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ABSTRACT 

 

The high potential of health beneficial polyphenols and antioxidants in cocoa beans has 

been a major topic for research in recent years. The large-scale application of cocoa 

beans for health beneficial compounds is relatively unexplored and it needs to be widely 

utilized by pharmaceutical and nutraceutical industries. Processing methods such as 

fermentation and drying are major deterrents for recovering high polyphenols in cocoa 

beans.  

Hence, it was the intention of this work to introduce the application of hot water 

blanching pre-treatment and various drying methods for producing polyphenols rich 

cocoa beans by using unfermented beans. The studies incorporated the application of 

various drying methods such as oven, adsorption, vacuum, freeze and sun drying 

methods on cocoa beans. The studies compared the ability of these drying methods to 

preserve the bioactive capacities namely, total polyphenolic contents and antioxidants 

activity after hot water blanching. The potential of adsorption, vacuum and freeze 

drying methods for recovering high polyphenols content are useful in comparing it with 

the conventional cocoa drying methods such as oven and sun drying methods.   

For the studies on oven drying of cocoa beans, the drying parameters (T= 60°C, 70°C and 

80°C) used were similar to the conventional hot air drying parameters used in industries. 

The total polyphenolic contents of fermented cocoa beans dried at 70°C was found to 

be the highest. The polyphenols degradation kinetics for oven drying method of cocoa 
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beans was determined using first-order reaction kinetics model based on various drying 

temperatures and durations of drying.  

The studies on drying kinetics of fresh cocoa beans dried using oven, vacuum, 

adsorption and sun drying methods were successfully analysed. It was found that 

adsorption drying and vacuum drying methods dried cocoa beans faster than oven and 

sun drying methods. Two respective falling rate periods were recorded by adsorption 

and vacuum drying. The effective diffusivities were determined and were found to be in 

accordance to that of published literatures. 

Hot water blanching pre-treatment were performed for fresh and fermented cocoa 

beans (whole beans and half cut). Blanching pre-treatment method was found to show 

significantly higher total polyphenolic contents when compared with unblanched cocoa 

samples. The optimal blanching parameter (90°C for 5 min) obtained for fresh beans 

were subsequently used for experiments involving fresh cocoa beans. The total 

polyphenolic contents and antioxidant activity of blanched and unblanched cocoa beans 

were analysed. Results showed that both adsorption and vacuum drying methods 

showed high recovery of polyphenolic compounds and antioxidants on comparison with 

freeze dried cocoa samples, which was used as a benchmark in quality analysis of food 

products. High polyphenols contents were achieved after the blanching and drying 

treatments and were noted to be significantly higher on comparison with published 

literatures. 

Sensory analysis of both blanched and unblanched cocoa beans were analysed after 

drying using various drying methods. The results for unfermented cocoa beans showed 
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high astringency flavour attributes which further confirmed the high contents of 

polyphenols in cocoa beans. The cocoa and acidic flavour attributes were recorded to be 

less owing to the unfermented nature of cocoa beans.  

The results obtained provides a gateway towards the use of advanced drying technology 

in cocoa industry. The potential of blanching pre-treatment to mediate high recovery of 

cocoa polyphenols after drying has been proven through this work. The processing 

methods used in the current study can be implemented in on-farm cocoa processing, 

making it a more sustainable farming option.  
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

1.1.1. Cocoa 

Cocoa tree belongs to the genus Theobroma, a group of small trees which has its origin 

set in the rainforests of Amazon basin and other tropical areas of South and Central 

America. Cocoa beans are grown in a tropical belt straddling the equator (10° and 20° 

north to south) in the area called the “cocoa belt” [1]. The trees can be 12 meters tall 

and starts bearing fruits after 5 years and takes 10 years to reach maximum yield.  

The fruit is called a pod or cabosside and contains about 20 to 40 seeds (cocoa beans) 

with colour ranges from brownish yellow to purple. Each plant produces 20 to 50 pods a 

year; where approximately 10 pods produce about 1 to 1.5 kg of dry cocoa beans. The 

three main groups of cocoa which can be found worldwide are Criollo, Forastero and 

Trinitario [2]. About 71 % of world cocoa beans production is from African countries; 

where Ivory Coast is the highest producer of cocoa with 33% of total global supply [3]. 

Cocoa production in Asia-Oceania region is considerably lower with an overall global 

production share of 10.5 %. In Asia-Oceania, Indonesia is the highest producer of cocoa 

followed by Papua New Guinea and Malaysia according to 2014/2015 statistics by World 

Cocoa Foundation [4]. 
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1.1.2. Cocoa industry in Malaysia 

Malaysian cocoa industry was established in 1950 and the first commercial cultivation 

site was in Jerangau, Terengganu. According to the 2015 Malaysian Cocoa Board 

statistics, 18150 hectares of land were used for cultivation and produced 1729 tonnes of 

dried cocoa. However, there has been a substantial decrease in the overall production 

of cocoa from the year 2000 onwards. In 2000, the overall production of cocoa beans 

was approximately 70,262 tonnes [4]. The reasons for the sudden decline in cocoa 

production are due to (i) the overall price decrease of cocoa per tonne in global market 

(ii) long growth period to attain maturity to bear fruits and (iii) farmers shift to more 

viable commercial agricultural products such as oil palm [5].  

From a recent study, 95 % of cocoa producers are smallholders and hence they are the 

dominant producers of cocoa in Malaysia [4]. Although the production of cocoa in 

Malaysia has declined over the years, Malaysia is a major exporter of cocoa products 

such as cocoa paste, cocoa butter and cocoa powder. The raw cocoa beans in such 

instances are mainly sourced from import markets and the overall turnover was 

estimated to be RM 4.2 billion in 2015 [4]. Cocoa powder and cocoa butter are the main 

products used for manufacturing of various food products (e.g. chocolates, beverages 

and confectioneries) and non-food products (e.g. toiletries, pharmaceuticals and 

cosmetics) globally [6]. 

1.1.3. Processing of cocoa beans 

During harvesting season, cocoa pods are harvested from the plantation and the beans 

are subjected to fermentation and drying processes before they are stored. Various 
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methods are used for fermentation and drying which are still very primitive and only 

involves low levels of technical expertise. Most smallholders process cocoa by 

fermenting fresh cocoa beans in large wooden boxes with gunny sack lining and practice 

traditional sun drying to dry the beans [7,8]. Microorganisms such as yeast and bacteria 

(from the surrounding air), naturally carry out fermentation. The quality of dried cocoa 

produced significantly depends on the drying method used. Drying process not only 

helps in removing moisture from cocoa beans for long storage period, but also to 

preserve the quality attributes necessary for chocolate production  [9]. The current large 

scale drying (both artificial and natural) of cocoa beans are relatively crude and 

inefficient. For example, wood furnaces are commonly used to supply hot air for drying. 

The smoke emitted from the furnace could contaminate the beans and give it a smoky 

flavour attribute [10] mostly due to the presence of polycyclic aromatic hydrocarbons 

[11]. In such artificial drying method, the drying temperature used is usually above 60°C. 

The high drying temperatures results in high drying rates and shortens drying duration. 

This is not suitable for flavour development precursor enzymes which give cocoa beans 

the distinct cocoa flavour during the roasting process. The fast drying time leads to the 

presence of highly acidic compounds in the beans which is undesired due to the 

presence of volatile compounds from insufficient evaporation.  

1.1.4.  Cocoa Polyphenols  

The high polyphenolic contents of cocoa beans have been major focus of research in 

recent years. The dietary flavonoids in cocoa are proven to be higher than red wine or 

green tea per serving [12]. Various benefits of cocoa polyphenolic compounds include 
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anti-carcinogenic, anti-thrombotic, anti-ulcer, anti-atherogenic, anti-inflammatory, 

immune modulating, anti-microbial, vasodilatory and analgesic effects [13]. Browning of 

cocoa beans is a process that leads to a substantial degradation of cocoa polyphenols 

due to the activity of polyphenol oxidases. This reaction produces the typical brown 

colour in cocoa beans desirable for chocolate manufacturer. It is reported that 

fermentation, drying temperature and humidity has a significant role in polyphenol 

based browning process [14]. Although, cocoa beans with high polyphenolic contents 

have higher astringency and bitterness scores which are found to be undesirable traits 

for conventional consumption [15], but consumption of polyphenol rich chocolates with 

high antioxidant activity is proven to have immense health benefits [16]. This has paved 

ways to the development of huge demand for polyphenol rich cocoa in the current 

generation of consumers who are health conscious.  

1.2. Problem Statement 

Fresh cocoa beans which are not fermented have high polyphenolic contents and 

antioxidant capacity. With the health benefits potential of cocoa kept in view, 

pharmaceutical and nutraceutical industries start to look into the adaptation of cocoa 

for the production of supplements or similar cocoa based products with high medicinal 

value. This would not only establish a high demand for cocoa from the current situation 

but will also lead to a significant increment in the present market value of cocoa beans 

in Malaysia. Thus, mass production of polyphenol rich cocoa beans based on a 

convenient and cost effective pre-treatment and drying method should be envisaged.  
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Reported research on the effects of drying on cocoa bean quality were primarily focused 

on the development of cocoa flavour attribute which was beneficial for the chocolate 

industry [17]. The majority of the research focus was on conventional hot air and sun 

drying methods. Since conventional hot-air drying process is usually carried out at high 

temperatures, this drying method is not optimal for polyphenolic recovery from the 

dried cocoa beans. Non-conventional advanced drying method such as heat pump 

drying has been used by Hii, et al. [18] and showed high recovery of cocoa polyphenolic 

compounds after drying. The authors reasoned the mild drying conditions namely low 

temperature and relative humidity for this activity. Since the application of advanced 

artificial drying technologies in cocoa industry is low, it is important to look into new 

alternatives for drying.  

The current study focusses on the application of adsorption, vacuum, freeze, oven and 

sun drying methods for the production of polyphenol rich cocoa beans. The application 

of adsorption drying for cocoa drying has not been reported in any literature. 

Adsorption drying is an advanced drying method which uses a hygroscopic adsorbent to 

reduce the inlet air-moisture content by adsorption process. This leads to faster drying 

of the sample at low temperature condition. The use of adsorption drying on 

agricultural products was proven to retain higher bioactive compounds such as 

polyphenols after drying [19,20]. The application of vacuum drying employs the use of 

low pressure conditions (<200mbar) which considerably reduces the oxygen level in the 

drying chamber. Studies have shown that lack of oxygen decreases the enzymatic 

activity of bioactive compounds in many agricultural products [21–23]. For cocoa drying, 
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the use of vacuum drying technology for the production of high quality beans . Oven 

drying (hot air) has been widely used for the drying kinetics analysis and quality 

evaluation of fermented cocoa beans [8,24,25]. Freeze drying method for cocoa 

processing has been used as a benchmark for quality assessment. Besides, it is the most 

efficient drying method to retain the highest amount of bioactive compounds [26,27].  

Sun drying has been extensively used to dry food products since ancient times and 

particularly effective for small scale drying of cocoa beans. However, sun drying has 

many disadvantages pertaining to long drying time, exposure to contaminations, 

dependency on weather, pest and insect attack and high labour/land area 

requirements. 

In the past, incorporation of pre-treatments for quality improvement of cocoa beans 

were only focused on cocoa pulp preconditioning for enhancing cocoa flavour in the 

dried product [28,29]. In the current study, the application of hot water pre-treatment 

on cocoa beans before drying (adsorption, vacuum, freeze, oven and sun) were utilised 

for the production of polyphenol rich cocoa beans.  The thesis is divided into 8 Chapters 

and the following flowchart (Figure 1.1) provides information on the thesis outline. 
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Figure 1.1: Flow chart representing the overall thesis 

1.3. Research Objectives 

Overall objective for this research was to develop a processing method combining hot 

water blanching pre-treatment and an optimum drying method to produce cocoa beans 

containing high polyphenolic contents and increased antioxidant activity. The main drive 

to develop such processing method was to explore the potential of producing dried 

cocoa beans with high polyphenols content which can be implemented in current on-

farm processing. Specific objectives of this research were as follows: 
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 To evaluate the effects of drying temperature on the degradation kinetics of 

cocoa polyphenols during hot air drying.  

 To evaluate the drying kinetics of fresh cocoa beans under various drying 

methods. 

 To evaluate the effects of hot water blanching on the total polyphenol content 

and antioxidant activity of fresh cocoa beans. 

 To evaluate the flavour quality of blanched and unblanched fresh cocoa beans 

after drying. 

1.4. Research scopes 

1.4.1. Degradation kinetics of cocoa polyphenols during conventional cocoa drying 
practices 

Fermented cocoa beans were dried in a hot air oven at three temperature settings; 

60°C, 70°C and 80°C for drying exposure times of 12 h, 24 h, 32 h and 40 h. The 

polyphenol degradation mechanisms due to temperature and exposure time were 

analysed. The drying kinetics of cocoa beans were examined based on the drying curves 

and rates of drying. This Chapter focusses on the polyphenolic degradation of cocoa 

beans, using the drying conditions prevalent in conventional cocoa processing methods 

(oven drying in temperatures above 60°C) used commercially. 

1.4.2. Drying kinetics of fresh cocoa bean 

Fresh cocoa beans were dried using adsorption drying (ca. 60°C for 24h), vacuum drying 

(60°C, P=150 mbar for 24 h), oven drying (70°C for 30 h) and sun drying (ambient air 

condition, 36 h) methods. The moisture reduction processes were monitored 
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throughout drying. The drying air temperature and bean temperatures were recorded. 

The drying kinetics was examined and compared based on the drying curves and rates of 

drying.  

1.4.3. Effects of blanching on total polyphenolic content of fresh cocoa beans 

 The effects of blanching pre-treatment on polyphenol activity of cocoa beans (whole 

bean and half cut) cocoa beans after oven drying were analysed. The optimal blanching 

parameter observed for maximum polyphenol recovery of fresh beans was used for the 

subsequent drying methods (adsorption, vacuum, freeze, and sun). The total polyphenol 

content and antioxidant capacity were examined after blanching pre-treatment and 

drying application.   

1.4.4. Flavour evaluation  

Sensory evaluation was carried out by examining the cocoa liquor of fresh cocoa beans 

processed after blanching pre-treatment and drying (adsorption, vacuum, freeze, oven 

and sun). The flavour attributes examined were cocoa flavour, astringency, bitterness 

and sourness. Comparisons were benchmarked against commercial cocoa samples of 

from Ghana.  

1.5. Contribution of Research 

The cocoa industry over the years have solely focused on supplying cocoa for production 

of various food products (chocolates, beverages and confectioneries) and non-food 

products (toiletries, pharmaceuticals and cosmetics). The proposed methods adopted in 

current research will provide an alternative method for the cocoa industry in producing 
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high quality polyphenols rich dried cocoa beans. Polyphenol rich cocoa beans would 

have a high market demand not only in food industries but also in pharmaceutical and 

nutraceutical industries. This will also help in generating lucrative revenue for the cocoa 

farmers and making cocoa a more sustainable farming option that will benefit both the 

upstream and downstream of cocoa industries.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Cocoa processing 

The two major steps involved in cocoa processing are fermentation and drying. In 

majority of cocoa industries, fermentation process is usually carried out near the cocoa 

farms. Fermentation is required to develop acidity surrounding the beans and increase 

in temperature that would eventually lead to the degradation of the beans. This process 

is important to develop the flavour precursors necessary in chocolate manufacturing. 

Fermentation gradually ends at the onset of drying process. During drying, enzymatic 

activity occurs which develops flavour attributes necessary in chocolate manufacturing. 

Figure 2.1 shows the pictures of cocoa tree, pods, fresh cocoa beans and dried cocoa 

beans. 

 

Figure 2.1: Pictorial representations (a) cocoa tree (b) cocoa pods (c) fresh cocoa beans 

and (d) dried cocoa beans. 



12 
 

2.1.1. Cocoa fermentation 

In general, cocoa pods that are still attached to cocoa trees are sterile in nature and 

immune to any microbial interactions. When the pods are opened after harvesting, the 

microbes present in the air, the harvester’s body and container used to transport beans 

gets inoculated into the bean. The fresh beans have mucilaginous outer pulp residues 

which are rich in sugars. The pulp provides an optimal condition for the growth of 

inoculated microorganisms. In pulp body of the beans, microbial activities of a 

succession of yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) results in the 

formation of lactic acid and acetic acid. Consequently the depectinization and 

liquefaction of the pulp substrate occurs [30]. This process is known as external pulp 

fermentation of beans and occurs within the first 3 days of fermentation [10]. As the 

acid constituents and heat of fermentation increases, the embryo of cocoa beans 

degrades. This leads to death of the bean and triggers the internal fermentation of 

cocoa beans [31]. 

During internal fermentation process, several chemical processes occur inside the bean 

cotyledons. The proteins and sucrose inside the beans degrades to form enzymes, which 

serve as major flavour precursors for cocoa [31]. This degradation process is also known 

as anaerobic hydrolytic phase of internal fermentation process [32]. Upon degradation 

of cocoa cell walls, oxygen diffuses into the cotyledon tissues and oxidizes. The 

oxidation occurs due to the activation of oxidases enzymes present within the vacuoles 

of cocoa cell body. The formation of high molecular weight tannis (brown pigments) 

occurs when the cocoa polyphenols are oxidized by the activity of polyphenol oxidases 
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enzymes [31]. The oxidation of polyphenol constituents are reported to continue 

throughout drying process [33]. The other processes which may reduce polyphenol 

contents during fermentation are non-enzymatic degradation of polyphenols (Maillard 

reaction) and diffusion of soluble polyphenols into the fermentation sweating [34]. 

Various fermentation methods are employed by farmers but heap and box fermentation 

processes (Figure 2.2) are commonly used by cocoa producers [10]. The box 

fermentation method is further categorized into deep and shallow box depending on 

the box size. The shallow fermentation box as shown in Figure 2.3 has a depth of 0.3 m. 

Shallow fermentation box method is more efficient than deep box fermentation (depth 

of ca. 1 m) because fermentation is more uniform owing to the lesser fermentation 

mass within the box. Both fermentation processes take about 5 to 7 days for 

completion. 

 

Figure 2.2: Heap and box methods of cocoa fermentation 
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Figure 2.3: Shallow fermentation box 

In heap fermentation, cocoa beans of mass ranging from 6 to 12 kg are heaped on the 

floor and covered with banana leaves. This method is mainly practiced in West African 

countries such as Ghana and produces cocoa beans with the best flavour quality [35].  

 

2.1.2. Cocoa drying 

After fermentation, approximately 50 % of cocoa proteins are denatured. Thus, drying 

process is necessary to prevent deterioration of beans by enzymes and microbial activity 

[36]. In general, cocoa beans need to be dried below 7.5 % (wet basis) for prolonged 

storage and transportation purposes. As mentioned earlier, browning of polyphenols 

which begins in the final stages of internal fermentation continues during drying [37]. 

The enzymatic reactions that occur during drying help in browning reaction where 

initially epicathecin is oxidized into O-quinones while anthocyanins are hydrolyzed into 

precursors of the browning process. In subsequent reactions, condensation of quinones 

with amino acids occurs and follows by polymerization of condensation products. The 
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final brown (melanin) pigments produced confirms the end of enzymatic reactions 

during drying [38]. The oxygen required for browning process during initial drying is 

obtained from the dissolved oxygen present in moisture embedded within the bean 

body. After evaporation of this moisture, the gaseous oxygen obtained from the voids 

developing in cocoa cotyledons provide oxygen for an increased oxidation process [17]. 

The rate of polyphenol oxidation decreases significantly when the moisture content of 

the dried beans reaches around 20 % [34]. The cross sectional views of fresh, fermented 

and dried cocoa beans are shown in Figure 2.4. 

 

Figure 2.4: Cross sectional views of (A) fresh cocoa bean, (B) fermented cocoa bean 

and (C) dried cocoa fermented bean 

The fresh beans before fermentation show a white thick layer of mucilaginous coating. 

The sugars present inside degrades during external fermentation due to microbes and 

liquefies into fermentation mass. The fermented beans show presence of brown 

pigments which are caused by the browning of polyphenolic compounds that occurs 

during internal fermentation. The embryo of the bean is killed after this process. The 

wet outer layer of the bean which forms the testa and the moist cotyledons are 
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detached after drying and can be easily separated during de-shelling process. The 

extend of browning also increases after drying due to the high degradation of 

polyphenol compounds into high molecular weight tannins [33]. The high purple 

colouration in fresh cocoa beans symbolizes the existence of high polyphenol 

compounds. Studies by Misnawi et al. [39] reports that there is an inverse relationship 

between oxidation and hydrolysis of polyphenol compounds to the purple colour 

retained after fermentation process.  

2.2. Drying methods 

The two main cocoa drying techniques are natural and artificial drying methods. In 

natural method, sunlight and wind energy are used while in artificial drying method hot 

air produced from a heat source (usually furnaces) are used. Since majority of cocoa 

plantations in the world are owned by small scale farmers, natural sun drying method is 

used due to the small drying mass, simple operational procedures involved and low cost. 

Artificial hot air drying methods are used by large cocoa producers to dry large 

quantities of cocoa in a time efficient manner.  

2.2.1. Natural drying 

Natural drying is the most traditional technique followed from ancient times. It refers to 

sun drying method where, cocoa are dried in raised platforms, trays or cement floors 

[40]. This method involves very low level technical influence and hence can be 

constructed easily. Besides, it is cheap since it utilizes energy sources such as sunlight 

and wind which are abundant and renewable. The major disadvantages of using this 
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method are the factors related to weather conditions which can influence the drying 

time. Furthermore, sun drying is highly labour intensive as the beans need to be 

monitored and regularly turned or raked for even drying and aeration of cocoa beans 

[8]. Figure 2.5 shows the typical setup of sun drying operation in conventional cocoa 

drying. 

 

Figure 2.5: Sun drying of cocoa beans on cement floors 

Cement floor drying (Figure 2.5) methods involve spreading of cocoa beans on a cement 

surface under sunlight. The major drawback of this method is overheating of cocoa 

beans due to the hot cement surfaces. The small-scale cocoa producer’s dry cocoa 

beans in a bamboo mat supported by wooden framework. This method requires 
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constant mixing of cocoa and the microbes are inoculated into the cocoa bean through 

the bamboo mat and the surrounding air.  

Research has been performed on the application of direct solar dryers which are sun 

drying equipment covered with transparent cover to negate the effects of rainfall. This 

method of drying is suitable in regions where cocoa harvesting season coincides with 

rainy season. The cocoa beans dried using this method has good quality attributes in 

comparison to direct sun drying [40]. However, there is a limitation in the amounts of 

cocoa beans which can be dried since large masses of cocoa can lead to uneven drying 

and development of acidity within the beans. 

2.2.2. Artificial drying 

Artificial drying of cocoa beans involves direct or indirect contact with heat sources to 

generate heated air. The drying process which involves mass transfer of moisture from 

beans is due to convection. Convective drying for cocoa are further categorized into 

natural and forced convection system. 

Samoan drying (Figure 2.6) is an example of natural convection drying process, where 

the beans are dried in a raised concrete chamber. The beans are dried in perforated 

metal sheet below which consists of a heating tube. The heat source is obtained by 

burning firewood and the heat generated within the heating tube is transferred above 

into the layer of cocoa beans. This method is inefficient as the drying can be quite 

uneven and the exhaust gases from the fire could lead development of an undesirable 

smoky flavour in the dried cocoa beans [41]. There is also a need for consistent turning 

of cocoa beans within the drying chamber to prevent overheating. 
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Figure 2.6: Picture of Samoan cocoa drying method 

In forced air convection system, the heated air is forced and channeled through the 

beans by a blower to facilitate drying. Depending on the construction of dryer, it can be 

classified as circular, rotary and flatbed dryers. The drying temperatures used in such 

cases ranges from 60°C to 80°C. High temperature based drying leads to insufficient 

development of flavour which is important in chocolate manufacturing. Besides, there is 

a major decline in polyphenol content of cocoa beans after drying at such high 

temperatures [37].  To overcome the major disadvantages related to artificial hot air 

drying in commercial productions, several researches have been performed in lab-scale 

hot air based drying methods [8,24,25,42]. Majority of the published work focusses on 

the effects of varying drying parameters such as temperature and relative humidity and 

comparing it with results obtained from natural drying method. Several literatures 
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looked into the effects of polyphenol degradation during hot air drying of cocoa beans 

[8,24]. Research till date suggests that polyphenol degradation is dependent on the 

drying temperature and exposure time, where high temperature  and long duration of 

drying shows very low level of cocoa polyphenols recovery [24]. The development of 

advanced non-conventional drying technology for cocoa drying is relatively less in use. 

Hii et al. [18] used heat pump drying for improving the quality of cocoa beans. The low 

temperature and de-humidified air conditions used for drying is reported to enhance 

the quality of dried cocoa. The sensory scores were reported to match Ghanaian 

reference sample and polyphenolic contents measured were reported to show a 

significant improvement up to 73 % in comparison with freeze dried cocoa bean.  

2.2.2.1. Adsorption drying 

Adsorption drying uses desiccants to dehumidify the air that are channeled into drying 

chamber to provide dry air circulation for drying. Adsorption drying is a relatively low 

temperature drying process. This drying method is useful for the production of high 

quality, high value agricultural products with minimal flavour loss and degradation 

reactions (protein denaturation, browning and enzymatic reactions) [45]. The 

adsorption process is usually facilitated using hygroscopic desiccants with high thermal 

stabilities such as, zeolite (molecular sieves), silica gel, activated charcoal, calcium 

sulphate and montmorillonite clay [45]. Zeolite based adsorption drying have been used 

in various studies for the drying of agricultural products [46–48]. Zeolite has high affinity 

towards water and helps in significantly reducing the humidity of air subjected to drying 
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the sample. This helps the samples in acquiring equilibrium moisture content at a faster 

rate [49]. Research by Kusumo et al. [19], shows that tea leaves dried by zeolite based 

adsorption drying shows high levels of catechins in the dried product in comparison to 

traditional sun dried tea sample. Another research on onion bulb using adsorption 

drying method at 60°C for 2 h, showed high antioxidants (IC10 value of 163.05) on 

comparison reference samples (not dried, IC10 value of 170.32) [50]. The basic layout of 

an adsorption dryer is shown in Figure 2.7. 

 

Figure 2.7: Basic layout of adsorption dryer 

2.2.2.2. Vacuum drying 

Vacuum drying is an advanced drying process where moisture from the drying sample is 

evaporated at lower boiling point of water by means of creating a vacuum. It is 

extensively used in chemical process industries like food and pharmaceuticals. Since the 

boiling point of water reduces significantly (due to low pressure), the rate of water 

evaporation increases and hence, the sample dries faster. The reduced relative humidity 

of the drying chamber also paves way to fast drying rates of samples in vacuum drying 
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[23]. Several literatures have noted high bioactive compound recovery for agricultural 

products dried using vacuum drying. The concentrations of bioactive compounds 

recovered after vacuum drying were similar to that obtained after freeze drying method 

[21,23,51,52]. Freeze dried samples are reported to recover the maximum bioactive 

active compounds and a benchmark used for comparative research of bioactive 

compounds in food products [27]. For example research by Hossain et al. [53] reported 

that rosemary when dried in vacuum oven at 60°C at 600 mbar pressure showed no 

significant difference in antioxidant capacity using ORAC (39.6 g Trolox g-1 dw) in 

comparison to samples dried using freeze drying method (40.2 g Trolox g-1 dw). The 

percentage difference in total polyphenol content for rosemary extracts after vacuum 

and freeze drying methods were reported to be non-significant. The authors reasoned 

this activity due to the lack of oxidation of polyphenol degradation enzymes (polyphenol 

oxidases) to the vacuum conditions prevalent in both drying methods. 

2.2.2.3. Freeze drying 

 Freeze drying or lyophilization is a drying method where perishable agricultural 

products are dried to preserve their active bioactive compounds. The freeze drying 

process occurs by solidifying the samples by freezing and then reducing the surrounding 

pressure to allow the frozen water in the sample to sublimate directly from solid phase 

to gas phase. Since sublimation occurs at very low temperatures, the thermal 

degradation of enzymes and proteins does not occur. Thus, the dried sample are 

expected to be rich in bioactive compounds [54]. In cocoa processing, freeze drying 
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methods have been used as benchmark for quality aspects such as total polyphenol 

content and antioxidant activity [37]. The polyphenol contents retained by fermented 

cocoa beans after freeze drying were reported to be as high as 101.4 mg GAE g-1 [37]. 

For fresh cocoa beans the polyphenol recovery after freeze drying for 24 h at 0.015 

mbar pressure was recorded to be 181.7 mg GAE g-1 [24].   

2.3. Mechanism of cocoa drying 

A well fermented cocoa bean consists of two main parts; the outer testa and inner 

cotyledons. It should be noted that fresh cocoa beans have a significant amount of 

mucilaginous pulp which liquefies and drains off during fermentation [28]. The moisture 

content of the bean testa surface is about 300 % (dry basis) and inner cotyledon about 

50 % (dry basis) [55]. In general, the typical drying rate curves of cocoa beans would 

consist of both constant rate period and falling rate period [36]. The falling rate periods 

are further classified into first falling rate and second falling rate (Figure 2.8).  

 

Figure 2.8: Typical drying rate curves of cocoa beans 
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The constant rate periods are usually found in the initial phase of drying. This is due to 

the presence of a consistent layer of moisture prevalent in the testa surface during the 

initial 2 hours of drying [25]. Generally in artificial drying methods, only falling rate 

periods are noticed because of the high temperature conditions prevalent during drying 

and the moisture from testa surface are removed at a rapid rate [37]. Hii et al. [18] 

reported the existence of constant rate periods for cocoa dried using heat pump dryer 

in step down ambient air (30.7°C) conditions. The authors explained low drying 

temperature leads to the lower rates of moisture evaporation from bean surface.  The 

onset of falling rate period is noted by the movement of vapourized moisture from 

within the cotyledons of cocoa bean to outside. The movement of residual moisture 

from inside the bean to the bean surface where evaporation occurs is mediated through 

conduction process [8]. Temperature plays a major role in such condition where the 

driving force required for the moisture transfer from the inner region of beans to 

outside is higher. The dependence of temperature on rate of drying is evident from the 

drying rates of sun drying process. The rates of sun drying (ambient condition) is much 

lower in comparison to hot air drying (above 60°C) where low temperature in sun drying 

takes longer time in acquiring equilibrium moisture content [24]. The second falling rate 

period occurs when the bean surface and outer cotyledon area within the bean are dry 

(moisture content of about 25-30 % dry basis). The movement of moisture from the 

inner core of cotyledons to the surface of bean requires higher driving force and longer 

drying time. This is due to the greater resistance in moisture movement inside 

cotyledons [36].  



25 
 

2.3.1. Effective diffusivity 

Effective diffusivity can be defined as the transport of moisture within solid which 

occurs through one or more of the following mechanisms: liquid diffusion, vapour 

diffusion, surface diffusion, Knudsen diffusion or diffusion due to hydrostatic pressure 

differences. These mechanisms are described below; 

 Liquid diffusion occurs when wet solid is dried at a temperature below the 

boiling point of water.  

 Vapour and Knudsen diffusion occurs when liquid vaporizes within the material 

 Surface diffusion occurs during drying 

 Diffusion due to hydrostatic pressure differences occurs when internal 

vaporization rates exceeds the rate of vapour transport through the solid to the 

surroundings and due to combinations of a few or all the mechanisms 

mentioned above [56,57].  

Effective diffusivity is determined by using the general solution of the Fick’s second law 

(e.g: spherical object) as shown in Equation 1 [58]. 
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The estimated effective diffusivity if assumed to follow an Arrhenius relation with 

respect to the bean temperature can be represented by the Arrhenius equation as 

shown in Equation 2. 

𝐷𝑒𝑓𝑓 = 𝐷0 exp[−
𝐸𝑎

𝑅(𝑇+273)
]                 (2)  
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Where; Deff is effective diffusivity (m2s-1), D0 is Arrhenius constant(m2s-1), Ea is activation 

energy (kJmol-1) and R is Gas constant (8.314 J mol-1K-1) [8]. This equation can be 

linearized by applying natural logarithm on both sides of ln Deff versus 1/T which will 

produce a straight line. The activation energy and Arrhenius constant can be 

determined from the slope and y-intercept, respectively. Various literatures for cocoa 

drying use this model as shown in Table 2.1. 

Table 2.1: Evaluation of drying kinetics for cocoa beans as reported in literature 

Type of drying Activation energy, 
 Ea (kJ K-1 mol-1) 

Effective diffusivity, 
 Deff (m2 s-1) 

Ref. 

Hot air 
(60°,70°,80°C) 

Sun  
 

11.8 
 
- 

3.73x10-10 to 4.74x10-10 

 

8.01x10-10 to 4.84 x10-10 

 
[24] 

Hot air 
 (55°, 70°,81°C) 

 

39.94 3.62x10-10 to 9.98x10-10 [25] 

Hot air 
(60°,70°,80°C) 

Sun 

28.11 
 
- 

1.61x10-10 to 3.23x10-10 

 

8.01x10-10 to 4.84x10-10 

 
[8] 

 
Hot air 

(60°,70°,80°C) 

 
44.92 

 
7.46×10−11 to 1.87×10−10 

 
[59] 

 

 The effective diffusivity values for hot air and sun drying of cocoa from various 

literatures are shown to be in the orders of magnitude ranging from 10-10 to 10-11 m2 s-1. 

It is also observed that similar drying methods used in different literatures show 

differences in the values of activation energy and effective diffusivity. This could be due 

to the differences in the variety of cocoa beans samples and model of the dryers that 

were used for experimentation. The sun drying methods show a lower reading of 
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effective diffusivity values when compared to hot air drying because of the variations in 

weather patterns experienced using the drying process [24]. 

2.4. Blanching pre-treatment  

In food products, blanching is a pre-treatment method with the aim of inactivating 

enzymes, modifying texture, preserving colour, flavour and nutritional value and 

removing trapped air [60]. Hot water or steam are commonly used as the heating 

medium for blanching food materials. In most blanching methods, a number of studies 

on the effects of blanching pre-treatments on food products have high polyphenol and 

antioxidant activities [61,62]. Tomas-Barberan et al. [15] reported hot water blanching 

on fresh cocoa beans before drying. The results for cocoa samples blanched at 95°C for 

5 min were optimum where the browning degree was visually found to be the least.  

2.5. Polyphenols and antioxidants in cocoa 

Polyphenols are compounds produced in secondary metabolism of many plants and play 

an important role in the defense against micro-organism. The presence of polyphenols 

in cocoa is dependent on several factors including degree of ripeness, geographical 

origin, variety, stress reactions, processing and storage; the polyphenol content in cocoa 

is about 12-18 % of the dry weight of whole bean  [63]. Three groups of polyphenols can 

be identified in cocoa beans: catechins, which constitute about 37% of the polyphenol 

content in the beans, anthocyanidins (about 4%), and proanthocyanidins (about 58%). 

Of the catechins, (−)-epicatechin is the most abundant (up to 35%), while (+)-catechin, 

(+)-gallocatechin, and (−)-epigallocatechin are present in smaller quantities [64].  
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Figure 2.9: Chemical structures of major polyphenolic compounds found in cocoa 
beans
 

In recent years, cocoa has gained more attention and have become an important focus 

of research interest owing to their antioxidant activities. Various beneficial effects on 

human health have been reported, such as in  treatment and prevention of cancer, 

cardiovascular diseases, antimicrobial and other pathologies [65]. Various literatures 

have reported the amounts of polyphenols available in cocoa beans based on their 

geographical origins and planted varieties. Table 2.2 summarizes the total polyphenol 

content in different regions as reported in literature. The total polyphenolic contents of 

fermented cocoa ranges from 40-84.2 mg GAE g-1 and varies among geographical origins 

and the planted varieties. Among these, the criollo cocoa variety shows a lower total 

polyphenol content since it lacks in anthocyanins; which is a type of polyphenol [15].  
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Table 2.2: Total polyphenol content in cocoa beans in different geographical origins 
and planted varieties 

Geographical origin        Variety        Total polyphenol content Ref. 

Ivory Coast Forastero 81.5 (mg GAE g-1) 

[15] 

Columbia Amazon 81.4 (mg GAE g-1) 

Guinea Equatorial Amazon 

Forastero 

72.4 (mg GAE g-1) 

Ecuador Amazon hybrid 84.2 (mg GAE g-1) 

Venezuela Trinitario 64.3 (mg GAE g-1) 

Peru Criollo 50.0 (mg GAE g-1) 

Dominican 

Republic 

Criollo 40.0 (mg GAE g-1) 

Malaysia Unknown 71.42-82.68 (mg GAE g-1) [8] 

Cameroon Unknown 86.6-143.6 (mg EC equivalent g-1) [66] 

 

 

Processing such as fermentation and drying of cocoa beans are essential to develop 

suitable flavours. However, fermentation and drying degrade the total polyphenols 

content in cocoa. The various processing methods that affect the polyphenol and 

antioxidant activity are shown in Figure 2.10. Tables 2.3 summarizes the effects of 

various primary processing on total polyphenols content.  
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Figure 2.10 Processing methods which affect cocoa polyphenols content 

 

 

 

Table 2.3: The effect of primary processing on cocoa polyphenols 

Processing 
step (Primary) 

Key finding Ref. 

 

Fermentation 

 Decrease in total polyphenolic contents of cocoa 
beans as the duration of fermentation increased (15.5 
wt. % to 6.01 wt. % in 6 days). 

 Decrease in the epicatechin content of the cocoa 
beans as the fermentation duration increased (10 to 
20 % of epicatechin and other soluble polyphenols 
were reduced during fermentation). 
 

 

 

[67] 

 

Fermentation 

 Fermentation contributes to the elimination of the 
astringency and the bitter taste characteristics of fresh 
unfermented cocoa seeds. 

 Most of the polyphenols (80−90 %) were lost during 
the first 48 hours of fermentation.  

 At the end of fermentation and drying, epicatechin 
concentration was reduced by approximately 75%. 
 

 

 

[34] 

  After 144 h of fermentation, the concentration of  
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Fermentation polyphenolic compounds reduced from 13.07 to 16.11 
% (wt/wt). 6.57 to 10.11 % (wt/wt). 

 Concentrations of catechin (±0.16 mg g−1) did not 
change during fermentation, After 144 h of 
fermentation more than 70 % of the initial 
concentration of epicatechin was lost. 
 

 

[31] 

 

Heat pump 
Drying 

 

 Total polyphenolic contents reduced as drying 
temperature were increased in heat pump. Percent 
retention of polyphenol was found ranging from 44–73 
% as compared to the freeze dried sample. 

 The lower temperature generated from the heat pump 
dryer could preserve greater amount of cocoa 
polyphenols during drying. 
 

 

 

[37] 

Hot air Drying  After drying the level of phenolic compounds 
decreased by 32 % compared to the fermented sample 
(not dried). 

 

[68] 

 

 

Freeze, sun 
and hot air 

drying 

 Freeze-dried samples contained significantly more 
(88.45 mg g-1) polyphenols compared to the sun (61.81 
mg g-1) and 80 °C (71.42 mg g-1) oven dried samples.  

 The freeze-dried samples contained the highest 
polyphenol content due lack of enzymatic activity and 
hence no browning reaction.  

 The sun dried samples showed the lowest total 
polyphenol content due long drying process. 
 

 

 

 

[8] 

Hot air drying 

 

 The antiradical properties decreased significantly 
(45%) after drying 
 

[69]  

 

Hot air drying 

 

 Polyphenol degradation rate increases with increasing 
temperature and relative humidity.  

[14] 
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2.4. Polyphenol degradation kinetics 

Browning reaction is an important reaction which occurs during drying and browning 

begins in the final stages of fermentation after the bean is killed due to acidic 

environment. The browning process occurs due to oxidation of polyphenols by enzymes 

inside the bean cotyledons. The chemical structure of tannin compounds which give 

brown colouration to the cocoa beans are shown in Figure 2.11, where letter R 

represents the number of polymerized units present in the compound [15]. During the 

final drying stages, void spaces are created between the cotyledons due to moisture 

loss. The oxygen present in the void spaces further oxidizes the polyphenols into brown 

pigments, and the enzymatic activity slowly recedes once the beans are dry due to the 

lack of moisture availability [14]. The reaction kinetics (reaction rate constant k) of the 

browning reaction are shown in Equation 3 [70]. 

Polyphenol + Oxygen 
𝑘
→  𝑜 − Quinone                                                      (3) 
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Figure 2.11: The chemical structure of polymerized tannin compound 

Kyi et al. [14], reported that the degradation kinetics of cocoa polyphenols during hot air 

drying are usually represented by pseudo-first order reaction mechanism. The authors 

stated that ‘pseudo’ was prescribed since the actual reaction mechanism and its kinetics 

are far more complex in the degradation model. Generally, the action of non-enzymatic 

polyphenol degradation is lesser compared to enzymatic degradation during drying 

process. The non-enzymatic reactions usually occur at higher temperature and low 

oxygen conditions. Roasting at high temperatures (>100°C) has been reported to cause 

non-enzymatic browning in cocoa beans mainly due to Maillard reactions [71]. A study 

on cocoa polyphenols degradation kinetics by Teh et al. [24], reported that the reaction 

rate constants were in the range of 0.044 to 0.052 (min-1) for hot air dried cocoa at 

temperatures ranging from 60°C to 80°C.  

𝐶 = 𝐶0exp−𝑘𝑡                                                                                                                                (4) 

 Where, C is the concentration of polyphenolic contents (mg GAE g-1) measured at 

drying time; subscript 0 indicates the value for reference sample (before drying), t the 
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drying time (h) and k is the rate constant (h-1) at temperature T (K) [62]. The 

temperature dependence of the rate constant (k) for polyphenol degradation during 

both drying can be shown by Arrhenius equation (5);  

𝑘 = 𝑘0exp−𝐸𝑎/𝑅𝑇                  (5) 

Where, k is the rate constant, k0 is the pre-exponential factor, Ea is the activation 

energy, R is the gas constant and T is the temperature at which drying occurred at 

[14,24]. Examples of polyphenol degradation kinetics reported in various literatures for 

cocoa and other agricultural products are shown in Table 2.4. 

 
Table 2.4: Evaluation of polyphenol degradation kinetics of cocoa during drying  

Treatment type Activation energy, 
Ea (kJ K-1 mol-1) 

Rate constant (k) Ref. 

Hot air drying 
 (40°, 50° and 60°) 

 

27.8 to 30.3 0.055 to 0.199 h-1 [14] 

Hot air drying 
 (60°, 70° and 80°) 

 

9.0 
 
 

0.044 to 0.052 h-1 

 
 

[24] 

    
    

2.7. Sensory evaluation of cocoa 

Flavour is one of the most important constituents in cocoa products and the flavour 

precursors are developed during fermentation and drying of cocoa beans [10]. Studies 

reported on the effects of artificial drying methods on the sensory attributes of cocoa 

have been discussed in section 2.2 of this Chapter. Sourness flavour attributes are highly 

dependent on drying method used where fast drying at high temperature usually leads 

to retention of acids in cocoa bean and expressed in sourness scores during sensory 
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evaluation [17]. Advanced drying method such as heat pump drying are reported to 

produce cocoa with high flavour quality which are comparable to Ghanaian cocoa [18].  

Cocoa beans used in chocolate manufacturing have to undergo roasting process by 

means of dry heat treatment for the development of chocolate flavour. Flavour 

precursors developed during fermentation and drying interact in the roasting process to 

produce the desired chocolate flavour. Roasting leads to development of characteristic 

brown colour, mild aroma and texture of roasted beans. The flavour produced is a result 

of combinations of 400–500 compounds including pyrazines, aldehydes, ethers, 

thiazoles, phenols, ketones, alcohols, furans and esters [72]. Aldehydes and pyrazines 

are among the major compounds formed during roasting. Figure 2.12 shows the cocoa 

flavour attributes and the various factors contributing to its development.  

Ramli et al. [73], studied the effect of roasting conditions on the sensory evaluation of 

dark chocolates. The authors reported that higher temperature and longer roasting time 

leads to lower astringent taste. This is because polyphenol compounds (epicatechin, 

catechin and procyanidin) which are responsible for the astringent taste in cocoa [74] 

degrades at high temperature and long roasting time. When temperature was increased 

from 120°C to 170°C, there was a significant increase in the bitter taste. Xanthine 

alkaloids (caffeine) and theobromine are responsible for the bitter taste of cocoa beans. 
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Figure 2.12: Major cocoa bean flavour attributes and the flavour contributing factors 

 

The cocoa flavour increased with increasing temperature and time of roasting. This is 

due to evaporation of volatile compounds which mask the cocoa flavour attribute [38]. 

Misnawi et al. [41] studied the effects of polyphenol concentration and roasting 

duration on sensory properties of cocoa liquor. Similar to Ramli et al., the authors 

reported that cocoa flavour increased with longer duration of roasting. However, at 

higher concentrations of polyphenol (170 g kg−1) the opposite effects of strong 

astringent and bitter sensations were observed. This was due to strong reduction effects 

of polyphenol against cocoa flavour formation and leads to interference. However, 

roasting duration did not significantly (p > 0.05) influence astringency and bitterness 

properties. This may be due to the lower levels of polyphenol concentration after 

fermentation and drying process which are not affected by roasting. 

Misnawi et al. [75] studied the ability of polyphenols to produce astringency during 

cocoa roasting through an evaluation of the polyphenol-protein interaction in cocoa 

cake/liquor roasted at 120°C for 45 min, with and without enrichment with polyphenol 
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extract. It was reported that roasting decreased capacity of polyphenols to interact with 

protein, causing a decrease in astringency. Table 2.5 shows the flavour scores of cocoa 

beans after various processing methods that are reported in literature.  

 

Table 2.5: Flavour scores of cocoa beans after various processing methods  

Criteria Cocoa Sour Bitterness Astringency Ref. 

Cocoa beans roasted at 120°C for 
15 minutes 

6.3 - 3.1 3.3  

 

 

[41] 

Cocoa beans roasted at 120°C for 
25 minutes 

6.3 - 3.7 4.0 

Cocoa beans roasted at 120°C for 
35 minutes 

6.5 - 2.9 3.6 

Cocoa beans roasted at 120°C for 
45 minutes 

6.5 - 2.9 3.4 

Cocoa liquor obtained from a 
hybrid variety of cocoa beans 

6.5 2.1 6.3 1.5 [76] 

Cocoa liquor (beans roasted at 
120°C) 

- - - 2.8 [75] 

Cocoa liquor of heat pump (step 
up) dried cocoa 

5.4 2.6 3.6 3.4  

[18] 
Cocoa liquor of sun dried  dried 

cocoa 
4.9 2.8 3.0 3.8 

Cocoa liquor of direct solar dried 
cocoa (20 kg) 

4.8 2.2 3.2 3.5 [40] 
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CHAPTER 3 

GENERAL MATERIALS AND METHODS 

3.1. Preparation of samples 

Mixed clonal varieties of fermented and fresh beans were obtained from Malaysia 

Cocoa Board, Jengka, Pahang. The cocoa beans were obtained from matured ripe fruits 

(yellow or yellowish-red in colour) which contained about 30-40 beans. Around 1 kg of 

fresh cocoa beans could be extracted from around 10 matured cocoa fruits. The average 

sizes of the beans were of ca. 2.7 X 1.5 X 1.0 cm (l X w X h). Diseased beans were 

discarded and only healthy beans were used in experiments. 

3.1.1. Fresh cocoa beans 

Freshly harvested cocoa pods after procurement, were cut open. The beans along with 

the pulp were stored in air-tight plastic containers (ca. 100 g) at -18°C to prevent 

fermentation and preserve the beans from losing its freshness. Prior to experiments, the 

frozen bean samples were allowed to defrost sufficiently at ambient condition and 

made suitable for drying. Figure 3.1 shows an image of fresh cocoa beans.  
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Figure 3.1: Fresh cocoa beans used for experiments 

3.1.2. Fermented cocoa beans 

The cocoa beans after harvesting from the farms were fermented at Malaysian Cocoa 

Board (Jengka, Malaysia), using wooden boxes of dimensions and cocoa mass capacity 

of 60 x 91 x 30 cm (l x w x h) and 150 kg, respectively. The beans were fermented 

according to the standard protocol for Grade SMC 1 quality developed by Malaysian 

Cocoa Board for 5 to 7 days until the beans have turned dark reddish brown [43]. The 

beans were turned every 48 hours using a wooden shovel for aeration and consistent 

fermentation. After fermentation, the beans were divided and stored in air-tight plastic 

containers (ca. 100 g) at -18°C in deep freezer (FZ301, Khind, Malaysia). Figure 3.2 shows 

typical image of fermented cocoa beans used in experiments. 
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Figure 3.2: Fermented cocoa beans used for experiments 

 

 
3.2. Drying methods 

3.2.1. Oven drying 

Drying experiments were carried out using an oven (Memmert, humidity controlled 

drying chamber HCP 108, Germany) with overall dimensions of 48 × 56 × 40 cm (l X w X 

h). The beans were spread thinly on a meshed tray with square openings measuring 

0.1 × 0.1 cm. Heat was generated by heaters integrated into the walls of the chamber. 

Figure 3.3 shows the image of the humidity controlled drying chamber. The relative 

humidity level inside the oven was maintained at 50 % as recommended by Kyi et al., 

2005 [14] where at 50% relative humidity, the highest polyphenolic contents in cocoa 

beans were recovered. The air velocity was ca. 0.01 m s-1. 
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Figure 3.3: Pictures of oven from front in; (a) closed door; (b) open door conditions 
 

3.2.2. Adsorption drying 

The adsorption dryer used in the study was fabricated by Dawnyx Technologies SDN 

BHD, Malaysia. The schematic representation of the dryer is shown in Figure 3.4. The 

adsorption dehumifidification was performed using zeolite adsorbent (diameter of 0.2 

cm). Two cylindrical adsorption columns (100 cm in length and 25.4 cm in diameter) 

were used to hold the adsorbent by wire meshes with square openings (1 X 1 mm mesh 

size). The mass of zeolite beads used in each adsorption cylinders were approximately 4 

kg each. This approximately filled 60% of the volume of adsorption columns and were 

ideal for operation. The zeolite adsorbents used in the experiment were de-saturated 

(regenerated) prior to the drying experiment at 100°C for 1 h in an oven [49].  

b

 

a
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Figure 3.4: Schematic representation of the adsorption dryer 

 

The adsorption dryer setup is shown in Figure 3.5, the various components marked in 

the figure were the following; (A) the drying chamber, (B) the digital control unit, (C) the 

blower unit, (D) the valves used to channel the air into chamber and control the air flow 

rate, (E) the adsorption chambers, (F) the humidiprobe sensors (G) the flowmeter 

(Dwyer, USA) to record the airflow rate in l min-1 and (H) the heating coil.  
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Figure 3.5: Adsorption dryer setup; front and rear view 

 

Atmospheric air from the surrounding was channeled into the adsorption chamber by a 

blower (HB-429, Apex Dargang, Taiwan). The inlet air were specifically channeled into 

one adsorption column during drying and were alternated every 6 h (Figure 3.4). The 

switch of air channel into either one of the adsorption columns every 6 h were for the 

purpose of using fresh dehumidified zeolite for efficient drying purpose. An embedded 

heating coil was installed before the drying chamber in dryer setup to dry samples at 

high temperature (above ambient air conditions). However, the heating parameter was 

not used for the present drying operation, and ambient air were channeled into the 

adsorption chamber and subsequent drying chamber. The drying chamber dimensions 

are 18 x 21 x 27 cm (l X w X h).  The temperature and relative humidity values at various 

points of the adsorption dryer; before adsorption, after adsorption and drying chamber 

were measured using a sensor (humidiprobe AQ 518, Pico technology, USA). After 
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drying, the air was channeled out from the drying chamber through a small opening 

valve on top. The average temperature of the drying chamber was recorded to ca. 60°C. 

The relative humidity profile of the adsorption dryer is shown in Figure A1 in section 

Appendix A. The average relative humidity of the drying chamber after adsorption 

process was 9-10 %. The air velocity during the experiments were noted to be 4.1 ± 0.6 

m s-1.   

3.2.3. Freeze drying 

Freeze drying experiments were carried out to establish a benchmark for quality 

assessment of cocoa beans. The cocoa beans were frozen (-18°C) before the freeze 

drying process. Drying was carried out using a freeze dryer (Alpha 1-2 LDplus Martin 

Christ Gefriertrocknungsanlagen GmbHChrist, Germany) as shown in Figure 3.6. The 

vacuum chamber or lyophilisation unit was a transparent acrylic cylinder (diameter= 20 

cm, height= 25 cm). There was a two-tier sample stand which held the sample during 

drying. A vacuum pump (Vacuubrand, RZ 2.5, Germany) sucked in air from the 

condenser unit and drying chamber and maintained the pre-set pressure conditions 

throughout the drying process. The vacuum pump and condenser unit were switched on 

and warmed up for 30 min, before drying process. This was for the warming up of the 

vacuum pump and also for cooling the condenser unit to the desired temperature. The 

drying process followed Hii et al. [8] with slight modifications. The drying process 

consisted of two stages namely; main drying (time= 24 h, condenser temperature= -30°C 

and pressure ca. 0.040 mbar) and final drying (time= 4 h, condenser temperature= -50°C 

and pressure ca. 0.015 mbar). According to Hii et al. [8], cocoa beans dried in freeze 
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dryer following these parameters were reported to achieve a final moisture content of 

less than 7.5%.   

 

 

Figure 3.6: Image of freeze dryer setup 

 

 

 

3.2.4. Vacuum drying 

The vacuum dryer (Memmert VO 200, Germany) consisted of two portions namely; 

drying chamber (oven) and a vacuum pump. The drying unit had overall dimensions of 

55 x 55 x 71 cm (l x b x h). The dryer was equipped with two thermo-shelves which 

generates the required heat to be cocoa sample. A digital controller present in the 

drying unit controlled the thermo-shelf temperature and vacuum pressure in chamber. 

The vacuum level was set to the lowest at 150 mbar to reduce the boiling point of water 
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as low as possible to facilitate drying. The cocoa samples were placed thinly spread 

evenly in a meshed tray of square opening (0.1 X 0.1 cm) on the thermo-shelf. Both the 

drying chamber and vacuum pump were allowed to operate for 30 min prior to every 

experiment for pre-conditioning the thermos-shelves (raising the temperature to 

desired temperature) and warming up the vacuum pump. The vacuum drying setup is 

shown in Figure 3.7. The operating temperature for vacuum drying was set at 60°C, 

published literatures have reported that any temperature above 60°C is detrimental for 

cocoa quality [8].  

 

 

Figure 3.7: Pictures of the vacuum oven in; (a) closed door; (b) open door; 

 (c) vacuum pump 
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3.2.5. Sun drying 

Sun drying of cocoa was performed from 7 am to 7 pm (from August 2015 to November 

2015) at a concrete floor besides the parking area of Engineering Research Building, The 

University of Nottingham Malaysia Campus (N02°56.622′ and E101°52.405′). The cocoa 

beans were evenly spread and dried on a rectangular tray of dimensions 30 X 28 cm (l X 

w) under direct sunlight. The beans were manually mixed every hour to ensure uniform 

drying. The tray containing beans was placed 50 cm above ground level as shown in 

Figure 3.8. The ambient temperatures recorded during experiments were between 26 -

33°C. The air velocity was measured to be ca. 1.3 m s-1 and relative humidity was about 

65-75-%. The beans were left at a covered area at ambient temperature during night 

time (7 pm to 7 am). This process is helpful in re-distributing the internal moisture of the 

cocoa beans to the bean surface [44].  

 

Figure 3.8: Sun drying experimental setup 



48 
 

3.3. Drying Kinetics 

3.3.1. Moisture content 

Moisture content (Xi) in dry basis was determined hourly based on the weight of the 

whole beans (Mi) using equation (6). However, for freeze drying this could not be 

performed as this process would disrupt the equilibrium condition established inside the 

chamber during operation. 

  
-

100%i ds
i

ds

M M
X

M
                                            (6) 

Dry solid weight of the beans (Mds) was determined by drying the cocoa beans in the 

oven at 105°C for 24 h following a method used by Hii et al. [37].    

3.3.2. Drying rates 

The drying rates was calculated by approximation of the derivatives of finite differences 

[78] based on the following equations (7-9), 

At t = t0 (initial time), 

 
1 0

1 0

X XdX

dt t t





                                                                      (7) 

At t = ti (i= 1, … , N-1), where X denotes the moisture content (g H2O g-1). 

1 1

1 1

i i

i i

X XdX

dt t t

 

 





                                                                                  (8) 
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At, t = tN (final time, h),  

1

1

N N

N N

X XdX

dt t t









                                                             (9)                 

3.3.3. Effective diffusivities 

The general solution of Fick's second law diffusion model was used to determine the 

effective diffusivity during the moisture removal process [58]. The cocoa beans were 

assumed spherical in shape in this model with an equivalent radius (r) of 0.67 cm. The 

general solution of the Fick’s law for spherical object as shown in equation (10) below; 

 
2 2

2 2 2
1

6 1
exp[ ]

n
eff

n

n D t
MR

n r










                                    (10) 

Where, MR is the moisture ratio, which can be calculated from the equation given 

below,  

i e

o e

X X
MR

X X





                        (11) 

Where, subscripts i, e and o denote at time ti, equilibrium and initial, respectively.  

Only the first term of the equation (10) was used and upon linearization by applying 

natural logarithm at both sides, a straight line graph can be plotted (ln MR vs t) using 

equation (12). The slope of the graph was used to obtain the values of Deff [59]. 

2

2 2

6
( ) ( )

effD t
lnMR ln

r




                                             (12) 
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Where, r represents the radius of cocoa beans. 

The dependence of effective diffusivity on temperature can be further described using 

the Arrhenius equation as shown in equation (13):  

 exp
( 273.15)

a
eff o

g

E
D D

R T

 
  

  

                                          (13) 

Where, D0 is Arrhenius constant, Ea is Activation energy and Rg is gas constant (8.314 J 

mol-1K-1). This equation can be linearized by applying natural logarithm on both sides 

and ln Deff versus 1/T will produce a straight line. The activation energy and Arrhenius 

constant can be determined from the slope and y-intercept respectively.  

 

3.4. Quality Analysis 

3.4.1. Total polyphenols content 

Polyphenols analyses were carried out according to the method proposed by Kim and 

Keeney [74]. Dried cocoa beans were peeled to separate the nibs from the shells for 

analyses. The samples were ground in a dry mill and then sieved through a 600 µm 

screen to obtain the fine powders. Five gram of ground samples were defatted for 2 h 

using petroleum ether (Spectrum chemicals, USA) in Soxtherm (Gerhadt, Germany). The 

samples were filtered through Whatman No. 1 filter papers (110 mm, Sigma-Aldrich, 

USA) and the residues were oven dried at 60°C for 6 h to allow the traces of petroleum 

ether to evaporate. For extraction of polyphenols, 10 ml of 70 % acetone (Sigma-Aldrich, 

USA) solution was added to 0.1 g of dried defatted samples and sonicated (Elmasonic 
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Palmer, Germany) for 30 min in ice water. The samples were then centrifuged 

(Eppendorf, Germany) at 5000 rpm for 10 min.  

Subsequent steps were carried out by diluting 100 µl of the supernatant liquid with 7.9 

ml of distilled water. Then, 500 µl of Folin-Ciocalteau (Sigma-Aldrich, USA) reagent was 

pipetted into the test tube, shaken to allow it to mix well and left for 8 min. Next, 1.5 ml 

of 20 % sodium carbonate solution was pipetted into the mixture and were kept for 2 h 

for colour development. These steps were repeated with standard Gallic acid solutions. 

The calibration curves are reported in Figure A2, in section Appendix A. The absorbances 

of the standards and polyphenols extracts were as measured with a UV-Vis 

spectrophotometer (PerkinElmer, USA) at 765 nm. The results were reported as Gallic 

acid equivalents (GAE) per gram dry weight of cocoa. 

3.5. Statistical Analyses 

The experiments were carried out as completely randomized experiments. Each 

experiment is carried out in three replicates and the data were analyzed using one-way 

ANOVA and mean comparison using Duncan’s Multiple Range Test at 95 % confidence 

level (SPSS version 20, IBM, USA). 
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CHAPTER 4 

DEGRADATION KINETICS OF POLYPHENOLS DURING CONVENTIONAL COCOA DRYING  

4.1. Introduction 

Cocoa (Theobroma cacao L.) is a widely consumed commodity and its application can be 

found in manufacturing of chocolates, beverages, cosmetics, pharmaceuticals and 

toiletries products. Recent studies have revealed several positive health implications of 

cocoa polyphenols ranging from preventing cardiovascular disease, lowering blood 

pressure, improving endothelial function, inhibiting platelet aggregation and reducing 

inflammatory responses [38,79]. Typically, the total phenolic compounds in cocoa are 

about 6 to 8 % by weight of a dried fermented cocoa bean [80]. The composition and 

amounts of polyphenols in cocoa beans vary significantly with bean type, origin and 

methods of processing. It has been reported that fermentation, drying and alkalization 

could lead to substantial decrease in polyphenols amounted to nearly 60 % of total 

flavonoids [59,81,82]. 

Drying after fermentation is an important step as it has a huge role in governing the final 

quality of dried cocoa beans. Conventionally, cocoa farmers use sun and hot air to dry 

cocoa beans to achieve desired moisture content conducive for safe storage. The drying 

process ensures various chemical and bio-chemical changes necessary to form the 

flavour and aroma precursors are produced for subsequent roasting process in 

secondary processing [83,84]. However, drying degrades polyphenols in cocoa beans via 

complex reaction known as browning and also due to thermal degradation due to heat. 
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Although polyphenols in bean degrade considerably during drying, the remaining 

amount will impart an astringent taste to the chocolate products after processing [14]. 

The degradation reaction of polyphenols can be explained as browning process where 

phenolic compounds are degraded due to enzymatic and non-enzymatic reactions. The 

precursor for enzymatic reaction (polyphenol-oxidases enzymes) is usually activated 

towards the end of fermentation and its activity continues during drying. At drying 

temperatures higher than 60°C, non-enzymatic reaction plays a more dominant role in 

degrading polyphenols in cocoa beans. Under the action of heat, the non-enzymatic 

browning (Maillard reactions) process involves the carbonyl groups of reducing sugars 

and amino groups of proteins to undergo chain reactions to form coloured polymeric 

compounds [14]. 

The degradation of cocoa polyphenols under the action of heat during drying are 

scarcely reported in literatures. Kyi et al. [14] reported kinetics of polyphenols 

degradation at drying temperatures ranging from 40°C to 60°C for the first 5 h of drying 

inside an hot air oven. However, in commercial cocoa drying the operating temperature 

is above 60°C for a longer drying duration (typically more than 10 h). Both enzymatic 

and non-enzymatic reactions play significant role and can be affected under the action 

of heat. Therefore, this chapter aims to investigate polyphenols degradation based on 

conditions used in commercial practice to get a better understanding on the 

polyphenols degradation kinetics and its impacts on product quality. 
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4.2. Materials and Methods 

4.2.1. Sample preparation 

Fermented cocoa beans were obtained from Malaysian Cocoa Board, Jengka, Pahang. 

The beans were kept in deep freezer (FZ301, Khind, Malaysia) at -18°C to prevent 

further fermentation process to occur. Prior to drying, the beans were allowed to 

defrost overnight at room temperature. Approximately 20-30 g of samples were used in 

each drying experiment.   

4.2.2. Drying procedure 

Drying experiments for fermented cocoa beans were carried out using convective air 

oven (Humidity controlled drying chamber, Memmert HCP 108, Germany). The 

equipment was allowed to pre-heat for more than 10 h prior to experiment to achieve 

stable drying temperature and relative humidity. The relative humidity was set constant 

at 50 % throughout drying.  

4.2.3. Drying kinetics 

The drying kinetics analysis was carried out as described in section 3.3.2 under General 

Materials and Methods (Chapter 3). The moisture content was determined based on an 

hourly recording of the weight of cocoa beans for a period of 26 h in the oven. The 

exposure time (26 h) was chosen to match the typical drying time used in industry.   
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4.2.4. Effective diffusivities 

The effective diffusivities were determined following the steps as mentioned in section 

3.3.3, General Materials and Methods (Chapter 3). 

4.2.5. Total polyphenolic content analysis 

Total polyphenolic analysis was carried out as described in section 3.4.1 under General 

Materials and Methods (Chapter 3) for all the experimental parameters shown in Table 

4.1. The exposure time used were 12 h, 24 h, 32 h and 40 h and these were selected to 

analyze effects of prolonged drying (0 – 40 h) on the polyphenolic contents of cocoa 

beans. 

Table 4.1: Parameters of oven drying  

Label Temperature (°C) Exposure time (h) Relative humidity (%) 

H60 60 

12, 24, 32, 40 50 H70 70 

H80 80 

 

4.2.6. Polyphenol degradation kinetics 

The following are the main focus of polyphenols degradation model: 

Polyphenols + Oxygen
𝑘
→ o − Quinone                                                                           (14) 

For the determination of the reaction rate constant (k), a first-order reaction model was 

assumed to represent the above reaction: 
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𝑑𝐶𝑝

𝑑𝑡
= −𝑘𝑡                                                                    (15) 

 𝐶𝑝 = 𝐶0exp−𝑘𝑡                                                                                                                    (16) 

Where, Cp is the concentration of polyphenols measured at a drying time t. C0 is the 

concentration of polyphenols of the reference sample or at time t=0. 

Equation (16) can be linearized and plotting a straight line graph (ln Cp versus t), the rate 

constant (h-1) is determined from the gradient of the straight line graph; 

 ln 𝐶𝑝 = 𝑙𝑛𝐶𝑜 − 𝑘𝑡                                                                                                                  (17) 

The activation energy (Ea) can be determined by modifying Arrhenius equation shown as 

following, where k0 is the pre-exponential factor (m2 s-1) 

   𝑘 = 𝑘0exp−𝐸𝑎/𝑅𝑇                                                                                                                   (18) 

4.2.7. Statistical analysis 

The statistical analyses were carried out as described in section 3.5 under General 

Materials and Methods (Chapter 3). 

4.3. Results and discussion 

4.3.1. Drying kinetics 

Figure 4.1 shows that moisture ratios of the cocoa beans decreased exponentially with 

time as reported for most agricultural products in published literatures [25,85,86] and 

the moisture ratio for samples dried from H80 is lower than samples dried at H70 and 

H60. Figure 4.2 shows the drying rates for H60, H70 and H80, respectively. The initial 
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drying rates were estimated at 0.15 g H2O g-1 dry solid h-1, 0.16 g H2O g-1 dry solid h-1 and 

0.21 g H2O g-1 dry solid h-1 for H60, H70 and H80, respectively. The higher drying rate for 

H80 was due to the higher temperature which initiates greater driving force for mass 

transfer to occur. Only falling rate period was observed in H80 while for H70 and H60 

treatments. The initial phase showed a rather short existence of constant rate period. 

This was due to the lower drying temperature requiring more heat to evaporate the 

surface moisture.  

 

Figure 4.1: Moisture ratio curves for cocoa beans dried for trials H60, H70 and H80 
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Figure 4.2: Drying Rate curves of cocoa for trials H60, H70 and H80 
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after ca. 0.55 g H2O g-1 moisture content there is a sudden drop in drying rates (2nd 

falling rate period). This could be due to case hardening of cocoa beans due to fast 

drying occurring due to high temperature (80°C) in initial periods of drying. The 

hardened testa could prevent the movement of free moisture from inside to the outside 

[44].  

4.3.2. Effective diffusivities 

The effective diffusivities determined were in the range of 2.36 x 10-10 to 2.86 x 10-10 

m2s-1 (Table 4.2) which are within the order of magnitudes reported for drying of food 

materials (10-8 - 10-12 m2s-1) [85,87]. Although the effective diffusivity values were lower 

than those reported in literatures [8,59,24] but the order of magnitude determined 

were quite comparable in the range of 10-10 to 10-11 m2s-1.  

 
 

Table 4.2: Effective diffusivities of oven dried cocoa samples 

Drying Method Effective Diffusivity (m2s-1) R2 

H60 2.36 X 10-10 0.9963 

H70 2.66 X 10-10 0.9876 

H80 2.86 X 10-10 0.9792 

 

The plot as shown in Figure 4.3 explains the relationship between effective diffusivity 

and temperature. The Arrhenius constant is a diffusivity constant equivalent to the 

diffusivity at infinitely high temperatures [8,59]. The values of D0 and Ea were calculated 

based on the Arrhenius relationship at 7.16 x 10-9 m2s-1 and 9.43 kJ mol-1, respectively, 
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as shown in Equation (19). The activation energy calculated was much lower than the 

published values [8,24,59] which could be due to the different bean samples used and 

different types of dryers. The activation energy indicates the minimum barrier that 

needs to be overcome to initiate the moisture diffusion process during drying [8].  

  
9 9.43

7.16 10 exp
( 273.15)

eff

g

D X
R T


 

  
  

                                                                          (19) 

 
 

Figure 4.3: The Arrhenius relationship between effective diffusivities and temperature 
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temperature treatments. Generally, in cocoa bean drying, thermal decomposition plays 

a more critical role in polyphenols degradation at higher drying temperature range (60°C 

and above). At lower temperature range (60°C and below), the mechanism attributed is 

mostly enzymatic degradation during drying [70]. For example, Hii et al. [37] reported 

that cocoa beans dried using heat pump dryer at 28.2°C recovered high amount of 

polyphenols (73.9 mg GAE g-1) after drying. Several literatures have published total 

polyphenols content of fermented cocoa beans dried using hot air drying methods, the 

values of reported results vary from 45 to 74 mg GAE g-1 dw [24, 52, 81, 93].  

*Mean values (± standard deviation) having a common letter among same temperature setting are not significant according to the 

Duncan’s Multiple Range test at 5% Level 
Figure 4.4: The total polyphenol contents of dried cocoa samples. 
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The results show that maximum value of total polyphenols was recorded at treatment 

H70. Hii et al. [8] reported the polyphenols content for cocoa beans dried in hot air 

dryer (60°C, 70°C and 80°C) at 77.2 mg g-1, 82.68 mg g-1and 71.42 mg g-1, respectively. 

The results of total polyphenols content for cocoa samples dried at 70°C (82.68 mg g-1) 

and samples dried using freeze drying (88.45 mg g-1) showed no significant difference (p 

> 0.05). A similar trend of results was obtained in the current study where treatment 

H70 shows high polyphenols recovery (67.1 mg GAE g-1 dw, 62.6 mg GAE g-1 dw, 57.3 mg 

GAE g-1 dw and 51.7 mg GAE g-1 dw) at exposure times ranging from 12 h to 40 h. The 

high recovery of polyphenols could be due to the optimal drying condition (temperature 

and exposure time) that not only reduces the enzymatic activity but also minimizes rate 

of thermal degradation of polyphenols. At 70°C, the temperature is neither too high to 

induce thermal degradation or Maillard browning of cocoa beans, nor too less to 

prevent the cocoa beans from drying effectively to produce cocoa beans with higher 

polyphenolic content.  

The results for treatment H80 at 24 h, 32 h and 40 h durations show significantly lower 

(p < 0.05) values when compared with H60 and H70 and similar drying durations. This 

shows that higher drying temperature (80°C) and prolonged drying lead to greater 

thermal degradation and substantial oxidation of polyphenols, respectively, as shown in 

H80. Comparing the results for treatments H60 and H70 no significant differences (p > 

0.05) were noted for any duration of drying. This could be due to the lower moisture 

content removed in these treatments as opposed to H80. When the moisture content is 

higher oxidation of polyphenols occurs at a much reduced rate. 
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4.3.4. Polyphenols degradation kinetics  

Table 4.3 shows the rate constants (k) determined at experimental settings H60, H70 

and H80 from the reaction kinetics as proposed in Equation (14). The results obtained 

from Figure 4.4 suggests that first order kinetics is sufficient to describe the polyphenol 

degradation process during drying with rate constant (k) values determined within the 

range of 0.0066 to 0.0202 h-1 and R2 value ranges from 0.964 to 0.9919 (Table 4.3). 

Generally, degradation for food compounds can be described by first order exponential 

model which is similar to moisture diffusion model [14]. This could be due to the 

dependency of polyphenol degradation to the moisture content present within the 

beans [24]. The activation energy was determined to be 38.2 kJ mol-1 and in line with 

results obtained from several literatures related to cocoa drying (9 - 49 kJ mol-1) [14,24]. 

The Arrhenius model is as shown in equation (20). This is in agreement to the results 

obtained in published literatures; Kyi et al. [14] reported activation energy values for 

cocoa beans (dried between 50°C to 80°C for duration 1 h to 6 h) in the range of 27.8 -

30.3 kJ mol-1. The focus of the current study is on drying parameters that are similar to 

conventional practices where cocoa beans are dried at higher temperatures for longer 

durations. Teh et al. [24], reported the polyphenol degradation kinetics for cocoa beans 

dried at 60°C, 70°C and 80°C, respectively and reported activation energy for polyphenol 

degradation to be 9 kJ mol-1.  

  𝑘 = 𝑘07238.72exp [−
38.2

𝑅(𝑇+273.15)
]                                                                                        (20) 
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Table 4.3: Rate constants for polyphenol degradation 

Temperature (°C) 
Rate constant  

(h-1) 
R2 

60 0.0091 0.9919 

70 0.0066 0.964 

80 0.0202 0.9798 

 

 
 

Figure 4.4: Plot of ln Cp against time for rate constant determination.  
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and activation energy was determined to be 38.3 kJ mol-1 using the first-order reaction 

kinetics model. The results from this chapter provide better understanding the 

polyphenols degradation kinetics under the action of heat with drying conditions similar 

to conventional drying practices used in industries.  
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CHAPTER 5 

COMPARSION OF DRYING KINETICS OF FRESH AND FERMENTED COCOA BEANS USING 

ARTIFICIAL AND SUN DRYING METHODS 

5.1. INTRODUCTION 

The application of fresh cocoa beans for producing cocoa products with high 

polyphenols is an area of research, which has not been widely explored. Processing 

methods such as fermentation and drying are responsible for degradation of 

polyphenols from cocoa beans. Fermentation is able to reduce about 60 % of 

polyphenols [67] and the remaining polyphenols constituents are further reduced by 

about 32 % by drying [68]. Thus, the application of fresh cocoa beans for the production 

of high polyphenols chocolate and other health beneficial products is an important area 

of research that needs to be envisaged. Unfermented cocoa beans have  been reported 

to contain high polyphenols content which can be compared with that of red wine and 

green tea [12]. 

Drying technology in recent years have had rapid advances with the discovery of 

freeze drying, vacuum drying, microwave drying, superheated steam drying, heat pump 

drying, etc. However, cocoa beans are still dried using very crude drying methods such 

as hot air and sun drying methods. Hii et al. [18] has reported the use of heat pump 

drying for cocoa beans. Heat pump dried cocoa samples at 28.2°C were found to recover 

cocoa polyphenols as high as 73.9 mg GAE g-1, this accounted to 73 % recovery when 

benchmarked with freeze dried cocoa beans [37]. With high polyphenols recovery 
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achieved using advanced drying methods; there is a greater need for application of new 

drying technologies for cocoa beans.  

The study on the drying kinetics of cocoa beans using various artificial drying 

methods in this research will be highly beneficial in transfer of technology for large scale 

production of polyphenols rich cocoa beans. The studies of cocoa drying by Bravo and 

McGaw [36] form the basis of most subsequent research on drying kinetics studies [3–

6].  

Applications of vacuum and adsorption drying for cocoa beans have not been 

reported in any scientific literatures. The drying process in vacuum drying methods is 

due to the lowering of boiling point of water at sub-atmospheric conditions which is 

different from other heat based systems. Adsorption drying process involves a drying 

mechanism that adsorbs moisture from air to facilitate drying. This study is highly 

beneficial as drying kinetics for these drying methods can be compared with that of 

commercial drying technology mainly involving hot air and sun drying.  A comparison 

between drying kinetics of fresh and fermented beans dried using oven drying method 

are also studied.  

The current study emphasized on the analysis of drying kinetics of artificial 

drying (adsorption, oven hot air and vacuum drying) and sun drying between fresh and 

fermented cocoa beans. The presence of fresh pulps could have an implication on the 

exposure time and drying rate due to the much higher initial moisture content. 

Ultimately, fresh beans are proposed for the production of dried beans with high 

polyphenolic content.  
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5.2. Materials and methods 

5.2.1. Sample preparation 

The fresh and fermented cocoa beans were prepared as mentioned in sections 3.1.1 and 

3.1.2, respectively in General Materials and Methods (Chapter 3).  

5.2.2. Drying procedure 

5.2.2.1. Oven drying  

The experimental setup is as mentioned in section 3.2.1, General Materials and 

Methods (Chapter 3). The drying parameters are as shown in Table 5.1 and denoted as 

H70. 

5.2.2.2 Adsorption drying 

The experimental setup is as mentioned in section 3.2.2, General Materials and 

Methods (Chapter 3). The drying parameters are as shown in Table 5.1 denoted as A60. 

5.2.2.3. Vacuum drying 

The experimental setup is as mentioned in section 3.2.4, General Materials and 

Methods (Chapter 3). The drying parameters are as shown in Table 5.1 denoted as V60. 

5.2.2.4. Sun drying 

The experimental setup is as mentioned in section 3.2.5, General Materials and 

Methods (Chapter 3). The drying parameters are as shown in Table 5.1 denoted as SUN.  
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Table 5.1: Experimental drying parameters 

Drying Method Drying time (h) Drying Parameters 

H70 30 T=70°C, RH=50 %, 0.01 m s-1 

A60 24 
Zeolite adsorbent, (T=ca. 60°C), RH= 9-10%, 

 air flow rate = 4.1 m s-1 

V60 24 T= 60°C, P=150 mbar 

SUN 36 
Direct sun light exposure (7 am to 7pm), T=26°C 

to 36°C, RH= 65-75 %, air flow rate 1.3 m s-1 

 

5.2.3. Temperature profiles 

Bean surface temperatures were recorded using an infrared thermometer (Oakton, 

SP2224A-SP, USA). The air temperature during drying for adsorption, oven and vacuum 

oven were recorded using temperature sensors installed in the dryer. During sun drying, 

the air temperatures were recorded using a digital thermometer (UWI, PDT 550, China). 

The drying air temperature and cocoa bean surface temperature were recorded every 3 

h interval. 

5.2.4. Moisture content 

The calculation steps are as mentioned in section 3.3.1, General Materials and Methods 

(Chapter 3). The drying treatments were terminated when the cocoa beans attained a 

moisture content of less than 7 % dry basis. 
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5.2.5. Drying rates 

The calculation procedures are as mentioned in section 3.3.2, General Materials and 

Methods (Chapter 3). 

5.2.6. Effective diffusivities 

The effective diffusivities were determined following the steps as mentioned in section 

3.3.3, General Materials and Methods (Chapter 3). 

5.3. Results and discussion 

5.3.1. Temperature profiles 

Figure 5.1 shows the mean air and bean surface temperature (fresh cocoa beans) 

profiles recorded for various drying methods as mentioned in Table 5.1. All the 

temperature profiles were below 65°C except for H70. According to literature, drying 

temperature more than 65°C is detrimental to quality especially in terms of flavour [89]. 

The highest temperature range (67.4°C to 70.4°C) were recorded for treatment H70 

while treatment SUN recorded the lowest temperature range (27.5°C to 35.4°C). The 

initial air temperature for A60 was noted to be lower (36.4°C) because no pre-heating of 

the dryer was performed to prevent the saturation of zeolite adsorbent prior to drying 

process. There is a considerable fluctuation in the temperature range of treatment SUN 

on comparison with the values generated for other methods. This is due to the 

considerable temperature fluctuation that occurs during the course of sun drying in a 

day. The beans temperatures for artificial drying methods namely H70, A60, V60 in the 

initial period showed a slow rise in surface temperature. Approximately after 6 h of 
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drying time, the bean temperatures hold up at a constant temperature, which was 

determined by the maximum temperature pre-set in all drying methods.  

 

Figure 5.1: Measured air and bean temperature profile during drying of fresh beans 

5.3.2. Drying Kinetics  
 

5.3.2.1. Drying kinetics analysis of fresh cocoa beans 

Figure 5.2, shows the moisture ratio profiles of the cocoa samples dried using the 

various drying techniques. In all cases it can be observed that moisture ratios fell 

exponentially with time as reported for most agricultural products [24]. A60 shows a 

lower moisture ratio profile on comparison with H70, V60 and SUN. The SUN drying 

profiles are lower due to the significantly mild drying temperatures the beans were 

exposed with. For the preservation of bioactive compounds within the beans it is 

recommended that fast drying (T >80°C) with short durations (< 6 h) are not 
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appropriate, however for sun drying methods, considerable polyphenols in cocoa are 

lost owing to the long drying durations and thus higher loss of polyphenols [8]. It is 

worth noting the trends observed by treatments V60 and A60 dried faster than H70 and 

SUN. This trend was observed inspite of treatment H70 having higher drying 

temperature. This could be attributed towards the higher loss of moisture achieved by 

evaporation through lowering of boiling point in V60 and faster drying occurs at low 

relative humidity conditions and high volumetric flow rate of dry air (RH= 9-10 %) 

experienced by cocoa beans in treatment A60, respectively. 

 
Figure 5.2: Moisture ratio profiles for cocoa beans dried using different drying 

methods 
 

Figure 5.3 shows the drying rates of the cocoa bean samples, the initial drying rates 
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lower drying force between the interior moisture content and the surface. It is observed 

that there is an existence of constant rate periods for H70 and SUN treatments, 

respectively. No constant rate periods are observed for A60 and V60 due to the high 

airflow (adsorption dryer) and low boiling point of water (vacuum drying), respectively, 

that causes higher rate of surface moisture evaporation to the surrounding.   

 

Figure 5.3: Drying rate curves of cocoa dried using different drying methods 
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experienced falling rate period only. The bean surfaces are dried but the inner core 

contains remaining moisture which requires a greater driving force for diffusion to 

surface to occur [36]. Subsequently, drying rate diminishes as the moisture content 

reduces to less than 0.17 gH2O g-1 dry solid towards the end of drying. Two distinctive 

falling rates are observed in V60 and A60, respectively, namely the first and second 

falling rate periods. The occurrence of the second falling rate period could be due to the 

case hardening phenomenon that further restrict the movement of moisture from the 

inner core to the bean surface. 

5.3.2.2. Comparison of the drying kinetics of fresh and fermented cocoa beans 

The comparisons between drying kinetics of fresh and fermented cocoa beans after 

oven drying are shown in Figures 5.4 and 5.5, respectively. The fresh and fermented 

cocoa beans were dried for 30 h and 26 h, respectively. The moisture ratios of fresh and 

fermented shows that the fermented cocoa beans dried at a faster rate than fresh cocoa 

beans. This is because in fresh beans, there is an existence of thick mucilaginous pulp 

which contributes an additional resistance to drying. It is reported that cocoa beans 

loses as much as 30-35 % (wet basis) of moisture after fermentation process [90]. 
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Figure 5.4: Moisture ratios of fresh and fermented cocoa beans after oven drying 

 

The initial drying rates for fresh and fermented cocoa beans were determined at 0.177 g 

H2O g-1 dry solid h-1 and 0.181 g H2O g-1 dry solid h-1, respectively. This is a small 

difference and could be due to the similar amount of moisture content present in the 

outer layers of cocoa beans initially. There is a trend of lower drying rates for fresh 

cocoa beans after drying on comparison with fermented cocoa beans. In fermented 

cocoa beans, there is availability of free moisture (moisture retrieved from storage cells 

after bean death) and acids in beans after fermentation [28]. In fermented beans, 

diffusion of moisture occurs freely through the non-existence pulp (which is degraded 

after fermentation). This is evident from the rates of drying for fresh cocoa beans 

showing higher values in the initial period, which predominantly is the loss of moisture 

from the outer pulp of beans. Fresh beans owing to the higher moisture contents were 

also dried until 30 h on comparison to 26 h for fermented cocoa beans to compensate 

the drying of extra moisture content. 



76 
 

 

Figure 5.5: Drying rates of fresh and fermented cocoa beans after oven drying 

 

5.3.3. Effective diffusivities 

Table 5.2 shows the effective diffusivity values determined for each drying method. 

Regression analysis shows that the coefficients of determination are in the range of 

0.7553 to 0.9998 for artificial drying treatments namely H70, A60, V60 and SUN. 

Determination of effective diffusivities during drying is in the range of 1.58 X 10-10 to 

9.04 X 10-10 m2s-1. These values are typically reported in various agricultural products, 

particularly for cocoa drying which are in ranges of (10-10 to 10-12 m2s-1) [20, 24, 45, 46]. 

From Figure 5.3, it is shown that treatments V60 and A60 experience two distinct falling 

rate periods, hence the effective diffusivities of these treatments were obtained for 

each falling rate period distinctively. The highest values of effective diffusivities (9.04 X 

10-10 m2s-1) were observed in treatment A60 for the first falling rate period, this could be 

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
ry

in
g 

ra
te

, −
𝑑

X
/𝑑
𝑡

(g
 H

2
O

 g
-1

d
ry

 s
o

ild
 h

-1
)

Moisture Content (g H2O g-1)

Fermented

Fresh



77 
 

due to the high losses of saturated moisture present on the surface of the beans due to 

evaporation by dry air (RH= 9-10 %). The effective diffusivity values for second falling 

rate period of A60 were observed to be 3.67 X 10-10 m2s-1, which is lower than the first 

falling rate period. This is mainly due to the lesser of moisture diffusion occurring and 

higher driving force required for inner moisture particles to approach the testa of cocoa 

beans.  The values of effective diffusivities for V60 are 5.66 X 10-10 m2s-1 and 4.45 X 10-10 

m2s-1 for first and second falling rates periods, respectively. The high rate of moisture 

diffusion is achieved in V60 due to low-pressure conditions decreasing the boiling point 

of water inside the beans [23]. It is to be noted that the effective diffusivity of the 

second falling rate period of treatment V60 (4.45 X 10-10 m2s-1) is higher than treatment 

A60 (3.67 X 10-10 m2s-1). From Figure 5.2, it is shown that A60 undergoes faster drying in 

the initial stages of drying. The moisture is encapsulated in the inner core of the beans 

will therefore take a much higher driving force to be removed through diffusion. This 

could be correlated with the higher effective diffusivity values of second falling rate 

periods in V60. SUN treatment recorded the lowest value (1.58 X 10-10 m2s-1) as 

expected mainly due to the lower driving force for drying from the ambient 

temperature condition (27-33°C). Similar literatures for sun drying process have been 

reported where the effective diffusivity values were considerably lower than that of 

artificial drying methods [8,24,37]. Treatment H70 observed effective diffusivity values 

of 2.79 X 10-10 m2s-1 and 2.66 X 10-10 m2s-1 for fresh and fermented cocoa beans, 

respectively. The values recorded identical values, which is similar to the drying kinetics 

analysis comparing fresh and fermented coco beans in treatment H70. The differences 
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in the moisture ratios and rates of drying were negligible. The effective diffusivity values 

of H70 are the lowest among the artificial drying methods (V60 and A60). Similar 

patterns of results were observed in section 5.3.2, where treatments A60 and V60 dried 

faster than H70. The study on effective diffusivity of fresh cocoa beans has still not been 

reported in any literatures. More analysis needs to be carried out in order to verify the 

moisture diffusion process of various drying methods.  

 

Table 5.2: Effective diffusivity of cocoa dried using different drying methods 

Bean type Drying treatments Effective diffusivity, Deff (m2s-1) R2 

Fresh SUN 1.58 X 10-10 0.8617 

Fresh A60 
9.04 X 10-10 * 0.9998 

3.67 X 10-10 ** 0.8343 

Fresh V60 
5.66 X 10-10 * 0.9997 

4.45 X 10-10 ** 0.7553 

Fresh H70 2.79 X 10-10 0.9941 

Fermented H70 2.66 X 10-10 0.9876 

* Denotes the effective diffusivity for 1st falling rate period, ** the effective diffusivity for 2nd falling rate period 

5.4. Conclusion 

This chapter highlights the drying kinetics of vacuum and adsorption drying methods 

and compares it with that of traditional drying methods such as oven drying and sun 

drying. The drying kinetics analysis in the current research helped in establishing that 

the rate of drying varied depending upon the drying parameters such as temperature 

and moisture content, this is in accordance with reported literatures. It is shown that 

adsorption and vacuum drying methods take shorter drying time and removing moisture 
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at higher rates when compared to oven and sun drying methods. The comparison 

between drying kinetics of fresh and fermented cocoa beans using oven drying method 

were analyzed. It was observed that fermented cocoa beans dried faster than fresh 

cocoa beans. The findings in this chapter also demonstrated that cocoa beans dried 

using vacuum and adsorption drying methods shows promising results on comparison 

with conventionally used, oven and sun drying techniques.  
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CHAPTER 6 

EFFECTS OF HOT WATER BLANCHING ON THE TOTAL POLYPHENOLIC CONTENT AND 

ANTIOXIDANT ACTIVITY OF COCOA BEANS 

6.1. Introduction 

Cocoa has the highest flavanol content of all foods on a per-weight basis and is a 

significant contributor to the total dietary intake of flavonoids [12,16]. Cocoa 

antioxidants such as flavonoids are intimately involved in the prevention of free radical 

damage, but it also has a central role in boosting collagen protection. This means that 

antioxidant-rich foods like cocoa are not only good cancer prevention and other 

degenerative diseases, but also provide other benefits such as anti-aging properties. The 

polyphenol degradation of cocoa beans in standard processing methods is primarily due 

to fermentation, drying and roasting. The main reason for this phenomenon is due to 

the activation of polyphenol oxidases enzyme which is a pre-cursor for polyphenol 

degradation (browning reaction). 

By using blanching as a pre-treatment on cocoa beans, it can degrade the polyphenol 

oxidases enzyme, which in turn would help in substantial recovery of polyphenol 

contents in cocoa after drying. Water is non-reactive to cocoa beans (inert) during short 

period blanching process and able to inactivate the polyphenol oxidases enzyme [15]. 

Freshly harvested cocoa which are not subjected to any fermentation or other 

processing methods contain high levels of low molecular weight polyphenols. These 

polyphenols are polymerized by oxidation process once the bean is opened or subjected 
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to processing methods such as hot air drying and roasting. Hence, these polymeric 

compounds are no longer available for bio-absorption in human diet [80].  

Since there is no economically feasible method to avoid such polymerization process 

from occurring, there is a major requirement to look into blanching unfermented cocoa 

beans. Conventionally, cocoa farmers use sun and hot air to dry cocoa beans. The drying 

process ensures various chemical and bio-chemical changes that are necessary to form 

the flavour and aroma precursors are produced [8]. The conventional drying methods 

for cocoa is reported to reduce the polyphenols by about 24 % [34]. The application of 

artificial drying techniques for cocoa beans have been studied by various researchers, 

however study on effects of hot water blanching pre-treatment prior to adsorption, 

vacuum, freeze, oven and sun drying methods have not been reported. 

6.2. Materials and methods 

6.2.1. Sample preparation 

The cocoa samples were prepared following the methods mentioned in section 3.1, in 

General Materials and Methods (Chapter 3). For the half cut cocoa bean experiment, 

the beans were cut longitudinally using a knife, along the bean length before subjecting 

it to blanching process. 

6.2.2. Blanching pre-treatment 

The blanching experiment setup is shown in Figure 6.1 following the parameters as 

mentioned in Table 6.1. Blanching was performed using a 1000 ml beaker filled with 700 

ml of water. A metal sieve (1 X 1 mm, mesh size) was used to hold the samples during 
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blanching. Heating was carried out using a hot plate (Cole Palmer 4568-456800, USA). 

The operating temperature was set according to the parameters shown in Table 6.1. 

Table 6.1: Experimental protocol for blanching experiment for fresh, fresh cut, 
fermented and fermented cut cocoa bean samples 

All Samples 

Blanching temperatures (°C) Blanching duration (min) 

70  

80 5,10 and 15 

90  

 

 

Figure 6.1: Blanching experiment setup 

The experiments commenced when the water medium attained the desired 

temperature. The sieve was gently immersed into the beaker and approximately 10-15 

cocoa beans were placed into the blanching medium (within the sieve). A thermometer 

was used to record the temperature during blanching along with a stopwatch to record 

the exposure time. After blanching, the cocoa beans were dipped in an ice bath (ca. 4°C) 
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for 15 seconds to reduce the temperature of the beans as soon as possible. This step 

was very important to prevent the bean from remaining in a state of high temperature 

which could lead to degradation of phenolic compounds. The beans were then pat dried 

using tissue paper to remove any extra moisture present in the surface of the beans. 

The highest blanching temperature was set at 90°C as any temperature above it would 

thermally degrade the bioactive compounds in cocoa beans [15]. The water used for 

blanching process was replaced after each experiment for uniformity.     

6.2.3. Drying procedure 

For the analysis of total polyphenolic contents of fresh and fermented (full and half cut) 

cocoa beans after blanching pretreatments, oven drying at 70°C at 50 % RH were used. 

The drying procedures for experiments of fresh cocoa beans are as shown in Table 6.2.  

Table 6.2: Experimental drying procedure for fresh cocoa beans after blanching  

Drying 

method 

Drying time 

(h) 
Drying Parameters 

H70 30 T= 70°C, RH= 50%, air flow rate 0.01 m s-1 

A60 24 
Zeolite adsorbent, (T=ca. 60°C), RH= ca. 9-10%,  

air flow rate= 4.1 m s-1 

V60 24 T= 60°C, P= 150mbar 

FD 24 
Main drying: T= -30°C , 24 h; Final drying T= -50°C, 4 h  

P= ca. 0.015mbar 

SUN 36 

Direct sun light exposure (7 am to 7pm), T= 26°C to 36°C, 

RH= 65- 75%, air flow rate 1.3 m s-1 

 

6.2.3.1. Oven drying  
The experimental setup is as mentioned in section 3.2.1, in General Materials and 

Methods (Chapter 3). The drying parameters are shown in Table 6.2.  
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6.2.3.2. Adsorption drying 

The experimental setup is as mentioned in section 3.2.2, in General Materials and 

Methods (Chapter 3). The drying parameters are shown in Table 6.2. 

6.2.3.3. Freeze drying 

The experimental setup is as mentioned in section 3.2.3, in General Materials and 

Methods (Chapter 3). The drying parameters are shown in Table 6.2. The quality analysis 

(total polyphenolic content and antioxidant assays) of samples after freeze drying were 

used for benchmarking purposes. Freeze dried cocoa has been reported to recover the 

highest bioactive compounds in cocoa beans [24]. 

6.2.3.4. Vacuum drying 

The experimental setup is as mentioned in section 3.2.4, in General Materials and 

Methods (Chapter 3). The drying parameters are shown in Table 6.2. 

6.2.3.5. Sun drying 

The experimental setup is as mentioned in section 3.2.5, in General Materials and 

Methods (Chapter 3). The drying parameters are shown in Table 6.2 and duration of 

drying were from 7 am to 7 pm daily. 

6.2.4. Total polyphenolic contents 

The experimental steps are as mentioned in section 3.5.1, in General Materials and 

Methods (Chapter 3). 
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6.2.5. Antioxidant assay 

6.2.5.1 DPPH radical scavenging assay 

DPPH ( 2,2-diphenyl-1-picrylhydrazyl) assay was executed by following the method as 

described by Blois [92]. The DPPH (Sigma-Aldrich, USA) solution was freshly prepared by 

dissolving 0.1 mM of DPPH in methanol (Sigma-Aldrich, USA) and kept aside for 30 min. 

To 50 µl each of cocoa extracts which were prepared by grinding dried cocoa sample 

with 70 % methanol, an aliquot of 150 µl of DPPH solution was added and the mixture 

was incubated in the dark for 30 min at room temperature. The absorbance was 

measured at 517 nm using a microplate reader (Thermo ScientificTM MultiskanTM GO, 

Finland). A standard calibration curve was obtained (R2 = 0.9985) by using 1-40 µg ml-1 

of Trolox (Sigma-Aldrich, USA) in methanol and the obtained results have been 

expressed as mg of Trolox equivalent per gram dry weight of the extract, the calibration 

curves are reported in Figure A3 in section Appendix A.  

6.2.5.2. ABTS radical cation decolourization assay 

ABTS assay was carried out by following the method of Re et al. [93] with some 

modifications. The stock solutions for this assay include 7 mM of ABTS (Sigma-Aldrich, 

USA) solution and 2.45 mM of potassium persulphate (Sigma-Aldrich, USA). The working 

solution was prepared by mixing both the stock solutions in equal volume and allowed 

to react for 12-16 h at room temperature. The working solution was then diluted by 

mixing with 95% ethanol to get an absorbance value of 0.7±0.02 at 734 nm. Fresh 

solutions were always prepared for each assay. An aliquot of 20 µl extract was mixed 
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with 200 µl of working solution and allowed to stand at room temperature for 30 min 

followed by measuring the absorbance (734 nm) in a microplate reader (Thermo 

ScientificTM MultiskanTM GO, Finland). A standard curve was obtained (R2 = 0.9968) with 

Trolox (1-100 µg ml-1) and the obtained values have been expressed as mg of Trolox 

equivalent (TE) per g dry weight of the sample, the calibration curves are reported in 

Figure A4 in section Appendix A. 

6.2.6. Percentage differences in total polyphenols content and antioxidants capacity 

The percentage differences between the results obtained for the total polyphenols 

content and antioxidant capacities were calculated based on equation (21) as shown 

below; 

Percentage differences = [
𝑣𝑎𝑙𝑢𝑒 (𝑏𝑙𝑎𝑛𝑐ℎ𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒)−𝑣𝑎𝑙𝑢𝑒 (𝑢𝑛𝑏𝑙𝑎𝑛𝑐ℎ𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒)

𝑣𝑎𝑙𝑢𝑒 (𝑏𝑙𝑎𝑛𝑐ℎ𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒)
]  𝑋100 (%)       (21) 

6.2.7. Statistical analysis 

The statistical analysis was performed as mentioned in section 3.5, in General Materials 

and Methods (Chapter 3)  

6.3. Results and Discussion 

6.3.1. Comparison of total polyphenols contents of fresh and fermented cocoa beans 

after hot water blanching and oven drying. 

6.3.1.1. Total polyphenolic content 

Figures 6.2 and 6.3 compare the polyphenolic contents of cocoa beans that were 

subjected to blanching pre-treatments according to the experiment parameters in Table 
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6.1. On examining the results for fresh beans initially (Figure 6.2), the maximum 

polyphenols recovery was found in cocoa beans blanched at 90°C for 5 min (119.41 and 

78.1 mg GAE g-1 dw for whole and half cut beans, respectively). A similar pattern was 

noted in research by Tomas-Barberan et al. [15]; where cocoa beans blanched at 95°C 

showed the lowest enzymatic browning for fresh beans. The author explained the 

importance of inactivating Polyphenol Oxidases (PPO) to promote high recovery of 

polyphenolic compounds in cocoa beans. During high temperature (90°C and above) 

blanching, there is occurrence of thermal degradation of PPO activity which would 

disrupt the polyphenol degradation [15,94].  

 
*Mean values (± Standard deviation) having common letters among same blanching treatments are not significant according to the 

Duncan’s Multiple Range test at 5% level 

Figure 6.2: The total polyphenolic content of dried fresh and fresh cut cocoa samples 
after blanching pre-treatments 
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Blanching temperature and durations vary for food products depending on the quantity 

of phenolic compounds involved as well as nature of structure of food material 

analysed. For example, conditions for carrot blanching are at a temperature of 95°C for 

1 min for the complete inactivation of polyphenol oxidases and peroxidases [60]; salak 

blanching temperatures should be below 70°C for blanching durations up to 5 min [95]. 

Half cut fresh beans also show high contents of polyphenols when blanched at 90°C for 

5 min setting (78.1 mg GAE g-1 dw). From Figure 6.2, the total polyphenolic contents for 

fresh whole beans are significantly higher (p < 0.05), when compared with half cut fresh 

beans for all blanching treatments except 90°C for 15min (82.1 mg GAE g-1 dw and 72.6 

mg GAE g-1 dw). The reduced amounts of polyphenols for half cut beans are due to 

losses through leaching of mostly flavonoids, which are present in the outer parts of 

plant organs and tissues [60]. Blanching at 90°C for 15 min does not show any significant 

difference (p > 0.05) among whole and cut fresh beans due to the thermal 

decomposition of polyphenolic compounds due prolonged exposure (15 min) of hot 

water (90°C) [15]. 

Fermentation is a deterrent for polyphenols recovery as the browning process occurs. 

This can be observed in the lower values of polyphenols content recorded for fermented 

beans (Figure 6.3). The polyphenols content for fresh and fermented beans were 

recorded to be 102.7 mg GAE g-1 dw and 71.3 mg GAE g-1 dw, respectively at control 

setting. The results for the half cut fermented beans are much lower in comparison to 

whole fermented bean. The lower amount of polyphenols for half cut fermented bean 

samples could be explained on the basis of chemical constituents within the bean that 
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leaches into water (during blanching) [84]. No significant differences (p > 0.05) are 

shown among fermented cut samples after blanching. This is because of the significant 

loses of polyphenols due to fermentation by browning, and losses of flavonoids by 

leaching from cocoa outer storage cells during blanching and oxidation while exposed to 

air during cutting of beans [96]. 

 

*Mean values (± Standard deviation) having common letters among same blanching treatments are not significant according to the 

Duncan’s Multiple Range test at 5% level 

Figure 6.3: The total polyphenols content of dried fermented and fermented cut cocoa 
samples after blanching pre-treatments 
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From the results obtained in section 6.3.1.1, blanching parameter of 90°C for 5 min 
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studies. From the results obtained in Figure 6.2 it is noted that for fresh cocoa beans, for 

a blanching parameter of 5 mins the total polyphenolic content increases from 101.55 

to 119.41 mg GAE g-1 dw when the blanching temperature is raised from 70°C to 90°C. 

Further investigation must be performed to better understand the polyphenolic activity 

at blanching temperatures above 90°C. 

 

6.3.2. Effects of hot water blanching on the total polyphenols and antioxidant activity 

of fresh cocoa beans from various drying methods 

 

The total polyphenols content of the cocoa samples after blanching at 90°C for 5 min 

and drying treatments of H70, A60, V60, FD and SUN are as shown in Figure 6.4. The 

highest amounts of polyphenols recovery was recorded by label FD. This is in 

accordance with several published literature where polyphenols recovery of freeze dried 

cocoa sample were significantly high due to the inactive enzymatic activity under 

vacuum condition leading to impeded browning process [97]. The least amount of 

polyphenols content was found in cocoa beans dried using label SUN (81.3 mg GAE g-1 

dw), which could be due to the long drying time and browning process occurring at mild 

temperature conditions as almost similar values were reported in several literatures [16, 

24, 33]. Using the total polyphenols value of FD treatments as a benchmark, the other 

treatments namely A60, H70, V60 and SUN show significantly lower values (p < 0.05). 

Comparing the results among the drying treatments it is noted that, no significant 

difference (p > 0.05) of polyphenols content were recorded for cocoa beans dried using 

A60 and H70 as both the drying conditions are at high temperature (T > 60°C). High 
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temperature drying process leads to thermal degradation of polyphenols as well as an 

increase in oxidation of polyphenols at high temperature which has been reported in 

literature [71].  

 

*Mean values (± standard deviation) having a common letter within same drying methods are not significant according to the 

Duncan’s Multiple Range test at 5% level 

Figure 6.4: The total polyphenols content for blanched and unblanched cocoa beans 

after drying. 
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availability in low pressure condition (150 mbar). At low oxygen conditions, the 

enzymatic polyphenol degradation is minimal accounting to highest total polyphenols 

values [49, 50]. It is to be noted that, the results for A60 (104 mg GAE g-1 dw) show no 

significant difference (p > 0.05) with V60. This phenomenon of reasonably high recovery 

of polyphenols for A60 could be attributed to the low humidity air conditions present 

during adsorption drying. At low relative humidity drying conditions, drying rate is 
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higher and hence the polyphenols degradation due to prolonged drying conditions are 

minimal [46]. 

The total polyphenols content of cocoa beans after blanching pre-treatment for 

treatments A60, H70 and SUN show significantly higher (p < 0.05) values in comparison 

to unblanched beans (Figure 6.4). The percentage differences of total polyphenols 

content for blanched and unblanched samples are shown in Table 6.3. 

Table 6.3: The percentage differences in total polyphenolic contents of blanched and 
unblanched cocoa beans. 

Drying method Percentage differences (%) 

A60 12.46 

V60 6.66 

FD -1.26 

H70 15.31 

SUN 10.47 
 

Treatment H70 showed the highest percent difference of 15.31 %. A similar work by 

Alan and Eva-Maria, [98] showed that steam blanched cocoa beans have high 

polyphenolic content (24 % more polyphenols) when it were dried at a temperature 

ranging from 35°C to 50°C in hot-air oven. From Table 6.3, FD dried cocoa samples 

showed percentage difference of -1.26 % and is quite negligible. In FD, the cocoa 

samples are dried in frozen conditions (ca. -18°C), and during such low temperatures the 

PPO enzymes are in an inactive state and cannot mediate browning process. Hence 

blanching (inactivation of PPO) does not contribute in enhancing the total polyphenolic 

recovery in freeze dried cocoa samples. 
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6.3.2. Antioxidant assay 

The antioxidant assay results for DPPH and ABTS assays are shown in Figures 6.5 and 

6.6, respectively. Both assays follow a similar trend in the results obtained and can be 

correlated with total polyphenolic compounds results [24–26]. The antioxidant assay 

reading for cocoa is a combined measurement of the potential of all the antioxidant 

compounds including phenolic compounds to inhibit oxidation reaction upon 

consumption by humans. Drying is said to cause severe reduction of bioactive 

compounds such as flavonoids which is a major antioxidant compound in cocoa bean 

[59, 62, 63]. The total polyphenolic content analysis followed in the present study was a 

modified form of Kim and Keeney [74]. According to Kim and Keeney, the total 

polyphenolic content analysis using Folin ciocalteu reagent does not take into account 

the anthocyanidin compounds present in cocoa beans. However, anthocyanidins are 

expressed in both the antioxidant assays DPPH and ABTS, respectively. Hence, any 

differences in the patterns of results obtained in total polyphenolic content and 

antioxidant assays (DPPH and ABTS) could be due to this.  

The results for the antioxidant assay for unfermented cocoa beans are relatively higher 

in comparison to published literatures which was in the range of 18.4-21.6 mg Trolox g-1 

dw. [11, 90, 93, 109]. Increased antioxidant activity in fermented cocoa are due to 

increase in the release of antioxidant compounds (phenols and flavonoids)  due to 

microbial hydrolysis during fermentation [104].  Samples from treatment FD showed 

maximum values for both DPPH and ABTS assay; 71.81 mg Trolox g-1 dw and 91.5 mg 

Trolox g-1 dw, respectively. This is due to the low pressure (0.015 mbar) and low 
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temperature (-40°C) conditions prevalent during lyophilisation process which in turn 

helps in retaining high traces of bioactive compounds in dried product [58, 59]. In both 

the assays, treatment V60 dried samples show no significant difference (p > 0.05) with 

freeze dried samples. Similar results have been noted on agricultural products dried 

using freeze drying, vacuum oven and hot-air oven where; catechin and flavonoids are 

highest retained in freeze and vacuum dried samples [54]. The significantly low values (p 

< 0.05) of antioxidant activity for treatments A60, H70 and SUN were observed for both 

assays (DPPH and ABTS). This could be due to the thermal degradation of antioxidants 

during high temperature for A60 and H70 and prolonged exposure time of drying (36 h) 

for SUN treatment based drying methods [105].   

 

*Mean values (± standard deviation) having a common letter within same drying methods are not significant according to the 

Duncan’s Multiple Range test at 5% level 

Figure 6.5: DPPH radical scavenging assay of blanched and unblanched cocoa beans 
after drying. 
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*Mean values (± standard deviation) having a common letter within same drying methods are not significant according to the 

Duncan’s Multiple Range test at 5% level 
Figure 6.6: ABTS antioxidant assay of blanched and unblanched dried cocoa beans  

 

Focusing on the effects of blanching pre-treatment on antioxidant assays, only 

treatment A60 (Table 6.4) method showed a significantly higher (p < 0.05) antioxidant 

activity where blanched samples recorded a value of 44.89 mg Trolox g-1 dw and 

unblanched samples recorded a value of 34.45 mg Trolox g-1 dw (difference of 11.4 %) 

for ABTS assay. 

Table 6.4: The percentage differences in antioxidant assay values of blanched and 

unblanched cocoa beans. 

Drying method 
DPPH Assay ABTS ASSAY 

Percentage difference (%) Percentage difference (%) 

A60 7.41 11.41 

V60 6.12 6.45 

FD 3.76 0.21 

H70 8.5 7.88 

SUN 6.47 3.98 
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This is in contradiction with the total polyphenolic content results, where treatments 

A60, H70 and SUN showed significant increase (p < 0.05) after blanching pre-treatment. 

Similar results portraying a significant polyphenolic content increase after blanching 

process and non-significant increase/decrease in antioxidant capacity after blanching 

process has been reported by Oboh [106], for antioxidants of green vegetables after 

blanching. Results showed a decreasing trend for antioxidant activity whereas total 

polyphenolic contents showed an increasing trend after blanching process. This trend 

was reasoned by the author to be the temperature at which blanching (100°C for 5min) 

which increases solubility and leach away few non-phenolic lipid soluble antioxidant 

phytochemicals present in vegetables. In cocoa flavonoid compounds, water soluble 

compounds could solubilize in high temperature blanching process and thus reduces 

antioxidant values considerably [107]. However, Folin ciocalteu reagent which was used 

to measure the total polyphenolic content in this study did not take into account the 

anthocyanidins and shields their effects [75, 108]. The expression of these coloured 

pigments (anthocyanidins) could also be a factor in the treatments H70, V60 and SUN 

showing a non-significant (p > 0.05) increase after blanching on comparison with total 

polyphenolic content results. 

6.4. Conclusion 

From the initial study on effects of hot water blanching on polyphenol content and 

reaction kinetics of cocoa beans, a significant increase (p < 0.05) in the total polyphenol 

content (119.41 mg GAE g-1 dw) for fresh beans is noted after blanching at 90°C for 5 

min. This blanching parameter was used for all subsequent pre-treatments for 
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producing polyphenol rich fresh cocoa beans. For the study on the effects of blanching 

on the total polyphenolic content and antioxidant activity of fresh cocoa beans, freeze 

drying method proved to show the highest recovery of total polyphenol contents as well 

as antioxidant activity. Both adsorption and vacuum dried samples showed considerably 

high polyphenol recovery of 104 and 112 mg GAE g-1 dw, respectively. The blanched 

cocoa bean samples showed significantly high (p < 0.05) total polyphenol recovery in 

comparison to unblanched samples when dried using adsorption, oven and sun drying 

methods. Antioxidant assays were performed for fresh cocoa beans with and without 

blanching pretreatment. The Blanched cocoa samples showed a positive percentage 

difference for both DPPH and ABTS assays, respectively. This confirms blanching pre-

treatment to recover cocoa beans with higher antioxidant capacities. This study is highly 

beneficial in widening knowledge about effects of blanching pre-treatment and 

application of various drying methods on the production of polyphenol rich cocoa beans 

since literatures available on the health benefits of fresh cocoa beans are relatively 

scarce.  In future, research should focus on extraction and application of bioactive 

compounds obtained using the current study. This will significantly help in making the 

cocoa industry a more lucrative farming option.  
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CHAPTER 7 

FLAVOUR QUALITY OF POLYPHENOL RICH COCOA BEANS 

7.1. Introduction 

The typical cocoa flavour consists of many compounds whose formation depends on 

genetic profile of cocoa, the growth environment and the processing methods used. The 

influence of processing on the formation of chocolate flavour includes reactions that 

occur during  fermentation, drying and roasting (beans, nibs or liquors) [76]. Cocoa 

beans are reported to contain more than 600 types of distinct flavour volatiles which are 

formed during processing [109]. Generally, chocolate or cocoa flavour intensity is 

preferred to be present in high level as it imparts the distinct flavour in chocolate 

products. In the current era of health conscious consumers, dark chocolate with high 

polyphenolic contents have gained immense popularity. With the demand of polyphenol 

rich chocolate and other cocoa based products, it is important to look into the flavour 

characteristics of polyphenol rich cocoa beans after drying. The drying methods used for 

cocoa beans play a major role in the development of cocoa flavour and has been 

reported in several literatures [3-6]. The effects of drying parameters could influence 

specific or a combination of several flavour attributes depending on the complex 

enzymatic reactions which occurs during drying [51]. Sun drying is reported to be 

optimal for producing the best flavour in fermented cocoa beans. This is due to the low 

temperature and sufficient drying time for cocoa to dry evenly which leads to chocolate 

flavour development [40].  
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However, the drawbacks of using sun drying method are long drying time and influences 

of environmental and climatic factors. Therefore, the applications of new artificial drying 

or the combination of sun and artificial drying techniques have been used in recent 

times to improve cocoa flavour. For example, Jinap et al. [17] reported that flavour 

attributes of Malaysian cocoa beans improved through a combination of air-blown and 

hot-air drying and were similar to  that of sun dried cocoa samples. Hii et al. [18] that 

reported sensory profile scores of cocoa beans dried using heat-pump dryer and the 

results were comparable to that of Ghanaian cocoa samples which were of superior 

flavour quality. The disadvantage of using artificial drying methods are the high drying 

temperatures which leads to faster drying rates, this could lead to high acidic flavour 

due to high retention of acetic acid [110]. 

Several researches have been performed on the effects of sun and conventional hot-air 

drying methods on cocoa flavour quality. However, very little research has focused on 

the effects of non-conventional drying methods such as adsorption drying, vacuum 

drying and freeze drying. Cocoa beans with high polyphenolic content are usually high in 

astringent flavour attribute [75]. Astringency and bitterness flavours have a tendency to 

subdue cocoa flavour in samples and is hence usually not preferred in conventional 

chocolate manufacture. Therefore, the current study will emphasize on four major 

flavour attributes of cocoa, namely cocoa (chocolate), bitterness, astringency and acidic 

(sourness) of fresh cocoa beans after various drying methods (adsorption, vacuum, 

freeze, oven and sun drying).  The sensory scores of cocoa samples which were 

subjected to blanching pre-treatment methods were also analysed. 
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7.2. Materials and methods 

7.2.1. Sample preparation 

Dried samples from fresh unfermented cocoa beans were used for analyzing the flavour 

attributes. The cocoa beans were processed (blanching and drying) according to the 

parameters as shown in Table 7.1. Cocoa beans after drying were cut open and the 

shells were then removed manually to obtain the inner nibs for roasting. Roasting was 

carried out by heating the nibs at thin layer on a flat aluminium sheet inside an oven 

(UN 55 natural convective oven, Memmert, Germany) at 140°C for 35 min [8]. Upon 

roasting, the nibs were ground using an end runner mill (Pascal Engineering, England) 

into a homogenised paste (cocoa liquor). 

Table 7.1: The drying and blanching parameters used in sensory analysis. 

Blanching 
parameter 

Drying 
method 

Drying 
time (h) 

Drying Parameters 

90°C for 5 
minutes 

H70 30 T= 70°C, RH= 50%, air flow rate= 0.01 m s-1 

A60 24 
Zeolite adsorbent, (T=ca. 60°C), RH=ca. 9-10%,  

air flow rate=4.1 m s-1 
V60 24 T= 60°C, P= 150mbar 

FD 24 
Main drying: T= -30°C , 24 h; Final drying: 

T=-50°C, 4 h P= ca. 0.015mbar 

SUN 36 
Direct sun light exposure (7 am to 7pm), T= 

26°C to 36°C, RH= 65- 75%, air flow rate= 1.3 
m s-1 

 

7.2.2. Sensory analysis 

Sensory evaluation was carried out by five expert panels from Malaysian Cocoa Board 

(Nilai, Negeri Sembilan, Malaysia) and Ghanaian cocoa liquor was used as the reference 

sample. Rating was carried out by using a descriptive scale ranging from 0 to 10 (from 
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undetectable to extremely strong intensity) where the flavour attributes assessed were 

cocoa, bitterness, astringency and sourness. The evaluation form is shown in Figure B1 

in section Appendix B of the thesis. The flavour scores of Ghanaian cocoa reference 

samples are shown in Table 7.2. 

Table 7.2: The flavour scores of Ghanaian cocoa reference sample 

Flavour Score 

Cocoa 7 

Bitter 2.5 

Astringent 3 

Acidic 1.5 

7.2.3. Statistical analysis 

The statistical analyses were carried out as mentioned in Section 3.5 of Materials and 

Methods (Chapter 3). 

7.3. Results and discussion 

7.3.1. Cocoa flavour  

The intensity of cocoa flavour attribute is shown in Table 7.3. Generally cocoa is a highly 

desirable attribute in chocolate manufacturing industry. The quality of cocoa beans is 

optimum when the cocoa flavour is at its maximum while acidic flavour is at its 

minimum after processing. The astringency and bitterness are also preferred to be at 

low levels (score range of 3-3.5). However, it should not be totally eliminated as it could 

affect the general taste perception of finished chocolate [76]. The current study was 

compared with Ghanaian cocoa samples as a benchmark which is regarded as the best 
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flavoured cocoa [40]. On comparing the effects of cocoa flavour variation among the 

drying methods used irrespective of pre-treatments, SUN treatment recorded the 

highest cocoa flavour score (3.5). This is because sun drying has low temperature 

condition and longer drying time which facilitates the development of cocoa flavour 

precursors, especially in the unblanched samples. Treatments FD and V60 records the 

lowest cocoa flavour scores (2.3 and 2.0, respectively) and are significantly different (p < 

0.05) from treatments A60, H70 and SUN. This is due to the lack of oxygen in FD and 

V60. In low oxygen conditions, the oxidation of enzymes responsible for cocoa flavour 

development does not occur.  

Table 7.3: Effect of blanching pre-treatment and drying on cocoa flavour attribute 

Drying method 
Cocoa Flavour 

Unblanched Blanched 

FD 2.3±0.5c 1.5±1.0d 

A60 3.0±0.5b 2.5±0.7bc 

V60 2.0±1.0c 2.1±1.1c 

H70 2.6±0.5bc 2.3±0.8c 

SUN 3.5±1.4a 3.1±1.1ab 
*Mean values (± SD) having a common letter among drying methods in same column are not significant according to Duncan’s 

multiple range test at 5% level 

The results show a rather low value of cocoa flavour (1.5 to 3.5) attribute with published 

literature. The general variation in cocoa flavour scores for fermented cocoa beans after 

processing are in the range of 4.5 to 7.0 [11, 12]. Generally sufficient fermentation and 

drying method is mandatory for the development of cocoa flavour attributes [34]. It is 

understood that during fermentation the microbial activity by organisms such as yeast 

increases the acidity levels and temperature within the beans. This degrades the 

internal bean structure by enzymes such as invertase, glycosidases and proteases [31]. 
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The process mentioned above is necessary for the development of cocoa flavour 

precursors which would be established during sufficient drying. Looking into blanched 

beans, A60 and SUN shows significantly high cocoa scores (p < 0.05) 2.5 and 3.1, when 

compared to FD, V60 and H70 treatments. Since the samples used in this experiment 

are not fermented, low values for cocoa flavour are expected [18].  

7.3.2. Bitter flavour  

The bitterness flavour attributes are shown in Table 7.4. It is reported that presence of 

alkaloids develop high bitterness scores in cocoa beans [111]. Alkaloids are stimulant 

compounds (eg: caffeine, theobromine, etc.) which also provide bitter taste 

characteristic to other commercial beverage such as tea and coffee [12]. After 

fermentation process, it was reported that there were a 50 % decrease in the overall 

alkaloid compounds in cocoa beans, however it is usually not affected by drying 

methods [65].  

Table 7.4: Effect of blanching pre-treatment and drying on bitter flavour attribute 

Drying method 
Bitter Flavour 

Unblanched Blanched 

FD 5.0±1.0a 5.1±0.9a 

A60 3.6±0.2bc 4.8±1.1ab 

V60 4.0±0.5b 4.4±1.3b 

H70 4.1±0.5b 3.8±0.7bc 

SUN 2.6±0.5d 2.7±1.5d 
*Mean values (± SD) having a common letter among drying methods in same column are not significant according to Duncan’s 

multiple range test at 5% level 

SUN treatment shows a considerably lower value in comparison to other drying 

treatments and is significantly different (p < 0.05) from treatments A60, H70, V60 and 

FD. During sun drying, the acidity and astringency flavour scores are relatively low, this 
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helps in boosting the cocoa flavour attribute which masks the bitterness from the 

samples. It is also worth mentioning that FD treatment shows the highest bitter flavour 

attributes. Freeze drying in the current research is used as a benchmark for quality 

evaluation of cocoa, the high tannin residues in the bioactive compound rich FD samples 

are shown to exhibit bitter taste and are statistically different (p < 0.05) from other 

drying treatments [80]. The general scores of bitterness are in range of 2.8 to 3, 

however Malaysian cocoa samples are reported to have high bitterness trait [18]. This 

reason along with the fresh unfermented nature of the beans used in current study 

justifies the high bitterness flavour (2.6 to 5.1). Bitterness is a desirable attribute in 

cocoa beans although high level of bitterness would mask the cocoa flavour taste in 

cocoa beans [110].  

7.3.3. Astringent flavour  

The intensity of cocoa flavour attribute is shown in Table 7.5. Typically for well 

fermented cocoa the astringency scores in the range of 2.5 to 5.0 [18]. As mentioned 

earlier, polyphenolic compounds imparts the astringent flavour note to cocoa beans. 

This is verified in the current results with astringent flavour attributes ranging from 3.5 

to 5.5 due to the fresh unfermented nature of cocoa sample. For unblanched cocoa 

samples, treatment FD shows the highest astringency flavour score of 5.5, which is 

significantly different (p < 0.05) from treatments H70 and SUN.  
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Table 7.5: Effect of blanching pre-treatment and drying on astringent flavour attribute 

Drying method 
Astringent Flavour 

Unblanched Blanched 

FD 5.5±1.3a 5.2±1.3ab 

A60 4.9±0.8b 5.5±1.0a 

V60 4.8±1.8b 5.3±0.8ab 

H70 4.0±1.3c 5.2±1.0ab 

SUN 3.5±.03d 4.2±0.8c 
*Mean values (± SD) having a common letter among drying methods in same column are not significant according to Duncan’s 

multiple range test at 5% level 

On comparing the cocoa flavour scores after blanching pre-treatments, treatments A60, 

H70 and SUN showed significantly higher value (p < 0.05). The results from total 

polyphenolic contents from section 6.3.3 (Chapter 6) substantiates this finding where 

the highest percentage differences of polyphenols were noted for A60 (12.46 %), H70 

(15.31 %) and SUN (10.47 %).  Similar to earlier results, treatment FD records the highest 

astringency scores which are due to the high polyphenols compounds recovered after 

drying. After blanching, significantly high (p < 0.05) scores were noted for treatments 

FD, A60, V60 and H70, on comparison with SUN treatment. This proves that blanching is 

an excellent pre-treatment method in recovering high polyphenolic contents in cocoa 

beans after drying.   

7.3.4. Acidic flavour  

Acidic flavour scores are shown in Table 7.6. The acidic flavour attribute are produced 

during fermentation process. The occurrence of high acid constituents in cocoa will lead 

to a sour taste in the cocoa sample. Usually during fermentation process, the sugars 

present in fresh cocoa beans are broken down into acid mainly acetic and lactic acid 

[17]. The acidity of cocoa beans during the course of fermentation is said to increase 
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during the activity of microbes in the outer layer of the bean. The outer mucilaginous 

coating of cocoa liquefies (known as sweating) and the highly acidic medium helps the 

microbes penetrate into the cocoa body which further degrades the sugars present in 

storage cells of the bean. Thus, the acid formed are contained within the bean [30]. 

These acidic compounds are reduced by evaporation due to the volatile nature of acids 

during drying process. High temperature drying and fast drying lead to the case 

hardening of cocoa shell. This leads to entrapment of the acid constituents to remain 

inside bean which increases the acidic flavour [76]. Generally the acid flavour scores for 

fermented cocoa are in the range of 2 to 3 [12, 15]. The results from current study show 

acidic flavour scores ranges from 0.5 to 1.5. The low scores are primarily due to fresh 

nature of cocoa beans used. Fermentation process increases the acidity in cocoa beans 

by converting the sugars (glucose and fructose) into lactic acid and acetic acid by 

microbial activity (LAB and AAB). The slight traces of acid flavour scores could be due to 

the citric acid residues which are present in the mucilaginous outer pulp of fresh cocoa 

beans [31].  

Table 7.6: Effect of blanching pre-treatment and drying on acidic flavour attribute 

Drying method 
Acidic Flavour 

Unblanched Blanched 

FD 1.0±0.7bc 0.5±0.5d 

A60 1.0±0.5bc 1.0±0.5bc 

V60 0.5±0.5d 0.5±0.5d 

H70 1.2±0.7ab 1.4±0.7a 

SUN 1.0±0.7bc 1.5±0.9a 
*Mean values (± SD) having a common letter among drying methods in same column are not significant according to Duncan’s 

multiple range test at 5% level 
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7.3.5. Selection of cocoa beans with enhanced flavour attributes  

Since this study focusses on the production of cocoa beans with high polyphenolic 

compounds, cocoa beans with high astringency scores is a desirable attribute. Upon   

comparing the results with Ghanaian cocoa reference samples, the cocoa flavour scores 

for both unblanched and blanched cocoa samples at various drying treatments are much 

lower. Blanched cocoa beans shows higher astringency and bitterness scores (Tables 7.4 

and 7.5) and can be confirmed to be an optimal pre-treatment method. Among 

blanched samples, treatment A60 can be chosen as treatment with optimal sensory 

properties. Treatment A60 shows high astringency (5.5) and bitterness flavour (4.8) 

scores. High astringency and bitterness flavours are indicators of cocoa beans with high 

polyphenolic contents and alkaloid contents, respectively. The acidic flavour score for 

A60 after blanching were also found to be 1.0, low acidity in beans are found to be a 

desirable attribute. All the drying treatments (unblanched and blanched) show high 

astringency and bitterness scores which will mask the development of cocoa flavour 

attribute. Since the scope of this study is not restricted to producing cocoa beans for 

commercial chocolate production, the low cocoa scores development in samples can be 

accepted. The flavour scores of treatment FD in unblanched and blanched samples show 

the highest astringency scores. However, FD treatment in current research were mainly 

used for benchmarking purposes and the large scale production of cocoa beans using FD 

is not economically feasible.     
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7.4. Conclusion 

Results have indicated that unfermented cocoa beans rich in polyphenols after drying 

showed a different trend in comparison to sensory evaluations of fermented cocoa 

beans after sun drying and artificial methods. There has been no research that has 

focused on the sensory evaluation of fresh beans and its effects on blanching pre-

treatment for the production of high polyphenols cocoa beans. In the traditional sensory 

evaluation analysis, bitterness and astringency flavour attributes are usually found to be 

undesirable. However, in the current study both bitterness and astringency scores are 

important as it justifies the high polyphenolic content and antioxidant capacities of 

cocoa beans recovered through blanching pre-treatment after various drying 

treatments. The score ranges for bitterness and astringency flavour attributes are 2.6 to 

5.1 and 3.5 to 5.5, respectively. These values were higher than that reported in 

published literature and further justifies the total polyphenols content and antioxidant 

assay results obtained in Chapter 6. Blanching pre-treatment can shows high astringency 

scores (polyphenol recovery) in cocoa beans after treatments H70, A60, V60 and SUN 

and among them, A60 after blanching can be chosen as an optimal treatment for 

producing cocoa beans with optimal flavour characteristics. The current study would 

benefit the pharmaceutical and nutraceutical industries for the development of high 

polyphenols cocoa based product with proven health benefits.   
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CHAPTER 8 

CONCLUSION AND FUTURE WORKS 

8.1 General Conclusions 

The present study represents an investigation on the production of high polyphenols 

cocoa beans using blanching pre-treatment and various drying methods with emphasis 

on fresh cocoa beans. A comprehensive comparison of blanching pre-treatment and 

various drying methods for cocoa have not been reported elsewhere to date. Artificial 

drying methods such as oven, vacuum, adsorption and freeze drying were compared 

with conventional sun drying method. Comparisons of the drying kinetics, total 

polyphenols content, antioxidant capacities and sensory analysis for each cocoa bean 

drying method were analysed. Cocoa beans with high polyphenolic contents can be 

introduced into market as a specialty cocoa.  

The studies have reported the following significant findings: 

I. Fermented cocoa beans dried in hot air oven at 70°C setting, showed the 

maximum polyphenols recovery (range of 56.3 to 67.1 mg GAE g-1 dw). The 

effective diffusivity values obtained from the study were in accordance with that 

of published literatures (2.36 X 10-10 to 2.86 X 10-10 m2s-1). The polyphenols 

degradation was found to be dependent on the temperature of drying as well as 

the drying duration.  

II. Drying kinetics analysis showed that adsorption drying dried faster (24 h) than 

oven, vacuum and sun drying methods. The effective diffusivities of fresh beans 
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dried using the various drying methods have not been reported in any literatures 

are were recorded to be in the range of 1.54 X 10-10 to 4.13 X 10-10 m2s-1. 

III. The polyphenols recovery of fresh cocoa beans was recorded to be much higher 

than fermented cocoa beans. The application of blanching pre-treatment was 

reported to be an optimal method for degrading polyphenol oxidases enzymes, 

which in turn preserves total polyphenolic compounds in cocoa beans. Blanching 

at 90°C for 5 min showed to have a significant (p < 0.05) increment in total 

polyphenolic compounds recovered after drying (about 10 % increment in 

polyphenolic recovery for fresh whole beans on comparison with control). Both 

adsorption and vacuum dried cocoa samples after blanching pre-treatment were 

reported to have high total polyphenolic content and antioxidant activity. 

Adsorption and oven dried cocoa samples achieved the highest percentage 

difference values for total polyphenolic contents, DPPH assay and ABTS assay, 

respectively (Total polyphenolic content: 12.46 % and 15.3 %; DPPH assay: 7.41 

% and 8.5 % and ABTS assay: 11.41 % and 7.88 %, for adsorption drying and oven 

drying, respectively). 

IV. Sensory evaluations of fresh cocoa beans have not been reported in literatures 

and high astringency flavour was noted for both blanched and unblanched 

samples. This confirmed the potential of high polyphenolic recovery in cocoa 

samples by using fresh cocoa beans. The astringency flavour for A60, H70 and 

SUN dried samples recorded significantly different values (p < 0.05) after 
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blanching. Adsorption drying after blanching showed optimal sensory 

characteristics among the various drying treatments used in the study. 

8.2. Future works 

The studies carried out have revealed that fresh cocoa beans with high polyphenolic 

content could be produced using blanching pre-treatment and the application of various 

drying methods. The potential of highly health beneficial cocoa beans thus produced 

could be further explored to provide an active raw material for pharmaceutical and 

nutraceutical industries. Therefore, the following future works are recommended: 

I. Analyze the drying kinetics and effective diffusivities of cocoa samples after 

blanching pretreatments. Since it is already established that blanching helps in 

enhancing the quality of cocoa beans, the drying kinetic analysis of the blanched 

samples will be beneficial in determining the moisture diffusion patterns which 

occurs during drying.  

II. From section 6.3.2 of this thesis, it is shown that the total polyphenolic content 

of fresh cocoa beans increases as the blanching temperature is increased from 

70°C to 90°C, for a period of 5 min. It will beneficial in determining the total 

polyphenolic content of cocoa beans after blanching at higher temperatures (> 

90°C). 

III. Performance and cost analyses of the adsorption dryer when drying cocoa beans 

based on the drying conditions from this research as this drying methods show 

promising results when compared with other treatments. To conduct an analysis 
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on the performance of other adsorbent mediums such as silica gel, activated 

charcoal etc. 

IV. Design and development of an automated blancher, which will help in scaling up 

the process effectively. A blancher prototype with automated temperature and 

time controls with conveyor belt to facilitate transfer of beans from and outside 

hot water medium can significantly reduce the manual labour requirements and 

risk associated with operation. 

V. Development of bitter chocolates from the cocoa produced from the current 

study, which have high demand among health conscious consumers.  

VI. Investigate the potential of microwave based blanching method on cocoa beans. 

Microwave blanching is reported to require the minimum amount of energy to 

inactivate enzymatic activity in food products. It is hence ideal to blanch large 

quantities of cocoa samples in a cost and time efficient manner. 
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APPENDIX A 

RELATIVE HUMIDITY PROFILE AND CALIBRATION CURVES 

 
Figure A1: Relative humidity profile of adsorption dryer 

 

 
 Figure A2: The calibration curve for total polyphenolic content analysis in gallic acid 

equivalence (GAE) 
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Figure A3: The calibration curve for DPPH antioxidants assay in trolox equivalence 

  

 

 

 
Figure A3: The calibration curve for ABTS antioxidants assay in trolox equivalence 
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APPENDIX B 

SENSORY EVALUATION FORM 

 

 

 

Figure B1: The cocoa liquor evaluation form used for sensory analysis 
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