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Abstract

The description of a quantum system follows a fundamentally different

paradigm to that of a classical system, leading to unique yet counter-

intuitive properties. In this thesis we consider some of these unique

properties, here termed simply the quantum. We focus on understanding

some important types of the quantum: quantum coherence and quantum

correlations, as well as quantum entanglement as an important subclass

of quantum correlations. Our objective is to investigate how to quantify

the quantum, what it can be used for, and how it can be preserved in

the adverse presence of noise. These findings help to clarify the fron-

tier between quantum and classical systems, a crucial endeavour for un-

derstanding the applications and advantageous features of the quantum

world.
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Introduction

Quantum mechanics provides a set of laws to understand nature at small length

scales. It was developed over the past century in response to the failure of classical

mechanics to accurately explain the behaviour of atomic and subatomic particles.

Quantum mechanics has proven to be very successful, and is now regularly used in

many areas of present day science and technology. This success relies on a founda-

tion of principles that are fundamentally different to those in classical mechanics,

necessitated by the counter-intuitive behaviour of nature at microscopic length

scales. The objective of this thesis is to investigate the quantum-classical fron-

tier: the transition of a physical system from the domain of classical mechanics

to the domain of quantum mechanics. In doing so, we further our understanding

of the quantum world and its potential for application. Such an endeavour can

be achieved by characterising the properties of a physical system that manifest

uniquely from quantum mechanics. Here we refer to these properties collectively

as the quantum.

There has already been some progress along this path: quantum coherence [1]

and quantum entanglement [2] have long been understood as key types of the

quantum, arising only from the formalism of quantum mechanics. Their study has

evolved over the years, from the simple qualitative acknowledgement of their pres-

ence within quantum systems to an important discipline in the field of quantum

science. Quantum coherence captures the ability of a quantum particle to be in

a coherent superposition, existing in more than one state at the same time. Such

a property can only be described in classical mechanics using the concept of a

wave, leading to the idea of a duality between waves and particles in quantum

1



INTRODUCTION 2

mechanics [3]. The counter-intuitive nature of quantum coherence was captured

by the famous Schrödinger’s cat thought experiment [4, 5]. Entanglement rep-

resents a portion of the quantum correlations between subsystems of a composite

system and has been studied since the dawn of quantum mechanics. It is the re-

source behind important processes such as quantum teleportation [6, 7] and dense

coding [7, 8]. Yet, entanglement does not entirely capture all the non-classical

correlations in a composite quantum system [9–11]. Instead, general quantum

correlations are also recognised as another relevant type of the quantum, being

important for a variety of applications including within quantum communication

and metrology.

Focussing on quantum coherence, quantum correlations, and quantum entan-

glement as key types of the quantum, we investigate three important questions:

1. How much of the quantum is there?

2. What can the quantum be used for?

3. Can the quantum be preserved in the presence of noise?

Finding an answer to Question 1 allows for a quantification of the departure of a

physical system from classical mechanics. Question 2 then investigates whether

the quantum can be harnessed to perform tasks in a superior way. However, the

presence of noise in physical systems tends to destroy the quantum and return the

system to behaving within the laws of classical mechanics. Question 3 therefore

considers whether the quantum may be preserved despite the negative effects of

noise. These three questions together present a relevant line of investigation to

help navigate the quantum-classical frontier, see Fig. I.1 for an illustration as well

as Ref. [12].

This text is structured in seven chapters. The following chapter contains a

summary of some important concepts describing the mechanics of classical and

quantum systems, providing the background for their comparison. Chapter 2

shows how quantum coherence, quantum correlations, and quantum entangle-

ment arise from quantum mechanics as unique properties of a quantum system.
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12345678QUANTUM

NOISE

Quantum ClassicalFrontier

𝜑

Figure I.1: A schematic of the quantum-classical frontier. The left-hand side

represents quantum mechanics and is given by a single quantum spin, while the

right-hand side represents classical mechanics and is given by a pair of dice. Our

objective is to understand the frontier between quantum and classical mechanics

by characterising properties unique to quantum systems: the quantum. We invest-

igate how the quantum can be quantified (represented here with a ruler extending

towards the side of quantum mechanics), what the quantum can be used for (rep-

resented here with a magnifying glass to estimate a parameter ϕ, as explained

further in Chapter 5), and how the quantum can be preserved in the presence

of noise (represented here with an arrow transforming from quantum to classical

mechanics).

Chapters 3, 4, 5 and 6 then focus on answering the three questions posed. Finally,

a discussion of the results found, and their potential implications for further re-

search into quantum science, is given in Chapter 7. The contents of this thesis

presents research that has been previously reported in a collection of works con-

tributed to by the author, referenced with the prefix TRB. Figure I.2 displays a

roadmap of this thesis. Here, the light blue boxes each correspond to a chapter of

this thesis. The dark blue boxes then represent some of the important methods

and constructions, described in more detail below, utilised to help elucidate the

three questions. Finally, the green ellipses represent the works of the author,

whose findings are demarcated by green arrows connecting to the relevant boxes.

Chapter 3 shows how one can quantify the quantum. Introducing the frame-

work of quantum resource theories [13–15], we give a set of rigorous requirements
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Figure I.2: A roadmap of the structure of this thesis (explained further in the

main text). The references [TRB1-TRB13] correspond to the works of the author.
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for measures of a quantum resource and highlight how the framework can be spe-

cialised to the resources given by our three types of the quantum. Two geometric

approaches to constructing measures of the quantum are then given: the robust-

ness and the distance-based approach. The robustness of a resource quantifies

the amount of classical mixing required to recover a resource-free state [16, 17].

Instead, the distance-based approach measures a resource by quantifying the dis-

tance to the set of resource-free states [18–20]. Both approaches lead to measures

of a resource that satisfy the given requirements. It is shown that the robust-

ness of a resource is observable and may be efficiently evaluated numerically as

the solution to a semidefinite program, provided the corresponding framework of

the resource theory satisfies certain conditions. Furthermore, the robustness is

specialised to the resource of quantum coherence, leading to the robustness of

coherence and the robustness of k coherence [TRB1, TRB2, TRB3].

Next, Chapter 4 considers the difficulty of evaluating measures of the quantum

for generic states of a quantum system. We construct a general multi-step frame-

work to provide lower bounds to these measures, relying on the introduced concept

of a resource non-increasing projection [TRB4, TRB5, TRB6]. An example of

the application of this framework to provide lower bounds to the distance-based

measures of multiqubit entanglement and coherence is then provided with the

identification of a simple family of N qubit states, resulting from the action of a

particular resource non-increasing projection called M3
N -fication. The resultant

lower bounds are particularly relevant experimentally due to their low overhead

in terms of the required local measurement settings. We also identify an altern-

ative resource non-increasing projection to show the wider applicability of our

framework.

Chapter 5 looks at how the quantum can be harnessed. We focus on the

operational tasks of phase discrimination and phase estimation in quantum met-

rology. Phase discrimination is a type of quantum channel discrimination [21–24]

with the objective of using a quantum probe to infer which of a set of phases

was applied by a unitary with a fixed Hamiltonian according to a prior probab-

ility distribution. We show that quantum coherence in the probe with respect to
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the eigenbasis of the Hamiltonian is necessary to improve the probability of suc-

cessfully inferring the phase beyond simply guessing from the known probability

distribution. The robustness of coherence of the quantum probe is then shown to

quantify the optimum advantage in the probability of success [TRB1, TRB2]. On

the other hand, the objective of phase estimation [25–29] is to precisely measure a

phase applied by a unitary. We discuss the roles of the three types of the quantum

in phase estimation. In particular, both quantum correlations and quantum en-

tanglement can be quantitatively linked to the performance of phase estimation

in a type of worst-case scenario quantum interferometer [30, TRB7]. We show

that there exists a strict hierarchy between quantum correlations and quantum

entanglement, with quantum correlations constituting the most relevant type of

the quantum in this setting.

Finally, in Chapter 6 we investigate a mechanism to preserve the quantum in

the presence of certain types of noise. This is an important task given the typical

adverse sensitivity of the quantum to noise [TRB8]. Using the distance-based

approach to measuring a resource, we identify conditions in which quantum co-

herence and quantum correlations can be preserved, or frozen, despite the action

of the noise [31–33]. These conditions consist of a certain class of initial states of

a two qubit system (known as the freezing surface) subjected to simple qubit bit

flip noise, and are universal in the sense that freezing occurs independent of the

particular distance used to measure the resource [TRB9, TRB10]. We provide

an example of conditions where both the quantum coherence and quantum cor-

relations freeze and compare with the behaviour of quantum entanglement, total

correlations, and classical correlations [TRB6, TRB11], which is also observed to

freeze [34]. A physical intuition is then suggested to explain the observed freez-

ing phenomenon. Finally, the conditions for frozen multiqubit entanglement are

explored [TRB4, 35, 36].



Chapter 1

Classical and Quantum Systems

This chapter provides an outline of some of the important concepts used to de-

scribe a physical system in classical and quantum mechanics. Despite their funda-

mental differences, both a classical and a quantum system can be specified with

just a few ingredients: the state, the evolution, and the observables. Here we

explain these concepts for finite dimensional systems and give a simple example

in each case. We also discuss the description of composite systems, which are

composed of a collection of separately accessible subsystems. The chapter is then

concluded with a comparison of the two approaches, highlighting both the simil-

arities and differences, which lead to the unique quantum properties that we call

the quantum. It is important to emphasise that the following does not represent

a full exposition of either classical or quantum mechanics, but rather an outline

of the relevant topics presented from the perspective of a quantum scientist. The

basis for the material presented in this chapter is Refs. [7, 20].

1.1 Classical Systems

We restrict to classical systems that can exist in a finite number of configurations.

The number of possible configurations d is called the dimension of the system.

This restriction is both for mathematical simplicity and to provide the most

suitable comparison to the finite dimensional quantum systems that are the main

focus of this thesis. A d-dimensional classical system can be described by a phase

7
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space P = {i}di=1 of d points, with each point in the phase space representing one

possible configuration of the system.

1.1.1 State

The state of a classical system represents our current knowledge on the config-

uration of the system. We do not always have full knowledge of the system, and

hence any state is given by a probability distribution p = {pi}di=1, with pi ≥ 0

for all i and ∑d
i=1 pi = 1. Each probability pi gives the likelihood that the system

is in the i-th configuration of the phase space P. If the system is known to be in

configuration i ∈ P, it is said to be in a pure state δ(i) = {δij}dj=1, where δij is

the Kronecker delta, i.e. δij = 1 if i = j and δij = 0 if i 6= j. A general state p

can be expressed in a unique way as a convex mixture of pure states,

p = {pi}di=1 =
d∑
i=1

piδ
(i), (1.1)

and is hence called a mixed state (unless it is itself a pure state). The set of

states can then be thought of as the (d − 1)-simplex which is the convex hull of

the d pure states δ(i).

The current knowledge on the configuration of the system can be quantified

by the Shannon entropy [37]

S(p) := −
d∑
i=1

pi log pi, (1.2)

which is a function of the state of the system p. This quantity ranges from 0 to

log d. It is 0 for pure states, when there is full knowledge on the configuration of

the system, and log d for the uniform distribution state u = {1
d
}di=1. The state u

corresponds to having minimum knowledge on the configuration of the system,

where it is thought that each configuration is equally likely with probability 1
d
,

and is hence called the maximally mixed state. The base of the logarithm in

Eq. (1.2) is typically set to d when considering a d-dimensional system, so that

the Shannon entropy ranges from 0 to 1. On the other hand, when considering

composite dN -dimensional systems consisting of N subsystems of dimension d
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(see the following Section 1.3 for further details), the base of the logarithm is still

typically set to d so that the Shannon entropy ranges from 0 to N .

It is also instructive to quantify the difference, or distinguishability, between

the state p and another state q = {qi}di=1. A measure of distinguishability can

be given by calculating the distance Dδ(p,q) between p and q, where δ denotes

the choice of a particular distance function. A distance is a non-negative function

obeying three requirements for all p, q and r:

Dδ(p,q) = 0 ⇔ p = q, (1.3)

Dδ(p,q) = Dδ(q,p), (1.4)

Dδ(p,q) ≤ Dδ(p, r) +Dδ(r,q), (1.5)

where r = {ri}di=1 is another state. An example of a distance satisfying these

requirements is the trace distance, given by

DTr(p,q) := 1
2

d∑
i=1
|pi − qi| . (1.6)

The Hellinger distance,

DHe(p,q) :=
(

d∑
i=1

(√pi −
√
qi)2

) 1
2

, (1.7)

is an alternative distance that is a monotonically decreasing function of the clas-

sical fidelity,

F (p,q) :=
(

d∑
i=1

√
piqi

)2

. (1.8)

Finally, the relative entropy (also commonly known as the Kullback–Leibler di-

vergence) is an important distinguishability measure given by

DRE(p,q) :=
d∑
i=1

pi log pi
qi
. (1.9)

However, it is not a distance since it does not obey the requirements in (1.4)

and (1.5) [38]. Nevertheless, it will often be referred to as a distance in the rest

of this thesis. A further discussion of distinguishability and the physical motiv-

ations behind the trace and Hellinger distances, as well as the relative entropy,

as measures of distinguishability can be found in Refs. [7, 20]. Figure 1.1 shows
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Figure 1.1: The set of states for a 3-dimensional classical system forms the green

2-simplex given by the convex hull of the pure states, shown as the green points.

States at a distance of 1
4 from the maximally mixed state u (central blue point)

are given as lines for DTr (red solid line), DHe (red dashed line), and DRE (red

dotted line). To provide a fair comparison as measures of distinguishability, here

the distances are normalised such that the distance between any pure state and

the maximally mixed state is unity.

the sets of states at a distance of 1
4 from the maximally mixed state u according

to DTr, DHe, and DRE for a 3-dimensional system, illustrating the dependence

of distinguishability upon the choice of distance.

1.1.2 Evolution

Consider the evolution of a classical system in a fixed time interval. If the system

is initially described by a state p, then the evolved system can be described by a

state p′ = {p′i}di=1. We focus on stochastic evolutions, so that the evolved state

is given by the map p′ = Sp, where S is a d × d stochastic matrix and p and

p′ are taken to be column vectors, which will be the convention adopted in the

following. Stochastic matrices are square matrices with elements Sij obeying

Sij ≥ 0 ∀i, j ∈ {1, 2, . . . , d}, (1.10)
d∑
i=1

Sij = 1 ∀j ∈ {1, 2, . . . , d}. (1.11)
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These conditions ensure that p′ is a state, i.e. a valid probability distribution:

condition (1.10) means that p′i ≥ 0 for all i, while condition (1.11) preserves

normalisation, ∑d
i=1 p

′
i = 1. The stochastic evolution of a classical system causes

the distinguishability between any two states p and q to decrease. Hence, a

measure of distinguishability must be monotonically non-increasing under the

action of stochastic maps. This property is satisfied whenever the corresponding

distance Dδ(p,q) is contractive under any stochastic map S,

Dδ(Sp, Sq) ≤ Dδ(p,q) (1.12)

for all p, q and S. All of the distances already discussed here satisfy this prop-

erty [20].

The action of noise upon a classical system is typically given by a bistochastic

map, which transforms the system in an initial state p to the evolved state p′ =

Bp, where B is a d× d bistochastic matrix. Bistochastic matrices are stochastic

matrices with elements Bij that obey

d∑
j=1

Bij = 1 ∀i ∈ {1, 2, . . . , d}. (1.13)

Such maps are unital, meaning that the maximally mixed state is mapped into

itself, u = Bu. Bistochastic maps can be thought of as noise because they always

cause a state to become more uniform in terms of its probability distribution,

meaning that knowledge on the configuration of the classical system is lost. Uni-

formity can be measured by turning to the concept of majorisation. A set of d real

numbers x = {xi}di=1 is majorised by another set of d real numbers y = {yi}di=1,

written as x ≺ y, when

k∑
i=1

x↓i ≤
k∑
i=1

y↓i ∀ k ∈ {1, 2, . . . , d− 1}, (1.14)

d∑
i=1

xi =
d∑
i=1

yi,

where {x↓i }di=1 and {y
↓
i }di=1 are rearrangements of {xi}di=1 and {yi}di=1, respectively,

into non-increasing order. If one state p′ of a classical system is majorised by



CHAPTER 1. CLASSICAL AND QUANTUM SYSTEMS 12

Figure 1.2: States p and q (here represented by a “thumbs up” and a “thumbs

down”) of a classical system become less distinguishable after the application of a

bistochastic map B due to loss of information on the configuration of the system

(represented by the hatched region) [7].

another state p, i.e. p′ ≺ p, then p′ is more uniform than p. In fact, for any

state p,

u ≺ p ≺ δ(i) ∀ i ∈ {1, 2, . . . , d}, (1.15)

so that the maximally mixed state u is the most uniform of all states, and the

pure states δ(i) are the least uniform. Majorisation thus imposes an order on the

set of states in terms of uniformity. A rigorous connection between the action

of bistochastic maps on a classical system and the increase in uniformity of the

state is then provided by the statement [39]

p′ ≺ p ⇔ ∃ a bistochastic matrix B such that p′ = Bp. (1.16)

The increase in uniformity due to a bistochastic map means that the Shannon

entropy increases, i.e. S(Bp) ≥ S(p) (this follows from the fact that the Shannon

entropy is a Schur concave function). Hence, the evolution due to a bistochastic

map always leads to loss of information on the configuration of the classical

system. This loss of information provides a very intuitive motivation for why

bistochastic maps (as special cases of stochastic maps) cause the distinguishability

between states to decrease, see Figure 1.2 for a pictorial representation.
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1.1.3 Observables

An observable of a classical system consists of the real numbers O = {oi}di=1 such

that the observable takes the value oi when the system is in the configuration

i ∈ P. Let R be the set of possible results of measuring the observable O,

i.e. the set containing all the unique values of O without repetition. If the state

describing the system is p, then the probability of the observable taking the value

r ∈ R is

p(r|p) =
∑
i:oi=r

pi, (1.17)

with {p(r|p)}r∈R a probability distribution. The expectation value of the observ-

able is then

〈O〉p =
∑
r∈R

rp(r|p) =
d∑
i=1

oipi. (1.18)

1.1.4 Example

A ubiquitous problem in classical mechanics is to describe the motion of a group

of interacting macroscopic bodies. Such a system has an infinite number of config-

urations with a continuous phase space of position and momentum, and is hence

not immediately explained by the concepts presented here. Nevertheless, there

are still some important examples of finite dimensional classical systems that are

worthy of further study. The 2-dimensional system is of particular interest in

computing and information theory as it can represent the most fundamental unit

of information, “on” or “off”. This system is given the name bit, a shortened form

of binary digit [40]. Systems of N bits are also often considered, with dimension

d = 2N . For example, the 8 bit system with a dimension of 256 is called a byte

and is very important in computing.

We now show how the rolling of a 6-sided die provides a simple yet informative

example of a finite dimensional classical system. In this setting we have a 6-

dimensional system with a phase space P = {i}6
i=1, where i ∈ P represents the

side of the die facing upwards after a roll. Suppose that the result of the roll is

not immediately seen. The state p = {pi}6
i=1 represents our current knowledge on

the configuration of the system and depends on whether there is any bias in the
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die. A fair die is described by the maximally mixed state u = {1
6}

6
i=1, meaning

that each result is equally likely. On the other hand, a completely biased die that

always rolls the result i ∈ P is described by the pure state δ(i) = {δij}6
j=1. Any

die with some intermediate level of bias is described by the general state p. The

Shannon entropy of p is then in the range 0 to 1 (assuming the logarithm is set

to base 6), where S(δ(i)) = 0 for any i and S(u) = 1.

Consider the scenario where we have two 6-sided dice with different levels of

bias, each corresponding to a different realisation of the 6-dimensional system.

One die is partially biased and only gives the results {1, 2, 3} ∈ P randomly, while

the other die is fair. The dice are described by the states p and q, respectively,

with p = {1
3 ,

1
3 ,

1
3 , 0, 0, 0} and q = u. The Shannon entropies of these two states

are S(p) = log6 3 ≈ 0.61 and S(q) = log6 6 = 1, while their distinguishability is

DTr(p,q) = 1
2 according to the trace distance. Now imagine that the results of

the rolls of both dice are altered by a friend. If the result of a die roll is odd then

the friend replaces the die with a fair die and rolls again. Instead, if the result of

a die roll is even, then the friend either does nothing or reduces the value shown

on the die by 1, with each event occurring at a 50% probability. This particularly

mischievous friend represents a source of noise applied to the system in the form

of a bistochastic map with a bistochastic matrix

B =



1
6

1
2

1
6 0 1

6 0
1
6

1
2

1
6 0 1

6 0
1
6 0 1

6
1
2

1
6 0

1
6 0 1

6
1
2

1
6 0

1
6 0 1

6 0 1
6

1
2

1
6 0 1

6 0 1
6

1
2


. (1.19)

The state of the first die after this map is p′ = Bp = { 5
18 ,

5
18 ,

1
9 ,

1
9 ,

1
9 ,

1
9}, while

the state of the second die is unchanged since the map is unital, q′ = Bq =

q. The distinguishability between p′ and q′ according to the trace distance

is DTr(p′,q′) = 2
9 < DTr(p,q) = 1

2 , exhibiting the contractivity of the trace

distance from (1.12). Furthermore, it can be found that p′ is more uniform than
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p, i.e. p′ ≺ p, which is equivalently implied by (1.16) since p′ = Bp.

Finally, consider measuring the squared value of the result of a die roll, which

is represented by the observable O = {i2}6
i=1. With the first die in the state p,

the probability of observing each of the results {1, 4, 9} ⊂ O of the observable is
1
3 and the probability of observing any of the results {16, 25, 36} ⊂ O is 0, with

the corresponding expectation value of the observable 〈O〉p = 14
3 . Instead, for

the second die in the state q, the probability of observing any one of the results

in O is 1
6 and the expectation value is 〈O〉q = 91

6 .

1.2 Quantum Systems

A finite dimensional quantum system can be described by a d-dimensional com-

plex Hilbert space H, equipped with an inner product 〈φ|ψ〉 ∈ C defined between

any two vectors |φ〉 and |ψ〉 in H. An orthonormal basis (ONB) is any collection

of d orthogonal and normalised vectors {|ei〉}di=1 in the Hilbert space, i.e. satis-

fying |ei〉 ∈ H and 〈ei|ej〉 = δij for all i, j ∈ {1, 2, . . . , d}. Any vector |ψ〉 ∈ H

can be expressed with respect to this orthonormal basis (ONB) as

|ψ〉 =
d∑
i=1

ψi |ei〉 , (1.20)

with ψi = 〈ei|ψ〉. This representation allows |ψ〉 to be associated with the column

vector ψ = {ψi}di=1 ∈ Cd. The inner product can then be written as

〈φ|ψ〉 = φ†ψ =
d∑
i=1

φ∗iψi, (1.21)

where φ = {φi}di=1 ∈ Cd is the column vector corresponding to |φ〉 with φi =

〈ei|φ〉, † denotes the conjugate transpose and ∗ denotes the conjugate, which will

be the notation adopted henceforth.

The configurations of a quantum system are given by the normalised vectors

of H, i.e. the |ψ〉 ∈ H satisfying 〈ψ|ψ〉 = 1. However, any two vectors |ψ〉 ∈ H

and |ψ′〉 ∈ H related to each other through a complex phase factor |ψ′〉 = eiφ |ψ〉

for some φ ∈ R correspond to the same configuration of the quantum system. We

hence say that the configurations of the quantum system are all the normalised
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vectors of H up to an absolute phase factor. There is an infinite number of

such vectors, and hence a finite dimensional quantum system has an infinite

number of possible configurations. There is also an infinite number of ONBs of

H. For a 2-dimensional quantum system, the most natural ONB is given by

the computational basis {|0〉 , |1〉}, where |0〉 is associated to the column vector

0 := {1, 0} and |1〉 is associated to 1 := {0, 1}. On the other hand, whenever the

dimension of a quantum system is larger than 2, the typical ONB is the standard

basis {|i〉}di=1 with each |i〉 associated to the column vector i := {δij}dj=1.

1.2.1 State

The state of a quantum system again represents our knowledge on the config-

uration of the system. If the configuration of the quantum system is known to

be the normalised vector |ψ〉 ∈ H then we describe it with a pure state given

by a projection operator (also known as a projector) |ψ〉 〈ψ| acting on H, that

projects all elements of H onto the vector |ψ〉. This pure state can be represented

with respect to a chosen ONB as a matrix ψψ† when ψ is written as a complex

column vector as specified above. In general, a projector is given by any operator

P satisfying P 2 = P whose action is to project any |ψ〉 ∈ H onto the subspace

given by the range of P . However, not every projector corresponds to a pure state

of the quantum system: P is a pure state projector only when P = |ψ〉 〈ψ| for

some configuration |ψ〉, or equivalently when P has a rank of one and Tr(P ) = 1,

where Tr(X) denotes the trace of an operator X. Note that, after this chapter,

we will often refer to the configurations |ψ〉 as pure states, following the standard

language of quantum mechanics.

If we do not have full knowledge of the quantum system then it may be

described by any one of a collection of possible configurations {|ψi〉}i with corres-

ponding probability distribution {qi}i. The system is then said to be in a mixed

state represented by a self-adjoint operator ρ written as

ρ =
∑
i

qi |ψi〉 〈ψi| , (1.22)

which is the convex combination of pure state projectors onto the configurations
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|ψi〉, where any operator X acting on H is self-adjoint if X = X†. An operator ρ

can be written as a convex combination of pure state projectors if and only if it

satisfies the requirements [7]

Tr (ρ) = 1, (1.23)

ρ ≥ 0, (1.24)

where X ≥ 0 means that the self-adjoint operator X is positive semidefinite, i.e.

〈ψ|X|ψ〉 ≥ 0 ∀ |ψ〉 ∈ H. (1.25)

If these conditions hold, ρ is defined to be a density operator. The density oper-

ators of pure states are the pure state projectors ρ = |ψ〉 〈ψ|. Hence, the states of

a quantum system are given by all the density operators acting on H. We denote

the convex set of density operators, or equivalently the set of states, by D(H).

Any density operator can be represented with respect to a given ONB {|ei〉}di=1

as a density matrix on Cd with elements ρij = 〈ei|ρ|ej〉.

It is important to note that the decomposition of a mixed state in Eq. (1.22)

is not unique. In fact, there is an infinite number of ways to choose a collection

of pure states and a probability distribution so that the corresponding convex

combination of pure state projectors is equal to ρ. However, a density operator

ρ can always be decomposed as

ρ =
d∑
i=1

pi |pi〉 〈pi| , (1.26)

where {pi}di=1 are the eigenvalues of ρ, which sum to 1, and {|pi〉}di=1 are ei-

genvectors of ρ, which form an ONB of H known as the eigenbasis of ρ. This

decomposition is called the spectral decomposition of ρ, and is of special import-

ance. It can be seen that any operator written in the form of Eq. (1.26) is a

density operator if and only if

pi ≥ 0 ∀ i ∈ {1, 2, . . . , d},
d∑
i=1

pi = 1. (1.27)

Our ignorance on the configuration of the quantum system described by a
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state ρ can be quantified by the von Neumann entropy [41]

S(ρ) := −Tr (ρ log ρ) = −
d∑
i=1

pi log pi, (1.28)

where the second equality uses the eigenvalues {pi}di=1 from the spectral decom-

position of ρ in Eq. (1.26). Like the Shannon entropy, this quantity ranges from

0 for pure state projectors ρ = |ψ〉 〈ψ| to log d for the maximally mixed state

ρ = I
d
, where I is the identity operator leaving every vector in H invariant. The

maximally mixed state corresponds to a uniform mixture of pure state projectors

onto any ONB {|ei〉}di=1, i.e.

I
d

= 1
d

d∑
i=1
|ei〉 〈ei| . (1.29)

Finally, the distinguishability between two states ρ and σ can be measured

by finding the distance between them according to a distance Dδ(ρ, σ) defined on

the set of density operators. This distance must obey analogous requirements to

those in (1.3), (1.4), and (1.5) for a given choice of function δ. Table 1.1 presents

some commonly used distances between density operators. Further information

on these distances and their physical justification as distinguishability measures

can be found in Refs. [7, 20, 42]. The function

F (ρ, σ) :=
[
Tr
(√√

ρσ
√
ρ
)]2

(1.30)

is the quantum fidelity, which is a generalisation of the classical fidelity in Eq. (1.8)

to the set of density operators.

1.2.2 Evolution

A quantum system evolves in a fixed time interval according to a quantum oper-

ation Λ, which transforms an initial state of the system ρ to an evolved state ρ′

according to the map ρ′ = Λ (ρ). Quantum operations are given by the completely

positive and trace preserving (CPTP) linear maps acting on density operators.

Complete positivity of a quantum operation Λ ensures that not only Λ(ρ) ≥ 0

for any initial state ρ, but also that any density operator describing a higher
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Distance δ Dδ(ρ, σ)

Trace Tr 1
2Tr |ρ− σ|

Hellinger (squared) He 2
[
1− Tr

(√
ρ
√
σ
)]

Bures (squared) Bu 2
[
1−

√
F (ρ, σ)

]
Infidelity F 1− F (ρ, σ)

Relative entropy RE Tr(ρ log ρ− ρ log σ)

Table 1.1: Distances Dδ(ρ, σ) between two density operators ρ and σ, where

|ρ− σ| :=
√

(ρ− σ)2. The squared versions of the Hellinger distance and Bures

distance are preferred because they have the useful property of joint convexity,

which is discussed in more detail in Section 3.2.2.

dimensional quantum system remains positive semidefinite whenever Λ acts on a

part it, Ref. [7] provides a formal definition of this property. Trace preservation

means that Tr(Λ(ρ)) = 1 for all initial states ρ. Hence, the output state Λ(ρ)

of any quantum operation Λ is always a density operator for any initial state ρ.

We note that quantum operations can in general map to an output system of

different dimension, but we do not consider such a scenario in this thesis.

A linear map Λ is CPTP if and only if it can be written in the form [43]

Λ(ρ) =
∑
i

KiρK
†
i (1.31)

for some set of operators {Ki}i which obey
∑
i

K†iKi = I. (1.32)

This is called the operator sum representation of Λ and provides a useful char-

acterisation of quantum operations. The {Ki}i are called Kraus operators, but

there is not a unique way to choose them for a given Λ. Quantum operations

are also called quantum channels because they can be thought of as a communic-

ation channel of quantum information. Furthermore, quantum operations form

the quantum analogue of the stochastic maps discussed in Section 1.1.2.

Unital quantum operations are then the quantum analogue of the bistochastic

maps. They map the maximally mixed state I
d
to itself and are characterised by
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having their Kraus operators obey
∑
i

KiK
†
i = I. (1.33)

Just like for classical systems, there is a rigorous connection between the action of

unital quantum operations and increasing uniformity of the state. A state σ of a

quantum system can be thought of as more uniform than the state ρ when σ ≺ ρ,

which holds when the vector of eigenvalues of σ is majorised by the vector of

eigenvalues of ρ using the definition in Eq. (1.14). The link with unital quantum

operations is then given by [20]

σ ≺ ρ ⇔ ∃ a unital quantum operation Λ such that σ = Λ(ρ). (1.34)

Quantum operations cause the distinguishability between any two states ρ

and σ of a quantum system to decrease. A measure of distinguishability is then

monotonically non-increasing under the action of quantum operations when the

corresponding distance Dδ(ρ, σ) is contractive under any CPTP map, i.e.

Dδ(Λ(ρ),Λ(σ)) ≤ Dδ(ρ, σ) (1.35)

for any two states ρ and σ and all CPTP maps Λ. All of the distances defined

on the set of density operators listed in Table 1.1 are contractive [20, 44].

We can also account for the situation where a quantum operation is not always

applied to a quantum system. A probabilistic quantum operation Λ occurs with

a probability Tr(Λ(ρ)) that is dependent upon the initial state ρ of the system.

If Λ does occur, then it transforms the system to the evolved state ρ′ according

to the map ρ′ = Λ(ρ)/Tr(Λ(ρ)). Here, Λ is a completely positive map, but does

not preserve the trace since 0 ≤ Tr(Λ(ρ)) ≤ 1. We may write any probabilistic

quantum operation in terms of Kraus operators {Ki}i as Λ(ρ) = ∑
iKiρK

†
i using

the operator sum representation, but now it must hold that
∑
i

K†iKi ≤ I. (1.36)

Probabilistic quantum operations form an important part of the general descrip-

tion of measurement in quantum mechanics, as will now be discussed in the

following section.
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1.2.3 Observables

The observables of a quantum system are given by self-adjoint operators acting

onH. An observable O can be written in terms of its eigenvalues and eigenvectors

as

O =
∑
i

oi |oi〉 〈oi| , (1.37)

where the eigenvalues {oi}di=1 are real and the eigenvectors {|oi〉}di=1 form an ONB

ofH. Measurement of the observable O on a quantum system in configuration |ψ〉

causes the system to collapse onto one of the configurations {|oi〉}di=1 with prob-

ability |〈oi|ψ〉|2, yielding the corresponding measurement results {oi}di=1. This

is a remarkable difference to the case of classical systems, where an observable

measurement does not alter the configuration of the system. On the other hand,

to account for the possibility that we do not know the exact configuration of the

quantum system, we describe an observable measurement more generally in the

following way. Let R be the set of possible results of measuring O, which is given

by the set containing all the unique eigenvalues of O without repetition. This

allows O to be rewritten as

O =
∑
r∈R

rPr, (1.38)

where

Pr :=
∑
i:oi=r

|oi〉 〈oi| (1.39)

are projectors onto the eigenspace of O with eigenvalue r. If the quantum system

is in state ρ, then measuring the observable O gives result r with probability

p(r|ρ) = Tr(Prρ) and leaves the system in the state

θr = PrρPr
p(r|ρ) . (1.40)

If the result of measuring the observable is not known then the system will be

described by the state

θ =
∑
r∈R

p(r|ρ)θr =
∑
r∈R

PrρPr, (1.41)

with corresponding expectation value

〈O〉ρ =
∑
r∈R

p(r|ρ)r = Tr(Oρ). (1.42)
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The result of measuring an observable can tell us the present configuration of the

quantum system. If O has a non-degenerate set of eigenvalues, i.e. with each

eigenvector |oi〉 corresponding to a unique eigenvalue oi, then the possible results

of measuring O are R = {oi}di=1. Observing the result oi then tells us that the

system is in the configuration |oi〉.

The probability of observing the result r and the resultant state of the system

do not depend on the exact value of r, and so it is often more useful just to consider

which of the r ∈ R was observed rather than the value of the particular r ∈ R.

A quantum instrument is a formalism describing the probabilities of observing a

set of measurement outcomes {i}i when measuring a quantum system, as well as

the corresponding states {θi}i after the measurement [45, TRB12]. The quantum

instrument corresponds to a more general form of measurement of a quantum

system and is composed of a set {Λi}i of probabilistic quantum operations that

together sum to a quantum operation Λ. Upon measurement of the quantum

system with the quantum instrument, one of the probabilistic quantum operations

Λi occurs with the state dependent probability p(Λi|ρ) = Tr(Λi(ρ)), giving the

resultant state

θi = Λi(ρ)
p(Λi|ρ) . (1.43)

This event is associated with the measurement outcome i. If the result of the

measurement outcome is not known then the state of the system is

θ =
∑
i

p(Λi|ρ)Λi = Λ(ρ), (1.44)

i.e. the result of the quantum operation Λ.

A projective measurement is a special type of quantum instrument whose

probabilistic quantum operations are given by Λi(ρ) = PiρPi, corresponding to

a set of projectors {Pi}i that are orthogonal, i.e. PiPj = δijI for any i and j,

and sum to the identity, i.e. ∑i Pi = I. A projective measurement corresponds

to an observable measurement when each outcome i is associated with a result r.

Another type of quantum instrument is specified by the set of Kraus operators

{Ki}i from the operator sum representation of any quantum operation Λ, where
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each probabilistic quantum operation is given by the completely positive map

Λi(ρ) = KiρK
†
i .

Even more general than a quantum instrument is the concept of a positive

operator valued measure (POVM). Here, only the probabilities of each outcome

are important and we do not specify the corresponding states of the system. A

POVM consists of any set of positive semidefinite operators {Mi}i that sum to

the identity, ∑iMi = I, so that each outcome i is associated with the probability

p(Mi|ρ) = Tr(Miρ). (1.45)

Every quantum instrument {Λi}i has a corresponding set of POVM elements

{Mi}i with Mi = Λ†i (I). The map Λ†i is the dual of Λi, i.e. the map satisfy-

ing Tr(Λ†i (ρ)σ) = Tr(ρΛi(σ)) for any density operators ρ and σ [20, 46]. The

correspondence can then be seen by considering the outcome probabilities,

p(Λi|ρ) = Tr(Λi(ρ)) = Tr(IΛi(ρ)) = Tr(Λ†i (I)ρ) = Tr(Miρ) = p(Mi|ρ). (1.46)

We note that more than one quantum instrument corresponds to the same set of

POVM elements, meaning that there is not a unique set of resultant states {θi}i
compatible with the probabilities {p(Mi|ρ)}i.

1.2.4 Example

We now detail the description of a 2-dimensional quantum system, which has

been studied extensively in quantum science. The 2-dimensional system is often

thought of as the quantum analogue of a classical bit, and is hence called a qubit.

Any state ρ of a qubit can be written as a density operator in the following way

ρ = 1
2

(
I +

3∑
i=1

niσi

)
, (1.47)

where n2
1 + n2

2 + n2
3 ≤ 1, I is the 2-dimensional identity operator and {σi}3

i=1 are

the Pauli operators, defined by their action on the computational basis {|0〉 , |1〉},

σ1 |0〉 = |1〉 σ1 |1〉 = |0〉 ,

σ2 |0〉 = i |1〉 σ2 |1〉 = −i |0〉 ,

σ3 |0〉 = |0〉 σ3 |1〉 = − |1〉 . (1.48)
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Figure 1.3: The Bloch ball representation of the state ρ of a qubit system.

The state ρ and the Pauli operators can be expressed as matrices with respect to

the computational basis, i.e.

ρ = 1
2

 1 + n3 n1 − in2

n1 + in2 1− n3

 ,

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (1.49)

The vector n := {ni}3
i=1 lies within the unit ball B1 in R3, and can be described

in spherical coordinates by a radius R :=
√
n2

1 + n2
2 + n2

3 and two angles θ ∈ [0, π]

and φ ∈ [0, 2π[ as n = {R cos(φ) sin(θ), R sin(φ) sin(θ), R cos(θ)}. This is called

the Bloch ball representation of a qubit state and is visualised in Figure 1.3. The

eigenvalues of ρ are

p1 = 1−R
2 , p2 = 1 +R

2 . (1.50)

The von Neumann entropy is then

S(ρ) = −1−R
2 log

(1−R
2

)
− 1 +R

2 log
(1 +R

2

)
, (1.51)

which varies between 0, when R = 1, and 1, when R = 0. The pure state

projectors are given by all ρ with R = 1, and hence lie on the surface of the Bloch

ball. The corresponding configurations are

|ψ〉 = cos
(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 . (1.52)
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It can be seen that the pure state projector |0〉 〈0| onto the computational basis

has corresponding coordinates n = {0, 0, 1} in the Bloch ball, while the pure state

projector |1〉 〈1| has coordinates n = {0, 0,−1}.

1.3 Composite Systems

In this thesis we will also be considering composite systems. Here we briefly

outline the description of a bipartite system consisting of either two classical

subsystems or two quantum subsystems. We label these subsystems A and B

and consider them to be finite dimensional with dimensions dA and dB.

Composite Classical Systems

If the two subsystems are classical, then they have phase spaces PA = {i}dAi=1 and

PB = {j}dBj=1, respectively. The phase space PAB of the composite system is given

by the Cartesian product of PA and PB,

PAB := PA × PB = {(i, j)}dA,dBi,j=1 , (1.53)

where × denotes the Cartesian product. The state of the composite system is

then given by a joint probability distribution pAB = {pABij }
dA,dB

i,j=1 defined on PAB,

with pABij giving the likelihood that subsystem A is in configuration i ∈ PA and

subsystem B is in configuration j ∈ PB. The overall likelihood that subsystem A

is in configuration i (i.e. regardless of the configuration of subsystem B) is given

by pAi = ∑dB
j=1 p

AB
ij , and hence the state of subsystem A is the marginal probability

distribution pA = {pAi }
dA
i=1. Likewise, the state of subsystem B is the marginal

probability distribution pB = {pBj }
dB
j=1, with pBj = ∑dA

i=1 p
AB
ij . If the configurations

of subsystems A and B are known to be i ∈ PA and j ∈ PB, then the state of

the composite system is given by the pure state (δ(ij))AB = {δikδjl}dA,dBk,l=1 . Any

state pAB of the composite system can be expressed in a unique way as a convex

mixture of pure states,

pAB = {pABij }
dA,dB

i,j=1 =
dA,dB∑
i,j=1

pABij (δ(ij))AB. (1.54)
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The composite system may be correlated in such a way that our know-

ledge on the configuration of one subsystem is affected by our knowledge on

the configuration of the other subsystem. If the state of the composite system

is pAB = {pABij }
dA,dB

i,j=1 , then the probability that subsystem A is in configuration

i ∈ PA given that subsystem B is in configuration j ∈ PB is pA|B=j
i = pABij /p

B
j .

The state of subsystem A is then pA|B=j = {pA|B=j
i }dAi=1 with a corresponding

Shannon entropy S(pA|B=j). Taking the average of this Shannon entropy over all

the configurations of subsystem B gives the conditional entropy

SA|B(pAB) =
dB∑
j=1

pBj S(pA|B=j), (1.55)

which measures our average uncertainty on the configuration of subsystem A

given knowledge on the configuration of subsystem B. We then say that the

subsystems are correlated whenever SA|B(pAB) is less than S(pA). The difference

between these two quantities is a measure of the correlations and is called the

mutual information, which can be expressed in three equivalent forms

I(pAB) = S(pA)− SA|B(pAB)

= S(pB)− SB|A(pAB)

= S(pA) + S(pB)− S(pAB). (1.56)

The mutual information is non-negative and zero only for uncorrelated systems

where the state pAB = {pAi pBj }
dA,dB
i,j=1 is the product of subsystem states pA =

{pAi }
dA
i=1 and pB = {pBj }

dB
j=1.

An observable of the composite system is given by the real numbers OAB =

{oij}dA,dBi,j=1 so that the observable takes the value oij when subsystem A is in con-

figuration i ∈ PA and subsystem B is in configuration j ∈ PB. Local observables

of the subsystems are given by the collections of real numbers OA = {oi}dAi=1

and OB = {oj}dBj=1, and can be measured jointly on the composite system as

the product OAB = OA × OB = {oioj}dA,dBi,j=1 . Hence, measurement of the local

observable OA on the composite system is achieved by jointly measuring with

the identity observable I = {1}dBj=1 on subsystem B, i.e. resulting in the product
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OAB = OA× I = {oi}dA,dBi,j=1 so that the value oi is taken whenever subsystem A is

in configuration i ∈ PA, regardless of the configuration of subsystem B.

Composite Quantum Systems

If the two subsystems are quantum, then they have Hilbert spaces HA and HB,

respectively. The composite system is then described by a (dA× dB)-dimensional

Hilbert space HAB given by the tensor product of HA and HB,

HAB := HA ⊗HB, (1.57)

where⊗ denotes the tensor product. The state of the composite system is given by

a density operator ρAB acting on HAB, while the states ρA and ρB of subsystems

A and B, respectively, are given by the marginal density operators found by

performing the partial trace over the complementary Hilbert space, i.e.

ρA = TrB(ρAB) ρB = TrA(ρAB), (1.58)

where TrX indicates the partial trace over subsystem X. If the configuration

of the composite system is known, then its density operator is the pure state

projector |ψAB〉 〈ψAB|. Any state ρAB of the composite system can be expressed

as a (non-unique) convex combination of pure state projectors, i.e. there always

exists a set of pure state projectors {|ψABi 〉 〈ψABi |}i such that

ρAB =
∑
i

qi |ψABi 〉 〈ψABi | , (1.59)

for a probability distribution {qi}i.

The correlations of the composite system in state ρAB are given by the mutual

information

I(ρAB) = S(ρA) + S(ρB)− S(ρAB). (1.60)

Furthermore, the observables of the composite quantum system are the self-

adjoint operators acting on HAB, while observables of the subsystems are the

self-adjoint operators acting on HA and HB, respectively. Measurement of the

local observable OA on the composite system is achieved with the tensor product

OA ⊗ IB, where IB is the identity operator acting on subsystem B.
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As well as bipartite quantum systems, it will also be useful to describe com-

posite quantum systems of N qubits. Here, the 2N -dimensional Hilbert space

is given by the tensor product H⊗N of the qubit Hilbert space highlighted in

Section 1.2.4. Any state of the N qubit system can be written as

ρ = 1
2N

3∑
i1i2...iN=0

Ri1i2...iNσi1 ⊗ σi2 ⊗ . . .⊗ σiN , (1.61)

where σ0 := I is the 2-dimensional identity operator. The real correlation tensor

Ri1i2...iN = Tr(ρ σi1⊗σi2⊗ . . .⊗σiN ) ∈ [−1, 1] must obey certain requirements for

ρ to be a density matrix. Since the Pauli operators are traceless, Tr(ρ) = 1 when

R00...0 = 1. However, the constraints on Ri1,i2,...,iN for ρ to be positive semidefinite

for a general N are complicated and not yet fully characterised.

1.4 Comparison

The preceding discussion of classical and quantum systems has highlighted a lot

of similarities in their description, Table 1.2 provides a summary. However, there

are some differences between classical and quantum systems that lead to very

contrasting properties. These properties are what we call the quantum, which

form the focus of this thesis.

One of the most notable features of a quantum system is that it can exist in

an infinite number of possible configurations. Nevertheless, we have seen that an

observation of the quantum system through an observable O with non-degenerate

eigenvalues allows us to single out a set of d configurations corresponding to

the ONB {|ei〉}di=1 of O. We can reconcile the configurations of this ONB with

the d possible configurations of a classical system. Indeed, a classical system

in state p = {pi}di=1 can be associated with the state ρ = ∑d
i=1 pi |ei〉 〈ei| of

the quantum system, i.e. so that the eigenbasis of ρ coincides with the ONB

{|ei〉}di=1. In this case, we have that the probability 〈ei|ρ|ei〉 of the quantum

system being in configuration |ei〉 after measuring O is exactly the corresponding

pi from the probability distribution. Nevertheless, there is an infinite number of

other possible ONBs of H that may describe the eigenbasis of ρ, so that ρ does
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Classical systems Quantum systems

Space P H

Configurations i ∈ P |ψ〉 ∈ H

States
p = ∑d

i=1 piδ
(i) ρ = ∑d

i=1 pi |pi〉 〈pi|

pi ≥ 0, ∑d
i=1 pi = 1 pi ≥ 0, ∑d

i=1 pi = 1

Entropy S(p) = −∑d
i=1 pi log pi S(ρ) = −∑d

i=1 pi log pi
Distinguishability Dδ(p,q) Dδ(ρ, σ)

Evolution Sp Λ[ρ]

Observables O = ∑d
i=1 oiδ

(i) O = ∑d
i=1 oi |oi〉 〈oi|

Composition × ⊗

Table 1.2: A summary of the structures used to describe classical systems and

quantum systems.

not generally commute with the observable O (i.e. [ρ,O] := ρO −Oρ 6= 0). This

peculiarity of quantum mechanics gives rise to the concept of quantum coherence,

as discussed in the next chapter.

Another remarkable feature of quantum mechanics is the formalism used to

describe composite quantum systems. In Section 1.3 we saw that composite

classical systems use the Cartesian product structure of the phase space, while

composite quantum systems rely on the tensor product structure of the Hilbert

space. It is this tensor product structure that gives rise to the presence of quantum

correlations in a composite quantum system, as we discuss in further detail in the

following chapter. Indeed, for a composite classical system the Cartesian product

structure implies that whenever the composite system is in a pure state, then

its subsystems are also in pure states. On the other hand, the tensor product

structure of a composite quantum system means that a pure state of the composite

system does not necessarily imply that the states of the subsystems are also pure.

This quantum feature is associated with the property of quantum entanglement,

a particular type of quantum correlations.



Chapter 2

The Quantum-Classical Frontier

In this chapter we explain the three key types of the quantum considered in this

thesis: quantum coherence, quantum correlations, and quantum entanglement.

Building upon our comparison of classical and quantum systems in the previous

chapter, we discuss how each type of the quantum arises uniquely from the descrip-

tion of a physical system provided by quantum mechanics. Characterising these

types of the quantum then sets the stage for an investigation of Questions 1, 2,

and 3 in the following chapters.

2.1 Quantum Coherence

Consider a quantum system in the pure state |ψ〉 ∈ H along with the measure-

ment of an observable O on the system with non-degenerate eigenvalues and an

associated reference ONB {|ei〉}di=1. We can write the vector |ψ〉 with respect to

this ONB as

|ψ〉 =
d∑
i=1

ψi |ei〉 , (2.1)

where ψi = 〈ei|ψ〉 ∈ C and ∑d
i=1 |ψi|

2 = 1. From Section 1.2.3, we know that, by

measuring the observable O, we will observe one of the non-degenerate eigenvalues

with probability |〈ei|ψ〉|2 = |ψi|2 and conclude that the quantum system collapses

onto the corresponding configuration |ei〉. Hence, unless |ψ〉 = |ei〉 for any i, we

will have an uncertainty on the resultant configuration of the quantum system.

30
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This uncertainty does not arise from our lack of knowledge of the system, since we

know it is initially in the pure state |ψ〉, but rather from an intrinsic uncertainty

due to the probabilistic nature of quantum mechanics itself. We call quantum

coherence the property that characterises this intrinsic uncertainty [1, 47, 48].

Hence, a pure state of the quantum system |ψ〉 is coherent with respect to the

reference ONB if more than one of the ψi is non-zero. If this is the case, |ψ〉 is

said to be in a coherent superposition. The pure states that are not in a coherent

position are called incoherent, and are given by all the {|ei〉}di=1.

While for pure states any uncertainty on the resultant configuration {|ei〉}di=1

of the system after measuring the observable O is only due to the probabilistic

nature of quantum mechanics, for mixed states we have an additional uncertainty

due to our lack of knowledge on the configuration of the system. The states

with coherence are then defined to be those for which there is always a non-zero

probability that the system is described by a coherent pure state. As we have

seen in Section 1.2.1, there is not a unique decomposition of a density operator

ρ according to Eq. (1.22) into a convex combination of pure state projectors

{|ψi〉 〈ψi|}i according to the probability distribution {qi}i. The coherent states

are hence those for which every decomposition always has at least one |ψi〉 that is

coherent (with qi > 0). Conversely, the incoherent states are those not satisfying

this property, such that there exists a decomposition of ρ into only incoherent

pure state projectors, i.e. so that each |ψi〉 is equal to one of the {|ei〉}di=1. It can

then be said that a state δ is incoherent with respect to the ONB {|ei〉}di=1 if it

can be written as

δ =
d∑
i=1

δi |ei〉 〈ei| , (2.2)

where {δi}di=1 is a probability distribution. We represent the set of incoherent

states with I. The incoherent density matrices are given by all the density

matrices that are diagonal when represented with respect to the reference ONB.

It can be seen that the eigenbasis of a coherent state ρ does not coincide with

the reference ONB {|ei〉}di=1 with respect to which coherence is measured. Hence,

coherence arises from the non-uniqueness of the ONBs of H, or alternatively
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the non-commutative nature of self-adjoint operators in quantum mechanics. In

classical mechanics, there is a unique basis {i}di=1 to describe the phase space

P of the system. The configuration of a classical system is left unchanged by

the measurement of an observable, and hence there is no intrinsic uncertainty on

the resultant configuration. As has already been alluded to in Section 1.4, the

incoherent quantum states δ in Eq. (2.2) can thought of as representing a classical

system in state {δi}di=1 with respect to the reference ONB.

2.1.1 Coherence Number

Instead of characterising just the presence of an intrinsic uncertainty in a quantum

system with respect to the configurations of the ONB {|ei〉}di=1 corresponding

to measuring the observable O, it can also be informative to count how many

of the |ei〉 there is an uncertainty with respect to. This concept is captured

by the coherence number [TRB3, 49–53]. A pure state of the quantum system

|ψ〉 = ∑d
i=1 ψi |ei〉 has a coherence number of k with respect to the fixed reference

ONB {|ei〉}di=1 if exactly k of the ψi are non-zero. The coherence number ranges

from 1 to d, corresponding to the dimension of the system.

Just like with coherence, the coherence number of a general state ρ depends

on the decomposition of ρ into pure state projectors {|ψi〉 〈ψi|}i with probabilities

{qi}i. We say that ρ has a coherence number of k if every decomposition has at

least one pure state |ψi〉 (and qi > 0) with a coherence number of at least k, and

if there exists at least one decomposition where one pure state |ψi〉 (with qi > 0)

has a coherence number of k and all the other |ψi〉 have a coherence number less

than or equal to k. In such a way, there is always a non-zero probability that

the system is described by a pure state with a coherence number of at least k,

but it is not always guaranteed that it can be described by a pure state with a

coherence number of more than k.

In practice, it will be more useful to define the states with a coherence number

of less than k. A density operator ρ has a coherence number of less than k if it

can be decomposed as a convex mixture of pure state projectors {|ψi〉 〈ψi|}i such
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𝒟 ℋ

Figure 2.1: The set of states D(H) of a d-dimensional system (represented here by

the circle) can be structured into the convex sets I(k) of states with a coherence

number of less than k (represented as the concentric ellipses), with I(2) ⊂ I(3) ⊂

. . . ⊂ I(d) ⊂ D(H). On the other hand, the (non-convex) sets of states with

a coherence number of exactly k are given by the difference between the sets

I(k+1) (or D(H) when k = d) and I(k). Note that the areas of ellipses are not

representative of the volumes of the corresponding sets I(k), although the set of

incoherent states I(2) is known to be zero measure within D(H) [1, TRB1], and is

hence drawn as a line.

that all of the pure states |ψi〉 have a coherence number of less than k. The

convex set of density operators with a coherence number of less than k is given

by I(k) for k ∈ {2, 3, . . . , d}, and it follows that I(2) ⊂ I(3) ⊂ . . . ⊂ I(d) ⊂ D(H).

The set of incoherent states is given in particular by I = I(2). Figure 2.1 provides

a visualisation of the sets I(k) that have a coherence number of less than k in

a d-dimensional system, along with a comparison to the sets of states with a

coherence number of exactly k.

2.2 Quantum Correlations

As we have seen in Section 1.3, the description of a composite quantum system is

markedly different to that of a composite classical system. Here we focus on the
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unique nature of composite quantum systems. This unique nature is captured

by the property of quantum correlations in the composite system [9–11, 54–58],

one of the key types of the quantum discussed in this thesis. To identify these

quantum correlations, we first need to be able to compare composite quantum

systems and composite classical systems within the same paradigm. This can

be achieved by establishing the description of classical subsystems within the

quantum formalism, as we now proceed to do for the case of bipartite composite

systems using the setting of Section 1.3. The material presented here is derived

from the review papers in Refs. [TRB12, TRB13].

Suppose that the state of a bipartite quantum system is given by the density

operator

χABCC =
dA∑
i=1

dB∑
j=1

pABij |eAi 〉 〈eAi | ⊗ |fBj 〉 〈fBj | , (2.3)

where {pABij }
dA,dB
i,j=1 is a joint probability distribution and {|eAi 〉}

dA
i=1 and {|fBj 〉}

dB
j=1

are ONBs of HA and HB, respectively. We can associate the ONBs {|eAi 〉}
dA
i=1

and {|fBj 〉}
dB
j=1 with the configurations PA and PB of two classical subsystems A

and B, respectively, so that the probability that subsystem A is in configuration

i ∈ PA and subsystem B is in configuration j ∈ PB is

〈eAi ⊗ fBj |χABCC |eAi ⊗ fBj 〉 = pABij . (2.4)

Furthermore, the states of subsystems A and B are given by Eq. (1.58) as

ρA =
dA∑
i=1

pAi |eAi 〉 〈eAi | , ρB =
dB∑
j=1

pBj |fBj 〉 〈fBj | , (2.5)

where pAi = ∑dB
j=1 p

AB
ij and pBj = ∑dA

i=1 p
AB
ij . Hence, the probability that subsystem

A is in configuration i is pAi and the probability that subsystem B is in configura-

tion j is pBj . Therefore, the density operator χABCC effectively describes a bipartite

classical system in state pAB = {pABij }
dA,dB
i,j=1 , provided one chooses to represent

the configurations of the classical subsystems A and B with the ONBs {|eAi 〉}
dA
i=1

and {|fBj 〉}
dB
j=1, respectively. Such states are called classical-classical (CC) states

because both subsystems A and B are classical with respect to the choices of

ONB. Since one is free to choose the local bases used to represent the classical
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subsystems, the set of classical-classical states is then

CABCC :=
ρAB

∣∣∣∣∣∣ ρAB =
dA∑
i=1

dB∑
j=1

pABij |eAi 〉 〈eAi | ⊗ |fBj 〉 〈fBj |

 (2.6)

for any ONB {|eAi 〉}
dA
i=1 of A and {|fBj 〉}

dB
j=1 of B.

It is also possible to have an intermediate scenario whereby only one subsystem

can be described classically. A classical-quantum (CQ) state of a bipartite system

is given by

χABCQ =
dA∑
i=1

pAi |eAi 〉 〈eAi | ⊗ ρBi , (2.7)

where {pAi }
dA
i=1 is a probability distribution, {|eAi 〉}

dA
i=1 is an ONB of A, and {ρBi }

dA
i=1

are arbitrary states of subsystem B. We can see that the marginal states of

subsystems A and B are

ρA =
dA∑
i=1

pAi |eAi 〉 〈eAi | , ρB =
dA∑
i=1

pAi ρ
B
i . (2.8)

If we associate the ONB {|eAi 〉}
dA
i=1 with the configurations PA of a classical sub-

system, then it is clear that subsystem A can be described classically with respect

to this ONB by the state pA = {pAi }
dA
i=1. Indeed, the probability that subsystem

A is in configuration i ∈ PA is 〈eAi |ρA|eAi 〉 = pAi . On the other hand, in general

subsystem B does not correspond to a classical subsystem with respect to any

choice of ONB. The set of classical-quantum states is then

CABCQ :=
ρAB

∣∣∣∣∣∣ ρAB =
dA∑
i=1

pAi |eAi 〉 〈eAi | ⊗ ρBi

 (2.9)

for any ONB {|eAi 〉}
dA
i=1 of A. The quantum-classical (QC) states are justified

analogously and are written as

χABQC =
dB∑
j=1

pBj ρ
A
j ⊗ |fBj 〉 〈fBj | , (2.10)

where {pBj }
dB
j=1 is a probability distribution, {|fBj 〉}

dB
j=1 is an ONB of B, and

{ρAj }
dB
j=1 are arbitrary states of subsystem A. The corresponding set is then

CABQC :=
ρAB

∣∣∣∣∣∣ ρAB =
dB∑
j=1

pBj ρ
A
j ⊗ |fBj 〉 〈fBj |

 , (2.11)
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for any ONB {|fBj 〉}
dB
j=1 of B.

The CC, CQ and QC states may be referred to as classically correlated because

at least one of the subsystems can be described classically in a certain ONB.

In particular, the CC states are classically correlated for both subsystems, the

CQ states are classically correlated for subsystem A, while the QC states are

classically correlated for subsystem B. The sets CABCC , CABCQ, and CABQC are not

convex, and it also holds that CABCC = CABCQ ∩ CABQC . Quantumly correlated states

are the states that are not classically correlated. Specifically, if ρAB /∈ CABCC then

ρAB has quantum correlations originating from at least one of the subsystems,

if ρAB /∈ CABCQ then ρAB has quantum correlations from subsystem A, and if

ρAB /∈ CABQC then ρAB has quantum correlations from subsystem B.

In Refs. [TRB12, TRB13] we review a number of different justifications for

using the term quantum correlations, see also Refs. [11, 54–58] for further de-

tails. The original notion of quantum correlations was suggested in Refs. [9, 10],

where it was noticed that the so-called classical correlations resulting from local

measurements on the subsystems of a bipartite quantum system do not gener-

ally account for all of the total correlations according to the mutual information

in Eq. (1.60). The difference between the total correlations and the classical

correlations then results in a well-known quantity, called the quantum discord,

as a measure of quantum correlations. In this thesis, we do not report on the

quantum correlations from this perspective, and instead follow a distance-based

approach to its quantification, outlined in Chapter 3. The rest of this section on

quantum correlations is devoted to highlighting two of the characteristic features

of a quantumly correlated composite system: the presence of local coherence, and

a sensitivity to local projective measurements. In the following, the quantumly

correlated states will be those that are not CQ. Analogous features also exist for

CC and QC states.
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2.2.1 Local Quantum Coherence

Consider a state |ψA〉 〈ψA|⊗ρB of a bipartite quantum system, where |ψA〉 ∈ HA

is a pure state of subsystem A and ρB is an arbitrary state of subsystem B. The

state of subsystem A can be written with respect to an ONB {|eAi 〉}
dA
i=1 of HA as

|ψA〉 =
dA∑
i=1

ψAi |eAi 〉 (2.12)

with ψAi = 〈eAi |ψA〉. From the discussion in Section 2.1, it is clear that |ψA〉 is

coherent in the reference ONB {|eAi 〉}
dA
i=1 if more than one ψAi is non-zero. Hence,

the state |eAi 〉 〈eAi | ⊗ ρB, for any i, is locally incoherent in subsystem A. In fact,

any state that can be written as

δABIQ =
dA∑
i

pAi |eAi 〉 〈eAi | ⊗ ρBi (2.13)

is locally incoherent in subsystem A or incoherent-quantum (IQ), where {pAi }
dA
i=1

is a probability distribution and {ρBi }
dA
i=1 are arbitrary states of subsystem B.

The set of IQ states in the chosen reference ONB {|eAi 〉}
dA
i=1 is thus defined as

IABIQ :=
ρAB

∣∣∣∣∣∣ ρAB =
dA∑
i=1

pAi |eAi 〉 〈eAi | ⊗ ρBi

 . (2.14)

By referring to Eq. (2.7), it can be seen that IQ states are always CQ, i.e.

IABIQ ⊂ CABCQ. Furthermore, CABCQ is equal to the union of the sets of IQ states IABIQ
over all possible choices of ONB of subsystem A. This means that CQ states are

exactly the states that are locally incoherent in an ONB of subsystem A. The

quantumly correlated states, being those ρAB /∈ CABCQ, are therefore the states that

are locally coherent in all ONBs of subsystem A. This provides an interesting

link between quantum coherence and quantum correlations, showing that types

of the quantum are often interrelated.

2.2.2 Sensitivity to Local Measurements

Suppose a local observable measurement is carried out on our bipartite system

in state ρAB, where the observable is applied to subsystem A and given by OA =
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∑dA
i=1 e

A
i |eAi 〉 〈eAi |, with {|ei〉}

dA
i=1 an ONB of HA and {eAi }

dA
i=1 the corresponding

eigenvalues that are fixed to be non-degenerate. From Section 1.2.3, the state of

subsystem A is |eAi 〉 if result eAi is observed. Additionally, the state of subsystem

B after result eAi is

ρBi = 〈eAi |ρAB|eAi 〉
Tr (〈eAi |ρAB|eAi 〉)

, (2.15)

so that the state of the bipartite system becomes |eAi 〉 〈eAi | ⊗ ρBi . If the result of

the observable is not recorded, then the system is described by a density operator

θABA =
dA∑
i=1

pAi |eAi 〉 〈eAi | ⊗ ρBi , (2.16)

where {pAi }
dA
i=1 is a probability distribution given by pAi = 〈eAi |ρA|eAi 〉, with ρA =

TrB(ρAB) the state of subsystem A.

It is then clear that the state of the quantum system after any local observable

measurement (with the result unknown) is CQ, i.e. θABA ∈ CABCQ. Hence, if the

system in the initial state ρAB is unchanged by this measurement then it must be

classically correlated, ρAB = θABA ⇒ ρAB ∈ CABCQ. Conversely, if ρAB ∈ CABCQ then

it can be seen that there exists an observable with non-degenerate eigenvalues

and an ONB {|ei〉}dAi=1 such that ρAB = θABA . This provides a characterisation of

the CQ states as

ρAB ∈ CABCQ ⇔ ∃ OA with distinct {ei}di=1 such that ρAB = θABA .

The quantumly correlated states, i.e. those ρAB /∈ CABQC , are therefore sensitive to

all local observable measurements on subsystem A with non-degenerate spectrum

so that ρAB 6= θABA . We have hence highlighted another unique feature of a

bipartite quantum system arising from quantum correlations as a type of the

quantum.

2.3 Quantum Entanglement

An intuitive feature of a composite classical system is that its configuration is

completely specified by the configurations of its constituent subsystems, meaning
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that full knowledge of the whole system is equivalent to full knowledge of the

subsystems. Indeed, when we have full knowledge of a bipartite classical system

it is described by the pure state (δ(ij))AB = {δikδjl}dA,dBk,l=1 . The corresponding

states of the subsystems (δ(i))A = {δik}dAk=1 and (δ(j))B = {δjl}dBl=1 are also pure,

meaning that we have full knowledge of the subsystems.

Instead, composite quantum systems cannot generally be specified by their

subsystems. Consider when we have maximum possible knowledge of a bipartite

quantum system so that it is described by the pure state |ψAB〉. The states of

the subsystems are ρA = TrB(|ψAB〉 〈ψAB|) and ρB = TrA(|ψAB〉 〈ψAB|) and are

generally mixed. On the other hand, we have maximum possible knowledge of

the subsystems when they are described by the pure states |ψA〉 of subsystem A

and |ψB〉 of subsystem B. Hence, only when the state of the composite system is

|ψAB〉 = |ψA〉⊗|ψB〉 is maximum possible knowledge of the subsystems equivalent

to maximum possible knowledge of the composite system. Any bipartite quantum

system described by a pure state that cannot be written as a tensor product, i.e.

|ψAB〉 6= |ψA〉 ⊗ |ψB〉, exhibits quantum correlations between its subsystems.

On the other hand, if |ψAB〉 = |ψA〉 ⊗ |ψB〉 then the subsystems are completely

uncorrelated. This means that a quantum system in a pure state can either be

completely uncorrelated or quantumly correlated.

Hence, for pure states there is a unique notion of quantum correlations. This

is not the case for mixed states. We have already discussed in the previous section

one approach to extend the definition of quantum correlations to bipartite mixed

states by considering the embedding of classical subsystems into the bipartite

quantum system. However, quantum correlations can also be associated with

quantum entanglement, steering, and Bell nonlocality, which result from different

approaches to extending the same notion of quantum correlations for pure states

onto the set of mixed states. These different types of quantum correlations form

a strict hierarchy, indicating an increasingly strong presence of the quantum in

mixed states of a composite system: from the most general quantum correlations

(i.e. those discussed in the previous section), to entanglement, steering, and then

Bell nonlocality as the strongest type of quantum correlations. Entanglement [2,
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20] is explained in more detail in the following, while steering and Bell nonlocality

are not discussed in the rest of this thesis. Refs. [59, 60] provide in depth accounts

of steering and Bell nonlocality.

Consider a state of a bipartite quantum system with density operator ςAB

that is a convex combination of product pure state projectors,

ςAB =
∑
i

pi |ψAi 〉 〈ψAi | ⊗ |φBi 〉 〈φBi | , (2.17)

where {pi}i is a probability distribution and {|ψAi 〉}i and {|φBi 〉}i are arbitrary

pure states of subsystems A and B, respectively. These states are called separable

states and can describe a system that is in an uncorrelated pure state. The set

of separable states is

SAB :=
{
ρAB

∣∣∣∣∣ ρAB =
∑
i

pi |ψAi 〉 〈ψAi | ⊗ |φBi 〉 〈φBi |
}
, (2.18)

which is associated with the entanglement-free states. Hence, any state ρ /∈ SAB

is said to be entangled (or inseparable). A hierarchy of types of correlations can

be seen as

PAB ⊂ CABCC ⊂ CABCQ ⊂ SAB, (2.19)

where PAB are the uncorrelated states

PAB :=
{
ρAB

∣∣∣ ρAB = ρA ⊗ ρB
}
, (2.20)

for any state ρA of subsystem A and ρB of subsystem B.

2.3.1 Multipartite Entanglement

We have so far used bipartite systems to investigate quantum correlations. How-

ever, quantum correlations can of course exist in quantum systems composed of

more than two subsystems. This thesis focusses in particular on multipartite en-

tanglement in systems of N ≥ 2 qubits, also called multiqubit entanglement [2,

61]. The following notation can be used to properly account for the various

distributions of qubits into different subsystems:

• the sequence {1, 2, . . . , N} labelling the individual qubits;
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• the sequence {1, 2, . . . ,M} labelling the subsystems, where the positive in-

teger M represents the number of subsystems, with 1 < M ≤ N ;

• the sequence of positive integers {Kα}Mα=1, where Kα represents the number

of qubits in subsystem α ∈ {1, 2, . . . ,M}, where ∑M
α=1Kα = N ;

• the sequence of sequences of positive integers {Qα}Mα=1 with the sequence

Qα = {i(α)
1 , i

(α)
2 , . . . , i

(α)
Kα}, where i(α)

j ∈ {1, 2, . . . , N}, Qα ∩ Qα′ = ∅ for

α 6= α′, and ⋃M
α=1Qα = {1, 2, . . . , N}, represents with Qα the labelled

qubits belonging to subsystem α ∈ {1, 2, . . . ,M}.

A partition of the N qubit system into M subsystems is specified by {Qα}Mα=1.

We note that the number of possible partitions grows rapidly with the number

of qubits [62, 63].

The set of N qubit separable states with respect to an M -partition {Qα}Mα=1

is

S{Qα}Mα=1
:=
{
ρ

∣∣∣∣∣ ρ =
∑
i

piρ
(1)
i ⊗ ρ

(2)
i ⊗ . . .⊗ ρ

(M)
i

}
, (2.21)

where {pi}i is a probability distribution and {ρ(α)
i }i are arbitrary states of sub-

system α. Note that this representation of separable states as a convex mixture

of product mixed states is equivalent to the previously discussed representation in

terms of product pure state projectors, which means that the bipartite separable

states SAB given in Eq. (2.18) coincide with the separable states given above when

N = 2 and M = 2. Any N qubit system with state ρ /∈ S{Qα}Mα=1
is entangled (or

inseparable) with respect to the M -partition {Qα}Mα=1.

One partition P(1) = {Q(1)
α }M

(1)
α=1 of the quantum system into M (1) subsystems

is said to contain another partition P(2) = {Q(2)
β }M

(2)
β=1 of the system into M (2)

subsystems if M (1) < M (2) and for all Q(1)
α ∈ P(1)

Q(1)
α =

⋃
β(α)

Q
(2)
β , (2.22)

where β(α) ⊂ {1, 2, . . . ,M (2)}, ⋃α β(α) = {1, 2, . . . ,M (2)}, and β(α) ∩ β(α′) = ∅

for all α 6= α′ [62]. Simply, partition P(1) contains partition P(2) if it can be

formed by joining together some of the subsystems of P(2). A given partition can
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generally contain more than one partition, and can generally be contained within

more than one partition. The partition of qubits into individual subsystems, i.e.

with M = N , contains no partitions but is contained within all other partitions.

On the other end of the scale, any bipartition, i.e. withM = 2, is never contained

within another partition. By considering Eq. (2.21), it can be seen that

S{Q(1)
α }M

(1)
α=1
⊃ S{Q(2)

β
}M(2)
β=1

⇔ P(1) contains P(2). (2.23)

Hence, if an N qubit system is separable with respect to the partition {Q(2)
β }M

(2)
β=1 ,

then it is separable with respect to all containing partitions {Q(1)
α }M

(1)
α=1 . Con-

versely, if the system is entangled with respect to the partition {Q(1)
α }M

(1)
α=1 , then it

is entangled with respect to all contained partitions {Q(2)
β }M

(2)
β=1 . This provides a

hierarchy of the multiqubit entanglement present in the N qubit system in terms

of its partitions.

An alternative partition independent approach also exists to characterise mul-

tiqubit entanglement. An N qubit system in state ρ is M -separable if ρ can be

written as a convex combination of states that are each separable with respect to

any (possibly different) M -partition {Qα}Mα=1. The set of M -separable states is

consequently all possible convex combinations of states taken from any S{Qα}Mα=1

for a given M , which is the convex hull of all S{Qα}Mα=1
:

SM := conv


⋃

{Qα}Mα=1

S{Qα}Mα=1

 . (2.24)

A state ρ /∈ SM is said to be M -inseparable. The M -separable states form a

hierarchy in terms of M ,

S2 ⊃ S3 ⊃ . . . ⊃ SN . (2.25)

Figure 2.2 illustrates this hierarchy and compares the partition independent and

partition dependent approaches to characterising the multiqubit entanglement for

the particular case of N = 3.

The concept of M -inseparability can be viewed in the following way. In gen-

eral, the N qubit system can have entanglement between various numbers of

qubits. Consider the largest block of entangled qubits. If the system is M -

inseparable then we can think of this block as having size at least N −M + 2.
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Figure 2.2: States of the 3 qubit quantum system can be characterised in terms

of their multiqubit entanglement. The 2-separable states are the convex hull of

the separable states with respect to the 2-partitions {{1}, {2, 3}}, {{1, 2}, {3}},

and {{1, 3}, {2}}. The 3-separable states are separable with respect to the only

3-partition {{1}, {2}, {3}}, which is contained within each of the 2-partitions such

that the 3-separable states are the intersection of the separable states with respect

to all the 2-partitions. Note that a state may be 2-separable yet inseparable

individually with respect to each of the 2-partitions (shown for example by the

cross).

Indeed, anM -inseparable system can always be described with a non-zero probab-

ility by a pure state that is inseparable with respect to every possibleM -partition

{Qα}Mα=1. Out of all these M -partitions, the largest possible subsystem is of size

N −M + 1, which is achieved by treating M − 1 of the qubits individually and

the remaining N − (M − 1) qubits in a block together. Hence, there is always

a non-zero probability that an M -inseparable system has entanglement shared

between at least N −M + 2 qubits. We note here an alternative nomenclature

also in use [64, 65]: the k-producible states are the states with entanglement

shared between a block of at most k qubits, with k ∈ {1, 2, . . . , N}. It is then

clear that the k producible states are given by SN−k+1 for k ∈ {1, 2, . . . , N − 1}

and D(H) for k = N .

Some more terminology is now in order. When M = N the only partition

is the one given by partitioning each qubit individually. Hence, the partition
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dependent and independent approaches coincide. If the N qubit system is N -

separable, or fully separable, then it has no entanglement. Instead, if the system

is N -inseparable then there is some global multiqubit entanglement [61, 66] and

the largest entangled block is of at least 2 qubits in size. When M = 2 then the

system can be 2-separable (also called biseparable) or 2-inseparable. If the system

is 2-inseparable then it is said to have genuine multiqubit entanglement [67–

69] since all of the N qubits are entangled together. Any entanglement for an

intermediate 2 < M < N is called partial multiqubit entanglement [70].



Chapter 3

Quantifying the Quantum

So far we have discussed the similarities and differences between the description

of classical and quantum systems and highlighted some of the unique properties

of a quantum system by identifying three key types of the quantum: quantum

coherence, quantum correlations, and quantum entanglement. The purpose of

this chapter is to go beyond just the identification of the quantum by showing

how it can be quantified. Quantification of the quantum is relevant both from a

fundamental and a technological perspective. Fundamentally, it is natural to want

to quantify the departure of a quantum system from a classical description. On

the other hand, if the quantum is to be comprehensively utilised as a resource in

quantum technologies [71], then it will be desirable to benchmark the performance

of different quantum systems by quantifying the amount of useful resource.

This chapter begins by outlining the concept of a resource theory, which

provides a rigorous framework for the quantification of a quantum resource. We

give some general requirements that a measure of a quantum resource should sat-

isfy and then describe two geometric approaches to quantifying the quantum. The

first approach gives the robustness measures by considering the minimum amount

of classical mixing required for a quantum system to lose all of its resource [16,

17, TRB1, TRB2, TRB3], while the second approach gives the distance-based

measures by quantifying the distinguishability between resource and resource-

free states [18, 19].

45
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3.1 Quantum Resources

A resource theory provides the formal framework required to impose a hierarchy

on the set of states of a physical system in terms of a given resource. The

framework of a resource theory is specified by three concepts [14, 15]: (i) the

resource under consideration; (ii) the free states F, which are all the states of

the system without any resource; and (iii) the free operations O, which are the

operations that can be carried out by a restricted agent on the physical system

without consuming any resource [72]. These concepts are interlinked, since a free

operation must not be able to create a resource state from a free state. This

means that the free operations must be a subset of the set of operations that

cannot create the resource. The set of free operations is said to be maximal if it

is equal to this set.

While the free operations cannot transform from a free state to a resource

state, they can allow some transformations between resource states. This can

be used to impose a hierarchy on the resource states, whereby a resource state

ρ is said to be more resourceful than another resource state σ if there is a free

operation that can convert ρ to σ. Since it is not generally possible to convert

between arbitrary resource states using the free operations, the hierarchy can

assume a complicated multi-branch structure. At the top of each branch is a

maximally resourceful state from which every state within the branch can be

created by using only free operations [73].

Rather than considering a qualitative hierarchy of the resource states, one

may instead resort to a measure that quantifies the amount of resource present in

a resource state. This condenses the complicated hierarchy into a total ordering

of resource states which preserves the hierarchy within a given branch but also

places an ordering on states that are not linked through a free operation (e.g.

those in different branches). Since there is not a unique way to create such

an ordering from a non-trivial hierarchy, there is not a corresponding unique

quantitative measure of a resource. Instead, any function satisfying a number

of rigorous requirements, arising from the resource theory, represents a resource
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measure. Such functions may be chosen based on geometric considerations, as

will be shown in Section 3.2, as well as information theoretic considerations.

The physical significance of a resource measure is conferred by its quantitative

representation of the figure of merit in the performance of an operational task

that consumes the resource. However, the operational significance of a resource

measure is not always immediate. This is considered further in Chapter 5.

3.1.1 Requirements of a Measure of the Quantum

We now discuss some requirements, arising from the resource theoretic framework,

that are imposed on measures of a quantum resource. A real and non-negative

function R(ρ) of a density operator ρ must satisfy the following requirements

for it to be a measure of the quantum resources present in a quantum system

described by the state ρ. Firstly, R(ρ) must vanish when ρ is a free state,

Requirement (i): R(ρ) = 0 if ρ ∈ F.

It can further be imposed that R(ρ) = 0 only for ρ ∈ F, a property known as

faithfulness, which will be the case for all measures of the quantum discussed in

the rest of this thesis. The second requirement is that R(ρ) cannot increase under

the action of the free operations,

Requirement (ii): R(Λ(ρ)) ≤ R(ρ) for all Λ ∈ O and any state ρ.

This requirement is called monotonicity and can be understood as a conserva-

tion law, since it imposes that it is not possible to generate resource by using

operations that cost no resource to implement.

Together these two requirements represent the minimum constraints on a re-

source measure. However, supplemental requirements can also be imposed that

depend upon the structure of the underlying resource theory. We now introduce

two supplemental requirements. If the set of free states is convex, then classical

mixing of free states cannot create a resource state. It can then be imposed that

classical mixing of generally resource states cannot increase resources, which is

expressed mathematically as a convexity requirement:
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Requirement (iii): R(pρ1 +(1−p)ρ2) ≤ pR(ρ1)+(1−p)R(ρ2) for any probability

p ∈ [0, 1] and any two states ρ1 and ρ2.

The second supplemental requirement is given in the following way. Whenever

the set of free operations is such that any free operation Λ admits an operator

sum representation with Kraus operators {Ki}i where
∑
iK
†
iKi = I, such that

for any i
KiρK

†
i

Tr
(
KiρK

†
i

) ∈ F ∀ ρ ∈ F, (3.1)

then we can associate any free operation with a certain free quantum instrument.

This free quantum instrument is composed of the probabilistic quantum opera-

tions {Λi}i where Λi(ρ) = KiρK
†
i occurs with probability Tr(KiρK

†
i ) when the

system is in state ρ (see Section 1.2.3 for further details). In this setup, the

quantum instrument cannot create a resource state from a free state even when

one knows which of the operations Λi was applied by the quantum instrument. It

can then be imposed that the quantum instrument should not be able to increase

the resources in the quantum system when averaged over the resultant states of

the system. Hence, we have the following requirement for a resource measure,

Requirement (iv):

∑
i

Tr(KiρK
†
i )R

 KiρK
†
i

Tr
(
KiρK

†
i

)
 ≤ R(ρ) (3.2)

for any state ρ and any set of operators {Ki}i obeying (3.1) with∑iK
†
iKi =

I and Λ(ρ) = ∑
iKiρK

†
i corresponding to a free operation Λ ∈ O on ρ.

This requirement is called strong monotonicity. Indeed, any measure of a re-

source satisfying Requirement (iii) and Requirement (iv) will necessarily satisfy

Requirement (ii), i.e. monotonicity. This follows since for any ρ

R(Λ(ρ)) ≤
∑
i

Tr(KiρK
†
i )R

 KiρK
†
i

Tr
(
KiρK

†
i

)
 ≤ R(ρ), (3.3)

where the first inequality is due to the convexity since Λ(ρ) is a convex combina-

tion of states KiρK
†
i

Tr(KiρK†i )
according to the probability distribution {Tr(KiρK

†
i )}i,

while the second inequality is due to strong monotonicity.
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3.1.2 Resource Theories of the Quantum

The framework of resource theories has been used extensively to characterise

various resources in a quantum system [13–15, 74–83]. In particular, quantum

coherence, quantum correlations and quantum entanglement have been analysed

using the resource theoretic framework. We now provide details of the treatment

of these types of the quantum as a resource, including any additional requirements

that are typically imposed on measures of a particular resource. The notation

C(ρ), Q(ρ), and E(ρ) is here used to refer to resource measures R(ρ) specified to

the resources of quantum coherence, quantum correlations, and quantum entan-

glement, respectively.

Quantum Coherence

The resource theoretic treatment of quantum coherence was initiated in Ref. [47]

with identification of the free states as the set I whose elements are given by

Eq. (2.2) with respect to the reference ONB {|ei〉}di=1 [1]. However, the free op-

erations of coherence have been the subject of much discussion, with a number

of possible options suggested [47, 48, 84–89]. The maximal set of incoherence

preserving operations have been given as the free operations in Ref. [48], i.e. all

the Λ for which Λ(δ) ∈ I for any δ ∈ I. Reference [47] proposed instead that the

free operations are all the incoherence preserving operations admitting an oper-

ator sum representation with incoherent Kraus operators satisfying (3.1). These

are called the incoherent operations. Another suggested set of free operations is

given by the strictly incoherent operations [84, 85], which are motivated as the

incoherent operations whose incoherent Kraus operators {Ki}i lead to measure-

ment probabilities in the reference ONB that do not depend on the coherence of

any initial state ρ, i.e. for all i and j

〈ej|KiρK
†
i |ej〉 = 〈ej|Ki∆(ρ)K†i |ej〉 , (3.4)

where we use the complete dephasing operation

∆(ρ) :=
d∑
i=1
|ei〉 〈ei|ρ|ei〉 〈ei| , (3.5)
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which destroys all of the coherence of ρ. Interestingly, the action of a strictly

incoherent operation Λ on any incoherent state δ = ∑d
i=1 δi |ei〉 〈ei| is to transform

to another incoherent state Λ(δ) = ∑d
i=1 δ

′
i |ei〉 〈ei| such that the vectors δ =

{δi}di=1 and δ′ = {δ′i}di=1 are related through a stochastic map S, i.e. δ′ = Sδ,

and hence representing the stochastic evolution of a classical system in initial state

δ with respect to the reference ONB [84]. Furthermore, a number of additional

requirements may be imposed on a measure of coherence, which are outlined in

Ref. [1].

On the other hand, it can be informative to quantify the amount of coherence

present in a quantum system that is distributed between at least k configura-

tions of the ONB by using the concept of the coherence number discussed in

Section 2.1.1. This resource is called k coherence. Here, the free states are the

convex set I(k) of states with coherence number less than k, while the free oper-

ations have been suggested as the strictly incoherent operations [1, 49].

Quantum coherence can also be viewed within the context of asymmetry [1,

79, 86, 90–95], as has been discussed in [TRB2, 86, 88]. A quantum system is

symmetric with respect to a symmetry group G if the state of the system ρ is left

unchanged by all elements of the group, i.e.

ρ = UgρU
†
g , (3.6)

for all g ∈ G, where Ug is the corresponding unitary representation of g [TRB2,

93, 94] (an operator is unitary if it obeys U †U = UU † = I). Instead, a quantum

system is asymmetric with respect to G if there exists at least one g ∈ G such

that Eq. (3.6) does not hold. If one considers the symmetry group given by the

d-dimensional representation of U(1), with elements

U(θ) :=
d∑
j=1

eiθ(j−1) |ej〉 〈ej| (3.7)

for all θ ∈ [0, 2π], then the set of symmetric states coincides exactly with the

set of incoherent states with respect to the ONB {|ej〉}dj=1. Hence, the presence

of coherence in a quantum system is a type of asymmetry [TRB2, 86, 94]. The
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free operations Λ of asymmetry specialised to coherence are a subset of the inco-

herent operations that commute with any unitary generated by the Hamiltonian

H = ∑d
j=1(j − 1) |ej〉 〈ej|, i.e. for any real t and any ρ, the free operations Λ

satisfy [TRB1, 86, 94]

e−iHtΛ(ρ)eiHt = Λ(e−iHtρeiHt). (3.8)

Quantum Entanglement

In a break from the standard order of this thesis, we first explain the well-

established resource theory of quantum entanglement [2, 18, 19, 96] and then

use this framework to inform us on the resource theory of quantum correlations.

Focussing first on entanglement in N qubit systems, the resource theoretic frame-

work may be applied both to the partition dependent and partition independent

approaches. In the partition dependent setting, the free states are the set S{Qα}Mα=1

given in Eq. (2.21) of separable states with respect to the M -partition {Qα}Mα=1.

The free operations are the physically motivated set of so-called local operations

and classical communication (LOCC) with respect to the M -partition [TRB4,

97]. This consists of all the possible local operations that each of the subsys-

tems α can perform on their qubits Qα, combined with classical communication

between the subsystems. The set of LOCC is a strict subset of the separability

preserving operations [98], which are the maximal set of operations that cannot

create entanglement. Instead, the separable operations are an intermediate subset

of the separability preserving operations that additionally satisfy (3.1), i.e. for

which there exists an operator sum representation with a set of Kraus operat-

ors {Ki}i that can be written as a tensor product of operators acting on the M

subsystems so that for all i

Ki = K
(1)
i ⊗K

(2)
i ⊗ . . .⊗K

(M)
i . (3.9)

The separable operations have been considered in Refs. [18, 19, 99]. Every

LOCC operation is separable, but not every separable operation corresponds to

LOCC [100]. Furthermore, the representation of LOCC is much more complic-

ated than the representation of separable operations [101], and hence separable
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operations are often utilised when studying entanglement measures [2]. For ex-

ample, a measure of entanglement E{Qα}Mα=1
(ρ) of an N qubit system with respect

to the partition {Qα}Mα=1 that is monotonically non-increasing under separable

operations, i.e. E{Qα}Mα=1
(Λ(ρ)) ≤ E{Qα}Mα=1

(ρ) for any separable operation Λ and

state ρ, must be monotonically non-increasing under the contained set of LOCC,

which means that E{Qα}Mα=1
(ρ) satisfies Requirement (ii). On the other hand, Re-

quirement (iv) can be considered for any subset of the separable operations (such

as LOCC), since the separable operations are of the necessary form in (3.1). A

function satisfying Requirement (i) and Requirement (iv) has historically been

referred to as an entanglement monotone [2, 19, 20, 96, 102–104]. We note that,

while Requirement (iii) is imposed in this thesis for entanglement, this is not

always the case and one can find an example of a well established entanglement

monotone that is not convex, see Ref. [103]. A discussion of additional require-

ments that may be imposed on E{Qα}Mα=1
(ρ) can be found in Ref. [20].

In the partition independent approach to characterising the multiqubit entan-

glement of an N qubit system, the resource is identified as the amount of entan-

glement shared between at least N−M+2 qubits and is called theM -inseparable

multiqubit entanglement. The resource theory is constructed by identifying the

free states as the set ofM -separable states SM given in Eq. (2.24). The set of free

operations is identified with local operations on each of the N qubits and clas-

sical communication between them, i.e. LOCC with respect to the partition of the

qubits into individual subsystems [TRB4]. This prevents any pair of qubits being

able to create entanglement between themselves and thus potentially increasing

the number of qubits sharing entanglement. We then use EM(ρ) to denote a meas-

ure of the M -inseparable multiqubit entanglement of an N qubit system in state

ρ. As discussed in Section 2.3.1, EN(ρ) measures the global multiqubit entangle-

ment and E2(ρ) measures the genuine multiqubit entanglement, while EM(ρ) for

intermediate M can be said to measure partial multiqubit entanglement.

We have so far specialised to the resource of entanglement in N qubit systems,

but one can similarly consider the entanglement of arbitrary dimensional bipartite

systems in state ρAB, consisting of two subsystems A and B. For this resource,
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we associate the free states with the bipartite separable states given in Eq. (2.18)

and the free operations with bipartite LOCC. Then, for a measure of bipartite

entanglement E(ρAB) we can establish the analogous Requirements (i), (ii), (iii)

and (iv).

Quantum Correlations

There are three relevant types of resource to characterise in a bipartite quantum

system composed of subsystems A and B: the quantum correlations from subsys-

tem A, the quantum correlations from subsystemB, and the quantum correlations

from either subsystem. These resources together constitute the quantum correla-

tions of the quantum system, which may be quantified by the resource measures

QA(ρAB), QB(ρAB), and QAB(ρAB) when the system is in the state ρAB, with

the subscript indicating which subsystem the quantum correlations are measured

with respect to. The resource theory of quantum correlations is not fully estab-

lished [TRB13]. While the free states are identified as the sets CABCQ, CABQC , and CABCC

of CQ, QC, and CC states discussed in Section 2.2, the free operations, which

are normally found based upon physical arguments, have not yet been identified.

Instead, what is known is the set of local operations ΛA acting on subsystem

A and ΛB acting on subsystem B that are unable to create quantum correlations

from a classically correlated state. Consider a classically correlated CQ state

χABCQ ∈ CABCQ. By referring to Eq. (2.7), it is clear that any possible local operation

ΛB on subsystem B is unable to transform χABCQ outside of CABCQ since ΛB can

only change the arbitrary states {ρBi }i of subsystem B. However, there are local

operations acting on subsystem A that are able to create quantum correlations

from χABCQ [105, 106], i.e. so that ΛA ⊗ IB(χABCQ) /∈ CABCQ, where IB is the quantum

operation that leaves all states of subsystem B invariant. The set of all local

operations on subsystem A so that ΛA⊗IB(χABCQ) ∈ CABCQ has been identified as the

local commutativity preserving operations (LCPO) [107]. A quantum operation

ΛCPO is a commutativity preserving operation (CPO) if

[ΛCPO(ρ),ΛCPO(σ)] = 0 ∀ ρ and σ such that [ρ, σ] = 0. (3.10)
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It has then been shown that [107]

ΛA ⊗ IB(χABCQ) ∈ CABCQ ∀ χABCQ ∈ CABCQ ⇔ ΛA is an LCPO.

The situation is analogous for any classically correlated QC state χABQC ∈ CABQC , i.e.

for any local operation ΛA on subsystem A it holds that ΛA ⊗ IB(χABQC) ∈ CABQC ,

and for subsystem B

IA ⊗ ΛB(χABQC) ∈ CABQC ∀ χABQC ∈ CABQC ⇔ ΛB is an LCPO.

For a classically correlated CC state χABCC ∈ CABCC , both local operations must be

commutativity preserving for quantum correlations not to be generated, i.e.

ΛB ⊗ ΛB(χABCC) ∈ CABCC ∀ χABCC ∈ CABCC ⇔ ΛA and ΛB are LCPOs.

The CPOs have been characterised in Refs. [106–108]. When acting on a

qubit, the CPOs are of two types, completely decohering and unital [106]. The

completely decohering operations map any state ρ of a d-dimensional quantum

system to a state diagonal in a fixed ONB {|ei〉}di=1, Λ(ρ) = ∑d
i=1 pi(ρ) |ei〉 〈ei|

with {pi(ρ)}di=1 a probability distribution dependent upon ρ. Unital operations

have been discussed in Section 1.2.2 and map the identity onto itself, Λ(I) =

I. Instead, the commutativity preserving operations acting on a d-dimensional

quantum system with d > 2 are either completely decohering or isotropic [107,

108]. An isotropic operation acting on the state ρ is written as

Λ(ρ) = tΦ(ρ) + (1− t) I
d
, (3.11)

where Φ(ρ) is either a unitary operation, Φ(ρ) = UρU † for any unitary U , or

an antiunitary operation, Φ(ρ) = UρᵀU † with ρᵀ the transpose of ρ with respect

to the standard basis. For an isotropic operation to be completely positive, t

must be in the region [ −1
d2−1 , 1] when Φ is unitary, while t must be in the region

[ −1
d−1 ,

1
d+1 ] when Φ is antiunitary [TRB7, 107]. An operator sum representation of

the isotropic operations was found in [TRB7] and is provided in Appendix A.

Although the set of local operations unable to create the resource of quantum

correlations has been identified, it is not clear whether there exist non-local oper-

ations that are unable to create quantum correlations. However, it seems reason-

able to expect that the so far unidentified free operations of quantum correlations
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are local since quantum correlations are defined with respect to local subsystems.

The convention adopted so far has thus been that the free operations are a subset

of all the local operations that are commutativity preserving on the subsystems

under consideration [TRB12]. While there is no consensus on the form of the

free operations, there have been some attempts at identifying a physically mo-

tivated subset of LCPO by considering the free operations of coherence and the

link between quantum correlations and local quantum coherence discussed in

Section 2.2.1 [84].

Nevertheless, one may impose the requirement that a measure of quantum

correlations should be non-increasing under LCPO on the subsystem under con-

sideration and general local operations on any other subsystem [TRB10, TRB12,

109],

Requirement Q(ii): For any state ρAB

QA(ΛA
CPO ⊗ ΛB(ρAB)) ≤ QA(ρAB),

QB(ΛA ⊗ ΛB
CPO(ρAB)) ≤ QB(ρAB),

QAB(ΛA
CPO ⊗ ΛB

CPO(ρAB)) ≤ QAB(ρAB), (3.12)

where ΛA
CPO and ΛB

CPO are any LCPO on subsystems A and B, while ΛA

and ΛB are arbitrary quantum operations on subsystems A and B.

If the free operations of quantum correlations are eventually identified to coincide

exactly with the set of local quantum operations unable to create quantum correl-

ations, then Requirement Q(ii) becomes equivalent to Requirement (ii). Instead,

if the free operations are identified as a strict subset of the local operations unable

to create quantum correlations, then Requirement Q(ii) is too strong in the sense

that it implies Requirement (ii) but there may be proper measures of quantum

correlations satisfying Requirement (ii) but not Requirement Q(ii) [TRB7].

When investigating Requirement Q(ii) it can be useful to consider the two

types of LCPO: either completely decohering, or unital/isotropic (depending on

the dimension of the subsystem). It can be shown that local completely decoher-

ing operations always destroy quantum correlations [108], i.e. when ΛA
CPO and
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ΛB
CPO are local completely decohering operations

ΛA
CPO ⊗ IB(ρAB) ∈ CABCQ,

IA ⊗ ΛB
CPO(ρAB) ∈ CABQC ,

ΛA
CPO ⊗ ΛB

CPO(ρAB) ∈ CABCC , (3.13)

for any ρAB. This means that any non-negative function satisfying Requirement

(i) is monotonically non-increasing under the action of local completely decoher-

ing operations, since the left-hand side of Eq. (3.12) is always zero. Hence, it

is sufficient to consider only LCPO that are unital (for a 2-dimensional subsys-

tem) or isotropic (for a subsystem with dimension larger than 2) when checking

Requirement Q(ii).

Since the sets CABCQ, CABQC , and CABCC are not convex [TRB12], measures of

quantum correlations should not satisfy Requirement (iii). Indeed, convex com-

bination of classically correlated states generally creates quantum correlations:

while the resultant state is always separable, it typically cannot be expressed

in terms of a local ONB on the relevant subsystems. In this case, any meas-

ure of quantum correlations will generally violate Requirement (iii). This means

that we expect the convex combination of quantumly correlated states to poten-

tially increase quantum correlations. Furthermore, given the lack of clarity on

the set of free operations, Requirement (iv) has not been considered for meas-

ures of quantum correlations. However, it has been suggested that any measure

of quantum correlations in a bipartite quantum system should coincide with a

measure of bipartite entanglement E(ρAB) when the state of the system ρAB is

pure [33, TRB10, 56, 110–114]. As has been discussed in Section 2.3, the concepts

of entanglement and quantum correlations coincide for pure states of a bipartite

system, and hence it might be expected that their measures coincide on pure

states [TRB12]. This expectation is perhaps historically motivated, since the

study of quantum entanglement has been established for much longer than the

study of more general quantum correlations, and it is seen here as a desirable

feature of a measure of quantum correlations and not a requirement. A summary

of the potential requirements for a measure of quantum correlations, including
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some not given here, can be found in Refs. [11, TRB12, 56, 110, 115].

3.2 Geometric Quantification of the Quantum

We now explain two geometric approaches to the quantification of a quantum

resource and show that these approaches lead to measures that satisfy the given

requirements. Details are also provided on the application of these approaches to

types of the quantum considered as resources in this thesis. The contents of this

section is based upon Refs. [TRB1, TRB2, TRB3].

3.2.1 Robustness

Consider the convex mixture of a resource state ρ /∈ F with a free state τ ∈ F,

which results in another state

σ = (1− p)ρ+ pτ (3.14)

for some probability p ∈ [0, 1]. One may consider the range of p for which σ ∈ F,

i.e. so that the resultant mixture has no resources. It is always possible to ensure

that σ ∈ F by picking p = 1, but we want to consider the lower end of the range.

Intuitively, the smallest value of p for which σ ∈ F provides gauge of the resources

present in ρ. Indeed, if the value of p is small, we only need to mix ρ a little bit

with a free state τ for us to lose all resources. Building on this intuition, one may

consider mixing ρ with any free state and finding the smallest p for which σ ∈ F,

arriving at the quantity infτ∈F {p ≥ 0|(1− p)ρ+ pτ = σ ∈ F} as an estimate of

the resources present in ρ. If the mixing parameter p is substituted for p = s
1+s

so that the mixture is given by

σ = ρ+ sτ

1 + s
(3.15)

with s ∈ [0,∞], we arrive at a similar quantity

RSR(ρ) := inf
τ∈F

{
s ≥ 0

∣∣∣∣ρ+ sτ

1 + s
= σ ∈ F

}
. (3.16)
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This quantity is called the standard robustness of a resource, and measures the

resources of ρ by quantifying the minimum amount of mixing needed with a free

state to lose all resources, i.e. its robustness. Clearly its range of possible values

is inherited from the range of s, and it can be seen that RSR(ρ) = 0 if and only

if ρ ∈ F. As shall be seen in the following, the justification for changing from the

mixing parameter p to s is mathematical simplicity.

The standard robustness has been introduced as a resource measure of en-

tanglement [16] and was shown to obey the four given requirements. However,

the standard robustness is not an informative measure of a resource when one

considers resources with a set of free states that is zero measure within the set

of all states, as is the case for quantum coherence [1, TRB1] and quantum cor-

relations [116]. Indeed, in this case the standard robustness is typically infinite,

RSR(ρ) = ∞ for ρ /∈ F. For example, consider the coherence of a qubit system

with respect to the computational basis {|0〉 , |1〉}. The set of free states I are

the states with density matrix diagonal with respect to the standard basis, which

can be written using the Bloch ball representation (see Section 1.2.4) as

δ = 1
2 (I + dσ3) = 1

2

 1 + d 0

0 1− d

 (3.17)

for all d ∈ [−1, 1]. Consider a coherent state ρ written as

ρ = 1
2

(
I +

3∑
i=1

niσi

)
= 1

2

 1 + n3 n1 − in2

n1 + in2 1− n3

 , (3.18)

where n2
1 + n2

2 + n2
3 ≤ 1 with n1 6= 0 and/or n2 6= 0 so that ρ /∈ I. If we want to

quantify the quantum coherence using the standard robustness, we must consider

the convex combination of ρ and δ,

σ = ρ+ sδ

1 + s
= 1

2(1 + s)

 1 + n3 + s(1 + d) n1 − in2

n1 + in2 1− n3 + s(1− d)

 . (3.19)

It is clear that σ ∈ I only when s→∞, otherwise σ is not diagonal. Hence, the

standard robustness in Eq. (3.16), with the free states identified as the incoherent

states I so as to measure the resource of coherence, is necessarily infinite for any

ρ /∈ I.
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Figure 3.1: Convex combination according to Eq. (3.15) of ρ with any state τ ∈

D(H) (solid line) and with any free state τ ∈ F (dashed line) results in another

state σ. The smallest s such that σ ∈ F is the generalised robustness (solid line)

or the standard robustness (dashed line). It is clear that the standard robustness

presents an upper bound to the generalised robustness.

The generalised robustness of a resource quantifies the minimum amount of

mixing needed with any other state (not necessarily free) to lose all resources. It

is an another measure of the resources in the state ρ and is defined as

RR(ρ) := inf
τ∈D(H)

{
s ≥ 0

∣∣∣∣ρ+ sτ

1 + s
= σ ∈ F

}
. (3.20)

Figure 3.1 provides a pictorial comparison of the standard and generalised robust-

ness. The generalised robustness is never greater than the standard robustness

and does not suffer the same problem discussed above. Hence, we focus herein

on the generalised robustness and now omit the “generalised” from its name.

The robustness of a resource satisfies Requirements (i) - (iv) for a resource

measure. Before showing that this is the case, we first need to discuss some

terminology and an alternative formulation of robustness. The convex mixture

in Eq. (3.15) may be rearranged in terms of ρ

ρ = (1 + s)σ − sτ, (3.21)

which is called a pseudomixture of σ and τ . Clearly not every pseudomixture

of two states is another state. In evaluating the robustness, we are finding the
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smallest possible s so that the pseudomixture between a general state τ and a

free state σ is equal to ρ. If s? is the minimum such value of s with corresponding

states τ ? and σ? then RR(ρ) = s? and

ρ =
(
1 +RR(ρ)

)
σ? −RR(ρ)τ ? (3.22)

is an optimal pseudomixture of ρ. An alternative definition of the robustness may

then be given as

RR(ρ) = inf
σ∈F
{s ≥ 0 |ρ ≤ (1 + s)σ} . (3.23)

This may be seen by showing that the right-hand side of this equation s̃? is both

an upper and lower bound to RR(ρ). Indeed, the pseudomixture in Eq. (3.21)

implies that ρ ≤ (1 + s)σ, which means from the equation above that s̃? ≤ s.

This holds for any pseudomixture, including the optimal one in Eq. (3.22), so

that s̃? ≤ RR(ρ). On the other hand, if the infimum in Eq. (3.23) is realised by

ρ ≤ (1 + s̃?) σ̃? for some σ̃? ∈ F, we can always write

σ̃? = ρ+ s̃?τ

1 + s̃?
(3.24)

for τ = (1+s̃?)σ̃?−ρ
s̃?

. It can be seen that τ is a state, since it has unit trace and

also ρ ≤ (1 + s̃?) σ̃? and Eq. (3.24) together imply that τ ≥ 0. Hence, we know

from Eq. (3.24) and the definition of robustness in Eq. (3.20) that RR(ρ) ≤ s̃?.

We therefore conclude that RR(ρ) = s̃?.

It is clear that RR(ρ) is a non-negative function by construction, and that

RR(ρ) = 0 for all ρ ∈ F since one does not need to mix ρ at all (which corres-

ponds to s = 0) with another state to lose all the resource. Hence RR satisfies

Requirement (i). Furthermore, it can be seen that RR(ρ) = 0 only for ρ ∈ F,

since it is always necessary to perform some mixing on a resource state ρ /∈ F to

lose the resource. To show that RR(ρ) satisfies Requirement (ii) and Requirement

(iv) we provide the following theorem.

Theorem 1 Let {Λi}i be a quantum instrument such that Λi(ρ)/Tr(Λi(ρ)) ∈ F

for all i and every ρ ∈ F. Any such quantum instrument acting on any state ρ is

not able to increase the robustness of a resource by averaging over the resultant
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states, i.e. ∑
i

Tr (Λi(ρ))RR

(
Λi(ρ)

Tr (Λi(ρ))

)
≤ RR(ρ) (3.25)

for any state ρ [16, 17, TRB2].

Proof. Consider the optimal pseudomixture of ρ in Eq. (3.22) with the optimal

states τ ? ∈ D(H) and σ? ∈ F. Applying the probabilistic quantum operation Λi

to both sides gives

Λi(ρ) =
(
1 +RR(ρ)

)
Λi(σ?)−RR(ρ)Λi(τ ?), (3.26)

and then performing the trace gives

Tr(Λi(ρ)) =
(
1 +RR(ρ)

)
Tr(Λi(σ?))−RR(ρ)Tr(Λi(τ ?)). (3.27)

By using Eq. (3.27), Eq. (3.26) may be rearranged as a pseudomixture

ρi = (1 + si)σi − siτi (3.28)

with states

ρi = Λi(ρ)
Tr(Λi(ρ)) , τi = Λi(τ ?)

Tr(Λi(τ ?))
, σi = Λi(σ?)

Tr(Λi(σ?))
, (3.29)

and

si = RR(ρ)Tr(Λi(τ ?))
Tr(Λi(ρ)) . (3.30)

Since σ? ∈ F it holds that σi ∈ F and we therefore have a valid pseudomixture of

ρi in terms of a free state σi and any state τi. This is not necessarily the optimal

pseudomixture of ρi needed to satisfy Eq. (3.23), so it holds that

RR(ρi) ≤ si. (3.31)

Taking the weighted average over the probabilistic quantum operations with prob-

ability Tr(Λi(ρ)), we have the required inequality

∑
i

Tr(Λi(ρ))RR(ρi) ≤
∑
i

Tr(Λi(ρ))si

=
∑
i

Tr(Λi(ρ))RR(ρ)Tr(Λi(τ ?))
Tr(Λi(ρ))

= RR(ρ), (3.32)
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where in the last equality we use the linearity of the trace and the fact that

Tr(∑i Λi(τ ?)) = 1 since ∑i Λi(τ ?) is a trace preserving quantum operation acting

on the state τ ?.

Consider a quantum instrument composed of a single quantum operation Λ

that cannot create resources, i.e. so that Λ(ρ) ∈ F for any ρ ∈ F. Theorem 1

implies that RR(Λ(ρ)) ≤ RR(ρ) for any such Λ and any ρ. Since the free op-

erations for any resource must be a subset of the set of operations that cannot

create resources, the robustness satisfies Requirement (ii). Furthermore, it is

clear that the robustness satisfies Requirement (iv) by setting Λi(ρ) = KiρK
†
i for

any choice of free operations that can be expressed with a set of Kraus operators

{Ki}i satisfying (3.1).

We finally show that the robustness of a resource satisfies Requirement (iii),

provided that the set of free states is convex.

Theorem 2 For all resources with a convex set of free states F, the robustness

of the resource is a convex function on the set of states, i.e.

RR(pρ1 + (1− p)ρ2) ≤ pRR(ρ1) + (1− p)RR(ρ2) (3.33)

for any probability p ∈ [0, 1] and any two states ρ1 and ρ2 [16, 17, TRB2].

Proof. Consider the optimal pseudomixtures corresponding to ρ1 and ρ2,

ρi =
(
1 +RR(ρi)

)
σ?i −RR(ρi)τ ?i , (3.34)

with σ?i ∈ F and τ ?i ∈ D(H), for i ∈ {1, 2}. The convex combination ρ =

pρ1 + (1− p)ρ2 can be rewritten as a pseudomixture ρ = (1 + s)σ − sτ with

σ = 1
1 + s

(
p
(
1 +RR(ρ1)

)
σ?1 + (1− p)

(
1 +RR(ρ2)

)
σ?2
)
,

τ = 1
s

(
pRR(ρ1)τ ?1 + (1− p)RR(ρ2)τ ?2

)
,

s = pRR(ρ1) + (1− p)RR(ρ2). (3.35)

It can be seen that σ ∈ F because the set of free states is convex and σ can

be written as a convex combination of two free states: σ?1 ∈ F with weighting
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pσ = p(1+RR(ρ1))
1+s and σ?2 ∈ F with weighting 1 − pσ = (1−p)(1+RR(ρ2))

1+s . Note that

pσ ∈ [0, 1] as required. Furthermore, we also know that τ is a state because it

is a convex combination of two states: τ ?1 with weighting pτ = pRR(ρ1)
s

and τ ?2

with weighting 1 − pτ = (1−p)RR(ρ2)
s

, where pτ ∈ [0, 1]. Since ρ = (1 + s)σ − sτ

may not be the optimal pseudomixture of ρ to satisfy Eq. (3.23), we know that

RR(ρ) ≤ s.

These theorems show that the robustness is a good measure of a resource by

satisfying the given requirements. The robustness has been specialised to many

types of quantum resource, including entanglement, coherence, asymmetry, steer-

ing, and Bell nonlocality [16, 17, TRB1, TRB2, TRB3, 117–122], as well as having

been considered generally as a relevant quantity for the asymptotic conversion of

resources in a maximal resource theory [15]. The original concept of robustness

was given in Refs. [16, 17] by specialising to the resource of entanglement. There

they showed that the standard and generalised robustness satisfy the require-

ments to be a good measure of entanglement. Instead, this thesis provides a

very general description of robustness that is applicable to any resource using the

resource theoretic framework.

We now discuss the computability of the robustness of a resource, which can

be quantitatively linked to the expectation value of a resource witness. A resource

witness is a self-adjoint operator W that always has a non-negative expectation

value with respect to a free state, i.e.

Tr(Wρ) ≥ 0 ∀ρ ∈ F. (3.36)

Hence, a negative expectation value of W implies that ρ /∈ F. However, the

expectation value is not necessarily negative for all resource states, meaning that

Tr(Wρ) < 0 ⇒ ρ /∈ F,

Tr(Wρ) ≥ 0 ⇐ ρ ∈ F, (3.37)

see Fig. 3.2. Resource witnesses are very appealing experimentally since their

expectation value is an observable quantity, which when negative gives a sufficient
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Figure 3.2: A resource witness W is a self-adoint operator whose expectation

value is always non-negative with respect to the free states, such that a negative

expectation value witnesses a resource state. The witness may be understood

pictorially within the set of states as the orange dashed line given by ths states

ρ satisfying Tr(Wρ) = 0, which separates a subset of resource states from all the

other states.

condition on having a resource state. They have been used extensively for the

resource of entanglement [2, 123, 124]. The existence of W is implied by the

Hahn–Banach theorem [20, 121, 123, 124], which relies on F being convex and

compact (we assume compactness of F herein). We can then define the set of

resource witnesses as

W :=
{
W : W = W †, Tr(Wρ) ≥ 0∀ ρ ∈ F

}
. (3.38)

Here we show that the optimisation problem given by computing the robust-

ness of a resource may be written as a simple semidefinite program (SDP) under

certain conditions on the framework of the corresponding resource theory. An

SDP is a type of convex optimisation problem involving optimisation of a linear

function over the positive semidefinite operators subject to a finite set of con-

straints that can be written as an inequality between self-adjoint operators [125–

127]. Casting an optimisation problem as an SDP is particularly useful, since

SDPs may be solved efficiently using a variety of algorithms [126]. By rewrit-

ing Eq. (3.23), the robustness of a resource can be seen as the solution to the
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optimisation of a linear function over the set of free states

RR(ρ) = minimise Tr(σ̃)− 1

subject to σ̃

Tr(σ̃) ∈ F,

ρ ≤ σ̃, (3.39)

where we have set σ̃ = (1 + s)σ. Here we show that this optimisation problem

corresponds to an SDP when considering a resource theory with a convex set of

free states which can be described by a resource destroying quantum operation

Φ. A resource destroying operation is a quantum operation that satisfies [81]

Φ(ρ) ∈ F ∀ ρ ∈ D(H)

Φ(ρ) = ρ ∀ ρ ∈ F, (3.40)

see Fig. 3.3. Such an operation does not always exist for a given resource theory,

and necessary and sufficient conditions for its existence have been provided in

Ref. [128]. Furthermore, when one does exist, the choice of operation is not

unique, i.e. there can be many quantum operations that satisfy (3.40). An

example of a resource destroying quantum operation can be found for coherence

as the complete dephasing operation ∆ given in Eq. (3.5). Resource destroying

operations allow the corresponding set of free states to be identified with one

simple condition

F := {ρ ∈ D(H) : Φ(ρ) = ρ} . (3.41)

Given a resource theory with a convex set of free states and a resource des-

troying quantum operation Φ, the robustness is given by

RR(ρ) = minimise Tr(σ̃)− 1

subject to Φ(σ̃) = σ̃,

ρ ≤ σ̃. (3.42)

In this form, the robustness corresponds to the solution of an SDP. We demon-

strate this in Appendix B by showing that (3.42) can be rewritten in a standard
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Figure 3.3: A resource destroying quantum operation (black arrows) maps any

resource state (blue circles) to a free state while leaving the set of free states

(orange circles) invariant. The set of states invariant under a resource destroying

operation is hence an alternative characterisation of the set of free states for the

corresponding resource.

form for SDPs [TRB2, 117, 125]. Furthermore, provided the resource destroy-

ing quantum operation is self-dual, i.e. Φ = Φ? (see Appendix B) [20, 46], the

robustness is also given by the dual problem of the above SDP

RR(ρ) = maximise −Tr(Wρ)

subject to Φ(W ) ≥ 0,

W ≤ I. (3.43)

This is also shown in Appendix B. It can be seen that the dual problem is a

constrained optimisation over resource witnesses. Indeed, by using the resource

destroying map Φ, the set of resource witnesses is given by

W =
{
W : W = W †, Tr(Wρ) ≥ 0∀ ρ : Φ(ρ) = ρ

}
. (3.44)

From the self-duality of Φ, it can be shown that

Tr(Wρ) ≥ 0∀ ρ : Φ(ρ) = ρ ⇔ Tr(WΦ(ρ)) ≥ 0∀ ρ

⇔ Tr(Φ(W )ρ) ≥ 0∀ ρ

⇔ Φ(W ) ≥ 0, (3.45)
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so that the set of resource witnesses is equivalently given by

W =
{
W : W = W †, Φ(W ) ≥ 0

}
, (3.46)

which means that the dual problem in Eq. (3.43) is an optimisation over all re-

source witnesses satisfying W ≤ I. This is particularly appealing experimentally,

since measuring the expectation value of any W ∈ W with W ≤ I can not only

witness the presence of a resource but also provide a lower bound to the quantity

of resource in terms of robustness.

These results complement previous works on posing the robustness of a re-

source as an optimisation problem. In particular, it has been shown that the

robustness of entanglement is the solution of a convex optimisation problem

whose dual is given by an optimisation over all entanglement witnesses satis-

fying W ≤ I [120, 129]. Such a result could be extended to any resource theory

with a convex and compact set of free states. However, this does not necessarily

mean that the robustness of a resource is the solution of an SDP. Indeed, it is well

known that for entanglement this is not the case [120]. We show that the robust-

ness is the solution to an SDP when the resource satisfies certain constraints, as

can be seen by our reformulation of the robustness into Eq. (3.42) and Eq. (3.43),

and then in Appendix B into the standard form for an SDP.

Quantum Coherence

Following Refs. [TRB1, TRB2], we now focus on the robustness of coherence,

which is given by

CR(ρ) := inf
τ∈D(H)

{
s ≥ 0

∣∣∣∣ρ+ sτ

1 + s
= δ ∈ I

}
, (3.47)

where I is the convex set of incoherent states with respect to the reference ONB

{|ei〉}di=1 (see Section 2.1). While CR(ρ) may be efficiently computed numerically

for any ρ using an algorithm to solve the SDP give in Appendix B, we can also

investigate an analytical characterisation of CR(ρ). In doing so, we find that the

robustness of coherence is intimately related to the l1 norm of coherence, which

is an intuitive measure of coherence given by summing the absolute values of all
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off-diagonal elements of the density matrix of ρ expressed with respect to the

reference ONB, i.e.

C l1(ρ) :=
d∑
i=1

d∑
j=1
|ρij| − 1, (3.48)

with ρij = 〈ei|ρ|ej〉. The l1 norm of coherence was introduced in Ref. [47] and was

shown to obey Requirements (i)-(iv) when the free operations are identified as

the incoherent operations. Furthermore, it can be shown that 0 ≤ C l1(ρ) ≤ d−1,

with C l1(ρ) = d− 1 only for the maximally coherent state

|Ψd〉 := 1√
d

d∑
i=1
|ei〉 . (3.49)

The maximally coherent state is given its name since every quantum state may

be generated from it through incoherent operations [47], and it could be argued

that any measure of coherence should be maximal only on |Ψd〉 [130]. Note that

not every resource theory has a unique maximally resourceful state [1, 73].

The robustness of coherence coincides with the l1 norm of coherence for

all states of a 2-dimensional system. For higher dimensional systems, the two

measures are generally different and coincide only under a restricted class of

states [TRB2]. This class includes pure states, so that

CR(|ψ〉 〈ψ|) = C l1(|ψ〉 〈ψ|) =
(

d∑
i=1
|ψi|

)2

− 1 (3.50)

for any pure state |ψ〉 = ∑d
i=1 ψi |ei〉 with

∑d
i=1 |ψi|2 = 1. For a general state ρ it

holds that [TRB2]
C l1(ρ)
d− 1 ≤ CR(ρ) ≤ C l1(ρ). (3.51)

We have already discussed saturation of the upper bound of this inequality, and

the lower bound can be achieved for the family of states given by

ρ = (1 + p) I
d
− p |Ψd〉 〈Ψd| , (3.52)

where p ∈ [0, 1
d−1 ]. Considering the range of C l1(ρ), (3.51) implies that for any ρ,

0 ≤ CR(ρ) ≤ d− 1. Furthermore, it can be found that CR(ρ) = d− 1 only when

ρ is the maximally coherent state [TRB2]. Figure 3.4 provides a comparison
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Figure 3.4: A comparison between the robustness of coherence (vertical axis) and

the l1 norm of coherence (horizontal axis) for a 3-dimensional system with 2× 104

states (blue points) randomly drawn from the uniform distribution according to

the Hilbert-Schmidt measure [20, 131]. The solid red line and the dashed red

line represent the upper and lower bounds given by (3.51). The robustness of

coherence was computed with respect to the standard basis using a numerical

algorithm [TRB1] to solve the SDP problem described in Appendix B.

of CR(ρ) and C l1(ρ) with respect to the standard basis for 2 × 104 randomly

generated states ρ of a 3-dimensional quantum system.

We can also define the robustness of k coherence as

CR
k (ρ) := inf

τ∈D(H)

{
s ≥ 0

∣∣∣∣ρ+ sτ

1 + s
= σ ∈ I(k)

}
, (3.53)

for k ∈ {2, 3, . . . , d}, with the free states identified as the convex set I(k) of

states with coherence number less than k with respect to the reference ONB

{|ei〉}di=1 [TRB3]. The existence of a resource destroying quantum operation

for k coherence has not yet been considered. Nevertheless, the robustness of

k coherence can still be written as an SDP optimisation problem for any k as
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given in Appendix B, and can thus be computed efficiently for general ρ. In the

particular case of k = 2, the robustness of k coherence becomes equivalent to

the robustness of coherence since I(2) = I, as we have discussed in Section 2.1.1.

More generally, for a given state ρ

CR
2 (ρ) ≥ CR

3 (ρ) ≥ . . . ≥ CR
d (ρ) ≥ 0 (3.54)

since I(2) ⊂ I(3) ⊂ . . . ⊂ I(d). However, unlike the robustness of coherence, the

robustness of k coherence is not generally equal to the l1 norm of coherence for

pure states. Instead, for any pure state we have that the robustness of k coherence

is lower bounded by a function of the l1 norm of coherence.

Theorem 3 For any pure state |ψ〉 = ∑d
i=1 ψi |ei〉 with

∑d
i=1 |ψi|2 = 1, it holds

that [TRB3]

CR
k (|ψ〉 〈ψ|) ≥ max

{
C l1(|ψ〉 〈ψ|) + 1

k − 1 − 1 , 0
}
. (3.55)

The proof of this theorem is provided in Appendix C. Note that the lower bound

can be zero even for a pure state with a coherence number of k or more. Figure 3.5

compares CR
k (ρ) and C l1(ρ) with respect to the standard basis for 2×104 randomly

generated pure states ρ = |ψ〉 〈ψ| of a 5-dimensional quantum system with k = 4.

We now show that the lower bound provided in Theorem 3 is saturated for

the family of d-dimensional pure states given by

|ψ(x, j)〉 := x
j−1∑
i=1
|ei〉+

√
1− (j − 1)x2 |ej〉 , (3.56)

with x ∈
[
0, 1√

j−1

]
and j ∈ {2, 3, . . . , d}.

Theorem 4 For any x ∈
[

1√
j
, 1√

j−1

]
and j ∈ {2, 3, . . . , d} [TRB3],

CR
k (|ψ(x, j)〉 〈ψ(x, j)|) = max

{
C l1(|ψ(x, j)〉 〈ψ(x, j)|) + 1

k − 1 − 1, 0
}
. (3.57)

The proof of this theorem is also provided in Appendix C. For a given j, the

pure states |ψ(x, j)〉 with x ∈
[

1√
j
, 1√

j−1

]
have an l1 norm of coherence in the
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Figure 3.5: A comparison between the robustness of k coherence (vertical axis) and

the l1 norm of coherence (horizontal axis) for a 5-dimensional system with k = 4 for

2 × 104 pure states (blue points) randomly drawn from the uniform distribution

according to the Haar measure [20]. The lower bound provided by Theorem 3

is shown by plotting CRk (|ψ(x, j)〉 〈ψ(x, j)|) against Cl1(|ψ(x, j)〉 〈ψ(x, j)|) for the

pure states |ψ(x, j)〉 given in Eq. (3.56) with x ∈
[

1√
j
, 1√

j−1

]
for j = 2 (green

dashed line), j = 3 (yellow line), j = 4 (orange dashed line), and j = 5 (red

line). A conjectured upper bound (purple line) is given by CRk (|ψ(x, 5)〉 〈ψ(x, 5)|)

for x ∈
[
0, 1√

5

]
. The robustness of k coherence was computed with respect to the

standard basis using a numerical algorithm to solve the SDP problem described

in Appendix B.

range [j − 2, j − 1], so that one can span the whole range of the l1 norm of

coherence by varying j ∈ {2, 3, . . . , d}. We plot CR
k (|ψ(x, j)〉 〈ψ(x, j)|) against

C l1(|ψ(x, j)〉 〈ψ(x, j)|) in Fig. 3.5 with d = 5, j ∈ {2, 3, 4, 5}, and x ∈
[

1√
j
, 1√

j−1

]
,

hence saturating the lower bound provided by Theorem 3. It is conjectured,

based on numerics, that the pure states |ψ(x, j)〉, with j = d and x ∈
[
0, 1√

d

]
,

furthermore have the highest robustness of k coherence among all pure states

with a fixed l1 norm of coherence. Such states are shown by the purple line for

d = 5 in Fig. 3.5. The maximally coherent state is given by |Ψd〉 = |ψ(1/
√
d, d)〉

so that

CR
k (|Ψd〉 〈Ψd|) = d

k − 1 − 1. (3.58)

In summary, the robustness of coherence and the robustness of k coherence
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are efficiently computable numerically for any state as well as there being some

analytical results for certain types of state. They are furthermore good measures

of the resource of coherence, which follows from our earlier discussion on the

robustness of a resource in general. In Chapter 5, we discuss how the robustness

of coherence and the robustness of k coherence can be quantitatively linked to

the performance of a phase discrimination task.

3.2.2 Distance-based Approach

The distance-based measures of a resource in a quantum system provide an al-

ternative geometric quantification of resources by turning to the concept of distin-

guishability discussed in Chapter 1. They are given by considering the distance-

based distinguishability between the state ρ of the system and the set of free

states F, i.e.

RDδ(ρ) := inf
σ∈F

Dδ(ρ, σ), (3.59)

where Dδ is a distance between quantum states. In this way, we can see that

the more ρ is distinguishable from the free states, the more resource is present in

the system. Instead, if ρ is indistinguishable from a free state then the system

has no resources. The σ̃ ∈ F satisfying the infimum in Eq. (3.59) form the set

F̃ of closest free states to ρ. While this set can in general be composed of more

than one free state, in most cases there is a unique closest free state. Since it is

often only necessary to identify an arbitrary element of F̃ rather than distinguish

between them, in the following we often only refer to the closest free state.

It is clear that each choice of distanceDδ gives rise to a corresponding distance-

based measure RDδ(ρ). For Dδ to be a good measure of distinguishability it is

imposed that Dδ is contractive, i.e. that the distance between two states never

increases under the action of a quantum operation, as defined in Eq. (1.35).

Furthermore, it is often imposed that Dδ is jointly convex [20],

D(pρ1 + (1− p)ρ2, pσ1 + (1− p)σ2) ≤ pD(ρ1, σ1) + (1− p)D(ρ2, σ2), (3.60)

for any probability p ∈ [0, 1] and any quantum states ρ1, ρ2, σ1, and σ2. All of

the distances listed in Table 1.1 are contractive and jointly convex [20, 44]. We
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now see that contractivity and joint convexity of Dδ mean that the corresponding

RDδ(ρ) is a good measure of a resource. It is clear that RDδ(ρ) is a real and non-

negative function and is zero only for ρ ∈ F, which is given from the first property

of any distance Dδ in (1.3). Hence, RDδ(ρ) satisfies Requirement (i). We now

prove that RDδ(ρ) satisfies Requirement (ii).

Theorem 5 For any contractive Dδ it holds that

RDδ(Λ(ρ)) ≤ RDδ(ρ) (3.61)

for all Λ ∈ O and any state ρ [18].

Proof.

RDδ(ρ) = inf
σ∈F

Dδ(ρ, σ)

≥ inf
σ∈F

Dδ(Λ(ρ),Λ(σ))

≥ inf
σ∈F

Dδ(Λ(ρ), σ)

= RDδ(Λ(σ)), (3.62)

where in the first inequality we use the contractivity of Dδ from (1.35) and in the

second inequality we use the fact that for any Λ ∈ O it holds that {Λ(σ) |σ ∈ F} ⊆

F, since Λ(σ) ∈ F for all σ ∈ F.

Usefully, this theorem implies that RDδ(ρ) satisfies Requirement (ii) for any choice

of free operations, including the maximal set of operations unable to create the

resource, which follows from the fact that in the proof we only require Λ(σ) ∈ F

for all σ ∈ F. Finally, RDδ(ρ) satisfies Requirement (iii) if F is convex.

Theorem 6 For any jointly convex Dδ and resource theory with a convex set of

free states F, it holds that

RDδ(pρ1 + (1− p)ρ2) ≤ pRDδ(ρ1) + (1− p)RDδ(ρ2) (3.63)

for any probability p ∈ [0, 1] and any two states ρ1 and ρ2 [19].
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Proof.

RDδ(pρ1 + (1− p)ρ2) = inf
σ∈F

Dδ(pρ1 + (1− p)ρ2, σ)

= inf
σ1∈F
σ2∈F

Dδ(pρ1 + (1− p)ρ2, pσ1 + (1− p)σ2)

≤ p inf
σ1∈F

D(ρ1, σ1) + (1− p) inf
σ2∈F

D(ρ2, σ2)

= pRDδ(ρ1) + (1− p)RDδ(ρ2), (3.64)

where we use the joint convexity of Dδ in the inequality. In the second equality

we use the fact that {pσ1 + (1− p)σ2 |σ1 ∈ F , σ2 ∈ F} = F. Indeed, it is clear

from the convexity of F that pσ1 + (1 − p)σ2 ∈ F for any p ∈ [0, 1], σ1 ∈ F and

σ2 ∈ F. On the other hand, for any σ ∈ F we may write σ = pσ1 + (1−p)σ2 with

σ1 = σ2 = σ so that σ ∈ {pσ1 + (1− p)σ2 |σ1 ∈ F , σ2 ∈ F}.

We can therefore see that the distance-based measures of a resource satisfy

the first three requirements. This type of measure was introduced in Refs. [18, 19]

for the resource of entanglement, and the distances listed in Table 1.1 have been

subsequently used to measure entanglement [2, 20, TRB4, 44, 132–135]. The

distance-based approach has also been applied to quantum coherence [1, TRB9,

47, 85, 136, 137], and quantum correlations, for which a comprehensive review

can be found in Ref. [TRB12]. Note that it is simple to see from Theorem 5

that Requirement Q(ii) for quantum correlations is also satisfied whenever Dδ is

contractive. On the other hand, Requirement (iv) is typically checked on a case-

by-case basis for each Dδ, although a sufficient condition on Dδ has been provided

in Ref. [19, 47] for the induced resource measure to satisfy this strong monoton-

icity. The relative entropy and the infidelity are two examples of distances that

induce a distance-based resource measure that is strongly monotone [2, 19, 47,

109, 137].

It is a natural question to ask which of the distances Dδ is the most appro-

priate to use to quantify a resource using RDδ(ρ). There is not a clear answer

to this. One may choose Dδ because it has appealing features as a measure of

distinguishability [7, 20, 42]. However, this does not immediately furnish RDδ(ρ)

with a physical relevance aside from the more abstract notion of quantifying the
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distinguishability between ρ and the set of free states. The physical relevance

of RDδ(ρ) in terms of being the figure of merit in an operational task must be

investigated for each Dδ and each resource, see Refs. [1, 2, 11, TRB12] for fur-

ther details. In practice, the choice of Dδ is often dictated by the pragmatic

motivation of being able to solve the infimum in RDδ(ρ). Indeed, RDδ(ρ) can

be difficult to evaluate both analytically and numerically [138] for arbitrary ρ.

To help solve this problem, in the next chapter we give a framework for provid-

ing lower bounds on RDδ(ρ) that are simpler to evaluate. Furthermore, in this

thesis we often prefer not fix a particular distance but instead work generally

with distance-based measures of a resource for any contractive and jointly convex

distance.

Comparing the Quantum within the Distance-based Approach

The geometric nature of the distance-based approach allows for a unified per-

spective when quantifying the resources in a composite quantum system [139,

140]. This permits a natural comparison between resources and can lead to phys-

ical insights into their behaviour and interaction, as will be discussed further in

Section 6.1.5. Consider a bipartite system in state ρAB consisting of subsystem

A and B. The quantum coherence, quantum correlations, and quantum entan-

glement may be quantified in the distance-based approach as

CDδ(ρAB) := inf
δAB∈IAB

Dδ(ρAB, δAB), (3.65)

QDδ
AB(ρAB) := inf

χABCC∈C
AB
CC

Dδ(ρAB, χABCC), (3.66)

EDδ(ρAB) := inf
ςAB∈SAB

Dδ(ρAB, ςAB), (3.67)

where we define coherence with respect to a reference ONB {|eAi 〉 ⊗ |fBj 〉}
dA,dB
i,j=1 of

product pure states of both subsystems and IAB is the set of incoherent states

in such an ONB [TRB9, 137], while we also restrict to considering quantum

correlations with respect to both subsystems. It is clear that IAB ⊂ CABCC ⊂

SAB, so that CDδ(ρAB) ≥ QDδ
AB(ρAB) ≥ EDδ(ρAB). In fact, it can be found that

QDδ
AB(ρAB) is the result of minimising the coherence CDδ(ρAB) over all product
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ONBs [TRB9, TRB12, 84, 141, 142]. Figure 3.6 illustrates these resources from a

geometric perspective. We can also measure the total correlations [10, 139, 140]

between the two subsystems as the distance from the uncorrelated states

TDδ(ρAB) := inf
ωAB∈PAB

Dδ(ρAB, ωAB), (3.68)

with PAB the product states given in Eq. (2.20). Since PAB ⊂ CABCC it holds that

TDδ(ρAB) ≥ QDδ
AB(ρAB). As discussed in Section 2.2, the classical correlations can

be thought of as the portion of the total correlations that are not quantum. There

is not a clear way to define a measure of classical correlations in the distance-

based approach (the conventional approach is through an entropic measure [9,

10]). One method is to quantify the classical correlations as the distance between

the set C̃ABCC ⊂ CABCC of closest classical states to ρ and the set of uncorrelated

states [TRB11, 139, 140, 143, 144],

CCDδ
AB(ρAB) := inf

χ̃ABCC∈C̃
AB
CC

inf
ωAB∈PAB

Dδ(χ̃ABCC , ωAB). (3.69)

This method was introduced in Ref. [139], but did not include an infimum over all

closest classical states to ρAB. The infimum was then introduced in Ref. [TRB11]

to prevent any ambiguities in the definition of classical correlations. However, as

can be seen in Fig. 3.6, by using this method in general it holds that TDδ(ρAB) 6=

CCDδ
AB(ρAB) +QDδ

AB(ρAB).
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Figure 3.6: Quantification of quantum coherence CDδ , quantum correlations

QDδAB , quantum entanglement EDδ , total correlations TDδ , and classical correl-

ations CCDδAB in a bipartite system using the distance-based approach given in

Eqs. (3.65)–(3.69). The outer square represents all bipartite states, the inner dia-

mond represents separable states, the solid and dashed blue lines and black inner

circle represent the CC states, the solid blue line represents the incoherent states,

while finally the black inner circle represents the product states. Note that in gen-

eral the contractive and jointly convex distances on quantum states do not behave

like the Euclidean distance, and so the resource measures are not given by simply

finding the distance to the Euclidean orthogonal projection onto the free states.



Chapter 4

Bounding the Quantum

In the previous chapter we discussed some general requirements for measures

of a quantum resource and presented two geometric approaches to measuring a

resource. Having identified these measures, the next step is to evaluate them

for a given state either numerically or analytically. We have shown that the

robustness of a resource can be evaluated numerically using an SDP, provided the

resource theory satisfies some constraints. However, the robustness is not simple

to evaluate analytically in general. Furthermore, the distance-based measure is

difficult to evaluate both numerically and analytically. In this chapter we outline

a general framework to provide lower bounds to measures of a resource, following

from the works of Refs. [TRB4, TRB5, TRB6]. After introducing this general

framework, we provide an example of its application to the resources of multiqubit

entanglement and coherence.

4.1 Framework

Our framework is constructed on the concept of resource non-increasing projec-

tions. A resource non-increasing projection Π, is a free quantum operation Π ∈ O

that satisfies Π(Π(ρ)) = Π(ρ) for any state ρ. Each resource non-increasing pro-

jection Π identifies a set of resource guarantor states G ⊂ D(H) given by all the

states left invariant by Π, i.e. G := {ρ ∈ D(H) | ρ = Π(ρ)}. The action of a re-

source non-increasing projection is to project any state ρ into the corresponding

78
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Figure 4.1: A resource non-increasing projection (black arrows) is a free operation

that maps any state (blue circles) to a set of resource guarantor states (orange

circles). The set of resource guarantor states are all the states left invariant under

the action of the resource non-increasing projection, and cannot have more resource

than the states they guarantee. Since the resource non-increasing projection is a

free operation, the free states are mapped onto a subset of themselves. We note

that it is possible for a resource state to be mapped to a free state due to the

resource non-increasing projection (as shown for example by the red arrow).

set of resource guarantor states, such that

Π(ρ) ∈ G ∀ ρ ∈ D(H),

Π(ρ) = ρ ∀ ρ ∈ G. (4.1)

Any state ρ has a corresponding resource guarantor state Π(ρ) ∈ G that cannot

have more resource than ρ, i.e. R(ρ) ≥ R(Π(ρ)), which follows from Requirement

(ii) of R since Π ∈ O. Hence, the resource guarantor state Π(ρ) ∈ G provides a

quantitative guarantee on the resource of ρ in terms of a lower bound arising due

to the resource non-increasing projection Π, thus motivating our nomenclature.

Note that there are in general many states ρ with the same corresponding resource

guarantor state. Figure 4.1 exhibits the action of a resource non-increasing pro-

jection on the set of states.

The general framework to provide lower bounds to measures of a resource is

then structured into four steps:

Step One: Find a resource non-increasing projection Π and identify the cor-
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responding set of resource guarantor states G.

Step Two: Identify the set of free resource guarantor states FG, i.e. the inter-

section between the free states F and the resource guarantor states G.

Step Three: Evaluate a resource measure R($) on every resource guarantor

state $ ∈ G.

Step Four: Find lower bounds to the resource of a general state ρ by varying

ρ over free unitaries Υ and finding the corresponding resource guarantor

state Π(Υ(ρ)) ∈ G with the largest amount of resource.

Figure 4.2 summarises the four steps of our framework, which results in a lower

bound on a measure of the resources of a system in the state ρ. The first and final

steps of this framework have been studied specialised to quantum entanglement

in Refs. [145–148], while the second and third steps have been introduced in

Refs. [TRB4, TRB5]. We also remark on the experimental applicability of this

framework. Indeed, experimentalists often want to quantify the resource (such

as entanglement) of a quantum system prepared in a laboratory. This can be

done by performing full quantum state tomography [7, 149, 150] to reconstruct

the density matrix of the state and then evaluating a resource measure on the

density matrix. However, full state tomography is experimentally demanding and

evaluation of a resource measure for an arbitrary reconstructed density matrix can

be computationally intensive. Instead, finding lower bounds on resource measures

using our framework bypasses some of the experimental and numerical difficulty.

This is achieved through our restriction to a family of resource guarantor states G

that are necessarily easier to reconstruct experimentally and simpler to evaluate

numerically. We now motivate and explain each of the steps in greater detail.

4.1.1 Step One

The first step of this framework is to identify a resource non-increasing projection

Π and the corresponding set of resource guarantor states G. The general idea is

to pick a Π so that the resource guarantor states G are a simple family of states
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Figure 4.2: The four steps of the framework to provide lower bounds on a re-

source measure for a system in state ρ. The first two steps consist of (1) finding a

resource non-increasing projection Π and identifying the corresponding set of re-

source guarantor states G, and then (2) identifying the contained set of free states

FG = F ∩ G. The final two steps consist of (3) evaluating a resource measure

R for all $ ∈ G (shown pictorially using the distance-based approach), and (4)

optimising ρ over free unitaries Υ so that the corresponding resource guarantor

state Π(Υ(ρ)) ∈ G has the most resource (the orange ellipse here illustrates the

set of resource guarantor states corresponding to Υ(ρ) for each Υ).

with resource measures that can be evaluated on them either analytically or

numerically. However, broadly speaking, the simpler the G, the more resource is

lost by projecting with Π onto G. This means that the lower bounds provided by

G become smaller and hence less informative. In fact, it is possible that Π(ρ) ∈ F

even if ρ /∈ F, as can be seen by the red arrow in Fig. 4.1, so that the lower bound

provided by Π(ρ) is zero and hence trivial. An extreme example of this can be

given by a resource destroying quantum operation, which is a special type of

resource non-increasing projection that projects every state onto the free states.

We thus have to find a balance between the simplicity of G and the usefulness of

the lower bounds provided by G.
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4.1.2 Step Two

The next step of the framework is to identify the set FG of resource guarantor

states that are also resource-free, i.e. the intersection F ∩ G. It can be seen that

FG is given by applying the resource non-increasing projection onto the set of free

states,

FG := F ∩ G = {Π(ρ) | ρ ∈ F} . (4.2)

To see this, it is first clear that for any ρ ∈ FG we know ρ ∈ F and ρ ∈ G so that

ρ = Π(ρ) ∈ {Π(ρ) | ρ ∈ F}. On the other hand, for any Π(ρ) ∈ {Π(ρ) | ρ ∈ F}

then Π(ρ) ∈ G and Π(ρ) ∈ F since Π is a free operation and cannot create resource,

so that Π(ρ) ∈ FG. This proves the equivalence of the two sets. Hence, we can use

Eq. (4.2) to characterise FG. As we shall see in the next step, characterisation of

FG is useful to help evaluate resource measures on the resource guarantor states.

4.1.3 Step Three

In this step of the framework we aim to measure the amount of resources in each

resource guarantor state. For general resource measures R, the projection given

by Π onto the resource guarantor states G allows for a variety of tricks to be

used to simplify the evaluation of R($) for any $ ∈ G when compared to the

evaluation of R(ρ) for a general state ρ. This can be seen more concretely by

focussing on the two geometric approaches to measuring a resource discussed in

Section 3.2. For the robustness, the infimum in Eq. (3.23) over all free states F

can be instead replaced by the infimum over all FG ⊆ F. Indeed, for any $ ∈ G

consider

RR($) = inf
σ∈F
{s ≥ 0 |$ ≤ (1 + s)σ} , (4.3)

R̃R($) := inf
σ̃∈FG

{s ≥ 0 |$ ≤ (1 + s)σ̃} , (4.4)

where the first line is the robustness in Eq. (3.23) and the second line is the same

optimisation but over the contained set FG. It is clear that RR($) ≤ R̃R($) since

FG ⊆ F, but it can also be shown that RR($) ≥ R̃R($). Take any σ ∈ F such
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that $ ≤ (1 + s)σ. Since Π preserves positivity and Π($) = $ because $ ∈ G,

Π($) ≤ (1 + s)Π(σ),

$ ≤ (1 + s)Π(σ). (4.5)

Hence, for any σ in the infimum of Eq. (4.3) with corresponding value s there is

a σ̃ = Π(σ) in the infimum of Eq. (4.4) with the same corresponding s so that

R̃R($) ≤ RR($). Putting everything together, we have that

RR($) = R̃R($). (4.6)

This is a particularly appealing result from the perspective of evaluating the

robustness numerically, since R̃R($) may be posed as the solution to an SDP

when the set FG can be characterised with a finite number of conditions, as will

be discussed in the example in the following section.

A similar simplification holds for the distance-based approach to measuring a

resource. Here it turns out that minimisation of the distance over all free states

in Eq. (3.59) can be simplified to a minimisation over all FG. Indeed, for any

$ ∈ G, consider

RDδ($) = inf
σ∈F

Dδ($, σ), (4.7)

R̃Dδ($) := inf
σ̃∈FG

Dδ($, σ̃), (4.8)

where the first line is the distance-based measure in Eq. (3.59) and the second

line is the same optimisation but over the smaller set FG. Again, it is clear that

RDδ($) ≤ R̃Dδ($) since FG ⊆ F, but it also holds that RDδ($) ≥ R̃Dδ($). This

can be seen from

RDδ($) = inf
σ∈F

Dδ($, σ)

≥ inf
σ∈F

Dδ(Π($),Π(σ))

= inf
σ∈F

Dδ($,Π(σ))

= inf
σ̃∈FG

Dδ($, σ̃)

= R̃Dδ($), (4.9)
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where the contractivity of Dδ is used in the inequality, Π($) = $ since $ ∈ G is

used in the second equality, and the characterisation of FG in Eq. (4.2) is used in

the third equality. Hence we have that

RDδ($) = R̃Dδ($). (4.10)

This result is appealing from a geometric perspective, since it allows us to focus

only on evaluating the distance between states of the same family G. Further

details can be found in the forthcoming example.

4.1.4 Step Four

The final step of the framework consists of optimising the lower bound to the

resource of ρ over free unitary operations. A free unitary operation Υ ∈ O acts

on any state ρ as Υ(ρ) = UρU † where U is a unitary operator. The free unitary

operations are invertible with inverse given by Υ† ∈ O such that Υ†(Υ(ρ)) =

Υ(Υ†(ρ)) = ρ where Υ†(ρ) = U †ρU . This means that R(Υ(ρ)) = R(ρ) for any Υ

because

R(ρ) ≥ R(Υ(ρ))

R(Υ(ρ)) ≥ R(Υ†(Υ(ρ))) = R(ρ), (4.11)

which holds for all ρ due to Requirement (ii) and the fact that Υ ∈ O and Υ† ∈ O.

Hence, all states given by Υ(ρ) have the same resource as ρ. We can then consider

the resource guarantor states Π(Υ(ρ)) and note that

R(Π(Υ(ρ))) ≤ R(Υ(ρ)) = R(ρ). (4.12)

Since generally Π(Υ(ρ)) 6= Υ(Π(ρ)), the resources of Π(Υ(ρ)) depend on Υ and

we can optimise over free unitaries Υ to provide an improved lower bound to the

resources of ρ, i.e.

sup
Υ
R(Π(Υ(ρ))) = R(Π(Υ?(ρ))) ≤ R(Υ?(ρ)) = R(ρ), (4.13)

where Υ? is the free unitary that provides the optimal lower bound to R(ρ).

However, this optimisation can increase the difficulty of providing a lower bound,
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and so it may be necessary to restrict the optimisation to a subset of the free

unitaries. For the resources of quantum correlations and entanglement, the free

unitaries are all the local unitaries acting on each subsystem, while for the resource

of coherence the free unitaries depend on the set of free operations identified [1].

4.2 Applying the Framework to Multiqubit En-

tanglement

So far our framework has been described in very abstract terms. Here we clarify

each step of the framework by providing an example of a resource non-increasing

projection for multiqubit entanglement. This entanglement non-increasing pro-

jection is used to find lower bounds on the distance-based M -inseparable mul-

tiqubit entanglement

EDδ
M (ρ) := inf

ς∈SM
Dδ(ρ, ς) (4.14)

of an N ≥ 2 qubit system in the state ρ. The reader is referred to Section 2.3.1

for an explanation of the terminology used here for multiqubit entanglement.

4.2.1 Steps of the Framework

Step One

To define our entanglement non-increasing projection Π(ρ), we introduce a set

consisting of 2(N − 1) local unitaries composed of tensor products of unitaries

acting on each qubit

{Uj}2(N−1)
j=1 = {(σ1 ⊗ σ1 ⊗ I⊗N−2), (I⊗ σ1 ⊗ σ1 ⊗ I⊗N−3),

. . . (I⊗N−3 ⊗ σ1 ⊗ σ1 ⊗ I), (I⊗N−2 ⊗ σ1 ⊗ σ1)

, (σ2 ⊗ σ2 ⊗ I⊗N−2), (I⊗ σ2 ⊗ σ2 ⊗ I⊗N−3),

. . . (I⊗N−3 ⊗ σ2 ⊗ σ2 ⊗ I), (I⊗N−2 ⊗ σ2 ⊗ σ2)},

(4.15)



CHAPTER 4. BOUNDING THE QUANTUM 86

with {σi}3
i=1 the 2-dimensional Pauli matrices given in Eq. (1.48) and I the 2-

dimensional identity matrix. The entanglement non-increasing projection is given

by

Π(ρ) = 1
22(N−1)

22(N−1)∑
i=1

U ′i%U
′†
i , (4.16)

where U ′i are the following local unitaries

{U ′i}22(N−1)

i=1 =



I⊗N

{Ui1}
2(N−1)
i1=1

{Ui2Ui1}
2(N−1)
i2>i1=1

· · ·

{Ui2(N−1) . . . Ui2Ui1}
2(N−1)
i2(N−1)>...>i2>i1=1


. (4.17)

We now see that Π ∈ O. Recall that the free operations for any level of

M -inseparable multiqubit entanglement are LOCC where each qubit is treated

as an individual subsystem. It can be seen that each U ′i is a local unitary com-

posed of tensor products of unitaries acting on each qubit, so that Π(ρ) is a

convex combination of such single qubit local unitaries. This can be realised

physically by allowing one of the single qubit subsystems to randomly select an

i ∈ {1, 2, . . . , 22(N−1)} according to the uniform distribution and then communic-

ate the result to all the other qubits, so that together they each perform their

local unitary corresponding to U ′i . This is a type of one way single qubit LOCC

and so Π ∈ O.

The action of Π on any N qubit state ρ is given by the following theorem.

Theorem 7 For any N qubit state ρ and Π(ρ) as in Eq. (4.16),

Π(ρ) = 1
2N

(
I⊗N +

3∑
i=1

ciσ
⊗N
i

)
(4.18)

where ci = Tr(ρσ⊗Ni ) ∈ [−1, 1] [TRB4].

The proof of this theorem is provided in Appendix C. Since Π(Π(ρ)) is described

by c̃i = Tr(Π(ρ)σ⊗Ni ) = ci, it is then clear that Π(Π(ρ)) = Π(ρ) so that Π is a

projection. The set of resource guarantor states defined by Π, i.e. all those left
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invariant under the action of Π, is given by

G =
{
$

∣∣∣∣∣ $ = 1
2N

(
I⊗N +

3∑
i=1

ciσ
⊗N
i

)}
, (4.19)

where ci = Tr($σ⊗Ni ) ∈ [−1, 1], so that we can describe any $ ∈ G by the triple

of real numbers {c1, c2, c3}. Every $ has a maximally mixed marginal state with

respect to any combination of qubits into a subsystem,

Tr\Qα($) = Tr\Qα
(

1
2N

(
I⊗N +

3∑
i=1

ciσ
⊗N
i

))

= 1
2N

(
Tr\Qα

(
I⊗N

)
+

3∑
i=1

ciTr\Qα
(
σ⊗Ni

))

= 2N−Kα
2N I⊗Kα = 1

2Kα I
⊗Kα , (4.20)

since the Pauli matrices are traceless, where Tr\Qα($) is the partial trace over all

but subsystem Qα, for any subsystem Qα consisting of Kα qubits. It is then said

that the $ are N qubit states with maximally mixed marginals and are called

M3
N states, where we associate G = M3

N . The resource non-increasing projection

Π(ρ) ∈ G is then called the M3
N -fication of ρ. Note that the M3

N states have been

investigated independently in Ref. [151].

The characterisation of the M3
N states depends on whether N is even or odd.

For even N all the M3
N states commute with each other, i.e. [$1, $2] = 0 for

any $1 ∈ M3
N and $2 ∈ M3

N . This means that the N even M3
N states share

a common eigenbasis, which is given in Ref. [TRB4]. The eigenvalues of such a

$ ∈M3
N are the following:{ 1

2N
[
1 + c1 + (−1)N/2c2 + c3

]
,

1
2N

[
1 + c1 − (−1)N/2c2 − c3

]
,

1
2N

[
1− c1 + (−1)N/2c2 − c3

]
,

1
2N

[
1− c1 − (−1)N/2c2 + c3

]}
,

where each eigenvalue is 2N
4 level degenerate, i.e. with 2N

4 eigenvectors corres-

ponding to the same eigenvalue. Hence, every $ is a mixed state for even N > 2.

By imposing that every $ with triple {c1, c2, c3} is positive semidefinite, i.e. that

the above eigenvalues are non-negative, it can be seen that the triple {c1, c2, c3}

must lie within the tetrahedron T(−1)N/2 with vertices{
{1, (−1)N/2, 1}, {1,−(−1)N/2,−1}, {−1, (−1)N/2,−1}, {−1,−(−1)N/2, 1}

}
.
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1 1

2 2

3 3

Figure 4.3: The M3
N states in the {c1, c2, c3} space (shown in green) are contained

within the tetrahedron T(−1)N/2 for even N (left, for odd N/2) and the unit ball

B1 for odd N (right). The M -separable M3
N states for M > dN/2e are contained

within the unit octahedron O1 with vertices {±1, 0, 0}, {0,±1, 0} and {0, 0,±1}

(shown in red), while all M3
N states are M -separable for M ≤ dN/2e. The M3

N

states are an example of resource guarantor states given by the resource non-

increasing projection of Eq. (4.16).

When N = 2, the M3
N states coincide with the well known Bell-diagonal states,

consisting of mixtures of the four maximally entangled pure Bell states [2, 152].

On the other hand, when N is odd, the M3
N states do not commute since they

no longer share a common eigenbasis. The eigenvalues of the N odd M3
N states

are 1
2N (1± r) where r :=

√
c2

1 + c2
2 + c2

3, with each eigenvalue 2N
2 level degenerate.

Hence, for odd N > 1, every $ is a mixed state (for N = 1, the M3
N states

coincide with the set of all qubit states). It can be seen that the M3
N states for

odd N lie in the unit ball B1 in the {c1, c2, c3} space, an extension of the Bloch

ball representation of a qubit discussed in Section 1.2.4. Figure 4.3 shows the

M3
N states in the {c1, c2, c3} space for even and odd N .

Step Two

In this step we identify theM -separableM3
N states, SM3

N
M . This is done analytically

by finding the M3
N -fication of all the M -separable states, as is shown in the proof

of the following theorem.
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Theorem 8 For any N , the set ofM-separable M3
N states SM3

N
M is either [TRB4]:

• the set of all M3
N states, for any M ≤ dN/2e;

• the set of M3
N states represented in the {c1, c2, c3} space by the unit oc-

tahedron O1 with vertices {±1, 0, 0}, {0,±1, 0} and {0, 0,±1}, for any

M > dN/2e.

The proof of this theorem is also provided in Appendix C. It tells us that the M3
N

states are alwaysM -separable for anyM ≤ dN/2e so that in this case EDδ
M ($) = 0

for all $ ∈ M3
N , which means in particular that EDδ

M (Π(ρ)) = 0 and our lower

bound on the multiqubit entanglement of a general state ρ is trivial. However,

when M > dN/2e the M3
N states are not always M -separable. Figure 4.3 shows

theM -separable M3
N states forM > dN/2e in the {c1, c2, c3} space. Indeed, if the

triple {c1, c2, c3} of $ does not lie within the unit octahedron O1, or equivalently

if |c1|+|c2|+|c3| > 1, then $ isM -inseparable. In such a way, if the triple of Π(ρ)

for an arbitrary state ρ lies outside of the unit octahedron O1, then we can find

nontrivial lower bounds on EDδ
M (ρ). Hence, the next step focusses on calculating

EDδ
M ($) for any $ ∈M3

N and M > dN/2e.

Step Three

Now we calculate EDδ
M ($) for any $ ∈ M3

N and M > dN/2e by making use of

the simplification from Eq. (4.10), i.e. that

EDδ
M ($) = inf

ς∈S
M3
N

M

Dδ($, ς). (4.21)

From Theorem 8, if $ has a triple {c1, c2, c3} such that |c1|+ |c2|+ |c3| ≤ 1 then

$ ∈ S
M3
N

M and EDδ
M ($) = 0. The case of |c1| + |c2| + |c3| > 1 is dealt separately

for even and odd N .

For even N , the M -inseparable M3
N states can be found in the {c1, c2, c3}

space by the four corners of the tetrahedron T(−1)N/2 , which are all local unitarily

equivalent so that it is only necessary to focus on one of them. We make use of

the universal properties of contractivity and joint convexity of the distance Dδ
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to evaluate EDδ
M ($) for any Dδ. This is achieved by finding one of the closest

M -separable M3
N states ς$ ∈ S

M3
N

M to $ that universally satisfies the infimum

in Eq. (4.21) for any Dδ. Figure 4.4 shows a zoomed in diagram of one of the

four corners of the tetrahedron T(−1)N/2 . The closest M -separable M3
N state ς$

to an M3
N state $ can be found in the {c1, c2, c3} space by extending the line,

which connects the corresponding corner of the tetrahedron T(−1)N/2 with $, onto

the plane given by the face of the M -separable octahedron O1. One can then

evaluate the distance between $ and ς$ and find that for any Dδ it is always a

monotonically increasing function fDδ of the height h$ := 1
2

(∑3
i=1 |ci| − 1

)
above

the M -separable plane. The plane height h$ is non-positive for all M -separable

M3
N states within the octahedron O1, while 0 < h$ ≤ 1 for the M -inseparable

M3
N states. This then gives a closed formula for the M -inseparable multiqubit

entanglement of $,

EDδ
M ($) =

 0 , h$ ≤ 0 (or M ≤ N/2);

fDδ(h$) , otherwise.
(4.22)

Particular instances of fDδ(h$), for each distanceDδ given in Table 1.1, are shown

in Table 4.1. We sketch the details of the derivation of this result in the following,

which follows from Appendix E of Ref. [TRB4].

For odd N and M > dN/2e, there is not a universal closest M -separable M3
N

state for every distance Dδ, although the closest separable state is still independ-

ent of the choice of M and N . We focus in particular on evaluating EDTr
M ($) for

the trace distanceDTr. The trace distance between any two N -oddM3
N states has

the useful property of being equivalent to (half) the Euclidean distance between

their two vectors in the {c1, c2, c3} space, so that the closest M -separable M3
N

state ς$ to any M -inseparable M3
N state $ is simply, in the {c1, c2, c3} space,

the Euclidean orthogonal projection onto the unit octahedron O1. We then have

that

EDTr
M ($) =


0 , h$ ≤ 0 (or M ≤ dN/2e);
h$√

3 , 0 < h$ ≤ 3|cj|/2 ∀j;

min
j

1
2

√
|cj|2 + 1

2(2h$ − |cj|)2 , otherwise,

(4.23)
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Figure 4.4: An enlargement of the tetrahedron T(−1)N/2 of N evenM3
N states in the

{c1, c2, c3} space onto one of the corners given by theM -inseparable M3
N states for

M > N/2 (left), and an enlargement of the unit ball B1 of N > 1 odd M3
N states in

the {c1, c2, c3} space into one of the octants given by theM -inseparable M3
N states

forM > dN/2e (right). The red planes represent the border of the unit octahedron

O1 of M -separable M3
N states. For even N , the closest M -separable M3

N state ς$
to any $ is given by extending the line connecting the corner of the tetrahedron

T(−1)N/2 through $ onto the M -separable plane, with the corresponding distance

Dδ($, ς$) a function of only the plane height h$ above the M -separable plane.

Instead, for odd N , the closest M -separable M3
N state according to the trace

distance is given by the Euclidean orthogonal projection onto the M -separable

plane. The blue surfaces represent surfaces of constant entanglement.

see Fig. 4.4. The second line of Eq. (4.23) represents the case when the M -

inseparable M3
N state is orthogonally above one of faces of the M -separable oc-

tahedron O1 (represented by $1 in the figure, with ς$1 the closest M -separable

M3
N state), while the third line of Eq. (4.23) represents the case when the M -

inseparable M3
N state is closest to one of the edges of the octahedron O1 (repres-

ented by $2 in the figure, with ς$2 the closest M -separable M3
N state).

We return now to the even N andM > N/2 case and sketch the mathematical

proof of the result of Eq. (4.22), following Ref. [TRB4], i.e. that EDδ
M ($) is simply

a monotonic function of the plane height h$ for any Dδ. First, it is clear from the

joint convexity ofDδ that the closestM -separableM3
N state to anyM -inseparable
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Dδ fDδ(h$)

Trace 1
2h$

Hellinger (squared) 2−
√

1− h$ −
√

1 + h$

Bures (squared) 2−
√

1− h$ −
√

1 + h$

Infidelity 1
2

(
1−

√
1− h2

$

)

Relative entropy
1
2

[
(1− h$) log2(1− h$)

+ (1 + h$) log2(1 + h$)
]

Table 4.1: The M -inseparable multiqubit entanglement EDδM ($) of an M3
N state

with even N and M > N/2, as given by Eq. (4.22), is a monotonic function

fDδ(h$) of the plane height h$ whenever h$ > 0.

M3
N state $ must lie on the corresponding surface of theM -separable octahedron

O1. Now, consider the twoM -inseparable M3
N states $1 and $2 shown in Fig. 4.4

sitting on the same plane with height h$, along with the two corresponding M -

separable M3
N states ς$1 and ς$2 given by extending the line connecting the

corner of the tetrahedron T(−1)N/2 through $1 and $2, respectively, onto the M -

separable plane. We think of $2 as a general M3
N state on this plane while $1 is

the particular M3
N state at the centre of the plane. It can be shown that

Dδ($1, ς$1) = Dδ($2, ς$2). (4.24)

This is done by identifying two quantum operations Λin and Λout such that

Λin($2) = $1 Λout($1) = $2

Λin(ς$2) = ς$1 Λout(ς$1) = ς$2 ,

so that from contractivity of Dδ

Dδ($2, ς$2) ≥ Dδ(Λin($2),Λin(ς$2)) = Dδ($1, ς$1)

Dδ($1, ς$1) ≥ Dδ(Λout($1),Λout(ς$1)) = Dδ($2, ς$2). (4.25)
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These two quantum operations are given in Ref. [TRB4]. Now consider the dis-

tance between $2 and an arbitrary M -separable M3
N state ς on the M -separable

plane. It can be found that Λin(ς) = ς$1 so that

Dδ($2, ς) ≥ Dδ(Λin($2),Λin(ς)) = Dδ($1, ς$1) = Dδ($2, ς$2), (4.26)

which tells us that ς$2 is the closest M -separable M3
N state to $2, i.e.

EDTr
M ($2) = Dδ($2, ς$2) (4.27)

for any $2. This is the main result of Appendix E of Ref. [TRB4]. It can

further be shown that EDTr
M ($2) is a monotonic function fDδ of the plane height

h$, which relies on the fact that Dδ($2, ς$2) = Dδ($1, ς$1), with Dδ($1, ς$1)

a function only of the plane height, and also joint convexity of Dδ, which then

imposes that the distance to the M -separable plane must increase with the plane

height.

Before proceeding to discuss the final step, we note that the set ofM -separable

M3
N states can be expressed in a general way as any operator $ ≥ 0 with Tr($) =

1 satisfying the following finite number of conditions

Tr ($σi1 ⊗ σi2 . . .⊗ σiN ) = 0 ∀ {i1, i2, . . . , iN} 6= {i, i, . . . i}, i ∈ {0, 1, 2, 3},

Tr
(
$σ⊗N1

)
+ (−1)N/2Tr

(
$σ⊗N2

)
+ Tr

(
$σ⊗N3

)
≤ 1,

Tr
(
$σ⊗N1

)
− (−1)N/2Tr

(
$σ⊗N2

)
− Tr

(
$σ⊗N3

)
≤ 1,

−Tr
(
$σ⊗N1

)
− (−1)N/2Tr

(
$σ⊗N2

)
+ Tr

(
$σ⊗N3

)
≤ 1,

−Tr
(
$σ⊗N1

)
+ (−1)N/2Tr

(
$σ⊗N2

)
− Tr

(
$σ⊗N3

)
≤ 1. (4.28)

This equation, combined with Eq. (4.6), tells us that the robustness of M -

inseparable multiqubit entanglement for M3
N states is the solution of an SDP

and can therefore be evaluated numerically. Nevertheless, we focus here on the

analytical results found for the distance-based approach.

Step Four

As we have seen, every N qubit state ρ is transformed into a corresponding M3
N

state $ = Π(ρ) with EDδ
M ($) ≤ EDδ

M (ρ). This lower bound may be improved
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by varying ρ over the unitaries that are local with respect to each qubit, which

are the free unitaries ofM -inseparable multiqubit entanglement. For any unitary

U⊗ acting locally on the qubits such that U⊗ = ⊗N
α=1 U

(α) for the single qubit

unitaries U (α), we have EDδ
M (U⊗ρU †⊗) = EDδ

M (ρ). Furthermore,

EDδ
M ($̃) ≤ EDδ

M (U⊗ρU †⊗) = EDδ
M (ρ) (4.29)

where $̃ = Π(U⊗ρU †⊗) is an M3
N state with c̃i = Tr(U⊗ρU †⊗σ⊗Ni ). Hence, we aim

to perform the optimisation

sup
U⊗

EDδ
M ($̃) ≤ EDδ

M (ρ), (4.30)

giving the best lower bound on the M -inseparable multiqubit entanglement of ρ

by usingM3
N -fication. To understand this optimisation, we turn to the correlation

tensor Ri1i2...iN = Tr(ρ σi1⊗σi2⊗ . . .⊗σiN ) ∈ [−1, 1] used to describe any N qubit

state in Eq. (1.61), with ij ∈ {0, 1, 2, 3} for j ∈ {1, 2, . . . , N}. The correspondence

between the special unitary group SU(2) and special orthogonal group SO(3) [20]

says that for any qubit unitary U (α) there is a corresponding orthogonal 3 × 3

matrix O(α) such that U (α)~n · ~σU (α)† = (O(α)~n) · ~σ, where ~n = {n1, n3, n3} ∈ R3

and ~σ = {σ1, σ2, σ3} is the vector of Pauli matrices. Then, the correlation tensor

of U⊗ρU †⊗ is

R̃i1i2···iN =
3∑

j1j2···jN=0
Rj1j2···jNO

(1)
i1j1O

(2)
i2j2 · · ·O

(N)
iN jN

. (4.31)

For even N , the optimisation in Eq. (4.30) may be achieved by finding a local

unitary U⊗ so that the plane height h$̃ = 1
2(∑3

i=1 |c̃i|−1) is largest, or equivalently

by solving

sup
U⊗

(|c̃1|+ |c̃2|+ |c̃3|) = sup
{O(α)}

(
|R̃11···1|+ |R̃22···2|+ |R̃33···3|

)
. (4.32)

This optimisation can be solved analytically for N = 2 and is given by the

orthogonal matrices that diagonalise the correlation matrix R̃i1i2 due to the sin-

gular value decomposition [153]. For N > 2 this optimisation can be carried

out numerically, and can be greatly simplified if ρ is invariant under all per-

mutations of the N qubits. If so, the correlation tensor is fully symmetric, i.e.
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Ri1i2···iN = Rϑ(i1i2···iN ) for any permutation ϑ of the indices. When this is the

case, it is known that Eq. (4.32) may be solved by restricting the optimisation to

identical orthogonal matrices O(1) = O(2) = · · · = O(N) [153]. A 3× 3 orthogonal

matrix O can be fully described by three real angles {θ, ψ, φ} which correspond

to the qubit unitary

U =

 cos θ
2e
−iψ+φ

2 −i sin θ
2e
−iφ−ψ2

−i sin θ
2e
iφ−ψ2 cos θ

2e
iψ+φ

2

 . (4.33)

Hence, if ρ is invariant under all permutations of the N qubits, then one only

needs to optimise over three angles to solve Eq. (4.32).

4.2.2 Application and Comparison

The lower bounds to the M -inseparable multiqubit entanglement provided by

M3
N states can be evaluated for important instances of N qubit states. The

Greenberger-Horne-Zeilinger (GHZ) [154] and W states [73] are well established

examples of N qubit states that are of importance both theoretically and exper-

imentally [20, 73, 155–161] and are given by, respectively,

|GHZ(N)〉 := 1√
2

(|00 . . . 00〉+ |11 . . . 11〉) , (4.34)

|W (N)〉 := 1√
N

(|00 . . . 01〉+ |00 . . . 10〉+ . . .+ |01 . . . 00〉+ |10 . . . 00〉) ,

where |b1b2 . . . bN−1bN〉 := |b1〉⊗|b2〉⊗. . .⊗|bN−1〉⊗|bN〉 with bj ∈ {0, 1} for all j ∈

{1, 2, . . . , N}. Table 4.2 gives the lower bound to the M -inseparable multiqubit

entanglement of these states for any M > dN/2e provided by optimising EDδ
M ($̃)

of the corresponding M3
N states $̃ = Π(U⊗ |GHZ(N)〉 〈GHZ(N)|U †⊗) and $̃ =

Π(U⊗ |W (N)〉 〈W (N)|U †⊗) over local unitaries U⊗ for various N . Since both the

GHZ and W states are permutationally invariant with respect to permutations of

any of the N qubits, we can use the already discussed simplification of restricting

to identical qubit unitaries, i.e. U⊗ = U⊗N for the qubit unitary U given in

Eq. (4.33), and hence only optimising EDδ
M ($̃) over three angles {θ, ψ, φ}, which

are also given in the table.
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N State {c̃1, c̃2, c̃3}
∑3
j=1 |c̃j| {θ, ψ, φ}

N
=

3 |GHZ(3)〉
{
−
√

8
27 ,
√

8
27 ,−

√
8
27

}
2
√

2
3

{
cos−1( 1√

3), 5π
30 ,

π
4

}
|W(3)〉

{
1√
3 ,−

1√
3 ,

1√
3

} √
3

{
cos−1( 1√

3), 0, π4
}

N
=

4 |GHZ(4)〉 {1, 1, 1} 3 {0, 0, 0}

|W(4)〉
{

5
9 ,

5
9 ,

5
9

}
5
3

{
cos−1( 1√

3), 0, π4
}

N
=

5 |GHZ(5)〉
{

1√
2 ,

1√
2 , 0

} √
2

{
0, π40 ,

π
40

}
|W(5)〉

{
7

9
√

3 ,−
7

9
√

3 ,
7

9
√

3

}
7

3
√

3

{
cos−1( 1√

3), 0, π4
}

N
=

6 |GHZ(6)〉 {1,−1, 1} 3 {0, 0, 0}

|W(6)〉 {0, 0,−1} 1 {0, 0, 0}

Table 4.2: Lower bounds to the M -inseparable multiqubit entanglement for

any M > dN/2e of N qubit GHZ and W states for various N . The lower

bounds are given by the M3
N states $̃ = Π(U⊗ |GHZ(N)〉 〈GHZ(N)|U†⊗) and

$̃ = Π(U⊗ |W (N)〉 〈W (N)|U†⊗) satisfying the optimisation in Eq. (4.30) with triple

{c̃1, c̃2, c̃3} and plane height h$̃ = 1
2 (
∑3
i=1 |c̃i| − 1), so that the lower bound

EDδM ($̃) may be evaluated by using Eq. (4.22) for even N and Eq. (4.23) for odd

N . Due to the permutation invariance of the GHZ and W states, the optimisation

need only be performed over the three angles {θ, ψ, φ} describing the unitary in

Eq. (4.33). Note that h$̃ > 0 only when
∑3
i=1 |c̃i| > 1. For a more comprehens-

ive application of our lower bounds found through M3
N -fication to a collection of

important N qubit states, see Ref. [TRB4].

For even N the lower bound to the M -inseparable multiqubit entanglement

provided for the GHZ state is maximum at h$̃ = 1. In particular, for the relative

entropy distance we have EDRE
M ($̃) = 1 for M > N/2, which can be compared to

the exact value for the multiqubit entanglement of EDRE
M (|GHZ(N)〉 〈GHZ(N)|) =

1 calculated in Refs. [TRB4, 162–164] for any M . Our lower bound is then tight

for any even N when M > N/2. On the other hand, the lower bound to the

M -inseparable multiqubit entanglement for W states decreases with increasing

N and eventually becomes trivial beyond N = 5. This suggests that the lower

bounds provided by performing M3
N -fication are more suited to GHZ-like states

than W-like states, which is perhaps expected intuitively since the GHZ state
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is actually an eigenstate of any M3
N state. Improved lower bounds to the M -

inseparable multiqubit entanglement for W states may be found by tailoring the

entanglement non-increasing projection Π to project onto a different family of

entanglement guarantor states.

Our lower bounds further apply to noisy versions of the GHZ and W states,

e.g. by mixing the GHZ state with white noise

ρ
(N)
GHZ(q) := q |GHZ(N)〉 〈GHZ(N)|+ 1− q

2N I⊗N , (4.35)

the corresponding local unitary optimised M3
N state is given by q$̃+ 1−q

2N I⊗N with

plane height qh$̃− 1−q
2 , where $̃ = Π(U⊗ |GHZ(N)〉 〈GHZ(N)|U †⊗). Hence, for the

N even GHZ state with h$̃ = 1, the lower bound to theM -inseparable multiqubit

entanglement of ρ(N)
GHZ(q) for M > N/2 is non-trivial for q > 1

3 . This can be

compared to the established separability threshold for ρ(N)
GHZ(q) of q > 1/(1 +

2N−1) [62] whenM = N . This separability threshold tends to zero with increasing

N , while our threshold of q > 1
3 for a non-trivial lower bound remains constant

with N , so that we are unable to detect global multiqubit entanglement in an

increasingly large region of q. However, our framework focuses on quantification

of multiqubit entanglement in terms of lower bounds rather than the verification

of multiqubit entanglement, which is itself an important topic [62, 68, 70, 165–

170].

Furthermore, our results for M3
N states are particularly appealing experi-

mentally. Any M3
N state $ ∈ M3

N is specified by the three real coefficients

{c1, c2, c3} ∈ [−1, 1] which may be measured in an experiment by finding the ex-

pectation values 〈σ⊗Ni 〉$ = Tr($σ⊗Ni ) for i ∈ {1, 2, 3}. Hence, to provide a lower

bound on the M -inseparable multiqubit entanglement for any N qubit state ρ

by finding the optimised M3
N state $̃ = Π(U⊗ρU †⊗), one need only measure the

triple {c̃1, c̃2, c̃2} given by three expectation values

〈σ⊗Ni 〉$̃ = Tr($̃σ⊗Ni ) = Tr(U⊗ρU †⊗σ⊗Ni ) = Tr(ρU †⊗σ⊗Ni U⊗) =
〈

N⊗
α=1

σ̃
(α)
i

〉
ρ

,

where ⊗N
α=1 σ̃

(α)
i := U †⊗σ

⊗N
i U⊗ is an observable corresponding to a local unitary

rotation of the tensor product of Pauli matrices. The three expectation values
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of ⊗N
α=1 σ̃

(α)
i for i ∈ {1, 2, 3} may be found experimentally by each qubit subsys-

tem performing a local measurement in a rotated Pauli basis {σ̃(α)
i }3

i=1 and then

communicating the results. Since the state ρ of the experimental system may not

be known (i.e. if full state tomography has not been carried out), the choice of

locally rotated Pauli basis may be given by assuming that ρ is the target state of

the experiment and finding the solution of Eq. (4.30). It can thus be said that our

lower bound is provided with three local measurement settings. This compares

well to other results aimed at providing experimentally friendly lower bounds to

multiqubit entanglement [129, 145–148, 171–176], which typically require at least

on the order of N local measurement settings. Furthermore, a strength of our res-

ult is that it provides lower bounds for all distance-based measures of multiqubit

entanglement and for any M > dN/2e. A detailed comparison of our result to

other works is given in Ref. [TRB4].

To demonstrate the relevance of our lower bound onM -inseparable multiqubit

entanglement to experiments, we apply our findings to some real experimental

data. Previous experiments have created and analysed Smolin, Dicke, GHZ and

W states, as detailed in the following. Table 4.3 provides lower bounds on theM -

inseparable multiqubit entanglement of these experimental states forM > dN/2e

in terms of the trace distance. In each case, our lower bounds are non-trivial.

We now provide further details on the reported experimental states. Generalised

Smolin states ρ(N)
S of evenN ≥ 4 qubits [151, 177, 178] are special instances ofM3

N

states with correlation triple {(−1)N/2, (−1)N/2, (−1)N/2} occupying one of the

corners of the tetrahedron T(−1)N/2 in the {c1, c2, c3} space, so that we have exactly

quantified their entanglement through our approach. A noisy Smolin state ρ(N)
S (q)

can be formed in an analogous way to Eq. (4.35) by mixing with white noise, and

is also an M3
N state sitting on the line connecting the {(−1)N/2, (−1)N/2, (−1)N/2}

vertex with the origin in the {c1, c2, c3} space. A noisy Smolin state of 4 qubits

has been generated in Ref. [179] using a quantum optics setup. Symmetric N

qubit Dicke states [180, 181]

|D(N)
k 〉 := 1√

Z

∑
i

Πi(|0〉⊗N−k ⊗ |1〉⊗k) (4.36)
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are superpositions of states with k qubits in the excited state |1〉 and N − k

qubits in the ground state |0〉, with {Πi(·)}Zi=1 denoting all the Z :=
(
N
k

)
dis-

tinct permutations of k tensor products of |1〉 and N − k tensor products of |0〉

(where
(
N
k

)
is the binomial coefficient). The even N half excited Dicke states,

i.e. with k = N/2, are particularly relevant in many-body physics [181] and have

a corresponding M3
N state with triple {1, 1, 1}, hence giving the maximum plane

height of h$ = 1 and the optimum lower bound to M -inseparable multiqubit

entanglement possible through M3
N -fication. Noisy versions of these half excited

Dicke states have been generated for six qubits in two separate quantum optics

experiments [182, 183]. Finally, noisy GHZ and W states have been generated in

a series of trapped ion experiments [184, 185].

4.2.3 Alternative Projections

As we have seen, the M3
N states areM -separable for anyM ≤ dN/2e. In particu-

lar, the M3
N states are always 2-separable and hence do not exhibit the strongest

form of entanglement with all of the N qubits entangled together. Even if one

were to pick a 2-inseparable state ρ, the projection onto theM3
N states Π(ρ) would

be 2-separable. Hence, it could be argued that in this respect the M3
N -fication

projection is too strong since it always destroys the genuine N qubit entangle-

ment. To remedy this, we can choose an alternative entanglement non-increasing

projection with a different corresponding set of resource guarantor states.

Consider an ONB of GHZ-like states

|β±i 〉 := 1√
2
(
I⊗N ± σ⊗N1

)
|i〉 (4.37)

where i ∈ {1, 2, . . . , 2N−1} and {|i〉}2N
i=1 is the N qubit computational basis in

binary order. The standard GHZ state of Eq. (4.34) is given in particular by

|β+
1 〉. Any state with its eigenbasis given by this ONB can be written in terms of

its eigenvalues and eigenvectors as

ξ =
2N−1∑
i=1

∑
±
p±i |β±i 〉 〈β±i | (4.38)



CHAPTER 4. BOUNDING THE QUANTUM 100

Target State Ref. Fidelity (%) ∑3
j=1 |c̃j| EDTr

M

%
(4)
S (0.51) [179] 96.83± 0.05 1.16± 0.01 0.040± 0.002

|D(6)
3 〉 [182] 56± 2 1.6± 0.3 0.15± 0.08

|D(6)
3 〉 [183] 65± 2 1.69± 0.04 0.17± 0.01

|GHZ(4)〉 [185] 80.3 2.25 0.312

|W (4)〉A [185] 19.4 1.24 0.0589

|W (4)〉B [185] 31.4 1.39 0.0963

Table 4.3: Lower bounds to the M -inseparable multiqubit entanglement for

M > dN/2e of N qubit noisy Smolin, Dicke, GHZ and W states generated in the

laboratory for N = 4 and N = 6. The lower bounds are given by the correspond-

ing M3
N state $̃ with triple {c̃1, c̃2, c̃3} and plane height h$̃ = 1

2 (
∑3
i=1 |c̃i| − 1),

with the lower bound EDδM ($̃) evaluated using Eq. (4.22) in particular for the

trace distance. The experimental data for the Smolin and Dicke states directly

provided the corresponding M3
N state $̃ through measurement of the observables

σ⊗Ni , without allowing for optimisation over local unitaries. Instead, full state

tomography was provided for the GHZ state and W states (consisting of two data

sets A and B), allowing for a numerical optimisation of the plane height h$̃ over

local unitaries. The fidelities according to Eq. (1.30) of the experimentally gener-

ated state with the target state are also reported, showing that in some cases the

generated state is particularly noisy. However, note that we do not need to assume

that the experimentally generated states are of a particular class to provide our

lower bounds.

with the eigenvalues {p±i }i,± forming a probability distribution. Such states are

called GHZ-diagonal and are denoted by the set GN . The GHZ-diagonal states

are particularly relevant to study genuine multiqubit entanglement and it has

been shown that their biseparable states are all and only those for which we have

pmax := maxi,± p±i ≤ 1/2 [68]. Furthermore, the so-called genuine multiparticle

negativity and genuinely multipartite concurrence, which are two other measures

of 2-inseparable multiqubit entanglement not discussed here, have been evaluated

for GHZ-diagonal states [146, 172] and can be seen to coincide up to a factor

of 2 (more details are provided in the following). However, the distance-based
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measures of 2-inseparable multiqubit entanglement have been evaluated for GHZ-

diagonal states only when using the relative entropy distance when restricted

to three qubits [164]. It therefore seems fitting to see if our framework may

be applied to the GHZ-diagonal states, focussing on 2-inseparability and the

distance-based measures.

Actually, the first two steps of our framework have been established. It is well

known that there exists a 2-inseparable multiqubit entanglement non-increasing

projection Π which projects any N qubit state ρ onto the set of GHZ-diagonal

states so that Π(ρ) ∈ GN with eigenvalues given by [146]

p±i = 〈β±i |ρ|β±i 〉 . (4.39)

We call such an entanglement non-increasing projection GHZ-diagonalisation,

with the GHZ state Π(ρ) ∈ GN an entanglement guarantor for ρ so that we have

E2(Π(ρ)) ≤ E2(ρ). The second step of our framework has already been discussed,

with the set of 2-separable GHZ-diagonal states given by [68]

SGN2 :=
{
ξ ∈ GN

∣∣∣∣ pmax := max
i,±

p±i ≤ 1/2
}
⊂ GN . (4.40)

The primary contribution of our framework is in the simplification provided in the

third step to calculate the distance-based 2-inseparable multiqubit entanglement

of any GHZ-diagonal state ξ ∈ GN : Eq. (4.10) means that one of the closest

2-separable states ςξ to a GHZ-diagonal state is itself GHZ-diagonal, i.e. ςξ ∈

SGN2 . Furthermore, we can use joint convexity of the distance to see that ςξ is

on the border of SGN2 with maximum eigenvalue exactly equal to 1
2 . With this

simplification, the infimum in Eq. (4.14) may be evaluated analytically for each of

the distances given in Table 1.1. The result is that for any ξ ∈ GN with maximum

eigenvalue pmax,

EDδ
2 (ξ) =

 0 , pmax ≤ 1/2;

gDδ(pmax) , otherwise,
(4.41)

where gDδ is a monotonically increasing function of pmax for each Dδ, whose

explicit form is given in Table 4.4.
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Dδ gDδ(pmax)

Trace pmax − 1
2

Hellinger (squared) 2−
√

2
(√

1− pmax +√pmax
)

Bures (squared) 2−
√

2
(√

1− pmax +√pmax
)

Infidelity 1
2 −

√
pmax(1− pmax)

Relative entropy
1 + pmax log2 pmax

+ (1− pmax) log2(1− pmax)

Table 4.4: The 2-inseparable multiqubit entanglement EDδ2 (ξ) of a GHZ-diagonal

state ξ ∈ GN , as given by Eq. (4.41), is a monotonic function gDδ(pmax) of only

the maximum eigenvalue pmax of ξ whenever pmax > 1/2.

Analysing our results, it can be seen that Table 4.4 allows for an exact quan-

tification of the genuine multiqubit entanglement of any N qubit GHZ state since

|GHZ(N)〉 〈GHZ(N)| ∈ GN with pmax = 1. It can also be found that the genuine

multiqubit entanglement of the GHZ-diagonal states according to the trace dis-

tance coincides with the genuine multiparticle negativity and half the genuinely

multipartite concurrence, thus furnishing these measures with a geometric inter-

pretation within this class of states. Furthermore, it is interesting to see that the

distance-based measures of genuine multiqubit entanglement shown in Table 4.4

are only functions of the maximum eigenvalue pmax of the GHZ-diagonal state, so

that pmax not only characterises the presence of genuine multiqubit entanglement

in the GHZ-diagonal state but can also be used to measure the amount – as had

already been acknowledged for the genuine multiparticle negativity and genuinely

multipartite concurrence.

To provide lower bounds on the distance-based genuine multiqubit entangle-

ment of any state ρ, one therefore only needs the maximum probability from

Eq. (4.39) given by the maximum eigenvalue of the corresponding GHZ-diagonal

state Π(ρ). The final step of our framework is then to optimise the lower bound

to the genuine multiqubit entanglement of ρ over local unitaries U⊗, which in this
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case just means optimising pmax = maxi,± 〈β±i |U⊗ρU
†
⊗|β±i 〉 over U⊗, i.e.

max
U⊗

pmax = max
U⊗

max
i,±
〈β±i |U⊗ρU

†
⊗|β±i 〉 = max

U⊗
〈GHZ(N)|U⊗ρU †⊗|GHZ(N)〉 ,

(4.42)

where in the second equality we use the fact that the |β±i 〉 are local unitarily

equivalent to the GHZ state |GHZ(N)〉 = |β+
1 〉. This quantity is the maximum

fidelity, according to Eq. (1.30), of the GHZ state with ρ rotated in some local

basis. As before, the local basis may be found experimentally with prior know-

ledge of the target state of the experimental system. It is then known that

the fidelity with the GHZ state may be measured with N + 1 local measure-

ment settings [186]. Hence, N + 1 local measurement settings can provide a

lower bound on the 2-inseparable multiqubit entanglement. This can be com-

pared to the 3 local measurement settings needed to provided lower bounds on

the M -inseparable multiqubit entanglement for M > dN/2e. Indeed, it may be

expected that an increased number of local measurement settings is needed to

detect the strongest form of entanglement. It is also clear from Eq. (2.25) that

E2(Π(ρ)) ≤ E2(ρ) ≤ EM(ρ) for any M , i.e. that the lower bound E2(Π(ρ)) on

2-inseparable multiqubit entanglement through GHZ-diagonalisation gives lower

bounds on M -inseparable multiqubit entanglement of the state ρ. However, the

lower bounds on M -inseparable multiqubit entanglement provided through M3
N -

fication are still preferred for M > dN/2e since fewer lower measurement settings

are required and the lower bounds can be nontrivial even for biseparable states.

4.3 Applying the Framework to Multiqubit Co-

herence

The projection of N qubit states onto the M3
N states has not only been used to

provide lower bounds to the resource of multiqubit entanglement. It has been

shown in Ref. [TRB6] that M3
N -fication is also a coherence non-increasing pro-

jection (when the free operations are chosen to be the incoherent operations) for

any N if one considers multiqubit coherence with respect to the computational
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basis of each qubit, i.e. the product ONB {|i1i2 . . . iN〉}1
i1,i2,...,iN=0, as specified by

the following theorem.

Theorem 9 The projection Π of M3
N -fication in Eq. (4.16) is an incoherent oper-

ation with respect to the reference ONB {|i1i2 . . . iN〉}1
i1,i2,...,iN=0, i.e. there exists

an operator sum representation of Π with Kraus operators {Ki}i such that (3.1)

holds [TRB6].

The proof of this theorem is provided in Appendix C. This theorem completes

the first step of applying our framework to the resource of multiqubit coherence.

The second step of the framework is immediate since the incoherentM3
N states

are given by

IM3
N

:=
{
$

∣∣∣∣ $ = 1
2N

(
I⊗N + ασ⊗N3

)}
⊂M3

N (4.43)

for any α ∈ [−1, 1], i.e. the states on the c3 axis in the {c1, c2, c3} space. For

the third step of the framework we can calculate the distance-based measures

of coherence CDδ($) for any $ ∈ M3
N . To do this, the result in Eq. (4.10)

can be used to see that one only needs to minimise the distance from $ to the

set IM3
N

of incoherent M3
N states to evaluate CDδ($). In general, there is no

universally closest incoherent M3
N state to $ for any Dδ. However, CDTr($)

for the trace distance DTr and $ ∈ M3
N can be evaluated simply and found to

coincide with (half) the l1 norm of coherence [TRB9] (note that this coincidence

does not hold for states in general). Furthermore, it was shown in Ref [TRB2]

that the robustness of coherence is equal to the l1 norm of coherence for $ ∈M3
N ,

i.e. so that

CR($) = C l1($) = 2CDTr($) =


√
c2

1 + c2
2 N odd

max{|c1|, |c2|} N even,
(4.44)

where $ has the triple {c1, c2, c3}.

In the final step of our framework, we know that C(Π(ρ)) ≤ C(ρ) for any

measure of coherence that is monotonically non-increasing under the action of

incoherent operations (since the M3
N -fication Π is an incoherent operation), i.e.
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for measures that satisfy Requirement (ii) with the free operations O as the inco-

herent operations. The distance-based measures of coherence and the robustness

of coherence satisfy this monotonicity property for the incoherent operations, and

so M3
N -fication can be used to give lower bounds on the coherence of a state ρ

according to these measures. One can then optimise the lower bound given by

C(Π(Υ(ρ))) ≤ C(ρ) with Π(Υ(ρ)) ∈ M3
N over the unitary incoherent operations

Υ ∈ O [1].



Chapter 5

Harnessing the Quantum

From a practical perspective, the ultimate goal in the study of quantum systems

is the development of technologies that use the resources of the quantum to per-

form tasks in a way that is measurably superior to the performance of presently

available technologies. However, it can be a contentious subject to certify whether

a given quantum technology can truly outperform its existing counterparts. In

this chapter we concentrate on the identification of operational tasks for which

quantum resources are known to quantitatively represent the figure of merit, i.e.

such that the performance of the task is necessarily improved with the presence of

the resource than without. The subsequent objective of manufacturing a quantum

technology to carry out such an operational task and the question of its relev-

ance and superiority over existing technologies (which typically use only classical

resources) is left for future study [187].

We show how the quantum plays a role in two different operational tasks

within quantum metrology. Metrology is the science of measurement, and one

of the objectives is to work out how to perform measurements to the highest

possible precision [188]. In quantum metrology, a quantum system is used to per-

form such a measurement [189–191]. We focus on the metrological tasks of phase

discrimination, a type of quantum channel discrimination [21–24], and phase es-

timation as a type of quantum parameter estimation [25–29]. In particular, the

robustness of coherence is shown to represent the figure of merit in a phase dis-

106
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crimination game where a quantum probe is passed through a black box that

encodes a set of possible phases according to a particular unitary with a fixed

reference eigenbasis [TRB1, TRB2]. Conversely, it is then shown that the per-

formance of this task can place quantitative lower bounds on the robustness of k

coherence [TRB3]. The respective roles of quantum coherence and entanglement

in parameter estimation are then discussed. We proceed to study the estimation

of a phase imprinted on a bipartite quantum probe by an interferometer accord-

ing to a least informative unitary generated by a family of Hamiltonians with

fixed spectrum but variable eigenbasis, where it is seen that both the quantum

correlations and quantum entanglement can represent the figure of merit under

different scenarios [30, TRB7]. It is then shown that the corresponding quantum

entanglement can never exceed the quantum correlations [TRB7], establishing

the expected hierarchy between two types of non-classical correlations.

5.1 Phase Discrimination

Following Refs. [TRB1, TRB2], we begin by describing the setup of a phase

discrimination (PD) game. Consider a d-dimensional quantum system described

by the state ρ and a unitary transformation that acts on the system by imprinting

a phase φ as Υφ(ρ) = UφρU
†
φ where Uφ = eiφH with H := ∑d

j=1 j |ej〉 〈ej| defined

with respect to an ONB {|ej〉}dj=1. Suppose that we have a black box which

imprints one of m different phases {φk}mk=1 according to a known probability

distribution {pk}mk=1 and the objective is to work out which of the phases was

applied, i.e. to find the value of k, see Fig. 5.1. We call this a PD game, which

is defined by the set of pairs Θ := {(pk, φk)}mk=1 corresponding to each realisation

of the black box. Since the probability distribution {pk}mk=1 is known, one option

to play the PD game is simply to guess that the phase applied was kmax given by

the maximum probability pkmax := max{pk}mk=1.

However, this does not make any use of the state of the quantum system after



CHAPTER 5. HARNESSING THE QUANTUM 108

Figure 5.1: A PD game is set by the pairs Θ = {(pk, φk)}mk=1 describing a black

box (represented here by the dial with four settings) which applies one of a set

of phases {φk}mk=1 with probability distribution {pk}mk=1 according to the unitary

Υφk . The objective of the PD game is to guess which phase k was applied. To do

this, a quantum system in state ρ is used to probe the black box and a POVM

{Mk}mk=1 is applied to the output state ρΘ with the aim of inferring k. It has been

shown that coherence in the probe system is needed for the maximum probability of

successfully guessing k to exceed pkmax , which is given by simply guessing the phase

applied corresponding to the maximum value of the known probability distribution

{pk}mk=1. Furthermore, the maximum possible advantage of using a coherent probe

over an incoherent one is quantified by the robustness of coherence according to

Eq. (5.8) [TRB1, TRB2].

interacting with the black box

ρΘ =
m∑
k=1

pkΥφk(ρ). (5.1)

Instead, we can use the quantum system as a probe of the black box and guess

the value of k from the output state ρΘ. To this end, we define a POVM {Mk}mk=1,

withMk ≥ 0 for all k and ∑m
k=1Mk = I (see Section 1.2.3), and associate eachMk

with the phase φk. The probability of observing the outcome k from the POVM



CHAPTER 5. HARNESSING THE QUANTUM 109

{Mk}mk=1 is then

Tr(MkρΘ) =
m∑
j=1

pjTr(MkΥφj(ρ))

= pkTr(MkΥφk(ρ)) +
∑
j 6=k

pjTr(MkΥφj(ρ))

= psucc
Θ,Mk

(ρ) + pfail
Θ,Mk

(ρ), (5.2)

where we separate the success probability psucc
Θ,Mk

(ρ) of observing k when the phase

k was applied from the failure probability pfail
Θ,Mk

(ρ) of observing k when the phase

k was not applied. Then, to find the overall probability of successfully guessing

the phase from the POVM {Mk}mk=1 we sum psucc
Θ,Mk

(ρ) over all k, i.e.

psucc
Θ,{Mk}mk=1

(ρ) =
m∑
k=1

psucc
Θ,Mk

(ρ) =
m∑
k=1

pkTr(MkΥφk(ρ)). (5.3)

This success probability is dependent upon the choice of POVM {Mk}mk=1, and

so the maximum success probability is given by

psucc
Θ (ρ) = max

{Mk}mk=1

psucc
Θ,{Mk}mk=1

(ρ). (5.4)

The right-hand side of the above equation may be written as an SDP in the

standard form reported in Ref. [125], so that the maximum probability of success

can be efficiently evaluated numerically.

Now suppose that our probe system is initially in an incoherent state δ ∈

I with respect to the reference ONB {|ej〉}dj=1 given by the eigenbasis of the

Hamiltonian H generating the unitary. It holds for any choice of POVM {Mk}mk=1

that

psucc
Θ,{Mk}mk=1

(δ) =
m∑
k=1

pkTr(MkΥφk(δ))

=
m∑
k=1

pkTr(Mkδ)

≤ pkmaxTr
(

m∑
k=1

Mkδ

)
= pkmax , (5.5)

which follows since, for any φk,

Υφk(δ) = UφkδU
†
φk

= δUφkU
†
φk

= δ, (5.6)
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because δ and Uφk commute due to sharing a common eigenbasis given by the

reference ONB. Hence, one finds psucc
Θ (δ) = pkmax for any δ, which may be achieved

with the trivial POVM {Mk}mk=1 consisting ofMkmax = I andMk = 0 for k 6= kmax.

This means that incoherent states do not help in the PD game because using them

gives a probability of success that is never greater than what is achieved from

simply guessing that the phase kmax was applied. We then define for any δ ∈ I

psucc
Θ (I) := sup

δ∈I
psucc

Θ (δ) = pkmax . (5.7)

On the other hand, for any coherent state ρ /∈ I with respect to the reference

ONB {|ei〉}di=1, one might intuitively expect that the sensitivity of the probe

system to any of the phase imprinting unitary transformations Υφk , i.e. Υφk(ρ) 6=

ρ for any k, can be used to increase the maximum probability of success beyond

pkmax . This expectation was put on a firmer footing in Refs. [TRB1, TRB2] where

it was shown that the maximum possible advantage over all PD games Θ of using

a coherent state ρ /∈ I over any incoherent state is given by the robustness of

coherence, i.e.

max
Θ

psucc
Θ (ρ)
psucc

Θ (I) = 1 + CR(ρ). (5.8)

The maximum advantage is achieved for the PD game Θ? :=
{(

1
d
, 2πk

d

)}d
k=1

.

Hence, we have identified quantum coherence in the ONB {|ei〉}di=1 set by the

Hamiltonian H generating the unitary as the necessary resource to improve the

performance of the PD game, with the robustness of coherence exactly quantifying

figure of merit as the optimum advantage in performance.

5.1.1 Lower bounding the Robustness of k Coherence

We have seen that if the probability of success in the PD game exceeds pkmax then

the probe system must have coherence. This fact may be used to provide a lower

bound on the robustness of k coherence for any k ∈ {2, 3, . . . , d} [TRB2, TRB3],

i.e.

max
{

psucc
Θ (ρ)

(k − 1)psucc
Θ (I) − 1, 0

}
≤ CR

k (ρ). (5.9)
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Figure 5.2: The robustness of k coherence CRk (ρ) (vertical axis) for a 5-dimensional

quantum system in terms of the maximum probability of success psucc
Θ? (ρ) (hori-

zontal axis) given by using the quantum system as a probe for the optimal PD game

Θ? :=
{( 1

d ,
2πk
d

)}d
k=1. The points correspond to 103 pure states randomly drawn

from the uniform distribution according to the Haar measure [20] and 103 mixed

states randomly drawn from the uniform distribution according to the Hilbert-

Schmidt measure [20, 131], with both CRk (ρ) and psucc
Θ? (ρ) evaluated as the solu-

tion to an SDP. Lower bounds according to (5.9) are also plotted as the solid lines.

We show CRk (ρ) and the corresponding lower bound in particular for k = 2 (red),

k = 3 (green), k = 4 (blue), and k = 5 (orange). Note that since we consider

the optimal PD game, for the case k = 2 equality holds in (5.9) so that the lower

bound is saturated.

This lower bound is particularly interesting because it quantitatively links the

robustness of k coherence with an operational task: one needs only to play the PD

game and find the corresponding proportion of correct guesses of the phase to get

a lower bound on CR
k (ρ). Figure 5.2 illustrates the lower bound by comparing the

robustness of k coherence CR
k (ρ) for k ∈ {2, 3, 4, 5} with the maximum probability

of success psucc
Θ? (ρ) in the optimal PD game Θ? using a 5-dimensional probe system

for 103 pure states as well as 103 mixed states (which ensures the plot is well

distributed amongst all values of psucc
Θ? (ρ)).
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5.2 Parameter Estimation

Now we focus on the role of the quantum in another important area of quantum

metrology: parameter estimation [25–29]. In parameter estimation the goal is to

estimate a parameter associated with a given system, which can be achieved when

the following standard set of steps are performed: (1) a probe is prepared, (2)

the probe is allowed to interact with the system so that the parameter becomes

imprinted on the state of the probe, (3) the probe system is measured. The

output of many repetitions of such a scheme is a sequence of data points upon

which one then constructs an estimator which gives a value for the estimate of

the parameter with a corresponding precision.

In quantum parameter estimation, both the probe and the system whose

parameter is to be estimated are quantum systems. Consider a quantum probe

initially in the state ρ that interacts with the system of interest according to

the quantum operation Λϕ, which imprints the parameter to be estimated ϕ ∈

R onto the probe and resulting in the output state Λϕ(ρ). The probe is then

measured by a POVM {Mi}i, with Mi ≥ 0 for all i and ∑iMi = I, where the

probability of outcome i is given by pΛϕ,Mi
(ρ) = Tr(MiΛϕ(ρ)). After ν repetitions

of this procedure, an estimate of ϕ is then found from an estimator ϕ̃. There

exists a wealth of literature addressing the technical points of constructing an

estimator of the parameter [28, 189, 190, 192–194]. Here we restrict to unbiased

estimators, which have an expectation value that is equal to the actual value of

the parameter to be estimated. In this case, it is known that the precision of

an unbiased estimator is limited in the conventional frequentist approach by the

Fisher information [28, 192]

FΛϕ,{Mi}i(ρ) =
∑
i

1
pΛϕ,Mi

(ρ)

(
∂pΛϕ,Mi

(ρ)
∂ϕ

)2

. (5.10)

In particular, the Cramér-Rao bound says that

∆2ϕ̃ ≥ 1
νFΛϕ,{Mi}i(ρ) , (5.11)

where ∆2ϕ̃ is the variance on the estimator ϕ̃. Hence, there is a lower bound on

the variance of the estimator ϕ̃ so that we cannot perform parameter estimation
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to arbitrary precision. The Cramér-Rao bound can be saturated in the limit of

asymptotically large repetitions of ν by the maximum likelihood estimator [28,

192].

However, this procedure depends on a choice of POVM {Mi}i. We may instead

define the quantum Fisher information as the maximum Fisher information over

all choices of POVM [189, 190, 194], i.e.

FΛϕ(ρ) = max
{Mi}i

FΛϕ,{Mi}i(ρ). (5.12)

The quantum Fisher information gives the ultimate limit on the precision of

the estimator ϕ̃ independent of the choice of measurement strategy used in the

estimation procedure. It can be evaluated as

FΛϕ(ρ) = Tr(Λϕ(ρ)L2
Λϕ(ρ)), (5.13)

where LΛϕ(ρ) is the symmetric logarithmic derivative given by the operator sat-

isfying
LΛϕ(ρ)Λϕ(ρ) + Λϕ(ρ)LΛϕ(ρ)

2 = ∂Λϕ(ρ)
∂ϕ

, (5.14)

which can be given by [28]

LΛϕ(ρ) = 2
∑
i,j

pi+pj 6=0

〈pi|∂ϕΛϕ(ρ)|pj〉
pi + pj

|pi〉 〈pj| (5.15)

with Λϕ(ρ) = ∑
i pi |pi〉 〈pi| the spectral decomposition of the output state Λϕ(ρ)

according to Eq. (1.26). Furthermore, the set of pure state projectors onto the

eigenbasis of LΛϕ(ρ) provides the optimal POVM satisfying the maximisation in

Eq. (5.12) over POVMs for the quantum Fisher information.

5.2.1 Quantum Coherence and Quantum Entanglement

Here we discuss how quantum coherence and entanglement in the probe system

can play a role in parameter estimation in terms of the quantum Fisher informa-

tion. Phase estimation is a particularly well studied type of parameter estimation

given when the probe interacts unitarily with the system, i.e. according to the

transformation Λφ(ρ) := Υφ(ρ) = UφρU
†
φ so that a phase φ is imprinted upon the
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probe, where Uφ = eiφH for some self-adjoint Hamiltonian operator H [26, 27].

The corresponding quantum Fisher information is given by FH(ρ) and is inde-

pendent of the value of the phase φ. The necessity of quantum coherence here is

immediate, if ρ is not coherent with respect to the ONB given by the eigenbasis

of the Hamiltonian H then ρ and Uφ commute so that Υφ(ρ) = ρ. Hence, the

phase is not imprinted upon the probe and cannot be estimated. In fact, the

quantum Fisher information FH(ρ) is understood to be a measure of asymmetry

with respect to transformations of Uφ [1, 86, 195–197], refer to Section 3.1.2 for

a discussion of the link to quantum coherence.

To see the role of entanglement, we suppose that we want to estimate the

phase of a qubit unitary Uφ by using an N qubit probe and applying this unitary

in parallel to each of the qubits, resulting in the combined Hamiltonian H(N) [26,

27]. The resultant quantum Fisher information is then FH(N)(ρ) for the N qubit

state ρ. This may be compared to the alternative strategy of using a qubit probe

in the optimal state ρ?qubit to carry out the estimation of φ after one application

of the unitary, and repeating this process N times with corresponding quantum

Fisher information NFH(ρ?qubit). What is relevant here is how the quantum Fisher

information scales with N . The linear scaling with N given by the second strategy

is called the standard quantum limit and represents the ultimate precision on the

scaling of an estimator when repeatedly using a single qubit probe for parameter

estimation by applying a single interaction of the unitary. We can then investigate

whether the first strategy of using an N qubit probe can surpass the standard

quantum limit. Whenever the N qubit probe has no entanglement, so that its

state ς ∈ SN is fully separable, it can be shown that [198, 199]

FH(N)(ς) ≤ NFH(ρ?qubit). (5.16)

Hence, entanglement is necessary to surpass the standard quantum limit. In fact,

the quantum Fisher information FH(N)(ρ) has a quadratic scaling with N for some

entangled N qubit probes ρ (see for example the GHZ state in Eq. (4.34)) [199–

201]. This scaling is known as the Heisenberg limit and represents the ulti-

mate scaling on the precision of an estimator when using an N qubit probe for
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parameter estimation [26, 27]. The necessity of various levels of M -inseparable

multiqubit entanglement in the probe for an improved quantum Fisher inform-

ation have been investigated in Refs. [199–202]. On the other hand, it has also

been found that entanglement in the N qubit probe is not sufficient to always

surpass the standard quantum limit [203].

5.2.2 Quantum Interferometry

Interferometry is a useful testbed for the study of phase estimation in quantum

metrology. Consider a quantum interferometer consisting of two arms A and B,

along with a bipartite (dA×dB)-dimensional probe in state ρAB whose subsystems

are sent down the corresponding arms of the interferometer. By passing through

the interferometer, a phase φ is imprinted onto subsystem A of the bipartite

probe according to the unitary transformation UA
φ = eiφH

A generated by the

Hamiltonian HA. The output state of the interacted probe is then Λφ(ρAB) :=

Υφ(ρAB) = (UA
φ ⊗ IB)ρAB(UA

φ ⊗ IB)† and the objective is to estimate the phase

φ. As already discussed, an estimate of the phase can be found by performing

suitable measurements on the interacted bipartite probe, repeating the process

many times, and finding the corresponding value of an estimator φ̃. The quantum

Fisher information FHA(ρAB) then provides the ultimate limit on the precision

of this estimator. We now see that this scenario provides the perfect setting to

investigate the role of the quantum correlations and entanglement in the bipartite

probe for phase estimation in terms of the quantum Fisher information FHA(ρAB).

Indeed, it can be informative to consider the suitability of a bipartite probe

ρAB for estimating the phase imprinted by the interferometer. Instead of fixing

the local Hamiltonian HA generating the imprinted phase φ, we can consider the

suitability of ρAB when the phase is imprinted by any unitary with a Hamiltonian

from a chosen family. One possible family of Hamiltonians is given by {HA
Γ },

corresponding to all the Hamiltonians with a fixed spectrum of eigenvalues Γ but

with a variable eigenbasis, i.e.

{HA
Γ } :=

{
HA

Γ

∣∣∣ HA
Γ = Udiag(Γ)U †

}
, (5.17)
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for any unitary matrix U , with diag(Γ) a diagonal matrix given by the fixed dA-

dimensional spectrum Γ. Such a family arises when the choice of eigenbasis of

the Hamiltonian generating the phase is not certain, as may be the case when

the interferometer is subjected to environmental fluctuations or operated by an

adversarial third party [30]. Following a series of works in Refs. [30, TRB7, 114,

204, 205], we can then consider the suitability of ρAB for estimating the phase

imprinted when the unitary is generated by any of the Hamiltonians {HA
Γ } with

spectrum Γ. The suitability can be gauged by the worst-case scenario quantum

Fisher information, given by

P Γ
A(ρAB) := 1

4 inf
{HA

Γ }
FHA

Γ
(ρAB), (5.18)

which represents the ultimate precision on the estimator of the phase imprinted

by a least informative Hamiltonian amongst the family {HA
Γ }. This quantity is

called the interferometric power of ρAB [30]. Note that a convenient normalisation

factor of 1
4 is included.

Quantum Correlations

In this setting, when the interferometric power of a bipartite probe is zero we

know that it is not always suitable to estimate the phase imprinted by the in-

terferometer. It has been shown that when the spectrum Γ is non-degenerate,

then the interferometric power is zero for all and only the classically correlated

CQ states given in Eq. (2.9) [30, 114]. Hence, quantum correlations with respect

to subsystem A of the bipartite probe are necessary and sufficient to guarantee

that the probe is suitable for phase estimation amongst the family of unitaries

generated by {HA
Γ }. The interferometric power has then been suggested as a

measure of quantum correlations [30]. It is clear that P Γ
A(ρAB) is a real and non-

negative function satisfying Requirement (i), being zero on the free states for the

resource of quantum correlations. However, it has not yet been fully established

whether P Γ
A(ρAB) satisfies Requirement Q(ii). It was shown in Ref. [30] that the

interferometric power is monotonically non-increasing under all local quantum

operations on subsystem B and invariant under local unitaries on subsystem A.
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Hence, to fully establish Eq. (3.12) from Requirement Q(ii), it is necessary to see

that the interferometric power is monotonically non-increasing under all LCPOs

on subsystem A. We show that this is true whenever subsystem A is a qubit.

Theorem 10 For a (2× dB)-dimensional bipartite system it holds for all LCPO

ΛA
CPO acting on subsystem A that

P Γ
A(ΛA

CPO ⊗ IB(ρAB)) ≤ P Γ
A(ρAB) (5.19)

for any state ρAB and any dB [TRB7].

The proof of this theorem is provided in Appendix C.

On the other hand, whenever subsystem A has a dimension larger than 2,

the LCPOs acting on A are either completely decohering or isotropic [107, 108],

see Section 3.1.2. As we have already discussed, the local completely decoher-

ing operations destroy all quantum correlations, which means that P Γ
A(ΛA

CPO ⊗

IB(ρAB)) = 0. It is then necessary only to consider the local isotropic operations

(see Eq. (3.11)) on subsystem A to test Requirement Q(ii) for the interferometric

power when dA > 2. We now see that the interferometric power is monotonically

non-increasing under local isotropic operations ΛA
CPO(ρA) = tΦA(ρA) + (1− t) IA

dA

whenever t ∈ [0, 1] and ΦA(ρA) is a unitary transformation on subsystem A in

state ρA, which results simply from the convexity of the quantum Fisher inform-

ation.

Theorem 11 For a (dA×dB)-dimensional bipartite system, it holds for all LCPO

ΛA
CPO acting on subsystem A of the form ΛA

CPO(ρA) = tΦA(ρA) + (1− t) IA
dA
, with

t ∈ [0, 1] and ΦA(ρA) a unitary transformation acting on any state ρA of subsystem

A, that

P Γ
A(ΛA

CPO ⊗ IB(ρAB)) ≤ P Γ
A(ρAB) (5.20)

for any state ρAB of the bipartite system and any dA and dB [TRB7].

The proof of this theorem is also provided in Appendix C. It is not yet clear

whether monotonicity of the interferometric power holds also for local isotropic

operations when ΦA is unitary but t ∈ [ −1
d2−1 , 0[, or when ΦA is antiunitary for
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any t ∈ [ −1
d−1 ,

1
d+1 ]. Our results therefore go part of the way towards proving that

the interferometric power satisfies Requirement Q(ii).

Quantum Entanglement

We now discuss the role of quantum entanglement for estimating the phase in

our worst-case scenario quantum interferometer. Consider the variance of the

Hamiltonian HA
Γ with respect to the bipartite probe in state ρAB

VHA
Γ

(ρAB) = Tr
(
(HA

Γ )2 ⊗ IBρAB
)
−
(
Tr
(
HA

Γ ⊗ IBρAB
))2

. (5.21)

If the probe is in a pure state |ψAB〉 then it is known that the variance is equivalent

(up to a factor) to the quantum Fisher information [199], i.e.

VHA
Γ

(|ψAB〉 〈ψAB|) = 1
4FHA

Γ
(|ψAB〉 〈ψAB|). (5.22)

Suppose that we define the following quantity for pure states |ψAB〉 as

EΓ(|ψAB〉 〈ψAB|) := inf
{HA

Γ }
VHA

Γ
(|ψAB〉 〈ψAB|). (5.23)

Due to Eq. (5.22), it is clear that this quantity coincides with the interferomet-

ric power, i.e. EΓ(|ψAB〉 〈ψAB|) = P Γ
A(|ψAB〉 〈ψAB|), so that EΓ(|ψAB〉 〈ψAB|)

gives the ultimate precision on an estimator of the phase imprinted onto a bi-

partite probe in the pure state |ψAB〉 by the least informative Hamiltonian from

the family of Hamiltonians {HA
Γ }. It has been shown in Refs. [30, 114] that

EΓ(|ψAB〉 〈ψAB|) behaves like an entanglement monotone for pure states [2], i.e.

EΓ(|ψAB〉 〈ψAB|) = 0 for any pure product state |ψAB〉 = |ψA〉 ⊗ |φB〉 and

∑
i

〈ψAB|(KAB
i )†KAB

i |ψAB〉EΓ
(
KAB
i |ψAB〉 〈ψAB| (KAB

i )†
〈ψAB|(KAB

i )†KAB
i |ψAB〉

)
≤ EΓ(|ψAB〉 〈ψAB|)

for any pure state |ψAB〉 and any set of product operators {KAB
i }i such that

KAB
i = KA

i ⊗ IB with ∑i(KA
i )†KA

i = IA or KAB
i = IA⊗KB

i with ∑i(KB
i )†KB

i =

IB.

We can then extend the definition of EΓ to mixed states ρAB by using the

convex roof construction [20, 206–208]. Consider all decompositions of ρAB into
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a convex combination of pure state projectors {|ψABi 〉 〈ψABi |}i, i.e.

ρAB =
∑
i

qi |ψABi 〉 〈ψABi | (5.24)

for some probability distribution {qi}i as in Eq. (1.22). The convex roof extension

of EΓ considers the decomposition of ρAB into pure state projectors with the

minimum average EΓ, i.e.

EΓ(ρAB) := inf
{qi}i,{|ψABi 〉〈ψABi |}i

ρAB=
∑

i
qi|ψABi 〉〈ψABi |

∑
i

qiE
Γ(|ψABi 〉 〈ψABi |). (5.25)

It can be shown that this quantity is a measure of entanglement, which we call

the interferometric entanglement. Indeed, the interferometric entanglement is

a real and non-negative function that satisfies Requirement (i), since for any

ρAB ∈ SAB we simply consider the decomposition of ρAB into product pure state

projectors according to Eq. (2.18) to give EΓ(ρAB) = 0. Furthermore, it was

shown in Refs. [2, 102] that the convex roof extension of any function that be-

haves like an entanglement monotone for pure states, such as the interferometric

entanglement, satisfies Requirement (iv). Since the convex roof extension is by

definition a convex function [208], the interferometric entanglement also satisfies

Requirements (ii) and (iii). Hence, the interferometric entanglement satisfies all

the given requirements to be a measure of entanglement. Furthermore, we con-

sequently see that the interferometric power satisfies the desirable feature of a

measure of quantum correlations discussed in Section 3.1.2 of coinciding with an

entanglement measure for pure states.

The interferometric entanglement of a bipartite probe in state ρAB can be seen

to represent one of the roles of entanglement in quantum interferometry. It can

be understood to quantify the smallest average precision of optimal estimators

of the phase corresponding to imprinting onto the pure states {|ψABi 〉}i by least

informative Hamiltonians HA
Γ with spectrum Γ, where the average is taken over

the probabilities {qi}i such that ρAB = ∑
i qi |ψABi 〉 〈ψABi |. On the other hand,

as we have seen, the interferometric power quantifies the precision on an optimal

estimator of the phase imprinted through a least informative Hamiltonian HA
Γ
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with spectrum Γ onto the bipartite probe in the mixed state ρAB. We may then

compare the two quantities and find that the interferometric entanglement can

never exceed the interferometric power, which is shown to be true in the following

theorem.

Theorem 12 For any state ρAB of any (dA × dB)-dimensional bipartite sys-

tem [TRB7],

EΓ(ρAB) ≤ P Γ
A(ρAB). (5.26)

The proof of this theorem is provided in Appendix C, and relies on the recently

found property that the quantum Fisher information is (four times) the convex

roof of the variance [209, 210]. We hence have a hierarchy between quantum cor-

relations and quantum entanglement, as measured by the interferometric power

and interferometric entanglement, respectively. Such a hierarchy between two

measures motivated from the same operational perspective is very appealing since

it allows for a comparison between the two resources and lends further credence to

the idea that quantum correlations beyond entanglement are the relevant resource

in worst-case scenario quantum interferometry.

Figure 5.3 shows a comparison between the interferometric power and the

interferometric entanglement for 105 randomly generated states of a two qubit

probe. Whenever the subsystem A is a qubit, both the interferometric power and

interferometric entanglement have a simplified form. The interferometric power

has been calculated in Ref. [30] and is given by Eq. (C.67) in Appendix C. In-

stead, the interferometric entanglement coincides (up to a factor) with another

established measure of entanglement called the I-tangle [TRB7, 211, 212], which

is defined for pure bipartite states |ψAB〉 as two times the local linear entropy

2
(
1− Tr

(
(ρA)2

))
of the marginal state ρA = TrB(|ψAB〉 〈ψAB|) and for mixed

bipartite states through the convex roof extension. The factor governing the coin-

cidence between the interferometric entanglement and I-tangle depends upon the

choice of spectrum Γ, of which the typical choice for a 2-dimensional subsystem

is Γ = {−1, 1} so that the factor is unity. In this case, when subsystem B is
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Figure 5.3: A comparison between the interferometric power (vertical axis) and

the interferometric entanglement (horizontal axis) for 105 states (blue points) of a

two qubit probe randomly drawn from the uniform distribution according to the

Hilbert-Schmidt measure [20, 131]. With the spectrum set to Γ = {−1, 1}, the

interferometric power was calculated according to Eq. (C.67) while the interfero-

metric entanglement reduces to the two qubit tangle τ(ρAB) in Eq. (5.27). The

lower bound provided by Theorem 12 is shown as the red line and is saturated for

any pure state. For example, the pure states |ψAB〉 = (|00〉+ a |11〉)/
√

1 + a2 for

a ∈ [0,∞] have PA(|ψAB〉 〈ψAB |) = τ(|ψAB〉 〈ψAB |) = 4a2

(1+a2)2 ∈ [0, 1] and so span

the full range of the lower bound.

a qubit, the interferometric entanglement and I-tangle reduce to the tangle (or

squared concurrence) [20, 213, 214]

τ(ρAB) := max {0, λ1 − λ2 − λ3 − λ4}2 (5.27)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigenvalues of
√√

ρABρ̃AB
√
ρAB with ρ̃AB :=

(σ2⊗σ2)(ρAB)∗(σ2⊗σ2), σ2 the second Pauli matrix and (ρAB)? complex conjug-

ation of ρAB in the standard basis.



Chapter 6

Preserving the Quantum

The effects of noise in a quantum system have long been studied: from decoher-

ence [12, 215] (i.e. the loss of coherence) to the sudden death of entanglement

at finite timescales [216, 217], types of the quantum are typically sensitive to

the presence of noise. Even operational aspects of the quantum are known to

deteriorate with noise: Fig. 6.1 shows an example of how the ultimate precision

in phase estimation in terms of the quantum Fisher information can transfer

from the Heisenberg limit to the standard quantum limit with the presence of

noise [TRB8, 218–226]. Of course, if we are ever to harness the quantum then it

will be necessary to develop methods to preserve and protect it from detrimental

noise. A number of such methods have already been devised [227–231].

In this chapter we study a mechanism to preserve the quantum by preparing

the noisy quantum system in a particular family of initial states. The quantum

resources of this system are then constant, or frozen, despite the presence of noise.

We describe the dynamical conditions for the so-called freezing of quantum coher-

ence [TRB9], quantum correlations [TRB10], and quantum entanglement [TRB4,

35, 36], focussing in particular on the distance-based approach to quantifying the

quantum resources discussed in Section 3.2.2. The dynamical conditions for freez-

ing are specified by two components: (i) the noise acting on the system, and (ii)

the initial states of the system. These conditions are universal in the sense that

they do not depend upon the distance Dδ chosen to quantify the resource.

122
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Figure 6.1: The quantum Fisher information FΛφ(ρ) (blue line) given by using an

N qubit probe in an initial state ρ to estimate a phase φ imprinted by a noisy

qubit unitary acting on each of the qubits [TRB8]. With the initial probe set

as the genuinely entangled GHZ state ρ = |GHZ(N)〉 〈GHZ(N)|, the expectation

is for the quantum Fisher information to scale with the Heisenberg limit as N2

(see Section 5.2.1). However, the presence of noise in the imprinting unitaries

causes a transition from the Heisenberg limit scaling (green line) to the standard

quantum limit scaling linear with N (red line). The phase imprinting operation

Λφ is given by a noisy qubit unitary imprinting φ = 0.1 with a Hamiltonian that

has an eigenbasis given by an ONB randomly chosen from the von Mises-Fisher

distribution [232] on the Bloch sphere centred on the n3 axis with noise parameter

κ = 2 (see Ref. [TRB8] for further details). Numerous investigations have been

carried out on how to maintain a scaling withN of the quantum Fisher information

for an N qubit probe that is superior to the standard quantum limit despite the

presence of noise [TRB8, 218–226].

6.1 Quantum Coherence and Quantum Correl-

ations

Here we restrict to two qubit systems composed of subsystem A and B in state

ρAB and use the distance-based approach discussed in Section 3.2.2 to measure

the resources, see also Fig. 3.6. Quantum coherence is measured relative to the

computational basis given by {|00〉 , |01〉 , |10〉 , |11〉} according to the distance-

based approach in Eq. (3.65) as CDδ(ρAB). Quantum correlations are measured
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with respect to both subsystems using the distance-based approach in Eq. (3.66)

as QDδ
AB(ρAB), although the following analysis can apply as well to QDδ

A (ρAB)

and QDδ
B (ρAB). The dynamical conditions that lead to freezing are the same for

quantum coherence and quantum correlations. We now provide these conditions

and show that freezing occurs for any choice of Dδ satisfying the required prop-

erties of contractivity and joint convexity. An example of the freezing effect is

then provided using the squared Bures distance DBu to quantify the resources,

and we then conclude this section by giving a physically motivated explanation of

freezing as well as a comparison of our findings to other established results [31–33,

TRB11, 34, 144, 233–241].

6.1.1 Noise

We suppose that each qubit is subjected to bit flip noise, a type of noise analogous

to what is typically experienced by a classical bit [7]. Here, the bit flip noise causes

a qubit in state |0〉 to “flip” into the state |1〉 (and vice versa) with a probability

of q, with q ∈ [0, 1]. Now, since each type of noise corresponds to a quantum

operation, the bit flip noise transforms the qubit in state ρ according to the

operator sum representation Λ(ρ) = ∑2
i=1KiρK

†
i with Kraus operators {Ki}2

i=1

given by [7]

K1 =
√

1− qI , K2 = √qσ1 . (6.1)

The bit flip noise can be understood from the perspective of open quantum sys-

tems [242] as a time dependent interaction of the qubit with an environment [243].

The environment causes the qubit to bit flip with a probability q = 1−e−γt
2 , where

γ ∈ [0,∞] is the strength of the noise and t ∈ [0,∞] is the time of interaction.

We then denote the action of bit flip noise after a time t with Λt. Considering

now bit flip noise applied to both qubits of our two qubit system in state ρAB,

and assuming that the bit flip noise is of identical strength for each qubit and

independent of the other qubit, the action of the bit flip noise is

ΛAB
t (ρAB) := Λt ⊗ Λt(ρAB) =

2∑
i=1

2∑
j=1

Ki ⊗Kjρ
ABK†i ⊗K

†
j . (6.2)
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It can be seen that ΛAB
t is an incoherent operation with respect to the two qubit

computational basis and is also an LCPO, so that in general for any t

CDδ(ΛAB
t (ρAB)) ≤ CDδ(ρAB) QDδ

AB(ΛAB
t (ρAB)) ≤ QDδ

AB(ρAB), (6.3)

i.e. the bit flip noise can never increase the quantum resources. We now give

conditions in terms of initial states ρAB for which CDδ(ΛAB
t (ρAB)) = CDδ(ρAB)

for all t andQDδ
AB(ΛAB

t (ρAB)) = QDδ
AB(ρAB) until a fixed t, for any choice of distance

Dδ.

6.1.2 Initial States

The initial states that manifest freezing are given by a subclass of the two qubit

Bell-diagonal (BD) states, which consist of mixtures of the four pure Bell states [2,

152]. The BD states coincide with the set of M3
N states given in Eq. (4.19) for

N = 2. Hence, we consider the BD states $AB ∈ BD := M3
2 in terms of the

triple {c1, c2, c3} with ci = Tr($ABσAi ⊗σBi ) ∈ [−1, 1], which is contained within a

tetrahedron T−1 with vertices {1,−1, 1}, {−1, 1, 1}, {1, 1,−1}, and {−1,−1,−1}.

When each qubit of the two qubit system in an initial BD state is subjected

to bit flip noise, the state of the evolved system remains BD [31, 34]. If the initial

BD state has triple {c1(0), c2(0), c3(0)}, then the evolved BD state has triple

{c1(t), c2(t), c3(t)} = {c1(0), e−2γtc2(0), e−2γtc3(0)}. (6.4)

Hence, the action of bit flip noise in the {c1, c2, c3} space is to evolve the BD

state along a line connecting the initial triple {c1(0), c2(0), c3(0)} with the point

{c1(0), 0, 0} on the c1 axis, which is reached at an asymptotically large time.

The subclass of initial BD states that can have frozen coherence or quantum

correlations are referred to as the freezing states. The freezing states are given

by the initial triple

{c1(0), c2(0), c3(0)} = {c1(0),−c1(0)c3(0), c3(0)} (6.5)

for any c1(0) ∈ [−1, 1] and c3(0) ∈ [−1, 1], and evolve under bit flip noise accord-

ing to

{c1(t), c2(t), c3(t)} = {c1(0),−e−2γtc1(0)c3(0), e−2γtc3(0)}. (6.6)
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Figure 6.2: The freezing surface (blue meshed surface) in the {c1, c2, c3} space of

BD states (green tetrahedron corresponding to T−1). The blue and green lines

show the time evolution according to Eq. (6.6) of two initial BD states with triple

{ 3
5 ,−

3
5 , 1} and {

1
2 ,

1
8 ,−

1
4}, respectively, on the freezing surface, which both evolve

towards the c1 axis while remaining on the freezing surface. Both initial BD states

have frozen quantum coherence for all time, while only the BD state corresponding

to the blue line has frozen quantum correlations, which are frozen for 0 ≤ t ≤

− 1
2γ ln 3

5 according to Eq. (6.7). More generally, every initial BD state on the

freezing surface has frozen quantum coherence for all time, while only initial BD

states on the freezing surface with a trajectory of evolution crossing the red curves

(i.e. so that |c3(0)| > |c1(0)|) will have frozen quantum correlations until the

threshold time t?.

The freezing states form a so-called freezing surface within the tetrahedron T−1

in the {c1, c2, c3} space, as shown by Fig. 6.2. Note that the evolved state of an

initial BD state (with triple) on the freezing surface, according to the qubit bit

flip noise, is itself a BD state on the freezing surface. We see in the following
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that any BD state on the freezing surface has frozen quantum coherence for all

time [TRB9], while BD states on the freezing surface where |c3(0)| > |c1(0)| have

frozen quantum correlations until a threshold time [31, TRB10, 34]

t? := − 1
2γ ln |c1(0)|

|c3(0)| , (6.7)

after which the quantum correlations generally decay exponentially with time.

6.1.3 Frozen Quantum Coherence

We now evaluate CDδ(ΛAB
t ($AB)) for any time t and any state $AB ∈ BD

on the freezing surface, with the intention of showing that CDδ(ΛAB
t ($AB)) =

CDδ($AB). It is clear from Eq. (6.6) that the triple of ΛAB
t ($AB) is for any

t given by {c1,−c1c3, c3} for some c1 ∈ [−1, 1] and c3 ∈ [−1, 1], i.e. on the

freezing surface. Hence, evaluating CDδ(ΛAB
t ($AB)) is given by the evaluation of

CDδ($AB) for any BD state $AB on the freezing surface. To simplify notation,

we herein adopt the convention of referring to a BD state directly by its triple.

The objective is then to calculate CDδ({c1,−c1c3, c3}).

Following the discussion in Section 4.3, we know that one of the closest inco-

herent states to a given BD state is itself a BD state. Furthermore, the incoherent

BD states with respect to computational basis given by {|00〉 , |01〉 , |10〉 , |11〉} are

described by {0, 0, α} for α ∈ [−1, 1]. Hence, we have for a general BD state (not

necessarily on the freezing surface)

CDδ({c1, c2, c3}) = inf
α∈[−1,1]

Dδ({c1, c2, c3}, {0, 0, α}). (6.8)

For the trace distance DTr and the relative entropy distance DRE [47], it can be

shown that one of the closest incoherent BD states to the BD state {c1, c2, c3} has

the triple {0, 0, c3}. However, this does not hold for all choices ofDδ. For example,

Fig. 6.3 shows a plot of the trace distance, squared Bures distance, and relative

entropy distance between a BD state
{
−1

2 ,−
1
2 ,−

1
2

}
and the incoherent BD state

{0, 0, α} as a function of α. Here it can be seen that the closest incoherent BD

state according to the squared Bures distance does not have triple {0, 0,−1
2}.
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Figure 6.3: The distance Dδ between the BD state
{
− 1

2 ,−
1
2 ,−

1
2
}
and the inco-

herent BD states {0, 0, α} for α ∈ [−1, 1]. The solid lines correspond to the trace

distance DTr (red), squared Bures distance DBu (green), and relative entropy

distance DRE (blue). Instead, the vertical dashed lines locate the minima of the

distances and hence give the value of α for the closest incoherent BD state. While

the trace distance and relative entropy have the closest incoherent BD state with

triple
{

0, 0,− 1
2
}
, the closest incoherent BD state according to the squared Bures

distance has triple
{

0, 0,− 1√
5

}
.

Remarkably, by restricting to BD states {c1,−c1c3, c3} on the freezing surface,

one can prove for any contractive distanceDδ that the closest incoherent BD state

is always {0, 0, c3}, i.e.

Dδ({c1,−c1c3, c3}, {0, 0, α}) ≥ Dδ({c1,−c1c3, c3}, {0, 0, c3}) (6.9)

for any α ∈ [−1, 1] [TRB9]. We now sketch the proof of this result, which uses sim-

ilar methods to those discussed in the third step of Section 4.2.1. Fig. 6.4 also il-

lustrates the arguments pictorially. First, we have Dδ({c1,−c1c3, c3}, {0, 0, α}) ≥

Dδ({c1, 0, 0}, {0, 0, 0}). Indeed, from Eq. (6.6) with t → ∞ it can be seen that

that ΛAB
∞ ({c1,−c1c3, c3}) = {c1, 0, 0} and also ΛAB

∞ ({0, 0, α}) = {0, 0, 0}. Hence,

the contractivity of Dδ gives

Dδ({c1,−c1c3, c3}, {0, 0, α}) ≥ Dδ(ΛAB
∞ ({c1,−c1c3, c3}),ΛAB

∞ ({0, 0, α}))

= Dδ({c1, 0, 0}, {0, 0, 0}), (6.10)
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Figure 6.4: A pictorial representation of the arguments used to identify the closest

incoherent BD state to any BD state on the freezing surface. Both squares rep-

resent the flattening of one quadrant of the freezing surface so that the c1 axis

is horizontal and the c3 axis is vertical. In the first square, D(1)
δ represents the

distance between {c1,−c1c3, c3} and {0, 0, α} for some α ∈ [−1, 1], while D(2)
δ rep-

resents the distance between {c1, 0, 0} and {0, 0, 0}, which are the result of ΛAB∞
on {c1,−c1c3, c3} and {0, 0, α}, respectively. We then have from contractivity of

the distance that D(1)
δ ≥ D

(2)
δ . In the second square, D(3)

δ represents the distance

between {c1,−c1c3, c3} and {0, 0, c3}, while D(2)
δ is the same as for the first square.

We can use the quantum operation Λ̃ABc3
to transform from {c1, 0, 0} and {0, 0, 0}

to {c1,−c1c3, c3} and {0, 0, c3}, respectively, so that D(2)
δ ≥ D

(3)
δ . Overall, we

have that D(1)
δ ≥ D

(2)
δ = D

(3)
δ for any α, thus identifying {0, 0, c3} as the closest

incoherent BD state to a BD state {c1,−c1c3, c3} on the freezing surface.

see the first square of Fig. 6.4.

On the other hand, there exists a quantum operation Λ̃AB
c3 such that

Λ̃AB
c3 ({c1, 0, 0}) = {c1,−c1c3, c3} Λ̃AB

c3 ({0, 0, 0}) = {0, 0, c3}. (6.11)

The quantum operation Λ̃AB
c3 acts globally on both qubits and is given explicitly

in Ref. [TRB9], where it was derived using the method outlined in Ref. [244].

The contractivity of Dδ then gives

Dδ({c1, 0, 0}, {0, 0, 0}) ≥ Dδ(Λ̃AB
c3 ({c1, 0, 0}), Λ̃AB

c3 ({0, 0, 0}))

= Dδ({c1,−c1c3, c3}, {0, 0, c3}), (6.12)
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refer to the second square of Fig. 6.4. The above inequality and (6.10) together

imply

Dδ({c1,−c1c3, c3}, {0, 0, α}) ≥ Dδ({c1, 0, 0}, {0, 0, 0})

≥ Dδ({c1,−c1c3, c3}, {0, 0, c3}), (6.13)

which is the desired inequality in (6.9). Furthermore, it can be seen that the

chain of inequalities in (6.13) reduces to an equality when α = c3, i.e. so that

Dδ({c1,−c1c3, c3}, {0, 0, c3}) = Dδ({c1, 0, 0}, {0, 0, 0}). (6.14)

Combined with (6.9), this means that the BD states on the freezing surface with a

fixed value of c1 are all equally distant from the c3 axis. This is a crucial property

for the freezing of quantum coherence since the qubit bit flip noise maintains BD

states on the freezing surface but does not alter the c1 value, as can be seen in

Fig. (6.2).

The quantum coherence of a BD state {c1,−c1c3, c3} on the freezing surface

is then

CDδ({c1,−c1c3, c3}) = inf
α∈[−1,1]

Dδ({c1,−c1c3, c3}, {0, 0, α})

= Dδ({c1,−c1c3, c3}, {0, 0, c3}). (6.15)

From Eq. (6.14) and the joint convexity of Dδ, we find that CDδ({c1,−c1c3, c3}) is

simply a monotonic function hDδ(|c1|) of |c1|. Particular instances of hDδ(|c1|), for

each distance Dδ given in Table 1.1, are shown in Table 6.1. Now we can consider

the quantum coherence for the time evolution of a BD state on the freezing surface

according to Eq. (6.6) with triple {c1(0),−e−2γtc1(0)c3(0), e−2γtc3(0)}. It holds

that

CDδ({c1(0),−e−2γtc1(0)c3(0), e−2γtc3(0)}) = hDδ(|c1(0)|), (6.16)

which is not a function of t and thus constant for all time. Hence, we have

permanent frozen quantum coherence for any choice of distance Dδ (satisfying

the required properties of contractivity and joint convexity).
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Dδ hDδ(|c1|)

Trace |c1|
2

Hellinger (squared) 2−
√

1− |c1| −
√

1 + |c1|

Bures (squared) 2−
√

1− |c1| −
√

1 + |c1|

Infidelity 1
2

(
1−

√
1− |c1|2

)

Relative entropy
1
2

[
(1− |c1|) log2(1− |c1|)

+ (1 + |c1|) log2(1 + |c1|)
]

Table 6.1: The multiqubit coherence CDδ($AB) of a two qubit BD state $AB ∈

BD on the freezing surface with triple {c1,−c1c3, c3} is a monotonic function

hDδ(|c1|) of |c1| set by the choice of distance Dδ.

6.1.4 Frozen Quantum Correlations

Just like for quantum coherence, we want to evaluate QDδ
AB({c1,−c1c3, c3}) so that

we can find QDδ
AB(ΛAB

t ($AB)) for any time t and any $AB ∈ BD on the freezing

surface. For quantum coherence, we used the discussion in Section 4.3 to see

that the closest incoherent state to any BD state is itself a BD state. This relies

on the fact that M3
N -fication, which for N = 2 projects every two qubit state

onto the BD states, is an incoherent operation (as proved in Theorem 9). To

find an analogous result for quantum correlations, i.e. that the closest CC state

to any BD state is itself a BD state, M3
N -fication would need to be a type of

quantum operation unable to create quantum correlations. However, it is not yet

known whether this is the case. Nevertheless, it was shown using an alternative

approach in Refs. [33, TRB10] that the closest CC state to any BD state is itself

a BD state, provided that the distance Dδ is contractive, jointly convex, and also

transposition invariant with respect to any basis, i.e.

Dδ(ρᵀ, σᵀ) = Dδ(ρ, σ) (6.17)



CHAPTER 6. PRESERVING THE QUANTUM 132

for any two states ρ and σ. For a qubit state with a vector n := {n1, n2, n3}

in the Bloch ball representation discussed in Section 1.2.4, it can be seen that

transposition with respect to the computational basis corresponds to a reflection

of the vector n in the plane defined by the n1 and n3 axes. More generally, for

d-dimensional quantum systems it can be understood that Eq. (6.17) corresponds

to invariance of the distance Dδ under reflections in a (d(d+1)/2−1)-dimensional

hyperplane of the (d2− 1)-dimensional state space of the system [TRB10], which

is a natural property that is satisfied by all of the distances given in Table 1.1.

The BD states that are CC have the triple {s, 0, 0}, {0, s, 0} or {0, 0, s} for

any s ∈ [−1, 1] [33, TRB10], corresponding in the {c1, c2, c3} space to the axes of

the BD tetrahedron T−1, as can be seen in Fig. 6.2. Hence, we have for a general

BD state (not necessarily on the freezing surface)

QDδ
AB({c1, c2, c3}) = min

{
inf

s∈[−1,1]
Dδ({c1, c2, c3}, {s, 0, 0}),

inf
s∈[−1,1]

Dδ({c1, c2, c3}, {0, s, 0}), inf
s∈[−1,1]

Dδ({c1, c2, c3}, {0, 0, s})
}
. (6.18)

This quantity can be evaluated analytically for certain Dδ. For the trace distance

DTr, we have

QDδ
AB({c1, c2, c3}) = 1

2 int{|c1|, |c2|, |c3|}, (6.19)

where int{|c1|, |c2|, |c3|} denotes the intermediate value of {|c1|, |c2|, |c3|} [112, 144,

245, 246]. Nevertheless, for other Dδ it can be difficult to evaluate Eq. (6.18).

However, by restricting to BD states {c1,−c1c3, c3} on the freezing surface,

Eq. (6.18) can be evaluated for any distance (satisfying the established proper-

ties). We know that infs∈[−1,1]Dδ({c1,−c1c3, c3}, {0, 0, s}) = hDδ(|c1|) from the

previous section, which is just the quantum coherence with respect to the two

qubit computational basis. Furthermore,

Dδ({c1,−c1c3, c3}, {s, 0, 0}) = Dδ(U{c1,−c1c3, c3}U †, U{s, 0, 0}U †)

= Dδ({c3,−c1c3, c1}, {0, 0, s})

≥ Dδ({c3,−c1c3, c1}, {0, 0, c1})

= hDδ(|c3|), (6.20)
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where in the first equality we use the invariance of any Dδ under unitary trans-

formations U , which is imposed by the contractivity of the distance. Then, in

the second equality we set U to be the local unitary U := 1
2(I + iσ2) ⊗ (I + iσ2)

whose action is

U{c1,−c1c3, c3}U † = {c3,−c1c3, c1} , U{s, 0, 0}U † = {0, 0, s}. (6.21)

In the inequality we use the result from Eq. (6.9), and in final equality we use

Eq. (6.14) and joint convexity of Dδ to give the monotonic functions hDδ given

in Table 6.1. The result is that infs∈[−1,1]Dδ({c1,−c1c3, c3}, {s, 0, 0}) = hDδ(|c3|).

Finally, we see that

Dδ({c1,−c1c3, c3}, {0, s, 0}) ≥ Dδ(ΛAB
∞ ({c1,−c1c3, c3}),ΛAB

∞ ({0, s, 0}))

= Dδ({c1, 0, 0}, {0, 0, 0})

= hDδ(|c1|), (6.22)

where in the final equality we again use the joint convexity of Dδ to rewrite

Dδ({c1, 0, 0}, {0, 0, 0}) as the monotonic function hDδ(|c1|).

The result of these calculations is that

QDδ
AB({c1,−c1c3, c3}) = min {hDδ(|c1|), hDδ(|c3|)} . (6.23)

Now we again consider the time evolution of a BD state on the freezing surface

with triple {c1(0),−e−2γtc1(0)c3(0), e−2γtc3(0)}. Indeed,

QDδ
AB({c1(0),−e−2γtc1(0)c3(0), e−2γtc3(0)})

= min
{
hDδ(|c1(0)|), hDδ(|c3(0)|e−2γt)

}
. (6.24)

Following from the monotonicity of hDδ , there are here two scenarios: (i) |c3(0)| >

|c1(0)| and (ii) |c3(0)| ≤ |c1(0)|. In the first scenario, we have that

QDδ
AB({c1(0),−e−2γtc1(0)c3(0), e−2γtc3(0)}) =

 hDδ(|c1(0)|) 0 ≤ t < t?;

hDδ(|c3(0)|e−2γt) t ≥ t?.

(6.25)

Hence, the quantum correlations are frozen at a value of hDδ(|c1(0)|) for a finite

time period until the threshold time t? given in Eq. (6.7), while after t? the
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quantum correlations decay asymptotically. On the other hand, in the second

scenario we have that for all t,

QDδ
AB({c1(0),−e−2γtc1(0)c3(0), e−2γtc3(0)}) = hDδ(|c3(0)|e−2γt), (6.26)

meaning that the quantum correlations are never frozen and simply decay asymp-

totically. We thus conclude that frozen quantum correlations occur with any

choice of distance Dδ (satisfying the established properties) for a BD state on

the freezing surface for a finite time, provided that the initial condition |c3(0)| >

|c1(0)| is satisfied.

6.1.5 Freezing Example

Here we study the freezing effect for a particular initial BD state $AB on the

freezing surface with triple {3
5 ,−

3
5 , 1}, that evolves under qubit bit flip noise so

that at time t ∈ [0,∞] the state is $AB(t) with triple {3
5 ,−

3
5e
−2γt, e−2γt}. This

evolution corresponds in the {c1, c2, c3} space to the blue line in Fig. 6.2. Focus-

sing in particular on using the squared Bures distance to quantify our quantum

resources, we have

CDBu($AB(t)) = 2− 3
√

2
5 ,

QDBu
AB ($AB(t)) =

 2− 3
√

2
5 0 ≤ t < t?;

2−
√

1− e−2γt −
√

1 + e−2γt t ≥ t?,
(6.27)

where t? = − 1
2γ ln 3

5 . Note that the quantum correlations according to the squared

Bures distance have also been calculated for any BD state in Refs. [33, 247, 248].

We can also compare with the two qubit entanglement given in Eq. (4.22),

EDBu($AB(t)) =

 2−
√

6−4e−2γt

5 −
√

4
5(1 + e−2γt) 0 ≤ t < t̃?;

0 t ≥ t̃?,

(6.28)

where t̃? = 1
γ

ln 2.

Furthermore, in Ref. [TRB11] the distance-based total and classical correla-

tions according to Eq. (3.68) and Eq. (3.69), respectively, of any BD state were



CHAPTER 6. PRESERVING THE QUANTUM 135

evaluated using the squared Bures distance. Although the explicit form of the

classical correlations for any BD state is too cumbersome to report here, we have

in particular for any BD state {c1,−c1c3, c3} on the freezing surface

CCDBu
AB ({c1,−c1c3, c3}) = max{hDBu(|c1|), hDBu(|c3|)}, (6.29)

with hDBu the monotonic function of the squared Bures distance in Table 6.1.

For the time evolved BD state $AB(t) on the freezing surface, we then have

CCDBu
AB ($AB(t)) =

 2−
√

1− e−2γt −
√

1 + e−2γt 0 ≤ t < t?;

2− 3
√

2
5 t ≥ t?.

(6.30)

The total correlations for any BD state were evaluated in Ref. [TRB11] using a

numerically supported ansatz. The result is too detailed to report explicitly here.

Figure 6.5 plots all of the above quantities for a bit flip noise strength of

γ = 1. We then see an interesting interplay between the quantum and classical

correlations: the quantum correlations are frozen until time t? and then decay

to zero asymptotically, while the classical correlations decay until time t? and

are then frozen forever afterwards. Instead, the quantum coherence is frozen for

all times, and coincides with the quantum correlations until t? and the classical

correlations after t?.

The interplay between the quantum correlations, classical correlations and

quantum coherence observed in Fig. 6.5 is not just a result of using the squared

Bures distance to measure the resources, and can be observed for other choices

of distance. In the following we highlight some of the other works identifying the

freezing behaviour of these resources [31, 32, 34, 144, 234, 235, 237, 249]. This

general interplay may be understood by identifying a so called pointer basis [215,

237, 249–252], which is the ONB in which states of the quantum system tend to

become classical mixtures under the presence of noise: representing the emergence

of a classical system. In the case of bit flip noise on two qubits, the pointer basis is

the plus-minus product ONB {|++〉 , |+−〉 , |−+〉 , |−−〉} corresponding to tensor

products of the eigenbasis of σ1, i.e. |±〉 = 1√
2(|0〉±|1〉). The quantum coherence

measured with respect to the pointer basis will decay with time asymptotically
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Figure 6.5: The time evolution of quantum coherence (red line), quantum correl-

ations (dashed green line), entanglement (blue line), classical correlations (dashed

orange line), and total correlations (purple line) of a two qubit BD state in initial

triple { 3
5 ,−

3
5 , 1} undergoing qubit bit flip noise of strength γ = 1. The quantum

coherence is frozen for all time, while the quantum correlations are frozen until

time t? = − 1
2 ln 3

5 (dashed vertical black line) and then decay to zero asymptotic-

ally. The classical correlations begin decaying, but then freeze for all times after

t?. Instead, the entanglement decays to zero in a finite time t̃? = ln 2 (dot dashed

vertical black line). Note that the quantum and classical correlations, when frozen,

coincide with the quantum coherence, but have been drawn slightly offset so that

all three lines are always visible.

to zero. However, we measure quantum coherence with respect to the two qubit

computational basis. Since even the pointer basis states are coherent with respect

to this basis, it is natural to expect some coherence of the initial two qubit system

to be preserved under the bit flip noise. What we find is an initial state of the

two qubit system so that distance-based quantum coherence is exactly frozen for

all time.

On the other hand, as alluded to in Section 2.2.1, quantum correlations may be

seen as the presence of coherence in all local product ONBs. Furthermore, we have

discussed in Section 3.2.2 that measures of quantum correlations can be recast as

measures of quantum coherence minimised over all local product ONBs [TRB12,

84, 141, 142], as noted in Ref. [TRB9]. The coincidence in Fig. 6.5 of the squared
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Bures distance-based quantum correlations and quantum coherence for 0 ≤ t ≤ t?

hence shows that a local product ONB minimising the quantum coherence is given

by the two qubit computational basis. Since the quantum coherence is frozen

with respect to this basis, the quantum correlations must be too. Then, after t?

it can be seen that a local product basis minimising the quantum coherence is

the pointer basis, so that the quantum correlations coincide with the quantum

coherence in this basis and decay asymptotically to zero.

Turning now to the classical correlations in the distance-based approach of

Eq. (3.69), the BD state {0, 0, e−2γtc3(0)} is one of the closest classical states to

the evolving BD state {c1(0),−e−2γtc1(0)c3(0), e−2γtc3(0)} on the freezing surface

before t?, while the BD state {c1(0), 0, 0} is one of the closest classical states

after t?. If these two classical states before and after t?, respectively, satisfy the

infimum in Eq. (3.69) over closest classical states for calculation of the classical

correlations (as is the case for the Bures distance), then the observed behaviour

of the classical correlations in Fig. 6.5 may be explained simply. Indeed, we

may expect that the distance of the classical BD state {0, 0, e−2γtc3(0)} to the

set of product states PAB decays with time as this BD state approaches the

uncorrelated maximally mixed state, hence giving the observed behaviour of the

classical correlations before t?. On the other hand, it can be seen that the classical

BD state {c1(0), 0, 0} is at a constant distance from the set of product states PAB,

thus giving the observed freezing of classical correlations after t?.

6.1.6 Comparison to Other Results

Before proceeding to discuss the dynamical conditions for the preservation of

quantum entanglement, we first discuss the body of works identifying and charac-

terising frozen quantum coherence and quantum correlations, hence highlighting

the exact contributions of Refs. [TRB9, TRB10]. A study of the evolution of

quantum correlations and classical correlations using the conventional entropic

approach [9, 10] was provided in Ref. [34], which spurred a series of works [TRB6,

31–33, TRB11, 144, 233–238] investigating frozen quantum and classical correla-
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tions measured using both the entropic and distance-based approaches in various

dynamical settings. The contribution of Ref. [TRB10] was to establish that the

dynamical conditions discussed here lead to freezing universally for any distance-

based measure of quantum correlations (whose distance satisfies the required

properties of contractivity, joint convexity, and transposition invariance). In-

deed, we do not rule out the existence of alternative dynamical conditions for

freezing by focussing on particular distance-based measures.

The identification of frozen quantum correlations further led to the identi-

fication of frozen quantum coherence in Ref. [TRB9]. Again, while particular

measures of coherence may exhibit freezing under a larger range of dynamical

conditions, we show that two qubit BD states on the freezing surface subjected

to qubit bit flip noise will universally have frozen quantum coherence for any

distance-based measure (with a contractive and jointly convex distance). Fur-

thermore, we have identified the universal freezing of distance-based measures of

coherence for N qubit M3
N states, of any even N , by finding the corresponding

freezing surface in the M3
N tetrahedron T(−1)N/2 for bit flip noise on each qubit. In

this thesis we restricted to BD states (M3
2 states) to allow for a simple comparison

with quantum correlations. The interested reader may refer to Refs. [236, 238]

for a discussion of the freezing conditions of quantum correlations beyond N = 2.

Subsequently, there have been theoretical findings on frozen quantum coher-

ence [239–241] and also the demonstration of its occurrence in experimental sys-

tems using a nuclear magnetic resonance (NMR) setup involving two and four

qubits [TRB6]. We note that the distance-based freezing of quantum coherence

and quantum correlations occurs universally also if the system is instead subjec-

ted to qubit bit-phase flip or phase flip noise [7]. In this case, for the freezing

effect to manifest, one can measure quantum coherence with respect to the plus-

minus product ONB {|++〉 , |+−〉 , |−+〉 , |−−〉} and choose initial two qubit BD

states in a correspondingly rotated freezing surface of the tetrahedron T−1 [TRB9,

TRB10]. Phase flip noise is equivalent to phase damping, which is one of the two

dominant sources of noise in an NMR system along with amplitude damping [253].

The experiment in Ref. [TRB6] hence investigated freezing under phase damping,
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and thus illustrated its occurrence under a natural and experimentally relevant

type of noise.

6.2 Quantum Entanglement

It has long been accepted that quantum entanglement is more fragile than general

quantum correlations in the presence of noise [34, 105, 116, 217, 243, 254, 255]:

quantum entanglement tends to decay to zero at finite times while quantum cor-

relations can survive for asymptotically large times, as can be seen for example

in Fig. 6.5. However, some recent findings [35, 36] have identified a type of noise

called collective dephasing, for which entanglement can show a strong resistance

towards. Collective dephasing arises physically when a collection of spins are

placed in a spatially homogeneous electromagnetic field that has imperfect fluc-

tuations in the field strength, a situation typically encountered in the trapped

ion experimental setup [256–258].

In Refs. [35, 36], it was shown that two qubit BD states can exhibit frozen

entanglement for all times under the action of collective dephasing. Again, since

BD states are M3
N states with N = 2, Section 4.2.1 tells us that the entangled BD

states are given by the four corners of the tetrahedron T−1 not contained within

the octahedron O1 in the {c1, c2, c3} space, see Fig. 4.3 [152]. Then, the action of

collective dephasing (for a set electromagnetic field direction) on any entangled

BD state $AB with triple {c1, c2, c3} in a corner of the tetrahedron is to transform

the BD state along a path with constant plane height h$AB := 1
2(∑3

i=1 |ci| − 1).

From Eq. (4.22), we know that any distance-based measure of entanglement is

just a monotonic function fDδ(h$AB) of the plane height h$AB for any contractive

and jointly convex distance Dδ, and is hence frozen for any time under collective

dephasing. The freezing of an entanglement measure for collective dephasing was

first noticed in Refs. [35, 36] in particular for the two qubit concurrence, given

by the square root of the tangle in Eq. (5.27), which for BD states is exactly the

plane height h$AB .

Given such findings for two qubits, it is then natural to consider the possibility
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of frozen multiqubit entanglement in an N qubit system, as has been investigated

in Refs. [35, 36, 259]. Focussing on the results presented in this thesis, we may

consider the freezing of multiqubit entanglement in M3
N states, being the natural

extension of BD states to N qubits. Indeed, we know for even N that the M3
N

states with plane height h$ := 1
2(∑3

i=1 |ci| − 1) all have the same distance-based

multiqubit entanglement EDδ
M for any contractive and jointly convex distance Dδ

and all M > N/2. Hence, any noise source whose action is to preserve the plane

height of the M3
N states will lead to frozen multiqubit entanglement. Whether

this is the case for collective dephasing on the N qubits is left as a topic for

further investigation. On the other hand, in Ref. [TRB4] we have identified two

quantum operations that preserve h$, i.e. Λin and Λout, as described in the third

step of Section 4.2.1. However, Λin is a convex combination of local unitaries and

thus a type of LOCC, while Λout is a collective operation on each of the N

qubits. It is then not clear whether either quantum operation corresponds to a

physically relevant source of noise. Hence, the identification of frozen multiqubit

entanglement within M3
N states of N qubits in the presence of physically realistic

sources of noise remains an open question.



Chapter 7

Discussion

The quantum mechanical world has become a major focus of modern scientific

research. Its interest stems primarily from the potential to impact substantially

upon the present development of technologies. Findings in quantum mechanics

can also have interdisciplinary relevance: informing young evolving fields such

as quantum biology [260–263], as well as more traditional fields like thermody-

namics [264–266]. At the heart of its importance is the quantum: properties of

quantum systems that do not emerge from the principles of classical mechanics.

This thesis has focused upon the characterisation of some well established types of

the quantum: quantum coherence, quantum correlations, and quantum entangle-

ment. We began in Chapter 1 by comparing finite dimensional classical systems

with finite dimensional quantum systems. From there, each type of the quantum

was highlighted in Chapter 2 as a property arising only from the quantum form-

alism. We then set out to investigate three questions often posed by the scientific

community:

1. How much of the quantum is there?

2. What can the quantum be used for?

3. Can the quantum be preserved in the presence of noise?

These questions were investigated in Chapters 3 to 6. A summary of the findings

presented in this thesis can be found in Fig. I.2. We now discuss our findings.

141
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Question 1

The objective of Chapter 3 was to describe methods to answer Question 1. Types

of the quantum may be quantified by using the rigorous formalism provided by

quantum resource theories [13–15], which motivate requirements for measures

of quantum resources based on the restrictions imposed, leading to the sets of

free states and free operations. We outlined the resource theories of quantum

coherence [1], quantum correlations [11, TRB12, TRB13], and quantum entan-

glement [2], specifying the requirements typically imposed upon measures of these

quantities. However, one issue at present is that the free operations of quantum

coherence and quantum correlations have not yet been fully agreed upon by the

scientific community [1], although there appears to be an increasing consensus

for the so-called strictly incoherent operations [84, 85] as the free operations of

quantum coherence. It is hoped that this issue can be resolved conclusively in

the near future.

Another important aspect of quantum resource theories that we have not dis-

cussed is the characterisation of the intraconversion between resource states using

free operations. For bipartite entanglement, such a characterisation is achieved

for pure inseparable states in terms of majorisation of Schmidt coefficients [7,

267]. However, for mixed states the characterisation is not as clear [268]. It could

be of interest to extend this analysis to quantum coherence and quantum cor-

relations (some results exist already for quantum coherence [85, 87, 269]). The

interconversion between different quantum resources is also worthy of further

investigation and has been recently considered in Refs. [53, 137, 141, 270, 271].

In the second part of Chapter 3, we introduced two general approaches to

measuring a resource. It is important to emphasise that there exist many altern-

ative ways to measure a quantum resource and the interested reader is directed

to the reviews in Refs. [1, 2, 11, TRB12, 57, 58, TRB13] for further information.

We considered first the robustness of a resource, which is the minimum amount of

classical mixing needed to recover a free state from a resource state. We showed

that the robustness of a resource satisfies the minimal requirements of a resource
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measure, and furthermore can be evaluated as the solution to an SDP if the

corresponding resource theory is equipped with a resource destroying quantum

operation. When the resource destroying quantum operation is self-dual, then it

is simple to see that the robustness can be quantitatively witnessed by a class

of experimentally accessible observables. It is hence of future interest to identify

which quantum resources have a resource destroying quantum operation [128].

We also defined and partially characterised the robustness of coherence and

the robustness of k coherence [TRB1, TRB2, TRB3]. Evaluation of the robust-

ness of k coherence for all pure states is left as a line of future investigation.

Instead, the robustness of quantum correlations has never been defined and it

remains an interesting question to investigate the implications of measuring the

robustness when the resource theory has a non-convex set of free states. Finally,

we then explained the well established distance-based approach [18, 19] to quan-

tifying a resource and showed its adherence to the minimal set of requirements.

As an addition to this, we provided a well defined expression for the classical

correlations.

Chapter 4 was also aimed at helping to answer Question 1. It can be difficult to

evaluate a measure of a quantum resource for a given state of the quantum system,

and instead it may be more reasonable to look for an informative lower bound. We

constructed a general framework to provide lower bounds on measures of quantum

resources [TRB4, TRB5, TRB6]. This framework relies on the identification of

a resource non-increasing projection, which is a free operation that projects the

set of states onto a restricted class of resource guarantor states with necessarily

a non-increased amount of resource. Using this construct, one can employ a

number of simplifications to evaluate measures of the resources for the resource

guarantor states, and thus find lower bounds on the resources present in general

states. We illustrated the application of this framework with the M3
N -fication

resource non-increasing projection, which can provide lower bounds to multiqubit

entanglement and coherence by focussing on the resource guarantor states given

by the simple set of three parameter M3
N states. The lower bounds for multiqubit

entanglement are of particular relevance experimentally, being accessible with
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only three local measurement settings and thus faring well in comparison with

other approaches such as quantitative entanglement witnesses [129, 176]. We

further hope to investigate whether M3
N states can be used to provide lower

bounds also for quantum correlations.

The most important question raised by our framework is the existence and

identification of other resource non-increasing projections. Here it may be useful

to develop a clear recipe to formulate other resource non-increasing projections.

For multiqubit entanglement, we plan to study the various projections that can

be given by performing convex combinations of local unitary transformations

composed of tensor products of Pauli matrices, following the particular case in

Eq. (4.16) for the M3
N -fication. It is clear that each resource non-increasing pro-

jection must make a compromise between the simplicity of the resource guarantor

states and the amount of resources remaining in the resource guarantor states. In-

deed, we know that M3
N -fication destroys all genuine and some partial multiqubit

entanglement, so that one may need to use other less strong entanglement non-

increasing projections such as GHZ-diagonalisation to provide non-trivial lower

bounds on stronger forms of multiqubit entanglement. It will also be of interest

to investigate the resource non-increasing projections of other types of quantum

resources not discussed here, such as steering and Bell nonlocality.

Question 2

In Chapter 5, we considered Question 2 by identifying two operational tasks in

quantum metrology for which the quantum plays an advantageous role. We first

outlined a phase discrimination game, where the objective is to infer which of

a set of phases is applied to a quantum probe by a unitary with a Hamiltonian

that has a fixed eigenbasis. Here, the aim is to achieve the highest probability of

successfully guessing the phase. One option is to simply guess the phase based

on the maximum value of the known prior probability distribution describing the

likelihood that the phases are applied. Alternatively, one can use coherence in

the probe, with respect to the ONB given by the eigenbasis of the Hamiltonian,
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to improve the probability of success. It was then shown that the robustness

of coherence of the quantum probe exactly quantifies the optimum advantage

of using coherence [TRB1, TRB2]. On the other hand, the performance of the

phase discrimination game can also be used to quantitatively benchmark the

robustness of k coherence [TRB3]. Future work will aim to clarify the exact

role of k coherence in the phase discrimination game, as well as looking at the

role of other quantum resources, such as entanglement by adding a correlated

ancilla [272].

We proceeded to investigate the objective of precise phase estimation within

quantum metrology, which can be understood in terms of the quantum Fisher

information that gives the maximum possible precision on an estimator of the

phase. The roles of quantum coherence and quantum entanglement in phase

estimation were examined. Then, focussing on phase estimation in quantum in-

terferometry, we also compared the roles of quantum correlations and quantum

entanglement. A worst-case scenario interferometer was considered, consisting

of an imprinting of the phase by a local unitary acting on one arm of the inter-

ferometer with a least informative Hamiltonian that has a fixed spectrum but

variable eigenbasis. It is already established that the interferometric power rep-

resents one possible figure of merit in this setup [30, 114], which is thought to

represent a measure of quantum correlations. We added weight to this notion by

proving that the interferometric power is monotonically non-increasing under all

local commutativity preserving operations acting on a qubit subsystem passing

through the phase imprinting arm of the interferometer [TRB7]. A monotonicity

under a subset of local commutativity preserving operations acting on higher

dimensional subsystems was also shown. Furthermore, the interferometric entan-

glement was introduced as an alternative figure of merit in this setting. Shown to

satisfy the requirements for a measure of quantum entanglement, we established

a formal hierarchy between the interferometric entanglement and interferometric

power [TRB7]. The next steps will be to consider the roles of quantum correla-

tions and quantum entanglement for interferometers using other types of phase

imprinting operations besides worst-case scenario local unitaries, such as using
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the noisy phase-covariant operations [222]. Furthermore, it may be of interest to

consider phase imprinting operations acting on both arms of the interferometer.

We stress that the two operational tasks highlighted here by no means rep-

resent the exhaustive knowledge of operational roles of the quantum. As before,

the interested reader is directed to the reviews in Refs. [1, 2, 11, TRB12, TRB13]

for further details. It is hoped that additional developments can be made in this

area, given the drive to develop quantum technologies. However, it can be dif-

ficult to identify the operational role of a given measure of the quantum. Prime

examples of this problem are the distance-based measures of a resource, which are

well motivated geometrically but often lacking an operational perspective, aside

from the more abstract concept of state distinguishability. Perhaps the more nat-

ural approach is to instead begin from an operational perspective and construct

a quantity that may then be shown to be a measure of the quantum, as has been

done for example in the interferometric setting [30, 273].

Question 3

The dynamical behaviour of the quantum in the presence of noise was considered

in Chapter 6 [TRB8]. We investigated Question 3 by showing that types of the

quantum may be constant, or frozen, in the presence of noise under certain dy-

namical conditions. These dynamical conditions are given in terms of initial states

and the type of noise applied to the system. For quantum coherence and quantum

correlations, measured using the distance-based approach, we identified a class of

two qubit Bell diagonal states that lead to freezing when subjected to qubit bit

flip noise. Here, quantum coherence with respect to the two qubit computational

basis is frozen indefinitely, while quantum correlations are frozen until a finite

threshold time and then decay [TRB9, TRB10]. Although the freezing effect was

already identified for quantum correlations [31–33, TRB11, 34, 144, 233–237], our

analysis shows that freezing of both quantum coherence and quantum correlations

occurs under these dynamical conditions universally for any distance-based meas-

ure of the resource. We then proceeded to compare the behaviour of quantum
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coherence, quantum correlations, quantum entanglement, total correlations, and

classical correlations under a particular example of these dynamical conditions,

with all quantities measured using the squared Bures distance. Here, we used the

refined definition of classical correlations given in Ref. [TRB11]. The comparison

highlighted an interplay between quantum correlations, classical correlations and

quantum coherence, which can be physically justified by referring to the concept

of a classical pointer basis [215, 249–252]. Furthermore, the freezing of classical

correlations after a threshold time has been observed for a variety of measures [31,

32, TRB11, 34, 144, 233–236], and it is worthy of further investigation to establish

whether this freezing may be understood from a universal perspective using the

properties of contractivity and joint convexity in the distance-based approach.

It is of interest to investigate when dynamical conditions for freezing are rel-

evant in real experimental setups. In Ref. [TRB6] we experimentally observed

frozen quantum coherence in a two qubit and four qubit nuclear magnetic reson-

ance system experiencing naturally occurring phase damping noise. Nevertheless,

the ideal scenario would be to harness freezing to preserve the figure of merit of

an operational task powered by a quantum resource when the task is carried out

in the presence of noise. We remark that for N qubit M3
N states, the robustness

of coherence is twice the trace distance-based measure of coherence according

to Eq. (4.44), so that the robustness of coherence is also frozen under the same

dynamical conditions as for the distance-based measures (i.e. with N qubit M3
N

states on the freezing surface subjected to qubit bit flip noise). Furthermore, in

Chapter 5 we identified the robustness of coherence as a figure of merit in the

phase discrimination task. We have therefore found an operational task that can

run in the presence of noise without deterioration of the figure of merit, and it may

be of interest to investigate further the effects of noise in the phase discrimination

game.

Given the prevalence of N qubit M3
N states in this thesis, it will also be

interesting to investigate the behaviour of these states, and their corresponding

quantum resources, under more general sources of noise with potentially non-

Markovian environments [32, TRB11, 144, 233–237, 242]. For entanglement, we
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have already identified a freezing surface of constant M -inseparable multiqubit

entanglement, given by the N even M3
N states with M > N/2 that are, in the

{c1, c2, c3} space, at a constant plane height 1
2(∑3

i=1 |ci|−1), see Eq. (4.22) [TRB4].

What is not clear is whether there is any realistic type of noise encountered in

physical systems that maintains M3
N states on this freezing surface for N > 2 (for

N = 2, collective dephasing satisfies this requirement [35, 36]).

7.1 Conclusions and Outlook

We have identified three important questions for the present development of

quantum science and investigated approaches to resolving them, highlighting the

contributions of the author in Refs. [TRB1-TRB13]. These questions are related,

and together form a relevant line of inquiry to help navigate the quantum-classical

frontier. Indeed, quantification of the quantum allows for a comparison of the re-

sources present in quantum systems and thus informs us on which systems carry

the most resources for a given scenario. We can then attempt to address the

usefulness of the quantum in an operational setting and associate the figure of

merit quantifying the advantage of an operational task with a measure of the

quantum resource. However, typical quantum systems are subjected to noise. It

is then necessary to consider ways to combat the negative effects of this noise and

identify conditions for which the quantum can be preserved.

Having discussed these questions in this thesis, it is natural to ask: what

next? Of course, there are still many interesting open questions in the study

of the quantification of quantum resources, their operational roles, and their be-

haviour in open quantum systems. We have given a non-extensive collection of

possibilities for further research, arising from this work, in the discussion above.

More generally, one of the most exciting prospects for the author is the cur-

rent evolution of quantum resource theories and the rigorous framework that

they impose upon measures of the resource. Understanding the interconversion

between different quantum resources may benefit in particular from developments

in quantum resource theories. It will also be worthwhile to study further other
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types of the quantum, such as steering and Bell nonlocality, from the perspective

of resource theories [80, 274]. Maybe even entirely new types of the quantum can

be identified from the resource theoretic approach.

Outside of the familiar realm of quantum information theory, experimentalists

and engineers are now busy attempting to fabricate quantum technologies [275–

279]. The expectation is that these technologies will be commercially viable

over the next few years, and one might argue that the only remaining obstacles

are experimental and engineering rather than theoretical. While this may be

true in some settings, we will always rely on theoretical breakthroughs to bring

fresh new concepts and prevent stagnation of ideas. Nevertheless, it could be

argued that quantum science might be served better by theoreticians tailoring

their research more closely to experiments (however daunting this may at times

sound). One area where theoreticians can play a key role is establishing the

supremacy of quantum technologies over those currently available [187], which

often relies on the field of computational complexity theory [280]. On the other

hand, perhaps the continued study of quantum foundations [281–283] can also

change our perspective over the years to come. What is clear is that we are

in very exciting times for quantum science, there is a lot more to explore and

discover. Let’s see what’s out there!



Appendix A

Isotropic Operations

Here we provide an operator sum representation of the isotropic operations, taken

from Ref. [TRB7]. The isotropic operations acting on a d-dimensional system in

the state ρ are written as [107]

Λ(ρ) = tΦ(ρ) + (1− t) I
d
, (A.1)

where Φ is either unitary, Φ(ρ) = UρU †, or antiunitary, Φ(ρ) = UρᵀU †, for some

unitary U with ρᵀ denoting the transposition of ρ in the standard basis. In

particular, we provide the Kraus operators {Ki}i when U = I. To find the Kraus

operators for a general U , one simply needs to transform the Kraus operators by

Ki → UKi. Note that quantum correlations are invariant under local unitary

transformations, and so here when one considers the local isotropic operations as

a subtype of the LCPO, it is sufficient to work with just the case U = I.

The operator sum representation of Λ is

Λ(ρ) =
∑
i

KiρK
†
i , (A.2)

where {Ki}i are a set of Kraus operators obeying the condition ∑
iK
†
iKi = I.

In the following we first determine the allowed range of t for the isotropic oper-

ation Λ to be CPTP by imposing that the corresponding Choi state is positive

semidefinite [284]. The Choi state is given by [242]

τ := Λ⊗ I(|Ψ+〉 〈Ψ+|) (A.3)
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where |Ψ+〉 := 1√
d

∑d
i=1 |i〉 ⊗ |i〉 is a pure (d × d)-dimensional state and I is the

d-dimensional identity quantum operation, with {|i〉}di=1 the standard basis.

The unitary case

First we consider the unitary Φ case. Considering only U = I, for any (d × d)-

dimensional state ρ it holds that Λ ⊗ I(ρ) = tρ + (1 − t) I
d
⊗ Tr1(ρ), with Tr1(ρ)

the partial trace of ρ over the first d-dimensions. The corresponding Choi state

is

τ = t |Ψ+〉 〈Ψ+|+
1− t
d2 I. (A.4)

It is simple to see that the unique eigenvalues of τ are {t+ (1− t)/d2, (1− t)/d2}.

By imposing both unique eigenvalues to be non-negative we obtain the allowed

range

− 1
d2 − 1 ≤ t ≤ 1, (A.5)

which is tighter than what was reported in [107]. We now provide the operator

sum representation of Λ. Consider the d2 − 1 generalised Gell-Mann matrices

{γi}d
2−1
i=1 [285], and fix the d-dimensional identity matrix as γ0 := I. The d2 Kraus

operators {Ki}d
2−1
i=0 of Λ are then

K0 =
√

1 + (d2 − 1)t
d2 γ0,

Ki =
√

1− t
2d γi ∀i ∈ {1, 2, . . . , d2 − 1}. (A.6)

We can now verify the condition ∑d2−1
i=0 K†iKi = I. Since the Kraus operators

are self-adjoint, and since γ2
0 = I and ∑d2−1

i=1 γ2
i = 2(d2−1)

d
I, we have

d2−1∑
i=0

K†iKi =
(∣∣∣∣∣1 + (d2 − 1)t

d2

∣∣∣∣∣+ 2(d2 − 1)
d

×
∣∣∣∣1− t2d

∣∣∣∣
)
I

= 1
d2

(∣∣∣1 + (d2 − 1)t
∣∣∣+ (d2 − 1) |(1− t)|

)
I. (A.7)

By exploiting Eq. (A.5), we can simplify |1 + (d2 − 1)t| = 1 + (d2 − 1)t and
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|1− t| = 1− t, hence

d2−1∑
i=0

K†iKi = 1
d2

(
1 + (d2 − 1)t+ (d2 − 1)(1− t)

)
I

= I. (A.8)

Antiunitary case

Now we treat the more complicated case of Φ being antiunitary (again, fixing U =

I). For any (d×d)-dimensional state ρ, we have Λ⊗I(ρ) = tρᵀ1 +(1−t) I
d
⊗Tr1(ρ),

where ρᵀ1 indicates partial transposition of ρ in the standard basis with respect

to the first d-dimensions [20]. The corresponding Choi state is

τ = t

d

d∑
i,j=1
|i〉 〈j| ⊗ |j〉 〈i|+ 1− t

d2 I. (A.9)

By inspection the d2 eigenvectors of τ can be found to be |k〉 ⊗ |k〉 with k ∈

{1, 2, . . . , d}, and 1√
2(|k〉⊗|l〉±|l〉⊗|k〉) for all pairs k < l. The unique eigenvalues

of τ are then {(1− t)/d2, t/d+ (1− t)/d2,−t/d+ (1− t)/d2}, which are all non-

negative when

− 1
d− 1 ≤ t ≤ 1

d+ 1 . (A.10)

As before, to write down the operator sum representation of Λ, we can use the

generalised Gell-Mann matrices {γi}d
2−1
i=1 with the identity γ0 := I. Now, consider

the set of vectorisations of the generalised Gell-Mann matrices, {~vi}d
2−1
i=1 with

~vi = vec(γi), where

vec(X) := {〈1|X|1〉 , 〈1|X|2〉 , . . . , 〈1|X|d〉 , 〈2|X|1〉 , 〈2|X|2〉 , . . . , 〈d|X|d〉}

(A.11)

is the vectorisation of X. We can split the generalised Gell-Mann matrices into

two categories based on their corresponding vectorisations: (1) sign(~vi.~vi) = 1,

and (2) sign(~vi.~vi) = −1. There are (d + 2)(d − 1)/2 generalised Gell-Mann of

type (1) and d(d− 1)/2 of type (2). We call the generalised Gell-Mann matrices

of type (1): {γ(1)
i }

(d+2)(d−1)/2
i=1 , and of type (2): {γ(2)

i }
d(d−1)/2
i=1 . Now we can give
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the d2 Kraus operators {Ki}d
2−1
i=0 of Λ as

K0 =
√

1 + (d− 1)t
d2 γ0,

Ki =
√

1 + (d− 1)t
2d γ

(1)
i ∀i ∈ {1, 2, . . . , (d+ 2)(d− 1)/2},

Ki+(d+2)(d−1)/2 =
√

1− (d+ 1)t
2d γ

(2)
i ∀i ∈ {1, 2, . . . , d(d− 1)/2}. (A.12)

We can also consider the condition ∑d2−1
i=0 K†iKi = I. Since the Kraus op-

erators are self-adjoint, and since γ2
0 = I, ∑(d+2)(d−1)/2

i=1 (γ(1)
i )2 = d2+d−2

d
I and∑d(d−1)/2

i=1 (γ(2)
i )2 = (d− 1)I, we have

d2−1∑
i=0

K†iKi =
(∣∣∣∣∣1 + (d− 1)t

d2

∣∣∣∣∣+ d2 + d− 2
d

×
∣∣∣∣∣1 + (d− 1)t

2d

∣∣∣∣∣
+ (d− 1)

∣∣∣∣∣1− (d+ 1)t
2d

∣∣∣∣∣
)
I

= 1
d2

(
|1 + (d− 1)t|+ (d2 + d− 2)

2 |1 + (d− 1)t|

+ d2 − d
2 |1− (d+ 1)t|

)
I

= 1
2d2

(
(d2 + d) |1 + (d− 1)t|+ (d2 − d) |1− (d+ 1)t|

)
. (A.13)

Then, we may use Eq. (A.10) to simplify |1 + (d− 1)t| = 1 + (d − 1)t and

|1− (d+ 1)t| = 1− (d+ 1)t, yielding ∑d2−1
i=0 K†iKi = I.



Appendix B

Robustness and Semidefinite

Programming

Consider a resource theory with a convex and compact set of free states F

equipped with a resource destroying quantum operation Φ such that Eq. (3.40)

holds. Here we show that the optimisation problem in Eq. (3.42), whose solu-

tion is the robustness of a resource, is a semidefinite program (SDP). Following

the general description of an SDP in Refs. [TRB2, 117, 125], consider two d-

dimensional self-adjoint operators X and C and two d′-dimensional self-adjoint

operators Y and D, along with a linear map Ψ that maps d-dimensional operators

to d′-dimensional operators such that the self-adjoint property is preserved. The

following optimisation problem is the primal problem of an SDP

minimise Tr(CX)

subject to Ψ(X) ≥ D,

X ≥ 0. (B.1)

Every SDP has a dual problem, given by

maximise Tr(DY )

subject to Ψ†(Y ) ≤ C,

Y ≥ 0, (B.2)
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where Ψ† is the dual map of Ψ, transforming from d′-dimensional operators to

d-dimensional operators. The dual of a map Ψ is the unique linear map Ψ†

satisfying [20, 46]

Tr(B†Ψ(A)) = Tr(Ψ†(B†)A) (B.3)

for any operators A and B. The solution to the dual problem of an SDP is

generally a lower bound to the solution of the primal problem. Strong duality

is said to hold when the solutions to both problems coincide [117, 125, 127]. A

sufficient condition for this is when the primal problem is feasible and the dual

problem is strictly feasible. The primal problem is feasible when there exists an

X ≥ 0 such that Ψ(X) ≥ D, while the dual problem is strictly feasible if there

exists a Y > 0 such that Ψ†(Y ) < C.

The robustness of a resource (plus 1) is given from Eq. (3.42) as the optim-

isation problem

RR(ρ) + 1 = minimise Tr(σ̃)

subject to Φ(σ̃) = σ̃,

ρ ≤ σ̃. (B.4)

Following the strategy of Ref. [TRB2], to see that this problem may be written

in the general form of the primal SDP in (B.1), first set C = I and X = σ̃ so that

Tr(CX) = Tr(σ̃). (B.5)

Now set the following operators, represented as (3d × 3d)-dimensional block di-

agonal matrices, as

Ψ(X) =


σ̃ 0 0

0 Φ(σ̃)− σ̃ 0

0 0 −Φ(σ̃) + σ̃



D =


ρ 0 0

0 0 0

0 0 0

 , (B.6)
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with the 0 denoting (d × d)-dimensional zero matrix. We have that Ψ(X) ≥ D

is equivalent to σ̃ ≥ ρ and Φ(σ̃) = σ̃. Then, since σ̃ ≥ ρ ≥ 0 implies X ≥ 0, we

have shown that Eq. (B.4) may be written in the standard SDP form of (B.1).

To find the dual of this problem, we set Y to be the (3d × 3d)-dimensional

matrix

Y =


Y1 ∗ ∗

∗ Y2 ∗

∗ ∗ Y3

 , (B.7)

where Y1, Y2 and Y3 are (d × d)-dimensional matrices and ∗ denotes matrices

that are irrelevant since we are generally dealing with the trace of a product of Y

with a diagonal matrix. We also need to find Ψ†(Y ), which may be found using

Eq. (B.3). Indeed,

Tr(YΨ(X)) = Tr (Y1σ̃ + Y2 (Φ(σ̃)− σ̃) + Y3 (−Φ(σ̃) + σ̃))

= Tr
(
Y1σ̃ + (Φ†(Y2)− Y2)σ̃ + (−Φ†(Y3) + Y3)σ̃

)
= Tr

(
Ψ†(Y )X

)
, (B.8)

where

Ψ†(Y ) = Y1 + Φ†(Y2)− Y2 − Φ†(Y3) + Y3

= Y1 + Φ†(Y2 − Y3)− (Y2 − Y3) (B.9)

and Φ† is the dual of the resource destroying quantum operation Φ. Hence, we

can write the dual problem in (B.2) as

maximise Tr(ρY1)

subject to Y1 + Φ†(Y2 − Y3)− (Y2 − Y3) ≤ I,

Y1 ≥ 0, Y2 ≥ 0, Y3 ≥ 0, (B.10)

since Y ≥ 0 implies Y1 ≥ 0, Y2 ≥ 0 and Y3 ≥ 0.

Now we see that (B.10) may be rewritten into the form given in Eq. (3.43)

(plus 1) when the resource destroying quantum operation Φ is self dual, again

following the strategy of Ref. [TRB2]. First, it holds that Tr(ρY1) is maximised
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by having equality in the first constraint, i.e. Y1 + Φ†(Y2 − Y3) − (Y2 − Y3) = I.

By imposing this and noting that any self-adjoint operator Ỹ may be written as

Ỹ := Y2−Y3 for some Y2 ≥ 0 and Y3 ≥ 0, the dual problem becomes a constrained

optimisation over self-adjoint Ỹ ,

maximise 1− Tr
(
ρ(Φ†(Ỹ )− Ỹ )

)
subject to Φ†(Ỹ )− Ỹ ≤ I, (B.11)

where we impose the constraint Φ†(Ỹ )− Ỹ = Φ†(Y2−Y3)− (Y2−Y3) = I−Y1 ≤ I

from above since Y1 ≥ 0.

Now, if the resource destroying quantum operation is self-dual, i.e. Φ† = Φ,

then we can simplify the dual problem further to a constrained optimisation over

self-adjoint W , i.e.

maximise 1− Tr (Wρ)

subject to W ≤ I,

Φ(W ) = 0. (B.12)

To see this, we first note that Φ is idempotent on all self-adjoint operators, i.e.

Φ(Φ(Ỹ )) = Φ(Ỹ ) for all self-adjoint Ỹ . This can be shown from Eq. (3.40) by

using the linearity of Φ and the fact that Ỹ = Y2−Y3 for some Y2 ≥ 0 and Y3 ≥ 0.

Now, choose any Ỹ such that Φ(Ỹ )−Ỹ ≤ I and setW = Φ(Ỹ )−Ỹ . From the fact

that Φ is idempotent, we have Φ(W ) = 0. This means that the range of values

in the optimisation of (B.12) includes the range of values in. (B.11), so that the

solution of (B.11) must lower bound (B.12). On the other hand, pick any W ≤ I

such that Φ(W ) = 0 and set Ỹ = −W . This gives Φ(Ỹ ) − Ỹ = W ≤ I. Hence,

the solution of (B.12) is a lower bound to the solution of (B.11), which completes

the proof of their equivalence.

Finally, we rewrite (B.12) as

maximise 1− Tr (Wρ)

subject to W ≤ I,

Φ(W ) ≥ 0. (B.13)
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Indeed, it is clear that the solution of (B.12) lower bounds the solution of (B.13).

However, it also holds that the solution of (B.13) lower bounds the solution

of (B.12). To see this, consider any W ≤ I such that Φ(W ) ≥ 0 and set W ′ =

W−Φ(W ) so that Φ(W ′) = 0. We have thatW ′ ≤ W ≤ I and so for any validW

satisfying the constraints of (B.13) there is a valid W ′ satisfying the constraints

of (B.12) such that

1− Tr(W ′ρ) = 1− Tr(Wρ) + Tr(Φ(W )ρ) ≥ 1− Tr(Wρ), (B.14)

since Φ(W ) ≥ 0 implies Tr(Φ(W )ρ) ≥ 0.

It is simple to see that strong duality holds if the resource destroying quantum

operation is unital. A feasible solution to the primal problem is to choose X =

(1 + ε)I for some ε ≥ 0 so that X ≥ 0 and

Ψ(X) =


(1 + ε)I 0 0

0 0 0

0 0 0

 ≥

ρ 0 0

0 0 0

0 0 0

 = D (B.15)

for any ρ, where we use the use the unitality of Φ to see that Φ((1+ε)I)−(1+ε)I =

0. Furthermore, the dual problem is strictly feasible since one may pick

Y =


(1− ζ)I 0 0

0 I 0

0 0 I

 (B.16)

with 0 < ζ < 1 so that Y > 0 and

Ψ†(Y ) = (1− ζ)I < I = C, (B.17)

which follows from the unitality of Φ† since the dual of any quantum operation

is unital [20]. Strong duality holds in particular when Φ is self-dual (and hence

unital). The self duality of Φ holds if and only if an operator sum representation

of Φ may be found with a set of self-adjoint Kraus operators [286].

To summarise these results, if we consider a resource theory with a convex

and compact set of free states and equipped with a self-dual resource destroying

quantum operation Φ, then the robustness of the resource is given by the solution
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of two equivalent optimisation problems in Eq. (3.42) and Eq. (3.43), that are

the primal and dual problems of an SDP. Quantum coherence is an example of

a resource for which the robustness can be posed in such a way [TRB1, TRB2].

Indeed, the set of incoherent states with respect to the ONB {|ei〉}di=1 is convex

and compact, while a resource destroying quantum operation can be given by

∆(ρ) :=
d∑
i=1
|ei〉 〈ei|ρ|ei〉 〈ei| . (B.18)

Since the |ei〉 〈ei| are self-adjoint Kraus operators, we know that ∆(ρ) is self dual.

We finally report on the robustness of k coherence given in Eq. (3.53). So far,

the existence of a resource destroying quantum operation identifying the set I(k)

of free states with coherence number less than k has not yet been investigated

(for k > 2). However, it is still possible to pose the robustness of k coherence as

the solution to the primal problem of an SDP. We consider the problem

CR
k (ρ) = minimise Tr(σ̃)− 1

subject to σ̃

Tr(σ̃) ∈ I(k),

ρ ≤ σ̃, (B.19)

and provide a characterisation of all σ̃ such that σ̃/Tr(σ̃) ∈ I(k) with respect to

the ONB {|ei〉}di=1, proceeding to then show that (B.19) may be posed as an SDP.

Take the set C(k) of all combinations of k indices chosen from {1, 2, . . . , d}

with cardinality |C(k)| =
(
d
k

)
, where

(
d
k

)
is the binomial coefficient, along with

the set of projectors {PJ}J∈C(k) given by

PJ :=
∑
i∈J
|ei〉 〈ei| , (B.20)

where J ∈ C(k) is one combination of k indices from {1, 2, . . . , d}. Here it will be

useful to write any pure state |ψ〉 as

|ψ〉 =
∑
i∈J|ψ〉

ψi |ei〉 , (B.21)

with ∑i∈J|ψ〉 |ψi|
2 = 1, where the set J|ψ〉 ⊆ {1, 2, . . . , d} denotes the indices i such

that ψi 6= 0. If k =
∣∣∣J|ψ〉∣∣∣ is the cardinality of J|ψ〉, then |ψ〉 has a coherence
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number of k and J|ψ〉 ∈ C(k). This notation is useful since it allows us to identify

which of the |ei〉 the state |ψ〉 is coherent with respect to.

We now prove the following relation

σ̃ ≥ 0 , σ̃

Tr(σ̃) ∈ I(k) ⇔ σ̃ =
∑

J∈C(k−1)
σ̃J

such that ∀ J ∈ C(k − 1)

PJσ̃JPJ = σ̃J

σ̃J ≥ 0. (B.22)

First, suppose that we have a σ̃ ≥ 0 such that σ̃/Tr(σ̃) =: σ ∈ I(k). Using the

definition of I(k) in Section 2.1.1, we can always write

σ =
∑
i

qi |ψ(k)
i 〉 〈ψ

(k)
i | (B.23)

with {qi}i a probability distribution and |ψ(k)
i 〉 〈ψ

(k)
i | ∈ I(k), so that

σ̃ =
∑
i

tqi |ψ(k)
i 〉 〈ψ

(k)
i | (B.24)

where t := Tr(σ̃) ≥ 0 since σ̃ ≥ 0. Now, consider one of the pure states |ψ(k)
i 〉 =∑

j∈J
|ψ(k)
i
〉
ψ

(k)
ij |ej〉 with

∑
j∈J
|ψ(k)
i
〉

∣∣∣ψ(k)
ij

∣∣∣2 = 1 and |J|ψ(k)
i 〉
| < k. The action of any

PJ for J ∈ C(k − 1) is given by

PJ |ψ(k)
i 〉 =

∑
j∈J∩J

|ψ(k)
i
〉

ψ
(k)
ij |ei〉 (B.25)

so that PJ |ψ(k)
i 〉 = |ψ(k)

i 〉 if and only if J|ψ(k)
i 〉
⊆ J. Furthermore, there is always a

(not necessarily unique) J ∈ C(k−1) such that for any i we have J|ψ(k)
i 〉
⊆ J. Hence,

we can distribute each |ψ(k)
i 〉 to one choice of J ∈ C(k − 1) so that J|ψ(k)

i 〉
⊆ J,

giving the corresponding set NJ ⊆ {1, 2, . . . , i} for each J ∈ C(k−1) and allowing

us to define

σ̃J =
∑
i∈NJ

tqi |ψ(k)
i 〉 〈ψ

(k)
i | . (B.26)

By construction, we know that σ̃ = ∑
J∈C(k−1) σ̃J, and for all J ∈ C(k− 1) it holds

that PJσ̃JPJ = σ̃J. Finally, since each |ψ(k)
i 〉 〈ψ

(k)
i | ≥ 0, qi ≥ 0 and t ≥ 0 we know
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that σ̃J ≥ 0. This means that we have proved the right-hand direction of the

equivalence in (B.22).

On the other hand, suppose we have a σ̃ satisfying the conditions on the right-

hand side of (B.22). It is immediate to see that σ̃ ≥ 0 since it is a sum of positive

operators, so it just needs to be shown that σ̃/Tr(σ̃) ∈ I(k). We can always write

σ̃

Tr(σ̃) =
∑

J∈C(k−1)

Tr(σ̃J)
Tr(σ̃)

σ̃J
Tr(σ̃J)

. (B.27)

Since Tr(σ̃J)/Tr(σ̃) ≥ 0 with ∑
J∈C(k−1) Tr(σ̃J)/Tr(σ̃) = 1, we have therefore

written σ̃/Tr(σ̃) as a convex combination of the states σ̃J/Tr(σ̃J). Hence, if

σ̃J/Tr(σ̃J) ∈ I(k) for all J ∈ C(k−1), then we know from the convexity of I(k) that

σ̃/Tr(σ̃) ∈ I(k). To see that this is so, we write σ̃J/Tr(σ̃J) as a convex combination

of pure state projectors, i.e.

σ̃J
Tr(σ̃J)

=
∑
i

qJi |ψJ
i 〉 〈ψJ

i | (B.28)

for some probability distribution {qJi }i and an arbitrary set of pure state project-

ors {|ψJ
i 〉 〈ψJ

i |}i (with no prior constraint on their coherence number). Now we

consider the projection

PJσ̃JPJ

Tr (PJσ̃JPJ)
=

PJ
σ̃J

Tr(σ̃J)
PJ

Tr
(
PJ

σ̃J

Tr(σ̃J)
PJ

) =
∑
i q

J
iPJ |ψJ

i 〉 〈ψJ
i |PJ

Tr
(∑

i q
J
iPJ |ψJ

i 〉 〈ψJ
i |PJ

)
=

∑
i

χJ
i |χJ

i 〉 〈χJ
i | , (B.29)

where

χJ
i =

qJiTr
(
PJ |ψJ

i 〉 〈ψJ
i |PJ

)
Tr
(∑

i q
J
iPJ |ψJ

i 〉 〈ψJ
i |PJ

) ,
|χJ
i 〉 〈χJ

i | = PJ |ψJ
i 〉 〈ψJ

i |PJ

Tr
(
PJ |ψJ

i 〉 〈ψJ
i |PJ

) , (B.30)

with {χJ
i}i a probability distribution. It holds that |χJ

i 〉 〈χJ
i | ∈ I(k). Indeed, if

|ψJ
i 〉 = ∑

j∈J
|ψJ
i
〉
ψJ
ij |ej〉 with

∑
j∈J
|ψJ
i
〉

∣∣∣ψJ
ij

∣∣∣2 then

PJ |ψJ
i 〉 =

∑
j∈J∩J

|ψJ
i
〉

ψJ
ij |ei〉 (B.31)
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which is a pure state with
∣∣∣J ∩ J|ψJ

i 〉

∣∣∣ < k non-zero terms. We therefore know that

PJσ̃JPJ

Tr (PJσ̃JPJ)
∈ I(k) (B.32)

since it can be written as a convex combination of pure state projectors {|χJ
i 〉 〈χJ

i |}

that have coherence number of less than k. Furthermore, the condition PJσ̃JPJ =

σ̃J in (B.22) requires that

σ̃J
Tr(σ̃J)

= PJσ̃JPJ

Tr (PJσ̃JPJ)
∈ I(k). (B.33)

As we have already discussed, this implies that σ̃/Tr(σ̃) ∈ I(k). We have thus

shown the equivalence in (B.22).

We may then use the equivalence in (B.22) to rewrite Eq. (B.19) as

CR
k (ρ) = minimise Tr(σ̃)− 1

subject to σ̃ =
∑

J∈C(k−1)
σ̃J,

PJσ̃JPJ = σ̃J ∀ J ∈ C(k − 1),

σ̃J ≥ 0 ∀ J ∈ C(k − 1),

ρ ≤ σ̃. (B.34)

To see that CR
k (ρ) + 1 may be written as an SDP in the standard form of (B.1)

we first label the set C(k − 1) with indices {1, 2, . . . , n}, where n :=
(

d
k−1

)
, such

that i ∈ {1, 2, . . . , n} corresponds to one of the J ∈ C(k − 1). We then fix X to

be an (n× d)-dimensional self-adjoint operator and define the projectors {Qi}ni=1

that project onto the i-th d-dimensional block of X so that ∑n
i=1QiXQi is block

diagonal. Each QiXQi will represent the corresponding σJ. Now, by defining C

as the (n× d)-dimensional identity operator and

Ψ(X) =
(

d∑
i=1

Tr\iQiXQi

)
⊕
(

d∑
i=1

QiXQi −X
)
⊕
(
X −

d∑
i=1

QiXQi

)

⊕
(

d∑
i=1

PiQiXQiPi −QiXQi

)
⊕
(

d∑
i=1

QiXQi − PiQiXQiPi

)
,

D = ρ⊕ 0⊕ 0⊕ 0⊕ 0, (B.35)

with Tr\i the partial trace over all but block i, ⊕ the direct sum operation, Pi a

projection onto the i-th block corresponding to PJ, and 0 the (n×d)-dimensional
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zero operator. By requiring Ψ(X) ≥ D, the first term of Ψ(X) imposes σ̃ ≥ ρ,

the next two terms impose that X is block diagonal with blocks of σJ for J ∈

C(k− 1), while the final two terms impose that PJσ̃JPJ = σ̃J for all J ∈ C(k− 1).

Furthermore, X ≥ 0 implies that σ̃J ≥ 0 for all J ∈ C(k − 1). Finally, Tr(CX) =∑
J∈C(k−1) Tr (σ̃J) = Tr

(∑
J∈C(k−1) σ̃J

)
= Tr(σ̃) with σ̃ = ∑

J∈C(k−1) σ̃J. To see that

this SDP is feasible, one only needs to consider the case σ̃ = I, with I/d ∈ I(k)

for any k.
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We now provide the theorems and corresponding proofs of any unproven theorems

in the main text. These theorems and proofs are taken from Refs. [TRB3, TRB4,

TRB6, TRB7].

Theorem 3 For any pure state |ψ〉 = ∑d
i=1 ψi |ei〉 with

∑d
i=1 |ψi|2 = 1, it holds

that [TRB3]

CR
k (|ψ〉 〈ψ|) ≥ max

{
C l1(|ψ〉 〈ψ|) + 1

k − 1 − 1 , 0
}
. (C.1)
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Proof. Here we use the notation discussed in Eq. (B.21) and consider a pure state

|ψ〉 = ∑
i∈J|ψ〉 ψi |ei〉 such that∑i∈J|ψ〉 |ψi|

2 = 1, with coherence number k′ =
∣∣∣J|ψ〉∣∣∣.

If k′ < k ≤ d then |ψ〉 〈ψ| ∈ I(k) and CR
k (|ψ〉 〈ψ|) = 0. Furthermore, it can be

seen that C l1(|ψ〉 〈ψ|) ≤ k′ − 1 since |ψ〉 can be thought of a k′-dimensional pure

state embedded in a d-dimensional space. Hence,

C l1(|ψ〉 〈ψ|) + 1
k − 1 − 1 ≤ 0, (C.2)

so that the right hand side of Eq. (C.1) is also zero.

Now consider a pure state |ψ〉 with k′ ≥ k. Let us write the optimal pseudo-

mixture of |ψ〉 satisfying the infimum in Eq. (3.53) as

|ψ〉 〈ψ| ≤ (1 + CR
k (|ψ〉 〈ψ|))δ(k)

? (C.3)

for some optimal δ(k)
? ∈ I(k). This implies that

〈φ|ψ〉 〈ψ|φ〉 ≤ (1 + CR
k (|ψ〉 〈ψ|)) 〈φ|δ(k)

? |φ〉 (C.4)

for any pure state |φ〉, which can be chosen in particular to be

|φ〉 = 1√
k′

∑
j∈J|ψ〉

eiθj |ej〉 (C.5)

where ψj = |ψj|eiθj with θj ∈ [0, 2π] for any j ∈ J|ψ〉. It can then be seen that

〈φ|ψ〉 〈ψ|φ〉 = 1
k′

 ∑
j∈J|ψ〉

|ψj|

2

. (C.6)

On the other hand,

〈φ|δ(k)
? |φ〉 ≤ sup

δ(k)∈I(k)
〈φ|δ(k)|φ〉

= sup
{qi}i,{|ψ

(k)
i 〉}i

|ψ(k)
i 〉〈ψ

(k)
i |∈I

(k) ∀ i

∑
i

qi
∣∣∣〈φ|ψ(k)

i 〉
∣∣∣2

= sup
|ψ(k)〉〈ψ(k)|∈I(k)

∣∣∣〈φ|ψ(k)〉
∣∣∣2 , (C.7)
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where in the first equality we use the fact that any state δ(k)
? ∈ I(k) with coher-

ence number less than k can be written as a convex combination of pure states

projectors |ψ(k)
i 〉 〈ψ

(k)
i | ∈ I(k).

To achieve the above supremum, we write a general pure state with a coherence

number of less than k as

|ψ(k)〉 =
∑

j∈J|ψ(k)〉

dj |ej〉 (C.8)

with
∣∣∣J|ψ(k)〉

∣∣∣ < k and ∑j∈J|ψ(k)〉
|dj|2 = 1. Now,

∣∣∣〈φ|ψ(k)〉
∣∣∣2 = 1

k′

∣∣∣∣∣∣∣
∑

j∈J|ψ〉∩J|ψ(k)〉

dje
−iθj

∣∣∣∣∣∣∣
2

≤ 1
k′

∑
j∈J|ψ〉∩J|ψ(k)〉

|dj|2
∑

j∈J|ψ〉∩J|ψ(k)〉

∣∣∣eiθj ∣∣∣2

≤

∣∣∣J|ψ〉 ∩ J|ψ(k)〉

∣∣∣
k′

≤

∣∣∣J|ψ(k)〉

∣∣∣
k′

≤ k − 1
k′

, (C.9)

where in the first inequality we use the Cauchy-Schwarz inequality and in the

final two inequalities we use the fact that |ψ(k)〉 has a coherence number of less

than k while |ψ〉 has a coherence number of k′ ≥ k. Equality is achieved in (C.9)

by picking the pure state

|ψ(k)〉 = 1√
k − 1

∑
j∈J|ψ(k)〉

eiθj |ej〉 (C.10)

such that J|ψ(k)〉 ⊂ J|ψ〉 and
∣∣∣J|ψ(k)〉

∣∣∣ = k − 1. We therefore have that

〈φ|δ(k)
? |φ〉 ≤ sup

|ψ(k)〉〈ψ(k)|∈I(k)

∣∣∣〈φ|ψ(k)〉
∣∣∣2 = k − 1

k′
. (C.11)

Putting everything together, Eq. (C.4) implies that

1
k′

 ∑
j∈J|ψ〉

|ψj|

2

≤ (1 + CR
k (|ψ〉 〈ψ|))k − 1

k′
, (C.12)
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which may be rearranged to

CR
k (|ψ〉 〈ψ|) ≥ 1

k − 1

 ∑
j∈J|ψ〉

|ψj|

2

− 1,

= C l1(|ψ〉 〈ψ|) + 1
k − 1 − 1, (C.13)

where in the equality we use the explicit form of the l1 norm of coherence for

pure states in Eq. (3.50). The right-hand side of this inequality can be negative

for some |ψ〉, while the robustness is always a non-negative quantity. Hence, we

include the max in (C.1). The saturability of (C.1) is dealt with by Theorem 4.

Theorem 4 For any x ∈
[

1√
j
, 1√

j−1

]
and j ∈ {2, 3, . . . , d} [TRB3],

CR
k (|ψ(x, j)〉 〈ψ(x, j)|) = max

{
C l1(|ψ(x, j)〉 〈ψ(x, j)|) + 1

k − 1 − 1, 0
}
. (C.14)

Proof. For j < k it is clear that |ψ(x, j)〉 has a coherence number of less than k

and therefore CR
k (|ψ(x, j)〉 〈ψ(x, j)|) = 0. Furthermore, it can be seen that from

Eq. (3.50) and Eq. (3.56) that

C l1(|ψ(x, j)〉 〈ψ(x, j)|) =
(

(j − 1)x+
√

1− (j − 1)x2
)2
− 1, (C.15)

so that the range of the l1 norm of coherence for x ∈
[

1√
j
, 1√

j−1

]
is [j − 2, j − 1].

Hence, for j < k
C l1(|ψ(x, j)〉 〈ψ(x, j)|) + 1

k − 1 − 1 ≤ 0 (C.16)

so that the right hand side of Eq. (C.14) is also zero.

We now restrict to j ≥ k. From the range of the l1 norm of coherence for

x ∈
[

1√
j
, 1√

j−1

]
we know that

C l1(|ψ(x, j)〉 〈ψ(x, j)|) + 1
k − 1 − 1 ≥ 0. (C.17)

Hence, we need to show for j ≥ k and x ∈
[

1√
j
, 1√

j−1

]
that

CR
k (|ψ(x, j)〉 〈ψ(x, j)|) = C l1(|ψ(x, j)〉 〈ψ(x, j)|) + 1

k − 1 − 1

=

(
(j − 1)x+

√
1− (j − 1)x2

)2

k − 1 − 1. (C.18)
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Theorem 3 tells us that the right-hand side of this equation lower bounds the

left-hand side, and so we can prove the equality by showing that the right-hand

side of this equation also upper bounds the left-hand side. To do this, we provide

an operator σ̃ that satisfies the constraints

σ̃ =
∑

J∈C(k−1)
σ̃J, (C.19)

PJσ̃JPJ = σ̃J ∀ J ∈ C(k − 1), (C.20)

σ̃J ≥ 0 ∀ J ∈ C(k − 1), (C.21)

|ψ(x, j)〉 〈ψ(x, j)| ≤ σ̃, (C.22)

with PJ given in Eq. (B.20), and where

Tr(σ̃) =

(
(j − 1)x+

√
1− (j − 1)x2

)2

k − 1 , (C.23)

so that Tr(σ̃) − 1 ≥ CR
k (|ψ(x, j)〉 〈ψ(x, j)|), since CR

k (|ψ(x, j)〉 〈ψ(x, j)|) is the

minimum of Tr(σ̃) − 1 over all σ̃ satisfying the constraints (C.19)–(C.22), see

Eq. (B.34).

First consider the set C1 ⊂ C(k − 1) of all combinations of k − 1 indices from

{1, 2, . . . , j − 1}, the set C2 ⊂ C(k − 1) of all combinations of k − 1 indices from

{1, 2, . . . , j} that are not included in C1, and the set C3 ⊂ C(k − 1) of all the

remaining combinations of k − 1 indices from {1, 2, . . . , d}. We have that

C1 ∩ C2 = ∅, C1 ∩ C3 = ∅, C2 ∩ C3 = ∅,

C1 ∪ C2 ∪ C3 = C(k − 1). (C.24)

Now, for J ∈ C(k − 1) we define

σ̃J =


PJM1PJ ∀J ∈ C1;

PJM2PJ ∀J ∈ C2;

0 ∀J ∈ C3,

(C.25)

where M1 and M2 are (d × d)-dimensional constant matrices with entries a and

b, respectively, and 0 is the (d × d)-dimensional zero matrix. The entries of M1
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and M2 are given by

a =
−(k − 2) + (j − 1)(j + k − 3)x2 − (k − 3)(j − 1)x

√
1− (j − 1)x2

(k − 1)(j − k + 1)
(
j−1
k−2

) ,

b =
1 + (j − 1)x

(
−x+

√
1− (j − 1)x2

)
(k − 1)

(
j−1
k−2

) , (C.26)

where
(
j−1
k−2

)
is the binomial coefficient.

It is clear that each σ̃J satisfies constraint (C.20) by construction. Further-

more, since for x ∈
[

1√
j
, 1√

j−1

]
we have a ≥ 0 and b ≥ 0, it holds that each σ̃J

satisfies constraint (C.21). Now we set

σ̃ =
∑

J∈C(k−1)
σ̃J, (C.27)

so that by construction σ̃ satisfies constraint (C.19). It can be found that the

eigenvalues of σ̃ − |ψ(x, j)〉 〈ψ(x, j)| are all non-negative: there are j − 2 ei-

genvalues equal to
(
j−3
k−2

)
a +

(
j−3
k−3

)
b, whose non-negativity follows from the non-

negativity of a and b; d − j + 1 eigenvalues that are zero; and a final non-

negative eigenvalue. Hence, σ̃ satisfies constraint (C.22). We therefore know

that Tr(σ̃)− 1 ≥ CR
k (|ψ(x, j)〉 〈ψ(x, j)|).

To calculate the trace of σ̃, we use the fact that

σ̃ = M̃1 + M̃2, (C.28)

where

M̃1 :=
∑
J∈C1

σ̃J (C.29)

=



[(
j−1
k−2

)
−
(
j−2
k−3

)]
a

[(
j−2
k−3

)
−
(
j−3
k−4

)]
a · · ·

[(
j−2
k−3

)
−
(
j−3
k−4

)]
a[(

j−2
k−3

)
−
(
j−3
k−4

)]
a

[(
j−1
k−2

)
−
(
j−2
k−3

)]
a · · ·

[(
j−2
k−3

)
−
(
j−3
k−4

)]
a

... ... . . . ...[(
j−2
k−3

)
−
(
j−3
k−4

)]
a

[(
j−2
k−3

)
−
(
j−3
k−4

)]
a · · ·

[(
j−1
k−2

)
−
(
j−2
k−3

)]
a


⊕ 0,

where we consider a matrix of dimension j − 1 along with the zero matrix of
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dimension d− j + 1. Furthermore,

M̃2 :=
∑
J∈C2

σ̃J (C.30)

=



(
j−2
k−3

)
b
(
j−3
k−4

)
b · · ·

(
j−3
k−4

)
b
(
j−2
k−3

)
b(

j−3
k−4

)
b
(
j−2
k−3

)
b · · ·

(
j−3
k−4

)
b
(
j−2
k−3

)
b

... ... . . . ... ...(
j−3
k−4

)
b
(
j−3
k−4

)
b · · ·

(
j−2
k−3

)
b
(
j−2
k−3

)
b(

j−2
k−3

)
b
(
j−2
k−3

)
b · · ·

(
j−2
k−3

)
b
(
j−1
k−2

)
b


⊕ 0,

where we consider a matrix of dimension j along with the zero matrix of dimension

d− j. We then find that

Tr(σ̃) = Tr(M̃1) + Tr(M̃2)

= (j − 1)
[(
j − 1
k − 2

)
−
(
j − 2
k − 3

)]
a+ (j − 1)

(
j − 2
k − 3

)
b+

(
j − 1
k − 2

)
b

=

(
(j − 1)x+

√
1− (j − 1)x2

)2

k − 1 , (C.31)

as given by Eq. (C.23) and hence showing that showing that the right-hand side

of (C.18) upper bounds the left-hand side, thus giving the desired equality and

concluding the proof. Finally, it is interesting to note that as a result of this

theorem, the σ̃ in Eq. (C.27) is actually (one of) the optimal operators satisfying

the optimisation in (B.19).

Theorem 7 For any N qubit state ρ and Π(ρ) as in Eq. (4.16),

Π(ρ) = 1
2N

(
I⊗N +

3∑
i=1

ciσ
⊗N
i

)
(C.32)

where ci = Tr(ρσ⊗Ni ) ∈ [−1, 1] [TRB4].

Proof. We fix a sequence of states {ρ0, ρ1, . . . ρ2(N−1)} defined by

ρj := 1
2
(
ρj−1 + Ujρj−1U

†
j

)
(C.33)

for j ∈ {1, 2, . . . 2(N − 1)}. By setting ρ0 = ρ it can be seen that ρ2(N−1) = Π(ρ).
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Consider the arbitrary N -qubit state ρ written in the form

ρ = 1
2N

3∑
i1i2...iN=0

Rρ
i1i2...iNσi1 ⊗ σi2 . . .⊗ σiN , (C.34)

where the Rρ
i1,i2,...iN = Tr (ρ σi1 ⊗ σi2 . . .⊗ σiN ) ∈ [−1, 1] with σ0 := I as discussed

in Section 1.3. Convex combination of two arbitrary N -qubit states ρ and ρ′ with

weighting q ∈ [0, 1] gives

qρ+ (1− q)ρ′ = 1
2N

3∑
i1i2...iN=0

R
qρ+(1−q)ρ′
i1i2...iN σi1 ⊗ σi2 . . .⊗ σiN (C.35)

where Rqρ+(1−q)ρ′
i1i2...iN = qRρ

i1i2...iN + (1− q)Rρ′

i1i2...iN .

We now understand the evolution of the Rρj
i1i2...iN for each step j in Eq. (C.33).

The action of U1 on ρ is

U1ρU
†
1 = 1

2N
3∑

i1i2...iN=0
Rρ
i1i2...iNσ1σi1σ1 ⊗ σ1σi2σ1 ⊗ σi3 . . .⊗ σiN . (C.36)

From σ1σiσ1 = −(−1)δ0i+δ1iσi, we have that the correlation tensor elements of

U1ρU
†
1 are RU1ρU

†
1

i1i2...iN = (−1)δ0i1+δ1i1+δ0i2+δ1i2Rρ
i1i2...iN . By using Eq. (C.33) and

Eq. (C.35), it is clear that the Rρ1
i1i2...iN of ρ1 are Rρ

i1i2...iN if i1 and i2 are (i) any

combination of only 1 and 0 or (ii) any combination of only 2 and 3, and zero

otherwise.

Generally, for j ∈ [1, N−1], the Rρj
i1i2...iN of ρj are Rρj−1

i1i2...iN if ij and ij+1 are (i)

any combination of only 1 and 0 or (ii) any combination of only 2 and 3, and zero

otherwise. For j ∈ [N, 2(N −1)] the conditions are analogous, where the Rρj
i1i2...iN

of ρj are Rρj−1
i1i2...iN if ij and ij+1 are (i) any combination of only 2 and 0 or (ii) any

combination of only 1 and 3, and zero otherwise. For the final state ρ2(N−1), the

only non-zero Rρ2(N−1)
i1i2...iN are those for which {i1i2 . . . iN} consists of only 0, 1, 2, or

3, and that for these elements Rρ2(N−1)
i1i2...iN = Rρ

i1i2...iN . Therefore,

Π(ρ) = ρ2(N−1) = 1
2N

3∑
i=0

Rρ
ii...iσi ⊗ σi . . .⊗ σi

= 1
2N

(
I⊗N +

3∑
i=1

ciσ
⊗N
i

)
, (C.37)

where we use Rρ
ii...i = Tr(ρσ⊗Ni ) =: ci for i ∈ {1, 2, 3} and Rρ

00...0 = Tr(ρ) = 1.
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Theorem 8 For any N , the set ofM-separable M3
N states SM3

N
M is either [TRB4]:

• the set of all M3
N states, for any M ≤ dN/2e;

• the set of M3
N states represented in the {c1, c2, c3} space by the unit oc-

tahedron O1 with vertices {±1, 0, 0}, {0,±1, 0} and {0, 0,±1}, for any

M > dN/2e.

Proof. We begin by working in the partition dependent setting and note that

the M3
N states are invariant under any permutation of the N qubits. Hence,

for M3
N states it does not matter which qubits belong to each subsystem of a

givenM -partition {Qα}Mα=1 and it is sufficient to specify a partition only with the

cardinalities {Kα}Mα=1 of theM subsystems. This means that the set of {Qα}Mα=1-

separable M3
N states SM3

N

{Qα}Mα=1
can be specified by the set SM3

N

{Kα}Mα=1
describing only

the cardinalities {Kα}Mα=1 of the M -partition. We now identify S
M3
N

{Kα}Mα=1
. In

order to characterise this set, we simply need to identify its representation in the

{c1, c2, c3} space. We know from Eq. (4.2) that

S
M3
N

{Kα}Mα=1
=
{

Π(ς) | ς ∈ S{Qα}Mα=1

}
(C.38)

for any M -partition {Qα}Mα=1, and so we just need to find the possible values of

{c1, c2, c3} for any ς ∈ S{Qα}Mα=1
with cj = Tr(ςσ⊗Nj ). Using Eq. (2.21), the vector

~c = {c1, c2, c3} of any ς ∈ S{Qα}Mα=1
is given by

cj = Tr
(
ςσ⊗Nj

)
= Tr

[(∑
i

piρ
(1)
i ⊗ ρ

(2)
i ⊗ . . .⊗ ρ

(M)
i

)
σ⊗Nj

]

=
∑
i

piTr
[
ρ

(1)
i σ⊗K1

j ⊗ ρ(2)
i σ⊗K2

j ⊗ . . .⊗ ρ(M)
i σ⊗KMj

]

=
∑
i

pi
M∏
α=1

Tr
(
ρ

(α)
i σ⊗Kαj

)
=
∑
i

pi
M∏
α=1

c
(α)
i,j , (C.39)

where in the final equality we denote c(α)
i,j = Tr

(
ρ

(α)
i σ⊗Kαj

)
as the j-th component

of the vector ~c (α)
i = {c(α)

i,1 , c
(α)
i,2 , c

(α)
i,3 } corresponding to the arbitrary state ρ(α)

i of

subsystem α. Eq. (C.39) can be simplified further by introducing the Hadamard

product as the componentwise multiplication of vectors, i.e. for ~u = {u1, u2, u3}

and ~v = {v1, v2, v3} the Hadamard product is ~u ◦ ~v = {u1v1, u2v2, u3v3}. Using
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the Hadamard product simplifies Eq. (C.39) to

~c =
∑
i

pi~c
(1)
i ◦ ~c

(2)
i ◦ . . . ◦ ~c

(M)
i . (C.40)

Hence, the ~c vector of any {Qα}Mα=1-separable state is a convex combination of

Hadamard products of ~c (α)
i vectors corresponding to states ρ(α)

i of subsystem α.

Since ~c (α)
i describes a Kα qubit M3

N state, we know from the discussion in step

one of Section 4.2.1 that ~c (α)
i ∈ B1 when Kα is odd and ~c (α)

i ∈ T(−1)Kα/2 when Kα

is even, and so S
M3
N

{Kα}Mα=1
is represented by the following set

S
M3
N

{Kα}Mα=1
= conv

(
A(1) ◦ A(2) ◦ . . . ◦ A(M)

)
, (C.41)

with

A(α) =

 B1 if Kα is odd,

T(−1)Kα/2 if Kα is even,
(C.42)

where we define the Hadamard product between any two sets A and B as A◦B =

{~a ◦ ~b |~a ∈ A , ~b ∈ B} and the convex hull conv(A) is the set of all possible

convex combinations of elements in A. The commutativity and associativity of

the Hadamard product allow us to rearrange the ordering in Eq. (C.41) in the

following way

S
M3
N

{Kα}Mα=1
= conv

[(
©

µ:Kµeven
T(−1)Kµ/2

)
◦
(
©
ν:Kνodd

B1

)]
, (C.43)

where ©n
α=1A

(α) := A(1) ◦ A(2) ◦ . . . ◦ A(n).

By writing any vector in T±1 as a convex combination of the vertices of T±1,

one can easily show that

T−1 ◦ T−1 = T1,

T1 ◦ T1 = T1,

T1 ◦ T−1 = T−1, (C.44)

so that

©
µ:Kµeven

T(−1)Kµ/2 = T(−1)M− , (C.45)

where M− is the number of Kµ with odd Kµ/2. Similarly, one can see that

T±1 ◦ B1 = B1. (C.46)
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Finally, we have that

conv (©n
i=1B1) = O1 ∀n ≥ 2. (C.47)

Indeed, since

{{±1, 0, 0}, {0,±1, 0}, {0, 0,±1}} ⊂ ©n
i=1B1,

conv{{±1, 0, 0}, {0,±1, 0}, {0, 0,±1}} = O1, (C.48)

we know that O1 ⊆ conv (©n
i=1B1). Now we will show that O1 ⊇ conv (©n

i=1B1).

To do so, it is sufficient to see that

~b ◦~b′ ∈ O1 (C.49)

for any ~b,~b′ ∈ B1, which trivially implies that ©n
i=1B1 ⊆ O1, and therefore

conv (©n
i=1B1) ⊆ conv (O1) = O1. Equation (C.49) holds since

|b1b
′
1|+ |b2b

′
2|+ |b3b

′
3| = |b1| |b′1|+ |b2| |b′2|+ |b3| |b′3|

= ~n · ~n′ = ||~n|| ||~n′|| cos θ ≤ 1,

(C.50)

where we define ~n = {|b1|, |b2|, |b3|} and ~n′ = {|b′1|, |b′2|, |b′3|}, respectively, as the

vectors corresponding to ~b and ~b′ in the positive octant of the unit ball B1, and θ

as the angle between these vectors.

Now, due to Eqs. (C.43), (C.45), (C.46) and (C.47), and also the fact that

conv(A) = A for any convex set A, we identify four cases:

1. if Kα is even for all values of α then

S
M3
N

{Kα}Mα=1
= conv

(
©

µ:Kµeven
T(−1)Kµ/2

)

= conv
(
T(−1)M−

)
= T(−1)M− , (C.51)

where M− is the number of Kµ with odd Kµ/2;
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2. if Kα is odd for just one value of α then

S
M3
N

{Kα}Mα=1
= conv

[(
©

µ:Kµeven
T(−1)Kµ/2

)
◦ B1

]
= conv (T±1 ◦ B1)

= B1; (C.52)

3. if Kα is odd for all values of α then

S
M3
N

{Kα}Mα=1
= conv

(
©
ν:Kνodd

B1

)
= O1; (C.53)

4. otherwise,

S
M3
N

{Kα}Mα=1
= conv

[(
©

µ:Kµeven
T(−1)Kµ/2

)
◦
(
©
ν:Kνodd

B1

)]

= conv

[
T±1 ◦

(
©
ν:Kνodd

B1

)]
= conv [T±1 ◦ B1 ◦ . . . ◦ B1]

= conv

(
©
ν:Kνodd

B1

)
= O1. (C.54)

For any even N -qubit system, only a {Kα}Mα=1-partitioning within cases 1,

3 and 4 may be realised. In case 1, i.e. when Kα is even for any α, we have

S
M3
N

{Kα}Mα=1
= T(−1)M− , where M− is the number of Kα with odd Kα/2. However,

one can simply see that (−1)M− = (−1)N/2, and thus SM3
N

{Kα}Mα=1
is the set T(−1)N/2

of all M3
N states. Otherwise, in cases 3 and 4, we have S

M3
N

{Kα}Mα=1
= O1. For any

odd N -qubit system, only a {Kα}Mα=1-partitioning within cases 2, 3 and 4 may be

realised. In case 2, i.e. when Kα is odd for only one α, we have S
M3
N

{Kα}Mα=1
= B1,

and thus SM3
N

{Kα}Mα=1
is the set B1 of all M3

N states. Otherwise, in cases 3 and 4, we

have S
M3
N

{Kα}Mα=1
= O1.
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In summary, for any N , the set of {Kα}Mα=1 separable M3
N states SM3

N

{Kα}Mα=1
is

either:

• the set of all M3
N states, for any allowed {Kα}Mα=1-partition such that Kα is

odd for at most one value of α;

• the set of M3
N states represented in the {c1, c2, c3} space by the unit octa-

hedronO1 with vertices {±1, 0, 0}, {0,±1, 0} and {0, 0,±1}, for any allowed

{Kα}Mα=1-partition such that Kα is odd for more than one value of α.

Now we are ready to characterise the set of M -separable M3
N states S

M3
N

M .

Indeed, Eq. (2.24) and Eq. (4.2) together imply that SM3
N

M is just the convex hull

of the union of all the sets of {Kα}Mα=1-separable M3
N states SM3

N

{Kα}Mα=1
obtained by

considering all the possible M -partitions {Kα}Mα=1. Furthermore, one can easily

see that for any M ≤ dN/2e one can always find an M -partition {Kα}Mα=1 such

that Kα is odd for at most one value of α and thus SM3
N

M = M3
N , whereas for any

M > dN/2e this is impossible and thus SM3
N

M is described in the {c1, c2, c3} space

by the unit octahedron O1 with vertices {±1, 0, 0}, {0,±1, 0} and {0, 0,±1}.

Theorem 9 The projection Π of M3
N -fication in Eq. (4.16) is an incoherent oper-

ation with respect to the reference ONB {|i1i2 . . . iN〉}1
i1,i2,...,iN=0, i.e. there exists

an operator sum representation of Π with Kraus operators {Ki}i such that (3.1)

holds [TRB6].

Proof. Consider an operator sum representation of Π with 22(N−1) Kraus operat-

ors {Ki}22(N−1)
i=1 given by

Ki = 1
2N−1U

′
i (C.55)

with U ′i from Eq. (4.17), so that for a given state ρ

22(N−1)∑
i=1

KiρK
†
i = 1

22(N−1)

22(N−1)∑
i=1

U ′iρU
′†
i = Π(ρ). (C.56)

It is clear that
22(N−1)∑
i=1

K†iKi = 1
22(N−1)

22(N−1)∑
i=1

I⊗N = I⊗N , (C.57)
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so that we have a valid set of Kraus operators.

The condition of (3.1) specialised to coherence is KiδK
†
i /Tr(KiδK

†
i ) ∈ I for

all δ ∈ I and for any i. It is clear that this holds for the above set of Kraus

operators if and only if U ′iδU
′†
i ∈ I for all δ ∈ I and for any i. Furthermore, we

know from Eq. (4.17) that any U ′i can be written as a product of unitaries from

the set {Uj}2(N−1)
j=1 given in Eq. (4.15). Hence, it holds that U ′iδU

′†
i ∈ I for all

δ ∈ I and for any i if UjδU †j ∈ I for all δ ∈ I and all j ∈ {1, 2, . . . , 2(N − 1)}.

This is now shown to be the case.

Consider any incoherent state δ ∈ I with respect to the reference ONB

{|i1i2 . . . iN〉}1
i1,i2,...,iN=0, given by

δ =
1∑

i1,i2,...,iN=0
pi1i2...iN |i1i2 . . . iN〉 〈i1i2 . . . iN | , (C.58)

with {pi1i2...iN}1
i1,i2,...,iN=0 a probability distribution. Then, using the definition of

{Uj}2(N−1)
j=1 in Eq. (4.15), it can be seen that

U1δU
†
1 =

1∑
i1,i2,...,iN=0

pi1i2...iN |π(i1)π(i2) . . . iN〉 〈π(i1)π(i2) . . . iN | , (C.59)

where |π(0)〉 = |1〉 and |π(1)〉 = |0〉, i.e. that the action of U1 is just to perform

a bit flip on the first two qubits. It is then clear that U1δU
†
1 ∈ I. Similarly, the

action of Uj for j ∈ {1, 2, . . . , N − 1} is just to perform a bit flip on the j-th and

(j + 1)-th qubit so that UjδU †j ∈ I. Now, when j = N we also have

UNδU
†
N =

1∑
i1,i2,...,iN=0

pi1i2...iN |π(i1)π(i2) . . . iN〉 〈π(i1)π(i2) . . . iN | , (C.60)

so that UNδU †N ∈ I. Moreover, the action of Uj for j ∈ {N,N + 1, . . . , 2(N − 1)}

is to perform a bit flip on the (j − N + 1)-th and (j − N + 2)-th qubit so

that UjδU †j ∈ I. Overall then, it holds that UjδU †j ∈ I for any δ ∈ I and all

j ∈ {1, 2, . . . , 2(N − 1)}.

Theorem 10 For a (2× dB)-dimensional bipartite system it holds for all LCPO

ΛA
CPO acting on subsystem A that

P Γ
A(ΛA

CPO ⊗ IB(ρAB)) ≤ P Γ
A(ρAB) (C.61)

for any state ρAB and any dB [TRB7].
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Proof. As discussed in Section 3.1.2, the CPOs acting on a qubit are either com-

pletely decohering or unital. When ΛA
CPO is completely decohering, we know from

Eq. (3.13) that ΛA
CPO ⊗ IB(ρAB) ∈ CABCQ so that

0 = P Γ
A(ΛA

CPO ⊗ IB(ρAB)) ≤ P Γ
A(ρAB). (C.62)

Hence, to establish (C.61) we only need to consider the case when ΛA
CPO is unital,

i.e. ΛA
CPO(IA) = IA.

Consider the dilation τABC of ΛA
CPO ⊗ IB(ρAB) into a larger space including

an extra ancillary system C, such that TrC [τABC ] = ΛA
CPO ⊗ IB(ρAB) [287]. The

following inequality holds

P Γ
A(τABC) ≥ P Γ

A(TrC [τABC ]) = P Γ
A(ΛA

CPO ⊗ IB(ρAB)) , (C.63)

since we know that the interferometric power never increases under any operation

on subsystems other than A [30]. It is then sufficient to prove that P Γ
A(ρAB) ≥

P Γ
A(τABC) to arrive at the desired inequality. To do this, we use the fact that

any unital qubit operation can be equivalently written as a convex combination

of unitaries [288], i.e.

ΛA
CPO(ρA) =

∑
i

piU
A
i ρ

A(UA
i )† (C.64)

for some mixture of unitaries {UA
i }i with probabilities {pi}i acting on subsystem

A in the state ρA. This can be used to explicitly write the dilated state as

τABC = UABC(ρAB ⊗ |αC〉 〈αC |)(UABC)†, (C.65)

with

UABC =
∑
i

UA
i ⊗ IB ⊗ |iC〉 〈iC | ,

|αC〉 =
∑
i

√
pi |iC〉 , (C.66)

where {|iC〉}i is an ONB of the ancilla C.

We now make use of the explicit form of the interferometric power for states

of a (2 × dB)-dimensional bipartite system given in Ref. [30], i.e. P Γ
A(ρAB) =
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α2 min {λi}3
i=1, where {λi}3

i=1 are the eigenvalues of the real and symmetric 3× 3

matrix

M := 1
2

∑
m,n

qm+qn 6=0

(qm − qn)2

qm + qn
〈φABm |~σA ⊗ IB|φABn 〉 〈φABn |(~σA)T ⊗ IB|φABm 〉 , (C.67)

with ρAB = ∑
m qm |φABm 〉 〈φABm | written in its spectral decomposition, and ~σA the

vector of the three Pauli matrices. We also write any 2-dimensional spectrum

as Γ = {β − α, β + α} with α, β ∈ R. For convenience, in the following we set

α = 1 and β = 0 and consider the standard equispaced spectrum {−1, 1}, but

this proof can hold for any α and β.

The task is then to calculate the matrix M ′ corresponding to τABC . The ei-

genvalues of τABC are the same as those of ρAB, while the normalised eigenvectors

of τABC are given by

|ΦABC
m 〉 = UABC |φABm 〉 ⊗ |αC〉 . (C.68)

We can then write

M ′ = 1
2

∑
m,n

qm+qn 6=0

(qm − qn)2

qm + qn
〈ΦABC

m |~σA ⊗ IBC |ΦABC
n 〉 〈ΦABC

n |(~σA)T ⊗ IBC |ΦABC
m 〉

= 1
2

∑
m,n

qm+qn 6=0

(qm − qn)2

qm + qn
〈φABm | ⊗ 〈αC | (UABC)†~σA ⊗ IBCUABC |φABn 〉 ⊗ |αC〉

〈φABn | ⊗ 〈αC | (UABC)†(~σA)T ⊗ IBCUABC |φABm 〉 ⊗ |αC〉

= 1
2

∑
m,n

qm+qn 6=0

(qm − qn)2

qm + qn
〈φABm |

∑
i

pi(UA
i )†~σAUA

i ⊗ IB|φABn 〉

〈φABn |
∑
j

pj(UA
j )†(~σA)TUA

j ⊗ IB|φABm 〉 , (C.69)

where we have used the fact that UABC |αC〉 = ∑
i
√
piU

A
i ⊗ IB |iC〉. From the

correspondence between the special unitary group SU(2) and special orthogonal

group SO(3), we can see that for each i there exists an orthogonal matrix Ri such

that (UA
i )†~σAUA

i = Ri~σ
A. We thus obtain

M ′ = LMLT , (C.70)

where L = ∑
i piRi is a real matrix such that LTL ≤ I.
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Finally, let us consider the eigenvalues of M ′. If L is non-invertible we know

that M ′ has a zero eigenvalue, and hence P Γ
A(ρAB) ≥ P Γ

A(τABC) = 0. Instead, if

M ′ is invertible, consider the unit vector |v〉 constructed by

|v〉 = (LT )−1 |v0〉√
||(LT )−1 |v0〉||

, (C.71)

where |v0〉 is the eigenvector ofM corresponding to the smallest eigenvalue λmin ≡

min{λi}3
i=1 of M . It is then simple to see that

λ′min ≤ 〈v|M ′|v〉 = λmin

||(LT )−1 |v0〉||
≤ λmin, (C.72)

where λ′min is the minimum eigenvalue of M ′ and we have used the fact that∣∣∣∣∣∣(LT )−1 |v0〉
∣∣∣∣∣∣ ≥ 1 since LTL ≤ I. Combined with Eq. (C.63), we then have that

P Γ
A(ρAB) = λmin ≥ λ′min = P Γ

A(τABC) ≥ P Γ
A(ΛA

CPO ⊗ IB(ρAB)), (C.73)

establishing the monotonicity of the interferometric power under unital operations

on a qubit subsystem A. The above inequality and (C.62), together imply (C.61).

Theorem 11 For a (dA×dB)-dimensional bipartite system, it holds for all LCPO

ΛA
CPO acting on subsystem A of the form ΛA

CPO(ρA) = tΦA(ρA) + (1− t) IA
dA
, with

t ∈ [0, 1] and ΦA(ρA) a unitary transformation acting on any state ρA of subsystem

A, that

P Γ
A(ΛA

CPO ⊗ IB(ρAB)) ≤ P Γ
A(ρAB) (C.74)

for any state ρAB of the bipartite system and any dA and dB [TRB7].

Proof. It can be seen that

ΛA
CPO ⊗ IB(ρAB) = tΦA ⊗ IB(ρAB) + (1− t) I

A

dA
⊗ TrA(ρAB). (C.75)

When ΦA is a unitary transformation, i.e. ΦA(ρA) = UAρA(UA)† for any local

unitary UA, and t ∈ [0, 1], we have that ΛA
CPO⊗ IB(ρAB) is just a convex combin-

ation between UA⊗ IBρAB(UA⊗ IB)† and IA/dA⊗TrA(ρAB). From the convexity
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of the quantum Fisher information [199], it holds that

FHA
Γ

(
ΛA
CPO ⊗ IB(ρAB)

)
= FHA

Γ

(
tUA ⊗ IBρAB(UA ⊗ IB)† + (1− t) I

A

dA
⊗ TrA(ρAB)

)

≤ tFHA
Γ

(
UA ⊗ IBρAB(UA ⊗ IB)†

)
+ (1− t)FHA

Γ

(
IA

dA
⊗ TrA(ρAB)

)
= tFHA

Γ

(
UA ⊗ IBρAB(UA ⊗ IB)†

)
≤ FHA

Γ

(
UA ⊗ IBρAB(UA ⊗ IB)†

)
, (C.76)

where in the second equality we use the fact that FHA
Γ

(
IA
dA
⊗ TrA(ρAB)

)
= 0,

which follows by noting that
[
IA
dA
⊗ TrA(ρAB), HA

Γ ⊗ IB
]

= 0. Using the above

inequality, we arrive at the monotonicity of the interferometric power,

P Γ
A(ΛA

CPO ⊗ IB(ρAB)) = 1
4 inf
{HΓ

A}
FHA

Γ

(
ΛA
CPO ⊗ IB(ρAB)

)
≤ 1

4 inf
{HΓ

A}
FHA

Γ

(
UA ⊗ IBρAB(UA ⊗ IB)†

)
= P Γ

A(UA ⊗ IBρAB(UA ⊗ IB)†)

= P Γ
A(ρAB), (C.77)

where in the third equality we use the invariance of the interferometric power

under local unitary transformations [30].

Theorem 12 For any state ρAB of any (dA × dB)-dimensional bipartite sys-

tem [TRB7],

EΓ(ρAB) ≤ P Γ
A(ρAB). (C.78)

Proof. The proof of this theorem relies on the recently proved fact that the

quantum Fisher information is (four times) the convex roof of the variance [209,

210], i.e.

FHA
Γ

(ρAB) = 4 inf
{qi}i,{|ψABi 〉〈ψABi |}i

ρAB=
∑

i
qi|ψABi 〉〈ψABi |

∑
i

qiVHA
Γ

(|ψABi 〉 〈ψABi |). (C.79)
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It then holds that

FHA
Γ

(ρAB) = 4 inf
{qi}i,{|ψABi 〉〈ψABi |}i

ρAB=
∑

i
qi|ψABi 〉〈ψABi |

∑
i

qiVHA
Γ

(|ψABi 〉 〈ψABi |)

≥ 4 inf
{qi}i,{|ψABi 〉〈ψABi |}i

ρAB=
∑

i
qi|ψABi 〉〈ψABi |

∑
i

qi inf
{HA

Γ }
VHA

Γ
(|ψABi 〉 〈ψABi |)

= 4 inf
{qi}i,{|ψABi 〉〈ψABi |}i

ρAB=
∑

i
qi|ψABi 〉〈ψABi |

∑
i

qiE
Γ(|ψABi 〉 〈ψABi |)

= 4EΓ(ρAB), (C.80)

where in the second equality we use the definition of the interferometric entan-

glement for pure states in Eq. (5.23), while in the final equality we use the fact

that the interferometric entanglement is defined for mixed states through the

convex roof construction, see Eq. (5.25). From (C.80) and the definition of the

interferometric power in Eq. (5.18), we arrive at the desired inequality,

P Γ
A(ρAB) = 1

4 inf
{HA

Γ }
FHA

Γ
(ρAB)

≥ inf
{HA

Γ }
EΓ(ρAB)

= EΓ(ρAB). (C.81)
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