effects.

The Rydberg blockade effect [42] stems naturally from experimen-
tal systems and is the result of strong Rydberg-Rydberg interactions.
We consider a system of atoms which is coupled resonantly to a Ry-
dberg state by a laser with Rabi frequency Q, as shown in Fig. 1.1(d).
When a single atom is excited to its Rydberg state, it causes atoms
within the so-called "Blockade radius" to have their Rydberg state
moved off-resonance as there is now the extra energy from the inter-
action. The blockade radius is defined as

R, = v/Q/Cq, (1.5)

being the distance beyond which the energy shift, due to the inter-
action, becomes smaller than the line broadening from the laser cou-
pling, which is of the order of Q. For Rydberg atoms Q lies in the
MHz range meaning the blockade radius is typically on the order
of um’s. Such distances are large in a quantum gas, meaning that
"macroscopic" objects can be formed using the blockade effect with
one such being "super-atoms", regions of atoms contained within a
single Rydberg blockade radii. These occur as there can be only be
a single Rydberg atom, but it can be any of them, creating a super-
position of all one-excitation (Fock) states with equal amplitudes. For
systems larger than a single radii, super-atoms can form interesting
geometries of blockade radii [43—48], an example of a single state of
which is shown in Fig. 1.1(b). It has also been shown to be a useful
tool in quantum information problems [37, 49], and has applications
in the production of single photon sources [50, 51].

The anti-blockade effect [52, 53] follows directly from the blockade,
using it to precisely control Rydberg excitations in the system. If the
coupling laser, instead of being resonant with the Rydberg state, is
blue detuned, then at the anti-blockade radius the atoms will in-fact,
through the interaction, be resonant with the excitation laser. As this
detuning can be accurately controlled it allows for this radius to be ad-
justed to some extent to fit the needs of the problem. The possibility
of tuning the blockade distance is particularly important when em-
ploying this effect in a lattice system as it can be set to certain neigh-
bouring positions. The key phenomena from this effect, that will be
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employed in this thesis, is once there is a single Rydberg atom it can
start a cascade of excitations at approximately fixed distances from
one another, an example of which is shown in Fig. 1.1(c). It has been
found that the anti-blockade effect has applications in quantum simu-
lation and is useful in the production of non-equilibrium constrained
systems [10, 54-57]. It is this intersection between Rydberg atomic
systems and constrained systems that will be primarily investigated
in this thesis as rich non-equilibrium physics often stems from the
presence of competing dynamical processes and strong interactions.

Within atomic physics there are several alternatives to Rydberg
atoms for the achievement of similar phenomena, namely ions and
polar molecules. Trapped ions are crucial in the field of quantum
computation [58, 59], with the first controlled-NOT quantum gate pro-
posal being specifically for ions [60]. Trapped ions allow for the clean
production of interacting particles, via the coulomb force, which can
be trapped for long times, in the range of ms-s, and controlled coher-
ently with minimal interaction with the environment. They are how-
ever produced in low numbers, with systems typically composed of
< 20 ions. Polar molecules [61] feature strong interactions through
their dipole-dipole forces, as with Rydberg atoms. Polar molecule
gases can feature much higher densities than trapped ions and are
a relevant competitor to Rydberg atoms for interacting many body
physics simulation. In both cases however their interactions can not
be switched on and off like a Rydberg atom, which usually features a
non-interacting ground state, a feature used throughout this thesis.

Atomic systems tend to be open on longer time-scales, experienc-
ing, for example, such processes as atomic loss from traps and the
emission and absorption of photons. As such there has recently been
considerable effort in the study of open quantum systems. The ex-
tra noise from the interaction with the environment in quantum sys-
tems is often viewed as a destructive process. Decoherence in some
instances removes all the quantum nature, a major opponent to the
achievement of the quantum computer [62]. Decoherence of a quan-
tum gas in a lattice can be controlled by the properties of the lattice as
commented on App.A. New studies have shown that it in fact dissi-
pation can be a resource for the achievement of systems with intrigu-
ingly rich dynamics. In particular, a competition between coherent
and incoherent processes can give rise to seemingly counter-intuitive
phenomena. Examples include the occurrence of slow or glassy dy-
namics [10, 55, 57, 63], the relaxation into stationary states with spa-
tial correlations [64—66], the observation of intermittency and bista-
bilities [66—69], the creation of entanglement by dissipation [70-78],
the production of effective interparticle interactions [79, 80], and the
emergence of equilibrium [69, 81-84] and out-of-equilibrium univer-
sal behaviour [56].



INTRODUCTION

1.1 THESIS OVERVIEW

This thesis focusses on the study of open non-equilibrium many-body
quantum systems that can be realised in atomic Rydberg systems,
or equivalent settings, and explores the dynamics present in each
model. We present a particular focus on the utilisation of noise as
a resource for the production of constrained models. In Ch. 2, we
review essential theory and the techniques used to study the models.

Ch. 3 focusses on a binding resulting from strong dissipation. The
dissipation takes the form of a distance-selective pair loss, engineered
using the anti-blockade effect and natural decay channels. When this
dissipation is strong in comparison to other processes, the quantum
Zeno effect [85] restricts the system to a reduced subspace. Within
this subspace structures form that show interesting properties.

In Ch. 4 we study a general method for understanding what ki-
netically constrained models [8, 10, 15] can be realised in quantum
many-body lattice systems under strong dephasing noise. We provide
a general framework for calculating the connectivity of the model,
and comment on the realisability of certain models. We choose to
focus on an example of a excluded volume model.

We apply the findings of Ch. 4 in Ch. 5 to the problem of many-
body localisation (MBL) [86], a field garnering greater attention re-
cently due to the phenomena preventing the thermalisation of a closed
quantum system. We show the influence of interactions on the decay
form of open MBL systems, presenting the models which govern both
the weak and strong interactions limits. We go on to predict further
results that could be experimentally tested in current set-ups.

We then move on to study systems which belong to the directed
percolation (DP) universality class [87], a key non-equilibrium class
of phase transitions. Ch. 6 focusses on the production of a DP-like
model utilising on-site atom loss and gain as a resource. We find that
it produces a model which has received minimal study and offers
a potential experimental platform for the realisation of DP-like sys-
tems in all dimensions, a currently outstanding problem. In Ch. 7 we
look at a quantum version of a DP model and look at the result of a
crossover from the "quantum” to the "classical" limit.
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We start with a review of the essential tools and concepts employed
in this thesis. Each chapter focuses on open quantum systems, so a
review of their description and the techniques used here to study
them is given.

2.1 OPEN QUANTUM SYSTEMS

The original efforts in quantum mechanics focussed on closed quan-
tum systems, singularly contained settings with no interactions with
the outside world. As progress was made with quantum theory many
new fundamental questions arose, the most outstanding of which is
probably the measurement problem. When a quantum system is mea-
sured, no matter what the state is at the time of measurement, it will
always be observed in an eigenstate of the measurement, or observ-
able, operator. This is known as the collapse of a wavefunction. For
example, considering a two level system with state \)) = a[0) +b|1)
where |a|? + |b|? = 1. Measurements are performed on observables de-
fined by operators, O. Observables must meet the condition of being
hermitian, i.e. O = O, and occur outside of the system’s Hamiltonian.
Crucially, whenever a measurement is made, the system is found in
an eigenstate, |¢), of the observable, i.e. 0 |b) = A|dp) where A is the
associated eigenvalue. Considering a general observable defined as
O = Ao 0) (0] + Aq [1) (1], the two associated eigenstates are |0) and
|1) with eigenvalues A\ and Ay respectively. This means that when
measured by O the outcome is |0) with probability |a|? giving mea-
surement result Ag and |1) with probability |[b]* giving measurement
result A;. Once measured, in either state, further instantaneous mea-
surements by O will yield the same result meaning the system has
collapsed into the measured eigenstate. This represents a non-unitary
loss of information in the system, as the state prior to the measure-
ment can only be "recovered" by building up sufficient statistics by
preparing and measuring under the same protocol many copies of
the state.

This action of individual measurement is still ad hoc in quantum
theory and has yet to be resolved exactly how this collapse occurs.
This example points out the important role that an external action
plays in the evolution of a quantum system and has led to a growing
effort towards understanding open quantum systems [88] i.e. those
which interact with their environment with non-unitary actions. Here
I will discuss the theoretical description of open quantum systems
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and the methods that are used to analyse them throughout this thesis.
For simplicity we set h = 1.

2.1.1  The density matrix and the Lindblad master equation

The state of a quantum system is described by a wavefunction, {p(t)),
which is time dependant. The evolution of this state is governed by
the Schroedinger equation

Hpp(n) =120

Throughout this thesis we will study open quantum systems. An
open system is one which interacts with an environment or bath. This
means that we assume that we can separate the total Hamiltonian as

(2.1)

H = Hs + Hp + Hj (2.2)

where Hs, Hg, H; represent the Hamiltonians of the system, the bath
and their interaction respectively. In order to only extract the dynam-
ics of the system we require a different formalism than the simple
Schroedinger equation.

We focus primarily on many-body systems in this thesis such that
we will mostly use second quantisation to represent states of a system
i.e. rather than describe each particle individually, assigning each an
amplitude at every point in the state space, we instead assign parti-
cles to states. Considering a two-level system, a single particle state
of the system would be defined as a superposition of these two states
W(t)) = a(t)[0) +b(t)[1), where a(t) and b(t) define the probabili-
ties that the system is found in either state, meaning they must satisfy
la(t)]? 4 [b(t)]? = 1 Vt. For a two particle system in second quantisa-
tion, the state of the system is now defined as how many particles are
in either state, written as

b(t)) = aft)[2,0) +b(t)[1,1) +c(t) [0, 2) (2:3)

where for each state, [np,n1), no and n; are the number of parti-
cles in states |[0) and |1) respectively. This is extended to many-body
systems with N particles and N states by assigning amplitudes to
the states [ng, n1, ..., Ny, ..., Ny—1) requiring that ), ny = N. Each of
these states are referred to as Fock states or number states. If the par-
ticles are bosonic then the number of particles able to occupy a single
state is unlimited, while for fermions ny <1 Va.

To represent the state of the system we introduce the most general
description, the density matrix, p. For a system with a Hilbert space
of states ‘d)j >, the density matrix is defined as

p= Z Pi;
ij

i) (5] - (2.4)
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where a density matrix must satisfy the properties of positivity i.e. all
of its eigenvalues are positive, hermiticity i.e. p = p', and it must be
normalised such that Tr [p] = 1. The expectation value of an operator,
0, is found by <O> =Tr [Op]

Density matrices encompass two unique cases of states. Pure states
can always be written as p = [\p) (Y| and easily identified as when
p? = p. A mixed state allows for a broader interpretation of the state,
in which part of the uncertainty on its nature is due to classical statis-
tics. For example if you are aware that with probability p you have
initiated a system in state \p) and with probability 1 —p you have
state [§) then it cannot be written as pure state, instead it is repre-
sented by p = p ) (Y| + (1 —p) Id) (d|. Mixed states are identified as
when p? # p.

The interaction with an environment, as with a measurement, en-
ters as a non-unitary action on the system. The operations from the
interaction with the environment are typically called jump operators,
{, as they represent a sudden change in the state of the system. Note,
jump operators do not have to be hermitian. Taking our previous ex-
ample of a two-level system with the jump operator being [ = 7
with the initial density matrix being pure with the state of the above
example i.e.

pi = [b) (W] =1]al?[0) (O] + [b* [1) (1] + ab* [0) (1] + a*b [1) (0].
(2.5)

After the action of fi, we know it is either in [0) or |1) with probabil-
ities |al? and [b|? respectively and this can no longer be written as
a pure state as there are now two classically weighted states of the
system i.e.

pi = pr = lal?[0) (01 + [bJ* 1) (1]. (2.6)

We see that the system loses the off-diagonal parts of the density ma-
trix, also known as the coherences. This more clearly shows the loss
of information through of a non-unitary operation. This formalism of
the state allows us to continue the study of an open quantum system’s
dynamics after a collapse due to the presence of mixed states.

For all parts of this thesis we will study the evolution of open
quantum systems under the Born-Markov approximation [89]. This
approximation requires the following conditions to be satisfied:

e Born approximation - the system and bath are coupled weakly
in comparison to the other relevant couplings in the system.
This ensures that the density matrix of the system can always be
considered to factorise out of the total density matrix i.e. system-
bath correlations are negligible with respect to system-system
and bath-bath ones.

11
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* Markov approximation - the evolution of the system at the cur-
rent time has no dependance upon its history. In an open quan-
tum system this is equivalent to assuming that the bath is large
and the relaxation time short. This would mean that any in-
formation that enters the bath from the system, e.g. a photon
emitted into the bath, has a very low probability of returning,
or at least the timescale of the return is longer than the period-
of-interest.

Provided these assumptions are satisfied then the system’s dynamics
may be modelled using the Lindblad master equation [89],

1
p=—ilH, ol +_(LjpL] —3{L]L;,p}), (2.7)
j

where p is the density matrix of the system, H is the Hamiltonian of
the system, and the L; operators are jump operators which define the
interaction of the system with the bath. These jump operators may
also be referred to as incoherent processes, while the evolution by H
is coherent.

The evolution of an expectation value of operator, A, may also be
calculated using

(A) =1(H,AD)+ D> <(L]TAL]- — ;{L].TL]-,A})> . (2.8)
j

2.1.2  Second-order perturbation of the master equation

A common tool that is used in each section of this thesis is Kato per-
turbation theory or the resolvant method [88, 9o]. The method allows
for a perturbative approach to systems where a process, or rate, is
dominant in the system allowing the projection of the Lindblad mas-
ter equation onto the physically relevant space specified by this dom-
inant action. This specific method is also referred to as the adiabatic
elimination of the fast degrees of freedom.

We consider the instance where the master equation Liouvillian, £,
can be split into dominant, £4, and perturbative, £, parts

p=(La+Lplp. (2.9)

L4 is considered dominant when the timescale of its action is much
lower than the perturbative term. We express the the dominant term
in its diagonal basis with eigenvalues, ki, and eigenspaces or pseudo-
projectors, P;i:

Ly = ZkiPi, (2.10)
i
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These projectors form a complete orthogonal set,
Pin :51,]' Pi, (2.11)

Z P; =1. (2.12)

Provided L4 is physical, i.e. preserves positivity of the density matrix,
then it will feature at least a single 0 eigenvalue, ko = 0, while the
rest have a negative real part. Py is then a projector onto the steady
state space of the Liouvillian. This then leaves the master equation as

p=Lpp+ Y kapa, (2.13)
A

where p) = Ppp and the index A omits the steady state space. The
system will rapidly evolve via £4, meaning that on a short timescale
for £, the system will reach the steady state space p = Pop. We
define the projector on the irrelevant space as Q = ) , Px. We then
split Eq. (2.13) into the evolution in the relevant and irrelevant spaces

it =PoLpu+PoLpQp, (2.14)
Qp =QLQp+ QL. (2.15)

Formal integration of Eq. (2.15) gives

Qp(t) = "¢ Qp(0) +J: dre "™ QLp(). (2.16)

We assume that we start entirely in the steady state space i.e. Qp(0) =
0 which gives

Qolt) = JO dretTRLQL (1), (2.17)

which is substituted into Eq. (2.14) to give

t
it =PoLppu+Polp Jo drelt-TQL QLpu(T). (2.18)

We then take a Laplace transform of Eq. (2.14) to find

1
Llgl(s) = PoLplLlp] + PoﬁmeLp]L[u] (2.19)
where s is the transformed frequency. Applying the assumption that
the amplitude of £4 is dominant, Eq. (2.19) is then expanded to sec-
ond order in £, as

L[] ~ PoLpL[u] + PoLp QLpILIu]. (2.20)

1
S—Qﬁd

We then perform an inverse Laplace transform

t
L~ PoLpu(t) +Polyp Jo dTe(t*T)LdQLpu(T). (2.21)

13
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Expanding £ 4 in terms of its projectors and expanding the exponen-
tial, we find

t
L Polpu(t) + Z POLPJ dTe(t*T)kAPALpp(T). (2.22)
0
A
Using integration by parts, this remaining integral is re-expressed as

(L ~PoLpu(t) + Z POLP[(;P?\LP(H(t) + u(0)et*))
A

tky rt
¢ J du(7) 1. (2.23)

dte T PAL
k)\ 0 AP dt
As we are interested in the long time dynamics, i.e. long with respect
to the timescasle of Ly, it allows for the remaining integral term and
the term (0)et™* to be set to zero, leaving an effective master equa-
tion of the form

1
feAPoLpu(t) = 3 {~PoLpPalpnlt). (2.24)
A

For problems considered in this thesis higher orders do not affect the
dynamics provided you are sufficiently in the required perturbation
limit.

2.2 KINETIC MONTE CARLO

Used throughout this thesis is the numerical method, kinetic Monte
Carlo (KMC). This technique may be used to simulate the dynamics
of a transition-rate defined classical system. It works by randomly se-
lecting a transition or jump between two states weighted by the rate of
transition between them and advancing the time based upon the idea
that these events occur following a Poisson distribution. In all cases
we will use the rejection-free, or Bortz-Kalos-Lebowitz algorithm [91].

Considering a system with states indexed as k, with the transition
rate between states k and k’ defined as T\_, . For a state with a total
transition rate, R = ) 1, Tk—k/, it will have a "survival" probability
in time as

P = e Rt (2.25)

This defines the probability that no jump has occurred from state k
up to time t. After initialising the system at time t = 0, the algorithm
to simulate a single trajectory follows as:

1. Generate from a uniform distribution a random number u €
(0,1].

2. Calculate the total rate, Ry, for the current state, k.
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3. Calculate the change in time, At = Rgllnﬂ /u), until the next
jump.

4. Update the time, t — t + At

5. Calculate the cumulative rate function Cy ./ = Z}io Tkoj-

6. Generate a uniform random number u’ € (0, 1].

7. Select the transition to occur by which k’ satisfies the condition
Ci—1 < u'Ry < Cyper

8. Perform the transition to the selected state k’.
9. Repeat until a specified condition is met.

This technique may be continued to generate a trajectory until the
total rate of the current state is 0, such states are known as absorbing
states, or a condition is satisfied such as a fixed number of jumps or a
maximal time. In all instances in this thesis the condition of max-time
is used. Trajectories may then be averaged to study the behaviour of
the mean value of observables in the system.

2.3 QUANTUM JUMP MONTE CARLO

To numerically simulate open-quantum system dynamics a primary
technique is quantum jump Monte Carlo (QJMC) [92, 93]. The inco-
herent processes shown as the jump operators in Eq. (2.7) are the tran-
sitions that will be randomly selected by the Monte Carlo algorithm.
Unlike with KMC, a quantum system continues to evolve between
jumps, which in turn influences the probability of certain jumps oc-
curring in time, leading to a more complex algorithm.

A key component of this approach is the effective Hamiltonian.
Eq. (2.7) is rewritten as

p=—i (Hewo — pHly) + Y LyoL], (2.26)
j
where
i
Hegg = H— 7 Z L;fI_j. (2.27)
j

Hege is @ non-hermitian operator meaning it does not preserve the
normalisation of the state. It can be shown that to first order [92, 93],
for a single trajectory of the state, in between jumps the system is
evolved by Heg. The decay of the normalisation then translates to an
increasing probability of a jump giving a definition of the survival
probability as

Py (At) = e tATHett [y |2, (2.28)

15
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The form of Heg is best calculated at the start of the simulation and
stored.

After initialising the system in a pure state [{), the algorithm to
produce a single quantum trajectory follows as:

1. Generate a uniform random number u € (0, 1].

2. Calculate the survival probability using Eq. (2.28).
3. Calculate the time, At, at which P, (At) =u.

4. Update the time, t =t + At.

5. Evolve the state, ) — e~ tAtHe |1)y).

6. Calculate the cumulative rate function C;;/ = Z;:/:o P; where
Py = (WILL L ) / 5 (WILIL; ).
7. Generate a uniform random number v’ € (0, 1].

8. Select the transition to occur by which j’ satisfies the condition
Cijr—1 <u <Gy

9. Perform the selected jump on the state as, (p) — Lj/ ().
10. Normalise ).
11. Repeat until a specified condition is met.

This produces a single quantum trajectory for that initial condition.
This algorithm is then repeated and the resulting trajectories averaged
to produce the dynamics of the density matrix, which is equivalent
to the dynamics produced by the Lindblad master equation [92].

IMPLEMENTATION — The implementation of the QJMC algorithm
is more complex than that of KMC which can largely be input exactly
as shown above. With a KMC trajectory, the only large dataset that
needs to be stored is the state of the system, which if we consider the
system to be composed of L sites each with x states then at most this
is an L-size array of integers. Large system sizes (L ~ 10000) can be
reached with KMC before any considerations for efficiency need to
be made.

With QJMC this is not the case. Already the state is much larger
as we are dealing with a quantum state rather than a classical state,
meaning that for each trajectory the state that needs to be stored is
xt doubles. Heg and each L; must also be stored, which are all of
size x2L. There is a frequent tendency for these items to be sparse,
i.e. the majority of their entries are zero, in which case it is much
more efficient to store them as sparse arrays. Ultimately, this means
that the size of the stored items grows much faster with L than in
classical systems, putting a limit on the system sizes possible in this
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Figure 2.1: Illustration of the binary search algorithm for only three time
step values. This is the true binary search algorithm for this
problem rather than the order of magnitude time step change de-
scribed in the text. It shows a single search starting at P|y,) (At =
0) = 1 and progressing by the time step, 8t. The Py, (At) is
found to go below the random number, u, at the second time
step, meaning the jump lies between the At = 6t — 25t. The
time step is then reduced to oty = 6t/2, where Py, (At) is found
above u at the time step. Again the time step is reduced to 5t,
and at which point P}y (At) is found below u meaning the jump
occurs at time At = 6t + 871 + 6. If the algorithm was to continue
it would search the area indicated by the "tick" mark.

algorithm, typically L = 15 is a maximum. During the algorithm there
is also the expensive, according to how much processing time it takes,
calculation of e~ *AtHeff ag it involves the evaluation of the exponential
of a matrix. Furthermore, when trying to find the value of At at which
Py (At) —u = 0, it can rarely be solved for analytically. As such, for
example, a bisection method [94] needs to be used, or an equivalent
algorithm, which requires many calculations of the exponential.

There are many solutions to these problems, most of which are
system dependent. Employed in Sec. 7, I use a technique that puts a
greater emphasis on memory to put all calculations of the exponen-
tials to the start of the program borrowing from the discrete QIMC
algorithm [92, 93]. It works as follows: From each trajectory you aim
for read-out of the state at specified times, for example if you are run-
ning each trajectory for time T then you may take n readouts of the
state leading to a readout at each time t, = kT/n which are separated
by time 8ty = T/n. If we consider a no-jump trajectory it means that
all we would require to get a readout of the state at each of these
times is e t¥toHeir to evolve between them.

For a trajectory which features jumps, the same action is performed.
The state is first evolved by e~ t®toHeti to progress to the next t; and
then the value of P|y,) (8to) —w is checked. If it is negative then a jump
has occurred in this last time step. The exact time could then be found
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using the bisection method using the two time values as bounds but I
found it more efficient to pre-set an accuracy in time. This is done by
evaluating and storing at the start of the algorithm e~ "t1Het where
dt1 = 0tp/10. Then when a jump is detected, it returns to the previous
time-step and instead evolves by e~ 11t Again the jump is tested
for after each evaluation. When it is detected it returns to the previous
time-step and then evolves by e~ ®t2Met where §t; = 5to/100. This
continues, evolving the state by e~ tiHe where 5t; = 5to/107 until
a good accuracy in time is acquired, and the earlier time is selected.
The power of this method comes in that each of these exponentials
is calculated at the start, and the number of them required can be
determined by the system properties i.e. the time T and the maximal
possible rate of the jumps. The action of then applying these matrices
to the state is fast and allows for the algorithm to be much quicker.
It does however put more in the memory, controlled by the degree
to which each of these exponentials are sparse. This method is based
upon the binary search algorithm, its direct implementation, shown
in Fig.2.1, would lead to faster computation but more memory usage
as it would require a halving of the time step rather than a change by
an order of magnitude. For the systems discussed in Sec. 7 I found
a limit of L = 13 on high performance computer systems. An open
source implementation of this algorithm can be found at Ref. [95].



MANY-BODY OUT-OF-EQUILIBRIUM DYNAMICS
OF HARD-CORE LATTICE BOSONS WITH
NON-LOCAL LOSS

3.1 INTRODUCTION

In open quantum systems, a competition between coherent and in-
coherent processes, as discussed in Ch. 1, can lead to unexpected
phenomena. In certain cases, it may even lead to a binding mecha-
nism [54, 96, 97], which is qualitatively different to the one resulting
from coherent forces that bind the constituent particles, in for exam-
ple molecules or atoms [98].

In Ref. [54] the creation of dissipatively bound complexes was shown
to be due to the quantum Zeno effect [72, 85, 9g9—102]. The quantum
Zeno effect is where through strong dissipation or measurement, i.e.
the non-unitary rates are large in comparison to the coherent rates,
the state space of the system is reduced as it is projected onto no-
dissipation subspaces. This in turn leads to an effective dynamics on
the so called Zeno subspace, this is discussed in more detail later.

In this chapter, we look at the situation of strong non-local parti-
cle loss introduced to a lattice system featuring coherent tunnelling,
and study the constrained behaviour resulting in a particle binding.
We focus on a one-dimensional lattice filled with hard-core bosons
in a Mott insulating state. We find that the evolution proceeds in
two stages. The first stage is characterised by a purely dissipative
dynamics that leads to a strongly correlated loss of bosons until the
system reaches a highly degenerate Zeno subspace. The second stage
is governed by the competition between the dissipation and coherent
particle hopping that leads to the formation of dissipatively bound
complexes. We identify two qualitatively different types which natu-
rally occur in the Zeno subspace. Their dispersion relations depend
strongly on the number of constituent bosons and we find for some
configurations the emergence of so-called flat bands [103] which re-
sult from an effective spin-orbit coupling and give rise to immobile
complexes [104]. Such flat bands are of interest in the study of exotic
topological states of matter e.g. in quantum Hall physics [105]. We
further analyse the effect of interactions among neighboring bosons
and between complexes.

This work was published in Physical Review B in collaboration
with M. Hush and I. Lesanovsky [106].
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3.2 QUANTUM ZENO EFFECT

The quantum Zeno effect [85] gains its name from the Greek philoso-
pher Zeno of Elea who believed that motion was an illusion, and in
aid of this belief invented three paradoxes of motion [107]:

1. Achilles and the tortoise - The story goes that Achilles has a
footrace with a tortoise. He lets the tortoise have a head start,
and then begins pursuing. He moves to where he saw the tor-
toise, but upon arrival he finds it has progressed further. So he
moves to it again, and once more finds the same. This continues
ad infinitum, thus the pursuer may never catch the pursued.

2. Dichotomy - When crossing a distance one may choose to travel
it in halves. So first one moves halfway, and then another half,
getting you to within one-quarter of your destination. If this is
continued the destination is never reached rather one only gets
incrementally closer.

3. The arrow - An arrow is fired through the air, at any one time
it occupies a singular position. If time was frozen the arrow
would be found precisely at a single spot and would be seen
as equivalent to a motionless arrow at the same position, i.e.
without time the arrow is not in motion.

All of these paradoxes are about the division of a dimension into
finite parts and whether or not motion in that dimension can be de-
scribed continuously or discretely.

The first two paradoxes can be resolved by considering an infinite
geometric series. Taking the Dichotomy paradox, if the total distance
to travel is d = 1 then it is easily shown that } 7 (1 /2)t = 1 con-
verges. Furthermore, if we assume a constant speed of travel the time
taken for each subsequent step will reduce, converging towards 0.
This means that the individual will travel distance d in a finite time
when employing this strategy. The same exact reasoning applies to
the resolution of Achilles and the tortoise.

The third paradox found a natural home in quantum physics. The
quantum Zeno effect is where the evolution of a system, or part of
it, may be "frozen" if under the influence of rapid dissipation or mea-
surement. A simple example is demonstrated by a two-level system
with Hamiltonian

H = Qo,y (3.1)

where {0, 0¥, 0%} are the standard Pauli matrices with states |0) and
|1). We consider this system’s state as being measured in a Markovian
setting meaning the system is well modelled by the Lindblad master
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equation, as discussed in Sec. 2.1.1. A measurement or jump operator
can be used to detect which state it is in at a rate vy,

L=yn, (3-2)

where n is the density operator defined as n = o+ 0~, where ¢& =

(0* £1i0Y)/2. When v = 0 the system will undergo a Rabi oscillation
causing the probability of it being found in the excited state to oscil-
late as P(1) = sin?(Qt/2). For y # 0, the measurement will cause the
collapse of the state into either ||) or [f) with no coherences. If the
rate of the measurement is fast i.e. y > (), then using the technique
described in Sec. 2.1.2, we find that the system is projected onto the
subspace of states u = all) (}| + b[1) (1|. Furthermore we see that it
is now governed by an effective master equation

L +
MLZT(G not + o o —{o",0 ). (3-3)

This is equivalent to a Lindblad master equation with no coherent
terms and jump operators

40%

Lo = TO (3-42)
402

L = TO'JF. (3.4b)

The system dynamics effectively follows an incoherent flipping action
between the two states at a rate 47512. In the limit v > Q this rate is
very low, such that when compared to the coherent action, y = 0, the
system will appear frozen in its initial state. This idea can be extended
to all instances where the rate of decoherence is rapid relative to the
coherent processes as will be presented in Ch. 4.

3.3 THE MODEL

We consider a one-dimensional lattice with L sites filled with hard-
core bosons [80]. Hard-core bosons are when the on-site interaction
is strong in comparison to other coherent processes. If the system then
starts in a state with either zero or one boson per site then the proba-
bility of a double or more occupation of a site is negligible, meaning
that the system can be projected onto a spin system with states [/), [1)
representing an unoccupied and occupied site respectively. This sce-
nario can, for example, be realized with optically trapped cold atoms
[3].

We consider the bosons tunnelling between adjacent sites at a rate
] under Hamiltonian

L
H=T> (0p0y, 140701 ) (3-5)
k=1
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Figure 3.1: (a) lllustration of the non-local distance-selective pair loss, where
the atoms may tunnel at rate | and if at a distance R they are
ejected from the lattice a rate y. (b) Show the level structure re-
sulting in this dissipation as the ground state of the pair, |gg), is
resonantly coupled to the double-Rydberg state, |rr), at distance
Rc. (c) Illustrates the Rydberg-Rydberg interaction and the depen-
dence of the position of the critical distance, R¢, on the detuning
A;.

In addition to the coherent Hamiltonian evolution we consider non-
local dissipation which is given by distance-selective pair loss. Two
bosons separated by the critical distance R, are ejected from the lat-
tice at a rate y. This is shown in Fig. 3.1(a). This type of dissipation
can for instance be physically realised in cold atom experiments by
exploiting the properties of Rydberg states [54]. By utilising the anti-
blockade described in Ch. 1, a laser couples the atoms in the system
to a Rydberg state [r) with Rabi frequency Q and detuning A. Con-
sidering two Rydberg atoms, [rr), on sites at a distance R, the inter-
action between the pair will detune the state from the bare value by
A (r) = 2A + V(r). This means that by adjusting A the value of R,
may be selected as the position where A;(R.) = 0, causing the dou-
ble Rydberg state of this pair to be resonant with the excitation laser
meaning they will be rapidly excited to that state, as illustrated in
Fig. 3.1(b). The excited pair then experience two decay channels. The
first is due to the interaction between the pair which puts a strong
mechanical force on them, i.e. F = —VV/(R), thus causing the atoms
to escape the lattice and be lost. The second channel is that as a Ry-
berg atom undergoes radiative decay back to its ground state, it will
tend to follow a long decay path. With each decay the atom receives
a momentum kick which as it occupies non-trapped states on its re-
laxation path it will be pushed out of the lattice.

This interaction can lead to off-resonant processes as well. Atoms
that are at a single lattice site away from the critical distancei.e. Rc +1,
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will have the most significant rate. Using Eq. (1.4), the detuning of
these processes will be

Ay = V(Re)(1—(1+1/Rc)™°). (3.6)

This leads to the adjusted Rabi frequency for this process to be (7 ~

\/ Q3+ A3, with Qg being the Rabi frequency of the resonant pair
excitation. The max probability of this off-resonant double excitation
occurring is ~ Q(Z) /4A% which as V(R.) is large, as discussed in Ch. 1,
this will be a highly improbable process meaning we can neglect it
for the following analysis as we will not be considering the long time
dynamics.

We assume that the Markovian approximation is valid, which is
true for the proposed experimental implementation [54], allowing the
dynamics of the density matrix p of the system to be described by
a Lindblad master equation, discussed in Sec. 2.1.1, with distance-
selective pair loss jump operators of the form

L = VY0, 0y g, - (3.7)

for k € [1, L]. Here we focus on the limit of strong dissipation, i.e. v >
J. The strength of the decay may be adjusted using the coupling of the
double-ground state to the double-Rydberg state, such that we work
in the limit of resonance i.e. A;(R.) = 0. This leads to a separation of
the two timescales on which the coherent and dissipative dynamics
proceed.

3.4 FAST DISSIPATIVE DYNAMICS AND THE ZENO SUBSPACE

We begin by analysing the fast initial dissipative dynamics carried
out by the Liouvillian

]
Lap=)_(LipLf — 5{LiLy, p}). (3-8)
k

Its stationary subspace — the Zeno subspace — is spanned by all
states |s) that satisfy

Lils) =0 Vk, (3.9)

i.e. they do not contain any two bosons at the critical distance R.. To
understand the dissipative non-equilibrium evolution into the Zeno
subspace we consider our system starting in a Mott insulator state,
which features a single boson on each site, ;) = IT>®L. The corre-
sponding evolution of the average boson density,

p(t) = Z <nkL(t)>, (3.10)
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Figure 3.2: (a) Evolution of the boson density p(t) under the dissipative dy-
namics £4 from an initial Mott insulator. The stationary density
isp(t = o0) = e 2 ~ 0.14 marked by the dashed line. The inset
shows a single trajectory with 40 bosons on a lattice of L = 40
with R¢ = 3 and periodic boundary conditions. (b) Represen-
tative boson arrangements in the stationary state with R. = 3,
where single free bosons and two types of particle complexes
emerge. The circles indicate sites, a filled circle indicates an occu-
pied site, a cross indicates a site whose occupation is forbidden,
as the resulting configuration would not lie in the Zeno subspace,
and a box indicates the "size" of a complex. The type I complex
— defined as having a size smaller than R, — is, in this example,
consists of two bosons. These bosons are unable to tunnel away
from each other without running into a forbidden site which
leads to an effective binding. The type II complex has a spatial
extent that is larger than Rc. It is qualitatively different to type I
in the sense that the removal of one boson (in the center) destroys
the binding for the remaining ones. (c) Probability distributions
for single bosons, type I and type II complexes in the station-
ary state that is reached from a Mott insulator for the cases of
R¢ = 3,12. The relative abundances of the species change once
Rc becomes comparable to the mean interparticle distance, e?, in
the stationary state. This Fig. originally appeared in Ref. [106].
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can be found analytically: The mean value of the density on site k
evolves under the fast dynamics of £4, found using Eq. (2.8), accord-
ing to

(Mk) = —y((knisr,) + (MR, 1)), (3.11)

i.e. it depends on a two-point correlation function set by the critical
distance of the pair loss. Defining the correlators C; = ([ T}_, nk+1r.)
and using translational invariance, i.e. Ny g, = nk_g,, we obtain the

hierarchy
Cj = —v(iCj +2Cj41). (3.12)

This equation is solved by introducing (see Ref. [108]) the generating
function

= X C;
G(x,t) :Z ]—'] (3.13)
j=0 '

which evolves according to

G(x,t) = —v(2+x)0G(x, t). (3-14)

For a Mott insulator state we have the initial condition C; = 1V
and therefore G(x,0) = Y %) /j! = e*. For this initial condition the
solution becomes G(x,t) = e!2*¥)¢ "'~2 giving the density evolution
as

p(t) = Co=G(x=0,t) = e 1), (3.15)

Numerical Monte Carlo simulations, shown in Fig. 3.2(a), confirm the
rapid exponential decay of the boson density on a timescale ~ y~'.
The inset shows a generic trajectory which displays the fast removal
of boson pairs and a stationary configuration in which boson pairs at
a distance R, are absent. This is one configuration of many that span
the high dimensional stationary Zeno subspace, the projector onto
which is explicitly written as

L

Qo = HU — TR - (3.16)

k=1

The average density in the stationary state reached from a Mott insu-
lator is given by

p(t = 00) =e 2 ~0.14. (3.17)

Note, that this result is in fact independent of the value of Rc.
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3.5 EFFECTIVE COHERENT DYNAMICS IN THE ZENO SUBSPACE

Once having reached the Zeno subspace the dissipative evolution gov-
erned solely by £4 comes to a halt. Due to,

ch = _1[H/ p]/ (318)

introducing quantum tunnelling to the Zeno subspace, non-trivial co-
herent dynamics emerges taking place on a timescale ]~'. As shown
in Ref. [54] the effective master equation for the projected density ma-
trix in the Zeno subspace, . = PypPy, for the limit y >> ], is obtained
by means of Kato perturbation theory [8o, go] discussed in Sec. 2.1.2.

For this limit we only need to go to second-order in Eq. (2.24), the
only actions of interest are those which exit the Zeno subspace via a
single tunnelling event and return to it also with a single event. This
limits the states outside of the Zeno subspace necessary to study to
a single pair of bosons, and a double pair which share the central
boson all at the critical distance. We define the pseudo-projectors, P;,
of L4 on this truncated space as:

Pop =QopQo + ) _ 0y 0 g Q1pQ10y, g OF

Kk
+ 01 R 0 0k, Q2PQ20y g L OV g, (3-192)
k
P1p =PopQ1 + Q1pPo, (3.19b)
P2p =PopQ2 + Q2pPo (3-190)
where:
Q1 =) nmnmire | [ (1 —mniyr,), (3.200)
m k#m
Q=) Mm RMmMmir. || (1—mnkir).  (3.20b)
m k#m,m—R.

Qo was introduced in Eq. (3.16) and projects onto states of no pairs,
Q1 projects onto states with a single pair and Q2 projects onto in-
stances with two pairs which share the central boson. Py projects onto
the steady state space of Lg, i.e. Po = lim¢_, L4, as it includes only
states with no pairs of bosons at the critical distance. Using the as-
sumption that the system starts in the steady state space, Py may be
reduced to only the first term in Eq. (3.19a). It may also be shown
that Py, Py and P, project onto the eigenspaces of £4 with eigenval-
ues, 0, —y/2, —y respectively.

Using the property, QiQ; = 8;,;Q1, from the first term in Eq. (2.24)
an effective Hamiltonian, Hy, is derived as

Hz =QoHQo, (3.21)
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We then formulate the projected jump operators from the second
term of Eq. (2.24). We first rewrite this term as:

1 2
_ Zk—APoLcP)\LCPO u(t) = Po(—;[H, Q1[H, 1Qol
A

- i[H, QolH, 1]Q1] — ;[H, Q2H, 1WQl

1
- ;[H/ QolH, 1Q2]), (3.22)

where A runs over the non-zero eigenvalues k. Upon expansion of
QoHQ1 and QoHQ, we find

: . z ot 1 ot (z
o= —ilHz 4 Y (LGS — 505 LA W), (3.23)
k,
with
Z
Lf(/]) =V2T(Ax — 0} _g Bk — 0y, 55 Bicsr.) (3-24)
L =VTBy, (3.25)

where the effective decay rate I' = 2J? /y and the operators

Ak =01 g 419K T Ok iR —19% T 04ROkt + Ohir, Ok
(3.26)

Bx =01 R Ok 101 iR, T Ok R Okt 1004 R, (3-27)

By construction the dynamics under Hyz is restricted to the Zeno
subspace. Dissipation within the Zeno subspace affects boson pairs,
L%), or triples, Llizz), in configurations that are one tunnelling event
avx;ay from containing bosons at the critical distance R.. Such configu-
rations undergo an incoherent evolution at a rate I', which is strongly
suppressed for fast two-body decay y > ]. Therefore the evolution
within the Zeno subspace becomes predominantly coherent despite
the strong dissipation present.

36 FAMILIES OF COHERENT PARTICLE COMPLEXES

The approximately coherent evolution under Hz has interesting con-
sequences. Due to the explicit appearance of the projector Qq, the
simultaneous occupation of two sites at a distance of R is forbidden.
This is the quantum Zeno effect in action as the system may not co-
herently evolve into states outside of the reduced Zeno subspace; or
put differently, measurements are done at a high frequency to check
the system for pairs of bosons at the critical distance which in turn
prevents their development. This leads to strong correlations and the
formation of bound complexes. These complexes contain a varying
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number of bosons, but there are two qualitatively different configura-
tion sets in which they can form.

Let us start with the simplest case — which we refer to as type I.
Here m bosons are localised in a region with spatial extent smaller
than R, an example of which is shown in Fig. 3.2(b). These bosons are
effectively bound since they cannot separate by more than R. — 1 sites.
The second class — type II — are distinguished by having a spatial
extent greater than R.. These complexes form when the bosons and
their associated critical distances overlap. Here, unlike for type I, not
every particle binds all the others. There are even situations in which
the removal of one boson destroys the entire complex, an example
of which is shown in Fig. 3.2(b). By defining the complexes in this
manner it is possible to classify each self-contained object present in
the Zeno subspace. Both type I and II complexes appear naturally in
the stationary state that is reached from an initial Mott insulator state
an example of which is shown in Fig. 3.2(a).

The relative abundances of complexes in the system is dependant
on the critical distance. As the mean inter particle distance is fixed
by Eq. (3.17) to be e?, there is a crossover in the relative abundances
at R¢ =~ e%: When R, < e? single bosons dominate with a significant
proportion of bosons populating type I complexes. When R, > e?
complexes are more abundant than single bosons, with type II be-
coming more and more dominant with increasing R.. Examples are
shown in Fig. 3.2(c).

As the only acting Hamiltonian on the particles is hopping, which
cannot create critical pairs, the primary point of interest of these com-
plexes is their motion on the lattice. We calculate their dispersion
relations, which defines the speeds of the different frequencies of a
plane wave,

w(x) =v(x)x (3-28)

where w is the angular frequency, x is the wavenumber and v(x) are
the wave-speeds or phase-velocities. The dispersion relation can then
be used to calculate the group-velocity,

d
Vg = ﬁiﬂ (3-29)

i.e. the speed of the total amplitude of the plane wave, which in our
case is the speed of the complex. When working with lattice systems
and crystal structures it becomes simpler to express these quantities
in momentum-space. In momentum-space particles are described by
their respective momenta rather than their position. This gives the
complex a quasi-momentum, q and a dispersion relation ¢(q). The
group velocity is now found by

d
Vg = ;(qq) . (3.30)




36 FAMILIES OF COHERENT PARTICLE COMPLEXES

(2) , @0 00®

. 20060 0l@ (b) |ypEcCERe-coesdd V-5
. R=3  R=4 )

site

Figure 3.3: (a) Dispersion relations (solid curves) for type I complexes of two
bosons with R¢ = 3 and R. = 4. Both cases show a crossing at
q = m, and when R, = 4 a flat band occurs. In the presence
of nearest neighbor interactions (here V = J) the degeneracy
is lifted and the flat bands are distorted (dashed curves). The
sketches above the panels show a particular internal state of the
respective complex. Panel (b) shows the evolution of the boson
density of a type I complex formed by two bosons in the state

|F](<I )> with R¢ = 4 (see sketch above the panel) and y = 100] on
a lattice of L = 10 sites simulated with the full master equation.
This Fig. originally appeared in Ref. [106].

3.6.1  Type I complexes

We first characterise the type I complexes by limiting our study to the
dynamics of a single complex on the lattice, addressing the interac-
tions between complexes in the later Sec. 3.7. In the following we will
provide three qualitatively different examples: immobile complexes
without internal structure, complexes with an internal structure and
effective spin-orbit (SO) coupling, and complexes whose dispersion
relations feature a flat band arising from this effective SO coupling.

We start with the simplest type I state: two bosons, m = 2, and
a critical distance R, = 2. The only possible configuration of these
bosons, in a type I state, is to be adjacent. Thus, the basis states are
k,1) = o 0}, |®@), where |®) is the vacuum state. In this notation
k denotes the position on the lattice of the complex, and the second
index labels the "internal state" of the complex. The projected Hamil-
tonian Hy in this basis is identically zero. Hence the basis states [k, 1)
are trivially eigenstates and this is an example of an immobile type I
complex. These type I solutions emerge whenever R, = m.

In order to see non-trivial physics we require a complex with in-
ternal states coupled via Hz. The simplest case of this is m = 2 with
R¢ = 3. To calculate the spectrum of this complex, a basis of the inter-
nal states is defined as [k, 1) = oi 0} ; |®) and [k,2) = 0}l 0}, , D).
We may also define a creation operator [k, x) = bé“”l@), allowing

us to re-express the effective Hamiltonian as Hz = ]Zk[bfﬁbg) +

b&ﬁbl&z) + H.c.], which now works to evolve the complex as a single
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object. This can then be used to calculate the dispersion relation by
first defining a generic state of the system in terms of these internal
states separating the spin position parts as

. Aq(k)
= A k) = k .
p) kZJ K; i) @ [k) %(Aﬂk))” (3.31)

where Ay ; are the associated amplitudes for states [k,j), where for
this case j = {1,2}. We then perform a discrete Fourier transform us-
ing periodic boundary conditions to find a generic quasi-momentum
state as

1 .
K) = N kZ) et IAL; i) @ k) (3-32)

where q = 2nK/L where K runs from 0 to L — 1. We then transform
the action of Hz onto this basis by considering its action on the state
IK), which we then find the associated eigensystem to get the disper-
sion relation of the complex as Hz |K) = ¢(q) |[K). When done on this
complex the dispersion relations and eigenstates |K4.) are found to be

e+(q) ==+ 2] cos (%) (3-33)
1 . .
Ke) =g et [k,2) e /2 1)], (3:34)

which are shown in Fig. 3.3(a). We see that the internal state of the
complex is strongly linked to its motion on the lattice, namely the
group velocity of the internal states is always in the opposite direc-
tion for the same quasi-momentum. This is termed as an effective SO-
coupling, where the internal state is directly linked to its motion.
Note that this spectrum has a degeneracy, or crossing, that occurs
at ¢ = m, which implies that a state transformed through quasi-
momentum space will feature a discontinuous change at this point.

Lastly we consider a complex where the effective SO coupling re-
sults in a flat band, namely the case of two bosons with R, = 4.
We define a basis of three internal states as: [k, 1) = o0y, D),
k,2) = 0L 0y, , |®) and |k, 3) = 0} 07, ; |®). The resulting dispersion
relations, shown in Fig. 3.3(a), and eigenstates are given by

en(a) =n2v2J cos (), (3:35)
eikq 4

|K0>=; 7t I3 —e kD], (3.36)
ikq ) .

Ky) :% ;ﬁ et ) £ V292 2) + K, 3)] . (337)

This complex has three branches labelled by 1 = {0, 4+, —}. The branch
n = 0 is a flat band. Dispersion relations featuring flat bands re-
sult in immobile localised states which in contrast to the first type
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I example are non-trivial. These localised states are formed by super-
imposing many quasi-momentum eigenstates and hence for non-flat
dispersion relations immobile states cannot form. In a flat band all
quasi-momentum states have the same energy and the resulting su-
perposition state is thus still an eigenstate of the Hamiltonian.

A concrete example is given by the states

)1:,<>:./Rfc Zk [(=1)'of ok, _i14]1@). (338)

Using one of these states as the initial condition and propagating it
under the full master equation we find indeed that it remains immo-
bile as shown in Fig. 3.3(b). The simulation of the master equation is
greatly simplified in these cases as we are interested in the evolution
of the complex and once a dissipation event occurs, removing a pair
of bosons, the lattice either has a single boson, whose behaviour is
well understood, or is left empty. This means we only need to evolve
the system by the effective Hamiltonian described in Sec. 2.3, and the
loss of normalisation corresponds to the average dissipation in the
system such that there is no need for a stochastic evolution. We see
that the boson density is slowly decreasing on a timescale 1/T. This
clearly shows that the flat bands are not an artefact of infinitely strong
dissipation but instead that they indeed have a drastic effect on the
boson dynamics in a system with competing coherent and dissipative
evolution.

Let us make some general remarks on the emergence of flat bands
in the case of type I complexes: For complexes consisting of two
bosons, flat bands exist provided that R is even. Furthermore, we
find that for two, three and four bosons a flat band emerges when
Rc/m € IN. Interactions among bosons also play an important role.
In order to illustrate this we consider nearest-neighbor interactions
of the form Hpn = V) nknk41 which might, for instance, emerge
in cases where non-local loss is engineered via Rydberg dressing
[54]. Such interactions modify the dispersion relations as shown in
Fig. 3.3(a) lifting the degeneracy point observed for R. = 3, and dis-
torting the flat band in the case of R, = 4.

3.6.2  Type Il complexes

We now move our study to type II complexes, i.e. complexes that are
larger than R.. We give two examples, one without internal structure
and one with effective SO coupling.

First we consider three bosons and a critical distance R, = 3. The

only possible type I complexes have the basis [k, 1) = o} 07,07, 41D).

They are immobile — similar to the first type I example — as each bo-
son’s movement is inhibited by its nearest bosons. This is confirmed
by numerical simulations shown in Fig. 3.4(a). Such immobile states
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Figure 3.4: (a) Evolution of boson density for a type II complex in the immo-
bile state IFéH) ), with Rc = 3 and v = 100]. (b) Dispersion relation
for a type II complex consisting of four bosons with R. = 4. This
Fig. originally appeared in Ref. [106].

can be straight-forwardly generalised to larger boson numbers, e.g. in
the given example by attaching bosons to either end of the complex
keeping a separation of one site.

Next we consider four bosons and a critical distance R. = 4. The
resulting complex has five internal states:

[k, 1) =0y 03, 300460410 D),
[k, 2) =0y 0y, 300,604, 51 P),
[k, 3) =0y 07, 300, 500, 5 D),
[k, 4) =0y 0y, 00, 5007 D),

) )

[k,5) =0y 03, 207, 503, 5/
and the dispersion relations shown in Fig. 3.4(b):
eo(q) =0, (3-39)

en,5(q) =N \/3—|—6\/5—l—4cos(q), (3.40)

with 1,6 = £. Hence, this type II complex features a flat band and
spatially localised states of the form

(I _ +5+ o+ ot + 5T ot gt
Fl ) = [=0 03300, 60k 10 + 034 101301, 60k 18] D). (3.41)

Again let us conclude with some more general remarks: A flat band
of similar structure exists for five bosons with R. = 4. For R. = 3 and
4, a flat band exists provided the number of bosons is equal to or
greater than R.. The dispersion relation of this type II complex is not
modified by the presence of nearest neighbour interactions. This is
due to the fact for the given arrangement of bosons the simultaneous
occupation of neighbouring sites is forbidden, thus the flat bands
of certain type II complexes are protected from interaction effects in
contrast to the type I case.
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Figure 3.5: (a) Evolution of the boson density for a single boson impinging
an immobile type II complex (R = 2). The single boson is in the
wave packet state |G) with initial central quasi-momentum of
qo = 7/2 and width o = 2. The two-particle loss rate is y = 100].
The single boson is reflected elastically off the type II complex
due to the presence of an effective next nearest neighbor exclu-
sion interaction. (b) We show three examples of two type I com-
plexes, in different internal states, interacting with one another.
We see that the distance of the interaction depends on the in-
ternal state of the complexes. This Fig. originally appeared in
Ref. [106].

3.7 INTERACTION BETWEEN COMPLEXES

As can be seen in the inset of Fig. 3.2(a) complexes are typically not
isolated in the stationary subspace of £4 and so interactions between
complexes and single bosons will occur in a normal system. A gen-
eral form of the interaction was not found as each interaction is de-
pendant on the internal state of the complex, but we can make some
observations. First we study a numerical simulation of an interaction
between a single boson in the wave packet state

Z efiqoke(kfko)2/202|k>, (3-42)

1
IG) =
) V2no? ”

where ko, qo, 0 are the initial central position, quasi-momentum, and
width of the wave packet, respectively, which collides with an immo-
bile type I complex with R = 2 shown in Fig. 3.5(a). In much the
same way that the dissipation acts to bind the bosons, it also results
in a hard core exclusion interaction between isolated bosons and com-
plexes that in this example extends over R, sites. In the case at hand
this leads to an elastic collision with the type I complex essentially
acting as a hard boundary. Using this mechanism one could imagine
a situation where two immobile complexes enclose a boson, thereby
acting as a trap.
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For the type I complex of two bosons with R. = 3 we can define an
effective complex-complex interaction for a single pair as

Hip=1lim WY > ORe+a—k—mn™nld,  (343)

W —o00
m>k{, B}

with the internal states of the complexes being indexed by «, § = [1, 2]
for the left and right complex respectively, ny = b](f”b]((“), and
O(x) is the Heaviside step function. This interaction is illustrated in
Fig. 3.5(b). The Heaviside step function puts an infinite potential bar-
rier on states which would have bosons of the two complexes at a
distance R.. The interaction only depends on the internal state of the
left complex as it is governed by the positions of the nearest bosons,
as shown in Fig. 3.5(b). For the internal state &« = 1 the bosons of
the left complex are neighbouring allowing the complexes to move
within R. — 1 of one another. Whilst for & = 2 the complexes can only
be within distance R. — 2 due to the extra site between the boson’s of
the left complex. This shows the interesting relationship between the
internal states and relative positions of the complexes when interact-
ing.

3.8 CONCLUSIONS

We have shown that in a system of hard-core bosons the interplay
between distance-selective particle loss and coherent hopping results
in rich out-of-equilibrium dynamics. The quasi-stationary Zeno sub-
space reached from an initial Mott insulator state features two fami-
lies of coherently bound complexes, that exhibit a number of interest-
ing properties, such as effective effective SO coupling, flat dispersion
relations and state-dependent interactions. Such pure systems could
be experimentally prepared in the ultracold atom lattice experiments
discussed in Refs. [109, 110].



EMERGENT KINETIC CONSTRAINTS, ERGODICITY
BREAKING AND COOPERATIVE DYNAMICS IN
NOISY QUANTUM SYSTEMS

4.1 INTRODUCTION

A central goal in the study of interacting many-body systems is to
understand settings which undergo a complex collective relaxation,
such as glass formers. These systems, under certain conditions, typi-
cally, below a certain temperature, display extremely long relaxation
times [5, 15, 111-115]. A characteristic feature of glassy systems is a
intermediary meta-stable period. One approach proposed to explain
this dynamical behaviour assumes that on the microscopic level lo-
cal transitions are only permitted when certain conditions, e.g. very
specific arrangements of particles, are satisfied. As we saw in the pre-
vious chapter, long relaxation times can be achieved in quantum set-
tings by use of the quantum Zeno effect, reducing the state space and,
by a similar logic, restricting certain configurations in the system.

The field of kinetically constrained models (KCMs) [4, 8, 15, 16,
116], as discussed in Ch. 1, has been employed as a possible expla-
nation of glassy dynamics. They typically feature a trivial and non-
interacting steady-state pss but their dynamics is found to be complex
at sufficiently high densities or low temperatures as severe restric-
tions are placed on the allowed pathways that connect different many-
body configurations. This causes their approach to equilibrium to be
highly intricate and often result in the emergence of meta-stability [8,
13-16], leading to their application in glasses and supercooled liquids.

Kinetic constraints are in practice achieved, for example, by the
energetic suppression of straightforward rearrangements forcing the
remaining transitions to assume a highly cooperative character. De-
pending on the specific mechanism, KCMs can be grouped into classes
[15]. One set of examples are constrained dynamic lattice gases [117,
118], where a particle’s diffusion, by hopping, is hindered by its neigh-
bours, mimicking excluded volume in dense fluids. Another instance
is given by facilitated spin models, such as the so-called East [14] and
Fredrickson-Andersen (FA) models [13], in which a spin’s ability to
change its state depends on the configuration of the ones nearby, for
both pss o e BN where N is the number of excited (up) spins and f
is the inverse temperature

Despite their success in capturing hierarchical relaxation, it was
only very rarely possible to derive kinetic constraints from first prin-
ciples and they appeared to remain an effective construct [120]. It was
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€1 €9 ‘—Q ] o wma]' < Fmax‘

Y>>0

Figure 4.1: Connectivity of the configuration space. Without noise (left), i.e.,
dephasing rate y = 0, classical configurations, |G ), shown as cir-
cles, are connected to each other by Hg with coupling strength
x Q. In this example Hc is constructed such that the energy land-
scape in configuration space is separated into two plateaus with
energies €1 (red) and e (green). This choice leads, in the pres-
ence of strong noise (right hand side), to two weakly connected
spaces. The transition rates within and between the domains are
' and Tnax, respectively. For Tmax >> T this results in an (approx-
imate) ergodicity breaking. For further explanation see Sec. 4.2.
This Fig. originally appeared in Ref. [119].

recently shown however that they naturally emerge in quantum opti-
cal systems [10, 63, 121], specifically cold atomic gases, in the presence
of strong interactions and dephasing noise. In certain regimes, these
systems show aspects of the facilitation dynamics [56, 122] inherent
to the FA, as highlighted in recent experiments [57, 123]. Kinetic con-
straints moreover govern the non-equilibrium dynamics of nuclear
ensembles undergoing so-called Dynamic Nuclear Polarisation [124]
— a process used to enhance the signal in magnetic resonance imag-
ing applications. Further to that, a connection between kinetically con-
strained models and many-body localisation (MBL) in the absence of
disorder was also established [125, 126]. In Ch.5, we will also look at
their application to the study of the effect of interactions on the decay
of the MBL state in open systems [127].

In this chapter we explore the kinetic constraints that emerge in
noisy quantum systems from a more general perspective. Typically,
KCMs rely on suppressed thermal activation to induce the kind of
dynamical cooperativity mentioned above. This suppression mech-
anism is often absent in the quantum optical setting we consider.
For instance, atoms in optical lattices subject to dephasing noise are
driven towards an effective infinite temperature state. Here we show
that, nevertheless, strongly cooperative and glass-like behaviours may
emerge in this framework. The underlying mechanism hinges upon
the presence of (approximate) conservation laws. The resulting frag-
mentation of the space of states can then make even the evolution to-
wards an infinite temperature state highly complex. To demonstrate
this, we discuss an example of an effective reaction-diffusion process
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in which the interplay between these conservation laws and the lat-
tice geometry induces cooperative diffusion. This experimentally re-
alisable case displays pronounced collective behaviour, timescale sep-
aration as well as dynamical reducibility of the state space — features
that are typically present in glassy dynamics.

This work was published in Physical Review E in collaboration
with M. Marcuzzi, ].P. Garrahan and I. Lesanovsky [119].

4.2 CONSTRUCTION OF KINETICALLY CONSTRAINED SPIN SYS-
TEMS

We focus here on spin—% systems, with internal states [1), ||), ar-
ranged on a regular lattice. The L sites are labelled by an index k,
with the spin operators Gf = (o} £1i0})/2, where {0%, oY, 0%} are
the standard Pauli matrices. The coherent evolution of the spins is
governed by a Hamiltonian H = H¢ + Hg which we separate into a
"classical" and a "quantum" part. The former assumes the form

Hc = Z weng + Z —nkn] + Z i nkn)m + .. (4.1)
k#j k#Aj AL

with k,j,1 € [1,L] and where n, = O'Z oy, and uy, vij, W41 can be in-
terpreted as one-, two-, three-body interaction couplings. In general,
it can be any function of the number operators ny. Hc defines an
energetic landscape E;,, over the classical Fock configurations |Cp) =
| T T dgr ) (m=1.., -ZL) via Hc[Cm) = By [C). In Fig. 4.1,
these configurations are represented as circles and grouped in do-
mains of equal energy.

The quantum part acts as Hg [Cm) = 3 ;. @mn [Cn) and defines
the dynamical connectivity of the configurations. This is illustrated
in Fig. 4.1 where the solid lines correspond to the cases in which
amn # 0 i.e. states which are connected by the quantum Hamiltonian.
We define a generic Hamiltonian acting on a spin state as

Ho=) L +1f (4-2)
v
where
Iy =cy Q) AY v € {0}, o, i, P, I} (4-3)
k

with I being the identity operator and px = Ix —ny. Each A} is a
local operator acting only on site k, and c, are constants. This form
allows for the definition of any Hamiltonian which features no di-
agonal components i.e. each 1, features a single o;- for some k. We
require any diagonal elements to be contained in the classical Hamil-
tonian.
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We will focus on two prototypical examples: Spin-flipping, induced
for example by a laser on a two-level atomic transition which is com-
monly implemented in Rydberg atomic systems [37, 128, 129]; and
quantum tunnelling of hard-core bosons between nearest neighbours
[3, 80], which are described by the Hamiltonians

f _
H(Q) = QZ or and HS) =Q Z 0} 05, (4-4)
k (k)

respectively. Here (k,j) is shorthand for summing over the nearest
neighbours of site k, and Q is the coupling strength of the two pro-
cesses i.e. depending on the realisation: the laser Rabi frequency or
lattice tunnelling amplitude. These two processes can also be de-
fined as having: 1, = Qo for spin flipping with v = k, and ly; =
(Q/2)o} o; for the quantum tunnelling example with v = (k, j).

We consider the system in contact with an environment which in-
duces fast decoherence of quantum superpositions. We assume the
Markovian approximation, so that the evolution of the density matrix
p is governed by the Lindblad master equation, see Sec. 2.1.1, with
jump operators defined as

Lk = ﬂnk (45)

for k € [1, L] and where vy is the dephasing rate. This form of dissipa-
tion occurs naturally in cold atom lattice experiments, stemming for
example from the off-resonant scattering of photons from the optical-
trapping laser field [130], or from phase noise of the laser driving [57,
123, 131]. The dephasing rate may be tuned relative to the coherent
rates as shown in Refs. [3, 130] and briefly reported in App. A.

We look at the limit v > Q in order to project the system onto
a reduced state space. This allows for the adiabatic elimination of
Hg using the method described in Sec. 2.1.2. We start by splitting
the master equation into two terms, a dominant £y which contains
the classical Hamiltonian’s action and the dephasing, and a pertur-
bative £7 which contains the quantum terms, as Lp = (Lo + £1)p.
Lo projects the dynamics onto its steady state space, the subspace of
diagonal density matrices Pp = diag(p) = u in the |C,) basis [10,
132—-136]. Substitution of these composite parts into Eq. (2.24) leads
to the necessity of the evaluation of the object in the integral of

PLie 0 Lyp=—P Y [, e“ Ly, ull + [y, e U, 1wl (4.6)

As e“°t is acting upon states which experience a single action of 1,
it means that they will be outside the diagonal subspace. First we
decompose this into the dephasing and classical interaction terms,
efot — gLaepntelnt The dephasing term, e“drnt, will act to pull out
ae? on every off-diagonal component generated by the 1,’s, i.e.,

for every site k on which A} = Uf, according to the definition in
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Eq. (4.3). We classify the number of these terms by s. In the case of
spin flipping s = 1 while for tunnelling s = 2.

The effect of e“Ht is more complicated, but can be understood by
carefully considering the ordering with which the operators are ap-
plied. As Hc is a generic function of ny operators, it has a well de-
fined value Ey, on every classical configuration |Cy,). If we consider
the action of the two terms in Eq. (4.6) on a single configuration we
find

(eLHtlv ) <ei|) U —e—tHety, |@) (@) ettetyt
=e BRI je) (@l (4.7)
and
Ly (eLHt 1€5) (Cil ti) L TR (4-8)

We see that this acts to extract the energy difference 8E = Ef —E;,
corresponding to the final and initial energies of the transition caused
by L, respectively. Eq. (4.6) is then evaluated as

PLq eﬁotl_] W=
—PY e 2cos(8Et) ({Ly, n— (Wuly + Lyut)),
-

(4-9)

which after the integration gives a classical master equation for the
evolution of  as

4
owm=3 T (Wuty + Lmt] = {1y, 1) (4.10)

The rates I'y are configuration-dependent and read as

1 25E\?
= 1+ <sy> . (4.11)

OE can be viewed as the "energy cost" of performing the 1,-induced
transition allowing the dynamics of the system to be understood in
terms of the energetic landscape. Note that the inverse process in-
duced by llL, occurs at the same rate; therefore, Eq. (4.10) satisfies
detailed balance at infinite temperature and the steady-state distribu-
tion g is uniform i.e. oc 1 under ergodic conditions.

4.3 "HARD" AND "SOFT" KINETICALLY CONSTRAINED MODELS

According to Eq. (4.11) the rate of a transition is maximal when both
involved states are on resonance, i.e. 8 = 0. Conversely, if [6E| > v
the transition rate is greatly suppressed. This implies that depending
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on the precise form of Hc, particular processes are favoured over oth-
ers, thereby creating a constrained dynamics which favours specific
pathways in the configuration space.

In the limit [3E|/y — oo the suppression is total and the correspond-
ing transition is "blocked". Ideally, the energy differences will be ei-
ther vanishing or infinite meaning transitions induced by Hq either
take place at rate I'max = 1 or never occur (I' = 0) giving a hard con-
straint. As highlighted in Fig. 4.1, this causes the space to fragment
into disconnected parts corresponding to different energies, making
the system go from an ergodic one, where each state can be connected
to any-other by a series of transitions, to a non-ergodic one producing
a reducible dynamics, this is known as ergodicity breaking.

Necessarily, any kinetic constraint prohibiting a transition between
two configurations, |C;) #4 |C;), can only admit a hard realisation if
these belong to dynamically-disconnected sub-spaces, i.e., if there is
no sequence of allowed transitions connecting them. If such a path-
way exists, e.g. [€1) — [C€3) — [C4) — |C2), the realisation of a
soft constraint [137] might still be possible. In this case direct tran-
sitions between |C7) and |C;) cannot be forbidden but merely sup-
pressed. The maximal degree of suppression is determined by the
minimal number, q, of allowed transitions joining |C;) and |C;) and
i8 Tsuppressed/ Tallowed < 1/ q?, assuming that all allowed rates are equal.

Hard KCMs tend to live in the realm of the purely mathematical,
which focus on capturing singular aspects of a physical system. These
are used to test hypotheses that the hard constraint is at the root of
the interesting phenomena. This has been particularly important in
the study of glasses as it allows a focus on the structure of the dynam-
ics rather than the statics of the system. Soft constrained KCMs on the
other-hand are viewed as closer and more representative of physical
systems. By studying the transition of a KCM from hard to soft, in-
sight can be gained into what features persist and which properties
rely upon the rigid nature of the hard model and are thus unlikely
to be found in nature. Here, any model which may be achieved in
a hard setting can be made soft by considering the reduction in the
energy barrier on the forbidden transitions.

4.4 REACTION-DIFFUSION MODEL WITH CONSTANT BONDS

Based on the above discussion, we construct here a KCM which mim-
ics a lattice gas with excluded volume effects. This model admits a
hard realisation and is simple enough to be experimentally realisable
with cold atoms in an optical lattice [130, 138] in a range of settings
such as polar molecules and Rydberg atoms. It consists of particles
arranged on a triangular lattice which feature nearest neighbour tun-
nelling, as given by H(Qt ) in Eq. (4.4), and strong nearest-neighbour
interactions, Hc = V' }_ 5 ;) nkny. In the presence of dephasing this
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Diffusion of a polymer

Polymer

Reaction of plaquette 1L
and monomer

Monomer Plaquette

Figure 4.2: Illustrations of key processes governing the dynamics of the reac-
tion diffusion model with constant bonds. The black dots repre-
sent excitations and a thick line on the lattice represents a bond.
Arrows denote possible moves and point at the resulting con-
figurations. A polymer (top) is a chain of connected excitations,
and shown is the way in which it can diffuse across the lattice.
A plaquette (bottom-left) is formed by three excitations filling
the vertices of a triangular tile. We showcase its reaction with a
monomer. This Fig. originally appeared in Ref. [119].

leads to a stochastic process of excitations hopping with rates that
depend on the interaction strength V. By construction the number of
excitations N is conserved. Taking the limit V/y — oo introduces a
further conserved quantity, namely the number of neighbouring pairs
of excitations or bonds, B. Consequently, excitations can only hop if
doing so preserves the number of bonds between them.

Clusters of excitations become bound structures, whose dynamical
behavior strongly depends on their shape. Two primary examples
are shown in Fig. 4.2. On the top is a "polymer", consisting of two
or more excitations arranged along a chain, which can only diffuse
via slow, cooperative motion [9]. The second, on the bottom row, is a
"plaquette”, three excitations at the vertices of the same triangular tile.
The plaquette is the simplest example of an immobile structure which
cannot diffuse by itself, since any hop would result in the net loss of a
bond. It can, however, react with "monomers", isolated excitations, or
other mobile structures. This leads to an assisted diffusion which is
reminiscent of the strongly cooperative motion found in many glassy
models [8, 13—-16].

Interestingly, N and B do not exhaust all the conservation laws of
this model. There are additional, subtler ones that further split the
space of configurations. The easiest way to realise this is to consider
the case N = B = 3, which encompasses all possibilities of placing a
single plaquette in the lattice: since plaquettes are unable to move on
their own, all these states are dynamically disconnected. This finer
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e  equilibrium

X cluster
O  polymer
15

Figure 4.3: Stationary plaquette density IP(t — oo) against the number of
bonds B for a 10 x 10 lattice with N = 10, obtained via two differ-
ent averaging procedures: black dots are calculated from a uni-
form random sampling of configurations at fixed (N, B). The re-
maining data points are averages over different realisations of the
dynamics via a kinetic Monte Carlo procedure, differing by the
initial condition: (green crosses) a single maximally compact clus-
ter plus monomers, (red circles) a single polymer plus monomers.
The inset shows how the cluster present at B = 13 can react with
a monomer and the one at B = 12 with a dimer. The numerical
error here is smaller than the size of the markers and thus is not
displayed. This Fig. originally appeared in Ref. [119].
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structure is generally related to the formation of immobile clusters
and thus emerges at high numbers of bonds B 2 N. This is exempli-
fied in Fig. 4.3, where we compare results obtained from dynamical
simulations with estimates based upon assuming that the steady state
is an equilibrium "microcanonical shell" at fixed (N, B). Without this
additional dynamical reduction, the two predictions would coincide.
Shown is the plaquette density IP = (# of plaquettes/2L) in a 10 x 10
lattice with N = 10 excitations and values of B from 0 to 17. The black
dots are averages obtained from uniform random samplings of states
at fixed (N, B). The other data sets correspond to long-time values of
P extracted from kinetic Monte Carlo simulations of the dynamics.
The initial conditions are chosen either to have all bonds taken by a
single polymer structure (red circles), which is only possible up to
B = N—1 =9, or to have all bonds taken by the smallest possible
cluster (green crosses). In both cases, the remaining excitations are
introduced as monomers.

At sufficiently low numbers of bonds there are no appreciable de-
viations; furthermore, the result does not depend on the choice of the
initial condition, which shows that most configurations with the same
(N,B) are dynamically connected. For B = 12 and 16, however, the
"cluster initialisation" displays a higher stationary plaquette density
than the naive equilibrium value. For instance, the initial cluster at
B = 12 is chosen to be the "filled hexagon" displayed in the top-left
corner of Fig. 4.3. Monomers cannot react with it, since each of the
outer excitations form three bonds. In order to break it apart, the assis-
tance of a dimer, or longer polymer, is required. Therefore, for B = 12
this structure is inert, while the remaining monomers explore the rest
of the lattice via ordinary diffusion. Note however that adding bonds
does not necessarily make a structure less prone to dissolution: for
B = 13 the initial cluster can react with monomers via the mecha-
nism displayed in Fig. 4.3, starting from the top-right configuration.
Other examples of "protected” states causing ergodicity breaking are
system-spanning configurations, such as a ring of neighbouring exci-
tations which loops around a cylindrical or toroidal system. However,
in general these are only encountered at high densities.

The presence of complex structures which cannot move by them-
selves and can only undergo assisted diffusion results in a separation
of timescales in the dynamics. Displayed in Fig. 4.4 is the evolution
of the imbalance

I(t) = Z () — ()12, (4.12)

(k.j)

a measure of the non-uniformity of the system, and the plaquette
density IP(t) as a function of time for a 20 x 20 lattice, N = 10, and
prepared at t = 0 in a single-polymer state with B = 3, 4, 8 and 9.
These configurations are able to explore the entire lattice and thus
to restore translational invariance at sufficiently long times, implying
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Figure 4.4:
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Dynamics of the imbalance I (solid) and plaquette density IP
(dashed) for a 20 x 20 lattice with N = 10. All cases are ini-
tialised with a single (B + 1) polymer and N — B — 1 monomers
for B = 3,4, 8 and 9. The relaxation time increases with B. At low
B, the plaquette density overshoots its stationary value and corre-
spondingly the decay of the imbalance speeds up. This highlights
the advantage in liberating monomers (or smaller structures) by
forming plaquettes. The subsequent assisted diffusion of plaque-
ttes acts on much longer timescales and eventually reduces IP to
its stationary value. The shaded area marks the separation be-
tween two regimes in the dynamics, the earliest dominated by
plaquette creation and monomer diffusion, the latest by assisted
diffusion of plaquettes. The errors on I and IP are of order 107>
and 10~°, respectively. This Fig. originally appeared in Ref. [119].
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I(t — oo) — 0. The early dynamics is dominated by diffusion of
the original structures and the formation of plaquettes. For the low-B
cases, around t ~ 10y/Q? the plaquette density reaches its maxi-
mum, which is higher than its stationary value. Correspondingly, the
imbalance relaxation speeds up, which can be understood as follows:
the formation of clusters such as plaquettes breaks down polymers to
shorter ones, which display higher mobility and diffuse faster. For in-
stance, for B = 3, once a plaquette is formed an additional monomer
is released (see Fig. 4.2) and monomers are the most efficient objects
at exploring the lattice. Consequently, the higher the plaquette den-
sity, the higher the rate of relaxation of the imbalance. On longer time
scales, further plaquette-monomer reactions relax IP to its actual sta-
tionary value. The separation of time-scales of the different dynamics
present in the system is another example of this system’s constrained
behaviour.

4.5 FACILITATED SPIN MODELS

We now consider the application of our model to the most well known
KCMs, the FA and East models [15]. Both feature facilitated spin flip-
ping, H(Qf ) in Eq. (4.4), whereby an excitation (up spin) enables the
flipping of its neighbours e.g. 11]=1]] (whereas |1/#/]]). In the
East model, facilitation is further constrained and can only take place
to an excitation’s right. Neither model admits a hard realisation. To
see this we consider the transition 1/]]—1/1] which must be forbid-
den in both models. Both configurations can however be connected
via a sequence of allowed steps 1T/Jl—=TTIL—=TTTL=TIT4.

The FA model still admits an obvious soft realisation by choos-
ing Hc = VZk Ny (1 _2nk—|—1 /3) such that I—‘suppressed/rallowecl Z 1/9.
When simulated the basic behaviour is observable, but the suppres-
sion is not sufficient to appear hard.

For the facilitated dynamics inherent to the FA and East models
to display glassy features, it is crucial that the density of excitations
remains low. Conversely, under Eq. (4.10) the state invariably evolves
towards equilibrium at infinite temperature, which poses a severe
restriction to its applicability in this case. Introducing additional noise
sources however might provide a way around this problem, as it may
change the nature of the stationary state [10, 64, 122, 131, 139] an
example of this is studied in Ch.6.

4.6 CONCLUSIONS

Kinetically constrained models were originally introduced to capture
the basic properties of slow-relaxing materials, yet have largely re-
mained an idealised construct. Here we have shown that in the pres-
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ence of strong noise these constraints emerge rather naturally in the
dynamics of open quantum systems.

The construction employed in this chapter results in effectively
classical models which are realisable in experiment. The interesting
question is however the behavior of those changes when quantum
coherence is not entirely washed out by the noise. This could be sys-
tematically addressed in an experimental realisation of the discussed
reaction-diffusion model with cold atoms in lattices [109, 140, 141],
thereby providing a handle for exploring quantum effects in glassy
relaxation [142, 143]. This could also shed light on the interplay be-
tween quantum and classical fluctuations on collective phenomena,
as e.g. recently discussed in [144, 145].



ROLE OF INTERACTIONS IN A DISSIPATIVE
MANY-BODY LOCALISED SYSTEM

5.1 INTRODUCTION

Constrained systems, as we have shown, often feature ergodicity break-
ing. A prime example of this same phenomena is that of many-body
localisation (MBL). MBL stems off the field introduced in quantum
systems originally with Anderson Localisation [146, 147]. One of the
key identifiers of a localised system is a signature of its initial state in
a local observable that persists for infinite time. Localisation is typi-
cally achieved in quantum systems via the introduction of a random
field, e.g. a field that is randomised over space for each iteration of
the ensemble, which prevents the system from thermalising. Ander-
son localisation and other studies have focussed on non-interacting
particle systems and as such can be understood via single particle
considerations. MBL features interacting particles and current evi-
dence suggests that the same localisation phenomena is observed.
The MBL phase exists in many-body quantum systems in the pres-
ence of quenched disorder, featuring a transition between an ergodic
and a many-body localised phase [148-152]. While the transport prop-
erties of the MBL phase are still debated [153] it is generally accepted
that it is characterised by a slow growth of entanglement entropy
[154-157], and ergodicity breaking which has been observed in nu-
merical studies [152, 158, 159] and experiments [145, 160-162]. Theo-
retical studies have focussed on one-dimensional models and there
is experimental evidence of the MBL phenomena existing in two-
dimensions [145, 161]. For a general review of MBL see Ref. [86].

While most literature has focused on closed quantum systems, the
open nature of the cold atomic ensembles used in recent experimen-
tal observations of MBL calls for an understanding of the effect of
dissipation on the MBL phase [163, 164]. In Ref. [165] a chain of in-
teracting fermions in contact with an infinite temperature dephasing
bath was studied numerically. At conditions where the closed system
would be in the MBL phase, a slow approach to the infinite tem-
perature state was observed in the open system, characterised by a
stretched exponential decay of self-correlations. Stretched exponen-
tial behaviour was confirmed analytically in Ref. [166] in terms of a
non-interacting (Anderson) system, valid for large disorder. Similarly,
in Ref. [167] the scaling properties of the same system were studied in
the large disorder limit, finding independence of the dynamics from
interactions.
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A central question is therefore whether interactions play any role in
the relaxation to the ergodic state due to dephasing in an otherwise
MBL system. In this chapter we address this question by studying
the dissipative dynamics of a disordered XXZ chain in its MBL phase
[165]. Through the application of the technique described in Ch. 4
we show that depending on the interaction strength the system ex-
plores two different regimes within the MBL phase. We observe a
crossover from a disorder dominated regime to an interaction dom-
inated regime, whose observable signature is a change in behaviour
of the self-correlators from a stretched exponential to a compressed
exponential dependence with time. This latter behaviour is due to the
nucleation and growth of relaxing regions. A crossover of this sort is
often the manifestation of non-equilibrium and aging behaviour in
soft matter and glassy systems [7, 168-171].

The work presented was published in Physical Review B in collab-
oration with E. Levi, I. Lesanovsky, and J.P. Garrahan [127].

5.2 THE MODEL

We consider a paradigmatic MBL system, the disordered XXZ chain
in a spinless fermion description in one-dimension for L sites,

L
= Z (ckck+1 +ck+1ck> +V Z Ay + Z hifi, (5.1)

where é}: is the fermion creation operator, fiy = élék, and the ran-

dom field hy € [—h,h] is independently drawn for each site from
a uniform distribution. This model exhibits an MBL transition for
he/] ~ 7.2 [152, 157, 172] when V = ]. The dependence of the transi-
tion point on V has yet to be fully evaluated.

We couple the system to an infinite temperature Markovian dephas-
ing bath with weak coupling meaning the dynamics is described by a
Lindblad Master equation, see Sec. 2.1.1, with jump operators defined
as

L = yfy (5.2)

for k € [1,1] and where v is the dephasing rate. This form of dephas-
ing and Hamiltonian is experimentally relevant, as it can be derived
from microscopic principles for experiments on both cold fermionic
[130] and hard-core bosonic gases [173].

The dephasing is caused by the off-resonant scattering of photons
forming the lattice potential, and the dissipation rate y is controlled
by the detuning and intensity of the trapping laser as discussed in
App. A. The dynamics conserves the fermion number and in what
follows we will focus on the half-filling sector i.e. Z{;:] n,e = L/2,
where we assume an even number of sites.
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5.3 RATE EQUATION DESCRIPTION

In Ref. [165] it was observed that the decay of the imbalance collapsed
when time was rescaled according to v, implying that the properties
of the decay are independent of the value of y. This means for times
t > 1/y the master equation may be reduced to a classical master
equation, using the technique described in Sec. 4.2, for either the sit-
uation of large dephasing, v > ] [10, 119, 122, 133, 174] or large
interactions and/or large longitudinal fields, V,h > ] [167]. This ef-
fective dynamics describes the evolution of the diagonal elements of
the density matrix p, when expressed in the o* basis. Expressing
the diagonal as a vector, [p) = ) P« lx), where |x) represents the
L!/(L/2)!? Fock states in the half-filling sector [167], the master equa-
tion reduces to [119]

L

aT\p> = Z rk |:éTkék+‘| + éLJr] ék - .j\)k] |P> (53)
k=1

where Py = fiy + g1 — 2k 1. Eq. (5.3) describes classical hop-
ping of particles on the lattice, with a rescaled time T = J>yt/h? [166,
167]. The rate of hopping between sites k and k + 1 is given by
h2
rk - 27
Y2+ [V (2 — k1) + Ahyd

(5-4)

where Ahy = hy1 —hy and ny = Tr(fi |p)) is the total probability of
having an excitation on site k. In the following we will fix the energy
scale to y = 1. The rates Iy are configuration-dependent, as shown in
Fig. 5.1(a) and act as a kinetic constraint [10, 119], as often encountered
in systems with a complex relaxation dynamics, like glasses [116].
The form of the rates I'c does not determine the properties of the
stationary state, but rather the relaxation pathways.

For each iteration, the rates ' between any two configurations
are random due to the field hy. The specific distribution of these
rates depends on the strength of the interactions and on the specific
transition under consideration. We consider the distribution of these
rates of transition shown on the left hand side of Fig. 5.1(a) between
sites k and k + 1 as they represent the two primary configurations. In
both cases, the hop will result in a change of energy of £V, the sign
depending on the direction, plus the difference in the random field,
Ahy = hyy1 —hy. We focus on the +V case, with the opposite sign
following an identical argument, meaning that the rate is given by

hZ
Nc=9g(Ah) = ————. .
k=9 14 [V + Ahy)? 55)
The distribution of Ah is defined as
P(Ah) = —(2h—|Ah|), with Ah € [-2h,2h]. (5.6)

m2
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Changing variables as

plgy' (Ms), (5.7)

where

. h2
g (Mx=V=+ K_L (5.8)

and the limits of I, are defined as

hZ
e [H—(Z]’L—i—\/)z’]] . (59)

To resolve Eq. (5.7) we need to consider the value of V in comparison
to that of 2h. For V < 2h the inverse function is multivalued in the
region Ah € [-2h,2h —2V] meaning that s in Eq. (5.7) needs to be
summed over. In the region Ah € (2h —2V,2h] on the other hand
the inverse function is single-valued only having a contribution from
g\_,] (I'c)+. This gives the distribution of the rates as

h? h?
— T —
1+ (V+2h)2 1+ (V—2h)?2

o)

2
h <Ir«it:

T+ (V—=2h)2 ©
V—U%—] ), (5.10)

where 1/A(T") = 8h?T3/2,/T—T. This means the distribution is bi-
modal for V < 2h, with a peak at I'/h? = 1 resulting from when the
random field exactly cancels the interactions field, and another peak,
which for V <« 2h is found at I'/h? ~ 4/(3h)2.

For V > 2h the inverse function is never multivalued meaning that
the distribution is only defined by the first line of Eq. (5.10) with a
single peak which for V > 2h is found at ' ~ V~2. This implies
that with increasing V the dynamics becomes slower. Crucially, as
will be discussed later, the fast processes present at V < 2h disappear
hinting at different dynamical regimes. The form of P(T") for these
configurations is plotted in Fig. 5.1(b) for various values of V.

if

P(I") = A(T) <2h—

if

1

P(r) = A(T) <4h— V-

5.4 DISTINCT DYNAMICAL REGIMES WITHIN THE MANY-BODY
LOCALISED PHASE

To explore the relaxation dynamics we focus on the case in which
the initial state is the charge density wave (CDW) state, [p(T=0)) =
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Figure 5.1: (a) The dependence of the classical hopping rates I, on the con-
figuration. We denote with e and o the occupied and empty
states respectively. (b) The normalised probability density func-
tion of rates y/2/VP(T') is displayed for different values of the in-
teractions and h = 10. The unnormalised distribution is depicted
in the case V = 0. This Fig. originally appeared in Ref. [127].

loeoce..oe), with o,e denoting empty and occupied sites respec-
tively. This initial state is ideal as every occupied site is capable of
hopping but at the cost of now interacting with a neighbour and is
translationally invariant. It is also relevant to recent experiments [145,
160-162]. The ergodicity properties can be quantified by the evolution
of the imbalance, as was also used in Ch. 4,

T =2 Y (1= Y Ao -1, (5.11)
k

L
k
which gives a direct readout of the self-correlations.

We simulate Eq. (5.3) with kinetic Monte Carlo, see Sec. 2.2, averag-
ing over disorder and measure (II), examples of which are shown in
the inset of Fig. 5.2. The decay of (II) becomes slower for increasing in-
teractions. We quantify this slowing down by defining the saturation
time T such that (I(T)) = e~2. As shown in Fig. 5.2, we observe two
different regimes: For V < 2h the saturation time shows little depen-
dence on V, while for V > 2h it increases rapidly with the interaction,
signalling a slowdown of the dynamics. The inset shows that in the
region V < 2h, T is approximately independent of V but the shape of
the relaxation still varies.

Our data is well fitted by the function (I(t)) ~ exp {— (T/T)B}.
This form is motivated by the analytical arguments below. The re-
sults on the exponent 3 and the time-scale T are reported in Fig. 5.4
and Fig.5.3. We find that at V ~ 2h the relaxation of the imbalance
switches from a stretched exponential behaviour (3 < 1) to a compressed
exponential behaviour (3 > 1) (see Fig. 5.4).

A stretched exponential occurs when a system is governed by a
distribution of exponential decays. So the "faster” decaying terms will
finish quickly leading to an initial rapid relaxation followed by a long
tail of slowly decaying processes. This behaviour is commonly ob-
served in glassy systems and the relaxation of disordered systems [4,
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Figure 5.2: Plot of the dependence of the relaxation time (I (T)) = e~
the interactions V for various values of the disorder h for a chain
of length L = 1000 averaged over 10000 realisations of the dis-

order. The inset shows the relaxation dynamics for h = 10, and
different values of V < 2h. Standard errors are below the line

width. This Fig. originally appeared in Ref. [127].
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Figure 5.3: Plot of the time-scale T as a function of V for different values of
h for a chain of length L = 1000 averaged over 10000 realisations
of the disorder. The analytical value in the limit of strong interac-
tion T = 0.32V#/3 is shown. In the inset the comparison between
the small particle loss limit k = 10~*y (red), and the k = 0 case
(black dashed) is displayed. Standard errors are below the line
width. This Fig. originally appeared in Ref. [127].
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Figure 5.4: Plot of the dependence of the exponent (3 on V displayed for var-
ious values of h for a chain of length L = 1000 averaged over
10000 realisations of the disorder. The crossover between < 1
and 3 > 1 at V ~ 2h is highlighted by a vertical line. The analyt-
ical values obtained for large and vanishing V are displayed as
solid lines in the relevant regimes. Standard errors are below the
line width. This Fig. originally appeared in Ref. [127].
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Figure 5.5: Plot of the dependence of the exponent 3 on V/h for h = 10
displayed for various lengths of the chain, averaged over 10000
realisations of the disorder, alongside the effect of a small particle
loss k = 10~*y. Standard errors are below the line width. This
Fig. originally appeared in Ref. [127].

175]. Compressed exponential behaviour is often described as "caged"
or "collective". Its hallmark is a slow initial decay followed by a rapid
relaxation. This tends to occur when there is a slow initial process
that has to first take place before a rapid relaxation can occur. This
behaviour is observed in soft glassy matter systems under special
conditions [7, 175, 176].

Despite the rapid increase in 3 at V ~ 2h which suggests a sharp
acceleration of the dynamics, the increase in the time-scale T com-
bines to give the slowing down observed in Fig. 5.2. The minimum in
T at V ~ 0.3h in the numerical results, and the large V behaviour are
compatible with the results in Ref. [166]. A finite size study for the ex-
ponent 3 is shown in Fig. 5.5. Although in the stretched exponential
regime (V < 2h) finite size effects have a marginal impact, in the com-
pressed exponential regime (V > 2h) they cause a saturation of the
exponent to lower values. The origin of this behaviour will become
clear below.

5.4.1 Low-interaction regime

When V « 2h the dynamics is dominated by disorder. For this study
we will assume the limit of V = 0. In this case, the long time dynam-
ics is characterised by large portions of the chain in which the system
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has relaxed, giving null contributions to the imbalance, with isolated
non-relaxed pairs corresponding to those with the largest Ahy. The
approach of (I(t)) to equilibrium is first governed by these fast pairs
and then the slow pairs. We study the dynamics of slow pairs by fo-
cusing on, sites k and k 4+ 1 with a single excitation between them
with relaxed neighbours serving as a bath i.e. the slow pair is neigh-
boured by fast pairs. That is, we set nys for k’ > k+1 and k’ < k.
This setting is sketched in Fig. 5.6(a).

The population on a single site is found by (ny) = ny = Tr(fik Ip)),
where we consider an initial condition of n,(0) = 1 and nx 7 = 0.
Since the dynamics conserves the number of excitations we set py4 =
pyy = 0. This leaves the evolution of the population as

nk = Tr(AkPr+10<[p)), (5.12)
where Py =1 —1i. Using Eq. (5.3) gives
N = N1 (M- — ) + Ne (Mg — 1) (5.13)

We set ny_1 and ny» to the stationary average, 1/2, and obtain the
equations for the density of the pair as

) 1
Nk = Ny <2 _nk) + T (Mg — 1), (5.14)
1
M1 = Ne (M —Ngeg1) 4+ Negr <2 —nk+1> . (5.15)

Which can be expressed in terms of the local imbalance Iy = nyy1 —
ng giving

iy = 2R a4 el > Bt
In this case, the rates in Eq. (5.4) depend only on the difference of the
random fields on the sites they are connecting. The rates associated to
two contiguous links, e.g. [ and Tl 1, are therefore not statistically
independent, since they both depend on the field on the site they
share, but those of links further apart are i.e. when solving Eq. (5.16)
we treat Ic_1 = 41 =T, This gives

— (M1t — Me—1nye) (5.16)

(I (1)) = Jdrkdr'P (R, T7) e~ 2Nt (5.17)

where P (I, T’) is the joint probability which can be expressed in a
form for numerical integration as

P(rk/ r/) =
1
8h3

h , hZ
dhy dh dh’ 6 (Tx—
Jh ko et < T (e _hk)2>

/ h?
ST — , .18
< 1+(h/—hk+1)2> (5.18)
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where h’ is the random field on the relaxed sites. Numerically integra-
tion of Eq. (5.17) gives a stretched exponential behaviour. In Fig. 5.4
the results on 3 obtained by fitting are compared with the numerical
data in the weak interaction regime, showing good agreement. The lo-
cal imbalance is a good approximation of the total imbalance in this
regime as slow relaxing links are rare in comparison to fast relaxing
ones meaning that slow pairs will be far enough apart on average to
be considered independent.

5.4.2 Large-interaction regime

In the V > 2h limit, when starting from the CDW state the first
step always costs V + Ahy. This sets the time-scale ~ V? to observe
the transitions of the kind |...cecece..) — |..cecocee..). This cre-
ates a pair of holes and occupied sites, which each contribute zero
to the imbalance. We pair off the lattice in this way and coarse grain
it such that we instead label states by their contribution to the im-
balance i.e. [oe) — [1), [oo) — [0), |ee) — |0), and |eo) — |—T1). The
above transition can then be written as [1,1,1,1) — [1,0,0,1). We
refer to these transitions as nucleation events, as further transitions,
e.g.|..oecoee.) —|.00cecee.)or|1,0,0,1) —0,—1,0,1) are in-
dependent of V, which in the large-interaction regime makes them
rapid events. These nucleation events happen at a homogeneous rate,
I ~ 2(h/V)?, across the lattice. A nucleation event will either create
two |0) sites or a |—1) site, but the two are translationally equivalent
and they only need to be separated when interactions between two
nucleation events are considered.

Once a nucleation event has occurred the process [0,1) = |-1,0),
and [1,0) = |0,—1) are possible with the non-interacting rate ', =
h?/(1 + AhZ). This pair of reversible processes implies that the [0)
sites can be treated as random walkers, which when moving away
from each other create a growing region of |—1) sites. The site de-
pendent differences between these rates are small for the time-scales
we are considering (V > 2h), and we will assume a constant rate I%.
When averaged over random realisations the region between the |0)
sites expands following the law (Ge(T)) ~ /TeT, contributing a net
zero imbalance since the sites falling in this region are now equally
likely to be a [1) or |—1). There are no possible interactions between
neighbouring [1) states, nor between neighbouring |—1) states. The
interaction between neighbouring 1) and |—1) states will be detailed
in Sec. 5.5 where they are a relevant process.

This growth dynamics together with the initial nucleation events,
reminiscent for example of a crystallisation process, is well described
by the so-called Avrami law [177-181]. Here we give a sketch of the
derivation in our case. The average number of nucleation events up to
a given time (v(7)) is then found by integrating (v(t)) = LI},/2. Not
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accounting for overlap of the expanded regions, the total number of
transformed sites, i.e. pairs which contribute 0 to the imbalance, is

(N(T)) = L dt (3(1) (Ge(r—1). (5.19)

This dynamics is sketched in Fig. 5.6(b) for a single expanding re-
gion of transformed sites. Overlaps are excluded by assuming the
increment in transformed sites d (L) is proportional to d (N) mul-
tiplied by the probability of not having an already transformed site
(1—2(Ly) /L), giving

2(Le(0)) 2 = (h\? 3
L 1 —exp [3\/E (v) T ] (5.20)

Initialising our dynamics in the CDW the imbalance at a given time
is found as (I(t)) =1—2 (Ly(7)) /L, leading to

(I(t)) =exp (;)3 (5.21)

with T = (V/h)*/3(3/21/G¢)?/3. This shows the compressed exponen-
tial behaviour with exponent 3 = 3/2 observed in Fig. 5.4 with the
functional dependence of the time-scale T ~ (V/h)*/3 for large V/h
also being confirmed by our numerical results in Fig. 5.3.

This picture breaks when the time between nucleation events be-
comes comparable to the time taken for a single one to expand to the
system’s length. In this case we consider the expansion of a nucle-
ated region as instantaneous and the imbalance as fully relaxed after
a single nucleation event. In a single realisation we then model the
imbalance as I(t|t’) = 1 —0(t—1’), where 1’ is the time at which the
first nucleation event happens. The probability of nucleation at this
time is given as t(t’) = Lexp (—Lt’/V?) /V?, such that the imbalance
averaged over realisations is

(I(7)) = Jd’t/ ni(t") I(tt’) = exp <—\L/§> (5.22)

This is the origin of the strong size dependence of the dynamics for
large V, such as the saturation of the exponent 3 to 1 in Fig. 5.5 in for
e.g. a system of length L = 10.

5.5 PARTICLE LOSS

In atomic experiments, additional to dephasing a common source of
noise is that of particle loss from the lattice due to imperfect trapping
and heating from the surrounding cloud. This corresponds to the ad-
dition of the process |¢) — [o), which is modelled in our effective
description by adding to the r.h.s. of Eq. (5.3) the term

h? &

]Tka:] (& — 1), (5-23)
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Figure 5.6: (a) An illustration of the non-interacting limit is displayed: The
focus is on the sites k and k + 1, while sites k — 1 and k + 2 serve
as a bath in the relaxed state. Two contiguous rates are statisti-
cally correlated since they share the value of an on-site random
field. (b) A cartoon of the nucleation and expansion of a trans-
formed region in the strongly interacting limit. The transformed
and untransformed regions are depicted respectively in red and
blue. This Fig. originally appeared in Ref. [127].

where « is the loss rate. Loss acts to relax the local imbalance to 0 in
a non-collective manner by reducing the number of particles in the
system. For k > yJ?h~2 the imbalance decays as I ~ e~ <!, and none
of the above features survive. In contrast, for k < yJ?h~2 only the
nucleation-expansion dynamics is significantly modified: decay acts
as a nucleation event i.e. [1,1,1) — [1,0, 1). In this relaxation process
the states |1) and |—1) will interact following the rules |-1,1,1) =
-1,-1,1), |-1,1,0) = |-1,-1,0), note a [1,1,—1) = [1,—1,—1) is
slow as the transition involves a change in energy of V.

The nucleation by decay is dominant when k > yJ?/V?2. This af-
fects marginally the value of the compressed 3, but results in a satu-
ration of the time scales T, T for large enough V, see Fig. 5.5 and the
inset of Fig. 5.3.

5.6 CONCLUSIONS

In this chapter we have considered the effect of interactions on the
dynamics of a MBL system subject to dephasing noise. We found two
relaxation regimes, one dominated by disorder, and one dominated
by the interactions. The physical manifestation is a crossover in the de-
cay of time correlators, from stretched to compressed exponential in
time. While the stretched exponential regime was expected for weak
interactions [165, 166], the crossover to compressed exponential is a
new prediction and as it requires large system sizes was not observ-
able before in quantum simulations. These results could be confirmed
via experimental analysis in systems akin to those in Ref. [162, 182,
183]. This again shows the constrained dynamics present in noisy
many-body quantum systems, and using the techniques described in
the previous chapter has provided answers to debated topics.
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ATOMIC LOSS AND GAIN AS A RESOURCE FOR
NON-EQUILIBRIUM PHASE TRANSITIONS IN
OPTICAL LATTICES

6.1 INTRODUCTION

In nature, stochastic systems are ubiquitous and of particular interest
are those which feature collective behaviour. A key example is in the
field of continuous phase transitions, where the collective behaviour
and the resulting long-range correlations are governed by the sys-
tem’s symmetries rather than its microscopic details. This allows for
systems which share these reduced sets of symmetric properties to be
placed in what are called universality classes. Although the systems in
one class may be strikingly different in their origin and microscopic
nature, their behaviour about their phase transitions is universal, in
the sense that the scaling behaviours of observables around the criti-
cal point are the same throughout the class.

6.1.1 Directed Percolation

For non-equilibrium systems, the universality class of directed perco-
lation (DP) [87] holds particular significance. DP is considered one
of the simplest non-equilibrium classes found in stochastic systems,
describing critical phenomena in the fields of biology, physics, chem-
istry, economics, etc. DP has the following required properties of each
member of its class:

* An absorbing state transition - an absorbing state is one which
once the system enters it cannot leave. This means that all DP
models are non-equilibrium as they do not satisfy detailed bal-
ance.

* Competing processes - members of the class have two or more
competing processes which have the quality of one set pushing
the system towards the absorbing state and the other pushing
away from it.

* A one-component order parameter - it requires that the system’s
state, with respect to the phase transition, be characterised by a
single scalar value, e.g. the magnetisation of an Ising chain.

e Short-range interactions - the interactions must decay sufficiently
fast as to not change the extensive nature of the energy.

* No additional symmetries.
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Figure 6.1: (a) Illustrations of the contact process branching and decay
events. b is the branching rate, taken relative to the decay rate
set to 1. (b) Shows possible trajectories of the a contact process,
with states connected to the absorbing state shown. When a tra-
jectory enters the absorbing state the dynamics ends. (c) Shows
the transition of the contact process from and inactive to an ac-
tive phase measured using the order parameter of average active
site density (n) as defined in the text.

The DP phase transition is between an active and inactive phase, an
illustration of which is shown in Fig. 6.1(c). On the inactive side, the
processes which force the system into the absorbing state are domi-
nant which causes the stationary state to be exclusively the absorb-
ing state. In the active phase the rate of the processes pushing away
from the absorbing state are dominant resulting in the stationary state
no longer being the absorbing state but remaining in a dynamically-
active phase.

A well known member of the DP class is the contact process [87,
184, 185]. The contact process can be applied to many models such
as water percolation in granular media under the effect of gravity
and epidemic models. The model features systems with a lattice of
spin-1/2 particles with states, [) and ||). These sites undergo two
processes: branching and decay as shown in Fig. 6.1. Branching is
when a [1) facilitates the excitation of a neighbouring ||); Decay is
when a [1) transitions to a [} ), i.e

NS TE S ST (6.1)

respectively, with b being the branching rate considered relative to
the rate of decay set to 1. Crucially the transition ||) — [1) may only
occur by the facilitation from a neighbouring 1-state. The absorbing
state is thus where all sites are in a ||) state. The branching process
attempts to maintain a population of [1)’s and if its rate is sufficiently
high it can do so, constituting the contact process’s active phase. The
phase transition from an inactive to active phase of the contact pro-
cess is observed in the density of the [1)’s i.e. n = } | nx/L where
Ny = [Tx) (tkl and L is the number of sites, as shown in Fig. 6.1(c),
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where (n) is the average of n over many trajectories. The phase tran-
sition is only strictly true in the limit of a infinite sized system at
infinite time. For a finite system it is always possible for a fluctuation
to occur which removes all excitations, therefore making the active
phase unstable, meaning the length of time to run a finite simulation
has to be carefully considered.

The nature of the phase transitions of universality classes are char-
acterised by critical exponents applied to both the stationary and dy-
namical properties of the transition [87]. For DP these critical expo-
nents are irrational and cannot be calculated analytically for dimen-
sion 4 or less. This has lead to most of the study of DP to be done
numerically. Full experimental verification in all dimensions has yet
to be achieved as these systems have proven to be very sensitive to
quenched spatial disorder and to perturbations breaking the absorb-
ing property of the empty state. Success was found in one and two
dimensions [186, 187].

6.1.2 Atomic systems and DP

With the improvements in atomic experiments, the quantum simula-
tion of complex non-equilibrium models is achievable, examples of
which we have already seen in previous chapters. In this chapter we
introduce a new scenario for the study of out-of-equilibrium phases
and phase transitions with Rydberg atoms. The setting presented con-
sists of a background gas, acting as a large reservoir, from which
Rydberg states are only excited at given spatial positions which are
arranged in a regular lattice, as produced, e.g., by employing spa-
tial light modulators [188]. Atoms from the background dynamically
enter and leave these excitation spots. In conjunction with the laser-
excitation and the strong inter-atomic interactions this local loss and
gain dynamics leads to the emergence of non-trivial many-body dy-
namics.

We show that the system possesses compatible static critical ex-
ponents with DP in multiple dimensions. In the presence of strong
decoherence the loss and gain dynamics creates an absorbing space,
rather than the usual single absorbing state which leads to a partial
loss of universality [87]. This unusual behaviour, to our knowledge,
has never been observed or considered in an open quantum system.

The presented scenario could be implemented in two rather dif-
ferent settings: first, a lattice of optical traps is immersed in a cold
cloud of atoms and the traps are continuously filled and depleted
[189]. Current experiments aim at progressively slowing down this
local dynamics by, for example, reducing the pressure of the back-
ground gas or increasing the strength of the optical confinement [45,
190, 191]. These attempts could be relaxed and, in principle, the set-
up could be "worsened" to the point that the timescale of the loss/-
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gain dynamics becomes comparable with the other relevant dynami-
cal processes. The second experimental setting consists of hot atomic
gases confined in thermal vapour cells. Recently it has been shown
that they allow for the observation of correlated many-body dynam-
ics [57, 69] when Rydberg states are excited. Our envisioned set-up is
then realised by restricting the laser excitation to a regular array of ad-
dressed spots. Thermal motion would move atoms in and out of these
laser-illuminated regions, yielding the desired loss/gain dynamics.

Beyond introducing additional dynamical processes the consider-
ation of local atom loss and gain might actually relax a number of
challenges that are currently faced by experimentalists when study-
ing collective many-body behaviour in dissipative Rydberg lattices.
It might also simplify the modelling of Rydberg gases in which typ-
ically radiative decay is accounted for as a dominant decoherence
mechanism:

(i) It is not necessary to have: (uniformly) deterministically loaded
lattices, equal lattice confinement of ground state and Rydberg
atoms, and very low temperature states. In fact it is required
that atoms are not trapped over an entire experimental run.

(ii) One can employ very strongly interacting and high-lying Ry-
dberg states that are typically long-lived. For such states the
corresponding decay rate might simply be too small. In other
words, it might be difficult to reach a regime in which the decay
dynamics is able to properly compete with the laser excitation
and inter-atomic interactions, which thus almost entirely char-
acterise the evolution.

(iii) Even when acting on timescales that set it in competition with
the driving, radiative decay is inevitably accompanied by mo-
mentum kicks from photon recoil. Even when a Rydberg atom
eventually decays to the desired electronic ground state the re-
sultant heating might lead to loss of the atoms which can be ac-
counted for in our description. A similar process was discussed
in Ch. 3.

For the sake of simplicity and in order to focus on the new aspects
introduced by the loss/gain dynamics we will not consider radiative
decay processes. The underlying assumption is that the loss/gain dy-
namics is faster than that of the decay and/or that decay effectively in-
duces a loss process via the mechanism described in point (iii) above.

This work was published in Physical Review A in collaboration
with M. Marcuzzi and I. Lesanovsky [122].

6.2 THE MODEL

We employ the standard description of a Rydberg lattice gas where
each atom is modelled in terms of an effective two-level system. The
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Figure 6.2: Schematic representation of the system: (a,b) an optical lattice is
realised within a background cloud of atoms. Atoms within the
sites undergo laser-induced coherent transitions between their
ground state ||) and a high-lying (Rydberg) state [1). The corre-
sponding Rabi frequency and laser detuning are Q and A, re-
spectively. A third state, |0), describes an empty site. Atoms are
captured in and released from the sites with rates yg| (captur-
ing a ground-state atom), yp; (losing a ground-state atom) and
Ypt (losing a Rydberg atom). The atomic states are furthermore
subject to dephasing at a rate I" and radiative decay from the Ry-
dberg state into their ground state at rate k. (c) Rydberg atoms
interact with a van der Waals potential Vi, whose value for
nearest neighbours is denoted by Vnn. The corresponding en-
ergy shift of the Rydberg state in the vicinity of an excited atom
is sketched. This Fig. originally appeared in Ref. [122].
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ground state ||) is coupled to a Rydberg nS-state [) through a laser
with Rabi frequency Q and detuning A with respect to the atomic
transition, this is illustrated in Fig. 6.2(a). Within the rotating wave
approximation the many-body Hamiltonian is then given by

1
H=0 Z ox +A Z ng + 7 Z Viem NN, (6.2)
k k k#£m

where Vi, = Cg/ 1y — rml6 represents the van der Waals (vdW) po-
tential between pairs of excited atoms at positions r and r,, and
the sums run over all lattice sites k, m € [1,L]. Interactions among
ground-state atoms or between ground-state and Rydberg atoms are
significantly weaker and will therefore be neglected. The operators
{0*,0Y, 0%} are the standard Pauli matrices and the local density of
excitations is defined as ny = [1k) (1| and the density of ground
state atoms as px = [Jx) (Jkl-

In order to account for atom gain/loss in the lattice sites we add
an effective third state |0), denoting an empty site. We also introduce
the corresponding local densities of occupied sites e, = ny + pk. The
local loss and gain takes place with atoms from a background gas
which is assumed to act as a bath. In other words, the surrounding
cloud contains a much higher number of atoms than can be accom-
modated in the lattice and the recapture of a lost one is an unlikely
event. First of all, this suppresses correlations between loss and gain
processes and allows us to treat them as being independent. Secondly,
since atoms are constantly exchanged with new ones no correlations
can be produced in the system via these processes. Thirdly, their oc-
currence probabilities are not appreciably affected by the history of
occupation of a given site, and can thus be considered Markovian.

The relevant processes are schematically displayed in Fig. 6.2 and
summarised as:

125000, W) 500y, 10) ). 6.3)

with ypt, ypy and yp; being the corresponding rates. The first two
processes describe the loss of a Rydberg and ground state atom, re-
spectively. The third process corresponds to the capture of a ground
state atom from the background gas. Note, that we do not consider
the eventuality of Rydberg atoms being captured. The reason is that
laser excitation to Rydberg states is restricted to local sites and con-
sequently Rydberg atoms are not produced in the background gas.
Hence, the transition [0) — [f) could only occur if a Rydberg atom
is captured which had been previously expelled from another site,
which from the above discussion is unlikely. By themselves, these dis-
sipative processes would push the density of ground state atoms to
an equilibrium value of vg;/(vg + YD, ), in contrast to the tendency
towards depletion experienced by the excitations.
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Note, that we are also neglecting processes which lead to the oc-
cupation of a given site with multiple atoms. In fact, in experiments
with microtraps such multi-occupancies are suppressed due to the
collisional blockade [192, 193]. In circumstances where such suppres-
sion is not taking place the Rydberg blockade [44, 45, 194] discussed
in Ch. 1 ensures that each site can only feature a single Rydberg exci-
tation.

In addition to the loss/gain dynamics we consider the presence of
noise, which dephases local superpositions between the states [1) and
|}) at a rate I'. The origin of this noise can be fluctuating background
fields that result in random atomic level shifts, the broadening of
atomic lines due to Doppler broadening [57] or interaction effects
[195], or a spectrally broad excitation laser [128].

In the presence of the described coherent and dissipative processes
the evolution of the density matrix p of the system is governed by a
Lindblad master equation, see Sec. 2.1.1, with jump operators:

Lpyx = /YDy 10k) {4kl (6.4a)
Lptx = VD1 [0k) (Tl (6.4b)
Lgyx = By W) (Okl (6.4¢)
Laephx = Vi (6.4d)

where k € [1,L].

63 PERTURBED CLASSICAL MASTER EQUATION

We are interested in the limit of strong dephasing i.e. I' much larger
than the Rabi frequency, () and all other aforementioned dissipative
rates. In this regime, the dynamics is effectively described by means
of a classical stochastic equation [10, 119, 133, 196, 197]: the underly-
ing separation of timescales permits the adiabatic elimination of the
portion of the phase space subject to dephasing, as also seen in Ch. 4.
Correspondingly, the evolution of the density matrix p of the system
is projected onto the dissipation-free subspace [134, 198, 199], which
in this case corresponds to the sole diagonal components in the ¢*
basis, i.e. a basis of classical spin configurations [133]. At the lead-
ing order in a perturbative expansion in powers of y;/I" and Q/T the
truncated density matrix p evolves according to

Otp =
1
D Axlogpor —ecn)+ ) vi |:Li,k uLi, — 7 {L;kl—i,k/ H}]
K

i,k
(6.5)
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where i runs over the atomic loss and gain operators (Egs. (6.4a-6.4c))
and

2—1

r 2
A = Q2T <2> +| A+ ) Vigng (6.6)
q#k

is a configuration-dependent rate, this is derived using the technique
described in Sec. 2.1.2 but with additional dissipative processes which
do not enter the expansion and appear only as additions. Defining
the diagonal part of the Hamiltonian (H|n—o) as the "classical" com-
ponent, the second term in the brackets of Eq. (6.6) corresponds to
the square of the classical energy change accompanying a spin-flip at
site k. Spin-flips that result in a significant increase or decrease in en-
ergy are therefore strongly suppressed. In the scenario investigated,
in order to achieve DP-like behaviour we choose the detuning A such
that it is opposite to the interaction energy Vnn between neighbour-
ing excited atoms A = —Vnn;, see Fig. 6.2(c). Hence, exciting an atom
right next to an isolated already excited one incurs no energy differ-
ence and therefore occurs at the maximal rate /\]((max) =\ =4Q%T,
leading to the branching shown in Fig. 6.1(a). This is known as the
anti-blockade effect as discussed in Ch. 1. We further assume to be
working in a regime where |A| = [Vyn| > T, i.e. the interaction sur-
passes the dephasing strength. In this regime any atom that has more
than 1 excitation in its neighbourhood, or none at all, can only change
its internal state at a rate Ay oc Q?T/A2. This rate is significantly
smaller than A[™) and thus such processes are strongly suppressed.
For brevity, we shall refer to all of them as "off-resonant" processes.

In order to gain some first insight into the expected many-body
dynamics we assume for a moment that all off-resonant processes can
be neglected. In this regime Eq. (6.5) displays features close to that of
the contact process and other branching-annihilating ones [87]. It is
important to note that in the present case the absorbing phase does
not consist of a unique state, but rather an absorbing space that is
spanned by the entire set of configurations of sites which are either
in state |0) or |{). In general there is dynamics taking place within the
absorbing manifold as all the absorbing configurations can be visited
via the interplay of the local loss and gain processes. This requires us
to consider also the density of occupied sites 1 = ) | (ex) /L when
analysing the dynamics of the system.

64 MEAN-FIELD APPROACH

The mean-field approximation discards correlations between differ-
ent sites, i.e. for every local observable O} we substitute (0 0p) —
(Ox) (Op) if k # p, and permits the formulation of closed equations
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of motion for the expectation values of the densities of excitations n
and of occupied sites 1. We start by rewriting Eq. (6.6) as

z z—j j
A=) N TIr ] (6.7)
=0

C (ki) (ki)

where z is the lattice coordination number, the number of nearest
neighbours per site, C is a sum over all possible configurations of
the excitations on the neighbours, and A; is shorthand for the rate of
a flipping process occurring in the presence of j excited neighbours.
This means that A; characterises the resonant processes introduced
above with A7 = A = 4Q? /T, whereas the remaining values refer to
the off-resonant processes and read

Q21 o
(57 +a2(-1?2  A2(G-1)

Aj#] = 5 < A (6.8)

Using Eq. (6.5) we derive the equations

dn=—vpm+Y_ ( z ) A (n—2n) (1 —n)*) (6.92)
j=0

o0m =ve, — (vBy +Ypy) N+ (YL —YD1) M. (6.9b)

In a first approximation we neglect the off-resonant terms, j = 0 and
j > 1, and Eq. (6.92) becomes

0¢n =—ypn+Azn(n—2n)(1— n)= . (6.10)

This equation together with Eq. (6.9b) predicts a transition from the
region A < Ac = vYp+(YB, +Yp,)/(zyBy) which admits only the absorb-
ing solution n = 0 to the region A > A. in which the system displays
a finite density n > 0 in the long-time limit.

We look at the choice ypy = yp, = yp as the occupation dynam-
ics decouples from the internal state dynamics, as seen in Eq. (6.9b),
meaning the stationary density of occupied sites, 7, can be calculated
exactly. In Fig. 6.3 we report the corresponding phase diagram in the
(A, 1) plane also setting A = —64T". The threshold value A. identifies
the critical point of a continuous transition between the two phases.
For A > A, the density scales linearly, n ~ A —A., while at the crit-
ical point its value decays to 0 in time according to the power-law
n(t) ~ 1/t. The density of occupied sites relaxes to the finite value
vBy/(YB| + YD). Consequently, at the mean-field level, this system un-
dergoes a transition which shows some of the characteristic features
of DP universality [87].

Let us now discuss the role of the off-resonant terms. Those with
j > 1 in Eq. (6.9a) do not affect the fundamental properties of the
transition, as they vanish for n — 0. Therefore, they only shift the po-
sition of the critical point according to the relative statistical weights
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Figure 6.3: Stationary density of excitations n extracted from the mean-field
equations (6.10) and (6.9b) for —A = VN = 64T, yp, = 0.01T
and ypy = vp,. The data is shown as a function of the branching
rate A for resonant processes and the density of occupied sites
A = vB,/(vB, + YDy ). The color scale is bounded by nmax = 0.5.
The red dashed line corresponds to the values taken by the criti-
cal rate A for different values of 7j. A cross section is displayed
in the inset for 1 = 0.8 (along the cyan horizontal line in the
main figure), which highlights the mean-field scaling behaviour
n ~A—Ac. The green, dashed line corresponds to the same curve
calculated including the leading off-resonant processes relevant
in a Rydberg gas. As expected, the introduction of the latter
makes the transition smoother, but deviations are only visible
in close vicinity to the critical point Ac. This Fig. originally ap-
peared in Ref. [122].
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Figure 6.4: Phase diagrams of the pure and Rydberg processes (see text) in
the A-A plane for a 1D chain of 100 sites and a 2D square lattice
of 20 x 20 sites. The parameters are chosen as —A = VNN = 641,
vg, = 0.01T and vp; = ¥Yp+ = Yp- The color scale is set with
respect to the maximal value the density can take, i.e., Npax = 1
for the pure process and 1/2 for the Rydberg one. Numerically
computed exponents 3 (static) and & (dynamic) are displayed in
the panels. The selected parameter ranges are shown as a cyan
and a green line on the main plot. For the 1D pure process we
also show (in log-log scale) the critical profiles of the stationary
density n as a function of Ay = A —A; (lower-left inset) and of
its evolution in time (upper-right inset) to highlight the scaling
behaviour. For comparison we provide the known DP exponents
[87]: Bip = 0.276, Bop = 0.584, 5,p = 0.159, and 8,p = 0.451. This
Fig. originally appeared in Ref. [122].

Aj. The j = 0 term, on the other hand, constitutes a relevant — al-
beit small — perturbation that brings the system away from the criti-
cal point. The reason is that it accounts for production of excitations
in an empty neighbourhood and thus prevents the aforementioned
subspace of configurations devoid of excitations from being strictly
absorbing. This term smooths the transition into a crossover, as high-
lighted in the inset of Fig. 6.3. The magnitude of this effect can be
suppressed by increasing the detuning A. When sufficiently small it
allows the observation of the mean-field scaling behaviour for values
of A 2 Ac.
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6.5 NUMERICAL ANALYSIS

In order to investigate the effect of fluctuations which are not cap-
tured by the mean-field treatment we perform numerical Monte Carlo
simulations of Eq. (6.5), see Sec. 2.2 for the method, using a state in
which all sites are occupied with a Rydberg atom as the initial con-
dition. We set the rates yp, = yYp+ = vp, v, = 0.0, Vaw = 64T =
—A and collect data in the (A(yg,), ) plane by adjusting the values
of yp and Q. For this particular choice of parameters the loss and
gain dynamics decouples from the excitation dynamics. This can be
seen directly in Eq. (6.9b) which is valid beyond mean-field. Conse-
quently, the density of occupied sites reaches on the low timescale of
(vBy + vp)~!, the steady-state value 1 = yp;/(vB, + YD)

For Rydberg gases one needs to account for the fact that the off-
resonant production of excitations and the long-range tails of the
vdW potential affect the emergence of the phase transition. As we
discuss further below, these features actually constitute a source of
additional noise which to some extent may obscure the anticipated
scaling behaviours. In order to shed light on the fundamental critical
properties of the transition we have therefore also simulated a dynam-
ical process in which we replace the first term of the r.h.s. of Eq. (6.5)

by

A
> ni (o oy — i), (6.11)
(ki)

with (k,i) denoting the set of nearest-neighbouring sites i of site k.
After this replacement we have a pure branching process as found in,
e.g., the contact process mentioned above [87] and shown in Eq. (6.1),
producing excitations from nearby ones at a rate b = A/z. The nor-
malisation by the coordination number z is meant to compensate for
the fact that in this case multiple excitations enhance the rate. We em-
phasise that, although different, the two processes we consider share
the same fundamental properties: the absorbing subspace is the same
and, apart from off-resonant events, branching is the only way to
increase the number of excitations. Furthermore, in the presence of
low-densities — as happens in the proximity of the critical point —
the action of the branching terms in Egs. (6.5) and (6.11) is analogous
up to multiplicative rescaling of the rates. For brevity, in the follow-
ing we shall refer to the new stochastic process as the "pure" instance
and to the original process as the "Rydberg" one.

In Fig. 6.4 the pure and Rydberg processes display qualitatively the
same behaviour. As expected, in the pure case the transition from the
absorbing to the active phase is significantly sharper. Beyond that,
two interesting features are observed. First, the simulations seem to
suggest that the critical point A. diverges as the stationary density
of occupied sites 7] decreases and that below a certain threshold 7
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the transition disappears entirely. Second, there is a qualitative dif-
ference in the static and dynamic scaling behaviour when varying
1. The stationary properties remain unaffected and always display,
within numerical accuracy, a scaling behaviour n ~ (A — Ac)P with
a critical exponent 3 compatible with the DP one for both one- and
two-dimensional processes as shown in Fig. 6.4. In contrast, the dy-
namical approach to the stationary state changes continuously. This
means that when approaching the threshold value T, the critical ex-
ponent of the algebraic decay n(t) ~ t=® smoothly decreases from a
value which, in 1D, is comparable with the one of pure DP to 0.

The latter feature is strongly reminiscent of the behaviour of stochas-
tic processes with multiple absorbing states as reported in Refs. [87,
200], which provide a qualitative explanation of our observations.
Even though in our case the absorbing space is not made of indi-
vidual absorbing states, the excitation dynamics effectively perceives
them as such, since it stops completely as soon as the first absorbing
configuration is reached. Moreover, in the cases discussed in Refs. [87,
200] the dynamic exponent is also not constant but instead varies con-
tinuously as a function of the initial conditions, e.g. the initial density.
In our simulations we start from a fixed initial condition (all atoms
present and excited). However, the fast loss/gain dynamics rapidly
constructs an "effective initial condition" with an occupied site den-
sity 7 determined by the rates yg| and yp. Since this initial condition
is varied under a change of yg; and yp this might be a possible ex-
planation for the observed variation of the dynamic exponent.

The Rydberg case features off-resonant processes and thus displays
a smoothed transition. Moreover, it requires stronger driving for the
active phase to appear. This can be understood by noting how clus-
ters of excitations actually hinder their own growth. For instance,
if we consider a pair of nearby excitations, elongating it to a three-
excitation segment, 11/—111, faces the presence of next-nearest neigh-
bour interactions. Because of them, the rate at which this process oc-
curs is no longer A but instead given by

Q2r
(3)" +Vian

Our choice of parameters, VNnN = Van/28 =T, implies /\IIENN =A/5
and hence the branching rate is effectively reduced. Further growth
along the same direction experiences much smaller corrections and
thus continues approximately at a rate A/5. The situation worsens if
we consider branching orthogonally with respect to the two original
excitations, since in this case the distance between next-nearest neigh-
bours is reduced to v/2 times the lattice spacing, implying Vann =
Van/(v2)6 = 8T and yielding an effective rate /\112INN = A/257. This
explains the suppression of the stationary density in the 2D case with
respect to the 1D one. The relevance of this effect can be drastically
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reduced by partially removing the tails of the vdW interactions using
a microwave dressing scheme [56, 201—203]. In other words, by cou-
pling two Rydberg levels with a strong microwave field one can obtain
a hybridisation of the relative interactions. For appropriate choices, it
will feature a crossover threshold separating a short-distance regime
displaying the usual vdW decay from a long-distance one which is
instead suppressed with respect to the previous one and can be con-
sidered approximately flat. This length-scale thus acts as a cutoff for
the potential tails and could then be set such that the vdW interaction
does not occur beyond the distance of a single neighbouring site.

6.6 CONCLUSIONS

Here we have studied an example of a non-equilibrium system that
could be realised in a Rydberg lattice gas with local loss and gain
dynamics. Where these latter processes have been regarded as "nega-
tive" effects before but we have shown that, as with many other forms
of dissipation [10, 64, 73, 74, 76, 81, 121, 143, 204], if utilised in the
correct way they can be a powerful tool.

We have seen that by employing the anti-blockade effect a DP-like
branching process can be produced and the loss and gain dynamics
may be used in-place of a direct decay as it avoids the destructive de-
cay of a Rydberg atom. In the limit of strong dephasing a perturbative
classical master equation can model the system accurately allowing
for direct numerical simulation of large-scale systems.

It is seen that this dynamics produces DP-like behaviour exhibit-
ing paradigmatic dynamics and equal static exponents, but with the
absorbing state becoming a space. This results in the dynamical expo-
nent decaying with the average number of occupied sites, and there
being the possibility of a critical point, n¢, below which the phase
transition no longer occurs. This setting, as far as we are aware, has
not been considered prior in open quantum systems and could be
achieved experimentally in all dimensions [45, 57, 69, 189-191, 205].



ABSORBING STATE PHASE TRANSITION IN THE
QUANTUM REGIME

7.1 INTRODUCTION

As the investigation of non-equilibrium systems continues to be a
vibrant field both in classical and quantum physics, the study of the
quantum-classical crossover is important. Through the employment
of dephasing noise, a quantum system can be made to be governed
by an effective classical master equation [119, 122, 127], as seen in
Ch. 4. As this limit is softened the quantum nature returns. The study
of the features on either the classical or quantum side, and which of
those features survives the crossover, poses an interesting question
theoretically but also is important in experimental study. In Ch. 6
we saw that a quantum system, namely in a Rydberg setting, can
reproduce classical non-equilibrium phase transitions similar to that
seen in the directed percolation (DP) universality class [87], which
was discussed in Sec. 6.1.1. In Ref. [144] an open quantum model for
DP was investigated, namely its action in the quantum regime was
probed and signatures of a change in the transition, described below,
were predicted.

Here we address the applicability of a Rydberg system to repro-
duce a quantum DP model from both a mean-field and numerical
perspective. We find that the transition changes from second-order
to first-order the more "quantum" the system is. As the classical side
has been addressed in Ch. 6 and in Ref. [56] we focus our numerical
study on the quantum side displaying similar predicted behaviour.

The numerical study was published in Physical Review B as part
of a collaboration with M. Buchhold, M. Marcuzzi, I. Lesanovsky,
S. Diehl [206] and the mean-field study is to appear in a future publi-
cation.

7.2 DIRECTED PERCOLATION AND RYDBERG SYSTEMS

Discussed in Ref. [144] was a system which had the key actions of
the contact process, shown in Eq. (6.1) and discussed in detail in
Sec. 6.1.1, as dissipative events and a quantum Hamiltonian which
reproduces a coherent version of branching, such that a site will only
undergo a Rabi oscillation when in the presence of excited neigh-
bours. Its "classical" and "quantum" limits were found to feature sim-
ilar behaviour with an absorbing state transition. The classical limit
is defined as where the quantum processes are vanishing leaving a
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purely DP model; the quantum limit is defined as when the dephas-
ing is vanishing. A phase transition between inactive and active is
seen in both the quantum and classical limits but its nature changes.
This was studied from a mean-field approach and a numerical one
and it was observed that the quantum limit transition was first-order,
whilst it is known that in the classical limit it is second-order.

Here we look at a possible implementation of this dynamics in a
Rydberg system utilising the anti-blockade effect, discussed in Ch. 1.
We use the standard approach by modelling it as a two-level system.
The ground state, ||), is coupled to the Rydberg nS-state, 1), by a
coupling laser with Rabi frequency O and detuning A. We will only
consider a 1D lattice of atoms on L sites giving a Hamiltonian

1
H :QZG]§+Aan+E Z Viimkim (7.1)
k k k#£m

where Vi = Van/lk —m|® is the van der Waals(vdW) interaction
between the Rydberg atoms with Vyn = Cg/ a® where a is the lattice
spacing i.e. Vnn is the nearest-neighbour interaction, and the sums
run over all lattice sites k, m € [1, L]. We consider the system to be in
contact with a bath with the only dissipative processes being dephas-
ing noise and decay. The dephasing noise can be the result of fluc-
tuating background fields that result in random atomic level shifts,
the broadening of atomic lines due to Doppler broadening [57] or in-
teraction effects [195], or a spectrally broad excitation laser [128]. The
decay typically occurs from spontaneous radiative emission [128]. We
also assume it to be Markovian in nature and can be modelled using
the Lindblad master equation, discussed in Sec. 2.1.1, with jump op-
erators

Lieph =Ty, (7.2a)
Liecay =koy, (7.2b)

where I" is the dephasing rate, k is the decay rate and k € [1,L]. A
schematic diagram of this model is shown in Fig. 7.1(a-b).

In order to recreate the branching process we use the anti-blockade
effect, by setting A = —Vnn i.e. the detuning is equal and opposite
to the nearest neighbour interaction, and we move to the strongly
interacting limit, V > Q. Isolated atoms, i.e. atoms far from any Ryd-
berg atoms, will be very weakly coupled to the Rydberg state due to
the large detuning, whilst atoms neighbouring a single Rydberg atom
will be resonant with the laser, leading to a strong coupling. This is
shown in Fig. 7.1(c). Those with two neighbouring Rydberg atoms
will also be greatly off-resonant due to the doubled interaction. This
creates a reversible coherent branching process.

As investigated in Ref. [56] in the limit of large dephasing this
model features a DP-like transition, which is second-order, and as dis-
cussed in Ref. [144] there should be a first-order transition in the low
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(a) Internal Structure (b) (c) Interaction
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Figure 7.1: Schematic representation: (a,b) an optical lattice is realised
within a background cloud of atoms in such a way that each
trap is filled with a single atom. Atoms within the sites undergo
laser-induced coherent transitions between their ground state |/.)
and a high-lying (Rydberg) state [1). The corresponding Rabi fre-
quency and laser detuning are O and A, respectively. The atomic
states are subject to dephasing noise at a rate I' and decay at a
rate k. (c) Rydberg atoms interact via a van der Waals interaction,
which has a strength Vnn for nearest neighbours. This shifts the
Rydberg state of neighbouring atoms by Vyn, however due to
the detuning being set such that A = —V;, in an anti-blockade
configuration, the laser couples resonantly to the shifted level.

dephasing limit. Here we investigate this model further and study the
quantum to classical transition by using simplifying approximations
which do not qualitatively modify the physics.

7.3 DOUBLE-BLOCKING APPROXIMATION

Unlike in the previous chapter, we do not consider the limit of large-
dephasing as this has been heavily investigated in Ref. [56]. To study
the properties of this model we make simplifications which gives the
"double blocking" approximation. This makes the following assump-
tions:

* we neglect the van der Waals interactions beyond nearest neigh-
bours,

e we set A = —VNN,
e and we assume the limit VN — o0.

This means that only atoms with a single neighbouring excitation
have their ground state coupled to their excited state, making this
a hard constraint. This gives the double blocking approximation a
Hamiltonian

H=0Q) Thoy, (7:3)
k

with Ty =ny_1 + N1 —2ny_1Mk41. The final term in TTy prevents
coupling when there is more than a single excitation neighbouring a
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Figure 7.2: The augmented mean-field phase diagram with k = 1. The white
area on the left is absorbing, meaning the only solutions present
are those for n = 0 while the shaded area is the active phase,
with the steady state featuring solutions with finite population.
The transitions are labelled as first (blue) and second-order (red)
with the bi-critical point highlighted as a black dot. The solutions
to the first order transition along the black dashed line at I' = 0.01
are shown in the inset, with the unstable solution shown in red.

site. This will be important to the dynamics of dense systems due to
the protection of surrounded objects from the quantum term. Once
the system is sparse however it should only play a minor role, which
should be true near to the transition from the inactive to active phase.

7-4 MEAN-FIELD APPROACH

We begin by applying a mean-field approach to the double blocking
approximation. By using Eq. (2.8) the observables ((ny), (o), {0%)),
which form a complete set for a single spin, are found to be governed

by

Ot (nie) =Q (Theo ) — x (i), (7-4a)
0t (07) =— Q(2M (2 — 1) — oo _1 (1 = 2ny2))
K+T
- <0ﬁ0§+1 (1 —an+2)> - <GE>/ (7.4b)
0t (o) =— Q (0P ox_1(1 =2y 2) + opop 1 (1 —2nu42))
K+T
- (o%) - (7.4¢)
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7.4 MEAN-FIELD APPROACH

We consider the approximation that all correlations between sites
are negligible i.e. for every local observable, Oy, we assume that
(Ox0j) = (Ox) (O;) whenever k # j. We also assume that the sys-
tem is uniform such that (Ox) = O Vk. Applying these assumptions
to Egs. (7.4) we find

otn =2Q(n — nz)cry —Kn, (7.5a)

0¢oy =Q(4n(1—2n)(1 —n) +26,2((] —2n)) — K+r6y, (7.5b)
K+T

0t0x =—2Q(0y0x(1—2n)) — Oyx. (7.5¢)

As we are interested in the steady state solutions of the system we
look at the case of 9:O = 0 VO. We also look at the case of oy(t) =
0 V1, which is true for o4(0) = 0, and it can be shown that for the
valid range of n, i.e. 0 < n < 0.5, 0 is always decaying and its steady
state will be exclusively 0. After substitution this gives

n?(1=2n)(1—=n)?> =vn (7.6)

where v = k(k +T)/16Q2. Eq. (7.6) always features a stable zero pop-
ulation solution, and a first-order transition to finite population at
v = 1. We know from previous studies [56] that a second-order tran-
sition exists in the limit of large I' but due to strong correlations be-
tween nearest neighbours, caused by the TT operator, this mean-field
approach fails to detect it.

7.4.1  Augmented meanfield

In order to include short range correlations we extend our descrip-
tion to the pair of operators (nyj0}) and (nx_jo}), the primary
components of <ﬂk0y> This means that we retain their two-point
correlations and discard all others i.e. (nxy10y) # (nxs1) (o} ), but
higher orders may still be discarded. This allows the term (ITi0} ) to
be re-expressed as

(Meoy) =(ne—10y) (1 =2 (1)) + (o)) (1= 2 (nge—1))

+2 (niegr) (1) (o) - (7.7)

We then find the evolution of the additional terms, (ny.107 ), as
Ot (N 1079 ) =Q((2nyeat (1= 20y ) (1 — Ny ))

Y Y X ~X
0,0 + 070
+< kVk£1 kY k+1 (] _ani2)>

2

+ (oo} M2 + 0y 0x et (1 — 2ni12)))
3k+T
2

(Mi107) (7.8)
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Applying the same assumptions as before and defining S4 = (ny41
oy) Vk then Egs. (7.8) become

o2 3k+T
0.5+ = 02n(1—2n)(1 —n) + ) - K; S, (7.9)

The equations for S+ have exactly the same form. Assuming the chain
to be invariant under reflection with respect to its centre, mapping
Sy =S5_,weset Sy =S5_ = S. Using this we see that Eq. (7.5a) also
becomes

om =2Q(S(1—2n) +n26y) — K. (7.10)

When these equations are solved for their steady state solution we
find

0 =nloa(l —2n)2(1 —n) + ap?n(1 —=n)?(1 — 2n)3
K

+ Bn?(1—2n)(1 —n)—a] (7.11)

where o« =20 /(3 +T) and 3 = 8Q/(k +T). Again we see the n =0
solution present but now the inner function, within the square brack-
ets of Eq. (7.11), depending on the values of « and f3, features either
a first or second order transition. This leads to the existence of a bi-
critical point, highlighted in Fig. 7.2 as where the two lines meet. The
position of which is found by when the derivative of the inner func-
tion is zero at n = 0, giving

O = K(\/g—2|‘01\/75), (7.12)

lying on the transition curve which for the second order transition,
found as when the inner function is zero at n = 0, is given by

807

An estimate for the position of the first-order transition is found by a
perturbative expansion of the inner function of Eq. (7.11) about n =0
to second-order. The lower the value of I" the worse this approxima-
tion is as the transition shifts to larger finite values of n. The phase
diagram is shown in Fig. 7.2, showing a qualitative representation of
the transitions we expect in the (Q, ') plane. We see at low TI" a first or-
der transition, as Q is scanned, from an inactive to active phase, and
a second order transition at higher I', with a bi-critical point between
them [144].

7.4.2  Stability of solutions

We look at the dynamical stability of the solutions to this augmented
mean-field method. For an observable O this is calculated by consid-
ering the evolution of a perturbation about the steady state solution.
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Figure 7.3: Signature of a first order transition in the quantum limit, I' = 0.
The panels show histograms of the excitation count for one-
dimensional systems of 12 particles. (a) Idealised model using
Eq. (7.15), (b) Effective model using Eq. (7.3) derived from the
Rydberg Hamiltonian (c) Rydberg chain with nearest neighbor in-
teraction, (d) Rydberg chain with the van-der-Waals tail. All plots
display a crossover from an (almost) absorbing state at small Q
to a state with finite excitation density. For intermediate values of
Q the histograms feature a bimodal distribution which is a signa-
ture of the anticipated first order phase transition. This is shown
in the insets that display intersections taken at Q = 8k. All re-
sults are obtained via Quantum Jump Monte Carlo simulations
and average over 1000 runs. The simulation times are kt = 4
(a) and kt = 6 (b-d). The calculations for the Rydberg systems
[panels (c,d)] are done choosing the parameters A = VN = 100Q.
Note that the colorbar has been limited to a height of 0.3 to give
a better color contrast. For O < 3k the peaks around 0 exceed
this limit. This Fig. originally appeared in Ref. [206].
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A solution is considered stable in a regime if any small perturbation
is decaying, i.e. 800:50 < 0. For simultaneous evolution equations
this is done by considering the defining matrix and is stable if all
eigenvalues are negative.

If we look at the n = 0 solution we find that it is only unstable at
the points where

K(3k+T)

40°% >
2

(7.14)
corresponding to the active phase right of the second order line in
Fig. 7.2. We numerically look at the stability of the finite n solutions
and find that for the second-order transition the finite solution is al-
ways stable whilst for the first-order transition the lower population
solution is unstable as shown in the inset of Fig. 7.2.

7.5 NUMERICAL ANALYSIS

As the classical limit, I' > (), was fully explored in Ref. [56] we choose
to focus our numerical study on the quantum limit i.e. I' = 0. We use
the technique described in Sec. 2.3, which limits our study to small
system sizes. We look at four instances. First the "pure" approxima-
tion which removes the single neighbouring excitation limit of the
double blocking, meaning that when a site is neighboured by one
or two excitations it has its ground and excited state coupled. This
makes it closer to a "quantum" DP model, giving a Hamiltonian

H :QZ (My—1 + Nk41) O%. (7.15)
k

From the above discussion, this should show qualitatively similar be-
haviour near the absorbing state transition. Followed by the double
blocking approximation described using Eq. (7.3), the Rydberg chain
including only nearest neighbour interactions, and the Rydberg chain
with full interactions. Shown in Fig. 7.3 are the counting statistics of
the average population, i.e. n = Z,E:] ny/L, at "long times" which
shows a bifurcation in the statistics for each case, an indicator of the
first-order phase transition predicted in the mean-field study in the
quantum limit.

The double blocking approximation is closer to the Rybderg mod-
els than the pure further from the transition point due to the increase
in density. Furthermore we see that the inclusion of the full interac-
tions weakens the transition due to the tails affecting next to nearest
neighbour transitions. This could be addressed by use of microwave
dressing [56, 201—203]. Further details on this are given in Sec. 6.5.
This suggests that Rydberg systems could prove a suitable platform
for the study of DP-like quantum models.
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7.6 CONCLUSIONS

Here we have looked at a DP-like quantum model, where we have
started to test the grounds of using a Rydberg system to achieve it.
The numerical results presented give good indication that the same
behaviours in pure and double blocking approximations are present
in the Rybderg model. The mean-field study shows what behaviour
might be expected in the quantum-classical crossover, featuring a bi-
critical point where the system goes from having a first-order tran-
sition to a second-order one. Work on this study is continuing and
experimental platforms for its realisation appear promising [191, 205,
207].
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In this thesis we have looked at examples of open non-equilibrium
quantum systems that can all be realised in current experimental set-
ups. They showcase different phenomena that can be observed by
utilising dissipation as a resource, and, in certain cases, the strong
interactions of Rydberg atoms.

In Ch. 3 we looked at the case of a selective-pair dissipation in-
duced by a simultaneous excitation of a Rydberg pair, with the dis-
tance controlled by the anti-blockade effect. When this dissipative pro-
cess is strong it results in a binding effect due to the quantum Zeno
effect which in-turn creates two distinguishable complexes. Through
their dispersion relations, these complexes were found to exhibit in-
teresting physics in the role of effective spin-orbit coupling. Partic-
ularly the existence of a flat-band for certain complexes, which are
localised and stable states. The ability to produce such states reli-
ably in experimental set-ups [109, 110] could open interesting study
into the quantum phases that result from these complexes possessing
properties of interest in condensed matter physics.

We then moved onto study what kinetically constrained models
(KCMs) can be achieved in open quantum lattice systems with strong
dephasing noise in Ch. 4. KCMs have long remained an effective
construct used to demonstrate slow-relaxing and glassy systems, but
their physical realisation and application has been difficult. Although
the method fails to capture some of the prototypical examples of
KCMs due to the lack of temperature control, we show that other
examples are possible and demonstrate that with simple ingredients
a system which shows constrained physics, such as ergodicity break-
ing, can be achieved.

We then found a further application of the formalism from Ch. 4
in the study of dissipative many-body localised (MBL) systems. Ob-
served in Ref. [165], the MBL state in an open system decays with
a stretched exponential behaviour. It was shown that the decay col-
lapsed when time was rescaled with dephasing noise, implying that
the effect was in-fact classical in nature. Presented in Ch. 5 we found
that the presence of interactions effects causes the decay to follow
two distinct forms. For low interactions we observed the stretched
exponential decay being governed by a pair relaxation process, this
confirms that the observed phenomena is in-fact a purely classical
process. For strong interactions the decay was compressed instead,
resulting from an Avrami law [177-181]. This behaviour was not seen
in previous theoretical studies as they utilised quantum simulation,
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which due to the strong size dependence prevented observation. We
also showed that this behaviour was only effected by particle loss for
strong interactions, placing a limit on the timescale. Not only does
this explain the observed features, but it opens up the study of a sys-
tem which features a stretched to compressed exponential behaviour
transition in experiments already studying MBL [145, 160-162].

We then focussed on the study of systems which display directed
percolation (DP) behaviour. As previously studied in Ref. [56], Ryd-
berg systems featuring strong dephasing noise and utilising the anti-
blockade effect can reproduce a contact process and show DP-like
behaviour. There however the standard decay channel for the decay
process was used, which can be highly destructive often resulting in
the loss of an atom. Instead in Ch. 6, we chose to exploit this atom
loss and consider a denser cloud structure allowing a on-site loss and
gain dynamics to take the place of the decay process. This created
an absorbing space instead of a single state, resulting in a different
DP-like behaviour that has previously not been observed. A key fea-
ture being the divergence of the DP phase transition as the average
population was reduced. This system offers an effective way to realise
DP-like dynamics in all dimensions in current experimental set-ups
[45, 57, 69, 189—-191, 205] and allows access to new, relatively unstud-
ied physics.

In the final Ch. 7 we look at a quantum model which features DP-
like behaviour in a Rydberg setting. We found that the model exhibits
a first-order transition in the quantum limit, confirmed by mean-field
and numerical results. From the mean-field study we also saw the
existence of a tri-critical point, where as the system became more
classical the transition went from first to second-order, as expected for
a DP model. This shows further the viability of Rydberg systems to
produce these constrained DP-like models and to probe the quantum
and classical boundary that exists in them.

Overall, the work presented in this thesis contributes to the grow-
ing field of open quantum non-equilibrium systems in atomic lat-
tice systems. We highlight key examples of where Rydberg proper-
ties allow for the realisation of both new and long-predicted mod-
els through use of their strong interactions. By engineering a anti-
blockade effect, these interactions can be accurately controlled to fa-
cilitate particular processes, and block others. This gives a great deal
of control, allowing for the production of models which reproduce
the physics of interesting non-equilibrium and constrained systems.
Crucially we utilise dissipation as a resource. Throughout the thesis
we made use of dephasing noise to project a quantum system into a
classical setting. This allows for the use of quantum systems to pro-
duce classical effects that are otherwise hard to engineer, allowing for
models, such as DP, to be realised. We also use other decay channels,
such as on-site loss and gain. Each of these decay channels are often
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viewed as detrimental processes and a great deal of effort goes into
minimising and controlling them. This implies that the "worsening"

of systems to reintroduce them, and their control to certain values is
attainable in current experimental set-ups.
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OPTICAL LATTICE AND SCALING OF TUNNELING
AND DEPHASING

A key tool in cold atomic study is the use of optical lattices. The trap-
ping of neutral atoms with laser light is imperative to the study of
cold atoms as it allows for the systems to be contained and structured
in ways that create interesting physical systems. A one-dimensional
optical lattice is generated by overlapping two counter-propagating
laser beams, the resulting interference pattern creates a standing wave
of nodes and anti-nodes. The force then comes from the dipole force
of the spatially varying AC-Stark shift due to the laser light applied.
This causes either attraction or repulsion to the nodes and anti-nodes
of the laser waveform and forms traps for either single or multiple
atoms. This can be extended to easily create two-dimensional and
three-dimensional lattices and through the use of advanced technolo-
gies highly complex lattice structures may be formed [189]. Through
control of depth and other properties of the lattice the behaviour of
the occupying atoms is influenced.

Here we briefly recall some basic results on tunnelling and dephas-
ing amplitudes in cold-atomic systems held in optical lattices. A more
detailed discussion can be found in Refs. [3, 130]. We consider a 1D
lattice potential (setting h = 1) of the form

2

Volx) = = (cos? (kigix) — 1) (A1)

where w is the Rabi frequency and A is the detuning of the laser and
kiat = 7t/a with a the lattice spacing. If we assume a deep lattice, i.e.
hT‘”Z > E., where E, = hzklzat /2m, then the tunnelling rate scales as

4 2N 3/4 w2
o~ <X’E > Epe 2VAE (A.2)
T

The dephasing rate due to the scattering of atoms in the lowest Bloch
band of the lattice with photons has been instead calculated in Ref. [130]

and reads
Fw?m w? 3/4
~ E A.

Y& (AEJ N (A3)

where I is the spontaneous decay rate of the excited state to the re-
laxed state. It is assumed that I" is small in comparison to all other
rates in the system. Taking the ratio of Egs. (A.2) and (A.3),

Q  8A2a _, /w2

? = 7rw2me AET, (A‘4)
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it is seen that the physical parameters of the system can be easily
tuned to adjust this ratio. Looking at the Rabi frequency, w, which
can be controlled by adjusting the power of the trapping laser, when
this value is increased it will cause the ratio to reduce. The same
follows for the other parameters in the system, which makes the limit
Y > Q accessible.



	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	Acronyms
	1 Introduction
	1.1 Thesis overview

	2 Background
	2.1 Open quantum systems
	2.1.1 The density matrix and the Lindblad master equation
	2.1.2 Second-order perturbation of the master equation

	2.2 Kinetic Monte Carlo
	2.3 Quantum jump Monte Carlo

	3 Dissipative binding of complexes
	3.1 Introduction
	3.2 Quantum Zeno effect
	3.3 The model
	3.4 Fast dissipative dynamics and the Zeno subspace
	3.5 Effective coherent dynamics in the Zeno subspace
	3.6 Families of coherent particle complexes
	3.6.1 Type I complexes
	3.6.2 Type II complexes

	3.7 Interaction between complexes
	3.8 Conclusions

	4 Emergent kinetic constraints in noisy quantum systems
	4.1 Introduction
	4.2 Construction of kinetically constrained spin systems
	4.3 "Hard" and "soft" kinetically constrained models
	4.4 Reaction-diffusion model with constant bonds
	4.5 Facilitated spin models
	4.6 Conclusions

	5 Role of interactions in a dissipative many-body localised system
	5.1 Introduction
	5.2 The model
	5.3 Rate equation description
	5.4 Distinct dynamical regimes within the many-body localised phase
	5.4.1 Low-interaction regime
	5.4.2 Large-interaction regime

	5.5 Particle loss
	5.6 Conclusions

	6 Atomic loss and gain as a resource for non-equilibrium phase transitions
	6.1 Introduction
	6.1.1 Directed Percolation
	6.1.2 Atomic systems and DP

	6.2 The model
	6.3 Perturbed classical master equation
	6.4 Mean-field approach
	6.5 Numerical analysis
	6.6 Conclusions

	7 Absorbing state phase transition in the quantum regime
	7.1 Introduction
	7.2 Directed percolation and Rydberg systems
	7.3 Double-blocking approximation
	7.4 Mean-field approach
	7.4.1 Augmented meanfield
	7.4.2 Stability of solutions

	7.5 Numerical analysis
	7.6 Conclusions

	8 Conclusions
	Bibliography
	Appendix
	A Optical lattice and scaling of tunneling and dephasing


