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ABSTRACT 
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ABSTRACT 

Metal pollutants such as copper released into the aqueous environment have been 

increasing as a result of anthropogenic activities, a topic causing global concern. 

Adsorption-based treatment technologies offer opportunities to remediate metal 

pollutants from municipal and industrial wastewater effluent. The aim of this 

work was to evaluate the capability of modified cellulose nanowhisker (CNW) 

adsorbents for the remediation of copper from water matrices under realistic 

conditions using response surface methodology (RSM) and artificial neural 

network (ANN) models. 

The first part of the study explored the preparation and characterisation of 

modified CNW adsorbents. It also focused on the stability of the modified CNW 

adsorbents at different time intervals under dry conditions (up to 28 days) and in 

the water matrix (up to 7 days). The results showed that the modified CNW 

adsorbents were stable at different time intervals under dry conditions and in the 

water matrix and proved that the functional groups were permanent and did not 

degrade under the tested conditions. The stability of these modified CNW 

adsorbents under these conditions, which is relevant from both the manufacturing 

and application perspectives, is reported for the first time in this study.  

The second part of the work focused on using copper as a case study for heavy 

metal pollution in a clean water matrix, to evaluate removal by modified CNWs 

under several conditions and ranges appropriate to wastewater treatment plants 

(WWTPs), using factorial experimental design. RSM and ANN models were 

employed in order to optimise the system and to create a predictive model to 

evaluate the Cu(II) removal performance by the modified CNW adsorbents. 

Moreover, unseen experiments not belonging to the training data set, located both 

inside and outside the test parameter system, were performed to test the model 

suitability. This is also novel, as generally only one or two parameter variations 

have been tested, without checking the chosen model suitability for parameters 

lying between the tested parameters, and certainly not for parameters lying 

outside the tested parameter space, as has been done in this study. The results 

obtained showed that the ANN model outperformed the RSM model when 

predicting copper removal from a clean water matrix. The Langmuir and 
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Freundlich isotherm models were applied to the equilibrium data, and the results 

revealed that the Langmuir isotherm (R2 = 0.9998) had better correlation than the 

Freundlich isotherm (R2 = 0.9461). Experimental data was also tested in terms of 

kinetics studies using pseudo-first order and pseudo-second order kinetic models. 

The results showed that the pseudo-second-order model accurately described the 

kinetics of adsorption. 

 The third part of the work was aimed at gaining a deeper understanding of the 

complexity and variability of the wastewater matrix, including evaluating the 

impact of the wastewater matrix temporally on adsorbent performance to 

remediate copper pollutant from a real-world wastewater matrix. This study has 

demonstrated that the wastewater matrix composition, which is both complex and 

variable, has an impact on adsorbent capability and performance. A benchmark 

study was adopted as a ónewô water quality parameter to inform on the effects of 

the wastewater matrix (wastewater composition and its variability) on the 

modified CNW adsorbentôs capability to remediate copper from this matrix. 

Since the process of adsorption from wastewater is often complicated due to the 

variation in wastewater composition, results obtained from the benchmark 

experiments were included as one of the independent variables in ANN 

modelling, unlike in other optimisation studies. The performance of the ANN and 

RSM models was statistically evaluated in terms of coefficient of determination 

(R2), absolute average deviation (AAD), and root mean squared error (RMSE) on 

predicted experimental outcomes. The ANN model including the variability of 

wastewater composition fitted the experimental data with excellent accuracy and 

better prediction (R2 = 0.9963) than both the ANN model that did not include this 

variability (R2 = 0.9945), and the RSM model (R2 = 0.9409). The outcome of this 

study showed that by supplying the ANN model with the data obtained from the 

benchmark experiments as the fourth independent variable, it was possible to 

improve the predictability of the ANN model. 

Continuous flow experiments for remediation of spiked Cu(II) from the 

wastewater matrix were conducted. However, the physical structure of modified 

CNW adsorbents renders them unsuitable for use in column operation. Therefore, 

a more detailed study of the mechanical properties of CNW adsorbents would be 

necessary in order to improve the strength and stability of the adsorbents. This 
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work has demonstrated that modified CNW are promising adsorbents to 

remediate copper from water matrices under realistic conditions including 

wastewater complexity and variability. The use of models to predict the test 

parameter system and account for matrix variability when evaluating CNW 

adsorbents for remediating Cu from a real-world wastewater matrix may also 

provide the foundation for assessing other treatment technologies in the future.  
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CHAPTER 1: INTRODUCTION 

1.1 THESIS OVERVIEW  

This study focuses on the modification of cellulose nanowhisker (CNW) and 

evaluates the capability of this modified adsorbents for the remediation of copper 

from the water matrices. Chapter Two begins with a review of the literature 

relating to the sources of copper in water, and their impact upon health and the 

environment. The amount of copper pollutant released into the aqueous 

environment is increasing as a result of anthropogenic activities, with the effects 

of this pollutant on the ecosystem causing global concern. This chapter also 

introduces treatment technologies for copper removal from water and wastewater, 

followed by current knowledge on CNW as a potential adsorbent. This chapter 

also presents a review on the application of response surface methodology (RSM) 

and artificial neural network (ANN) in developing an approach for the evaluation 

of heavy metals adsorption process. The results chapters commence with the 

characterisation of CNW before and after the modification. In Chapter Four, the 

size, morphology, surface charge, and stability of unmodified CNW and oxidised 

CNW adsorbents are summarised. The potential of oxidised CNW adsorbents for 

the remediation of Cu(II) from a clean water matrix using RSM and ANN models 

is described in Chapter Five. A deeper understanding of the wastewater matrix 

(wastewater composition and its variability) and the remediation of spiked Cu(II) 

from a real wastewater effluent are summarised in Chapters Six and Seven, 

respectively. Considerations for design and application to remediate Cu(II) from 

wastewater by developing a continuous flow experiment are described in Chapter 

Eight.  
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1.2 RESEARCH BACKGROUND 

Adsorption is a complex process, as it involves the interaction of various 

parameters. Moreover, the complexity and variability of the wastewater matrix 

also has a direct impact on the process performance (Hanafiah et al., 2014; Ileri et 

al., 2014). In addition, studies tend to focus on evaluating one single parameter at 

a time, which assumes each parameter operates independently. This is non-

practical because parameter interactions cannot be elucidated using this approach 

(Turan et al., 2013b).  

Developing a new mathematical modelling for remediation process not only can 

reduce cost and time in wastewater treatment, but also to investigate the effects of 

input variables or factors on an output variable or response. The capabilities of 

these models were applied to the case study: remediation of copper from water 

matrices using modified cellulose nanowhisker (CNW) adsorbents. In this study, 

the central composite design (CCD) was selected because as it has been 

extensively applied in adsorption studies (Bingol et al., 2012; Shanmugaprakash 

and Sivakumar, 2013). The mathematical models, response surface methodology 

(RSM), and artificial neural network (ANN) are among the most popular models 

used in research on remediation of heavy metals from the clean water matrix (Li  

et al., 2014; Mandal et al., 2015). This approach has also been used for the study 

of adsorption of dyes and organic compounds from water matrices (Gengec et al., 

2013; Sinha et al., 2013).  

Copper is a naturally occurring element which is found in water, air, and soil, and 

is considered as one of the most dangerous substances found in the environment 

(CEC, 1976). It has been identified in many water matrices originating from 

industrial and municipal waste, mining operations, coal fired power generation, 

and urban runoff (Kadirvelu et al., 2001; Pazwash, 2011; Pereira et al., 2009). 

Although small amounts of copper are essential for human health, high 

concentrations of copper in water are recognised as a major problem that can 

cause physiological and health effects (Lim and Schoenung, 2010). The 

maximum guideline concentration limit for copper discharge to water has been 

established by the Water Framework Directive of water policy discharge to inland 
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surface water directive (2000/60/EC) (CEC, 2000). With these strict guidelines 

for the regulated levels of copper for wastewater discharge (1ï28 µg/L), proper 

and suitable treatment is required in order to meet these discharge limits.  

Treatment technologies such as chemical precipitation, ion exchange, reverse 

osmosis, membrane technologies, and electrochemical treatments have been 

proposed for the removal of copper from industrial effluent (Gavrilescu, 2004; 

Wang and Chen, 2009). These technologies have their own limitations, for 

instance, high operating costs, high energy requirements, low adsorption capacity, 

and the production of toxic sludge (Wang and Chen, 2009).  

Adsorption has become one of the alternative treatments for the removal of low 

concentrations of heavy metals from the water matrices. The adsorption process 

has been practiced widely in the wastewater treatment due to operational 

simplicity, regeneration and reuse of adsorbent, and low cost treatment 

technology (Cojocaru et al., 2009). Activated carbon, for instance, is a widely 

employed adsorbent due to its high porosity and surface area. However, various 

studies have demonstrated the limitations of activated carbon as an expensive and 

non-renewable adsorbent for heavy metals removal (Geyikci et al., 2012; Reddy 

et al., 2012). From a sustainability and economical perspective, adsorbents 

derived from renewable and sustainable resources are an interesting option. Fly 

ash (Javadian et al., 2015), natural zeolites (Ansari et al., 2015), clay (Unuabonah 

et al., 2013) and agricultural biomass (Thirumavalavan et al., 2010) are the 

examples of promising sources of adsorbents due to their low cost and 

abundance.  

Nevertheless, without physical and chemical modifications, these untreated or 

unmodified adsorbents can cause several problems, for example, high chemical 

oxygen demand (COD), biological oxygen demand (BOD) and total organic 

carbon (TOC) due to the release of soluble organic compounds contained in plant 

materials (Himanshu and Vashi, 2014; O'Connell et al., 2008a). Therefore, 

chemical modifications and pre-treatment methods have been developed in order 

to increase the adsorption capacity and improve the adsorption performance. 

Chemical modifications are carried out by attaching the potential functional 

groups onto the adsorbent surface. The attachment of different functional groups 
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onto chemically modified biomass adsorbents such as fruit peels (Liu et al., 

2013), wood sawdust (Pereira et al., 2009), egg shell (Wang et al., 2013), jute 

fibre (Shukla and Pai, 2005b), and pine bark (Argun et al., 2009) have been 

reported. Furthermore, some plant waste requires separate pre-

treatment/purification to remove impurities and colours which could affect the 

performance of the adsorbents (Bulut and Tez, 2007).  

Cellulose has been identified as a promising adsorbent for the remediation of 

heavy metals from the water matrix (Alves et al., 2009; Isobe et al., 2013). In 

comparison with other biomass adsorbents, cellulose is the most abundant natural 

biopolymer on earth (Brown, 2004). Numerous chemical modifications and pre-

treatment methods for isolating CNW from various plant fibres have been 

attempted. One of the most common methods is acid hydrolysis using sulfuric 

acid, through which CNWs with length of 100-320 nm and width of 6-70 nm 

could be extracted from various plant fibres (Elazzouzi-Hafraoui et al., 2008; 

Hsieh, 2013). Although CNWs have been recognised due to their high surface 

area and high reactive group density on the surface, only limited research has 

been published on using CNWs as an adsorbent, as the majority of the literature 

has mainly focused on macroscopic lignocellulosic biomass such as jute, orange 

peel, wood sawdust, wood pulp, and sugarcane bagasse fibres, rather than pure 

cellulose (Eyley and Thielemans, 2014; Reddy, 2012). 

In recent years, 2,2,6,6-tetramethylpyperidine-1-oxyl TEMPO-mediated 

oxidation has frequently been used to introduce carboxyl functional groups on the 

surface of nanowhiskers or native cellulose without affecting the crystallinity or 

changing the original fibrous morphology (Saito et al., 2005). This study not only 

focuses on the modification of CNW through a controlled surface oxidation, but 

also on the stability of the oxidised CNW adsorbents under dry conditions and in 

the water matrix. Although the carboxyl group can also be introduced through 

esterification, the reported modification using succinic anhydride is not a suitable 

and sustainable process, as pyridine is a well-known problem in the chemical 

industry as it may cause harmful health effects (Health, 1992; Xu et al., 2015).  

While the application of oxidised CNW adsorbents in removing heavy metals is 

still in its development phase, other processes and modifying adsorbents are now 
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rapidly taking place, in line with the fast-paced growth in the field (Chand et al., 

2015; Duan et al., 2013; Góes et al., 2016). However, in many studies, the range 

of the investigated parameters for the adsorption process is often not 

representative of the actual conditions in a wastewater treatment plant (WWTP) 

(Thirumavalavan et al., 2010). Moreover, most of these previous studies focused 

on the adsorption process for the remediation of heavy metals from a clean water 

matrix, and little exists on real-world wastewater matrices. As the remediation 

process from wastewater is often complicated due to the variation in wastewater 

composition, studying this factor and its influence on adsorption behaviour and 

removal capability in the case of varying wastewater matrix composition could 

lead to a better understanding of the actual application performance of an 

adsorbent for remediating pollutants.  

However, most of the previous literature focuses attention on adsorption studies 

by using either RSM or ANN, without comparing the performances between 

these two models. Furthermore, the testing of both RSM and ANN using new sets 

of experiments not belonging to the training data set has only been undertaken by 

a limited number of studies on biomass adsorption, and without consideration of 

how the additional experiments represent the system and provide a more accurate 

indicator of performance (Bingol et al., 2012; Ghosh et al., 2015). Therefore, 

model suitability for interpolated and extrapolated experimental parameters was 

tested, which is rare in the existing literature, but provides valuable insights into 

applicability of the approaches tested in this work. Moreover, no work in the 

reported literature has included matrix complexity and the variability of the 

wastewater as one of the independent variables in ANN modelling. Therefore, in 

order to study the effect of variation in wastewater composition on removal of 

spiked Cu(II) from wastewater effluent, a benchmark experiment was conducted 

for each wastewater sample used in the experiments, which determined Cu(II) 

removal by oxidised CNW adsorbents for that particular water matrix in time and 

space. Studying the effect of matrix complexity and the variability of the 

wastewater, along with applying realistic conditions for WWTP, could lead to the 

establishment of a good knowledge based on adsorption behaviour and provide 

the foundation for further studies.  
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1.3 AIM  AND OBJECTIVES 

The aim of this research is to develop a new mathematical modelling using 

response surface methodology (RSM) and artificial neural network (ANN) 

models, to evaluate the capability of modified cellulose nanowhisker adsorbents 

for the remediation of copper from water matrices under realistic conditions, and 

to show the potential of these models to deal with the complexity and variability 

of the wastewater matrix.  

The specific objectives of this research are: 

1. To characterise the adsorbents through various physical and chemical 

analytical methods, in order to check the suitability of CNW adsorbents as an 

example of potential adsorbent to remove copper form water matrices. 

2. To build two models, RSM and ANN, and assess their abilities to determine 

the effectiveness of oxidised CNW adsorbents functionalised with 

carboxylate functionalities at removing copper ions from water matrices. 

3. To understand the complexity and variability of the wastewater matrix, 

including evaluating the impact of the wastewater matrix temporally on 

adsorbent performance to remediate copper pollutant from the wastewater 

matrix, in order to include matrix complexity and the variability of the 

wastewater as one of the independent variables in ANN modelling. 

4. To optimise the adsorption process parameters such as pH, temperature, 

sorbent dosage and initial Cu(II) concentration using RSM and ANN for the 

removal of copper from water matrices 

5. To test if CNWs functionalised with carboxylate functionalities could work 

in real application by developing a continuous flow experiment under 

optimum adsorption conditions.     

 

 

 

 



 

7 

CHAPTER 2: LITERATURE REVIEW 

2.1 IMPORTANCE OF WATER  

Water is a crucial part of everyday life as every living thing on earth, such as 

microorganisms, plants, animals and humans consist mostly of water, and require 

access to water in order to function. Moreover, water is also important in many 

industries and domestically, which in turn generate used water or wastewater. The 

wastes generated from anthropogenic activities decrease the quality of water and 

impact the natural ecosystems that support human health, food production and 

biodiversity (Singh et al., 2015). This is because untreated wastewater consists of 

many pollutants that can adversely affect organisms and flora that come into 

contact with that wastewater. Hence wastewater needs to be treated before being 

reused, whether this involves discharge into water bodies or not, and legislation 

such as The Urban Wastewater Treatment Directive (91/271/EEC) and the Water 

Framework Directive (2000/60/EC) clearly support the need for treatment prior to 

reuse (Hughes and Gray, 2013b). 

In general, the hydrological cycle is a model that describes the storage and 

circulation of water between the biosphere, atmosphere, lithosphere and 

hydrosphere. However, the hydrological cycle lacks the anthropogenic interaction 

which renders it more complex and is then known as the urban water cycle 

(Marsalek et al., 2008). The simple concept of the urban water cycle can be 

defined as a water balance where water that is used should be able to be treated, 

reused, and returned to nature as purified wastewater. Moreover, urban sources of 

water pollution have often been mentioned as the major cause of poor water 

quality (Eslamian, 2016). A growing population in urban areas for instance, will 

create more domestic waste and wastewater, placing increasing burdens on 

treatment systems and creating the need to meet over-stringent legislation aimed 

at reducing the pollutant load of treated water entering the receiving rivers and 

water bodies.  
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Urbanisation and industrialisation have caused serious ecological problems, such 

as water pollution in urban areas (Pazwash, 2011). Various pollution sources, for 

example toxic waste, agricultural activities, household wastes and transportation 

activities can contaminate ground and surface water (Ramwell et al., 2014; Revitt 

et al., 2014). Storm water is also considered a major pollution source and affects 

the quality of water (He et al., 2014). The sources of water pollution in the urban 

water cycle are illustrated in Figure 2.1. 

 

Figure 2.1: Sources of water pollution in the urban water cycle (Eckhardt, 2012) 

 

Anthropogenic pollutants are listed as harmful and dangerous to the environment 

and to life by most legislation (Chernen'kova et al., 2014; Liu et al., 2014c). The 

impact of human activities from agricultural and urban runoff, municipal 

wastewater, industrial trade, main drainage and landfill leachate often causes 

serious water pollution and affects water quality. Therefore, knowledge regarding 

anthropogenic pollutants is widely regarded as necessary to the understanding of 

the effect of these pollutants in any environmental system. These pollutants are 

categorised under three major groups: nonpolar organic compounds (pesticides, 

polycyclic aromatic hydrocarbons), polar organics (pharmaceuticals), and heavy 

metals (e.g. copper and cadmium). The major pollutants associated with 

anthropogenic activities are summarised in Table 2.1. 
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Table 2.1: The sources of anthropogenic pollutants 

Activity / source category Pollutants References  

Agriculture  Phosphates, nitrates, 

pesticides  

(Munoz et al., 2009; 

Yang et al., 2015) 

Urban activities 

¶ Transportation 

¶ Construction and building 

¶ Misconnections 

(wastewater draining to the 

wrong place) 

¶ Run-off activities (e.g .car 

washing) 

Phosphates, heavy 

metals, hydrocarbons 

(Carlson et al., 2011; 

Hasenmueller and 

Criss, 2013) 

Industrial  Polycyclic aromatic 

hydrocarbons (PAH), 

heavy metals  

(Gao et al., 2014; 

Nhapi, 2011; Pereira 

et al., 2009) 

Waste disposal  Nitrate, ammonia, 

phosphate 

(Divers et al., 2014; 

Rhind, 2009) 

Mining (abandoned mines)  Heavy metals  (Gavrilescu, 2004) 

2.2 WATER POLLUTION BY H EAVY METALS  

2.2.1 SOURCES OF HEAVY METALS IN WATER 

Sources of heavy metals derive in the environment mainly from anthropogenic 

activities as well as from natural constituents of the earthôs crust. Heavy metals 

are not only emitted from industrial activities, but also from major urban sources 

including urban storm water runoff, domestic effluents and municipal wastewater 

(Karamouz et al., 2010). For example, urban storm water runoff contains heavy 

metals such as lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) that enter the 

municipal wastewater treatment plants or otherwise contaminate surface water 

and ground water sources (Liu et al., 2014c).  

Moreover, natural processes can affect the environment and cause pollution 

through metal corrosion, atmospheric deposition, soil erosion and leaching of 

heavy metals, sediment re-suspension and metal evaporation (Chen et al., 2016). 

Heavy metals in soils resulting from weathering of the underlying bedrock are 
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normally harmless, and natural sources of metals become potentially toxic only 

when these heavy metals are transported by water in a dissolved or particulate 

state and enter the water environment through rivers or land runoff (He et al., 

2014). For example, monitoring studies in the United Kingdom (UK) have 

reported that the concentration of Cu, Pb and Zn from managed and unmanaged 

woodland exceed the required discharge limit , leading to metal concentrations in 

water reaching the threshold for adverse effects (Dore et al., 2014).  

Humans contribute largely to the sources of metals entering the environment 

through a variety of activities including industrial activities, mining, burning 

fossil fuels and domestic effluents. Major industrial sources, as listed in Table 

2.2, contribute significant amounts of heavy metals such as Cu, Cd, Pb, Zn, As, 

Fe, Hg, and Ni to the water environment. Although heavy metals present in 

wastewater are mainly industry-related, other factors such as household effluents, 

drainage water, business effluents (car washes, dental uses), and transportation 

activities can also provide a significant contribution to heavy metal loads 

(Carlson et al., 2011). 

Table 2.2: Significant heavy metal sources from industrial activities (Barakat, 

2011; Das, 2008) 

Sources Cu Cd Pb Zn As Fe Hg Ni 

Non-ferrous metal 

production 
 P P    P  

Electroplating P P P P P P P P 

Chemical manufacturing  P P    P P 

Paint and pigments  P P      

Metal manufacturing, 

refining, and finishing 

works 

  P P P P P P 

Leather tanning P P P P P P   
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2.2.2 IMPACT OF HEAVY METALS ON THE AQUATIC ENVIRONMENT  

Numerous studies showed that heavy metals are contained in our drinking water 

(conc), air and soil (Mudhoo et al., 2011; Revitt et al., 2014; Yanna et al., 2014). 

This is because metals cannot be subjected to chemical degradation beyond the 

elemental state (Lysenko et al., 2010). Being non-biodegradable, they can 

therefore cause a variety of toxicities towards aquatic and other ecosystems (Lim 

and Schoenung, 2010). Moreover, heavy metals can cause serious problems that 

can affect human health and aquatic life even at low concentrations (Ashraf et al., 

2011). For example, low concentrations of lead are capable of inhibiting the 

growth of plants due to instability in ion uptake by plants (Zhu et al., 2011). 

Therefore, in order to protect the environment, wastewater must be sufficiently 

treated before being discharged. Table 2.3 summarises the effects of toxic heavy 

metals on human health and aquatic life.  
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Table 2.3: The health hazards of various toxic heavy metals 

Heavy metals Health and risks Daily intake 

(µg/person) 

References 

Cadmium (Cd) ¶ Renal dysfunction 

¶ Lung disease, bone defects 

¶ Effects on the myocardium in animals 

¶ Larval mortality 

0.93 (Rao et al., 2012) 

Copper (Cu) ¶ Anaemia, liver and kidney damage 

¶ Stomach and intestinal irritation 
3.00 (Sengil and Oezacar, 2008) 

Iron (Fe) ¶ Conjunctivitis  

¶ Pneumoconiosis  
0.07 (Abdel-Sabour et al., 2001) 

Lead (Pb) ¶ Chronic damage to the nervous system 

¶ Effects on haemoglobin synthesis and anaemia 

¶ Gastrointestinal tract damage 

¶ Joint and reproductive system harm 

3.54 
 

(Azila et al., 2008) 

Mercury (Hg)  ¶ Tremors 

¶ Gingivitis 

¶ Congenital malformations 

0.36 (Ratcliffe et al., 1996) 

Nickel (Ni) ¶ Decreased body weight 

¶ Heart and liver damage 
1.40 (Oezer et al., 2008) 

Zinc (Zn) ¶ Metal fume fever, headache, aches, cough 0.05 (Lim and Schoenung, 2010) 
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2.2.3 COPPER AS A CASE STUDY HEAVY METAL  

Copper is a reddish-brown coloured metal, tough, ductile and corrosion resistant. 

It is the third most used metal in the world, and has widespread commercial uses 

in a range of applications (Bini and Bech, 2014). Copper is of major 

environmental concern (CEC, 1976) as it and its compounds are abundant in the 

environment and have become a threat to human health due to their water 

solubility and ready binding to natural organic materials (Sengil and Oezacar, 

2008). Moreover, copper compounds do not break down easily in the 

environment, thus can accumulate in animals and plants (Melignani et al., 2015). 

With a wide range of applications and ubiquitous usage, copper is one of the most 

common metals found in common industrial and municipal wastewater and urban 

runoff (Gardner et al., 2012; Liu et al., 2002).   

2.2.3.1 Sources of Copper in the Aquatic Environment 

Sources of copper in the aquatic environment can be divided into two categories: 

point and non-point emission sources.  

1. A point source is where the pollutants come from a single location, such as a 

pipe or drain and commonly from industrial waste. These include operations 

that produce copper, consume copper or use copper compounds in product 

manufacture. The point sources include mining operations, metal processing, 

coal fired power generation, electrical applications and chemical manufacture 

(Kadirvelu et al., 2001; Pereira et al., 2009). 

2. Non-point sources usually refer to indirect copper sources where the metal is 

introduced into the aquatic environment via storm run-off. Examples of some 

non-point sources include transport (mechanical wear and tear of brake pads 

and tyres), household plumbing, metallic building products, pavements, roads, 

and highways (Gavrilescu, 2004; He et al., 2014; Pazwash, 2011; Wang et al., 

2009). 
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2.2.3.2 Toxicity of copper to humans and the environment 

Copper is essential for humans and must be absorbed in small amounts on a daily 

basis by eating and drinking in order to maintain good health. However, high 

levels of copper can be harmful to health and cause anaemia, liver and kidney 

damage, and stomach and intestinal irritation (Sengil and Oezacar, 2008). 

Furthermore, copper pipe and tubing are widely used for domestic water systems, 

and contamination of drinking water can easily occur from corrosion of 

household pipes (Hu et al., 2012; Turek et al., 2011). Therefore, it cannot be 

easily removed from the water system. The data on copper concentration in 

wastewater from different industries and municipal wastewater, and the range of 

copper concentration in a clean water matrix are shown in Table 2.4. 

Table 2.4: Copper concentration in industrial and municipal wastewater, and the 

range reported for clean water matrix 

Wastewater 
Copper concentration 

(mg/L) 
References 

Electroplating  

20.0 

60.0 

20.0 

22.57 

(Sciban et al., 2007) 

(Malakootian et al., 2011) 

(Da'na and Sayari, 2012) 

(Kulbat et al., 2003) 

Copper plating industries 126.0 (Kadirvelu et al., 2001) 

Pharmaceutical  17.6 (Hamid et al.) 

Municipal 

0.5 

0.2 

0.02 

(Hughes and Gray, 2013a) 

(Kulbat et al., 2003) 

(Gardner et al., 2012) 

Clean water matrix 

25ï250 (Aksu and Isoglu, 2005) 

10ï400 (Zhu et al., 2009) 

25ï200 (Amarasinghe and Williams, 

2007) 
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Copper concentration varies in wastewater both temporally and spatially. Other 

constituents, which are pollutants themselves, also vary temporally and spatially 

(within a WWTP and between different wastewater streams). Wastewater 

entering a treatment works is not of constant composition; how treatment 

technology performs in the face of that matrix variability needs consideration in 

order to understand how to develop technologies for their abilities to treat 

wastewater. However, to date no work has examined the effect of wastewater 

composition and its variability on the remediation of Cu(II) from the wastewater 

matrix. Although there have been some studies that used real wastewater samples 

in their studies, assumptions that the real wastewater composition is constant, or 

that its composition has no effect on adsorbent capability, are questionable and 

may lead to inaccurate and non-trustworthy data being presented.  

2.2.3.3 Environmental regulations and standards for discharge of effluent into 

water 

Copper pollution in the water environment has been reported for a number of 

years and has been a topic of concern in UK legislation for decades (Hutton and 

Symon, 1986). Besides proper treatment being provided by waste management, 

the other way to improve environmental management is by reducing the 

production of wastes and restricting their discharge. Therefore, to support and 

improve the understanding of the environmental impacts of hazardous chemicals 

and pollutants, European Union (EU) directives have improved the scope of 

pollution control measures required to protect surface water. There are also a 

number of specific EU directives for heavy metal pollutants in the water 

environment. Such directives include:  

¶ Dangerous Substances Directive (76/464/EEC) (CEC, 1976) 

¶ The Sewage Sludge Directive (86/278/EEC) (CEC, 1986) 

¶ Water Framework Directive (2000/60/EC) (CEC, 2000) 

¶ Fish Directive (2006/44/EC) (CEC, 2006) 

¶ Environmental Quality Standards (2008/EC) (CEC, 2008) 
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The Dangerous Substances Directive (76/464/EEC) was one of the first water 

related, aquatic environment related, directives to be adopted. It covers pollution 

caused by certain dangerous substances, including heavy metals. The directive 

established the concept of List I and List II, with the purpose of eliminating 

pollution by the dangerous substances in List I and of reducing pollution by the 

dangerous substances in List II. In order to ensure clean waters are kept clean, 

European water policy has undergone a thorough restricting process. As a result, 

a new Water Framework Directive (2000/60/EC) was adopted in 2000 and will be 

the operational tool for community action in the field of water policy.  

Environmental Quality Standards (2008/EC) have been defined by EU directives 

including the Water Framework Directive (WFD) and the Priority Substances 

Daughter Directive, which specify the maximum permissible concentration of 

priority substances (e.g. metals, polyaromatic hydrocarbons, biocides) in the 

water environment. Environmental Quality Standards (EQS) are benchmarks, 

expressed as an annual average value (AA) or maximum allowable concentration 

(MAC), or other limit value of likely interest such as a predicted no effect value 

(PNEC), used as guidelines to ensure that the concentrations within the effluent, 

measured at the monitoring point, do not exceed the standards set (CEC, 2008).  

While EU Directives have established EQS to set maximum admissible 

concentrations of over 30 substances at EU level, the Chemical Investigation 

Programme (CIP) is a programme of the UK Water Industry Research (UKWIR) 

organisation, which assists in improving the management of wastewater treatment 

across the UK (Gardner et al., 2013). The main objective of this programme is to 

monitor the final effluents from over 160 wastewater treatment works and to 

determine the final concentrations of chemicals discharged to the water 

environment. The CIP covers more than 70 target chemicals, including nine 

metals (Ni, Pb, Cu, Zn, Cd, Hg, Fe, Al and Ag). The metals for which 

concentrations were reported to be above the standards were Cd, Cu, Ni, Pb and 

Zn (Gardner et al., 2012). Since the regulations regarding the discharge of 

wastewater are becoming ever more stringent, wastewater needs to be treated 

prior to discharge in order to meet the discharge limits of heavy metals and other 

pollutants. 
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There are few examples of approaches that have been implemented as part of the 

CIP in order to improve wastewater effluent quality. Weise et al., (1997) reported 

that after 30 years of implementation of activated sludge treatment in the Beckton 

wastewater treatment plant in London, significant improvement in water quality 

has resulted. Moreover, the Water Industry Act 1991 gave the occupiers of trade 

premises the right to an effective trade effluent collection and treatment service. 

Thus, trade effluent produced from commercial and industrial operations will be 

monitored and controlled by water companies prior to discharge (Act, 1991).  

2.2.3.4 Legislative Limits for Copper in the Aquatic Environment 

Copper (Cu) has also been listed in European Directives under dangerous 

substances (76/464/EC), as a metals that is dangerous and toxic to the aquatic 

environment (CEC, 1976). Moreover, the World Health Organisation 

International Standards for Drinking Water has suggested a guideline value that 

has been adopted by the 1963 and 1971 International Standards as a maximum 

allowable or permissible Cu concentration in drinking water (Donohue, 2004). 

The maximum guideline concentration limits of Cu in drinking water and water 

discharge are summarised in Table 2.5, which includes a comparison between 

values in the WHO guideline value for Cu in drinking water, Water Framework 

Directive (WFD) on water policy (2000/60/EC) and PNEC values (UK, 2008).  

Table 2.5: Maximum guideline concentration of copper in drinking water and 

wastewater discharges 

Copper regulatory limit 

Drinking water Wastewater discharge 

WHO  WFD (2000/60/EC) PNEC 

2 mg/L 1.0 µg/L 
2.6-5 µg/L (Salt water) 

1-28 µg/L (Fresh water)  

WHO=World Health Organization; WFD=Water Framework Directive; PNEC= 

predicted no effect value 
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Moreover, the Fish Directive (2006/44/EC) also provides guideline values for 

copper in fresh water, which are used to ensure that such water is capable of 

supporting aquatic life (CEC, 2006). The guidelines for dissolved copper 

concentrations for different water hardness values are shown in Table 2.6.  

Table 2.6: Dissolved copper concentration (mg/L Cu) for different water hardness 

values between 10 and 300 mg/L CaCO3 

Water hardness (mg/L CaCO3) 10 50 100 300 

Copper concentration (mg/L) 0.005 0.002 0.04 0.112 

 

2.2.3.5 Conventional wastewater treatment approaches for copper removal  

The main objective of wastewater treatment is to allow municipal discharges 

(from domestic sources) and industrial waste to be treated, to reduce pollutant 

load so that the treated water can be discharged to the water environment without 

adversely affecting the aquatic organisms within, or human health. The 

wastewater treatment plant (WWTP) comprises several treatment stages known 

as preliminary, primary, secondary and in rare cases, tertiary/advanced treatment 

(WEF, 2007). Preliminary treatment is where the solids and large materials often 

found in raw wastewater are removed using coarse screening and grit removal. 

Since organic solid matter and fine particles still remain suspended in the 

wastewater, these remaining particles settle out to form sludge. The clarified 

water then enters secondary treatment which involves the removal of 

biodegradable dissolved and colloidal organic matter through aerobic biological 

treatment processes (Yu et al., 2013a). The WWTP is summarised in Figure 2.2.  
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Figure 2.2: Schematic of a typical wastewater treatment plant (Spellman, 2013) 

Tertiary and/or advanced wastewater treatment is only applied when specific 

wastewater pollutants cannot be removed or treated by the prior treatment stage 

and there is a legislative driver (CEC, 2000). It is very rarely used. 

Tertiary/advanced treatment technologies including precipitation, ion exchange, 

reverse osmosis, filtration, electrochemical treatment, and membrane 

technologies have been proposed and applied to the removal of metal ions from 

wastewater effluent (Gavrilescu, 2004; Wang and Chen, 2009; Wang et al., 

2013). However, these methods are considered economically inefficient due to 

the high operating cost of treating large volumes of wastewater and water with 

low concentrations of metal ions (Wang and Chen, 2009). Table 2.7 shows the 

main advantages and disadvantages of the conventional methods in removing 

heavy metals from the water matrix.  

Amongst these technologies, adsorption using natural sorbents is considered a 

popular and effective process for the remediation of heavy metals from 

wastewater (Ali and Gupta, 2006). The adsorption process is effective and simple 

compared to other treatments technologies, especially in removing low 

concentrations of heavy metals from the water matrix (Ashraf et al., 2011). 

Removal of these pollutants by an adsorption process also offers the opportunity 

to consider waste as a resource, by recovering the heavy metals for reuse by 

regenerating the adsorbent. This is in line with the UK Water Industry Research 

(UKWIR) Road Map that looks to recovering opportunities within WWTPs 

(UKWIR, 2015).  



 

20 

Table 2.7: The main advantages and disadvantages of the conventional methods for treatment of heavy metals in wastewater 

Conventional treatments  
Advantages Disadvantages References  

Chemical precipitation ¶ Low capital cost 

¶ Simple procedure  

¶ Sludge generation  

¶ High cost for sludge disposal 

(O'Connell et al., 2008a) 

Coagulation- 

Flocculation 

¶ Good sludge settling and dewatering 

characteristic 

¶ Chemical consumption 

¶ Sludge generation 

(Oloibiri et al., 2015) 

Electrodialysis 

 

 

¶ High separation selectivity 

¶ No chemical consumption 

¶ High operational cost due to 

membrane fouling 

¶ Energy consumption 

(Wang and Chen, 2009) 

Ion exchange ¶ High metal selectivity ¶ High maintenance cost (Barakat, 2011) 

Membrane filtration 

 

¶ High separation selectivity 

¶ Small space requirement 

¶ Low solid waste generation 

¶ High initial capital cost 

¶ High maintenance cost due to 

membrane fouling 

(Kurniawan, 2006) 

Reverse osmosis ¶ Effective in both small and large scale ¶ High capital and maintenance 

cost  

(Fu and Wang, 2011) 
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2.3 ADSORPTION PROCESS 

2.3.1 MECHANISM OF ADSORPTION 

Adsorption is a mass transfer process by which a substance (in this case, a heavy 

metal) is transferred from the liquid phase to the surface of a solid (the 

adsorbent), and becomes bound by physical and/or chemical interactions (Ali and 

Gupta, 2006; Iqbal et al., 2005). Adsorption of ions can be simply represented as 

a physical and chemical reaction: 

 ὃ ὄᴾὃȢὄ (2.1) 

where A is the adsorbate (pollutant), B is the adsorbent and A.B is the adsorbed 

compound. Moreover, the sorption process can be described in three main steps 

(as shown in Figure 2.3):  

i. The transport of the pollutant from the bulk solution to the sorbent surface  

ii.  Adsorption on the particle surface or pores 

iii.  Transport within the sorbent particle.  

iv. Adsorption is different from absorption, in which a substance diffuses into 

a liquid or solid to form a solution. 

 

Figure 2.3: Mechanism of adsorption process 
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The term ósorptionô was first introduced in 1908, and described selective transfer 

to the surface and/or into the bulk of a solid or liquid (McBain, 1909). Several 

mechanisms can be classified in the adsorption process based on the type of 

bonding involved, such as physical adsorption involving Van der Waals forces 

and chemical adsorption involving strong chemical bonds between adsorbent and 

adsorbate (Gorelov et al., 1994).  

In physical sorption or physisorption, no exchange of electrons is observed and 

the adsorbate is bound to the surface by relatively weak Van der Waalôs forces; 

hence the adsorbate is not fixed to a specific site and it is relatively free to move 

on the surface (Jiang et al., 2013). Moreover, this type of adsorption is a 

reversible process that can be effected by increasing the temperature or 

decreasing the pressure. Chemical sorption or chemisorption involves strong 

forces between adsorbate and adsorbent, resulting in a change in the chemical 

form of the adsorbate. The bond formed is much stronger and stable at high 

temperature than that derived from Van der Waalôs physisorption (Rouquerol et 

al., 2013). The characteristics of physical and chemical sorption are presented in 

Table 2.8.  

Table 2.8: General characteristics of physisorption and chemisorption (Rouquerol 

et al., 2013) 

Physical sorption Chemical adsorption 

No electron transfer although 

polarisation of adsorbate may occur 

Electron transfer leading to bond 

formation between adsorbate and 

adsorbent 

The heat of adsorption is low, at about 

20-40 kJ/mol 

The heat of adsorption is high, at 

about 40-400 kJ/mol  

Low activation energy High activation energy 

Multilayer adsorption Monolayer adsorption 

Non-dissociative and reversible process Irreversible process 
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2.3.2 ADSORPTION ISOTHERM 

In general, an adsorption isotherm describes the dynamic adsorptive behaviour of 

any substance moving from the liquid phase or aquatic environment to a solid 

phase at a constant temperature and pH (Foo and Hameed, 2010). Therefore, 

isotherms play a crucial functional role in predictive modelling procedure for 

analysis and design of adsorption systems (sorption capacity of the sorbent). A 

variety of isotherm adsorption models have been applied in WWTPs to evaluate 

the design of adsorption systems and to describe the adsorption capacities of 

modified adsorbents (Shojaeimehr et al., 2014). For example, two common 

adsorption isotherms, namely Langmuir and Freundlich isotherm models, have 

been widely applied. These isotherm models have been applied due to their 

simplicity and their good description of experimental behaviour under a large 

range of operating conditions (Ho, 2004). Below, a brief description of the two 

common adsorption isotherms is presented. 

2.3.2.1 Langmuir Isotherm 

The Langmuir isotherm was first established in the work by Langmuir in 1918, to 

describe gaseous adsorption on planar surfaces (Langmuir, 1918). According to 

Foo and Hameed (2010), the Langmuir isotherm is considered the simplest and 

the most widely used model for physical and chemical adsorption from both 

gaseous and liquid solutions. The derivation of this isotherm is based on certain 

implicit assumptions (Foo and Hameed, 2010): 

¶ The adsorption occurs at a fixed number of definite localised sites 

¶ Monolayer adsorption is formed on the surface of the adsorbent. 

¶ The surface of the adsorbent is homogeneous 

¶ There are no lateral interactions between neighbouring adsorbed adsorbate 

molecules 

The Langmuir adsorption model is given by (Shojaeimehr et al., 2014): 

 
ή

ήὑὅ

ρ ὑὅ
 (2.2) 
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where qe (mg/g) is the equilibrium mass of Cu(II) adsorbed per unit mass of 

sorbent, Ce is the equilibrium concentration (mg/L), qm (mg/g) is the maximum 

adsorption capacity to form a complete Cu(II) ion monolayer bound to the surface 

and KL is the Langmuir constant which related to the affinity of the binding sites. 

The characteristics of the Langmuir isotherm can be expressed in terms of a 

dimensionless equilibrium parameter (RL), which is given by: 

 
Ὑ

ρ

ρ ὑὅ
 (2.3) 

Where KL is the Langmuir constant and Co is the maximum adsorbate 

concentration (mg/L). The value of RL indicates the type of the isotherm: 

unfavourable (RL>1), linear (RL=1), favourable (0<RL<1) or irreversible (RL=0).  

2.3.2.2 Freundlich Isotherm  

The Freundlich isotherm is often used to define adsorption to a heterogeneous 

surface across a wide range of adsorbate concentrations. This isotherm represents 

the relationship between the mass of metal adsorbed per unit mass of the 

adsorbent (qe) and the concentration of the metal ion in solution at equilibrium 

(Limousin et al., 2007). The Freundlich isotherm is expressed as: 

 ή ὑὅ
Ⱦ

 (2.4) 

where Kf and n are the Freundlich constants that indicate adsorption capacity and 

adsorption intensity respectively. The n value is an indication of how favourable 

the adsorption process is, usually ranging from (1<n<10). Kf and n are 

determined from the linear plot of log qe versus log Ce. 

The Cu(II) adsorption isotherm of modified cellulose based adsorbents usually 

exhibits typical Langmuir behaviour, thus showing characteristics of physical and 

chemical adsorption (Chen et al., 2009; Liu et al., 2009; Liu et al., 2002; 

O'Connell et al., 2006a). This observation suggests the adsorption of a monolayer 

on the surface of the adsorbent. Moreover, Langmuir isotherm models have also 

been successfully applied to other adsorbents, such as carbon nanotubes (CNTs) 

and activated carbon (Liu et al., 2014b). For example, Mobasherpour et al., 
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(2011) used CNTs for the removal of copper from aqueous solution. Isotherm 

studies indicated that the Langmuir model fitted the experimental data better than 

the Freundlich model.  

2.3.3 FACTORS AFFECTING THE RATE OF ADSORPTION 

There are several key parameters that can influence the adsorption process. 

Experimental parameters such as pH, initial metal ion concentration, sorbent 

dosage, and temperature, are the important factors affecting heavy metal 

adsorption (Reddy, 2012). Moreover, the surface area of the adsorbent, pore 

structure and adsorbent particle size are also factors responsible for influencing 

heavy metal adsorption. Several studies have shown the effect of adsorbent 

particle size in the removal of heavy metals from a water matrix (Nadeem et al., 

2009; Yang et al., 2011). Sengil and Oezacar (2008) carried out a series of 

experiments with different particle sizes of mimosa tannin resin adsorbent (Sengil 

and Oezacar, 2008). The results indicate that the uptake of Cu(II) by tannin resin 

is increased as the particle size decreases. This is due to the large surface area of 

small particles (100 µm), while larger particles (250 µm) result in a lower driving 

force per unit surface area for mass transfer during the adsorption process.  

The pH of the adsorbate or solution is an important factor in the adsorption 

process, as the number of available sorption sites on the adsorbent is pH 

dependent (Reddy, 2012). The optimum pH for metal removal from the water 

matrix varies, depending on the target metal. However, the optimum pH range 

(2.0 ï 9.0) for the adsorption process is not representative of the wastewater 

environment and is considered too acidic, as this pH range increases competition 

between protons and metal ions for active sites (Reddy, 2012). Results of 

adsorption capability for removing heavy metals from a wastewater matrix in this 

pH range will not be a true reflection of capability in a WWTP. Thus, it is 

important to note here that the removal of Cu(II) may decrease when pH is more 

acidic than the optimum. Moreover, the choice of a range of pH that does not 

consider metal hydroxide precipitation will also affect the removal of Cu(II) from 

the water matrix (Thirumavalavan et al., 2010). For example, in Figure 2.4, the 
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lowest dissolved concentration of Cu(II) is approximately 0.1 mg/L, which occurs 

at a pH value of 8.0.  

 

Figure 2.4: Theoretical solubility of heavy metals (EPA, 1995) 

The initial concentration of metals in aqueous solution is also an important factor 

affecting the remediation of heavy metals from the water matrix. However, in 

many studies, the range of the investigated parameters for the adsorption process 

is often not representative of the actual conditions in a WWTP (Thirumavalavan 

et al., 2010). For example, the majority of the studies have been performed with a 

high initial metal ion concentration (100-1000 mg/L), which is unrealistic for 

actual commercial adsorption processes as they are generally applied to low 

concentration streams. This is because the majority of conventional technologies 

are impractical for treating heavy metal pollutants at low concentrations due to 

high operating and maintenance costs (Ashraf et al., 2011).  

Temperature is another factor observed to influence the adsorption process, and 

which can alter the metal removal efficiency depending on the exothermic and 

endothermic nature of process (Reddy, 2012). The percentage removal of Pb(II), 

Cd(II) and Ni(II) by sawdust adsorbent increased with increasing temperature due 

to enlargement of pore size and activation of the adsorbent surface (Bulut and 
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Tez, 2007). However, the reported experiments were conducted under conditions 

unrealistic in a wastewater treatment environment, using temperatures up to 45 

C̄. Not only would such temperatures accelerate decomposition of chelating 

efficiency, leading to the decrease of the adsorption ratio (Sahan et al., 2010), but 

by increasing the temperature of wastewater above ambient would be expensive. 

The studies of the adsorption parameters by various modified adsorbents are 

summarised in Table 2.9 and 2.10. 

Due to the drawbacks of other treatment technologies discussed previously, 

adsorption is regarded as the most appropriate for removing heavy metals (Fu and 

Wang, 2011). The adsorption process is very effective, especially when removing 

low concentrations of heavy metal pollutants from the water matrix, where 

common technologies are either economically unfavourable or technically 

complicated (Barakat, 2011). In addition, this process is also an effective 

treatment for wastewater because the adsorbents utilised have good adsorption 

capacity, high selectivity, and the ability to be regenerated (O'Connell et al., 

2008b; Wang and Chen, 2009). Several adsorption studies have shown that the 

adsorption process is very efficient in removing heavy metals from the water 

matrix without releasing any harmful by-products (from the adsorbent) into the 

treated water (Shukla and Pai, 2005a; Wong et al., 2003; Yu et al., 2013b). 
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Table 2.9: Adsorption parameters of various adsorbents 

Adsorbent 
Heavy 

metal 
pH 

Initial 

concentration 

(mg/L) 

Contact time 
Temperature 

(°C) 

Adsorption 

capacity (mg/g) 
References 

Black cumin Pb(II) 2.0-6.0 20 60 min 20-50 7.8 (Bingol et al., 2012) 

Cellulose 

hydrogel 

Cd(II) 

Pb(II) 

Ni(II)  

2.0-6.0 200-2000 6 h 30 

562.7 

825.7 

380.1 

(Zhou et al., 2012) 

Fungal 

Trichoderma 

viride 

Pb(II) 

Cd(II) 

Cu(II) 

2.0-6.0 20-100 60 min 20-40 

0.103 

0.139 

0.360 

(Singh et al., 2010) 

Lemon peel Pb(II) 2.0-8.0 100-600 25 h 28 277.78 
(Thirumavalavan et 

al., 2010) 

Moringa 

oleifera leaves 

Cd(II) 

Cu(II) 
2.0-9.0 10-40 100 min 20-40 

171.37 

167.90 
(Reddy, 2012) 

Orange peel 

Cd(II) 

Cu(II) 

Ni(II)  

2.0-9.0 100-600 20 min 25 227.27 
(Thirumavalavan et 

al., 2010) 
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Table 2.10: Summary of the modified biomass as adsorbent for the removal of heavy metal ions from the water matrix 

Adsorbent Heavy metals Modifying agents 
Adsorption capacities 

(mg/g) 
References 

Fruit peels: 

Lemon peel 

 

Cu(II) 

Zn(II) 

Cd(II) 

Pb(II) 

Oxalic acid 

Sodium hydroxide 

227.27 

196.08 

172.41 

204.08 

(Thirumavalavan et al., 

2010) 

Konjac glucomannan 

(polysaccharide) 

Cu(II) 

Pb(II) 
Methyl acrylate 

Methyl methacrylate 

64.5 

191.3 
(Liu et al., 2009) 

Moringa oleifera leaves 

Cu(II) 

Cd(II) 

Ni(II)  

Citric acid 

Sodium hydroxide 

167.90 

171.37 

163.88 

(Reddy, 2012) 

Palmate-tuber salep 
Zn(II) 

Cu(II) 
Chlorosulphonic acid-

dimethylformamide 

1156 

594 
(Pourjavadi et al., 2013) 

Pine cone powder Cu(II) Sodium hydroxide 26.32 (Ofomaja et al., 2010a) 

Spent grain 

Cu(II) 

Pb(II) 

Zn(II) 

Cd(II) 

Citric acid 

Sodium hypophosphite 

104.13 

293.30 

232.10 

296.61 

(Li  et al., 2010) 

Sugarcane bagasse 

Cu(II) 

Cd(II) 

Pb(II) 

1,3-diisopropylcarbodiimide 

acetic anhydride 

92.6 

149.0 

333.0 

(Karnitz et al., 2009) 
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2.4 TRADITIONAL MODELLIN G PROCEDURE 

Adsorption is a complex process dependent on various parameters and outputs, 

which requires a large number of experiments to investigate the relationship 

between those factors and the process performance output (Ranjan et al., 2011). 

Traditionally, optimisation of an adsorption process has been performed by 

applying one factor at a time to an experimental response, where the other factors 

remain constant (Bezerra et al., 2008). This method is known as one variable at a 

time (OVAT). The disadvantages of this method are that it is time consuming and 

requires a large number of experiments, which lead to an increase in expense and 

in the utilisation of reagents and materials (Bashir et al., 2015). Moreover, OVAT 

does not take account of interactions between the selected factors and does not 

describe the complete effects of those factors on the response and process 

performance. Thus, to overcome this difficulty, factorial experimental design can 

be employed to optimise the conditions of adsorption of heavy metals from a 

water matrix. Response Surface Methodology (RSM) and Artificial Neural 

Network (ANN) modelling are methods that are applied extensively in industry 

for the optimisation of process design parameters (Geyikci et al., 2012; Witek-

Krowiak et al., 2014; Ye et al., 2014). 

Although RSM and ANN are widely used in the study of adsorption processes, 

studies on Cu(II) removal from real wastewater samples tend to focus on one 

single parameter at a time (Pereira et al., 2009; Saiano et al., 2005). For example, 

the potential of amine-functionalised SBA-15 as an adsorbent to remove Cu(II) 

ions from river water, tap water and electroplating wastewater (Da'na and Sayari, 

2012), and the potential of Ulothrix Zonate algae to remove Cu(II), Pb(II) and 

Cd(II) from industrial wastewater (Malakootian et al., 2011) have focused only 

on one single parameter at a time. However, the adsorption capacity and 

selectivity in both studies were investigated through batch kinetic experiments, 

and Langmuir and Freundlich models were used to describe the equilibria 

between metal ions and adsorbent. Therefore, the adsorption of copper from real 

wastewater samples was studied; this is rare in the existing literature, but provides 

valuable insights into the applicability of the approaches tested in this thesis. 
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2.5 MATHEMATICAL MODELL ING OF THE ADSORPTIO N 

PROCESS 

2.5.1 RESPONSE SURFACE METHODOLOGY (RSM) 

2.5.1.1 Theory and steps for RSM application 

RSM is a practical method for studying the effects of multiple parameters or 

variables that influence the process response, by varying them simultaneously and 

thus reducing the number of experiments required. This method was developed 

by Box and Wilson, and has been widely used as a technique for experimental 

design (Box and Wilson, 1951). The RSM approach can be divided into six 

stages: (1) selection of independent variables and possible responses; (2) selection 

of experimental design strategy; (3) execution of experiments and obtaining 

results; (4) fitting the model equation to experimental data; (5) obtaining response 

graphs and model verification (ANOVA); and (6) determination of optimal 

conditions. 

2.5.1.2 Factorial experimental design 

The mechanism of adsorption in water treatment is a complex chemical process 

due to the interaction of various parameters and variation in wastewater 

composition (Ebrahimzadeh et al., 2012). Thus, before applying these models, it 

is important to select the most important independent variables and their ranges, 

which cover the realistic conditions in a wastewater treatment environment. The 

independent variables, such as pH, temperature, sorbent dosage and solute 

concentration are the ones that usually influence adsorption performance. After 

the independent variables have been properly selected via screening or scoping 

experiments, several design methods can be applied for adsorption optimisation.  

2.5.1.3 Choice of experimental design 

Among the various experimental designs, it was found that two common designs, 

central composite design (CCD) and Box-Behnken design (BBD), have 

frequently been used for the final optimisation of desired processes (Turan et al., 
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2013b; Zolgharnein et al., 2013a). Figure 2.5 (a and b) shows representations of 

BBD and CCD for three-variable optimisation, respectively.  

 

 

Figure 2.5: Experimental design based on the study for the optimisation of three 

variables (a) Box-Behnken design and (b) central composite design (Witek-

Krowiak et al., 2014). 

A comparative study of BBD and CCD has been carried out on the adsorption of 

Pb(II) by Robinia tree leaves, which concluded that the CCD model is more 

efficient and dependable (Zolgharnein et al., 2013a). Furthermore, within the 

field of adsorption, there are many examples where CCD has been applied to 

discover an appropriate model, leading to the successful prediction of optimum 

conditions for maximum removal of heavy metals from a water matrix (Azila et 

al., 2008; Sugashini and Begum, 2013; Zolgharnein et al., 2013b). Therefore, in 

this study, CCD was selected because it has better predictive capabilities and has 

been applied extensively in adsorption studies (Bingol et al., 2012; 

Shanmugaprakash and Sivakumar, 2013).  

CCDs are used to fit the low and high values of the parameters determined in the 

experiment to -Ŭ, -1, 0, +1, and +Ŭ in terms of coded factors. Although the 

optimisation and modelling of biosorption is a recognised method in biosorption 

research literature, examples of building a model that covers the realistic 

conditions in a wastewater treatment environment are limited. Cao et al., (2014) 

presented the effects of temperature (10ï50 °C) and showed that the adsorption of 

Cr(VI) increases with increasing temperature, even when the range is larger than 

would be expected in a wastewater treatment environment, and features other 
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unrealistic conditions. Moreover, the range of pH (1.3ï8.7) applied for the 

optimisation of Cd(II) uptake using marine algae is also not representative of the 

actual conditions in a WWTP (Ghorbani et al., 2008). Therefore, the range of 

parameters in this study was decided based on the literature reports and the 

scoping experiments, which in turn are based on those used in industrial design 

and environmental regulations. 

2.5.1.4 Evaluation of fitted model 

After carrying out the experiments according to the selected experimental matrix, 

the results obtained are fitted to a mathematical equation to describe the 

behaviour of the response. The response can be displayed as a three-dimensions 

(3D), or as a contour, plot. This graphical representation of modelling results is 

the fastest way for a single response and if optimal response is within 

experimental boundaries (Bashir et al., 2015). 

The more reliable and efficient method to evaluate the quality of the developed 

model is by the application of analysis of variance (ANOVA). ANOVA is a set of 

statistical methods that are used to identify the significance of individual factors 

and to inform if the experimental results are meaningful (Anupam et al., 2011). 

Furthermore, ANOVA also offers the sequential F-test, lack of fit test, p-value, 

significance of regression, and diagnostic plots, such as predicted versus actual 

plot and normal plot of residuals (Azila et al., 2008). A model will be well fitted 

to the experimental data if it presents a significant regression and a non-

significant lack of fit. Most variation related to residuals is due to pure error and 

not to the lack of fit, which is directly related to the model quality (Barker and 

Milivojevich, 2016).  

2.5.1.5 Optimisation of adsorption process using RSM 

The RSM approach, along with CCD, has been used to provide the significant 

factors, modelling and optimisation of various adsorption processes. The majority 

of processes used batch experiments in their studies of the independent variables 

and possible responses. For example, Savic et al., (2012) declared that CCD is the 

most commonly used RSM design. Ghosh et al., (2013) applied RSM with CCD 
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to investigate the removal of Cu(II) from aqueous solution using modified orange 

peel, and their study showed that pH, sorbent dosage and initial metal ion 

concentration influenced the adsorption process. The adsorption of Tl(I) with 

modified Ulmus carpinifolia tree leaves has also been modelled and optimised 

using an RSM model by Zolgharnein et al., (2011) with similar independent 

variables.  

In order to study the accuracy of different experimental designs, Zolgharnein et 

al. (2013a) applied three different experimental designs; BBD, CCD, and 

Doehlert, for modelling and optimisation of Pb(II) biosorption by Robinia tree 

leaves. The results obtained showed that CCD to be the most accurate design for 

this study, but the selected design was case-dependent and should not be 

considered as a rule. Furthermore, the Plackett-Burman design and CCD have 

been used for the optimisation of biosorption processes. Sahan et al. (2010) 

applied these two designs in his study of Cu(II) removal from aqueous solution 

by Trametes versicolor. The use of the CCD was selected as the suitable design, 

with a maximum quantity of removal of Cu(II) ion of 39.87 mg/g.  

2.5.2 ARTIFICIAL NEURAL NETWORK (ANN) 

2.5.2.1 Theoretical background of the ANN model 

Artificial neural networks (ANNs) are mathematical models that predict the 

output based on input data without a clearly understood relationship between 

them. Therefore, the utilisation of ANNs in the field of adsorption processes 

using biomass has recently attracted interest, given the difficulty that can be 

encountered in fully characterising all the functionalities found in commonly used 

biomass (Shojaeimehr et al., 2014). Although there are many well-known ANN 

types, such as multilayer perceptron, radial basis function networks, linear 

networks, Bayesian networks and Kohonen networks, currently the most popular 

network architecture is multilayer perceptron (MLP) (Savic et al., 2012). This 

network consists of three or more layers of neurons with one hidden layer, and is 

commonly applied in the performance prediction of many processes, as shown in 

Figure 2.6 (Pilkington et al., 2014; Witek-Krowiak et al., 2014). 
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Figure 2.6: Architecture of the developed artificial neural network (ANN) 

2.5.2.2 Application of ANN in process optimisation and modelling of adsorption 

processes 

This approach has been widely used by many researchers for modelling the 

adsorption process involving different sorbents and sorbates. ANNs have been 

successfully used to model the biosorption of Pb(II) by black cumin (Bingol et 

al., 2012), the removal of fluoride by bone char (Tovar Gomez et al., 2013), and 

the removal of Cu(II) by sunflower shells (Oguz and Ersoy, 2010). Furthermore, 

these optimisation studies did not focus only on the removal of heavy metals from 

aqueous solutions, but also from leachate. Turan and his co-workers studied the 

potential combinations of liner materials (zeolite, bentonite and pumice) and 

evaluated the potential of these adsorbents for the removal of Cu(II) and Zn(II) 

from industrial leachate. They suggested that ANN topology was found to be 

effective in modelling the experimental design, and used it to display the 

significance levels of the analysed liner materials on removal efficiency (Turan et 

al., 2013a).  

Besides heavy metals, this approach has also been utilised in the study of 

adsorption of dyes and organic compounds (Witek-Krowiak et al., 2014). A study 

by Aghav et al. (2011) worked on the performance of multiple adsorbents 

(activated carbon, wood charcoal and rice husk ash) in the competitive adsorption 

of organic compounds from aqueous solution. They found that the ANN 

technique based on the Levenberg-Marquardt (LM) training was successful when 
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applied to the prediction of organic compound uptake in competitive adsorption 

processes.   

The ANN approach can not only be applied in batch adsorption process, but can 

also be used for the prediction of adsorption in fixed-bed and packed-bed 

adsorption systems. Texier et al. (2002) presented the ability of ANN in 

predicting the biosorption of lanthanide ions from aqueous solution in a fixed-bed 

system using cells of Pseudomonas aeruginosa immobilised in polyacrylamide 

gel. They found that the analysis of the performance of a model based on ANN 

showed a low divergence between predicted and experimental data. Cavas et al. 

(2011) compared ANN to a Thomas model in the modelling of methylene blue 

adsorption by dead leaves of beach waste Posidonia oceanica (L). The results of 

the investigation showed that both ANN and Thomas models led to similar 

conclusions, which confirmed that the ANN model provided satisfactory 

predictions for the fixed-bed adsorption of methylene blue from aqueous solution.  

2.5.3 APPLICATION OF RSM AND ANN IN WASTEWATER 

TREATMENT PLANT PROCESS OPTIMISATION 

The complexity and variability of wastewater is difficult to model and simulate 

using traditional modelling procedures. Because of the interaction between a 

numbers of adsorption variables/factors, the resulting relationships are highly 

non-linear and require a large number of experiments. This has placed increasing 

demands on both research and process optimisation, and has resulted in the 

increased use of RSM and ANN modelling tools. The statistical aspects of RSM 

and ANN enable the identification of factors that have a significant effect on the 

adsorption process and are able to provide a large amount of knowledge from a 

small number of experimental runs. 

RSM is an efficient tool to predict the best performance conditions with a 

minimum number of experiments. It has also been effectively and widely applied 

in water and wastewater treatment optimisation, such as of textile dye 

wastewater, tannery wastewater, industrial paint wastewater, landfill leachate, and 

palm oil mill effluent. Moreover, removal chemical oxygen demand (COD), 

biological oxygen demand (BOD), colour and nitrate were also optimised via 
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both RSM and technological treatment. Bashir et al. (2010b) found that ion 

exchange treatment with RSM application not only showed maximum removal of 

COD and colour, but also removed turbidity from landfill leachate.  

ANN has been successfully employed in environmental engineering, due to its 

superior ability to learn and classify data and its reliable and robust characteristics 

in capturing the non-linear relationships of variables in a complex system such as 

an adsorption process. An ANN model was developed by Krishna and Sree 

(2013) to predict the removal efficiency of Cr(VI) from aqueous solution using 

coir powder as adsorbent. They found that the model and the test data showed a 

high R2 value (0.992), and the ANN model successfully tracked the non-linear 

behaviour of percentage removal of Cr(VI) versus independent variables, with 

low relative percentage error. Oguz and Ersoy (2010) studied the feasibility of 

sunflower shell for the removal of Cu(II) from aqueous solution in a fixed-bed 

adsorption column with an ANN approach. They noted that ANN effectively 

predicted the removal efficiency of Cu(II) using sunflower shell as adsorbent.  

Moreover, ANN is also a reliable model for predicting the performance of 

WWTPs and in forming a basis for controlling the operation of the process. It is 

used as a valuable performance assessment tool for plant operators and decision 

makers. A study by Nasr et al. (2012) signifies that an ANN can effectively 

predict plant performance and act as an efficient analysis and diagnostic tool to 

understand and stimulate the non-linear behaviour of the plant. Tables 2.11 and 

2.12 summarise various studies of wastewater treatment performed using 

conventional and RSM methods for the purpose of treatment process parameter 

optimisation. 

2.5.4 COMPARISON OF RSM AND ANN MODELS 

Interestingly, most of the previous literature has focused its attention on 

adsorption studies by using either RSM or ANN, without comparing the 

performances of these two models. Furthermore, the testing of both RSM and 

ANN, using new sets of experiments not belonging to the training data set, has 

only been undertaken in a limited number of studies on biomass adsorption, and 

without consideration of how the additional experiments represent the system and 
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give a more accurate indicator of performance (Ghosh et al., 2013; Saha, 2013). 

Therefore, model suitability for interpolated and extrapolated experimental 

parameters was tested. This is rare in the existing literature, but provides valuable 

insights into the applicability of the approaches tested in this work. The 

performance of the ANN and RSM models were statistically evaluated using a 

continuous error metric, such as the coefficient of determination (R2), absolute 

average deviation (AAD), and root mean squared error (RMSE). The AAD and 

RMSE are defined as follows (Geyikci et al., 2012): 
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Where n is the number of points, yp is the predicted value and ye is the 

experimental value. For adsorption studies, the majority of researchers measure 

the performance prediction of both models by using more than one error metric 

(Pilkington et al., 2014; Shojaeimehr et al., 2014), resulting in a more trustworthy 

evaluation. 
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Table 2.11: Various applications of RSM in wastewater treatment process optimisation 

Treatment process Wastewater type Independent variables Response References 

Ion exchange Landfill leachate 
Anionic dosage, pH, 

reaction time, shaking speed 
Removal efficiency (%) (Bashir et al., 2010b) 

Ion exchange Landfill leachate 
Cation dosage, reaction 

time, shaking speed 
Removal efficiency (%) (Bashir et al., 2010a) 

Electrochemical oxidation Dairy wastewater 

Current density, NaCl 

dosage, electrolysis time, 

pH 

Removal efficiency of COD 

(%) 

(Aleboyeh et al., 

2008; Kushwaha et 

al., 2010) 

Adsorption Textile dyes 
Initial dye concentration, 

pH, temperature 
Adsorption capacity (mg/g) 

(Santos and 

Boaventura, 2008) 

Fenton oxidation Landfill leachate 

pH, reaction time, initial 

concentration of H2O2, 

ferrous ion concentration 

COD and colour removal 

efficiency (%) 

(Mohajeri et al., 

2011) 

Upflow anaerobic sludge 

blanket (UASB) bioreactor 

Petroleum refinery 

effluent 

Hydraulic retention time 

(HRT) influent COD, 

upflow velocity 

COD removal, rate of biogas 

production 

(Rastegar et al., 

2011) 
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Table 2.12: Various applications of ANN in wastewater treatment process optimisation 

Treatment process Wastewater type Independent variables Response  References  

Adsorption  

(Dye)  
Textile dyes 

Initial dye concentration, pH, 

temperature 
Adsorption capacity (q) (Saha, 2013) 

Adsorption  

(Organic compound) 
Clean water pH, sorbent dosage, temperature Adsorption capacity (q) (Aghav et al., 2011) 

Adsorption 

(Heavy metal) 
Landfill leachate 

Different combinations of liner 

materials 
Removal efficiency (%) 

(Turan et al., 

2013a) 

Fenton process Antibiotic aqueous solution 

Reaction time, H2O2/COD molar 

ratio, H2O2/Fe2+ molar ratio, pH, 

COD concentration 

COD removal  
(Elmolla et al., 

2010) 

Decolourisation Acid orange 52 dye solution 

Dye concentration, pH, H2O2 

concentration, temperature, reaction 

time 

Removal efficiency (%) 
(Aleboyeh et al., 

2008) 
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2.5.5 RSM AND ANN ADVANTAGES AND LIMITATIONS  

Recently, response surface methodology (RSM) and artificial neural network 

(ANN) methods have been used together for both modelling and optimisation 

applications in wastewater treatment and environmental studies (Antonopoulou et 

al., 2012; Pakravan et al., 2015). Generally, by applying these models, the 

number of experimental trials is reduced, which requires the evaluation of 

multiple parameters and their interactions. Furthermore, it is less laborious and 

time consuming than the conventional óone variable at timeô (OVAT) approach 

(Witek-Krowiak et al., 2014). Factorial experimental designs such as CCD and 

BBD provide more information per experiment than OVAT approaches. DOE 

allows the identification of interactions among experimental variables within the 

range studied, providing better knowledge of the process and hence reducing 

research time and costs (Podstawczyk et al., 2015).  

ANNs are algorithms that can be used to perform nearly all types of nonlinear 

statistical modelling and provide a number of advantages, while RSM is suitable 

only for quadratic estimations (Ghosh et al., 2015). ANN is a simple nonlinear 

model that is easy to use and to understand compared to other statistical methods. 

This model requires less formal statistical training, is able to implicitly detect 

complex nonlinear relationships between dependent and independent variables, to 

detect interactions between the variables, and to determine the availability of 

multiple training algorithms (Shanmugaprakash and Sivakumar, 2013). 

Moreover, ANN works well for large data sets and reduces drastically the 

processing time compared to other models.  

However, ANN is also known as a óblack boxô, the development of which is 

mainly a trial and error process, and which is poor in interpreting the relationship 

between input and output, and in handling uncertainties (Meireles et al., 2003). 

Thus, the calculated model can only be used within the experimental range and 

cannot be used for extrapolation. Furthermore, it is believed that an ANN model 

requires a larger number of experiments for training to build an efficient model 

than does RSM (Bezerra et al., 2008). There is also no exact method in order to 

determine the minimum number of experiments for ANN training (Witek-
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Krowiak et al., 2014). Therefore, it is troublesome while designing the 

experiments. However, with scoping experiments and realistic conditions in real 

WWTPs, ANN can also work well with less data, if that data is well distributed in 

the design. Thus, the experimental data (20 CCD experiments) of RSM should be 

sufficient to build an effective ANN model.  

2.6 CELLULOSE AS A SOURCE MATERIAL  

Anselm Payen was the first to coin the term ócelluloseô for a substance with a 

molecular formula C6H10O5 (Payen, 1838). After the identification of cellulose by 

Payen, it has been revealed that cellulose exists not only as glucose residues but 

interestingly, the glucose units are covalently linked to each other forming long 

molecular chains (Zugenmaier, 2008). As it can be obtained from various sources 

(trees, algae, fungi, tunicates and bacteria), cellulose is an almost unlimited, 

sustainable raw material with an estimation of more than 1011 tons synthesised 

each year on earth (Brown, 2004). Cellulose in the form of wood and plant fibres 

has been used for building materials, clothing, paper and as a promising 

renewable energy source (Welker et al., 2015).  

The development of adsorption technology is for a large part focused on the 

development of the most efficient adsorbent. Cellulose is one such adsorbent that 

has been investigated for the adsorption of heavy metals (Alila and Boufi, 2009; 

Isobe et al., 2013; Karnitz et al., 2009). It is the most abundant natural, 

renewable, and biodegradable polymer and as a raw material for the preparation 

of various functional polymers is available at relatively low cost (Eyley and 

Thielemans, 2011; Morandi et al., 2009). 

2.6.1 STRUCTURE AND PROPERTIES OF CELLULOSE 

Chemically, cellulose is a polymer of glucose (ɓ-1,4-glycan). Natural cellulose 

materials consist of a mixture of crystalline and amorphous regions (Kasnejad et 

al., 2012). Moreover, the molecular structure of cellulose also provides the 

characteristics of hydrophilicity, chirality, and degradability (O'Connell et al., 

2008a). Cellulose is a linear polymer of repeating ɓ-D-glucopyranose units linked 

by acetal functions between hydroxyl groups on C-1 and C-4 (Oksman et al., 
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2006). The repeating unit in a cellulose polymer chain, known as cellobiose, is 

stabilised in the chain direction by two hydrogen bonds. The C-4 hydroxyl at the 

end with a closed ring structure is known as the non-reducing end, whereas the 

opposite end, the C-1 hydroxyl, is known as the reducing end. The presence of 

three reactive hydroxyl groups, at the C-2, C-3 and C-6 positions; the alcohols at 

positions C-2 and C-3 are secondary alcohols while the alcohol at the C-6 

position is a primary alcohol (Klemm et al., 2004). These reactive hydroxyl 

groups are responsible for the reactivity of cellulose. The molecular structure of 

cellulose is illustrated in (Figure 2.7).  

 

Figure 2.7: Molecular structure of cellulose  

2.6.2 SURFACE MORPHOLOGY 

There are several allomorphic forms of crystalline cellulose which are denoted as 

cellulose I, II, III, and IV with the possibility of conversion from one form to 

another (Eichhorn et al., 2009). The different allomorphic forms of crystalline 

cellulose have a great influence on the chemical pre-treatment and modification 

processes (Ciolacu et al., 2011). Cellulose I is the most common form found in 

nature, known as ónaturalô cellulose, and is composed of a mixture of two related 

crystalline forms, namely cellulose IŬ and Iɓ (Atalla and Vanderhart, 1984). 

Cellulose I has attracted the interest of the scientific community in it attempts to 

elucidate its crystal structure (Saito and Isogai, 2004; Siqueira et al., 2010). 

Cellulose IŬ is found in algae and bacteria, while cellulose Iɓ is dominant in 

higher plants and animals (Atalla and Vanderhart, 1984). Cellulose I can be 

converted to cellulose II through treatment with sodium hydroxide (Moon et al., 

2011). New allomorphs, cellulose IIII and cellulose IIIII are formed when 

cellulose I or cellulose II are exposed to liquid ammonia. In addition, cellulose 
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IV I and IVII can be derived from cellulose IIII or cellulose IIIII through heat 

treatment in glycerol (Dufresne, 2012). 

2.6.3  SOURCES OF CELLULOSE  

Lignocellulosic materials refer to plants that consist of cellulose, hemicellulose 

and lignin. In order to obtain the cellulose from these sources, the unwanted 

lignin, hemicellulose and other extractives are removed through chemical 

pulping. A wood fibre, which contains approximately 40% cellulose, is the most 

abundant biomass resource on earth due to the availability of global wood 

supplies all year round (Moon et al., 2011). Non-woody materials such as plant 

waste also serve as substitute cellulose sources. Although woody plants could 

contribute a large amount of cellulose, the need for environmentally friendly 

processes avoiding deforestation has encouraged researchers to examine plant 

waste as a new alternative (Ohwoavworhua and Adelakun, 2010).  

Besides plants, cellulose can also be synthesised from non-plant materials such as 

bacteria, algae, yeast and fungi (Wang and Chen, 2006). The cell wall of 

microorganisms is composed of a network of cellulose fibrils, which serve as a 

structural support. Chen et al., (2010) reported that bacterial cellulose from 

bacteria of genus Acetobacter has a molecular structure similar to plant cellulose 

and has been investigated in many fields such as medical, food manufacture and 

paper production. In addition, bacterial cellulose has also been used as an 

adsorbent to remove heavy metals from aqueous solution (Chen et al., 2009; 

Oshima et al., 2008). 

Of all the sources, cotton is the purest, containing 90 - 99% cellulose (Schäfer et 

al., 2005), and was thus used as starting material in this study. However, cotton 

requires further processing and purification through chemical treatments to 

produce a form of purified cellulose such as bleached cellulose pulp (Sjöström, 

1993).  
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2.7 CELLULOSE NANOWHISKE RS AS POTENTIAL ADSORBENT 

(AS AN EXAMPLE CASE)  

A nanoparticle is a microscopic particle with at least one dimension less than 100 

nm. The properties of materials at this scale are of great scientific interest, due to 

the high surface area to bulk ratio (Bondeson et al., 2006). In nature, the cellulose 

microfibril structure consists of crystalline and amorphous regions, as shown in 

Figure 2.8. There are different terminologies to describe the crystalline rod-like 

nanoparticle: these include nanowhiskers, nanocrystals, nanoparticles and even 

microcrystallites (Siqueira et al., 2010). óCellulose nanowhiskers (CNWs)ô will  

be used throughout this thesis.  

A study pioneered by Rånby described the production of a suspension of CNWs 

from different types of cellulose using strong mineral acids (Gezelius and Rånby, 

1957). In this process, the acid attacked the disordered amorphous region 

preferably, leaving the crystalline region relatively untouched (procedure 

described in Section 3.3.1). The cellulose chains in the amorphous regions are 

randomly oriented in a spaghetti-like arrangement, leading to a lower density with 

more free volume than the crystalline region, making it susceptible to attack by 

acids (Eyley and Thielemans, 2014). In general, acid hydrolysis of native 

cellulose causes a rapid decrease in its geometrical dimensions. By controlled 

acid hydrolysis, rod-like CNWs are produced. Therefore, this process will be used 

to produce an adsorbent which offers a combination of nano-dimensions with 

high surface area and provides great potential for a new and green route to solve 

current heavy metal contamination problems (Cao et al., 2012).  

 

Figure 2.8: Schematic of amorphous and crystalline cellulose (Bhattacharya et al., 

2008) 
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Several strong acids have been used in attempts to hydrolyse cellulose. A study 

by Araki et al., (2001) has shown the effects of sulphuric and hydrochloric acid to 

produce stable suspensions of CNWs. The study reported that sulphuric acid 

hydrolysis provided more stable aqueous suspensions of nanowhiskers than did 

hydrochloric acid. It has been observed that the use of sulphuric acid for the 

preparation of CNWs causes the formation of negatively charged sulphate esters 

on the surface of CNWs, resulting in electrostatic stabilisation of the suspension 

of these nanowhiskers (Jiang et al., 2013). Furthermore, sulphuric acid as 

compared to hydrochloric acid is more commonly used for the hydrolysis due to 

its cost effectiveness and its extensive use in industry (Bhattacharya et al., 2008). 

The mechanism of acid hydrolysis is shown in Figure 2.9.  

 

Figure 2.9: Acid hydrolysis mechanism 

There are several conditions that have a profound effect on the hydrolysis 

process, such as acid concentration, reaction time, and temperature. Dong et al., 

(1998) investigated the effect of temperature, reaction time and duration on the 

subsequent ultrasonic properties of CNWs. It was reported that increasing 

hydrolysis time decreased the whiskers length and increased the total sulphur 
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content and surface charge of the nanowhiskers. In order to optimise the isolation 

of CNWs, Bonderson et al., (2006) selected five independent parameters that had 

the greatest influence over the dimension and yield of whiskers. From the results, 

it has been observed that extended hydrolysis time and high acid concentration 

lead to reduction in the length of CNWs.  

2.7.1  STRUCTURE AND PROPERTIES OF CNWS 

As mentioned in the previous section, the dimensions of CNWs produced by the 

acid hydrolysis process are dependent on the origin of cellulose and the process 

conditions. The morphologies of CNWs have become a topic of interest and have 

been studied by several researchers (Landry et al., 2011; Lu et al., 2006). Non-

wood materials such as algae and tunicate yield much longer nanowhiskers than 

do wood microfibrils, with lengths in the hundreds of nanometres (Beck-

Candanedo et al., 2005; Liu et al., 2014a). Normally, the width of nanowhiskers 

is a few nanometres while the length is in the hundreds of nanometres. The 

schematic of hierarchical structure of wood from tree to nanoscale is shown in 

Figure 2.10.  

 

Figure 2.10: The schematic of hierarchical structure of a wood (Postek et al., 

2011) 
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CNWs from wood are reported to be 3 - 15 nm in width and 100 - 200 nm in 

length; tunicate, a sea animal, can yield whiskers of 1000 - 2000 nm in length 

and 10 - 20 nm in width, while the average dimensions of CNWs produced from 

cotton are approximately 4 - 10 nm in diameter and 100 - 300 nm in length 

(Dong et al., 1998; Dufresne, 2006).  

2.7.2 MODIFICATION OF CELLULOSE NANOWHISKERS 

Chemical modification of cellulose by grafting of functional groups has the 

potential to improve its adsorption capacity and to enhance its performance under 

desired conditions (O'Connell et al., 2006a; O'Connell et al., 2006b). Although 

the modification process will cause a decrease in biomass, many researchers have 

focused more on the adsorption capacity and efficiency than on overall mass yield 

(Karnitz et al., 2007; Pereira et al., 2009; Xu et al., 2011). The modification 

enhances not only the adsorption capacity but also other properties of cellulose, 

such as its hydrophilic or hydrophobic characteristics, elasticity, water sorbency, 

and thermal resistance (McDowall et al., 1984). 

Carboxylic acid groups are one example of a functional group that can be 

introduced onto the cellulose surface by TEMPO (2,2,6,6-tetramethylpiperidine-

1-oxyl)-mediated oxidation; this oxidised cellulose adsorbent has been shown to 

be capable of adsorbing 465.1 mg/g Pb(II) from aqueous solution (Yu et al., 

2013b). TEMPO-mediated oxidation has frequently been used to introduce 

carboxyl functional groups onto the surface of nanowhiskers or native cellulose 

without affecting the crystallinity or changing the original fibrous morphology 

(Saito et al., 2005).  

Besides TEMPO-mediated oxidation, the carboxyl functional groups can also be 

introduced through esterification, which may increase the number of carboxylic 

acid functionalities on the cellulose surface, as the secondary hydroxyl groups can 

also be converted to carboxylates, thus increasing the adsorption capacity of the 

oxidised adsorbent. For example, CNWs were chemically modified with succinic 

anhydride to obtain carboxylated CNWs. However, the reported modification 

process using succinic anhydride as an active agent was time consuming and not 

very sustainable, as the process required 12 hours under pyridine reflux in order 



2 LITERATURE REVIEW 

 

49 

to obtained the final modified adsorbent (Yu et al., 2013b). Moreover, pyridine is 

well known for causing problems in the chemical industry and is avoided as much 

as possible as it may cause harmful health effects (Health, 1992). In addition, 

refluxing in pyridine, where pyridine vapour is generated, is not considered 

sustainable (Xu et al., 2015). Therefore, oxidised CNWs via TEMPO-mediated 

oxidation have been identified as a more suitable adsorbent for remediation of 

copper from water matrices.  

2.8 CHARACTERISATION OF CNW ADSORBENTS 

In characterising the adsorbent, several analytic techniques have been used prior 

to surface modification. It is important to study the changes observed in CNWs 

after TEMPO-mediated oxidation. The success of modifications can be judged by 

comparing the characterisation results before and after modification. Techniques 

that have been used for characterisation include: (1) Fourier Transform Infrared 

Spectroscopy (FTIR); (2) zeta potential; (3) transmission electron microscopy 

(TEM) and scanning electron microscopy (SEM); and (4) Brunauer, Emmett and 

Teller (BET) analysis.  

2.8.1 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

IR spectroscopy is widely used in determining functional groups and in 

ascertaining the chemical structure of organic molecules. Theoretically, when IR 

radiation is passed through a sample, energy is absorbed, causing a change in the 

vibrational and rotational energy states of the molecules. An IR spectrometer will 

then measure the relative amount of energy absorbed, as a function of its 

wavelength or frequency. Normally, the wavenumbers of organic compounds are 

located between 400-4000 cm-1 (Silverstein et al., 2014). Since each chemical 

group absorbs a specific frequency, IR spectrometer can then identify the 

chemical bonds and molecular structure of a material (Settle, 1997).  
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2.8.2 ZETA POTENTIAL 

Zeta potential analysis is a technique to determine the colloidal stability of 

nanoparticles in solutions. This analysis is important in understanding the state of 

the nanoparticle surface in predicting the long-term stability of nanoparticle, and 

to assess the surface charge of CNWs and oxidised CNWs. The zeta potential of 

suspended particles is calculated by using the mathematical model of 

electrophoretic mobility (µ) (Kaszuba et al., 2010): 

 
‒άὠ
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Where ‒ is the zeta potential; – is the medium viscosity; Ů is the medium 

permittivity; and Ὢ= Henryôs function in which Ὢ = 1 for the Hückel model, or 

1.5 for Smoluchowski. The model is selected based on the prevailing conditions, 

particle size and ionic strength (Greenwood and Kendall, 1999).  is termed as 

the Debye length is the reciprocal length and -1 is often taken as a measure of the 

thickness of the electrical double layer, while óaô refers to the radius of the 

particle and thus a measures the ratio of the particle radius to electrical double 

layer thickness. This is illustrated schematically in Figure 2.11. 

 

Figure 2.11: Schematic illustrating Smoluchowski and Hückelôs approximations 

used to convert from electrophoretic mobility into zeta potential 
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2.8.3 ELECTRON MICROSCOPY (SEM AND TEM) 

In electron microscopy, an electron beam is focused onto a small area of a 

specimen. Images are formed either by electrons passing through a thin sample ï 

Transmission Electron Microscopy (TEM) ï or by secondary emission from a 

thick sample ïScanning Electron Microscopy (SEM) (Goldstein et al., 2012). 

Both SEM and TEM are commonly used to examine the surface morphology and 

chemical composition of the nanomaterial samples. Although similar electron gun 

and lenses are used for both electron microscopes, SEM and TEM also exhibit 

some differences, which are summarised in Table 2.13.  

Table 2.13: Differences between SEM and TEM (Goldstein et al., 2012) 

 SEM TEM 

Electron Based on scattered electrons Based on transmitted 

electrons 

Image Produce the image of samples 

after the microscope collects 

and counts the scattered 

electrons 

Electron are directly pointed 

towards the sample 

Focus On the sampleôs surface and its 

composition 

On the sampleôs surface and 

provides the details about 

internal composition 

Dimensional Provides 3-dimensional image Provides 2-dimensional image 

Magnification Offers 2 million as a maximum 

magnification level 

Up to a 50 million 

magnification level 

2.8.4 BRUNAUER-EMMETT-TELLER (BET) METHOD 

The BET technique is the most common method for the precise specific surface 

area evaluation of materials by isotherm nitrogen adsorption analysis (Ishizaki et 

al., 2013). Moreover, this analysis provides information about the porosity and 

pore size, which are very important for nanomaterial adsorbents. The Brunauer-

Emmett-Teller (BET) multipoint technique (Brunauer et al., 1938; Rouquerol et 

al., 2013) was applied for surface area determination and the Barrett, Joyner and 

Halenda (BJH) method (Barrett et al., 1951) for pore diameter analysis. The 

method of determining these values involves studying the adsorption and 

desorption of nitrogen gas to and from the surface of the solid at liquid 
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temperature and a relative vapour pressure of 0.05-1, following the BJH model. 

The BET surface area can be calculated by (Rouquerol et al., 2013): 
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Where D is particle diameter, R is radius and rs is the mass of the solid divided 

by the volume of the solid excluding open and closed pores. 

The total pore volume can be calculated by assuming that the density of liquid 

nitrogen in the pores is the same as that of bulk of liquid nitrogen, such that 

(Rouquerol et al., 2013): 
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(2.9) 

where MW and rL are the molecular weight and density of the probe molecule 

being used, which for N2 adsorbed at 77 K have values of 28.01 g/mol and 0.807 

g/cm3, respectively. 

2.9 ENVIRONMENTAL ANALYSIS  

Environmental analysis is very important in order to determine the presence of 

contaminants in the aqueous environment. The amount of pollutants released into 

the environment has been increasing due to anthropogenic activities, with 

potential exposure of these pollutants to the ecosystem. The identification of 

heavy metals and the determination of their concentration range in wastewater are 

very important in order to meet the discharge limits of heavy metals. For 

wastewater treatment studies, atomic absorption spectrometry (AAS), graphite 

furnace atomic absorption spectrometry (GFAAS), and inductively coupled 

plasma optical emission and mass spectrometry (ICP-OES and ICP-MS) are the 

most commonly spectroscopic methods used for elemental measurements in 

environmental analysis of the water matrix. AAS and ICP-MS have been used 

throughout this thesis. 
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2.9.1 THEORETICAL BACKGROUND TO INSTRUMENTATION 

2.9.1.1 Atomic absorption spectrometry instrumentation (AAS) 

AAS is a widely used method in analytical chemistry to determine the 

concentration of a particular element in different samples. AAS is based on the 

absorption of ultraviolet or visible radiation by free atoms in the gas phase. The 

sample, which is in solution, is aspirated into a flame. Then, with appropriate 

flame conditions, the atoms in the ground state will absorb the light produced by 

the source lamp at a specific analytical wavelength. Hence, by measuring the 

amount of light absorbed by the ground state atoms, a quantitative determination 

of the amount of metal present can be measured (Beaty and Kerber, 1978). The 

single element quantitative analysis in AAS is based on Beer-Lambertôs law. 

Lambertôs Law states that absorbance of a sample is proportional to its path 

length, and Beerôs Law states that absorbance is proportional to concentration of 

the element (Equation 2.8) (Perkin Elmer, 1996): 

 ὃ ὰέὫὍὍ ὰέὫὝὥὦὧ (2.10) 

Where A is the absorbance, a is the absorption coefficient, b is the length of the 

light path and c is the concentration of the absorbing species in the light path. The 

term T in the equation refers to transmittance, I0 is the incident light intensity and 

I is the transmitted light intensity.  

An atomic absorption instrument consists of primary light source, an atom source, 

a wavelength selector to isolate the specific wavelength of light required, a 

detector, electronics to process the data signal and a data display to show the 

results, as shown in Figure 2.12. A hollow cathode lamp (HCL) is normally used 

as the light source, with a different lamp used for each element to be determined. 

The atomisation unit consisting of a nebuliser, spray chamber and flame produces 

free analyte atoms from the sample. The heat energy from the flame, commonly 

in the form of an air/acetylene or nitrous oxide/acetylene flame facilitates 

atomisation. By adjusting the burner head, the light beam can pass through the 

flame and hence the sample, and is then directed onto the detector where the 

photons are detected and measured. The absorbance of the element in the solution 
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is measured and the concentration of the element is then calculated from the 

calibration curve.  

 

Figure 2.12: AAS schematic diagram 

2.9.1.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

ICP-MS is considered the most efficient technique for multi-elemental analysis, 

and is capable of determining more than 73 elements per minute in an individual 

sample, depending on factors such as the concentration levels and the required 

precision (Thomas, 2013). An ICP-MS instrument uses argon inductively coupled 

plasma (ICP) as the ionisation source which is directed into a mass spectrometer 

(MS) to detect and determine the number of ions produced. Generally, ICP-MS 

provides better detection limits (0.001-1 µg/L) compared to other spectroscopic 

techniques, for a wide variety of elements, and is used for its ease-of-use, 

robustness and speed (Perkin Elmer, 2008).  

The block diagram of an ICP-MS is illustrated in Figure 2.13. In ICP-MS, the 

aqueous sample solutions are converted into an aerosol form by a nebuliser. Then, 

the aerosol transported into the plasma together with Ar gas, which usually 

operates at temperatures of 5000-10000 K at atmospheric pressure. However, in 

order to increase the precision and sensitivity of the instrument, the large droplets 

that may be produced by the nebuliser are removed in the spray chamber. 

Interface conditions exist in the ICP and MS system, namely atmospheric 

pressure and a vacuum environment (Wang et al., 2006).  

Consequently, the sample ions in the interface will flow into the MS system at 

high speed and the plasma expands in the vacuum. The high vacuum conditions 

in the MS system results in an efficient environment to prevent collisions between 

sample ions and air molecules (Thomas, 2013). For MS measurements, a number 
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of voltages must be set with respect to the type of ion optics used in order to 

separate the isotopes according their mass to charge ratios. Usually, a quadrupole-

based mass analyser is used in ICP-MS instrumentation due to its simplicity, 

relatively low cost and good performance (Perkin Elmer, 2008). The ions are 

directed to the detector to record the number of ions per mass present.  

 

Figure 2.13: ICP-MS block diagram (Agilent Technologies, 2010)  

2.9.2 PERFORMANCE COMPARISON OF INSTRUMENTATION 

TECHNIQUES FOR ANALYSIS 

In selecting a suitable technique for environmental analysis it is necessary to 

examine the particular analytical requirements. Therefore, there are several 

critical performance factors that need to be considered in selecting the appropriate 

technique for elemental determinations in environmental analysis of aqueous 

solutions (Perkin Elmer, 2004): detection limits, analytical working range, sample 

throughput and interferences. 

The detection limits achievable for targeted elements are important in selecting an 

analytical technique for a given analytical problem. As shown in Figure 2.14, it is 

clear that Flame atomic absorption spectroscopy (FAAS) is inapplicable to trace 

and ultra-trace level analysis, while ICP-MS has the best detection limits of the 

other techniques listed.  
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Figure 2.14: Typical detection limit ranges for the major atomic spectroscopy 

techniques (Perkin Elmer, 2008) 

Sample throughput is based not only on the number of samples that can be 

analysed but also on the number of elements that can be determined per unit of 

time. However, for most techniques, the analysis time will vary depending on 

factors such as concentration levels and required precision. When these two 

factors are not limiting, the number of elements to be determined per sample and 

the analytical technique chosen will determine the sample throughput. For 

example, FAAS shows relatively high sample throughput when analysing a large 

number of samples with limited numbers of elements. However, when multiple 

elements are to be determined, FAAS requires specific light sources and optical 

parameters for each element to be determined, which may cause low sample 

throughput. As such, FAAS is generally considered to be a single-element 

technique (Perkin Elmer, 2004). Therefore, a multi-element technique such as 

ICO-OES or ICP-MS has excellent sample throughput, which can typically 

determine more than 73 elements per minute in individual samples (Thomas, 

2013).  

Furthermore, problematic interference in determination of some elements also 

depends on the method being used. The determination of certain elements by 

FAAS may cause interference when the flame is not sufficiently hot to dissociate 

the molecules; this is known as chemical interference (Agilent Technologies, 

2015). Interference in these atomic spectroscopy techniques can also occur due to 
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contaminations such as humic acids, and to physical matrix effects such as 

variations in the physical characteristics of the sample, which may affect the 

accuracy of the analysis (Beaty and Kerber, 1978). The comparisons between 

these instrumental techniques are shown in Table 2.14. 
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Table 2.14: The strength and limitations of atomic spectroscopy techniques (Perkin Elmer, 2008) 

 FAAS GFAAS ICP-OES ICP-MS 

Detection limit Very good for some 

elements 

Excellent for some 

elements  

Very good for most 

elements 

Excellent for most 

elements 

Ease of use Very easy Skill required Skill required Skill required 

Unattended operation No Yes Yes Yes 

Capital costs Low  Medium to high High  Very high 

Running costs Low  Medium  High  High  

Sample throughput 15 seconds per element 4 min per element 5-30 elements per min All elements in 2-6 min 

Applications  Ideal for laboratories 

analysing large number of 

samples for a limited 

number of elements  

Ideal for laboratories 

analysing a limited number 

of elements and requiring 

better detection limits 

Ideal for laboratories 

analysing multiple 

elements in a moderate or 

large number of samples 

Ideal for laboratories 

analysing multiple 

elements in a large number 

of samples and requiring a 

system capable of 

determining trace and 

ultra-trace analyte 

concentrations. 

FAAS= Flame Atomic absorption spectrometry; GFAAS=Graphite furnace atomic absorption spectrometry; ICP-OES-Inductively coupled plasma optical 

emission; ICP-MS= Inductively coupled plasma mass spectrometry 
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2.10 ISSUES ARISING FROM LITERATURE REVIEW  

The literature has identified that though oxidised CNWs have been used as 

adsorbents in many studies, these studies have focused mainly on the suitability 

of this adsorbent for removing heavy metals under conditions unrealistic to the 

wastewater treatment plant. Moreover, there are no papers at present that test the 

stability of oxidised CNW adsorbent at different time intervals under dry 

conditions and in the water matrix, which are relevant from the perspective of 

manufacture and WWTP application respectively. In addition, only a limited 

number of studies have focused on the removal of copper from real wastewater 

samples. The issue with these studies are the assumptions that the real wastewater 

composition does not vary with time, is the same for each sample, or that its 

composition has no influence on the removal capability of the process used. 

Therefore, the complexity of wastewater and its variability in terms of heavy 

metal contamination and water quality indicators should be considered, because 

they may influence adsorption efficiency. Benchmark studies performed in this 

current study will then provide a better understanding of the impacts of 

wastewater composition on the remediation of Cu(II) from the matrix.  

Studies reported in the literature have tended to focus on one single parameter at a 

time; this will basically require a longer time to determine optimum adsorption 

conditions. Therefore, experimental factorial design has been implemented to 

optimise the adsorption of Cu(II) from water matrices. Furthermore, the testing of 

both the RSM and ANN models, using new sets of experiments that lie both 

inside and outside the test parameter system, have not been reported in other 

papers. Generally, only a couple of parameter variations have been tested, without 

checking the chosen modelôs suitability for parameters lying within the tested 

parameters, and certainly not for parameters lying outside the tested parameter 

space. Statistical mathematical models have been used to fit experimental data 

within a system, comparing factors and ranges, and in some cases predictive 

capability, but rarely test system boundaries. The literature does not account for 

matrix variability as an influencing factor when evaluating potential of an 

adsorbent for remediating heavy metal pollutants from a wastewater matrix. In 

addition, no work to date has presented potential mathematical models that could 
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take into account the influence of matrix variability on adsorbent performance, 

which would provide valuable insights into the applicability of approaches tested 

in this thesis. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 INTRODUCTION  

This chapter provides the list of chemicals and reagents, preparation and 

modification of the adsorbent, and the adsorption process. It is divided into three 

sections. The first section includes the list of chemicals and reagents used for 

adsorbate solution and adsorbent preparation. The second section contains the 

experimental procedure for the preparation and modification of the adsorbent, and 

the characterisation of modified adsorbent. This section also describes the 

scoping batch studies and the analysis system used to determine the concentration 

of the solutions. The final section contains the procedure for batch adsorption 

studies by using design of experiment (DoE), model development and analysis of 

variance (ANOVA).  

3.2 MATERIALS  

The materials used are divided into three main parts, comprising the chemicals to 

prepare adsorbate solution, the raw materials and chemicals to prepare adsorbent, 

and wastewater effluent. 

3.2.1 REAGENTS 

All the chemical reagents used in these studies were analytical grade, with the list 

given in Table 3.1. Milli-Q ultrapure water (Milli-Q, 18.2 MÝ-cm resistivity, 

Millipore, Bedford, MA, USA) was used for the preparation, dilution and 

analytical purposes of solutions.  

3.2.2 COTTON   

Cotton wool (BP grade, 100%), which contains 95ï99% cellulose, was chosen as 

the raw material for the production of cellulose products because of its high 

purity of cellulose over other cellulose sources. Moreover, cotton wool requires 

no treatment processes such as bleaching prior to hydrolysis, as it can be readily 

purchased in pure form.  
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Table 3.1: List of reagents and chemicals  

Chemicals/reagents Formula Supplier  Purity grade Purpose  

2,2,6,6-tetramethyl-1-piperidinyloxy 

free radical 
TEMPO Sigma-Aldrich 98% 2 

Amberlite MB6113 mixed bed ion 

exchange resin 
 Alfa Aesar  2 

Copper sulphate pentahydrate  CuSO4.5H2O Sigma-Aldrich 98ï99% 3 

Copper, standard solution 1000 mg/L CuSO4 ROMIL Ltd 
Analytical reagent, 1000 mg/L Cu in 2% nitric 

acid 
3 

Methanol CH3OH Fisher Scientific (UK) 99.8% 2 

Milli -Q ultrapure water  
Millipore, Bedford, MA, 

USA 
18.2 MÝ-cm resistivity 2, 3 

Nitric acid HNO3 Sigma-Aldrich ACS reagent 2, 3  

Potassium bromide  KBr Fisher scientific (UK) >99% 1 

Sodium bromide  NaBr Sigma-Aldrich >99% 2 

Sodium chloride  NaCl Fisher Scientific (UK) ACS reagent, >99% 1 

Sodium hydroxide  NaOH Fisher Scientific (UK) 98ï99% 2, 3 

Sodium hypochlorite  NaClO Sigma-Aldrich Reagent grade, 10ï15% available chlorine 2 
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Sulphuric acid  H2SO4 Fisher Scientific (UK) >95% 
2,3 

 

Uranyl acetate UO2(OCOCH3)2.2H2O Agar Scientific  1 

 

Purpose:  

1. Characterisation of adsorbent 

2. Adsorbent preparation and modification  

3. Adsorption process and preparation 
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3.2.3 WASHING PROCEDURE 

The laboratory wares and sample tubes were washed with Milli-Q water followed 

by 20% by volume HNO3. The washed laboratory wares and tubes were filled 

with 50% by volume HNO3 and soaked for no less than 3 hours. Then the 

laboratory wares and tubes were rinsed with Milli-Q water 2ï3 times and were 

dried in the oven prior to use.  

3.2.4 WASTEWATER SAMPLES  

The sample collection was carried out at the Severn Trent Water Stoke Bardolph 

wastewater treatment plant (WWTP) in Nottingham, UK, which has a population 

of 7.7 million. The plant, located on the west bank of the River Trent, serves most 

of the Nottingham area. Wastewater effluent was collected twice a week using a 

grab-sampling approach. Grab sampling was selected due to concerns over 

sample stability for stored composites; it allows the analysis of unstable 

parameters such as pH, dissolved oxygen and temperature (APHA, 1998).  

The wastewater influent and effluent were collected twice a week in the morning 

from Stoke Bardolph WWTP. The samples were collected from November 2015 

to March 2016. Water samples were collected in a 2.5 L amber glass bottle with 

little or no headspace volume to minimise aerobic biodegradation of organic 

substrates, and transported to the laboratory. In order to minimise contamination, 

the bottles were rinsed 3 times with the effluent before the samples were 

collected. Dissolved oxygen (DO) and temperature were measured by a DO meter 

(Jenway 970, Staffordshire, UK) and thermocouple thermometer (Digi-Sense, 

Cole-Parmer Instrument Ltd., UK), respectively at the sampling point to avoid 

any changes during storage and transport. 

The effluents were filtered using glass microfiber paper (Fisherbrand, G261, 1.2 

µm) ready for further characterisation in the laboratory. Samples analysed for 

trace elements by an atomic absorption spectrometry (AAS) and inductively 

coupled plasma mass spectrometry (ICP-MS) analysis were filtered through 0.2 

µm surfactant-free cellulose acetate membrane syringe filter (Minisart-Plus 

filters, Sigma-Aldrich), acidified with nitric acid and stored in polypropylene tube 
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bottles. In order to minimise the potential for volatilization or biodegradation 

between sampling and analysis, the samples were stored in a fridge at 4 °C.   

3.2.4.1 Stability of effluent  

The stability of the effluent was tested at different storage times prior to analysis 

by ICP-MS. The effluents were first filtered through a 0.45 µm surfactant-free 

cellulose acetate membrane syringe filter and stored in acid-washed sample tubes 

with no headspace. The samples were acidified to 2% by volume HNO3, with pH 

lower than 2.0, and stored in a fridge at 4°C before analysis. Then ICP-MS 

analysis was carried out on the effluents stored for different storage times (24, 72 

and 120 hours). 

3.2.4.2 Wastewater characteristics 

In order to perform a physico-chemical characterisation of the water samples, the 

American Public Health Associationôs Standard methods for the examination of 

water and wastewater were applied (APHA, 1998). In each of the samples, the 

following water quality parameters were determined: 

¶ total suspended solids (TSS) 

¶ pH 

¶ conductivity 

¶ total dissolved solids (TDS)  

¶ chemical oxygen demand (COD). 

3.2.4.3 Total suspended solids (TSS) 

A well-mixed sample (500 ml) was filtered through a weighed standard 1.2 mm 

glass fibre filter. The filter paper was placed into a filtration apparatus and the 

vacuum was applied. Then the residue retained on the filter was dried in the oven 

to a constant weight at 120̄C to remove water content. The TSS was calculated 

by the difference between the mass of filter paper before and after the drying 

process (APHA, 1998): 
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Where:  

A = weight of filter + dried residue, g 

B = weight of filter, g 

3.2.4.4 pH, conductivity and total dissolved solids (TDS) 

The pH, conductivity and total dissolved solids of water samples were measured 

by a combined pH/conductometer (Model HI 9811, Hanna Instruments Ltd., UK). 

Although this method is rather simple and straightforward, comprehensive care 

and precautions must be taken during measurement to avoid unnecessary errors. 

The proper steps include calibrating the meter, placing the electrodes in a well-

mixed sample and reading the results directly from the meter. Thus, the device 

was calibrated with buffers of pH 4.0, 7.0, and 10.0 prior to usage in order to 

obtain accurate results. Magnetic stir plate and stir bar were used to stir the water 

samples at a moderate and uniform rate in order to achieve equilibrium between 

the electrode surface layer and the solution. Moreover, proper cleaning and 

storing of pH/conductivity probes is important in order to increase the accuracy of 

the measurements. The acceptable criteria for measured TDS (g/L) to 

conductivity (mS/cm) ratio are from 0.55 to 0.7 (APHA, 1998). Therefore, if the 

ratio is outside of these limits, measured TDS or measured conductivity is not 

accurate and the sample needs to be re-analysed.  

3.2.4.5 Chemical oxygen demand (COD) 

APHAôs Standard methods for the examination of water and wastewater (1998) 

defines COD as the amount of dissolved oxygen required to oxidise and stabilise 

the given sample of water (APHA, 1998). Accordingly, cuvette tests were 

performed for both water samples and were analysed on the day upon receipt. The 

method for the determination of COD in wastewater samples using cuvette tests is 

based on the addition of 2 ml of sample to the cuvette, which is heated in LT200 

thermostat (Hach Lange, UK) at 148 °C for 2 hours. Based on the concentration, 

two different cuvettes LCI500 (15 ï 150 mgO2/L) for effluent and LCI400 (150 ï 



3 MATERIALS AND METHODS 

 

67 

1000 mgO2/L) for influent water samples were used. After cooling, both cuvettes 

(sample and deionised water as control) were measured using a DR 2800 

spectrophotometer (Hach Lange, UK). 

3.3 EXPERIMENTAL METHODO LOGY FOR ADSORBENT 

PREPARATION  

3.3.1 PREPARATION OF CELLULOSE NANOWHISKERS 

The cellulose nanowhiskers (CNWs) were prepared in four steps: chopping, 

hydrolysis, dialysis, and sonication. Pure cotton wool was cut into small cubes 

(5 cm x 5 cm) and the required amount of cotton wool was prepared for 

hydrolysis. Then the cotton wool (80 g) was dispersed in 64 wt% sulphuric acid 

(8.75 ml H2SO4 solution per gram of cotton) and the cotton pieces were gradually 

added using a glass rod. The suspension was held at 45 °C in the fume cupboard 

with a magnetic stirrer for 45 minutes to allow cotton hydrolysis. Then the 

suspension was diluted with cold deionised water and subjected to centrifugation. 

The suspension was transferred into six plastic containers with equal volume and 

3 successive centrifugations were carried out at 10 000 rpm for 15 minutes, using 

a Sigma 6K15 Refrigerated Centrifuge. After centrifugation, the suspension was 

dialysed using cellulose membrane tubing (MWCO 12Kï14K diameter 48 mm) 

against running tap water for 48 hours to remove the residual free acid in the 

dispersion. The suspension was then sonicated using a Branson Digital Sonifier 

and filtered through a No. 2 fritted glass filter to remove residual aggregates. 

Next, the filtrate obtained was mixed with Amberlite MB6113 mixed bed ion 

exchange resin to remove non H3O
+ cations, and filtered again before being 

stored in a fridge prior to use. The process flow for the production of CNWs is 

shown in Figure 3.1. 
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Figure 3.1: Process flow for CNWs production 

3.3.2 PREPARATION OF SURFACE-CARBOXYLATED CNWS 

(OXIDISED CNWS) VIA TEMPO-MEDIATED OXIDATION 

Preparation involved 400 ml of 0.5 wt% dispersion of CNWs solution 

(section 3.3.1), which was held at room temperature and stirred mechanically. 

Then TEMPO free radical (59 mg) and NaBr (645 mg) were added to the 

solution. The process was commenced by adding NaClO solution (10ï15 % 

available Cl) (5.1 ml) into the CNWs solution and stirring continually at room 

temperature for 45 minutes. The pH of the solution was maintained at 10 ± 0.1 by 

adding dropwise 0.5 M NaOH, when necessary. A pH meter (Jenway 350, 

Staffordshire, UK) was used for monitoring the pH of the reaction. After stirring 

the solution for a designated time, the oxidation was quenched by adding aqueous 

methanol (5 ml). The solution was then dialysed with cellulose membrane tubing 

(MWCO 12Kï14K diameter 48 mm) against running tap water for 4 hours to 

remove any residual free acid in the dispersion. After dialysis, the solution was 

mixed with Amberlite MB6113 mixed bed ion exchange resin to ensure only H+ 

was present, and filtered through No. 2 fritted-glass filter before freeze-drying 

using a ScanVac CoolSafe freeze dryer (Labogene, Denmark). The process flow 

for the production of oxidised CNWs is shown in Figure 3.2. 
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Figure 3.2: The process flow for production of oxidised CNWs via TEMPO-

mediated oxidation 

3.4 CHARACTERISATION MET HODS OF CELLULOSE 

NANOWHISKERS  

The characteristics and analysis of CNWs are crucial in understanding the 

mechanism on the adsorbent surface. A variety of methods are employed for 

characterisation in order to obtain a complete description of the structure, 

morphology and composition of the cellulose. These analytical methods will also 

provide information on the active sites involved in the binding of pollutants (Park 

et al., 2010). The methods that have been used in this study are Fourier 

Transform Infra-Red (FTIR) spectroscopy, zeta potential, BrunauerïEmmettï

Teller (BET) method, scanning electron microscopy (SEM), transmission electron 

microscopy (TEM) and conductometric titration method. 

3.4.1 FOURIER TRANSFORM INFRA-RED SPECTROSCOPY 

Infrared spectroscopy was used to determine vibration frequency changes in the 

oxidised CNWs on a Thermo-Nicolet 380 FTIR spectrometer (Thermo Fisher 

Scientific Inc., USA) in transmission mode. The samples were examined using a 

spectrometer with a 400 ï 4000 cm-1 range, with a resolution of 4 cm-1 for 16 

scans. 2 mg of the solid samples (CNWs) were milled with 200 mg potassium 

bromide (KBr) to form a very fine powder by using an agate pestle and mortar. 

KBr was used as background material in the analysis. This powder was then 

compressed to form a thin transparent disk, ready for spectra analysis. 
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3.4.2 ZETA POTENTIAL 

Zeta potential of 0.1 % suspensions of samples in deionised water were measured 

at 25 °C using a Malvern Instrument Nano-ZS Zetasizer (Malvern Instrument 

Ltd, Worcestershire, UK). All zeta potential cells should be rinsed and cleaned 

with deionised water prior to usage in order to avoid any cross contamination of 

material from one measurement to other. The measurement performed was based 

on electrophoretic light scattering, and Smoluchowski was used as a model. The 

measurements were performed 10 times for each sample, and average results 

were calculated. 

3.4.3 DETERMINATION OF CARBOXYLATE CONTENTS 

The stability of the oxidised CNWs was tested over time under dry conditions and 

in the water matrix. For dry stability, the carboxylate content of the oxidised 

CNWs was determined using conductometric titration to prove that the functional 

groups were permanent and did not degraded under tested conditions. The 

titration was carried out on the oxidised CNWs stored under dry conditions for 

different times (7, 14 and 28 days).  

For the wet stability test, freeze-dried oxidised CNWs were mixed with deionised 

water and left for 30 minutes, 24 hours and 7 days under constant shaking at a 

rate of 150 rpm in an incubator before titration experiments. Next, the 

suspensions were freeze-dried and used for the batch experiments. Freeze-drying 

was carried out because it allowed for accurate dosing of the CNWs. Batch 

experiments were carried out in conical flasks by adding oxidised CNWs in 20 

mL of aqueous copper solution in the same conditions (initial Cu(II) 

concentration: 50.3 mg/L; sorbent dosage: 2.1 g/L; temperature: 21.3 °C). The 

initial and final concentrations of Cu(II) solutions were determined using AAS. 

Freshly prepared oxidised CNWs were used as the control experiment. 

3.4.4 BET METHOD 

The surface area and average pore diameter analysis of both samples (unmodified 

CNWs and oxidised CNWs) were performed using a Micromeritics TriStar II 
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Surface Area and Porosity analyser (Micromeritics, UK). For sample 

preparations, 20 mg of sample was placed into clean and dry tubes for gas 

preparation, and degassed in the Pfeiffer Vacuum TMH 071 (Micromeritics, UK) 

at 105 C̄ for 22 hours prior to determination of N2 physisorption isotherm at 

-196̄ C (77 K). The weight of the sample was measured before and after 

degassing. The surface area of the sample was measured by the BET method 

while the pore size distribution of the sample was calculated from the desorption 

branch of the nitrogen adsorption-desorption isotherm using the BJH model.  

3.4.5 ELECTRON MICROSCOPY (SEM) 

Both samples (CNWs and oxidised CNWs) for the SEM study were prepared by 

direct deposition of samples on an aluminium holder, which was covered by a 

carbon grid. The sample was then sputter coated (SC 7640, High resolution 

sputter coater, Quorum Technologies, UK) with a thin layer of platinum (15 nm 

thick film) under vacuum, which was to provide a homogeneous surface for 

analysing and imaging. The sample was then examined in the SEM (XL 30 

ESEM-FEG, Philips, USA), and operated under high vacuum with accelerating 

voltage of 20 kV.  

3.4.6 ELECTRON MICROSCOPY (TEM) 

A drop of 10 ml of both samples (unmodified CNWs and oxidised CNWs 

suspension) was first dispersed in deionised water for 15 minutes using 

sonication. Next, the sample was transferred to a copper grid (Carbon Films, 300 

Mesh Cu Grids, AGAR) with hydrophilic surface by glow discharge treatment 

(Pelco, AGAR Scientific), and the excess liquid was absorbed by a filter paper. 

The specimens were then negatively stained with 2 % uranyl acetate solution to 

give better contrast between the sample and the carbon film. Excess solution was 

absorbed with a filter paper and left to dry by evaporation at ambient temperature 

before commencing the measurements. The surface morphology and particle size 

of both samples (unmodified CNWs and oxidised CNWs) were observed using a 

JEOL 2000FXII electron microscope operating at 80 kV accelerating voltage. 

Image J software was used to process the TEM images. 
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3.4.7 CONDUCTOMETRIC TITRATION 

The content of carboxyl group on the oxidised CNWs was determined by the 

conductometric titration method (Saito and Isogai, 2004). Approximately 0.1 g of 

freeze-dried oxidised CNWs was mixed with 49 ml of deionised water and 1 ml 

of 0.05 M sodium chloride (NaCl), and the mixture was stirred to obtain a well-

dispersed solution. The resulting suspension was titrated with 0.05 M sodium 

hydroxide (NaOH) solution at the rate of 0.1 mL/min while stirring continuously, 

and a conductivity meter recorded conductivity (Model No: 9811, Hanna 

Instruments Ltd, UK). The titration was carried out in triplicate for each sample, 

and the experimental errors were calculated as standard deviation. The carboxyl 

content of the sample was determined from the conductometric titration curve and 

was calculated by Equation 3.2. Assuming that each added molecule of NaOH 

with this range neutralised exactly one carboxyl group and all other weak acidic 

groups (aldehyde groups) were oxidised to carboxyl groups by the added NaCl:  

 
ὢ άάέὰὯὫ
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 (3.2) 

Where X is the total carboxyl group (mmol/kg), Ct is the concentration of the 

sodium hydroxide (mol/L), V2 is the volume (L) of the sodium hydroxide solution 

consumed at the second intersection point, and m is the oven-dry weight of 

sample after titration (g) (Saito and Isogai, 2004). 

3.5 EXPERIMENTAL SET UP FOR BATCH ADSORPTION STUDIES 

The first and most important step in the design of experiment (DoE) procedure is 

to select significant variables that influence the adsorption process such as pH, 

contact time, temperature, sorbent dosage, and initial concentration (Figure 3.3). 

In order to do this, scoping studies were undertaken to identify the significant 

variables and parameter ranges that influence the adsorption process and help set 

the boundary conditions for the central composite design (CCD). 
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Figure 3.3: Design of experiment (Define significant factors and response) 

3.5.1 PREPARATION OF ADSORBATE SOLUTION 

3.5.1.1 Clean water matrix 

A Cu(II) stock solution with concentration of 1000 mg/L was prepared by 

dissolving the appropriate amount of CuSO4.5H2O in a 1000 ml volumetric flask, 

followed by dilution up to the mark by the addition of Milli-Q ultrapure water, 

and the required concentrations were obtained by diluting the stock solution (10 - 

60 mg/L). The range for the initial Cu(II) ion solution was chosen as 10 - 60 

mg/L, which is environmentally relevant to the actual concentration in municipal 

and industrial treatments plant (Table 2.4). 

3.5.1.2 Wastewater effluent spiked with Cu(II) 

The Cu(II) concentration in wastewater effluent was adjusted to the required 

concentrations (1ï5 mg/L) by dissolving the appropriate amount of CuSO4.5H2O 



3 MATERIALS AND METHODS 

 

74 

in a 200 ml volumetric flask, followed by dilution up to the mark by the addition 

of filtered effluent.  

3.5.2 BATCH ADSORPTION STUDIES USING CLEAN WATER MATRIX 

Batch experiments were performed in 100 mL conical flasks in an incubator 

(Model No: 120, LMS Ltd., Kent, UK), with temperature control and agitation 

(150 rpm) using a mini table shaker (IKA Vibrax VXR, Germany). The contact 

time (30 min), and the initial pH (pH 6.0) were selected on the basis of the results 

obtained from the scoping experiments. The required mass of sorbent was 

measured separately into the 100 mL conical flask, and then 20 mL of Cu(II) 

solution with known concentration were added into the flasks. The initial pH of 

the solution was adjusted with 1 M H2SO4 and 1 M NaOH at 6, using the pH 

meter (Hanna Instruments Ltd., UK), calibrated with buffers of pH 4.0, 7.0, and 

10.0 in order to maintain constant pH throughout the experiment. Next, the 

solution was separated from the sorbent using 0.2 µm surfactant-free cellulose 

acetate membrane syringe filter, and initial and the final concentration Cu(II) 

concentration after adsorption process were determined using AAS. All the 

experiments were conducted in duplicate and the average values are presented. 

For the control experiment, 20 ml of Cu(II) solution with known concentration 

were agitated in the absence of adsorbent for each experiment.  

3.5.3 BATCH ADSORPTION STUDIES USING WASTEWATER 

EFFLUENT  

The procedure for adsorption experiments, as described in Section 3.5.2, was 

performed using wastewater effluent spiked with Cu(II). The effluent was 

previously filtered through a standard 1.2 mm glass fibre filter. The effect of pH 

(5ï8), sorbent dosage (0.5ï10 g/L) and initial concentration of wastewater 

effluent spiked with Cu(II) (1ï5 mg/L) were carried out using effluent while 

keeping the other conditions the same, as with the clean water matrix. The pH of 

the solution was adjusted initially with 1M H2SO4 and 1M NaOH. In order to 

avoid any contamination, no efforts were made to maintain the pH throughout the 

adsorption process. The final pH was recorded. The initial and final solutions 
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were separated by filtration using 0.2 µm surfactant-free cellulose acetate 

membrane syringe filter and Cu(II) concentration determined using AAS.  

The percentage of the removal Cu (II) ions by the sorbent and the adsorption 

capacity (mg Cu(II)/g) were expressed by:  
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Where Co (mg/L) is the initial Cu(II) concentration and Ce (mg/L) is the 

equilibrium Cu (II) concentration in solution, V is the volume of the solution (L), 

and W is the mass of adsorbent (g) (Ghosh et al., 2013). 

3.5.4 BENCHMARK STUDY 

A benchmark study was performed in order to understand the complexity and 

variability of the wastewater matrix on the adsorption performance. For 

benchmark studies, 20 ml of 4 mg/L Cu(II) wastewater effluent spiked with 

Cu(II) was agitated with 1 g/L sorbent dosage for 30 minutes at 20 C̄ at pH 6. 

This benchmark experiment was performed for each wastewater sample (for 

every sampling trip). The initial and final samples were separated by filtration 

using a 0.2 µm surfactant-free cellulose acetate membrane syringe and the 

concentration of the samples was determined by ICP-MS. 

3.5.5 SELECTION OF INDEPENDENT VARIABLES AND RANGES 

THROUGH SCOPING EXPERIMENTS 

3.5.5.1 Effect of pH 

Experiments were carried out to ascertain the effect of pH on the adsorption of 

Cu(II) from the solution and to find the optimal pH for removing Cu(II) from the 

water matrix by using oxidised CNWs. Batch experiments were performed with 

20 ml of 10 mg/L Cu solutions with pH adjustment using 1 M H2SO4 or 1 M 

NaOH to give a range from 4.0 to 8.0. Then 2 g/L of sorbent dosage was used at 
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different values of pH, and the flasks were gently agitated (150 rpm) at 20 C̄ in 

an incubator for 30 minutes to reach equilibrium. The initial and final solutions 

were separated by filtration using a 0.2 µm surfactant-free cellulose acetate 

membrane syringe, and AAS determined the concentration of Cu(II). 

3.5.5.2 Effect of contact time 

The scoping studies were carried out to investigate the effect of contact time on 

the removal of Cu(II) from the water matrix by using oxidised CNWs. The effect 

of contact time was investigated for 5, 10, 20, 30, 60 and 180 minutes for both 

clean and wastewater matrix. Experiments were carried out by using 4 g/L of 

sorbent dosage with 20 ml of 10 mg/L Cu(II) ion solution, and were gently 

agitated (150 rpm) at 20 C̄ in an incubator. At each interval, the solution was 

filtered and the concentration of Cu(II) was determined by AAS. 

3.5.5.3 Effect of temperature 

 The efficiency of the oxidised CNWs as adsorbents at different temperatures 

from 6 to 25 °C were investigated. This range was chosen because it is a realistic 

range for wastewater treatment temperatures in the environment. The adsorption 

experiments were conducted by using 4 g/L of sorbent dosage with 20 ml of 10 

mg/L Cu(II) ion solution and were gently agitated (150 rpm) at 10 C̄, 15 C̄ and 

25 C̄ in an incubator for 30 minutes. The initial and final solutions were 

separated by filtration using a 0.2 µm surfactant-free cellulose acetate membrane 

syringe, and AAS determined the concentration of Cu(II). 

3.5.5.4 Effect of sorbent dosage 

Experiments were carried out to study the effects of sorbent dosage in removing 

Cu(II) from the water matrix. The experiments were conducted by using sorbent 

dosage (0.2, 2.0, 4.0, and 10.0 g/L) at pH 6.0 with 10 and 5 mg/L of Cu(II) 

solution in clean water and wastewater effluent, respectively. After 30 minutes, 

the initial and final solutions were separated by filtration using a 0.2 µm 

surfactant-free cellulose acetate membrane syringe, and AAS determined the 

concentration of Cu(II). 
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3.5.6 ADSORPTION ISOTHERM STUDIES 

In order to understand the behaviour of adsorbent, two common adsorption 

isotherms (Langmuir and Freundlich) were used to evaluate the adsorption system 

design and to describe the adsorption capacities of the modified adsorbent 

(Shojaeimehr et al., 2014). These isotherms were expressed as: 
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Where qe (mg/g) is the equilibrium amount of Cu(II) adsorbed per unit mass of 

sorbent, qm (mg/g) is the maximum Cu(II) ions adsorption capacity to form a 

complete monolayer on the surface bound and KL (l/mg) is the Langmuir 

constant, which is related to the affinity of the binding sites. 
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Where Kf and nf are the Freundlich constants that indicates adsorption capacity 

and adsorption intensity, respectively.  

3.5.7 ADSORPTION KINETICS STUDIES 

The prediction of adsorption rate is important in providing the necessary 

information for the design of the adsorption system. Two kinetic models, which 

are Lagergrenôs pseudo-first order and pseudo-second order model, were applied 

to the experimental data in order to clarify the mechanism of adsorption process 

such as mass transfer and chemical reaction. The pseudo first-order and pseudo 

second-order adsorption kinetic rate equation are expressed as follows: 
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After integration and applying boundary conditions t=0 to t=t and qt=0 to qt=qt, 

the integrated form of Equation 3.9 and 3.10 by Lagergren are given as (Sarē and 

Tuzen, 2009): 
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Where qt and qe (mg/g) are the amounts of the metal ions adsorbed at time (min) 

and at equilibrium, respectively. The Lagergren rate constant for first and second-

order equation is k1 and k2 (min-1), respectively. The adsorption rate (k1) can be 

determined by plotting log (qe Ƅ qt) against t, while a plot of t/qt versus t is used 

for second-order kinetic model and k2 was found from the slope of the plot.  

3.6 INSTRUMENTAL ANALYSI S OF COPPER 

3.6.1 ATOMIC ABSORPTION SPECTROMETRY (AAS) 

A Perkin-Elmer 272 Atomic Absorption Spectrometry (AAS) (Model No: 272, 

PerkinElmer Inc., USA) was used to measure the concentration of Cu(II) in 

aqueous solution. The operating parameters for Cu(II) analysis using AAS are 

specified in Table 3.2. An air-acetylene flame with a temperature of about 2300 

C̄ was used for all measurements (Perkin Elmer, 1996). The adjustment of the 

burner with regards to height, lateral and rotational position was required. Fuel/air 

flows and nebulizer adjustments were also necessary in order to obtain maximum 

sensitivity.  

Table 3.2: Operating parameters for metal analysis using Atomic Absorption 

Spectrometry (AAS) 

Parameters Description 

Flame type Air/acetylene 

Lamp current Copper (10 mA) 

Wavelength 324.8 nm 

Slit width 0.7 nm 
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Burner alignment Straight Angled 

Standard solutions 2, 4, 6, 8, and 10 mg/L 

 

10, 20, 30, 40, 50, 60 and 70 

mg/L 

Linear regression curve y = 0.03313x + 0.00212 

R2 = 0.9998 

y= 0.00488x ï 0.00083 

R2 = 0.9997 

 

Limit of detection 

 

0.0382 mg/L 

 

 

0.2966 mg/L  

Limit of quantification 0.1273 mg/L 0.9886 mg/L  

To set up the AAS instrument, a hollow cathode lamp of copper was installed into 

the instrument, and both the required wavelength and slit width were then set as 

listed in standard conditions. The instrument was calibrated with standard Cu(II) 

solutions. Calibration blank (zero concentration) is always measured first with 

óauto-zeroô on the calibration blank. Cu(II) determinations were interpolated from 

calibration curve equations derived from measurements of prepared standard 

Cu(II) solutions. For this study, two different calibration curves were used based 

on the concentration of the samples (Appendix A). In order to obtain accurate 

analysis, the calibrations were checked after every 10 samples by using the 

standards Cu(II) solutions and óauto-zeroô with the calibration blank. Analysis of 

each sample was carried out 5 times and an average reading taken. 

3.6.2 PREPARATION OF AAS STANDARD SOLUTIONS 

A certified 1000 mg/L calibration standard solution of Cu (in 2 % HNO3) was 

purchased from ROMIL Ltd. The standard solutions (10ï70 mg/L) and (1ï

10 mg/L) that span the working ranges were prepared by using the provided 

1000 mg/L reference standard solution for Cu(II) with Milli-Q ultrapure water. 

As the dilute standard solutions will degrade with time, all the calibrated 

standards should be dated and replaced when necessary. 

3.6.3 DETERMINATION OF DETECTION LIMITS AND 

QUANTIFICATION LIMIT  

Limit of detection (LoD), or detection limit, is a term used to describe the lowest 

concentration level that can be reliably determined from a blank (Perkin Elmer, 

2004). The instrument detection limit is typically defined as the concentration of 
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analyte, which is equal to three times the standard deviation of the concentration 

of 10 replicates of the calibration blank. In some circumstances, using LoD can 

still result in false positive or false negative data for a sample. Commonly, for 

most low-level analyses the limit of quantification (LoQ) is now routinely 

employed. This reduces the risk of quoting false positive or false negative data, as 

LoQ is greater than LoD by a factor of 3.3. LoQ is defined as 10 times the 

standard deviation of 10 replicates of calibration blank. 

3.7 DESIGN OF EXPERIMENT S 

The parameters and their range for Cu(II) removal from the water matrix were 

studied using response surface methodology (RSM) and artificial neural network 

(ANN) based on central composite design (CCD) (Figure 3.4). Optimisation 

studies were carried out by studying the effect of three variables (temperature, 

initial Cu(II) concentration, sorbent dosage and pH), based on type of water 

matrices. 

 

Figure 3.4: Design of experiment (selection of experimental design) 
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3.7.1 CENTRAL COMPOSITE DESIGN (CCD) 

A central composite design (CCD) was employed to evaluate the removal of 

Cu(II) from the water matrix. The factor levels for the experimental design were 

selected based on the literature and the scoping studies undertaken in this study, 

as described in Section 5.4. MINITAB 16 Statistical Software was used for 

statistical analysis. With three variables, a total of 20 experiments were required 

in order to find the optimum operating condition for the removal of Cu(II) using 

oxidised CNWs, as calculated from Equation 3.5: 

 ὔ ς ςὲ ὲ ς ςσ φ ςπ (3.11) 

Where N is the total number of experiments required and n is the number of 

factors/independent variables. The centre points (nc) were used to determine the 

experimental error and estimate the predictability of the data.  

3.7.2 APPLICATION OF CCD FOR ADSORPTION FROM THE CLEAN 

WATER MATRIX 

Three independent variables, temperature (6ï25 °C), initial Cu(II) concentration 

(10ï60 mg/L), and sorbent dosage (0.2ï10.0 g/L) were optimised for the removal 

of Cu(II) from the clean water. The 20 CCD experiments were conducted as 

described in Section 3.5.2 at constant pH 6. The parameters are shown in Table 

3.3 with their coded levels (ïŬ, -1, 0, 1, Ŭ; Ŭ = 1.633). 

Table 3.3: Experimental ranges and levels of the independent variables for clean 

water  

Independent variable Factor code Range and level 

  
-Ŭ -1 0 1 +Ŭ 

Temperature (°C) X1 6 9.68 15.5 21.32 25 

Initial Cu (II) ion 

concentration (mg/L) 
X2 10 19.69 35 50.31 60 

Sorbent dosage  (g/L) X3 0.2 2.09 5.1 8.1 10 
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3.7.3 APPLICATION OF CCD FOR ADSORPTION FROM THE 

WASTEWATER EFFLUENT 

Three independent variables, pH (5 ï 8), sorbent dosage (0.5 ï 10.0 g/L), and 

initial concentration of wastewater effluent were spiked with Cu(II) (1 ï 5 mg/L), 

were optimised for the removal of Cu(II) from the wastewater effluent. The 20 

CCD experiments were conducted as described in Section 3.5.3 at a constant 

temperature of 20 °C. The parameters are shown in Table 3.4 with their coded 

levels (ïŬ, -1, 0, 1, Ŭ; Ŭ = 1.633).   

Table 3.4: Experimental ranges and levels of the independent variables for 

wastewater effluent 

Independent variable Factor code Range and level 

    -Ŭ -1 0 1 +Ŭ 

pH Y1 5 5.6 6.5 7.4 8 

Sorbent dosage (g/L) Y2 0.5 2.34 5.25 8.16 10 

Initial concentration of 

wastewater effluent 

spiked with Cu(II) 

Y3 1 1.78 3 4.23 5 

3.8 MATHEMATICAL MODELLI NG OF CU(II) REMOVAL  FROM 

THE WATER MATRICES  

3.8.1 RESPONSE SURFACE METHODOLOGY (RSM) 

RSM is an approach that combines mathematical and statistical techniques and 

can be applied to give a better overall understanding with a minimal number of 

experiments. The experimental data were processed using MINITAB 16 

Statistical Software. The predicted percentage of the removal of Cu(II) ions is 

explained by the following quadratic equation: 

 

ὣϷ ‍ ‍ὼ ‍ὼ ‍ὼὼ ‐ (3.12) 
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Where Y is the predicted response, xi and xj are the input variables, ɓo is the 

intercept term, ɓi is the coefficient of linear effect, ɓii is the coefficient of squared 

effect, ɓij is the coefficient of interaction effect and Ů is the random error.  

3.8.2 ARTIFICIAL NEURAL NETWORK (ANN) 

ANN is a powerful tool and has been widely used to model the effect of 

parameters influencing adsorption processes (Shanmugaprakash and Sivakumar, 

2013). Although there are many well-known ANN types such as multilayer 

perceptron, radial basis function networks, linear networks, Bayesian networks, 

and Kohonen networks, currently the most popular network architecture is 

multilayer perceptron (MLP) (Savic et al., 2012). This network consists of three 

or more layers of neurons as the three-layer models with one hidden layer and is 

commonly applied when predicting the performance of many processes 

(Pilkington et al., 2014; Witek-Krowiak et al., 2014). In order to use the ANN 

model for predicting Cu(II) removal from the water matrix, a feed-forward 

backpropagation was used for modelling the experimental design. In this study, 

the first layers of neurons representing the independent variables were identical to 

the factors considered in the RSM approach. Similar to the RSM modelling, the 

percentage removal of Cu(II) was considered as the output neurons and was 

developed in MATLAB (R2009b), Mathwork Inc. Software.   
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3.9 DATA ANALYSIS AND ST ATISTICAL TECHNIQUES  

 

Figure 3.5: Design of experiment (verification of the model) 

3.9.1 EVALUATED OF THE MODELS 

The regression analysis, graphical analysis, and analysis of variance (ANOVA) 

were undertaken using MINITAB 16 Statistical Software (Figure 3.5). The 

performance of the ANN and RSM model was statistically evaluated in terms of 

the coefficient of determination (R2), absolute average deviation (AAD), and the 

root mean squared error (RMSE). R2 value (R2 = 1) implies perfect matching 

between predicted and actual data. This is a measure of its estimation 

performance for the actual observed values. Moreover, both models and the 

parameters variation were also determined based on the minimum value of the 

RMSE and AAD of the training and prediction set, as mentioned in Section 2.7 

(Equation 2.6 and 2.7). 
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3.9.2 TEST AND VALIDATION OF THE MODEL 

For purposes of validation and evaluation of RSM and ANN models, additional 

unseen experiments were conducted in addition to those determined by the CCD, 

consisting of combinations of experimental parameters not found in the training 

data set for the models. The prediction abilities of the newly constructed ANN 

and RSM models were also statistically measured in terms of R2, AAD and 

RMSE. The overall experimental batch adsorption carried out in this study is 

illustrated following the chart in Figure 3.6. 



 

86 

Figure 3.6: The flowchart of overall batch adsorption experiments 
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3.10  EXPERIMENTAL SET UP FOR FIXED BED ADSORPTION  

In order to study the practical relevance of oxidised CNWs as adsorbent in large-

scale water treatment, column study by down-flow mode was studied. A 

continuous flow adsorption study was conducted in a solid phase extractions 

(SPE) vacuum manifold, with 20 positions (Waters, UK). An empty cartridge 

(column PD-10, GE Healthcare) made of polypropylene with 1.5 cm inner 

diameter and 7.4 cm height was packed with adsorbent and set up on the SPE 

vacuum manifold. A polyethylene frit was placed at the bottom of the cartridge to 

prevent loss of the adsorbent.  

The experiment was performed at room temperature (20 ±1 C̄) by pumping a 

known concentration of wastewater effluent spiked with Cu(II) in a down-flow 

mode through the cartridge using a pump (GAST manufacturing, Inc., USA). The 

wastewater effluent was placed in a polypropylene container and connected with 

a tube through which the effluent will pass through the cartridge. The treated 

effluent was collected in a polypropylene container through the exit valve at the 

base of the glass chamber. Fixed bed sorption studies were performed under 

optimum conditions (pH 8, sorbent dosage = 6.45 g/L, initial concentration of 

wastewater effluent spiked with Cu(II) = 4.72 mg/L), obtained from previous 

experiment performed in a batch system for removal of Cu(II) from the 

wastewater effluent. For each sorption test, the cartridge was flushed with 5 ml 

deionised water to ensure compact packing and that the closely packed 

arrangement of adsorbent had no voids and channels.  

The treated effluent (Ct) was collected after every 10 ml and analysed for metal 

concentration with AAS. The breakthrough curves of Ct/Co were plotted against 

volume. The experiments were continued until a constant concentration of Cu(II) 

was obtained. The adsorption capacity qe,cont (mg/g) can be determined by the 

equation as in batch studies, but with slight modifications: 

 
   ήȟ
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Where W is the mass of adsorbent (g), Co is the initial concentration (mg/L), Cb is 

the breakthrough concentration (mg/L) and Vef is the volume (L) of effluent that 

is required to reach the exhaustion of the column.  
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CHAPTER 4: RESULTS AND DISCUSSION 

CHARACTERISATION OF CELLULOSE NANOWHISKERS 

4.1 INTRODUCTION  

This chapter describes the characterisation of cellulose nanowhiskers (CNWs) 

using several analysis techniques. Several techniques such as Fourier Transform 

Infrared Spectroscopy (FTIR), zeta potential measurements, BrunauerïEmmettï

Teller (BET) analysis, Scanning Electron Microscopy (SEM), Transmission 

Electron Microscopy (TEM) and conductometric titration were used in this study. 

The procedures are fully described in Section 3.4.  

There are two main sections in this chapter. The first section discusses the 

characterisation of CNWs using several analysis techniques prior to surface 

modification. The second section focuses on the stability of oxidised CNWs at 

different time intervals under dry conditions and in the water matrix. 

4.2 HIGH LIGHTS  

¶ Oxidised CNWs were stable at different time intervals under dry 

conditions and in the water matrix and proved that the functional groups 

were permanent and did not degrade under the tested conditions. 

¶ Oxidised CNWs were effective in removing Cu(II) from the water matrix, 

unlike unmodified CNWs. 

¶ Surface morphological, surface area and pore volume of oxidised CNWs 

were virtually unchanged during TEMPO-mediated oxidation.  
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4.3 RESULTS AND DISCUSSION 

4.3.1 FOURIER TRANSFORM INFRA-RED (FTIR) SPECTROSCOPY 

The adsorption characteristics of an adsorbent are influenced by the chemical 

reactivity of surface functional groups (Saito and Isogai, 2005). FTIR is widely 

used as a spectroscopic tool to examine functionalities present in CNWs. FTIR 

spectra of the adsorbent were also examined before and after the modification 

process as described in Section 3.4.1. 

The FTIR spectra of CNWs (Figure 4.1) and the assignment of absorption bands 

are tabulated in Table 4.1, according to work by Marechal and Chanzy (Maréchal 

and Chanzy, 2000). The FTIR spectra of a typical cellulose show strong 

absorption characteristics at the OH stretching bands in the range of 3600ï3000 

cm-1, CH and CH2 stretching vibrations between 3000ï2800 cm-1, and CO and 

CC stretching bands in the range of 1200ï900 cm-1 (Horikawa et al., 2006). The 

strong absorption bands at 1075ï1000 cm-1 correspond to the primary alcohols 

while secondary alcohols absorb at 1150ï1075 cm-1 (Langkilde and Svantesson, 

1995).   

 

Figure 4.1: The FTIR spectra of CNWs 
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Table 4.1: Assignment of bands in IR spectra of CNWs 

Wavenumber (cm-1) Assignment 

3346 nO-H 

2900 nC-H 

1643 dH2O 

1430 dC-O-H 

1337 dC-O-H 

1317 dC-O-H 

1206 nC-O-C 

1163 nC-O-C 

1113 nC2-OH 

1059 nC3-OH 

1034 nC6-OH 

706 wC-O-H 

666 wC-O-H 

 

The FTIR spectra of CNWs and oxidised CNWs are shown in Figure 4.2. After 

modification, the presence of a band at 1740 cm-1 corresponds to the C=O 

stretching frequency of carboxyl groups incorporated into the CNWs (Cao et al., 

2012). In this spectrum, the presence of the band near to 1740 cm-1 corresponds to 

the C=O stretching frequency of carboxyl groups in their acidic form (Habibi et 

al., 2006).  
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Figure 4.2: FTIR spectra of the CNWs and oxidised CNWs 

4.3.2 ZETA POTENTIAL DETERMINATION 

Zeta Potential analysis is a technique utilised to determine the colloidal stability 

of nanoparticles in solutions. This analysis is important in the understanding of 

the state of the nanoparticle surface, to predict long-term stability of the 

nanoparticle and to determine whether a modification process has resulted in 

successful oxidation of the nanoparticle surface (Saito et al., 2009). A value 

outside of the range of ï25 mV to +25 mV generally indicates good stability of 

suspension which in the case of unmodified and oxidised CNWs, a stable 

suspension was observed (Ma et al., 2014; Saito et al., 2009). The procedure is 

fully described in Section 3.4.2. 

The average zeta potentials are ï37.6 mV and ï74.4 mV for the unmodified and 

oxidised CNWs respectively. It is clearly apparent that the zeta potential is 

changed after the modification process. These observations are in agreement with 

those of Okita et al. (2010), who showed that the zeta potential of oxidised 

cellulose microfibrils dispersed in water are approximately ï75 mV for all 

sources of cellulose. Moreover, the value obtained is acceptable, as it is in 

agreement with the zeta potential of TEMPO-oxidised cellulose derived from 

various sources, as reported in other studies (Table 4.2).  
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Table 4.2: Zeta potential of TEMPO-oxidised cellulose from different sources 

Origin of cellulose sample Zeta potential (mV) References 

Unmodified cotton 

Modified cotton  

-37.6 

ï74.4 
This study 

Cellulose sludge ï70.6 (Liu et al., 2016) 

Pulp  ï70.0 (Cheng et al., 2016) 

Softwood kraft pulp ï63.5 (Jin et al., 2014) 

Hardwood  ï75.0 (Okita et al., 2010) 

The oxidised CNWs show highly negative zeta potentials, caused by the 

introduction of carboxylate groups to the surface of the CNWs at a high density 

(Saito et al., 2009). Moreover, the zeta potential value of oxidised CNWs 

indicates that stable suspensions can be obtained with these modified particles. 

The greater the value, the higher the electrostatic repulsion between the particles, 

leading to an increase in stability, and hence less aggregation (Saito et al., 2009). 

4.3.3 BET ANALYSIS 

The BET surface areas for unmodified and oxidised CNWs are shown in Table 

4.3 and BET plot in Appendix B The results obtained for CNWs were within the 

range of surface area reported for CNWs, e.g. 8ï30 m2/g (Hsieh, 2013; Lu and 

Hsieh, 2010, 2012). The N2 adsorption-desorption isotherm at 77K of both 

unmodified and modified CNW are shown in Appendix B. 

From the results, the BET surface area of CNWs is approximately 10 times higher 

than that of the original cotton cellulose, as reported in the literature (Lu and 

Hsieh, 2010). In addition, the pore volume for CNWs is approximately five times 

higher than that of the original cotton cellulose, demonstrating that acid 

hydrolysis has not only introduced surface charges onto the surface of the CNW, 

but has also improved the surface area and pore volume after freeze-drying.  
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Table 4.3: BET surface areas and total pore volume of the samples 

Samples 
BET surface area 

(m2/g) 

Total pore volume 

(cm3/g) 

Original cotton 

cellulose * 
1.55 0.008 

Unmodified CNWs 15.72 0.038 

Oxidised CNWs 43.11 0.088 

* (Lu and Hsieh, 2010) 

However, the surface area and pore volume for oxidised CNWs did not change 

greatly, being approximately three times higher than for the unmodified CNWs. 

This is as a result of the TEMPO-mediated oxidation, the main purpose of which 

is to introduce stable negative electrostatic charges onto the surface of the CNWs, 

and to obtain better dispersion stability with higher zeta potential, as mentioned in 

previous section (Habibi et al., 2006). Depending on the morphology of the 

adsorbent and the modification procedure used, chemical modification may not 

always improve the surface area and pore volume of the adsorbent.  

4.3.4 TEM ANALYSIS 

Although SEM was found to be a quick and simple method to examine the 

CNWs, the resolution was considered insufficient for detailed information such as 

determination of the size of the whiskers. Therefore, TEM was used to confirm 

the morphological characteristics and size of individual CNWs. As observed in 

the literature, TEM images show that unmodified CNWs exist as needle-like 

structures, as shown in Figure 4.3 (Habibi, 2014; Kvien et al., 2005), while a 

TEM image of oxidised CNWs is shown in Figure 4.4. 

The lengths of CNWs were measured to be in the range of 64.8 to 296.1 nm, with 

an average of 134.4±51.2 nm. Width was in the range of 4.3 to 13.9 nm with an 

average of 9.0±2.3 nm. On the other hand, the dimensions of oxidised CNWs 

were found from TEM images to be in the range of 32.3 to 152.6 nm with an 

average of 95.0±31.5 nm whereas width was in the range of 3.1 to 24.9 nm with 

an average of 10.5±4.5 nm. The length and width measurements of both samples 
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correlate with earlier TEM analysis on CNWs from cotton (Elazzouzi-Hafraoui et 

al., 2008). Therefore, it can be concluded that TEMPO-mediated oxidation does 

not compromise the morphological integrity and crystallinity of CNWs.  

 

Figure 4.3: A typical TEM image of negatively stained preparations of 

unmodified CNW adsorbents 

 

Figure 4.4: A typical image of negatively stained preparations of oxidised CNW 

adsorbents 
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4.3.5 DETERMINATION OF CARBOXYLATE CONTENTS 

There are several characterisation methods for measuring the carboxylate content 

of oxidised cellulose, including carbon-13 nuclear magnetic resonance (13C 

NMR) spectroscopy, quantitative infrared spectroscopy (FTIR), conductometric 

titration and methylene blue adsorption. These methods have been compared by 

da Silva Perez et al., (2003) who found that the methylene blue adsorption 

method showed an underestimated result, while 13C NMR appeared to 

overestimate the results. Moreover, FTIR showed low repeatability due to 

problems associated with quantification, whereas conductometric titration showed 

reproducible results and was therefore advocated as a reproducible method for 

measuring the carboxylate content of oxidised cellulose. Saito and Isogai used the 

conductometric titration method with cellulose nanocrystals further oxidised with 

NaClO and sodium hypochlorite; can oxidise aldehyde groups into carboxyl 

groups, increasing the number of carboxyl groups on CNWs (Saito et al., 2005). 

Therefore, the carboxyl group content on oxidised cellulose nanowhiskers was 

determined by conductometric titration. A typical conductometric titration curve 

is shown in Figure 4.5, where the total number of carboxyl groups can be 

determined from the second intersection point.  

 

Figure 4.5: Typical conductometric titration curve (Levlin, 2010) 
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The conductometric titration curve of oxidised CNW suspensions is shown in 

Figure 4.6 and is characterised by three phases. First, the decreasing phase 

corresponds to the decrease of free H+ ions through neutralisation of strong acid 

groups by NaOH. Then, the horizontal phase shows the neutralisation of the weak 

acids, such as carboxylic acid. In this phase, the added sodium ions are adsorbed 

as counter ions to the carboxylic acidic groups, and the dissociated protons are 

neutralised by the added hydroxide ions. After the weak acid is completely 

neutralised, both cation and anion of the base (NaOH) will contribute to a sharp 

increase in conductivity of the solution due to the excess of added base. The 

procedure and calculation for the determination of total number of carboxyl 

groups are fully described in Section 3.4.4.  

 

Figure 4.6: Determination of the total number of carboxyl groups in oxidised 

CNW suspension by conductometric titration. 

Table 4.4 displays the carboxylate content using different starting material such 

as cotton linters and hardwood kraft pulp. Although the oxidation conditions 

applied were similar, the carboxylate content obtained was different for the three 

samples. Carboxylate content in oxidised CNWs was noticeably higher, 

indicating that there are more carboxylate groups per gram due to high surface 

area. Furthermore, work by Okita et al., (2010) indicated that the total 

carboxylate contents of cellulose were different for plant and non-plant materials 

such as bacterial, tunicate and algae celluloses.  
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Table 4.4: Carboxylate contents of cellulose before and after TEMPO-mediated 

oxidation 

Cellulose sample  
Carboxylate content 

(mmol/kg) 
Reference 

CNWs 49.33 

This study 

TEMPO-oxidised CNWs 418.39 

Cotton linters 19.0 

(Saito et al., 2005) 

TEMPO-oxidised cotton linters 226.0 

Hardwood kraft pulp 50.0 
(Saito and Isogai, 

2006) 
TEMPO-oxidised hardwood 260.0 

The reproducibility of results for oxidised CNWs was tested by performing the 

TEMPO-mediated oxidation on different batches. The results are shown in Table 

4.5. The total carboxylate content obtained for different batches of oxidised 

CNWs indicate that the method is highly reproducible. In view of the industrial 

development of a variety of sorbents described in the literature, the 

reproducibility and consistency between different batches of this method is a 

highly desirable feature in product design. For example, activated carbon is the 

most popular adsorbent used for the removal of pollutants from wastewater due to 

its high adsorption capacity, extensive specific surface area, and reproducibility 

(Kyzas et al., 2013).  

Table 4.5: The amount of carboxylate content for oxidised CNWs for different 

batches 

Oxidised CNWs  Carboxylate content (mmol/kg) 

Sample 1 

Sample 2 

Sample 3 

390.88 

409.50 

418.39 

Average ± standard deviation 406.26 ± 14.04 
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A control experiment was then carried out to compare the ability of unmodified 

and oxidised CNWs to remove Cu(II) from the water matrix. For the same 

amount of sorbent dosage under similar conditions, oxidised CNWs were able to 

remove approximately 66.75 % of Cu(II) while the unmodified CNWs removed 

only approximately 3.64 % of Cu(II) from the water matrix. The Cu:COOH molar 

ratio, which is used to compare the removal capability of oxidised CNWs and 

unmodified CNWs. The Cu:COOH molar ratio for oxidised CNWs is 2.59x10-3, 

while Cu:COOH molar ratio for unmodified CNW is 0.54. 

These results show that a chemical modification such as oxidation can alter the 

surface of CNWs by adding more carboxyl groups, increasing the number of 

active sites (Thirumavalavan et al., 2010; Zhang et al., 2006). The percentage of 

Cu(II) removed increases significantly with the presence of a large number of 

carboxyl groups on the surface of the adsorbent. These observations are in 

agreement with those of Liu et al., (2009) who used carboxylic acid 

functionalised konjac glucomannan for the adsorption of copper and lead from 

aqueous solutions.  

4.3.6 STABILITY TEST 

Stability tests were conducted under two different conditions, under wet and dry 

conditions, and the stability of the adsorbent was reviewed by measuring the 

carboxyl content and adsorption capabilities over time. Interestingly, to date, no 

work has tested the stability of these modified CNW adsorbents, which is really 

important from both the manufacturing and application perspective. As shown in 

Table 4.6, the carboxylate content of oxidised CNWs did not change, which 

demonstrates that oxidised CNWs may be stored under dry conditions for the 

period time examined (up to 28 days). The procedures are fully described in 

Section 3.4.3 and 3.4.4. However, the carboxylate contents can be partially 

degraded due to extreme reaction conditions during chemical or mechanical 

treatment. This harsh treatment not only decreases the carboxylate content, but 

also affects the cellulose morphology and crystallinity (Wang et al., 2007).  
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Table 4.6: The carboxylate content of oxidised CNWs under dry conditions 

Days    0 7  14  28  

Carboxyl groups (mmol/kg) 406.26 412.31 409.49 413.21 

For the wet stability test, freeze-dried CNWs were mixed with deionised water 

and left for 30 mins, 24 hours and seven days under constant shaking at a rate of 

150 rpm in an incubator. Next, the suspensions were freeze-dried before the batch 

experiments. Freeze-drying was chosen because it allows for accurate dosing of 

the CNWs. In addition, freeze-drying is a suitable method to preserve the nano-

scale dimensions of the cellulose nanowhiskers (Peng et al., 2012). Smoother 

surfaces and nano-scale dimensions were obtained for freeze-dried samples 

compared to other drying methods, such as air- and oven-drying (Peng et al., 

2012). During the freeze-drying process, capillary forces are minimised and no 

bulk material is formed (Takaichi et al., 2014). 

As shown in Table 4.7, the oxidised CNWs are stable in water for a longer period. 

The sorbent ability for each sample did not change or reduce, indicating that 

oxidised CNWs are stable in water for up to 7 days. This showed that the 

functional groups are permanent under the conditions tested, as they were stable 

and were not removed or degraded. The Cu(II) removal ability remained the same 

and was stable in water. This proved that oxidised CNWs are suitable for use as 

an adsorbent in wastewater treatment. Moreover, numerous studies have 

demonstrated that the stability of CNW suspension can also be improved through 

TEMPO-mediated oxidation (Araki et al., 2001; Habibi et al., 2006; Saito and 

Isogai, 2004).  

Table 4.7: The sorbent ability under wet conditions (T = 21.3°C, Ci = 50.3 mg/L, 

m = 2.1g/L) 

Sample  Cf (mg/L) 
Percentage 

removal (%) 
q (mg/g) 

Fresh  36.40 31.49 0.77 

30 mins 37.69 29.06 0.74 

24 hours 38.08 28.33 0.72 

7 days 37.84 28.78 0.73 

Ci=Initial Cu(II) concentration; Cf=Final Cu(II) concentration; q=adsorption capacity 
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CHAPTER 5: RESULTS AND DISCUSSION 

PREDICTING THE CAPABILITY OF OXIDISED CNW 

ADSORBENTS FOR THE REMEDIATION OF COPPER 

FROM WATER USING RSM AND ANN MODELS 

5.1 INTRODUCTION  

Cellulose nanowhisker (CNW) was chemically modified via TEMPO-mediated 

oxidation to improve its adsorption capacity and enhance its performance under 

desired conditions in a wastewater treatment plant (WWTP). The preparation of 

oxidised CNW adsorbents is fully discussed in Chapter 3 (Section 3.3). Following 

on, the results obtained from the characterisation study, which confirmed the 

success of modification (Chapter 4), adsorption batch experiments were 

conducted to evaluate the performance of oxidised CNW adsorbents to adsorb 

and remediate Cu(II) from the water matrix. Moreover, two models, namely the 

response surface methodology (RSM) and artificial neural network (ANN) were 

evaluated for their capability to determine the effectiveness of oxidised CNW 

adsorbents at removing Cu(II) from the clean water matrix at desired conditions.  

There are three main sections in this chapter. The first section discusses the 

selected variables and parameter ranges for application to the clean water matrix 

for Cu(II) removal through scoping experiments. Batch experiments were 

performed according to a CCD matrix of conditions to determine the percentage 

of Cu(II) removal. Next, both RSM and ANN models were employed to 

understand the obtained data and evaluate the predictive capability of each model 

for effective Cu(II) removal from the water matrix. Finally, the third section 

discusses the ability of both models at predicting data not found in the training 

data set for the models, as described in Section 3.5.  
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5.2 HIGHLIGHTS   

¶ This study focused on real wastewater treatment plant conditions, unlike 

CNW and other adsorbents studies.  

¶ Both RSM and ANN models were used as predictive, not only descriptive 

models. 

¶ Model suitability was tested outside of the model descriptive range, unlike 

CNW and other adsorbent works.  

¶ ANN had superior prediction capability to RSM for Cu(II) removal on 

oxidised CNW adsorbents. 

5.3 RESULTS AND DISCUSSION 

5.3.1 CONTROL EXPERIMENTS FOR THE EFFECT OF FILTER  

Control experiments were undertaken to determine a suitable filter, as this is a 

necessary stage prior to the separation of adsorbent from the solution (as 

described in Section 3.5.3). Several studies have investigated the possible factors 

that can significantly affect metal concentrations, e.g., the type of filter, 

membrane materials and filtration method (Matoug, 2013). Moreover, the 

existing literature addresses the use of filter paper in filtration causing systematic 

errors on the analysed solution, particularly at lower metal concentrations (Engin 

et al., 2010; Ileri et al., 2014). Therefore, in order to ascertain that the filter 

membrane material used did not retain metal ions in the solution, control 

experiments were carried out to identify the most appropriate filter. Surfactant-

free cellulose acetate filters were identified as most suitable, with an average 

retention of 0.8 ± 0.5 %; subsequent results corrected for this. Additionally, the 

normal cellulose acetate filters evaluated demonstrated adsorption to the filter 

with an average adsorption of 7.4 ± 1.0 % (Table 5.1). 
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Table 5.1: Data for the control experiments to determine appropriate filter. 

Type of filter Ci (mg/L) Cf (mg/L) 
Average 

retention (%) 

Standard 

deviation 

Cellulose 

acetate 

(0.25 µm) 

59.44 

55.59 

7.4 1.0 53.87 

55.63 

Surfactant-

free cellulose 

acetate 

(0.45 µm) 

59.44 

59.15 

0.8 0.5 59.36 

58.38 

Ci = Initial Cu(II) concentration; Cf = Final Cu(II) concentration. 

5.3.2 CONTROL EXPERIMENTS TO DETERMINE PARAMETER 

RANGES FOR THE CENTRAL COMPOSITE DESIGN (CCD) 

To help set the boundary conditions for the CCD, scoping studies were 

undertaken to identify the variables and parameter ranges that influence the 

adsorption process. Furthermore, parameters and their ranges were also selected 

based on the existing literature, since in many studies, the range of investigated 

parameters for the adsorption process is often not representative of the actual 

conditions in a WWTP (Cao et al., 2014; Thirumavalavan et al., 2010). 

Therefore, prior to implementing the CCD, it is important to confirm the variation 

of ranges for each parameter. Scoping studies adopted a one-parameter at a time 

approach to determine the ranges to be used for each parameter.  

5.3.2.1 Initial Cu(II) concentration 

The range for the initial Cu(II) ion solution was chosen as 10 ï 60 mg/L, which is 

environmentally relevant to the actual concentration in industrial treatment plants 

(as described in Chapter 2; see Table 2.4). Wang and Chen (2009) reported that 

chemical precipitation and electrochemical treatment were ineffective, especially 

when the range for metal ion concentration in aqueous solution is 1 ï 100 mg/L 

(Wang and Chen, 2009). Moreover, Isobe et al. (2013) performed the adsorption 

process with a high initial metal ion concentration (1000 mg/L of a Cu(II) 

solution), which is unrealistic for actual commercial adsorption processes, as they 
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are generally applied to low concentration streams. A focus on finding new 

adsorbents highlights that treatment technologies such as chemical precipitation 

and electrochemical treatment are unable to treat low copper concentrations.  

5.3.2.2 Contact time of the adsorption process  

The purpose of this experiment was to determine the necessary contact time 

needed for the adsorption process to reach adsorption equilibrium. The 

equilibrium time (time required to reach this state of equilibrium) is a significant 

operational factor for economical wastewater treatment processes (Amuda et al., 

2009). A set of experiments at predetermined time intervals (5, 10, 20, 30, 60, 

120 and 180 min) were carried out at different sorbent dosages and initial Cu(II) 

concentrations (as shown in Figure 5.1 and 5.2); the procedure is described in 

Section 3.5.4.2.  

Figure 5.1 shows that adsorption increased sharply with contact time during the 

first 5 min, contributing more than 91 % of Cu(II) removal. The experimental 

results showed that the adsorption process in this study occurred in two phases, 

i.e. a rapid initial sorption rate (first 5 min) followed by a slower rate in later 

stages (30 min). It is noted that almost 90% removal was achieved shortly, at the 

first 5 min, of the adsorption process. From the Figure 5.2, it is clear that the 

adsorption process is very rapid during the first 5 min and it is noted that the 

equilibrium is reached already after 30 min. This rapid adsorption indicates that 

the active adsorbent sites are readily occupied by the Cu(II) ions as soon as the 

adsorbent is introduced into the system. Hence, the maximum removal of Cu(II) 

was attained during this period.  

After reaching equilibrium, the removal efficiency varies about 1-3% with 

increase in contact time. This may be due to the process of adsorption and 

desorption that take place adsorbent surface saturation by Cu(II) ions. As such, 

contact time will be a constant parameter and was set at 30 min for all adsorption 

studies in this current research, since further increases in contact time did not 

indicate a significant change in percentage removal.  

The similar results were obtained by other studies (Sengil and Oezacar, 2008; 

Srivastava and Hasan, 2011; Wankasi et al., 2006a). However, there were few 
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papers that investigate on how the adsorption process on the potential adsorbent 

at very short contact time (Mehdinia et al., 2015). Most of the studies in literature 

performed the batch experiments at 5 min intervals (5, 10, 20, 30, 60 min). 

Wågberg and Hägglund (2001) has utilised a new method in order to be able to 

perform the adsorption of different polyelectrolyte adsorption on bleached 

cellulosic fibers process at short contact time. An equipment known as ñThe Jarò 

has been used to collect the final samples for after every short contact time (10 

seconds and upwards). Thus, for further study in adsorption process, a more 

detailed study of the implementation of a new method for short contact time 

would be necessary in order to understand the mechanism of the adsorption 

process.  

Moreover, the oxidised CNW adsorbents reached a much shorter equilibrium 

time for the removal of Cu(II), compared to other conventional adsorbents such 

as activated carbon and zeolites. This indicates that the modification of CNW via 

TEMPO-mediated oxidation improves adsorption performance. Due to its high 

density of carboxyl groups and its nanoscale dimensions, the performance of 

oxidised CNW adsorbents was efficient when compared to other conventional 

adsorbents. Table 5.2 summarises the equilibrium time needed for the removal of 

Cu(II) ions with the application of common adsorbents and oxidised adsorbents 

from previously published studies. According to Wankasi et al. (2006b), a short 

contact time for reaching equilibrium indicates that the predominant mechanism 

is chemical adsorption (chemisorption), while a longer contact time indicates 

physical adsorption, as described in Section 2.3.1.  
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Figure 5.1: Variations in the removal efficiency of Cu(II) with contact time for 

different sorbent dosages: Initial Cu(II) concentration = 60 mg/L; T = 25 °C; pH 

= 6.  

  

Figure 5.2: Variations in the removal efficiency of Cu(II) with contact time for 

different initial concentrations of Cu(II) solution: sorbent dosage = 10 g/L; T = 25 

°C; pH = 6.0 
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Table 5.2: The equilibrium time for Cu(II) removal by common adsorbents. 

5.3.2.3 Cu(II) solution pH in the adsorption process 

One of the most important factors that not only influences the surface charge of 

the adsorbent, but also the solution chemistry of heavy metal, is pH (Reddy, 

2012). As discussed in Section 2.1, the pH range in municipal and industrial 

treatment plants was found to be in the range of 6 ï 7 (Saiano et al., 2005). 

However, the optimum pH range (4 ï 6) for the adsorption process published in 

the literature was considered too acidic, since a pH below 6 will increase the 

competition between protons and metal ions for active sites (Reddy, 2012). Thus, 

it is important to note that the removal of Cu(II) may decrease when pH is acidic, 

rather than having an optimum pH. Moreover, for copper, adsorption studies 

should not be carried out experimentally at a pH higher than 6, due to the limited 

solubility of Cu(II) leading to precipitation in this pH range (Tunay et al., 1992). 

According to Thirumavalavan et al. (2010), establishing a pH range without 

considering metal hydroxide precipitation will also affect the removal of Cu(II) 

from the water matrix. The theoretical minimum solubility for different metals 

occurs at different pH values. As such, it is important to investigate a range of pH 

Modified/functionalised 

adsorbents 
Equilibrium time (hrs) References 

Oxidised CNW 0.5 This study 

Nitrogen containing 

functional group activated 

carbon 

8 ï 10 (Kasnejad et al., 2012) 

Carboxylated 

functionalised bentonites  
5 

(Anirudhan et al., 

2012) 

Alginate-immobilised 

bentonite clay 
4 ï 6 (Tan and Ting, 2014) 

Mimosa tannin gel 
3 

(Sengil and Oezacar, 

2008) 

Nano-NaX zeolites  2 (Ansari et al., 2015) 

Carboxylated cellulose 

nanocrystals (with 

succinic anhydride) 

2.5 (Yu et al., 2013b) 



5 REMEDIATION OF Cu(II) FROM CLEAN WATER MATRIX 

 

108 

values via scoping experiments for the adsorption process, as metal hydroxide 

precipitation may complicate the sorption process between adsorbent and heavy 

metals (Reddy, 2012).  

Control experiments were therefore carried out to check the eventual precipitation 

of metals at a given pH in order to prove that the theoretical minimum solubility 

for different metals occurs at different pH values. The effect of pH on the 

adsorption of Cu(II) by oxidised CNW adsorbents is shown in Table 5.3. From 

the control experiment, the optimum pH value for maximum removal of Cu(II) 

was observed at pH 6, with 91.37 % (2.04 mg/g) of Cu(II) removed, while at pH 

4, only 85.56 % (1.88 mg/g) Cu(II) removal was achieved. It can therefore be 

concluded that at a pH below 6, the removal percentage was found to decrease, 

due to electrostatic repulsion between positively charged metal ions and negative 

adsorption sites. At low pH (pH 4), the amino acid is protonated at both the amine 

and carboxyl functions. It was reported that at the acidic region, there would be a 

strong competition between the H+ and Cu2+, which will reduce the removal 

percentage of Cu(II) by the carboxyl group (Reddy, 2012).  

However, as pH increased to 6, there was an observed decrease in H+ ions in the 

solution and hence, more negatively charged sites were available for adsorption 

(Kadirvelu et al., 2001). As such, it was decided that the optimum pH for the 

removal of Cu(II) ions using oxidised CNW adsorbents was pH 6, which is also a 

realistic condition in the wastewater treatment environment (Chand et al., 2015; 

Saiano et al., 2005).  

Table 5.3: The effect of Cu(II) solution pH on the removal of Cu(II); Co = 9 

mg/L, m = 4 g/L, T = 25°C, t = 30 min. 

Sample No. pH 
Final concentration  

Cf (mg/L) 

Removal 

efficiency (%) 

Adsorption 

capacity 

q (mg/g) 

1 4.0 1.29 85.56 1.89 

2 6.0 0.77 91.37 2.04 

Co= initial concentration; m=sorbent dosage; T=temperature; t=time 
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5.3.2.4 Determination of sorbent dosage (Oxidised CNW adsorbents) 

Adsorbent dosage is an important parameter when evaluating the adsorption 

process, as it will provide the amount of sorbent dosage for a given initial 

concentration, separation cost and the total water treatment cost (Anupam et al., 

2011). The amount of sorbent used for a volume of water (sorbent dosage, g/L) 

must therefore be determined to ensure maximum Cu(II) removal for the 

wastewater condition being evaluated. The effect of sorbent dosage on the 

removal percentage of Cu(II) is shown in Figure 5.3.  

 

Figure 5.3: Variations in Cu(II) removal efficiency according to sorbent dosage 

(Oxidised CNW): initial Cu(II) concentration; Ci=10 mg/L; T=25 °C; pH=6. 

As shown in Figure 5.3, it is clear that the percentage of Cu(II) removal increased 

from 59.3 % to 92.4 %, alongside sorbent dosage increasing from 0.2 to 10.0 g/L 

at 25°C for the conditions of pH 6 and an initial concentration of Cu(II) of 10 

mg/L. These results correspond well with previous studies using other biomass 

adsorbents (Rao et al., 2012; Sahan et al., 2010; Singh et al., 2010). The amount 

of proton exchange between the oxidised CNW adsorbents and the Cu(II) 

solution escalated alongside an increasing amount of sorbent dosage; this may be 

attributed to the increased availability of exchangeable sites (Geyikci et al., 

2012). Thus, increasing the amount of sorbent dosage in the initial concentration 

is favourable for improving Cu(II) removal during the adsorption process. Hence, 

the sorbent dosage range investigated in this study was chosen as 0.2-10 g/L; at 
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10 g/L, the highest dosage, more than 90 % of Cu(II) could be removed from the 

initial concentration of Cu(II) solution (60 mg/L).  

5.3.2.5 Temperature of the adsorption medium 

Several researchers have noted adsorption medium temperature to be an 

important factor when the mechanism of the metal-binding processes is energy 

dependent (Bulut and Tez, 2007; Reddy, 2012; Sahan et al., 2010). This 

temperature should be a realistic range in the wastewater treatment environment, 

where the mean annual temperature of wastewater varies from 6 ï 25 °C (Burton 

et al., 2013). Another example is a study conducted by Hanaki (2008), who 

showed wastewater temperature range to be 15 ï 25 C̄ (Hanaki, 2008). However, 

most of the reported studies were conducted under conditions that were not 

realistic to wastewater treatment environments. Moreover, these studies, which 

were performed at ranges not relevant to the real world, may have reduced the 

capabilities of the adsorbents. For example, Sahan et al. (2010) reported a 

decrease in the removal of Cu(II) from aqueous solutions at temperatures up to 45 

C̄, as too high a temperature can accelerate the decomposition of chelating 

efficiency, leading to a decrease in the adsorption ratio. Zhao (2006) investigated 

the influence of temperature on the adsorption of Cu(II) by cellulosic-adsorbent 

resin and showed that adsorption ratio gradually decreased alongside an increase 

in solution temperature from 35 ï 60 °C (Zhao, 2006). The investigated 

temperature range in this current research was chosen to be 6 ï 25 °C in order to 

study the efficiency of oxidised CNW as adsorbents at different temperatures, as 

justified in Table 2.9 (Section 2.3.3). Therefore, the temperature (6 ï 25 °C), 

initial Cu(II) ion concentration (10 ï 60 mg/L) and sorbent dosage (0.2 ï 10 g/L) 

were used as independent (input) variables, and were investigated for their impact 

on the removal efficiency of Cu(II) from the water matrix (Table 5.4). 
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Table 5.4: Ranges of the investigated parameters. 

Parameters Range 

Initial concentration (mg/L) 10 ï 60 

Temperature (°C) 6 ï 25 

Sorbent dosage (g/l) 0.2 ï 10 

5.4 MODELLING OF THE ADS ORPTION PROCESS 

5.4.1 CENTRAL COMPOSITE DESIGN (CCD) 

CCD is the most frequently used design method and was employed in this study 

because it has better predictive capabilities, and has been extensively applied in 

adsorption studies. Therefore, in the following experiments, CCD is used to 

develop a correlation between three independent variables and one output 

(response). The temperature, initial Cu(II) ion concentration and sorbent dosage 

were used as independent (input) variables and were studied for their impact on 

the removal of Cu(II) from the water matrix. Using these three variables, a total 

of 20 experiments were required in order to locate the optimum operating 

conditions for the adsorption of Cu(II) using oxidised CNW adsorbents. The 

range of independent variables, alongside their coded levels (-Ŭ, -1, 0, 1, Ŭ; Ŭ = 

1.633, respectively) is presented in Table 5.5. The value of Ŭ, which depended on 

the number of factors, was chosen to maintain rotatability, which refers to the 

uniformity of prediction error (Carroll, 2003). In order to obtain a good estimate 

of experimental error (pure error), the central point was repeated six times. The 

obtained quadratic equation in terms of coded factors for Cu(II) removal 

percentage in the form of Y is: 

 ὣ Ϸ χχȢυρπȢωτὢ ρπȢωςὢ ρχȢστὢ πȢχωὢ

πȢυπὢ ψȢπφὢ πȢφωὢὢ πȢωςὢὢ

σȢψτὢὢ 

(5.1) 

Where Y is the percentage removal of Cu(II), X1 is temperature, X2 is the initial 

concentration and X3 is the sorbent dosage.  
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Table 5.5: CCD Experimental ranges and levels of the independent variables. 

Independent variable Factor code Range and level 

  
-Ŭ -1 0 1 +Ŭ 

Temperature (°C) X1 6 9.68 15.5 21.32 25 

Initial Cu(II) ion 

concentration (mg/L) 
X2 10 19.69 35 50.31 60 

Sorbent dosage (g/L) X3 0.2 2.09 5.1 8.1 10 

5.4.2 RSM MODEL 

Results for the percentage of Cu(II) removal were obtained by performing batch 

experiments according to the CCD matrix of conditions. Table 5.6 shows the 

experimental results obtained from the experimental runs and the predicted values 

by the build RSM model. The percentage error (% error) was calculated as the 

ratio of difference in experimental and predicted value to experimental value 

(Equation 3.11).  

One of the 20 experiments, with 0.20 g/L sorbent dosage, showed a large residual 

error with 10.9 % for the RSM model, which influenced the value of R2. Similar 

problems occurred but not to the same degree of error when less than 2.10 g/L 

(0.042 g of oxidised CNW adsorbents) sorbent dosage was used to remove Cu(II) 

from the water matrix. This problem is believed to be due to the presence of 

adsorbed species at the surface of the cellulose nanowhiskers blocking reactive 

sites (Labet and Thielemans, 2011). For the higher sorbent dosage, this will not 

have an impact on the adsorption process, due to greater availability of reactive 

sites on the oxidised CNW. Similar results have been reported for other heavy 

instances of metal adsorption onto biomass (Sahan et al., 2010; Sarkar and 

Majumdar, 2011; Sedighi et al., 2012; Sugashini and Begum, 2013). However, 

from Figure 5.4, it still can be observed that the predicted values by the RSM 

model and the actual experimental data are in good agreement, with a coefficient 

of determination (R2 = 0.9541). 
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Run 

Number 

Coded values Actual values Cu(II) removal (%)  
Sorption 

capacity 

X1 X2 X3 X1 X2 X3 Experimental Predicted  Residual 
Absolute Error 

(%) 
q (mg/g) 

1 1 1 -1 21.3 50.31 2.10 44.50 39.35 5.15 11.57 10.63 

2 1 -1 1 21.3 19.69 8.10 95.72 96.33 -0.61 0.64 2.47 

3 -1 -1 -1 9.7 19.69 2.10 74.81 68.83 5.98 7.99 6.53 

4 0 0 0 15.5 35.00 5.10 76.95 77.51 -0.56 0.72 5.05 

5 0 0 0 15.5 35.00 5.10 76.35 77.51 -1.16 1.53 4.95 

6 -1 1 1 9.7 50.31 8.10 77.80 78.46 -0.66 0.84 4.56 

7 1 -1 -1 21.3 19.69 2.10 72.54 67.49 5.05 6.96 5.75 

8 0 0 0 15.5 35.00 5.10 78.97 77.51 1.46 1.85 5.14 

9 0 0 0 15.5 35.00 5.10 75.68 77.51 -1.83 2.42 4.78 

10 -1 -1 1 9.7 19.69 8.10 93.24 94.00 -0.76 0.82 2.09 

11 -1 1 -1 9.7 50.31 2.10 42.93 37.93 5.00 11.64 9.63 

12 1 1 1 21.3 50.31 8.10 81.94 83.54 -1.60 1.95 5.30 

13 -Ŭ 0 0 6.0 35.00 5.10 74.33 78.09 -3.76 5.05 4.77 

14 0 0 Ŭ 15.5 35.00 10.00 88.65 84.34 4.31 4.87 2.99 

15 0 0 0 15.5 35.00 5.10 78.08 77.51 0.57 0.73 4.72 

16 0 Ŭ 0 15.5 60.00 5.10 58.26 61.00 -2.74 4.71 6.50 

17 Ŭ 0 0 25.0 35.00 5.10 78.33 81.14 -2.81 3.59 5.07 

18 0 -Ŭ 0 15.5 10.00 5.10 92.85 96.68 -3.83 4.12 1.58 

19 0 0 0 15.5 35.00 5.10 81.20 77.51 3.69 4.55 5.07 

20 0 0 -Ŭ 15.5 35.00 0.20 16.81 27.70 -10.89 64.78 20.67 

X1=temperature (°C); X2=initial Cu(II) ion concentration (mg/L); X3=sorbent dosage (g/L). 

 

Table 5.6: The experimentally obtained percentage of Cu(II) removal compared to that predicted by the central composite design (CCD) 

models  
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Figure 5.4: The experimentally obtained Cu(II) removal compared to that 

predicted by the response surface methodology (RSM). 

Analysis of variance (ANOVA) was applied to evaluate the quality of the fitted 

model (Bezerra et al., 2008). The ANOVA of this model is presented in Table 5.7 

and the model was assessed for its suitability by examining the lack of fit through 

ANOVA. The lack of fit obtained is significant, due to low probability (P = 

0.005) and a higher F-test value of 14.73. These results indicate that the RSM 

model is unable to effectively predict the removal of Cu(II) from the water 

matrix.  

The significance of each term in the equation regarding the percentage of 

adsorbed Cu(II) ions was validated by this statistical test. Remarkably, as can be 

seen from the results, most of the terms in the quadratic model were statistically 

insignificant (P>0.05) in terms of their effect on Cu(II) percentage removal with a 

model F-value of 23.09.  
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Table 5.7: Analysis of variance (ANOVA) for Cu(II) removal prediction using 

the RSM model. 

Source 
Sum of 

squares 
DF 

Mean 

square 
F value 

P-value 

Prob > F 
Coefficient  

Model 6635.87 9 737.32 23.09 <0.0001 77.5063 

X1 11.63 1 11.63 0.360 0.560 0.9339 

X2 1590.5 1 1590.50 49.81 <0.0001 -10.9219 

X3 4010.2 1 4010.2 125.60 <0.0001 17.3425 

X1
2 22.39 1 8.29 0.26 0.621 0.7922 

X2
2 15.4 1 3.32 0.10 0.754 0.5016 

X3
2 857.45 1 857.45 26.85 0.000 -8.0577 

X1X2 3.78 1 3.78 0.12 0.738 0.6875 

X1X3 6.70 1 6.70 0.21 0.657 0.9150 

X2X3 117.81 1 117.81 3.69 0.084 0.3838 

Residual  319.29 10 31.93    

Lack of fit 299 5 59.8 14.73 0.005  

Pure error 20.3 5 4.06    

Total 6955.16 19     

*DF = degree of freedom 

The initial Cu(II) concentration and sorbent dosage, X2 and X3, both had a 

significant effect, while the second-order effects of sorbent dosage ὢ  on 

Cu(II) percentage removal has the highest significant effect among the remaining 

second-order effects. The negative value of the main effect coefficient, initial 

Cu(II) concentration, demonstrates that Cu(II) percentage removal decreased 

alongside an increasing initial Cu(II) concentration. Plus, the negative coefficient 

of the second order parameters, shows a maximum value in response within 

selected range of the parameters, which showed that large amount of sorbent 

dosage will give higher removal of Cu(II) from the water matrix (Shojaeimehr et 

al., 2014). Source contribution in removal percentage was evaluated based on the 

adjusted sum of square and the plot for this is shown in Figure 5.5. The plot 

shows that sorbent dosage and initial Cu(II) concentration contributed more than 

99 % to influencing the removal percentage, while temperature had a less than 1 
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% contribution on influencing Cu(II) removal. This result may differ from other 

reported studies due to the reported temperature range having been much higher 

and at an unrealistic range in the WWTP. The removal of copper and lead ions 

from a clean water matrix by wood sawdust, for example, has been studied via 

batch experiments at a temperature range of 26 ï 56 °C (Ofomaja et al., 2010b).  

5.4.2.1 Thermodynamic study 

In order to confirm the effect of temperature on the removal of Cu(II) from the 

water matrix, thermodynamic analysis were applied to study the relationship 

between rate constant (k) and temperature. The relationship between rate constant 

and temperature is represented by the Arrhenius equation: 

 

ÌÎὯ ÌÎὃ
Ὁ

ὙὝ
 (5.2) 

Where k is the rate constant obtained at different temperatures with the best-fit 

kinetic model, Ea (kJ mol-1) is the activation energy, A (g/mg.min), is the 

Arrhenius factor, R, is the gas constant (R = 8.314 J/mol.K) and T(K) is the 

solution temperature.  

According to the Arrhenius equation, the value of activation energy (Ea) 

calculated from the slope of the line is 4.99 kJ/mol (R2 = 0.6948). This indicated 

that the temperature had a non-significant effect on the rate constant and the 

adsorption has a low potential barrier. Moreover, it is also implying that 

adsorption occurs more readily compared to typical chemical reactions in which 

Ea is in the range 65ï250 kJ/mol. 

The results of these experiments showed that copper adsorption was found to 

increase with temperature, indicating that the adsorption process is endothermic. 

The first order effects of initial Cu(II) concentration and sorbent dosage, X2 and 

X3, were highly significant compared to the first order effect of temperature (X1). 

A possible explanation for this result is that maximum percentage Cu(II) removal 

is only achieved with high sorbent dosage and low initial Cu(II) concentration.  
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The results of these experiments showed that copper adsorption was found to 

increase alongside an increasing temperature, indicating that the adsorption 

process was endothermic. The first order effects of initial Cu(II) concentration 

and sorbent dosage, X2 and X3, were highly significant compared to the first order 

effect of temperature (X1). A possible explanation for this result is that maximum 

percentage Cu(II) removal is only achieved with high sorbent dosage and low 

initial Cu(II) concentrations.  

 

Figure 5.5: Source distribution in the removal percentage (adjusted sum of 

squares) versus source. 

5.4.3 ANN MODEL 

Since RSM showed a large residual error (Figure 5.4), which influenced the value 

of R2, an ANN-based model was also developed for describing the removal of 

Cu(II) by oxidised CNW adsorbents. Similar to RSM modelling, the data 

generated through CCD were used to determine optimal architecture for the ANN 

model. A total of 20 experiments was divided into three subsets comprising 

training (12 data points), validation (4 data points) and testing (4 data points) 

points. The aim of splitting data into three subsets was to measure the capability 

of the model for the prediction of unseen experiments that were not used for 

training. Thus, the overview performance of ANN model can be assessed.  
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The data for the comparison between the observed and predicted values of Cu(II) 

removal are presented in Table 5.8. The actual and predicted percentage removal 

of Cu(II) by the ANN model is presented in Figure 5.6 and the coefficient of 

determination R2 was found to be 0.9925, showing good agreement between the 

two sets of results. 

 

Figure 5.6: The experimentally obtained result for Cu(II) removal compared to 

that predicted by the artificial neural network (ANN). 
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Run 

Number 

Coded values Uncoded values Cu(II) removal (%) 
Sorption 

capacity 

X1 X2 X3 X1 X2 X3 Experimental Predicted  Residual Error (%) q (mg/g) 

1 1 1 -1 21.3 50.31 2.10 44.50 44.75 -0.25 -0.56 10.63 

2 1 -1 1 21.3 19.69 8.10 95.72 96.06 -0.34 -0.35 2.47 

3 -1 -1 -1 9.7 19.69 2.10 74.81 74.77 0.04 0.05 6.53 

4 0 0 0 15.5 35.00 5.10 76.95 77.45 -0.49 -0.64 5.05 

5 0 0 0 15.5 35.00 5.10 76.35 77.45 -1.10 -1.44 4.95 

6 -1 1 1 9.7 50.31 8.10 77.80 77.66 0.14 0.18 4.56 

7 1 -1 -1 21.3 19.69 2.10 72.54 70.00 2.54 3.50 5.75 

8 0 0 0 15.5 35.00 5.10 78.97 77.45 1.52 1.93 5.14 

9 0 0 0 15.5 35.00 5.10 75.68 77.45 -1.77 -2.34 4.78 

10 -1 -1 1 9.7 19.69 8.10 93.24 98.27 -5.03 -5.40 2.09 

11 -1 1 -1 9.7 50.31 2.10 42.93 42.89 0.03 0.08 9.63 

12 1 1 1 21.3 50.31 8.10 81.94 81.59 0.35 0.43 5.30 

13 -Ŭ 0 0 6.0 35.00 5.10 74.33 75.18 -0.84 -1.13 4.77 

14 0 0 Ŭ 15.5 35.00 10.00 88.65 88.84 -0.19 -0.21 2.99 

15 0 0 0 15.5 35.00 5.10 78.08 77.45 0.63 0.81 4.72 

16 0 Ŭ 0 15.5 60.00 5.10 58.26 58.03 0.23 0.39 6.50 

17 Ŭ 0 0 25.0 35.00 5.10 78.33 78.15 0.17 0.22 5.07 

18 0 -Ŭ 0 15.5 10.00 5.10 92.85 93.82 -0.97 -1.04 1.58 

19 0 0 0 15.5 35.00 5.10 81.20 77.45 3.75 4.62 5.07 

20 0 0 -Ŭ 15.5 35.00 0.20 16.81 16.86 -0.05 -0.28 20.67 

X1=temperature (°C); X2=initial Cu(II) ion concentration (mg/L); X3=sorbent dosage (g/L) 

Table 5.8: The experimentally obtained percentage Cu(II) removal compared to that predicted by the artificial neural network (ANN) 



5 REMEDIATION OF Cu(II) FROM CLEAN WATER MATRIX 

 

120 

For better graphical interpretation of the Cu(II) adsorption process, three-

dimensional response surface plots were generated. Figure 5.7 shows the effect of 

the investigated parameters on the removal of Cu(II), with one of the three 

parameters held constant at its intermediate value (15.5 °C, 35 mg/L, or 5.10 

g/L).  

 

Figure 5.7: Surface plots (left) and corresponding contour plots (right) showing 

the effects of adsorption parameters on the Cu(II) removal as predicted by the 

ANN model, with temperature held constant at 15.5°C (A), initial Cu(II) 

concentration held constant 35 mg/L (B) and sorbent dosage held constant at 5.10 

g/L (C). 
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Figure 5.7(A) shows the response of the Cu(II) removal when varying the initial 

Cu(II) concentration and sorbent dosage. Generally, ANN-based data analysis 

indicated that a high amount of sorbent dosage and a low initial Cu(II) ion 

concentration increased the percentage removal of Cu(II) from the water matrix, 

due to the availability of adsorption sites. As can been seen from Figure 5.7 (A), 

the percentage removal of Cu(II) increased with raising the sorbent dosage up to 

8 g/L, and then remained constant with further increases. These results are 

consistent with findings reported in the literature (Geyikci et al., 2012; Turan et 

al., 2011). The increase in the percentage removal when the sorbent dosage 

increased is due to the concentration gradient acting as a driving force between 

the solute concentration and that adsorbed onto the surface of the oxidised CNW 

adsorbents. 

Figure 5.7 (B) shows that variations of temperature only had a slight effect on 

Cu(II) removal. This indicates that higher temperature values did not damage the 

active sites in the sorbent or weaken the adsorptive force between the active sites 

of the adsorbent and Cu(II) ions significantly, at least not in the temperature range 

studied in this work.  

Figure 5.7 (C) shows that the percentage removal of Cu(II) decreases at a higher 

initial Cu(II) concentration, since there will be a relative decrease in the available 

active metal binding sites per Cu(II) ion for adsorption. At a fixed sorbent dosage, 

there was a decrease in the percentage removal with further increments of the 

initial Cu(II) concentration, due to saturation of the CNW surface with Cu(II) 

ions. On the other hand, change in temperature had no significant effect on the 

response, due to the narrow range of temperatures investigated in this study. This 

result differs from other studies and can likely be explained by the fact that 

experiments in the literature had been conducted under temperatures that are not 

realistic for a wastewater treatment environment (Bingol et al., 2012; 

Shojaeimehr et al., 2014). Cao et al. (2014) presented the effects of temperature 

(10 ï 50 °C) and showed that adsorption of Cr (VI) increased with increasing 

temperatures even when the range was higher and unrealistic conditions to a 

wastewater treatment environment.  
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5.5 STATISTICAL COMPARIS ON AND PERFORMANCE OF RSM 

AND ANN MODELS  

In order to test the predictability of the RSM and ANN models, the distribution of 

residuals and errors of the two models were compared. The residuals and error 

distribution obtained from the prediction of RSM and ANN are presented in 

Figure 5.8 and 5.9, respectively. From the results, it can be seen that fluctuations 

in the residuals and errors were relatively small for the ANN model compared to 

RSM. In one of the 20 experiments (for the RSM model), point A (0.2 g/L 

sorbent dosage) is the farthest from the centre of the system. As noted previously 

in Section 5.4.2, a lower sorbent dosage (0.2 g/L) will impact the adsorption 

process and lead to a lower R2 value, which in turn will affect the estimation 

capabilities of the RSM model. These results (for both RSM and ANN models) 

correspond well with the work of Geyikci et al. (2012), who indicated the RSM 

model (R2 = 0.898) prediction as having greater deviation than the prediction by 

the ANN model (R2 = 0.672).  

 

Figure 5.8: Plot representing the residuals obtained from the predictions of RSM 

and ANN modelling. 
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Figure 5.9: Plot representing error distribution obtained from the predictions of 

RSM and ANN modelling. 

In addition to examining the poorness of fit using ANOVA for the RSM model 

(as determined in Section 5.4.1), the abilities of the ANN and RSM models in 

predicting Cu(II) removal from the water matrix were statistically evaluated in 

terms of the coefficient of determination (R2), absolute average deviation (AAD), 

and the root mean squared error (RMSE) (as described in Section 3.9.1). The 

AAD and RMSE for the RSM model were calculated to be 7.07 % and 3.99, 

whilst that of the ANN model was 1.15 % and 1.66. Moreover, the R2 for both 

models (R2 = 0.9541 for RSM, R2 = 0.9925 for ANN) showed that the ANN 

model made more accurate predictions than the RSM model. The statistical data 

obtained in this study matched well with other reported studies in which the ANN 

model showed a clear advantage over the RSM model for both data fitting and 

prediction capabilities (Geyikci et al., 2012; Shojaeimehr et al., 2014). 

The main purpose of CCD is to provide high quality predictions for linear and 

quadratic interaction effects on the part of parameters that affect the adsorption 

process (Witek-Krowiak et al., 2014). For further validation, an additional 14 

unseen experiments were conducted in addition to those determined by the CCD; 

these consisted of combinations of experimental parameters not found in the 

training data set applied to the models. 3D scatter plots for the unseen 

experiments are shown in Figure 5.10, which includes a comparison of 3D scatter 
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plots derived from data contained in two other studies. In general, the limited 

number of studies that do conduct unseen experiments tend to use a limited 

number of experiments and the chosen unseen experiments do not represent the 

system of conditions, making it difficult to appropriately evaluate the predictive 

capability of the models. Figure 5.10 (B) indicates research by Ghosh et al. 

(2015), who conducted eight unseen experiments that did not represent an entire 

system, in order to study the validity of the RSM and ANN models. Bingol et al. 

(2012), indicated in Figure 5.10 (C), tested the validity of the models by 

conducting 11 new trials, all of which focused on one side of the system.  

The 14 unseen experiments undertaken in this present study and illustrated in 

Figure 5.10 (A) were chosen to represent parameter space both inside and outside 

the tested parameter system, in order to provide a better understanding for testing 

the validity of the models. The actual and predicted values of the responses, along 

with their residual values for both models, are given in Table 5.9. The prediction 

abilities of the newly constructed ANN and RSM models were statistically 

measured in terms of R2, AAD and RMSE. Table 5.10 shows a statistical 

comparison of both models, based on the 20 CCD and unseen experiments that 

represent both inside and outside of the system. From the results, it is confirmed 

that the ANN model predicts more accurately than the RSM model, both the 

original 20 CCD and 14 unseen experiments.  
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Figure 5.10: 3D scatter plots showing a comparison of the CCD with unseen 

experiments within the systems (A) for this work; (B) for Ghosh et al., (2015); 

(C) Bingol et al. (2012) 
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Table 5.9: Validation data for 14 unseen experiments (CCD).  

Data 

index 
Run 

Temperature 

(°C) 

Initial Cu(II) 

concentration 

(mg/L) 

Sorbent 

dosage 

(g/L) 

Sorption 

capacity 

(mg/g) 

Cu(II) 

removal 

(%) 

ANN RSM 

Predicted Residual Predicted Residual 

W
it
h

in
 t

h
e
 s

y
s
te

m 

1 21.3 50.31 5.1 5.27 62.21 66.82 -4.61 69.35 -7.14 

2 9.7 19.69 5.1 3.17 88.42 92.57 -8.51 89.45 -5.39 

3 15.5 35.00 8.1 4.23 82.39 89.09 -6.7 86.72 -4.33 

4 18 55.00 8.1 4.76 74.19 77.83 -3.64 79.56 -5.37 

5 10 55.00 4.0 5.75 60.41 53.96 6.45 53.97 6.44 

6 20 35.00 9.5 1.23 82.64 86.87 -4.23 87.77 -5.13 

7 20 15.00 5.1 3.10 88.31 93.27 -4.96 92.67 -4.36 

O
u

ts
id

e
 t
h

e
 s

y
s
te

m 

8 6 10.00 8.1 1.13 91.37 100 -8.63 100 -8.63 

9 25 60.00 8.1 5.57 70.43 79.34 -8.91 83.33 -12.9 

10 25 60.00 4.0 9.26 57.2 52.72 4.48 56.01 1.19 

11 10 10.00 4.0 1.84 92.23 100 -7.77 92.73 -0.50 

12 6 35.00 2.1 5.58 55.75 63.49 -7.74 54.14 1.61 

13 6 20.00 2.1 3.21 86.24 88.62 -2.38 70.22 16.02 

14 10 10.00 2.1 2.32 90.02 94.3 -4.28 79.3 10.72 
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Table 5.10: Comparison of the predictive abilities of the RSM and ANN models. 

Data index 
Coefficient of determination (R2) AAD (%) RMSE 

ANN RSM ANN RSM ANN RSM 

20 CCD 0.9925 0.9541 1.15 7.07 1.66 4.00 

14 Unseen 0.9374 0.7409 7.98 8.28 6.29 7.70 

7 Inside 0.9530 0.9162 7.43 7.46 5.81 9.39 

7 Outside 0.9395 0.6783 8.54 9.11 6.74 9.39 

Although both the RSM and ANN models provided good quality predictions (R2) 

for the parameters within the design range, the ANN model showed clear 

superiority over the RSM model for both data fitting and estimation capabilities 

for the 14 additional experiments (Figure 5.11). Moreover, the ANN model has 

the advantage of considering a wider range of adsorption conditions within a 

single experimental design (Witek-Krowiak et al., 2014)  

 

Figure 5.11: Comparison of the experimental and predicted results for unseen 

experiments between the RSM and ANN models. 
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CCD (Bingol et al., 2012; Shojaeimehr et al., 2014). As such, the ANN model is 

more flexible and predictable, which allows for the addition of a new set of 
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experiments in order to build a new dependable model. The reason for this is that 

the RSM model is limited in terms of only assuming quadratic non-linear 

correlation; the ANN model overcomes this limitation, since it can inherently 

capture almost any complex and non-linear process (Bingol et al., 2012; Geyikci 

et al., 2012). 

5.6 ADSORPTION ISOTHERM   

In order to understand the behaviour of adsorbent, two common adsorption 

isotherms, Langmuir and Freundlich isotherm models (referred to in Equation 3.5 

and 3.6 in Section 3.5.4.4) were used to evaluate the adsorption system design 

and to describe the adsorption capacity of the oxidised adsorbent (Shojaeimehr et 

al., 2014). Batch adsorption was carried out at a constant sorbent dosage by 

varying the concentration of Cu(II). 

From the results (Appendix C), the coefficient of determination (R2) showed that 

the Langmuir isotherm (R2 = 0.9998) had a better correlation than the Freundlich 

isotherm (R2 = 0.9461), which in turn indicated the homogeneous distribution of 

active sites on the adsorbent surface. The maximum monolayer adsorption 

capacity, as obtained from the Langmuir isotherm, was found to be 14.65 mg/g, 

and the Langmuir constant (KL) was 1.4025 L/mg. Langmuir constant (KL) is 

referred to the bonding energy of sorption, where the higher the magnitude of 

Langmuir constant (KL), the stronger the bond formed. The equilibrium 

parameter (RL), was calculated at different initial concentration of Cu(II) solution 

using the Equation 2.3. The calculated RL were found to be in the range of (0-1) 

at all initial Cu(II) concentrations which confirms the favourable uptake of Cu(II) 

process according to Langmuir isotherm, as discussed in Section 2.3.2.1.  

These results are in agreement with work using macrofungus (Amanita 

rubescens) for the adsorption of Pb(II) and Cd(II) ions from aqueous solution 

(Sarē and Tuzen, 2009). In addition, copper ion sorption by wood sawdust from 

synthetic wastewater was also better described by the Langmuir isotherm 

(Ofomaja et al., 2010b). 

The value of the Freundlich constant (KF = 2.3329) is an indicator of adsorption 

capacity, which indicates affinity of Cu(II) species. Furthermore, the value of 
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Freundlich parameters also reflects the number of adsorption sites. Moreover, the 

n value from the Freundlich isotherm was 5.19 (1<n<10), indicating adsorption is 

favourable for the studied concentration range (Singh et al., 2010). These 

observations correspond well with those of Sarkar and Majumdar (2011), who 

used oxidised chitosan beads for the removal of Cu(II) from a clean water matrix 

(Sarkar and Majumdar, 2011).  

In addition, the comparison of Cu(II) sorption performance is better when based 

on a complete Cu(II) sorption isotherm curve (Calero et al., 2011). Therefore, the 

qm value, which was obtained from the Langmuir isotherm, was compared with 

other sorbents reported in the literature, based on their maximum adsorption 

capacity of Cu(II) ions (Table 5.11). It is important to emphasise that a direct 

comparison of the qm from this study with qm of other sorbents is challenging, due 

to experimental conditions not being comparable. 

Although the reported Cu(II)  adsorption capacity of oxidised CNW adsorbents 

was relatively smaller than for a number of adsorbents in other studies, the 

experimental conditions in this study were informed by actual conditions in the 

wastewater treatment process. For example, one of the important factors affecting 

adsorption capacities is the pH of the Cu(II) in water. Other studies have 

commonly conducted evaluations in a pH range of 4.0 ï 5.0, which, as an acidic 

environment, is not representative of the actual conditions in a WWTP but 

suitable for certain heavy metal For example, the optimum pH for the adsorption 

of Cr(VI) by rice husk was at pH 4 (Rao et al., 2012). This is because at acidic 

pHs, the surface of adsorbent is highly protonated. The protonated form of 

adsorbent can form bond with chromate and dichromate anions by electrostatic 

attraction for high removal of Cr(VI) to occur.  
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5.7 ADSORPTION KINETICS  

In order to study the controlling mechanisms of adsorption processes such as 

mass transfer and chemical reaction, Lagergrenôs first and second order models 

were used to test the experimental data, as described earlier in Section 3.5.6. The 

kinetics parameters obtained from both models are presented in Table 5.12 and 

Appendix C. The linear graphs obtained for first and second order equations are 

shown in Figure 5.12 and 5.13, respectively. From the results, it can be concluded 

from the coefficients of determination (R2 = 1.000) that the adsorption 

mechanism of Cu(II) onto oxidised CNW adsorbents follow the pseudo second 

order kinetic model. Moreover, the calculated qe value was in good agreement 

with experimental qe for the pseudo second order kinetic model. 



 

131 

Table 5.11: Comparison of maximum adsorption capacities of Cu(II) ions by different adsorbents.  

Adsorbents 

Experimental conditions 
qm 

(mg/g) 
References 

pH T (°C) 
Ci 

(mg/L) 

Time 

(min) 

Oxidised CNW 6 10 10-60 30 14.65 This study 

Cellulose graft polymers 4 20 200 300 17.16 (Guclu et al., 2003) 

Commercial resins (Duolite GT-73) 5 *  *  *  61.63 (Vaughan et al., 2001) 

Cotton stalks 3 25 20-200 30 4.0 (Nada et al., 2006) 

Granular activated carbon 5 30 *  *  5.08 (An et al., 2001) 

Olive pomace 6.5 20 50-200 60 1.0-5.0 (Pagnanelli et al., 2003) 

Starch-graft-acrylic acid copolymers 4 20 200 300 16.52 (Guclu et al., 2003) 

*: not reported; Ci = Initial concentration; qm = maximum adsorption capacity. 
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Table 5.12: Adsorption kinetic parameters of Cu(II) onto oxidised CNW 

adsorbents. 

Kinetic equation and parameter Cu(II) 

Experimental 

Initial Cu(II) concentration, Co (mg/L) 10.0 60.0 

Adsorption capacity, qe (mg/g) 1.91 9.19 

First-order kinetic equation 

k1 (min-1) 0.0207 0.0230 

q1(mg/g) 0.3502 4.1468 

R2 0.7863 0.8872 

Second-order kinetic equation 

k2 (g/mg min) 0.2993 0.0191 

q2(mg/g) 1.91 9.35 

R2 1.0000 0.9996 

k1 and k2 = 1st and 2nd order kinetics constant; q1 and q2 = adsorption capacity for 1st and 

2nd order kinetics.  

This model predicts adsorbent behaviour over the entire range of adsorption and 

is in agreement with chemical sorption being the rate-controlling step. In 

chemisorption (chemical adsorption), the process involves valence forces through 

sharing or exchange of electrons between the metal ions and the adsorbent (Lu et 

al., 2009). The chemical bonding between divalent metal ions (copper) and polar 

functional groups (carboxyl groups) are responsible for the cation-exchange 

capacity of the adsorbent (CNWs). Similar results, where the adsorption 

mechanism follows the pseudo second-order kinetic model, were reported by 

other researchers in the context of the adsorption of Cu(II) onto the different 

adsorbents (Mata et al., 2008; Ofomaja et al., 2010b). 
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Figure 5.12: Linear plot, first-order rate equation, using oxidised CNW 

adsorbents (sorbent dosage = 4 g/L, temperature = 25 °C, pH = 6) 

 

Figure 5.13: Linear plot, second-order rate equation, using oxidised CNW 

adsorbents (sorbent dosage = 4 g/L, temperature = 25 °C, pH = 6). 
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CHAPTER 6: RESULTS AND DISCUSSION 

UNDERSTANDING THE WASTEWATER MATRIX AND 

CHARACTERISATION 

6.1 INTRODUCTION  

The previous chapter described the removal of Cu(II) from a clean water matrix 

(Milli -Q ultrapure water) by oxidised CNW adsorbents using mathematical 

models. However, in a real-world wastewater treatment plant (WWTP), the water 

matrix will be far more complex. The composition of wastewater is typically a 

complex water matrix, often containing a variety of organic and inorganic 

compounds. In addition, wastewater varies in composition both temporally and 

spatially (within a WWTP and between different wastewater streams). The 

variation in wastewater composition may contribute to the inaccuracies and 

decreased predictive capabilities of models for the optimisation of remediation of 

copper from the wastewater matrix. Therefore, the main objective for this chapter 

is to study and determine not only the concentrations of heavy metals and their 

variations in wastewater samples, but also the physicochemical properties of the 

wastewater as characterised by Water Quality Practices.  

This chapter is divided into four sections. The first section is focused essentially 

on the correct laboratory practice required, prior to ICP-MS instrumental analysis, 

to ensure robust analytical data. The second section provides the results of the 

analysis of heavy metal concentrations and their variability in the influent and 

effluent samples. The Water Quality Practices, including the physicochemical 

parameters, are described in third section. The final section describes benchmark 

experiments that basically inform the effects of wastewater matrix characteristics 

(wastewater composition and its variability) on the adsorbentôs capability to 

remediate Cu(II) from this matrix. 
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6.2 HIGHLIGHTS  

¶ Proper laboratory practice to ensure robust analytical data  

¶ Report of physicochemical data analysis of influent and effluent 

wastewater samples. 

¶ Presentation of heavy metal concentrations and their variations in influent 

and effluent wastewaters.  

¶ Benchmark experiments to provide better understanding of the impacts of 

wastewater matrix on the remediation of Cu(II) from the wastewater 

matrix. 

6.3 RESULTS AND DISCUSSION  

6.3.1 SOURCES OF CONTAMINATION OF ICP-MS INSTRUMENTAL 

ANALYSIS 

The analysis of metals with low detection limits involving concentrations of parts 

per billion or parts per trillion is a difficult and complicated process, requiring 

extra care during sample preparation (Zougagh et al., 2002). Table 6.1 shows the 

limit of detection (LoD) and limit of quantification (LoQ) for each element, 

determined by ICP-MS (Thermo-Fisher iCAP-Q) equipped with CCTED 

(collision cell technology with energy discrimination). LoD and LoQ for ICP-MS 

were determined in a similar way as the employed for these limits by atomic 

absorption spectrometry (AAS) where LoD is defined as three times the standard 

deviation of the calibration blank (Section 3.6.3).  

 

 

 

 

 

 



6 UNDERSTANDING THE WASTEWATER MATRIX 

 

136 

Table 6.1: Detection capabilities of ICP-MS for wastewater analysis 

Element Unit LoD LoQ 

Al  µg/L 0.036 0.121 

Ca mg/L 0.011 0.036 

Cd µg/L 0.002 0.008 

Cu µg/L 0.001 0.003 

Fe µg/L 0.153 0.509 

K mg/L 0.003 0.012 

Mg mg/L 0.001 0.004 

Mn µg/L 0.002 0.008 

Na mg/L 0.001 0.003 

Ni µg/L 0.017 0.056 

Pb µg/L 0.002 0.005 

Zn µg/L 0.058 0.193 

In order to ensure an accurate determination of low concentration metals, it is 

necessary to minimise errors by avoiding any sources of contamination during all 

stages of experimental procedure, from sample transport to sample preparation 

and analysis. The potential sources of contamination are listed below:  

¶ Sampling equipment  

¶ Storage containers 

¶ Preservation reagents 

¶ Laboratory environment 

¶ Instrumentation  

In order to evaluate the efficiency of the washing procedure and the impurity 

levels in Milli-Q ultrapure water (18.2 MÝ-cm resistivity) and any chemical 

reagents used, several control experiments were conducted, the samples being 

analysed by ICP-MS. Results presented in Table 6.2 show changes in 

concentration of 12 selected elements in Milli-Q water during handling in the 

laboratory. The purity of reagents and chemicals used in this study were 

evaluated and the results summarised in Table 6.3. Since Milli -Q water has been 

used as a reagent blank, the purity of the Milli-Q water is important, in order to 
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avoid contamination during sample preparation and analysis. The impurity levels 

in Milli -Q water were evaluated and the results show that Milli -Q water acidified 

by HNO3 (2% by volume) has similar purity to commercial high-purity water. 

However, the concentration of Zn was detected at a higher level compared to 

other elements in Milli-Q ultrapure water. This may be attributed to 

contamination from the paper towels used during the sample preparation. Besides 

Zn, paper towels generally contain trace levels of transition metals such as Pb, Cr 

and Co (Thomas, 2013). Moreover, powder gloves should be avoided during the 

sample preparation as powder in these gloves contain high concentration of Zn 

(Kay, 2004). Therefore, powder-free or non-latex gloves are recommended when 

handling the equipment, samples, blank and standard solutions.  

Moreover, the quality and selection of acids are important when dealing with 

analysis at low detection limits (ng/g and pg/g) (Rodushkin et al., 2010). The 

main purpose of acidification is to avoid any metals being adsorbed onto the 

container walls (Balaram, 2005). Therefore, HNO3 was used for sample 

preparation and acid washing, as other acids such as H2SO4 and H3PO4 are not 

suitable for analytical analysis by ICP-MS. This is because these acids do not 

completely decompose in the plasma and can adhere to the interface components 

and ion lenses causing signal instability (Rodushkin et al., 2010). Also, insoluble 

metal sulphates or phosphate may form (depending on the acid used) and thus 

change the dissolved relevant metal ion concentration. Furthermore, these acids 

have low purity levels compared to HNO3 and HCl, causing further 

contamination of the samples (Balaram, 2005). 

According to Rodushkin et al., (2010), sample containers and glassware are 

potential sources of contamination that require appropriate acid washing with 

dilute nitric acid prior to use. The procedure is fully described in Section 3.2.3. 

The acid-washed laboratory glassware showed a significant decrease in the 

contaminations and concentrations of selected elements. Also, minimising the 

number of laboratory items used during the experimental process, and keeping 

those washed items filled with acid, helps to reduce contamination. 

The results (Table 6.2) show that acid-washed polypropylene sample tubes show 

lower levels of contamination compared to acid-washed glassware. These results 
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are in agreement with the work of Rodushkin et al., (2010) who suggested that 

disposable tubes made of polystyrene or polypropylene are much more suitable 

for ICP-MS sample preparation. Moreover, glass sample containers should be 

avoided, as trace levels of some metals in water commonly adsorb onto the glass 

wall, thus releasing measureable concentrations of metals when acidic solutions 

are added. Moreover, a study assessing metal contaminations leaching from a 

series of plastic recycling bottles during various treatments has been reported 

(Cheng et al., 2010). The results revealed that heating and microwaving 

significantly enhance antimony leaching from polyethylene terephthalate (PET) 

bottles. Therefore, polypropylene and other plastic materials are more suitable for 

sample storage. Similar sampling procedures were observed in other studies, 

where the collected wastewater samples were stored in polypropylene containers 

prior to metal analysis (Christophe et al., 2011).  
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Table 6.2: Concentration of selected elements in Milli-Q water from different control experiments  

  Lab-ware and glassware 

Elements Unit 
Unwashed 

glassware 

Acid-washed 

glassware 

Unwashed sample 

tube 

Acid-washed 

sample tube 
Syringe filter Pipette tips 

Al  µg/L 4.9 ± 1.8 0.4 ± 0.6 9.8 ± 1.0 1.3 ± 0.1 0.43 ± 0.04 0.02 ± 0.02 

Ca mg/L 0.05 ± 0.02 0.02 ± 0.01 0.031 ± 0.002 0.007 ± 0.004 0.004 ± 0.008 0.003 ± 0.002 

Cd µg/L 0.04 ± 0.03 0.03 ± 0.02 0.002 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.01 ± 0.01 

Cu µg/L 7.5 ± 1.0 0.07 ± 0.04 0.05 ± 0.01 0.01 ± 0.03 0.051 ± 0.001 0.04 ± 0.05 

Fe µg/L 0.4 ± 0.1 0.7 ± 0.6 0.36 ± 0.05 0.27 ± 0.03 0.05 ± 0.01 0.059 ± 0.003 

K mg/L 0.03 ± 0.02 0.004 ± 0.005 0.004 ± 0.001 0.005 ± 0.001 0.007 ± 0.001 0.005 ± 0.001 

Mg mg/L 0.01 ± 0.02 0.001 ± 0.001 0.003 ± 0.001 0.001 ± 0.001 0.002 ± 0.003 0.001 ± 0.001 

Mn µg/L 0.04 ± 0.02 0.03 ± 0.01 0.02 ± 0.01 0.003 ± 0.001 0.02 ± 0.01 0.04 ± 0.02 

Na mg/L 0.09 ± 0.01 0.003 ± 0.007 0.003 ± 0.001 0.003 ± 0.001 0.83 ± 0.02 0.001 ± 0.001 

Ni µg/L 0.14 ± 0.04 0.36 ± 0.02 0.6 ± 0.1 0.02 ± 0.02 0.012 ± 0.003 0.213 ± 0.003 

Pb µg/L 0.06 ± 0.01 0.06 ± 0.02 0.039 ± 0.001 0.028 ± 0.002 0.013 ± 0.001 0.038 ± 0.002 

Zn µg/L 5.6 ± 1.3 2.3 ± 0.3 1.3 ± 0.2 0.7 ± 0.3 0.3 ± 0.5 0.38 ± 0.02 

Values represent mean of three replicates ± standard deviation 
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Table 6.3: Concentration of selected elements in reagents and chemicals  

Elements Unit 

Reagents and chemicals 

Milli -Q water 
Milli -Q water, 

2% HNO3  
High purity water 50 µg/L Cu standard 

50 µg/L Cu standard with 

2% HNO3  

Al  µg/L 0.22 ± 0.04 0.1 ± 0.1 0.4 ± 0.4 1.2 ± 1.0 0.6 ± 0.9 

Ca mg/L 0.004 ± 0.001 0.005 ± 0.003 0.003 ± 0.003 0.08 ± 0.02 0.02 ± 0.01 

Cd µg/L 0.017 ± 0.014 0.002 ± 0.001 0.002 ± 0.001 0.007 ± 0.002 0.039 ± 0.002 

Cu µg/L 0.05 ± 0.05 0.04 ± 0.02 0.095 ± 0.003 36.9 ± 1.2 0.8 ± 0.1 

Fe µg/L 0.606 ± 0.004 0.40 ± 0.04 0.2 ± 0.2 0.463 ± 0.002 0.02 ± 0.02 

K mg/L 0.007± 0.001  0.005 ± 0.001  0.005 ± 0.001 0.009 ± 0.002 0.009 ± 0.003 

Mg mg/L 0.002 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.002 ± 0.001 

Mn µg/L 0.006 ± 0.003 0.005 ± 0.006 0.005 ± 0.002 0.26 ± 0.05 0.03 ± 0.01 

Na mg/L 0.003 ± 0.001 0.001 ± 0.001 0.03 ± 0.01 0.05 ± 0.01 0.03 ± 0.02 

Ni µg/L 0.13 ± 0.02 0.19 ± 0.04 0.03 ± 0.03 0.6 ± 0.3 0.4 ± 0.2 

Pb µg/L 0.009 ± 0.003 0.028 ± 0.005 0.02 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 

Zn µg/L 0.33 ± 0.01 0.3 ± 0.8 0.297 ± 0.004 3.4 ± 0.8 2.3 ± 1.6 

Values represent mean of three replicates ± standard deviation 
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6.3.2 THE INFLUENCE OF STORAGE TIME  

The influence of storage time on heavy metal concentration is important, as ICP-

MS analysis can take several days (up to two days) due to instrument 

accessibility. The stability of wastewater effluent was tested at different time 

intervals, prior to analysis by ICP-MS. As described in Section 3.2.4.1, 

monitoring the influence of storage time on the effluent was necessary, as it 

allowed for the observation of any changes in wastewater quality during storage, 

normally between 0 and 120 hours (APHA, 1998). However, the impact of 

wastewater storage time on water quality parameters is not necessary, as the 

adsorption process to remediate Cu(II) from the wastewater matrix is performed 

using fresh effluent wastewater.  

As shown in Table 6.4, the effluent samples do not show any significant changes 

in heavy metal concentration during storage at 4 C̄ for 72 or 120 hours. This 

demonstrates that storage under these conditions does not affect the stability of 

heavy metals. Besides proper storage, suitable sample containers, and 

acidification to a pH below 2.0, have been used in this study, to minimise the 

precipitation and adsorption of heavy metals on container walls. 

Table 6.4: Comparison of selected heavy metal concentrations after 0, 72 and 120 

hours storage of effluent samples 

Heavy metals (µg/L) 
Storage time (hours) 

0 72 120 

Al  3.83 ± 0.11 3.83 ± 0.01 3.56 ± 0.03 

Cd 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 

Cu 3.65 ± 0.05 3.58 ± 0.07 3.59 ± 0.04 

Fe 40.74 ± 0.73 41.05 ± 0.02 40.58 ± 0.78 

Ni 3.46 ± 0.06 3.46 ± 0.05 3.47 ± 0.02 

Pb 0.26± 0.01 0.26 ± 0.01 0.26 ± 0.02 

Values represent mean of three replicates ± standard deviation 
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6.3.3 PHYSICOCHEMICAL DATA ANALYSIS OF WATER SAMPLES 

Wastewater characterisation by various water quality parameters (e.g. pH and 

conductivity) is required in order to meet legislation requirements. As described 

in Section 3.2.4, influent and effluent wastewater samples were collected from 

Severn Trent Water Stoke Bardolph wastewater treatment plant (WWTP), for a 

period of three months (January to March 2016). Samples were characterised for 

pH, total dissolved (TDS) and total suspended solids (TSS), conductivity, and 

chemical oxygen demand (COD) in the laboratory, while dissolved oxygen (DO) 

and temperature were analysed at the sampling points. The analytical methods 

used for the water quality analysis were in accordance with ñStandard Methods 

for the Examination of Water and Wastewaterò in order to meet legislation 

requirements (APHA, 1998). The results of the physicochemical parameters for 

influent and effluent water samples are shown in Table 6.5. These data represent 

a total of 10 wastewater samples for both influent and effluent at different 

sampling periods, with hydraulic retention time (HRT) of 17 hours. The effect of 

HRT on pollutant removal performance is important due to its impact on the 

reduction of organic matter and nutrients (Merino-Solís et al., 2015).     

Dissolved oxygen (DO) is a measure of the content of molecular oxygen present 

in water. The concentration of dissolved oxygen is a necessary control factor in 

wastewater, as it favours the organisms desired during the aerobic process (Wiese 

et al., 1997). Low dissolved oxygen will decrease the activity of aerobic 

organisms and may cause sludge bulking, while an increase in dissolved oxygen 

may cause flocculation, with unsettled particles remaining in the wastewater 

(Singh et al., 2012). The work by Chapman (1997) reported that the minimum 

DO value for supporting aquatic life is 4 ï 5 mg/L; concentration below this value 

may adversely affect aquatic biological life, while concentrations below 2 mg/L 

may lead to death for most aquatic li fe (Chapman, 1997). The DO level for 

effluent samples (4.9 ï 5.8 mg/L) were within the range for sustaining aquatic 

life, while the DO level for influent samples (1.2 ï 5.3 mg/L) were found to be 

below the standard.  
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Observations of temperature of wastewater are important as the rate of biological 

activity and solubility of oxygen depends on the temperature (Spellman, 2013). 

Figure 6.1 shows that the temperature of influent is lower than the effluent, which 

suggests the intrusion of storm water (Hwang et al., 2015). As mentioned in 

Section 5.3.2.5, the realistic range for temperature in the wastewater treatment 

environment varies from 6 ï 25 °C (Burton et al., 2013; Hanaki, 2008). 

Therefore, the temperature obtained for both influent and effluent were within the 

expected temperature range.  

 

Figure 6.1: Variation in temperature for sampled wastewater influent and effluent 

(February to March 2016) from Stoke Bardolph WWTP.  

Besides temperature, pH, a measure of the concentration of hydrogen ions in a 

solution, is an important parameter in the operation of biological treatment units. 

An increase in pH is due not only to industrial or other non-domestic discharges, 

but also to the denitrification process (WEF, 2007). As shown in Table 6.5 and 

Figure 6.2, the pH of the samples were within the permissible limit for 

wastewater, ranging from 6.0 to 9.0 (CEC, 2006). Moreover, all pH values were 

also within the range set by the WHO for wastewater, ranging from 7.0 to 7.4 

(WHO, 2006).  
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Table 6.5: Characteristics of influent and effluent wastewater  

Parameters Unit Discharge limit 
Influent Effluent 

Range Mean Range Mean 

DO  mg/L O2 5 ï 9a 1.2 ï 5.3 3.8 4.9 ï 5.8 5.4 

Temperature °C 6 ï 25a 7.6 ï 11.9 10.4 10.3 ï 16.2 12.1 

pH 
 

6 ï 9d 7.0 ï 7.8 7.6 6.9 ï7.4 7.0 

COD mg/L 125a 61.3 ï 285 120 13.1 ï 26.2 21.3 

TSS mg/L < 35d 38.9 ï 177.4 89.8 3.9 ï 14.2 6.4 

TDS g/L 0.3 -0.9c 0.3 ï 0.9 0.5 0.3 ï 0.4 0.4 

Conductivity mS/cm 0.05 ï 1.5a 0.7 ï 2.0 1.0 0.6 ï 0.9 0.8 

Sodium mg/L 40 ï 70c 54.8 ï 81.7 80.9 62.6 ï 89.9 74.4 

Magnesium mg/L 4 ï 10b 32.07 ï 40.27 30.9 22.2 ï 30.7 27.1 

Potassium mg/L 7 ï 15b 12.5 ï 21.0 19.7 14.4 ï 28.2 18.4 

Calcium mg/L 6 ï 16b 85.0 ï 113.7 85.8 61.9 ï 81.9 74.8 

a(CEC, 2006), b(Tchobanoglous et al., 1991), c(WHO, 2006), d(CEC, 1991) 

DO=dissolved oxygen; COD=chemical oxygen demand; TSS= total suspended solid; TDS=total dissolved solid 
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Figure 6.2: Variation in pH for influent and effluent (February to March 2016) 

The TSS values of the influent and effluent were found to be in the range of 38.9 

ï 177.4 and 3.9 ï 14.2 mg/L, respectively. According to literature, the wastewater 

can be classified as follows: TSS < 100 mg/L as weak, 100 < TSS < 220 mg/L as 

medium, and TSS > 220 mg/L as strong wastewater (Osobamiro and Atewolara-

Odule, 2015; Singh et al., 2012). Therefore, TSS levels in influent and effluent 

samples classified them as medium and weak wastewater, respectively. 

Moreover, the permissible standard for TSS (for discharge) is 35 mg/L (CEC, 

1991). Therefore, the effluent is safe to be discharged into the river, while the 

high TSS level in the influent, due to the suspended particles from the waste, may 

affect aquatic life. However, the mean values (0.5 g/L) obtained for TDS in both 

sampling points were within the permissible limits stipulated by the WHO for 

wastewater (WHO, 2006). 

Conductivity measurements indicate the level of dissolved inorganic material 

present. The biological nitrogen removal in wastewater treatment is the main 

cause of the significant reduction in the conductivity of wastewater (Levlin, 

2010). However, the increase in the conductivity measurement of the influent 

indicates an unusual discharge, probably from an industrial source. Moreover, the 

measurements obtained (Figure 6.3) were in agreement with other studies 

reported in the literature (Alonso et al., 2004; Bhuiyan et al., 2010). The 

conductivity of wastewater generally ranges from 0.05 ï 1.50 mS/cm, while some 
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industrial wastewater is reported to have higher conductivity measurements, up to 

10.0 mS/cm (WEF, 2007).  

 

Figure 6.3: Variation in conductivity for influent and effluent (February to March 

2016).  

6.3.4  CHEMICAL OXYGEN DEMAND (COD) 

Chemical oxygen demand (COD) is one of the standard parameters, and provides 

information on the level of organic contamination of wastewater (Bansode et al., 

2004). The procedure for the determination of COD using the cuvette test is fully 

described in Section 3.2.4.5. Figure 6.4 shows COD concentrations of influent 

and effluent samples collected at 10 different sampling periods.  

The COD of influent published in literature was reported to be in the range of 200 

to 600 mg/L (WEF, 2007). Although the results for influent were within this 

range, the COD concentrations of the influent during the sampling periods were 

highly variable. However, it was observed that the measurements of effluent 

samples consistently produced lower COD values than for influent samples.  

COD levels of the effluent were stable for all sampling periods, at lower than 40 

mg/L. This suggests that the high level of organic pollution due to anthropogenic 

activity may have resulted in high values of COD in the influent (Himanshu and 

Vashi, 2014). These results were in agreement with the work of Gardner et al. 
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(2012) who measured the characteristics of final effluent from wastewater 

treatment plants around the UK.  

 

Figure 6.4: Variation in COD for influent and effluent (February to March 2016).  

To summarise, variations in water quality parameters were observed in both 

influent and effluent wastewater samples. Table 6.6 summarises these water 

quality parameters for both influent and effluent wastewater samples.  

Table 6.6: Data for water quality parameters for influent and effluent wastewater 

samples during February-March 2016 

Parameters 
Influent 

(average ± SD) 

Effluent 

(average ± SD) 

Temperature (°C) 10.4 ± 0.9 12.1 ± 1.4 

Dissolved oxygen (DO) (mg/L)  3.8 ± 4.2 5.3 ± 4.6 

pH 7.6 ± 0.2 7.0 ± 0.1 

Conductivity (mS/cm) 1.0 ± 0.3 0.8 ± 0.1 

Chemical oxygen demand (COD) 

(mg/L) 

120.4 ± 51.6 21.3 ± 4.1 

Total suspended solid (TSS) (mg/L) 89.8 ± 37.3 6.4 ± 2.8 

Total dissolved solid (TDS) (g/L) 0.5 ± 0.1 0.4 ± 0.1 

*SD=standard deviation 
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6.3.5 HEAVY METAL  CONCENTRATION AND ITS VARIATION IN  

INFLUENT AND EFFLUENT WASTEWATER SAMPLES 

The concentrations of heavy metals such as copper (Cu), cadmium (Cd), 

chromium (Cr), iron (Fe), and lead (Pb) were determined using ICP-MS analysis 

of influent and effluent samples taken from 10 different sampling periods at the 

Severn Trent Water Stoke Bardolph WWTP.  

The concentration of heavy metals in influent and effluent ranged from 0.01 ï 

439.05 µg/L and 0.006 ï 99.82 µg/L, respectively. As seen from Figures 6.5 to 

6.9, variations in the concentrations of heavy metals were observed in both 

influent and effluent samples. These observations are consistent with the trend 

observed in other studies (Malakootian et al., 2011; Sadrzadeh et al., 2009). The 

highest concentration of Cu content in influent wastewater sample was found to 

be 12.34 mg/L. However, this concentration is within the range for wastewater 

discharge contained in the Water Framework Directive (2000/60/EC). From the 

results obtained for copper concentration in influent and effluent wastewater 

samples, the selected range for initial Cu(II) concentration (10 ï 60 mg/L) in the 

clean water matrix is not environmentally relevant (Chapter 5). However, the 

range chosen is closer to the copper concentration observed in some industrial 

wastewater, as shown in Table 2.4.  

 

Figure 6.5: The concentrations of Cu in influent and effluent  
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Figure 6.6: The concentrations of Cr in influent and effluent.   

 

 

Figure 6.7: The concentrations of Cd in influent and effluent  
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Figure 6.8: The concentrations of Fe in influent and effluent  

 

 

Figure 6.9: The concentrations of Pb in influent and effluent  
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samples 

 

0

20

40

60

80

100

120

140

160

22-Feb 24-Feb 29-Feb 7-Mar 9-Mar 14-Mar 16-Mar 21-Mar 23-Mar 30-Mar

F
e

 (
µ

g
/L

)

Sample

Influent

Effluent

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

22-Feb 24-Feb 29-Feb 7-Mar 9-Mar 14-Mar 16-Mar 21-Mar 23-Mar 30-Mar

P
b

 (
µ

g
/L

)

Sample

Influent

Effluent



6 UNDERSTANDING THE WASTEWATER MATRIX 

151 

6.3.6 BENCHMARKING THE WASTEWATER MATRIX FROM THE 

POLLUTANT AND ADSORBENT PERSPECTIVE 

New wastewater quality parameter (benchmark study) has been developed to 

quantify the impact of wastewater composition on the efficiency of Cu(II) 

removal by oxidised CNW adsorbents. The issue with previous studies is the 

assumption that the actual wastewater composition is the same for each 

experiment, or has no influence on the removal capability of that process. No 

work to date has performed benchmark experiments on each fresh wastewater 

sample to challenge that assumption. 

Moreover, the impacts of the variability and composition of the wastewater 

matrix on the adsorbentôs capability to remediate Cu(II) have not yet been 

reported by other studies. Thus, throughout these benchmark experiments, the 

complexity and variability of the wastewater to the treatment was controlled. The 

procedure followed in the benchmark experiments is described in Section 3.5.4. 

Benchmark experiments for each effluent wastewater sample were carried out 

under similar conditions and the percentage of Cu(II) removal by oxidised CNW 

adsorbents are reported in Table 6.7.  

Table 6.7: Data over time of Cu(II) removal as evaluated by benchmark studies 

(Initial concentration of wastewater effluent spiked with Cu(II)=4.0 mg/L, 

sorbent dosage=1.0 g/L, pH=6.0) 

Sampling date Benchmark experiment for Cu(II) removal (%) 

18/1/16 80.11 

20/1/16 68.22 

25/1/16 81.82 

10/2/16 74.41 

15/2/16 77.39 

22/2/16 78.76 

9/3/16 74.15 

16/3/16 81.27 

23/3/16 80.11 

30/3/16 77.27 
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For these benchmark experiments, a sorbent dosage of 1 g/L was selected in order 

to study the impacts of the variability and compositions of the wastewater matrix 

on the adsorbent capability. If higher sorbent dosage was selected, the results for 

each wastewater sample will gave 100% Cu(II) removal, since effluent contained 

less contamination than influent wastewater. As the main aim of this benchmark 

experiment is to study the effect of wastewater matrix on the efficiency of Cu(II) 

removal by oxidised CNW adsorbents, it is important that the independent 

variable (benchmark experiment) varies for ANN modelling, in order to detect the 

variation of wastewater and the influence of this variable on the removal 

capability.  

The results reported in Table 6.7 show that the percentage Cu(II) removal by 

oxidised CNW adsorbents varies for each wastewater sample on different 

sampling dates. Results over six weeks give an average 77.35 ± 4.15%. Although 

the difference was low (around 4%), it is significant, and is likely to influence the 

efficiency and capability of oxidised CNW adsorbents. Moreover, the results 

obtained only support and covered only three months of sampling trips and 

focused on the effluent from only one treatment plant. According to the United 

State EPA, the complexity of the wastewater matrix depends on the number and 

volume of wastewater streams generated. The amount and type of contamination 

found in wastewater will depend on the different industrial activities realised in 

the area, the degree of urban development, and the type of treatment facilities 

found around it (USEPA, 1998). 

The composition of wastewater in WWTPs depends on several factors, such as 

compound physico-chemical properties, the climate conditions (temperature and 

sunlight intensity), the type of treatment process employed, and the operational 

conditions of the treatment process (temperature of operation and hydraulic 

retention time) (Gracia-Lor et al., 2012; Jelic et al., 2011). Thus, variations in 

water quality parameters were observed in both influent and effluent wastewater 

samples, as shown in Table 6.6. For example, in the case of COD in influent and 

effluent, the COD concentrations of the influent during the sampling periods were 

highly variable. This indicated that the influent contained higher levels of organic 

pollutants than did the effluent wastewater, which may have influenced the 

capability of the adsorption process. Removal of Cu(II) from wastewater by an 
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adsorption process is dependent on the organic compoundôs biodegradability, its 

volatility, and its ability to be adsorbed onto adsorbents (Kushwaha et al., 2010). 

Therefore, the composition of wastewater can vary significantly from plant to 

plant, between different wastewater streams, and within a plant at different times.  

This demonstrates that the complexity of wastewater, in terms of its composition 

and variability, affect the capability of the adsorbent to remediate Cu(II) from the 

wastewater matrix. Moreover, the complexity and variation of wastewater 

composition may also affect the accuracy and efficiency of mathematical 

modelling in predicting the capability of this adsorbent to remediate spiked 

copper from the wastewater effluent. Therefore, this will be discussed further in 

next chapter, which will focus more on the remediation of Cu(II) from the 

wastewater matrix. 
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CHAPTER 7: RESULTS AND DISCUSSION 

PREDICTING THE CAPABILITY OF OXIDISED CNW ADSORBENTS FOR 

REMEDIATION OF SPIKED COPPER FROM WASTEWATER EFFLUENT 

USING RSM AND ANN MODELS 

7.1 INTRODUCTION  

Chapter 6 determined the complexity of wastewater and its variability in terms of 

heavy metal and water quality indicators both temporally and spatially. A 

benchmark study reported in the previous chapter (Section 6.3.6) determined that 

the wastewater matrix, which is variable and complex, has an impact on 

adsorbent capability and performance. With the results obtained in Chapter 6, a 

better understanding has been gained of the selection of variables and their ranges 

in the experimental design. In this chapter, the capability of oxidised cellulose 

nanowhisker (CNW) adsorbents for remediation of spiked Cu(II) from 

wastewater effluent is described. Similar to the design modelling approach 

applied to the clean water matrix in Chapter 5, RSM and ANN were used to 

develop an approach for the remediation of spiked Cu(II) from wastewater 

effluent. As remediation processes from wastewater are often complicated due to 

the variation in wastewater compositions, results obtained from the benchmark 

experiments are included as one of the independent variables for ANN modelling, 

unlike in other optimisation studies. 

7.2 HIGHLIGHTS  

¶ This chapter focuses on remediation of spiked Cu(II) from wastewater 

effluent obtained from a real wastewater treatment plants (WWTPs) using 

oxidised CNW adsorbents. 

¶ The variations in wastewater composition are included as independent 

variables for ANN modelling, unlike in other optimisation studies. 

¶ ANN including variability has a superior prediction capability to RSM 

and ANN without variability for Cu(II) removal from wastewater effluent.
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7.3 SCOPING EXPERIMENTS FOR EVALUATING REMOV AL 

PERFORMANCE IN THE W ASTEWATER MATRIX  

The purpose of the scoping studies is to identify the variables and parameter 

ranges that influence the adsorption process and help set the boundary conditions 

for the central composite design (CCD). The variables and parameter ranges used 

in this chapter are different from the clean water matrix, due to the variation in 

wastewater composition. The pH, sorbent dosage, and initial concentration of 

wastewater effluent spiked with Cu(II) are used as independent (input) variables 

and are studied for their impact on the removal of spiked Cu(II) from the 

wastewater effluent. These parameters are selected due to their effects in real 

WWTPs. Moreover, as the composition of wastewater varies with time, 

benchmark experiments were conducted for each sampling trip to study the effect 

of variation in wastewater composition (as mentioned in Section 3.5.3). For the 

same amount of sorbent dosage under similar conditions, different percentage 

removal was obtained for each benchmark experiment. This demonstrated that the 

variation in wastewater composition influences the efficiency of the adsorption 

process.  

The contact time for the adsorption process from the effluent was chosen as 30 

mins, in accordance with results obtained from scoping studies. This is because a 

further increase in the contact time did not show a significant change in 

percentage removal. Similar observations were observed for the remediation of 

Cu(II) from the clean water matrix, where adsorption equilibrium was achieved 

within 30 mins. It was found that adsorption increased sharply with contact time 

during the first 5 mins, contributing to more than 78% of Cu(II) removal. It then 

decreased slowly to reach a plateau and it was observed that 30 mins was 

sufficient to reach adsorption equilibrium.  

In the case of the clean water matrix, the results showed that temperature has a 

less than 1 % contribution towards Cu(II) removal, while sorbent dosage and 

initial Cu(II) concentration contribute more than 99 % towards the removal 

percentage (Figure 5.5). Therefore, it was decided that the optimum temperature 

for the removal of Cu(II) from effluent using oxidised CNW adsorbents is 20̄ C. 
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This has been confirmed by new set of control experiments, where the maximum 

removal of Cu(II) was observed at 20 C̄ with 90 % of Cu(II) removed, while at 

10 ̄ C only 80 % Cu(II) removal was achieved.  

As discussed in Chapter 5, it was decided that the optimum pH for the removal of 

Cu(II) ions from clean water matrix using oxidised CNW adsorbents is pH 6. 

However, in order to study the effect of pH of the wastewater effluent, a pH range 

(5 ï 8) realistic for a wastewater treatment environment was applied. The pH 

range applied is similar to those of Baltpurvins et al., (1996), who reported that 

higher initial metal concentrations (1000 mg/L) result in broader pH range (4.5 ï 

9.0) for metal precipitation. Furthermore, pH 5 is a realistic pH value for 

industrial wastewater, since the pH for electroplating wastewater is around this 

level (Chand et al., 2015; Malakootian et al., 2011; Rajemahadik et al., 2013). 

For municipal wastewater (Stoke Bardolph WWTP), as reported in Chapter 6, the 

pH range was found to be in the range of 7 ï 7.8. In addition, Fish Directive 

(2006/44/EC) also reported that the pH range for discharge of treated effluent 

water is in the range of 6 ï 9 (CEC, 2006).  

The sorbent dosage for the adsorption process was chosen to be in the range of 

0.5 ï 10.0g/L, in accordance with results obtained from the clean water matrix 

(Section 5.4.2). Therefore, pH 5 ï 8, sorbent dosage 0.5 ï 10 g/L, and initial 

concentration of wastewater effluent spiked with Cu(II) of 1 ï 5 mg/L, were 

investigated for their effect on the efficiency of Cu(II) removal from wastewater 

effluent.  
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7.4 MATHEMATICAL MODELLI NG OF SPIKED CU(II) REMOVAL 

FROM WASTEWATER EFFL UENT 

7.4.1 CENTRAL COMPOSITE DESIGN (CCD)  

The pH, sorbent dosage, and initial concentration of wastewater effluent spiked 

with Cu(II) were used as independent (input) variables and were studied for their 

impact on the removal of spiked Cu(II) from wastewater effluent. The range of 

independent variables, with the levels of the experimental factors, is given in 

Table 7.1. A second-order polynomial equation was used to determine the 

relationships between variables and response, as the first-order model suffers 

from lack of fit due to interaction between variables and surface curvature. The 

final equation in terms of coded factors obtained by the application of RSM is 

given by:  

 ὤ Ϸ ψρȢτχυσρȢυχυωὣ τȢρφυρὣ χȢρυψψὣ πȢωτυρὣ

ςȢστρχὣ ςȢσψτψὣ πȢσςρςὣὣ πȢσπψχὣὣ

ρȢςρψχὣὣ 

(7.1) 

where Z is the response variable (percentage removal of copper from wastewater 

effluent) and Y1ïY3 are the uncoded values of the independent variables (pH, 

sorbent dosage, and initial concentration of wastewater effluent spiked with 

Cu(II)). 

Table 7.1: CCD Experimental ranges and levels of independent variables  

Independent variable Unit 
Factor 

code 
Range and level 

   -Ŭ -1 0 +1 +Ŭ 

pH  Y1 5.0 5.6 6.5 7.4 8.0 

Sorbent dosage g/L Y2 0.5 2.34 5.25 8.16 10.0 

Initial concentration of 

wastewater effluent 

spiked with Cu(II) 

mg/L Y3 1.00 1.78 3.00 4.23 5.00 
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7.4.2 RESPONSE SURFACE METHODOLOGY (RSM) 

Results for the percentage of Cu(II) removal from wastewater effluent spiked 

with Cu(II) were obtained by performing batch experiments according to the 

CCD matrix of conditions. Table 7.2 shows the experimental results obtained 

from the various runs, together with the values predicted by the built RSM model, 

with residual values in the range of 0.21 to 4.8, which influenced the value of R2. 

The percentage error (% error) was calculated as the ratio of the difference 

between experimental and predicted value to experimental value (Equation 3.11).  

In order to test the suitability of the model, the predicted and actual experimental 

values were plotted (Figure 7.1) to provide the coefficient of determination (R2 = 

0.9409). The R2 value in this study was low compared to other studies that used a 

clean water matrix for the adsorption process. The study of a cellulose-based 

adsorbent for chromium removal from a clean water matrix, for instance, showed 

a high coefficient of determination (R2 = 0.9959) (Liu et al., 2011). In addition, a 

study by Singh et al., (2010) showed that the remediation of Cu(II) from a 

synthetic solution was successfully predicted by the RSM model. The 

experimental data fit well with the predicted values derived from this model, with 

a coefficient of determination R2 of 0.9982.  
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Table 7.2: The experimentally obtained for spiked Cu(II) removal from the wastewater effluent compared to that predicted by the response 

surface methodology (RSM) 

Run 

Number 

Coded values Uncoded values Cu(II) removal (%)  

Y1 Y2 Y3 Y1 Y2 Y3 Experimental Predicted Residual Error (%) Absolute error (%) 

1 -1 +1 +1 5.6 8.16 4.23 86.05 86.64 -0.59 -0.69 0.69 

2 -1 +1 -1 5.6 8.16 1.78 71.26 74.15 -2.89 -4.05 4.05 

3 0 0 0 6.5 5.25 3.00 80.65 81.27 -0.62 -0.76 0.76 

4 0 0 0 6.5 5.25 3.00 82.62 81.27 1.35 1.64 1.64 

5 -1 -1 +1 5.6 2.34 4.23 80.32 80.11 0.21 0.26 0.26 

6 +1 +1 +1 7.4 8.16 4.23 88.2 88.54 -0.34 -0.38 0.38 

7 +1 -1 +1 7.4 2.34 4.23 83.62 83.29 0.33 0.40 0.40 

8 -1 -1 -1 5.6 2.34 1.78 60.52 62.74 -2.22 -3.66 3.66 

9 0 0 0 6.5 5.25 3.00 80.43 81.27 -0.84 -1.04 1.04 

10 +1 +1 -1 7.4 8.16 1.78 74.51 77.27 -2.76 -3.71 3.71 

11 +1 -1 -1 7.4 2.34 1.78 65.19 67.15 -1.96 -3.00 3.00 

12 0 0 0 6.5 5.25 3.00 81.52 81.27 0.25 0.31 0.31 

13 0 +Ŭ 0 6.5 10 3.00 84.64 81.82 2.82 3.33 3.33 

14 0 0 +Ŭ 6.5 5.25 5.00 85.62 86.60 -0.98 -1.14 1.14 

15 -Ŭ 0 0 5 5.25 3.00 83.36 81.21 2.15 2.58 2.58 

16 0 0 -Ŭ 6.5 5.25 1.00 68.02 63.22 4.80 7.06 7.06 

17 0 0 0 6.5 5.25 3.00 80.01 81.27 -1.26 -1.57 1.57 

18 0 0 0 6.5 5.25 3.00 81.09 81.27 -0.18 -0.22 0.22 

19 +Ŭ 0 0 8 5.25 3.00 88.04 86.36 1.68 1.91 1.91 

20 0 -Ŭ 0 6.5 0.5 3.00 69.23 68.22 1.01 1.46 1.46 

Y1=pH; Y2=sorbent dosage; Y3=initial concentration of wastewater effluent spiked with Cu(II) 
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Figure 7.1: The experimentally obtained remediation of spiked Cu(II) from 

wastewater effluent compared to that predicted by the response surface 

methodology (RSM) 

Analysis of variance (ANOVA) for Cu(II) removal from the effluent was applied 

to evaluate the quality of fit of the model. The significance of each term in the 

equation to the percentage of the adsorbed Cu(II) ions was validated by this 

statistical test. The results of the second-order response surface model fitting in 

the form of ANOVA are shown in Table 7.3. 

Generally, it can be considered that higher Fisherôs F-test values and lower P 

values indicate the significance of the coefficients of the parameters. Values of P 

greater than 0.10 indicate that the model terms are not significant (Cao et al., 

2014). As seen from Table 7.3, all the first-order main effects in the quadratic 

model are statistically significant (P<0.05) for their effect on the Cu(II) 

percentage removal from the effluent. The positive first order coefficient 

indicates that adsorption process increased with increasing the variable. 

However, the second-order effect of pH (ὣ ) on the Cu(II) percentage removal 

are not significant among the other second-order effects. The negative coefficient 

of the second order parameters, shows a maximum value in response within 

selected range of the parameters, which showed that large amount of sorbent 

dosage and high initial concentration of wastewater effluent spiked with Cu(II), 
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will result in higher removal of Cu(II) from the wastewater. However, it was 

observed from Table 7.3 that the coefficient for the first and second order effects 

were significant when compared with interactive effects (Y1Y2, Y1Y3, and Y2Y3) 

with (P>0.10). 

Table 7.3: Analysis of variance (ANOVA) of Cu(II) removal prediction by using 

RSM model 

Source 
Sum of 

squares 
DF 

Mean 

square 
F value 

P-value 

Prob > F 
Coefficient 

Model 1120.08 9 124.45 22.72 <0.0001 81.4753 

Y1 33.11 1 33.11 6.05 0.036 1.5759 

Y2 231.31 1 231.30 42.23 <0.0001 4.1651 

Y3 683.31 1 683.31 124.76 <0.0001 7.1588 

Y1
2 21.18 1 11.80 2.15 0.176 0.9451 

Y2
2 62.59 1 72.42 13.22 0.005 -2.3414 

Y3
2 75.11 1 75.11 13.71 0.005 -2.3848 

Y1Y2 0.83 1 0.83 0.15 0.707 -0.3212 

Y1Y3 0.76 1 0.76 0.14 0.718 -0.3087 

Y2Y3 11.88 1 11.88 2.17 0.175 -1.2187 

Residual  49.29 9 5.447    

Lack of fit 45.74 5 9.148 10.30 0.021 Significant  

Pure error 3.55 4 0.888    

Total 1190.41 19     

*DF- degree of freedom 

The source contribution in Cu(II) removal percentage is evaluated based on 

adjusted sum of squares, and the plot is shown in Figure 7.2. The plot shows that 

sorbent dosage and initial concentration of wastewater effluent spiked with Cu(II) 

contribute more than 96% towards the removal percentage, while pH has a less 

than 5% contribution towards Cu(II) removal. A possible explanation for this 

result is the narrow pH range (5 ï 8) compared to other studies which focused on 

a wider range (2 ï 10), which would be an unrealistic condition in a real WWTP 

(Mohan et al., 2015). The small value for pH (Y1) in the first order coefficient 
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term (Table 7.3) illustrates the non-significant, negative effect of the variable on 

the adsorption process. In this study, Cu(II) removal is maximum around pH 7.0, 

would be expected to interact more strongly with negatively charged binding sites 

on the modified CNW adsorbents. 

In order to improve the accuracy of the model, the insignificant terms were 

removed from the quadratic equation. However, there was no improvement to the 

accuracy of the model, even after eliminating the insignificant terms. The 

significance of lack of fit indicates that the RSM model is invalid for the present 

work when it has a value of less than 0.05 (Hamsaveni et al., 2001; Zulkali et al., 

2006). Therefore, from the results, the lack of fit obtained is significant due to 

low probability (P=0.005) and a higher F-test value of 15.31, which is reinforced 

by the relatively low coefficient of determination (R2 = 0.9409) for the overall 

model. Therefore, this result shows that the RSM model is unable to effectively 

predict the removal of spiked Cu(II) from wastewater effluent, and is similar to 

that obtained for the clean water matrix (Chapter 5).  

 

Figure 7.2: Source distribution in removal percentage (adjusted sum of squares vs 

source) 

A possible explanation for the poor fit of the quadratic equation in the RSM 

model is the variability of wastewater composition, which is likely to influence 

the efficiency of the adsorption process. Similar observations were found in 

studies on lead removal from industrial sludge leachate using red mud adsorbent, 
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and in the case of solid-phase extraction of gold from industrial wastewater using 

modified mesoporous silica. They showed that the variability in real wastewater 

samples cannot be efficiently predicted by the RSM model.  

7.4.3 ARTIFICIAL NEURAL NETWORK (ANN) 

An ANN-based model was also built for predicting the removal of Cu(II) from 

the effluent by oxidised CNWs adsorbents. In a similar way to RSM modelling, 

the data generated through CCD were used to determine the optimal architecture 

of the ANN model. As with RSM, three factors, namely pH, sorbent dosage, and 

initial concentration of wastewater effluent spiked with Cu(II) were used as input 

variables, and were used to predict the percentage Cu(II) removal from 

wastewater effluent through the adsorption process. A similar procedure was 

applied for the remediation of Cu(II) from the clean water matrix (Section 5.4.3). 

The total of 20 experiments were divided into three subsets comprising training 

(12 data points), validation (4 data points) and testing (4 data points). The trained 

network was used to estimate the response of 36 experimental points. R2 between 

actual and estimated responses was determined as 0.999 (Appendix D). 

Although ANN and RSM models in combination with experimental design have 

been increasingly applied in the area of water and wastewater treatment, the 

operation of a WWTP is often complicated because of the complexity of the 

wastewater matrix; this varies both temporally and spatially. A study by 

Ebrahimzadeh et al. (2012) showed good agreement between ANN predictions 

and experimental data, with a correlation coefficient of 0.9945, whereas this 

amount decreases to 0.8857 for an RSM model. However, there was no obvious 

reported improvement in the determination of metal ions from an industrial 

sample, even after applying the optimum conditions suggested by both models. 

As mentioned in Chapter 6, the concentrations of heavy metals in influent and 

effluent samples varied with time (Figure 6.5). Therefore, wastewater comprising 

of many contaminants including organic pollutants, natural organic matter, 

pathogenic microorganisms and various colloidal particulates may also reduce the 

prediction capability of the RSM and ANN models.  
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Of these two models, ANN is found to be more efficient and more suitable for 

modelling such WWTP processes due to its accuracy and adequacy, and is 

promising in engineering applications (Witek-Krowiak et al., 2014). ANN is 

more appropriate in the case of complex processes (i.e. WWTP processes) as the 

model allows for predictions of the output on the basis of input data without the 

need to define the relationship between them (Witek-Krowiak et al., 2014).  

A number of high quality reviews have appeared in the literature dealing with the 

application of ANN-based models in the field of water treatment (Antonopoulou 

et al., 2012; Hamed et al., 2004). For example, the study reported by 

Antonopoulou and his co-workers demonstrated that the ANN model gave better 

estimation capabilities than did the RSM model, throughout the range of 

variables, in the optimisation of photocatalytic degradation of phenolic 

compounds in treated wastewater. In addition, ANN has been successfully used 

as a tool for estimating the performance of filtration processes in wastewater 

treatment plants (Vijayabhanu and Radha, 2013).  

An investigation by Nasr et al. (2012) focused on applying the ANN model to 

predict the performance of WWTPs in terms of chemical oxygen demand (COD), 

biological oxygen demand (BOD) and total suspended solid (TSS). The authors 

found that ANN models provided good quality predictions, with R2 of greater 

than 0.9 between the observed and predicted output variables. In addition, ANN 

was employed to predict percentage separation of lead ions from real wastewater 

using electrodialysis. The results showed that ANN successfully traced the non-

linear behaviour of separation percentage and current efficiency versus 

temperature, voltage, concentration and flow rate with a standard deviation of not 

more than 1% (Sadrzadeh et al., 2009).  

However, no work to date has included the variation in wastewater composition 

as one of the independent variables (ANN input) for remediation of Cu(II) from 

wastewater. For example, lead removal from industrial sludge leachate using red 

mud was studied by Geyikci et al. (2012). In this study, the effects of the sorbent 

dosage, contact time and pH on removal percentage were investigated using RSM 

and ANN modelling approaches without considering variation in wastewater 

compositions (Geyikci et al., 2012). A study by Aber et al., (2009) observed that 
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the performance of electrocoagulation processes in removal of Cr(VI) from 

synthetic and real wastewater was successfully predicted by an ANN model. They 

found that an electrocoagulation process can be used for removal of total 

chromium and other pollutants from real wastewater (Aber et al., 2009). Even 

though this study included effective parameters as independent variables, the 

process is often complicated due to the variety of contamination present in raw 

wastewater. 

The issue with these studies is the assumption that the actual wastewater 

composition is the same for each experiment, or that its composition has no 

influence on the removal capability of that process. As mentioned in Chapter 6 

(Understanding the wastewater matrix), it can be clearly shown that the 

composition of wastewater varies with time. Therefore, in order to study the 

effect of variation in wastewater composition through removal of spiked Cu(II) 

from wastewater effluent, benchmark experiments were conducted for each 

sampling trip, as mentioned in Section 3.5.3. The results obtained from the 

benchmark experiments (Table 7.4) showed that the percentage removals (74.41 ï 

78.76%) were different for each sampling trip, due to complexity of the 

wastewater matrix and its variability. Thus, it can be summarised that the 

variation of actual wastewater composition affects adsorption performance. The 

results obtained from benchmark experiments will therefore be included as the 

fourth independent variable in ANN modelling. The data for the comparison 

between the experimental values and those predicted by the ANN model, with 

and without the variability, are shown in Table 7.4. Moreover, a regression 

analysis between the experimental data and the values predicted by both ANN 

models is shown in Figure 7.3. The coefficient of determination (R2 =0.9963) for 

the ANN model with variability indicates good agreement between experimental 

and predicted results.  
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Figure 7.3: Comparison between the Cu(II) removal predicted by the artificial 

neural network (ANN) model and the experimentally determined removal; (WW) 

wastewater  

y = 1.0098x - 1.1547
R² = 0.9945

y = 1.0063x - 0.5773
R² = 0.9963
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Table 7.4: The experimentally obtained removal of Cu(II) compared to that predicted by ANN, and ANN including wastewater (WW) 

variability, as defined by benchmark experiments conducted for each sampling trip 

Run Number 

Inputs  Cu(II) removal (%) 

Y1 Y2 Y3 
Benchmark 

experiments (%) 
Experimental 

ANN ANN (including WW variability) 

Predicted Residual Predicted Residual 

1 5.6 8.16 4.23 74.41 86.05 86.45 -0.40 86.08 -0.03 

2 5.6 8.16 1.78 74.41 71.26 71.76 -0.50 71.07 0.19 

3 6.5 5.25 3.00 77.39 80.65 81.61 -0.96 81.62 -0.97 

4 6.5 5.25 3.00 77.39 82.62 81.61 1.01 81.62 1.00 

5 5.6 2.34 4.23 78.76 80.32 80.13 0.19 80.36 -0.04 

7 7.4 8.16 4.23 74.41 88.2 88.35 -0.15 88.26 -0.06 

8 7.4 2.34 4.23 78.76 83.62 83.87 -0.25 83.09 0.53 

9 5.6 2.34 1.78 78.76 60.52 60.73 -0.21 60.58 -0.06 

10 6.5 5.25 3.00 74.41 80.43 81.61 -1.18 80.88 -0.45 

11 7.4 8.16 1.78 74.41 74.51 74.53 -0.02 74.53 -0.02 

12 7.4 2.34 1.78 78.76 65.19 65.58 -0.39 65.96 -0.77 

13 6.5 5.25 3.00 74.15 81.52 81.61 -0.09 81.17 0.35 

14 6.5 10 3.00 74.41 84.64 84.96 -0.32 84.52 0.12 

15 6.5 5.25 5.00 77.39 85.62 86.25 -0.63 85.79 -0.17 

16 5.0 5.25 3.00 78.76 83.36 83.24 0.12 83.35 0.01 

17 6.5 5.25 1.00 74.41 68.02 68.49 -0.47 68.01 0.01 

18 6.5 5.25 3.00 74.15 80.01 81.61 -1.60 81.17 -1.16 

19 6.5 5.25 3.00 74.15 81.09 81.61 -0.52 81.17 -0.08 

20 8.0 5.25 3.00 78.76 88.04 87.93 0.11 88.07 -0.03 

Y1=pH; Y2=sorbent dosage; Y3=initial concentration of wastewater effluent spiked with Cu(II) 



CHAPTER 7: REMEDIATION FROM WASTEWATER MATRIX 

 

 
168 

For a better graphical interpretation of the process of Cu(II) adsorption from 

wastewater, three-dimensional response surface plots were generated. These plots 

are important in order to study the relationship between the response and the 

independent variables. The mutual interactive behaviour between two 

independent variables, while the third variable is held constant at its intermediate 

value (pH 6.5, 5.25 g/L, 3 mg/L), is shown in Figure 7.4.  

As shown in Figure 7.4(A), maximum removal of Cu(II) is observed at a sorbent 

dosage of 8 g/L and pH 8. The percentage Cu(II) removal increased with the 

increase of pH due to the negative surface charge of oxidised CNW at alkaline pH 

values. At pH 8 and above, carboxyl group, ïCOOH, was changed into ïCOO-, 

hence the ion exchange between Cu(II) and potential functional groups increased 

(Reddy, 2012). The low adsorption that takes place in acidic solutions can be due 

to the competition between hydrogen and copper ions for active sites on the 

oxidised CNW surface (Rajemahadik et al., 2013). However, pH did not 

significantly affect the adsorption removal, contrary to the findings of other 

studies, as the pH range studied in this work is narrow (pH 5.0-8.0). The effect of 

pH on the adsorption of Cr(VI) was investigated by Mohan et al. (2015) by 

varying pH from 2.0 to 10.0. Due to the wide pH range, pH was found to be one 

of the main parameters affecting the adsorption process. 

Figure 7.4(B) shows the interaction effect of sorbent dosage and initial 

concentration of wastewater effluent spiked with Cu(II) on the removal of Cu(II) 

from the effluent, with pH held constant at pH 6.5. The Cu(II) removal increases 

with increasing sorbent dosage, which may be due to the increase in total surface 

active sites on the adsorbent surface. The amount of proton exchange between the 

adsorbent and the solutions increases with increasing sorbent dosage. Similar 

observations were found in studies on Cu(II) removal using alkali-modified spent 

tea, and in the case of Cr(VI) removal by modified silica. It was reported that 

higher removal at higher sorbent dosage may be due to the availability of more 

active functional groups in the greater mass of adsorbent (Cao et al., 2014). 
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Figure 7.4: Surface plots (left) and corresponding contour plots (right) showing 

the effects of adsorption parameters on the spiked Cu (II) removal from 

wastewater effluent as predicted by the ANN model with initial concentration of 

wastewater effluent spiked with Cu(II) held constant 3 mg/L (A), pH held 

constant at 6.5 (B) and sorbent dosage held constant at 5.25 g/L (C). 
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Percentage removal of Cu(II) increases when pH and initial concentration of 

wastewater effluent spiked with Cu(II) increase, as shown in Figure 7.4(C). The 

increasing initial concentration of wastewater effluent spiked with Cu(II) 

provides the driving force to overcome the mass transfer resistance of Cu(II) ions 

between the aqueous and solid phases. Similar observations were reported in the 

literature, where the maximum Cu(II) removal by Trametes versicolor fungi was 

observed when initial Cu(II) concentration increased from 37 to 60 mg/L at pH of 

5.51 (Sahan et al., 2010). 

7.5 MULTIPLE LINEAR REGR ESSION (MLR)  

Multiple linear regression (MLR) is a linear statistical analysis that is applicable 

for predicting the relationship between a dependent variable and two or more 

independent variables (Tiryaki and Aydēn, 2014). In MLR, the dependent variable 

is known as the predictand, while the independent variables are the predictors 

(Arulsudar et al., 2005). MLR models are used in the prediction of Cu(II) 

removal from the wastewater matrix, being represented by the relationship 

between the percentage removal and a set of predictor variables. MLR is based on 

least squares fit, where the model is adjusted such that the sum of squares of 

differences of actual and predicted values is minimised. The general MLR 

equation can be formulated by: 

 º ‍ ‍ὢ Ễ ‍ὢ ‐ (7.1) 

Where ø is the dependent variable, Xn the independent variables, ‍n the predicted 

parameters, and ‐ is the error term.  

Multiple linear regression (MLR) and artificial neural networks (ANNs) were 

used to predict the removal of Cu(II) from the effluent by oxidised CNW 

adsorbents. The data used in the MLR and ANN models were obtained from 20 

CCD experiments. The MLR model (with and without accounting for the 

variability of the wastewater matrix) gives the mathematical expression of the 

output of the MLR analysis: 
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 ὤϷ ρχȢπχςςρȢχσυςὣ ρȢφστψὣ υȢχτψχὣ πȢσςρψὣ (7.2) 

 ὤϷ τςȢτρφωρȢχσυςὣ ρȢτσρυὣ υȢψττυὣ (7.3) 

Where Z is the dependent variable (percentage removal of copper from 

wastewater effluent) and Yi the independent variables (pH, sorbent dosage, initial 

concentration of wastewater effluent spiked with Cu(II) and benchmark 

experiment, respectively). The data for the comparison between the experimental 

values and those predicted by the MLR model, with and without variability, are 

shown in Table 7.5. 
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Table 7.5: The experimentally obtained removal of Cu(II) compared to that predicted by ANN, and ANN including wastewater (WW) 

variability, as defined by benchmark experiments conducted for each sampling trip 

Run 

Number 

Inputs  Cu(II) removal (%) 

Y1 Y2 Y3 

Benchmark 

experiments 

(%) 

Experimental 

MLR MLR (including WW variability) 

Predicted Residual Predicted Residual 

1 5.6 8.16 4.23 74.41 86.05 88.51 2.46 88.36 2.31 

2 5.6 8.16 1.78 74.41 71.26 74.19 2.93 74.28 3.02 

3 6.5 5.25 3.00 77.39 80.65 78.75 -1.91 79.08 -1.57 

4 6.5 5.25 3.00 77.39 82.62 78.75 -3.88 79.08 -3.54 

5 5.6 2.34 4.23 78.76 80.32 80.18 -0.14 80.25 -0.07 

7 7.4 8.16 4.23 74.41 88.2 91.63 3.43 91.48 3.28 

8 7.4 2.34 4.23 78.76 83.62 83.30 -0.32 83.37 -0.25 

9 5.6 2.34 1.78 78.76 60.52 65.86 5.34 66.16 5.64 

10 6.5 5.25 3.00 74.41 80.43 78.75 -1.69 78.12 -2.31 

11 7.4 8.16 1.78 74.41 74.51 77.31 2.80 77.40 2.89 

12 7.4 2.34 1.78 78.76 65.19 68.98 3.79 69.29 4.10 

13 6.5 5.25 3.00 74.15 81.52 78.75 -2.78 78.04 -3.48 

14 6.5 10 3.00 74.41 84.64 85.54 0.90 85.89 1.25 

15 6.5 5.25 5.00 77.39 85.62 90.43 4.81 90.58 4.96 

16 5.0 5.25 3.00 78.76 83.36 76.14 -7.22 76.92 -6.44 

17 6.5 5.25 1.00 74.41 68.02 67.06 -0.96 66.63 -1.39 

18 6.5 5.25 3.00 74.15 80.01 78.75 -1.27 78.04 -1.97 

19 6.5 5.25 3.00 74.15 81.09 78.75 -2.35 78.04 -3.05 

20 8.0 5.25 3.00 78.76 88.04 81.35 -6.69 82.13 -5.91 

Y1=pH; Y2=sorbent dosage; Y3=initial concentration of wastewater effluent spiked with Cu(II) 
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7.6 STATISTICAL COMPARIS ON AND PERFORMANCE OF 

MODELS FOR WASTEWATE R EFFLUENT  

The performance of the built MLR and ANN models (with and without 

accounting for the variability of the wastewater matrix), were compared and 

statistically measured by the coefficient of determination (R2), absolute average 

deviation (AAD), and root mean squared error (RMSE). The relationships 

between the experimental (actual) values and calculated (predicted) values 

obtained using the ANN and MLR prediction models are shown in Figure 7.5. 

From the results, it can be seen that ANN models (with and without accounting 

for the variability of the wastewater matrix) show good agreement between 

predicted and actual results, compared to the MLR model.  

The ANN including variability of wastewater matrix model fitted the 

experimental data with excellent accuracy and with a better prediction (R2 = 

0.9963) than the ANN not including variability (R2 = 0.9945), and than the MLR 

model including (R2 = 0.7994) and not including variability (R2 = 0.7961). The 

AAD and RMSE for the ANN model including variability of wastewater matrix 

were calculated to be 0.30 % and 0.48 respectively, whilst those of the ANN 

model were 0.63 % and 0.69 respectively. In addition to the coefficients of 

determination for ANNs, the AAD and RMSE confirm that the ANN model 

including the variability of the wastewater matrix as the fourth independent 

variable is superior in predicting the removal of spiked Cu(II) from wastewater 

effluent. The calculations are fully described in Section 3.9.1. The comparison of 

the actual results, the ANN and MLR prediction models (accounting for the 

variability of the wastewater matrix) is presented graphically in Figures 7.6 and 

7.7, for 20 CCD experiments.  

A possible explanation for this result is the complexity of the wastewater in term 

of composition and its variability, which can affect the capability of the adsorbent 

to remediate Cu(II) from the wastewater matrix. A variety of organic and 

inorganic compounds can be found in the composition of wastewater, and its 

variability, both temporally and spatially (within a WWTP and in different 

wastewater streams), is likely to influence the efficiency and capability of 
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oxidised CNW adsorbents. This explanation is reinforced when examining the 

results obtained in Chapter 6, where it is stated that in a real WWTP, the water 

matrix will be far more complex than clean water. Thus, with the results obtained 

from benchmark experiments, it is demonstrated that the complexity and 

variability in wastewater composition affects the adsorption performance.  

Such interactions between percentage of Cu(II) removal and variations in 

wastewater sample (benchmark experiments) would be difficult to ascertain from 

the MLR model. Therefore, by supplying the ANN model with the data obtained 

from the benchmark experiments as the fourth independent variable, it is possible 

to improve the prediction ability of the ANN model. As can be seen from Table 

7.4, it is found that the ANN model with the variability of the wastewater matrix 

is superior to the ANN model without the variability of the wastewater matrix 

when predicting Cu(II) removal from the wastewater matrix.  

This finding has also been supported by other studies that have not included the 

variations in real wastewater composition as one of the independent variables 

(ANN input). For instance, although Geyikci and his co-workers reported that the 

results of ANN were found to be more reliable than RSM (R2 = 0.672), a low 

coefficient of determination (R2 = 0.898) from the ANN model indicated that the 

variation in industrial sludge leachate composition had an influence on the 

removal capability of the adsorbent. The major issue with this study is the 

assumption that real wastewater composition is the same for each sample, or has 

no impact on the removal capability of the adsorbent. Hence, it can be concluded 

that including wastewater variability as one of the input variables will lead to 

improvements in the predictability of the ANN model. 
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Figure 7.5: Comparison of the actual and predicted values by MLR (A and B) and ANN models (C and D) (including WW variability) 
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Figure 7.6: Comparison of the actual and predicted values by MLR and ANN 

models 

 

 

 

Figure 7.7: Comparison of the actual and predicted values by MLR and ANN 

models (including WW variability) 
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7.6.1 MODEL VALIDATION USI NG UNSEEN EXPERIMENTS 

For the validation and evaluation of the MLR and ANN models, an additional 10 

unseen experiments were conducted, consisting of combinations of experimental 

factors that were not considered in the 20 CCD experiments. This was a necessary 

procedure, since no work has been reported to date in the choice of additional 

experiments to represent the whole system of remediating Cu(II) from a 

wastewater matrix. 3D scatter plots for the unseen experiments are displayed in 

Figure 7.7, and include a comparison of 3D scatter plots derived from data 

contained in two other studies which involved real wastewater samples. The 10 

unseen experiments undertaken in this study, illustrated in Figure 7.8(A), were 

chosen to represent parameter space both inside and outside the system, to better 

understand and test the validity of the models.  

However, as illustrated in Figure 7.8(B), Ebrahimzadeh et al., (2012) designed 10 

random experiments, using MATLAB programming, that did not represent the 

whole system, in order to study the ability of the RSM and ANN models to 

predict the solid-phase extraction of gold ions from industrial wastewater. 

Furthermore, in order to test the validity of RSM and ANN results, Geyikci et al. 

(2012) conducted 10 extra experiments that were all concentrated inside the 

system, as shown in Figure 7.8(C).  

The actual and predicted values of the responses for the 10 unseen experiments, 

along with their residual values for the models, are summarised in Table 7.6. 

Moreover, the R2 for both models (R2 = 0.9644 for ANN including wastewater 

variability, R2 = 0.8991 for ANN without), show that the ANN model predicts 

more accurately when variation in wastewater composition is included as the 

fourth independent variable. As shown in Table 7.7, the predictive abilities of the 

newly constructed MLR and ANN models, with and without wastewater 

variability, were statistically measured in terms of R2, AAD and RMSE. From the 

results, it is confirmed that the ANN model including wastewater variability 

predicts more accurately the remediation of spiked Cu(II) from wastewater 

effluent, in both the original 20 CCD and the 10 unseen experiments. This is 

because the ANN model allow for predicting the response (percentage of Cu(II) 

removal) without the need to justify the relationship between them, which is 
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particularly important in the case of real-world WWTP, where the water matrix 

will be more complex (Witek-Krowiak et al., 2014). 

This finding has also been supported by others who have used MLR and ANN in 

prediction studies. For instance, Tiryaki and his co-workers used ANN and MLR 

for predicting the compression strength of heat-treated woods. The results 

indicated that an ANN model provided better prediction results compared to an 

MLR model. Moreover, ANN models save time and decrease the experimental 

costs (Tiryaki and Aydēn, 2014). In a pharmaceutical study, it was found that the 

ANN model provides predictions that are more accurate, and is more useful in the 

optimisation of pharmaceutical formulations compared to an MLR model. 

Another advantage of the ANN model is the flexibility to work with more input 

variables, which is helpful when involving large number of experiments; for 

MLR, a large number of input variables leads to a polynomial with many 

coefficients that involves tedious computation (Arulsudar et al., 2005).  
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Figure 7.8: 3D scatter plots showing: (A) comparison of the CCD with unseen 

experiments within the systems for this work; (B) solid-phase extraction for 

determination of gold from industrial wastewater (Ebrahimzadeh et al., 2012); 

(C) Lead adsorption from industrial sludge leachate (Geyikci et al., 2012).
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Table 7.6: Validation data for 10 unseen experiments 

Data 

index 
Run 

Inputs Cu(II) removal (%) 

Y1 Y2 Y3 Benchmarks (%) Actual 
MLR 

MLR 

(WW variation) 
ANN 

ANN 

(WW variability) 

Predicted Residual Predicted Residual Predicted Residual Predicted Residual 

O
u

ts
id

e
 o

f 
th

e
 

s
y
s
te

m 

1 7 1 3 71.96 74.49 73.53 -0.96 71.26 -3.23 72.98 1.51 77.61 -3.12 

2 6 1 2 71.96 65.81 65.95 0.14 63.77 -2.04 60.68 5.13 64.98 0.83 

3 5 8 3 77.39 76.88 80.08 3.20 77.52 0.64 84.14 -7.26 81.92 -5.04 

4 7 10 4 77.39 78.72 92.26 13.54 90.01 11.29 87.54 -8.82 86.28 -7.56 

5 5 5 2 78.76 68.8 69.94 1.14 67.41 -1.39 71.25 -2.45 72.81 -4.01 

In
s
id

e
 o

f 
th

e
 

s
y
s
te

m 

6 6 4 4 78.76 77.64 71.67 -4.72 70.04 -6.35 69.93 6.46 74.31 2.08 

7 6 5 2 74.41 72.50 83.99 6.09 81.91 4.01 84.92 -7.02 77.07 0.83 

8 5.5 4 4.5 74.41 77.9 75.77 1.38 74.15 -0.24 80.19 -5.80 80.01 -5.62 

9 7.5 4 2.5 78.76 74.39 84.98 6.05 82.62 3.69 84.85 -5.92 86.01 -7.08 

10 7 9 3 74.15 78.93 79.82 1.36 77.39 -1.07 82.29 -3.83 82.04 -3.58 

Y1=pH; Y2=sorbent dosage; Y3=initial concentration of wastewater effluent spiked with Cu(II); WW=wastewater 

Table 7.7: Comparison of the predictive abilities of RSM and ANN model  

 
AAD (%) RMSE 

Data index MLR 
MLR 

(WW variability) 
ANN 

ANN 

(WW variability) 
MLR 

MLR 

(WW variability) 
ANN 

ANN 

(WW variability) 

20 CCD 3.23 3.84 0.63 0.30 3.48 3.46 0.69 0.48 

10 unseen 4.98 4.38 7.17 5.23 5.43 4.64 5.83 4.57 

5 Inside 5.05 3.84 7.53 4.98 4.46 4.46 5.90 4.46 

5 Outside 4.90 4.93 6.81 5.49 6.26 5.37 5.75 4.67 

AAD= absolute average deviation; RMSE= root mean squared error; WW=wastewater 
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7.7 PROCESS OPTIMISATION  AND OPTIMUM PARAMETE RS 

As discussed in previous section, the aim of this work is to better understand the 

complexity and variability of the wastewater matrix, including evaluating the 

impact of the wastewater matrix on adsorbent performance to remediate copper 

pollutant from a real-world wastewater matrix. RSM and ANN models were 

developed in order to optimise the system and to create a predictive model to 

evaluate the Cu(II) removal performance by the oxidised CNW adsorbents. 

Additionally, a benchmark study was applied and incorporated into the ANN 

model, which was utilised to account for wastewater matrix variability and 

impact on adsorbent performance. In order for these results to be implemented in 

industrial applications, the optimum operating conditions will be applied in 

continuous flow experiments for the removal of spiked Cu(II) from wastewater 

effluent. 

Process optimisation is a function of maximising the removal of Cu(II) from the 

wastewater matrix via a combination of different studied factors. There are two 

options for finding the optimal operating conditions for spiked Cu(II) removal 

from wastewater effluent: the graphical optimisation function and the desirability 

function.  

Graphical representation of the model is the simplest approach for determining 

optimal operating conditions, particularly when the optimisation procedure 

involves two factors and one response. Vera Candioti et al. (2014) illustrated a 

suitable method for determining optimal operating conditions that involves one 

response via the graphical representation of the model, either by 3D space or 

contour graphs. In these graphs, the response is represented as a function of two 

factors. When more than two factors are studied, the other factors that are not 

plotted must be set at a constant value. Therefore, only a limited part of the 

experimental domain is shown, which leads to the difficult establishment of 

optimal operating conditions (Vera Candioti et al., 2014).  

Desirability is an objective function that ranges from zero outside of the limits, to 

one at the goal. In 1980, Derringer and Suich (1980) developed the desirability 

function, which has been widely used in industry to find optimal operating 
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conditions. The main aim of this function is not only to find a good set of 

operating conditions that meet all the relevant criteria, but also to give the best 

desirability value. Moreover, the desirability function has been successfully 

applied in several studies to determine the desired parameters for maximum 

heavy metals removal from the water matrix (Amini et al., 2008; Anupam et al., 

2011; Rao et al., 2012; Zolgharnein et al., 2013a). Therefore, the appropriate way 

to find the optimal operating conditions for this study is by applying the 

desirability function. 

In this study, the optimal operating conditions for the spiked Cu(II) removal from 

the wastewater effluent were determined using the desirability functions available 

in MINITAB 16 statistical software. The optimum operating conditions suggested 

by the design of experiment (DoE) model for the three variables, i.e., pH, sorbent 

dosage and initial Cu(II) concentration studied in this experiment, were pH 8.0, 

6.45 g/L and 4.72 mg/L, respectively. Benchmark experiments were performed to 

account for wastewater matrix variability and impact on adsorbent performance, 

prior to determining optimal operating conditions. As the value of desirability 

obtained for Cu(II) removal was 1, it has been proven that the estimated function 

may represent the experimental model and the desired conditions (Anupam et al., 

2011).  

In order to confirm the modelôs adequacy, batch experiments were conducted in 

triplicate at optimum conditions to obtain maximum spiked Cu(II) removal 

experimentally. The procedure is fully described in Section 3.5.3. The predicted 

and experimental optimum conditions of the process variables for the maximum 

percentage spiked Cu(II) removal from the wastewater effluent is shown in Table 

7.8. The removal percentages obtained were lower than predicted removal 

efficiency in optimal conditions. This was because the composition and 

concentration of substances in wastewater varies significantly over time (Henze 

et al., 2008).  
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Table 7.8: Optimised operating conditions for spiked Cu(II) removal from wastewater effluent. 

Run 

Optimal operating conditions Experimental operating conditions  Cu(II) removal (%) 

% Error 
pH 

Sorbent dosage 

(g/L) 

Initial Cu(II) 

concentration 

(mg/L) 

pH 

Sorbent 

dosage 

(g/L) 

Initial Cu(II) 

concentration 

(mg/L) 

Benchmark 

experiments 

(%) 

Actual Predicted 

1 8.0 6.45 4.72 7.8 6.50 4.61 77.27 91.36 92.11 -0.75 

2 8.0 6.45 4.72 7.9 6.50 4.61 80.11 91.36 92.11 -0.75 

3 8.0 6.45 4.72 8.0 6.15 4.31 78.75 90.54 92.11 -1.57 
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7.7.1 PERFORMANCE OF CONTINUOUS FLOW EXPERIMENT UNDER 

OPTIMAL OPERATING CONDITIONS 

Continuous flow experiments were carried out using oxidised adsorbent for the 

removal of spiked Cu(II) from wastewater effluent. For the continuous flow 

experiments, each experiment was conducted under optimal conditions, which 

was determined from the desirability functions (as discussed in Section 7.6). 

Continuous flow experiments were performed in a solid phase extraction (SPE) 

vacuum manifold, with the adsorbent continuously in contact with wastewater 

effluent spiked with Cu(II). The procedure is discussed in detail in Section 3.10.  

Continuous flow experiments were operated at two different pressures (P), 10 and 

15 mmHg in a column filled with oxidised CNW adsorbents. The final Cu(II) 

concentration in the effluent was plotted against the volume of treated effluent, 

the profile for which is shown in Figure 7.9. As the pressure increased, the final 

concentration of Cu(II) in the effluent also increased, thereby decreasing removal 

efficiency (Table 7.9). 

 

Figure 7.9: Effect of pressure on Cu(II) removal from wastewater effluent. 

The results suggest that at a high pressure, the adsorbent in the cartridge may 

compact as a result of the pressure, thereby reducing the availability of sorption 

sites for adsorption. This result corresponds well with those of Maheshwari and 

Gupta (2016), who suggested that with an increase in pressure, there is a decrease 
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in contact time between metal ions and adsorbent, which may lead to a reduction 

in the overall percentage removal of heavy metals. 

Table 7.9: Effect of pressure on spiked Cu(II) removal efficiency from 

wastewater effluent by oxidised CNW adsorbents. 

Run Volume (ml) 
Final Cu(II) concentration 

(mg/L) 

Removal efficiency 

(%) 

  10 mmHg 15 mmHg 10 mmHg 15 mmHg 

1 0 Ci=4.98 Ci=4.98 0 0 

2 5 0.43 0.40 91.48 91.99 

3 10 0.43 0.42 91.48 91.53 

4 15 0.44 0.54 91.16 89.21 

5 20 0.49 0.62 90.14 87.59 

6 25 0.56 0.75 88.75 85.05 

7 30 0.60 0.80 88.06 83.89 

8 35 0.65 0.84 87.04 83.20 

9 40 0.66 0.84 86.76 83.20 

10 45 0.69 0.85 86.02 82.97 

11 50 0.70 0.85 86.02 82.97 

Ci = Initial Cu(II) concentration (mg/L) 

 

As noted in Section 2.5.2, chemically modified adsorbents improve removal 

efficiency and adsorption capacity Although oxidised CNW adsorbents are able 

to remove approximately 90% of spiked Cu(II) from wastewater effluent, without 

reinforcement and granulation, it is not a suitable structure for use in continuous 

flow column operations. This is because the physical structure of oxidised CNWs 

is extremely soft and in this study, easily caused column clogging when wet 

(Volesky, 1995). These observations are in agreement with those of Mason 

(2007), who stated that natural biomass, including cotton wool, is extremely soft 

and not suitable for column operation (Mason, 2007). Therefore, the mechanical 

properties of adsorbents must be improved in order to provide a more stable 

structure, where the adsorbent can be used directly in a standard operation 

process. 
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATION 

FOR FUTURE RESEARCH 

8.1 CONCLUSIONS  

The main aim of this study is to predict the capability of oxidised cellulose 

nanowhisker (CNW) adsorbents for the remediation of copper from water 

matrices under realistic conditions using RSM and ANN modelling. This thesis is 

divided into five parts. The first part focused on the modification of the 

adsorbent, and the success of modification (surface area, dimensions, surface 

charge, and stability) was confirmed using several analytical methods. The 

second part of the study observed the capability of oxidised CNW adsorbents in 

the remediation of copper from a clean water matrix using response surface 

methodology (RSM) and artificial neural network (ANN) models. In the third 

part, the complexity of wastewater in term of composition and composition 

variability, both temporally and spatially, was presented. This gave a better 

understanding of the selection of variables and their ranges in the experimental 

design. Benchmark study was reported to inform how the variable and complex 

wastewater matrix affects the adsorption process. The fourth part of the study 

examined the potential of oxidised CNW adsorbents to remediate Cu(II) from the 

wastewater matrix. The data obtained from benchmark studies was used as an 

additional independent variable for ANN modelling to account for matrix 

composition. Finally, the application of oxidised CNW adsorbents was tested in a 

continuous flow experiment. This chapter will summarise the most important 

results obtained in this thesis.  

8.1.1 CHARACTERISATION OF CNW ADSORBENTS 

CNWs have been successfully prepared via sulphuric acid hydrolysis under 

controlled conditions. TEMPO-mediated oxidation then introduced stable 

negative electrostatic charges on the surface of the CNWs. The success of this 

modification was confirmed by functionalities, surface charge, morphology 

(surface area and porosity), and stability using FTIR, zeta potential, Brunauer-

Emmett and Teller (BET) analysis, scanning electron microscopy (SEM),  
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transmission electron microscopy (TEM) and conductometric titration. FTIR 

analysis demonstrated that the CNWs were successfully modified, with the 

appearance of a C=O stretching band at 1740 cm-1, indicating the carboxyl 

content. The zeta potential of this oxidised CNW in water was -74.4 mV, 

indicating the introduction of carboxylate groups to the surface of the CNWs at 

high density. The BET method showed that the surface areas of unmodified CNW 

and oxidised CNW adsorbents were 15.72 m2/g and 43.11 m2/g respectively, 

within the reported range of surface area for CNWs. The three times higher 

surface area for oxidised, i.e. carboxymethyl, cellulose however indicates a 

slightly higher colloidal stability during the freezing process that precedes freeze 

drying, resulting in a less aggregated state after freeze drying. Since the resolution 

of the SEM was considered insufficient for detailed information, TEM was used 

to identify individual whiskers, which enabled the determination of their size and 

shape. The whiskers were measured to be 134.4 ± 51.2 nm and 9.0 ± 2.3 nm in 

length and width respectively. SEM and TEM images confirmed that the oxidised 

CNW maintain their initial morphological integrity after the oxidation process. 

Conductometric titration of sample suspensions showed a carboxylate content of 

54 and 410 mmol/kg for the unmodified CNW and oxidised CNW, respectively. 

For the same amount of sorbent dosage under similar conditions, oxidised CNW 

adsorbents were able to remove 66.75 % of Cu(II), while the unmodified CNW 

adsorbents removed only 3.64 % of Cu(II) from the water matrix. The adsorption 

capacity of these adsorbents was 14.65 mg/g and 0.59 mg/g respectively. These 

results indicated that there are more carboxylate groups per gram due to high 

surface area. From a manufacturing and application perspective, the stability of 

the oxidised CNW adsorbents was tested under dry and wet conditions. This 

demonstrated for the first time that the functional groups were permanent and did 

not degraded under tested conditions. 
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8.1.2 PREDICTING THE CAPABILITY OF OXIDISED CNW 

ADSORBENTS FOR THE REMEDIATION OF COPPER FROM 

CLEAN WATER USING RSM AND ANN MODELS 

Oxidised CNW adsorbents were effective in removing Cu(II) from the water 

matrix, offering the potential of an abundant, inexpensive, and available 

adsorbent; a suitable alternative to expensive adsorbents. RSM and ANN models 

were used to understand the optimum conditions for the removal of Cu(II) using 

oxidised CNW adsorbents. To further test the predictive capability of both 

models, an additional 14 unseen experiments not used in the development of the 

RSM and ANN models. These unseen experiments were chosen to best represent 

the system of conditions both inside and outside the system, the first time this has 

been undertaken for evaluating cellulose-based adsorbents. The performance of 

both models, which were statistically evaluated, indicated that ANN has superior 

predictability than RSM. From isotherm and kinetics studies, it was observed that 

the adsorption process followed the Langmuir adsorption isotherm and pseudo-

second-order kinetics. 

8.1.3 UNDERSTANDING THE WASTEWATER MATRIX AND 

CHARACTERISATION 

The data presented for the wastewater matrix showed that wastewater 

composition is complex and varies in its composition, both temporally and 

spatially. In addition, the physical and chemical (physicochemical) parameters 

discussed in this chapter also vary with time, which make the wastewater matrix 

far more complex than a clean water matrix for evaluating the performance of the 

adsorption process. Moreover, the benchmark study developed in this study also 

demonstrates that the variable and complex wastewater matrix composition 

affects the capability of oxidised CNW adsorbents to remediate Cu(II) from the 

matrix. Therefore, it is important to take these issues into account when 

predicting the capability of oxidised CNW adsorbents for remediation of Cu(II) 

from wastewater effluent. Few studies utilise the wastewater matrix when 

evaluating adsorbent performance and to date, none consider and account for the 

temporal and/or spatial variability of that matrix.  
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8.1.4 PREDICTING THE CAPABILITY OF OXIDISED CNW 

ADSORBENTS FOR REMEDIATION OF SPIKED COPPER FROM 

WASTEWATER EFFLUENT USING RSM AND ANN MODELS 

Oxidised CNW adsorbents are capable of removing spiked Cu(II) ions from 

wastewater effluent. The RSM and ANN models were employed to optimise the 

system and to create a good predictive model. No work in the reviewed literature 

included matrix complexity and the variability of the wastewater as one of the 

independent variables in ANN modelling. Evidently this novel approach and the 

outcomes were employed in this study for the first time, as most studies do not 

consider matrix variability and its impact when evaluating the efficiency of an 

adsorbent. To test the predictive capability of these models, an additional 10 

unseen experiments, not used in developing both models, were chosen to 

represent the system of conditions both inside and outside the system. This study 

(20 CCD and 10 unseen experiments) found that the ANN model accounting for 

wastewater variability was superior to the RSM model and to the ANN model not 

including wastewater variability, in terms of the coefficient of determination (R2), 

the absolute average deviation (AAD) and root mean squared error (RMSE) when 

predicting the efficiency of Cu(II) removal from the wastewater matrix. The 

optimum adsorption conditions were determined as an initial pH value of 8.0, a 

sorbent dosage of 6.45 g/L and initial Cu(II) concentration of 4.72 mg/L. At 

optimum adsorption conditions, the percentage removal of spiked Cu(II) from the 

wastewater effluent was found to be 92.11%. Although oxidised CNW adsorbents 

were able to remove approximately 90% of spiked Cu(II) from wastewater 

effluent, the physical structure of oxidised CNW adsorbents is not suitable for use 

in continuous flow column operations. 
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8.2 RECOMMENDATION FOR F UTURE RESEARCH  

8.2.1 MANUFACTURING OXIDISED CNW ADSORBENTS  

This work recommends an equal focus not only on evaluating the capability of an 

adsorbent (e.g. oxidised CNW) to remove Cu, but also on how the adsorbent can 

be manufactured in a cost effective manner at scale to enable application in 

WWTPs. It is important to appreciate the matrix and the fact that it is variable; 

and to appreciate the need to evaluate a technology in response to that matrix 

variability, as the wastewater matrix has influence on the technologyôs 

performance. This thesis determines that applying the effects of matrix 

complexity and the variability of the wastewater (benchmark study) into the ANN 

model (which is not yet done in other studies) can predict adsorbentôs 

performance in WWTPs. Therefore, these findings may be used in future to 

evaluate not only adsorbents but also treatment technologies; particularly those 

technologies that need a water quality parameter (benchmark study) to evaluate 

treatment capability in the face of the variable wastewater matrix. Further, the 

results obtained from the continuous flow experiment (Chapter 8) confirm that 

the physical structure of oxidised CNWs renders them unsuitable for use in a 

column operation. Future research should pay attention to prepare the adsorbent 

for use for instance by pelleting, or by improving the physical structure of 

oxidised CNWs. Cellulose aerogels are known to be highly porous materials that 

exhibit excellent adsorption properties as well as remarkable reusability. 

Therefore, oxidised CNW aerogels could be used effectively in a continuous flow 

experiment for the removal and recovery of Cu(II) from water matrices.  

8.2.2 SUITABILITY OF ADSORBENTS FOR CONTINUOUS FLOW 

COLUMN APPLICATION 

The physical and chemical structure of adsorbent plays an important part in the 

continuous flow column application. Reports in the literature have shown that 

attempts have been made to improve the mechanical strength of the adsorbents by 

chemical crosslinking, immobilisation and granulation processes. Therefore, for 

further application in wastewater treatment, a more detailed study of the 
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mechanical properties of CNW adsorbents would be necessary in order to 

improve the strength and stability of the adsorbent.  

8.2.3 REGENERATION OF ADSORBENT 

Raw material conservation and problems of discharge disposal lead inherently to 

the issues of regeneration and life cycle management. In most adsorption 

processes, regeneration of the adsorbent is necessary to ensure it is cost effective 

and environmentally friendly. Although one-time use may be more economical 

for small systems, regeneration techniques for CNWs may be necessary to 

produce an economically viable process for large systems. Therefore, further 

study on the regeneration process should be performed to test the stability of 

CNWs after multiple batch sorption-desorption cycles. 

8.2.4 RECOVERY OF HEAVY METALS FROM THE ADSORBENT 

In the application of oxidised CNW adsorbents for the recovery of Cu(II) from 

the water matrix, an assessment is necessary to making the adsorption process 

more economical. The study and application of adsorbents for WWTP has 

focussed on removing pollutant from the water matrix to meet ever increasingly 

stringent legislation aimed at reducing the pollutant load of treated water entering 

the receiving rivers and water bodies. However, a shift in attitude has meant that 

pollutants such as copper when separated from the water matrix are also valuable 

products. There is an appreciation that adsorption-based treatment technologies 

therefore offer recovery of copper for reuse, subject to downstream clean up. 

Hence adsorbents for metal removal form the water matrix followed by recovery 

and reuse are an attractive approach for future study. A limited number of 

reported studies have focused on the recovery of heavy metals from saturated 

adsorbents and desorbing agents. Future studies would focus not only on the 

recovery process, but also on the choice of suitable desorbing/regenerating agent 

that did not adversely affect the structure of the CNW. 
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8.2.5 PREPARATION OF DUAL AND MULTI -FUNCTIONAL GROUPS 

ON THE SURFACE OF CNWS 

In this study, an oxidised CNW adsorbent was successfully modified and used as 

an adsorbent for Cu(II) removal. The experiments showed that this oxidised 

CNW adsorbent was able to remediate Cu(II) from clean water and wastewater 

effluent. This study shows that the adsorption of heavy metals from the aqueous 

phase onto a solid adsorbent depends on the affinity between the metal and 

functional group. This should be further investigated in order to ensure the best 

functional group for heavy metal pollutants. Therefore, dual or multi-functional 

groups could be attached to the adsorbent surface to enhance the selectivity of 

CNW adsorbents towards target metal ions or other constituents in wastewater. 

As a note, the production cost for developing this multi-functional material in a 

one- or multiple-step process should be taken into account.  
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Appendix A- Calibration curves and data for AAS 

 

Table A.1: Data collected using certified 1000 mg/L calibration standard solution 

of Cu (in 2 % HNO3) of known concentration 

Concentration (mg/L) Absorbance 

0.0 0.000 

2.0 0.069 

4.0 0.136 

6.0 0.203 

8.0 0.268 

10.0 0.331 

 

 

Figure A.1: Calibration Curve of Cu(II) from standard solutions of Cu (2-10 

mg/L) 
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Table A.2: Data collected using certified 1000 mg/L calibration standard solution 

of Cu (in 2 % HNO3) of known concentration 

Concentration (mg/L) Absorbance 

0.0 0.003 

10.0 0.049 

20.0 0.095 

30.0 0.143 

40.0 0.195 

50.0 0.247 

60.0 0.292 

70.0 0.341 

 

 

Figure A.2: Calibration Curve of Cu(II) from standard solutions of Cu (10-70 

mg/L) 
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Appendix B ï BET plots and N2 adsorption-desorption isotherms 

 

(a) 

 

 

 

(b) 

 

Figure B.1: BET surface area plot of (a) unmodified and (b) modified CNWs 
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(a) 

 

 

(b) 

 

 

Figure B.2: N2 adsorption-desorption isotherm at 77K of (a) unmodified and (b) 

modified CNWs 
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Appendix C ï Isotherms and kinetic studies  

 

 

 

Figure C.1: Langmuir isotherm plots for the adsorption of Cu(II) onto modified 

CNW adsorbents (temperature=; pH=; contact time=; sorbent dosage) 

 

 

 

Figure C.2: Freundlich isotherm plots for the adsorption of Cu(II) onto modified 

CNW adsorbents (temperature=; pH=; contact time=; sorbent dosage) 
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Table C.3: Kinetic parameters obtained from pseudo-first order for Cu(II) 

removal using modified CNW adsorbents at different initial Cu(II) concentration 

(a) 10 mg/L and (b) 60 mg/L  

 

(a) 10 mg/L 

t qt qe qe-qt log(qe-qt) 

0 0 1.91 1.91 0.28 

30 1.85 1.91 0.06 -1.19 

60 1.86 1.91 0.05 -1.34 

90 1.88 1.91 0.03 -1.46 

120 1.88 1.91 0.03 -1.53 

180 1.90 1.91 0.01 -1.91 

240 1.91 1.91 0.00 -2.53 

 

(b) 60 mg/L 

t qt qe qe-qt log(qe-qt) 

0 0.00 9.19 9.19 0.96 

30 8.21 9.19 0.98 -0.01 

60 8.58 9.19 0.61 -0.21 

90 8.59 9.19 0.60 -0.23 

120 8.97 9.19 0.22 -0.66 

180 9.00 9.19 0.19 -0.73 

240 9.18 9.19 0.01 -2.01 

t= time; qt= adsorption capacity at time t; qe = adsorption capacity at equilibrium 
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Table C.4: Kinetic parameters obtained from pseudo-second order for Cu(II) 

removal using modified CNW adsorbents at different initial Cu(II) concentration 

(a) 10 mg/L and (b) 60 mg/L  

 

(a) 10 mg/L 

t qt qe t/qt 

0 0 1.91  

30 1.85 1.91 16.26 

60 1.86 1.91 32.19 

90 1.88 1.91 48.00 

120 1.88 1.91 63.81 

180 1.90 1.91 94.85 

240 1.91 1.91 125.85 

 

(b) 60 mg/L 

t qt qe t/qt 

0 0 9.19  

30 8.21 9.19 3.66 

60 8.58 9.19 6.99 

90 8.59 9.19 10.47 

120 8.97 9.19 13.38 

180 9.00 9.19 19.99 

240 9.18 9.19 26.14 

t= time; qt= adsorption capacity at time t; qe = adsorption capacity equilibrium 
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Appendix D ï Optimisation studies (ANN) 

 

 

Figure D.1: Experimental and ANN predicted Cu(II) removal for the training set. 

Condition for ANN: training algorithm: Levenberg-Marquardt, number of inputs: 

4, number of hidden layer: 6, number of output: 1 
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Table D.1: ANN preliminary optimisation studies for wastewater matrix (a) at 

constant initial Cu(II) concentration, (b) at constant pH, and (c) at constant 

sorbent dosage 

 

(a) At constant initial Cu(II) concentration (3 mg/L) 

pH Sorbent dosage (g/L) ANN Removal (%) 

5 0.5 71.86 

5 0.6 71.98 

5 0.7 72.12 

6 2.6 74.76 

6 2.7 75.09 

6 2.8 75.43 

7 1.2 73.36 

7 1.3 73.58 

7 1.4 73.80 

8 4.2 87.15 

8 4.3 87.27 

8 4.4 87.38 

 

 

(b) At constant pH (6.5) 

Sorbent dosage (g/L) 
Initial Cu(II) 

concentration (mg/L) 
ANN Removal (%) 

0.5 1 58.00 

0.6 1 58.04 

2.4 2 63.85 

2.5 2 64.11 

6.3 3 82.52 

6.4 3 82.59 

5.3 4 83.78 

5.4 4 83.87 

8.1 5 88.28 

8.2 5 88.34 
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(c) At constant sorbent dosage (5.25 g/L) 

pH 
Initial concentration 

(mg/L) 
ANN Removal (%) 

5 3.9 85.63 

5 4 85.69 

6 4.5 85.46 

6 4.6 85.61 

7 3 83.42 

7 3.1 83.75 

8 4.1 89.81 

8 4.2 89.88 

8 4.3 89.95 

8 4.4 90.01 

 

 


